
Robert H. Deng
Valérie Gauthier-Umaña
Martín Ochoa
Moti Yung (Eds.)

 123

LN
CS

 1
14

64

17th International Conference, ACNS 2019
Bogota, Colombia, June 5–7, 2019
Proceedings

Applied Cryptography
and Network Security

Lecture Notes in Computer Science 11464

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Robert H. Deng • Valérie Gauthier-Umaña •

Martín Ochoa • Moti Yung (Eds.)

Applied Cryptography
and Network Security
17th International Conference, ACNS 2019
Bogota, Colombia, June 5–7, 2019
Proceedings

123

Editors
Robert H. Deng
Singapore Management University
Singapore, Singapore

Valérie Gauthier-Umaña
Universidad del Rosario
Bogota, Colombia

Martín Ochoa
Cyxtera Technologies
Bogota, Colombia

Moti Yung
Columbia University
New York, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-21567-5 ISBN 978-3-030-21568-2 (eBook)
https://doi.org/10.1007/978-3-030-21568-2

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-0909-7091
https://orcid.org/0000-0002-7816-5775
https://doi.org/10.1007/978-3-030-21568-2

Preface

We are pleased to present the proceedings of the 17th International Conference on
Applied Cryptography and Network Security (ACNS 2019) held during June 5–7 2019,
in Bogotá, Colombia. The local organization was in the capable hands of Professors
Valérie Gauthier-Umaña from Universidad del Rosario, Colombia, and Martín Ochoa,
Universidad del Rosario and Cyxtera Technologies, and we are deeply indebted to them
for their generous support and leadership to ensure the success of the conference.

We received 111 submissions from all over the world. This year’s Program
Committee (PC) consisted of 56 members with diverse background and broad research
interests. The review process was double-blind and rigorous. The selection of the
program was challenging; in the end some high-quality papers had to be rejected owing
to lack of space. After the review process concluded, 29 papers were accepted to be
presented at the conference and included in the proceedings, representing an acceptance
rate of about 26%.

Among those papers, ten were co-authored and presented by full-time students.
From this subset, we awarded two Best Student Paper Awards, to Matthias
J. Kannwischer (co-authored with Joost Rijneveld and Peter Schwabe) for the paper
“Faster Multiplication in Z2m x½ � on Cortex-M4 to Speed up NIST PQC Candidates” and
Zhengzhong Jin (co-authored with Yunlei Zhao) for the work “Practical Key Estab-
lishment from Lattice.” These papers received very positive comments by the reviewers
and we appreciated their theoretical and practical contributions in the post-quantum
cryptography field. To them also goes a monetary prize of 500 euro each, generously
sponsored by Springer.

This year we had two outstanding keynote talks: “Toward Secure High-Performance
Computer Architectures” presented by Prof. Srini Devadas, MIT, and “Foundational
Aspects of Blockchain Protocols” by Prof. Juan Garay, Texas A&M University. To
Srini and Juan, our deepest gratitude for their excellent presentations.

We had a strong program along with a workshop track in parallel with the main
event, providing a forum to address specific topics at the forefront of cybersecurity
research. The papers presented at those sessions will be published in separate
proceedings.

ACNS 2019 was made possible by the joint efforts of many individuals and orga-
nizations. We sincerely thank the authors of all submissions. We are grateful to all the
PC members for their great effort in reading, commenting, debating, and finally
selecting the papers. We also thank all the external reviewers for assisting the PC in
their particular areas of expertise. Finally, we thank everyone else, speakers and session
chairs, for their contribution to the program of ACNS 2019.

We would also like to thank the sponsors for their generous support: Universidad
del Rosario, the Fellows program from ICETEX, Cyxtera Technologies, Google and
Springer.

June 2019 Robert Deng
Moti Yung

vi Preface

Organization

ACNS 2019

Applied Cryptography and Network Security 2019

June 5–7, 2019
Universidad del Rosario

Bogotá, Colombia

General Chairs

Valérie Gauthier-Umaña Universidad del Rosario, Colombia
Martín Ochoa Cyxtera Technologies, Colombia

Program Committee Chairs

Robert Deng Singapore Management University, Singapore
Moti Yung Google and Columbia University, USA

Program Committee

Michel Abdalla ENS and CNRS, France
Man Ho Au The Hong Kong Polytechnic University, SAR China
Joonsang Baek University of Wollongong, Australia
Alex Biryukov University of Luxembourg, Luxembourg
Pino Caballero-Gil University of La Laguna
Alvaro Cardenas The University of Texas at Dallas, USA
Liqun Chen University of Surrey, UK
Xiaofeng Chen Xidian University, China
Sherman S. M. Chow The Chinese University of Hong Kong, SAR China
Mauro Conti University of Padua, Italy
Robert Deng Singapore Management University, Singapore
Xuhua Ding Singapore Management University, Singapore
Benjamin Dowling Royal Holloway University of London, UK
Sara Foresti University of Milan, Italy
Debin Gao Singapore Management University, Singapore
Joaquin Garcia-Alfaro Telecom SudParis, France
Maria Isabel Gonzalez Universidad Rey Juan Carlos, Spain
Shoichi Hirose University of Fukui, Japan
Xinyi Huang Fujian Normal University, China
Stefan Katzenbeisser TU Darmstadt, Germany
Hiroaki Kikuchi Meiji University, Japan
Mirosław Kutyłowski Wrocław University of Technology, Poland

Junzuo Lai Jinan University, China
Shujun Li University of Kent, UK
Yingjiu Li Singapore Management University, Singapore
Joseph Liu Monash University, Australia
Javier Lopez University of Malaga, Spain
Di Ma University of Michigan, USA
Mark Manulis University of Surrey, UK
Takahiro Matsuda National Institute of Advanced Industrial Science

and Technology (AIST)
Sjouke Mauw University of Luxembourg, Luxembourg
Martín Ochoa Cyxtera Technologies, Colombia
Panos Papadimitratos KTH Royal Institute of Technology, Sweden
Thomas Peters Université catholique de Louvain, Belgium
Bertram Poettering Royal Holloway, University of London, UK
Christina Pöpper New York University Abu Dhabi
Zhan Qin State University of New York at Buffalo, USA
Ruben Rios University of Malaga, Spain
Francisco Rodríguez CINVESTAV-IPN, Mexico
Sushmita Ruj Indian Statistical Institute, India
Giovanni Russello The University of Auckland, New Zealand
Chunhua Su University of Aizu, Japan
Hung-Min Sun National Tsing Hua University, Taiwan
Qiang Tang Cornell University, USA
Juan Tapiador Universidad Carlos III de Madrid, Spain
Nils Ole Tippenhauer CISPA, Germany
Cong Wang City University of Hong Kong, SAR China
Jian Weng Jinan University, China
Qianhong Wu Beihang University, China
Toshihiro Yamauchi Okayama University, Japan
Guomin Yang University of Wollongong, Australia
Tsz Hon Yuen The University of Hong Kong, SAR China
Moti Yung Google and Columbia University, USA
Santiago Zanella-Béguelin Microsoft, UK
Kehuan Zhang The Chinese University of Hong Kong, SAR China
Jianying Zhou Singapore University of Technology and Design,

Singapore

Additional Reviewers

Alcaraz, Cristina
Armour, Marcel
Beierle, Christof
Bernieri, Giuseppe
Bobowski, Adam

Caballero-Gil, Cándido
Cecconello, Stefano
Chatterjee, Ayantika
Chen, Jie
Chen, Long

Chenu-de La Morinerie,
Mathilde

Cui, Shujie
Cuvelier, Edouard
Dai, Elim

viii Organization

Dai, Xiaopeng
Deo, Amit
Dragan, Catalin
El Kassem, Nada
Feher, Daniel
Fuchsbauer, Georg
Galbraith, Steven
Gangwal, Ankit
Gardham, Daniel
Groszschaedl, Johann
Guo, Chun
Gębala, Maciej
Hosoyamada, Akinori
Jonker, Hugo
Katsumata, Shuichi
Kim, Jongkil
Kitagawa, Fuyuki
Kiyoshima, Susumu
Li, Dawei
Li, Zengpeng
Libert, Benoit
Lin, Chengjun
Liu, Jianghua
Liu, Yixin
Lu, Yuan
Ma, Haoyu

Ma, Jack P. K.
Ng, Ka-Lok
Nuida, Koji
Pan, Jing
Perez Del Pozo, Angel L.
Pijnenburg, Jeroen
Rivero-García, Alexandra
Rodríguez-Pérez, Nayra
Roy, Partha Sarathi
Roşie, Răzvan
Rubio, Juan E.
Rubio-Hernan, Jose
Santos-González, Iván
Sato, Masaya
Schuldt, Jacob
Sengupta, Binanda
Shaft, Brian
Smith, Zach
Song, Yongcheng
Suárez Corona, Adriana
Suárez-Armas, Jonay
Syga, Piotr
Tang, Qiang
Tian, Yangguang
Tikhomirov, Sergei
Vazquez Sandoval, Itzel

Villar, Jorge
Vitto, Giuseppe
Wang, Hongbing
Wang, Jiafan
Wang, Jianfeng
Wang, Qingju
Weng, Jiasi
Wszola, Marta
Xie, Congge
Xu, Dongqing
Xu, Shengmin
Xue, Haiyang
Yamada, Shota
Yamakawa, Takashi
Yang, Rupeng
Yang, Shao-Jun
Yang, Yaxi
Yang, Zheng
Yu, Ruyun
Yu, Zuoxia
Zhang, Xiaoqian
Zhang, Xiaoyu
Zhao, Yongjun
Zhu, Yan

Organization ix

Contents

Integrity and Cryptanalysis

Rate-Optimizing Compilers for Continuously Non-malleable Codes. 3
Sandro Coretti, Antonio Faonio, and Daniele Venturi

Re: What’s Up Johnny? Covert Content Attacks on Email
End-to-End Encryption . 24

Jens Müller, Marcus Brinkmann, Damian Poddebniak,
Sebastian Schinzel, and Jörg Schwenk

Cryptanalysis of ForkAES . 43
Subhadeep Banik, Jannis Bossert, Amit Jana, Eik List, Stefan Lucks,
Willi Meier, Mostafizar Rahman, Dhiman Saha, and Yu Sasaki

Digital Signature and MAC

Short Lattice-Based One-out-of-Many Proofs and Applications
to Ring Signatures. 67

Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu,
and Dongxi Liu

Hierarchical Attribute-Based Signatures: Short Keys and Optimal
Signature Length. 89

Daniel Gardham and Mark Manulis

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 110
Xingye Lu, Man Ho Au, and Zhenfei Zhang

Parallelizable MACs Based on the Sum of PRPs with Security Beyond
the Birthday Bound . 131

Alexander Moch and Eik List

Software and Systems Security

DynOpVm: VM-Based Software Obfuscation with Dynamic
Opcode Mapping . 155

Xiaoyang Cheng, Yan Lin, Debin Gao, and Chunfu Jia

Hide and Seek: An Architecture for Improving Attack-Visibility
in Industrial Control Systems . 175

Jairo Giraldo, David Urbina, Alvaro A. Cardenas,
and Nils Ole Tippenhauer

A Modular Hybrid Learning Approach for Black-Box Security Testing
of CPS . 196

John Henry Castellanos and Jianying Zhou

PassGAN: A Deep Learning Approach for Password Guessing 217
Briland Hitaj, Paolo Gasti, Giuseppe Ateniese,
and Fernando Perez-Cruz

Blockchain and Cryptocurrency

Uncle-Block Attack: Blockchain Mining Threat Beyond Block
Withholding for Rational and Uncooperative Miners 241

Sang-Yoon Chang, Younghee Park, Simeon Wuthier,
and Chang-Wu Chen

Longitudinal Analysis of Misuse of Bitcoin . 259
Karim Eldefrawy, Ashish Gehani, and Alexandre Matton

Post Quantum Cryptography

Faster Multiplication in Z2m ½x� on Cortex-M4 to Speed up
NIST PQC Candidates . 281

Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe

Generic and Practical Key Establishment from Lattice 302
Zhengzhong Jin and Yunlei Zhao

One Sample Ring-LWE with Rounding and Its Application
to Key Exchange . 323

Jintai Ding, Xinwei Gao, Tsuyoshi Takagi, and Yuntao Wang

Masking Dilithium: Efficient Implementation
and Side-Channel Evaluation . 344

Vincent Migliore, Benoît Gérard, Mehdi Tibouchi,
and Pierre-Alain Fouque

Proxy Re-Encryption and Re-Signatures from Lattices 363
Xiong Fan and Feng-Hao Liu

Public Key and Commitment

DL-Extractable UC-Commitment Schemes . 385
Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, Janno Siim,
and Michał Zając

xii Contents

A New Encoding Framework for Predicate Encryption with Non-linear
Structures in Prime Order Groups . 406

Jongkil Kim, Willy Susilo, Fuchun Guo, Joonsang Baek, and Nan Li

Unbounded Inner-Product Functional Encryption with Succinct Keys 426
Edouard Dufour-Sans and David Pointcheval

Password-Authenticated Public-Key Encryption . 442
Tatiana Bradley, Jan Camenisch, Stanislaw Jarecki, Anja Lehmann,
Gregory Neven, and Jiayu Xu

Theory of Cryptographic Implementations

Public Immunization Against Complete Subversion Without
Random Oracles . 465

Giuseppe Ateniese, Danilo Francati, Bernardo Magri,
and Daniele Venturi

Strong Leakage and Tamper-Resilient PKE from Refined Hash
Proof System . 486

Shi-Feng Sun, Dawu Gu, Man Ho Au, Shuai Han, Yu Yu, and Joseph Liu

Privacy Preserving Techniques

Benchmarking Privacy Preserving Scientific Operations 509
Abdelrahaman Aly and Nigel P. Smart

Turbospeedz: Double Your Online SPDZ! Improving SPDZ Using
Function Dependent Preprocessing . 530

Aner Ben-Efraim, Michael Nielsen, and Eran Omri

pRate: Anonymous Star Rating with Rating Secrecy 550
Jia Liu and Mark Manulis

Masking Fuzzy-Searchable Public Databases . 571
Alexandra Boldyreva, Tianxin Tang, and Bogdan Warinschi

Homomorphic Training of 30,000 Logistic Regression Models 592
Flavio Bergamaschi, Shai Halevi, Tzipora T. Halevi, and Hamish Hunt

Author Index . 613

Contents xiii

Integrity and Cryptanalysis

Rate-Optimizing Compilers
for Continuously Non-malleable Codes

Sandro Coretti1, Antonio Faonio2, and Daniele Venturi3(B)

1 IOHK, Hong Kong, China
2 IMDEA Software Institute, Madrid, Spain

3 Department of Computer Science, Sapienza University of Rome, Rome, Italy
venturi@di.uniroma1.it

Abstract. We study the rate of so-called continuously non-malleable
codes, which allow to encode a message in such a way that (possibly
adaptive) continuous tampering attacks on the codeword yield a decoded
value that is unrelated to the original message. Our results are as follows:

– For the case of bit-wise independent tampering, we establish the exis-
tence of rate-one continuously non-malleable codes with information-
theoretic security, in the plain model.

– For the case of split-state tampering, we establish the existence of
rate-one continuously non-malleable codes with computational secu-
rity, in the (non-programmable) random oracle model. We further
exhibit a rate-1/2 code and a rate-one code in the common reference
string model, but the latter only withstands non-adaptive tampering.
It is well known that computational security is inherent for achiev-
ing continuous non-malleability in the split-state model (even in the
presence of non-adaptive tampering).

Continuously non-malleable codes are useful for protecting arbitrary
cryptographic primitives against related-key attacks, as well as for
constructing non-malleable public-key encryption schemes. Our results
directly improve the efficiency of these applications.

1 Introduction

1.1 Background

The beautiful concept of non-malleable codes [24] has recently emerged at the
intersection between cryptography and information theory. Given a function
family F , such codes allow to encode a k-bit value s into an n-bit codeword
c, such that, for each f ∈ F , it is unlikely that f(c) encodes a value s̃ that is
related to s. On the theoretical side, being a weaker guarantee than error cor-
rection/detection, non-malleability is achievable for very rich families F ; on the
practical side, non-malleable codes have interesting applications to cryptography.

S. Coretti—Supported by NSF grants 1314568 and 1619158. Work done while author
was at New York University.
A. Faonio—Supported by the Spanish Ministry of Economy under the projects Dedetis
(ref. TIN2015-70713-R) and Datamantium (ref. RTC-2016-4930-7), and by the Madrid
Regional Government under project N-Greens (ref. S2013/ICE-2731).

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 3–23, 2019.
https://doi.org/10.1007/978-3-030-21568-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_1

4 S. Coretti et al.

Continuous Non-malleability. In the original definition of non-malleable codes,
the property of non-malleability is guaranteed as long as a single, possibly adver-
sarial, function f ∈ F is applied to a target codeword. All bets are off, instead,
if an adversary can tamper multiple times with the same codeword. While “one-
time” non-malleability is already sufficient in some cases, it comes with some
shortcomings, among which, for instance, the fact that in applications, after a
decoding takes place, we always need to re-encode the message using fresh ran-
domness; the latter might be problematic, as such a re-encoding procedure needs
to take place in a tamper-proof environment.

Motivated by these limitations, Faust et al. [29] introduced a natural exten-
sion of non-malleable codes where the adversary is allowed to tamper a target
codeword by specifying polynomially-many functions fj ∈ F ; in case the func-
tions can be chosen adaptively, depending on the outcome of previous queries,
we speak of adaptive tampering, and otherwise we say that tampering is non-
adaptive. As argued in [29], such continuously non-malleable codes allow to over-
come several limitations of one-time non-malleable codes, and further yield new
applications where continuous non-malleability is essential [17,19,29,30].

Bit-Wise and Split-State Tampering. Since non-malleable codes do not involve
secret keys, it is impossible to achieve (even one-time) non-malleability against
all efficient families of functions F . (In fact, whenever the encoding and decoding
algorithms belong to F , it is always possible to decode the target codeword,
obtain the message, and encode a related value.) For this reason, research on
non-malleable codes has focused on obtaining (continuous) non-malleability for
limited, yet interesting, particular families. Two prominent examples, which are
also the focus of this work, are described below:

– Bit-wise independent tampering: Here, each function f ∈ Fn
bit is specified

as a tuple f := (f1, . . . , fn), where each fi is an arbitrary map determining
whether the i-th bit of the codeword should be kept, flipped, set to zero, or set
to one. Continuously non-malleable codes for bit-wise independent tampering,
with information-theoretic security, exist in the plain model [19] (i.e., without
assuming a trusted setup).

– Split-state tampering: Here, each function f ∈ Fn0,n1
split is specified as a

pair f := (f0, f1), where n = n0 + n1, and f0 and f1 are arbitrary functions
to be applied, respectively, to the first n0 bits and to the last n1 bits of
the codeword. Continuously non-malleable codes for split-state tampering,
with computational security, were constructed in the common reference string
(CRS) model [26,29] (i.e., assuming a trusted setup), and very recently in the
plain model [43] (assuming injective one-way functions).

It is well known that continuous non-malleability is impossible in the split-state
model with information-theoretic security, even for non-adaptive tampering [29].
Furthermore, non-adaptive continuous non-malleability for both the above fami-
lies requires a special “self-destruct” capability that instructs the decoding algo-
rithm to always output the symbol ⊥ (meaning “decoding error”) after the first
invalid codeword is decoded, otherwise generic attacks are possible [29,32].

Rate-Optimizing Compilers for Continuously Non-malleable Codes 5

An important parameter of non-malleable codes is their rate, defined as the
asymptotic ratio between the length of the message to the length of its encod-
ing, as the message length goes to infinity. The optimal rate is one, whereas a
code has rate zero if the length of the codeword is super-linear in the length
of the message. Non-malleable codes with optimal rate for bit-wise independent
tampering [8] (with information-theoretic security) and split-state tampering [1]
(with computational security), were recently constructed. To the best of our
knowledge, however, the achievable rate for continuously non-malleable codes
for the same families is poorly understood.

1.2 Our Contributions

In this paper, we make significant progress towards characterizing the achievable
rate for continuously non-malleable codes in the bit-wise independent and split-
state tampering model.

Split-State Tampering. In Sect. 3, we give three constructions of continuously
non-malleable codes in the split-state model, with a natural trade-off in terms
of efficiency, security, and assumptions. In particular, we show:

Theorem 1 (Informal). There exists a continuously non-malleable code in the
split-state model in the following settings:

(i) With rate 1 and with security against non-adaptive tampering in the com-
mon reference string model, assuming collision-resistant hash functions and
non-interactive zero-knowledge proofs.

(ii) With rate 1/2 and with computational security against adaptive tampering
in the common reference string model, assuming collision-resistant hash
functions and non-interactive zero-knowledge proofs.

(iii) With rate 1 and with computational security against adaptive tampering in
the non-programmable random oracle model.

Recall that computational security is inherent for continuous non-adaptive non-
malleability in the split-state model, even in the random oracle model.

Bit-Wise Independent Tampering. In Sect. 4, we show a similar result for the
case of bit-wise independent tampering, unconditionally:

Theorem 2 (Informal). There exists a rate-one continuously non-malleable
code against bit-wise independent tampering, achieving information-theoretic
security against adaptive tampering in the plain model.

From a technical perspective, the above theorems are proved by exhibiting
so-called rate compilers. A rate compiler is a black-box transformation from a
rate-zero non-malleable code Σ for some family F into a non-malleable code
Σ′ for the same family and with improved rate. In fact, we show that the rate
compilers constructed in [1,8] already work, with some tweaks, in the continuous
case. We stress, however, that while the constructions we analyze are similar to

6 S. Coretti et al.

previous work, our security proofs differ significantly from the non-continuous
case, and require several new ideas. We refer the reader directly to Sects. 3 and
4 for an overview of the main technical challenges we had to overcome.

1.3 Related Work

Several constructions of non-malleable codes for bit-wise [4,7,8,17,19,24] and
split-state [1–3,5,6,12,16,20,23–26,29,39,40,43] tampering appear in the liter-
ature; out of those, only a few achieve continuous non-malleability [6,17,19,26,
29,37,43].1 Non-malleable codes also exist for a plethora of alternative models,
including bit-wise tampering composed with permutations [7,8,16], circuits of
polynomial size [15,24,31], constant-state tampering [4,14,38], block-wise tam-
pering [11], functions with few fixed points and high entropy [37], space-bounded
algorithms [10,28], and bounded-depth circuits [9,13].

The capacity (i.e., the best achievable rate) of information-theoretic non-
malleable coding was first studied by Cheraghchi and Guruswami [15], who
established that 1 − α is the maximum rate for function families which are
only allowed to tamper the first αn bits of the codeword. This translates into a
lower bound of 1/2 for the case of split-state tampering, and we also know that
computational assumptions, in particular one-way functions, are necessary to go
beyond the 1/2 barrier [1].

Non-malleable codes find applications to cryptography, in particular for pro-
tecting arbitrary cryptographic primitives against related-key attacks [24]. In
this context, continuous non-malleability is a plus [29,30]. Additional appli-
cations include constructions of non-malleable commitments [34], interactive
proof systems [33], and domain extenders for public-key non-malleable encryp-
tion [17,19,41] and commitments [7].

2 Preliminaries

2.1 Notation

For a string x, we denote respectively its length by |x| and the i-th bit by xi;
if X is a set, |X | represents the number of elements in X . When x is chosen
randomly in X , we write x ←$ X . When A is an algorithm, we write y ←$ A(x)
to denote a run of A on input x and output y; if A is randomized, then y is a
random variable and A(x; r) denotes a run of A on input x and randomness r. An
algorithm A is probabilistic polynomial-time (PPT) if A is randomized and for
any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a polynomial
number of steps (in the size of the input). Given two strings x, y ∈ {0, 1}n, we
define the Hamming distance Δ(x, y) :=

∑
i∈[n](xi + yi mod 2), where the sum

is over the integers.

1 Strictly speaking, [6] only achieves continuous non-malleability for the weaker case
of persistent tampering (where each tampering function is applied to the output of
the previous tampering function).

Rate-Optimizing Compilers for Continuously Non-malleable Codes 7

Negligible Functions. We denote with λ ∈ N the security parameter. A function
ν : N → [0, 1] is negligible in the security parameter (or simply negligible) if
it vanishes faster than the inverse of any polynomial in λ. We sometimes write
ν(λ) ∈ negl(λ) to denote that ν(λ) is negligible.

Random Variables. For a random variable X, we write P [X = x] for the prob-
ability that X takes on a particular value x ∈ X (with X being the set where
X is defined). The statistical distance between two random variables X and X′

defined over the same set X is defined as SD (X;X′) = 1
2

∑
x∈X |P [X = x] −

P [X′ = x] |.
Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to

denote that they are identically distributed, X ≈s Y to denote that they are
statistically close, i.e. SD (Xλ;X′

λ) ∈ negl(λ), and X ≈c Y to denote that they
are computationally indistinguishable, i.e., for all PPT distinguishers D:

|P [D(Xλ) = 1] − P [D(Yλ) = 1]| ∈ negl(λ).

2.2 Non-malleable Codes

We start by recalling the standard notion of a coding scheme in the common
reference string (CRS) model.2

Definition 1 (Coding scheme). Let k(λ) = k ∈ N and n(λ) = n ∈ N be
functions of the security parameter λ ∈ N. A (k, n)-code is a tuple of algorithms
Σ = (Init,Enc,Dec) specified as follows: (1) The randomized algorithm Init takes
as input the security parameter λ ∈ N, and outputs a CRS ω ∈ {0, 1}p(λ), where
p(λ) ∈ poly(λ); (2) The randomized algorithm Enc takes as input a value s ∈
{0, 1}k, and outputs a codeword c ∈ {0, 1}n; (3) The deterministic decoding
algorithm Dec takes as input a codeword c ∈ {0, 1}n, and outputs a value s ∈
{0, 1}k ∪ {⊥} (where ⊥ denotes an invalid codeword).

We say that Σ satisfies correctness if for all ω ∈ {0, 1}p(λ) output by Init(1λ),
and for all values s ∈ {0, 1}k the following holds: P[Dec(ω,Enc(ω, s)) = s] = 1.

An important parameter of a coding scheme is its rate, i.e. the asymptotic
ratio of the length of a message to the length of its encoding (in bits), as the
message length increases to infinity. More formally, ρ(Σ) := infλ∈N limk→∞

k(λ)
n(λ) .

The best rate possible is 1; if the length of the encoding is super-linear in the
length of the message, the rate is 0.

Non-malleability. Let F be a family of functions F := {f : {0, 1}n → {0, 1}n}.
The notion of F-non-malleability [24] captures the intuition that any modifi-
cation of a given target encoding via functions f ∈ F yields a codeword that
either decodes to the same message as the original codeword, or to a completely
unrelated value.
2 Such codes are sometimes also called non-explicit. Explicit codes are obtained by

enforcing algorithm Init to output the empty string.

8 S. Coretti et al.

RealΣ,A,F (λ):
ω ←$ Init(1λ)
(s, α0) ←$ A0(ω)
c ←$ Enc(ω, s)
α1 ←$ A

Omaul(ω,c,·)
1 (α0)

Return α1

Oracle Omaul(ω, c, ·):
Upon f ∈ F :
c̃ = f(c)
s̃ = Dec(ω, c̃)
If s̃ = ⊥, self-destruct
Return s̃

SimuS,A,F (λ):
(ω, σ) ←$ S0(1λ)
(s, α0) ←$ A0(ω)
α1 ←$ A

Osim(S1,σ,s,·)
1 (α0)

Return α1

Oracle Osim(S1, σ, s, ·):
Upon f ∈ F :

s̃ ←$ S1(σ, f)
If (s̃ = �), then s̃ ← s
If s̃ = ⊥, self-destruct
Return s̃

Fig. 1. Experiments defining continuously non-malleable codes. The self-destruct com-
mand causes the tamper oracles Omaul and Osim to return ⊥ on all subsequent queries.

The definition below formalizes the above intuition in a more general set-
ting where non-malleability is required to hold against (fully adaptive) adver-
saries that can maul the original encoding several times. This is often referred
to as continuous non-malleability [29]. Roughly speaking, security is defined by
comparing two experiments (cf. Fig. 1). In the “real experiment”, the adver-
sary tampers continuously with a target encoding of a chosen message (possibly
dependent on the CRS);3 for each tampering attempt, represented by a function
f ∈ F , the adversary learns the outcome corresponding to the decoding of the
modified codeword. In the “simulated experiment”, the view of the adversary is
faked by a simulator which is completely oblivious of the message being encoded;
importantly, the simulator is allowed to return a special symbol 	 meaning that
(it believes) the tampering function yields a modified codeword which decodes
to the original message. Both experiments self-destruct upon the first occurrence
of ⊥, i.e., they answer all subsequent queries by ⊥.

Definition 2 (Continuous non-malleability). Let Σ = (Init,Enc,Dec) be a
(k, n)-code in the CRS model. We say that Σ is continuously F-non-malleable
if for all PPT adversaries A := (A0,A1) there exists a simulator S := (S0,S1)
such that

{RealΣ,A,F (λ)}λ∈N
≈c {SimuS,A,F (λ)}λ∈N

,

where the experiments RealΣ,A,F (λ) and SimuS,A,F (λ) are defined in Fig. 1.

Remark 1 (Non-adaptive tampering). We model non-adaptive tampering by
allowing the adversary A1 to submit a single query (fj)j∈[q] to the oracle Omaul,
for some polynomial q(λ) ∈ poly(λ). Upon input such a query, the oracle com-
putes c̃j = fj(c), and returns s̃j = Dec(ω, c̃j) for all j ∈ [q] (up to self-destruct).
In this case, we say that Σ is non-adaptively continuously F-non-malleable.
3 Importantly, each tampering function is applied to the original coding; this setting

is sometimes known as non-persistent tampering.

Rate-Optimizing Compilers for Continuously Non-malleable Codes 9

Tampering Families. We are particularly interested in the following tampering
families.

– Split-state tampering: This is the family of functions Fn0,n1
split := {(f0, f1) :

f0 : {0, 1}n0 → {0, 1}n0 , f1 : {0, 1}n1 → {0, 1}n1}, for some fixed n0(λ) =
n0 ∈ N and n1(λ) = n1 ∈ N such that n0 + n1 = n. Given an input codeword
c = (c0, c1), tampering with a function (f0, f1) ∈ Fn0,n1

split results in a modified
codeword c̃ = (f0(c0), f1(c1)), where c0 (resp., c1) consists of the first n0

(resp., the last n1) bits of c.
– Bit-wise independent tampering: This is the family of functions Fn

bit :=
{(f1, . . . , fn) : ∀i ∈ [n], fi : {0, 1} → {0, 1}}. Given an input codeword c =
(c1, . . . , cn), tampering with a function f ∈ Fn

bit results in a modified codeword
c̃ = (f1(c1), . . . , fn(cn)), where each fi is any of the following functions: (i)
fi(x) = x (keep); (ii) fi(x) = 1 ⊕ x (flip); (iii) fi(x) = 0 (zero); (iv)
fi(x) = 1 (one).

2.3 Authenticated Encryption

A secret-key encryption (SKE) scheme is a tuple of algorithms Π :=
(KGen,AEnc,ADec) specified as follows: (1) The randomized algorithm KGen
takes as input the security parameter λ ∈ N, and outputs a uniform key
κ ←$ {0, 1}d; (2) The randomized algorithm AEnc takes as input a key κ ∈
{0, 1}d, a message μ ∈ {0, 1}k, and outputs a ciphertext γ ∈ {0, 1}m; (3)
The deterministic algorithm ADec takes as input a key κ ∈ {0, 1}d, a cipher-
text γ ∈ {0, 1}m, and outputs a value μ ∈ {0, 1}k ∪ {⊥} (where ⊥ denotes
an invalid ciphertext). The values d(λ), k(λ),m(λ) are all polynomials in the
security parameter λ ∈ N, and sometimes we call Π a (d, k,m)-SKE scheme.

We say that Π meets correctness if for all κ ∈ {0, 1}d, and all messages
μ ∈ {0, 1}k, we have that P [ADec(κ,AEnc(κ, μ)) = μ] = 1 (over the random-
ness of AEnc). As for security, an authenticated SKE scheme should satisfy two
properties (see below for formal definitions). The first property, usually known
as semantic security, says that it is hard to distinguish the encryptions of any
two (adversarially chosen) messages. The second property, usually called authen-
ticity, says that, without knowing the secret key, it is hard to produce a valid
ciphertext (i.e., a ciphertext that does not decrypt to ⊥).

Definition 3 (Security of SKE). We say that Π = (KGen,AEnc,ADec) is a
secure authenticated SKE scheme if the following holds for the games of Fig. 2:

– For all PPT adversaries A, we have P

[
Gauth

Π,A(λ) = 1
]

∈ negl(λ);

–
{
Gind

Π,A(λ, 0)
}

λ∈N

≈c

{
Gind

Π,A(λ, 1)
}

λ∈N

.

Note that since both authenticity and semantic security are one-time prop-
erties, in principle, information-theoretic constructions with such properties are
possible when d ≤ k. However, we are interested in constructions where k > d,
for which the existence of one-way functions is a necessary assumption.

10 S. Coretti et al.

Gind
Π,A(λ, b):

κ ←$ {0, 1}d

(μ0, μ1, α) ←$ A0(1λ)
γ ←$ AEnc(κ, μb)
Return A1(γ, α)

Gauth
Π,A(λ):

κ ←$ {0, 1}d

(μ, α) ←$ A0(1λ)
γ ←$ AEnc(κ, μ)
γ′ ←$ A1(γ, α)
Return 1 iff:

(i) γ′ �= γ; and
(ii) ADec(κ, γ′) �= ⊥.

Fig. 2. Experiments defining security of SKE.

2.4 Error-Correcting Sharing Schemes

Intuitively, an error-correcting sharing scheme is an error-correcting code satis-
fying some form of privacy.

Definition 4 (Error-correcting sharing scheme). A (k, n, T,D) error cor-
recting sharing scheme (ECSS) is a triple of algorithms (Enc,Dec,ECorr), where
Enc : {0, 1}k → {0, 1}n is probabilistic, Dec : {0, 1}n → {0, 1}k, and ECorr :
{0, 1}n → {0, 1}n ∪ {⊥}, with the following properties:

– Correctness: For all s ∈ {0, 1}k, Dec(Enc(s)) = 1 with probability 1 (over
the randomness of Enc).

– Privacy: For all s ∈ {0, 1}k, any subset of up to T bits of Enc(s) are dis-
tributed uniformly and independently (over the randomness of Enc).

– Distance: Any two codewords in the range of Enc have Hamming distance
at least D.

– Error correction: For any codeword c in the range of Enc and any c̃ ∈
{0, 1}n, ECorr(c̃) = c if their Hamming distance is less than D/2, and
ECorr(c̃) = ⊥ otherwise.

3 Split-State Tampering

In this section, we study several rate-optimizing compilers for continuously non-
malleable codes in the split-state setting. As a starting point, in Sect. 3.1, we
prove that, under certain assumptions on the initial rate-zero code, the compiler
of Aggarwal et al. [1] actually achieves continuous security against non-adaptive
tampering. Unfortunately, as we show in the full version [18], the limitation of
non-adaptive security is inherent for this particular construction.

Motivated by this limitation, we propose two variants of the rate compiler
from [1] that guarantee continuous security in the presence of adaptive tampering
attacks. The first variant, which is described in Sect. 3.2, achieves rate 1/2. The
second variant, which is described in Sect. 3.3, achieves rate one in the (non-
programmable) random oracle model.

Rate-Optimizing Compilers for Continuously Non-malleable Codes 11

3.1 Rate-One Compiler (Non-adaptive Tampering)

Let Σ = (Init,Enc,Dec) be a rate-zero (d, n)-code, and Π = (KGen,AEnc,ADec)
be a (d, k,m)-SKE scheme. Consider the following construction of a (k, n′)-code
Σ′ = (Init′,Enc′,Dec′), where n′ := m + n.

Init′(1λ): Upon input λ ∈ N, return the same as Init(1λ).
Enc′(ω, s): Upon input ω and a value s ∈ {0, 1}k, sample κ ←$ {0, 1}d, compute

c ←$ Enc(ω, κ) and γ ←$ AEnc(κ, s); return c′ := c||γ.
Dec′(ω, c′): Parse c′ := c||γ, and let κ̃ = Dec(ω, c). If κ̃ = ⊥, return ⊥ and

self-destruct; else let s̃ = ADec(κ̃, γ). If s̃ = ⊥, return ⊥ and self-destruct;
else return μ̃.

Roughly speaking, the compiler uses the underlying (rate-zero) code to
encode a uniform key for the authenticated encryption scheme; such a key is
then used to encrypt the message, and the resulting ciphertext is appended to
the encoding of the key. The decoding algorithm, naturally decodes the encoding
of the key, and hence uses the resulting key to decrypt the ciphertext.

Augmented Continuous Non-malleability. Assume that Σ is non-malleable
in the split-state setting, where the encoding c is split in two halves c0 and c1
(consisting of n0 and n1 bits, respectively) that can be modified arbitrarily (yet
independently). Intuitively, we would like to show that Σ′ is continuously non-
malleable against the class of split-state functions that modifies c′

0 := c0 and
c′
1 := (c1, γ) independently.

The difficulty, originally observed in [1], is that, although (c0, c1) is a non-
malleable encoding of κ (as long as c0 and c1 are mauled independently), the
adversary could attempt to (independently) modify c′

1 and c′
0 yielding shares

c̃′
1 := (c̃1, γ̃) and c̃′

0 such that (c̃0, c̃1) decodes to a key κ̃ which is unrelated to
κ̃, yet decrypting γ̃ with κ̃ results in a message s̃ that is related to s.

A similar difficulty, of course, appears in the continuous setting. In order to
overcome this obstacle, inspired by the approach taken in [1], we define a notion
of augmented continuous non-malleability. Such a notion is a stronger form of
continuous non-malleability where, in the “real experiment” after A is done with
tampering queries, it is additionally given one share of the original encoding (say,
c1). In turn, the “ideal experiment” features a sort of “canonical” simulator S
that at the beginning of the simulation computes an encoding ĉ := (ĉ0, ĉ1) of, say,
the all-zero string; hence, the dummy encoding ĉ is used to answer tampering
queries from A, and, after the adversary is done with tampering queries, the
simulator returns ĉ1 to A. The formal definition appears below.

Definition 5 (Augmented continuous non-malleability). Let Σ =
(Init,Enc,Dec) be a (k, n)-code in the CRS model, and let n0(λ) = n0 ∈ N

and n1(λ) = n1 ∈ N be such that n = n0 + n1. We say that Σ is augmented
continuously Fn0,n1

split -non-malleable if for all PPT adversaries A := (A0,A1,A2)
there exists a simulator S := (S0,S1) such that

{
Real+

Σ,A,Fn0,n1
split

(λ, n0, n1)
}

λ∈N

≈c

{
Simu+

S,A,Fn0,n1
split

(λ, n0, n1)
}

λ∈N

, (1)

12 S. Coretti et al.

Real+
Σ,A,Fn0,n1

split

(λ, n0, n1):

ω ←$ Init(1λ)
(s, α0) ←$ A0(ω)
c ←$ Enc(ω, s)
c1 ← (c[n0 + 1], . . . , c[n])
α1 ←$ A

Omaul(ω,c,·)
1 (α0)

α2 ←$ A2(α1, c1)
Return α2

Oracle Omaul(ω, c, ·):
Upon (f0, f1) ∈ Fn0,n1

split :
c̃ = (f0(c0), f1(c1))
s̃ = Dec(ω, c̃)
If s̃ = ⊥, self-destruct
Return s̃

Simu+

S,A,Fn0,n1
split

(λ, n0, n1):

(ω, σ, ĉ1) ←$ S0(1λ)
(s, α0) ←$ A0(ω)
α1 ←$ A

Osim(S1,σ,ĉ1,s,·)
1 (α0)

α2 ←$ A2(α1, ĉ1)
Return α2

Oracle Osim(S1, σ, ĉ1, s, ·):
Upon (f0, f1) ∈ Fn0,n1

split :
s̃ ←$ S1(σ, (f0, f1), ĉ1)
If (s̃ = �), then s̃ ← s
If s̃ = ⊥, self-destruct
Return s̃

Fig. 3. Experiments defining augmented continuously non-malleable codes.

where the experiments Real+
Σ,A,Fn0,n1

split

and Simu+
S,A,Fn0,n1

split

are defined in Fig. 3.

Security Analysis. In the full version [18], we prove the following result.

Theorem 3. Assume that Σ is an augmented continuously Fn0,n1
split -non-

malleable (d, n)-code, and that Π is a secure authenticated (d, k,m)-SKE
scheme. Then Σ′ as defined in Sect. 3.1 is a non-adaptively continuously
Fn0,n1+m

split -non-malleable (k,m + n)-code.

Remark 2. Similarly to [1], the analysis actually shows that the code Σ′ also
preserves augmented continuous non-malleability (and not just continuous non-
malleability). However, since our goal is to construct continuously non-malleable
codes (in the standard sense), we do not give the proof for the augmented case.

We also stress that it suffices to start from an augmented code Σ′ that is
non-adaptively continuously non-malleable. However, we rely on the stronger
assumption of full adaptivity in order to simplify the exposition, and because,
looking ahead, our instantiation from Sect. 5.1 achieves this property.

Proof Intuition. We sketch the main ideas behind the security proof. We need
to describe a simulator S′ that can emulate arbitrary non-adaptive split-state
tampering with a target encoding c′ := (c0, (c1, γ)) of a message s, without
knowing s. Roughly, S′ does the following.

– At the beginning, run the simulator S+0 of the underlying augmented non-
malleable code, obtaining a fake CRS ω and a simulated right share ĉ1.

– Sample a key κ for the authenticated encryption scheme, and define γ as an
encryption of 0k under the sampled key.

Rate-Optimizing Compilers for Continuously Non-malleable Codes 13

– Upon receiving a sequence of non-adaptive tampering queries (f ′
0,j , f

′
1,j)j∈[q]

behave as follows for each j ∈ [q]:
• Invoke the simulator S+1 of the underlying augmented non-malleable code

upon (f ′
0,j , f

′
1,j , ĉ1), obtaining a simulated decoded key κ̃j ∈ {	,⊥} ∪

{0, 1}d.
• Compute the mauled ciphertext γ̃j by applying f ′

1,j on (ĉ1, γ).
– For each key κ̃j :

• If κ̃j = ⊥ set s̃j := ⊥.
• Else if κ̃j = 	, set s̃j := ⊥ in case γ̃j is different from the original cipher-

text γ, and otherwise set s̃ := 	.
• Else set s̃j as the decryption of γ̃j under κ̃j .
• Simulate a self-destruct by taking the minimum index j∗ such that either

κ̃j∗ = ⊥ or s̃j∗ = ⊥, and overwrite all values s̃j∗+1, . . . , s̃q with ⊥.
– Return s̃1, . . . , s̃q.

In order to prove that the above simulation is indeed correct, we define a sequence
of hybrid experiments starting with the real experiment (where the adversary A′

tampers non-adaptively with a target encoding computed using Σ′) and ending
with the ideal experiment (where the above simulator is used to answer A′’s
tampering queries). In the first hybrid, we change the way a non-adaptive tam-
pering query (f ′

0,j , f
′
1,j)j∈[q] is answered. In particular, given each (f ′

0,j , f
′
1,j), we

run the augmented simulator S+1 upon (f0,j , f1,j), where f0,j is identical to f ′
0,j ,

whereas f1,j is obtained by hard-wiring the ciphertext γ (encrypting the real
message s) into f ′

1,j . This allows us to get a mauled key κ̃j that is then used to
decrypt the ciphertext γ̃j defined by applying the function f ′

1,j on (ĉ1, γ), where
ĉ1 is the right share of an encoding produced at the beginning of the experiment
by running the augmented simulator S+0 .

The most interesting part of the proof is to show that the real experiment
and the above hybrid are computationally indistinguishable; here, the augmented
non-malleability of the underlying code Σ plays a crucial role. For the purpose
of this proof sketch, we only focus on this particular step of the proof, and
refer the reader to the full proof for the analysis of the other hybrids. The main
challenge is to reduce the attacker A′ against Σ′ to an attacker A against Σ. In
fact, the attacker A′ expects to attack a target encoding of the form (c0, (c1, γ)),
whereas the attacker A can only tamper with (c0, c1). This issue is resolved by
having A encrypt the value s chosen by A′ under a uniformly random key κ for
the authenticated encryption, and by mapping each pair of tampering functions
(f ′

0,j , f
′
1,j) into a pair (f0,j , f1,j) such that f0,j := f ′

0,j and f1,j(·) := f ′
1,j(·, γ)

(i.e., the ciphertext γ is hard-wired into the right tampering function).
The above trick allows the reduction to obtain a mauled key κ̃j ∈ {	,⊥} ∪

{0, 1}d that is either distributed as in the real experiment (where decoding takes
place) or as in the hybrid experiment (where the augmented simulator S+1 is
used). Unfortunately, this information alone is not sufficient to complete the
simulation; in fact, the reduction would need to use the key κ̃j to decrypt the
mauled ciphertext γ̃j which is obtained by applying the function f ′

1,j upon input
the ciphertext γ and either the real share c1 (in the real experiment) or the

14 S. Coretti et al.

simulated share ĉ1 (in the hybrid experiment). Now, if A′ were fully adaptive,
the reduction would get to know the right share of the encoding only after the
last tampering query, which makes it difficult to complete the reduction. Here
is where we rely on the fact that tampering is non adaptive, as in this case A′

specifies all functions (f ′
0,j , f

′
1,j)j∈[q] in one go, which in turn allows A to specify

(f0,j , f1,j)j∈[q] as defined above, obtain all values (κ̃j)j∈[q] together with the
right share (i.e., either c1 or ĉ1), compute the ciphertexts (γ̃j)j∈[q], and finally
complete the simulation.

3.2 Rate-1/2 Compiler (Adaptive Tampering)

We now explain how to slightly modify the compiler from Sect. 3.1 in order to
get adaptive security, at the price or reducing the rate of the compiled code to
1/2. The main difference is that the authenticated ciphertext γ is stored in both
halves of the target codeword, i.e. a codeword is now a tuple (c0||γ0, c1||γ1) where
γ0 = γ1 := γ, and the decoding algorithm additionally checks that, indeed, the
two ciphertexts γ0, γ1 are the same.

Intuitively, an adaptive adversary cannot store useful information about the
inner encoding c1 in the part of the codeword that stores γ1. The idea is that
in such a case, the same information must be guessed on the other side and
overwritten in γ̃1, as otherwise the decoding algorithm would output ⊥ with
consequent self-destruct; but then the adversary could have guessed this infor-
mation directly, even without the need of a tampering oracle.

Note that the adversary might still be able to learn some partial information
about the inner encoding, however, we show that this is not a problem as long
as the underlying rate-0 continuously non-malleable code satisfies the additional
property of being leakage resilient [5,29,40]. (Augmented non-malleability is not
required here.) We defer the formal analysis to the full version of this paper [18].

3.3 Rate-One Compiler (Adaptive Tampering)

We give yet another twist of the rate-optimizing compiler from Sect. 3.1, in order
to achieve optimal rate in the (non-programmable) random oracle model. The
main idea is to store the ciphertext γ on one share of the codeword, say the
right share, as before, and to add the hash of γ on the left share. Specifically,
a codeword is now a tuple (c0‖h, c1‖γ) where h = H(γ), and the decoding
additionally checks that indeed the value h is equal to H(γ). The intuition is
that having H(γ) in one share is equivalent to having γ itself, as in the random
oracle model the value H(γ) can be seen as a “handle” for the value γ.

Non-malleability in the Random Oracle Model. We start by explaining
what it means to construct a continuously non-malleable code in the (non-
programmable) random oracle model. First, the construction itself might make
use of the random oracle, so that a code is now a tuple Σ = (InitH ,EncH ,DecH)
where all algorithms can additionally make random-oracle queries (as in the
code sketched above). Second, the adversary A is allowed to make random-oracle

Rate-Optimizing Compilers for Continuously Non-malleable Codes 15

queries, and to specify split-state tampering functions of the form f := (f0, f1),
such that f0 and f1 can additionally query the random oracle.

When defining non-malleability in the random oracle model, we also assume
that the simulator can query the random oracle. We restrict to simulators that
simply observe the random oracle queries made by the tampering functions, but
do not program them, i.e. the so-called non-programmable random oracle model.

Proof Intuition. We now give an informal argument for the security of the above
construction. We do so by showing a reduction to the continuous non-malleability
of the code from Sect. 3.2; in order to simplify the exposition, we sketch the anal-
ysis in the programmable random oracle model, where the reduction/simulator
is further allowed to program the random oracle. In the full version of this
paper [18], we give a (slightly more complicated) direct proof that does not
require to program the random oracle.

Let A be an adaptive adversary against the security of the rate-one code;
we build an adversary B against the security of the rate-1/2 code. Adversary B
simply emulates A, keeping a list QH,A of all the random-oracle queries made
by A. Upon input a split-state tampering query (f0, f1) from A, adversary B
specifies its own tampering function (f ′

0, f
′
1) as follows:

Tampering function f ′
0(c0‖γ0):

– Compute h = H(γ), then execute f0(c0‖h).
– Keep a list QH,f of all the queries made by f0 to the random oracle.
– Eventually, f0 outputs (c̃0‖h̃), try to find a value γ̃ ∈ QH,A ∪ QH,f

such that H(γ̃) = h̃; if such value is found output (c̃0‖γ̃) else output
⊥.

Tampering function f ′
1(c1‖γ1):

– Run f1(c1‖γ1).

One can show that B simulates almost perfectly the tampering experiment with
A. In fact, the only bad event is when the hash of γ̃ as computed by f1 is equal
to h̃, but γ̃ has never been queried to H. However, if the adversary A or the
tampering function f0 do not query the random oracle with γ̃, then the bad
event happens only with probability 2−λ.

In the above description, we did not specify how the reduction treats random-
oracle queries asked by the tampering functions f0 and f1. The latter can be
done by replacing the random oracle H with the evaluation of a pseudorandom
function F (with random key κ′ sampled by the reduction) which we can hard-
code in the description of (f ′

0, f
′
1). This allows to simulate random-oracle queries

consistently, but requires to program the random oracle.

4 Bit-Wise Tampering

The compiler from Sect. 3 automatically implies a rate-compiler for con-
tinuously non-malleable codes tolerating bit-wise independent tampering

16 S. Coretti et al.

(as Fn
bit ⊂ Fn0,n1,n

split) in the computational setting. However, since continuously
non-malleable codes for bit-wise tampering also exist unconditionally [19], it
might be possible to obtain such codes with optimal rate in the information-
theoretic setting. This section shows that this is indeed possible, by extending
the analysis of the compiler from Agrawal et al. [8] to the continuous case.

4.1 Description of the Compiler

The compiler combines a low-rate continuously non-malleable code (CNMC)
Σ′ against Fn

bit with an error-correcting secret-sharing scheme (ECSS) Π with
high rate (cf. Sect. 2.4). The main idea of the compiler is to carefully introduce
random errors into an encoding of a message s under Π and record these errors
in a tag τ , which is encoded with Σ′.

Specifically, let Π = (Enc,Dec,ECorr) be a (k, n, T,D)-ECSS and Σ′ =
(Init′,Enc′,Dec′) be a continuously Fn′

bit-non-malleable (k′, n′)-code. Let E ≤ n
be a parameter to be set later. Consider the following construction4 of a (k, n′′)-
code Σ′′ = (Init′′,Enc′′,Dec′′), where n′′ := n + n′.

Init′′(1λ): Upon input λ ∈ N, return Init′(1λ).

Enc′′(ω, s): Upon input ω and a message s ∈ {0, 1}k:
(a) Choose a set I = {i1, . . . , iE} ⊆ [n] of cardinality E and a string ξ =

(ξi1 , . . . , ξiE) ∈ {0, 1}E uniformly at random and let τ = (I, ξ).5

(b) Compute a ←$ Enc(s) and, for i ∈ [n], let

c
(1)
i =

{
ξi if i ∈ I,

ai otherwise.

(a) Compute c(2) ←$ Enc′(ω, τ) and return c = (c(1), c(2)).
Dec′′(ω, c̃): Upon input ω and c̃ = (c̃(1), c̃(2)),

(a) Compute τ∗ = Dec′(ω, c̃(2)). If τ∗ = ⊥, return ⊥.
(b) Let a∗ = ECorr(c̃(1)). If a∗ = ⊥, return ⊥.
(c) Let τ∗ = (I∗, ξ∗) with I∗ = {i1, . . . , iE} and ξ∗ = (ξ∗

i1
, . . . , ξ∗

iE
). Define

c∗ = (c∗
1, . . . , c

∗
n) as

c∗
i =

{
ξ∗
i if i ∈ I,

a∗
i otherwise.

(2)

If c∗ �= c̃(1), output ⊥.
(d) Return Dec(a∗).

4 While we describe the compiler in the CRS model, our instantiation in Sect. 5.2 does
not require any trusted setup.

5 Note that the bits of ξ are indexed by the elements of I.

Rate-Optimizing Compilers for Continuously Non-malleable Codes 17

4.2 Security Analysis

In the full version [18], we prove the following result (cf. also Sect. 5.2 for a
concrete instantiation).

Theorem 4. Let Π be a (k, n, T,D)-ECSS with rate ρ = k/n and T = ω(log n),
and let Σ′ be a continuously Fn′

bit-non-malleable code with rate ρ′. Then, for any
E satisfying

n · ω(log n)
D

= E <
D

4
,

Σ′′ is is a continuously Fn+n′
bit -non-malleable code with rate ρ′′ = k

ρ−1k+2ρ′−1E .

Proof Intuition. We start with the real security experiment for code Σ′′ and con-
sider a series of hybrid experiments H1,H2,H3 such that a simulation strategy
for the ideal experiment is immediately apparent in H3.

The first hybrid H1 changes the way the tampered tag τ∗ is computed when
Omaul answers a tamper query f: Instead of computing it from a tampered
encoding f (2)(c(2)), the simulator S′

1 for the underlying non-malleable code Σ′

is invoked to determine the outcome of applying f. The indistinguishability of
the real experiment and H1 follows directly from the security of Σ′.

Once the switch to H1 has been made, the right part f (2) of a tamper function
f = (f (1), f (2)) can have one of three effects on the tag τ∗, which lead to the
definition of the second hybrid H2:

1. τ∗ = ⊥, in which case the outcome of tampering with f is ⊥ as well.
2. τ∗ is equal to the original tag τ . Thus, if the attacker changes too many bits

of the left-hand side encoding c(1), the result will almost surely be ⊥ since the
changes are likely to be inconsistent with the parts of c(1) recorded in the tag
and are independent of it. Correspondingly, H2 is defined to always answer
such tamper queries by ⊥. If there are only few changes on the left-hand side,
H2 proceeds as H1.

3. τ∗ is independent of the original tag. Thus, if the attacker overrides too
few bits of c(1), the random errors in c(1) are highly unlikely to match the
corresponding bits in τ∗ or not to be detected by the error correction. Cor-
respondingly, H2 is defined to always answers such tamper queries by ⊥. If
there are many overrides on the left-hand side, H2 proceeds as H1.

To show that hybrids H1 and H2 are indistinguishable, one first argues, drawing
on an idea from [17], that for every adaptive strategy, there is an equally good
non-adaptive one.6 The advantage of non-adaptive attackers is bounded by using
a simple concentration bound to argue that it is highly unlikely that the query
types described above are not caught by comparing the left-hand side to the tag
or by performing error correction.

Returning to the case distinction above, it remains to consider the two cases
where H1 was not changed:

6 Recall that a non-adaptive attacker submits all tamper queries at once.

18 S. Coretti et al.

1. Suppose τ∗ is equal to the original tag τ and the tamper function changes
only a few bits on the left-hand side. In such a case, it can be shown that
the result of the tampering is either the original message s or ⊥. The key
observation here is that in order to determine which is the case, one needs
merely to find out whether the tamper function “guesses” the bits of c(1) it
overrides correctly.

2. Suppose τ∗ is independent of the original tag and the tamper function over-
rides most of the bits on the left-hand side. In this case, it can be argued that
the outcome of the tampering is either ⊥ or a unique message, stemming from
a unique encoding ã. To see which is the case, one need only determine if the
positions that are not overridden by the tampering function match ã.

This process can be abstracted as a guessing game for a randomly generated
encoding a of s, where the game ends in a self-destruct as soon as an incorrect
guess is made. The self-destruct property allows to argue that the guessing game
for a generated as an encoding for s is indistinguishable from the guessing game
for, say, the all-zero message (by privacy of the ECSS). Correspondingly, hybrid
H3 is defined to work as H2, except that it works on an encoding of the all-
zero message. The indistinguishability of the hybrids follows directly from the
indistinguishability of the guessing games. Since hybrid H3 is independent of the
originally encoded message, it is straight-forward to design a simulation strategy.

5 Instantiating the Compilers

5.1 Split-State Model

Rate-One Code (Non-adaptive Tampering). In order to instantiate the
compiler from Sect. 3.1, we need to exhibit an augmented continuously non-
malleable code in the split-state model. Below, we give a short description of
such a code, highlighting the main technical challenges. We assume the reader
is familiar with the concept of zero-knowledge proofs.

The Code. The encoding scheme is a variation of the code from [29]. Given a
k-bit string s, its encoding has the form (c0, c1) = ((c′

0, h1, π1), (c′
1, h0, π0)),

where h0 (resp. h1) is a collision-resistant hashing of c′
0 (resp. c′

1), π0 (resp.
π1) is a NIZK proof of knowledge of a pre-image of the hash value h0 (resp.
h1), and (c′

0, c
′
1) is a leakage-resilient encoding [21] of the input.7 The decoding

algorithm first checks the validity of the proofs locally on the left and right
share, and then it makes sure that h0 (resp. h1) is indeed the hash of c′

0 (resp.
c′
1); if any of the checks fails, it returns ⊥, and else it decodes (c′

0, c
′
1) using the

decoding procedure of the leakage-resilient code.
The security proof differs significantly from that of [29]. In particular, we

exploit the following additional properties of the leakage-resilient code: (1) It

7 Such an encoding roughly guarantees that � bits of independent leakage from c′
0 and

c′
1 do not reveal anything on the encoded message.

Rate-Optimizing Compilers for Continuously Non-malleable Codes 19

should tolerate so-called noisy leakage [22,27,42], meaning that the parameter �
is an upper bound on the average min-entropy gap induced by the leakage (and
not its bit-length). (2) Indistinguishability should hold even if the distinguisher is
given one of the two shares of the target codeword, at the end of the experiment;
this property is the one that allows to show augmented non-malleability. (3)
For all messages, the distributions corresponding to the two shares c′

0, c
′
1 of

an encoding are almost independent. Properties (2) was already used in [29],
whereas properties (1) and (3) are easily seen to be met by known constructions.

Simulator. The (augmented) code simulator roughly works as follows. It starts by
sampling a dummy encoding (c′

0, c
′
1) of the message 0k under the leakage-resilient

code, and hence it computes the hash values h0, h1 and simulates the zero-
knowledge proofs π0, π1; this defines a simulated codeword (c0, c1) = ((c′

0, h1, π1),
(c′

1, h0, π0)). Thus, given a tampering query (f0, f1), we design a special simu-
lation strategy that outputs a candidate decoded message acting only either on
(f0, (c′

0, h1, π1)) or on (f1, (c′
1, h0, π0)). Let s̃0 and s̃1 be such candidate messages.

Finally, as long as s̃0 = s̃1 the simulator outputs s̃0, and otherwise it outputs ⊥
and self-destructs.

Intuitively, we want to make a reduction to the security of the leakage-resilient
code in order to switch the dummy encoding of 0k with an encoding of the real
message. In such a reduction, the values s̃0 and s̃1 are obtained via leakage
queries, and thus the main challenge is to argue that such leakage is allowed.
Take for instance the left share. The main observation is that, as long as s̃0 = s̃1,
then the leakage on c′

0 reveals no additional information beyond what is revealed
by c′

1 and the hash of c′
0. In fact, since s̃0 = s̃1, the leakage performed on c′

0

could have been also performed on c′
1 (as the leaked values are the same!), and

furthermore, by property (3) above and by the fact that the hash is short, those
values do not reduce the min-entropy of c′

0 by too much. On the other hand,
if s̃0 �= s̃1, the amount of leakage can be naively8 bounded by 2k, but notice
that this happens only once, since the simulator self-destructs after the first ⊥
is obtained.

Further Optimizations. Along the way, we were also able to improve the param-
eters w.r.t. the original proof given by [29]. In particular, the leakage parameter
we require from the underlying leakage-resilient code is �′ ∈ O(λ) instead that
�′ ∈ Ω(λ log λ) in the original proof. This improvement also yields better effi-
ciency in terms of computational complexity for the zero-knowledge proof system
(e.g., when using the Groth-Sahai proof system [35,36]). The details are deferred
to the full version of this paper.

Putting it Together. Summarizing the above discussion, assuming collision-
resistant hash functions and non-interactive zero-knowledge proofs, we have
obtained a rate-optimal continuously non-malleable code with computational
security against non-adaptive split-state tampering in the common reference
string model, as stated in item (i) of Theorem 1.
8 The leakage parameter can be improved to O(λ) by leaking a hash of the message.

20 S. Coretti et al.

Rate-1/2 Code (Adaptive Tampering). In order to instantiate the compiler
from Sect. 3.2, we need a leakage-resilient continuously non-malleable code in the
split-state model. Luckily, the above construction inherits leakage resilience from
the underlying leakage-resilient code.

Hence, assuming collision-resistant hash functions and non-interactive zero-
knowledge proofs, we have obtained a rate-1/2 continuously non-malleable code
with computational security against adaptive split-state tampering in the com-
mon reference string model, as stated in item (ii) of Theorem 1.

Rate-One Code (Adaptive Tampering). Finally, we can instantiate the
compiler from Sect. 3.3 under the same assumptions of the previous code, i.e.
all we need is a leakage-resilient continuously non-malleable code in the split-
state model. Here, we can further simplify the above construction by relying
on the random oracle heuristic, and consider codewords of the form (c0, c1) =
((c′

0, h1), (c′
1, h0)), where h0 (resp. h1) is computed by hashing c′

0 (resp. c′
1) via

a random oracle. One can prove that this construction achieves (computational)
continuous non-malleability in the split-state model.

Hence, we have obtained a rate-optimal continuously non-malleable code
with computational security against adaptive split-state tampering in the (non-
programmable) random oracle model, as stated in item (iii) of Theorem1.

5.2 Bit-Wise Independent Model

The ECSS for the Fn
bit-compiler can be instantiated using share packing, as

shown in [8]. This results in a (k, n, T,D)-ECSS with T = D = Θ̃(n3/4) and
n = (1 + o(1))k, which in turn allows to choose, e.g., E = n1/4+γ for any γ > 0.

The low-rate CNMC Σ′ can be instantiated, e.g., by the codes of [16,19]. Note
that such codes are in the plain model (i.e., algorithm Init′ returns the empty
string), and thus Theorem4 yields a rate-optimal continuously non-malleable
code with information-theoretic security against adaptive bit-wise independent
tampering, and without trusted setup, as stated in Theorem2.

6 Conclusions

We have provided several constructions of rate-optimizing compilers for continu-
ously non-malleable codes in the bit-wise independent and split-state tampering
models. While in the former case our compiler is optimal both in terms of rate
and assumptions (in fact, the result is unconditional), in the latter case we only
get rate-optimal codes for the case of non-adaptive tampering and assuming
trusted setup, and in the random oracle model. Thus, the main problem left
open by our work is whether rate-one continuously non-malleable codes for the
split-state model, with adaptive security and without random oracles, actually
exist (with or without trusted setup).

Rate-Optimizing Compilers for Continuously Non-malleable Codes 21

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 15

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: ACM STOC, pp. 459–468 (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: ACM STOC, pp. 774–783 (2014)

4. Aggarwal, D., Dottling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Continuous
non-malleable codes in the 8-split-state model. Cryptology ePrint Archive, Report
2017/357 (2017). https://eprint.iacr.org/2017/357

5. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
398–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 17

6. Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes
stronger. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 319–
343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 10

7. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-47989-6 26

8. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
375–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 16

9. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 31

10. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tamper-
ing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
618–650. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 20

11. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. In: ICALP, pp. 31:1–31:14 (2016)

12. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49099-0 14

13. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: ACM STOC, pp. 1171–1184 (2017)

14. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: IEEE FOCS, pp. 306–315 (2014)

15. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Innovations
in Theoretical Computer Science, pp. 155–168 (2014)

https://doi.org/10.1007/978-3-662-49099-0_15
https://eprint.iacr.org/2017/357
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-319-70503-3_10
https://doi.org/10.1007/978-3-662-47989-6_26
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-319-78372-7_20
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-662-49099-0_14

22 S. Coretti et al.

16. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 19

17. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: sim-
pler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9562, pp. 306–335. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 13

18. Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for continuously
non-malleable codes. IACR Cryptology ePrint Archive, vol. 2019, p. 55 (2019).
https://eprint.iacr.org/2019/055

19. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 22

20. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 18

21. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 9

22. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS, pp. 511–520 (2010)

23. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

24. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations in
Computer Science, pp. 434–452 (2010)

25. Faonio, A., Nielsen, J.B.: Non-malleable codes with split-state refresh. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 279–309. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 12

26. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable
codes with split-state refresh. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 121–139. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93387-0 7

27. Faonio, A., Nielsen, J.B., Venturi, D.: Fully leakage-resilient signatures revisited:
graceful degradation, noisy leakage, and construction in the bounded-retrieval
model. Theor. Comput. Sci. 660, 23–56 (2017)

28. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 95–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63715-0 4

29. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

30. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 579–
603. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 26

https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-662-49096-9_13
https://eprint.iacr.org/2019/055
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-642-15317-4_9
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-662-54365-8_12
https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-46447-2_26

Rate-Optimizing Compilers for Continuously Non-malleable Codes 23

31. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 7

32. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 15

33. Goyal, V., Jain, A., Khurana, D.: Non-malleable multi-prover interactive proofs and
witness signatures. Cryptology ePrint Archive, Report 2015/1095 (2015). https://
eprint.iacr.org/2015/1095

34. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
ACM STOC, pp. 1128–1141 (2016)

35. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012)

36. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

37. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 19

38. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with
explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 344–375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 11

39. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: ACM STOC, pp. 1144–1156 (2017)

40. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

41. Matsuda, T., Hanaoka, G.: An asymptotically optimal method for converting bit
encryption to multi-bit encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 415–442. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6 18

42. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J.
Comput. 41(4), 772–814 (2012)

43. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable
codes in the split-state model from minimal assumptions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 608–639. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 21

https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/978-3-540-24638-1_15
https://eprint.iacr.org/2015/1095
https://eprint.iacr.org/2015/1095
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-662-48797-6_18
https://doi.org/10.1007/978-3-662-48797-6_18
https://doi.org/10.1007/978-3-319-96878-0_21

Re: What’s Up Johnny?

Covert Content Attacks on Email End-to-End Encryption

Jens Müller1(B), Marcus Brinkmann1, Damian Poddebniak2,
Sebastian Schinzel2, and Jörg Schwenk1

1 Ruhr University Bochum, Bochum, Germany
{jens.a.mueller,marcus.brinkmann,joerg.schwenk}@rub.de
2 Münster University of Applied Sciences, Münster, Germany

{damian.poddebniak,schinzel}@fh-muenster.de

Abstract. We show practical attacks against OpenPGP and S/MIME
encryption and digital signatures in the context of email. Instead of tar-
geting the underlying cryptographic primitives, our attacks abuse legiti-
mate features of the MIME standard and HTML, as supported by email
clients, to deceive the user regarding the actual message content. We
demonstrate how the attacker can unknowingly abuse the user as a
decryption oracle by replying to an unsuspicious looking email. Using
this technique, the plaintext of hundreds of encrypted emails can be
leaked at once. Furthermore, we show how users could be tricked into
signing arbitrary text by replying to emails containing CSS conditional
rules. An evaluation shows that 17 out of 19 OpenPGP-capable email
clients, as well as 21 out of 22 clients supporting S/MIME, are vulner-
able to at least one attack. We provide different countermeasures and
discuss their advantages and disadvantages.

Keywords: PGP · S/MIME · Decryption oracles · Signing oracles

1 Introduction

Email was designed as a plaintext protocol, which allows eavesdroppers to read or
modify the communication on the channel. While it is common today that traffic
between mailservers is TLS encrypted,1 transport encryption is not sufficient to
protect against strong attackers, such as a man-in-the-middle (MitM) within the
infrastructure (e.g., a dishonest mail server operator), or an attacker who gains
access to leaked user emails. OpenPGP [2] and S/MIME [8] are the two major
standards used in such scenarios and provide end-to-end cryptographic protec-
tion. Both standards are designed to guarantee confidentiality, integrity, and
authenticity of messages, even in hostile environments such as a compromised
or untrustworthy mail server by encrypting and digitally signing emails.
1 According to Google’s transparency report, 88% of the email traffic was TLS

encrypted in the fourth quarter of 2018: https://transparencyreport.google.com/
safer-email/.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 24–42, 2019.
https://doi.org/10.1007/978-3-030-21568-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_2&domain=pdf
https://transparencyreport.google.com/safer-email/
https://transparencyreport.google.com/safer-email/
https://doi.org/10.1007/978-3-030-21568-2_2

Re: What’s Up Johnny? 25

Research Question. Both standards are based on asymmetric encryption;
only the user has access to the private key and, therefore, can decrypt messages
encrypted with the public key or sign messages. However, email usage involves
interaction with multiple communication partners, including potentially dishon-
est parties. Example: a mail server operator, Eve, who is in possession of the
ciphertext messages sent from Alice to Bob can simply re-send the encrypted
message from her address and have Bob decrypt it.2 If Bob simply replied to
Eve while quoting the original message, he would leak the plaintext of his com-
munication with Alice. Such message takeover attacks under a new identity are
well-known issues in email end-to-end encryption (see [5,6]). However, they are
generally considered an acceptable risk because it is assumed that given the
context of the message (e.g., “Hi Bob, [...] Yours, Alice”) Bob can tell that this
message is not originally from Eve and could easily discover the deception.

Therefore, the research question arises: Is it possible to hide the original text
to trick a user into unintentionally acting as a decryption oracle? A schematic
illustration of such an attack is given in Fig. 1.

Fig. 1. Covert content attacks against email encryption.

Contributions. In this work, we show simple, yet practical, attacks against
email encryption and digital signatures, and discuss the countermeasures. We
demonstrate how an attacker can wrap ciphertext into a specially crafted email
which looks benign but leaks the plaintext of hundreds of encrypted emails at
once if replied to. Furthermore, we show how to turn the victim into a signing
oracle by having him sign quoted covert content. The attacker can put this
content into a different context based on CSS conditional rules, resulting in
arbitrary text to be displayed as correctly signed by the victim. Our evaluation
shows that 17 out of 19 OpenPGP capable email clients, as well as 21 out of 22
clients supporting S/MIME are vulnerable to at least one attack. Our attacks
raise concerns about the overall security of encryption and digital signatures in
the context of email, even though the security guarantees of the cryptography
behind them remains untouched.

2 Note that digital signatures do not prevent this attack because Eve can strip them
and re-sign the message under her identity as discussed in Sect. 8.1 of this paper.

26 J. Müller et al.

Responsible Disclosure. We reported our attacks to the affected vendors
and proposed appropriate countermeasures. Our findings regarding email end-
to-end encryption resulted in CVE-2019-10731 to CVE-2019-10741. Our attacks
on digital signatures are documented as CVE-2019-10726 to CVE-2019-10730.

2 Background

In this section, we provide the fundamentals and the historical context of the
OpenPGP and S/MIME encryption schemes, as well as MIME and HTML email.

2.1 OpenPGP

Pretty Good Privacy (PGP) was invented in 1991 by Phil Zimmermann and
played a major political role in the ‘crypto wars’ of the mid-1990s. Until today,
it has a high reputation among activists, journalists, and privacy enthusiasts.
PGP was standardized as OpenPGP in RFC4880 which comes in two flavors: For
PGP/Inline, the plaintext in the email body is simply replaced by its encrypted
counterpart. This is done separately for each body part (or attachment) in case
of multipart emails. For PGP/MIME, the whole MIME structure including all
body parts is encrypted into a single part of content type multipart/encrypted.

2.2 S/MIME

In the late 1990s, S/MIME was specified as an Internet standard for email
encryption and digital signatures based on X.509 public key certificates and
a PKI. Besides having a more centralized trust model than OpenPGP, both
standards have a lot in common. S/MIME and OpenPGP are both hybrid cryp-
tosystems, consisting of a symmetric cipher such as AES and an asymmetric
cipher like RSA. S/MIME encrypts the whole MIME structure into a single
body part of content type application/pkcs7-mime. It is supported natively by
various mail clients and used in business environments and organizations, such
as universities.

2.3 MIME Email

Historically, RFC822 email was limited to ASCII messages. This did not fit the
needs of users to send other file formats such as binary data. Therefore, in 1992
Multipurpose Internet Mail Extensions (MIME) were born, enabling emails that
consist of multiple parts of various content types. An example HTML email with
inline images, additional text parts, and a PDF attachment is given in Fig. 2.

In the context of end-to-end encryption, the flexibility of multipart mails can
be dangerous. Neither OpenPGP nor the S/MIME standard cover the edge-case
of partially encrypted messages: e.g., ciphertexts can be wrapped as a sub-part
within the MIME tree, which is the foundation of our attacks on encryption.

Re: What’s Up Johnny? 27

/

Fig. 2. Exemplary MIME tree of a multipart email.

2.4 HTML Email

HTML in emails was introduced by Netscape in 1995 to format messages, e.g.,
to provide bold or colored text. It competed with the text/enriched MIME type
as defined in RFC1563 and Microsoft’s proprietary Rich Text Format (RTF).
HTML email was eventually adopted by the general public, despite opposition
by tech enthusiasts (as expressed, e.g., in the ASCII ribbon campaign). Today
most mail clients support HTML emails by default.3 However, until today, there
is no standard that defines which HTML elements should be enabled in email.
For example, some email clients even execute script tags within emails (see [7]).

3 Related Work

In 2000 Katz, Schneier, and Jallad [5,6] presented chosen-ciphertext attacks
against OpenPGP and S/MIME, in which they make use of the malleability fea-
ture of CFB and CBC mode to modify encrypted messages resulting in ‘garbage’
plaintext. A victim replying to the garbled plaintext unwittingly acts as a decryp-
tion oracle, allowing the receiver to reconstruct the original plaintext. Recently,
Poddebniak et al. [7] demonstrated that the malleability of CFB/CBC can be
used to modify encrypted emails such that their plaintext is automatically exfil-
trated to the attacker when opened in a vulnerable email client, using HTML
and other backchannels. They, furthermore, showed that some email clients con-
catenate encrypted and unencrypted MIME parts, allowing an attacker to leak
the plaintext of OpenPGP and S/MIME encrypted messages by loading them as
the resource of a remote URL. Message takeover attacks for signed emails have
been discussed by Davis [3] in 2001. He showed that a signed message “Let’s
break up” from Bob to Eve can simply be re-send by Eve to scare Alice (Bob’s
new girlfriend). Furthermore, Davis demonstrated that signatures can simply be
removed in many scenarios and the message can be re-signed by the attacker. In
2017, Ribeiro [9] showed that the displayed content of signed HTML emails can
be changed subsequently if the mail client fetches external CSS stylesheets.
3 According to an email marketing statistics and metrics study conducted by Juniper

Research, 97% of all email clients used in 2007 supported HTML messages.

28 J. Müller et al.

4 Attacker Model

Attacks based on decryption oracles require the attacker to somehow have
obtained PGP or S/MIME encrypted emails. In practice, this could be achieved
via an untrustworthy or compromised SMTP or IMAP server, via a third party
component such as cloud-based antivirus solutions scanning transiting emails,
or via a compromised mailbox (e.g., based on weak passwords or XSS on the
webmail service). While this is a strong attacker model, the only reason to use
end-to-end encryption at all is that an untrusted communication channel is pre-
sumed.

After having obtained ciphertext messages, the attacker, Eve, can re-send
them in her own name to one of the original communication parties, Alice or
Bob. Note that both can act as a decryption oracle because emails are usually
encrypted with the public key of both, the sender and the receiver, as both parties
want to be able to decrypt it later. Eve can perform additional changes to the
encrypted messages such as wrapping them within a multipart mail. In addition,
Eve may apply social engineering to lure the victim – Alice or Bob – into replying
to her (benign-looking) message. Note that this is a weak requirement as it is
a basic function of email to reply to communication partners, even previously
unknown ones. It is clear that the security of a cryptographic protocol should
not be dependent on the assumption that no communication is made. Signing
oracle-based attacks only require the victim to reply to a benign-looking email.

5 Decryption Oracles

Replying to a decrypted email and quoting the original message can leak the
plaintext to a third party in case the From: or Reply-To: header had been
replaced with the attacker’s email address. Such message takeover attacks under
a new identity are well-known (see [5,6]). However, they can often be detected
based on the message content. It is generally assumed that trained users should
get suspicious and discover the deception instead of replying to ‘out of context’
messages. In this paper we show how to hide the original plaintext and instead
show a meaningful message, asking the user to reply and, therefore, leak the
(hidden) plaintext. We do this by abusing the MIME standard in combination

multipart/mixed

text/html application/pkcs7-mime

encrypted content

attacker-controlled content

multipart/encrypted text/plain
S/MIME PGP/MIME PGP/INLINE

Fig. 3. MIME tree of a partially encrypted email.

Re: What’s Up Johnny? 29

with HTML email. Encrypted messages can themselves be a sub-part within a
MIME tree which may include further non-encrypted parts. Even though there
are hardly meaningful use cases for such ‘partially encrypted’ emails, they are a
valid feature. This allows an attacker to integrate captured ciphertext messages
into a MIME tree under her control and re-send this new email to the victim (i.e.,
the original sender or receiver). A MIME tree containing an attacker-controlled
message, as well as S/MIME and OpenPGP encrypted parts, is given in Fig. 3.

Plaintext Merged with Attacker’s Text. If a client receives a multipart
email, it decrypts the ciphertext parts and afterwards merges all ASCII and
HTML parts into a single document which is quoted upon replying.4 This imple-
mentation approach of the MIME standard can be considered dangerous: Eve can
prepend her own message, followed by a lot of newlines, to the captured cipher-
text part. If Alice replies without scrolling down she unintentionally acts as a
decryption oracle and leaks the plaintext. Other obfuscation techniques include
hiding the ciphertext somewhere between the attacker’s message parts: Emails,
especially forwarded mails, can contain a long conversation history and top-
posting without reading the whole conversation history is common user behavior.
A user replying to a ‘mixed content’ conversation can thereby leak the plaintext
of encrypted messages wrapped within the attacker-controlled text.

Plaintext Hidden Using HTML and CSS. In the context of HTML email,
mixed content attacks are more serious than in ASCII emails. An attacker who
can inject her own HTML/CSS code into the same document where the plaintext
is displayed can completely hide it, e.g., by wrapping it within an iframe. An
example email is given in Fig. 4. The result for Apple Mail is shown in Fig. 5.

Note that a closing </iframe> tag is not required. However, it could easily
be added by placing another attacker-controlled text/html part at the end of the
message. Iframes are just one way to hide the original plaintext. Other options
include wrapping it into HTML comments or other elements such as <audio> or
<canvas> which do not display the content between opening and closing tags –
while it is still kept when replying to the email. Other, more advanced, techniques
to hide the plaintext using CSS properties are shown for attacks on signatures
in Sect. 6. A comprehensive list of CSS blinding options is given in Table 1.

4 There are alternative ways to handle multipart messages. The email client “The
Bat!” shows a new tab for each body part, while Outlook only displays the very first
part. However, a majority of the evaluated clients follows the described approach.

30 J. Müller et al.

Fig. 4. Email structure to hide S/MIME ciphertext in an invisible iframe. After decryp-
tion the plaintext will be included as ‘covert content’ in the quoted reply.

Fig. 5. Covert content attack using Apple Mail as S/MIME decryption oracle.

Re: What’s Up Johnny? 31

Breaking Mixed-Content Isolation with References. In cases where mul-
tiple MIME parts are not automatically concatenated by the client, this behavior
can be enforced by creating a multipart/related email structure referencing the
ciphertext via cid: URI schemes (see RFC2392). Such Content-ID resource loca-
tors are typically used to embed and display inline images within HTML emails.
They are generally seen as more compatible than referencing remote images
which are blocked in most email clients for privacy reasons. In the example
email given in Fig. 6, the attacker’s text/html part includes the ciphertext as
an ‘image’. Because the resulting plaintext is not a valid image file, it cannot
be displayed by the client. However, the decrypted inline ‘image’ is included
in reply emails, therefore leaking the plaintext. A resulting screenshot of the
wrapped PGP/MIME message being opened in Thunderbird is given in Fig. 10
in the appendix. The attacker is not limited to images; the plaintext can also be
referenced as the content of an iframe, object, embed, and other elements.

Fig. 6. Email structure to hide PGP/MIME ciphertext in a referenced ‘image’.

Note that the attack does not require a ‘partially encrypted’ email because
Eve can also encrypt her malicious parts with the victim’s public PGP key
or S/MIME certificate. The attack is even successful if the victim replies to
Eve with an encrypted email because Eve’s public key is used for re-encryption.
These attacks apply not only for single ciphertext messages in the middle part of
a multipart email, but hundreds of encrypted emails can be hidden as sub-parts
and their plaintext can be leaked with a single reply.5 Furthermore, the attack
5 At some point, the SMTP server may enforce a resource limit, e.g., 25 MB for Gmail.

32 J. Müller et al.

does not require an active MitM, but rather, the obtained ciphertext could be
years-old. For example, a nation-state actor could have captured a target user’s
encrypted emails over years and later decides to expose them by sending a sin-
gle benign-looking email which lures the user into replying. While the attacks
use email to exfiltrate the plaintext, their scope is not limited to exfiltrating
decrypted emails. The attacks also work with non-email ciphertexts such as PGP
encrypted files. Covert content attacks are independent of the applied encryption
scheme, even though email clients and crypto plugins may handle multipart mes-
sages differently, depending on whether S/MIME and OpenPGP is used. While
the attacks require user interaction, they do not require any ‘unusual’ behavior,
but instead normal usage of email as a communication medium. They also do
not require complex cryptographic attacks like the CBC gadgets discussed in [7].

6 Signing Oracles

Digital signatures should guarantee integrity, authenticity, and non-repudiation
of messages. To give an example, Johnny could be a commander-in-chief who
takes information security seriously. All his emails are digitally signed, making
it hard to impersonate him in order to send forged statements or instructions.
The goal of our attacker Eve is to start false-flag warfare. Therefore, she needs
to obtain a digitally signed ‘declaration of war’ which she can forward to the
armed forces. Every time Johnny replies to a message he already acts – to a
certain extent – as a signing oracle when quoting the original text. For example,
consider the following message from Eve to Johnny:

1 I hereby declare war.

Johnny replies with a signed message, thereby quoting the original text:

1 Sorry Eve, You can’t do that.
2

3 On 01/05/19 09:42, Eve wrote:
4 > I hereby declare war.

In the reply, commander Johnny unintentionally signed Eve’s quoted text.
Certainly, given the message context and the quote prefix (>. . .) it is clear that
declaring war is not his intention. However, Eve can try to hide her malicious
content using CSS blinding options while a benign text message, such as “What’s
up Johnny?”, is added to be shown. Similarly, the benign text can be hidden
while showing the malicious content, based on CSS conditional rules which are
satisfied only for a third party. If Johnny replies to such a specially-crafted
HTML/CSS email, he signs arbitrary covert content along with visible content.
This signed message can then be forwarded by Eve to a third party (e.g., the
armed forces) where it displays the previously hidden malicious content “I hereby
declare war”, while hiding the benign content. A schematic illustration of such
covert content attacks on email signatures is given in Fig. 7.

Re: What’s Up Johnny? 33

Fig. 7. Covert content attacks against email signatures.

A simple HTML email containing conditional CSS code to display different
content based on the device’s screen resolution is given in Fig. 8. It can be used
to obtain a signed email from a mobile device, where a benign message is shown.
The reply message instead displays a (signed) declaration of war when shown
on a desktop mail client. A screenshot of the attack using iOS Mail as a signing
oracle and the resulting signed email shown in Thunderbird is given in Fig. 9.

Fig. 8. Malicious HTML/CSS email to obtain a signed ‘declaration of war’.

34 J. Müller et al.

Fig. 9. Covert content attack abusing iOS Mail as S/MIME signing oracle.

In the given example, email clients with a screen width of less than 835px
(e.g., a mobile phone or tablet) show a different text than desktop mail clients
based on the @media conditional rule. If the email client includes this conditional
CSS in the reply message it can be misused as a signing oracle, therefore allowing
the attacker to obtain signed messaged for arbitrary (displayed) content.

Conditional Rules. The W3C specifies CSS conditional rules [11] like @media,
which allow different formatting based on conditions such as screen width or
orientation. For example, a different text can be shown whether a mobile phone
is held in portrait or landscape mode, or whether the document is displayed
on a screen or printed out. Besides media queries, we can show different text
in different email clients using the @support conditional rule, which applies
formatting based on CSS feature support in the client. For example, an email
can be shown in red if two property-value pairs are supported:

1 @supports (property1: value1) and (property2: value2) {* {color:red}}

We assembled a list of over 1,000 CSS property-value pairs to fingerprint the
features supported by clients. This allows us to selectively enable certain CSS
code for every client that interprets the @support rule. A further conditional rule
introduced by Mozilla is @document. It allows CSS code to be executed based
on the document location. In the context of email clients, this even allows us to
show different text for each user because the location contains an imap:// URI
scheme with the email address. For example, to apply a red color solely for the
emails of general@good.com the following CSS code can be used:

1 @-moz-document url-prefix("imap://general@good.com") {* {color:red}}

In case CSS conditional rules are not supported, email clients may sup-
port their own proprietary conditional statements. For example, Outlook inter-
prets HTML and CSS code within <!--[if mso]>...<![endif]-->, while other
clients will ignore it. A listing of other conditional features is given in Fig. 11 in
the appendix.

Re: What’s Up Johnny? 35

Blinding Options. We identified seven CSS properties which can be used for
covert content attacks, as shown in Table 1. However, this list is unlikely to be
complete because CSS is very complex and offers more possibilities to hide text.

Table 1. CSS properties to hide text.

Property Show Hide

display: initial; none;

visibility: visible; hidden;

opacity: 1; 0;

clip-path: initial; polygon(0px 0px, 0px 0px, 0px 0px, 0px 0px);

position: static; absolute; top: -9999px; left: -9999px;

color: initial; transparent;

font-size: initial; 0;

The proposed attacks allow an attacker to obtain valid signatures for arbi-
trary content to be displayed. This can be used to trick a third party, which
relies on the authenticity and integrity of signed messages, to perform certain
actions (such as starting a war). A forensic analysis can reveal the deception,
but then it may already be too late (i.e., war is already declared). Note that the
covert content attacks to obtain signatures do not require any MIME wrapping,
but rather depend on HTML emails, and on support for (internal) CSS styles.

7 Evaluation

To evaluate the proposed attacks, we selected 19 widely-used email clients with
OpenPGP support and 22 clients supporting S/MIME from a comprehensive list
of over 50 email clients assembled from public software directories for all major
platforms (Windows, Linux, macOS, Android, iOS, and Web). Email clients were
excluded if they were not updated for several years, or if the cost to obtain them
would be prohibitive (e.g., appliances). All clients were tested in the default
settings with an additional PGP or S/MIME plugin installed where required.
The results from the tested clients regarding covert content attacks, (i.e., tricking
a user into acting as an oracle for decryption or signing) are shown in Table 2.

All tested email clients quote the original message when replying, which is the
precondition for our attacks. Of the overall tested 24 clients, 20 display HTML
emails in the default settings without any additional user interaction, but only
16 clients reply with HTML formatted content. While only five clients download
external CSS style sheets by default, all HTML capable clients support internal
and/or inline CSS, and at least one blinding option to hide text. All but two
HTML capable clients support conditional rules or other features to conditionally
show or hide text. Full details on HTML and CSS support for the various tested
email clients are given in Table 3 in the appendix.

36 J. Müller et al.

Table 2. Evaluation of covert content attacks on email encryption and signatures

7.1 Decryption Oracles

All email clients, excluding Microsoft products and “The Bat!”, merge multiple
ASCII text or HTML parts into a single document when replying, making them
potentially vulnerable to covert content attacks. However, not all clients decrypt
ciphertext sub-parts within the MIME tree, thereby disabling the attack. From
discussions with application developers, we learned that this was initially not
meant as a security precaution. Instead, the case of partially encrypted mes-
sages was simply not considered in the implementation of S/MIME or the PGP
plugin. As a consequence, clients that are more feature complete, have higher
compatibility, and require a larger implementation effort are more likely to be
misused as decryption oracles. We consider clients as vulnerable if the plaintext
of encrypted messages can either be completely hidden, or if it is concatenated
with attacker-controlled text.

For seven clients, including popular applications such as Apple Mail or
Thunderbird, we could completely hide the ciphertext within a multipart mail
using HTML/CSS and show arbitrary content instead. A user replying to such
a benign-looking email unknowingly leaks the plaintext of up to hundreds of
encrypted emails at once. For another six vulnerable clients, HTML formatted

Re: What’s Up Johnny? 37

replies are deactivated in the default settings or not supported at all. In such
cases, our attacks are limited because the decrypted message cannot be com-
pletely hidden. However, it can be appended to the attacker’s text, separated
by a lot of newlines, or wrapped somewhere within the conversation history.
All affected clients, except R2Mail2, show consistent behavior, independently of
whether S/MIME or OpenPGP is used as encryption scheme.

7.2 Signing Oracles

We classify clients as vulnerable not only if they can act as a signing oracle, but
also if they show different text for signed messages based on conditional CSS.
Both vulnerabilities are required for the attack, but they do not need to exist in
the same client. In fact, because the targeted users (e.g., Johnny and General)
in each of these cases are different, they are likely to use different clients.

Ten clients, including popular applications such as Thunderbird, K-9 Mail,
the iOS Mail App, and Outlook Web Application (OWA), the GUI for Microsoft
Exchange, keep the original <style> element in replies, allowing an attacker to
misuse them as signing oracles.6 Of the remaining clients, six convert internal
CSS style information into inline styles when replying and eight clients reply to
HTML emails with ASCII text in the default settings. Once a signed email with
conditional CSS has been obtained, it can be used to trick 18 of the 20 clients
displaying HTML in the default settings (all but Mailpile and “The Bat!”) as
well as the HTML-to-text converter used by Horde/IMP into selectively show-
ing/hiding certain text. We could observe the same behavior for all email clients,
independent of the applied encryption scheme.

8 Countermeasures

Building a secure encryption protocol on top of email is very challenging. There
are many pitfalls and edge-cases to be considered. In this section, we provide best
practices to counter the attacks previously described. These practices should be
of help to guide implementations of OpenPGP or S/MIME capable clients.

8.1 Decryption Oracles

All-or-Nothing Encryption. Partially encrypted messages can be considered
harmful. Therefore, email clients must not decrypt emails unless they contain a
single encrypted part (i.e., the root node in the MIME tree). This can be stan-
dardized and enforced for S/MIME and PGP/MIME. For PGP/Inline however,
the only way to send a multipart message is to separately encrypt each part.
Unfortunately, every PGP/MIME message can be interpreted in the context of
a PGP/Inline message (i.e., a downgrade attack). Hence, email clients support-
ing PGP/Inline must enforce a strict separation between multiple body parts,
6 It must be noted that for two clients, MailMate and Airmail, some additional effort

was required to bypass filters which would otherwise strip internal CSS styles.

38 J. Müller et al.

for example, by opening each part in a separate window or tab. When replying to
multipart messages, only the very first body part may be quoted and, therefore,
included in the reply to prevent unintended leakage of covert plaintext content.

Accepting ASCII Text Only. Active content such as HTML within emails is
dangerous. Disabling HTML prevents most attacks described in this work. Unfor-
tunately, this does not meet today’s usage of email. HTML email has become
the norm and in ten of the tested email clients – for example, in Apple Mail and
iOS Mail – there is not even an option to disable HTML for incoming emails.
For Thunderbird with HTML disabled, we furthermore discovered a technique
to escalate into HTML context using specially crafted mailto: links. It must
be additionally noted that modern email clients also display text/plain emails
within an HTML widget component. One major problem is that no definition
for ‘HTML email’ exists. A standard describing a ‘safe’ subset of HTML which
can be used in emails to allow basic formatting, but forbid potentially harmful
features, would be a step in the right direction and is considered as future work.

Enforcing Digital Signatures. In theory, signed emails offer protection
against covert content attacks. If Bob received an email originating from Eve,
but one message part was signed by Alice, he may get suspicious and not reply
to Eve. In practice, email clients miserably fail when it comes to verifying signa-
tures for multipart messages. Our tests show that most email clients either do
not show a signature at all for partially signed messages, or show the first avail-
able signature in the MIME tree – which can originate from Eve because she can
simply re-sign the message. Even in cases where the client explicitly shows inline
information regarding which part is signed, we managed to hide the signature
information itself using CSS. Moreover, S/MIME signatures can be stripped by
targeted modifications of the CBC-ciphertext as shown by Strenzke [10]. Never-
theless, digital signatures – if done right – can enhance message authenticity and
integrity. For example, a company could set up a policy to discard all incom-
ing messages if they do not contain exactly one single sign-then-encrypt message
part, including signed email headers which can be enforced using extensions such
as Memory Hole for OpenPGP [4] or Secure Header Fields for S/MIME [1].

It is important to note that the described countermeasures must be imple-
mented by all involved parties. Usually, a user has no control over the security
precautions taken by his communication partners. In the context of email end-
to-end encryption, this is problematic because both the sender and the receiver
can act as a decryption oracle for captured ciphertext. Even if Bob discarded
partially encrypted messages and disabled HTML, Alice may still be vulnerable.

8.2 Signing Oracles

Dropping CSS Support. Conditional CSS makes it easy for an attacker to
hide certain text within a signed message while showing different text. Ideally,

Re: What’s Up Johnny? 39

clients would ignore CSS in received emails. However, this is an unrealistic sce-
nario given today’s usage of email, especially in a business context, where it is
expected that emails can have any sort of formatting – technically implemented
with CSS. Sanitizing conditional CSS rules and properties which can be used to
hide content is feasible, but it may be insufficient as web technologies are con-
stantly evolving. Nevertheless, it is important to display digitally signed content
equally to all viewers. The S/MIME and OpenPGP standards, which are from
a time-period where messages were ASCII text, fail to address this and should
be extended.

Only ASCII Text in Replies. It should not harm the user experience if mail
clients converted quoted messages into ASCII text when replying to an email.
Eight of the tested clients (e.g., Roundcube) are actually doing this. Thus, we
recommend that security-focused mail clients should adopt this behavior. They
must not sign any quoted HTML/CSS input from the original message, so that
they cannot be misused as signing oracles.

9 Conclusion

Email is complex. The MIME standard and HTML, as supported by modern
email clients, provide a high level of flexibility and allow arbitrary wrapping,
nesting, and hiding of encrypted or to-be-signed content. This complexity and
the conjoined attack surface are not dealt with in the security considerations of
the OpenPGP and S/MIME standards, which primarily focus on cryptographic
algorithms and their parameters such as key sizes. However, relying on the secu-
rity of cryptographic primitives, such as AES or ECDH, is not enough for secure
email end-to-end encryption and signatures. The developers of email clients have
to handle a plethora of critical edge-cases – without being able to consult any
published best practices. Our work aims to close this research gap. We reveal
implementation pitfalls in the “no man’s land” between cryptography and email,
as used today, and give guidance and best practices in order to improve the secu-
rity of S/MIME and OpenPGP capable email clients.

Acknowledgements. The authors thank Juraj Somorovsky for his valuable feedback
and insightful discussions. Jens Müller was supported by the research training group
‘Human Centered System Security’ sponsored by the state of North-Rhine Westfalia. In
addition, this work was supported by the German Research Foundation (DFG) within
the framework of the Excellence Strategy of the Federal Government and the States –
EXC 2092 CASA.

40 J. Müller et al.

A Screenshots of Decryption Oracles

A.1 Plaintext Hidden in a Referenced Inline ‘Image’

Figure 10 depicts a covert content attack against Thunderbird/Enigmail based
on the example email given in Fig. 6. The ciphertext is hidden in an embedded
‘image’ file, referenced from the attacker’s part via a cid: URI scheme. The
OpenPGP plugin – Enigmail – detects the ‘image’ as PGP/MIME content and
decrypts it. The decrypted ‘image’ is then Base64 encoded by Thunderbird and
included in the reply message, therefore leaking the plaintext.

Fig. 10. Convert content attack using Thunderbird as PGP decryption oracle.

Re: What’s Up Johnny? 41

B HTML/CSS Email Support

Table 3. HTML and CSS support in various email clients.

C Other Conditional Features

Fig. 11. Proprietary features and CSS to target only certain clients.

References

1. Cailleux, L., Bonatti, C.: Securing Header Fields with S/MIME, April 2015. http://
tools.ietf.org/rfc/rfc7508.txt, RFC7508

http://tools.ietf.org/rfc/rfc7508.txt
http://tools.ietf.org/rfc/rfc7508.txt

42 J. Müller et al.

2. Callas, J., Donnerhacke, L., Finney, H., Thayer, R.: OpenPGP Message Format,
November 1998. http://tools.ietf.org/rfc/rfc2440.txt, RFC2440

3. Davis, D.: Defective sign & encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP,
and XML. In: Proceedings of the General Track: 2001 USENIX Annual Technical
Conference, pp. 65–78. USENIX Association, Berkeley (2001). http://dl.acm.org/
citation.cfm?id=647055.715781

4. Gillmor, D.K.: Memory Hole spec and documentation (2014). https://github.com/
autocrypt/memoryhole

5. Jallad, K., Katz, J., Schneier, B.: Implementation of chosen-ciphertext attacks
against PGP and GnuPG. In: Chan, A.H., Gligor, V. (eds.) ISC 2002. LNCS,
vol. 2433, pp. 90–101. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45811-5 7

6. Katz, J., Schneier, B.: A chosen ciphertext attack against several e-mail encryption
protocols. In: Proceedings of the 9th Conference on USENIX Security Symposium,
SSYM 2000, vol. 9, p. 18. USENIX Association, Berkeley (2000). http://dl.acm.
org/citation.cfm?id=1251306.1251324

7. Poddebniak, D., et al.: Efail: breaking S/MIME and OpenPGP email encryption
using exfiltration channels. In: 27th USENIX Security Symposium (USENIX Secu-
rity 18), pp. 549–566. USENIX Association, Baltimore (2018). https://www.usenix.
org/conference/usenixsecurity18/presentation/poddebniak

8. Ramsdell, B.: S/MIME Version 3 Message Specification, June 1999. http://tools.
ietf.org/rfc/rfc2633.txt, RFC2633

9. Ribeiro, F.: The Ropemaker Email Exploit (2017)
10. Strenzke, F.: Improved Message Takeover Attacks against S/MIME, February 2016.

https://cryptosource.de/posts/smime mta improved en.html
11. W3C: CSS Conditional Rules Module Level 3 (2013). https://www.w3.org/TR/

css3-conditional/

http://tools.ietf.org/rfc/rfc2440.txt
http://dl.acm.org/citation.cfm?id=647055.715781
http://dl.acm.org/citation.cfm?id=647055.715781
https://github.com/autocrypt/memoryhole
https://github.com/autocrypt/memoryhole
https://doi.org/10.1007/3-540-45811-5_7
https://doi.org/10.1007/3-540-45811-5_7
http://dl.acm.org/citation.cfm?id=1251306.1251324
http://dl.acm.org/citation.cfm?id=1251306.1251324
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
http://tools.ietf.org/rfc/rfc2633.txt
http://tools.ietf.org/rfc/rfc2633.txt
https://cryptosource.de/posts/smime_mta_improved_en.html
https://www.w3.org/TR/css3-conditional/
https://www.w3.org/TR/css3-conditional/

Cryptanalysis of ForkAES

Subhadeep Banik1, Jannis Bossert2, Amit Jana3, Eik List2, Stefan Lucks2,
Willi Meier4, Mostafizar Rahman3, Dhiman Saha5, and Yu Sasaki6(B)

1 EPFL, Lausanne, Switzerland
subhadeep.banik@epfl.ch

2 Bauhaus-Universität Weimar, Weimar, Germany
{jannis.bossert,eik.list,stefan.lucks}@uni-weimar.de

3 CSRU, Indian Statistical Institute, Kolkata, India
janaamit001@gmail.com, mrahman454@gmail.com

4 FHNW, Windisch, Switzerland
willi.meier@fhnw.ch

5 IIT Bhilai, Raipur, India
dhiman@iitbhilai.ac.in

6 NTT Secure Platform Laboratories, Tokyo, Japan
yu.sasaki.sk@hco.ntt.co.jp

Abstract. Forkciphers are a new kind of primitive proposed recently
by Andreeva et al. for efficient encryption and authentication of small
messages. They fork the middle state of a cipher and encrypt it twice
under two smaller independent permutations. Thus, forkciphers produce
two output blocks in one primitive call.

Andreeva et al. proposed ForkAES, a tweakable AES-based forkcipher
that splits the state after five out of ten rounds. While their authenti-
cated encrypted schemes were accompanied by proofs, the security dis-
cussion for ForkAES was not provided, and founded on existing results on
the AES and KIASU-BC. Forkciphers provide a unique interface called
reconstruction queries that use one ciphertext block as input and com-
pute the respective other ciphertext block. Thus, they deserve a careful
security analysis.

This work fosters the understanding of the security of ForkAES
with three contributions: (1) We observe that security in reconstruction
queries differs strongly from the existing results on the AES. This allows
to attack nine out of ten rounds with differential, impossible-differential
and yoyo attacks. (2) We observe that some forkcipher modes may lack
the interface of reconstruction queries, so that attackers must use encryp-
tion queries. We show that nine rounds can still be attacked with rect-
angle and impossible-differential attacks. (3) We present forgery attacks
on the AE modes proposed by Andreeva et al. with nine-round ForkAES.

Keywords: Symmetric-key cryptography · Cryptanalysis ·
Tweakable block cipher · Impossible differential · Boomerang · Yoyo ·
AE

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 43–63, 2019.
https://doi.org/10.1007/978-3-030-21568-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_3

44 S. Banik et al.

1 Introduction

The fast distribution of resource-constrained devices demands efficient encryp-
tion and authentication of short messages. Forkciphers are a recent proposal
by Andreeva et al. [1] to address this purpose. Like classical (tweakable) block
ciphers, they encrypt a plaintext block under a secret key; In contrast, however,
forkciphers compute two ciphertext blocks from the same input. To boost the
performance, the state in the middle of the computation is forked, and both
ciphertext blocks are computed separately only from the middle. Therefore, the
construction can share some computations and has to encrypt only twice over
the bottom rounds. Thus, efficient AE schemes can obtain a ciphertext and tag
efficiently for messages whose size is at most a block. Owing to this construction,
forkciphers provide a new interface called reconstruction that takes one of the
ciphertext blocks as input and returns the other one.

As instance of particular interest, Andreeva et al. [1] proposed ForkAES,
which employs the original key schedule and round function of the AES-128.
Moreover, ForkAES is a tweakable block cipher that adopts the concept from
KIASU-BC [15]: in every round where the round key is XORed to the state,
an additional 64-bit public tweak T is XORed to the topmost two state rows.
ForkAES encrypts the plaintext P over the first five rounds exactly as in the
KIASU-BC; though, it forks the middle state X and produces from it a cipher-
text C0 exactly as KIASU-BC with the round keys K5 through K10 plus a
second ciphertext C1 under six further round keys K11 through K16.

Existing Security Arguments. The adoption of the AES round function
and the tweak process from KIASU-BC allowed to profit from existing results,
e.g., for the resistance against differential and linear cryptanalysis. Andreeva et
al. also considered meet-in-the-middle attacks briefly; concerning further attacks,
they stated that: “the security of our forkcipher design can be reduced to the
security of the AES and KIASU ciphers for further type of attacks” [1, Sect 3.2].
However, the structure of ForkAES may allow new attack angles, and it appeared
to be a highly interesting task for the community to study ForkAES deeply.

Contribution. This work analyzes attack vectors on forkciphers and ForkAES
in depth. We generalize it to ForkAES-rt-rb0 -rb1 , where rt, rb0 and rb1 denote the
number of rounds from P to X, from X to C0, and from X to C1, respectively;
e.g., ForkAES-5-5-5 means the original ForkAES. While we consider only the case
rb0 = rb1 , we indicate by ForkAES-∗-rb0 -rb1 if rt can be any non-negative integer.

First, we observe that the security of the reconstruction of forkciphers is very
different from the encryption and decryption of the conventional AES since the
first half of the computation uses the inverse of the round function whereas
the second half employs the ordinary round function. We exploit this prop-
erty by introducing reflection differential trails that allow to attack nine rounds
(ForkAES-5-4-4) with a low complexity. We also present impossible-differential
[4,7–9,12,17] and yoyo [3,20] attacks as well as forgery attacks for the AE mode
by exploiting the reflection feature.

Cryptanalysis of ForkAES 45

Second, we consider the restricted case where the reconstruction interface is
unavailable. This is natural for some usages. For example, Andreeva et al. [1]
suggested to replace the standard CTR mode with forkciphers; two ciphertext
blocks of forkciphers can halve the number of primitive calls to generate the
same key-stream length. In such settings, reconstruction (and even decryption)
queries of forkciphers are not exploitable by adversaries. We show that even in
such environments, attacks can reach nine rounds by a rectangle [5,6,10,18,22]
and an impossible-differential attack. Those attacks also exploit the forking step,
which produces rectangle quartets from pairs of plaintexts.

Our attacks do not endanger the security of the full ForkAES; however, they
contradict some of the designer’s claims as they cover one round more than
attacks for KIASU-BC [13,21]. More importantly, the forking principle exposes
reflection properties in reconstruction queries (Table 1).

Table 1. Comparison of Attacks. CP and CR denote chosen plaintexts and chosen
reconstruction queries, respectively. Due to the limited space, two attacks are omitted
and are detailed in the full version of this work [2].

Construction Attack type Data Time Mem. Section

Encs. MAs

Encryption queries

ForkAES-∗-4-4 Rectangle 285 CP 288.5 292.4 286.4 Sect. 6

ForkAES-∗-4-4 Impossible Diff 270.2 CP 275.4 2110.2 2100 Sect. 7

Reconstruction queries

ForkAES-∗-4-4 Reflection Diff 235 CR 228 235 233 Sect. 3

ForkAES-∗-4-4 Impossible Diff 239.4 CR 247 247 235 Sect. 4

ForkAES-∗-3-3 Yoyo 214.5 CR 214.5 229 229 Sect. 5

ForkAES-∗-4-4 Imp.-diff. Yoyo 2122.83 CR 2122.83 – O(1) [2, App. D]

Forgery attacks on AE modes

PAEF-ForkAES-∗-4-4 Reflection Diff 292 CR 292 – O(1) [2, App. C]

Outline. Next, we briefly revisit the necessary details on the AES, KIASU-

BC, and ForkAES. Sections 3–5 detail our attacks based on reflection queries and
Sects. 6 and 7 describe our attacks based on encryption queries. Due to space
limitations, those sections contain only a representative description of an attack
each; detailed results can be found in the full version of this work [2].

2 Preliminaries

General Notation. We assume, the reader is familiar with the concepts of
block ciphers and their analysis. Most of the time, we consider bit strings of
fixed length. We mostly use uppercase letters (e.g., X) for bit strings, lowercase
letters for indices (x), and calligraphic letters for sets (X). For some positive

46 S. Banik et al.

integer n, we interpret bit strings X ∈ {0, 1}n as vector elements of Fn
2 , where

addition is the bit-wise XOR, denoted by ⊕. Moreover, the AES works on byte
vectors or byte matrices, i.e., 16-element vectors in F28 . So, we interpret byte
matrices of r rows and c columns as elements of Fr×c

28 .

Forkciphers. Let B, K, and T be non-empty sets or spaces. A tweakable fork-
cipher ˜E is a tuple of three deterministic algorithms: An encryption algorithm
˜E : K × T × B → (B)2; a decryption algorithm ˜D : K × T × B × {0, 1} → B;
and a tag-reconstruction algorithm ˜R : K × T × B × {0, 1} → B. The encryp-
tion produces ˜ET

K(P) = (C0 ‖C1). We define ˜ET
K(P)[0] = C0 and ˜ET

K(P)[1] = C1

Decryption and tag reconstruction take a bit b s. t. it holds ˜DT,b
K (˜ET

K(P)[b]) = P ,
for all K,T, P, b ∈ K × T × B × {0, 1}. The tag-reconstruction takes K, T , Cb,
and b as input, and produces Cb⊕1. The ideal tweakable forked permutation ˜Π
encrypts messages P under two independent permutations π̃0, π̃1 : T × B → B,
and outputs (C0 ‖C1) as Cb ← π̃b(P), for b ∈ {0, 1}.

The AES-128 is a substitution-permutation network over 128-bit inputs, which
transforms the input through ten rounds consisting of SubBytes (SB), ShiftRows
(SR), MixColumns (MC), and a round-key addition with a round key Ki. At
the start, a whitening key K0 is XORed to the state; the final round omits the
MixColumns operation. We write Si for the state after Round i, and Si[j] for
the j-th byte, for 0 ≤ i ≤ 10 and 0 ≤ j ≤ 15. Further, we use Sr,SB, Sr,SR, and
Sr,MC for the states in the r-th round directly after the SubBytes, ShiftRows, and
MixColumns operations, respectively. The byte ordering is given by:

⎡

⎢

⎢

⎣

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

⎤

⎥

⎥

⎦

.

We adopt a similar convention for the round keys Ki and their bytes Ki[j], for
0 ≤ i ≤ 16; for both, we also use often a matrix-wise indexing of the bytes from
0, 0 to 3, 3. More details can be found in [11,19].

KIASU-BC [15] is a tweakable block cipher that differs from the AES-128 only
in the fact that it XORs a public 64-bit tweak T to the topmost two rows of the
state whenever a round key is XORed. We denote the tweak by T and by T [j],
0 ≤ j ≤ 7, the bytes of T . The bytes are ordered as

[

0 2 4 6
1 3 5 7

]

.

ForkAES is a forkcipher based on KIASU-BC. It forks the state after five
rounds and transforms it twice to two ciphertexts C0 and C1. We denote the
states of the first branch by Xi =def Si, for 5 ≤ i ≤ 10, where X5 = S5 and
X10 = C0. Moreover, we denote the states of the second branch by Y i, for
5 ≤ i ≤ 10, where Y 5 = S5 and Y 10 = C1. We will also write R for the sequence

Cryptanalysis of ForkAES 47

Fig. 1. ForkAES. R is the AES-128 round function; KS a round of its key schedule.
(Color figure online)

MC◦SR◦SB. and KS for an iteration of the AES-128 key schedule. A schematic
illustration is given in Fig. 1, and more details can be found in [1]. We will
sometimes reorder the linear operations, e.g., swap MixColumns, ShiftRows, and
the key addition. We will write ˜Kr = MC−1(Kr) and ̂Kr = SR−1(MC−1(Kr)
for the transformed round keys.

Subspaces of the AES. We adopt the notion of AES subspaces from Grassi
et al. [14]. Given a vector space W and a subspace V ⊆ W; if a is an element
of W, then, a coset V ⊕ a =def {v ⊕ a|∀v ∈ V} is a subset of V in W. We
consider vectors and vector spaces over F

4×4
28 , and denote by {e0,0, . . . , e3,3} the

unit vectors of F4×4
28 , i.e., ei,j has a single 1 in the i-th row and j-th column. For a

vector space V and a function F : F4×4
28 → F

4×4
28 , we let F (V) =def {F (v)|v ∈ V}.

For a subset I ⊆ {1, 2, . . . , n} and a subset of vector spaces {V1,V2, . . . ,Vn}, we
define VI =def

⊕

i∈I Vi. We adopt the definitions by Grassi et al. of four families
of subspaces for the AES, for i ∈ {0, 1, 2, 3}:

– the column spaces Ci as Ci = 〈e0,i, e1,i, e2,i, e3,i〉,
– the diagonal spaces Di as Di = SR−1(Ci),
– the inverse-diagonal spaces IDi as IDi = SR(Ci), and
– the mixed spaces Mi as Mi = MC(IDi).

The S-box S : F28 → F28 of the AES has a few well-analyzed properties; here,
we briefly recall one that will be relevant in our later attacks.

Property 1. Let α, β ∈ F28 \ {08}. For F ∈ {S,S−1}, it holds that |{x : F(x) ⊕
F(x ⊕ α) = β}| equals four in one, two in 126, and zero in 129 cases. So, for
any differential α → β, there exists approximately one input x on average that
satisfies the differential.

48 S. Banik et al.

3 Attack on ForkAES-∗-4-4 with Reflection Trails

Our attacks can work for arbitrary value of rt. Then the round-key indices for
two forking parts depend on the value of rt. To avoid making the analysis unnec-
essarily complex, we explain our attacks by using the case with rt = 5.

Observations for Reconstruction Queries. Recall that the first half and
the last half of the reconstruction is the inverse and the ordinary round function,
respectively. This motivates us to consider the reflection property introduced by
Kara [16] against the block cipher GOST. The final 16 rounds of GOST consist
of an eight-round Feistel network with the round keys in order K0, K1, . . . ,
K7, followed by eight rounds with K7, K6, . . . , K0 in this order. Since Feistel
networks are involutions, this enables the following so-called reflection property.

Proposition 1 (Reflection Property). When an input value V achieves a
symmetric state after eight rounds, i.e. left branch value is identical with right
branch value, the output of the final eight rounds will be V .

The reflection property is strong, but possesses limitations: there must not
exist round constants, the round keys must be ordered inverted in the first and
second chunks, and the target function must be an involution.

This paper considers a differential version of the reflection property. To be
more general, the same concept applies if we build trails that are invariant
w.r.t. XOR. Suppose, a round function F consists of an arbitrary bijective func-
tion, an XOR with a round constant ci, and an XOR with a round key Ki.
Consider 2r rounds, where the first r rounds apply F and the final r rounds
apply F−1. The round keys Ki, i = 1, 2, . . . , 2r as well as the round constants
ci, i = 1, 2, . . . , 2r can differ individually. Then, we have the following property.

Proposition 2 (Reflection Differential Trails). If there exists a differen-
tial for the r-round transformation F r that propagates a difference ΔI to ΔO
with probability p, there exists a differential for the 2r-round transformation
(F−1)r ◦ F r that propagates a difference ΔI to ΔI with probability at least p2.
This property holds for any choice of round keys and constants in the 2r rounds.

Reflection trails can be applied to reconstruction queries of forkciphers where
C1 (resp. C0) is computed from C0 (resp. C1). The first and last halves of a recon-
struction query are back- and forward computations of the same round function,
and different round keys and round constants do not impact the property.

Reflection trails are particularly useful for the AES, which achieves full diffu-

sion in only two rounds. There, a single active byte propagates to 1 F −1

−→ 4 F −1

−→ 16

active bytes. In contrast, it propagates as 1 F −1

−→ 4 reflect−→ 4 F−→ 1 in the reflection

trail, where F−→ and F −1

−→ denote the propagation of the number of active S-boxes
with F and F−1, respectively, and reflect−→ denotes the duplication of the state by
forkciphers. This idea allows us to build long differential trails.

It is notable that the designers of ForkAES did not expect the existence of
reflection trails. In fact, based on the property that the maximum probability of

Cryptanalysis of ForkAES 49

Fig. 2. Truncated differentials for ForkAES-∗-4-4. (Color figure online)

differential characteristics for four-round AES is 2−150, the designers claim as
“Since our ForkAES design uses the AES round function, we can easily deduce
that our design will provide enough security in this setting after four rounds
against differential attacks in the single-key model.” [1, Sect. 3.2]

The combination of the reflection trail and a KIASU-like tweak injection
yields further efficient differential trails. Tweak difference allows an attacker to
create a blank round, and the reflection trail increases the number of blank

rounds to 2. Indeed, the reflection trail with 4 F −1

−→ 1 F −1

−→ 0 F −1

−→ 4 reflect−→ 4 F−→
0 F−→ 1 F−→ 4 bytes enables the attacker to build a very efficient trail.

The Differential Trail and Probability. The linear computations in the
last round do not affect the security. Hence, we introduce the equivalent cipher-
text ̂C0 := SR−1◦MC−1(C0⊕T) and equivalent key ̂K9 := SR−1◦MC−1(K9). ̂C1

and ̂K14 can be defined similarly. Refer to Fig. 2 for the differential trail, where
we append one round to the above-mentioned trail in reconstruction queries.
The attacker queries C1 and obtains C0.

The number of active bytes injected by ̂C1 must shrink to one during the
inverse of MixColumns and must be canceled by the tweak difference, which
occurs with probability 2−32. In Round 6, the four-byte difference in a diagonal
position must shrink to one-byte difference and be canceled by the tweak dif-
ference. This also occurs with probability 2−32. So, the total probability of this
trail is 2−64.

Attack Procedure. During the attack, the tweak difference is fixed.

1. Choose tweaks T and T ′ with the fixed difference. For each pair T, T ′, choose
232 distinct values for the first column of ̂C1. Fix the other 12 bytes to arbi-
trary values and compute the corresponding C1 offline and query them to
obtain the corresponding C0. Compute the corresponding ̂C0 offline. Hence,
we obtain 232 choices of ̂C0 with T and 232 choices of ̂C0 with T ′.

2. From 264 pairs of ̂C0 between different tweaks, pick the one with 12 inactive
bytes in the Columns 2, 3, and 4 of ̂C0. We expect one right pair.

50 S. Banik et al.

3. For the right pair, obtain 27 key candidates of the first column of ̂K9, which
has 1 active byte in the top byte after the inverse of MixColumns and moreover
the difference should be one of the 27 choices that can be output from the
tweak difference after the S-box. This step is colored by red in Fig. 2.

4. Iterate the steps above by shifting the active-byte positions to obtain 27

candidates for each column of ̂K9. 228 candidates are then tested exhaustively.

Complexity Evaluation. The data complexity is 4 · (233 + 233) = 235 recon-
struction queries. The memory complexity is 233 AES states to store 233 values
of ̂C0. The time complexity is 219 memory access to queried data and 228 encryp-
tions for the last exhaustive search. Note that in Step (3), there are 27 choices
of the input difference to the last SubBytes and the output difference from this
SubBytes are fixed to the ciphertext difference of the right pair. For the AES S-
box, a randomly chosen pair of input and output differences can be propagated
with probability about 2−1, and once they can be propagated, the number of
solutions is about 2. Therefore, 27 × (2−1)4 pairs can be propagated for all the 4
bytes, and the number of total solutions is 27×(2−1)4 ·24 = 27. So, 27 candidates
of one column of ̂K9 can be obtained with 27 computations.

Experimental Verification. We implemented the attack on ForkAES-∗-3-3
which removed the last rounds of the above attack. ForkAES-∗-3-3 can be
attacked with (Data, T ime,Memory) = (219, 228, 217). This implementation in
Java demonstrates its validity.

4 Impossible-Differential Attack with Reflection Trails

This section describes an impossible-differential distinguisher on ForkAES-∗-4-4
with reconstruction queries; we will extend it for key recovery.

Distinguisher. The impossible differential distinguisher is as follows.

1 F −1

−→ 0 F −1

−→ 4 reflect−→ 4 F−→ ? F−→ ?
impossible←→ ? F−→ ? F−→ 12. (1)

The positions of active bytes are illustrated in Fig. 3. The fact that those trails
are satisfied with probability zero is explained as follows.

– Trail from Y 7: After the tweak injection along with K6, any number of bytes
can be active in the leftmost column. They are moved to different columns by
the following ShiftRows operation. After MixColumns, each column is either
fully active or fully inactive.

– Trail from ̂C0: After the inverse of MixColumns and ShiftRows, at least
one inverse diagonal is inactive. Moreover, at least three bytes are active in
the state. The subsequent tweak injection (along with K7), never affects the
inactive inverse diagonal. It may cancel one active byte in the state, but does
not impact the analysis. In summary, we have the following two properties.

Cryptanalysis of ForkAES 51

Fig. 3. Impossible-differential distinguisher. (Color figure online)

1. There is at least one inactive byte for each column.
2. The number of active bytes is at least two.

The case that the trail from Y 7 has no active byte is impossible, because the
trail from ̂C0 ensures at least three active bytes. The case that the trail from
Y 7 has at least 1 fully active column is impossible because the trail from ̂C0

ensures at least one inactive byte for each column. Hence, any trail from Y 7 is
impossible to propagate to the difference of ̂C0.

The inactive column position at ̂C0 is the rightmost (4th) column in Fig. 3,
but it can also be located in the second or third column position. It cannot be
located in the leftmost (first) column because of the tweak difference.

Key Recovery. We append key recovery rounds for the trail in Fig. 3 as
depicted in Fig. 4. Suppose, we have a pair of outputs with only a single active
column at ̂C1. Then, only five (equivalent-)key bytes must be guessed.

Attack Procedure. During the attack, the tweak difference is fixed.

1. Choose two tweaks T, T ′ having the fixed difference. For each of T, T ′, choose
232 distinct values for the active 4-byte values of ̂C1 and fix the other 12 bytes
to arbitrary value, say 0. After making 233 reconstruction queries, we obtain
232 choices of ̂C0 associated with T and with T ′.

2. From 264 pairs of ̂C0 with different tweaks, pick one with at least one inactive
column in Columns 2, 3, or 4 at ̂C0. We expect 3 · 264−32 = 233.58 pairs.

3. For each picked pair, derive 27 wrong candidates of the top-left byte of ̂K13

and the leftmost column of ̂K14 by trying 27 possible differences in the middle
rounds. After evaluating 233.58 pairs, we obtain 240.58 wrong-key candidates.

4. Iterate the steps above 24.42 times by changing the fixed 12 bytes of ̂C1. We
obtain 240.58+4.42 = 245 wrong candidates of the 5 key bytes. After obtaining

52 S. Banik et al.

Fig. 4. The appended rounds for key recovery. (Color figure online)

2N wrong keys, the remaining key space for those five bytes is estimated as
240 · (1 − 2−40)2

N

. N = 45 is sufficient to reduce the remaining key space to
1 since 240 · (1 − 2−40)2

45
= 240 · (1 − 2−40)2

40·25 = 240 · e−25 = 2−6.17 < 1.
5. Iterate the above steps three times by shifting the active byte positions to

recover all bytes of ̂K14.

Complexity Evaluation. To recover one column of ̂K14, we make 24.42 ·(232+
232) = 237.42 reconstruction queries. The data complexity to recover all bytes of
̂K14 is 4 · 237.42 = 239.42.

To recover one column of ̂K14, we spend 245 encryptions to discard 245 wrong-
key candidates. The time complexity to recovery all bytes of ̂K14 is 4 ·245 = 247.

For the memory complexity, we use the 40-bit counter to record wrong-key
candidates, which is equivalent to 233 AES states. To recover 1 column of ̂K14,
we also need to store 233 ̂C0 and 234 pairs satisfying the differences. Hence, the
memory complexity is 233 + 233 + 234 = 235 AES states.

5 Yoyo Key-Recovery Attack on ForkAES-∗-3-3

The yoyo game was introduced by Biham et al. against Skipjack [3]. Rønjom
et al. [20] reported deterministic distinguishers for two generic Substitution-
Permutation (SP) rounds. We review existing work in AppendixA. Here, we
observe that, during reconstruction queries, two-round decryption and two-round
encryption can be computed independently for each column, which we call a
MegaSBox.

MegaSBox in ForkAES. Refer to Fig. 5 for the MegaSBox construction of
ForkAES. Consider any inverse diagonal in Y 6,SR. After SR−1 and SB−1, the
MegaSBox aligns to a column. After MC−1, the column remains independent
of the other columns. The inverses of SR and SB align the bytes back into a
diagonal. After the reflection, the same operations are applied to these four
bytes; after SR, those bytes align to an inverse diagonal in X6,SR. Clearly, the
value in this inverse diagonal depends only on the same inverse diagonal in Y 6,SR.
This can be considered as a MegaSBox with 32-bit input (inverse diagonals). The
transition from Y 6,SR to X6,SR can be depicted in terms of 4 parallel MegaSBoxes.
To be explicit, for x ∈ {0, 1}32, the computation of MegaSbox is defines as
MegaSBox(x) := SR ◦ SB ◦ ATK ◦ MC ◦ SR ◦ SB ◦ ATK ◦ ATK−1 ◦ SB−1 ◦ SR−1 ◦
MC−1 ◦ ATK−1 ◦ SB−1 ◦ SR−1(x), where ATK denotes the addition of a round
key and a tweak.

Cryptanalysis of ForkAES 53

Fig. 5. MegaSBox of ForkAES

Fig. 6. Yoyo Key Recovery for ForkAES-∗-3-3. (Color figure online)

Key-recovery Attack. For applying the Yoyo game on ForkAES-∗-3-3, S1 ·L ·
S2 needs to be identified. Referring to Fig. 5, following MC and SB of X6,SR can
be regarded as L and S2 layers respectively. Four MegaSBoxes act as S1 layer.
Thus the operations from Y 6,SR to X7,SB constitute the S1 · L · S2 construction.
We choose a pair of texts (x1, x2) in Y 6,SR and compute X7,SB; bytes are swapped
among the texts in X7,SB and their corresponding values in Y 6,SR are calculated
as (x′

1, x
′
2). Theorem 1 in AppendixA ensures that ν(x1 ⊕ x2) = ν(x′

1 ⊕ x′
2).

1

Refer to Fig. 6 for the attack. It starts with activating one column at ̂C1 for
a pair of texts and queries the reconstruction algorithm for a pair of ̂C0. We

1 ν is a so-called zero-differential pattern that denotes the position of inactive words.
Refer to Appendix A for more precise definition.

54 S. Banik et al.

use the propagation 4 MC−1

−→ 1 in Y 6,SR, which activates a single MegaSBox with
probability 2−22. Due to the MegaSBox, only one SuperSbox (inverse diagonal)
is active in X6,SR. Out of 4 bytes of the inverse diagonal, at the cost of 2−6, we
get one inactive byte. Thus, ̂C0 has one inactive column with probability 2−28.

Attack Procedure.

1. Choose a tweak; choose 214.5 distinct random values for the first column of
̂C1. Fix the other 12 bytes to arbitrary value. Obtain the corresponding ̂C0

via reconstruction queries. After this step, we have about 228 pairs of ̂C0.
2. For each of the 228 pairs of ̂C0, check if one column is inactive or not for the

pair; we expect one right pair. Once a right pair is obtained, swap the bytes
at ̂C0 for applying the yoyo trick and reconstruction algorithm is queried to
get a pair which is fully active in ̂C1. We retrieve two such pairs (right pairs).

3. For both right pairs, obtain ̂K12 that have only 1 active byte in the first col-
umn, e.g., by exhaustively guessing a single-byte difference before MixColumns
and propagate them through MixColumns. Each right pair suggests 210 key
candidates. By analyzing 2 right pairs, the key will be uniquely fixed.

4. Step 3 is iterated for the remaining columns.

Complexity Evaluation and Experimental Verification. The attack
needs 214.5 reconstruction queries; its time complexity is 214.5 memory accesses,
and the memory complexity is 214.5 AES states for 214.5 values ̂C0.

We verified the attack on ForkAES-∗-3-3 by implementing it in Java. The
attack started with initializing an oracle that randomly chooses a key, before the
steps in the attack procedure above were followed. In the key-recovery phase,
two right pairs were used to retrieve candidates for each column of ̂K12. Using
the first right pair yielded 976, 1296, 1008, and 976 candidates for Column 0, 1,
2, and 3, respectively. The second right pair reduced the candidates to 1, 1, 2,
and 1, respectively. Hence, we obtained two key candidates.

6 Rectangle Attack with Encryption Queries

This section describes a rectangle attack on ForkAES-∗-4-4; for concreteness, we
exemplify it for five top rounds. Briefly spoken, boomerangs and rectangles are
types of differential cryptanalysis where a given cipher E is split into sub-ciphers
E = E2 ◦ Em ◦ E1 such that there exist a differential α → β with probability p
over E1, a middle trail β → γ with probability r, and a differential γ → δ with
probability q over E2. Note that, we approximate the middle part Em to be
empty for our attack. The differentials are often referred to as upper and lower
differentials or trails. The probability of a correct quartet is often approximated
by r(pq)2 since the trails must hold for both pairs.

We consider two tuples (P, T) and (P ′, T ′) that are encrypted to (C0, C1)
and (C ′

0, C
′
1), respectively. We denote by ΔXr = Xr ⊕ X ′r their differences

between the states after Round r that lead to C0, and by ΔY r = Y r ⊕ Y ′r the
differences in the states that lead to C1. For clarity, we define that the fork from

Cryptanalysis of ForkAES 55

Fig. 7. Overview (left) and bottom trail (right) of our rectangle attack. The key
recovery covers the parts below the dashed horizontal line and guesses the bytes with G.
(Color figure online)

X to C0 employs the round keys K5 through K9, and the fork from Y to C1

uses K10 through K14. An overview is depicted on the left side of Fig. 7. There,
RT

Ki..j means the round sequence RT
Kj ◦ · · · ◦ RT

Ki . We construct 28 sets of 2s

plaintext-tweak tuples. The sets differ in T [0]; all plaintexts in a set share the
same tweak. So, we can combine 2s texts (tuples of C0, C1) of Set i with 2s texts
of Set j, for i �= j, or 2s ·

(

28

2

)

� 22s+15 pairs (quartets of C0, C1, C ′
0, C ′

1).

The Top Differential. In contrast to the pure AES or to KIASU-BC,
the forking step guarantees that the difference between the inputs to Rounds 6
and 10 is equal for each plaintext. So, the top differential reduces to the key
addition, that is, the XOR with K5 for the branch that encrypts from X to
C0, and to the XOR with K10 for the branch that encrypts from Y to C1. So,
α = β = K5 ⊕ K10 holds with probability one for each pair. The adversary
collects pairs and waits that the difference at the beginning of the bottom trail
occurs, whose probability can be approximated by 2−128. From approximately
22s+15 pairs, we expect 22s−113 to have a specific difference γ at the forking step.

For the Middle Phase and the Bottom Differential, we use two sim-
plifying assumptions: (1) all differences after five rounds are equally possible; (2)

56 S. Banik et al.

all four-byte values of the keys K5[0, 5, 10, 15] and K10[0, 5, 10, 15] are equally
possible. The bottom trail is shown on the right side of Fig. 7. There are four
active S-boxes at the start of Round 6. We consider only text pairs with a
non-zero tweak difference ΔT [0]. To estimate the probability, we iterate over all
possible values of X6,SB[0, 5, 10, 15] = (x̄0, x̄1, x̄2, x̄3), all differences K5[0, 5, 10,
15] ⊕ K10[0, 5, 10, 15] = (β0, β1, β2, β3) and all non-zero 255 tweak differences
ΔT [0] �= 0; ΔT [0] maps uniquely through MC−1 to the differences in X6,SB[0, 5,
10, 15] ⊕ X ′6,SB[0, 5, 10, 15]; the same difference must hold between the terms
Y 6,SB[0, 5, 10, 15] ⊕ Y ′6,SB[0, 5, 10, 15]. We define MC−1((ΔT [0], 0, 0, 0)) = (ζ0,
ζ1, ζ2, ζ3). Note that ζ0 defines ζ1, ζ2, and ζ3 uniquely. Moreover, (x̄0, x̄1, x̄2,
x̄3, ζ0, β0, β1, β2, β3) are mutually independent. This is the setting as in the
Boomerang-connectivity Table [10] whose entries contain the number of values xi

for a pair (ζi, βi) that satisfy the boomerang switch for a byte. So, the BCT val-
ues already sum over all values xi. Over all choices of the values x̄i, all non-zero
differences ζi, and non-zero differences βi, we obtain a probability of

1
255 · (256)8

∑

ζ0 �=0

∑

β0

(Pr[ζ0]·Pr[β0]·BCT(β0, ζ0)) ·
∑

β1

(Pr[β1]·BCT(β1, ζ1)) ·

∑

β2

(Pr[β2]·BCT(β2, ζ2)) ·
∑

β3

(Pr[β3]·BCT(β3, ζ3)) =
(520)4

255 · 2568
� 2−35.905.

Here, we use the fact that each row and column of the BCT sums to 520 for the
AES S-box. So, the probability for the switch can be approximated by 2−36·2−128

for hitting our difference between two queries. The remainder in the bottom trail
holds with probability 1. Thus, we can expect about 22s−149 correct pairs.

Offline Preparations. We define a linear map F : F
4×4
28 → F

12
28 that

returns the value of the 12 inactive bytes in ΔX9,SR. So, we can identify pairs
(Ci, C

′
i) with our desired difference from collisions between F (MC−1(T ⊕Cb)) =

F (MC−1(T ′ ⊕ C ′
b)) with two evaluations of F per text instead of comparing all

differences.
We can perform another offline step for saving effort later. Let x = X9,SB[0,

7, 10, 13], x′ = X ′9,SB[0, 7, 10, 13], k8 = ˜K8[0], and k9 = ˜K9[0, 7, 10, 13] be short
forms. We construct a hash map H : F28 × F28 × F

4
28 × F

4
28 →

(

F
5
28

)∗ such that
for all inputs (T [0], T ′[0], x, x′), H returns exactly those keys (k8, k9) that map
x and x′ to a zero difference at ΔX7,MC. The trail contains 32 bit conditions
that have to be fulfilled; thus, H maps to approximately 28 suggestions of 40
key bits on average. H can be used also to obtain suggestions for ˜K13[0] and
˜K14[0, 7, 10, 13] from inputs Y 9,SB[0, 7, 10, 13], Y ′9,SB[0, 7, 10, 13], T [0], and T ′[0].

Attack Steps. The steps are as follows:

1. Initialize an empty list Q. Initialize two zeroed lists of byte counters for 40 key
bits each: K for (˜K8[0], ˜K9[0, 7, 10, 13]), and L for (˜K13[0], ˜K14[0, 7, 10, 13]).

2. Precompute H.
3. Choose an arbitrary base tweak T ∈ F

2×4
28 . Construct 28 sets Si. For each set,

choose 2s plaintexts P such that all texts in a set use the same tweak value

Cryptanalysis of ForkAES 57

T . Ask for their 2s+8 encryptions (T,C0, C1), invert the final tweak addition,
and the final MixColumns operation for each output tuple (C0, C1).

4. We define Qb = F (MC−1(T ⊕Cb)), for b ∈ {0, 1}. For all ciphertexts, compute
Q0 and Q1 from C0 and C1 and store (T,C0, C1, Q0, Q1) into buckets of Q.

5. Focus on pairs of tuples (T,C0, C1, Q0, Q1) and (T ′, C ′
0, C

′
1, Q

′
0, Q

′
1) if T [0] �=

T ′[0], C0 = C ′
0 and C1 = C ′

1. We call such pairs of tuples with our desired
property correct pairs. Discard all tuples that do not form correct pairs.

6. For each correct pair, lookup in H the suggestions of the 40 key bits ˜K8[0]
and ˜K9[0, 7, 10, 13] from T [0], T ′[0], X9,SB[0, 7, 10, 13], and X ′9,SB[0, 7, 10,
13]. We expect 28 suggestions on average. For each suggested key candidate,
increment its corresponding counter in K.

7. Similarly, for each correct pair, lookup in H the suggestions for the 40 key
bits ˜K13[0] and ˜K14[0, 7, 10, 13]. We expect 28 suggestions on average. For
each suggestion, increment the corresponding counter in L.

8. Output the keys in K and L in descending order of their counters.
9. While the adversary has 80 key bits, the key schedule may render it more

performant to start from the 40 bits of either ˜K8[0], ˜K9[0, 7, 10, 13] or
˜K13[0], ˜K14[0, 7, 10, 13] and search the 88 remaining key bits with the given
data.

Complexity. From 28 sets of 2s texts each, we expect 22s−149 correct pairs;
s = 77 yields 25 correct pairs on average, and needs 285 plaintext-tweak tuples.
The time complexity consists of the following terms:

– H can be precomputed in Step (2) by decrypting one column over 2 rounds
280 times, which yields at most 2/13 · 1/4 · 280 � 275.3 encryption equivalents.

– Step (3) needs 2s+8 encryptions of 13 AES rounds each.
– Step (4) employs 2 · 2s+8 evaluations of F and 2 · 2s+8 · (s + 8) memory

accesses (MAs). This step yields 22s+15 · 2−192 = 22s−177 wrong pairs plus
22s−149 correct pairs on average.

– Step (6) does not need H, but can test the keys on-the-fly, for 2 · 25 states
of 240 keys, of 1/4 of the state through two out of 13 rounds. Each surviving
pair requires 2 · 28 MAs to H plus 2 · 28 MAs to K and L on average. We
expect an average sum of all counters of 28 · 22s−149 = 213 in each of both lists,
distributed normally over the keys. For s = 77, we expect (2−23 · 28)+25 · 28 �
213 counters over the 40 key bits on average.

We can expect that the correct keys have a significantly higher number of counts.
So, we obtain about 275.3 + 2 · 25 · 240 · 1

4 · 2
13 + 2s+8 + 2 · 2s+8 + 288 � 288.5

Encryptions and 2·2s+8·(s+8)+2·22s−177·2·28+2·25·28 � 292.4 MAs. The attack
needs 280 byte counters for the keys; Q needs 2s+8 · (2 ·16+8) < 2s+13.33 � 290.4

bytes of memory, or 286.4 states, which dominates the memory complexity.

7 Impossible-Differential Attack with Encryption Queries

Impossible Differentials. This section outlines an impossible-differential
attack on ForkAES-∗-4-4. Again, we describe it for five top rounds. The high-level

58 S. Banik et al.

Fig. 8. Left: The trail ΔC0 → ΔX. Right: One variant of an impossible trail ΔC1 �←
ΔY . White bytes are inactive, light-blue bytes possibly active, and dark-blue bytes
are active. Parts below the dashed horizontal lines are considered in the on-line phase.
(Color figure online)

idea is straight-forward: The adversary queries plaintexts under tweaks that dif-
fer only in T [0] and waits for tuples (Ci,0, Ti) and (Cj,0, Tj). It inverts the final
MC−1 operation and tweak addition, and uses the ciphertexts only if their dif-
ference Δ ˜C0 (before MC) activates only the inverse diagonal ID0, as given in
the left side of Fig. 8. It deduces those key bytes ˜K9[0, 7, 10, 13] and ˜K8[0] that
lead to a zero difference in ΔX7,MC, i.e., that cancel after the tweak XOR at the
end of Round 7. Then, there is a zero difference through the inverse Round 7,
which leads to a single active byte in ΔX6,MC, and to a single active diagonal at
the start of Round 6. Again, see the left side of Fig. 8. The second trail decrypts
ΔC1 backwards to ΔY = ΔX. So, at least one of the following cases must hold:

(1) ΔY 7 has at least one fully active column: ΔY 7 ∈ Ci.
(2) Bytes ΔY 7[1, 2, 3] are active.
(3) ΔC1 ∈ M0, i.e., is in the mixed space, generated by ΔY 9,SR ∈ ID0.

In Case (3), the ΔY trail is similar to the ΔX trail. So, we have a distinguisher
similar to the rectangle distinguisher described in Sect. 6. However, this section
tries to exploit a different distinguisher with lower data complexity and does not
have to wait for such an event. In the Cases (1) and (2), the Columns 1 to 3
of ΔY 7 are either completely active or completely inactive. Thus, the adversary

Cryptanalysis of ForkAES 59

can guess eight bytes of ˜K14 that are mapped to one of those columns and can
filter out all key guesses where one of those columns would become partially
active.

Offline Preparations. We define ˜Xr,SR =def SR(SB(Xr−1)) ⊕ ˜Kr, and
˜Y r,SR, ˜X ′r,SR, and ˜Y ′r,SR analogously. Again, we can define a linear map
F of rank 96 such that F (MC−1(ΔC0 ⊕ ΔT)) = 0 so that we can iden-
tify pairs with our desired difference from collisions in Δ ˜X9,SR. We con-
struct a hash map H0 : F28 × F28 × F

4
28 × F

4
28 → (F5

28)
∗ that maps x =

(T [0], T ′[0], ˜X9,SR[0, 7, 10, 13], ˜X ′9,SR
[0, 7, 10, 13]) to all five-byte keys that yield

ΔX7,MC = 0. We construct a second hash map H1 : F8
28 × F

8
28 → (F8

28)
∗. For

all inputs x = (˜Y 9,SR[2, 3, 5, 6, 8, 9, 12, 15], ˜Y ′9,SR
[2, 3, 5, 6, 8, 9, 12, 15]), H1(x)

returns exactly the keys ˜K14[2, 3, 5, 6, 8, 9, 12, 15] that yield one of the impos-
sible differentials in ΔY 8,SR.

H1 does not need the tweak as input since the final tweak addition, Mix-
Columns, and ShiftRows can be inverted before the lookup in H1; the tweak
addition at the end of Round 8 does not affect the difference in ΔY 8,SR. Note
that H1 can be built more efficiently from several smaller lookup tables since
the columns can be computed independently from each other.

There exist four combinations of bytes ΔY 8,SR[i, j] with (i, j) ∈ {(8, 15),
(9, 12), (10, 13), (11, 14)} and two options if Byte i or Byte j is active. Among
232 difference inputs to MC−1, 224 are mapped to an output difference with a
zero-difference byte at a fixed index. On the other hand, 232 − 224 inputs yield
a non-zero difference at a given byte index. Thus, given an input Y 9,SB, H1

returns 4 · 2 combinations of 224 · (232 − 24) � 256 keys that yield the impossible
differential. This can be evaluated with 4 · 2 calls to two 32-bit tables each,
or 16 tables that map 32 state bits to 232 or 224 keys. So, H1 needs 8 · 232 ·
232 · 4 bytes + 8 · 232 · 224 · 4 bytes � 272 bytes of memory. The tables can be
computed with at most 16 ·232 ·232 quarter-rounds of the AES, which is at most
16/13 · 264 � 264.3 equivalents of ForkAES-5-4-4.

Attack Procedure. The steps in the attack are as follows:

1. Initialize two empty lists Q and K; the latter will hold all 13-byte keys ˜K8[0],
˜K9[0, 7, 10, 13], and ˜K14[2, 3, 5, 6, 8, 9, 12, 15].

2. Choose an arbitrary base tweak T ∈ F
2×4
28 . Construct 28 sets Si from iterating

over T [0]. For each set, choose 2s plaintexts P . All texts in a set use the same
tweak T i with T i[0] = i. Ask for their 2s+8 encryptions (T,C0, C1).

3. For each ciphertext, invert the final tweak addition, the final MC operation,
and process all ciphertexts by F : Qb = F (MC−1(Cb ⊕ T)), for b ∈ {0, 1}.
Store (T,C0, C1, Q0, Q1) into buckets of Q.

4. Only consider pairs of tuples (T,C0, C1, Q0, Q1) and (T ′, C ′
0, C

′
1, Q

′
0, Q

′
1) if

T �= T ′ and Q0 = Q′
0. Discard all other tuples. We call pairs of tuples with

our desired property correct pairs.
5. For each correct pair, derive from H0 the key candidates ˜K8[0] and ˜K9[0, 7,

10, 13] that yield a zero difference in ΔX7,MC. Further derive from H1 all

60 S. Banik et al.

key candidates for ˜K14[2, 3, 5, 6, 8, 9, 12, 15] that yield one of the impossible
differentials. Remove those candidates from K.

6. Output the 13-byte key candidates remaining in K.

Conditions and Complexities. The adversary queries 28 sets of 2s

texts each and guesses 13 key bytes in total: ˜K9[0, 7, 10, 13], ˜K8[0], and
˜K14[2, 3, 5, 6, 8, 9, 12, 15], i.e., 104 key bits. The attack requires pairs with ΔC0 ∈
M0, which occurs with probability of approximately p � 2−96. We can assume
that (ΔC0,ΔC1) ∈ M0 × M0 never occurs by accident; while it could theo-
retically still occur and could be exploited, we consider a different distinguisher
here.

The probability that a key ˜K9[0, 7, 10, 13] reduces the four active bytes in
ΔX9,SR to a single active byte in ΔX8,MC[0] is 2−24, and its difference is ΔT [0] in
ΔX7 with probability 2−8. So, a key in the ΔX trail yields our desired differential
with a probability of about 2−32. There are four options which columns in ΔY 7

become partially active, and two options for the order which of the two known
bytes in this column are active/inactive. The probability for one inactive byte is
(2−8 −1) · (1−2−8) � 2−8; so, a key yields the impossible differential in ΔY 7,MC

with probability approximately 2−32 · 2−8 · 4 · 2 � 2−37.
In the framework by Boura et al. [9], this can be represented as 37 bit con-

ditions that have to be fulfilled to filter a key from a given correct pair. The
probability for a wrong key to survive is psurvive =

(

1 − 2−37
)N , where N is the

number of correct pairs. For 2104 keys, psurvive ≤ 2−104 would allow us to filter
all keys to only the correct key, plus at most a few more false positives. For
this purpose, we need N ≥ 243.2 pairs with 12 inactive bytes in Δ ˜X9,SR, which
yields 243.2 · 212·8 = 2139.2 necessary pairs. From 2s structures, we can construct
about 22s+15 pairs, which gives s = 62.1 or CN = 2s+8 = 270.1 queries. The
computational complexity is composed of the following terms:

– Precompute H0 with 280 times twice a quarter round of the AES, which can
be approximated by 280 · 2/13 · 1/4 � 275.3 encryption equivalents.

– Precompute H1 with at most 264.3 encryption equivalents.
– Encrypt 2s+8 plaintext-tweak tuples.
– Invert 2s+8 · 2 times the final tweak addition, MixColumns, and ShiftRows

operation, which can be overestimated by 270.1 · 2 · 1/13 ≈ 267.5 encryptions.
– Apply F to all states C0, which is at most 2s+8 ForkAES computations, or

270.1 · 2 � 270.1 encryptions. Moreover, we need 2 · 2s+8 · (s + 8) = 2 · 70.1 ·
270.1 � 277.3 MAs on average with an efficient data structure. We obtain
about 22s+15−96 � 22s−81 = 243.2 remaining pairs.

– For each of the 243.2 pairs allows to filter keys. Since we have 37 bit conditions,
each pair allows to filter 2104−37 = 267 keys on average from H0 and H1 with
two MAs each and remove them from K.

– Our attack aims at recovering 104 bits of ˜K9 and ˜K14. So, the final term for
recovering 64 remaining key bits of ˜K14 can be estimated by 264 encryptions.

The time complexity can be bounded by about 275.3+264.3+270.1+267.5+270.1+
264 � 275.4 encryptions and 2 · 270.1 + 277.3 + 243.2 · 2 + 243.2 · 267 � 2110.2 MAs.

Cryptanalysis of ForkAES 61

The attack needs 280 ·28 ·40 bits for H0, at most 272 bytes for the components of
H1, 2s+8 = 270.2 · (2 · 16+8) < 2s+14 = 276.2 bytes for Q, and 2104 byte counters
or (2100 states) for K; the latter term dominates the memory complexity.

Acknowledgments.. Parts of this work have been initiated during the group ses-
sions of the 8th Asian Workshop on Symmetric Cryptography (ASK 2018) held at the
Indian Statistical Institute in Kolkata. We would also like to thank the anonymous
reviewers and the designers of ForkAES for their helpful comments. Subhadeep Banik
is supported by the Ambizione Grant PZ00P2 179921, awarded by the Swiss National
Science Foundation.

A Previous Yoyo Game

The yoyo game was introduced by Biham et al. for the cryptanalysis of Skipjack
[3]. Recently, Rønjom et al. [20] reported a deterministic distinguisher for two
generic Substitution-Permutation (SP) rounds. This result has been applied to
eight-round ForkAES to perform a key-recovery attack. Let us look at some def-
initions originally introduced in [20]. Let F : Fn

q → F
n
q be a generic permutation

where q = 2k. Then, F is given by F = S◦L◦S◦L◦S, where S is a concatenation
of n parallel S-Boxes on n individual words from Fq and L denotes the linear
layer over F

n
q . A vector of words α = (α0, α1, · · · , αn−1) ∈ F

n
q forms the states.

The Zero-difference Pattern is defined as:

Definition 1 (Zero-difference Pattern [20]). Let, α ∈ F
n
q for q = 2k. The

Zero-difference Pattern for α is ν(α) = (z0, z1, ..., zn−1), where ν(α) takes values
in F

n
2 and zi = 1 if αi = 0 or zi = 0 otherwise.

The weight wt(ν(α)) refers to the number of active words in α. The Yoyo
game depends then on the swapping of words among the texts. The following
definition describes the swapping mechanism.

Definition 2 (Word Swapping [20]). Let, α, β ∈ F
n
q be two states and v ∈ F

n
2

be a vector, then ρv(α, β) is a new state in F
n
q created from α, β by swapping

components among them. The i-th component of ρv(α, β) = αi if vi = 1 and
ρv(α, β) = βi otherwise.

Yoyo Distinguisher for Two Generic SP Rounds. Two generic SP rounds
can be written as G2 = L◦S ◦L◦S where the final L layer can be omitted since
it does not affect the security. Also, the substitution layers do not have to be
equal. After modification, G2 = S1 ◦ L ◦ S2. The deterministic distinguisher for
two generic SP rounds is described by the following theorem.

Theorem 1 (The Yoyo Game [20]). Let, p0, p1 ∈ F
n
q , c0 = G2(p0) and c1 =

G2(p1). For any vector v ∈ F
n
2 , c

′0 = ρv(c0, c1) and c
′1 = ρv(c1, c0). Then

ν(G−1
2 (c

′0) ⊕ G−1
2 (c

′1)) = ν(p
′0 ⊕ p

′1) = ν(p0 ⊕ p1).

62 S. Banik et al.

References

1. Andreeva, E., Reyhanitabar, R., Varici, K., Vizár, D.: Forking a blockcipher for
authenticated encryption of very short messages. IACR Archive (2018). https://
eprint.iacr.org/2018/916, Version: 20180926:123554

2. Banik, S., et al.: Cryptanalysis of ForkAES. Cryptology ePrint Archive, Report
2019/289 (2019). https://eprint.iacr.org/2019/289

3. Biham, E., Biryukov, A., Dunkelman, O., Richardson, E., Shamir, A.: Initial obser-
vations on skipjack: cryptanalysis of skipjack-3XOR. In: Tavares, S., Meijer, H.
(eds.) SAC 1998. LNCS, vol. 1556, pp. 362–375. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48892-8 27

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 2

5. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 21

6. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle
attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9 1

7. Blondeau, C.: Accurate Estimate of the Advantage of Impossible Differential
Attacks. IACR Trans. Symmetric Cryptol. 2017(3), 169–191 (2017)

8. Boura, C., Lallemand, V., Naya-Plasencia, M., Suder, V.: Making the impossible
possible. J. Cryptol. 31(1), 101–133 (2018)

9. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 10

10. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table:
a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 22

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-
4

12. Derbez, P.: Note on impossible differential attacks. In: Peyrin, T. (ed.) FSE 2016.
LNCS, vol. 9783, pp. 416–427. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52993-5 21

13. Dobraunig, C., List, E.: Impossible-differential and boomerang cryptanalysis of
round-reduced Kiasu-BC. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol.
10159, pp. 207–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52153-4 12

14. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)

15. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

https://eprint.iacr.org/2018/916
https://eprint.iacr.org/2018/916
https://eprint.iacr.org/2019/289
https://doi.org/10.1007/3-540-48892-8_27
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-52993-5_21
https://doi.org/10.1007/978-3-662-52993-5_21
https://doi.org/10.1007/978-3-319-52153-4_12
https://doi.org/10.1007/978-3-319-52153-4_12
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15

Cryptanalysis of ForkAES 63

16. Kara, O.: Reflection cryptanalysis of some ciphers. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 294–307. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5 23

17. Knudsen, L.: DEAL - a 128-bit block cipher. Complexity 258(2), 216 (1998)
18. Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf. Theory

57(4), 2517–2521 (2011)
19. National Institute of Standards and Technology. FIPS 197. National Institute of

Standards and Technology, November, pp. 1–51 (2001)
20. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Takagi, T.,

Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 217–243. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 8

21. Tolba, M., Abdelkhalek, A., Youssef, A.M.: A meet in the middle attack on reduced
round Kiasu-BC. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E99-
A(10), 21–34 (2016)

22. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8 12

https://doi.org/10.1007/978-3-540-89754-5_23
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12

Digital Signature and MAC

Short Lattice-Based One-out-of-Many
Proofs and Applications to Ring

Signatures

Muhammed F. Esgin1,2(B), Ron Steinfeld1, Amin Sakzad1, Joseph K. Liu1,
and Dongxi Liu2

1 Faculty of Information Technology, Monash University, Melbourne, Australia
{Muhammed.Esgin,Ron.Steinfeld,Amin.Sakzad,Joseph.Liu}@monash.edu

2 Data61, CSIRO, Marsfield, Australia
Dongxi.Liu@data61.csiro.au

Abstract. In this work, we construct a short one-out-of-many proof
from (module) lattices, allowing one to prove knowledge of a secret asso-
ciated with one of the public values in a set. The proof system builds on
a combination of ideas from the efficient proposals in the discrete loga-
rithm setting by Groth and Kohlweiss (EUROCRYPT ’15) and Bootle
et al. (ESORICS ’15), can have logarithmic communication complexity
in the set size and does not require a trusted setup.

Our work resolves an open problem mentioned by Libert et al.
(EUROCRYPT ’16) of how to efficiently extend the above discrete log-
arithm proof techniques to the lattice setting. To achieve our result, we
introduce new technical tools for design and analysis of algebraic lattice-
based zero-knowledge proofs, which may be of independent interest.

Using our proof system as a building block, we design a short ring sig-
nature scheme, whose security relies on “post-quantum” lattice assump-
tions. Even for a very large ring size such as 1 billion, our ring signature
size is only 3 MB for 128-bit security level compared to 216 MB in the
best existing lattice-based result by Libert et al. (EUROCRYPT ’16).

Keywords: Lattice-based cryptography · Zero-knowledge proof ·
Ring signature

1 Introduction

In the last decade, lattice-based cryptography has seen a great interest with many
new applications developed rapidly. Although it offers solutions even to problems
which long seemed elusive, there is still a gap in some areas where lattice-based
cryptographic proposals are not efficient enough for practical use and even fall far
behind their number theoretic counterparts in terms of efficiency. One important
example for such a case is zero-knowledge proofs (ZKPs). It seems that lattice-
based cryptography does not agree well with ZKPs and extending the existing
number theoretic proposals to the lattice setting is quite challenging.
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 67–88, 2019.
https://doi.org/10.1007/978-3-030-21568-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_4

68 M. F. Esgin et al.

A particular example is one-out-of-many proofs where the prover’s goal is to
prove knowledge of an opening of a commitment within a set of commitments
without revealing which one he has. Groth and Kohlweiss [15] and Bootle et al.
[7] gave very efficient constructions with logarithmic (log) communication com-
plexity in the size of the set of commitments based on decisional Diffie-Hellman
assumption. Their protocols also lead to very efficient ring signatures without
trusted setup1, where a signatory signs a message on behalf of a group of users
(referred as a ring). The idea behind obtaining a ring signature from a one-out-
of-many proof works as follows. Users commit to their secret keys, resulting in
the users’ public keys. Then, the signatory proves (in a non-interactive fashion
using Fiat-Shamir heuristic) that he knows an opening (i.e., the secret key) of
one of the commitments (i.e., the corresponding public keys) used to create the
ring signature. Ring signatures are important tools used in e-voting systems and
cryptocurrencies to provide anonymity. Especially in the case of cryptocurren-
cies, an important aspect is the ring signature size, which makes the schemes in
[7,15] very attractive on a large scale. However, these proposals in [7,15] do not
offer post-quantum security as they are in the discrete logarithm (DL) setting.

On the side of lattice-based cryptography, a promising candidate for post-
quantum security, efficient designs targeting the same problems do not currently
exist. There has not been a successful extension of the ideas in [7,15] to the
lattice setting, and other approaches proposed so far resulted in very inefficient
schemes that are far from offering practical usability. To illustrate, while [7] gives
constructions in the order of a few KB even for very large ring sizes, the current
shortest log-sized ring signature from lattices by Libert et al. [18] results in a
ring signature of size 75 MB for around a thousand ring members and a security
level of 128 bits. It is therefore tempting to realise the ideas in [7,15] using
lattice-based techniques, but, as we discuss next, this is far from trivial. In this
work, we tackle this problem and design short one-out-of-many proofs and ring
signatures from (module) lattices by introducing new tools for the design and
analysis of algebraic lattice-based ZKPs (see Sect. 3).

For some practical applications, one requires linkability between ring signa-
tures generated using the same secret key. This is often referred to as a link-
able ring signature [20], which is useful in e-voting systems (e.g., see [11]) and
blockchain confidential transactions (e.g., see [24,26,27]). Our ring signature can
be extended to provide linkability using the same techniques as in [4,29].

1.1 Technical Difficulties

The starting point of our protocol is the works by Groth and Kohlweiss [15] and
Bootle et al. [7], instantiated using Pedersen commitment as a core ingredient.
As also noted in [18] and [4], it is not straightforward to design lattice-based
one-out-of-many proofs and ring signatures from the ideas in [7,15]. One can
see [29] for an attempt to design a (linkable) lattice-based ring signature based

1 There are some constructions of ring signatures that give a constant size signature
but require a trusted setup.

Short Lattice-Based One-out-of-Many Proofs 69

on [15]. The authors of [29] claim that the anonymity and unforgeability of
their scheme follow from the framework of [15], provided that a perfectly hiding
and computationally binding commitment scheme is used. However, as we show
here, there are many issues to be addressed if one aims to use the ideas from
[7,15] in the lattice setting, whereas [29] did not go into details of how these
issues are to be solved. To begin with, the valid input space of lattice-based
commitment schemes is a proper subset of Zv

q for some v ≥ 1 (or the underlying
polynomial ring Rv

q = Zq[X]/(Xd + 1) in the case of ring variants) consisting
of vectors of small elements unlike their number-theoretic counterparts such as
Pedersen commitment accepting any element in Z

v
q . This restriction prevents

straightforward adaptation of number-theoretic results, and in fact there is a
crucial difference between the relations of the lattice-based and DDH-based one-
out-of-many proofs (see Remark 1 in Sect. 4). Furthermore, extending [15] alone
does not yield efficient lattice-based ring signatures even if the security issues
in the lattice setting are addressed properly.

Let us briefly discuss the main technical difficulties our new techniques enable
us to overcome in extending [7,15] to the lattice setting. We denote the public
set size for one-out-of-many proof (or the ring size for the ring signature) by
N , and C = Comck(m ; r) as a commitment to a message m with randomness
r using a commitment key ck. A pair of acceptable values (m′, r′) such that
C = Comck(m′ ; r′) is called an opening of C. The reader unfamiliar with the
general concepts of Σ-protocols is referred to Sect. 2.3.

1. Growth of extracted witness size: As mentioned previously, lattice-based
commitment schemes accept only elements of bounded size as valid openings.
We show that the sizes of extracted witnesses, which will be openings of some
commitments, grow rapidly with the size of challenge difference inverses in
the framework of [7,15] (see Sect. 3.2). In particular, we show that if one
works over a ring Rq = Zq[X]/(Xd +1), the growth can be made to be of the
form Γ = dlog N (see Sect. 5). Letting d = 210 with N = 220 users, Γ (and, in
turn, q) reaches 200 bits without any additional considerations.

2. (Small) challenge space size: In connection with the above difficulty, we
need to find a challenge space where the sizes of challenge difference inverses
are guaranteed to be small. Unfortunately, we cannot find such a space with
exponentially many elements, restricting us to a small challenge space. A
simple (commonly used) possible option is to use binary challenges. However,
the scheme presented in [7] requires at least 3 distinct challenges to extract
a witness, making that option ineligible. In fact, the main protocols in [7,15]
even require up to log2 N + 1 challenges for witness extraction, which means
that several forkings are required in the unforgeability proof of the ring sig-
nature. This fact combined with a small challenge space causes major issues
in the unforgeability proof (see proof of Theorem 3). For example, one cannot
simply rely on a commonly used Forking Lemma from [9].

3. Proof of commitment to a binary value over Rq: When working over
the ring Rq = Zq[X]/(Xd + 1), the following statement, which is typically
used to prove that a value is binary, does not necessarily hold: x(x − 1) = 0

70 M. F. Esgin et al.

=⇒ x ∈ {0, 1}. This is because there exist zero divisors in Rq (unlike the field
Zq used in DL-based schemes). Hence, straightforward proofs of x(x− 1) = 0
does not guarantee that x is binary (see Sect. 3.1).

4. Soundness gap: In common with some other lattice-based proofs, our pro-
tocol has the so-called soundness gap unlike DL-based schemes. That is, the
extractor recovers the openings of γ ·Comck(m ; r) instead of the actual com-
mitments of the form Comck(m ; r). This makes things more complicated in
the soundness proofs (see the proofs of Theorems 1 and 2) and requires one
to be careful in protocol’s application to a ring signature as the extractor is
never guaranteed to recover the openings of the actual commitments used in
the protocol (see the proof of Theorem 3).

1.2 Our Contributions

New Technical Tools for Algebraic Protocols and Design of Short
Lattice-Based One-out-of-Many Proofs and Ring Signatures. By now,
it is clear that extending the works [7,15] to the lattice setting is far from being
trivial, which was indeed stated as an open problem in [4,18]. Our main contri-
butions in this work are the introduction of new technical tools for the design
and analysis of algebraic protocols from lattices (Sect. 3) and the design of short
(sublinear-sized) one-out-of-many proofs and ring signature schemes from (mod-
ule) lattices (Sects. 5 and 6). It is worth emphasising that our proposal is not a
direct adaptation of either [15] or [7], but rather carefully combines ideas from
both in a way suitable in the lattice scenario, and also that the technical dif-
ficulties mentioned in Sect. 1.1 do not allow straightforward extension of [15]
or [7].

As shown in Table 1, our ring signature achieves a dramatic improvement in
terms of length over the shortest existing log-sized result from lattices by Libert
et al. [18], where the improvement is almost two orders of magnitude.2 Moreover,
an important feature of our constructions is that a modulus q of a special form
(such as q ≡ 17 mod 32 as in [12]) is not required, which allows the use of fast
computation algorithms such as Number Theoretic Transform (NTT).

A series of previous proposals of group/ring signatures (e.g., [17–19]) rely on
combinatorial Stern-like protocols [25]. Even though these protocols offer a range
of functionalities, all of them have very long signature sizes that seem too large
for practical use. Our new technical tools developed in Sect. 3 introduce new
directions for efficient applications of algebraic lattice-based techniques to areas
where lattice-based proposals fall behind their number-theoretic counterparts.
The protocol structure, for whose construction our new tools provide efficient
techniques, is also involved in advanced ZKPs such as arithmetic circuit argu-
ments [8] and Bulletproofs [10]. Hence, our new tools may be of independent
interest, especially for the extension of other advanced ZKPs in the DL setting
2 Our scheme, like [18], is only analyzed in the classical random oracle model (ROM)

(rather than quantum ROM). Also, note that the linear-sized ring signature schemes
are inherently long for large ring sizes.

Short Lattice-Based One-out-of-Many Proofs 71

Table 1. Comparison of ring signature sizes at λ = 128-bit security with N ring
members. For [18], we use the same system parameters given in [18] for 80-bit security,
but only increase the number of protocol repetitions to reach 2−128 soundness error.
See Sect. 6.1 for detailed parameter setting.

N 26 28 210 212 216 220 230

[18] (sign. size in KB) 47294 61438 75582 89726 118014 146303 217023

Our work (sign. size in KB) 774 881 1021 1178 1487 1862 3006

to the lattice setting. In fact, the issues in [29] can be fixed using our techniques,
but the revised scheme is unlikely to be more efficient than our work.

Exploiting Module Variants of Standard Lattice Assumptions for Effi-
ciency Purposes. Another contribution of our work is to show that the use
of Module-SIS (M-SIS) problem [16] (over SIS or Ring-SIS) opens the door for
significant efficiency improvements by allowing us to tradeoff extracted witness
size growth (and hence signature length) against computational efficiency. To
the best of our knowledge, this is the first time a lattice-based ZKP has been
instantiated based on M-SIS to gain such an efficiency improvement.3

In the Ring-LWE setting, monomial challenges, Xi ∈ R = Z[X]/(Xd+1), was
introduced in [5] to enable a challenge space of size 2d with the property that the
doubled inverse of the difference of such challenges have small norm. The three
methods introduced in Sect. 3 provide an in-depth analysis of the use of monomial
challenges in a more generalized setting of (k + 1)-special sound protocols. We
believe that the combination of using monomial challenges together with M-SIS
to fine-tune the parameters for efficiency purposes holds great potential to be
investigated through further research in lattice-based cryptography.

Paper Organization. Section 2 discusses some preliminaries. Our new tools
for the design and analysis of algebraic protocols from lattices are introduced
in Sect. 3. Sections 4 and 5 cover our binary proof and one-out-of-many proof,
respectively. Our compact lattice-based ring signature is then provided in Sect. 6.
More detailed related work, rigorous definitions of ring signatures and the full
proofs of our new results are available in the full version [14].

2 Preliminaries

We use the standard notations and let R = Z[X]/(Xd + 1)
and Rq = Zq[X]/(Xd + 1) for a power-of-two d > 1 and odd prime q. Sc defines
the set of all polynomials in R with infinity norm at most c ∈ Z

+. We write
p ← Smd to indicate that p ∈ Rm is a vector of m polynomials where each
coefficient is sampled from a set S (i.e., md coefficients are sampled in total).

3 M-SIS is used usually (e.g. in [12]) to fix the ring dimension d and to avoid the
need for a change of it to accommodate new security parameters. It does not have a
significant effect on efficiency due to extracted witness norm unlike in our case.

72 M. F. Esgin et al.

For f ∈ R and p ∈ Rm, Rot(f) and Coeff(p) denote the representative matrix
of f and the md-dimensional coefficient vector of p, respectively.

2.1 Module-SIS, Module-LWE Problems and Commitment Scheme

In our schemes, we work over a ring Rq and rely on the hardness of Module-SIS
(M-SIS)4 and Module-LWE (M-LWE) problems [16] defined below.

Definition 1 (M-SISn,m,q,θ). Let Rq = Zq[X]/(Xd +1). Given A = [In ‖A′]
∈ Rn×m

q where each component of A′ is chosen independently from the uniform
distribution, find z ∈ Rm

q such that Az = 0 mod q and 0 < ‖z‖ ≤ θ.

For simplicity, we consider a special case of M-LWE problem where each
error and secret key coefficient is sampled uniformly from {−B, . . . ,B} for some
B ∈ Z

+. A more special case of B = 1 is commonly practised in recent lattice-
based proposals [3,13,22], and our results can be easily extended to a case with
a discrete Gaussian distribution.

Definition 2 (M-LWEn,m,q,B). Let Rq = Zq[X]/(Xd + 1) and s ← Sn
B be

a secret key. Define LWEq,s as the distribution obtained by sampling e ← SB,
a ← Rn

q and returning (a, 〈a, s〉 + e). Given m samples from either LWEq,s or
U(Rn

q , Rq), the problem asks to distinguish which is the case.

We use the following lattice-based commitment scheme that allows commit-
ment to multiple messages, and is additively homomorphic. Following the stan-
dard notions, hiding property requires that it is hard to distinguish between com-
mitments to two distinct message-randomness pairs, and strong binding property
(which is stronger than the standard binding property) dictates that it is hard
to find two distinct valid openings (message-randomness pairs) of a commit-
ment. In common with similar lattice-based commitment schemes (see, e.g., [3]
for more discussion), the opening algorithm of the commitment scheme has an
additional input y ∈ Rq, called the relaxation factor, and the opening message-
randomness pair is required to have a bounded norm. The latter is needed to
relate the binding property to the M-SIS problem (as given in Lemma 1). Thus,
we introduce a parameter Tcom ∈ R

+ and say Tcom-binding where Tcom serves
as an upperbound on the norm of a valid opening message-randomness pair.

• CKeygen(1λ): Pick G′
r ← R

n×(m−n)
q , Gm ← Rn×v

q and set Gr = [In ‖G′
r].

Output ck = G = [Gr ‖Gm] ∈ R
n×(m+v)
q .

• Commitck(m): Pick r ← Sm
B . Output Comck(m ; r) = G · (r,m) = Gr · r +

Gm · m.
• Openck(C, (y,m′, r′)): For y ∈ Rq, if Comck(m′ ; r′) = yC and ‖(r′,m′)‖ ≤

Tcom, return 1. Otherwise, return 0.

Lemma 1. The commitment scheme defined above is computationally hiding if
M-LWEm−n,n,q,B is hard. It is also computationally strong Tcom-binding with
respect to the same relaxation factor y if M-SISn,m+v,q,2Tcom

problem is hard.
4 As in [3], we define M-SIS in “Hermite normal form”, which is equivalent to M-SIS

with completely random A.

Short Lattice-Based One-out-of-Many Proofs 73

2.2 Technical Definitions and General Lemmas

For a rank-n matrix S, we denote the discrete Gaussian distribution (centered
at zero) with parameter S (and covariance matrix S�S) by Dn

S , and by Dn
s

if S = sIn. We denote by Dn
σ the discrete normal distribution with standard

deviation σ, defined as Dn
s with s = σ

√
2π.

Fact 1 (A result of [1, Fact 2]). For an invertible n × n matrix X, X · Dn
S =

Dn
SX � . That is, the distribution induced by sampling v ← Dn

S and outputting
y = Xv is the same as Dn

SX � .

As defined in [23], for a lattice L and real ε > 0, the smoothing parameter,
ηε(L), of L is the smallest s such that ρ1/s(L∗ \ {0}) ≤ ε where L∗ is the “dual
lattice”. We skip the details, but for our purposes the following facts are enough.

Fact 2 ([23, Lemma 3.3]). ηε(Zn) < 6 for ε = 2−128 and any 1 ≤ n ≤ 232.

Lemma 2 ([1, Lemma 3]). Let σ1(S) and σn(S) be the largest and the least
singular values of a rank-n matrix S, respectively. If σn(S) ≥ ηε(Zn),

Pr
v←Dn

S

[
‖v‖ ≥ σ1(S)

√
n

]
≤ 1 + ε

1 − ε
· 2−n.

The lemma below recalls the norm bound of monomial challenge differences.

Lemma 3 ([5, Lemma 3.1]). For 0 ≤ i, j ≤ 2d−1, all the coefficients of 2(Xi −
Xj)−1 ∈ R are in {−1, 0, 1}. This implies that

∥
∥2(Xi − Xj)−1

∥
∥ ≤

√
d.

Finally, we summarize the rejection sampling technique from [21].

Algorithm 1. Rej(z, c, φ,K)

1: σ = φK; μ(φ) = e12/φ+1/(2φ2); u ← [0, 1)

2: if u > (1
μ(φ)

) · exp
(

−2〈z ,c〉+‖c‖2

2σ2

)
then return 0 � indicates ‘abort protocol’.

3: else return 1

2.3 Σ-protocols

Σ-protocols are a type of zero-knowledge proofs between two parties: the prover
and the verifier. A language L ⊆ {0, 1}∗ is said to have a witness relationship
R ⊆ {0, 1}∗ × {0, 1}∗ provided v ∈ L if and only if there exists w ∈ {0, 1}∗ such
that (v, w) ∈ R. The quantity w is referred to as a witness for v. The definition
of Σ-protocols from [5] generalises the well-known notion of Σ-protocols. We
further extend it to allow (k + 1)-special soundness as in [7,15].

74 M. F. Esgin et al.

Definition 3 (Extension of Definition 2.5 in [5]). Let (P,V) be a two-party
protocol where V is a PPT algorithm, and L,L′ be languages with witness rela-
tions R,R′ with R ⊆ R′. Then, (P,V) is called a Σ-protocol for R,R′ with
completeness error α, a challenge set C, public input v and private input w, if it
satisfies the following conditions:

– Three-move form: The protocol has the following form. On input (v, w),
P computes initial commitment t and sends it to V. On input v, V draws a
challenge x ← C and sends it to P. The prover sends a response s to V. The
verifier accepts or rejects depending on the protocol transcript (t, x, s). The
transcript (t, x, s) is called accepting if the verifier accepts the protocol run.

– Completeness: Whenever (v, w) ∈ R, the honest verifier accepts with prob-
ability at least 1 − α when interacting with an honest prover.

– (k + 1)-special soundness: There exists a PPT algorithm E (called the
extractor) which takes (k + 1) accepting transcripts (t, x0, s0), . . . , (t, xk, sk)
with pairwise distinct xi’s (0 ≤ i ≤ k) as inputs, and outputs w′ satisfying
(v, w′) ∈ R′. We call this procedure witness extraction, and say that the
protocol has a soundness error k

|C| .
5

– Special honest-verifier zero-knowledge (SHVZK): There exists a PPT
algorithm S (called the simulator) that takes v ∈ L and x ∈ C as inputs, and
outputs (t, s) such that (t, x, s) is indistinguishable from an accepting protocol
transcript generated by a real protocol run.

3 New Technical Tools for Lattice-Based Proofs

In this section, we present a collection of technical tools we use in our con-
structions. These new tools may be of independent interest for future works on
algebraic lattice-based zero-knowledge proofs and signatures.

3.1 Proving a Value Binary in Rq

We show a lemma that, in particular, enables us to guarantee that b ∈ Rq is
a bit when the equation b · (1 − b) = 0 holds over Rq. Our lemma does not
put any additional assumption on q but its size, which enables one to use fast
computation algorithms such as the number-theoretic transform (NTT) with
q ≡ 1 mod 2d. In particular, we do not need number theoretic conditions on q
that makes NTT less efficient. For example, such a condition is imposed in [12]
to ensure the invertibility of small elements in Rq.

Lemma 4. For b ∈ Rq, if b · (α − b) = 0 over Rq for some positive integer α,
and ‖b‖ + α <

√
q, then b ∈ {0, α}.

5 We refer to Sect. 2.2 of [6] for further discussion on soundness error.

Short Lattice-Based One-out-of-Many Proofs 75

3.2 Bounding the Extracted Witness Norm for Monomial
Challenges

Consider a Σ-protocol where the prover’s initial commitments are A0, A1, . . . , Ak

(k ≥ 1), and he responds with (fx, rx) for a given challenge x by the verifier.
Then, the verifier checks whether A0 + A1x + A2x

2 + · · · + Akxk = Com(fx; rx)
holds where Com is a homomorphic commitment scheme. Now, suppose Ak is the
commitment of prover’s witness and that the extractor obtains k + 1 accepting
protocol transcripts for the same initial commitments, represented as follows.

⎛
⎜⎜⎝

1 x0 x2
0 · · · xk

0

1 x1 x2
1 · · · xk

1

: : : : :

1 xk x2
k · · · xk

k

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

A0

A1

:
Ak

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Com(fx0
; rx0)

Com(fx1
; rx1)

:
Com(fxk

; rxk)

⎞
⎟⎟⎠ .

Here, the matrix on the very left is a Vandermonde matrix V , and the extractor
can recover a possible opening of Ak via multiplying both sides by V −1, if exists,
due to the homomorphic properties of the commitment scheme. We observe from
[28] that the inverse matrix V −1 has the following form:
⎛

⎜
⎜
⎜
⎜
⎝

∗
(x0−x1)(x0−x2)···(x0−xk)

∗
(x0−x1)(x1−x2)···(x1−xk)

· · · ∗
(x0−xk)(x1−xk)···(xk−1−xk)

∗
(x0−x1)(x0−x2)···(x0−xk)

∗
(x0−x1)(x1−x2)···(x1−xk)

· · · ∗
(x0−xk)(x1−xk)···(xk−1−xk)

...
...

...
...

1
(x0−x1)(x0−x2)···(x0−xk)

−1
(x0−x1)(x1−x2)···(x1−xk)

· · · (−1)k

(x0−xk)(x1−xk)···(xk−1−xk)

⎞

⎟
⎟
⎟
⎟
⎠

, (1)

where ∗ denotes some element in the domain. Our protocol as well as the proto-
cols in [7,15] have this structure and, therefore, the Vandermonde matrix inverse
plays a crucial role in the witness extraction. In particular, if we denote the
entries in the last row of V −1 by α0, . . . , αk (from left to right), we have

Ak =
k∑

j=0

αjCom(fxj
; rxj

) = Com

⎛

⎝
k∑

j=0

αjfxj
;

k∑

j=0

αjrxj

⎞

⎠ =: Com(mext; rext).

(2)
These arguments tell us that we need to make sure V −1 exists in the first place,
which follows from the invertibility of pairwise differences of challenges. What is
more important in the case of lattice-based proofs is that αj ’s (and, in general,
the entries in V −1) must have small norm so that extracted witness (particularly,
(mext; rext)) is a valid opening (of Ak). To that end, we can make use of Lemma
3 to bound the entries in V −1, which brings us to our first method below. In
the rest, we focus on the last row of V −1, which is enough for our purposes, but
our results can be extended to the cases related to the other entries of V −1.

Method 1. Taking the first entry α0 as an example, we have

2kα0 =
2k

(x0 − x1)(x0 − x2) · · · (x0 − xk)
=

2
x0 − x1

· 2
x0 − x2

· · · 2
x0 − xk

.

76 M. F. Esgin et al.

For monomial challenges, using standard norm relations in R and Lemma 3, we
get

∥∥∥2kα0

∥∥∥ =

∥∥∥∥∥
k∏

i=1

2

x0 − xi

∥∥∥∥∥ ≤
(√

d
)k−1

k∏
i=1

∥∥2(x0 − xi)
−1

∥∥ ≤
(√

d
)k−1 (√

d
)k

= dk−0.5.

Since all the entries in the last row have a similar form and the bound does
not depend on the particular choice of monomials, the same bound holds for all
entries in the last row of V −1. Note that V −1 exists over Rq for odd q (though
may not have small entries) since 2 is invertible for such q. We summarise these
results in the following lemma, whose proof follows from the above discussion.

Lemma 5. For k ∈ Z
+, let xi = Xωi ∈ R = Z[X]/(Xd +1) for 0 ≤ ωi ≤ 2d−1

and 0 ≤ i ≤ k. Define the Vandermonde matrix V of dimension k +1 where i-th
row is the vector (1, xi, x

2
i , . . . , x

k
i). Then, V is invertible over Rq for odd q, and

for any entry αj (0 ≤ j ≤ k) in the last row of V −1, we have
∥
∥2kαj

∥
∥ ≤ dk−0.5.

Using Lemma 5, we can now summarize the main result of Method 1.

Lemma 6. For the extracted opening (mext, rext) of Ak in (2), we have

∥
∥2krext

∥
∥ ≤ (k +1) ·dk · max

0≤j≤k

∥
∥rxj

∥
∥ and

∥
∥2kmext

∥
∥ ≤ (k +1) ·dk · max

0≤j≤k

∥
∥
∥fxj

∥
∥
∥ .

This initial attempt succeeds, but the result may not be optimal. Thus, we
deepen our analysis to get a tighter bound.

Method 2. We observe that all entries in V −1 are constructed by challenge
values, which are public. Therefore, independent of a protocol run, anyone can
take a set of challenges and compute, in particular,

∥
∥2kαj

∥
∥ for any entry αj in

the last row of V −1. The important part here is that one can indeed iterate
through all the possible challenge sets (to be used in witness extraction) if the
challenge space size and k are not too large. This means anyone can compute a
global bound Bd,k on

∥
∥2kαj

∥
∥ for any given k and d independent of the index j

and the challenges used in the witness extraction.
Observing from (1), the total search space will be of size at most (k+1)·|C|k+1

where |C| = 2d denotes the monomial challenge space size. However, note that,
assuming w.l.o.g. i > j,

∥
∥(Xi − Xj)−1

∥
∥ =

∥
∥X2d−i(1 − Xj−i)−1

∥
∥ =

∥
∥(1 − Xj−i)−1

∥
∥ (3)

since multiplication by a monomial in R simply performs a nega-cyclic rotation
of the coefficients. Therefore, for any given k, it is enough to iterate through all
subsets of {1, . . . , 2d−1} of size k, and compute

∥
∥∏

ω∈Uk
2(1 − Xω)−1

∥
∥ for such

a given subset Uk. As a result, the search space size is reduced to
(|C|−1

k

)
. In our

parameter setting for practical ring sizes of N ≤ 220, we have k ≤ 3. Therefore,
for example, for d = 64 and k = 3, this requires only

(
127
3

)
< 218.4 iterations to

be performed only ever once. Below is the result of Method 2 where the proof
follows via bounding max0≤j≤k

∥
∥2kαj

∥
∥ by Bd,k instead of dk−0.5 as in Lemma 5.

Short Lattice-Based One-out-of-Many Proofs 77

Lemma 7. For the extracted opening (mext, rext) of Ak in (2), and any given
d and k, there exists a constant Bd,k ≤ dk−0.5 and an algorithm to compute Bd,k

with a running time at most (k − 1) ·
(
2d−1

k

)
polynomial multiplications in Rq

and
(
2d−1

k

)
Euclidean norm computations of degree d polynomials such that

∥
∥2krext

∥
∥ ≤ (k + 1) ·

√
d · Bd,k · max

0≤j≤k

∥
∥rxj

∥
∥ , and (4)

∥
∥2kmext

∥
∥ ≤ (k + 1) ·

√
d · Bd,k · max

0≤j≤k

∥
∥
∥fxj

∥
∥
∥ . (5)

Method 3. The above two methods give us ways to bound the extracted witness
length independent of a protocol run. The question now is “How much additional
information can we use from a protocol run?”

Assume that the prover’s response follows a discrete Gaussian distribution,
i.e., rx ← Dmd

s for some s ∈ R
+,m ∈ Z

+. Instead of bounding
∥
∥2kαj

∥
∥, we bound∥

∥2kαjrxj

∥
∥ for all j’s. The product 2kαjrxj

can be represented as (Rot(2kαj) ⊗
Im) · Coeff(rxj

) = Coeff(2kαjrxj
) where ⊗ denotes the Kronecker product. Let

us denote Rj = Rot(2kαj) ⊗ Im. Since Coeff(rxj
) ← Dmd

s , by Fact 1, we have
Rj · Coeff(rxj

) ∈ Dmd
sR�

j
. Hence, by Lemma 2, with high probability, we get

∥
∥Coeff(2kαjrxj

)
∥
∥ =

∥
∥Rj · Coeff(rxj

)
∥
∥ ≤ σ1(sR�

j)
√

md = σ1(Rj)s
√

md, (6)

if σn(sR�
j) ≥ ηε(Zmd), which can be easily satisfied as shown in the proof of

Lemma 8. We can now summarize the main result of Method 3 as below.

Lemma 8. Let rext =
∑k

j=0 αjrxj
be the randomness opening of Ak as in (2).

Assume that s ≥ 6, d ∈ {4, 8, . . . , 512} and md ≤ 232. If rxj
← Dmd

s for all
0 ≤ j ≤ k, then with probability at least 1 − 1+ε

1−ε2
−md for ε = 2−128,

∥
∥2krext

∥
∥ ≤ (k + 1) · max

0≤j≤k
σ1(Sj) · s

√
md, (7)

where Sj = Rot(2kαj) for j = 0, . . . , k.

Similar to the idea in Method 2, one can iterate through all Sj ’s and compute
a global bound Sd,k on possible σ1(Sj)’s for a given d and k. When rxj

← Dmd
s ,

we have
∥
∥rxj

∥
∥ ≤ s

√
md (up to a small constant factor) by Lemma 2. As a result,

we may reduce the comparison of the three methods to the comparison of the
values dk (Method 1), B′

d,k =
√

d · Bd,k (Method 2) and Sd,k (Method 3).
However, there is an important detail in Method 3: it only works when the

prover’s response follows a discrete Gaussian distribution and the verifier cannot
simply check if that is the case. To solve this problem, we introduce a new
tool called, Pseudo Witness Extraction in Algorithm2. If Algorithm 2 is used
in the protocol’s verification with an input bound β, then

∥
∥2krext

∥
∥ ≤ (k + 1)β

must hold. Therefore, when the prover’s responses rxj
’s are from Dmd

s , setting
β = Sd,ks

√
md ensures both that an honest prover’s proof will be accepted and

also that the extracted randomness will satisfy the norm-bound as in Lemma 8.

78 M. F. Esgin et al.

Algorithm 2. Pseudo-witness-extraction
1: Input: a vector r; a challenge x0 ∈ C; an integer k ≥ 1; a norm bound β ∈ R

+

2: for each k-tuple (x1, . . . , xk) ∈ Ck s.t. x0 �= x1 �= · · · �= xk do

3: rp-ext =
[∏k

j=1 2(x0 − xj)
−1

]
· r

4: if ‖rp-ext‖ > β then return False
5: end for
6: return True

In Table 2, we provide a comparison between the three methods introduced.6

As can be seen from the table, as k increases, the advantage of Methods 2
and 3 over Method 1 grows larger. There are also obvious patterns that can be
observed from the table such as Sd,k/B′

d,k ≈
√

2 for any d and k. We leave the
investigation of these behaviours as an open problem. For larger values of k,
for which it is infeasible to search the whole space, one can use the theoretical
bounds on the norm of a product of polynomials to upper-bound Bd,k (as Bd,k

is an upperbound on the norm of a product of polynomials) and the theoretical
bounds on the singular value of a product of matrices to upper-bound Sd,k (as
Sd,k is an upperbound on the singular value of a product of matrices). These
still give better results over Method 1.

Table 2. Comparison of Methods 1, 2 and 3. ∗ indicates that only a subset of the
whole search space has been iterated through.

k = 2 k = 3 k = 4

d log(dk) log(B′
d,k) log(Sd,k) log(d

k) log(B′
d,k) log(Sd,k) log(d

k) log(B′
d,k) log(Sd,k)

32 10 9.21 8.70 15 12.55 12.05 20 15.90 15.40

64 12 11.21 10.70 18 15.55 15.05 24 19.90 19.40

128 14 13.21 12.70 21 18.55 18.05∗ 28 23.90∗ 23.40∗

4 Σ-protocol for Commitment to a Sequence of Bits

In this section, we describe a lattice-based Σ-protocol showing that a commit-
ment B opens to sequences of binary values where the Hamming weight of each
sequence is exactly one. Let N = βk > 1 and r, r̂ ∈ Rm

q , and define the relations
to be proved in Definition 4.

Definition 4. For positive real numbers T and T̂ , we define the following rela-
tions to be used in Protocol 1.

6 A more detailed table is available in the full version of the manuscript [14].

Short Lattice-Based One-out-of-Many Proofs 79

Rbin(T) =
{

((ck,B), (b0,0, . . . , bk−1,β−1, r)) : ‖r‖ ≤ T ∧ (bj,i ∈ {0, 1} ∀j, i)
∧ B = Comck(b0,0, . . . , bk−1,β−1 ; r) ∧ (

∑β−1
i=0 bj,i = 1 ∀j)

}
.

R′
bin(T̂) =

{
((ck,B), (b0,0, . . . , bk−1,β−1, r̂)) : ‖r̂‖ ≤ T̂ ∧ (bj,i ∈ {0, 1} ∀j, i)

∧ 2B = Comck(2b0,0, . . . , 2bk−1,β−1 ; r̂) ∧ (
∑β−1

i=0 bj,i = 1 ∀j)

}
.

Remark 1. The conditions on the norms of r and r̂ in the relations Rbin and R′
bin

play a very crucial role, and is one of the main differences of a lattice-based zero-
knowledge proof over its number-theoretic counterpart. Without that control,
one cannot easily tie the security of the protocol to a hard lattice problem.

In the protocol, we first prove that each value in the sequences is binary,
and then that the sum of each sequence equals one. This guarantees that there
is only a single 1 in each sequence. The idea behind proving a value binary
works as follows. Let b be the value we want to prove binary. Given a challenge
x, the value b is multiplied by x and the resulting value is masked by a as
f = x·b+a in the protocol (Step 10 in Protocol 1). Now observe that f ·(x−f) =
b(1 − b) · x2 + a(1 − 2b) · x − a2 and proving that the coefficient of x2 is zero
implies that b(1 − b) = 0. Then, using Lemma 4, for a sufficiently large q, this
statement over Rq implies that b is binary.

Similar to [5], we make use of an auxiliary commitment scheme aCom (which
is assumed to be hiding and binding) in order to be able to simulate aborts in
the proof of zero-knowledge property.7 One can treat aCom as a random oracle.
However, if aCom is computationally binding, then the soundness of the protocol
holds under the respective assumption and similarly if it is computationally
hiding [5]. The protocol is described in Protocol 1, which will later be used in
the one-out-of-many proof. The parameters φ1, φ2 control the acceptance rate
of two-step rejection sampling and can be adjusted as desired. The following
summarizes the result of Protocol 1.

Theorem 1. For T = (2d + 2)
(
54φ4

1d
3k3β(β − 1) + 12φ2

2B2m2d2
)1/2, assume

that the commitment scheme is T -binding and also hiding (i.e., M-LWEm−n,n,q,B
is hard). Let d ≥ 7, md ≥ 86, and q > (10φ1d

√
kd(β − 1) + 2)2. Then, Protocol

1 is a 3-special sound Σ-protocol (as in Definition 3) for relations Rbin(B
√

md)
and R′

bin(4
√

2φ2Bmd2) with soundness error 1/d and a completeness error 1 −
1/(μ(φ1)μ(φ2)).

Remark 2. The way the rejection sampling is done in Protocol 1 allows us to
sample fj,i’s from a narrower distribution, and to make their norm smaller. This
as a result weakens the condition on the size of q.

7 In protocol’s application to a ring signature (and for other applications in general),
simulation of aborts is not needed as the protocol is made non-interactive.

80 M. F. Esgin et al.

Pbin(ck, B, ({bj,i}k−1,β−1
j,i=0 ; r)) Vbin(ck, B)

1: a0,1, . . . , ak−1,β−1 ← Dd
φ1

√
k

2: rc ← {−B, . . . , B}md

3: ra, rd ← Dmd
φ2B√

2md

4: for j = 0, . . . , k − 1 do

5: aj,0 = −
∑β−1

i=1
aj,i

6: A = Comck(a0,0, . . . , ak−1,β−1 ; ra)

7: C = Comck({aj,i(1 − 2bj,i)}k−1,β−1
j,i=0 ; rc)

8: D = Comck(−a2
0,0, . . . , −a2

k−1,β−1 ; rd)

9: (ca, da) = aCom(A, C, D)

ca

x := Xω

ω ← {0, . . . , 2d − 1}

10: fj,i = x · bj,i + aj,i ∀j, ∀i �= 0

f1 := (f0,1, . . . , fk−1,β−1), b1 := (b0,1, . . . , bk−1,β−1)

11: Rej(f1, xb1, φ1,
√

k)

12: zb = x · r + ra

13: zc = x · rc + rd

14: Rej((zb, zc), x(r, rc), φ2, B
√
2md)

Return ⊥ if aborted.
f0,1, . . . , fk−1,β−1,

da, A, C, D, zb, zc

1: for j = 0, . . . , k − 1 do

2: fj,0 = x −
∑β−1

i=1
fj,i

3: (ca, da)
?= aCom(A, C, D)

4: ‖fj,i‖
?≤ 5φ1

√
dk ∀j, ∀i �= 0

5: ‖fj,0‖
?≤ 5φ1

√
dk(β − 1) ∀j

6: ‖zb‖ , ‖zc‖
?≤ 2

√
2φ2Bmd

f := (f0,0, . . . , fk−1,β−1)

g := {fj,i(x − fj,i)}k−1,β−1
j,i=0

7: xB + A
?= Comck(f ; zb)

8: xC + D
?= Comck(g ; zc)

Protocol 1: Lattice-based Σ-protocol for Rbin and R′
bin.

Short Lattice-Based One-out-of-Many Proofs 81

5 Lattice-Based One-out-of-Many Protocol

We are now ready to describe our main protocol. Let δj,i denote the Kronecker’s
delta such that δj,i = 1 if j = i, and δj,i = 0 otherwise. The prover’s goal in
the protocol is to show that he knows the randomness within a commitment to
zero among a list of N commitments. (Note that the commitments other than
the prover’s need not be commitments to zero, i.e., there is no need to assume
that they are well-formed). Similar to the previous works [7,15], we assume that
the number of commitments satisfy N = βk, which can be realised by using
the same commitment multiple times until such an N is reached. Let c� be the
prover’s commitment for 0 ≤ � ≤ N − 1, and L = {c0, . . . , cN−1} be the list
of all commitments. The main idea is to prove knowledge of the index � such
that

∑N−1
i=0 δ�,ici is a commitment to zero. Note that δ�,i =

∏k−1
j=0 δ�j ,ij

where
� = (�0, . . . , �k−1) and i = (i0, . . . , ik−1) are representations in base β. The
relations for the protocol are given in Definition 5.

Definition 5. For positive real numbers T and T̂ , we define the following rela-
tions to be used in Protocol 2.

R1/N(T) =
{

((ck, (c0, . . . , cN−1)), (�, r)) : (ci ∈ Rn
q ∀i ∈ [0, N − 1]) ∧

� ∈ {0, . . . , N − 1} ∧ ‖r‖ ≤ T ∧ c� = Comck(0 ; r)

}
.

R′
1/N(T̂) =

{
((ck, (c0, . . . , cN−1)), (�, r̂)) : (ci ∈ Rn

q ∀i ∈ [0, N − 1]) ∧
� ∈ {0, . . . , N − 1} ∧ ‖r̂‖ ≤ T̂ ∧ 2kc� = Comck(0 ; r̂)

}
.

For each 0 ≤ j ≤ k −1, the prover commits to a sequence (δ�j ,0, . . . , δ�j ,β−1) and
proves that it is a binary sequence with Hamming weight one using Protocol 1. As
given in Protocol 1, the prover responds with fj,i = x·δ�j ,i+aj,i upon receiving a
challenge x. Now, let us concentrate on the product

∏k−1
j=0 fj,ij

=: pi(x). Observe
that for all i ∈ {0, . . . , N − 1},

pi(x) =
k−1∏

j=0

(
xδ�j ,ij

+ aj,ij

)
=

k−1∏

j=0

xδ�j ,ij
+

k−1∑

j=0

pi,jx
j = δ�,ix

k +
k−1∑

j=0

pi,jx
j , (8)

for some coefficients pi,j ’s depending on � and aj,i, which means that pi,j ’s can
be computed by the prover before receiving a challenge. Now, since δ�,i = 1 if
and only if i = �, the only pi of degree k is p�. Then, the idea is to send some
Ej ’s in the initial message, which will later be used by the verifier to cancel
out the coefficients of low order terms 1, x, . . . , xk−1, and the coefficient of xk

will be
∑N−1

i=0 δ�,ici = c�, which corresponds to the prover’s commitment. The
full protocol is described in Protocol 2. We summarize the results of Protocol 2
below.

Theorem 2. For T = (2d + 2)
(
54φ4

1d
3k3β(β − 1) + 12φ2

2B2m2d2
)1/2, assume

that the commitment scheme is T -binding and also hiding (i.e., M-LWEm−n,n,q,B
is hard). Let d ≥ 7, md ≥ 86, and q > (10φ1d

√
dk(β − 1) + 2)2. Then, Protocol

2 is a (k′ + 1)-special sound Σ-protocol (as in Definition 3) for the relations

82 M. F. Esgin et al.

R1/N(B
√

md) and R′
1/N(2

√
3φ2Bmd · (k +1) ·dk) with a soundness error k′

2d and
a completeness error 1 − 1/(μ(φ1)μ(φ2)) where k′ = max{2, k}.

Proof (Theorem 2). Completeness and SHVZK are available in the full version.
(k′ +1)-special soundness: Given (k+1) distinct challenges x0, . . . , xk, by the
binding property of aCom, we have (k + 1) accepting responses with the same
(A,B,C,D, {Ej}). Suppose that ((f (0)

j,i ,z(0)), . . . , (f (k)
j,i ,z(k))) are produced and

k > 1. We first use 3-special soundness of Protocol 1 to extract openings b̂j,i and
âj,i of 2B and 2A, respectively. We can also obtain bj,i such that b̂j,i = 2bj,i,
and it is guaranteed that bj,i ∈ {0, 1} and

∑β−1
i=0 bj,i = 1. From here, we can

obtain the digits �j by choosing �j = i∗ for which bj,i∗ = 1. Then, we construct
the index � as � =

∑k−1
j=0 βj�j .

Using bj,i and âj,i, we can compute p̂i(x) = 2k
∏k−1

j=0 fj,ij
=

∏k−1
j=0 2fj,ij

=
∏k−1

j=0 (x · 2bj,ij
+ âj,ij

). Note that p̂�(x) is the only such polynomial of degree
k in x by the construction of �. Thus, the last verification step, when both
sides are multiplied by 2k, can be rewritten as

∑N−1
i=0 p̂i(x)ci −

∑k−1
j=0 2kEjx

j =
Comck(0 ; 2kz). Separating the term of degree k with respect to x, we get

xk · 2kc� +
k−1∑

j=0

Ẽjx
j = Comck(0 ; 2kz), (9)

where Ẽj ’s are the coefficients of the monomials xj of degree strictly less than
k. Now, we know that (9) holds for distinct challenges x0, . . . , xk, which can
be represented as a system of equations where x0, . . . , xk form a Vandermonde
matrix V as in Sect. 3.2. From the discussion in Sect. 3.2, V is invertible and
we can obtain a linear combination α0, . . . , αk of copies of (9) with respect to
different challenges that produces the vector (0, . . . , 0, 1). This gives

2kc� =
k∑

e=0

αe

⎛

⎝xk
e · 2kc� +

k−1∑

j=0

Ẽjx
j
e

⎞

⎠ = Comck(0 ; 2k
k∑

e=0

αez
(e)). (10)

An opening of 2kc� to the message 0 with randomness rext = 2k
∑k

e=0 αez
(e) is

obtained. The bound on the norm of rext for R′
1/N follows easily by Lemma 6.

Finally, we assumed that k > 1. If k = 1, then we still need at least 3
challenges to be able to prove special soundness due to the 3-special soundness
of Protocol 1. Thus, Protocol 2 is (k′ + 1)-special sound for k′ = max{2, k}, and
since |C| = 2d, the soundness error is k′/2d. ��

It is easy to see from the definition of R′
1/N that the norm of the extracted

randomness, and thus the size of q, grows with dk = dlogβ N . If one is to rely on
Ring-SIS and use a base β = 2, then this growth would be very rapid, yielding a
very inefficient scheme. This justifies our choice of working with M-SIS problem
and choosing large base values β as given in Sect. 6.1. As discussed in Sect. 3.2,
the bound on ‖rext‖ can be tightened using Methods 2 or 3.

Short Lattice-Based One-out-of-Many Proofs 83

P(ck, (c0, . . . , cN−1), (�, r)) V(ck, (c0, . . . , cN−1))
1: rb ← {−B, . . . , B}md

2: δ = (δ�0,0, . . . , δ�k−1,β−1)

3: B = Comck(δ ; rb)

4: A, C, D, rc ← Pbin(ck, B, (δ, rb))[1 − 8]

5: for j = 0, . . . , k − 1 do

6: ρj ← Dmd

φ2B
√

3md/k

7: Ej =
N−1∑
i=0

pi,jci +Comck(0 ; ρj)

using pi,j ’s from (8)

8: (ca, da) = aCom(A, B, C, D, {Ej})
ca

x = Xω

ω ← {0, . . . , 2d − 1}

9: f1, zb, zc ← Pbin(x)[10 − 13]

10: z = xk · r −
k−1∑
j=0

xj · ρj

11: Rej((z, zb, zc), (xkr, xrb, xrc), φ2, B
√
3md)

Return ⊥ if aborted.
da, f1, B, z, {Ej}k−1

j=0

R := (A, C, D, zb, zc)

1: Vbin(ck, B, x, f1, R)[1,2,6,7] ?= 1

2: (ca, da)
?=aCom(A, B, C, D, {Ej})

3: ‖fj,i‖
?≤ 5φ1

√
dk ∀j, ∀i �= 0

4: ‖fj,0‖
?≤ 5φ1

√
dk(β − 1) ∀j

5: ‖z‖ , ‖zb‖ , ‖zc‖
?≤ 2

√
3φ2Bmd

6:
N−1∑
i=0

(
k−1∏
j=0

fj,ij

)
ci −

k−1∑
j=0

Ejx
j

?= Comck(0 ; z)

for i = (i0, . . . , ik−1).

Protocol 2: Lattice-based Σ-protocol for R1/N and R′
1/N.

Pbin(ck, B, (δ, rb))[1 − 8] denotes running the same steps from 1 to 8 done by Pbin in
Protocol 1. Similar notation is used for Vbin. ra and rd in Pbin(ck, B, (δ, rb))[1 − 8]
are drawn from Dmd

φ2B√
3md

instead of Dmd
φ2B√

2md
as the rejection sampling is now done

on a (3md)-dimensional vector.

84 M. F. Esgin et al.

6 Lattice-Based Ring Signature

Let N = βk for 2 ≤ β ≤ N , and n,m be fixed positive integers. As a single run
of Protocol 2 does not provide a small enough soundness error, suppose that r
non-aborting executions of Protocol 2 gives negligible soundness error of 2−λ.

Recall that a single run of Protocol 2 produces an accepting transcript with
probability 1/(μ(φ1)μ(φ2)). Therefore, when it is repeated r times, the overall
acceptance rate reduces to 1/(μ(φ1)μ(φ2))r, which is too small. Therefore, we
introduce the tweaks below to Protocol 2 in order to get an overall completeness
error of 1 − 1/(μ(φ1)μ(φ2)) for the r-repeated protocol.
Tweaks for r-repeated Protocol. First, we apply the rejection sam-
pling to r-concatenated vectors at once. That is, it is applied on
(f1

1, . . . ,f
r
1) and (z1,z1

b ,z
1
c , . . . ,zr,zr

b ,z
r
c). Thus, we need to sample fj,i ←

Dd
12

√
kr

(i �= 0) and z,zb,zc ← Dmd
12B√

3mdr
, and hence require q >

(10φ1d
√

dkr(β − 1) + 2)2 as in Assumption 1. Furthermore, since the extracted
randomness norm will be larger, the relation R′

1/N becomes R′
1/N(24

√
3rBmd ·

(k + 1) · dk) and the commitment scheme is required to be binding in a
larger domain. Therefore, the commitment scheme is set to be T1-binding for
T1 = (2d + 2)

(
54φ4

1d
3k3β(β − 1)r2 + 12φ2

2B2m2d2r
)1/2.

Note that these tweaks do not affect the soundness error of individual pro-
tocol runs as the extraction still works with k + 1 accepting transcripts. Only
the extracted witness norm is increased since the bound on ‖z‖ changes from
24

√
3Bmd to 24

√
3rBmd in Protocol 2.

Construction. We now describe our lattice-based ring signature, which simi-
larly builds on the one-out-of-many proof as in [7,15]. First, we summarise the
assumptions on the parameters, and also let CMT = (A,B,C,D, {Ej}k−1

j=0) and
RSP = ({fj,i}k−1,β−1

j=0,i=1 ,z,zb,zc) be the corresponding values from Protocol 2.

Assumption 1. Assume d ≥ 7, md ≥ 86 and q > (10φ1d
√

dkr(β − 1) + 2)2.

– RSetup(1λ): Run G ← CKeygen(1λ) and pick a hash function H : {0, 1}∗ →
Cr for C = {Xω : ω ∈ [0, 2d − 1]}. Return ck = G and H as pp = (ck,H).

– RKeygen(pp): Run r ← Sm
B , c = Comck(0 ; r) and return (pk, sk) = (c, r).

– RSignpp,sk(M, L): Parse L = (c0, . . . , cN−1) with c� = Comck(0 ; sk) where
� ∈ {0, . . . , N − 1}. Continue as follows.
1. Generate (CMT1, . . . , CMTr) by running P(ck, (c0, . . . , cN−1),

(�, sk))[1 − 7] r-times in parallel with the described modifications.
2. Compute x = (x1, . . . , xr) = H(ck,M, L, (CMT1, . . . , CMTr)).
3. Compute RSPi by running P(xi)[9−11] with CMTi for all i ∈ {1, . . . , r}.
4. If RSPi �=⊥ for all i ∈ {1, . . . , r}, return σ = ({CMTi}r

i=1,x,
{RSPi}r

i=1) .
2. Otherwise go to Step 1.

– RVerifypp(M, L, σ): Parse σ = ({CMTi}r
i=1,x, {RSPi}r

i=1), x = (x1, . . . ,
xr) and L = (c0, . . . , cN−1). Proceed as follows.

Short Lattice-Based One-out-of-Many Proofs 85

1. If x �= H(ck,M, L, (CMT1, . . . , CMTr)), return 0.
2. For each i ∈ {1, . . . , r}:

(a) Run Protocol 2’s verification with CMTi, xi and RSPi except Step
2.

(b) If verification fails, return 0.
3. Return 1.

We can remove A,D,E0 from the signature as they are uniquely determined by
the remaining components, and Step 1 in RVerify ensures the relevant protocol
verification steps hold. This is a standard technique and we skip the details.

The correctness and anonymity properties of the ring signature follow from
the completeness and zero-knowledge properties of Protocol 2, respectively. In
particular, the expected number of iterations in RSign is μ(φ1)μ(φ2), which is
upper-bounded by 3 in the parameter setting. However, the unforgeability proof
of the ring signature is not straightforward due to the small challenge space and
soundness gap issues. A detailed proof is available in the full version [14].

Theorem 3. If Assumption 1 holds and the commitment scheme defined in

Sect. 2.1 is T ′-binding where T ′ = max{T1,

√(
24

√
3r · mB(k + 1)dk+1

)2
+ 22k}

for T1 described with the tweaks, then the ring signature scheme described is
unforgeable with respect to insider corruption in the random oracle model.

6.1 Parameter Setting

First, we set φ1 = φ2 = 22 to get an acceptance rate of more than 1/3 for the two-
step rejection sampling. Such an acceptance rate is greater than or equal to the
most commonly used ones such as those in [3,4,12,21] and the expected number
of iterations in RSign is 3 in this case. Also, we ensure that the commitment
scheme T ′-binding as in Theorem 3. Method 2 is used to bound the extracted
witness norm, which does not require the use of Algorithm 2 in the protocol’s
verification. For (d, k) pairs in Table 3, the exact value of Bd,k is computed by

Table 3. Parameters and sizes of our lattice-based ring signature for a root Hermite
factor δ ≤ 1.0045. The signature sizes are rounded to the nearest integer.

N 64 256 1024 4096 ∼216 ∼220 230

(n, m) (5, 13) (5, 13) (11, 25) (21, 50) (20, 51) (40, 101) (41, 106)

(d, log q) (256, 50) (256, 53) (128, 46) (64, 47) (64, 50) (32, 49) (32, 52)

(k, β) (2, 8) (2, 16) (2, 32) (2, 64) (3, 41) (3, 102) (5, 64)

r 16 16 19 22 24 29 35

λ 128.0 128.0 133.0 132.0 129.96 128.04 128.73

Signature size (KB) 774 881 1021 1178 1487 1862 3006

User PK size (KB) 7.81 8.28 7.91 7.71 7.81 7.66 8.33

User SK size (KB) 0.81 0.81 0.78 0.78 0.80 0.79 0.83

86 M. F. Esgin et al.

iterating through the whole search space. We also set B = 1 as in previous works
[3,13,22], and make sure that M-LWEm−n,n,q,1 is hard using Albrecht et al.’s
estimator [2]. The root Hermite factor δ is at most 1.0045 for both M-SIS and
M-LWE security estimations. Finally, Assumption 1 is ensured to hold.

Acknowledgements. The work of Ron Steinfeld and Amin Sakzad was supported in
part by ARC grant DP150100285. Ron Steinfeld and Joseph K. Liu were also supported
in part by ARC grant DP180102199.

References

1. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete Gaussian leftover hash
lemma over infinite domains. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013.
LNCS, vol. 8269, pp. 97–116. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-42033-7 6

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

4. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp.
303–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1 18

5. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 29

6. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 305–325.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 16

7. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

8. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

9. Brickell, E., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for discrete
logarithm based signature schemes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS,
vol. 1751, pp. 276–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-
3-540-46588-1 19

10. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: S&P. IEEE (2018)

11. Chow, S.S.M., Liu, J.K., Wong, D.S.: Robust receipt-free election system with
ballot secrecy and verifiability. In: NDSS. The Internet Society (2008)

https://doi.org/10.1007/978-3-642-42033-7_6
https://doi.org/10.1007/978-3-642-42033-7_6
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-01950-1_18
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-540-46588-1_19
https://doi.org/10.1007/978-3-540-46588-1_19

Short Lattice-Based One-out-of-Many Proofs 87

12. del Pino, R., Lyubashevsky, V., Neven, G., Seiler, G.: Practical quantum-safe vot-
ing from lattices. In: CCS, pp. 1565–1581. ACM (2017)

13. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-
knowledge proofs of automorphism stability. In: CCS, pp. 574–591. ACM (2018)

14. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. Cryptology ePrint Archive,
Report 2018/773 (2018). https://eprint.iacr.org/2018/773

15. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

16. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Crypt. 75(3), 565–599 (2015)

17. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

18. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

19. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving
full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS
2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61204-1 15

20. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

21. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

22. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 293–
323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 11

23. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007). Preliminary version in FOCS
2004

24. Noether, S.: Ring signature confidential transactions for monero. Cryptology ePrint
Archive, Report 2015/1098 (2015). https://eprint.iacr.org/2015/1098

25. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996)

26. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency Monero.
In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol.
10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66399-9 25

https://eprint.iacr.org/2018/773
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-319-56620-7_11
https://eprint.iacr.org/2015/1098
https://doi.org/10.1007/978-3-319-66399-9_25
https://doi.org/10.1007/978-3-319-66399-9_25

88 M. F. Esgin et al.

27. Alberto Torres, W.A., et al.: Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (lattice ringCT v1.0). In:
Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 32

28. Turner, L.R.: Inverse of the Vandermonde matrix with applications. Technical
report NASA-TN-D-3547, Lewis Research Center, NASA (1966)

29. Zhang, H., Zhang, F., Tian, H., Au, M.H.: Anonymous post-quantum cryptocash.
Cryptology ePrint Archive, Report 2017/716 (2017). https://eprint.iacr.org/2017/
716 (To appear in FC 2018)

https://doi.org/10.1007/978-3-319-93638-3_32
https://eprint.iacr.org/2017/716
https://eprint.iacr.org/2017/716

Hierarchical Attribute-Based Signatures:
Short Keys and Optimal Signature

Length

Daniel Gardham(B) and Mark Manulis

Surrey Centre for Cyber Security, University of Surrey, Guildford, UK
d.gardham@surrey.ac.uk, mark@manulis.eu

Abstract. With Attribute-based Signatures (ABS) users can simulta-
neously sign messages and prove compliance of their attributes, issued by
designated attribute authorities, with some verification policy. Neither
signer’s identity nor possessed attributes are leaked during the verifica-
tion process, making ABS schemes a handy tool for applications requiring
privacy-preserving authentication. Earlier ABS schemes lacked support
for hierarchical delegation of attributes (across tiers of attribute author-
ities down to the signers), a distinct property that has made traditional
PKIs more scalable and widely adoptable.

This changed recently with the introduction of Hierarchical ABS
(HABS) schemes, where support for attribute delegation was proposed
in combination with stronger privacy guarantees for the delegation paths
(path anonymity) and new accountability mechanisms allowing a ded-
icated tracing authority to identify these paths (path traceability) and
the signer, along with delegated attributes, if needed. Yet, current HABS
construction is generic with inefficient delegation process resulting in sub-
optimal signature lengths of order O(k2|Ψ |) where Ψ is the policy size
and k the height of the hierarchy.

This paper proposes a direct HABS construction in bilinear groups
that significantly improves on these bounds and satisfies the original
security and privacy requirements. At the core of our HABS scheme is a
new delegation process based on the length-reducing homomorphic trap-
door commitments to group elements for which we introduce a new dele-
gation technique allowing step-wise commitments to additional elements
without changing the length of the original commitment and its opening.
While also being of independent interest, this technique results in shorter
HABS keys and achieves the signature-length growth of O(k|Ψ |) which
is optimal due to the path-traceability requirement.

1 Introduction

Attribute-based Signatures, first introduced in [30] and [31], provide privacy-
preserving mechanisms for authenticating messages. An ABS signature assures
the verifier that the signer owns a set of attributes that satisfy the signing
policy without leaking their identity, nor the set of attributes used. Traditional
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 89–109, 2019.
https://doi.org/10.1007/978-3-030-21568-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_5

90 D. Gardham and M. Manulis

ABS schemes considered two security properties, user privacy and unforgeability.
Informally, a user is anonymous if an ABS signature does not leak their identity,
nor the set of attributes used to satisfy the signing policy, while unforgeability
requires that a signer cannot produce a signature conforming to a policy for
which he does not own a set of suitable attributes. Later constructions [14,16,20]
offered more advanced functionality with an additional property of traceability
which holds signers accountable by allowing a dedicated tracing authority to
identity them if required.

The vast majority of existing ABS schemes [5,13,14,16,20,32,33,35] are non-
interactive, in the standard model and is based on bilinear maps and Groth-Sahai
proofs [21], with the exception of [23], which uses RSA setting and the random
oracle model, and the recent schemes in [15,38] which rely on lattices. Interac-
tive ABS schemes, e.g. [27], where policies must be chosen by verifiers ahead
of the signing phase have also been proposed. In general, signing polices can
have varying levels of flexibility and range from threshold policies [30], to mono-
tone boolean predicates [14,20], and generalised circuits [35]. Typically, more
restrictive policies allow for more efficient constructions. Policy-based Signa-
tures (PBS) [5] can be viewed as a generalisation of ABS schemes, albeit their
security is currently proven in a single-user setting without addressing stronger
non-frameability requirement of more recent ABS schemes [12,14,20].

Hierarchical Attribute-Based Signature and Their Limitations. Hierar-
chical Attribute-based Signatures (HABS), recently introduced in [12], extend
traditional ABS schemes by permitting controlled delegation of attributes from a
root authority (RA) over possibly multiple intermediate authorities (IAs) down
to the users. In this way HABS aims to close the gap between ABS and tradi-
tional PKIs where hierarchical delegation can be achieved at low cost. In HABS,
IAs can delegate attributes to any authority in the scheme and users can acquire
attributes from any authority in the hierarchy that is authorised to issue them. In
addition to strong non-frameability property in a multi-user setting, the authors
extend traditional ABS privacy guarantees to protect not only the identity of
the signer but also the identities of all intermediate authorities in the delega-
tion path, as part of their new path-anonymity property. Traditional traceability
property of ABS schemes has also been extended to hold not only signers but also
intermediate authorities accountable for their actions, through the new notion
of path-traceability where a dedicated tracing authority can reveal the entire
delegation path, along with delegated attributes.

We observe that the HABS scheme in [12] is generic, based on standard cryp-
tographic primitives, i.e., public key encryption, one-time signature, tag-based
signature, and non-interactive zero-knowledge proofs. Its delegation process is
handled using a tag-based signature (TBS) where an authority at level i pro-
duces a TBS signature, using attribute as a tag, on the public key of authority
j together with all public keys appearing previously in the delegation path.
As part of its HABS signature the signer proves knowledge of each TBS at every
delegation of each attribute that is required to satisfy the policy. Clearly this

Hierarchical Attribute-Based Signatures 91

delegation process is highly inefficient. Not only does an additional signature
need to be verified per delegation (and per attribute), the size of the signa-
ture grows linearly in the distance from the root authority. Thus, per attribute,
verification of the delegation path is of order O(k2).

Other Related Work. Attribute-based signatures can be seen as a generali-
sation of group [11] and ring [34] signatures, in which case identities are viewed
as attributes and policies can only contain disjunction over them. The notion of
hierarchical delegation in these, more restricted, primitives have been explored
in [37] and [29] respectively. Attribute delegation has been widely investigated in
anonymous credentials [9,10]. Maji et al. [31] give discussion that ACs are a more
powerful primitive than ABS but with efficiency drawbacks, as attribute acqui-
sition typically requires expensive zero-knowledge proofs. Note that in HABS
intermediate authorities may know each other, and so as discussed in [12], there
is no need to hide their identities from each other during the delegation phase,
which in turn helps to omit costly proofs and make this phase more efficient than
in the case of ACs. Regardless, we note that ACs with hierarchical delegation
have been proposed [4]. Further, a homomorphic ABS scheme [25] has been used
to construct non-delegatable anonymous credentials. In this setting, a signer
obtains attributes directly from the (multiple) root authorities where combining
attributes from different issuers requires an online collaboration. Anonymous
Proxy Signatures [17] also allow for verification of anonymous delegation paths
back to a root authority. However, tasks that are delegated, when viewed as
attributes, remain in the clear and are required for verification of the proxy
signature. Homomorphic Signatures [38] have been claimed to be equivalent to
Attribute-based Signatures, however this equality has been shown to hold in
the weaker security setting that only considers a solitary user. In which, it is
impossible to capture the notion of collusion and non-frameability. Finally, we
note functional signatures [3,8] also allow for delegation of signing rights. Here,
however, keys are dependent on the function f and can only sign on messages
that fall within the range. For an attribute-based scheme, this would require
keys for each possible combination of attributes a user obtains.

Contribution. We address the suboptimal efficiency of the so-far only (generic)
HABS construction [12] and propose a scheme with a completely new delegation
mechanism which no longer relies on the consecutive issue of tag-based signa-
tures from higher-level to lower-level authorities on the delegation path. The
main novelty in our approach is a smart use of the length-reducing homomor-
phic trapdoor commitment scheme to multiple group elements from [21] which
we extend with delegation capabilities. At a high level, at each delegation the
issuing intermediate authority amends the current trapdoor opening such that
the existing commitment incorporates the public key of the next-level authority
or user to whom the attribute is delegated. With this new delegation mechanism
we are able to significantly reduce the lengths of HABS keys and achieve the
optimal growth of O(k|Ψ |) for the length of HABS signatures, depending on the
length k of the delegation path and size |Ψ | of the signing policy. In particular,
verifying delegation of an attribute along the path takes O(k) steps (as opposed

92 D. Gardham and M. Manulis

to O(k2) in [12]). We use the original security model from [12] to show that our
construction satisfies the required properties of path anonymity, path traceabil-
ity, and non-frameability, in the standard model under standard assumptions in
bilinear groups and an additional assumption which we justify using the generic
group model [36]. Our efficiency improvement claims over [12] are reinforced in
a detailed comparison between the two schemes.

2 HABS Model: Entities and Definitions

We start with the description of entities within the HABS ecosystem.

Attribute Authorities. The set of Attribute Authorities (AA) comprises the
Root Authority (RA) and Intermediate Authorities (IAs). All AAs can delegate
attributes to lower-level IAs and users. The RA is at the top of the hierarchy and
upon setup, defines the universe of attributes A. With its key pair (ask0, apk0),
the RA can delegate a subset of attributes to IAs which hold their own key
pairs (aski, apki), i > 0. IAs can further delegate/issue attributes to any end
user (aka. signer). In this way a dynamically expandable HABS hierarchy can
be established.

Users. Users join the scheme by creating their own key pair (usk, upk), and are
issued attributes by possibly multiple AAs.

By Ψ we denote a predicate for some signing policy. A policy-conforming user
can use usk to create a HABS signature, provided their issued set of attributes A
satisfies the policy, i.e. Ψ(A′) = 1 for some A′ ⊆ A. Users are unable to delegate
attributes further and thus can be viewed as the lowest tier of the hierarchy. To
account for this, when an attribute is delegated to a user a dedicated symbol �
will be used in addition to upk to mark the end of the delegation path.

Warrants. An IA or user, upon joining the HABS scheme, receives a warrant
warr that consists of all their delegated attributes a ∈ A and a list of all AAs
in each of the delegation paths. Warrants can be updated at any time, i.e. if
the owner is issued a new attribute, by appending a new entry with the list of
authorities on the delegation path. We use the notation |warr| to denote the
size of the warrant, i.e. the number of attributes stored in the warrant warr,
and we use |warr[a]| to denote the length of the delegation path of the attribute
a ∈ A. Upon signing, the user submits a reduced warrant for an attribute set
A′ ⊆ A that satisfies Ψ(A′) = 1.

Tracing Authority. The tracing authority (TA) is independent of the hierar-
chy. Upon receiving a valid HABS signature, it can identify the signer and all
authorities on the delegation paths for attributes that the signer used to satisfy
the signing policy. The tracing authority can output a publicly verifiable proof
π̂ that the path was identified correctly. The existence of such tracing authority
improves the accountability of signers and IAs from possible misbehaviour.

Hierarchical Attribute-Based Signatures 93

Definition 1 (Hierarchical ABS Scheme [12]). A scheme HABS := (Setup,
KGen, AttIssue, Sign, Verify, Trace, Judge) consists of the following seven pro-
cesses:

• Setup(1λ) is the initialisation process where based on some security parameter
λ ∈ N, the public parameters pp of the scheme are defined, and the root
and tracing authority independently generate their own key pair, i.e. RA’s
(ask0, apk0) and TA’s (tsk, tpk). In addition, RA defines the universe A of
attributes, and a label � for users. We stress that due to dynamic hierarchy, the
system can be initialised by publishing (pp, apk0, tpk) with A and � contained
in pp.

• KGen(pp) is a key generation algorithm executed independently by intermediate
authorities and users. Each entity generates its own key pair, i.e., (aski, apki)
for i > 0 or (usk, upk).

• AttIssue (aski,warri, A, {apkj |upkj}) is an algorithm that is used to dele-
gate attributes to an authority with apkj or issue them to the user with upk.
On input of an authority’s secret key aski, i ∈ N0, its warrant warri, a
subset of attributes A from warri, and the public key of the entity to which
attributes are delegated or issued, it outputs a new warrant for that entity.

• Sign ((usk,warr),m, Ψ) is the signing algorithm. On input of the signer’s
usk and (possibly reduced) warr, a message m and a predicate Ψ it outputs
a signature σ.

• Verify (apk0, (m, Ψ, σ)) is a deterministic algorithm that outputs 1 if a can-
didate signature σ on a message m is valid with respect to the predicate Ψ
and 0 otherwise.

• Trace (tsk, apk0, (m, Ψ, σ)) is an algorithm executed by the TA on input of
its private key tsk and outputs either a triple (upk,warr, π̂) if the tracing is
successful or ⊥ to indicate its failure. Note that warr contains attributes and
delegation paths that were used by the signer.

• Judge (tpk, apk0, (m, Ψ, σ), (upk,warr, π̂)) is a deterministic algorithm that
checks a candidate triple (upk,warr, π̂) from the tracing algorithm and out-
puts 1 if the triple is valid and 0 otherwise.

A HABS scheme must have the correctness property ensuring that any signature
σ generated based on an honestly issued warrant will verify and trace correctly.
The output (upk,warr, π̂) of the tracing algorithm on such signatures will be
accepted by the public judging algorithm with overwhelming probability.

2.1 Security Properties

Our security definitions resemble the requirements of path anonymity, path trace-
ability, and non-frameability from [12]. We recall the associated game-based def-
initions assuming probabilistic polynomial time (PPT) adversaries interacting
with HABS entities through the following set of oracles (Fig. 1):

– OReg: A registers new IAs and users through this registration oracle, for which
a key pair will be generated and added to List. The public key is given to

94 D. Gardham and M. Manulis

the adversary. Initially, the entity is considered honest, and so the public key
is also added to the list HU .

– OCorr: This oracle allows A to corrupt registered users or IAs. Upon input of
a public key, the corresponding private key is given as output if it exists in
List. The public key is removed from HU so the oracle keeps track of corrupt
entities.

– OAtt: A uses this oracle to ask an attribute authority to delegate attributes
to either an IA or to the user. In particular, the adversary has control over
which attributes are issued and the oracle outputs a warrant warr if both
parties are registered, otherwise it outputs ⊥.

– OSig: A can ask for a HABS signature from a registered user. The adversary
provides the warrant (and implicitly the attributes used), signing policy, mes-
sage and the public key of the signer. If the attribute set satisfies the policy,
and the public key is contained in HU then the signature will be given to A,
otherwise ⊥ is returned.

– OTr: s A can ask the TA trace a HABS signature (provided by the adversary)
to the output is returned. The TA does verification checks on the signature
and upon failure, will return ⊥.

OReg(·) with (·) = (i) and i /∈ HU

1 : (ski, pki) ← KGen(pp)

2 : List ← List ∪ {(i, pki, ski)}
3 : HU ← HU ∪ {i}
4 : return pki

OCorr(·) with (·) = (i)

1 : if i ∈ HU then

2 : HU ← HU − {i}
3 : return ski from List

OTr(·) with (·) = (m, Ψ, σ)

1 : return Trace(tsk, apk0, (m, Ψ, σ))

OAtt(·)
(·) = (i,warri, a, {apkj |upkj})
1 : L := {a|(a, pka, ska) ∈ List}
2 : if i ∈ L ∧ j ∈ L then

3 : warr ← AttIssue(aski,

warri, a, {apkj |upkj})
4 : return warr

5 : return ⊥

OSig(·) with (·) = (i,warr,m, Ψ)

1 : A ← {a| a ∈ warr}
2 : if i ∈ HU ∧ Ψ(A) then

3 : σ ← Sign((uski,warr),m, Ψ)

4 : return σ

5 : return ⊥

Fig. 1. Oracles used in the HABS security experiments.

Path Anonymity. This property extends the anonymity guarantees of tra-
ditional ABS schemes and hides not only the identity of the signer but also
the identities of all intermediate authorities on delegation paths for attributes

Hierarchical Attribute-Based Signatures 95

included into the signer’s warrant. Path anonymity, as defined in Fig. 2, also
ensures that signatures produced by the same signer remain unlinkable. The
corresponding experiment requires the adversary to distinguish which warrant
and private key were used in the generation of the challenge HABS signature
σb. In the first phase, A1 generates a hierarchy of authorities and users, utilising
the RA’s secret key ask0. If the warrants created by A1 are of the same size, a
challenge HABS signature σb is produced on the randomly chosen user-warrant
pair. In the second phase, with access to the tracing oracle, the adversary A2

must be able to guess the challenge bit b.

Definition 2 (Path Anonymity [12]). A HABS scheme offers path
anonymity if no PPT adversary adv can distinguish between Exppa−0

HABS,A and
Exppa−1

HABS,A defined in Fig. 2, i.e., the following advantage is negligible in λ:

Advpa
HABS,A(λ) = |Pr[Exppa−0

HABS,A(λ) = 1] − |Pr[Exppa−1
HABS,A(λ) = 1]|.

Exppa-b
HABS,A(λ)

1 : (pp, ask0, tsk) ← Setup(1λ)

2 : (st, (usk0,warr0), (usk1,warr1), m, Ψ) ← A1(pp, ask0 : OReg, OCorr, OTr)

3 : if |warr0| = |warr1| then

4 : σ0 ← Sign((usk0,warr0),m, Ψ), σ1 ← Sign((usk1,warr1),m, Ψ)

5 : if Verify(apk0, (m, Ψ, σ0)) = 1 and Verify(apk0, (m, Ψ, σ1)) = 1 then

6 : b′ ← A2(st, σb : OTr)

7 : return b′ ∧ A2 did not query OTr(tsk, (m, Ψ, σb))

8 : return 0

Fig. 2. Path-anonymity experiment

Non-frameability. This property, formalised in Fig. 3, captures the notion of
unforgeability, i.e., that no PPT adversary can create a HABS signature without
having an honestly issued warrant that satisfies the policy, and in particular, they
cannot create one on behalf of an user for which the secret key is not known.
The adversary wins if either he produces a valid HABS signature, or is able to
perform delegation for at least one attribute on behalf of any honest authority
anywhere in the delegation path.

Definition 3 (Non-Frameability [12]). A HABS scheme is non-frameable,
if no PPT adversary A can win the experiment Expnf

HABS,A defined in Fig. 3, i.e.,
the following advantage is negligible in λ:

Advnf
HABS,A(λ) = |Pr[Expnf

HABS,A(λ) = 1]|.

96 D. Gardham and M. Manulis

Expnf
HABS,A(λ)

1 : pp ← Setup(1λ), ask0 ← KGen(1λ), tsk ← TKGen(1λ)

2 : ((σ, m, Ψ), (upkj ,warr, π̂)) ← A(pp, ask0, tsk : OAtt, OSig, OCorr, OReg)

3 : if Verify(apk0, (m, Ψ, σ)) ∧ Judge(tpk, apk0, (m, Ψ, σ), (upkj ,warr, π̂)) then

4 : if j ∈ HU ∧ A did not query OSig((uskj ,warr),m, Ψ) then, return 1

5 : if ∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upkj , �) = warr[a] ∧
6 : ((∃i ∈ [0, n − 1]. A did not query OAtt(i, · , a, apki+1) ∧ i ∈ HU) ∨
7 : (A did not query OAtt(n, · , a, upkj) ∧ n ∈ HU)) then, return 1

8 : return 0

Fig. 3. Non-frameability experiment

Exptr
HABS,A(λ)

1 : pp ← Setup(1λ), ask0 ← KGen(1λ), tsk ← TKGen(1λ)

2 : ((σ, m, Ψ), (upk,warr, π̂)) ← A(pp, tsk : OAtt, OCorr, OReg)

3 : if Verify(apk0, (m, Ψ, σ)) then

4 : if Trace(tsk, (m, Ψ, σ)) = ⊥ then, return 1

5 : if Judge(tpk, apk0, (m, Ψ, σ), (upk,warr, π̂)) ∧
6 : (∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upk, �) = warr[a] ∧
7 : ((∃i ∈ [0, n − 1]. i ∈ HU ∧ (i + 1, apki+1, aski+1) /∈ List)∨
8 : (n ∈ HU ∧ (· , upk, usk) /∈ List))) then, return 1

9 : return 0

Fig. 4. Path-traceability experiment

Path Traceability. This property, formalised in Fig. 4, ensures that any valid
HABS signature can be traced (by the tracing authority) to the signer and the
set of authorities that were involved in the issue of attributes used to produce
the signature. The adversary is required to output either a HABS signature that
verifies but cannot be traced, or one in which the tracing algorithm outputs a
warrant for which at least one IA or the user is unknown to the experiment, i.e.,
were not previously registered in List. The attribute-issuing oracle checks that
both entities are registered to prevent the trivial attack where adversary asks
the oracle to delegate to an unregistered entity.

Definition 4 (Path Traceability [12]). A HABS scheme offers path traceabil-
ity if no PPT adversary A can win the experiment Exptr

HABS,A defined in Fig. 4,
i.e., the following advantage is negligible in λ:

Advtr
HABS,A(λ) = |Pr[Exptr

HABS,A(λ) = 1]|.

Hierarchical Attribute-Based Signatures 97

3 Our Short HABS Construction

We start with the description of the underlying hardness assumptions and build-
ing blocks.

3.1 Underlying Hardness Assumptions

In addition to widely used hardness assumptions in the asymmetric bilinear
group setting generated by BG(1λ), namely q-Srong Diffie-Hellman (q-SDH) [7],
Symmetric eXternal Diffie-Hellman (SXDH) [1] and Simultaneous Decision LIN-
ear (SDLIN) [26] assumptions, which we do not recall here, our scheme requires
the following interactive assumption, which we prove to hold in the generic group
model [24,36]. We equip the adversary with an oracle OX0,Y0 and assume that
it is hard to produce group elements that satisfy the verification equations for
an input that has not been queried to the oracle. We note that on input of
(X,Y), the oracle can compute each component without knowledge the discrete
logarithm of X or Y as it has access to r, s, t1, t2.

Assumption 1. Let pp := (p,G1,G2,GT , e, g1, g2) ← BG(1λ). The adversary A
has access to the oracle OX0,Y0(·, ·) which on input (X,Y) returns (A,B, T1, T2,
T3, T4) := (hx0t1

2 hx0t2
5 hxt1

2 hyt1
5 , hy0t1

5 hy0t2
4 hxt2

5 hyt2
4 , f t1

1 , f t2
2 , gt1

2 , gt2
2) for t1, t2 ←

Z
∗
p. We assume that for all p.p.t. adversaries A, the following probability is

negligible in λ.

AdvAssump1
A (λ) :=

Pr

⎡
⎢⎢⎢⎢⎣

x0, y0, r, s ← Z
∗
p;h1 := gs

1, h2 := gs2

1 , h3 := gr
1, h4 := gr2

1 , h5 := grs
1

f1 := gs
2, f2 := gr

2,X0 := hx0
1 ;Y0 := hy0

3 ;
(Â, B̂, T̂1, T̂2, T̂3, T̂4, X̂, Ŷ) ← AOX0,Y0 (pp,X0, Y0, h1, h2, h3, h4, h5, f1, f2) :
e(Â, g2) = e(X0, T̂1T̂2)e(X̂Ŷ , T̂1) ∧ e(B̂, g2) = e(Y0, T̂1T̂2)e(X̂Ŷ , T̂2)
∧ e(g1, T̂1T̂2) = e(h1, T̂3)e(h3, T̂4) where (X̂, Ŷ) was not queried.

⎤
⎥⎥⎥⎥⎦

Theorem 1. Let A denote an adversary in the generic group model against
Assumption 1. A has access to oracles for which he makes qG group queries, qP

pairing queries, and qO oracle queries. The probability ε of A winning the game
for Assumption 1 is bounded by ε ≤ 5(qG + qP + 6qO + 11)2/p, where p is the
prime order of the generic groups.

Proof. See full version [19].

3.2 Cryptographic Building Blocks

The following building blocks will be used in our HABS construction.

Tag-Based Encryption. A TBE scheme has the same algorithms as a tradi-
tional public key encryption scheme, except that its encryption and decryption
procedures take an extra tag t as input. A correctly formed TBE ciphertext C will

98 D. Gardham and M. Manulis

fail to decrypt if the tag used as input to the decryption algorithm is different
from the one used upon encryption. We adopt the TBE scheme from [26] which
relies on the SDLIN assumption. It offers selective-tag witness-indistinguishable
chosen-ciphertext (st-IND-CCA) security, where an adversary is unable to dis-
tinguish between two ciphertexts under the same tag t of their choosing. Kiltz
[28] showed that a st-IND-CCA TBE scheme combined with a strongly unforge-
able one-time signature, where the one-time verification key is used as the tag,
gives rise to an IND-CCA2 secure PKE. Our scheme uses this approach.

One-Time Signature. For the OTS, we use the strongly unforgeable BBS one-
time signature scheme from [7]. It consist of three algorithms (KeyGen, Sig, Ver)
with a verification key in G

2 × Z
∗
p and the corresponding signing key in Z

∗2
p .

Groth-Sahai Proofs. We use the Groth-Sahai proof system [22] to construct
the required non-interactive zero-knowledge proofs NIZK. A GS proof, which
consists of five algorithms (Setup, Prove, Verify, SimSetup, SimProve), allows
proving relations involving multi-linear, quadratic, and pairing-based equations.
We use GS proofs in the asymmetric bilinear group setting with Type-3 curves
[18], i.e., where there is no computable isomorphism between G1 and G2, in
which case their security is based on the SXDH assumption [7].

Homomorphic Trapdoor Commitments to Group Elements. The key
to our short HABS scheme is the length-reducing homomorphic trapdoor com-
mitment scheme by Groth [21], adopted in our new delegation mechanism. With
the HTC scheme, defined by four algorithms (Setup, KeyGen, Commit, Trapdoor),
one can use the trapdoor key tk to open a constant-length commitment (c, d)
to arbitrary group elements with respect to a commitment key. We observe that
due to its construction this HTC scheme has an interesting property that allows
a commitment to group elements step-wise, i.e. an opening (ai, bi) to elements
g1, . . . , gi can be transformed into an opening (ai+1, bi+1) for an extended set of
elements g1, . . . , gi+1 without knowledge of the secret commitment key, i.e., with-
out jeopardising the binding property for the already committed group elements.
In our HABS scheme such step-wise extension of an initial commitment (c, d)
produced by the root authority allows intermediate authorities, upon delegation,
to embed public keys of next-level authorities or users, along with the delegated
attribute, by providing appropriate modification to the opening of (c, d), that
is without changing its value nor increasing its length. Proving ownership of a
delegated attribute amounts to presenting an opening (a, b) for the commitment
(c, d) to the attribute and the list of public keys of authorities on the delega-
tion path, i.e., apk0, . . . ,upk, �. In our scheme we use the asymmetric variant of
Groth’s HTC scheme with security based on the XDLIN assumption [1].

3.3 Specification of Our HABS Scheme

We start with a high-level intuition behind our HABS construction and provide
detailed specification in Figs. 5, 6, and 7.

Hierarchical Attribute-Based Signatures 99

High-Level Overview. As part of the setup process public parameters pp of
the scheme are generated. They include the security parameter λ, the descrip-
tion of bilinear groups (G1,G2,GT), the trapdoor key tk for the HTC scheme, the
initial ‘dummy’ HTC commitment (c, d) with an opening (a0, b0), and the descrip-
tion of the attribute universe A. The independent tracing authority TA generates
the TBE key-pair (tsk, tpk):=((η1, η2), (V1, V2, V3, V4)) with tpk included into pp.
For simplicity we describe the setup phase as a single process involving com-
putations performed by the RA and TA. We stress, however, that generation
of h1, ..., h5, f1, f2 must be trusted in that no entity knows the corresponding
exponents.

Setup(λ)

0 : (G1,G2,GT , g1, g2, e, p) ← BG(1λ)

1 : Sample r, s ← Z
∗
p

2 : h1 := gs
1, h2 := gs2

1 , h3 := gr
1 ,

h4 := gr2

1 , h5 := grs
1

3 : f1 := gs
2, f2 := gr

2

4 : Define H1 : A → Z
∗
p,

H2 : {0, 1}∗ → Z
∗
p, H3 : {0, 1}∗ → Z

∗
p

5 : Sample g̃1 ← G1, g̃2 ← G2

6 : Compute ζ ← e(g̃1, g̃2)

7 : (tsk, tpk) ← TKGen

8 : w1 ← NIZK1.Setup

9 : w2 ← NIZK2.Setup

10 : Define attribute universe A

11 : Sample mr, ms, nr, ns ← Z
∗
p

12 : Sample a0, b0 ← G1

13 : Compute gr ← gmr
2 , gs ← gms

2 ,

hr ← gnr
2 , hs ← gns

2

14 : Compute c := e(a0, gr)e(b0, gs)

d := e(a0, hr)e(b0, hs)

15 : Compute Δ := mrns − nrms

16 : α := ns/Δ, β := −ms/Δ,

γ := −nr/Δ, δ := mr/Δ

17 : tk := (mr, ms, nr, ns, α, β, γ, δ)

18 : pp := (G, c, d, a0, b0, tk, H1, H2,

H3, ζ, g̃1, g̃2, tpk,A, w1, w2)

for G := (G1,G2,GT , g1, g2, e, p

h1, h2, h3, h4, h5, f1, f2)

19 : return pp

Fig. 5. Setup algorithm of our HABS construction.

In our scheme, all attribute authorities and users generate their own pri-
vate/public key pairs (aski, apki) and (usk, upk) respectively, of the form {(x, y),
(X,Y,Z, Ẑ)}. While only X and Y are used in the verification of attribute del-
egation which we prove in the signature, the components (Z, Ẑ) are used in the
issuing phase. To ensure an authority creates a delegation that opens to (X,Y),
we insist that the validity of a public key is checked prior to delegation. This
is done by evaluating e(XY, h1) = e(Z, g2) and e(XY, h3) = e(Ẑ, g2). IAs and
users obtain attributes from existing authorities at a higher level in the hier-
archy. Ownership of a valid key-pair (aski, apki) allows authorities to delegate
attributes further down the hierarchy and to the users, by manipulating the
opening of the initial commitment (c, d).

100 D. Gardham and M. Manulis

With the trapdoor key tk an authority can create an opening (ai, bi) for (c, d)
to the path that includes delegate’s public key e.g. apkj . Rather than opening
directly, the issuer first creates randomisation tokens T1, T2, T3, T4 ∈ G2 and
opens to these instead. It then uses T1 and T2 as one-time commitment keys to
open to apkj and the delegated attribute att, that is hashed into the message
space using gH1(att). The randomisation tokens T1 and T2 are used to prevent
forgeries (where the adversary combines multiple openings and in doing so, forges
an opening to a new public key) whereas T3 and T4 are used to verify the well-
formedness of T1 and T2, by evaluating e(g1, T1T2) = e(h1, T4)e(h3, T3). The
issuing authority updates the (possibly empty) warrant with opening (ai, bi),
his public key apki and the randomisation tokens (T1, T2, T3, T4). As tk is part
of public parameters, any IA in the hierarchy is able to perform the delegation
procedure, where it receives (ai−1, bi−1) from its issue and generates (ai, bi) for
the next delegation. When delegating to users, an issuing IA will open (c, d) to
a designated element � ∈ G, in addition to the user’s public key upk and the
attribute att. A warrant contains the trapdoor opening and a list of all public
keys of AAs that appear in the delegation path for any issued attribute.

Upon signing, the user first generates an OTS key-pair (otssk, otsvk) :=
{(k1, k2), (K1,K2, κ)} and an opening to H3(otsvk) by modifying the open-
ing (a0, b0) using his public key upk and the trapdoor key tk. The reduced
warr along with upk are encrypted in a TBE ciphertext under the TA’s pub-
lic key tpk and tag H3(otsvk). The signing policy Ψ is modelled as a mono-
tone span program, with labelling function ρ that maps rows from S to the

KGen(pp)

0 : Sample x, y ← Z
∗
p

1 : X := hx
1 , Y := hy

3 ,

2 : Z := hx
2hy

5 , Ẑ := hx
5hy

4

3 : pk := (X, Y, Z, Ẑ),

4 : sk := (pk, x, y)

5 : return (pk, sk)

TKGen(pp)

0 : Sample η1, η2 ← Z
∗
p

1 : Compute V1 := gη1
1 , V2 := gη2

1

2 : Sample V3, V4 ← G2

3 : tpk := (V1, V2, V3, V4)

4 : tsk := (tpk, η1, η2)

5 : return (tsk, tpk)

AttIssue(aski, {apkj |upk}, att, ai, bi,warr)

0 : Parse {apkj |upk} as (Xj , Yj , Zj , Ẑj)

1 : Verify e(XY, h1) = e(Z, g2)

and e(XY, h3) = e(Ẑ, g2)

2 : Sample t1, t2 ← Z
∗
p

3 : T1 := f t1
1 , T2 := f t2

2 , T3 := gt1
2 , T4 := gt2

2

4 : ã ← amr
i bms

i (ht1
2 ht2

5)−xi(Zjh
H1(att)
1)−t1

b̃ ← anr
i bns

i (ht1
5 ht2

4)−yi(Ẑjh
H1(att)
3)−t2

5 : (ai+1, bi+1) := (ãαb̃β , ãγ b̃δ)

6 : warr = warr ∪ {apki, T1, T2}
7 : return (ai+1, bi+1,warr)

Fig. 6. Key generation and issue of attributes in our HABS construction.

Hierarchical Attribute-Based Signatures 101

attribute set A. The signer proves that this set satisfies Ψ by computing a vector
z such that zS = [1, 0, ..., 0], where any non-zero entry zi implies ρ(i) ∈ warr.
A NIZK proof π is then computed using Groth-Sahai framework with witness
(upk,warr, z, r̃, s̃) for the following relation:

(
(a, b),warr, upk, z

)
,
(
Ψ, otsvk, apk0, C, tpk

)
: zS = [1, 0, ..., 0]

∧ (∀i. zi �= 0 =⇒ atti = ρ(i) ∧ (apki1 , ..., apkin , apkin+1 := upk) ∈ C

∧ c|warr|+1 = e(a, gr)e(b, gs)e(X, g
H3(otsvk)
2)

ΠiΠ
k
n=0e(Xin , T1,inT2,in)e(Xin+1Yin+1g

H1(att)
1 , T1,in)

∧ d|warr|+1 = e(a, hr)e(b, hs)e(Y, g
H3(otsvk)
2)

ΠiΠ
k
n=0e(Yin , T1,inT2,in)e(Xin+1Yin+1g

H1(att)
1 , T2,in)

∧ e(g1, ΠiΠ
k
n=0T1,inT2,in) = e(h1, ΠiΠ

n
n=0T4,in)e(h3, ΠiΠ

k
n=0T3,in).

Sign(usk, m, Ψ, {attj , aj , bj ,warrj}j∈J)

0 : (k1, k2, k3) ← Z
∗
p

1 : otsvk := (g̃k1
2 , g̃k2

2 , k3)

2 : Compute z s.t. zS = [1, 0, ..., 0]

3 : T1 := f t1
1 , T2 := f t2

2 ,

T3 := gt1
2 , T4 := gt2

2

4 : a′ ← amr
i bms

i (ht1
2 ht2

5)−xh
−t1H3(otsvk)
1

b′ ← anr
i bns

i (ht1
5 ht2

4)−yh
−t2H3(otsvk)
3

5 : (a′, b′) := (ãαb̃β , ãγ b̃δ)

6 : (a, b) = (a′ · Πaj , b
′ · Πbj)

7 : C ← TBE.Enc(tpk,warr, upk,

a, b, {H1(otsvk)})
8 : π ← NIZK1.Prove((upk, z,warr, a, b) :

(C, otsvk, tpk, apk0, Ψ) ∈ R)

9 : H ← H2(π||C||Ψ ||m||otsvk)

10 : σo ← g̃
1/(k1+H+k2k3)
1

11 : return (σo, C, π, otsvk)

Verify(pk, σ, m, Ψ)

0 : Parse σ as (ots, π, otsvk)

1 : H ← H2(π||C||Ψ ||m||otsvk)

2 : return NIZK.Verify(π)

∧ e(σo, g̃
k1
2 · g̃H

2 · g̃k2k3
2) = ζ

Trace(tsk, σ, m, Ψ)

0 : if Verify(σ,m, Ψ) = 1 then

1 : warr ← TBE.Dec(tsk, C, t)

for t = H1(otsvk)

2 : π̂ ← NIZK2.Prove(tsk :

(otsvk, C, tpk, (apk0,warr)))

3 : return (warr, π̂)

Judge(tpk,warr, σ)

0 : Verify(ask0, (σ,m, Ψ))

∧ NIZK2.Verify(π2)

Fig. 7. Sign, Verify, Trace and Judge algorithms of our HABS construction.

The message m and policy Ψ are then bound to this proof and ciphertext
by hashing H2(π,C, Ψ,m), before an OTS signature σo is produced with otssk.
The resulting signature is verified with respect to the public parameters of the
scheme, and the RA’s public key apk0 by verifying the OTS signature and the
NIZK proof.

As part of the tracing procedure, executed by TA with knowledge of tsk, the
ciphertext C is decrypted to obtain the warrant warr, signer’s public key upk,

102 D. Gardham and M. Manulis

and the opening (a, b). A publicly verifiable NIZK proof π̂ is created with witness
tsk for the statement (otsvk, C, tpk, (apk0, warr)) and relation:

TBE.Dec(tsk, C,H3(otsvk)) = (upk,warr, a, b).

We give a detailed construction for the Groth-Sahai proofs NIZK1 and NIZK2 in
Appendix D.

3.4 Security Analysis

In this section we prove that our construction meets HABS security properties
of path anonymity, non-frameability and path traceability.

Lemma 1. The HABS construction from Figs. 5, 6 and 7 offers path anonymity,
if SXDH, SDLIN and q-SDH hold in G.

Proof. We follow a game-based approach and show that the advantage of the
PPT adversary A in the path-anonymity experiment for the HABS construction
from Figs. 5, 6 and 7, is bounded by the advantages of the constructed adver-
saries for the underlying primitives. We assume that adversary A asks n user
registration queries and the probability for sampling one of these users is 1/n.

Game G0: This game is defined to the be the experiment Exppa-b
HABS,A(λ) in Fig. 2,

where the 2-stage adversary A = (A1,A2) is required to distinguish between the
HABS signatures σ0 = (σ0

o ,C0, π0, otsvk0) and σ1 = (σ1
o ,C1, π1, otsvk1).

Game G1: We define the game G1 as G0 where the check “A2 did not query
OTr(m,Ψ, σb)” is enforced by the OTr oracle available to A2, which aborts the
game if this is the case. The probability from G0 to G1 is preserved.
Game G2: The game G2 is obtained from G1 where, on the output of OTr,
we replace the NIZK2 proof π̂ with π̂′ from the simulator NIZK2.SimProve. We
also replace Setup by SimSetup for NIZK2. This prevents the case where A may
“extract” tsk from NIZK2 proofs. Thus, for all future OTr oracle calls we use the
simulated NIZK2 proof. The probability that A can distinguish between these
two games is bounded by the advantage of the zero-knowledge adversary Bnizk2

for NIZK2. For our instantiation of GS proofs, this is reduced to the SXDH
assumption [22].
Game G3: Let G3 be the game obtained from G2 where we replace the proof πb

from the challenge signature σb = (σo,b, Cb, πb, otsvkb) with the simulated proof
π′

b by calling NIZK1.Sim on (Cb, otsvkb, tpk, apk0, Ψ). Additionally, we replace
NIZK1.Setup by NIZK1.SimSetup. The probability that A can distinguish between
games G2 and G3 is bounded by the advantage of the zero-knowledge adversary
Bnizk1 for NIZK1 proof. Similarly, this property is implied by SXDH.
Game G4: Game G4 only differs from game G3 in that we abort if A2

queries OTr(m,Ψ, (σo,Cb, π, otsvkb)). The adversary A is only able to distin-
guish between these games if it can produce a valid OTS signature σo for the
message (Cb, π,m, Ψ) and public key otsvkb, without knowledge of the secret key
otsskb. Thus, the capabilities of the adversary A to distinguish between these

Hierarchical Attribute-Based Signatures 103

two games is bounded by the advantage of the adversary Bots against the strong
unforgeability of the OTS scheme, which is reduced to the q-SDH assumption [7].
Game G5: Game G5 is defined to be G4, except we additionally do a check for
any queries A2 makes do not contain the challenge ciphertext, that is OTr(m,Ψ,
(σo,Cb, π, otsvk)). If so the game is aborted. The output of OTr is for G4 and
G5 is the same, as the oracle returns ⊥ if the tag otsvkb for C is different from
otsvk received as input. Hence, the probability is preserved.
Game G6: The game G6 is the same as G5, except that we move the OTS key
generation from the signature generation phase into the setup of the experiment.
Note that only one key pair needs to be created in this game since the adversary
only sees the challenge signature. This step is necessary to utilise the st-IND-
CCA property of the TBE scheme. The probability is unchanged from game G5

to G6.
Game G7: Let G7 be the game obtained from G6 where the TBE ciphertext
Cb from the challenge signature σb = (σb

o, Cb, π
′
b, otsvkb) is replaced with the

C0. The adversary A is unable to query a ciphertext C ′ �= Cb for the same tag
H3(otsvk) as a result of game G4. Further, any query to the oracle for a tag
t′ �= H3(otsvk) will also fail as decryption of Cb is dependent on the correct tag.
Thus, the ability of the adversary A2 to distinguish between the ciphertexts C0

and Cb is bounded by the advantage of the st-IND-CCA adversary Bind. For out
instantiation, this property of TBE is implied by SDLIN [26].

The experiment G7 provides A with the same challenge signature indepen-
dent of b that A is asked to guess. Additionally, due to the zero-knowledge
property of NIZK2 used in G1, A does not have access to tsk. Therefore, the
probability that the adversary wins game G7 is 1/2 and hence the advantage of
A to win this experiment is 0. �

Lemma 2. The HABS construction from Figs. 5, 6 and 7 is non-frameable, if
H1,H2 and H3 are second-preimage resistant hash functions, and q-SDH, SXDH
and Assumption 1 hold in G.

Proof. We begin by first splitting the non-frameability experiment from Fig. 3
into two experiments based on the winning condition of the adversary A. The
first Exp1, defined in Fig. 8, captures the probability of the adversary A to create
a forged HABS signature. The second experiment Exp2 is the same as Exp1

except that the event “j ∈ HU ∧ A did not query OSig((uskj ,warr), Ψ,m)” is
replaced with

“∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upkj , �) = warr[a] ∧
((∃0 ≤ i ≤ n − 1. A did not call OAtt(i, · , a, apki+1) ∧ i ∈ HU) ∨
(A did not call OAtt(n, · , a, upku) ∧ n ∈ HU))”

We capture the probability of winning the non-frameability experiment by
the probability that A wins either Exp1 or Exp2.

We first bound the advantage of the adversary for the experiment Exp1.
Intuitively, we consider the output of the adversary and argue that each compo-
nent must coincide with a call to the signing oracle. The forgery is denoted by

104 D. Gardham and M. Manulis

Exp1 - The Expnf
HABS,A(λ) where A did not query OSig((usk,warr), Ψ,m)

1 : (pp,ask0, tsk) ← Setup(1λ)

2 : ((m, Ψ, σ), (upkj ,warr, (ˆπ, σs))) ← A(pp, ask0, tsk : OAtt, OSig, OCorr, OReg)

3 : (σo,C, π, otsvk) = σ

4 : if NIZK1.Verify((C, otsvk, tpk, apk0, Ψ), π) ∧
5 : OTS.Verify(otsvk, (m, Ψ,C, π), σo) ∧
6 : NIZK2.Verify(tpk, (otsvk,C, upkj ,warr, σs), π̂)∧
7 : j ∈ HU ∧
8 : A did not query OSig((uskj ,warr), Ψ,m) then

9 : return 1

10 : return 0

Fig. 8. Experiment Exp1

(upk′,warr′, m′, Ψ ′), (σ′
o,C

′, π′, otsvk′). We take each element of the tuple (upkj ,
warr, m, Ψ) and try to reason about its relation with their prime counterpart.

Given n calls to the registration oracle, we model the probability the adver-
sary can guess which oracle constructs the keys for a particular user uniformly,
i.e. is equal to 1/n.
Game G0. This game is defined as Exp1 where the query restriction “A did
not query OSig((uskj , warr),m, Ψ)” in instead enforced by a membership check
(upku,warr,m, Ψ) /∈ SigL for the list SigL. We also introduce the list SigLO
that stores the input and output of the OSig oracle. Both lists are initialised
empty at the beginning of the experiment, and are updated with the inputs,
and additionally, the outputs of the OSig oracle, respectively. The probability is
preserved between Exp1 and G0.
Game G1. This game is defined exactly as G0 with the exception of an addi-
tional check that the opening (a, b) for (c, d) contains the path e(Xi, g

H3(otsvk))
and e(Yi, g

H3(otsvk)), respectively. The success probability of a soundness adver-
sary for NIZK1 bounds the distinguishability of G1 from G0. That is, A can only
distinguish between these two games if it is able to generate a valid NIZK1 proof
for a false statement, namely that (a, b) does not open to gH3(otsvk). Soundness
for our instantiation of NIZK1 is implied by the SXDH assumption [22].
Game G2. The game G2 is obtained from G1 by adding the condition (upkj , �, �,
�) /∈ SigL. The adversary in G2 managed to create a valid opening (a, b) for upku

to gH3(otsvk), without having access to the user’s secret key uskj (since j ∈ HU).
The capabilities of A in this experiment are upper-bounded by the advantage of
an adversary against Assumption 1 and the second-preimage property of H3.
Game G3. Game G3 is defined to be Game G1, but where A made at least
one signing query that contains user upkj . Therefore, there exists ((upkj ,warr′,
m′, Ψ ′), (σ′

o,C
′, π′, otsvk′)) ∈ SigL with (warr,m, Ψ) �= (warr′,m′, Ψ ′) as (upkj ,

Hierarchical Attribute-Based Signatures 105

warr,m, Ψ) /∈ SigL but (upkj ,warr′,m′, Ψ ′) ∈ SigL. The probability is pre-
served between G1 and G3.
Game G4. We define G4 as the game G3 where otsvk �= otsvk′. In this case, the
adversary A is able to provide a forged opening to gH(otsvk′) without knowledge
of uskj . This is similar to the method of computing the bound for G2, except
that now A asks signature queries for upk. It is also bounded by an adversary
against Assumption 1.
Game G5. We define game G5 as the game G3 where (m,Ψ) �= (m′, Ψ ′). At
this point, we have otsvk = otsvk′ and upk = upkj for some j. Thus, if A can
distinguish between G5 and G3 then it is able to provide a forgery for the OTS
scheme by signing a message that contains (m′, Ψ ′) without knowledge of otssk,
or break the second preimage property of H2.
Game G6. We define game G6 as the game G5 where (m,Ψ) = (m′, Ψ ′). Because
of the (warr,m, Ψ) �= (warr′,m′, Ψ ′) restriction, we have warr′ �= warr. The
correctness property of the encryption scheme TBE that builds C′ now implies
C �= C′ under the tag t = H3(otsvk). The probability that the adversary can
distinguish between G6 and G5 is upper-bounded by an adversary B′

cor against
the correctness of TBE, which is implied by the SDLIN assumption [26].
Game G7. Let G7 is the same as G6 but with C �= C′. Assuming second-
preimage resistance of H2, the adversary A managed to create a forged OTS
signature without knowledge of otssk. Therefore, the probability of success for
adversary A in this game is bounded by the advantage of an OTS-forger B′

ots.
The q-SDH assumption implies the BBS signature is strongly unforgeable [7].

From the sequence of games G0, . . . , G7, it follows that the probability of
Exp1 is bounded by the unforgeability of OTS, zero-knowledge of NIZK1, correct-
ness of TBE, and computational hardness of Assumption 1.

The experiment Exp2 captures the case where the adversary A is able to
provide a forged delegation for an honest authority apki and some attribute att.
In this case, A is bounded by the hardness of Assumption 1 and the second
preimage property of H1.

Lemma 3. The HABS construction from Figs. 5, 6 and 7 offers path traceability,
if SXDH, SDLIN and Assumption 1 hold in G.

Proof. See full version [19].

Theorem 2. The HABS scheme in Figs. 5, 6 and 7 offers path-anonymity, non-
frameability and path-traceability if H1, H2 and H3 are second-preimage resistant
hash functions and SXDH, SDLIN, q-SDH and Assumption 1 hold in G.

Proof. The result follows from Lemmas 1, 2 and 3. �

4 Efficiency Comparison

We first compare the warrant sizes for our scheme and [12]. For a single attribute,
an authority at level 1 (with respect to the root authority at level 0) has a warrant

106 D. Gardham and M. Manulis

size of 6 group elements (of the form G
2
1×G

4
2). Further delegation to level 2 adds

a further 6 elements in G
2
1 × G

4
2. A delegation from the root authority contains

the opening (a, b) (as part of the 6 elements) which is updated by subsequent
delegations, however the warrant must now also contain the issuers public key
(Xi, Yi) in G

2
1. This generalises, and for a user at level k, the size of the warrant

is 6k for a single attribute. Likewise, if we extend the number of attributes in
the warrant to |A|, each of which has a delegation path of length k, then the
warrant has 6k|A| group elements.

In contrast, for a single attribute issued to a level-1 entity, the warrant in
[12] contains 7	 12+2m

m−2
 group elements, where m is the size of the message space
used in the TBS instantiation. A level-2 delegation increases this to 7	 24+4m

m−2
 +
2m + 12 elements, and this generalises for a single attribute that is issued to a
level k entity to 7	k(12+2m)

m−2
 + (k − 1)(2m + 12) elements. Similarly, a warrant
that contains |A| attributes adds a linear factor of |A| to this term. To give a
concrete comparison, a user with 3 attributes at level 4 of the hierarchy would
have a warrant containing 72 group elements in our scheme, as opposed to 208
elements for an optimal choice of m (i.e., m = 10) in the scheme from [12].
Since m would be chosen in advance during the setup phase, the warrant would
unlikely reach its optimal bound and for any suboptimal choice of m, the warrant
grows linearly in this parameter.

Next, in Table 1 we compare the sizes of public keys (of users and authori-
ties) and the lengths of signatures generated by our scheme and [12]. By β we
denote the size of the span program representing the policy Ψ . As before k is the
maximum length of a delegation path, |Ψ | is the number of attributes needed to
satisfy the signing policy, and m is the size of the message space for the TBS
scheme used in [12].

Table 1. Comparison of key and signature sizes.

Dragan et al. [12] This Work
G Zp G1 G2 Zp

Public Keys upk 14 - 4 - -
apk 12+2m - 4 - -

Sig.
ots 3 1 2 1 1
C

5(6+m)k(k−1)|Ψ|
(m−2) + 110 - 6(2k − 1)|Ψ | + 12 4(2k − 1)|Ψ | + 8 -

π
28(6+m)k(k−1)|Ψ|

(m−2) + 18 2β 8 2k|Ψ | + 8 β

In addition to being more efficient and shorter than [12], our scheme, in
fact, produces HABS signatures of optimal length, from the asymptotic point
of view. The need to provide path traceability, where the TA must be able to
reveal the entire delegation path along with delegated attributes from a valid
HABS signature implies the O(k|Ψ |) growth of its length. This means that in
order to reduce this bound path-tracability property would need to be relaxed.

Finally, our scheme brings a few other efficiency improvements. The use of
Type-3 pairings results in fewer group elements and the possibility to achieve
the same level security for a smaller choice of the prime p [18], which would give

Hierarchical Attribute-Based Signatures 107

rise to smaller groups and faster operations than in the symmetric setting. In
addition, we can adopt batch verification techniques available for Groth-Sahai
proofs [6] to speed up the computations.

5 Conclusion

We proposed a direct construction of Hierarchical Attribute-based Signatures
(HABS) with a new delegation process based on length-reducing homomorphic
trapdoor commitments. Our HABS scheme significantly reduces the lengths of
warrants, public keys and signatures in comparison to the so-far only known
(generic) HABS construction. Moreover, due to the need to support the path-
traceability requirement, our HABS scheme achieves optimal signature length
growth of O(k|Ψ |) for delegations paths of size k and signing policies of size |Ψ |.
Our technique of step-wise embedding of new group elements into the homo-
morphic trapdoor commitment can be considered to be of independent interest,
e.g., it could add support for delegation to other privacy-preserving signature
schemes that rely on homomorphic trapdoor commitments, e.g. [2].

Acknowledgements. Daniel Gardham was supported by the UK Government PhD
studentship scheme. Mark Manulis was supported by the EPSRC project TAPESTRY
(EP/N02799X). The authors thank the anonymous reviewers of ACNS 2019 for their
valuable comments.

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. J. Cryptol. 29, 833–878 (2016)

2. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for
modular protocol design. IACR Cryptology ePrint Archive, p. 133 (2010)

3. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol.
9614, pp. 357–386. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49384-7 14

4. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

5. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 30

6. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.:
Batch Groth–Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
218–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-
2 14

7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

https://doi.org/10.1007/978-3-662-49384-7_14
https://doi.org/10.1007/978-3-662-49384-7_14
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-540-24676-3_4

108 D. Gardham and M. Manulis

8. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

9. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

10. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

11. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

12. Drǎgan, C.-C., Gardham, D., Manulis, M.: Hierarchical attribute-based signatures.
In: Camenisch, J., Papadimitratos, P. (eds.) CANS 2018. LNCS, vol. 11124, pp.
213–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00434-7 11

13. El Kaafarani, A., Ghadafi, E.: Attribute-based signatures with user-controlled link-
ability without random oracles. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol.
10655, pp. 161–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71045-7 9

14. El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based
signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 17

15. El Kaafarani, A., Katsumata, S.: Attribute-based signatures for unbounded circuits
in the ROM and efficient instantiations from lattices. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10770, pp. 89–119. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76581-5 4

16. Escala, A., Herranz, J., Morillo, P.: Revocable attribute-based signatures with
adaptive security in the standard model. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 224–241. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21969-6 14

17. Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201–217. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3 14

18. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

19. Gardham, D., Manulis, M.: Hierarchical attribute-based signatures: short keys and
optimal signature length. Cryptology ePrint Archive, Report 2019/382 (2019).
https://eprint.iacr.org/2019/382

20. Ghadafi, E.: Stronger security notions for decentralized traceable attribute-based
signatures and more efficient constructions. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 391–409. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16715-2 21

21. Groth, J.: Homomorphic Trapdoor Commitments to Group Elements. Cryptology
ePrint Archive, Report 2009/007 (2009)

22. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

23. Herranz, J.: Attribute-based signatures from RSA. TCS 527, 73–82 (2014)
24. Jager, T., Rupp, A.: The semi-generic group model and applications to pairing-

based cryptography. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
539–556. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 31

https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-030-00434-7_11
https://doi.org/10.1007/978-3-319-71045-7_9
https://doi.org/10.1007/978-3-319-71045-7_9
https://doi.org/10.1007/978-3-319-04852-9_17
https://doi.org/10.1007/978-3-319-76581-5_4
https://doi.org/10.1007/978-3-319-76581-5_4
https://doi.org/10.1007/978-3-642-21969-6_14
https://doi.org/10.1007/978-3-540-85855-3_14
https://eprint.iacr.org/2019/382
https://doi.org/10.1007/978-3-319-16715-2_21
https://doi.org/10.1007/978-3-319-16715-2_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-642-17373-8_31

Hierarchical Attribute-Based Signatures 109

25. Kaaniche, N., Laurent, M., Rocher, P.-O., Kiennert, C., Garcia-Alfaro, J.: PCS, a
privacy-preserving certification scheme. In: Data Privacy Management, Cryptocur-
rencies and Blockchain Technology, pp. 239–256 (2017)

26. Kakvi, S.A.: Efficient fully anonymous group signatures based on the Groth group
signature scheme. Master’s thesis, University College London (2010)

27. Khader, D., Chen, L., Davenport, J.H.: Certificate-free attribute authentication.
In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 301–325. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6 18

28. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 30

29. Krzywiecki, �L., Sulkowska, M., Zagórski, F.: Hierarchical ring signatures revis-
ited – unconditionally and perfectly anonymous schnorr version. In: Chakraborty,
R.S., Schwabe, P., Solworth, J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 329–346.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24126-5 19

30. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: ACM ASIACCS 2010, pp. 60–69. ACM (2010)

31. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 24

32. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 9

33. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 3

34. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

35. Sakai, Y.: Practical attribute-based signature schemes for circuits from bilinear
map. IET Inf. Secur. 12, 184–193 (2018)

36. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

37. Trolin, M., Wikström, D.: Hierarchical group signatures. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 446–458. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 37

38. Tsabary, R.: An equivalence between attribute-based signatures and homomorphic
signatures, and new constructions for both. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10678, pp. 489–518. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70503-3 16

https://doi.org/10.1007/978-3-642-10868-6_18
https://doi.org/10.1007/11681878_30
https://doi.org/10.1007/978-3-319-24126-5_19
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/978-3-642-36362-7_9
https://doi.org/10.1007/978-3-642-19379-8_3
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/11523468_37
https://doi.org/10.1007/978-3-319-70503-3_16
https://doi.org/10.1007/978-3-319-70503-3_16

Raptor: A Practical Lattice-Based
(Linkable) Ring Signature

Xingye Lu1 , Man Ho Au1(B) , and Zhenfei Zhang2

1 The Hong Kong Polytechnic University, Hung Hom, Hong Kong
xingye.lu@connect.polyu.hk, mhaau@polyu.edu.hk

2 Algorand, Boston, USA
zhenfei@algorand.com

Abstract. We present Raptor, the first practical lattice-based (link-
able) ring signature scheme with implementation. Raptor is as fast as
classical solutions; while the size of the signature is roughly 1.3 KB per
user. Prior to our work, all existing lattice-based solutions are analogues
of their discrete-log or pairing-based counterparts. We develop a generic
construction of (linkable) ring signatures based on the well-known generic
construction from Rivest et al., which is not fully compatible with lat-
tices. Our generic construction is provably secure in random oracle model.
We also give instantiations from both standard lattice, as a proof of con-
cept, and NTRU lattice, as an efficient instantiation. We show that the
latter construction, called Raptor, is almost as efficient as the classical
RST ring signatures and thus may be of practical interest.

1 Introduction

The notion of ring signatures was put forth by Rivest, Shamir and Tauman in
2001 [46]. It is a special type of group signature [16,18] where a signer is able
to produce a signature on behalf of a group of potential signers. Unlike group
signatures, there is no central party to manage group membership nor capable
of revealing identity of the generator of the signature. In a typical use case of
ring signatures, each user is associated with a public key and a group is formed
spontaneously by collecting users’ public keys. It is a very attractive property as
it enables anonymity: the signer hides its identity within the group, and there is
no trusted third party that is capable of revocation.

Ring signatures offer very strong anonymity. In particular, signatures created
by the same signer are unlinkable. Observing that in some real-world applica-
tions, such as electronic voting, unlinkability can be undesirable, Liu, Wei and
Wong [36] put forth the notion of linkable ring signatures. In such a scheme,
the identity of the signer remains anonymous. In the meantime, two signatures
created by the same signer can be linked.

Z. Zhang—This work was done when with OnBoard Security.
This work is supported by Innovation and Technology Funding under project
ITS/356/17 and National Natural Science Foundation of China under project 61602396.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 110–130, 2019.
https://doi.org/10.1007/978-3-030-21568-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_6&domain=pdf
http://orcid.org/0000-0002-3595-044X
http://orcid.org/0000-0003-2068-9530
https://doi.org/10.1007/978-3-030-21568-2_6

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 111

The properties of linkability and signer anonymity are very desirable in var-
ious real world applications, including, but not limited to, e-cash, e-voting, and
ad-hoc authentication. For example, in the e-cash scenario, a linkable ring signa-
ture allows the spender to remain anonymous, while making it possible for the
bank to identify double spenders. To date, linkable ring signature has become
a mainstream solution to protect sender privacy in cryptocurrency transaction
[43].

All linkable ring signatures deployed in practice are based on number-
theoretic assumptions and thus vulnerable to quantum computers [48]. Even
though quantum computers are still in their infancy, many believed that general
purpose quantum computers will inevitably arrive, by when the exiting classical
ring signatures will lose their anonymity and/or unforgeability.

Lattice-based cryptography is one of the most promising families of candi-
dates [42] to the quantum apocalypse. Besides resistance to quantum attacks,
problems in lattice-based cryptography exhibit an additional properties, namely,
breaking a random instance of a lattice problem is as hard as solving the worst-
case instance.

To date, there exist a number of lattice-based ring signature schemes and
lattice-based linkable ring signature schemes [2,4,11,15,25,34]. While some of
them are asymptotically efficient, they are hardly practical. In particular, to the
best of our knowledge, none of these constructions come with an implementation.

1.1 Related Work

Classical Ring Signatures. We review the existing constructions of (linkable)
ring signatures. The generic construction introduced by Rivest, Shamir and Tau-
man [46] in 2001 (RST). This generic construction is based on one-way trapdoor
permutations along with a block cipher. It can be instantiated from the RSA
assumption. In 2004, Abe, Ohkubo and Suzuku [1] (AOS) proposed a new generic
construction which allows discrete-log type of keys. This generic construction can
make use of hash-and-sign signature or any three-move sigma-protocol-based sig-
nature. It can be instantiated from RSA or discrete-log assumptions. Both of the
RST and AOS constructions are secure in the random oracle model and the sig-
nature sizes are linear to the ring size. To achieve the security in standard model,
Bender, Katz and Morselli [12] (BKM) presented a ring signature scheme which
adopts a public-key encryption scheme, a signature scheme and a ZAP protocol
for any language in NP [24]. Even though BKM construction is secure in stan-
dard model, the signature size is still linear in the number of group members
and the generic ZAPs are actually quite impractical. Shacham and Waters [47]
then proposed a more efficient linear-size ring signature scheme without random
oracle from bilinear pairing.

To reduce the signature size, Dodis et al. proposed the first ring signature
scheme with constant signature size in 2004 [20]. It relies on accumulator with
one-way domain and is secure in the random oracle model. The first sub-linear
size ring signature without random oracle model is due to Chandran, Groth
and Sahai [17]. This scheme has signature size O(

√
�) where � is the number of

112 X. Lu et al.

users in the ring. All of the above sub-linear size constructions are secure in the
common reference string model that requires a trusted setup. The first sub-linear
ring signature without relying on a trusted setup is due to Groth and Kohlweiss
[28]. It features logarithmic size signature and is secure in the random oracle
model.

Classical Linkable Ring Signatures. Since the first proposal of linkable ring sig-
nature [36], we have seen a sequence of work [8,35,50,52] that provides different
features. In 2005, Tsang and Wei [52] extends the genric ring signature intro-
duced by Dodis et al. [20] to a linkable version, which also features constant
signature size and is secure in the random oracle model. Au et al. [8] presented
a new security model for linkable ring signatures and a new short linkable ring
signature scheme that is secure in this strengthened model. In 2014, Liu et al.
[35] presented the first linkable ring signature scheme achieving unconditional
anonymity. Sun et al. [50] proposed a new generic linkable ring signature to
construct RingCT 2.0 for Monero. There are also schemes with special proper-
ties such as identity-based linkable ring signatures [10,51] and certificate-based
linkable ring signatures [9].

Lattice-Based Ring Signatures. For ring signatures in the lattice setting, Brak-
erski and Kalai [15] proposed a generic ring signature scheme in the standard
model. This generic construction is based on a new primitive called ring trap-
door functions. They instantiated this function based on the inhomogeneous
short integer solution problem (ISIS). However, the resulting scheme is only
secure under a weak definition. To achieve full security, an inefficient transfor-
mation is needed. Melchor et al. [2] transforms Lyubashevsky’s lattice-based
signature [39] into a ring signature. As the authors pointed out themselves, their
scheme is “pretty unpractical”. In 2016, Libert et al. [34] presented a lattice-
based accumulator. With the accumulator and a lattice-based zero-knowledge
proof system, they build a ring signature scheme that features logarithmic sig-
nature size. However, the zero-knowledge arguments applied in the accumulator
is very inefficient. The state-of-the-art is the lattice-based ring signature scheme
proposed by Esgin et al. [25]. They adapt the efficient one-out-of-many proof
[14,28] to build a lattice-based ring signature scheme. Same as [25,34] is also a
logarithmic size ring signature scheme and is secure in the random oracle model.

Lattice-Based Linkable Ring Signatures. The first lattice-based linkable ring sig-
nature scheme was proposed by Torres et al. in 2018 [4]. It can be seen as an
instantiation of the AOS framework from the lattice-based BLISS signature [21],
with adaption to introduce linkability. The signature size is linear to the number
of members in the ring and is reported to be 51 KB per ring member. In the same
year, Baum, Lin and Oechsner [11] construct another lattice-based linkable ring
signature scheme following a very similar ideal to [4]. The signature size for [11]
is claimed to be around 10.3 KB per user. The main difference between these two
work is the way to achieve linkability. We are not aware of any implementation
of these work.

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 113

For the existing lattice-based (linkable) ring signature schemes, we are not
aware of these constructions come with any implementation. In terms of per-
formance, lattice-based (linkable) ring signatures [2,4,11] are all based on the
lattice-based sigma-protocol-based signature and thus involve additional over-
head in the form of rejection sampling which affects the performance of the
signature scheme. As mentioned above, the inefficiency of the underlying zero-
knowledge proof system makes [34] quite impractical. In this paper, we not only
present a practical and efficient lattice-based (linkable) ring signature scheme
but also implement it on a typical laptop and provide the performance.

1.2 Our Contribution

We present Raptor, the first lattice-based (linkable) ring signature with imple-
mentation. It gets its name as it is the next generation of Falcon [26] that
features a “stealth” mode. Raptor is secure in the random oracle model, based
on some widely-accepted lattice assumptions. We also present a less efficient ver-
sion that is based on standard lattice problems. We implement Raptor, and its
performance on a typical laptop is shown in Table 1(a) and (b). The experimental
setting is presented in Sect. 5.

Table 1. Performance

(a) Raptor-512

Users 5 10 50

KeyGen 29 ms 29 ms 29 ms
Sign 6 ms 9.5 ms 40 ms

verification 3 ms 6.5 ms 32 ms

PK 0.9 KB 0.9 KB 0.9 KB
SK 4.1 KB 4.1 KB 4.1 KB

Signature 6.3 KB 12.7 KB 63.3 KB

(b) Linkable Raptor-512

Users 5 10 50

KeyGen 57 ms 57 ms 57 ms
Sign 10.7 ms 17.4 ms 61 ms

verification 5.2 ms 11 ms 50 ms

PK 0.9 KB 0.9 KB 0.9 KB
SK 9.1 KB 9.1 KB 9.1 KB

Signature 7.8 KB 14.2 KB 64.8 KB

Our solution is in a sense optimal for the family of solutions where the signa-
tures are linear in terms of users: in our construction, the signature consists of a
lattice vector and a random nonce of 2λ bits per user. The best theoretical work
in linear size is due to [11], where the signature size is claimed to be 82.5 KB
with a ring size of 8. Comparing with the state-of-the-art [25] with sublinear sig-
nature size, our work is still comparing favourably for ring signature size � 1000.
As a remark, a common use case of linkable a ring signature, privacy protection
for cryptocurrency, often uses a ring size less than 20 and thus Raptor is more
preferable in this setting. The signature size of [25] is reported to be 930 KB with
26 users in the ring and 1409 KB with 210 users in the ring. The comparison of
signature size of our Raptor and other existing lattice-based (linkable) ring
signature scheme is shown in Table 2.

114 X. Lu et al.

Table 2. Comparison of lattice-based (linkable) ring signature at security level λ = 100.
Signature size increases with ring size (i.e. number of public keys in the ring).

[34] [4] [11] [25] Raptor (linkable) Raptor

Signature size growth Logarithm Linear Linear Logarithm Linear Linear

Linkability × � � × × �
Implementation × × × × � �
Signature size

with 26 users

≈ 37 MB ≈ 649 KB ≈ 585 KB 930 KB 80.6 KB 82.7 KB

with 28 users ≈ 48.1 MB ≈ 2474 KB ≈ 2340 KB 1132 KB 332.6 KB 326.5 KB

with 210 users ≈ 59.1 MB ≈ 9770 KB ≈ 9360 KB 1409 KB 1290.2 KB 1301.9KB

with 212 users ≈ 70.2 MB ≈ 39 MB ≈ 37.4 MB 1492 KB 5161 KB 5203.3 KB

In terms of security, (linkable) Raptor is backed by a new generic framework
that is provably secure in the random oracle model, under the assumption based
on RST construction. Instead of relying on one-way trapdoor permutation, the
new generic framework is based on a new primitive called Chameleon Hash
Plus (CH+) which can be instantiated from lattice setting (e.g. NTRU). Our
generic construction can additionally transform any ring signature into a one-
time linkable ring signature.

Nonetheless, when CH+ is instantiated with a standard lattice problem (i.e.,
the short integer solution problem), we base the security of (linkable) ring signa-
ture on the worst-case lattice problems that are conjectured to be hard against
quantum computers. In practice, one often resorts to NTRU lattices [31] for
better efficiency. Our (linkable) Raptor scheme is such a case, where the CH+

function is instantiated from the pre-image samplable function of Falcon [26].

1.3 Overview of Our Construction

Before presenting a high-level description of our construction, we first discuss
the subtlety of instantiating the RST generic construction from lattices. Recall
that the building block of RST ring signatures is one-way trapdoor permutation.
While trapdoor functions can be built from lattices, they are not permutations
by themselves and therefore cannot be applied directly. Consequently, all existing
linear-size lattice-based constructions opt for the AOS framework, which can be
built from any sigma-protocol based signatures. Indeed, [4,11] can be seen as
instantiations from this framework. On the other hand, we identify essential
properties required by the underlying building blocks in the RST framework.
The result is a type of trapdoor function that we called Chameleon hash plus
(CH+), a construct that is similar to Chameleon hash functions.

Building Block: CH+ The main building block for our generic constructions
is a chameleon hash plus (CH+) function. We recall the notion of chameleon
hash function which was first formalized by Krawczyk and Rabin in 2000 [32].
Chameleon hash functions are randomized collision-resistant hash functions with
an additional property that each hash key is equipped with a trapdoor. With
the trapdoor, one can easily find collisions for any input. More specifically, on
input a trapdoor tr corresponding to some chameleon hash key hk, two messages

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 115

m,m′ and a randomness r, one can efficiently compute another randomness r′

such that Hash(hk,m, r) = Hash(hk,m′, r′).
Our CH+ consists of four algorithms, namely, SetUp, TrapGen, Hash and Inv.

See Sect. 3.1 for details. Similar to a chameleon hash, without the trapdoor,
CH+ needs to be one-way and collision-resistant. There are two main difference
in CH+: 1. to compute new randomness r′ for any given message m′, only the
hash value, C = Hash(hk,m, r), is needed; whereas both the original message m
and randomness r are required in a classical Chameleon hash; 2. optionally, there
exists a system parameter paramch as an implicit input to all CH+ operations.

Our Generic Construction of Ring Signatures. We describe how we can build a
ring signature from CH+. We assume paramch is available at the setup. In the
key generation procedure, a signer runs algorithm TrapGen to obtain hash key
hk and its trapdoor tr. Signer’s public key and secret key will be hk and tr,
respectively.

Suppose a signer, Sπ, with public and secret keys (hkπ, skπ), tries to sign
message μ on behalf of a group of signer {S1, · · · , S�} (π ∈ {1, · · · , �}), Sπ

first collects all the public keys of the group of signers {hk1, · · · , hk�}. Next, for
i �= π, Sπ randomly samples message mi, randomness ri and computes hash
output Ci = Hash(hki,mi, ri); for i = π, i.e., the signer himself, Sπ samples a
Cπ.

Sπ further sets C∗ = H(μ,C1, · · · , C�, hk1, · · · , hk�) where μ is the message
to be signed and H is a collision-resistant hash function. It then computes mπ

which satisfies m1 ⊕· · ·⊕m� = C∗ and uses the trapdoor to find an rπ such that
cπ = Hash(hkπ,mπ, rπ). The signature for Sπ on μ is {(m1, r1), · · · , (m�, r�)}.
Note that without the trapdoor, it is hard to find such a randomness rπ since
CH+ is one-way and collision-resistant.

To verify the signature, one can first compute Ci = Hash(hki,mi, ri) for
i = 1, · · · , �. Then check whether m1 ⊕ · · · ⊕ m� is equivalent to H(μ,C1, · · · ,
C�, hk1,· · · ,hk�). If so, the verifier accepts the signature as signed by one of the
group members.

Our Generic Construction of Linkable Ring Signatures. Linkable ring signature
scheme allows others to link two signatures sharing the same signer. At a high
level, we will use a tag to achieve this property. The tag is a representative of the
signer’s identity for each signature. Signatures that share a same tag are linked.
It is natural to enforce that each signer only obtains one unique tag; and this
tag cannot be forged, or transferred from/to another user. We use a one-time
signature1 to achieve those properties.

During the key generation procedure, in addition to a hk and its trapdoor
tr, the signer also generates a pair of public key and secret key (opk, osk) for a
one-time signature. The signer then masks hk by H(opk) and obtains a masked
hash key hk′. The unique tag for the signer will be the public key opk. In the
end, the signer sets hk′ as public key and (tr, opk, osk) as secret key.
1 Here we will only use the public key once; the actual signature scheme does not

necessarily need to be a one-time signature scheme.

116 X. Lu et al.

When the signer Sπ signs a message μ on behalf of a group of signers
{S1, · · · , S�} (π ∈ {1, · · · , �}), it will collect the public keys of the group
{hk′

1, · · · , hk′
�} as usual. For each public key hk′

i in the group, Sπ computes hk′′
i =

hk′
i ⊕ H(opk). A new list of “public keys”, {hk′′

1 , · · · , hk′′
� }, is then formed. Note

that hk′′
π is equivalent to the original hkπ. Next, the signer Sπ invokes the (none

linkable) ring signature with keys {hk′′
1 , · · · , hk′′

� }, a trapdoor trπ and a message
μ, and obtains a (none linkable) ring signature σR = {(m1, r1), · · · , (m�, r�)} on
μ. Finally, Sπ signs μ, σR using oskπ and gets a one-time signature sig. The
linkable ring signature produced by Sπ will be {σR, opkπ, sig}. As for verifica-
tion, in addition to verifying σR, one should also check whether sig is a valid
signature on μ and σR under opkπ.

1.4 Organization

In Sect. 2, we introduce our notation, hardness assumptions in lattice, lattice-
based preimage sampleable functions and syntax for (linkable) ring signature.
We state the new primitive CH+, and our new generic construction of (linkable)
ring signature based on CH+ in Sect. 3. We then instantiate CH+ from stan-
dard lattice and NTRU in Sects. 4.1 and 4.2 respectively. We also give the full
description of our linkable Raptor in Sect. 4.3. In the last section, we present
the implementation result along with its parameter.

2 Preliminary

2.1 Notation

Elements in Zq are represented by integers in [− q
2 , q

2). For a ring R we define
Rq to be the quotient ring Zq[x]/(xn +1) with n being a power of 2 and q being
a prime. Column vectors in Z

m
q and elements in Rq are denoted by lower-case

bold letters (e.g. x). Matrices are denoted by upper-case bold letters (e.g. X).
We use x̂ to denote a column vector with entries from the ring.

For distribution D, x ←$ D means sampling x according to distribution
D. ‖v‖1 is the �1 norm of vector v and ‖v‖ is the �2 norm of v. For v̂ =
(v1, · · · ,vn)T , we define ‖v̂‖ =

√∑n
i=1 ‖vi‖2.

The continuous normal distribution over R
n centered at v with standard

deviation σ is defined as ρn
v,σ(x) = (1√

2πσ2)ne
−‖x−v‖2

2σ2 . For simplicity, when v is
the zero vector, we use ρn

σ(x).
The discrete normal distribution over Z

n centered at v ∈ Z
n with standard

deviation σ is defined as Dn
v,σ(x) = ρn

v,σ(x)

ρn
v,σ(Z

n) .

We define the exclusive-or operation of two matrix X(1) ∈ Z
n×m
q and X(2) ∈

Z
n×m
q , X(1) ⊕ X(2), as:

⎡

⎢
⎣

bq(x
(1)
11) ⊕ bq(x

(2)
11) · · · bq(x

(1)
1m) ⊕ bq(x

(2)
1m)

...
. . .

...

bq(x
(1)
n1) ⊕ bq(x

(2)
n1) · · · bq(x

(1)
nm) ⊕ bq(x

(2)
nm)

⎤

⎥
⎦

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 117

where bq(x) means that transform a value x ∈ Zq to its binary representation.
bq(.) can be efficiently computed.

2.2 Lattices and Hardness Assumptions

A lattice in m-dimension Euclidean space R
m is a discrete set

Λ(b1, · · · ,bn) =

{
n∑

i=1

xibi|xi ∈ Z

}

of all integral combinations of n linear independent vectors b1, · · · , bn in R
m

(m ≤ n). We call matrix B = [b1, · · · ,bn] ∈ R
m×n a basis of lattice Λ. Using

matrix notation, a lattice can be defined as Λ(B) = {Bx|x ∈ Z
n}.

The discrete Gaussian distribution of a lattice Λ, parameter s and center v
is defined as DΛ,v,s(x) = ρv,s(x)

ρv,s(Λ) .

Lemma 1 ([39] Lemma 4.4). For positive real number s > 0, we have

1. Prx←Dm
s

[‖x‖ ≤ 2
√

ms] ≥ 1 − 2−m;
2. Prx←Dm

s
[‖x‖ ≤ k

√
ms] ≥ 1 − kme

m
2 (1−k2).

Definition 1. Let m ≥ n ≥ 1 and q ≥ 2. For arbitrary matrix A ∈ Z
n×m
q and

vector u ∈ Z
n
q define m-dimensional full-rank integer lattices and its shift:

Λ⊥(A) = {z ∈ Z
m : Az = 0 mod q},

Λ⊥
u (A) = {z ∈ Z

m : Az = u mod q}.

Short Integer Solution (SIS) problem and Inhomogeneous Short Integer Solu-
tion (ISIS) problem are two average-case hard problems frequently used in
lattice-based cryptography constructions.

Definition 2 (SISq,n,m,β problem). Given a uniformly chosen matrix A ∈
Z

n×m
q , find x ∈ Λ⊥(A) and 0 < ‖x‖ ≤ β.

Definition 3 (ISISq,n,m,β problem). Given a uniformly chosen matrix A ∈
Z

n×m
q and vector u ∈ Z

n
q , find x ∈ Λ⊥

u (A) and 0 < ‖x‖ ≤ β.

According to [27], if q ≥ ω(
√

n log n)β and m,β = poly(n), then SISq,n,m,β

and ISISq,n,m,β are at least as hard as a standard worst-case lattice problem
SIVPγ (Shortest Independent Vector Problem) with γ = Õ(βn). Similarly, R-
SIS (R-ISIS) problems are defined as an analogue of SIS (ISIS) problem in ideal
lattices.

Definition 4 (R-SISq,m,β problem). Given a uniformly chosen vector â ∈
Rm

q , find x̂ ∈ Rm such that âT · x̂ = 0 and 0 < ‖x̂‖ ≤ β.

118 X. Lu et al.

Definition 5 (R-ISISq,m,β problem). Given a uniformly chosen vector â ∈
Rm

q and a ring element u ∈ Rq, find x̂ ∈ Rm such that âT · x̂ = u and 0 <
‖x̂‖ ≤ β.

The R-SIS problem was concurrently introduced in [40,45]. According to [40],
the R-SISq,m,β is as hard as the SVPγ (Shortest Vector Problem) for γ = Õ(nβ)
in all lattice that are ideals in R if R = Z[x]/(xn + 1), where n is a power of 2.

Definition 6 (NTRU assumption). Let a = g/f over Rq where ‖f ,g‖1 is
bounded by some parameter β < q. The NTRU assumption says it is hard to
distinguish a from a uniformly random element from Rq.

Over the years, there has been a few different versions of the NTRU assump-
tion [31,37,49]. Here we use a decisional version that is most convenient for our
proof. Note that this assumption holds as long as GapSVP problem is hard for
NTRU lattices.

2.3 Preimage Sampleable Functions and Falcon

Generating a ‘hard’ public basis A (chosen at random from some appropriate
distribution) of some lattice Λ, together with a ‘good’ trapdoor basis T has
been studied since the work of Ajtai [3]. In 2008, Gentry, Peikert and Vaikun-
tanathan [27] construct a preimage sampleable function using the ‘hard’ public
basis and trapdoor basis, and apply it as a building block to lattice-based signa-
ture schemes. This celebrated work (referred to as the GPV framework) is fol-
lowed by a sequence of improvements. Alwen and Peikert [7] is able to generate
a shorter trapdoor, compared to [27]; while Peikert [44] provides a parallelizable
algorithm to sample preimages. To the best of our knowledge, the most efficient
construction following this direction while maintaining a security proof is due to
Micciancio and Peikert [41]. Here we re-state one of their results.

Theorem 1 ([41], Theorem 5.1). There exists an efficient algorithm GenBasis
(1n, 1m, q) that given any integers n ≤ 1, q ≤ 2, and sufficiently large m =
O(n log q), outputs a parity-check matrix A ∈ Z

n×m
q and a ‘trapdoor’ T such that

the distribution of A is negl(n)-far from uniform. Moreover, there is an efficient
algorithm PreSample. With overwhelming probability over all random choices, for
any u ∈ Z

n
q and large enough s = O(

√
n log q), PreSample(A, T, u, s) samples

from a distribution within negl(n) statistical distance of DΛ⊥
u (A),s·ω(

√
log n).

On the other hand, the most efficient GPV construction in practice is due
to Prest et al. [22,26] using NTRU lattices [31]. The corresponding signature
scheme is named Falcon [26].

Falcon is a candidate lattice-based signature scheme to the NIST post-
quantum standardization process [42]. It is the resurrection of NTRUSign [30]
with the aforementioned GPV framework for transcript security [22,27], and a
fast Fourier sampling for efficiency [23]. It is by far the most practical candidates
among all submitted proposals, in terms of the combined sizes of public keys and
signatures; and the only solution that provides a preimage sampleable function.
In terms of security,

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 119

– Falcon stems from the provable secure GPV construction [27], under the
(quantum) random oracle model [13];

– although the parameters in Falcon does not support GPV’s security proof,
they are robust against best known attacks2.

Falcon Signature Scheme. We now give the high level description of Falcon
signature scheme. The detail of the scheme can be found in [26]. Here we assume
the signature scheme works over a polynomial ring Rq := Zq[x]/(xn + 1).

– Falcon.KeyGen(1λ) → (a,T): this algorithm takes security parameter 1λ

as input and chooses random f and g polynomials (f ,g ∈ Rq) using an
appropriate distribution. The public key will be set as a = g/f and the secret

key T :=
[
f g
f̄ ḡ

]
is the trapdoor of a. f̄ and ḡ satisfy f ḡ−gf̄ = q mod (xn +1)

and f , g, f̄ ḡ should be short.
– Falcon.Sign(a,T;μ) → (r0, r1): the signing algorithm first hashes the mes-

sage μ into a polynomial c ∈ Rq. Then it uses the short trapdoor T to produce
a pair of short polynomials (r0, r1) such that r0 + ar1 = c.

– Falcon.Verify(a, (r0, r1), μ) → 0/1: this algorithm verifies that (r0, r1) is a
pair of appropriately short polynomials and c = r0 + ar1 where c is the hash
of message μ. If all pass, output 1; otherwise, output 0.

2.4 Syntax

In this section, we are going to introduce the syntax of ring signature and linkable
ring signature.

Ring Signature. A ring signature scheme usually is a tuple of four algorithms
(Setup, KeyGen, Signing, Verification):

– Setup(1λ)→ param: On input security parameter 1λ, this algorithm generates
system parameter param. We assume param is an implicit input to all the
algorithms listed below.

– KeyGen→ (sk, pk): By taking system parameter param, this key generation
algorithm generates a private signing key sk and a public verification key pk.

– Signing(sk, μ, Lpk) → σ: On input message μ, a list of user public keys Lpk,
and signing key sk of one of the public keys in Lpk, the signing algorithm
outputs a ring signature σ on μ.

– Verification(μ, σ, Lpk)→ accept/reject: On input message μ, signature σ
and list of user public keys Lpk, the verification algorithm outputs accept if
σ is legitimately created; reject, otherwise.

Correctness: the scheme is correct if signatures generated according to above
specification are always accepted during verification.
2 In practical lattice-based cryptography, it is common to derive parameters from best

known attacks other than security proofs. For example, see [5,6].

120 X. Lu et al.

Linkable Ring Signature. A linkable ring signature scheme usually consists
of five algorithms, namely, (Setup, KeyGen, Signing, Verification, Link):

– Setup(1λ)→ param: On input the security parameter 1λ, this algorithm gen-
erates the system parameter param. We assume param is an implicit input to
all the algorithms listed below.

– KeyGen→ (sk, pk): By taking the system parameter param, this key gener-
ation algorithm generates a private signing key sk and a public verification
key pk.

– Signing(sk, μ, Lpk) → σ: On input a message μ, a list of user public keys Lpk,
and a signing key sk of one of the public keys in Lpk, the signing algorithm
outputs a ring signature σ on μ.

– Verification(μ, σ, Lpk)→ accept/reject: On input a message μ, a signature
σ and a list of user public keys Lpk, the verification algorithm outputs accept
if σ is legitimately created. Otherwise, output reject.

– Link (σ1, σ2, μ1, μ2, L
(1)
pk , L

(2)
pk)→ linked/unlinked: This algorithm takes

two messages μ1, μ2 and their signatures σ1 and σ2 as input, output linked
or unlinked.

Correctness: the scheme is correct if: signatures signed as above is always
accepted during verification; and two legally signed signatures are linked if and
only if they share a same signer.

Due to page limitation, we omit the detailed security requirements for (link-
able) ring signature. Usually, a ring signature scheme is said to be secure if the
scheme is anonymous and unforgeable. A linkable ring signature scheme is said to
be secure if the scheme is anonymous, linkable, nonslanderable and unforgeable.
The detailed security requirements can be found in full version [38].

3 Our Generic Constructions

In this section, we present our generic construction of CH+ and our (linkable)
ring signature scheme based on CH+.

3.1 Chameleon Hash Plus

CH+ can be considered as a variant of Chameleon hash functions. A CH+ consists
of four algorithms, namely, SetUp, TrapGen, Hash and Inv, as follow:

– SetUp(1λ) → paramch: On input security parameter 1λ, this algorithm gen-
erates system parameter paramch. paramch will be an implicit input to Hash
and Inv.

– TrapGen(1λ) → (hk, tr): This algorithm takes security parameter 1λ as input
and returns a pair (hk, tr) where hk and tr are respectively a hash key and a
trapdoor.

– Hash(hk,m, r) → C: On input hash key hk, message m and randomness r,
this algorithm returns hash output C.

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 121

– Inv(hk, tr, C,m′) → r′: On input hash key hk, trapdoor tr, hash output C and
message m′, this algorithm returns randomness r′ s.t. Hash(hk,m′, r′) = C.

We require CH+ to satisfy following requirements:

1. CH+ should be one-way and collision resistant. In other words, for all PPT
A, there exists a negligible function negl(λ) such that

Pr[{(m0, r0), (m1, r1)} ← A(1λ, hk, paramch) : (m0, r0) �=
(m1, r1) ∧ Hash(hk, m0, r0) = Hash(hk, m1, r1)] = negl(λ);

Pr[(m, r) ← A(1λ, C, hk, paramch) : Hash(hk, m, r) = C] = negl(λ).

2. For hash key hk generated from TrapGen, assuming the range of hk is Rhk,
the distribution of hk should be either statistically close to uniform in Rhk;
or computationally close to the uniform distribution with an additional prop-
erty that the probability a randomly sampled h̄k ←$ Rhk has a trapdoor is
negligible.

3. For r′ generated from Inv, the distribution of r′ should be with negl(λ) dis-
tance from the distribution where r is sampled from.

3.2 A New Framework for Ring Signatures

Our ring signature is constructed as follows:

– Setup(1λ) → param: On input the security parameter 1λ, this algorithm
chooses a hash function H : {∗} → RC . It also runs SetUp(1λ) → paramch.

– KeyGen → (sk, pk): This algorithm generates (hk, tr) ← TrapGen(1λ). Then
it sets public key pk = hk and secret key sk = tr.

– Signing(skπ, μ, Lpk) → σ: On input a message μ, a list of user public keys
Lpk = {pk1, · · · , pk�}, and a signing key skπ = trπ of pkπ = hkπ ∈ Lpk, the
signing algorithm runs as follow:
1. For i ∈ [1, · · · , �] and i �= π, pick mi and ri at random. Compute Ci =

Hash(hki,mi, ri). For i = π, pick Cπ at random from its possible range
RC .

2. Compute mπ such that m1⊕· · ·⊕mπ ⊕· · ·⊕mn = H(μ,C1, · · · , C�, Lpk).
3. Given mπ and Cπ, invoke Inv(hkπ, trπ, Cπ,mπ) → rπ.

The ring signature of μ and Lpk is σ = {(m1, r1), · · · , (m�, r�)}.

– Verification(μ, σ, Lpk) → accept/reject: On input a message μ, a signature
σ and a list of user public keys Lpk, the verification algorithm first phrases
σ = {(m1, r1), · · · , (m�, r�)}. It then checks whether each pair of (mi, ri)
satisfies Ci = Hash(hki,mi, ri) for all i ∈ [1, · · · , �] and whether m1 ⊕ · · · ⊕
m� = H(μ,C1, · · · , C�, Lpk). If yes, output accept. Otherwise, output reject.

122 X. Lu et al.

3.3 A New Framework for Linkable Ring Signatures

Our linkable ring signature is constructed as follows:

– Setup(1λ) → param: On input the security parameter 1λ, this algorithm
chooses two hash functions H and H1. It also runs SetUp(1λ) → paramch and
selects a one-time signature scheme ΠOTS = {OKeygen,OSign,OVer}.

– KeyGen → (sk, pk): This algorithm first generates (hk, tr) ← TrapGen(1λ).
It also generates a pair of ΠOTS public key and secret key (opk, osk) ←
OKeygen(1λ) and computes mk = H1(opk). It then computes hk′ = hk ⊕ mk.
Finally, it sets public key pk = hk′ and secret key sk = {tr, opk, osk}.

– Signing(skπ, μ, Lpk) → σ: On input a message μ, a list of user public keys
Lpk = {pk1, · · · , pk�}, and a signing key skπ = {trπ, opkπ, oskπ} of pkπ =
hk′

π ∈ Lpk, the signing algorithm runs as follow:
1. Compute mkπ = H1(opkπ).
2. For i ∈ [1, · · · , n] and i �= π, pick mi and ri at random. Compute hki =

hk′
i ⊕ mkπ and Ci = Hash(hki,mi, ri). For i = π, pick Cπ at random.

3. Compute mπ such that m1 ⊕· · ·⊕mπ ⊕· · ·⊕m� = H(μ,C1, · · · , C�, Lpk).
4. Given mπ and Cπ, compute rπ ← Inv(hkπ, trπ, Cπ,mπ).
5. Compute one-time signature sig =OSign(oskπ; (m1, r1), · · · , (m�, r�),Lpk,

opkπ).
The linkable ring signature of μ and Lpk is σ = {(m1, r1), · · · ,
(m�, r�), opkπ, sig}.

– Verification(μ, σ, Lpk) → accept/reject: On input a message μ, a signature σ
and a list of user public keys Lpk = {hk′

1, · · · , hk′
�}, the verification algorithm

first phrases σ = {(m1, r1), · · · , (m�, r�), opk, sig}. This algorithm runs as
follow:
1. It first computes mk = H1(opk). It also computes hki = hk′

i ⊕ mk and
Ci = Hash(hki,mi, ri) for all i ∈ [1, · · · , �];

2. It checks whether m1 ⊕ · · · ⊕ m� = H (μ,C1, · · · , C�, Lpk);
3. Verify the signature via OVer(opk; sig; (m1, r1), · · · , (m�, r�), Lpk, opk).

If all pass, output accept. Otherwise, output reject.
– Link(σ1, σ2, μ1, μ2, L

(1)
pk , L

(2)
pk) → linked/unlinked : On input two message sig-

nature pairs (μ1, σ1) and (μ2, σ2), this algorithm first checks the valid-
ity of signatures σ1 and σ2. If Verification(μ1, σ1, L

(1)
pk) → accept and

Verification(μ2, σ2, L
(2)
pk) → accept, it phrases σ1 = {(m(1)

1 ,r(1)1), · · · ,(m(1)
� ,

r
(1)
�), opk1,sig1} and σ2 = {(m(2)

1 , r
(2)
1), · · · , (m(2)

� , r
(2)
�), opk2, sig2}. The algo-

rithm outputs linked if opk1 = opk2. Otherwise, output unlinked.

Our generic ring signature scheme and linkable signature scheme are both
secure under random oracle model. Due to page limitation, the security proof of
our generic constructions is omitted. The detailed security proof can be found
in full version [38].

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 123

4 Instantiation

In this section, we will show how to build CH+ from standard lattice problems
and from NTRU assumptions.

4.1 Instantiation of CH+ from Standard Lattice

Here we present our first instantiation of CH+ from standard lattice.
SetUp(1λ) → H: On input the security parameter 1λ, this algorithm randomly
samples a matrix H ←$ Z

n×k
q . The matrix H will be an implicit input to Hash

and Inv algorithm.
TrapGen(1λ) → (A,T): This algorithm runs GenBasis (1n, 1m, q) → (A,T) where
A ∈ Z

n×m
q is a parity-check matrix and T is a ‘good’ trapdoor basis of Λ⊥(A).

Hash(A,b, r) → c: On input hash key A, binary message vector b ∈ {0, 1}k and
randomness vector r ← Dm

s , this algorithm computes c = Hb+Ar and returns
c.
Inv(A,T, c,b′) → r′: On input hash key A ∈ Z

n×m
q and its trapdoor T, a

vector c ∈ Z
n
q , a binary vector b′ ∈ {0, 1}k, it computes u = c − Hb′ and

r′ = PreSample(A,T,u, s′) where s = s′ω(
√

log n).
Now we argue that this instantiation satisfies our requirements of CH+ in

Sect. 3.1.

– Our instantiation is collision resistant and one-way if SISq,n,m′,β and
ISISq,n,m′,β are hard for m′ = m + k, β =

√
8ms2 + 2k and β =

√
4ms2 + k

respectively.
– For the second requirement, according to Theorem 1, we have the distribution

of parity-check matrix A ∈ Z
n×m
q generated from GenBasis algorithm is within

negl(n) far from uniform. Thus, the distribution of A is statistically close to
uniform in Z

n×m
q . Our instantiation satisfies the second requirement.

– For the third requirement, this instantiation requires that randomness vector
r is sampled from Gaussian distribution Dm

s . According to Theorem 1, if
we set deviation s appropriately (i.e., greater than the smooth parameter
of T, see [27]), the random vector r′ sampled by algorithm Inv is within
negl(n) statistical distance of Dm

s . Thus our instantiation satisfies the third
requirement.

4.2 Instantiation of CH+ from NTRU

The Falcon-based CH+ scheme consists of following algorithms:
SetUp(1λ) → (h,Db,Dr): On input the security parameter 1λ, this algorithm
firstly sets up the polynomial ring Rq and samples h ←$ Rq. It also sets related
distributions:

– Db: a uniform distribution over Rq with binary coefficients;
– Dr: a discrete Gaussian distribution over Rq × Rq.

124 X. Lu et al.

TrapGen(1λ) → (a,T): This algorithm takes security parameter 1λ as input and
then runs Falcon key generation function to obtain a tuple (a,T) where the
public description of CH+, namely, a = g/f is computationally indistinguishable

from uniform over Rq under NTRU assumption; T :=
[
f g
f̄ ḡ

]
is the trapdoor of

a.
Hash(a,b, r) → c: On input a hash key a, a binary message string b ∈ Db

and randomness r := (r0, r1) ∈ Dr, this algorithm returns a hash output c :=
r0 + ar1 + hb ∈ Rq.
Inv(a,T, c,b′) → r′: On input hash key a, its trapdoor T, a ring element c
and a binary message b′, this algorithm first computes u = c − b′h. It then
generates a falcon signature r′ := (r′

0, r
′
1) on u such that r′

0 +r′
1a = u. It returns

r′ ∈ Dr such that Hash(a,b′, r′) = c. The distribution of r′ will be identical to
the distribution of r used in Hash due to the property of GPV sampler.

This instantiation satisfies our requirements of CH+ in Sect. 3.1.

– The one-wayness and collision resistance of this instantiation is based on
NTRU assumption, R-SIS and R-ISIS. According to NTRU assumption,
a is computationally close to uniform. For a R-SIS3,q,β problem instance3

{e1, e2, e3}, we can compute {1,a′,h′} = {e1
e1

, e2
e1

, e3
e1

}. a′ should be indistin-

guishable with a real hash key a. By obtaining a collision {r(0)0 , r(0)1 ,b(0)},
{r(1)0 , r(1)1 ,b(1)} on hash key a′ and public parameter h′. We have

((r(0)0 − r(1)0) + a′(r(0)1 − r(1)1) + h′(b(0) − b(1))) = 0.

We find a solution to the problem instance {e1, e2, e3}. We can use the similar
way to argue the one-wayness of NTRU instantiation.

– Under NTRU assumption, Falcon public key is computationally indistin-
guishable from uniform; and the probability that a uniform sampled ring
element ā ←$ Rq having a Falcon trapdoor is negligible.

– Falcon is essentially a GPV sampler over NTRU. Therefore, according to
Theorem 1, if the deviation s of Dr is greater than the smoothing parameter,
then r′ generated by algorithm Inv will be within negl(n) statistical distance
of DΛ⊥

u (a),s. Thus our instantiation satisfies the third requirement.

4.3 Full Description of Linkable Raptor

Here we present the full description of linkable Raptor. Falcon works over a
polynomial ring Rq := Zq[x]/(xn + 1) for n ∈ {512, 1024} and q = 12289. There
is a third parameter set with a different, more complicated polynomial ring. For
simplicity, we omit this parameter set. For easiness of implementation, we will
also use Falcon to instantiate ΠOTS .
Setup(1λ) → param: On input the security parameter 1λ, this algorithm chooses
a hash function H: {∗} → {0, 1}n, a suitable Rq and distributions Db,Dr for the

3 We require at least one of the three elements is invertible over Rq. For Falcon-512,
the probability is (1 − 1/q)N ≈ 96%.

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 125

security level, where Db := {0, 1}256, Dr := D2
Rq,η, DRq,η is a discrete Gaussian

distribution over Rq with deviation η, and η ≈ 1.17
√

q is the smooth parameter.
It also picks a public polynomial h ←$ Rq at random as paramch. It also chooses
a hash function H1: {∗} → Rq.
KeyGen→ (sk, pk): This algorithm firstly generates (a, f ,g, f̄ , ḡ) ← Fal-

con.KeyGen (param), and (aots, fots,gots, f̄ots, ḡots) ← Falcon.KeyGen(param).
Then it sets a′ := a + H1(aots) mod q.

The public key pk = a′ and secret key sk = {f ,g, f̄ , ḡ, fots,gots, f̄ots,
ḡots,aots}.
Signing(skπ, μ, Lpk, param) → σ: On input message μ, list of user public keys
Lpk = {pk1, · · · , pk�}, and signing key skπ = {fπ,gπ, f̄π, ḡπ, fots,gots, f̄ots, ḡots,
aots} of pkπ = a′

π, and the system parameter param, the signing algorithm runs
as follow:

1. For i ∈ [1, · · · , �], compute ai = a′
i − H1(aots) mod q.

2. For i ∈ [1, · · · , �] and i �= π, picks bi ←$ {0, 1}256 and (ri,0, ri,1) ← D2
Rq,η.

Compute ci = ri,0 + airi,1 + hibi.
3. For i = π, pick cπ ←$ Rq.
4. Compute bπ such that b1 ⊕ · · · ⊕ bπ ⊕ · · · ⊕ b� = H(μ, c1, · · · , c�).
5. Set uπ = cπ − hbπ.
6. Set (rπ,0, rπ,1) = Falcon.sign(aπ, (fπ,gπ, f̄π, ḡπ);uπ) such that rπ,0 +

rπ,1aπ = uπ.
7. Compute sig := Falcon.sign (aots, (fots, gots, f̄ots, ḡots); ({ri,0, ri,1,

bi}�
i=1,{a′

i}�
i=1, aots)).

The ring signature of μ and Lpk is σ ={{ri,0, ri,1, bi}�
i=1,aots, sig}.

Verification(μ, σ, Lpk)→ accept/reject: On input message μ, signature σ and a
list of user public keys Lpk, the verification algorithm performs as follows:

1. phrases σ = {{ri,0, ri,1,bi}�
i=1,aots, sig};

2. For i ∈ [1, · · · , �], compute ai = a′
i − H1(aots) mod q;

3. checks whether for each tuple of (ri,0, ri,1,bi), ‖ri,0‖, ‖ri,1‖ ≤ B1 and bi ∈
Db; outputs reject if not.

4. computes ci = ri,0 + airi,1 + hibi for all i ∈ [1, · · · , �] and checks whether
b1 ⊕ · · · ⊕ b� = H(μ, c1, · · · , c�); outputs reject if not.

5. verifies sig is a signature for ({ri,0, ri,1,bi}�
i=1, {a′

i}�
i=1,aots) with public key

aots; outputs reject if fails.
6. outputs accept.

Link(σ1, σ2, μ1, μ2, L
(1)
pk , L

(2)
pk) → linked/unlinked : On input two message sig-

nature pairs (μ1, σ1) and (μ2, σ2), this algorithm first checks the validity of
signatures σ1 and σ2. It then phrases σ1 = {{r(1)i,0 , r(1)i,1 , b(1)

i }�
i=1,a

(1)
ots, sig1}

and σ2 = {{r(2)i,0 , r(2)i,1 , b(2)
i }�′

i=1, a(2)ots, sig2}. This algorithm outputs linked if

a(1)ots = a(2)ots. Otherwise, output unlinked.
For a legitimately produced ring signature σ, each (ri,0, ri,1) pair should be

distributed according to D2
Rq,η, thus the acceptance bound B1 of ri,0, ri,1 should

126 X. Lu et al.

be νη
√

n where ν is set such that ‖ri,0‖, ‖ri,1‖ ≤ B1 with probability 1 − 2−100

according to Lemma 1.
Note that in this implementation we use additions and subtractions over the

Rq instead of bit-wise XOR operations. Under the random oracle model H1(aots)
will output a random ring element. This creates a perfect one-time mask that
assures a′ is indistinguishable from random.

5 Parameters and Implementation

Here we give some parameter figures for Raptor-512, instantiated with Fal-

con-512. Our Raptor-512 uses a signature size of (617 × 2 + 32)� ≈ 1.26� kilo
bytes, where � is the number of users in a signature. This is because, for each
tuple {ri,0, ri,1,bi} within a ring signature, we need a pair of ri,0 and ri,1, each
of 617 bytes, and an additional 32 bytes for bi to avoid any search attacks [29].
This parameter set yields 114 bits security against classical attackers, and 103
bits security against quantum attackers, under the BKZ2.0 framework [19] with
(quantum) sieving algorithm [6,33].

As for linkable Raptor-512, we need an additional Falcon public key and
signature which is of size 897 + 617 ≈ 1.5 kilo bytes. This accounts for a total of
(1.3� + 1.5) kilo bytes.

For conservative purpose, one may also choose Falcon-1024 for better secu-
rity, which results in a signature size of 2.5� kilo bytes for Raptor-1024, and
(2.5� + 3) kilo bytes for linkable Raptor-1024. The security level for both
schemes will be over 256 bits.

We implemented Raptor-512 on a typical laptop with an Intel 6600U pro-
cessor. The performance is shown in Table 1(a) and (b). Our source code is
available at [53]. This is a proof-of-concept implementation. We did not take
into account potential optimizations such as NTT-based ring multiplication and
AVX-2 instructions. We leave those to future work.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

2. Aguilar Melchor, C., Bettaieb, S., Boyen, X., Fousse, L., Gaborit, P.: Adapting
Lyubashevsky’s signature schemes to the ring signature setting. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 1–25.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7 1

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting, STOC 1996, pp. 99–108. ACM, New York (1996)

4. Alberto Torres, W.A., et al.: Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (lattice RingCT v1.0). In:
Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 32

https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/978-3-642-38553-7_1
https://doi.org/10.1007/978-3-319-93638-3_32

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 127

5. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 19

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: 25th USENIX Security Symposium, USENIX Security 16, 10–12
August 2016, Austin, TX, USA, pp. 327–343 (2016)

7. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2011)

8. Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures
revisited. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp.
101–115. Springer, Heidelberg (2006). https://doi.org/10.1007/11774716 9

9. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Certificate based (linkable) ring signa-
ture. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 79–92.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72163-5 8

10. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure id-based linkable and revocable-
iff-linked ring signature with constant-size construction. Theor. Comput. Sci. 469,
1–14 (2013)

11. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. In: Naccache, D., et al. (eds.) Information and Communications
Security, pp. 303–322. Springer International Publishing, Cham (2018)

12. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 4

13. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

14. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

15. Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring signatures
and identity based encryption in the standard model. Cryptology ePrint Archive,
Report 2010/086 (2010). https://eprint.iacr.org/2010/086

16. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

17. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73420-8 38

18. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

19. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/11774716_9
https://doi.org/10.1007/978-3-540-72163-5_8
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://eprint.iacr.org/2010/086
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-642-25385-0_1

128 X. Lu et al.

20. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad
hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 36

21. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

22. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 2

23. Ducas, L., Prest, T.: Fast Fourier orthogonalization. In: Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation, ISSAC 2016,
pp. 191–198. ACM, New York (2016)

24. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007)

25. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. Cryptology ePrint Archive,
Report 2018/773 (2018). https://eprint.iacr.org/2018/773

26. Fouque, P.-A., et al.: Falcon: Fast-Fourier lattice-based compact signatures over
NTRU (2018)

27. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008)

28. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

29. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC 1996, pp. 212–219. ACM, New York (1996)

30. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

31. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

32. Krawczyk, H., Rabin, T.: Chameleon signatures. In: Proceedings of the Network
and Distributed System Security Symposium, NDSS: San Diego, California, USA,
p. 2000 (2000)

33. Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: Lange, T., Steinwandt,
R. (eds.) Post-Quantum Cryptography, pp. 292–311. Springer International Pub-
lishing, Cham (2018)

34. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://eprint.iacr.org/2018/773
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 129

35. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with uncondi-
tional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2014)

36. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

37. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC 2012, pp.
1219–1234. ACM, New York (2012)

38. Lu, X., Au, M.H., Zhang, Z.: Raptor: A practical lattice-based (linkable) ring
signature. Cryptology ePrint Archive, Report 2018/857

39. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

40. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006 13

41. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

42. National Institute of Standards and Technology. Post-Quantum Cryptography
Standardization (2017)

43. Noether, S.: Ring signature confidential transactions for Monero. Cryptology ePrint
Archive, Report 2015/1098 (2015). https://eprint.iacr.org/2015/1098

44. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

45. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 8

46. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

47. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 12

48. Shor, P.W.: Polynomial time algorithms for discrete logarithms and factoring on a
quantum computer. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS,
vol. 877, p. 289. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58691-
1 68

49. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

50. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency Monero.
In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol.
10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66399-9 25

https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://eprint.iacr.org/2015/1098
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-540-71677-8_12
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-319-66399-9_25
https://doi.org/10.1007/978-3-319-66399-9_25

130 X. Lu et al.

51. Tsang, P.P., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S.: A suite of non-pairing ID-
based threshold ring signature schemes with different levels of anonymity (extended
abstract). In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp.
166–183. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16280-
0 11

52. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and
attestation. In: Deng, R.H., Bao, F., Pang, H.H., Zhou, J. (eds.) ISPEC 2005.
LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31979-5 5

53. Zhang, Z.: Raptor source code. https://github.com/zhenfeizhang/raptor

https://doi.org/10.1007/978-3-642-16280-0_11
https://doi.org/10.1007/978-3-642-16280-0_11
https://doi.org/10.1007/978-3-540-31979-5_5
https://doi.org/10.1007/978-3-540-31979-5_5
https://github.com/zhenfeizhang/raptor

Parallelizable MACs Based on the Sum
of PRPs with Security Beyond

the Birthday Bound

Alexander Moch1(B) and Eik List2

1 Universität Mannheim, Mannheim, Germany
moch@uni-mannheim.de

2 Bauhaus-Universität Weimar, Weimar, Germany
eik.list@uni-weimar.de

Abstract. The combination of universal hashing and encryption is a
fundamental paradigm for the construction of symmetric-key MACs, dat-
ing back to the seminal works by Wegman and Carter, Shoup, and
Bernstein. While fully sufficient for many practical applications, the
Wegman-Carter construction, however, is well-known to break if nonces
are ever repeated, and provides only birthday-bound security if instanti-
ated with a permutation. Those limitations inspired the community to
severals recent proposals that addressed them, initiated by Cogliati et
al.’s Encrypted Wegman-Carter Davies-Meyer (EWCDM) construction.

This work extends this line of research by studying two constructions
based on the sum of PRPs: (1) a stateless deterministic scheme that uses
two hash functions, and (2) a nonce-based scheme with one hash-function
call and a nonce. We show up to 2n/3-bit security for both of them if
the hash function is universal. Compared to the EWCDM construction,
our proposals avoid the fact that a single reuse of a nonce can lead to a
break.

Keywords: Symmetric-key cryptography · Authentication ·
Provable security · Permutation · Beyond-birthday security ·
Pseudorandom function · Universal hashing

1 Introduction

Message Authentication Codes (MACs) aim to guarantee the authenticity
and integrity of submitted messages. So, a receiver can successfully determine
with high probability whether a given pair (m, t) of message and tag has been
generated by the legitimate sender and has been transmitted correctly or not.
MACs can be stateless deterministic, randomized, stateful; in general, one also
distinguishes nonce-based constructions where the sender is responsible to supply
a unique nonce to each message to be authenticated. Since cryptographically
secure randomness can be expensive to obtain in various settings, our focus is
on stateless and nonce-based constructions, hereafter.
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 131–151, 2019.
https://doi.org/10.1007/978-3-030-21568-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_7

132 A. Moch and E. List

While the primary goal of a MAC is unforgeability, indistinguishability from
random bits can be a valuable replacement goal to evaluate the security. If tags
are indistinguishable from random, they are also hard to forge.

The Wegman-Carter approach [34] is a popular and efficient paradigm
for constructing secure MACs. There, a given message is first compressed with
a universal hash function before the result is processed by a cryptographically
secure random function. The initial approach added the hash hk′(m) of a given
message m to a key stream k to create a tag: t = hk′(m) ⊕ k; in practice,
the key stream is supposed to be computed from some secure pseudorandom
function F (ν) from some nonce ν. In [33], Shoup replaced the function F with
a permutation, addressing the fact that there exist a number of standardized
and well-analyzed block ciphers. Bernstein later proved the security of Shoup’s
construction, e.g., [3]. Bernstein’s well-known bound still ensures that the advan-
tage for any adversary that asks 2n/2 authentication queries [2] is bounded by
1.7qv�/2n, where qv is the number of verification queries and � is the maximal
message length, usually in terms of elements of a ring or field used in h. Through-
out this work, we adopt the common way of referring to security bounds that
are negligible up to O(2n/2) blocks or queries as n/2 bits of security.

Despite its simplicity, there exist two interesting directions of extending the
Wegman-Carter construction. First, the nonce requirement is a well-known con-
siderable risk: if a single nonce is repeated, the security of the construction may
collapse completely since the hash-function key could leak. Secondly, even if
nonces never repeat, its security is inherently limited by Bernstein’s birthday-
type bound. Recent works showed that Bernstein’s bound is tight [21,27], which
means that the original construction cannot provide higher security.

An ongoing series of research aims to find constructions with higher
security guarantees that retained some security also under nonce reuse. As one
of the starting points, one could identify the proposal of the Encrypted Davies-
Meyer (EDM) and the Encrypted Wegman-Carter Davies-Meyer (EWCDM)
modes by Cogliati et al. [9]. While EDM is a PRP-to-PRF conversion method
and therefore restricted to inputs of n bits length, EWCDM supports nonce-
based authentication for variable-input-length messages as does the original
Wegman-Carter construction. In EWCDM, a nonce ν is first processed by the
Davies-Meyer construction under a permutation π1; its result is XORed with
the hash of a message m and the sum is encrypted under a second independent
permutation: π2(π1(ν) ⊕ ν ⊕ hk′(m)). EDM misses the hash and uses ν as the
only message input. Its authors showed that both constructions provide at least
2n/3-bit security. Recently, Cogliati and Seurin [10] showed that one can use the
same permutation twice in EDM while retaining 2n/3-bit security.

Mennink and Neves [23] improved on EWCDM. They proved almost full (i.e.,
n-bit) security for EDM and EWCDM and further showed full n-bit security
of proposed dual constructions EDMD and EWCDMD. As a side effect, they
made Patarin’s Mirror Theory [29–31] easier to grasp for a broader audience.
Although Nandi [26] pointed out a slip in [23], which meant that the security of
the nonce-based version of its dual, EWCDMD, is still limited by the birthday

Parallelizable MACs Based on the Sum of PRPs 133

m

h1

π1

u

v

x

ν

π2

y

t

(a) HPxNP.

m

h1

π1

u

x

h2

π2

v

y

t

(b) HPxHP.

Fig. 1. Our proposed constructions. π1 and π2 represent two permutations over {0, 1}n,
h1 and h2 two universal hash functions, m a variable-length message, ν, ν1, and ν2

nonces of fixed length, and t the authentication tag.

bound, the work by Mennink and Neves opened the gates for a wider study of
possible constructions. At CRYPTO’18, Datta et al. [13] extended this direction
by the Decrypted Wegman-Carter Davies-Meyer construction (DWCDM), a
single-key variant of EWCDM that employs the permutation in both directions.
The maximal security of their construction was capped by 2n/3 bits by design.

An alternative approach has been taken by Cogliati et al. [8]. They proposed
four generic constructions based on the composition of universal hashing and
a block cipher: Hash-as-Tweak (HaT), Nonce-as-Tweak (NaT), Hash-as-Key
(HaK), and Nonce-as-Key (NaK). They proved n-bit security for all construc-
tions in the ideal-permutation model (assuming a universal hash function). How-
ever, the former two constructions require a tweakable primitive, whereas the
latter two require message-dependent rekeying.

We can identify four desiderata for interesting MACs based on permutations
and universal hashing. In terms of security, the adversary’s advantage should
remain negligible for �q � 2n/2. In terms of simplicity, the number of calls to
the primitive(s) should be minimized. For efficiency, their calls should be paral-
lelizable, and frequent rekeying should be avoided. Last but not least, they should
support variable-length messages. So, in spite of recent advances, it remains an
interesting question how one can generally achieve those aspects for stateless
deterministic and/or nonce-based constructions.

Contribution. This work analyzes two constructions based on permutations
and universal hashing using the Mirror Theory. Our first construction HPxNP is
nonce-based, whereas our second, HPxHP, is stateless deterministic. We name
them according to the fact whether they employ a universal hash function (HP)
or a nonce (NP) as inputs to the permutation. Figure 1 illustrates them schemati-
cally. We show that both modes provide O(2n/3) bits of security asymptotically.

134 A. Moch and E. List

Outline. Hereupon, we first cover briefly the necessary preliminaries used in
this work, including a brief recap of Patarin’s Mirror Theory. Thereupon, Sect. 3
proposes our three constructions whose security is then analyzed in the subse-
quent Sects. 4 and 5. Section 6 concludes.

Remark 1. We note that the HPxHP construction is clearly not novel, but an
abstraction of a variety of existing double-lane MACs, e.g., 3kf9 [37], GCM-

SIV-2 [18], or PMAC
+ [36]. However, in its abstract form, it has been studied

by Datta et al. [11] (the same authors already had studied the construction
in [12]) from a constructive view, or very recently by Leurent et al. [20] from an
attacking view. More precisely, Leurent et al. [20] proposed a forgery attack with
data complexity of O(23n/4) for such constructions. We also take the constructive
view, so that our derived security bound is also inherently limited by the result
by Leurent et al.; moreover, at the end of each analysis section, we further discuss
the effect of using 4-wise independent hash functions for our constructions, with
the positive result that the then-obtained security bounds render their result
inapplicable and lead to higher security.

2 Preliminaries

General Notations. We use calligraphic uppercase letters X ,Y for sets. We
write {0, 1}n for the set of bit strings of length n, and denote the concatenation
of binary strings x and y by x ‖ y and the result of their bitwise XOR by x ⊕ y.
We write x � X to mean that x is chosen uniformly at random from the set X .
We consider Func(X ,Y) to be the set of all deterministic maps F : X → Y and
Perm(X) to be the set of all permutations over X . Given an event E, we denote
by Pr[E] the probability of E. For two integers n, k with n ≥ k ≥ 1, we denote
the falling factorial as (n)k

def=
∏k−1

i=0 (n − i).
A (complexity-theoretic) distinguisher A is an efficient adversary, i.e., an

efficient Turing machine that is given access to a number of oracles O which it
can interact with. The task of A is to distinguish between two worlds of oracles,
one of which is chosen at the beginning of the experiment uniformly at ran-
dom. After its interaction, A outputs a bit that represents a guess of the world
that A interacted with. The distinguishing advantage between a real world P
and an ideal world O is given by ΔA (P,O) def=

∣
∣Pr

[
AP ⇒ 1

] − Pr
[
AO ⇒ 1

]∣
∣.

Throughout this work, we consider information-theoretic distinguishers, i.e., dis-
tinguishers that are computationally unbounded, and that are limited only by
the number of queries they can ask to their available oracles. We assume that
distinguishers do not ask duplicate queries or queries to which they already can
compute the answer themselves from earlier queries, as is common. W.l.o.g.,
we limit our interest to deterministic distinguishers since for each probabilistic
distinguisher, there exists a deterministic one with equal advantage that fixed
a random tape beforehand (cf. [1,7]). We briefly recall the definitions for the
advantage of distinguishing a construction from a random function (PRF) and
a random permutation (PRP), respectively.

Parallelizable MACs Based on the Sum of PRPs 135

Definition 1 (PRF Advantage). Let K, X , and Y be non-empty sets and let
F : K × X → Y and ρ � Func(X ,Y) and k � K. Then, the PRF advantage of
A w.r.t. F is defined as AdvPRF

F (A) def= ΔA (Fk, ρ).

A keyed permutation E : K × X → X is a family of permutations over X
indexed by a key K ∈ K.

Definition 2 (PRP Advantage). Let K and X be non-empty sets, E : K ×
X → X be a keyed permutation, and let π � Perm(X) and k � K. Then, the
PRP advantage of A w.r.t. F is defined as AdvPRP

Ek
(A) def= ΔA (Ek, π).

To recall the necessary definitions for universal hashing, let X and Y denote
two non-empty sets, and H = {h : X → Y} be a family of hash functions h.

Definition 3 (Almost-Universal Hash Function [5]). We say that H is ε-
almost-universal (ε-AU) if, for all distinct x, x′ ∈ X , it holds that Prh�H[h(x) =
h(x′)] ≤ ε.

Almost-XOR-universal hash functions were introduced in [19]; the term, how-
ever, is due to Rogaway [32].

Definition 4 (Almost-XOR-Universal Hash Function [19,32]). Here, let
Y ⊆ {0, 1}n for some positive integer n. We say that H is ε-almost-XOR-
universal (ε-AXU) if, for all distinct x, x′ ∈ X and arbitrary Δ ∈ Y, it holds
that Prh�H[h(x) ⊕ h(x′) = Δ] ≤ ε.

Definition 5 (k-wise Independence [35]). We say that H is k-independent
if, for all pair-wise distinct x1, . . . xk ∈ X and all y1, . . . , yk ∈ Yk, it holds that
Prh�H[h(xi) = yi, for 1 ≤ i ≤ k] = 1/|Y|k.

2.1 H-Coefficient Technique

The H-coefficients technique is a proof method due to Patarin, where we consider
the variant by Chen and Steinberger [7,28]. The results of the interaction of
an adversary A with its oracles are collected in a transcript τ . The oracles can
sample randomness prior to the interaction (often a key or an ideal primitive that
is sampled beforehand), and are then deterministic throughout the experiment
[7]. The task of A is to distinguish the real world Oreal from the ideal world Oideal.
Let Θreal and Θideal denote the distribution of transcripts in the real and the ideal
world, respectively. A transcript τ is called attainable if the probability to obtain
τ in the ideal world – i.e. over Θideal – is non-zero. Then, the fundamental Lemma
of the H-coefficients technique, the proof to which is given in [7,28], states:

Lemma 1 (Fundamental Lemma of the H-coefficient Technique [28]).
Assume, the set of attainable transcripts can be partitioned into two disjoint
sets GoodT and BadT. Further assume that there exist ε1, ε2 ≥ 0 such that for
any transcript τ ∈ GoodT, it holds that

Pr [Θreal = τ]
Pr [Θideal = τ]

≥ 1 − ε1, and Pr [Θideal ∈ BadT] ≤ ε2.

Then, for all adversaries A, it holds that ΔA (Oreal,Oideal) ≤ ε1 + ε2.

136 A. Moch and E. List

2.2 Mirror Theory

We will combine the H-coefficient technique with Patarin’s Mirror Theory, which
allows us to lower bound the amount of good transcripts. The ratio yields then
the probability for a good transcript. In the following, we recall the necessary
definitions of the Mirror Theory according to [23] that followed Patarin [29,30].

Remark 2. Mirror Theory became popular to a broader audience after its refor-
mulation by Mennink and Neves [23]. While the core ideas are not difficult to
understand, the proof by Patarin in [29] employed a recursive argument that
has been subject to intensive debates in the past, cf. [13,23]. The correctness of
the argument for the first recursion has been established, where Patarin showed
O(2n/3) bits of security for the sum of permutations [29]. Patarin’s proof had
to approximate the second recursion; a full proof would have to continue on
for many further recursions with an exponential number of cases, which seems
a highly sophisticated task. Clearly, it is out of scope of this work. Instead of
relying on the assumptions of the full Mirror Theory, we follow the line of e.g.,
[13,22] and consider it not for full n-bit security. In this work, we require only
up to O(2n/3) bits of security, thus, effectively relying only the first recursion.

Mirror theory evaluates the number of possible solutions to a system of affine
equations of the form Pai

⊕Pbi
= λi in a finite group. Let q ≥ 1 denote a number

of equations and r ≥ 1 a number of unknowns. Let P = {P1, . . . , Pr} represent
the set of r distinct unknowns and consider an equation system

E =
{
Pa1 ⊕ Pb1 = λ1, . . . , Paq

⊕ Pbq
= λq

}
,

where ai, bi for 1 ≤ i ≤ q are mapped to {1, . . . , r} by a surjective index map
ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}. Given a subset of equations I ⊆ {1, . . . , q},
the multiset MI is defined as MI =

⋃
i∈I{ϕ(ai), ϕ(bi)}.

Definition 6 (Circle-freeness). An equation system E is circle-free if there
exists no subset of indices I ⊆ {1, . . . , q} of equations s.t. MI has even multi-
plicity elements only.

So, no linear combination of equations is independent of the unknowns.

Definition 7 (Block-maximality). Let Q1, . . . ,Qs = {1, . . . , r} be a parti-
tioning of the r indices into s minimal so-called blocks s.t. for all equation indices
i ∈ {1, . . . , q}, there exists a single block index � ∈ {1, . . . , s} s.t. the unknowns
of the i-th equation are contained in only this block: {ϕ(ai), ϕ(bi)} ⊆ Q�. Then,
the system of equations E is called ξ-block-maximal for ξ ≥ 2 if there exists no
i ∈ {1, . . . , s} s.t. |Qi| > ξ.

So, the unknowns can be partitioned into blocks of size at most ξ + 1 if E is
ξ-block-maximal.

Definition 8 (Non-degeneracy). A system of equations E is non-degenerate
iff there is no I ⊆ {1, . . . , q} s.t. MI has exactly two odd multiplicity elements
and

⊕
i∈I λi = 0.

Parallelizable MACs Based on the Sum of PRPs 137

So, an equation system is non-degenerate if there is no linear combination of
one or more equations that imply Pi = Pj for distinct i, j and Pi, Pj ∈ P. The
central theorem of Patarin’s mirror theorem is then Theorem 2 in [23], which
itself is a brief form of Theorem 6 in [29].

Theorem 1 (Mirror Theorem [23]). Let ξ ≥ 2. Let E be a system of equa-
tions over the unknowns P that is (i) circle-free, (ii) ξ-block-maximal, and (iii)
non-degenerate. Then, as long as (ξ − 1)2 · r ≤ 2n/67, the number of solutions
s.t. Pi �= Pj for all pairwise distinct i, j ∈ {1, . . . , r} is at least

(2n)r

(2n)q
.

A proof sketch is given in [23, Appendix A], and the details in [29]. An
updated proof had been given in [25].

Mennink and Neves described a relaxation wherein the condition that two
unknowns Pa and Pb must differ whenever a and b differ is released to the degree
that distinct unknowns must be pairwise distinct only inside their blocks. So, it
must hold for a �= b that Pa �= Pb when a, b ∈ Rj for some j ∈ {1, . . . , s} for a
given partitioning {1, . . . , r} =

⋃s
i=1 Ri.

Definition 9 (Relaxed Non-degeneracy). An equation system E is relaxed
non-degenerate w.r.t. the partitioning {1, . . . , r} =

⋃s
i=1 Ri iff there is no I ⊆

{1, . . . , q} s.t. MI has exactly two odd multiplicity elements and
⊕

i∈I λi = 0.

In their Theorem 3, [23] extended Theorem 1 to the following relaxed form:

Theorem 2 (Relaxed Mirror Theorem [23]). Let ξ ≥ 2 and E be a system
of equations over the unknowns P that is (i) circle-free, (ii) ξ-block-maximal,
and (iii) non-degenerate. Then, as long as (ξ − 1)2 · r ≤ 2n/67, the number of
solutions s.t. Pi �= Pj for all pairwise distinct i, j ∈ {1, . . . , r} is at least

NonEq(R1, . . . ,Rs; E)
(2n)q

,

where NonEq(R1, . . . ,Rs; E) is the number of solutions to P that satisfy Pa �= Pb

for all a, b ∈ Rj for all 1 ≤ j ≤ s as well as all inequalities by E .

Mennink and Neves stress that the relaxed Theorem 2 is equivalent to Theo-
rem 1 for s = 1, i.e., when the equation system consists of a single block. More-
over, the number of solutions that are covered in the term NonEq(R1, . . . ,Rs; E)
can be lower bounded by (2n)|R1| ·

∏s
i=2 (2n − (ξ − 1))|Ri| since every variable is

in exactly one block which imposes at most ξ − 1 additional inequalities to the
other unknowns in its block.

Remark 3. We consider PRF security in the information-theoretic setting, simi-
lar to [23]. The underlying permutations are secret and assumed to be drawn uni-
formly at random from Perm({0, 1}n). Our results generalize to the complexity-
theoretic setting where the permutations π1 and π2 will be instantiated with a

138 A. Moch and E. List

block cipher E under independent random secret keys k1 and k2, Ek1 and Ek2 ,
respectively. The bounds from this paper can be easily adapted to the complexity-
theoretic setting by adding a term of 2 ·AdvPRP

Ek
(q). The term refers to twice the

maximal advantage for an adversary A′ to distinguish E : K×{0, 1}n → {0, 1}n

keyed with a random key k � K from a random permutation π, where A asks
at most q queries. Note that we employ only the forward direction of the permu-
tation; so, PRP security suffices.

3 Constructions

Let n ≥ 1 be a positive integer, and let K denote a non-empty set. Let π1, π2 �
Perm({0, 1}n) be independently uniformly at random sampled permutations over
n-bit strings. Let H = {h | h : {0, 1}∗ → {0, 1}n} be a family of ε1-AXU hash
functions; for HPxHP, we will define and use instead H1 = {h1 | h1 : {0, 1}∗ →
{0, 1}n} as a family of ε1-AU hash functions, and H2 = {h2 | h2 : {0, 1}∗ →
{0, 1}n} as a family of ε2-AU hash functions. We require the hash functions to
be sampled independently uniformly at random, which is usually realized by
sampling hash keys independently uniformly at random.

Our first, nonce-based construction, HPxNP, is illustrated in Fig. 1a.
It shares similarities with Minematsu’s Enhanced Hash-then-Mask construc-
tion [24] that had been analyzed further in [14,15]; however, Minematsu’s con-
struction used a function instead of a permutation and a per-message random
IV. In this construction, the message is hashed to an n-bit value h(m). For this
construction, we need H to be an ε-almost-XOR-universal family of hash func-
tions. An n-bit nonce ν is XORed to the hash u to obtain v := h(m) ⊕ ν; v and
ν serve as inputs to the two calls to a permutation π1 and π2, respectively, and
yield x := π1(v) and y := π2(ν). Finally, the outputs of the permutation calls
are XORed and released as authentication tag: t := x ⊕ y.

Our second construction, HPxHP, is illustrated in Fig. 1b. It consists of two
parallel invocations of the hash functions on the input message m ∈ {0, 1}∗ that
are hashed using h1 ∈ H1 and h2 ∈ H2, respectively, to two n-bit values u and v.
Those serve as inputs to the two calls to a permutation π1 and π2, respectively
and yield x := π1(u) and y := π2(v). Finally, the outputs of the permutation
calls are XORed and released as authentication tag: t := x ⊕ y.

In practice, the permutations π1 and π2 will be instantiated with a secure
block cipher E under two independent keys k1 and k2. An intuitive choice for
the hash function is, for example, polynomial hashing. Let F2n be the Galois
Field GF (2n) with a fixed primitive polynomial p(x). For n = 128, the GCM
polynomial p(x) = x128 + x7 + x2 + x+ 1 is a usual choice. The hash function is
instantiated by sampling a hash key k � F2n . Given k and a message m ∈ (F2n)�

of � blocks mi, 1 ≤ i ≤ �, polynomial hashing is then defined as the sum of

hk(m) def=
�∑

i=1

k�+1−i · mi,

Parallelizable MACs Based on the Sum of PRPs 139

where additions and multiplications are in F2n . It is well-known that, for mes-
sages of at most � blocks (after padding), polynomial hashing is �/2n-AXU and
�/2n-AU. Note that polynomial hashing requires an injective padding to prevent
trivial hash collisions; a 10∗-padding works, but may extend messages by a block.

While the sum of a polynomial hash is sequential, computing the individ-
ual terms on a few cores in parallel is well-known at the cost of storing multiple
powers of the hash key. For instance, optimized instances of GCM parallelize the
computations of four (or eight) subsequent blocks k4 ·mi, k3 ·mi+1, k2 ·mi+2, and
k4 ·mi+3, before their results are summed, reduced by the modulus, and summed
to the sum of the previous blocks

∑i−1
j=1 kjmj [16,17]. Thus, several hash multi-

plications, or two hash-function calls, or hashing and computing a permutation
are efficiently parallelizable as long as the platform is not too resource-restricted.
Note that a number of related hash functions exist with similar security proper-
ties; pseudo-dot-product hashing, BRW hashing, or combined approaches such
as [6] can half the number of necessary multiplications, and provide similar par-
allelizability. We refer the interested reader to an overview by Bernstein [4].

4 Security Analysis of HPxNP

First, we consider the construction HPxNP. Patarin’s approach [29] allows us to
obtain a bound of O(2n/3) bits of security. At the end of this section, we discuss
the implications of considering ξaverage instead, as was also suggested ibidem.

Theorem 3. Let n ≥ 1, ξ ≥ 2 be integers, and H = {h |h : {0, 1}∗ → {0, 1}n}
be a family of ε-AXU hash functions with h � H. For any nonce-respecting PRF

distinguisher A that asks at most q ≤ 2n/(67ξ2) queries, it holds that

AdvPRF

HPxNP[h,π1,π2](A) ≤ 2q2 · ε

ξ2
+

(
q
2

) · ε

2n
+

q

2n
.

Note that in this case, the optimal choice of ξ to obtain the best bound is
2n/6, assuming that ε ∈ O(2−n). Then, the bound in Theorem 3 is dominated
by the first term of O(q2/24n/3 + q2/22n + q/2n), while the number of queries is
allowed to be q ≤ 22n/3. Other values for ξ reduce either the security bound or
the number of queries.

The remainder of this section is devoted to show Theorem 3. Here, A makes
q construction queries (νi,mi), for 1 ≤ i ≤ q, that are stored together with the
query results ti in a transcript τ = {(νi,m1, t1), . . . , (νq,mq, tq)}. In both worlds,
the oracle samples h at the start uniformly at random from all hash instances.
A sees the results ti after each query. We use a common method to alleviate
the proof: after the adversary finished its interaction with the oracle, but before
outputting its final decision bit, A is given the hash-function instance h so that
it can compute the values u1, . . . , uq itself. Clearly, this only makes the adversary
stronger, but spares a discussion of security internals of the hash function.

140 A. Moch and E. List

Let 1 ≤ r ≤ 2q and consider the set P = {P1, . . ., Pr} of r unknowns. We
consider a system of q equations

E = {Pa1 ⊕ Pb1 = t1, Pa2 ⊕ Pb2 = t2, . . . , Paq
⊕ Pbq

= tq},

where Pai
:= xi = π1(h(mi) ⊕ νi) and Pbi

:= yi = π2(νi). We further define an
index mapping ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}. For all i, j ∈ {1, . . . , q}:

– ϕ(ai) �= ϕ(aj) ⇔ h1(mi) ⊕ νi �= h1(mj) ⊕ νj .
– ϕ(bi) �= ϕ(bj) since νi �= νj .
– ϕ(ai) �= ϕ(bj) since both permutations π1 and π2 are independent.

The index mapping ϕ has a range of size qx + qy, where qx = |{xi, . . . , xq}| ≤ q
and qy = |{ν1, . . . , νq}| = q.

4.1 Bad Transcripts

ϕ only exposes collisions of the form ϕ(ai) = ϕ(aj) or equivalently xi = xj . We
define the following bad events:

– bad1: there exist ξ distinct equation indices i1, i2, . . . , iξ ∈ {1, . . . , q} s.t. xi1 =
xi2 = . . . = xiξ

where ξ is the threshold given in Theorem 3.
– bad2: There exist query indices i �= j, i, j ∈ {1, . . . , q} s.t. (ui, ti) = (uj , tj).

Let us consider bad1 first. Since h is ε-AXU, the expected amount of collisions is
q2·ε. Unfortunately ε-AXU is not strong enough to allow for statements regarding
multicollisions, i.e. we cannot make a statement on the probability that three or
more input values collide. Considering the maximal block size ξ, the worst case
would be that all collisions occur in the same hash value. If there exists a block
of size (ξ + 1), this block contains ξ2 collisions. Let #Colls(q) be the random
variable that counts the collisions in h. By Markov’s Inequality, the probability
that there are more than

(
ξ
2

)
collisions in h is at most:

Pr
[

#Colls1(q) ≥
(

ξ

2

)]

≤ E(C)
(
ξ
2

) =

(
q
2

) · ε
(
ξ
2

) ≤ 2q2ε

ξ2
.

For bad2, recall that the ideal world samples the tags independently uniformly
at random. Since h is ε-AXU, it follows for some distinct pair i, j ∈ {1, . . . , q}:

Pr [ui = uj ∧ ti = tj] ≤
(
q
2

) · ε

2n
.

It follows from the sum of both probability for bad1 and bad2 that

Pr [τ ∈ BadT |Θideal = τ] ≤ 2q2 · ε

ξ2
+

(
q
2

) · ε

2n
.

Parallelizable MACs Based on the Sum of PRPs 141

4.2 Ratio of Good Transcripts

Lemma 2. The system of equations is (i) circle-free, (ii) ξ-block-maximal and
(iii) relaxed non-degenerate with respect to the partitioning into R1 �R2, where
R1 =def {ϕ(a1), . . . , ϕ(aq)} and R2 =def {ϕ(b1), . . . , ϕ(bq)}.

Proof. The proof relies on the fact that ϕ(bi) �= ϕ(bj) and ϕ(ai) �= ϕ(bj) for any
i �= j. For any I ⊆ {1, . . . , q} the corresponding multiset MI has at least |I| odd
multiplicity elements and therefore the system of equations E is (i) circle-free.

(ii) If E were not ξ-block-maximal, then there must be an ordering I =
{i1, . . . , iξ} s.t. ϕ(ai1) = . . . = ϕ(aiξ

). This is equivalent to a ξ-fold collision
xi1 = . . . = xiξ

, which contradicts the assumption that τ is a good transcript.
(iii) Suppose that E would be relaxed degenerate. Then, there would exist

a minimal subset I ⊆ 1, . . . , q that has exactly two odd multiplicity elements
corresponding to the same oracle and s.t.

⊕
i∈I ti = 0. If |I| = 1, MI would

have two elements from different oracles. If |I| = 2 and ti1 = ti2 , then we would
know that xi1 �= xi2 since νi1 �= νi2 , i.e. yi1 �= yi2 . Therefore, we have four odd
multiplicity elements. If |I| ≥ 3, there would exist at least three odd multiplicity
elements. So, E cannot be relaxed degenerate, which concludes the proof. ��
Lemma 3. Let τ ∈ GoodT and q ≤ 2n/(67ξ2). Then, it holds that

Pr [Θreal = τ]
Pr [Θideal = τ]

≥ 1 − q

2n
.

Proof. The probability to obtain a good transcript τ consists of that for obtain-
ing the tags t1, . . . , tq, and the hash-function outputs h(mi). The probability to
obtain the latter is given in both worlds by |H|−1. The bound in Lemma 3 is
determined by the ratio of the respective probabilities. This term appears in the
real world as well as in the ideal world and cancels out eventually. Hence, we
ignore it for the remainder of the analysis. The probability of obtaining the rest
of the transcript, i.e., the tags ti, in the ideal world is then given by

Pr [t1, . . . , tq| Θideal] =
1

(2n)q

since the outputs ti are sampled independently and uniformly at random from
{0, 1}n in the ideal world. In the real world, the probability is given by

Pr [Θreal = τ] ≥
NonEQ(R1,R2;E)

2nq · (2n − qx)! · (2n − qy)!
(2n!)2

=
NonEQ(R1,R2; E)
2nq(2n)qx

(2n)qy

.

Remember that qy = q since all νi are distinct.To lower bound NonEQ
(R1,R2; E), note that we have (2n)qx

choices for {Pj | j ∈ R1} and at least

142 A. Moch and E. List

(2n − 1)q possible choices for {Pj | j ∈ R2}, as every index in R2 is in a block
with exactly one unknown from R1. Thus

Pr [Θreal = τ] ≥ (2n − 1)q(2n)qx

2nq(2n)q(2n)qx

=
1

2nq

(
1 − q

2n

)
.

Hence, we obtain the ratio as in Lemma 3. ��

4.3 Using ξaverage

In [29], Patarin suggests that one potentially can consider the average instead
of the maximal block size for the sum of permutations in Mirror Theory. More
precisely, Generalization 2 of [29, Sect. 6] suggests that:

“The theorem Pi ⊕ Pj is still true if we change the condition ξmaxα � 2n

by ξaverage � 2n.”

The bottleneck in our bound is the event bad1; bad2 as well as the good tran-
scripts do not consider ξ at all and the respective terms become significant for
q = 2n. Upper bounding the block size is necessary to ensure the condition
q ≤ 2n/(67ξ2max). Using a universal family of hash functions only allows for a
very crude upper bound of the maximal block size which limits us at a security
level of around 22n/3 queries.

If we could use the average block size as suggested by Patarin, we are limited
by the condition q ≤ 2n/(67ξ2average); then, bad1 would no longer be necessary
and would significantly improve the bound. The following theorem would yield
an upper bound on the expected average block size ξaverage.

Theorem 4. For any q ≤ 2n and ε ≤ 1, we expect that ξaverage ≤ (q − 1)ε + 2.

The proof is deferred to the full version of this work, but we will briefly sketch
the idea for ε = 2−n: For q � 2n, the expected amount of collisions q2/2n is in
O(q). For q = 2n, the expected amount of collisions is 2n−1. In the worst case
(regarding the average), the collisions are uniformly distributed, i.e. h(m1) =
h(m2), h(m3) = h(m4), . . . , h(m2n−1) = h(m2n). This pattern corresponds to
the case that every block were of size 3 and hence the average is 3 as well. Any
other pattern would not increase the average block size. The proof will consider
the more general case for ε. From Theorem 4, we obtain

q ≤ 2n

67((q − 1)ε + 2)2
.

We note that the use of ξaverage implies the need to employ the stronger form
of the Mirror Theory, that assumes that the iterated proof suggested by Patarin
holds. Both the stronger form of the Mirror Theory and the Generalization 2
[29] are subject to their own analysis.

Parallelizable MACs Based on the Sum of PRPs 143

5 Security Analysis of HPxHP

The analysis of HPxHP shares many similarities with that of HPxNP, but
differs in certain key points. Regarding the maximum block size, a hash collision
(considering the hashes separately) may occur now on one of both sides, i.e., there
may be a collision in h1(m) = h1(m′) or in h2(m) = h2(m′), which increases the
block size and effectively doubles the probability of obtaining a hash collision.1

Further, since collisions may occur on both sides, it is possible to obtain a circle.
With a universal hash function, we can obtain security up to O(22n/3) queries,

matching the security bound of earlier analyses. With a stronger k-wise indepen-
dent hash function, it is possible to obtain security up to O(2

(n−1)k
k+1) queries.

Putting stronger requirements on the family of hash functions increases its size
and therefore the length of the key. We still find this result interesting since
recent results [20] provided attacks with a query complexity of O(23n/4). If we
demand stronger properties from the hash function, our security level exceeds
the complexity by the known attacks. Again, we provide an analysis with a uni-
versal hash function and ξmax first. Thereupon, we will argue about the necessary
proof changes to adapt to stronger hash-function families.

Theorem 5. Let n ≥ 1, ξ ≥ 2 be integers and H1 and H2 be ε1 and ε2-AU
families of hash functions, respectively, and let h1 � H1 and h2 � H2 be
sampled independently uniformly at random. Let ε =def max{ε1, ε2}. For any
PRF distinguisher A that asks at most q ≤ 2n/(67ξ2) queries, it holds that

AdvPRF

HPxHP[h1,h2,π1,π2](A) ≤ 4q2ε

ξ2
+ 3 · (qε)2 + q3ε2 +

ξ · q

2n − ξ
.

For ξ = 2n/6, and assuming an optimal ε = O(2−n), the bound in Theo-
rem 5 has the form of O(q2/24n/3 + q2/22n + q3/22n + q/25n/6) for q ∈ O(22n/3)
queries. So, it is dominated by the first term. The remainder of this section
contains the proof of Theorem 5. Consider a deterministic distinguisher A that
has access to either HPxHP[h1, h2, π1, π2] or ρ, which chooses the outputs given
to A uniformly at random. A makes q construction queries mi that are stored
together with the query results ti in a transcript τ = {(m1, t1), . . . , (mq, tq)}. In
both worlds, the oracle samples h1 and h2 at the beginning independently and
uniformly at random from their hash families. A sees the results ti after each
query. Again, we make the adversary stronger by defining that the hash keys
are revealed to the adversary after it finished its interaction with the oracle, but
before outputting its final decision bit.

Let 1 ≤ r ≤ 2q and consider the set P = {P1, . . ., Pr} of r unknowns. Again,
we consider a system of q equations

E = {Pa1 ⊕ Pb1 = t1, Pa2 ⊕ Pb2 = t2, . . . , Paq
⊕ Pbq

= tq},

1 Technically speaking, there is a total of q(q − 1)/2 of input pairs. When bounding
the probability of a collision we used q2 instead, ignoring the factor 1/2.

144 A. Moch and E. List

where Pai
:= xi = π1(h1(mi)) and Pbi

:= yi = π2(h2(mi)). We further define an
index mapping ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}; ϕ maps equal permutation
outputs xi = xj that occur for any i �= j (from equal hash values ui = uj) to the
same unknown Pk; similarly, ϕ maps equal permutation outputs yi = yj that
occur for any i �= j (from equal hash values vi = vj) to the same unknown P�.
For all i, j ∈ {1, . . . , q}, it holds that

– ϕ(ai) �= ϕ(aj) ⇔ h1(mi) �= h1(mj).
– ϕ(bi) �= ϕ(bj) ⇔ h2(mi) �= h2(mj).
– ϕ(ai) �= ϕ(bj) since both permutations π1 and π2 are independent.

In the real world, the transcript has collisions in the values xi = xj or yi = yj for
i �= j, when the corresponding hash values ui = uj or vi = vj collide. A collision
in xi and xj corresponds to a collision in ϕ(ai) and ϕ(aj) and a collision in yi

and yj corresponds to a collision in ϕ(bi) and ϕ(bj). Multi-collisions in the range
values of π1 and π2 correspond to blocks in the mirror theory. To upper bound
the size of the largest block Qk, we need to consider a special type of collision
between two queries i and j. In this setting, we say that two queries i and j
collide if h1(mi) = h1(mj) and/or2 h2(mi) = h2(mj). The probability for such
a collision to happen is ε1 + ε2 ≤ 2ε.

We define an event bad1 if there exists a ξ-multi-collision in any subset of
queries {i1, . . . , iξ+1} ⊆ {1, . . . , q}, where ξ is the threshold in Theorem 5. We
need to consider four more events that render a transcript to be bad:

– bad1: There exists a subset I ⊆ {1, . . . , q} of size |I| = ξ, s.t. for each pair of
distinct indices i, j ∈ I, it holds that ϕ(ai) = ϕ(aj) and/or ϕ(bi) = ϕ(bj); ξ
is the threshold in Theorem 5.

– bad2: There exist i �= j, i, j ∈ {1, . . . , q} s.t. (ui, vi) = (uj , vj) and ti �= tj .
– bad3: There exist i �= j, i, j ∈ {1, . . . , q} s.t. (ui, ti) = (uj , tj) and vi �= vj .
– bad4: There exist i �= j, i, j ∈ {1, . . . , q} s.t. (vi, ti) = (vj , tj) and ui �= uj .
– bad5: There exists a subset I ⊆ {1, . . . , q} s.t. MI contains only elements of

even multiplicity.

If an attainable transcript τ is not bad, we define τ as good. We denote by GoodT
and BadT the sets of good and bad transcripts, respectively. In the H-coefficient
technique, the probability that a transcript is bad is analyzed solely for the ideal
world. The bound in Theorem 5 follows then from Lemma 1 and Lemmas 4, 5
and 6.

5.1 Bad Transcripts

Lemma 4. Let ξ ≥ 1 denote the threshold from Theorem 5. It holds that

Pr [τ ∈ BadT| Θideal = τ] ≤ 4q2ε

ξ2
+ 3 · (qε)2 + q3ε2.

2 To avoid confusion, by ‘and/or’ we actually mean the logical ‘or’.

Parallelizable MACs Based on the Sum of PRPs 145

Proof. In the following, we upper bound the probability that a transcript is bad.
Most of the time, we can upper bound the probabilities of the individual bad
events to occur and simply take the sum of their probabilities. We will postpone
the discussion of the first bad event and begin with the second bad event.

For bad2, it holds that h1 and h2 are both ε-AU and independent. We drop
the condition ti �= tj since it only decreases the probability and an upper bound
suffices for our purpose. The probability that both hash values collide simulta-
neously for two queries is at most

Pr [bad2] ≤
(

q

2

)

ε2 ≤ q2ε2

2
.

For the third and fourth bad events, the probabilities can be formulated similarly.
To upper bound bad3, the probability that ui = uj is again at most ε for a fixed
pair of distinct query indices i �= j. Since the outputs ti and tj are sampled
uniformly at random and independently from the hash values, we can again
neglect the requirement vi �= vj and obtain the same upper bound for bad3 as
for bad2, when we use ε ≥ 2−n. A similar argument holds for bad4.

When upper bounding the probability of bad5, we are limited by the hash
function. We consider all 3-tuples (ma,mb,mc) such that h1(ma) = h1(mb) and
h2(mb) = h2(mc). This event can be bounded by

(
q
3

)
ε2, which also excludes the

occurrence of circles. Thus, it holds that Pr [bad5] ≤ q3ε2. Double-collisions that
are small circles by themselves are excluded by bad2.

Now, we consider bad1. Again, we upper bound the maximal block size for the
individual hash functions. Then, we condition bad1 on ¬bad5 to ensure that no
collisions in h1 are connected to collisions in h2. Both hash functions are ε-almost-
universal. Again, the worst case w.r.t. block maximality is that all collisions
occur in the same block of size ξ +1. Such a block would have

(
ξ
2

)
collisions. Let

#Colls1(q) be a random variable for the number of collisions between h1(mi) =
h1(mj) for 1 ≤ i, j ≤ q and i �= j. Using Markov’s Inequality, we obtain

Pr
[

#Colls1(q) ≥
(

ξ

2

)]

≤ E [#Colls1(q)](
ξ
2

) ≤ 2q2ε

ξ2
.

We can derive a similar argument using a random variable #Colls2(q) for the
number of collisions between collisions h2(mi) = h2(mj), So, the probability to
obtain a block of size ξ is upper bounded by

Pr [bad1|¬bad5] ≤ 4q2ε

ξ2
.

Our bound in Lemma 4 follows from summing up the obtained terms. ��

5.2 Good Transcripts

It remains to upper bound the ratio of probabilities for a good transcript in both
worlds. For the real world, we will use the Relaxed Mirror Theory. We show that
a good transcript fulfills all properties needed by the Relaxed Mirror Theorem.

146 A. Moch and E. List

Lemma 5. Let τ ∈ GoodT. Let E be the system of q equations corresponding
to (ϕτ ,m1, . . . ,mq). Then, E is (i) circle-free, (ii) ξ-block-maximal, and (iii)
relaxed non-degenerate w.r.t. the partitioning {1, . . . , r} = R1∪R2, where R1 =
{ϕ(ai), . . . , ϕ(aq)} and R2 = {ϕ(bi), . . . , ϕ(bq)}.

Proof. We defined τ to be a good transcript; hence, no bad event has occurred,
which implies that the transcript is (i) circle-free since we excluded bad5 here.

(ii) If E were not ξ-block-maximal, there would exist a minimal subset Q ⊆
{1, . . . , r} with |Q| ≥ ξ + 1 so that there exists some i ∈ {1, . . . , q} for which
either {ϕ(ai), ϕ(bi)} ⊆ Q or {ϕ(ai), ϕ(bi)} ∩ Q = ∅. The latter event does not
violate the block-maximality, so we can focus on the former statement.

Assuming that E were not ξ-block-maximal, we can define a subset of indices
I ⊂ {1, . . . , q} for which it holds that {ϕ(ai), ϕ(bi)} ⊆ Q for all i ∈ I. Then,
we can define an ordered sequence of the indices in I to i1, . . . , iξ s.t. it would
have to hold for all pairs of subsequent indices ij , ij+1, for 1 ≤ j < ξ that
ϕ(ai) = ϕ(aj) and/or ϕ(bi) = ϕ(bj). This is equivalent to our definition of bad1
and would therefore violate our assumption that τ is good. Hence, every good
transcript τ is ξ-block-maximal.

(iii) Assume that τ would be relaxed degenerate. This would imply there
exists a subset I ⊆ {1, . . . , q} such that the multiset MI has exactly two odd
multiplicity elements from a single set R1 or R2 and the tags of the elements
corresponding to I sum up to zero, i.e.

⊕

i∈I
ti =

⊕

i∈I
π1(h1(mi)) ⊕ π2(h2(mi)) = 0.

Recall that ϕ(ai) �= ϕ(aj) if and only if h1(mi) �= h1(mj), ϕ(bi) �= ϕ(bj) if and
only if h2(mi) �= h2(mj) and ϕ(ai) �= ϕ(bj) for any choice of i and j. An element
ϕ(ai) has even multiplicity in MI if there is an even amount of inputs that collide
in h1(mi). And similarly an element ϕ(bi) has even multiplicity in MI if there
is an even amount of inputs that collide in h2(mi). If there is an even amount of
queries that collide in a hash value, one can easily see that these elements will
cancel out in the above sum.

For simplicity, assume, there exists a subset I ⊆ {1, . . . , q} with exactly two
odd multiplicity elements from R1 and even multiplicity elements only from R2.
All elements from R2 cancel out in the sum above. and all even multiplicity
elements from R1 cancel out as well. Let the two odd multiplicity elements from
R1 have multiplicity 2n1+1 and 2n2+1, where n1, n2 ≥ 0. In total, 2n1 and 2n2

terms will cancel out and what remains is π1(h1(mi)) ⊕ π1(h1(mj)) = 0 where
ϕ(ai) �= ϕ(aj). However, this event cannot occur since ϕ(ai) �= ϕ(aj) implies
that h1(mi) �= h1(mj); thus the system cannot be relaxed degenerate. ��
Lemma 6. Let τ ∈ GoodT and q ≤ 2n/(67ξ2). Then, it holds that

Pr [Θreal = τ]
Pr [Θideal = τ]

≥ 1 − ξ · q

2n − ξ
.

Parallelizable MACs Based on the Sum of PRPs 147

Proof. The probability to obtain a good transcript τ consists of that for obtain-
ing the tags t1, . . . , tq, and the hash-function outputs ui and vi. The probability
to obtain the latter is given in both worlds by Pr [(h1, h2) | (h1, h2) � H1 × H2].
The bound in Lemma 6 is determined by the ratio of the respective probabilities.
This term appears in the real world as well as in the ideal world and cancels out
eventually. Hence, we ignore it for the remainder of the analysis. The probability
for the tags ti in the ideal world is then given by Pr[t1, . . . , tq|Θideal] = 1/(2n)q

since the outputs ti are sampled independently and uniformly at random from
{0, 1}n in the ideal world.

In the real world, the situation is more complex and a little more work is
necessary. We denote by qx := |{π1(h1(mi)) | i ∈ {1, . . . , q}}| the amount of
distinct values for π1 and similarly we denote by qy := |{π2(h2(mi)) | i ∈
{1, . . . , q}}| the amount of distinct values for π2. The number of solutions to the
qx +qy unknowns is at least NonEQ(R1,R2; E)/2nq. There are (2n −qx)! possible
choices for the remaining output values of π1 and (2n − qy)! possible choices for
the remaining output values of π2. Thus, we can lower bound

Pr [Θreal = τ] ≥
NonEQ(R1,R2;E)

2nq · (2n − qx)! · (2n − qy)!
(2n!)2

=
NonEQ(R1,R2; E)
2nq(2n)qx

(2n)qy

.

We will use the obvious lower bound for NonEQ(R1,R2; E) and we obtain

Pr [Θreal = τ] ≥ (2n)qx
(2n − ξ)qy

2nq(2n)qx
(2n)qy

=
1

2nq
· (2n − ξ)qy

(2n)qy

.

We can immediately see that

Pr [Θreal = τ]
Pr [Θideal = τ]

≥ (2n − ξ)qy

(2n)qy

.

We can further reformulate the expression (2n − ξ)qy
/(2n)qy

to

(2n − qy)(2n − qy − 1) · · · (2n − qy − (ξ − 1))
(2n)(2n − 1)(2n − 2) · · · (2n − (ξ − 1))

=
ξ−1∏

i=0

2n − i − qy

2n − i
.

This can be reformed to and upper bounded by

ξ−1∏

i=0

(

1 − qy

2n − i

)

≥
(

1 − q

2n − ξ

)ξ

≥ 1 − ξ · q

2n − ξ
,

where the final inequality is Bernoulli’s. ��

5.3 Using k-Wise Independent Hash Functions

In contrast to the analysis of HPxNP, for HPxHP, we find ξ not only in the
analysis of bad1, but also in that of bad5 plus in the bound for the good tran-
scripts. For the same reasons as in HPxNP, bad1 and bad5 cap the bound

148 A. Moch and E. List

at around q = 22n/3. Using the average block size would not work here since
it would not affect the bound of bad5. However, we can increase the security
bound of HPxHP with stronger, k-wise independent hash functions. For even
k, this allows to obtain a bound of q = 2kn/(k+1) since such hash functions
yield better bounds for circles of sizes ≥k. Since circles always contain an even
amount of queries, there would be no benefit of an uneven values k. Leurent et al.
required a 4-circle that is expected after 23n/4 queries for their attack. Using a
4-independent hash function, the first 4-circle occurs after 2n queries on average.
So, we can obtain a security bound that exceeds the complexity of Leurent et
al.’s attack. For simplicity, we will consider 4-wise independent hash functions
first and illustrate the changes to the security bound of HPxHP. Thereupon,
we extend our analysis to larger values of k. For space limitations, we defer the
proofs of Lemmas 7 and 8 to the full version of this work.

Lemma 7. Let H1 and H2 be independent 4-wise independent hash functions.
Let ξ ≥ 7. Then

Pr [bad1|¬bad2] ≤ 2
(
q
4

)

23n
(
ξ
4

) +
16q5

24n
.

We find two interesting points here: (1) Raising the requirement of the hash
functions to 4-wise independence yields a 4-circle after 2n queries on average
instead of after 23n/4 queries as in the attack by Leurent et al. Thus, a security
level of 24n/5 can be obtained. (2) We cannot show yet if it is possible to consider
ξaverage instead of ξmax. If we can consider the average block size instead of the
maximum block size, the upper bound of circles is the bottleneck. Vice versa, it
seems that attacks on the HPxHP-type of MACs must exploit the occurrence of
circles. We can formulate the following lemma to bound the probability of bad5.

Lemma 8. Let H1 and H2 be independent 4-wise independent hash functions.
Then Pr [bad5|¬bad2 ∧ ¬bad1] ≤ q4/24n.

6 Conclusion

We presented two MAC constructions that are provably secure to up to O(22n/3)
queries; HPxHP avoids nonces at the price of two independent hash-function
evaluations; HPxNP trades one hash-function call for the use of a nonce.

Our results add to the works that demonstrate the usefulness of Patarin’s
Mirror Theory for such constructions. We indicated that considering the average
instead of the maximal block size in the Mirror Theory would greatly increase
the security of one of our constructions. A proof is deferred to the full version of
this work. Though, a deeper study of Patarin’s theory is required to derive the
consequences of this replacement, which is out of the scope of this work.

Leurent et al.’s generic distinguisher on constructions similar to HPxHP with
a data complexity of O(23n/4) queries exploited the occurrence of circles in the
underlying hash functions. So, there is still a gap between the best security bound

Parallelizable MACs Based on the Sum of PRPs 149

and their attack. We studied that stronger, k-wise independent hash functions
decreased the probability of circles in the full version of this work where we
indicate that it can raise the security level above the bound of O(23n/4).

We can imagine that the security level of our constructions is higher than
2n/3 bits. For example, the bottleneck in our proof of HPxNP is the bound for
the maximal block size as long as the hash function family is “only” universal. A
stronger hash function helps here; plus, it may as well be possible to consider the
average block size and obtain O(2n) security. However, this needs to be verified.

Acknowledgments. We would like to thank the anonymous reviewers for their helpful
comments.

References

1. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed sponge
constructions using a modular proof approach. In: Leander, G. (ed.) FSE 2015.
LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48116-5 18

2. Bernstein, D.J.: Stronger security bounds for wegman-carter-shoup authenticators.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180. Springer,
Heidelberg (2005). https://doi.org/10.1007/11426639 10

3. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760 3

4. Bernstein, D.J.: Polynomial evaluation and message authentication, February 2007.
https://cr.yp.to/antiforgery/pema-20071022.pdf

5. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

6. Chakraborty, D., Ghosh, S., Sarkar, P.: A fast single-key two-level universal hash
function. IACR Trans. Symmetric Cryptol. 2017(1), 106–128 (2017)

7. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

8. Cogliati, B., Lee, J., Seurin, Y.: New constructions of MACs from (tweakable) block
ciphers. IACR Trans. Symmetric Cryptol. 2017(2), 27–58 (2017)

9. Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-
misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 121–149. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 5

10. Cogliati, B., Seurin, Y.: Analysis of the single-permutation encrypted Davies-Meyer
construction. Des. Codes Crypt. 86(12), 2703–2723 (2018)

11. Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: a
paradigm for constructing BBB secure PRF. IACR Trans. Symmetric Cryptol.
2018(3), 36–92 (2018). Full updated version at https://eprint.iacr.org/2018/804

12. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Building single-key beyond
birthday bound message authentication code. Cryptology ePrint Archive, Report
2015/958 (2015). Version: 20160211:123920

https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/11426639_10
https://doi.org/10.1007/11502760_3
https://cr.yp.to/antiforgery/pema-20071022.pdf
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/978-3-662-53018-4_5
https://eprint.iacr.org/2018/804

150 A. Moch and E. List

13. Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt? To make a
single-key beyond birthday secure nonce-based MAC. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 631–661. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96884-1 21

14. Dutta, A., Jha, A., Nandi, M.: Exact security analysis of hash-then-mask type prob-
abilistic MAC constructions. IACR Cryptology ePrint Archive 2016/ 983 (2016)

15. Dutta, A., Jha, A., Nandi, M.: Tight security analysis of EHtM MAC. IACR Trans.
Symmetric Cryptol. 2017(3), 130–150 (2017)

16. Gueron, S., Kounavis, M.E.: Intel carry-less multiplication instruction and its usage
for computing the GCM mode - rev 2.02. Intel White Paper. Technical report, Intel
corporation, 20 April 2014

17. Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS, pp. 109–119. ACM (2015)

18. Iwata, T., Minematsu, K.: Stronger security variants of GCM-SIV. IACR Trans.
Symmetric Cryptol. 2016(1), 134–157 (2016)

19. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48658-5 15

20. Leurent, G., Nandi, M., Sibleyras, F.: Generic attacks against beyond-birthday-
bound MACs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 306–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 11

21. Luykx, A., Preneel, B.: Optimal forgeries against polynomial-based MACs and
GCM. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 445–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-
9 17

22. Mennink, B.: Towards tight security of cascaded LRW2. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 192–222. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03810-6 8

23. Mennink, B., Neves, S.: Encrypted davies-meyer and its dual: towards optimal secu-
rity using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 556–583. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 19

24. Minematsu, K.: How to thwart birthday attacks against MACs via small ran-
domness. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 230–249.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4 13

25. Nachef, V., Patarin, J., Volte, E.: Feistel Ciphers: Security Proofs and Cryptanal-
ysis. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49530-9

26. Nandi, M.: Birthday attack on dual EWCDM. IACR Cryptology ePrint Archive
2017/579 (2017)

27. Nandi, M.: Bernstein bound on WCS is tight. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 213–238. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 8

28. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

29. Patarin, J.: Introduction to mirror theory: analysis of systems of linear equali-
ties and linear non equalities for cryptography. IACR Cryptology ePrint Archive
2010/287 (2010)

https://doi.org/10.1007/978-3-319-96884-1_21
https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1007/978-3-319-96884-1_11
https://doi.org/10.1007/978-3-319-96884-1_11
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-030-03810-6_8
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-642-13858-4_13
https://doi.org/10.1007/978-3-319-49530-9
https://doi.org/10.1007/978-3-319-96881-0_8
https://doi.org/10.1007/978-3-319-96881-0_8
https://doi.org/10.1007/978-3-642-04159-4_21

Parallelizable MACs Based on the Sum of PRPs 151

30. Patarin, J.: Mirror theory and cryptography. IACR Cryptology ePrint Archive
2016/702 (2016)

31. Patarin, J.: Mirror theory and cryptography. Appl. Algebra Eng. Commun. Com-
put. 28(4), 321–338 (2017)

32. Rogaway, P.: Bucket hashing and its application to fast message authentication.
In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 29–42. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 3

33. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 24

34. Wegman, M.N., Carter, L.: New classes and applications of hash functions. In:
FOCS, pp. 175–182. IEEE Computer Society (1979)

35. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

36. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 34

37. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: enhancing 3GPP-MAC beyond the
birthday bound. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 296–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 19

https://doi.org/10.1007/3-540-44750-4_3
https://doi.org/10.1007/3-540-68697-5_24
https://doi.org/10.1007/978-3-642-22792-9_34
https://doi.org/10.1007/978-3-642-34961-4_19
https://doi.org/10.1007/978-3-642-34961-4_19

Software and Systems Security

DynOpVm: VM-Based Software
Obfuscation with Dynamic Opcode

Mapping

Xiaoyang Cheng1, Yan Lin2, Debin Gao2(B), and Chunfu Jia1(B)

1 Nankai University, Tianjin, China
chengxiaoyangcxy@outlook.com, cfjia@nankai.edu.cn

2 Singapore Management University, Singapore, Singapore
{yanlin.2016,dbgao}@smu.edu.sg

Abstract. VM-based software obfuscation has emerged as an effective
technique for program obfuscation. Despite various attempts in improv-
ing its effectiveness and security, existing VM-based software obfusca-
tors use potentially multiple but static secret mappings between virtual
and native opcodes to hide the underlying instructions. In this paper,
we present an attack using frequency analysis to effectively recover the
secret mapping to compromise the protection, and then propose a novel
VM-based obfuscator in which each basic block uses a dynamic and
control-flow-aware mapping between the virtual and native instructions.
We show that our proposed VM-based obfuscator not only renders the
frequency analysis attack ineffective, but dictates the execution and pro-
gram analysis to follow the original control flow of the program, making
state-of-the-art backward tainting and slicing ineffective. We implement
a prototype of our VM-based obfuscator and show its effectiveness with
experiments on SPEC benchmarking and other real-world applications.

Keywords: Frequency analysis · Software obfuscation · Virtualization

1 Introduction

Unauthorized code analysis and modification threaten the software industry with
more sophisticated program analysis and reverse engineering techniques in recent
years [5,8,34,35,37]. Such attacks can lead to undesirable outcomes including
unauthorized use of software, cheating in computer games, or bypassing and redi-
recting payment processes. Program protection and software obfuscation have
been key techniques in fighting against such attacks, in which code virtualization
using a Virtual Machine (VM) embedded inside an executable is emerging as a
promising technique for code obfuscation, e.g., VMProtect1.

VM-based code obfuscation replaces native instructions in an executable with
virtual ones that are uniquely defined by the obfuscator. Such virtual instructions

This project is partly supported by the National Natural Science Foundation of China
(No. 61772291) and the Science Foundation of Tianjin (No. 17JCZDJC30500).
1 VMProtect Software protection. http://vmpsoft.com/.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 155–174, 2019.
https://doi.org/10.1007/978-3-030-21568-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_8&domain=pdf
http://vmpsoft.com/
https://doi.org/10.1007/978-3-030-21568-2_8

156 X. Cheng et al.

will then be translated into native ones at runtime for correct execution with the
original semantics. VM-based obfuscation is effective in hiding two aspects of the
execution, namely the instructions to be executed (controlled by the secret map-
ping between virtual and native bytecodes and the handlers) and the execution
path (controlled by the dispatcher).

In this paper, we first propose a simple yet effective attack exploiting the
static mapping between virtual and native instructions. Our attack is inspired by
the frequency analysis of symbols widely employed in crypto-analysis techniques.
Our observation is that the native and corresponding virtual instructions would
present the same frequency profile with the static mapping, even if the mapping
is unknown and well protected by the VM—analogous to the relation between
plaintext and ciphertext symbols whose mapping could be unknown but their
frequency profiles are identical. We show that our frequency attack enables an
attacker to recover the mapping between virtual and native instructions, which
compromises the handlers in the VM embedded. Note that although more recent
and enhanced VM-based protectors use multiple mappings between virtual and
native instructions, the statically defined (secret and multiple) mappings only
add more complexity to the frequency analysis but do not render it ineffective.

Keeping this effective attack in mind, we propose a novel VM-based soft-
ware protection called DynOpVm, in which the mapping between virtual and
native instructions is dynamic and control-flow aware. The dynamic nature of
the mapping renders frequency attack ineffective since every protected basic
block employs a different mapping between the virtual and native instructions.
The control-flow-aware protection ensures that the correct mapping can only be
recovered by following the correct control flow execution, which dictates the exe-
cution and, more importantly, the analysis of the program, to follow the original
control flow. This further makes program analysis, in particular, backward taint-
ing [2,9,13,20] and slicing techniques [43], difficult as the instructions cannot be
decoded at the middle of any program execution.

We face a number of technical challenges especially in designing the control-
flow-aware mapping between virtual and native instructions. One of them is to
support basic blocks with multiple control flows which could result in multiple
mappings—a conflict since each basic block can only be encoded using a single
mapping. We propose solving this challenge by utilizing the secret sharing algo-
rithm, enabling a single mapping to be derived from multiple control flows. We
also demonstrate the effectiveness of our frequency attack and DynOpVm with
experiments with the SPEC benchmarking and other real-world applications.

2 Background and Related Work

2.1 VM-Based Program Protection

Here we take the example of Rewolf virtualizer2 (due to its available source
code for clear understanding and experimentation) and briefly describe how an

2 X86 virtualizer. http://rewolf.pl/.

http://rewolf.pl/

DynOpVm 157

executable protected by it works (with its add-on layer Poly disabled). As shown
in Fig. 1, when program execution comes to any protected code, a control transfer
directs execution of the program to a dispatcher, which obtains the potential
virtual instruction and checks its prefix. All virtual instructions begin with a
unique prefix (0xFFFF in the case of Rewolf virtualizer) as an indicator to the
VM. After confirming the identity of the virtual instruction, the VM invokes a
corresponding handler (dictated by the virtual opcode that is the next byte in
the virtual instruction) to perform the corresponding operation of the original
native instruction.

Fig. 1. VM in existing obfuscators

Following the idea of code
virtualization, a number of VM-
based code obfuscation approaches
have been proposed. These include
methods in securing the VM [3,
14,46] and improving the obfus-
cation process [15,42]. Publicly
available tools like VMProtect,
Code Virtualizer3 and Themida4

also employ special protections
for runtime environments, e.g.,
VOT4CS [4].

Many of these existing VM-
based program obfuscators use a
single mapping between virtual and native instructions. Kuang et al. [22] used
different ways to interpret the same virtual instructions and obfuscated the
atomic handlers. Although the handlers are obfuscated, there still remains only
one mapping between native and virtual instructions. Other VM-based obfusca-
tors, e.g., VMProtect, maintain multiple mappings between virtual and native
instructions, and randomly choose one of them in each obfuscation instance;
however, the multiple available mappings were statically designed with limited
variations.

2.2 Attacks on VM-Protected Programs

Rolles proposed to reverse engineer the VM in order to convert virtual bytecode
to native instructions [30]. Based on this idea, Rotalumé [33] was further pro-
posed to detect the mapping between virtual bytecode and handlers. Guillot et
al. [16] automatically search for patterns of obfuscation. Similarly, VMAttack [19]
was presented as an automatic deobfuscation tool to analyze VM structure and
to compress instruction sequences. Coogan et al. [11] applied equational reason-
ing [10] to reconvert the native code. Other proposals [39,45] utilized taint analy-
sis to reveal the dependency of virtual code and the embedded VM. BinSim [25]
attacked the code virtualizer with the help of backward slicing. VMHunt [44]

3 Code virtualizer. https://oreans.com/codevirtualizer.php.
4 Themida. https://www.oreans.com/themida.php.

https://oreans.com/codevirtualizer.php
https://www.oreans.com/themida.php

158 X. Cheng et al.

tackled the problem using tracing, symbolic execution, and backward slicing.
Our proposed frequency attack works on a different dimension in that it avoids
analyzing the semantics of the VM or its corresponding handlers.

2.3 Instruction-Set Randomization and Control-Flow Carrying
Code

Instruction-Set Randomization (ISR) can also be seen as a VM-based system,
and was proposed as a mitigation against code-injection attacks [6,21,26]. It uses
an execution environment to interpret and execute a randomized instruction set
which is unique for each program. There has also been proposals to use ISR to
enforce CFI [12,36,38]. Instead of a unique instruction set for each program,
DynOpVm makes use of a unique instruction set for each basic block by gen-
erating a unique secret from each control transfer. Similar to ISR, Control-flow
Carrying Code (C3) [23] uses a dynamic instrumentation system to assist CFI-
enforced execution of a program. DynOpVm shares the same idea with C3 on
using secret sharing to encode/encrypt binary instructions; however, DynOpVm
and C3 are based on different threat models, are proposed to fight against
different types of attacks, and are implemented in completely different ways.
DynOpVm fights against frequency analysis on VM-based obfuscators, while
C3 is to counter Data-Oriented Programming attacks on traditional CFI sys-
tems. DynOpVm produces self-contained VM-embedded executables which can
execute directly on mainstream Linux systems, whereas C3 requires a dynamic
instrumentation systems for its execution.

3 Frequency Attacks on VM-Based Program Obfuscation

As discussed in Sect. 2.1, existing VM-based program obfuscators, including
the original work and subsequent enhancements [3,14,15,22,30,42,46], use a
secret but static mapping (potentially multiple ones) between virtual and native
instructions for obfuscation. Intuitively, such static mappings, although secret
and unknown to an attacker, make frequency analysis possible since native
instructions present some unique and specific frequency profile in normal pro-
grams.

3.1 Frequency Profile of Native Instructions

A prerequisite of our attack is a unique frequency profile exhibited by native
instructions. Related frequency analysis has been conducted on different plat-
forms since the last century [1,17,18,28,29,31], most of which focus on runtime
statistics of the instruction set. On the other hand, the objective of our frequency
analysis is to collect static profile of instructions for program analysis.

We statically analyze the number of occurrences of native instructions in
executables under directory /bin on 64-bit Ubuntu 18.04 and present the 15
instructions with the highest frequencies in Fig. 2. We notice that this frequency

DynOpVm 159

profile is uneven while consistent with low standard deviation among the 128
executables. For example, mov shows up most often with its frequency more than
3 times of the second most frequent instruction call. In addition, mov presents
a frequency of over 30% while many other instructions have frequencies of lower
than 1%. Although these other instructions with low frequency do not stand out
in the profile, we comment that the decoding process usually requires only a few
instructions to be identified as bootstraps, and other instructions could then be
easily recovered by, e.g., frequency analysis of instruction subsequences.

3.2 Frequency Analysis as an Attack

Fig. 2. Freq. analysis of 128 binaries

We first implement a virtu-
alizer compatible with 64-
bit Linux executables using
the same strategy as Rewolf
Virtualizer5, and apply it to
protect selected code pieces
in SPEC CPU2006 bench-
marking programs. We note
that other variations of the
obfuscator may differ in
the implementation details,
e.g., the commercial product
VMProtect that is closed-
source, but we have not
noticed evidences that such differences render our frequency attack ineffective,
including the fact that it randomly chooses from multiple static handlers.

We intentionally select small code pieces for protection to see if that renders
the frequency analysis less accurate. We search for the prefix of 0xFFFF to identify
all virtual instructions and their virtual opcode (the byte following the prefix).
Note that other obfuscators may employ more complicated ways of encoding the
virtual opcodes; however, existing work (e.g., VMHunt [44]) has shown that the
beginning of various handlers could be effectively located with analysis of context
switch patterns, which clears another prerequisite of our frequency analysis. Here
we only present results for 3 programs, bzip2 (11182 bytes of code protected),
mcf (3058 bytes of code protected), and sjeng (5510 bytes of code protected).

Figure 3 shows the analysis result of 20 instructions with the highest fre-
quency for both the original program and that protected by our virtualizer. It
also shows the ground truth mapping between corresponding virtual and native
instructions. Results show that frequency analysis attack is accurate even for
small code pieces. For example, the top two instructions are always mapped cor-
rectly, while the overlapping of top 10 instructions between the original and the
protected programs cover 8 instructions or more.

5 We are not aware of any 64-bit VM-based obfuscator that is open source, and there-
fore decide to make one based on the 32-bit Rewolf virtualizer.

160 X. Cheng et al.

(a) Freq. of native instructions in bzip2 (b) Freq. of virtual instructions in bzip2’

(c) Freq. of native instructions in mcf (d) Freq. of virtual instructions in mcf’

(e) Freq. of native instructions in sjeng (f) Freq. of virtual instructions in sjeng’

Fig. 3. Frequency analysis on programs protected by Rewolf virtualizer

When considering a slightly different threat model in which the attacker does
not have any information of the protected program (maybe in the event that the
entire program is protected) and therefore can only compare the frequency analy-
sis result (Fig. 3(b), (d), and (f)) with the general statistics of native instructions
(Fig. 2), we obtain similar results—we can identify the most frequent instruction
mov with at least 6 overlappings in the top 10 instructions.

While there are other ways of improving this attack, e.g., by analyzing
operands of the instructions and other context information, we believe that the
simple demonstration above is sufficient to reveal this fundamental weakness of
the existing VM-based program obfuscators, in which static mappings (although
secret) are used between virtual and native instructions. To improve the security
and to fight against such frequency attacks, we propose a novel technique that
employs dynamic and control-flow-aware mappings; see Sect. 4.

DynOpVm 161

3.3 Threat Model and Assumptions

Our objective is to propose a novel VM-based program obfuscator that renders
the frequency analysis attack and state-of-the-art program analysis methods,
e.g., backward tainting and slicing techniques, ineffective. We assume that the
attacker is aware of the details of our technique and has access to the protected
binary executable. The attack can be Man-At-The-End (MATE) attack and
leverage memory disclosure vulnerabilities in the target application to read and
analyze the memory, including data and the code section of the target program.

4 Design and Implementation of DynOpVm

Section 3 presents a simple yet effective attack on existing VM-based program
obfuscators using frequency analysis. In this section, we present our novel VM-
based obfuscator that is resistant against such attacks. Moreover, to defend
against other attacks as discussed in Sect. 2.2, we have a second objective of ren-
dering program analysis techniques, in particular, backward tainting and slicing
techniques, ineffective on the protected program (piece).

4.1 Overview of DynOpVm

Defending against frequency analysis is a well-explored problem in cryptography.
For example, Vigenère cipher was proposed as a poly-alphabetic substitution
system to fight against frequency analysis on English letters [7,40], with the idea
that the same plaintext letters can be encrypted to different ciphertext letters.
Our proposed solution is inspired by this simple idea to construct different and
dynamic mappings between virtual and native instructions for different basic
blocks, even if various basic blocks contain the same native instruction.

Fighting against state-of-the-art program analysis tools like backward taint-
ing and slicing is more challenging. What makes such backward analysis possible
is the “two-way” nature of control-flow information presented in normal executa-
bles, i.e., it is easy to find both the predecessor and successor of an instruction.
Essentially we want to make control-flow information in the protected program
“one-way”, in that even if an attacker manages to decode specific virtual instruc-
tions, we want to make it difficult to reveal the caller6 basic block. We leave it
as future work to make even the forward analysis difficult, since the program
needs to be able to execute in a forward manner absent from analysis.

Our solution is to make the mapping between virtual and native instructions
dependent on control flows, i.e., the addresses of caller and callee instructions.
Since both addresses are available in a forward execution (e.g., in executing
call $0x400460 in Fig. 4, the caller and callee addresses are 0x400450 and
0x400460), reconstructing the mapping between virtual and native instructions
and decoding the callee is easy. On the other hand, backward analysis to figure
6 In the rest of this paper, we use the words “caller” and “callee” to refer to predecessor

and successor basic blocks in a control transfer.

162 X. Cheng et al.

out the caller of call $0x400460 is difficult since it uses a mapping that is
determined by its own caller (address of jmp $0x400450).

Fig. 4. Forward and backward analyses

We design and implement a pro-
totype of our novel VM-based pro-
gram obfuscator called DynOpVm
following this idea. DynOpVm
takes as input the original binary
executable (without source code),
statically encodes each basic block
into virtual instructions with a
mapping uniquely determined by
the caller and callee addresses in the control transfer, and inserts a VM to
decode basic blocks. Control transfers are redirected to the VM which dynami-
cally reconstructs the specific mapping between virtual and native instructions,
decodes the next basic block “on-the-fly”, and then continues with the valid
control transfer. We present our detailed design and implementation in the next
subsections.

4.2 Control-Flow-Aware Encoding of Basic Blocks

As discussed in Sect. 4.1, DynOpVm statically performs binary rewriting. To
stay focused in this paper, we make use of existing tools for static analysis and
rewriting, and consider general challenges (e.g., distinguishing code from data)
out of our scope. At a first glance, such a process isn’t overly complicated;
however, a basic block could have multiple callers, which will result in multiple
mappings between virtual and native instructions derived for the same callee
block. On the other hand, each callee block could only be encoded with one
unique mapping. The challenge here is to derive the same mapping from multiple
control transfers with multiple callers. Our solution is to introduce an additional
layer in deriving the mapping, where each source or destination address of valid
control transfer determines a secret share, and multiple secret shares could be
used to reconstruct the same mapping—a typical application of Shamir’s secret
sharing algorithm [32]. In Fig. 5(a), the callers of control transfers CT1 and CT2,
both of which target BBA, contribute two different secret shares. Both are used
to compute the same secret together with the secret share generated from callee
address (the address of BBA). The secret is then used to encode BBA. Note that
at runtime, only one of the secret shares from the two callers is used to derive
the mapping, which is well supported by the secret sharing algorithm.

In applying secret sharing, caller and callee addresses constitute two points
on a secret sharing polynomial. We introduce a third point as a master key
randomly chosen to defend against information disclosure attacks which could
potentially be exploited to reconstruct the mapping. DynOpVm takes a config-
uration with t = 3 (a parabola) to enable reconstruction of the mapping with
(potentially multiple) valid control transfers. Figure 5(b) shows two parabolas:
one representing a basic block BBA with two valid callers, and the other repre-
senting BBB with three valid callers. The intersection of the parabola with the

DynOpVm 163

(a) Algorithm (b) Example

Fig. 5. Secret sharing

y-axis is the secret to determine the mapping between virtual and native instruc-
tions for the corresponding callee. DynOpVm obtains the X and Y coordinates
(k bits) of a point from the lower-order odd- and even-index bits of an address.
The master key (of 2k bits long) is randomly chosen. We discuss the security
and performance implication of the choice of value k in Sect. 5.

Although this algorithm well supports multiple callers, it introduces con-
straints on the addresses. For example, once the master key, the address of the
callee, and that of one caller are determined, the parabola is fully established
and addresses of the remaining callers have to be on the curve. This results in
constraints in our binary rewriting to redistribute the basic blocks:

– “Call-preceded” basic blocks (those followed by call) cannot be redistributed
freely as they are the targets of ret instructions. Such additional constraints
could result in an unsolvable layout of basic blocks. Our solution is to replace
all call instructions with push followed by jmp to remove such additional
constraints. A similar challenge arises for conditional jumps and their fall-
through instructions, which can be resolved with the same idea.

– Parabolas can have at most two intersections, one of which is the master
key. This means that two different callees may only have up to one common
caller—an invalid assumption in many applications. To handle this, we add
intermediate “stub” blocks to remove the additional common callers.

– Basic blocks with multiple entries would result in multiple mappings derived.
We make copies of them to ensure that each basic block has only one entry.

To redistribute basic blocks, we use a look-ahead depth first search algorithm
to avoid circular constraints, e.g., when two callers of a to-be-redistributed basic
block with fixed addresses make it impossible to find a valid parabola.

DynOpVm encodes and decodes between virtual and native instructions with
a simple XOR operation with the secret derived from the secret sharing algo-
rithm. This design of the mapping between virtual and native instructions is
mainly due to its simplicity and efficiency. After every basic block is redistributed

164 X. Cheng et al.

and encoded with the corresponding mapping, we can then embed the VM and
insert control transfers to it.

4.3 Embedding a VM

Before making a control transfer to the VM, DynOpVm saves the rflag state
and uses registers to pass the necessary information to the VM. Such information
includes the address of the caller and callee (two possible callee addresses in case
of conditional jumps, out of which the VM chooses one depending on the rflag
value) and the type of control transfer instruction.

The main task of the VM is to reconstruct the secret and to decode and
execute the corresponding basic blocks. Our design of the VM consists of three
components—a dispatcher, a decoder, and an actuator—which is slightly differ-
ent from existing techniques of VM-based program obfuscation as discussed in
Sect. 2.1 [3,6,15,24,46]. Our VM dispatcher makes use of information passed to
the VM to obtain the address of the callee. After that, the decoder reconstructs
the parabola, computes the secret for the callee, and then decodes the instruc-
tions into a buffer dynamically allocated, whose address is stored in a segment
register. In the end, the VM actuator transfers control to the decoded (native)
instructions and executes them. Figure 6 shows this process. Note that the VM
has two potential control flows from the dispatcher—d-f-g and b-c—for con-
trol transfers to protected and unprotected code, respectively. We discuss more
details of our support of this in Sect. 4.4.

Fig. 6. VM dispatcher, decoder, and actuator

The unknown length of
the callee basic block makes
it tricky for it to be decoded.
DynOpVm uses an optimiza-
tion to decode a fixed size
of 128 bytes at a time and
repeats the decoding routine
in cases of larger basic blocks.
nop instructions are inserted
for alignment purposes for
efficient execution. Another
challenge is the conflict with
original program code if our code added and VM execution use the stack.
DynOpVm uses the fs register instead to avoid this conflict.

4.4 Supporting Partial Protection

The key challenge in supporting partial protection of an executable is to make
control transfers between protected and unprotected code. This can be achieved
by adding control transfers to the VM only in protected basic blocks. However,
such a simple solution may potentially allow dedicated attackers to reconstruct
the parabola for a protected entry block that has multiple unprotected callers,

DynOpVm 165

since these callers are all on the parabola curve. Combining multiple instances
of such attacks could even allow recovery of the secret master key.

We introduce a more secure way to support partial protection to fight against
such attacks. The basic idea is to reduce the number of unprotected callers with
code cloning and inlining. DynOpVm makes a copy of the chosen unprotected
code to be inlined into the protected region to reduce the number of control
transfers between protected and unprotected code. In this way, attackers will
find fewer points on the parabola curve to reconstruct the secret. DynOpVm
also maintains a list of valid exit targets in the VM to allow/disallow transfers
to unprotected code at runtime. We further propose two potential solutions that
could avoid the need of cloning and inlining, since inlining may not be a practical
solution in interfacing with, e.g., system libraries. Assuming that the protected
code Pvt transfers control to a system library function lib with a basic block
BBcall, and control returns to Pvt at basic block BBret, the two solutions are:

1. Leaving BBret and lib unprotected (with BBcall protected) while adding the
address of BBret as a valid exit target maintained by the VM.

2. Leaving lib unprotected while having BBret protected with a parabola that
passes though the origin, which means that BBret is encoded with key 0.

Both solutions allow proper execution of the program with more basic blocks
exposed in plaintext, although it is non-trivial for an attacker to differentiate
them from those encoded with nonzero keys. Solution (1) allows BBret to be the
target of control transfers from any protected basic block. Solution (2) restricts
control transfers to BBret, but potentially allows an attacker with the capability
of launching memory disclosure attacks to recover the master secret by recon-
structing the parabola, since an additional point (the origin) and the plaintext
instruction inside BBret is given to the attacker.

DynOpVm assumes a strong threat model where memory disclosure attacks
are assumed possible, and therefore uses the solution of code cloning and inlining
for better security. We comment that the above two solutions could be useful
under a different threat model.

4.5 Implementation

We implemented a prototype of DynOpVm for Linux x64 platform. DynOpVm
takes as input a 64-bit ELF binary and outputs a modified binary executable with
selected basic blocks encoded into virtual instructions and VM embedded. The
static instrumentation component is implemented as 8,200 lines of python code
with the help of Capstone [27] for disassembling and Type-armor [41] for con-
structing the CFG. The VM interpretation and execution component is imple-
mented as 900 lines of assembly instructions inserted into the executable file.

Besides executing the design presented in earlier subsections, DynOpVm
makes use of gaps among redistributed protected basic blocks to host unpro-
tected functions, and fills the remaining gaps with nop instructions. Finally,
DynOpVm patches the new binary file with the text segment extended and

166 X. Cheng et al.

corresponding addresses (code pointers, function pointers, data pointers, jump
tables and virtual tables) and section information updated.

One challenge is to deal with instructions with PC-relative addressing since
the execution will be in the buffer dynamically allocated and the program counter
(%rip) at runtime is unknown at static instrumentation. Our solution is to
remove PC-relative addressing mode during binary rewriting. To support multi-
threaded programs, we use a new memory page for decoding basic blocks for each
thread by checking the value in fs:0x158 where we store the buffer address.

5 Evaluation

In this section, we evaluate the security of DynOpVm with regards to frequency
analysis and Shannon entropy, and apply backward slicing attacks presented by
Ming et al. [25,44] to evaluate its resistance to such analysis. Besides that, we
measure the performance overhead of DynOpVm with real-world applications.

5.1 Security Evaluation

Frequency Attack. As shown in Sect. 3, existing VM-based program obfus-
cators like Rewolf virtualizer suffer from frequency analysis which allows an
attacker to easily figure out the mapping between virtual and native instruc-
tions. Intuitively, DynOpVm encodes each basic block with a different mapping
determined by the control transfer, and is resistant to such attacks.

Moreover, the use of XOR operation in encoding instructions effectively
removes any obvious patterns as in some existing VM-based program obfusca-
tors, e.g., 0xFFFF in the Rewolf virtualizer. Lack of the capability of identifying
each virtual instructions, attackers could not even perform the frequency analy-
sis on them. Here, we want to see how far the frequency analysis could go even
if attackers could identify the start of every virtual instruction, and present the
results of such frequency analysis7 on the same SPEC benchmarking programs
as used in Sect. 3; see Fig. 7.

Comparing graphs in Fig. 7 and those in Fig. 3 reveals two observations. First,
the shape is very different in the sense that the frequency values decay a lot faster
in unprotected programs and those protected by the Rowolf virtualizer, while
they decay a lot more slowly in programs protected by DynOpVm. Second, the
peak frequency value for unprotected programs and those protected by Rowolf
virtualizer is at 40% or more, while that for programs protected by DynOpVm is
at most one tenth at 4%. This suggests that programs protected by DynOpVm
present a much more even distribution in frequency analysis with many vir-
tual instructions at a non-negligible frequency, making recovering the mapping
between virtual and native instructions difficult.

7 Our frequency analysis here is on the first byte of the virtual instructions, since the
length of them is unknown to attackers.

DynOpVm 167

(a) Freq. of virtual opcodes in bzip2”

(b) Freq. of virtual opcodes in mcf”

(c) Freq. of virtual opcodes in sjeng”

Fig. 7. Frequency analysis of DynOpVm
virtual code

Entropy and Randomness Anal-
ysis. To gain an even more intuitive
understanding and to consider the
entire virtual instruction (as opposed
to just the opcode in the frequency
analysis), we calculate the Shannon
entropy of the SPEC CPU2006 bench-
marking programs unprotected, pro-
tected by Rewolf, and protected by
DynOpVm, which is shown in Fig. 8.
Shannon entropy estimates the ran-
domness in the binary information
streams—the higher the entropy, the
more random the byte stream is.

Figure 8 shows that programs pro-
tected by DynOpVm have more ran-
dom byte streams and therefore are
harder to analyze in terms of the fre-
quency distribution or differentiation
among virtual instructions. Interest-
ingly, Rewolf virtualizer produces less
random byte streams than the unpro-
tected programs, likely due to the pre-
fix 0xFFFF inserted for every virtual
instruction. Note that in this exper-
iment, DynOpVm uses the smallest
secret size that makes redistribution of
basic blocks possible, with k ∈ [8, 10].

Backward Tainting/Slicing Anal-
ysis. Due to the relatively strong
threat model used (Sect. 3.3), we admit that it is not impossible for an attacker
to decode a specific basic block without dynamically executing it. However, an
effective attack would require that sufficient information about predecessors of
the basic block be known, e.g., addresses of the control transfer instructions of
multiple predecessor blocks. It could be possible to obtain such information for
one of the predecessor blocks, if, e.g., the predecessor block has been success-
fully decoded or if it is in an unprotected component; however, obtaining such
information for multiple predecessor blocks would require that many protected
blocks have been previously decoded successfully. Not arming with information
of predecessor blocks, an attacker would face the decoding task of the basic block
that has been XOR’ed with a key of size k, where k ∈ [8, 10] in our experiments.

168 X. Cheng et al.

Fig. 8. Shannon entropy

We stress that our objec-
tive in DynOpVm is to
make program analysis start-
ing from the middle of an
execution difficult, e.g., in
backward tainting and slic-
ing analysis, where infor-
mation of the predecessor
blocks is typically unavail-
able. Here we perform an
experiment to simulate back-
ward tainting and slicing
analysis on a program pro-
tected by DynOpVm. We
assume that the analysis
starts from a basic block BB0 fully decoded with K0 (e.g., one that contains
an interesting sink instruction). We also assume that it is a strong attacker who
had previously obtained the master key used in protecting this binary (probably
via some memory disclosure attack). The objective of the attack is to find the
predecessor of BB0, denoted as BB−1, and to have it decoded (find K−1) to reveal
its native instructions. Intuitively, the steps involved are as follows.

1. Reconstruct the parabola for BB0 with three points on it: the master key, K0,
the address of the entry point of BB0.

2. For every point on the parabola constructed (a total of 2k − 2 points), derive
the corresponding address which is potentially the address of the control
transfer instruction of BB−1.

3. For every potential control transfer instruction of BB−1, and for every possible
block size of BB−1 (we tried all numbers in [50, 150]), reconstruct K−1 by
XORing the virtual and native instructions (assuming that DynOpVm uses
a single dedicated native instruction for control transfers).

4. Use the derived K−1 to decode the other instructions in BB−1 and see if they
are valid native instructions.

We follow this strategy to analyze the protected program bzip2 with a desk-
top computer with i7-6700 CPU running at 3.40 GHz and 16 GB of RAM running
Ubuntu 64-bit kernel 4.4. Results show that even if DynOpVm uses a dedicated
jmp instruction for all control transfers, the total number of valid BB−1 found
per BB0 on average is 437.03; while, in fact, basic blocks in bzip2 have on aver-
age 1.32 predecessor basic blocks. Moreover, the time it takes to try all possible
callers of a single BB0 is 996.51 s on average.

Results show that such an attack is imprecise and inefficient in decoding the
predecessor blocks. We note that the experiment above was performed on bzip2
protected with DynOpVm on a setting of k= 8. When k is 9 or 10, the average
numbers of valid predecessor blocks jump to 2,362.79 and 7,258.40, respectively,
and the average time it takes to try all predecessor blocks of a single BB0 is
4,415.07 and 18,268.28 s, respectively.

DynOpVm 169

5.2 Performance Evaluation

In the performance evaluation, we expand the target set of programs from
SPEC benchmarking programs to include an image processing tool convert
from ImageMagicks, two web servers httpd and lighttpd, a distributed mem-
ory caching system Memcached, and an FTP server Pure-FTPd. We randomly
select a few functions in these programs and apply DynOpVm to protect them.
Experiments are performed on a desktop computer with Intel Core2 Duo CPU
at 3.16 GHz and 8 GB of RAM running Ubuntu 64-bit kernel 4.4.

For the SPEC benchmarking programs and convert, we execute them with
standard input data train and test cases bundled with the source code, respec-
tively. To benchmark the web servers, we configure Apache Benchmark8 to issue
2,000 requests with 100 concurrent connections. To benchmark Memcached, we
use memslap benchmark9 with its default configuration. For the FTP server, we
configure pyftpbench benchmark10 to open 20 connections and request 100 files
per connection with over 100 MB of data requested. We run each experiment 10
times, ensure that the CPUs are fully loaded throughout the tests, and report
the median. Table 1 shows the details of these programs where data is collected
dynamically at run time. Note that we intentionally have a program (bzip2)
with more than 99% of the (runtime) instructions protected and other programs
with less than 0.1% instructions protected.

Table 1. Details of programs in our performance evaluation set

of instructions # of instructions
protected by
DynOpVm

Percentage
of code
protected

of context
switches from
unprotected to
protected code

of branching
instructions
protected by
DynOpVm

bzip2 311,200,698 310,963,079 99.92% 12,563 11,632,308

mcf 6,822,420,892 193,631,839 2.84% 118,645 22,755,914

sjeng 27,751,560,742 287,456,204 1.04% 3,169,096 14,012,972

convert 18,875,392 16,967 0.09% 187 2,372

httpd 292,300,296 864,936 0.30% 3,958 80,843

lighttpd 135,150,518 1,825,473 1.35% 16,377 116,225

memcached 1,806,983,275 14,789,569 0.82% 456,924 1,341,456

Pure-ftpd 710,390,558 505,940 0.07% 2,133 27,262

8 Apache benchmark. http://httpd.apache.org/docs/2.0/programs/ab.html.
9 Memslap: load testing and benchmarking a server. http://docs.libmemcached.org/

bin/memslap.html.
10 Extremely fast and scalable Python FTP server library. https://github.com/

giampaolo/pyftpdlib.

http://httpd.apache.org/docs/2.0/programs/ab.html
http://docs.libmemcached.org/bin/memslap.html
http://docs.libmemcached.org/bin/memslap.html
https://github.com/giampaolo/pyftpdlib
https://github.com/giampaolo/pyftpdlib

170 X. Cheng et al.

Since Rewolf virtualizer has limitations in supporting multi-threaded execu-
tion, we compare performance overhead of DynOpVm with another VM-based
program obfuscator VMProtect11.

To evaluate the overhead in execution time, we use the default key size k= 8
with exception in httpd as the ap_getparents function has a complicated CFG
and requires a key size of 9 for its protection. We expect two main contributing
factors to the performance overhead. First is for the VM to allocate memory
and to free up memory resources. Second is the reconstruction of the secret
and decoding of the target basic blocks. To gain a detailed understanding of
the overhead introduced by either factor, we report the execution time of the
original programs unprotected, programs protected by DynOpVm with encod-
ing/decoding disabled and enabled, and programs protected by VMProtect with
and without packing; see Fig. 9.

Fig. 9. Overhead in execution time

Our first observation is
that programs with more
protected code (i.e., the
SPEC benchmarking pro-
grams) incur higher over-
head, which is as expected.
Although such overhead could
go up to 10 times for
DynOpVm when almost 100%
of the code is protected,
the overhead is negligible
when only specific and small
amount of code needs to be
protected. We comment that
this makes DynOpVm prac-
tically usable in real-world
scenarios. Recent studies [44] also report that most existing VM-based obfus-
cators target the protection of a small portion of the code only.

We also notice that the runtime overhead of DynOpVm mainly comes
from the decoding of basic blocks, as evidenced by the substantial difference
between DynOpVm with and without decoding for the three SPEC benchmark-
ing programs. This is also not surprising as decoding involves reconstructing the
parabola and performing the XOR operation, which are heavy in computation.

Our third observation is that the overhead of DynOpVm is noticeably lower
than that of VMProtect especially when more code needs to be protected, and
this is true even with packing disabled on VMProtect, which makes a fair com-
parison since DynOpVm does not support packing in its current prototype.

Overhead in File Size. Since DynOpVm needs to redistribute basic blocks
according to the secret sharing function, it may incur considerable overhead in
11 We could not use VMProtect in our frequency analysis and security evaluation due

to its close-source nature.

DynOpVm 171

terms of the file sizes. Moreover, this overhead in space may vary according to the
different settings of k. For example, when k = 12, the address of an instruction
can be any value in the range of (0, 224) as both x and y are 12 bits long.

Figure 10(a) shows the file sizes of the original programs, programs protected
by DynOpVm (with k= 9 for httpd and k= 8 for all other programs), and the
programs protected by VMProtect (with and without packing enabled). We see
that this default setting of k results in DynOpVm having significantly smaller
overhead in file size compared to VMProtect when packing is disabled. We stress
that the packing option is also potentially possible for DynOpVm, although it
is not implemented in our current prototype.

(a) With default k

7 8 9 10 11 12 13 14 15
Key Size k (bit)

10-1

100

101

102

103

104

Fi
le

 S
iz

e
(M

B
yt

es
)

bzip2
mcf
sjeng
convert
httpd
lighttpd
memcached
Pure-ftpd

(b) With increasing k

Fig. 10. Overhead of file sizes

When k increases, DynOpVm gains better protection due to the bigger space
in possible mappings between virtual and native instructions. However, it also
results in higher overhead in file sizes; see Fig. 10. A closer inspection shows that
it increases exponentially rather than linearly with increase in k. This demon-
strates the trade off in configuring k, and it may favor smaller values in the range
of [8, 12] to avoid excessive disk and memory usage.

6 Limitations and Conclusion

Besides the limitation of code cloning and inlining to support partial program
protection (note our alternative designs discussed in Sect. 4.4), the current pro-
totype of DynOpVm stores the master key within the protected executable for
its simplicity of implementation. This can be improved with a networked compo-
nent embedded to retrieve the master key during program execution. Our current
prototype also reconstructs the mapping for every basic block at runtime, which
could be improved with a cache mechanism.

In this paper, we first present a simple yet effective attack using frequency
analysis to recover the mapping between virtual and native instructions, and then

172 X. Cheng et al.

design and implement a novel VM-based program obfuscation technique called
DynOpVm which employs dynamic mapping between virtual and native instruc-
tions that is determined by individual control transfers. DynOpVm is resistant
to not only the frequency analysis attack but also state-of-the-art backward
taint and slicing program analysis techniques. Our evaluation with real-world
applications shows that DynOpVm renders frequency attacks ineffective.

References

1. Adams, T.L., Zimmerman, R.E.: An analysis of 8086 instruction set usage in MS
DOS programs. ACM SIGARCH Comput. Archit. News 17(2), 152–160 (1989)

2. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Android apps. ACM SIGPLAN Not. 49(6), 259–269 (2014)

3. Averbuch, A., Kiperberg, M., Zaidenberg, N.J.: An efficient VM-based software
protection. In: Proceedings of the 5th International Conference on Network and
System Security (NSS), pp. 121–128. IEEE (2011)

4. Banescu, S., Lucaci, C., Krämer, B., Pretschner, A.: VOT4CS: a virtualization
obfuscation tool for C. In: Proceedings of the 2016 ACM Workshop on Software
Protection, pp. 39–49. ACM (2016)

5. Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D.: BYTEWEIGHT: learning
to recognize functions in binary code. In: Proceedings of the 23rd USENIX Security
Symposium, pp. 845–860 (2014)

6. Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Random-
ized instruction set emulation to disrupt binary code injection attacks. In: Proceed-
ings of the 10th ACM Conference on Computer and Communications Security, pp.
281–289. ACM (2003)

7. Bruen, A.A., Forcinito, M.A.: Cryptography, Information Theory, and Error-
Correction: A Handbook for the 21st Century, vol. 68. Wiley, Hoboken (2011)

8. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analysis plat-
form. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
463–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 37

9. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: Proceedings of the 2007 International Symposium on Software Testing and
Analysis, pp. 196–206. ACM (2007)

10. Coogan, K., Debray, S.: Equational reasoning on x86 assembly code. In: Proceed-
ings of the 11th IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM), pp. 75–84. IEEE (2011)

11. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, pp. 275–284. ACM (2011)

12. De Clercq, R., et al.: SOFIA: software and control flow integrity architecture.
In: Proceedings of the 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1172–1177. IEEE (2016)

13. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: detecting privacy leaks in iOS
applications. In: Proceedings of the 2011 Network and Distributed System Security
Symposium (NDSS), pp. 177–183 (2011)

14. Fang, H., et al.: VMGuard: an integrity monitoring system for management virtual
machines. In: Proceedings of the 16th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 67–74. IEEE (2010)

https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37

DynOpVm 173

15. Fang, H., Wu, Y., Wang, S., Huang, Y.: Multi-stage binary code obfuscation using
improved virtual machine. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS,
vol. 7001, pp. 168–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24861-0 12

16. Guillot, Y., Gazet, A.: Automatic binary deobfuscation. J. Comput. Virol. 6(3),
261–276 (2010)

17. Huang, J., Peng, T.C.: Analysis of x86 instruction set usage for dos/windows appli-
cations and its implication on superscalar design. IEICE Trans. Inf. Syst. 85(6),
929–939 (2002)

18. Ibrahim, A.H., Abdelhalim, M., Hussein, H., Fahmy, A.: Analysis of x86 instruction
set usage for Windows 7 applications. In: Proceedings of the 2nd International
Conference on Computer Technology and Development (ICCTD), pp. 511–516.
IEEE (2010)

19. Kalysch, A., Götzfried, J., Müller, T.: VMAttack: deobfuscating virtualization-
based packed binaries. In: Proceedings of the 12th International Conference on
Availability, Reliability and Security, p. 2. ACM (2017)

20. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: dynamic taint
analysis with targeted control-flow propagation. In: Proceedings of the 2011 Net-
work and Distributed System Security Symposium (NDSS) (2011)

21. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security, pp. 272–280. ACM (2003)

22. Kuang, K., et al.: Exploit dynamic data flows to protect software against semantic
attacks (2017)

23. Lin, Y., Gao, D., Cheng, X.: Control-flow carrying code. In: Proceedings of the 14th
ACM Asia Conference on Information, Computer and Communications Security
(AsiaCCS) (2019)

24. Maude, T., Maude, D.: Hardware protection against software piracy. Commun.
ACM 27(9), 950–959 (1984)

25. Ming, J., Xu, D., Jiang, Y., Wu, D.: BinSim: trace-based semantic binary diffing
via system call sliced segment equivalence checking. In: Proceedings of the 26th
USENIX Security Symposium (2017)

26. Portokalidis, G., Keromytis, A.D.: Fast and practical instruction-set randomization
for commodity systems. In: Proceedings of the 26th Annual Computer Security
Applications Conference, pp. 41–48. ACM (2010)

27. Quynh, N.A.: Capstone: next-gen disassembly framework. Black Hat USA (2014)
28. Rico, R.: Proposal of test-bench for the x86 instruction set (16 bits subset). Techni-

cal report TR-UAH-AUT-GAP-2005-21-en (2005). http://atc2.aut.uah.es/∼gap/
29. Rico, R., Pérez, J.I., Frutos, J.A.: The impact of x86 instruction set architecture

on superscalar processing. J. Syst. Archit. 51(1), 63–77 (2005)
30. Rolles, R.: Unpacking virtualization obfuscators. In: Proceedings of the 3rd

USENIX Workshop on Offensive Technologies (WOOT) (2009)
31. Schwartz, R.J.: The design and development of a dynamic program behavior mea-

surement tool for the Intel 8086/88. ACM SIGARCH Comput. Archit. News 17(4),
82–94 (1989)

32. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
33. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware

emulators. In: Proceedings of the 30th IEEE Symposium on Security and Privacy
(SP), pp. 94–109. IEEE (2009)

https://doi.org/10.1007/978-3-642-24861-0_12
https://doi.org/10.1007/978-3-642-24861-0_12
http://atc2.aut.uah.es/~gap/

174 X. Cheng et al.

34. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.
In: Proceedings of the 2015 Network and Distributed System Security Symposium
(NDSS) (2015)

35. Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in
binary analysis. In: Proceedings of the 37th IEEE Symposium on Security and
Privacy (SP), pp. 138–157. IEEE (2016)

36. Sinha, K., Kemerlis, V.P., Sethumadhavan, S.: Reviving instruction set random-
ization. In: Proceedings of the 2017 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 21–28. IEEE (2017)

37. Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89862-7 1

38. Sullivan, D., Arias, O., Gens, D., Davi, L., Sadeghi, A.R., Jin, Y.: Execution
integrity with in-place encryption. arXiv preprint arXiv:1703.02698 (2017)

39. Tang, Z., et al.: SEEAD: a semantic-based approach for automatic binary code de-
obfuscation. In: Proceedings of the 2017 Trustcom/BigDataSE/ICESS, pp. 261–
268. IEEE (2017)

40. Toemeh, R., Arumugam, S.: Applying genetic algorithms for searching key-space of
polyalphabetic substitution ciphers. Int. Arab J. Inf. Technol. (IAJIT) 5(1) (2008)

41. van der Veen, V., et al.: A tough call: mitigating advanced code-reuse attacks at
the binary level. In: Proceedings of the 37th IEEE Symposium on Security and
Privacy (SP), pp. 934–953. IEEE (2016)

42. Wang, H., Fang, D., Li, G., Yin, X., Zhang, B., Gu, Y.: NISLVMP: improved
virtual machine-based software protection. In: Proceedings of the 9th International
Conference on Computational Intelligence and Security (CIS), pp. 479–483. IEEE
(2013)

43. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering, pp. 439–449. IEEE Press (1981)

44. Xu, D., Ming, J., Fu, Y., Wu, D.: VMHunt: a verifiable approach to partially-
virtualized binary code simplification. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 442–458. ACM (2018)

45. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: Proceedings of the 36th IEEE
Symposium on Security and Privacy (SP), pp. 674–691. IEEE (2015)

46. Yang, M., Huang, L.: Software protection scheme via nested virtual machine. J.
Chin. Comput. Syst. 32(2), 237–241 (2011)

https://doi.org/10.1007/978-3-540-89862-7_1
http://arxiv.org/abs/1703.02698

Hide and Seek: An Architecture
for Improving Attack-Visibility
in Industrial Control Systems

Jairo Giraldo1, David Urbina1, Alvaro A. Cardenas2(B),
and Nils Ole Tippenhauer3

1 The University of Texas at Dallas, Richardson, TX 75080, USA
{jairo.giraldo,david.urbina}@utdallas.edu

2 University of California Santa Cruz, Santa Cruz, CA 95064, USA
alvaro.cardenas@ucsc.edu

3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
tippenhauer@cispa.saarland

Abstract. In the past years we have seen an emerging field of research
focusing on using the “physics” of a Cyber-Physical System to detect
attacks. In its basic form, a security monitor is deployed somewhere in
the industrial control network, observes a time-series of the operation of
the system, and identifies anomalies in those measurements in order to
detect potentially manipulated control commands or manipulated sensor
readings. While there is a growing literature on detection mechanisms in
that research direction, the problem of where to monitor the physical
behavior of the system has received less attention.

In this paper, we analyze the problem of where should we monitor
these systems, and what attacks can and cannot be detected depending
on the location of this network monitor. The location of the monitor is
particularly important, because an attacker can bypass attack-detection
by lying in some network interfaces while reporting that everything is
normal in the others. Our paper is the first detailed study of what can and
cannot be detected based on the devices an attacker has compromised
and where we monitor our network. We show that there are locations
that maximize our visibility against such attacks. Based on our analysis,
we design a low-level security monitor that is able to directly observe
the field communication between sensors, actuators, and Programmable
Logic Controllers (PLCs). We implement that security monitor in a real-
istic testbed, and demonstrate that it can detect attacks that would
otherwise be undetected at the supervisory network.

1 Introduction

One of the recent research trends for the security of Industrial Control Systems
(ICS) is to monitor the sensor and control signals being exchanged between
different components of the system to verify that the system is operating as
intended [5,7,12,23]. For example, if we have a sensor that monitors the height of
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 175–195, 2019.
https://doi.org/10.1007/978-3-030-21568-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_9

176 J. Giraldo et al.

a bouncing ball, then we know that this height follows the differential equations
from Newton’s laws of mechanics. Thus, if a sensor reports a trajectory that
is not plausible given the laws of physics, we can immediately identify that
something has gone wrong with the sensor (a fault or an attack).

While previous research has contributed greatly to the literature, we have
found that most papers working on this topic do not explicitly describe the trust
assumptions for all parts of a control loop—controllers, actuators, and sensors.

In this paper, we show that without explicit trust assumptions, attacker
models proposed in related work are ambiguous. In particular, we analyze the
implicit assumptions made in previous works, and then use a logical attack-
detection architecture to elucidate hidden assumptions, limitations, and possible
improvements. Then, we develop and implement an architecture to maximize the
visibility of attacks.

We summarize our main contributions in this work as follows:

– We review and classify different classes of attacks on a control loop, and map
them to real-wold network topologies for industrial control systems.

– We show how implicit trust in subsets of the components in a real system
can lead to attacks that deny visibility of the physical process to the control
logic or SCADA.

– We provide a table articulating in detail the trust assumptions needed to be
able to detect attacks when monitoring at the supervisory layer and at the
field layer. As far as we are aware, we are the first to justify why monitoring
at the field layer minimizes the number of devices we need to trust in order
to detect attacks.

– We design and implement a deep monitoring system at the field layer and
demonstrate the feasibility of our proposed system through a series of exper-
iments. As far as we are aware, we are the first to illustrate the practical
differences between implementing a security monitor at the supervisory layer
vs. the field layer.

The remainder of this paper is organized as follows: In Sect. 2, we provide
background on ICS networks, and related work. We then propose our new secu-
rity monitoring architecture in Sect. 3. Based on that concept, we design and
implement a deep ICS monitor in Sect. 4. Finally, we present the results of our
prototype in Sect. 5.

2 Background

In this section, we first briefly summarize industrial control system networks,
and then review related work on attack detection in ICS networks.

2.1 ICS Network Layers

Control systems have a layered hierarchy [24]. The two layers closest to the
physical process are Layer 1 and Layer 0:

Hide and Seek : An Architecture for Improving Attack-Visibility 177

Fig. 1. A supervisory control network (SCN) enables communications between a central
control server and embedded controllers. Field communication networks (FCN) enable
controllers to contact sensor, actuators and remote IO terminals.

Layer 1 is where Supervisory Control and Data Acquisition (SCADA) Sys-
tems and other servers communicate with remote control equipment like Pro-
grammable Logic Controllers (PLCs) and Remote Terminal Units (RTUs).
The communication between servers in a control room and these control
equipment is done via a Supervisory Control Network (SCN);

Layer 0 is where PLCs or RTUs interface with sensors (thermometers, tachome-
ters, etc.) and actuators (pumps, valves, etc.) in the field. While traditionally
this interface has been analog (e.g., 4–20 mA), the growing numbers of sensors
and actuators as well as their increased intelligence and capabilities, has given
rise to new Field Communication Networks (FCN) where the PLCs and other
types of controllers interface with remote Input/Output boxes or directly with
sensors and actuators using new Ethernet-based industrial protocols like Eth-
erNet/IP and Profinet, and wireless networks like WirelessHART. Several ring
topologies have also been proposed to avoid a single point of failure for these
networks, such as the use of Device Level Ring (DLR) over EtherNet/IP.

Figure 1 illustrates these two networks in the ICS we analyze later in the paper.
SCN and FCN networks have different communication requirements and dif-

ferent industrial network protocols. While SCN can tolerate delays of up to the
order of seconds, FCN typically require an order of magnitude of lower com-
munication delays, typically enabling communications between devices with a
period of 400µs.

2.2 Previous Work

In this paper we focus on network intrusion detection for ICS. One of the first
papers to consider network intrusion detection in industrial control networks was
Cheung et al. [8]. Their work articulated that network anomaly detection might
be more effective in control networks where communication patterns are more
regular and stable than in traditional IT networks. Similar intrusion detection

178 J. Giraldo et al.

systems have been proposed for building control systems [6] and general cyber-
physical systems [19]; however, as Hadžiosmanović et al. showed [11], intrusion
detection systems that fail to incorporate domain-specific knowledge of the con-
text in which they are operating perform poorly in practical scenarios.

Even worse, an attacker can send false sensor or control values to the phys-
ical process while complying to typical IT traffic patterns used by classical
intrusion detection systems (Internet Protocol (IP) addresses, protocol speci-
fications with finite automata, connection logs, etc.). These false data injection
attacks [5,10,16] manipulate the process under control by sending malicious sen-
sor or control commands, and can cause waste water spills [1], or can sabotage
nuclear enrichment by manipulating the rotation frequency of centrifuges [9,13].
To detect these types of attacks we need to monitor the sensor and control
algorithms in the systems; i.e., the semantic information of the ICS [2,5,12,23].

Previous efforts on semantic monitoring for ICS, however, have been vague in
describing the specific types of attacks their proposals can and cannot detect. In
particular, previous work implicitly assumes certain elements in a control loop
are not compromised in order for their system to work, and this lack of specificity
leads to potential threat vectors not previously anticipated.

Before we describe the vulnerabilities of previous work, notice that an
attacker can compromise different devices in its goal to physically attack an ICS.
In particular the adversary can compromise and launch attacks from (1) SCADA
servers [15], (2) controllers/PLCs [14], (3) sensors [16], and (4) actuators [22].
As we will show, it is important to understand where the adversary is launching
attacks because it can have a drastic effect in attack-detection systems.

For example, McLaughlin [18] focuses on the field layer of a control system;
specifically it tackles the problem of how to verify that control signals uk sent
by the PLC to the actuators do not drive the system to an unsafe state. The
proposed approach, C2, mediates all control signals uk sent by PLCs to the
physical system. McLaughlin mentions that “C2 mitigates all control channel
attacks against devices, and only requires trust in process engineers and physical
sensors.” This is, however, not true, as an attacker that has compromised
an actuator or a Remote I/O, can bypass C2: a PLC can send correct
control signals, but if the actuators are compromised they do not need to follow
the orders from the PLC, and can discard them to continue attacking the system.

Similarly Hadžiosmanović et al. [12] use network traces from an industrial
site using Modbus/TCP to detect attacks by monitoring the state variables
of the system, including constants, attribute data, and continuous data. Their
network data was captured at the supervisory network, and this means that
they are implicitly trusting the PLCs to tell the truth to the supervisory network.
However, if a PLC is compromised, it can lie to the supervisory network
interface stating that everything is working properly, while at the
same time sending erroneous commands via the field communications
interface, and this attack would not be detected by monitoring the
supervisory network.

Hide and Seek : An Architecture for Improving Attack-Visibility 179

(a) (b)

Fig. 2. (a) A control loop at time k, with sensor values yk, control values uk, actuator
action vk, and state of the system zk. (b) A compromised PLC can send manipulated
control commands to devices in the field while reporting an incorrect status of the
system to the supervisory layer.

In another example, Carcano et al. [4] propose a safety monitoring system and
raise alerts whenever it is in a critical state (or approaching a critical state). In
order to detect that they are approaching an unsafe state, they implicitly assume
trusted sensors. If an attacker compromises the sensors, or the PLCs,
it can lie to the network security monitor located in the supervisory
network and bypass the system.

The work of Carcano and C2 rely on having sensors that haven’t been com-
promised. It seems reasonable to assume that if the sensors are trustworthy, we
should be able to detect if the system is approaching an anomalous or danger-
ous state and react accordingly. Zero-dynamics attacks [20–22] are examples of
attacks where even if we assume the sensors and the PLCs are not com-
promised, attackers with compromised actuators can mislead state
estimation algorithms.

In summary, attackers have many vectors for attacks, and none of the pre-
vious we analyzed has considered a detection architecture that can prevent an
attacker from launching attacks while remaining hidden.

3 An Architecture to Reveal Hidden Attacks

Physical processes are regulated by a control loop, consisting of the following
components: (1) the physical phenomena of interest (sometimes called the pro-
cess), (2) sensors to observe the physical system and send a time series yk denot-
ing the value of the physical measurement at time k (e.g., the voltage at 3 a.m is
120 KV), (3) based on the sensor measurements received yk, the controller/PLC
sends control commands uk (e.g., open a valve by 10%) to actuators, and (4)
actuators that change the control command to an actual physical change (the
device that opens the valve). To differentiate between the real state of the system
and the sensor reading, let zk denote the real value and yk the one reported by
sensors. Similarly, actuators might implement a different control action vk than
the one received from the PLC uk. A summary is shown in Fig. 2a.

180 J. Giraldo et al.

3.1 Limitations of Security Monitors Located (Only)
at the Supervisory Control Network

Most of the previous work on network security monitoring has deployed network
intrusion detection systems at the SCN; however, if an anomaly detection system
is only deployed in the supervisory control network then a compromised PLC
can send manipulated data to the field network, while pretending to report that
everything is normal back to the supervisory control network, as illustrated in
Fig. 2b. In the Stuxnet attack, the attacker compromised a PLC (Siemens 315)
and sent a manipulated control signal ua (which was different from the original
u, i.e., ua �= u). Upon reception of ua, the frequency converters periodically
increased and decreased the rotor speeds well above and below their intended
operation levels. While the status of the frequency converters y was then relayed
back to the PLC, the compromised PLC reported a manipulated value ya �= y
to the control center (claiming that devices were operating normally). A similar
attack was performed against the Siemens 417 controller [14], where attackers
captured 21 s of valid sensor variables at the PLC, and then replayed them
continuously for the duration of the attack, ensuring that the data sent to the
SCADA monitors would appear normal [14].

If the network monitor is deployed at the supervisory control layer, it will
not able to detect compromised PLCs, unless it is able to correlate information
from other trusted PLCs, or unless it receives (trusted) sensor data directly
(e.g., wireless sensors sending measurements directly to the control center). If
the control center in the Stuxnet case had monitored the frequency converters
directly through an independent channel, it could have detected the attack.

Another difference in the data visibility between FCN and SCN layers is that
the request-and-respond communication generally implemented by SCN layers
might miss some important data exchanges in the FCN layer: without a spe-
cific request-and-response exchange, the data of interest may not be present
during the deep-packet inspection session. For example, if a specific data item
request/response exchange occurs with a low frequency or under special circum-
stances, the data exchanged will be missed. For example, configuration files for
field devices can be set so that they only to send data if some specific circum-
stances arise. Even if the PLC is trustworthy, this delay can prevent an anomaly
detector at the SCN from detecting the onset of an attack.

3.2 Detectability of Attacks

In the previous section we saw how attackers can bypass intrusion detection sys-
tems when they have compromised a PLC and our monitor is in the supervisory
network. If our intrusion detection system is in the field network, the attacker
of the previous section cannot remain hidden as we can see the false commands
coming out of the PLC and the incorrect sensor measurements from the sensors.
But what if the attacker also compromises these other parts of the system?

We now systematically analyze what can be detected and what cannot be
detected when we have access to data from the field devices (from the FCN) and

Hide and Seek : An Architecture for Improving Attack-Visibility 181

when the attacker compromises different parts of the control loop, as illustrated
in Fig. 3a. Attack 1 in Fig. 3a shows an attack on the actuator(s) vk �= uk,
the attack modifies the control command send to the plant. We note that the
controller is not aware of the communication interruption. On the other hand,
attack 2 in Fig. 3a shows an attack on the sensor(s) yk �= zk, which allows the
attacker to deceive the controller about the real state of the plant. The controllers
can be compromised as well, as illustrated by attack 3 in Fig. 3a, uk �= K(yk),
where K is the logic the control algorithm should have implemented.

We also capture attacks coming from a compromised SCADA server as illus-
trated in Fig. 3b, as malicious control commands from the SCADA server or a
malicious change of parameters to the controller will generate a false control
command equivalent to uk �= K(yk).

(a)

Control Center

yy
Supervisory Control Network

(b)

Fig. 3. (a) Different attack points in a control system: (1) Attack on the actuators, (2)
Attack on the sensors, (3) Attack on the controller. (b) Attacks on central control or
supervisory control network translate to attack uk �= K(yk) in (a).

We now discuss the detectability of each attack.

1. If we trust the controller (e.g., the PLC) but do not trust sensors or actuators
then, it is game over : the attacker can change the physical world with bad
actuation actions while at the same time using the sensors to report that
everything is working normally.

2. If we trust the actuators but not the controller or the sensors then it is also
game over: the attacker can use the controller to send false control signals ua

k

to the actuator, while false sensor measurements can be generated to justify
the false control action.

3. If we trust the sensors but not the controller or the actuators, then for most
practical cases we can detect an attack using a Physics-Based Anomaly Detec-
tion (PBAD) as proposed e.g., by Urbina et al. [23]. A PBAD will work
because the goal of the attack is to affect the physical system, and we assume
we can monitor changes done by the attacker through the sensor time series
yk. Having said that, zero-dynamic attacks [22] are examples where even when
we trust sensor measurements, we cannot detect attacks caused by a compro-
mised actuator. Zero-dynamic attacks are rare and depend heavily on the
properties of the process and the sensors we have deployed.

182 J. Giraldo et al.

4. If we trust the actuator and the controller, then we know the control signal uk

will have the expected intended effect on the physical system. Any false data
injected by the sensors will cause a control command uk to be sent in response
to these false measurements, and in turn, any implausible combination of
control and sensor signals might be an indicator of an attack and can be
detected by a PBAD.

5. If we trust the controller and the sensors, then we again have implausible
combinations of control actions and sensor measurements that can be detected
by a PBAD because we can see that the control command that was sent to
the process did not have the expected result. With the possible exception of
zero-dynamic attacks.

6. Finally, we can detect a compromised controller by identifying if a control
action is the correct response to the current state of the system. This detection
method is not PBAD, but it requires a Redundant Controller (RC) that
can verify that the control action is indeed the intended one for the specific
operation. Notice that a PBAD has limited use in this case as the physical
evolution of the process with a compromised controller will still satisfy the
“physics-based” model of the system because the false control signal ua

k will
be observed by the PBAD and it will match the expected result ya caused by
the attacker of the system.

Table 1. Detectability of attacks depending on which devices are compromised

Device status Detection possible Comment

PLC Sensor Actuator

� × × × False sensing hides bad actuation

× × � × False sensing justifies bad controls

× � × � PBAD detectable except zero-dynamics

� × � � PBAD detectable

� � × � PBAD detectable

× � � � RC-detectable

� � � � No attack possible

� = trusted/detection possible, × = compromised/detection not possible, � = can
detect most attacks except for zero-dynamics attacks

Summary and Takeaways. Table 1 summarizes our contributions. Based on
our discussion, we can see that by monitoring FCN networks we can improve
the number of attacks that we can detect (via PBAD or RC); however when
more than one set of devices is compromised (e.g., sensors and actuators) detec-
tion is impossible, even at the FCN layer. Finally, while most previous work
uses physics-based anomaly detection (PBAD) for detecting false data injection
attacks, we showed in our analysis that PBAD is not enough; in particular we
described why need to have a redundant controller (RC)-based detection.

Hide and Seek : An Architecture for Improving Attack-Visibility 183

Fig. 4. (a) Illustration of physics-based anomaly detection (PBAD) algorithm. (b)
Redundant control (RC) architecture to detect a compromised PLC. (c) Proposed
attack detection architecture

Figure 4a illustrates a general Physics-Based Anomaly Detection (PBAD)
system where the security monitor takes the control signal sent to the field and
the sensor measurement received to see if its compatible to the predicted behavior
of the system (a time-series anomaly detection algorithm like the CUSUM then
performs statistical tests to see if the anomaly is persistent) [23]. Figure 4b on
the other hand shows the RC detector, where a redundant (software-based)
controller verifies that given the same sensor inputs, it obtains the same result
as the controller.

3.3 Attack Detection Architecture

In the last section we saw that by monitoring the field communications of a con-
trol loop we can get better detection results than by monitoring the supervisory
network; however, we still get limited attack-detection when an adversary has
compromised more than one set of devices as summarized in Table 1.

Real-world industrial systems, however, are far larger than a single control
loop. They contain multiple stages controlling interdependent parts of a com-
plex system. For example, the process illustrated at the beginning of this paper
in Fig. 1 has three stages of a water purification process, each controlled by a
different set of PLCs, sensors, and actuators. These different parts of the process
can be used to try to identify the attacks that are not detected in Table 1. For
example, if the attacker compromises both sensors and actuators in one control
loop, then it can take complete control of the system without being detected;
however the effects on one loop will have other evident side-effects on another
system and we can hope to detect the attack there. This will need coordination
between different anomaly detection systems in each loop, so they can verify
with each other what each of them is currently “seeing”.

Our proposed anomaly detection architecture is illustrated in Fig. 4c. As
described in the previous subsection, by deploying network security monitors in

184 J. Giraldo et al.

Table 2. Comparison of detection capabilities of PBAD, RC, ML-PBAD.

the field communication network of the system we can use a PBAD algorithm to
detect compromised sensors or actuators, and also detect compromised PLCs by
using the RC attack-detection algorithm. Each of these anomaly detection tools
will then share their data with a Multi-Loop Physics-Based Anomaly Detection
(ML-PBAD) algorithm that will detect if the reports from a control loop in one
subsystem are consistent with the other control loops. Table 2 summarizes this.

In the next section we will discuss the development and implementation of
our architecture in an industrial system.

4 Implementation of Our Security Monitor

In this section, we present the design and implementation of a security monitor
that is explicitly placed as deep in the ICS network hierarchy as possible—in
the field network immediately next to sensors and actuators, and which reports
data to a supervisory ML-PBAD algorithm. As such, the monitor is expected to
reliably obtain information from the sensors and actuators, without the risk of
obtaining manipulated data from intermediate PLCs or SCADA.

4.1 Testbed Description

The testbed we use for our experiments is a water treatment plant consisting of 6
main stages to purify raw water. The testbed is described in more detail in [17].
The testbed has a total of 12 PLCs (6 main PLCs and 6 in backup configuration
to take over if the main PLC fails). Raw water storage is the part of the process
where raw water is stored and it acts as the main water buffer supplying water to
the water treatment system. It consists of one tank, an on/off valve that controls
the inlet water, and a pump that transfers the water to the ultra filtration
(UF) tank. In Pre-treatment the Conductivity, pH, and Oxidation-Reduction
Potential (ORP) are measured to determine the activation of chemical dosing to
maintain the quality of the water within some desirable limits. Ultra Filtration
is used to remove the bulk of the feed water solids and colloidal material by
using fine filtration membranes that only allow the flow of small molecules. The
accumulated contaminants are removed by back-washing away the membrane
surface depending on the measure of a differential pressure sensor located at the
two ends of the UF. After the small residuals are removed by the UF system, the
remaining chlorines are destroyed in the Dechlorinization stage, using ultraviolet
chlorine destruction unit and by dosing a solution of sodium bisulphite. Reverse

Hide and Seek : An Architecture for Improving Attack-Visibility 185

Osmosis (RO) system is designed to reduce inorganic impurities by pumping the
filtrated and dechlorinated water with a high pressure through reverse osmosis
membranes. Finally, in RO final product stage stores the RO product (clean
water).

Each stage has two PLCs (one primary and one redundant in hot-standby
mode). The field devices, i.e. sensors/actuators, send and receive sensor informa-
tion and control actions, respectively, to/from the PLCs through Remote I/O
modules (digital input and output, and analog input) in a EtherNet/IP ring
topology (EtherNet/IP is a popular industrial control protocol).

4.2 Challenges for Parsing the FCN Layer

Implementing a FCN monitor is more challenging than implementing one at the
SCN level. The network of the testbed illustrated in Fig. 1 uses the Common
Industrial Protocol (CIP) stack [3] for device communications at the SCN and
FCN layers. This is a common industrial protocol and is representative of a wide
variety of industry sectors. There a variety of differences between the FCN and
SCN layers, as illustrated in Fig. 5.

One difference in the data visibility between FCN and SCN layers is that
the request-and-respond communication implemented by SCN layers might miss
some important data exchanges in the FCN layer: without a specific request-
and-response exchange, the data of interest may not be present during the deep-
packet inspection session. For example, if a specific data item request/response
exchange occurs with a low frequency or under special circumstances, the data
exchanged will be missed.

Fig. 5. Differences between the SCN
and the FCN network stacks.

Fig. 6. (a) FCN’s multicast implicit
I/O connections, and (b) SCN’s
request/response-oriented explicit
messaging connections.

186 J. Giraldo et al.

In addition, at the SCN layer, devices communicate through point-to-
point connections over the Transmission Control Protocol (TCP) and exchange
explicit CIP messages—see Fig. 7; these explicit messages are standard and
openly accessible formats defining a clear semantic of the messages exchanged
between devices. As shown in Fig. 6(b), each Messaging Connection (MC) pro-
vides generic, multi-purpose communication paths by carrying well-known and
semantically-rich explicit CIP Messages between two devices. Creating a pro-
tocol parser to extract the sensor and actuation commands in this setting is
straightforward because we only need to follow the standard specification and
all the data types and their interpretation can be understood by the parser.

On the other hand, at the FCN layer, devices communicate through multicast
connections over User Datagram Protocol (UDP) and exchange implicit I/O
Connections between a producer device and one or more consuming devices
(See Fig. 6(a)). The semantic and structure of the data inside the I/O Message
is implicitly known by the communicating devices, and is device and vendor
dependent (Allen-Bradley in this deployment). In particular, these I/O Messages
in the FCN layer follow a flat structure (stream of bits), of fixed size and of
untyped data. Therefore we need to work with low-level data where values are
exchanged without standard units of measurement, and where the protocol is not
publicly available. In order to develop a parser for this layer, we require extra
information provided by the electrical drawings of the equipment, illustrating
how each field device (e.g. sensor or actuator) is wired to the specific modules
of the PLC.

Fig. 7. Explicit CIP message encapsu-
lation over EtherNet/IP.

I/O Message Signal size (bits) # signals Avg. Freq. (ms)

Digital Input 1 32 50
Digital Output 1 16 60
Analog Input 16 12 80

Fig. 8. Modules for each PLC.

4.3 Extracting the Semantics of FCN Data

After implementing the parser in Python, we now need to interpret the data we
see in the wire. According to the electrical drawings, we found that each PLC
had three modules: a digital input module (to receive on/off status reports from
senors or fault alarms from devices in the field), an analog input module (to
receive fine-grain information from sensors in the field such as the height of the
water level in a tank, or the pH level of the water), and a digital output (to turn
on/off actuators in the field). None of the PLCs in this testbed had an analog
output module (analog outputs are used to control continuous variables such as
the speed of a motor or the partial valve opening).

Hide and Seek : An Architecture for Improving Attack-Visibility 187

The number of signals available per module are summarized in Fig. 8. For
example, a digital input module for the PLC consists of a stream of 32 bits,
corresponding to each of the digital inputs signals. The spare channels are those
not in use by the current deployment. The digital outputs are grouped in 16-
bit stream (1 bit per signal), while the analog inputs are grouped in a 24-byte
stream with 16 bits per signal 2’s complement.

Electrical drawings of the plant tell us which specific bit (or word) in the
PLC module corresponds to each signal. For example, Fig. 9 shows the electrical
diagram indicating the description of each bit in the stream for a digital input
module (the top part of the figure is our own illustration showing how these
sensors connect to the PLC).

Fig. 9. Digital input module with 32
input signals (1-bit signals) for the raw
water storage stage PLC.

Fig. 10. Analog input module with 12
input signals (16-bits signals) for the
raw water storage stage PLC.

The I/O Messages containing the analog signals are sent by the field devices
to the PLC with an average frequency of 80 ms. They transport the numeric
representation of the 4–20 mA analog electrical signals measured by the analog
sensors and converted to their raw digital version using an Analog-Digital Con-
verter (ADC). For example the analog inputs for the first stage of the testbed
are shown in Fig. 10.

In order to scale back and forth between the 4–20 mA analog signal and the
real measurement with standard units, we use Eq. (1). In this equation, EUMax
and EUMin are the desired maximum and minimum limits of the specific Engi-
neering Unit (e.g. millimeters (mm), pH, cubic meters per hour (m3/h), etc.) to
which the Raw signal is being scaled; RawMax and RawMin are the maximum
and minimum possible limits for the original Raw signal. These constant values
depend on the type of sensors and the physical property being measured.

Out = (In − RawMin) ∗ EUMax − EUMin

RawMax − RawMin
+ EUMin (1)

188 J. Giraldo et al.

By looking at packet captures between the PLC and the field devices we
found that each packet represented a specific exchange between a module in the
PLC and the field devices. Therefore by simply looking at the packet payload size
(32 bits for the digital input module, 16 bits for the digital output module, and
192 bits for analog inputs) we were able to identify the type of communication.

Based on this information, we developed parsers for the three types of packets
for all PLCs, and a command-line interpreter (CLI) application which includes
a library of attacks and a network monitoring module implementing attack-
detection mechanisms. The attack modules are capable of launching diverse
spoofing and bad-data-injection attacks against the sensor and actuator signals
of the testbed. The attack modules can be loaded, configured, and run indepen-
dently of each other, allowing to attack sensors/actuators separately. The attack
modules can also be orchestrated in teams in order to force more complex behav-
iors over the physical process, while maintaining a normal operational profile on
the HMI. The CLI application consists of 632 lines of Python [26] 2.7 code and
the only external dependencies are Scapy and NetFilterQueue.

Specifically, making use of Scapy [27], we developed a new protocol parser for
the Allen-Bradley proprietary I/O Messages used at the FCN layer, and for the
EtherNet/IP Common Packet Format wrapper that encapsulates it. This parser
allows us to sniff, in real-time, the sensor readings and actuation commands, and
to inject fake packets in the network. When injecting fake data, our software
calculates the data integrity checksums used by the Transport Layer protocol.

Instead of injecting fake packets crafted from scratch, our attack modules
catch the original packets from the communication stream and insert fake sens-
ing/control data, before sending the packets to their original destination. Insert-
ing fake packets may result in race conditions when the original and the fake
packet are both process by the PLC. We employed the NetFilterQueue [25]
Python bindings for libnetfilter queue to redirect all the I/O Messages between
PLC and the field devices to a handling queue defined on the PREROUTING
table of the Linux firewall iptables. The queued packets can be modified using
Scapy and the previously mentioned message parser, and finally released to
reach their original destination e.g., PLC or field devices. Likewise, this tech-
nique allowed us to avoid disruptions on the sequence of EtherNet/IP coun-
ters, and injection of undesirable perturbations in the EtherNet/IP connections
established between field devices. Our final security monitor is inserted in the
EtherNet/IP ring between the PLCs and the field devices.

5 Experiments

We now illustrate how our monitor system can be used to launch and detect
attacks at the FCN in the testbed. In the following experiments, the goal of
the attacker is to deviate the water level in a tank as much as possible until
the tank overflows, without being detected. We assume an attacker who has
complete knowledge of the physical behavior of the system and can manipulate
EtherNet/IP field communications or has compromised the PLC.

Hide and Seek : An Architecture for Improving Attack-Visibility 189

Our network monitoring module was setup to use a stateful CUmulative
SUM (CUSUM) anomaly detection on the residuals, with a LDS model of the
process. In particular, we use a mass balance equation that relates the change
in the water level h with respect to the inlet water flow Qin and outlet water
flow Qout volume of water, given by Areadh

dt = Qin − Qout, where Area is the
cross-sectional area of the base of the tank. Note that in this process the control
actions for the valve and pump are On/Off. Hence, Qin or Qout remain constant
if they are open, and zero otherwise. Using a time-discretization of 1 s, we obtain
an estimated model of the form

ĥk+1 = hk +
Qin

k − Qout
k

Area
(2)

where hk represents the received sensor measurement for the water level at time
k, Qin

k represents the on/off variable of the state of the inlet valve at time k, and
Qout

k represents the on/off variable of the state of the pump that takes water
off the tank. Given these variables, we can predict the height of the tank at the
next time step ĥk+1.

A residual statistic keeps track of the difference between the height of the
tank received at time k+1 and the expected height rk = |hk − ĥk|. A cumulative
sum of these errors (minus a forgetting factor δ) is then computed as part of the
CUSUM anomaly detection test: Sk+1 = max(0, Sk + rk − δ), see [23]. If this
statistic is greater than a user-specified threshold τ (usually selected to maintain
a low false alarm rate) then we raise an alarm; i.e., if Sk > τ then we send an
alert to the operator.

We now show how our field-level implementation has enough visibility to
detect a variety of attacks to the system.

5.1 Sensor Attack (Water Level)

We assume the adversary has gained access to the communication link between
the sensor and the PLC and she is able to manipulate the sensor information
as we described above. At the moment of the attack, the valve was open and
the pump was off, so the water level in the tank starts increasing. This attack
corresponds to attack 2 in Fig. 3a. The sensor information is used by the PLC
to determine the control action; therefore, if the attacker lies and tells the PLC
that the water height is increasing at a slower rate it actually is increasing, the
PLC will keep the valve open and the tank overflows before the valve closes.
Figure 11a illustrates how the compromised water level increases at a slower rate
than the real one, and as a consequence, when the sensor information reaches
0.8 m and the PLC closes the valve, the real water is already overflowing (the
height of the tank is 1 m). However, our proposed detection mechanism detects
that the sensor measurement received hk does not match the rate ĥk at which
the water should be increasing. The consecutive differences between hk and ĥk

form the residual rk (i.e., rk = |hk − ĥk|). Taking a CUSUM detection statistic
over rk triggers an alarm a few seconds after the attacked is launched.

190 J. Giraldo et al.

Fig. 11. (a) Sensor attack (water level). (b) Impact of a stealthy sensor attack with
detection strategies in SCN and FCN.

Fig. 12. (a) Actuator attack (inlet valve). (b) Controller attack (PLC/SCADA).

In this case it does not matter if the security monitor is at the FCN layer or
at the SCN layer, the attack can be detected at any layer because both layers
have visibility into the false sensor data. However, to illustrate the problem of
relying only in supervisory networks when a PLC is compromised, we ran the
same attack, but this time the PLC reported the reading the anomaly detector
was expecting to the supervisory network. The anomaly detector in the field
network on the other hand, was able to see the raw sensor measurements being
produced and how they did not match with the control commands of having
the inlet valve open and the pump extracting water closed. Motivated by the
performance metric proposed by Urbina et al. [23], we compute the trade-off
between attack impact and frequency of false alarms that a stealthy attacker
(one that does not raise any alarms) causes to both systems: an PBAD at the

Hide and Seek : An Architecture for Improving Attack-Visibility 191

SCN, and a PBAD at the FCN (see Fig. 11b). In the figure it is clear that if the
attacker wants to remain hidden, it has better chances to cause damages to the
system if the defender only monitors the SCN.

5.2 Actuator Attack (Inlet Water Valve)

Now we turn our attention to attacks against the actuators, as illustrated in
Fig. 3(a). In this scenario, our security monitor observes the intended control
command by the PLC to the actuator, but then notices that the sensor mea-
surement does not correspond to the intended control command.

We consider a state of the system where the water in the tank is at 0.8 m and
the PLC intends to keep that level by having the intake valve closed, and the
pump taking water out of the tank off. Figure 12a shows how a false actuation
command to open the valve increases the height of the water in the tank. Again,
our anomaly detection system detects that the predicted height (0.8 m) based
on the current control commands (both the inlet valve and the pump are off)
should remain constant, so the increase of the water level is detected as anomaly.

As in the previous case (sensor attack), if the only attacked device in the
system is the intake valve position, then it doesn’t matter if the security monitor
is at the FCN layer or at the SCN layer, the attack can be detected at any layer
because both layers have visibility into the truthful sensor data and notice that
it does not correspond to the control commands sent to the field.

5.3 PLC Attack (RC-Detection)

In this attack the logic of the PLC is modified so that it sends a false control
command, but reports that everything is fine to the SCN as in Fig. 2b. In par-
ticular, the PLC sees that the water is at the high level of 0.8 m (so it shouldn’t
open the intake valve); however, our change of logic in the PLC instead asks it
to open the intake valve to allow more water into the tank, while reporting to
the supervisory control layer that the intake valve is closed and that the water
level is still 0.8 m.

As discussed before, this attack cannot be detected with a security monitor
at the supervisory control layer, because it does not have visibility to the field
control commands sent by the PLC. As discussed before, this attack cannot even
be detected using PBAD at the FCN because there is no discrepancy between the
observed control commands, and their effect on sensor measurements. Figure 12b
shows how a command from a compromised PLC cannot be detected by our
physics-based anomaly detection statistic as our FCN monitoring tool observes
the command to open a valve, and then predictably, the height of the tank begins
increasing at the appropriate rate.

To detect this attack we require a redundant control architecture in this case
is illustrated in Fig. 4b. In this case the RC attack detection algorithm notices
the compromised PLC sends a signal that is not authorized to send in its current
state, thus detecting the compromised PLC.

192 J. Giraldo et al.

5.4 Multi-loop Anomaly Detection (ML-PBAD)

The worst type of attack corresponds to the case when the sensors and actuators
are attacked simultaneously. To show the generality of our ML-PBAD architec-
ture originally presented in Fig. 4c, we implemented it in two different systems;
we now present the results for the water system we have been considering.

Here we assume the adversary has compromised both the actuators and the
sensors, and therefore is able to send arbitrary actuator control signals (e.g. open
the intake valve when the water in the tank is 0.8 m) while at the same time, lie
about the sensor readings (i.e., tell our security monitor that the water in the
system is constant at 0.8 m).

Now, recall that the testbed has multiple stages controlled by various PLCs,
each of them receiving different field signals from the physical process. We focus
our attention on the water level of two consecutive stages with two tanks, each of
which is controlled by hysteresis switched controls that depend on those levels.
We want to show how attacks over sensors and actuators affect the performance
of the system, and it is even possible to lead the water level to overflow.

Fig. 13. Sensor and actuator attack in stage 1. The attack cannot be detected by the
detection algorithm in process 1, but it can be observed in the other stage.

In particular, we assume our attacker has compromised both the pump actu-
ator and the water level sensor in the first stage of the testbed. As result, if
the attacker wants to damage the pump, it can turn on the pump directly from
the actuator command. As our security monitor will not see that command, it
will assume the pump is off. The attacker then can lie about the water in the
system, and tell the PLC (and thus the security monitor) that the water remains
at 0.8 m, while in reality the water level in tank one is decreasing.

From the point of view of the security monitor however, the pump is off,
and the water level is stable (the security monitor sees the red lines in Fig. 13
(top)) and therefore, the anomaly detection statistic for stage 1 does not increase.
However, from the point of view of the field security monitor in stage two of the

Hide and Seek : An Architecture for Improving Attack-Visibility 193

plant monitoring the control loop of the second PLC, the water level for the
second tank will appear to rise without any apparent reason, and this will raise
an alarm, as illustrated in Fig. 13 (bottom).

We found that without our proposed ML-PBAD scheme, the attacker is able
to raise the water level of the tank to the point of overflow (0.4 m above the set-
point) without being detected by the single loop PBAD. In contrast, the attacker
can only raise the water level to 0.1 m above the setpoint without detection if
ML-PBAD is used

6 Conclusions

In this paper we have presented a detailed discussion of the lack of missing
trust models in previous work, and why specifically looking where to deploy
physics-based anomaly detectors is of high importance. In particular we show
why deploying security monitors in the field level of industrial control systems
has several advantages over deploying only at the supervisory control layer.

We then implemented a field security monitor. We showed the differences
between implementing a detector in the field level versus at the supervisory
control layer, and then showed its effectiveness to detect more attacks than
what is possible at the supervisory control layer.

Finally, by experimenting with attacks to all components of the system, we
were able to identify new tools to mitigate some corner cases that cannot be
addressed solely with PBAD-anomaly detection algorithms [23]. We then pre-
sented a new holistic detection architecture that covers detection of attacks not
previously discussed in the literature.

A limitation of a field monitor is that if both, sensor and actuators are com-
promised, then an attacker can still bypass this detection. To mitigate this prob-
lem we proposed the integration from multiple field monitors at different stages
in a large process. Our work in this distributed architecture improves the visi-
bility of our system, and makes the work of an attacker who wants to remain
stealthy much harder. Powerful attackers will always be able to bypass the sys-
tem, but our architecture will raise the bar in the amount of effort and knowledge
required by attackers to be successful.

Acknowledgements. We would like to thank SUTD for giving us access to their
SWaT testbed to conduct our experiments. This material is based on research sponsored
by the National Science Foundation with award number CNS-1718848, by the National
Institute of Standards and Technology with award number 70NANB17H282, and by
the Air Force Research Laboratory under agreement number FA8750-19-2-0010. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of Air
Force Research Laboratory or the U.S. Government.

194 J. Giraldo et al.

References

1. Abrams, M., Weiss, J.: Malicious control system cyber security attack case study-
Maroochy water services, Australia. The MITRE Corporation, McLean (2008)

2. Ahmed, C.M., et al.: NoisePrint: attack detection using sensor and process noise
fingerprint in cyber physical systems. In: Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, pp. 483–497. ACM (2018)

3. Brooks, P.: EtherNet/IP: industrial protocol white paper. Technical report, Rock-
well Automation (2001)

4. Carcano, A., Coletta, A., Guglielmi, M., Masera, M., Fovino, I.N., Trombetta,
A.: A multidimensional critical state analysis for detecting intrusions in SCADA
systems. IEEE Trans. Ind. Inform. 7(2), 179–186 (2011)

5. Cardenas, A.A., Amin, S., Lin, Z.S., Huang, Y.L., Huang, C.Y., Sastry, S.: Attacks
against process control systems: risk assessment, detection, and response. In: Pro-
ceedings of the 6th ACM Symposium on Information, Computer and Communica-
tions Security, pp. 355–366 (2011)

6. Caselli, M., Zambon, E., Amann, J., Sommer, R., Kargl, F.: Specification mining
for intrusion detection in networked control systems. In: 25th USENIX Security
Symposium (USENIX Security 2016), pp. 791–806 (2016)

7. Cheng, L., Tian, K., Yao, D., Sha, L., Beyah, R.A.: Checking is believing: event-
aware program anomaly detection in cyber-physical systems. IEEE Trans. Depend-
able Secur. Comput. (2019)

8. Cheung, S., Dutertre, B., Fong, M., Lindqvist, U., Skinner, K., Valdes, A.: Using
model-based intrusion detection for SCADA networks. In: Proceedings of the
SCADA Security Scientific Symposium, vol. 46, pp. 1–12 (2007)

9. Falliere, N., Murchu, L.O., Chien, E.: W32: stuxnet dossier. White paper, symantec
corp., security response (2011)

10. Gerdes, R.M., Winstead, C., Heaslip, K.: CPS: an efficiency-motivated attack
against autonomous vehicular transportation. In: Proceedings of the 29th Annual
Computer Security Applications Conference, pp. 99–108. ACM (2013)

11. Hadžiosmanović, D., Simionato, L., Bolzoni, D., Zambon, E., Etalle, S.: N-gram
against the machine: on the feasibility of the N-gram network analysis for binary
protocols. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol.
7462, pp. 354–373. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33338-5 18

12. Hadžiosmanović, D., Sommer, R., Zambon, E., Hartel, P.H.: Through the eye of
the PLC: semantic security monitoring for industrial processes. In: Proceedings of
the 30th Annual Computer Security Applications Conference, pp. 126–135. ACM
(2014)

13. Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3),
49–51 (2011)

14. Langner, R.: To kill a centrifuge: a technical analysis of what stuxnet’s creators
tried to achieve. Langner Group, Arlington (2013)

15. Lee, R.M., Assante, M.J., Conway, T.: Analysis of the cyber attack on the ukrainian
power grid. Technical report, SANS Industrial Control Systems, March 2016

16. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation
in electric power grids. In: Proceedings of the 16th ACM Conference on Computer
and Communications Security, pp. 21–32. ACM (2009)

https://doi.org/10.1007/978-3-642-33338-5_18
https://doi.org/10.1007/978-3-642-33338-5_18

Hide and Seek : An Architecture for Improving Attack-Visibility 195

17. Mathur, A., Tippenhauer, N.O.: SWaT: a water treatment testbed for research
and training on ICS security. In: Proceedings of Workshop on Cyber-Physical Sys-
tems for Smart Water Networks (CySWater), April 2016. https://doi.org/10.1109/
CySWater.2016.7469060

18. McLaughlin, S.: CPS: stateful policy enforcement for control system device usage.
In: Proceedings of the 29th Annual Computer Security Applications Conference,
ACSAC 2013, pp. 109–118. ACM, New York (2013)

19. Mitchell, R., Chen, I.R.: A survey of intrusion detection techniques for cyber-
physical systems. ACM Comput. Surv. 46(4), 55:1–55:29 (2014)

20. Pasqualetti, F., Dorfler, F., Bullo, F.: Attack detection and identification in cyber-
physical systems. IEEE Trans. Autom. Control 58(11), 2715–2729 (2013)

21. Teixeira, A., Pérez, D., Sandberg, H., Johansson, K.H.: Attack models and scenar-
ios for networked control systems. In: Proceedings of the 1st International Confer-
ence on High Confidence Networked Systems, pp. 55–64. ACM (2012)

22. Teixeira, A., Shames, I., Sandberg, H., Johansson, K.H.: Revealing stealthy attacks
in control systems. In: 2012 50th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 1806–1813. IEEE (2012)

23. Urbina, D., et al.: Limiting the impact of stealthy attacks on industrial control sys-
tems. In: Proceedings of the ACM Conference on Computer and Communications
Security (CCS), October 2016. https://doi.org/10.1145/2976749.2978388

24. Williams, T.J.: The purdue enterprise reference architecture. Comput. Ind. 24(2),
141–158 (1994)

25. Python bindings for libnetfilter queue, February 2017. https://github.com/
fqrouter/python-netfilterqueue

26. Python Language: version 2.7.10, February 2017. https://docs.python.org/2/
27. Scapy Packet Manupulation Program: version 2.3.1, February 2017. http://www.

secdev.org/projects/scapy/doc/

https://doi.org/10.1109/CySWater.2016.7469060
https://doi.org/10.1109/CySWater.2016.7469060
https://doi.org/10.1145/2976749.2978388
https://github.com/fqrouter/python-netfilterqueue
https://github.com/fqrouter/python-netfilterqueue
https://docs.python.org/2/
http://www.secdev.org/projects/scapy/doc/
http://www.secdev.org/projects/scapy/doc/

A Modular Hybrid Learning Approach
for Black-Box Security Testing of CPS

John Henry Castellanos(B) and Jianying Zhou(B)

Singapore University of Technology and Design, Singapore, Singapore
john castellanos@mymail.sutd.edu.sg, jianying zhou@sutd.edu.sg

Abstract. Evaluating the security of Cyber-Physical Systems (CPS) is
challenging, mainly because it brings risks that are not acceptable in
mission-critical systems like Industrial Control Systems (ICS). Model-
based approaches help to address such challenges by keeping the risk
associated with testing low. This paper presents a novel modelling frame-
work and methodology that can easily be adapted to different CPS.
Based on our experiments, HybLearner takes less than 140 s to build
a model from historical data of a real-world water treatment testbed,
and HybTester can simulate accurately about 60 min ahead of normal
behaviour of the system including transitions of control strategies. We
also introduce a security metrics (time-to-critical-state) that gives a mea-
surement of how fast the system might reach a critical state, which is
one of the use cases of the proposed framework to build a model-based
attack detection mechanism.

Keywords: Cyber-Physical Systems security ·
Black-box security testing · Model-based attack detection

1 Introduction

Running security tests on Cyber-Physical Systems (CPS) is very challenging,
especially in the subset of Industrial Control Systems (ICS). They are mission-
critical systems that provide essential products/services in modern societies,
for example, water treatment and distribution, power grid and transportation
infrastructures. Due to risks associated with security tests over operating ICS,
experts suggest to perform tests only at the design phase or during a specific
operation window, to minimise the availability issues.

Researchers have proposed various model-based testing approaches to address
this challenge [1,5,6,12]. There are two paradigms for model-based security test-
ing, white-box and black-box. A white-box approach is appropriate for security
testing in the design phase because it can generate an accurate and precise
model of the system [5,6]. Unfortunately, it is not always the case, and it is why
a black-box approach might be considered.

Researchers from different fields propose multiple techniques to perform
black-box or data-driven modelling. System identification [7,15] models a sys-
tem from control and system engineering disciplines, and automata learning [18]
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 196–216, 2019.
https://doi.org/10.1007/978-3-030-21568-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_10

A Modular Hybrid Learning Approach for Black-Box Security Testing 197

models a system from experimental data. In this paper, we propose a method-
ology to perform a black-box modelling that serves as a framework to build
model-based security testing on ICS.

The main contributions of this work are as follows:

– A methodology and framework to model a CPS as a hybrid system model,
following a black-box approach (see Sects. 2.2 and 3). It requires a minimal
initial configuration to build the model automatically, and its modular frame-
work allows to be easily adapted to other complex systems.

– Application of hybrid system models in the study of the security of CPS. It
demonstrates how to develop a model-based attack detection mechanism (see
Sect. 4).

– Introduction of the concept of time-to-critical-state as metrics to get insights
into security in CPS (see Sect. 3.3). It can be applied to evaluate attack
impacts and resilience of the system.

2 Background

2.1 Hybrid Systems

Hybrid systems are extended-state machines that are composed of inputs,
outputs, state variables, locations, events and guards [2,8]. Likewise a cyber-
physical system, a control system can be represented as a hybrid system (see
Fig. 1a), where continuous-time components interact with discrete-time com-
ponents through Analog-to-Digital converters (ADC) and Digital-to-Analog
(DAC). The continuous-time system can be considered as the physical process
(Plant) or the physical domain in CPS. The discrete-time system refers to the
cyber domain in CPS or Controllers for ICS, and DAC and ADC converters
represent actuators and sensors, respectively.

A cyber-physical system can be divided into a set of subsystems, each of
which is composed of controllers, sensors, actuators and section of the plant.
Similarly, critical states can be split using the same approach. The subsystems
have their critical states related to components functionality and can be moni-
tored by the particular controller. They are called local critical states, e.g. a
tank reaches an overflow level. On the other hand, there are critical states that
are related to the interaction of two or more subsystems’ states, and it is only
detected from a global monitor. They are called global critical states, e.g. a
tank with a shallow level while another controller demands liquid provision from
it.

A more formal definition of hybrid systems and the theoretical framework
we use to build our approach is as follows.

2.2 Definition of CPS as Hybrid Automaton

We use the Hybrid Automata [2,8,11,22] as the framework to model cyber-
physical systems.

198 J. H. Castellanos and J. Zhou

DAC

Plant
x ∈ R

n

ẋ = f(x, u)
y = h(x, u)

Controller
u+ = g(u, y, z)

External
Messages

ADC

y ∈ R
n

u ∈ Z
m

z ∈ R
l

Network Fabric

δ

(a) Control Systems

l1
ẋ1

l3
ẋ3

l2
ẋ2

G12
x2 := J12(x1)

G13

x3 := J13(x1) G32

x2 := J32(x3)

G21x1 := J21(x2)

(b) Hybrid Systems

Fig. 1. System models

A hybrid system H (see Fig. 1b) can be defined as a five-tuple
(L,X,E, Inv,Act), where each of the components is defined as follows.

– A set of discrete-time variables L called locations (or modes [8,11]).
– An n-dimensional manifold X called states. The variables X ∈ R

n;X =
{x1, x2, . . . , xn} in continuous-time t, where n ∈ N is known as the dimension
of H.

– A set of discrete events E depicted as directed edges, each of which connects
two locations {l, l′} to represent a transition l → l′. (In ICS, it represents a
transition between different control strategies.) E has additional parameters
such as edge identifier e, Guarde, and Jumpe. Guarde is a subset of X. When
x reaches a value in this set, H triggers the transition l → l′. Jumpe (also
known as Reset [8,11]) is a function that maps x → x′ from a state-space in
Guarde to a state-space that belongs to the new location l′.

– Inv is known as the location invariant. Inv(l) ⊂ X when H is in l, x must
satisfy x ∈ Inv(l).

– Act describes a set of first order derivatives (ẋ), also called flows [8], that
describes how X evolves during continuous-time t when H stays at l.

In each location l, there exists inputs u ∈ Z
m, state variables x ∈ R

n, and
outputs y ∈ R

n, where m ∈ N is known as the dimension of the input set
and n, as described above, is the dimension of H. The output depends on the
current state variable and the input y = hy(x, u), and the state variable evolves
according to its current state and the input (ẋ = fx(x, u)). The system state
holds over the interval [0, δ]; 0 ≤ t ≤ δ. As described in Fig. 1a, δ is also known as
the sampling period and represents a bridge that syncs continuous and discrete
time, t and k respectively. Continuous-time components are regulated for t and
discrete-time components for k. The control strategy (u+) is evaluated in each
new step k + 1 and depends on current values of u[k], y[k] and z[k].

A Modular Hybrid Learning Approach for Black-Box Security Testing 199

3 Approach

We propose a two-fold methodology, Learning Phase (HybLearner) and Evalua-
tion Phase (HybTester). The learning phase aims to build a model from exper-
imental data that is a good abstraction of the real system, while the evaluation
phase aims to test if the produced model is accurate compared with new data.

3.1 Learning Phase - HybLearner

HybLearner (Algorithm 1) assumes we have historical data or real-time data
and network traffic captures. The model of the system is the composition of all
controllers’ views (sub-models). The learning phase is split into different stages
as depicted in Fig. 2. The process is considered as a controller-based approach,
where each controller is responsible for building and maintaining its model.

Historian
on-line Data

Variable
extraction

State’s
transition

Location
identification

L̄

Event
Matrix

Ē = L̄ × L̄

GP
Regression

Continuous-t
Model

C̄ = {ẏ1 . . . ẏj}

Network
traffic

External
message

extraction

ML
Classifiers

Discrete-time
Classifier

D̄

Ū

Ȳ

Ȳ

Z̄

Fig. 2. HybLearner framework (learning phase)

Variable Classification
As part of the earliest stage, we split raw data into, plant’s inputs, plant’s out-
puts and external messages (u, y, z). Plant’s inputs are signals that travel from
controllers to the plant (actuator signals for ICS, Ū in Sect. 2.2). Plant’s out-
puts are feedback signals (set Ȳ in Sect. 2.2). External messages are selected
from analysis to network traffic in each controller (see Algorithm 2). Reading
and writing messages to/from other entities, like HMI and supervisory systems,
are considered as part of set Z̄.

Identifying Locations
For all plant’s inputs u ∈ Z

m, we check if there is a transition vi : ui → u′
i,

where vi is a 2-tuple (ui, u
′
i). Location set L is a unique combination of m sets

of 2-tuples L = {l1, l2, . . . , lmax}, where l1 = v1‖v2‖ . . . ‖vm.

200 J. H. Castellanos and J. Zhou

Algorithm 1. HybLearner
Input : Historian/real-time data (Raw), Network capture (Net) and

Configuration file (CF).
Output: Continuous-t model (C̄), Discrete classifier (D̄).

1 u, y ←LoadLabel(CF)
2 z = LoadExtLabel(CF,Net)
3 L,F ← Hashtable()
4 c, lold ← 0, Uold ← {OFF, . . . }, Modelling ← True, Ȳ ← List()
5 while Learning do
6 Ui,Yi,Zi ← Raw [u, y, z]
7 if Uold �= Ui then
8 if Modelling then
9 C[l] ← GPTrain(Ȳ) // Apply regression technique

10 Modelling ← False

11 Ȳ ← List() // clear Ȳ for next continuous modelling

12 if L.contains(Ui) then
13 Modelling ← False

14 else
15 c ← c + 1
16 L.insert(Ui : c)
17 Modelling ← True

18 l ← L[Ui]
19 Uold ← Ui

20 Ȳ.insert(Yi)
21 F̄[lold].insert(Yi,Zi, l)
22 lold ← l

23 D̄ ← TrainClassifier(F) // Apply classification technique

24 H ← (C̄, D̄)
25 return H

Building the Local Finite State Machine Model
We create locations as nodes, and each event is stored as a directed edge from
the source location to the destination location.

Learning Continuous Dynamics
In each independent event, we learn the continuous dynamics of the system’s ẋ.
It includes resets (jumps) and derivatives (Act) in new modes from Sect. 2.2. We
manage this as a regression problem in Machine Learning field. We propose to
use a non-parametric regression algorithm like Gaussian Processes to learn the
continuous dynamics because it can produce high order models.

Inferring Guards and Events
Usually, control strategies are triggered by particular conditions, e.g. close a valve
once a tank has reached a certain level. We hypothesise that this transition can
be modelled as a multi-class classification problem. To do so, we propose to

A Modular Hybrid Learning Approach for Black-Box Security Testing 201

Algorithm 2. LoadExtLabel
Input : Configuration file (CF) and Network capture (Net).
Output: Set of external labels (z).

/* This algortihm aims to capture all external interactions from

other controllers using the network. Control transitions depend

on state of local and remote variables. */

1 myIP ←LoadIP(CF) // Read controller’s IP

2 z = List() // Empty list to store external labels

3 for All packets pk in Net do
4 if pk.srcIP = myIP ∧ pk.msg is reading then
5 extLabel ← pk.dstVar

6 else if pk.dstIP = myIP ∧ pk.msg is writing then
7 extLabel ← pk.dstVar

8 if extLabel �= ∅ ∧ ¬z.contains(extLabel) then
9 z.insert(extLabel)

10 extLabel ← ∅
11 return z

train a classifier per each location with (Ȳ and Z̄) as features. The categorical
variables are the possible l′ locations that an event might transit to, it takes the
event matrix E (see Fig. 2). To improve classifier accuracy, we include feature-
enhancing and feature-selection steps, where only the most relevant features are
considered in the training phase.

Boosting Classifier Accuracy
We extend the feature set including a set Δ̄Y. It captures the dynamic behaviour
of Ȳ (sensor readings) from previous values, i.e. y[k − 5] → y[k].

A training set composed by Ȳ, Δ̄Y and Z̄ contain features that bring different
relevance in each location. For example, for a location l1 where a valve is filling a
tank the level sensor y1 is more relevant than a flow sensor y2 that is connected
to another part of the system, then it makes sense to use y1 instead of y2 as
a feature in the training set. As a feature-selection step, we rank the features
using the Gini importance metric (extra-trees classifier) and train the classifier
with the most relevant features in that particular location.

Model Composition - The Whole System’s View
A system model is composed by the combination of all controllers’ views. H̄ =
H1‖H2‖ . . . ‖Hr for r number of controllers.

It requires all controllers share information through a common data structure,
and synchronise under the same discrete-time scale (k). Then all HybLearner ’s
instances write and read variable states to the same data structure.

202 J. H. Castellanos and J. Zhou

3.2 Evaluation Phase - HybTester

Algorithm 3. HybTester
Input : Initial conditions: init, Discrete classifier: D̄ and Continuous-t

model: C̄.
Output: Prediction of sensor readings on next step y+.

1 u0, y0, z0 ← init() // load initial conditions

2 l ← FindLocation(u0) // Identify current location

3 cl ← C̄[l] // Load the continuous-time model

4 dl ← D̄[l] // Load the discrete-time classifier

5 while Testing do
6 y+ ← cl(y0) // Predict next step (continuous-time variables)

7 z+ ← GetRemoteValue()
8 l′ ← dl(y

+, z+) // Predict if an event l → l′ takes place

9 if l �= l′ then
/* In case of transition, update model and classifier */

10 cl ← C̄[l′]
11 dl ← D̄[l′]
12 l ← l′

13 y0 ← y+

HybTester (Algorithm 3) takes the initial condition (init), the discrete-time clas-
sifier (D̄) and the continuous-time model (C̄) as input parameters, and produces
an estimation of y+ and u+ for a period of steps ahead. From init, it extracts
initial values for set u, y and z. From the initial u0, it deduces initial location
l and loads continuous-time model cl and discrete-time classifier dl. HybTester
predicts next step values of sensor readings y+ based on continuous-time pre-
dictor cl. On each time step HybTester, through classifier dl, checks if there are
conditions that trigger an event l → l′ from the current location. If dl predicts
an event occurs, new continuous-time model cl′ and discrete-time classifier dl′

are loaded, and the process continues.

3.3 A Security Metrics: Time-to-Critical-State (tq)

Critical states can be considered as a state where the system operation cannot
satisfy minimal safety conditions and threatens product or service quality or
human lives. In the literature, distance to critical states was proposed as secu-
rity measurement [3,16,21]. In addition, Krotofil and Cárdenas highlighted the
importance of including the time dimension in the resilience analysis of CPS [12].

Contributing in the same direction, we aim to answer two questions regarding
security metrics in CPS, how far is the current system state to the nearest critical
state, and how fast could the system reach the nearest critical state?

We propose to measure the ‘distance’ from the current state to the nearest
critical states, not only considering where the critical states are, but how fast the
system might get there. We compute this considering the fastest pace of system
evolution according to the system’s historical registers (worst case scenario).

A Modular Hybrid Learning Approach for Black-Box Security Testing 203

There are different levels of critical states. One is what we call local critical
states, and those depend on particular components, e.g. in a water treatment
plant, a pump is activated when there is no liquid flowing through it. Others
are global critical states, where the combination of multiple components states
will configure a critical state of the system, even if local components are in a
non-critical states, e.g. in transportation systems, a train approaches a station
where another train is stationary as each controller only monitors local critical
states for each component.

After the learning phase we can identify the set of critical states Q̄ and the
points from ‘normal’ operation that are the nearest to them, denoted as xq. In
each location l, states evolve to a different rate (ẋ), e.g. the filling rate of a tank.
Then we compute the time-to-critical-state (tq) as the time that the system
will take to reach q from xq under the fastest rate captured during the learning
phase (the worst scenario).

rq = max{ẋl : l ∈ L̄}
tq =

q − xq

rq
; ∀q ∈ Q̄

(1)

tq is expressed in terms of steps (k), the conversion to time units (t) depends
on the sampling period (δ), as described in Sect. 2.2, which varies from CPS to
CPS, e.g. δ in water treatment plants is in the scale of seconds while in smart
grids it is in scale of milliseconds.

4 Use Case: Model-Based Attack Detection

As HybLearner automatically learns a system’s ‘normal’ behaviour, our
hypothesis is that we could detect data-oriented attacks [4,9,21] using a
HybTester-powered framework. In general, the literature shows that residual
analysis is an acceptable practice to detect data-deception attacks [13,17,20].
Cárdenas et al. [4] were one of the first in proposing the use of non-parametric
cumulative sum algorithm (CUSUM) to detect data-oriented attacks. We adopt
the same approach since it was shown to be appropriate for model-based systems
as HybLearner and HybTester.

The CUSUM detector relies on two parameters (b and τ). b represents the
recovery ratio, and it is inversely proportional to the time-to-detection parame-
ter. If b is too small, it might increase the number of false positives. b should be
chosen such that

E‖ỹ(k) − ŷ(k)‖ − b < 0 (2)

The CUSUM measurement S(k) in step k is computed as:

S(k) = (S(k − 1) + ε(k))+ (3)

where
S(0) = 0; ε(k) = ‖ỹ(k) − ŷ(k)‖ − b (4)

204 J. H. Castellanos and J. Zhou

ỹ(k) is the value of variable y from the system and ŷ(k) is the predicted
value of y both evaluated at step k. The optimal b can be chosen by HybTester
during a period of ‘normal ’ operation.

The parameter τ is the threshold where a system’s behaviour deviates enough
to be considered as abnormal, and it can trigger an attack detection. If the
threshold increases, the probability of false alarm decreases abruptly. The detec-
tion rule is given by:

Dτ :=

{
H1 if S(k) > τ

H0 otherwise

To do so, during the evaluation phase we automatically compute a threshold
τ . In the running phase, a monitoring system will compute the difference between
monitored values and predicted ones. If S(k) is greater than the computed τ , it
might raise an alarm.

5 Implementation

5.1 Testbed: A Water Treatment Plant

SWaT is a six-stage system built for research purposes in cyber-security of
critical infrastructures1.

A PLC controls each stage of the testbed. Stage one takes raw water from
external sources, stores it in a tank, and feeds other stages on-demand. Stage
two measures water properties like conductivity and add chemicals (HCl, NaCl
and NaOCl) according to a control strategy. Stage three is the ultra-filtration
(UF) process, which has a set of pumps to feed a UF membrane filter to remove
water solids of a certain size. Stage four is a de-Chlorination system, which uses
Ultraviolet (UV) radiation to eliminate residual chlorine and chloramines, and
complements the filtering process with a Sodium Bisulfite (NaHSO3) dosing.
Stage five is the Reverse Osmosis (RO) process, which operates continuously
monitoring the conductivity of the water and executing a pre-configured sequence
controlled by a PLC. Stage six stores the resulting product from the previous
stage into a tank, and water from this stage is used to clean the RO membrane,
and the exceeding product is recycled.

5.2 Toy Example: A Water Tank Filling Subsystem

Figure 3 depicts a simplified version of Stage one of the testbed. We use this
subsystem to describe the modelling process, show how to apply the time-to-
critical-state and implement a detection mechanism.

1 http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/.

http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/

A Modular Hybrid Learning Approach for Black-Box Security Testing 205

H

L

LL

HH

MV

P1

P2

Fig. 3. Example of a water tank filling
system.

Control Strategy. The goal of the con-
troller is to keep enough amount of water
between H and L levels to guarantee the
liquid can be provided for later stages. If
the tank level is H, the controller closes
MV. When tank level hits L, the controller
opens MV and starts filling the tank. The
actions on Pumps P1, P2 depend on the
demand of later stages.

Critical States (Q̄). Stage one has two
local critical states. q1 is related to the risk
of tank overflow (HH ← 1000.0 mm). q2 is
associated with the risk of tank underflow because running any of the pumps P1
or P2 might cause severe damage on any of them (LL ← 50.0 mm). Stage one
operation can be represented as follows:

Stage1 Op :=

⎧⎪⎨
⎪⎩

q1 if Level > HH (1000)
q2 if Level < LL (50)
Normal otherwise

5.3 Infrastructure

As we highlighted before, the framework was developed in a modular manner.
It helps to extend the framework to more complex systems. We use Python 3.6
as the main programming language. Nevertheless, similar approaches can be
developed using faster languages like C++ or Rust. They might be considered
in the case an on-line modeller is needed, or a system with more strict sampling
period δ (e.g. in power grids).

Main infrastructure components are described as follows:

Configuration File. It stores the minimal information that HybLearn needs to
model a subsystem. It contains Controller’s identification (IP address, process),
control labels like U = [u1, u2, ...], sensor signal labels, i.e. Y = [y1, y2,
...], and learning period (number of steps).

LoadExtLabel Program. As described in Algorithm 2, we programmed a net-
work traffic parser using the Scapy2 library. The testbed network runs over eth-
ernet/CIP protocol, so we filter TCP/44818 and UDP/2222 traffic, and validate
reading(0x4c) and writing(0x4d) CIP services. The script returns the variable
names from remote entities (other controllers or SCADA) that interact with the
local controller.

HybLearner and HybTester Programs (Algorithms 1 and 3). They use neo-
model3 and sqlalchemy4 libraries to connect to the Databases. The SVM classifier
2 https://scapy.net/.
3 https://neomodel.readthedocs.io/en/latest/.
4 Database toolkit for Python (https://www.sqlalchemy.org/).

https://scapy.net/
https://neomodel.readthedocs.io/en/latest/
https://www.sqlalchemy.org/

206 J. H. Castellanos and J. Zhou

and the Gaussian process regression were implemented using sklearn5 and Gpy6,
respectively.

Databases. The main DB is a Postgres database that stores all records related
to raw data, forecast, continuous-time models (C̄) and discrete-time classifiers
(D̄). A graph database (neo4j 7) stores locations, events, event matrices, control
signal variables (Ū : names, values), and sensor signals (Ȳ : names, min and max
values).

6 Evaluation

We used a dataset collected from SWaT during 11 days [9]. It contains sensor
readings and actuator signals of all six stages of the system as described in
Sect. 5.1. We fed HybLearner with 25k registers (∼7 h) of normal operation of the
testbed. We manually set the initial configuration as Ȳ = {‘lit101’, ‘fit101’}
and Ū = {‘mv101’, ‘p101’, ‘p102’}.

The LoadExtLabel program processed a network capture with 300k packets.
It extracted Z̄ labels ({‘fit201’, ‘fit301’, ‘lit301’, ‘mv201’}), which corre-
sponds to variables from Stages two and three of the testbed. We ran HybLearner
for different stages from the testbed. HybLearner took from 18.32 s up to 138.77 s
to produce a hybrid model Hc. The execution time varies depending on the num-
ber of unique locations and events.

6.1 Learning the Hybrid Model H̄

HybLearner successfully identified all operational modes of testbed’s Stage one.
The framework learnt seven locations, and nine events, Fig. 4 shows all transition
and actions taken by actuators in each event.

Continuous-Time Modeller (C̄) and Discrete-Time Classifier (D̄)
HybLearner built nine different models (C̄), they match the nine events in Fig. 4.
Figure 12 in AppendixB shows all behaviours for sensor level lit101 during
‘normal’ operation. Projections of the set of derivatives ẏ (Act) are used below
to compute the time-to-critical-state for the system’s security evaluation.

As an example, the classification decision for location l5 is depicted in Fig. 5.
After feature selection, the top-2 most relevant features are lit101 and lit301,
x-axis and y-axis respectively. It describes conditions the controller triggers a
different control strategy for the transition event to l4 or l6. For example, from
Fig. 4 we know that the event l5 → l4 is associated with the change of P1:OFF →
ON, and the event l5 → l6 with the transition MV:ON → OFF. If we jointly analyse
it with Fig. 5 (Left), we can conclude the decision rule in Fig. 5 (Right).

5 https://scikit-learn.org/stable/.
6 Gaussian process in Python (https://sheffieldml.github.io/GPy/).
7 https://neo4j.com/.

https://scikit-learn.org/stable/
https://sheffieldml.github.io/GPy/
https://neo4j.com/

A Modular Hybrid Learning Approach for Black-Box Security Testing 207

l4 l5

l6 l2l9

l7l8

P1 ← OFF

P1 ← ON

MV ← ON

MV∗

P1 ← ON

MV ← OFF

MV∗

MV ← ONMV∗

Loc. Ctrl signals
MV P1 P2

l2 T OFF OFF

l4 ON ON OFF

l5 ON OFF OFF

l6 T OFF OFF

l7 OFF OFF OFF

l8 OFF ON OFF

l9 T ON OFF

Fig. 4. Locations learnt by HybLearner. Left: Finite state machine of events. MV ∗

is a transition state for Valve MV. Right: Location list and description of control
signals (Ū).

Fig. 5. Left: Top-2 most relevant features for l5 classification, and boundaries for
events l5 → l4 and l5 → l6. Right: Extracted decision rule (control strategy) from
l5-classification analysis.

When we compared against the operational manual of the testbed, we found
a strong relationship with the control strategy programmed in the controller’s
source code. It demonstrates that the control strategy can be automatically
learnt from experimental data.

6.2 Simulating the System

We ran HybTester for 5k steps (1 h 25 min in real-time) with the initial conditions
lit101 = 519.55; mv101 = ON; P101 = ON; P102 = OFF. Figure 6 shows how the

208 J. H. Castellanos and J. Zhou

system evolves during this period. HybTester successfully predicted locations,
events and sensor readings.

Fig. 6. System simulation for 5k steps.

The residual analysis shows that the difference between the predicted value
(ŷ) and the ground truth (ỹ) remains in the range −10 ≤ ε ≤ 10, while the
CUSUM value (S[k]) holds around 0 for the first 3.5k steps (∼60 min). After
3.5k steps, ŷ deviates from ỹ, due to error propagation, it causes an avalanche
effect in ε that produces S[k] exceeds τ and triggers a false positive when the
CUSUM detection mechanism is in place. The error propagation issue can be
addressed by a periodic synchronisation between ỹ and ŷ, e.g. every 30 min (1.8k
steps) for this scenario.

6.3 Security Metrics: Time-to-Critical-States (tq)

As mentioned in Sect. 5.2, Stage one has two local critical states associated
with lit101. One is linked to tank overflow (q1 = 1000.0) and another with
tank underflow (q2 = 50.0) which can cause P1, P2 malfunctioning. After run-
ning HybLearner, we automatically identify that the nearest points to Q, xq :
{815.08, 120.62} respectively. In Fig. 7, we project all Acts (ẋl) for all locations
l ∈ L̄. xq is placed in the origin of the plot, and the boundaries Q − xq (dashed
lines) for each critical state. From Ẏ set, we choose max(ẏ) : r1 = 0.481 mm/s
at l5 location, and min(ẏ) : r2 = −0.474 mm/s at l8 location. Using Eq. 1 we get
tq = {384, 149}.

A Modular Hybrid Learning Approach for Black-Box Security Testing 209

Fig. 7. Shows ẏ in different loca-
tions for LIT101 (Level sensor). The
worst scenarios are for l5 and l8.

We can interpret this result as the
‘resilience’ of Stage one, which means the sys-
tem can resist any data-oriented attack for at
least 149 s without the risk of reaching a crit-
ical state (Q̄). The physical properties of the
system guarantee it.

6.4 Attack Scenarios

We use three different attacks from the liter-
ature [1,9] to test the viability of implement-
ing an attack detection mechanism based
on HybTester. The attack scenarios assume
an malicious actor can inject data-oriented
attacks via manipulation of sensor readings
y. It can be achieved by attacking the com-
munication channel sensor-actuator through Man-in-the-Middle attack or com-
promising sensors directly.

A1. Set Tank Level Above H
The initial conditions before the attack are the following: lit101 = 501.33;
mv101 = ON; P101 = ON; P102 = OFF. The attack vector holds the tank level
sensor lit101 to 801.0 just above the H label, it should cause the controller
to trigger a different control strategy where MV turns OFF, and P1 turns ON.
The attacker’s goal is to bring the system to a critical state q2 (lit101 < 50.0),
attack lasts 437 steps (7 min 12 s).

A2. Set Tank Level Close to L
The initial conditions before the attack begins are: lit101 = 501, 33; mv101
= ON; P101 = OFF; P102 = OFF. The attack vector holds the tank level sensor
lit101 to 244.0. It aims to mislead the controller to a different behaviour than
what is expected, and the tank might keep filling up while the controller thinks
it is stuck at 244.0 level. The attacker’s goal is to bring the system to a critical
state (q1) (tank overflow: lit101 > 1000.0). The attack lasts 516 steps (8 min
36 s).

A3. Hold Tank Level and Increase the Level at a Constant Rate
Before the attack begins, initial conditions are: lit101 = 573.87; mv101 = ON;
P101 = OFF; P102 = OFF. Attacker implements two attack vectors. The first
holds the tank level sensor lit101 to the current value (574.03) for 92 steps.
Then the second attack vector increases lit101 to a constant rate of 1.0 mm/s.
It aims to deceive the controller into thinking the tank fills faster than usual,
trigger control strategies that will help to discharge the container. The attacker’s
goal is similar to A1, brings the system to a critical state (q2) (lit101 < 50.0).
Attack duration: 473 steps (7 min 53 s).

210 J. H. Castellanos and J. Zhou

6.5 HybTester as a Model-Based Attack Detection Mechanism

We combine HybTester ’s features to predict ‘normal’ system operation with
CUSUM as we described in Sect. 4. We set CUSUM parameters as b = 10,
τ = 20, as shown in Fig. 6. This configuration offers a very low false positive rate
(1/3.5k steps). With this configuration, the monitor will trigger an alarm only
when CUSUM value S[k] exceeds τ (black dotted line at 20).

Fig. 8. Attack A3 with a model-based attack monitor using HybTester and CUSUM
detector. Attack starts in step k = 510 (A3.0) and ends in step k = 983 (A3.1). The
attack is detected in step k = 543 (D).

Fig. 9. Summary of attacks tested
with HybTester. Table shows when
attacks start (k0), how many steps
HybTester takes to detect (kD), and
how long attacks last.

Figure 8 shows an example of a
monitoring mechanism implemented with
HybTester. The attack corresponds to A3
described above. The attack starts at k =
510 labelled as A3.0, and it is detected
when S > 20 at k = 543, which means
the monitor takes more than 30 s to detect
the attack. Our analysis of time-to-critical-
state tq shows that the attacker is far from
causing severe damage to the system. With
a tq[k = 543] : {855, 1136} at detection
point D, it means that an operator has
at least 855 s to implement a mitigation
mechanism before the system reaches q1.

Examples for attacks A1 and A2, and the detection capabilities of HybTester
are depicted in AppendixA.

Figure 9 summarises results for all attacks (A1–A3). It shows when attacks
start (k0), how long the mechanism takes to detect the attack (kD), how long the

A Modular Hybrid Learning Approach for Black-Box Security Testing 211

attack lasts (k1), and time-to-critical-state metrics (tq) for each of these events.
This set of examples supports our hypothesis that the combination of HybTester
+ CUSUM is suitable for building attack detection mechanisms.

Additionally, time-to-critical-state metrics at detection point show the buffer
of time an operator has to activate response strategies, more than 12 min (>720 s)
for these cases. And at the point when the attack stops, the time-to-critical-state
metrics give an approximation of impact measurement of such attack, providing
information about how close an attacker could bring the system to a critical state
q. These preliminary results open new possibilities to explore open challenges in
the study of security of CPS. Challenges like attack quantification or impact
measurements can be further explored using HybLearner, HybTester and time-
to-critical-state in a more extensive security testing framework.

7 Related Works

Modelling CPS
Model inferring is a classical problem extensively studied in disciplines like con-
trol and system theory. Black-box approaches (also called data-driven models)
propose diverse techniques like system identification [7,15], and automata learn-
ing [18]. The main difference between our approach and these traditional method-
ologies is that ours aims to model the CPS continuous-time and discrete-time
subsystems separately. From Piecewise and Switched systems identification [7],
Zimmerschied and Isermann [23] presented a method that uses the LOLIMOT
algorithm to identify piecewise systems as a set of local affine models. One of
most significant differences is that our approach automatically identifies transi-
tions in actuators’ states, and it helps to infer the control strategy programmed
in the controllers.

Among recent approaches, we found Crystal [6] as one of the most relevant,
it establishes a hybrid model that combines discrete-time and continuous-time.
The authors build a model of the physical part of the CPS by combining a neu-
ral network and an extended Kalman filter. The produced model predicts next
sensor values from current sensor values and the control signals. Additionally,
crystal complements the modelling by symbolically executing the controller’s
source code (discrete part). Although crystal models a hybrid abstraction of the
system, as a white-box approach, it requires to have access to the controller’s
source code which in most cases is inaccessible for critical systems.

Santana et al. [19] present a similar approach to our work. Subtle but remark-
able differences are, HybLearner automatically identifies locations, thus making
it easier for deployment in diverse CPS, additionally, its modular core, allows it
to model more complex systems.

212 J. H. Castellanos and J. Zhou

Security Metrics
In term of security metrics for CPS, most of the previous works propose a con-
cept of distance-to-critical-states. For example, Carcano et al. [3] introduce state
proximity for measuring the distance to a known critical state as the Manhattan
distance from the current state. From the control and system theory commu-
nity, Murguia et al. [16] present mathematical tools to quantify the impact of
attacker’s actions in a system as the distance that an attack deviates a system
from its ‘normal’ operation. Similarly, Urbina et al. [21] introduce the ‘impact
of undetected attack’ measurement, which is the maximum deviation per unit of
time.

Krotofil and Cárdenas [12] highlighted the concept of time as a relevant com-
ponent for measuring the impact of cyber-attacks, in their process-aware cyber
risk assessment for ICS. Crystal [6] presents just-ahead-of-time analysis (JAT),
which gives a window to respond in case the system leads to a critical state.
Our approach can also be used as a model-based safety monitor. More impor-
tantly, HybTester with time-to-critical-state can be implemented as a support
tool that helps a system operator to decide a convenient strategy as response
to a cyber-attack in the system. Another significant difference with the works
in the literature is that our approach considers a measure of ‘speed’ of how fast
the system could reach critical states.

Model-Based Attack Detection Mechanisms
Goh et al. [10] propose an anomaly detection method for a water treatment
plant. The method combines Long Short Term Memory Recurrent Neural Net-
work (LSTM-RNN) and Cumulative Sum (CUSUM) to detect anomalies in the
system. LSTM-RNN learns the system behaviour from all components, sensors
and actuators, and predicts the ‘normal behaviour’ of all components. Experi-
mental data is compared against predicted behaviour using CUSUM.

Lin et al. [14] propose a model-based approach for attack detection in ICS
(TABOR). It uses data-driven techniques to learn a probabilistic timed automata
and Bayesian network. Authors applied the Sliding WIndow based on Differential
sEgmentation (SWIDE) algorithm to extract trends in sensor readings, which
is similar to the concept of locations applied in our methodology. The sequence
and probabilities of these trends are used to evaluate the model and detect
anomalies. While TABOR detection capabilities rely mainly on the sequence of
events, HybTester applies residual analysis and CUSUM to take a decision, and
the time-to-critical-state metrics bring additional information about the impact
of attacks.

8 Conclusion

In this paper, we proposed an automatic way to build a hybrid model of a
CPS from experimental data. Due to its modular nature, our approach allows
analysing/evaluating components of a CPS separately. It makes computing the
‘time-to-critical-state’ metrics (tq) easier. We also showed that the new modelling

A Modular Hybrid Learning Approach for Black-Box Security Testing 213

framework allows us to deduce the control strategy in the system and helps us
to get a more comprehensive view of the system under analysis.

This framework also opens up options for new applications. One of the use
cases explored in this paper is to build a model-based detection mechanism. Even
though similar ideas appeared in the literature [6,10,14,21], HybLearner can
build the model automatically, which makes easier to adapt to other CPS, e.g.
power grids and smart cars.

As future work, we plan to build an attack simulator using HybTester as
the core of a model-based security testing framework.

Acknowledgments. This work was partly supported by SUTD start-up research
grant SRG-ISTD-2017-124.

A Model-Based Detection Mechanism

Here we show additional examples how HybTester can be used as a model-based
detection mechanism for two attacks (A1 and A2) described in Sect. 6.4 (Figs. 10
and 11).

Fig. 10. Attack A1 which starts in step k = 48 (A1.0) and ends in step k = 481 (A1.1).
The attack is detected in step k = 49 (D).

214 J. H. Castellanos and J. Zhou

Fig. 11. Attack A2 which starts in step k = 200 (A2.0) and ends in step k = 718
(A2.1). The attack is detected in step k = 201 (D).

B Continuous-Time Models for Stage One of SWaT

Figure 12 shows all nine derivatives ẏ for lit101.

Fig. 12. Continuous-time model C̄.

A Modular Hybrid Learning Approach for Black-Box Security Testing 215

References

1. Adepu, S., Mathur, A.: An investigation into the response of a water treatment
system to cyber attacks. In: 2016 IEEE 17th International Symposium on High
Assurance Systems Engineering (HASE) (2016)

2. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)
3. Carcano, A., Coletta, A., Guglielmi, M., Masera, M., Fovino, I.N., Trombetta,

A.: A multidimensional critical state analysis for detecting intrusions in SCADA
systems. IEEE Trans. Ind. Inform. 7, 179–186 (2011)

4. Cárdenas, A.A., Amin, S., Lin, Z.S., Huang, Y.L., Huang, C.Y., Sastry, S.: Attacks
against process control systems: risk assessment, detection, and response. In: Pro-
ceedings of the 6th ACM Symposium on Information, Computer and Communica-
tions Security (CCS) (2011)

5. Castellanos, J.H., Ochoa, M., Zhou, J.: Finding dependencies between cyber-
physical domains for security testing of industrial control systems. In: Proceedings
of the 34th Annual Computer Security Applications Conference (ACSAC) (2018)

6. Etigowni, S., Hossain-McKenzie, S., Kazerooni, M., Davis, K., Zonouz, S.: Crys-
tal (ball): I look at physics and predict control flow! just-ahead-of-time controller
recovery. In: Proceedings of the 34th Annual Computer Security Applications Con-
ference (ACSAC) (2018)

7. Garulli, A., Paoletti, S., Vicino, A.: A survey on switched and piecewise affine
system identification. In: IFAC Proceedings Volumes (2012)

8. Goebel, R., Teel, A.R., Sanfelice, R.G.: Hybrid Dynamical Systems: Modeling,
Stability, and Robustness. Princeton University Press, Princeton (2012)

9. Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in
the design of secure water treatment systems. In: Havarneanu, G., Setola, R., Nas-
sopoulos, H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 88–99.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71368-7 8

10. Goh, J., Adepu, S., Tan, M., Shan, L.Z.: Anomaly detection in cyber physical
systems using recurrent neural networks. In: 2017 IEEE 18th International Sym-
posium on High Assurance Systems Engineering (HASE) (2017)

11. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp.
265–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-
5 13

12. Krotofil, M., Cárdenas, A.A.: Resilience of process control systems to cyber-
physical attacks. In: Riis Nielson, H., Gollmann, D. (eds.) NordSec 2013. LNCS,
vol. 8208, pp. 166–182. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41488-6 12

13. Kwon, C., Liu, W., Hwang, I.: Security analysis for cyber-physical systems against
stealthy deception attacks. In: American Control Conference (ACC) (2013)

14. Lin, Q., Adepu, S., Verwer, S., Mathur, A.: TABOR: a graphical model-based
approach for anomaly detection in industrial control systems. In: Proceedings of
the 2018 on Asia Conference on Computer and Communications Security (2018)

15. Ljung, L.: System identification. In: Procházka, A., Uhĺı̌r, J., Rayner, P.W.J.,
Kingsbury, N.G. (eds.) Signal Analysis and Prediction. ANHA, pp. 163–173.
Springer, Boston (1998). https://doi.org/10.1007/978-1-4612-1768-8 11

16. Murguia, C., van de Wouw, N., Ruths, J.: Reachable sets of hidden CPS sensor
attacks: analysis and synthesis tools. IFAC-PapersOnLine (2017)

https://doi.org/10.1007/978-3-319-71368-7_8
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-41488-6_12
https://doi.org/10.1007/978-3-642-41488-6_12
https://doi.org/10.1007/978-1-4612-1768-8_11

216 J. H. Castellanos and J. Zhou

17. Pasqualetti, F., Dörfler, F., Bullo, F.: Attack detection and identification in cyber-
physical systems. IEEE Trans. Autom. Control 58, 2715–2729 (2013)

18. Raffelt, H., Steffen, B.: LearnLib: a library for automata learning and experimen-
tation. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 377–380.
Springer, Heidelberg (2006). https://doi.org/10.1007/11693017 28

19. Santana, P.H., Lane, S., Timmons, E., Williams, B.C., Forster, C.: Learning hybrid
models with guarded transitions. In: Conference on Artificial Intelligence (2015)

20. Teixeira, A., Amin, S., Sandberg, H., Johansson, K.H., Sastry, S.S.: Cyber security
analysis of state estimators in electric power systems. In: 49th IEEE Conference
on Decision and Control (CDC) (2010)

21. Urbina, D.I., et al.: Limiting the impact of stealthy attacks on industrial control
systems. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2016)

22. Van Der Schaft, A.J., Schumacher, J.M.: An Introduction to Hybrid Dynamical
Systems, vol. 251. Springer, London (2000). https://doi.org/10.1007/BFb0109998

23. Zimmerschied, R., Isermann, R.: Nonlinear system identification of block-oriented
systems using local affine models. In: IFAC Proceedings Volumes (2009)

https://doi.org/10.1007/11693017_28
https://doi.org/10.1007/BFb0109998

PassGAN: A Deep Learning Approach
for Password Guessing

Briland Hitaj1(B), Paolo Gasti2, Giuseppe Ateniese1,
and Fernando Perez-Cruz3

1 Stevens Institute of Technology, Hoboken, NJ 07030, USA
{bhitaj,gatenies}@stevens.edu

2 New York Institute of Technology, New York, NY 10023, USA
pgasti@nyit.edu

3 Swiss Data Science Center, (ETH Zurich and EPFL), Zürich, Switzerland
fernando.perezcruz@sdsc.ethz.ch

Abstract. State-of-the-art password guessing tools, such as HashCat
and John the Ripper, enable users to check billions of passwords per sec-
ond against password hashes. In addition to performing straightforward
dictionary attacks, these tools can expand password dictionaries using
password generation rules, such as concatenation of words (e.g., “pass-
word123456”) and leet speak (e.g., “password” becomes “p4s5w0rd”).
Although these rules work well in practice, creating and expanding them
to model further passwords is a labor-intensive task that requires spe-
cialized expertise.

To address this issue, in this paper we introduce PassGAN, a novel
approach that replaces human-generated password rules with theory-
grounded machine learning algorithms. Instead of relying on manual
password analysis, PassGAN uses a Generative Adversarial Network
(GAN) to autonomously learn the distribution of real passwords from
actual password leaks, and to generate high-quality password guesses.
Our experiments show that this approach is very promising. When we
evaluated PassGAN on two large password datasets, we were able to sur-
pass rule-based and state-of-the-art machine learning password guessing
tools. However, in contrast with the other tools, PassGAN achieved this
result without any a-priori knowledge on passwords or common password
structures. Additionally, when we combined the output of PassGAN with
the output of HashCat, we were able to match 51%–73% more passwords
than with HashCat alone. This is remarkable, because it shows that
PassGAN can autonomously extract a considerable number of password
properties that current state-of-the art rules do not encode.

Keywords: Passwords · Privacy ·
Generative Adversarial Networks (GAN) · Deep learning

An extended version of this paper is available at: https://arxiv.org/abs/1709.00440. A
preliminary version of this paper appeared in NeurIPS 2018 Workshop on Security in
Machine Learning (SecML’18) [25].

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 217–237, 2019.
https://doi.org/10.1007/978-3-030-21568-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_11&domain=pdf
https://arxiv.org/abs/1709.00440
https://doi.org/10.1007/978-3-030-21568-2_11

218 B. Hitaj et al.

1 Introduction

Passwords are the most popular authentication method, mainly because they are
easy to implement, require no special hardware or software, and are familiar to
users and developers [28]. Unfortunately, multiple password database leaks have
shown that users tend to choose easy-to-guess passwords [10,14,37], primarily
composed of common strings (e.g., password, 123456, iloveyou), and variants
thereof.

Password guessing tools provide a valuable tool for identifying weak pass-
words when they are stored in hashed form [50,54]. The effectiveness of pass-
word guessing software relies on the ability to quickly test a large number of
highly likely passwords against each password hash. Instead of exhaustively try-
ing all possible character combinations, password guessing tools use words from
dictionaries and previous password leaks as candidate passwords. State-of-the-
art password guessing tools, such as John the Ripper [56] and HashCat [22],
take this approach one step further by defining heuristics for password transfor-
mations, which include combinations of multiple words (e.g., iloveyou123456),
mixed letter case (e.g., iLoVeyOu), and leet speak (e.g., il0v3you). These heuris-
tics, in conjunction with Markov models, allow John the Ripper and HashCat
to generate a large number of new highly likely passwords.

While these heuristics are reasonably successful in practice, they are ad-hoc
and based on intuitions on how users choose passwords, rather than being con-
structed from a principled analysis of large password datasets. For this reason,
each technique is ultimately limited to capturing a specific subset of the pass-
word space which depends upon the intuition behind that technique. Further,
developing and testing new rules and heuristics is a time-consuming task that
requires specialized expertise, and therefore has limited scalability.

1.1 Our Approach

To address these shortcomings, in this paper we propose to replace rule-based
password guessing, as well as password guessing based on simple data-driven
techniques such as Markov models, with a novel approach based on deep learn-
ing. At its core, our idea is to train a neural network to determine autonomously
password characteristics and structures, and to leverage this knowledge to gen-
erate new samples that follow the same distribution. We hypothesize that deep
neural networks are expressive enough to capture a large variety of properties and
structures that describe the majority of user-chosen passwords; at the same time,
neural networks can be trained without any a-priori knowledge or an assump-
tion of such properties and structures. This is in stark contrast with current
approaches such as Markov models (which implicitly assume that all relevant
password characteristics can be defined in terms of n-grams), and rule-based
approaches (which can guess only passwords that match with the available rules).
As a result, samples generated using a neural network are not limited to a par-
ticular subset of the password space. Instead, neural networks can autonomously
encode a wide range of password-guessing knowledge that includes and surpasses

PassGAN: A Deep Learning Approach for Password Guessing 219

what is captured in human-generated rules and Markovian password generation
processes.

To test this hypothesis, in this paper we introduce PassGAN, a new approach
for generating password guesses based on deep learning and Generative Adver-
sarial Networks (GANs) [18]. GANs are recently-introduced machine learning
tools designed to perform density estimation in high-dimensional spaces [18].
GANs perform implicit generative modeling by training a deep neural network
architecture that is fed a simple random distribution (e.g., Gaussian or uniform)
and by generating samples that follow the distribution of the available data. In
a way, they implicitly model the inverse of the cumulative distribution with a
deep neural network, i.e., x = F−1

θ (s) where s is a uniformly distributed ran-
dom variable. To learn the generative model, GANs use a cat-and-mouse game,
in which a deep generative network (G) tries to mimic the underlying distri-
bution of the samples, while a discriminative deep neural network (D) tries to
distinguish between the original training samples (i.e., “true samples”) and the
samples generated by G (i.e., “fake samples”). This adversarial procedure forces
D to leak the relevant information about the training data. This information
helps G to adequately reproduce the original data distribution.

PassGAN leverages this technique to generate new password guesses. We
train D using a list of leaked passwords (real samples). At each iteration, the
output of PassGAN (fake samples) gets closer to the distribution of passwords
in the original leak, and therefore more likely to match real users’ passwords. To
the best of our knowledge, this work is the first to use GANs for this purpose.

1.2 Contributions

PassGAN represents a principled and theory-grounded take on the generation of
password guesses. We explore and evaluate different neural network configura-
tions, parameters, and training procedures, to identify the appropriate balance
between learning and overfitting, and report our results. Specifically, our contri-
butions are as follows:

1. We show that a GAN can generate high-quality password guesses. Our GAN
is trained on a portion of the RockYou dataset [58], and tested on two differ-
ent datasets: (1) another (distinct) subset of the RockYou dataset; and (2) a
dataset of leaked passwords from LinkedIn [36]. In our experiments, we were
able to match 1,350,178 (43.6%) unique passwords out of 3,094,199 passwords
from the RockYou dataset, and 10,478,322 (24.2%) unique passwords out of
43,354,871 passwords from the LinkedIn dataset. To quantify the ability of
PassGAN to generate new passwords, we removed from the testing set all
passwords that were present also in the training set. This resulted in testing
sets of size 1,978,367 and 40,593,536 for RockYou and LinkedIn, respectively.
In this setting, PassGAN was able to match 676,439 (34.6%) samples in the
RockYou testing set and 8,878,284 (34.2%) samples in the LinkedIn set. More-
over, the overwhelming majority of passwords generated by PassGAN that
did not match the testing sets still “looked like” human-generated passwords,

220 B. Hitaj et al.

and thus could potentially match real user accounts not considered in our
experiments.

2. We show that PassGAN is competitive with state-of-the-art password gen-
eration rules. Even though these rules were specially tuned for the datasets
used in our evaluation, the quality of PassGAN’s output was comparable to
that of password rules.

3. With password generation rules, the number of unique passwords that can be
generated is defined by the number of rules and by the size of the password
dataset used to instantiate them. In contrast, PassGAN can output a prac-
tically unbounded number of password guesses. Crucially, our experiments
show that with PassGAN the number of matches increases steadily with the
number of passwords generated, Table 1. This is important because it shows
that the output of PassGAN is not restricted to a small subset of the password
space.

4. PassGAN is competitive with current state of the art password guessing
algorithms based on deep neural networks [39], matching the performance
of Melicher et al. [39], (indicated as FLA in the rest of the paper).

5. We show that PassGAN can be effectively used to augment password gen-
eration rules. In our experiments, PassGAN matched passwords that were
not generated by any password rule. When we combined the output of Pass-
GAN with the output of HashCat, we were able to guess between 51% (case of
RockYou) and 73% (case of LinkedIn) additional unique passwords compared
to HashCat alone.

We consider this work as the first step toward a fully automated generation of
high-quality password guesses. We argue that this work is relevant, important,
and timely. Relevant, because despite numerous alternatives [13,16,51,64,72],
we see little evidence that passwords will be replaced any time soon. Important,
because establishing the limits of password guessing—and better understanding
how guessable real-world passwords are—will help make password-based systems
more secure. And timely, because recent leaks containing hundreds of millions of
passwords [15] provide a formidable source of data for attackers to compromise
systems, and for system administrators to re-evaluate password policies.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we briefly overview
GANs, and password guessing, and provide a summary of the relevant state of
the art. Section 3 provides details regarding our experimental setup, architec-
tural and training choices for PassGAN, and the hyperparameters used in our
evaluation. We report on the evaluation of PassGAN, and on the comparison
with state-of-the-art password guessing techniques, in Sect. 4. We summarize
our findings and discuss their implications, in Sect. 5. We conclude in Sect. 6.

PassGAN: A Deep Learning Approach for Password Guessing 221

2 Background and Related Work

2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) translate the current advances in deep
neural networks for discriminative machine learning to (implicit) generative mod-
eling. The goal of GANs is to generate samples from the same distribution as that
of its training set S = {x1,x2, . . . ,xn}. Generative modeling [46] typically relies
on closed-form expressions that, in many cases, cannot capture the nuisance of
real data. GANs train a generative deep neural network G that takes as input a
multi-dimensional random sample z (from a Gaussian or uniform distribution)
to generate a sample from the desired distribution. GANs transform the density
estimation problem into a binary classification problem, in which the learning
of the parameters of G is achieved by relying on a discriminative deep neural
network D that needs to distinguish between the “true” samples in S and the
“fake” samples produced by G. More formally, the optimization problem solved
by GANs can be summarized as follows [24]:

min
θG

max
θD

n∑

i=1

log f(xi; θD) +
n∑

j=1

log(1 − f(g(zj ; θG); θD)), (1)

where f(x; θD) and g(zj ; θG), respectively, represent D and G. The optimization
shows the clash between the goals of the discriminator and generator deep neural
networks. Since the original work by Goodfellow et al. [18], there have been
several improvements on GANs [2–5,7,9,11,20,26,27,30,35,40,41,43,44,47,49,
52,55,59,63,67,71,73], where each new paper provides novel improvements in
the domain. In this paper, we rely on IWGAN [20] as a building foundation for
PassGAN, being that IWGAN [20] is among the first, most stable approaches
for text generation via GANs.

2.2 Password Guessing

Password guessing attacks are probably as old as password themselves [45], with
more formal studies dating back to 1979 [42]. In a password guessing attack, the
adversary attempts to identify the password of one or more users by repeatedly
testing multiple candidate passwords.

Two popular modern password guessing tools are John the Ripper (JTR) [56]
and HashCat [22]. Both tools implement multiple types of password guessing
strategies, including: exhaustive brute-force attacks; dictionary-based attacks;
rule-based attacks, which consist in generating password guesses from transfor-
mations of dictionary words [60,61]; and Markov-model-based attacks [38,57].
JTR and HashCat are notably effective at guessing passwords. Specifically, there
have been several instances in which well over 90% of the passwords leaked from
online services have been successfully recovered [53].

Markov models were first used to generate password guesses by Narayanan
et al. [48]. Their approach uses manually defined password rules, such as which

222 B. Hitaj et al.

portion of the generated passwords is composed of letters and numbers. Weir
et al. [69] subsequently improved this technique with Probabilistic Context-Free
Grammars (PCFGs). With PCFGs, Weir et al. [69] demonstrated how to “learn”
these rules from password distributions. Ma et al. [37] and Durmuth et al. [14]
have subsequently extended this early work.

To the best of our knowledge, the first work in the domain of passwords
utilizing neural networks dates back to 2006 by Ciaramella et al. [8]. Recently,
Melicher et al. [39] introduced FLA, a password guessing method based on recur-
rent neural networks [19,65]. However, the primary goal of these works consists
in providing means for password strength estimation. For instance, Melicher et
al. [39] aim at providing fast and accurate password strength estimation (thus
FLA acronym), while keeping the model as lightweight as possible, and minimiz-
ing accuracy loss. By keeping the model lightweight, the reference instantiates
a password strength estimator that can be used in browsers through a (local)
JavaScript implementation. To achieve this goal, FLA uses weight clipping with-
out significantly sacrificing accuracy. In contrast, PassGAN focuses on the task of
password guessing and attempts to do so with no a priori knowledge or assump-
tion on the Markovian structure of user-chosen passwords.

3 Experiment Setup

To leverage the ability of GANs to estimate the probability effectively distri-
bution of passwords from the training set, we experimented with a variety of
parameters. In this section, we report our choices on specific GAN architecture
and hyperparameters.

We instantiated PassGAN using the Improved training of Wasserstein GANs
(IWGAN) of Gulrajani et al. [20]. The IWGAN implementation used in this
paper relies on the ADAM optimizer [31] to minimize the training error. The
following hyper-parameters characterize our model:

– Batch size, which represents the number of passwords from the training set
that propagate through the GAN at each step of the optimizer. We instanti-
ated our model with a batch size of 64.

– Number of iterations, which indicates how many times the GAN invokes its
forward step and its back-propagation step [33,34,62]. In each iteration, the
GAN runs one generator iteration and one or more discriminator iterations.
We trained the GAN using various number of iterations and eventually settled
for 199,000 iterations, as further iterations provided diminishing returns in
the number of matches.

– Number of discriminator iterations per generator iteration, which
indicates how many iterations the discriminator performs in each GAN itera-
tion. The number of discriminator iterations per generative iteration was set
to 10, which is the default value used by IWGAN.

– Model dimensionality, which represents the number of dimensions for each
convolutional layer. We experimented using 5 residual layers for both the

PassGAN: A Deep Learning Approach for Password Guessing 223

generator and the discriminator, with each of the layers in both deep neural
networks having 128 dimensions.

– Gradient penalty coefficient (λ), which specifies the penalty applied to
the norm of the gradient of the discriminator with respect to its input [20].
Increasing this parameter leads to a more stable training of the GAN [20]. In
our experiments, we set the value of the gradient penalty to 10.

– Output sequence length, which indicates the maximum length of the
strings generated by the generator (G). We modified the length of the
sequence generated by the GAN from 32 characters (default length for
IWGAN) to 10 characters, to match the maximum length of passwords used
during training. We padded passwords shorter than 10 characters using accent
symbol (i.e., “ ”̀) [20]; we then removed it from the output of PassGAN.

– Size of the input noise vector (seed), which determines how many ran-
dom numbers from a normal distribution are fed as input to G to generate
samples. We set this size to 128 floating point numbers.

– Maximum number of examples, which represents the maximum number
of training items (passwords, in the case of PassGAN) to load. The maximum
number of examples loaded by the GAN was set to the size of the entire
training dataset.

– Adam optimizer’s hyper-parameters:
• Learning rate, i.e., how quickly the weights of the model are adjusted
• Coefficient β1, which specifies the decaying rate of the running average

of the gradient.
• Coefficient β2, which indicates the decaying rate of the running average

of the square of the gradient.
Coefficients β1 and β2 of the Adam optimizer were set to 0.5 and 0.9, respec-
tively, while the learning rate was 10−4. These parameters are the default
values used by Gulrajani et al. [20].

Our experiments were run using the TensorFlow implementation of IWGAN
found at [21]. We used TensorFlow version 1.2.1 for GPUs [1], with Python
version 2.7.12. All experiments were performed on a workstation running Ubuntu
16.04.2 LTS, with 64 GB of RAM, a 12-core 2.0 GHz Intel Xeon CPU, and an
NVIDIA GeForce GTX 1080 Ti GPU with 11 GB of global memory.

3.1 Training and Testing

To evaluate the performance of PassGAN, and to compare it with state-of-the-
art password generation rules, we first trained the GAN, JTR, HashCat, the
Markov model, PCFG, and FLA on a large set of passwords from the RockYou
password leak [58].1 Entries in this dataset represent a mixture of common and
complex passwords.

1 We consider the use of publicly available password datasets to be ethical, and con-
sistent with security research best practices (see, e.g., [6,10,39]).

224 B. Hitaj et al.

RockYou Dataset. The RockYou dataset [58] contains 32,503,388 passwords.
We selected all passwords of length 10 characters or less (29,599,680 passwords,
which correspond to 90.8% of the dataset), and used 80% of them (23,679,744
total passwords, 9,926,278 unique passwords) to train each password guessing
tool. We refer the reader to Sect. 3.2 for further details on the training procedure
of each tool. For testing, we computed the (set) difference between the remaining
20% of the dataset (5,919,936 total passwords, 3,094,199 unique passwords) and
the training test. The resulting 1,978,367 entries correspond to passwords that
were not previously observed by the password guessing tools. This allowed us to
count only non-trivial matches in the testing set.

LinkedIn Dataset. We also tested each tool on passwords from the LinkedIn
dataset [36], of length up to 10 characters, and that were not present in the
training set. The LinkedIn dataset consists of 60,065,486 total unique passwords
(43,354,871 unique passwords with length 10 characters or less), out of which
40,593,536 were not in the training dataset from RockYou. (Frequency counts
were not available for the LinkedIn dataset.) Passwords in the LinkedIn dataset
were exfiltrated as hashes, rather than in plaintext. As such, the LinkedIn dataset
contains only plaintext passwords that tools such as JTR and HashCat were able
to recover, thus giving rule-based systems a potential edge.

Our training and testing procedures showed: (1) how well PassGAN predicts
passwords when trained and tested on the same password distribution (i.e., when
using the RockYou dataset for both training and testing); and (2) whether Pass-
GAN generalizes across password datasets, i.e., how it performs when trained
on the RockYou dataset, and tested on the LinkedIn dataset.

3.2 Password Sampling Procedure for HashCat, JTR, Markov
Model, PCFG and FLA

We used the portion of RockYou dataset selected for training, see Sect. 3.1, as the
input dataset to HashCat Best64, HashCat gen2, JTR Spiderlab rules, Markov
Model, PCFG, and FLA, and generated passwords as follows:

– We instantiated HashCat and JTR’s rules using passwords from the training
set sorted by frequency in descending order (as in [39]). HashCat Best64
generated 754,315,842 passwords, out of which 361,728,683 were unique and
of length 10 characters or less. Note that this was the maximum number of
samples produced by Best64 rule-set for the given input set, i.e., RockYou
training set. With HashCat gen2 and JTR SpiderLab we uniformly sampled
a random subset of size 109 from their output. This subset was composed of
passwords of length 10 characters or less.

– For FLA, we set up the code from [32] according to the instruction provided
in [17]. We trained a model containing 2-hidden layers and 1 dense layer of
size 512. We did not perform any transformation (e.g., removing symbols,
or transforming all characters to lowercase) on the training set for the sake

PassGAN: A Deep Learning Approach for Password Guessing 225

of consistency with the other tools. Once trained, FLA enumerates a subset
of its output space defined by a probability threshold p: a password belongs
to FLA’s output if and only if its estimated probability is at least p. In
our experiments, we set p = 10−10. This resulted in a total of 747,542,984
passwords of length 10 characters or less. Before using these passwords in our
evaluation, we sorted them by probability in descending order.

– We generated 494,369,794 unique passwords of length 10 or less using the 3-
gram Markov model. We ran this model using its standard configuration [12].

– We generated 109 unique passwords of length 10 or less using the PCFG
implementation of Weir et al. [68].

4 Evaluation

4.1 PassGAN’s Output Space

To evaluate the size of the password space generated by PassGAN, we generated
several password sets of sizes between 104 and 1010. Our experiments show that,
as the number of passwords increased, so did the number of unique (and therefore
new) passwords generated. Results of this evaluation are reported in Table 1.

Table 1. Number of passwords generated by PassGAN that match passwords in the
RockYou testing set. Results are shown in terms of unique matches.

Passwords
generated

Unique
passwords

Passwords matched in testing
set, and not in training set
(1,978,367 unique samples)

104 9,738 103 (0.005%)

105 94,400 957 (0.048%)

106 855,972 7,543 (0.381%)

107 7,064,483 40,320 (2.038%)

108 52,815,412 133,061 (6.726%)

109 356,216,832 298,608 (15.094%)

1010 2,152,819,961 515,079 (26.036%)

2 · 1010 3,617,982,306 584,466 (29.543%)

3 · 1010 4,877,585,915 625,245 (31.604%)

4 · 1010 6,015,716,395 653,978 (33.056%)

5 · 1010 7,069,285,569 676,439 (34.192%)

When we increased the number of passwords generated by PassGAN, the
rate at which new unique passwords were generated decreased only slightly.
Similarly, the rate of increase of the number of matches (shown in Table 1)
diminished slightly as the number of passwords generated increased. This is to

226 B. Hitaj et al.

Fig. 1. Number of unique passwords generated by PassGAN on various checkpoints,
matching the RockYou testing set. The x axis represents the number of iterations
(checkpoints) of PassGAN’s training process. For each checkpoint, we sampled 108

passwords from PassGAN.

be expected, as the simpler passwords are matched early on, and the remaining
(more complex) passwords require a substantially larger number of attempts in
order to be matched.

Impact of Training Process on Overfitting. Training a GAN is an iterative pro-
cess that consists of a large number of iterations. As the number of iterations
increases, the GAN learns more information from the distribution of the data.
However, increasing the number of steps also increases the probability of over-
fitting [18,70].

To evaluate this tradeoff on password data, we stored intermediate training
checkpoints and generated 108 passwords at each checkpoint. Figure 1 shows how
many of these passwords match with the content of the RockYou testing set. In
general, the number of matches increases with the number of iterations. This
increase tapers off around 125,000–135,000 iterations, and then again around
190,000–195,000 iterations, where we stopped training the GAN. This indicates
that further increasing the number of iterations will likely lead to overfitting,
thus reducing the ability of the GAN to generate a wide variety of highly likely
passwords. Therefore, we consider this range of iterations adequate for the Rock-
You training set.

4.2 Evaluating the Passwords Generated by PassGAN

To evaluate the quality of the output of PassGAN, we generated 5 · 1010 pass-
words, out of which roughly 7 · 109 were unique. We compared these passwords
with the outputs of length 10 characters or less from HashCat Best64, HashCat
gen2, JTR SpiderLab, FLA, PCFG, and Markov model, see Sect. 3.2 for the
configuration and sampling procedures followed for each of these tools.

PassGAN: A Deep Learning Approach for Password Guessing 227

Table 2. Number of matches generated by each password guessing tool against the
RockYou testing set, and corresponding number of password generated by PassGAN
to outperform each tool. Matches for HashCat Best64 and FLA were obtained by
exhaustively enumerating the entire output of each tool. The minimum probability
threshold for FLA was set to p = 10−10.

Approach (1) Unique
passwords

(2) Matches (3) Number of
passwords required for
PassGAN to
outperform (2)

(4) PassGAN
matches

JTR Spyderlab 109 461,395 (23.32%) 1.4 · 109 461,398
(23.32%)

Markov Model
3-gram

4.9 · 108 532,961 (26.93%) 2.47 · 109 532,962
(26.93%)

HashCat gen2 109 597,899 (30.22%) 4.8 · 109 625,245
(31.60%)

HashCat Best64 3.6 · 108 630,068 (31.84%) 5.06 · 109 630,335
(31.86%)

PCFG 109 486,416 (24.59%) 2.1 · 109 511,453
(25.85%)

FLA p = 10−10 7.4 · 108 652,585 (32.99%) 6 · 109 653,978
(33.06%)

In our comparisons, we aimed at establishing whether PassGAN was able to
meet the performance of the other tools, despite its lack of any a-priori knowledge
on password structures. This is because we are primarily interested in determin-
ing whether the properties that PassGAN autonomously extracts from a list of
passwords can represent enough information to compete with state-of-the-art
human-generated rules and Markovian password generation processes.

Our results show that, for each of the tools, PassGAN was able to generate
at least the same number of matches. Additionally, to achieve this result, Pass-
GAN needed to generate a number of passwords that was within one order of
magnitude of each of the other tools. This holds for both the RockYou and the
LinkedIn testing sets. This is not unexpected, because while other tools rely on
prior knowledge on passwords for guessing, PassGAN does not. Table 2 summa-
rizes our findings for the RockYou testing set, while Table 3 shows our results
for the LinkedIn test set.

Our results also show that PassGAN has an advantage with respect to rule-
based password matching when guessing passwords from a dataset different from
the one it was trained on. In particular, PassGAN was able to match more
passwords than HashCat within a smaller number of attempts (2.1·109 – 3.6·109

for LinkedIn, compared to 4.8 · 109 – 5.06 · 109 for RockYou).

4.3 Combining PassGAN with HashCat

To maximize the number of passwords guessed, the adversary would typically
use the output of multiple tools in order to combine the benefits of rule-based

228 B. Hitaj et al.

Table 3. Number of matches generated by each password guessing tool against the
LinkedIn testing set, and corresponding number of password generated by PassGAN
to outperform each tool. Matches for HashCat Best64 and FLA were obtained by
exhaustively enumerating the entire output of each tool. The minimum probability
threshold for FLA was set to p = 10−10.

Approach (1) Unique
passwords

(2) Matches (3) Number of
passwords required for
PassGAN to
outperform (2)

(4) PassGAN
matches

JTR Spyderlab 109 6,840,797 (16.85%) 2.7 · 109 6,841,217
(16.85%)

Markov Model
3-gram

4.9 · 108 5,829,786 (14.36%) 1.6 · 109 5,829,916
(14.36%)

HashCat gen2 109 6,308,515 (15.54%) 2.1 · 109 6,309,799
(15.54%)

HashCat Best64 3.6 · 108 7,174,990 (17.67%) 3.6 · 109 7,419,248
(18.27%)

PCFG 109 7,288,553 (17.95%) 3.6 · 109 7,419,248
(18.27%)

FLA p = 10−10 7.4 · 108 8,290,173 (20.42%) 6 · 109 8,519,060
(21.00%)

tools (e.g., fast password generation) and ML-based tools (e.g., generation of a
large number of guesses).

To evaluate PassGAN in this setting, we removed all passwords matched by
HashCat Best64 (the best performing set of rules in our experiments) from the
RockYou and LinkedIn testing sets. This led to two new test sets, containing
1,348,300 (RockYou) and 33,394,178 (LinkedIn) passwords, respectively.

Our results show that the number of matches steadily increases with the num-
ber of samples produced by PassGAN. In particular, when we used 7 · 109 pass-
words from PassGAN, we were able to match 51% (320,365) of passwords from
the “new” RockYou dataset, and 73% (5,262,427) additional passwords from
the “new” LinkedIn dataset. This confirms that combining rules with machine
learning password guessing is an effective strategy. Moreover, it confirms that
PassGAN can capture portions of the password space not covered by rule-based
approaches. With this in mind, a recent version of HashCat [23] introduced a
generic password candidate interface called “slow candidates”, enabling the use
of tools such as PCFGs [69], OMEN [14], PassGAN, and more with HashCat.

4.4 Comparing PassGAN with FLA

In this section, we concentrate on comparing PassGAN with FLA having a par-
ticular focus on the probability estimation.FLA is based on recurrent neural net-
works [19,65], and typically the model is trained on password leaks from several
websites, in our case the RockYou training set. During password generation, the

PassGAN: A Deep Learning Approach for Password Guessing 229

neural network generates one password character at a time. Each new character
(including a special end-of-password character) is computed based on its prob-
ability, given the current output state, in what is essentially a Markov process.
Given a trained FLA model, FLA outputs the following six fields: 1. password,
2. the probability of that password, 3. the estimated output guess number, i.e.,
the strength of that password, 4. the standard deviation of the randomized trial
for this password (in units of the number of guesses), 5. the number of measure-
ments for this password and 6. the estimated confidence interval for the guess
number (in units of the number of guesses). The evaluation presented in [39]
shows that their technique outperforms Markov models, PCFGs and password
composition rules commonly used with JTR and HashCat, when testing a large
number of password guesses (in the 1010 to 1025 range).

We believe that one of the limitations of FLA resides precisely in the Marko-
vian nature of the process used to estimate passwords. For instance, 123456;
12345; and, 123456789 are the three most common passwords in the RockYou
dataset, being roughly one every 66-passwords. Similarly, the most common pass-
words produced by FLA start with “123” or use the word “love”. In contrast,
PassGAN’s most commonly generated passwords, tend to show more variability
with samples composed of names, the combination of names and numbers, and
more. When compared with the RockYou training set, the most likely samples
from PassGAN exhibit closer resemblance to the training set and its probabilities
than FLA does. We argue that due to the Markovian structure of the password
generation process in FLA, any password characteristic that is not captured
within the scope of an n-gram, might not be encoded by FLA. For instance, if a
meaningful subset of 10-character passwords is constructed as the concatenation
of two words (e.g., MusicMusic), any Markov process with n ≤ 5 will not be
able to capture this behavior properly. On the other hand, given enough exam-
ples, the neural network used in PassGAN will be able to learn this property.
As a result, while password pookypooky was assigned a probability p ≈ 10−33

by FLA (with an estimated number of guessing attempts of about 1029), it was
guessed after roughly 108 attempts by PassGAN.

To investigate further on the differences between PassGAN and FLA, we
computed the number of passwords in the RockYou testing set for which
FLA required at least 1010 attempts and that PassGAN was able to guess within
its first 7·109 samples. These are the passwords to which FLA assigns low proba-
bilities, despite being chosen by some users. Because PassGAN can model them,
we conclude that the probabilities assigned by FLA to these passwords are incor-
rect. Figure 2 presents our result as the ratio between the passwords matched by
FLA at a particular number of guessing attempts, and by PassGAN within its
first 7 · 109 attempts. Our results show that PassGAN can model a number of
passwords more correctly than FLA. However, this advantage decreased as the
number of attempts required for FLA to guess a password increased, i.e., as the
estimated probability of that password decreased. This shows that, in general,
the two tools agree on assigning probabilities to passwords.

230 B. Hitaj et al.

Fig. 2. Percentage of passwords matched by FLA at a particular number of guesses,
that are matched by PassGAN in at most 7 · 109 attempts.

4.5 A Closer Look at Non-matched Passwords

We inspected a list of passwords generated by PassGAN that did not match any
of the testing sets and determined that many of these passwords are reasonable
candidates for human-generated passwords. As such, we speculate that a possibly
large number of passwords generated by PassGAN, that did not match our test
sets, might still match user accounts from services other than RockYou and
LinkedIn. We list a small sample of these passwords in Table 4.

Table 4. Sample of passwords generated by PassGAN that did not match the testing
sets.

love42743 ilovey2b93 paolo9630 italyit

sadgross usa2598 s13trumpy trumpart3

ttybaby5 dark1106 vamperiosa ~dracula

saddracula luvengland albania. bananabake

paleyoung @crepess emily1015 enemy20

goku476 coolarse18 iscoolin serious003

nyc1234 thepotus12 greatrun babybad528

santazone apple8487 1loveyoung bitchin706

toshibaod tweet1997b 103tears 1holys01

5 Remarks

In this section, we summarize the findings from our experiments, and discuss
their relevance in the context of password guessing.

PassGAN: A Deep Learning Approach for Password Guessing 231

Character-level GANs are well suited for generating password guesses. In our
experiments, PassGAN was able to match 34.2% of the passwords in a testing
set extracted from the RockYou password dataset, when trained on a different
subset of RockYou. Further, we were able to match 21.9% of the password in
the LinkedIn dataset when PassGAN was trained on the RockYou password set.
This is remarkable because PassGAN was able to achieve these results with no
additional information on the passwords that are present only in the testing
dataset. In other words, PassGAN was able to correctly guess a large number
of passwords that it did not observe given access to nothing more than a set of
samples.

Current rule-based password guessing is very efficient but limited. In our exper-
iments, rule-based systems were able to match or outperform other password
guessing tools when the number of allowed guesses was small. This is a tes-
tament to the ability of skilled security experts to encode rules that generate
correct matches with high probability. However, our experiments also confirmed
that the main downside of rule-based password guessing is that rules can gen-
erate only a finite, relatively small set of passwords. In contrast, PassGAN
was able to eventually surpass the number of matches achieved using password
generation rules.

As a result, the best password guessing strategy is to use multiple tools. In our
experiments, each password guessing approach has an edge in a different setting.
Our results confirm that combining multiple techniques leads to the best overall
performance. For instance, by combining the output of PassGAN with the output
of the Best64 rules, we were able to match 48% of the passwords in the RockYou
testing dataset (which represents a 50.8% increase in the number of matches)
and 30.6% of the passwords from the LinkedIn dataset—an increase of about
73.3%. Given the current performance of both PassGAN and FLA, it is not
unlikely that tools alone will soon be able to replace rule-based password guessing
tools entirely.

GANs are expressive enough to generate passwords from Markovian processes,
rules, and to capture more general password structures. Our experiments show
that PassGAN is competitive with FLA, which treats password guessing pri-
marily as a Markovian process. Without any knowledge of password rules or
guidance on password structure, PassGAN was able to match the performance
of FLA within an order of magnitude of guesses by leveraging only knowledge
that it was able to extract from a limited number of samples. Further, because
GANs are more general tools than Markov models, in our experiment PassGAN
was able to generate matching passwords that were ranked as very unlikely by
FLA, using a limited number of guesses.

GANs generalize well to password datasets other than their training dataset.
When we evaluated PassGAN on a dataset (LinkedIn [36]) distinct from its
training set (RockYou [58]), the drop in matching rate was modest, especially

232 B. Hitaj et al.

compared to other tools. Moreover, when tested on LinkedIn, PassGAN was able
to match the other tools within a lower or equal number of guesses compared to
RockYou.

State-of-the-art GANs density estimation is correct only for a subset of the space
they generate. Our experiments show that IWGAN’s density estimation matches
the training set for high-frequency passwords. This is important because it allows
PassGAN to generate highly-likely candidate passwords early. However, our
experiments also show that as the frequency of a password decreases, the quality
of PassGAN’s density estimation deteriorates. While this becomes less relevant
as PassGAN generates more passwords, it shows that the number of passwords
that PassGAN needs to output to achieve a particular number of matches could
significantly decrease if it is instantiated using a character-level GAN that per-
forms more accurate density estimation. Similarly, a more extensive training
dataset, coupled with a more complex neural network structure, could improve
density estimation (and therefore PassGAN’s performance) significantly.

Final Remarks. GANs estimate the density distribution of the training dataset.
As a result, PassGAN outputs repeated password guesses. While a full brute-
force guessing attack would have full coverage, learning from the training data
distribution allows PassGAN to perform a more efficient attack by generating
highly likely guesses. Because password generation can be performed offline,
PassGAN could produce several billions of guesses beforehand, and store them
in a database. In our experiments, we stored unique password samples, and later
used these samples for testing purposes, thus avoiding repetitions. If needed,
Bloom filters with appropriate parameters could also be used to discard repeated
entries, thus enabling efficient online password guessing.

Clearly, PassGAN can be used in a distributed setting, in which several
instances independently output password guesses. While it is possible to avoid
local repetitions using, e.g., Bloom filters, coordinating the removal of dupli-
cates among different nodes is more complex and, potentially, more expensive.
The appropriate way to address this problem depends primarily on three factors:
(1) the cost of generating a password guess; (2) the cost of testing a password
guess; and (3) the cost of synchronizing information about previously-generated
password between nodes.

If the cost of generating passwords is less than the cost of testing them, and
synchronization among nodes is not free, then avoiding repetitions across nodes
is not essential. Therefore each model can sample without the need of being
aware of other models’ generated samples.

If the cost of testing password guesses is less than the cost of generating
them, then it might be beneficial to periodically coordinate among nodes to
determine which samples have been generated. The synchronization cost dictates
the frequency of coordination.

Finally, PassGAN could significantly benefit and improve from new leaked
password datasets. The model would improve by learning new rules, and the
number of repeated samples could potentially be reduced.

PassGAN: A Deep Learning Approach for Password Guessing 233

6 Conclusion

In this paper, we introduced PassGAN, the first password guessing technique
based on generative adversarial networks (GANs). PassGAN is designed to learn
password distribution information from password leaks. As a result, unlike cur-
rent password guessing tools, PassGAN does not rely on any additional informa-
tion, such as explicit rules, or assumptions on the Markovian structure of user-
chosen passwords. We believe that our approach to password guessing is revolu-
tionary because PassGAN generates passwords with no user intervention—thus
requiring no domain knowledge on passwords, nor manual analysis of password
database leaks.

We evaluated PassGAN’s performance by testing how well it can guess pass-
words that it was not trained on, and how the distribution of PassGAN’s output
approximates the distribution of real password leaks. Our results show that
PassGAN is competitive with state-of-the-art password generation tools: in our
experiments, PassGAN was always able to generate the same number of matches
as the other password guessing tools.

However, PassGAN currently requires to output a larger number of passwords
compared to other tools. We believe that this cost is negligible when considering
the benefits of the proposed technique. Further, training PassGAN on a larger
dataset enables the use of more complex neural network structures, and more
comprehensive training. As a result, the underlying GAN can perform more
accurate density estimation, thus reducing the number of passwords needed to
achieve a specific number of matches.

Changing the generative model behind PassGAN to a conditional GAN might
improve password guessing in all scenarios in which the adversary knows a set of
keywords commonly used by the user (e.g., the names of user’s pets and family
members). Given this knowledge, the adversary could condition the GAN to
these particular words, thus enabling the generator to give special attention to
a specific portion of the search space where these keywords reside.

PassGAN can potentially be used in the context of generating Honey-
words [29]. Honeywords are decoy passwords that, when mixed with real pass-
words, substantially reduce the value of a password database for the adversary.
Wang et al. [66], raised concerns about the previous techniques proposed by Juels
et al. [29] to generate Honeywords: if Honeywords can be easily distinguished
from real passwords, then their usefulness is significantly reduced. An extension
of PassGAN could potentially address this problem and will be the subject of
future work.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI,
vol. 16, pp. 265–283 (2016)

2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. CoRR abs/1701.07875
(2017). http://arxiv.org/abs/1701.07875

http://arxiv.org/abs/1701.07875

234 B. Hitaj et al.

3. Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative
adversarial networks. arXiv preprint arXiv:1703.10717 (2017)

4. Binkowski, M., Sutherland, D., Arbel, M., Gretton, A.: Demystifying MMD GANs.
In: International Conference on Learning Representations (ICLR) (2018)

5. Cao, Y., Ding, G.W., Lui, Y.C., Huang, R.: Improving GAN training via bina-
rized representation entropy (BRE) regularization. In: International Conference
on Learning Representations (ICLR) (2018)

6. Castelluccia, C., Dürmuth, M., Perito, D.: Adaptive password-strength meters from
Markov models. In: NDSS (2012)

7. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
GAN: interpretable representation learning by information maximizing generative
adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–
2180 (2016)

8. Ciaramella, A., D’Arco, P., De Santis, A., Galdi, C., Tagliaferri, R.: Neural net-
work techniques for proactive password checking. IEEE Trans. Dependable Secure
Comput. 3(4), 327–339 (2006)

9. Daskalakis, C., Ilyas, A., Syrgkanis, V., Zeng, H.: Training GANs with optimism.
In: International Conference on Learning Representations (ICLR) (2018)

10. Dell’Amico, M., Michiardi, P., Roudier, Y.: Password strength: an empirical anal-
ysis. In: Proceedings IEEE INFOCOM, pp. 1–9. IEEE (2010)

11. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using
a Laplacian pyramid of adversarial networks. In: Advances in Neural Information
Processing Systems, pp. 1486–1494 (2015)

12. Dorsey, B.: Markov-chain password generator (2017). https://github.com/
brannondorsey/markov-passwords

13. Duc, B., Fischer, S., Bigun, J.: Face authentication with Gabor information on
deformable graphs. IEEE Trans. Image Process. 8(4), 504–516 (1999)

14. Dürmuth, M., Angelstorf, F., Castelluccia, C., Perito, D., Chaabane, A.: OMEN:
faster password guessing using an ordered Markov enumerator. In: Piessens, F.,
Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol. 8978, pp. 119–132.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15618-7 10

15. Fiegerman, S.: Yahoo says 500 million accounts stolen (2017). http://money.cnn.
com/2016/09/22/technology/yahoo-data-breach/index.html

16. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE Trans. Inf. Forensics Secur. 8(1), 136–148 (2013)

17. Golla, M.: Password guessing using recurrent neural networks - the missing
manual (2017). https://www.password-guessing.org/blog/post/cupslab-neural-
network-cracking-manual/

18. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

19. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

20. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems, pp. 5767–5777 (2017)

21. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs - code (2017). https://github.com/igul222/
improved wgan training

22. HashCat (2017). https://hashcat.net

http://arxiv.org/abs/1703.10717
https://github.com/brannondorsey/markov-passwords
https://github.com/brannondorsey/markov-passwords
https://doi.org/10.1007/978-3-319-15618-7_10
http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/index.html
http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/index.html
https://www.password-guessing.org/blog/post/cupslab-neural-network-cracking-manual/
https://www.password-guessing.org/blog/post/cupslab-neural-network-cracking-manual/
http://arxiv.org/abs/1308.0850
https://github.com/igul222/improved_wgan_training
https://github.com/igul222/improved_wgan_training
https://hashcat.net

PassGAN: A Deep Learning Approach for Password Guessing 235

23. HashCat: HashCat v5.0.0, advanced password recovery (2018). https://hashcat.
net/forum/showthread.php?mode=linear&tid=7903&pid=42585

24. Hitaj, B., Ateniese, G., Pérez-Cruz, F.: Deep models under the GAN: information
leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 603–618. ACM (2017)

25. Hitaj, B., Gasti, P., Ateniese, G., Pérez-Cruz, F.: PassGAN: a deep learning app-
roach for password guessing. In: NeurIPS 2018 Workshop on Security in Machine
Learning, SECML 2018, Montreal, CANADA (Co-located with NeurIPS 2018)
(2018)

26. Hjelm, R.D., Jacob, A.P., Trischler, A., Che, T., Cho, K., Bengio, Y.: Boundary
seeking GANs. In: International Conference on Learning Representations (ICLR)
(2018)

27. Hoang, Q., Nguyen, T.D., Le, T., Phung, D.: MGAN: training generative adversar-
ial nets with multiple generators. In: International Conference on Learning Repre-
sentations (ICLR) (2018)

28. Hunt, T.: Here’s why [insert thing here] is not a password killer (2018). https://
www.troyhunt.com/heres-why-insert-thing-here-is-not-a-password-killer/

29. Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable. In: Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, pp. 145–160. ACM (2013)

30. Kim, T., Cha, M., Kim, H., Lee, J., Kim, J.: Learning to discover cross-domain
relations with generative adversarial networks. arXiv preprint arXiv:1703.05192
(2017)

31. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

32. Lab, C.: Fast, lean, and accurate: modeling password guessability using neural net-
works (source code) (2016). https://github.com/cupslab/neural network cracking

33. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1(4), 541–551 (1989)

34. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network.
In: Advances in Neural Information Processing Systems, pp. 396–404 (1990)

35. Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: Inter-
national Conference on Machine Learning, pp. 1718–1727 (2015)

36. LinkedIn: Linkedin. https://hashes.org/public.php
37. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:

IEEE Symposium on Security and Privacy (SP), pp. 689–704. IEEE (2014)
38. Hashcat Per Position Markov Chains (2017). https://www.trustwave.com/

Resources/SpiderLabs-Blog/Hashcat-Per-Position-Markov-Chains/
39. Melicher, W., et al.: Fast, lean, and accurate: modeling password guessability using

neural networks. In: USENIX Security Symposium, pp. 175–191 (2016)
40. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint

arXiv:1411.1784 (2014)
41. Miyato, T., Koyama, M.: cGANs with projection discriminator. In: International

Conference on Learning Representations (ICLR) (2018)
42. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM

22(11), 594–597 (1979)
43. Mroueh, Y., Li, C.L., Sercu, T., Raj, A., Cheng, Y.: Sobolev GAN. In: International

Conference on Learning Representations (ICLR) (2018)

https://hashcat.net/forum/showthread.php?mode=linear&tid=7903&pid=42585
https://hashcat.net/forum/showthread.php?mode=linear&tid=7903&pid=42585
https://www.troyhunt.com/heres-why-insert-thing-here-is-not-a-password-killer/
https://www.troyhunt.com/heres-why-insert-thing-here-is-not-a-password-killer/
http://arxiv.org/abs/1703.05192
http://arxiv.org/abs/1412.6980
https://github.com/cupslab/neural_network_cracking
https://hashes.org/public.php
https://www.trustwave.com/Resources/SpiderLabs-Blog/Hashcat-Per-Position-Markov-Chains/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Hashcat-Per-Position-Markov-Chains/
http://arxiv.org/abs/1411.1784

236 B. Hitaj et al.

44. Mroueh, Y., Sercu, T., Goel, V.: McGan: mean and covariance feature matching
GAN. In: Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, pp. 2527–2535 (2017).
http://proceedings.mlr.press/v70/mroueh17a.html

45. Murphy, K.P.: Handbook of Information Security, Information Warfare, Social,
Legal, and International Issues and Security Foundations. Wiley, Hoboken (2006)

46. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cam-
bridge (2012)

47. Nagarajan, V., Kolter, J.Z.: Gradient descent GAN optimization is locally stable.
In: Advances in Neural Information Processing Systems, pp. 5585–5595 (2017)

48. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: Proceedings of the 12th ACM Conference on Computer and
Communications Security, pp. 364–372. ACM (2005)

49. Nowozin, S., Cseke, B., Tomioka, R.: f-GAN: training generative neural samplers
using variational divergence minimization. In: Advances in Neural Information
Processing Systems, pp. 271–279 (2016)

50. Percival, C., Josefsson, S.: The scrypt password-based key derivation function.
Technical report (2016)

51. Perez, S.: Google plans to bring password-free logins to Android apps by year-
end (2017). https://techcrunch.com/2016/05/23/google-plans-to-bring-password-
free-logins-to-android-apps-by-year-end/

52. Petzka, H., Fischer, A., Lukovnikov, D.: On the regularization of Wasserstein
GANs. In: International Conference on Learning Representations (ICLR) (2018)

53. The Password Project (2017). http://thepasswordproject.com/leaked password
lists and dictionaries

54. Provos, N., Mazieres, D.: Bcrypt algorithm. In: USENIX (1999)
55. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep

convolutional generative adversarial networks. In: 4th International Conference on
Learning Representations (2016)

56. John the Ripper (2017). http://www.openwall.com/john/
57. John the Ripper Markov Generator (2017). http://openwall.info/wiki/john/

markov
58. RockYou: Rockyou (2010). http://downloads.skullsecurity.org/passwords/rockyou.

txt.bz2
59. Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative

adversarial networks through regularization. In: Advances in Neural Information
Processing Systems, pp. 2018–2028 (2017)

60. Hashcat Rules (2017). https://github.com/hashcat/hashcat/tree/master/rules
61. John the Ripper KoreLogic Rules (2017). http://contest-2010.korelogic.com/rules.

html
62. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-

propagating errors. Nature 323(6088), 533 (1986)
63. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:

Improved techniques for training GANs. In: Advances in Neural Information Pro-
cessing Systems, pp. 2234–2242 (2016)

64. Sitová, Z., et al.: HMOG: new behavioral biometric features for continuous authen-
tication of smartphone users. IEEE Trans. Inf. Forensics Secur. 11(5), 877–892
(2016)

65. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural net-
works. In: Proceedings of the 28th International Conference on Machine Learning
(ICML 2011), pp. 1017–1024 (2011)

http://proceedings.mlr.press/v70/mroueh17a.html
https://techcrunch.com/2016/05/23/google-plans-to-bring-password-free-logins-to-android-apps-by-year-end/
https://techcrunch.com/2016/05/23/google-plans-to-bring-password-free-logins-to-android-apps-by-year-end/
http://thepasswordproject.com/leaked_password_lists_and_dictionaries
http://thepasswordproject.com/leaked_password_lists_and_dictionaries
http://www.openwall.com/john/
http://openwall.info/wiki/john/markov
http://openwall.info/wiki/john/markov
http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
https://github.com/hashcat/hashcat/tree/master/rules
http://contest-2010.korelogic.com/rules.html
http://contest-2010.korelogic.com/rules.html

PassGAN: A Deep Learning Approach for Password Guessing 237

66. Wang, D., Cheng, H., Wang, P., Yan, J., Huang, X.: A security analysis of honey-
words. In: NDSS (2018)

67. Wei, X., Gong, B., Liu, Z., Lu, W., Wang, L.: Improving the improved training
of Wasserstein GANs: a consistency term and its dual effect. In: International
Conference on Learning Representations (ICLR) (2018)

68. Weir, M.: Probabilistic password cracker (2009). https://sites.google.com/site/
reusablesec/Home/password-cracking-tools/probablistic cracker

69. Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: 30th IEEE Symposium on Security and
Privacy, pp. 391–405. IEEE (2009)

70. Wu, Y., Burda, Y., Salakhutdinov, R., Grosse, R.: On the quantitative analysis of
decoder-based generative models. arXiv preprint arXiv:1611.04273 (2016)

71. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked
generative adversarial networks. arXiv preprint arXiv:1612.03242 (2016)

72. Zhong, Y., Deng, Y., Jain, A.K.: Keystroke dynamics for user authentication. In:
2012 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pp. 117–123. IEEE (2012)

73. Zhou, Z., et al.: Activation maximization generative adversarial nets. In: Interna-
tional Conference on Learning Representations (ICLR) (2018)

https://sites.google.com/site/reusablesec/Home/password-cracking-tools/probablistic_cracker
https://sites.google.com/site/reusablesec/Home/password-cracking-tools/probablistic_cracker
http://arxiv.org/abs/1611.04273
http://arxiv.org/abs/1612.03242

Blockchain and Cryptocurrency

Uncle-Block Attack: Blockchain Mining
Threat Beyond Block Withholding for
Rational and Uncooperative Miners

Sang-Yoon Chang1(B), Younghee Park2, Simeon Wuthier1,
and Chang-Wu Chen3

1 University of Colorado Colorado Springs, Colorado Springs, CO, USA
schang2@uccs.edu

2 San Jose State University, San Jose, CA, USA
3 AMIS, Taipei, Taiwan

Abstract. Blockchain-based cryptocurrency replaces centralized insti-
tutions with a distributed network of Internet-based miners to gener-
ate currency and process financial transactions. Such blockchain systems
reach consensus using proof of work (PoW), and the miners participating
in PoW join mining pools to reduce the variance for more stable reward
income. Prior literature in blockchain security/game theory identified
practical attacks in block withholding attack (BWH) and the state of
the art fork-after-withholding (FAW), which have the rational and unco-
operative attacker compromise a victim pool and pose as a PoW con-
tributor by submitting shares but withholding the blocks. We advance
such threat strategy (creating greater reward advantage to the attackers
at the expense of the other miners in the victim pool) and introduce the
uncle-block attack (UBA) which exploits uncle blocks for block withhold-
ing. We analyze UBA’s incentive compatibility and identify and model
the critical systems- and environmental- parameters which determine
the attack’s impacts. Our analyses and simulations results show that a
rational attacker is always incentivized to launch the UBA attack strat-
egy (over FAW or protocol compliance) and that UBA is effective even in
the unfavorable networking environment (in contrast, in such case, FAW
is reduced to the suboptimal BWH attack and does not make use of the
withheld block).

Keywords: Blockchain · Cryptocurrencies ·
Distributed consensus protocol · Security · Mining game ·
Block withholding attack

1 Introduction

Blockchain technology builds a distributed ledger comprised of irrevocable trans-
actions and has emerged as the backbone technology for digital cryptocurrencies,
which govern, generate, and process the financial transactions in a distributed
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 241–258, 2019.
https://doi.org/10.1007/978-3-030-21568-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_12

242 S.-Y. Chang et al.

manner (as opposed to relying on a centralized bank), e.g., Bitcoin [17] and
Ethereum [5,21]. As of April 2019, the total market cap of the blockchain-based
cryptocurrencies is estimated to be more than $170B [3,8].

Underlying blockchain is the consensus protocol so that all nodes agree on
the transactions on the ledger without relying on a trusted third party. The
most popular consensus algorithm is based on proof of work (PoW). The miners
participate in PoW to generate new currency and process the transactions and
are financially incentivized to so by the block rewards, the winnings from solving
the probabilistic PoW computational puzzles. To lower the variance of such
reward, the miners join and operate as mining pools to share the computational
power and the corresponding reward winnings.

PoW consensus protocol is driven by networking, as the found blocks need
to get propagated via broadcasting for “timestamping” [17] to determine which
block got mined first and will become a part of the blockchain. Because it is in
a distributed environment and due to the networking/propagation delays, there
can be collisions in the block findings, which results in forking. To improve fair-
ness and decentralization across nodes with varying networking environments,
blockchain systems incorporate uncle reward, which are partial rewards for the
blocks that got forked but did not become part of the main chain. (We explain
the relevant background in blockchain in greater details in Sect. 2.)

According to the consensus protocol, the miner submits a PoW solution once
it is found. However, previous research identified practical and relevant attacks
which have the attacker compromise a victim mining pool and undermine the
winnings by posing as a PoW contributor without actually contributing (the
attacker also has a different reward channel in its main pool/solo mining, in
which it does not need to share the reward with others, unlike the victim pool).
In such attacks, the attacker mines the block and controls the timing of the
block submission (including possibly permanently withholding the block, which
effectively corresponds to discarding the found block) as opposed to following
the protocol and immediately submitting the found block. These attacks are in
the forms of block-withholding (BWH) attack and fork-after-withholding (FAW)
attack. FAW attack, in particular, builds on both selfish mining and BWH and
improves the attacker’s reward by submitting the block found in the victim
mining pool when there is a fork/collision with a third-party miner, making the
threat more relevant to the incentive-driven rational miners.

In this paper, we advance the withholding-based attacks and introduce the
uncle-block attack (UBA) which extends the block-withholding to uncle blocks.
UBA amplifies the state of the art in FAW attack by increasing the attacker
reward at the expense of the other miners within the victim pool. UBA not
only builds on FAW (inheriting the attacker-desirable properties of FAW) but is
also effective independent to the networking environment of the attacker (i.e.,
effective even when the attacker loses the forking race, in contrast to FAW).
While the UBA attack undercuts the rewards of the other miners in the victim
pool (and thus corresponds to the strategy which will be taken by a malicious
attacker focusing on sabotaging the victims), we extend our threat model further

UBA: Blockchain Mining Threat Beyond Block Withholding 243

to include the uncooperative and rational attackers and analyze the attacker’s
incentives in financial rewards for UBA. Our analyses show that the attacker
maximizes its reward by launching UBA attack over the state of the art in FAW
or the protocol-complying honest mining. Our reward/payout analyses for the
attacker uses lower bounds to be conservative in measuring the attacker’s per-
formances. Nevertheless, we show significant gains and incentives for launching
UBA. While we use formal modeling and analyses to abstract away from the
implementation details and deliver fundamental insights about the advanced
withholding threat, our model constructions and analyses are driven by the real-
world blockchain implementations and our findings are relevant and applicable
to the current practice/design of blockchains.

The rest of the paper is organized as follows. Section 2 provides background
information about blockchain relevant to our work; Sect. 3 discusses about the
prior work in blockchain mining security; and Sect. 4 establishes the threat model
and the attack requirements (the same as those for BWH and FAW). We con-
struct our mining game model in Sect. 5 and use it to recap BWH attack and
FAW attack. Afterward, we introduce UBA and analyze its reward in Sect. 6.
We analyze the attacker’s dynamic behaviors (optimizing its infiltration of the
victim pool and the computational power use) and its attack payouts/rewards
in simulations in Sect. 7. We then discuss about the potential countermeasures
in Sect. 8 and conclude the paper in Sect. 9.

2 Background in Blockchain Mining

The PoW consensus comprises of two parts: a probabilistic PoW based on solving
a computational puzzle (finding the preimage/input of a one-way hash function)
yielding a valid block, and the submission/broadcasting of the block via peer-to-
peer (p2p) networking (so that the others update their blockchain ledgers with
the block to reach a consensus).

Miners execute the consensus protocol and are incentivized to do so because
solving the computational puzzle and consequently registering a block on the
blockchain generates financial rewards (new currency and the transaction fees).
The consensus protocol is based on a race and only the miner solving the PoW
puzzle and submitting/broadcasting the corresponding block the earliest wins
the corresponding reward in a round; once that happens, the other miners start
a new round of mining by updating the chain with the newly found block. While
the PoW consensus is designed to be computationally fair (distributing the
reward winning proportionally to the computational power of the miners), the
PoW miners experience high variance when finding blocks and winning rewards.
Because a miner is competing with a global-scale group of other miners and the
mining difficulty gets adjusted accordingly, finding a block is very sporadic and
bursty.

To lower the variance and to get a more stable stream of reward income,
miners form a pool to combine their computational power to share the power
as well as the mining reward winnings. The increased computational power by

244 S.-Y. Chang et al.

pooling them together increases the occurrence of winning a block whose reward
gets split across the pool miners according to their computational contributions.
To estimate each of the miner’s contributions, mining pool samples more PoW
solutions by introducing shares, which correspond to solving the same computa-
tional puzzle with the same block header as the block but with easier difficulty;
a block solution is a share but a share is not necessarily a block. The reward dis-
tribution within a pool using such shares is also designed to be computationally
fair. To manage the mining pool, the pool manager keeps track of the individual
miner members’ contributions, registers/broadcasts the block upon its discovery,
and distributes the reward to the pool members. Joining the mining pool is pop-
ular, e.g., as of July 2018, the computationally-largest mining pool (BTC.com)
has 24% of the computational power for the entire Bitcoin mining network, and
eight mining pools collectively have greater than 85%.

Forking occurs when two block solution propagations result in a collision
(i.e., some nodes receive one block earlier than the other while the other nodes
receive the other block first), creating a partition between the miners on which
block to use for its impending round of mining. Forking gets resolved by having
the miners choose the longest chain, e.g., if one partition finds another new block
and propagates that to the other partition, then the miners in the other partition
accept that chain which is one block longer than the one that they have been
using1. The block that causes a fork but does not get registered as the main
block is called the uncle block (as opposed to the parent block registered on the
chain)2. Blockchain systems provide partial reward for uncle blocks to increase
fairness between the miners, i.e., reduce the effect of the networking discrepancy.

3 Related Work in Mining Security

For uncooperative miners (willing to diverge from the set protocol), sophisticated
attacks exist to further increase the mining reward beyond following the protocol
of timely block submission. These attacks on the consensus protocol actively
1 In significantly rarer cases, an intentional hard fork retains the partition and intro-

duces a new branch/chain. For example, since the launch of the main chain in 2016
(“Homestead”), Ethereum had five hard forks, including three hard forks in 2016
(including the infamous DAO hack incident which split Ethereum and Ethereum
Classic), one in 2017, and one in 2019. Intentional soft forks are also used for upgrad-
ing the blockchain protocols and rules but, in contrast to hard forks, are backward-
compatible to the clients running the older softwares. Such intentional forks are out
of scope for this paper and we focus on the accidental forks caused by the block
propagation discrepancy in networking, because the accidental forks occur signifi-
cantly more frequently than the intentional forks and because the intentional forks
are treated differently than the accidental forks which get automatically resolved as
described by the longest-chain rule without software updates.

2 This terminology for the blocks which are valid solutions but did not become the
main blocks can differ across implementations, e.g., in Bitcoin, they are called orphan
blocks. We uniformly call them uncle blocks for simplicity but introduce relevant
variables, including the reward amount, to generalize it across implementations.

http://btc.com/

UBA: Blockchain Mining Threat Beyond Block Withholding 245

control the timing of the block submission, including permanently withholding
the submission in certain situations. Selfish mining withholds a block so that
the miner can get a heads-start on computing the next block and have the rest
of the miners discard and switch from the blocks that they were mining [10,13,
19]. Blockchain’s confirmation mechanism (which waits for multiple blocks to
get mined before finalizing the transactions) resists selfish mining because the
probability of successful selfish mining decreases exponentially with the number
of blocks required for confirmation [17].

There are further attacks in cases of the mining pool. Block-withholding attack
(BWH) withholds the mined block in mining pools in order to increase the
attacker’s reward at the expense of the rest of the pool member miners [18]. In
BWH, to sabotage the victim mining pool, the attacker simply never submits
the found block while submitting the shares. As a consequence, the attacker
still reaps the benefits from submitting the share solutions to the victim pool
(pretending to contribute and getting the credit for it) while never actually
contributing to the pool (since it never submits the actual block solution which
will benefit the victim pool). The attacker also increases the expected reward in
its main pool by launching BWH on the infiltrated victim pool.

A recent fork-after-withholding (FAW) attack [14] combines selfish mining
and BWH. FAW builds on selfish mining and BWH but creates intentional forks
in cases when there is a block being broadcasted by another pool with which the
attacker has no association. In other words, while always submitting the shares
to gain greater payout on the victim pool, the attacker withholds the found
block and either discards it (if the attacker’s main pool finds another block or if
another miner from the victim pool finds a block) or submits it only when there
is another competing block that is being propagated by another third-party pool
(creating an intentional fork). FAW attack is significant because it forgoes the
miner’s dilemma (which establishes that the Nash equilibrium between multiple
pools is to launch block-withholding attack against each another, which results in
suboptimal performances for all the pools, motivating the pools to be cooperative
with each other [9]); there is a real incentive (unfair reward gain) for rational
miners to launch FAW attack.

Other researchers investigate the emerging security issues as the block reward
transitions to only variable transaction-fees (as opposed to also including the
base fees that generate new currencies) [6,20]. The variance of the block reward
amount incentivizes the attackers to selectively mine the blocks in time (e.g.,
there are “mining gaps” when the attackers decide not to mine). Although
related, our work is orthogonal to these issues since the attacker in our work
maximizes its reward advantage given the block reward.

4 Threat Model: Uncooperative and Rational Attacker

We distinguish between honest miners and attackers by whether or not they
are cooperative and comply with the consensus protocol. More specifically, while
honest miners submit/broadcast the blocks once they are found, attackers control

246 S.-Y. Chang et al.

the timing of the consensus-puzzle submissions/blocks by introducing a delay
between the time when the block was found and when they are submitted.

We investigate the attacks launched by the miners, as opposed to the pool
managers. Compromising the pool as a miner is easier than misbehaving as a
mining pool manager (which is trusted by and interact with all the miners within
the mining pool and is therefore in constant scrutiny). Compromising the pool
as a miner is especially easy in a public blockchain (as opposed to permissioned
or private blockchain) and against an open pool, in which registration and Sybil
attack (generating/using multiple identities) are easy and even encouraged for
anonymity.

The attacker is also rational and driven by the financial incentives of block
rewards. Therefore, we study whether the attackers strategies are compatible
to such incentives; the attack is irrelevant if it does not increase the attacker’s
reward because the attacker will choose not to use such the suboptimal strategy.
While the attacker is primarily driven by its own self interest, its unfair advantage
negatively affects the other miners of the blockchain because the finite reward
is shared among the miners (i.e., if a miner wins more, then the other miners
win less). Our threat model therefore encompasses the malicious threat model
(where the attacker’s goal is to sabotage or degrade the performances of the
other miners) but can also be extended to the uncooperative and rational miners
(who merely want to increase their own rewards without necessarily harming the
others).

We assume the threat model of BWH attack and FAW attack, in which the
attacker compromises multiple pools and separates the main pool vs. the victim
pool. The attacker behaves honestly in the main pool while it can launch an
attack by diverging from the protocol in the victim pool. As a realistic setup, we
assume that the main pool is comprised of the attacker only (which is effectively
solo mining without joining a pool); the attacker shares the reward winnings in
the victim pool while there is no sharing and the attacker takes all the rewards
in the main pool. Our model also generalizes to the case of multiple pools, e.g.,
the main pool or the victim pool can be a collection of mining pools, since the
PoW consensus is power-fair, as opposed to identity-fair, as is captured in our
mining-game model in Sect. 5.

The attacker setting up main pool vs. victim pool is realistic since setting
up a miner account or joining a mining pool are generally easy. This is because
public blockchain, such as those used in cryptocurrencies, has loose control of
identities and is designed for anonymity (which is in contrast to the permis-
sioned blockchains in other emerging applications), e.g., Nakamoto/Bitcoin sug-
gests using new accounts for new transactions [17]. For example, in 2014, Eligius
became a victim pool of the BWH attack and lost 300 BTC, which got detected
primarily because the attacker only used two accounts for the attack (which
resulted in a detection of abnormal behavior where the accounts submitted only
shares but no blocks for too long of a time).

UBA: Blockchain Mining Threat Beyond Block Withholding 247

5 Mining Game

5.1 Mining and Computational Power Model

To investigate the incentive compatibility of the attacks, we model the min-
ing game between the miners and quantify the expected reward. We build on
the approaches of the prior literature analyzing the withholding-based attacks,
e.g., [14,15], but we construct the model to enable the analyses of the novel UBA
attack we introduce. The reward distributed depends on the miner’s computa-
tional power, and we normalize the following variables with respect to the entire
mining network’s computation power. i.e., the total mining power has a power
of 1. The attacker’s computation power is α while the victim pool’s mining power
without the attacker’s power is β, so 0 ≤ α+β ≤ 1. The attacker splits its power
between its main pool (honest mining) and the victim pool (willing to launch
mining attack strategies to increase the attacker’s reward at the expense of the
fellow miners in the victim pool), and the fraction of the attacker’s power for
infiltration of the victim pool is τ (where 0 ≤ τ ≤ 1). Therefore, the attacker’s
power on the victim pool is τα, and the total mining power on the victim pool is
τα+β even though the attacker’s power may not contribute to the pool earning
reward depending on the attack strategies (honest mining is within the attacker’s
options, and the attacker will do so legitimately contributing to the pool earning
if honest mining is the reward-optimal strategy for the attacker). For example,
in the simpler BWH attack, the attacker does not submit block at all in the
victim pool so the actual power contributing to block earnings of the pool is
only β, while the attacker still earns the mining credit and the corresponding
reward through share submissions and the reward earning gets split by τα + β
within the victim pool.

In FAW attack, the attacker submits the withheld block on the victim pool
only when another block by a third-party pool is submitted and getting propa-
gated. The attacker is motivated to do so and cause a fork because the attacker
does not get any reward if a third-party pool wins the block. c denotes the prob-
ability that the attacker’s block will get rewarded as opposed to the third-party
pool’s, and c depends on the networking state/topology between the two block
submissions.

A miner’s expected reward normalized by the reward amount is denoted with
R. For example, if an attacker behaves honestly, its expected reward (Rhonest)
is proportional to its computational power by the design of the PoW consensus
and the mining pools,

Rhonest = α (1)

The following summarizes the variables used for the reward analyses of the
block-withholding threats (more complexity and variables are added as we use
them to describe the mining pool game and analyze the uncle-block attack).

α: Attacker’s computational power
β: Computational power of the victim pool

248 S.-Y. Chang et al.

τ : Fraction of attacker’s power for infiltration of victim
c: Probability that the attacker wins the reward given that there is a fork
(collision with another block propagation)

5.2 BWH Attack and FAW Attack Analyses

To provide baselines and examples of the use of our model in Sect. 5.1, we analyze
the expected reward of BWH and FAW. This section adapts the prior work in
FAW [14], and we only highlight the parts which are the most relevant to our
work in this section.

For BWH, the attacker has two possible events for earning a positive reward
(in other events, the attacker earns zero reward). The first event is when the
attacker finds a block in its honest-mining main pool (the event A) while the
second event corresponds to when another miner from the victim pool, not the
attacker, finds a block (B). Because the probability of winning a block is pro-
portional to the computational power spent on mining the block and because
1−τα amount of power from all miners actually contributes to finding the block
(the attacker uses the other τα to still compute the PoW but only submit shares
while withholding the blocks), the probability of A is (1−τ)α

1−τα and the probability
of B is β

1−τα . Assuming negligible probability for natural forking, the expected
reward for block-withholding attack normalized by the reward amount (RBWH)
is:

RBWH = E[R|A] · Pr(A) + E[R|B] · Pr(B)

= 1 · (1 − τ)α
1 − τα

+
τα

β + τα
· β

1 − τα

=
(1 − τ)α
1 − τα

+
τα

β + τα
· β

1 − τα
(2)

The FAW attack builds on BWH but provides an extra channel for attacker
reward. In addition to the events A and B, the attacker can earn reward
by broadcasting the withheld block when a third-party miner outside of the
attacker-involved main pool and victim pool finds a block, causing a fork and
hence the name fork-after-withholding (FAW). This event of the attacker finding
a block and a third-party miner finding a block is C. The expected reward for
FAW attack normalized by the reward amount (RFAW) is:

RFAW = E[R|A] · Pr(A) + E[R|B] · Pr(B) + E[R|C] · Pr(C)

= 1 · (1 − τ)α
1 − τα

+
τα

β + τα
· β

1 − τα
+ 1 · c · τα

β + τα
· τα

1 − α − β

1 − τα

=
(1 − τ)α
1 − τα

+
τα

β + τα

(
β

1 − τα
+ cτα

1 − α − β

1 − τα

)
(3)

We summarize and list the three events which yield the attacker positive
rewards, as we also use them for our analyses of the rewards for UBA:

UBA: Blockchain Mining Threat Beyond Block Withholding 249

A: Attacker’s main pool finds a block
B: Another miner from the victim pool finds a block
C: Third-party miner finds a block

6 Uncle-Block Attack

Uncle-block attack (UBA) builds on the FAW attack but exploits the uncle
blocks, which are blocks which caused fork but did not eventually get selected as
the main block on the blockchain. In UBA, the attacker submits all its withheld
blocks at the end of the round (when any block gets propagated). This strategy
is different from FAW in that the attacker still submits the withheld block in the
events A and B, as opposed to not submitting it as in BWH/FAW attack. This
results in the attacker receiving two blocks worth (one main block and one uncle
block) of rewards. In addition, uncle-block attack increases the reward in the
event C because the block which does not become the main block (corresponding
to the 1 − c probability in Sect. 5.1) also gets rewarded by the uncle reward.

Uncle block rewards (rewarding multiple blocks in a round) results in greater
complexity in the mining game and yields the vulnerability for UBA. For exam-
ple, one can envision an attacker continue to mine using the same block header
until it exhausts the reward in that round (although this turns out to be sub-
optimal if uncle block has less rewards than the main blocks according to our
analyses). In the rest of the section, we introduce the UBA strategy, establish
that a non-attacker who does not control/vary the timing of the block sub-
missions is incentivized to move on to the next round (as opposed to staying
within the round for uncle rewards), and analyze the optimal miner strategy for
the attacker controlling the timing of the submissions. Using these insights, we
also quantify the expected reward of UBA and provide a lower bound that is
independent of networking conditions (c), which is in contrast to FAW.

6.1 Uncle-Block Model: κ and λ

Suppose the blockchain provides non-zero rewards up to λ uncle blocks and
the reward per uncle block is κ. These are blockchain system parameters, for
example, λ = 2 and κ = 7

8 in Ethereum. In practice, these parameters have the
following constraints: λ < ∞ limits the number of rewardable uncle blocks, and
κ < 1 bounds the uncle reward so that the main block is more valuable than
the uncle blocks. In each round, the blockchain will provide rewards which can
range from 1 (no fork and thus no uncle blocks) to 1 + λκ (1 main block and λ
uncle blocks get rewarded), normalized with respect to the main-block reward.

As a trivial result, UBA reduces to FAW if there is no uncle reward, i.e.,
λ = 0 or κ = 0. Therefore, we focus on the case when there is a positive uncle
reward, i.e., λ > 0 and κ > 0.

250 S.-Y. Chang et al.

6.2 In Main Pool: Advance with New Block

In this section, we study the miner strategy in its main pool (no infiltra-
tion/gaming against other pool members, for example, solo member in the pool).
In its main pool, a miner who found a block can still mine from the same block
header instead of advancing to the next round with the updated block. Despite
the option, the following lemma shows that the miner will be incentivized not
to do so and follow the consensus protocol to update the PoW header/execution
and move on to the next round if the main block yields greater reward than the
uncle blocks. In other words, a miner will choose to advance to the next round
rather than mining for the uncle block within the same round if κ < 1.

Lemma 1. The optimal miner strategy is the honest mining (following the pro-
tocol and advancing to the next round) in its main pool if κ < 1.

Proof. The inter-arrival time between the block findings follows an exponential
distribution and therefore the block finding process is memoryless, i.e., given
that the block is not found, the expected time to find a block is the same as
before. Therefore, the miner gains greater reward by mining for the main block
and not for the uncle block if κ < 1, and the reward-optimal mining strategy is
to update the block header whenever available.

6.3 Uncle-Block Attack Reward Analyses

We compute the expected reward of UBA, aggregated across the attacker-
involved pools and normalized by the reward amount, to show the effectiveness
of the attack. Assuming that the attacker updates the round/block header if
it finds a block in its honest-mining main pool (as is established to be reward-
optimal in Lemma 1), the following theorems provide insights about the reward
of UBA.

Theorem 1. UBA outperforms FAW attack always (i.e., regardless of
α, β, τ, c, and κ) and its reward is greater than that in Eq. 4.

Proof. In all events which provide positive reward to the attacker, A, B, and C,
finding an extra block within the same round (using the same block header) only
increases the attacker reward if the uncle reward is positive (κ > 0). The attacker
behavior/strategy changes from FAW in events A and B, and UBA increases the
reward from FAW (Eq. 3) in all three event cases. In event A (when the attacker
finds a block in its honest-mining main pool), the attacker rewards increases
from FAW because there is a positive probability of τα · (1−τ)α

1−τα that the attacker
has been withholding another block in the victim pool (since the main pool
mining and the victim pool mining are independent). In such case, the attacker
has the control over both blocks and will prioritize the block in the main pool
by broadcasting the block in the main pool before the one in the victim pool
because, in contrast to the attacker’s solo mining in the main pool, the reward in
the victim pool gets shared by the other pool members (in which case the uncle

UBA: Blockchain Mining Threat Beyond Block Withholding 251

RUBA = E[R|A] · Pr(A) + E[R|B] · Pr(B) + E[R|C] · Pr(C)

≥ (1 + κ
τα

β + τα
· τα) · (1 − τ)α

1 − τα
+ (1 + κ · τα)

τα

β + τα
· β

1 − τα

+ [1 · c + κ · (1 − c)]
τα

β + τα
· τα

1 − α − β

1 − τα

=
(1 − τ)α

1 − τα
+

τα

β + τα

(
κ

(τα)2

β + τα
· (1 − τ)α

1 − τα
+ (1 + κτα)

β

1 − τα
+ [c + (1 − c)κ] τα

1 − α − β

1 − τα

)
(4)

≥ (1 − τ)α

1 − τα
+

τα

β + τα

(
κ

(τα)2

β + τα
· (1 − τ)α

1 − τα
+ (1 + κτα)

β

1 − τα
+ κτα

1 − α − β

1 − τα

)
(5)

reward is κ τα
β+τα). In event B (when another miner in the victim pool finds a

block), the attacker could have also been withholding a block in the victim pool,
which occurs with a probability of τα · β

1−τα , in which case the attacker gets
rewarded for both the main block and the uncle block (regardless of which block
wins the fork racing) increases to (1 + κ) τα

β+τα from just discarding/withholding
the found block as in FAW/BWH yielding τα

β+τα in Eq. 3. In the event C (when
the attacker has been withholding a block in the victim pool and a third-party
miner finds a block), unlike the FAW attack which disregards uncle blocks, even
if the attacker’s block does not become the main block with a probability of
(1 − c) · τα 1−α−β

1−τα , it still gets rewarded by the uncle reward of κ. Putting it
together, Eq. 4 presents the expected reward for the UBA attack. The expected
reward for launching UBA in Eq. 4 is greater than the FAW reward in Eq. 3 for
any α, β, τ, c.

Theorem 1 provides a lower bound of the UBA’s reward performance in Eq. 4,
which is greater than the FAW reward performance, providing greater unfair
reward and incentives for the attackers to conduct the attack. Equation 4 is a
lower bound because we ignore the cases when the attacker-controlled victim
pool finds multiple blocks before the others do within the same round (which
provides positive reward increment if λ > 1). The bound is rather tight and close
to the actual expected reward because the ignored reward cases has exponentially
decreasing probabilities; more specifically, the probability of the attacker finding
x number of blocks in the victim pool within a round grows by (τα)x.

Theorem 2. UBA’s reward is greater than Eq. 5, which is independent of c, if
κ ≤ 1.

Proof. From Eq. 4, by assuming that κ ≤ 1 (i.e., the uncle reward is not greater
than the main reward), c + (1 − c)κ ≥ cκ + (1 − c)κ = κ, which yields Eq. 5.
The inequality becomes an equality if κ = 1 (the uncle reward and main reward
have the same reward amount) or c = 0 (the attacker’s fork-causing block always
loses to the third-party block submissions).

Theorem 2 presents the UBA’s reward performance which is independent of c,
which is a critical environmental parameter in FAW and depends on the network-
ing topology and conditions of the attacker. (For example, FAW attack converges
to BWH if c → 0.) The magnitude of κ determines how close the approximation
is to the actual reward (the greater the κ the tighter the approximation).

252 S.-Y. Chang et al.

We use Eqs. 4 and 5 for our simulation analyses and to quantify the reward
performances with actual numerical values. Despite using the lower bound, we
show that UBA’s effectiveness and impact are significantly superior to the pre-
viously known withholding-based attacks, which state of the art is FAW.

To further maximize its reward, an attacker can dynamically control its con-
trol parameter τ since if it can know/estimate the rest of the environmental
parameters in α, β, and c and the system parameter in κ. The attacker can
optimize its τ either by solving it mathematically to check for local maximum
(dR̄uba

dτ = 0) or by using an optimization algorithm (e.g., gradient-descent algo-
rithm). To present a stronger threat, we assume such capability for the attacker,
e.g., the attacker can correctly estimate α, β, and c (e.g., α and β are pub-
licly accessible and Eq. 5 enables optimization even if c cannot be estimated)
and study the impact of the attacker dynamically adapting its τ to improve
its reward in Sect. 7.2; we call the attacker’s reward when using the optimal τ
τ -capacity.

7 Simulation Analyses

7.1 Simulation Setup and Parameters

We analyze UBA using Monte-Carlo simulations and numerical analyses. Our
model introduces environmental parameters (α, β), attacker’s control param-
eters (τ), and the blockchain system control parameters (κ, λ). We focus our
analyses from the attacker’s perspective (observing the attacker’s reward) and
thus vary the attacker-controlled parameters (α, τ). This section explains the
simulations settings and the parameter choices to characterize the blockchain
system and the victim pool system under attack.

Our blockchain system simulation setup is influenced by modern blockchain
implementations, e.g., κ = 7

8 as is in Ethereum (the second largest cryp-
tocurrency behind Bitcoin). We set λ = 1 which is the worse-case for the
attacker’s reward; any other reward-distribution algorithm supporting λ > 1,
e.g., Ethereum, provides greater reward to the attackers and therefore provides
them with greater incentives/impacts to conduct UBA. For the pool system,
β = 0.24, which value corresponds to the strongest mining pool in real-world
mining at the time of this writing [2]. The attacker attacking the stronger pool
as its victim pool (as opposed to a weaker pool of β → 0) provides greater
reward and is aligned with its incentive, which we verify in our simulations and
agree with previous literature [1,14]. These parameters are fixed unless otherwise
noted (we vary the variables to analyze the dependency and the impacts).

We also consider the 51% attack where the attacker can fully control the
blockchain if the attacker’s computational power exceeds the 50% of the net-
work’s. In our context, the 51% attacker can conduct withholding-based selfish
mining to reverse the transactions/blocks on the chain and to waste the other
miner’s computational resources on blocks which the attacker can reverse and
make stale. Therefore, we limit our analyses to 0 ≤ α ≤ 0.5 (the attacker is
capable of 51% attack if α > 0.5) in addition to the constraint of α+β ≤ 1 from
the definitions of α and β.

UBA: Blockchain Mining Threat Beyond Block Withholding 253

(a) Optimal τ for achieving τ -capacity (b) Dynamic strategy (τ -capacity) vs.
fixed strategy (no adaptation of τ), includ-
ing honest mining

Fig. 1. Uncle-block attack (UBA) analyses

7.2 UBA: Dynamic Control and τ -Capacity

In this section, we analyze UBA, which generalizes FAW and BWH. The attacker
controls τ and can dynamically adapt it to the environment to maximize its
reward. We call such τ the optimal τ and the corresponding reward is the τ -
capacity. Figure 1(a) plots the optimal τ with respect to the attacker’s power
capability α while varying c. The attacker’s optimal τ quickly increases, i.e., the
attacker spends more power on infiltration and on the victim pool and less on
the honest-behaving main pool, when the attacker has computational power and
participates in mining (α > 0). With greater c, the attacker’s power on the victim
pool increases, and there are more α-cases when the attacker’s optimal τ is equal
to one and the attacker only mines on the victim pool (no power allocated on
the main pool). c = 0 (i.e., the attacker always loses the forking race against
the third-party block submission) represents the worst-case in c and yields the
“c independent” reward in Eq. 5. Despite this lower bound and the unfavorable
networking condition to the attacker, the attacker still focuses larger amount of
its power on the infiltration of the victim pool for maximizing its reward. As
long as the attacker has non-zero power (α > 0), the attacker spends more than
85.8% of its power on infiltration regardless of c.

Figure 1(b) plots the attacker’s reward assuming dynamic τ control (τ -
capacity), fixed τ control, and honest mining (no withholding of blocks and
shares). The attacker’s reward increases with c, and varying c results in reward
values between the lowest in c = 0 (yielding c-independent reward in Eq. 5) and
the highest in c = 1; for example, if α = 0.1, then the reward increases from
0.101 at c = 0 to 0.108 at c = 1 and, if α = 0.24, then the reward increases
from 0.250 at c = 0 to 0.278 at c = 1 (not shown in the plot). The dynamic
strategy choosing the optimal τ and reaching the τ -capacity always outperforms
the fixed strategy by definition of τ -capacity; to provide a representative fixed-
strategy reward analysis distinguishable in plots, Fig. 1(b) includes data with the
suboptimal fixed strategy of τ = 0.5 (half of the power on the main pool and the

254 S.-Y. Chang et al.

Fig. 2. UBA reward gain over FAW (the legend box includes the FAW reward magni-
tude corresponding to 0% gain)

other half on the victim pool). Also, the uncle-block attack always outperforms
the honest mining, which corresponds to τ = 0 (all computational power in the
main pool and no withholding). Moving forward, we assume that the attacker is
capable of dynamically adapting τ and achieving the τ -capacity, which requires
the correct estimation of α and β (e.g., the hash rate estimations are publicly
available, e.g., [2]).

7.3 UBA’s Impact Beyond the State of the Art

To compare UBA with FAW, we analyze the reward gain of UBA over FAW,
which is the difference between the rewards of the two attacks in %. As shown
in Fig. 2, the reward gain increases with the uncle reward of κ. As the uncle
reward κ increases, UBA provides greater reward to the attacker and the reward
gain (the difference from the FAW) also increases; in fact, the UBA’s reward
converges to that of FAW when κ → 0. The reward gain also increases with the
attacker’s power capability of α both in its magnitude and in the baseline of the
FAW attack reward (0% reward gain). In other words, not only the FAW reward
itself increases with α but also the UBA’s reward gain with respect to the FAW
increases; Fig. 2 plots the results when α = 0.1, α = 0.24 (which is equal to β),
and α = 0.4.

8 Discussions for Potential Countermeasures

While our work introduces a new vulnerability/threat and sheds negative lights
on the uncle block system component of blockchain, we do not recommend

UBA: Blockchain Mining Threat Beyond Block Withholding 255

blindly discarding the uncle-block mechanism since it serves a useful purpose
in increasing fairness among the miners, especially for those experiencing net-
working discrepancies. Rather, we intend to inform the blockchain researchers
and developers for their parameter decisions and future design constructions.
Replacement mechanisms and their incorporation to the overall blockchain sys-
tem remains an open challenge for blockchain research and development. In
this section, we list the potential countermeasure ideas, which we consider to
be of relatively lower overheads for deployment except for those in Sects. 8.5
and 8.2, to encourage research in preventing and mitigating UBA and other
withholding-based threats; the actual development, the system incorporation,
and the effective analyses against UBA are outside the scope of this paper.

8.1 Detection Based on Reward Behavior

The withholding-based threats result in abnormal reward behaviors. For exam-
ple, FAW or UBA increases the forking probability at the blockchain level. Such
phenomenon can be sensed and measured for attack detection, which can be
then used for mitigation purposes. While we identify behavior-based detection
as promising, we do not recommend relying on identity-based detection and
mitigation/blacklisting mechanisms, since the identity control is virtually non-
existent and it is cheap for the attacker to generate multiple identities/accounts
(Sybil attack) by the design of the permissionless blockchains.

8.2 Block Obfuscation and Oblivious Share

Building on the commit-and-reveal/commitment framework in cryptography,
oblivious share deprives the miner of the knowledge of whether a share is
a block (a share fulfilling a harder requirement) or a share until the miner
submits the share [11,18]. The attacker (malicious or selfish miner) therefore
cannot dynamically adopt the withholding-based threats which require distin-
guishing the share and the block before submission. While effective against the
withholding-based attacks, such approach requires a protocol change (an addi-
tional exchange between the mining pool manager and the miners) and is not
backward compatible (does not work with the existing system unless the protocol
change/update is made) [14,15], causing protocol/communication overheads and
making such schemes undesirable for implementation to the blockchain network
(which includes closed pools and solo miners, free of withholding vulnerabilities).

8.3 Payout and Reward Function Control

A low-overhead countermeasure is to modify the payout and reward functions, for
example, controlling the system parameters of κ and λ in our model. For example,
Bag and Sakurai proposes “special reward” for the block submissions [1] to
distinguish between block submissions and share submissions (different weights)
against block-withholding attack; introducing such parameter can also be useful
against UBA.

256 S.-Y. Chang et al.

8.4 Share Timestamping

Timestamping the shares to ensure that the submission order is the same as their
finding [7] can help mitigating the withholding-based attacks. Such mechanism
can prevent from further share submissions after withholding blocks in UBA
and FAW (since the later shares become invalid if they are detected that they
have been found after the block) or aid the abnormal-detection mechanisms
in Sect. 8.1 by providing crucial timing/order information. SmartPool [16] also
uses timestamping to order/sort the shares but for different purpose (for its data
structure and to prevent duplicate share submissions).

8.5 Mining Pool Unification

A radical solution to the withholding-based threats is to have one mining pool
only so that there is a single mining pool for the miners to join. Having one
mining pool for the entire blockchain network eliminates the notion of sabo-
taging/victimizing a pool. A useful platform for implementing such solution
can be distributed mining pools, e.g., SmartPool [16] and P2Pool, which elim-
inates the centralized mining pool manager and replaces it with a distributed
program/computing, motivated to make the blockchain computing more decen-
tralized without the reliance on trusted third party (the mining pool manager
in this case) [4,12]. In fact, SmartPool [16] envisions that their platform can be
used to unify the mining pools citing that the elimination of the mining pool
fee (charged by the centralized mining pool manager for their services) and the
reduced variance (compared to independent mining) will provide the incentives
for such vision. However, despite such desirable properties, it can be difficult to
enforce the change in behaviors in the miners and have all miners mine at the
designated pool, especially for an existing blockchain implementation with the
existing miners having already joined a pool; enforcing such pool restriction for
the miners can also be viewed as a violation of the freedom of the miners and is
not backward-compatible to the existing miners.

9 Conclusion

Blockchain uses PoW-based mining and mining pools to achieve consensus in
cryptocurrencies. From real-world blockchain and mining pool system implemen-
tations, we discover that uncle blocks can be used for exploits by a rational and
uncooperative attacker and introduce the uncle-block attack (UBA) strategy.
UBA advances and outperforms the prior withholding-based attack strategies
in FAW and BWH and is effective even in the case when the attacker has an
unfavorable networking environment (which limited the effectiveness of the pre-
vious state of the art attack strategy of FAW). Since UBA has the same attack
setup requirements as BWH (which already have reported incidents in the real-
world implementations), the more impactful UBA presents greater risk against
vulnerable blockchain systems.

UBA: Blockchain Mining Threat Beyond Block Withholding 257

While our work introducing the novel UBA threat strategy and focusing
on the threat/impact analyses raises issues on the current blockchain system
components (e.g., mining pool and uncle block), we do not recommend blindly
discarding them since they serve useful purposes. Rather, we intend to inform the
blockchain researchers and developers for their parameter decisions and future
design constructions. Countering UBA and other withholding threats and depriv-
ing the rational attackers of the threat incentives remain open challenge for
blockchain research and development.

References

1. Bag, S., Sakurai, K.: Yet another note on block withholding attack on bitcoin min-
ing pools. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp.
167–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45871-7 11

2. blockchain.com. Hash rate distribution. https://www.blockchain.com/en/pools
3. blockchain.com. Market capitalization. https://www.blockchain.com/charts/

market-cap
4. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:

research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy, May 2015, pp. 104–121 (2015)

5. Buterin, V.: Ethereum: a next-generation smart contract and decentralized appli-
cation platform (2014). https://github.com/ethereum/wiki/wiki/White-Paper.
Accessed 22 Aug 2016

6. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability
of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2016, pp. 154–167.
ACM, New York (2016). https://doi.org/10.1145/2976749.2978408

7. Chang, S.-Y., Park, Y.: Silent timestamping for blockchain mining pool security.
In: IEEE International Workshop on Computing, Networking and Communications
(CNC) (2019)

8. CoinMarketCap. Top 100 cryptocurrencies by market capitalization. https://
coinmarketcap.com

9. Eyal, I.: The miner’s dilemma. In: Proceedings of the 2015 IEEE Symposium on
Security and Privacy, SP 2015, pp. 89–103. IEEE Computer Society, Washington,
DC (2015). https://doi.org/10.1109/SP.2015.13

10. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. CoRR,
abs/1311.0243 (2013)

11. Eyal, I., Sirer, E.G.: How to disincentivize large bitcoin mining pools, June 2014
12. Gervais, A., Karame, G.O., Capkun, V., Capkun, S.: Is bitcoin a decentralized

currency? IEEE Secur. Priv. 12(3), 54–60 (2014)
13. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On

the security and performance of proof of work blockchains. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, CCS
2016, pp. 3–16. ACM, New York (2016). https://doi.org/10.1145/2976749.2978341

14. Kwon, Y., Kim, D., Son, Y., Vasserman, E., Kim, Y.: Be selfish and avoid dilemmas:
fork after withholding (FAW) attacks on bitcoin. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017, pp.
195–209. ACM, New York (2017). https://doi.org/10.1145/3133956.3134019

https://doi.org/10.1007/978-3-319-45871-7_11
https://www.blockchain.com/en/pools
https://www.blockchain.com/charts/market-cap
https://www.blockchain.com/charts/market-cap
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1145/2976749.2978408
https://coinmarketcap.com
https://coinmarketcap.com
https://doi.org/10.1109/SP.2015.13
https://doi.org/10.1145/2976749.2978341
https://doi.org/10.1145/3133956.3134019

258 S.-Y. Chang et al.

15. Luu, L., Saha, R., Parameshwaran, I., Saxena, P., Hobor, A.: On power splitting
games in distributed computation: the case of bitcoin pooled mining. In: 2015 IEEE
28th Computer Security Foundations Symposium, July 2015, pp. 397–411 (2015)

16. Luu, L., Velner, Y., Teutsch, J., Saxena, P.: SmartPool: practical decentralized
pooled mining. In: 26th USENIX Security Symposium (USENIX Security 2017),
pp. 1409–1426. USENIX Association, Vancouver, BC (2017). https://www.usenix.
org/conference/usenixsecurity17/technical-sessions/presentation/luu

17. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
18. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. CoRR,

abs/1112.4980 (2011). http://arxiv.org/abs/1112.4980
19. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in

bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

20. Tsabary, I., Eyal, I.: The gap game. CoRR, abs/1805.05288 (2018)
21. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger EIP-150

revision (759dccd - 2017–08-07) (2017). https://ethereum.github.io/yellowpaper/
paper.pdf. Accessed 12 May 2018

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/luu
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/luu
http://arxiv.org/abs/1112.4980
https://doi.org/10.1007/978-3-662-54970-4_30
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

Longitudinal Analysis
of Misuse of Bitcoin

Karim Eldefrawy1(B), Ashish Gehani1, and Alexandre Matton2

1 SRI International, Menlo Park, USA
karim.eldefrawy@sri.com

2 Stanford University, Stanford, USA

Abstract. We conducted a longitudinal study to analyze the misuse of
Bitcoin. We first investigated usage characteristics of Bitcoin by ana-
lyzing how many addresses each address transacts with (from January
2009 to May 2018). To obtain a quantitative estimate of the malicious
activity that Bitcoin is associated with, we collected over 2.3 million
candidate Bitcoin addresses, harvested from the dark web between June
2016 and December 2017. The Bitcoin addresses found on the dark web
were labeled with tags that classified the activities associated with the
onions that these addresses were collected from. The tags covered a wide
range of activities, from suspicious to outright malicious or illegal. Of
these addresses, only 47,697 have tags we consider indicative of suspi-
cious or malicious activities.

We saw a clear decline in the monthly number of Bitcoin addresses
seen on the dark web in the periods coinciding with takedowns of known
dark web markets. We also found interesting behavior that distinguishes
the Bitcoin addresses collected from the dark web when compared to
activity of a random address on the Bitcoin blockchain. For example,
we found that Bitcoin addresses used on the dark web are more likely
to be involved in mixing transactions. To identify mixing transactions,
we developed a new heuristic that extends previously known ones. We
found that Bitcoin addresses found on the dark web are significantly
more active, they engage in transactions with 20 times the neighbors
and 4 times the Bitcoin amounts when compared to random addresses.
We also found that just 2,828 Bitcoin addresses are responsible for 99%
of the Bitcoin value used on the dark web.

1 Introduction

Understanding how cryptocurrencies may affect society depends on being able to
analyze their use and misuse. We present a first step in this direction. Our study

This material is based upon work supported by the National Science Foundation (NSF)
under Grant ACI-1547467. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of NSF.
A. Matton—Research performed while visiting SRI.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 259–278, 2019.
https://doi.org/10.1007/978-3-030-21568-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_13

260 K. Eldefrawy et al.

shows a decline in the level of malicious Bitcoin activity over the years, when
measured in terms of the number of addresses involved. The decline of Bitcoin’s
usage in suspicious and malicious activities is not surprising for those who follow
the space closely. There is now an increased awareness about the lack of strong
anonymity in Bitcoin, in comparison with other privacy-preserving coins, such as
Monero [18] and Zcash [24]. Even though Bitcoin usage in suspicious activities is
declining, our study is still useful since it provides a quantitative understanding
of the trend. We believe that our findings can benefit other researchers as well as
help educate administrators and law enforcement as they create and implement
new regulations.

1.1 Cryptocurrency Studies

Analysis of Bitcoin: One of the first attempts to analyze the Bitcoin blockchain
was performed in 2012 by Ron and Shamir [21]. They studied Bitcoin’s transac-
tions graph and identified interesting patterns in it. The scale and complexity of
the graph has exploded in the seven years since that study was performed. Subse-
quent analyses [1,4,16,19,20,23] have used heuristics to cluster Bitcoin wallets,
based on evidence of shared authority, and then perform active re-identification
attacks – for example, by purchasing goods and services to classify the operators
in clusters [16], and searching for transaction patterns on exchanges [20].

BitRank [3] is a proprietary wallet scoring system developed by the startup
Blockchain Intelligence Group (BIG). BIG’s website states that the current beta
version of BitRank performs real-time risk assessment to determine the relative
safety of pending Bitcoin transactions. As of January 2019, the site provides little
public information about the technical details of the system. There are several
other services that analyze Bitcoin (and other systems such as Ethereum and
Litecoin) to aid businesses and law enforcement. These include Chainanalysis [9],
CipherTrace [10], and Elliptic [11]. To the best of our knowledge, they have not
published analysis that covers the material in our study for the duration we
consider.

In parallel to our effort, Lee et al. [15] collected 27 million dark web pages and
extracted a mix of 10 million unique Bitcoin, Ethereum, and Monero addresses.
They classified the usage of the addresses, identified their use in the trade of
illicit goods, and traced cryptocurrency flows, to reveal black money activity on
the dark web. Their analysis shows that more than 80% of Bitcoin addresses
found on the dark web were involved in malicious activities. The monetary value
of the associated cryptocurrency activity was estimated to be $180 million.

Other Cryptocurrencies: In recent work [17], some transactions of the privacy-
focused cryptocurrency Monero [18] were found to be highly linkable. We do not
claim that any of our analysis or results apply to privacy-preserving cryptocur-
rencies. This paper only considers Bitcoin, with similar analysis of Monero left
as challenging future work.

Longitudinal Analysis of Misuse of Bitcoin 261

1.2 Contributions

We provide the following:

– A quantitative study on the misuse of Bitcoin in malicious contexts. Such
activities are identified by collecting Bitcoin addresses that are advertised
as a means of payment on dark web onions associated with a wide range
of undertakings, such as selling illegal substances, human trafficking, and
ransomware.

– New heuristics to identify CoinJoin mixing transactions. We believe that our
heuristics are of independent interest.

We emphasize that our study does not claim that Bitcoin has been (or is)
used only for malicious or illegal activities. Our aim is to provide a quantitative
assessment of the extent of such activities. This is critical for researchers, regu-
lators, law enforcement, and the wider community to understand the magnitude
and scope of the problem. We believe that this understanding is necessary for
the cryptocurrency ecosystem to mature.

1.3 Summary of Findings

We highlight some of our results below.

1. Bitcoin Ownership and Use (in Sect. 3.1): Less than 0.06% of all Bitcoin
addresses own over 99% of all bitcoins. In particular, that 0.06% consists
of 2,266,265 out of 397,301,155 unique addresses observed. Between January
2009 and May 2018 each address participated in at least one of the 316,386,663
transactions that we analyzed. Most addresses were used at most a few times,
which is what we expect based on how wallet software is designed and used.

2. Bitcoin on the Dark Web (in Sect. 3.3): Of the 2,093,568 Bitcoin
addresses found on the dark web, 276,549 were from mirrors of the
Blockchain.info explorer. 82% of the remaining addresses were active – that
is, participated in at least one transaction. In particular, there were 1,491,709
active addresses. Of these, only 47,697 had tags that we considered indicative
of suspicious or malicious activities. Just 2,828 addresses owned 99% of the
bitcoins that were involved in the dark web. There was a clear decline the
number of Bitcoin addresses appearing on the dark web in the months in
which dark web markets were taken down.

3. Mixing Transactions (in Sect. 4): The fraction of all Bitcoin addresses
that participate in at least one CoinJoin transaction is only 0.4%. However,
our analysis found that on the dark web, this fraction was 5 times higher –
that is, 2.3% of Bitcoin addresses found here were part of CoinJoin operations.

4. Transaction Characteristics (in Sects. 5.1 and 5.2): When considering
all Bitcoin addresses, 340,138,543 (85.7%) of them have transacted with less
than 10 other addresses, while only 25,7925 (0.06%) have transacted with
more than a 1,000 addresses, and only 6,178 (0.002%) transacted with more
than 10,000 addresses. In contrast, 597,744 (40.1%) of Bitcoin addresses found

262 K. Eldefrawy et al.

on the dark web have transacted fewer than 10 other addresses, while 61,330
(4.1%) have transacted with more than 1,000 addresses, and 3,244 (0.2%)
have transacted with more than 10,000 addresses. The higher participation
in mixers is one reason that the Bitcoin addresses found on the dark web have
transacted with more addresses.

1.4 Study Limitations

Given the significant scope of the effort, it had its limitations. We note three in
particular:

1. Coverage of dark web: The data spans June 2016 to December 2017. No
claim is made regarding its completeness. Section 3.2 describes our collection
methodology and the resulting data.

2. Dark web data labeling: We relied on previous research on (thematic) label-
ing of dark web onions to describe the activities that they are involved in.
An address that is collected from an onion inherits its labels (which we call
tags). Note that only a subset of tags are indicative of suspicious or malicious
activities. Section 3.2 describes how the labeling was performed in prior work.

3. Analysis accuracy: Since we did not have the ground truth for much of the
analysis that we performed, we could not cross-check the accuracy of our
inferences. The transaction graph is based on publicly available information,
ensuring its reliability. There is also a basis for confidence in the labeling of
the dark web data since some of it was manually verified. Since our work
on detecting mixing transactions depends on heuristics, the results may have
both false positives and false negatives. However, we did verify as many mixing
transactions as we could.

1.5 Outline

Section 2 covers background on Bitcoin and mixers (especially CoinJoin).
Section 3 provides an overview of the data sets used in our study, a charac-
terization of behavior observed in the individual data sets, a description of our
modified heuristic for detecting mixing transactions, and the properties of such
transactions. Section 5 presents more details of our Bitcoin analysis and our
findings. Section 6 concludes with a discussion of future work.

2 Bitcoin Preliminaries

2.1 Identifying Bitcoin Addresses

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA). Each user
has at least one ECDSA key pair. A user can digitally sign a transaction with
their private key. The user’s public key can be used to verify that the signature is
valid. The user’s Bitcoin address is an encoding of the 160-bit hash of the public

Longitudinal Analysis of Misuse of Bitcoin 263

key [6]. A Bitcoin address contains a built-in checksum. This allows detection of
malformed addresses, as may occur if the address is mistyped.

A Bitcoin address can be generated offline using wallet software. Even if it is
listed on web pages, it may never be used. We only consider an address active if
it has appeared on the public Bitcoin blockchain. When bitcoins are sent to an
address that is well-formed but not owned by any user (or if the user has lost
the corresponding private key), the bitcoins will be lost. In the latter case, the
private key may be recovered by alternate means [5].

To construct a Bitcoin address, the hash of the user’s ECDSA public key
and checksum are converted to an alphanumeric representation. This is per-
formed using the Base58Check custom encoding scheme. The resulting address
can contain all alphanumeric characters except 0, O, I, and l. Normal addresses
start with 1, while addresses from script hashes begin with 3. An address that
is used on the main Bitcoin network is 25–34 characters long. Most are 33 or 34
characters in length.

Initially, a regular expression was used to extract candidate Bitcoin addresses
from the dark web pages. (See Sect. 3.2 for more information.) Of the 2.3 million
found, 0.2 million failed to pass the checksum test [7]. It is expected that some
addresses that were classified as inactive in the study will subsequently be used.

2.2 Mixing Transactions

A CoinJoin is a specific type of Bitcoin transaction. It enables a participant to
increase their anonymity by “mixing” their payment with those of other users.
Each participant creates a new Bitcoin address. Next, they construct a fixed size
payment to it. This is then sent to an aggregator that collects all the participants’
payments. The aggregator constructs a single transaction that includes all of the
payments. This transaction is sent to all the participants for them to sign. The
security of the CoinJoin depends on the fact that the transaction is not valid
till every participant provides a signature. Once all the signatures are received,
the transaction can be posted for inclusion in a block by a miner. Since the
payments are all the same amount, there is no direct way to connect an output
to a specific input. All of these steps are handled by wallet software. See the
CoinShuffle paper [22] for more information.

The aggregator can be a centralized service or a peer-to-peer protocol. Some
services are available on the public web, such a JoinMarket and CoinShuffle.
Other services are only present on the dark web. Since the payment from a
participant in a CoinJoin should only be connected to a single output, this class
of transactions introduces noise in our analysis. Of equal concern is that all the
other participants appear as payees. This motivated us to develop a heuristic
to detect CoinJoins so that they can be excluded from selected portions of our
analysis. See Sect. 4 for more detail.

264 K. Eldefrawy et al.

3 Bitcoin and Dark Web Data Sets

Fig. 1. Monthly used Bitcoin addresses Fig. 2. Active (in last 3 months, blue)
and inactive Bitcoin addresses (orange)
(Color figure online)

Fig. 3. Bitcoin transactions per month Fig. 4. Amount of bitcoins sent

3.1 Bitcoin’s Blockchain

From the genesis of Bitcoin in 2009 to the end of May 2018, the blockchain
contains 397,301,155 unique addresses that have participated in at least one
of the 316,386,663 transactions that occurred in that timeframe. The number
of addresses used in a given month has increased rapidly, as seen in Fig. 1.
Since we collected this information using a Bitcoin client, we also cross-checked
the numbers with data from the Blockchain.info explorer [2]. The number of
transactions per month is also increasing, as seen in Fig. 3. However, the quantity
of bitcoins transferred each month is significantly more volatile than the number
of addresses used or transactions. This can be seen in Fig. 4 (Fig. 2).

Bitcoin addresses behave very differently from each other. Most addresses
are only used a few times. This is because the reuse of a single address makes

Longitudinal Analysis of Misuse of Bitcoin 265

a user more susceptible to deanonymization. A payment from an address must
reference and not exceed the sum of past Unspent Transaction Outputs (UTXOs)
to that address. To avoid overpayment, a change address is used. In principle,
this can be the payer’s original address. In practice, it is a different address for
the aforementioned reason. The use of wallet software automates the process of
using a new address for each transaction and a different change address.

Many addresses participate in several transactions. Some participate in a
large number of transactions. For multiple measures, such as the number of
transactions per address, or the number of bitcoins received by each address,
the resulting graphs can be approximated by a Pareto power-law distribution.
For instance, more than 99% of bitcoins used in transactions belong to just
0.06% of the number of addresses that have been used. (The 0.06% set consisted
of 2,266,265 addresses.).

3.2 Dark Web Data

Prior work at SRI focused on collecting, labeling, and categorizing information
from the dark web [12]. The effort had to first receive approval from SRI’s Insti-
tutional Review Board (IRB) due to the complex legal and ethical considerations
involved. We have not focused on these aspects in our research. Instead, we use
data from that study, consisting of labels associated with Bitcoin addresses found
on the dark web. Section 1.4 on the limitations of our work identifies this labeling
of dark web data as a possible source of error.

For completeness, we briefly discuss the methodology used to collect the data
from the dark web. See the description by Ghosh et al. [12] for further detail.
An acquisition infrastructure was constructed to discover new onion websites,
crawl their content, and integrate them into an indexed repository. This lever-
aged OnionCrawler, a fully automated crawling tool to identify new Tor onion
domains. The dark web crawling system was run continuously, twice per day, to
address diurnal patterns in onion site availability. If a string that matched the
Bitcoin address format was found on a page, the address was associated with
the onion (and its labels).

Seed data was used from previously published onion data sets, references
to onions in a large collection of DNS resolver logs, and an open reposi-
tory of (non-onion) web crawl data, called the Common Crawl. The auto-
mated categorization was used to label each onion with tags describing the
activity found on its pages. We believe the tag provides a clear indica-
tion of the activity it refers to. We focused on the following tags in most
of our analysis: PONZI, MARKET, HUMAN TRAFFIC, HACKER, DRUGS, CHILD P,
COUNTERFEIT, RANSOM, CASINO, NATIONALSEC, HOSTING PROVIDER, PIRAT-
EBAY, HITMAN, WEAPONS, JIHAD, EXPLOSIVES, CREDIT CARD FRAUD, DISCL-
OSURES, ANONYMOUS, PIRATE BAY, MURDER, DOXBIN, ALPHA MARKET, ESCORT,
WIKILEAKS, DECRYPT RANSOM.

About 2.3 million candidate Bitcoin addresses were found in the dark web
pages. As explained in Sect. 2.1, 0.2 million of these were strings that matched
a regular expression for detecting the presence of an address on a web page but

266 K. Eldefrawy et al.

subsequently failed the Bitcoin checksum test [7]. After eliminating these false
positives, we were left with 2,093,568 Bitcoin addresses. Table 1 shows how many
of these addresses were associated with each of the 20 most frequent suspicious
tags. More detail is provided next in Sect. 3.3.

Table 1. Number of neighbors and bitcoins owned for active dark web addresses (lim-
ited to top 20 dark web tags considered suspicious or malicious)

Number of addresses Number of neighbors Owned Bitcoins

CHILD P 1,696 Mean = 2,505 Mean = 94.41

Median = 7 99% = 67.05

HUMAN 1,876 Mean = 2,350 Mean = 85.52

TRAFFIC Median = 7 99% = 60.16

MARKET 2,604 Mean = 2,023 Mean = 63.2

Median = 6 99% = 85.52

DRUGS 1,704 Mean = 2,585 Mean = 94.11

Median = 8 99% = 76.78

HACKER 1,817 Mean = 2,433 Mean = 88.3

Median = 8 99% = 65.17

PONZI 4,011 Mean = 2,622 Mean = 5.63

Median = 7 99% = 66.49

RANSOM 1,546 Mean = 210 Mean = 0.12

Median = 6 99% = 1.41

COUNTERFEIT 1,561 Mean = 2,385 Mean = 68.80

Median = 9 99% = 80.56

CASINO 1,421 Mean = 2,891 Mean = 112.64

Median = 7 99% = 89.15

NATIONALSEC 1,415 Mean = 2,951 Mean = 112.56

Median = 8 99% = 84.55

PIRATE BAY 1,152 Mean = 2,956 Mean = 7.27

Median = 8 99% = 87.84

HOSTING PROVIDER 1,276 Mean = 2,741 Mean = 76.59

Median = 8 99% = 89.32

CURRENCY 41,883 Mean = 786 Mean = 10.47

Median = 3 99% = 7.88

BITCOIN 2,985 Mean = 5,630 Mean = 9.74

WALLET Median = 4 99% = 154.93

FORUM 1,473 Mean = 1,095 Mean = 5.26

SOFTWARE Median = 3 90% = 52.32

REGISTRATION 1,332 Mean = 3,710 Mean = 80.27

Median = 11 99% = 88.68

HOSTING 1,317 Mean = 4,041 Mean = 8.75

PROVIDER Median = 21 99% = 0.0

ELECTRONICS 1,298 Mean = 2,651 Mean = 75.23

Median = 8 99% = 0.0

BLOG 1,220 Mean = 2,798 Mean = 6.88

Median = 8 99% = 84.11

NO TAG 1,440,12 Mean = 234 Mean = 0.8

Median = 25 99% = 0.19

Longitudinal Analysis of Misuse of Bitcoin 267

Table 2. Number of potential and active Bitcoin addresses on the dark web with N
tags. Total number of addresses with tags is 296,069. Among them 47,697 are active
and have tags we consider suspicious or malicious.

Number of

tags (N)

Number of

potential

addresses with

N tags

Number of

active addresses

with N tags

Number of

tags (N)

Number of

potential

addresses with

N tags

Number of

active addresses

with N tags

1 143,130 41,783 14 696 69

2 45,152 2,319 15 2,210 78

3 24,331 1,519 16 175 30

4 68,236 290 17 76 17

5 4,761 67 18 127 36

6 1,382 32 19 16 3

7 176 57 20 258 53

8 598 151 21 417 344

9 482 60 22 187 13

10 284 44 23 551 41

11 290 66 24 147 33

12 485 31 25 203 65

13 841 75

3.3 Bitcoin on the Dark Web

About 32% of the Bitcoin addresses that were found on the dark web – that is,
649,556 addresses – were labeled with tags. 1,444,012 addresses did not have any
tags. A subset (of size 0.3 million) of the addresses were determined to be from
mirrors of Blockchain.info explorer pages. These were eliminated from further
analysis. The remaining addresses had a total of 49 unique tags associated with
them.

We studied the addresses associated withe 20 most frequent suspicious tags.
Table 1 reports the number of addresses, neighbors, and bitcoins associated with
each of these tags. Though most addresses have few tags, some are labeled with
many as seen in Table 2. Since some of the addresses may only be present on a
dark web page without ever having been used, we performed the same analysis
with active addresses. The results are reported in the same table to facilitate
comparison. The histograms in Figs. 5 and 6 depict the data from Table 2.

The 20 most frequently associated tags differ significantly when all Bitcoin
addresses are considered versus when only active ones are analyzed, as can be
seen from Figs. 5 and 6. The inactive addresses that we eliminated appear to
serve as decoys – that is, they are correctly constructed but unused. In the case
of active addresses, the most frequently associated tag is “CURRENCY”, indicating
the prevalence of Bitcoin use in onions. We note that the histograms alone cannot
be used to judge the significance of a topic on the dark web.

Of the 1,491,709 Bitcoin addresses found on dark web pages, only 47,697
had tags that we considered suspicious or malicious. The tags are shown in

268 K. Eldefrawy et al.

Fig. 5. Number of times a (top 20)
tag appears with potential Bitcoin
addresses on the dark web

Fig. 6. Number of times a (top 20) tag
appears with active Bitcoin addresses
on the dark web

Table 1. To gain insight into suspicious activities that involve Bitcoin, our dark
web analysis focused on addresses with these tags.

The number of addresses collected from the dark web each month grew ini-
tially, but then fell significantly. Figure 7 shows this for all Bitcoin addresses
found on the dark web. To better understand usage, Fig. 8 how many addresses
appeared in a transaction on the blockchain for the first time in each month. The
mid-2017 drops in the graphs may be explained by the seizure and shutdown of
the Alphabay and Hansa dark web markets [14]. The final drop in early 2018 is
due to our dark web data only extending to the end of 2017.

We note that this data must be interpreted with caution. In particular, there
may be suspicious and malicious activity on the dark web that is not captured by
the tags we use, creating false negatives. Further, dark web sites may reference
benign addresses other than the mirrored Blockchain.info explorer pages that
we were able to identify and exclude. This would have created false positives.

4 Detecting CoinJoins

CoinJoins are not first class primitives in Bitcoin. Hence, they cannot be defi-
nitely identified from inspecting the blockchain. In a minority of cases, a CoinJoin
is listed explicitly on a web site, such as a discussion forum. In general, CoinJoin
transactions must be detected using a heuristic based on their characteristics.

We build on an algorithm from Goldfeder et al. [13] that was designed to iden-
tify JoinMarket transactions. First, we identify the most common value (MCV)
among the bitcoin amounts in the outputs of a transaction. The number of out-
puts that have this value is considered to be the number of participants in such
a transaction. In addition, the following three conditions must be satisfied:

Longitudinal Analysis of Misuse of Bitcoin 269

Fig. 7. Number of times a Bitcoin
address found on the dark web appears
in a transaction on the blockchain

Fig. 8. Number of times a Bitcoin
address found on the dark web first
appears in a transaction on the
blockchain

1. The number of participants should be more than half the number of outputs.
This is because up to half the outputs could be to change addresses.

2. The number of participants should be less than or equal to the number of
inputs. This is because each participant must use at least one address as the
source of their payment.

3. There should be at least one possible match between the inputs and the
outputs, after considering the Bitcoin transaction fees and a liquidity payment
(that is explained below).

Some services, such as JoinMarket, have users that continuously provide
their bitcoins for use in CoinJoin transactions. These users serve as liquidity
providers so that others who want to perform a CoinJoin can easily find peers
with whom they can engage in such transactions. In exchange, such liquidity
providers receive a percentage P of the MCV.

Our objective is then to find a set of disjoint input sets (S) so that each
one can be matched with an output address (with a change address, denoted as
chng). Each match translates to the following equation, with P being the max
percentage of what a CoinJoin user pays for the liquidity provider, n being the
number of participants, and MCV is the most common value in the transaction:

∀ inpt ∈ S : inpt ∈ [MCV · (1 − P) + chng, MCV · (1 + (n − 1)P) + chng + fees]

(1)
Since a liquidity provider may receive fees from n − 1 other members, the

upper limit of the interval contains a factor of (1 + (n − 1)P). In our analysis,
the payment P to the liquidity provider is allowed to be up to 2%.

4.1 Algorithm Details

The details of the heuristic used to identify CoinJoin transactions is described
in Algorithm 1. The general problem of finding a set S that satisfies Eq. 1 is

270 K. Eldefrawy et al.

harder than the problem of variable-sized bin-covering in the unit supply model.
Approximation algorithms for generalized and variable-sized bin-covering do
exist. However, the intervals in our setting are small enough that most instances
can be easily eliminated. Indeed, in most cases the fees and the percentage given
to the liquidity providers are usually very low when compared to the inputs.
When this fact is taken into account, the problem becomes tractable.

Our heuristic solves the problem using the following steps. First, the outputs
are computed by adding each change address to an MCV. Next, we perform a
depth-first search of a tree. The nodes of the tree correspond to the output that
is being taken into account, and a list of the remaining inputs. At a specific
node, we look for all possible sets of remaining inputs that can satisfy Eq. 1
with respect to the output at the node. A new child node with the next output
is created for each feasible set.

This approach avoids the exponential explosion that would result from
exhaustively generating all possible combinations of sets of inputs. In practice,
we found that when a solution exists, the depth-first search usually found it
quickly. When there is no solution, the analysis must still traverse the entire
tree (i.e., requires and exponential number of steps).

In Algorithm 1, the function subsets between two values recursively com-
putes all subsets of the list provided as the first argument, subject to the con-
straint that their sum must be between the second and third arguments. Com-
puting this function is also very expensive. For instance, if the second argument
is 0 and the third is +∞, then it must return all possible combinations of ele-
ments of the input list (provided as the first argument). This will be a set of
length 2n.

Finally, we use simple rules to filter cases/transactions that are unlikely to
be CoinJoins. One example is checking whether a transaction involves known
addresses, such as those of SatoshiDice or other similar services. We also check
that the fees are below a threshold fraction of the MCV. These rules allow
us to reject many transactions early. These optimizations are not described in
Algorithm 1.

4.2 Analysis Results

The heuristic outlined above performs well in practice for CoinJoins with less
than 18 inputs. Out of about 400,000 transactions that satisfy the two first
conditions, the algorithm requires 180 s of computation time on a 2016 Macbook
Pro. The heuristic identified 157 transactions that required deeper analysis.

More than 90% of all CoinJoin transactions have less than 18 inputs [13]. We
automatically consider transactions with more than 17 inputs that pass the two
first conditions to be CoinJoins (lines 8 and 9 in Algorithm 1). We found that
18% of all transactions considered to be CoinJoins by our heuristic have more
than 17 inputs. Among transactions with fewer than 18 inputs, between 25% and
50% of those that satisfy the first two conditions also meet the third criterion.
We concluded that between 4.5% and 9% of the CoinJoin transactions have more
than 17 inputs. This is close to the result reported by Goldfeder et al. [13].

Longitudinal Analysis of Misuse of Bitcoin 271

Algorithm 1. CoinJoin Identification Heuristic
input : A transactions T with a list of inputs and a list of outputs (addresses

+ Bitcoin amounts)

output: A boolean indicating (if assigned True) that T is classified as a

CoinJoin

1 Find the most common value MCV among outputs, and its number of

appearance n participants;

2 if n participants <
⌊
length(outputs)+1

2

⌋
then

3 return False;

4 end

5 if n participants > length(inputs) then

6 return False;

7 end

8 if length(inputs) > 17 then

9 return True;

10 end

11 new outputs ← array of length n participants with value MCV in all cases;

12 i ← 0;

13 for value in outputs do

14 if value �= MCV then

15 new outputs[i] ← new outputs[i] + value;

16 i ← i+ 1;

17 end

18 end

19 Sort inputs and new outputs in decreasing order; //This does not really

change anything, it is just performed for convenience

20 remaining inputs list ← [(new inputs, 0)]; //This list contains sublists. Each

one of them is a node in the tree, representing a list of remaining inputs, and

the index of the output which has to be considered. We use this as a LIFO

list to make the tree search depth-first oriented.

21 fees to provider ← max(2 ∗ MCV/100, 0.0001BTC);

22 while remaining inputs list is not empty do

23 remaining inputs, output index ← remaining inputs list.pop();

24 current output ← outputs[output index];

25 lower limit ← current output − fees to provider;

26 upper limit ←
current output+ fees+ fees to provider ∗ (n participants − 1);

27 new set of feasible inputs ←
subsets between two values(remaining inputs,

28 lower limit, upper limit);

29 if output index = length(new outputs) − 1 and

new set of feasible inputs is not empty then

30 return True;

31 end

32 for remaining inputs in new set of feasible inputs do

33 remaining inputs list.append(

34 (remaining inputs, output index+ 1));

35 end

36 end

37 return False;

272 K. Eldefrawy et al.

According to the heuristic, 114,925 transactions were CoinJoins. This rep-
resents 0.036% of the transactions that were analyzed. A total of 2,035,978
addresses were part of these CoinJoin transactions. This set of addresses was
intersected with those found on the dark web, allowing us to conclude that over
2.3% of the addresses on the dark web have been CoinJoin participants. In con-
trast, this is only true for 0.4% of all Bitcoin addresses. We could not identify a
specific dark web category that used more CoinJoins than others.

Dark web addresses appear to be 5 times more likely to participate in Coin-
Join transactions. We noted with interest that only 2.3% of addresses appearing
on the dark web have participated in CoinJoins, since that is a small fraction.
It is conceivable that this is due to the use of alternative mixing approaches.

5 Bitcoin Neighborhood Analysis

We first report our findings from analyzing the activity of all addresses in the
Bitcoin blockchain. After this, we focus on the subset of addresses that have
participated in transactions as well as appeared on the dark web.

5.1 Across the Blockchain

A wide range of behaviors were exhibited by the 397,016,130 Bitcoin addresses
that we analyzed. To characterize them, we studied how many other addresses
an address has transacted with, how many transactions it has been involved in,
the amount of bitcoin that has flowed into it, from it, and is owned by it. Table 3
reports our findings.

Table 3. Characterization of all addresses in terms of neighbors, transactions, and
amount of bitcoin in/out/owned. (BTC = Bitcoin, Tx = transaction)

For all (397,301,155)
addresses with at least
one transaction

Number of
neighbors

BTC in BTC out BTC
owned

Number of
Tx’s

Mean 11.92 10.0687 10.03 0.04 3.62

Std 372.26 989.07 987.60 22.55 316.79

Median 3 0.05 0.048 0.00 2

Max 4,586,602 9,351,251 9,356,600 175,236 3,195,815

Min 1 0 0 0 1

Percentile 90% 19 4.37 4.31 0 2

Percentile 99% 137 126.61 126.11 0.03 24

Percentile 99.9% 758 965.99 963.64 1.99 197

Percentile 99.99% 2,846 8,329.38 8,314.63 41.10 1,059

Number of addresses that hold more than 99% of bitcoin: 2,266,265

Longitudinal Analysis of Misuse of Bitcoin 273

Table 4. Breakdown of neighbor count of all (397,301,155) addresses with at least one
transaction

Number of addresses with ...

Less than 10 neighbors 34,013,8543 85.67%

More than 1000 neighbors 257,925 0.06%

More than 10000 neighbors 6,178 0.00156%

To identify the neighbors of addresses we constructed the transaction graph,
with one vertex per address, and undirected edges between two addresses if
they are both listed in (at least) one transaction, with one as a sender and the
other as a receiver. As noted earlier, we excluded CoinJoins before inferring the
neighbor relationship. We also do not consider two senders (or receivers) in the
same transaction to be neighbors.

The standard deviation of the number of neighbors per address is large,
significantly exceeding the 99% percentile. This indicates that the extreme values
are located far from the average. This is also confirmed by the fact that the mean
is much larger than the median. While 50% of the addresses have transacted
with less than 3 other addresses, approximately 6,000 addresses have more than
10,000 neighbors. A few addresses have more than a million neighbors. The
latter addresses are probably not manually controlled by humans. Most outliers
are addresses that come from exchange services, which are involved in many
transactions.

The results for the number of transactions exhibit similar characteristics,
with a large standard deviation. The mean and the median are closer. Most
addresses are involved in few transactions. Specifically, the number of transac-
tions is smaller than the number of neighbors for most addresses.

The quantity of bitcoin owned by each address also varies widely. The average
is 0.04 bitcoin, while the standard deviation is 500 times larger. Most addresses
have no bitcoins left. This is explained by the fact that in a transaction the
sender needs to use all the bitcoins from each past input referenced. If there is
an excess it must either be sent to a change address or it will become part of
the fee to the miner.

We found that the addresses that owned the largest quantities of bitcoin
corresponded to the ones listed on websites that track wallet addresses with
large holdings [8]. Most such addresses belong to exchanges. An exception is
“1KAt6STtisWMMVo5XGdos9P7DBNNsFfjx7”, which was ranked sixth at the
time of writing. Each of the top six addresses own more than 0.5% of the total
number of bitcoins.

5.2 Addresses on the Dark Web

The statistics for the addresses used on the dark web differ significantly from
those of addresses across the entire blockchain. On the dark web, 90% of the Bit-
coin addresses have transacted with up to 400 other addresses, participated in

274 K. Eldefrawy et al.

over 200 transactions, and been involved with 12 bitcoins. Across the entire
blockchain, 90% of the addresses have transacted with fewer than 20 other
addresses and only dealt with amounts totaling 4 bitcoins. The differences can
be seen by comparing Tables 3, 4, 5 and 6.

Table 5. Characterization of Bitcoin addresses found on the dark web, in terms of
neighbors, transactions, and amount of bitcoin in/out/owned. (BTC = Bitcoin, Tx =
transaction)

For (1,491,709)
dark-web addresses
with at least one
transaction

Number of
neighbors

BTC in BTC out BTC
owned

Number of
Tx’s

Mean 255.09 153.97 152.91 1.12 143.68

Std 3,723.62 14,554.28 1,4536.67 239.37 5,102.65

Median 23 0.10 0.097 0.00 4

Max 2,277,764 9,351,251 9,350,599 175,236 3,195,815

Min 1 0 0 0 1

Percentile 90% 426 12.85 12.61 0.00089 220

Percentile 99% 27,45 375.15 366.29 0.21 1459

Percentile 99.9% 20,891 10577.64 10,287.04 40.00 7,674

Percentile 99.99% 114,947 226,413.71 226,405.41 800.00 8,3299

Number of addresses that hold more than 99% of the bitcoin (limited to addresses
found on the dark web): 2,828

Table 6. Breakdown of transaction neighbor counts for active addresses found on the
dark web

Number of addresses with Absolute number Percentage

Less than 10 neighbors 597,744 40.09%

More than 1000 neighbors 61,330 4.11%

More than 10000 neighbors 3,244 0.22%

The same analysis for active addresses found on the dark web indicates that
they transact more than addresses on the Bitcoin blockchain. This can be seen by
comparing Table 3 with Tables 5, 7, and 8. The average amount of bitcoin owned
is also larger for addresses found on the dark web. In addition, 99% of the coins
touched by dark web addresses are owned by just 2,828 dark web addresses.

These results need to be interpreted with caution. The addresses found on the
dark web were publicly accessible. This may have skewed the analysis in favor
of addresses that are more popular and frequently used. This could explain the
significant difference in the characteristics of addresses found on the dark web

Longitudinal Analysis of Misuse of Bitcoin 275

in comparison to those across the entire blockchain. This may also account for
the fact that 10% of the Bitcoin addresses found on the dark web participate in
more than 220 transactions each.

The difference in the number of neighbors per address is even larger, this can
be explained by the observation that dark web addresses are more likely to use
mixing methods (as our CoinJoin analysis indicated), and those methods will
increases the neighbors in our analysis. Also, the sum of the bitcoins owned by
these addresses represent less than 10% of all bitcoins. This number is far from
exact, and is in fact much smaller, as several of the richest addresses have been
cited in forms and discussion on the dark web, so can be found in this set.

Table 7. Characterization of Bitcoin addresses found on the dark web, with at least
one CoinJoin transaction, in terms of neighbors, transactions, and amount of bitcoin
in/out/owned. (BTC = Bitcoin, Tx = transaction)

For (35,492) dark web
addresses with at least
one CoinJoin
transaction

Number of
neighbors

BTC in BTC out BTC
owned

Number of
Tx’s

Mean 1,745 2,618 2,612 7.07 1,429

Std 12,726 71,325 71,335 616 28,479

Median 159 1.99 1.97 0 48

Percentile 90% 2341 100 100 0 732

Participation in a CoinJoin is unusual (as can be seen in the statistics
reported in Sect. 4). This motivated us to study Bitcoin addresses found on the
dark web that have participated in at least one CoinJoin transaction. Table 7
reports the results. In particular, the mean and standard deviation of both the
number of neighbors and exchanged Bitcoins are higher than for addresses that
do not participate in a CoinJoin.

Assume that the more an address participates in transactions, the higher the
chance that it will be part of a CoinJoin. This would explain why the Bitcoin
addresses that appear most often on the dark web are likely to be part of Coin-
Join transactions. However, we found that even Bitcoin addresses on the dark
web that appear at the median frequency are more likely to have participated in
CoinJoins. An explanation supported by the data is that transactions associated
with Bitcoin addresses found on the dark web involve larger amounts, motivating
increased caution.

We stress that the dark web is also used for several legitimate activities. As
an additional filter for teasing out real suspicious or malicious activities, we focus
on the set of dark web addresses that contained tags associated with what we
judged as the most suspicious (and in cases very obvious malicious) activities,
i.e., addresses containing at least one tag from the following list: PONZI, MARKET,
HUMANTRAFFIC, HACKER, DRUGS, CHILD P, COUNTERFEIT, RANSOM, CASINO,

276 K. Eldefrawy et al.

Table 8. Characterization of Bitcoin addresses found on the dark web, with at least one
malicious tag, in terms of neighbors, transactions, and amount of bitcoin in/out/owned.
(BTC = Bitcoin, Tx = transaction)

For (7,713) dark web
addresses with at least
one malicious tag

Number of
neighbors

BTC in BTC out BTC
owned

Number of
Tx’s

Mean 1,465 8,234 8,213 22.8 1,527

Std 1,8351 152,755 15,2754 1,269 22,023

Median 6 2.55 2.48 0 3

Percentile 90% 347 295 295 0.004 217

NATIONALSEC, HOSTING PROVIDER, HITMAN, WEAPONS, JIHAD, EXPLOSIVES,
CREDIT CARD FRAUD, DISCLOSURES, ANONYMOUS, PIRATE BAY, WIKILEAKS,
MURDER, MARKET, ESCORT, DECRYPT RANSOM. We note that some addresses
associated with some of these tags are not active on the blockchain so not all
these tags show up in all our analysis.

We notice that these addresses (see results in Table 8) do not do many more
transactions that the whole dark web address set, but these figures remain
much bigger than the ones obtained from regular addresses. Moreover, the BTC
amounts these dark web addresses handle are even larger. Even the median has a
higher value. As the size of the set is small, these addresses are probably among
the most well-known addresses used for malicious activities, and a lot of them
are used extensively.

6 Future Work

This study provides a quantitative characterization of suspicious and malicious
activities involving Bitcoin. In addition to addressing the limitations discussed
in Sect. 1.4, we envision the following avenues of research in future work.

1. Similar analyses could be performed for other popular cryptocurrencies, such
as Bitcoin forks, Ethereum, and Litecoin. In particular, comparing results
from other cryptocurrencies to those from Bitcoin may yield new insights.

2. Augmenting the data sets used in this study with ones that may help attribute
malicious activities to geographic location. This could include data mapping
addresses to well-known wallets or entities, as well as to IP addresses (for
which geolocation data is typically available).

3. Studying cross-cryptocurrency transaction activity could enable detection of
synchronized addresses. This may provide a new means for detecting when
seemingly unrelated addresses are controlled by the same user or pertain to
coordinated activity. Detecting synchronized activity may also offer insight
into significant events in the history of cryptocurrencies.

Longitudinal Analysis of Misuse of Bitcoin 277

References

1. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in Bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 4

2. Blockchain.info Bitcoin explorer. https://www.blockchain.com/explorer
3. Blockchain Intelligence Group. https://blockchaingroup.io/
4. Bohr, J., Bashir, M.: Who uses Bitcoin? An exploration of the Bitcoin community.

In: 12th International Conference on Privacy, Security, and Trust (2014)
5. Breitner, J., Heninger, N.: Biased nonce sense: lattice attacks against weak ECDSA

signatures in cryptocurrencies. In: 23rd International Conference on Financial
Cryptography and Data Security (2019)

6. Version 1 Bitcoin Addresses. https://en.bitcoin.it/wiki/Technical background of
version 1 Bitcoin addresses

7. Bitcoin forum: Validating Bitcoin addresses. https://bitcointalk.org/index.php?
topic=1026.0

8. Largest bitcoin holdings. https://bitinfocharts.com/top-100-richest-bitcoin-
addresses.html

9. Chainanalysis Platform. https://www.chainalysis.com/
10. CipherTrace Platform. https://ciphertrace.com/
11. Elliptic Platform. https://www.elliptic.co/
12. Ghosh, S., Das, A., Porras, P., Yegneswaran, V., Gehani, A.: Automated catego-

rization of onion sites for analyzing the darkweb ecosystem. In: 23rd ACM Inter-
national Conference on Knowledge Discovery and Data Mining (2017)

13. Goldfeder, S., Kalodner, H., Reisman, D., Narayanan, A.: When the cookie meets
the blockchain: privacy risks of web payments via cryptocurrencies. In: 18th Privacy
Enhancing Technologies Symposium (2018)

14. Greenberg, A.: Global police spring a trap on thousands of dark web users.
Wired, https://www.wired.com/story/alphabay-hansa-takedown-dark-web-trap/.
Accessed 20 July 2019

15. Lee, S., et al.: Cybercriminal minds: an investigative study of cryptocurrency
abuses in the Dark Web. In: 26th Annual Network and Distributed System Security
Symposium (NDSS) (2019)

16. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men
with no names. In: 13th ACM Internet Measurement Conference (IMC) (2013)

17. Miller, A., Moser, M., Lee, K., Narayanan, A.: An empirical analysis of linkability
in the Monero blockchain. arXiv:1704.04299 (2017)

18. Monero. https://getmonero.org/
19. Neudecker, T., Hartenstein, H.: Could network information facilitate address clus-

tering in Bitcoin? In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp.
155–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 9

20. Ranshous, S., et al.: Exchange pattern mining in the Bitcoin transaction directed
hypergraph. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 248–263.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 16

21. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

22. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin
mixing for Bitcoin. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS,
vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11212-1 20

https://doi.org/10.1007/978-3-642-39884-1_4
https://www.blockchain.com/explorer
https://blockchaingroup.io/
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://bitcointalk.org/index.php?topic=1026.0
https://bitcointalk.org/index.php?topic=1026.0
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://www.chainalysis.com/
https://ciphertrace.com/
https://www.elliptic.co/
https://www.wired.com/story/alphabay-hansa-takedown-dark-web-trap/
http://arxiv.org/abs/1704.04299
https://getmonero.org/
https://doi.org/10.1007/978-3-319-70278-0_9
https://doi.org/10.1007/978-3-319-70278-0_16
https://doi.org/10.1007/978-3-642-39884-1_2
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-319-11212-1_20

278 K. Eldefrawy et al.

23. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the
bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol.
8437, pp. 457–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45472-5 29

24. Zcash: Privacy-protecting Digital Currency. https://z.cash/

https://doi.org/10.1007/978-3-662-45472-5_29
https://doi.org/10.1007/978-3-662-45472-5_29
https://z.cash/

Post Quantum Cryptography

Faster Multiplication in Z2m [x]
on Cortex-M4 to Speed up NIST PQC

Candidates

Matthias J. Kannwischer(B), Joost Rijneveld(B), and Peter Schwabe(B)

Radboud University, Nijmegen, The Netherlands
matthias@kannwischer.eu, joost@joostrijneveld.nl, peter@cryptojedi.org

Abstract. In this paper we optimize multiplication of polynomials in
Z2m [x] on the ARM Cortex-M4 microprocessor. We use these optimized
multiplication routines to speed up the NIST post-quantum candidates
RLizard, NTRU-HRSS, NTRUEncrypt, Saber, and Kindi. For most of those
schemes the only previous implementation that executes on the Cortex-
M4 is the reference implementation submitted to NIST; for some of those
schemes our optimized software is more than factor of 20 faster. One of
the schemes, namely Saber, has been optimized on the Cortex-M4 in
a CHES 2018 paper; the multiplication routine for Saber we present
here outperforms the multiplication from that paper by 42%, yielding
speedups of 22% for key generation, 20% for encapsulation and 22% for
decapsulation. Out of the five schemes optimized in this paper, the best
performance for encapsulation and decapsulation is achieved by NTRU-
HRSS. Specifically, encapsulation takes just over 400 000 cycles, which
is more than twice as fast as for any other NIST candidate that has
previously been optimized on the ARM Cortex-M4.

Keywords: ARM Cortex-M4 · Karatsuba · Toom ·
Lattice-based KEMs · NTRU

1 Introduction

In November 2017 the NIST post-quantum project [NIS16b] received 69 “com-
plete and proper” proposals for future standardization of a suite of post-quantum
cryptosystems. By December 2018, five of those 69 have been withdrawn. Out of
the remaining 64 proposals, 22 are lattice-based public-key encryption schemes
or key-encapsulation mechanisms (KEMs). Most of those lattice-based schemes
use structured lattices and, as a consequence, require fast arithmetic in a poly-
nomial ring Rq = Zq[x]/f for some n-coefficient polynomial f ∈ Zq[x]. Typically
the largest performance bottleneck of these schemes is multiplication in Rq.

This work has been supported by the European Commission through the ERC Start-
ing Grant 805031 (EPOQUE) and by COST (European Cooperation in Science and
Technology) through COST Action IC1403 (CRYPTACUS). Date: April 30, 2019.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 281–301, 2019.
https://doi.org/10.1007/978-3-030-21568-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_14

282 M. J. Kannwischer et al.

Many proposals, for example NewHope [ADPS16,AAB+17], Kyber
[ABD+17], and LIMA [SAL+17], choose q, n, and f such that multiplication
in Rq can be done via very fast number-theoretic transforms. However, six
schemes choose q = 2k which requires using a different algorithm for multi-
plication in Rq. Specifically those six schemes are Round2 [GMZB+17], Saber
[DKRV17], NTRU-HRSS [HRSS17b], NTRUEncrypt [ZCHW17], Kindi [Ban17],
and RLizard [CPL+17]. Round2 recently merged with Hila5 [Saa17] into
Round5 [BGML+18] and the Round5 team presented optimized software for the
ARM Cortex-M4 processor in [SBGM+18]; the multiplication in Round5 has
more structure, allowing for a specialized high-speed routine. In this paper we
optimize the other five schemes relying on arithmetic in Rq with a power-of-two
q on the same platform. Note that Saber has previously been optimized on the
ARM Cortex-M4 [KMRV18] as well; our polynomial multiplication implemen-
tation outperforms the results by 42% which improves the overall performance
of key generation by 22%, encapsulation by 20%, and decapsulation by 22%.
For the other four schemes the only software that was readily available for the
Cortex-M4 was the reference implementation and, unsurprisingly, our carefully
optimized code significantly outperforms these implementations. For example,
our optimized implementations of RLizard-1024 and Kindi-256-3-4-2 encapsula-
tion and decapsulation are more than a factor of 20 faster. Our implementation of
NTRU-HRSS encapsulation and decapsulation solidly outperform the optimized
Round5 software presented in [SBGM+18].

We achieve our results by systematically exploring different combinations of
Toom-3, Toom-4, and Karatsuba decomposition [Too63,Coo66,KO63] of multi-
plication in Rq, and by carefully hand-optimizing multiplication of low-degree
polynomial multiplication at the bottom of the Toom/Karatsuba decomposi-
tion. The exploration of the different approaches is automated through a set of
Python scripts that generate optimized assembly given the parameters q = 2k

for k ≤ 16 and n ≤ 1024. These Python scripts may be of independent interest
for a similar design-space exploration on different architectures.

Organization of This Paper. In Sect. 2 we briefly recall the five NIST can-
didates that we optimize in this paper and give the necessary background on
the target microarchitecture, i.e., the ARM Cortex-M4. In Sect. 3 we first detail
our approach to explore different Toom and Karatsuba decomposition strategies
for multiplication in Rq and then explain how we hand-optimized schoolbook
multiplications of low-degree polynomials. Finally, Sect. 4 presents performance
results for stand-alone multiplication in Rq for the different parameter sets, and
for the five NIST candidates.

Availability of the Software. We place all software presented in this paper,
including the Python scripts used for design-space exploration, into the pub-
lic domain. The software is available at https://github.com/mupq/polymul-
z2mx-m4 and the implementations have been integrated into the pqm4 frame-
work [KRSS].

https://github.com/mupq/polymul-z2mx-m4
https://github.com/mupq/polymul-z2mx-m4

Faster Multiplication in Z2m [x] on Cortex-M4 283

Second Round of NISTPQC. Since this paper first appeared online NIST
announced the second round candidates of the post-quantum competition. While
Kindi and RLizard are no longer under consideration by NIST, Saber, NTRU-
HRSS, and NTRUEncrypt made it to the second round. NTRU-HRSS and NTRU-
Encrypt were merged into the new scheme NTRU. The optimizations presented
in this paper carry over directly to the second round schemes.

2 Preliminaries

In this section, we briefly review the five NIST candidates that we optimize in
this paper. Readers interested in the multiplication routine outside the context
of NIST submissions are encouraged to skip ahead to Subsect. 2.2, where we
introduce the targeted Cortex-M4 platform and give context that is relevant to
interpret the benchmark results.

2.1 Cryptosystems Targeted in This Paper

The full specification of each of the five CCA-secure KEMs would take several
pages, so for the sake of brevity we leave out various details. In this section, we
highlight the relevant aspects; see the full version of this paper for algorithmic
descriptions. In particular, all five schemes build a CCA-secure KEM from an
encryption scheme; for all but NTRUEncrypt, this encryption scheme is only
passively secure. In our descriptions, we focus only on the encryption schemes
underlying the KEM and highlight the multiplications in Rq.

RLizard. RLizard is part of the Lizard submission to NIST [CPL+17]. It is a
cryptosystem based on the Ring-Learning-with-Errors (Ring-LWE) and Ring-
Learning-with-Rounding (Ring-LWR) problems. As the names suggest, these
problems are closely related, and efficient reductions exist [BPR12,BGM+16].
The submission motivates the choice for the Learning-with-Rounding problem
by stressing its deterministic encryption routine and reduced ciphertext size
compared to Learning-with-Errors. RLizard.KEM is a CCA-secure KEM that is
constructed by applying Dent’s variant of the FO transform [FO99,Den03] to
the RLizard CPA-secure PKE scheme.

The main structure underlying RLizard is the ring Rq = Zq[x]/(xn + 1),
but coefficients of the ciphertext are ultimately reduced to Rp, where p < q.
We consider the parameter set where n = 1024, q = 2048 and p = 512. In
the submission the derived KEM is referred to as RING CATEGORY3 N1024 – for
clarity, we denote it as RLizard-1024 from this point onwards. All multiplications
in RLizard fit the structure that we target in this work.

NTRU-HRSS-KEM. The NTRU-HRSS scheme [HRSS17a] is based on the
‘classic’ NTRU cryptosystem [HPS98]. It starts from the CPA-secure NTRU

284 M. J. Kannwischer et al.

encryption scheme, and, like RLizard, applies Dent’s variant of the FO trans-
form [FO99,Den03] to construct a CCA-secure KEM. By restricting the param-
eter space compared to traditional NTRU, the scheme is simplified and avoids
implementation pitfalls such as decryption failures and fixed-weight sampling.

We look at the concrete instance as submitted to NIST [HRSS17b], i.e., fix
the parameters to p = 3, q = 8192 and n = 701. NTRU-HRSS relies on arithmetic
in a number of different rings. Glossing over the technicalities (see Sects. 2 and
3 of [HRSS17a]), we reuse the notation to define Φd = 1 + x1 + x2 + · · · + xd−1,
and then define Rp = Z[x]p/Φn, R′

q = Z[x]q/Φn and Rq = Z[x]q/(xn − 1), but
abstract away the transitions between rings.

The scheme requires several multiplications and inversions. For this paper,
we focus on multiplications in R′

q and Rq. However, the same routine can be
used to perform the multiplication in Rp. Furthermore, as the inversion in R′

q

can be performed using multiplications [HRSS17a], this benefits from the same
optimization.

NTRUEncrypt. The NTRUEncrypt scheme [ZCHW17] is also based on the
standard NTRU construction [HPS98], but chooses parameters based on a
recent revisiting [HPS+17]. NTRUEncrypt builds a CCA-secure KEM from a
CCA-secure PKE; this public-key encryption scheme uses the NAEP trans-
form [HGSSW03].

The NIST submission of NTRUEncrypt [ZCHW17] presents several instan-
tiations, but we limit ourselves to the instances where q = 2k. We look at the
parameter set NTRU-KEM-743, where p = 3, q = 2048, and n = 743; the arith-
metic takes place in the ring Rq = Zq[x]/(xn − 1), but coefficients are also
reduced modulo p when moving to Rp. The optimizations in this work also carry
over to the smaller NTRU-KEM-443 parameter set, but not to NTRU-KEM-1024
(which uses a prime q). As before, the relevant multiplication occurs when the
noise polynomial r is multiplied with the public key h, but we also utilize our
multiplication routine for the other multiplication in Dec.

Saber. Like Lizard and RLizard, Saber [DKRV17] also relies on the Learning-
with-Rounding problem. Rather than directly targeting LWR or the ring variant,
it positions itself in the middle-ground formed by the Module-LWR problem. The
submission conforms to the common pattern of proposing a PKE scheme, and
then applying an FO variant [HHK17] to obtain a CCA-secure KEM.

Like RLizard, Saber operates in the ring Rq = Zq[x]/(xn + 1), and in the
smaller Rp. Because of the Module-LWR structure, however, n is fixed to 256
for all parameter sets. Instead of varying the dimension of the polynomial, Saber
variants use matrices of varying sizes with entries in the polynomial ring (denoted
R�×k). With the fixed q = 8192, this ensures that an optimized routine for
multiplication in Rq directly applies to the smaller LightSaber and the larger
FireSaber instances as well. Other parameters p and t are powers of 2 smaller

Faster Multiplication in Z2m [x] on Cortex-M4 285

than q; for the Saber instance1, p = 1024 and t = 8. The vector h is a fixed
constant in R�

q.
Note that some of the multiplications in Saber are in Rq and some are in

Rp; in our software both use the same routine. As we will explain in Sect. 3, the
smaller value of p would in principle allow us to explore a larger design space for
multiplications in Rp; however, for the small value of n = 256 there is nothing
to be gained in the additional multiplication approaches.

KINDI. In the same vein as Saber, Kindi [Ban17] is based on a matrix of polyno-
mials, relating it to the Module-LWE problem. Somewhat more intricate than the
standard approach, however, it relies on a trapdoor construction, and constructs
a CPA-secure PKE that is already close to a key-encapsulation mechanism.

Kindi operates in the polynomial ring Rq = Zq[x]/(xn + 1) with q = 2k, the
more general Rb = Zb[x]/(xn+1) for some integer b, and in the polynomial ring
with integer coefficients R = Z[x]/(xn + 1). The relevant arithmetic primarily
happens in the ring Rq, though, meaning that the performance of Kindi still
considerably improves as a consequence of this work. We consider the parameter
set Kindi-256-3-4-2, where n = 256 and q = 214.

To obtain a CCA-secure KEM, a slightly simplified version of the modular
FO variant [HHK17] is used: as Kindi exhibits a KEM-like structure and already
includes re-encryption in Dec, this results in merely adding hash-function calls.

2.2 ARM Cortex-M4

Our target platform is the ARM Cortex-M4 which implements the ARMv7E-M
architecture. It has 16 general purpose registers of which 14 are freely usable
by the developer. In contrast to smaller architectures like the Cortex-M3, the
Cortex-M4 supports the DSP instructions smuad, smuadx, smlad, and smladx,
which we use to significantly speed up low-degree polynomial multiplication
using the schoolbook method. Those low-degree multiplication routines are used
as a core building block for higher-degree polynomial multiplication. The DSP
instructions perform two half-word multiplications, accumulate the two products
and optionally accumulate another 32-bit word in one clock cycle (as illustrated
in Table 1). There is strong synergy between these DSP instructions and the fact
that loading a 32-bit word using ldr is as expensive as loading a halfword using
ldrh. Related to this, it is important to perform load operations sequentially
(i.e., uninterrupted by other instructions) when possible, as this has a pipelin-
ing benefit. This shows in the ldm instruction, but also when simply adjoining
multiple ldr instructions. While the same behavior occurs for store instructions,
combining loads and stores only incurs pipelining benefits when stores follow
loads, but not when loads follow stores.

The ARMv7E-M instruction set contains support for 16-bit Thumb instruc-
tions, such as simple arithmetic and memory operations with register parame-
ters. Using these instructions has an obvious benefit for code size, but comes at
1 Note that both the scheme and the category 3 parameter set are called Saber.

286 M. J. Kannwischer et al.

Table 1. Relevant dual 16-bit multiplication instructions supported by the ARM
Cortex-M4

Instruction Semantics

smuad Ra, Rb, Rc Ra ← RbL · RcL + RbH · RcH
smuadx Ra, Rb, Rc Ra ← RbL · RcH + RbH · RcL
smlad Ra, Rb, Rc, Rd Ra ← RbL · RcL + RbH · RcH + Rd

smladx Ra, Rb, Rc, Rd Ra ← RbL · RcH + RbH · RcL + Rd

the cost of introducing misalignment: instruction fetching is significantly more
expensive when instruction offsets are not aligned to multiples of four bytes. To
combat this, Thumb instructions can be expanded to full-word width using the
.w suffix.

Benchmarking Platform. In our experiments we use the STM32F4-
DISCOVERY which features 1 MiB of Flash ROM, 192 KiB of RAM (128 KiB of
which are contiguous) running at a maximum frequency of 168 MHz. For bench-
marking we use the reduced clock frequency of 24 MHz to not be impacted by
wait states caused by slow memory [SS17]. We use the GNU ARM Embedded
Toolchain2 (arm-none-eabi) with arm-none-eabi-gcc-8.3.0. All source files
are compiled with the optimization flag -O3.

3 Multiplication in Z2m [x]

As discussed in the previous sections, we focus on multiplication in Rq, where q =
2m. In particular, we approach this by looking at the non-reduced multiplication
in Z2m [x], as this is identical across all schemes we investigate. The reduction is
done outside of our optimized polynomial multiplication.

Here, we describe the way we break down such a multiplication for a specific
number of coefficients n, modulo a specific q. This is done using combinations of
Toom-Cook’s and Karatsuba’s multiplication algorithms. For a given n and q,
there are multiple possible approaches; we explore the entire space and select the
optimum for each parameter set. We use Python scripts that generate optimized
assembly functions for all combinations, for arbitrary-degree polynomials (with
degree below 1024). These scripts are parameterized by the degree, the Toom
method (see the next subsection; Toom-3, Toom-4, both Toom-4 and Toom-3 or
no Toom layer at all), and the threshold at which to switch from Karatsuba to
schoolbook multiplication. See Sect. 4.1 for a detailed analysis of these results.

3.1 Toom/Karatsuba Strategies

The naive schoolbook approach to multiply two polynomials with n coefficients
results in n2 multiplications in Zq. Using well-known algorithms by Karat-
suba [KO63] and Toom-Cook [Too63,Coo66], it is possible to trade some of these
2 https://developer.arm.com/open-source/gnu-toolchain/gnu-rm.

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

Faster Multiplication in Z2m [x] on Cortex-M4 287

multiplications for additions and subtractions. Both algorithms have originally
been introduced for the multiplication of large integers, but straight-forwardly
translate to polynomial multiplication. Karatsuba’s method breaks a multipli-
cation of n-coefficient polynomials into three (instead of four) multiplications of
polynomials with n

2 coefficients. Toom-Cook is a generalization of this approach.
For this work we concern ourselves with Toom-3, which breaks down a multipli-
cation of n-coefficient polynomials into five (rather than nine) multiplications of
polynomials with n

3 coefficients, and Toom-4, breaking down a multiplication of
n-coefficient polynomials into seven multiplications of n

4 coefficients.

Toom-Cook. It is important to note that there is a loss in precision when
using Toom’s method, as it involves division over the integers. While divisions
by three and five can be replaced by multiplications by their inverses mod-
ulo 216, i.e., 43691 and 52429, this is not possible for divisions by powers of
two. Consequently, Toom-3 loses one bit of precision, and Toom-4 loses three
bits. Since our Karatsuba and schoolbook implementations operate in Z216 [x],
this imposes constraints on the values of q for which our implementations can
be used; Toom-3 can be used for q ≤ 215, Toom-4 can be used for q ≤ 213.
These losses accumulate, and a combination of both is only possible if q ≤ 212.
This also rules out higher-order Toom methods. While switching to 32-bit arith-
metic would allow using higher order Toom, this slows down Karatsuba and the
schoolbooks significantly by increasing load-store overhead and ruling out DSP
instructions.

While asymptotically Toom-4 is more efficient than Toom-3 and Karatsuba,
in practice the additions and subtractions also impact the run-time. The
increased and more complex memory-access patterns also significantly influence
performance. Thus, for a given n it is not immediately obvious in general which
approach is the fastest. We first evaluate whether to decompose using a layer of
Toom-4, Toom-3, both Toom-4 and Toom-3, or no Toom at all. We then repeat-
edly apply Karatsuba’s method to break down the multiplications, up to the
threshold at which it becomes inefficient and the “naive” schoolbook method
becomes the fastest approach.

Karatsuba. The call to the topmost Karatsuba layer is a function call, but
from that point on, we recursively inline the separate layers. Upon reaching the
threshold at which the schoolbook approach takes precedence, we jump to the
schoolbook multiplication as an explicit subroutine. This provides a trade-off
that keeps code size reasonable and is flexible to implement and experiment
with, but does imply that the register allocation between the final Karatsuba
layer and the underlying schoolbook is disjoint; it may prove worthwhile to look
into this for specific n rather than in a general approach.

288 M. J. Kannwischer et al.

Note that we only applied Karatsuba’s method to split polynomials in two
parts (i.e., not more), and did not combine operations across recursive calls.
See [WP06] for details on a more general approach.3

As we perform several nested layers of Karatsuba multiplication, it is impor-
tant to carefully manage memory usage. We do not go for a completely in-place
approach (as is done in [KMRV18]), but instead allocate stack space for the sums
of the high and low limbs, relying on the input and output buffers for all other
terms. This leads to effective memory usage without reducing performance.

Assembly-Level Optimizations. For both Toom and Karatsuba, the typical
operations require adding and subtracting polynomials of moderate size from
a given address. We stress the importance of careful pipelining, loading and
storing 16-bit coefficients pairwise into full-word registers, and using uadd16 and
usub16 arithmetic operations. We rely on offset-based instructions for memory
operations, in particular for the more intricate memory access patterns in Toom
and Karatsuba. This leads to a slight increase in code size compared to using ldm
and stm, (and some bookkeeping for polynomials exceeding the maximal offset
of 4095 bytes), but ensures that addresses are computed during code generation.

For ease of implementation, our code generator for Toom is restricted to
dimensions that divide without remainder. For Karatsuba, we do not restrict the
dimensions at all: the implementation can work on unbalanced splits, and thus
polynomials of unequal length. In order not to waste any memory or cycles here
(e.g., by applying common refinement approaches), the Python script becomes a
rather complex composition of conditionals; rather than trying to combine pairs
of 16-bit additions into uadd16 operations on the fly, we run a post-processing
step over the scheduled instructions to do so.

Rather than considering alignment to 32-bit word boundaries during code
generation, we use a post-processing step. After compilation, we disassemble the
resulting binary and expand Thumb instructions in the cases where they cause
misalignment. This allows using the smaller Thumb instructions where possible,
but avoids paying the overhead of misalignment. In particular, this is important
when an odd number of Thumb instructions is followed by a large block of 32-bit
instructions. The alignment post-processing is done using a Python script that
is included in our software package, and may be of independent interest.

3.2 Small Schoolbook Multiplications

We carefully investigate several approaches to perform the small-degree school-
book multiplications that underlie Karatsuba and Toom-Cook, varying the
approaches and implementing distinct generation routines for different n.
3 The approach by Weimerskirch and Paar provides a middle ground between

Karatsuba and Toom-Cook. While allowing for a wider range of splits than tra-
ditional Karatsuba and a more efficient way of dealing with the newly introduced
additions, it does come at the cost of more small-sized multiplications than similarly-
sized Toom-Cook instances. A key advantage, though, is the fact that this approach
does not introduce divisions that lead to a loss of precision. This could be relevant
in particular for multiplications where both n and q are large.

Faster Multiplication in Z2m [x] on Cortex-M4 289

For each approach, we keep the polynomial in packed representation, load-
ing all coefficients into the 32-bit registers in pairs. The ARMv7E-M instruction
set provides multiplication instructions that efficiently operate on data in this
format: parallel multiplications, but also instructions that operate on a specific
halfwords. For n ≤ 10, all input coefficients can be kept in registers simultane-
ously, with registers remaining to keep the pointers to the source and destination
polynomials around. We first compute all coefficients of terms with odd expo-
nents, before using pkh instructions to repack one of the input polynomials and
computing the remaining coefficients. This ensures that the vast majority of the
multiplications can be computed using the two-way parallel multiply-accumulate
dual instructions. See Fig. 1 for an illustration of this; here, b is repacked to create
the dashed pairs. This is somewhat similar to the approach used in [KMRV18],
but ends up needing less repacking and memory interaction.

a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a6b1 a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a6b2 a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a6b3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a6b4 a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a6b5 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 a0b6

Fig. 1. Pairing coefficients to reduce the number of multiplications, using smladx/-
smlad instructions. Dashed boxes represent multiplications involving repacked b.

Fig. 2. Decomposing larger schoolbook multiplications

For n ∈ {11, 12}, we spill the source pointers to the stack after loading the
complete polynomials. At these dimensions, the registers are used to their full
potential, and by using the DSP instructions we end up needing only 78 mul-
tiplications; 66 combined multiplications, 12 single multiplications, and not a
single dedicated addition instruction. This offsets the extra cost of the 6 packing
instructions considerably. For n ∈ {13, 14}, not all coefficients fit in registers at
the same time, leading to spills for the middle columns (i.e., the computation of
coefficients around xn, which are affected by all input coefficients). Even when

290 M. J. Kannwischer et al.

using the Python abstraction layer, manual register allocation becomes some-
what tedious in the cases that involve many spills to the stack. To remedy this,
we use bare-bones register allocation functions akin to the scripts in [HRSS17a].

For larger n, the above strategy leads to an excessive amount of register
spills. Instead, we compose the multiplication of a grid of smaller instances. For
15 ≤ n ≤ 24, we compose the multiplication out of four smaller multiplications,
for 25 ≤ n ≤ 36, we use a grid of nine multiplications, etc. Note that we use at
most n = 12 for the building blocks, given the extra overhead of the register spills
for n ∈ {13, 14}. We further remark that it is important to carefully schedule
the (re)loading and repacking of input polynomials. We illustrate this in Fig. 2.

The approach described above works trivially when n is divisible by
⌈

n
12

⌉
,

but leads to a less symmetric pattern for other dimensions. We plug these holes
by starting from an n that divides even, and either adding a layer ‘around’ the
parallelogram or nullifying the superfluous operations in a post-processing step.

Figure 3 shows the performance of these routines; see Table 5 for more details.

Fig. 3. Runtime of generated optimized polynomial multiplication for small n. For
n < 20 our hand-optimized schoolbook multiplications are clearly superior, for n > 36
first applying at least one layer of Karatsuba is faster.

4 Results and Discussion

In this section we present benchmark results for polynomial multiplication, and
for key generation, encapsulation, and decapsulation of the five NIST post-
quantum candidates Kindi, NTRUEncrypt, NTRU-HRSS, RLizard, and Saber. For
each of the schemes we have tried to select the parameter set which targets NIST
security category 3. However, NTRU-HRSS only provides a category 1 parame-
ter set, hence we use this. Furthermore, the reference implementations for the
category 3 parameter sets of Kindi require more than 128 KiB of RAM and
consequently do not trivially fit our platform (STM32F4DISCOVERY). We use
Kindi-256-3-4-2 instead, which targets security category 1. For the definition of
NIST security categories see [NIS16a, Sect. 4.A.5].

All cycle counts presented in this section were obtained by using an adapted
version of the pqm4 benchmarking framework [KRSS], which uses the built-in

Faster Multiplication in Z2m [x] on Cortex-M4 291

24-bit hardware timer. Stack measurements were also also obtained using the
method implemented in pqm4, i.e., by writing a canary to the entire memory
available for the stack, running the scheme under test and subsequently checking
how much of the canary was overwritten.

4.1 Multiplication Results

We first present results for polynomial multiplication as a building block. We
report benchmarks for the multiplication for all possible n < 1024, using different
approaches to evaluate which strategy is optimal.

Figure 3 shows the run-time of our hand-optimized schoolbook implementa-
tions and the generated optimized Karatsuba code for small n. For the Karatsuba
benchmarks, we have selected the optimal schoolbook threshold, e.g., for n = 32
one could either apply one layer of Karatsuba and then use the schoolbook
method for n = 16 or, alternatively, use two layers of Karatsuba and use school-
book multiplications for n = 8. The former variant is faster in this scenario,
which leads to a schoolbook threshold of 16. For each n, we simply iterated over
all schoolbook thresholds and selected the fastest variant. The graph shows that
directly applying the schoolbook method is superior for n < 20, and for n > 36
Karatsuba outperforms schoolbook. However, for values in between, the plot is
inconclusive. A large cause of this is the amount of hand-optimization that went
into some of our schoolbook implementations, but it is also strongly determined
by register pressure: there is a large performance hit in the step from n = 14 to
n = 15, which then propagates to dimensions that break down to these school-
book multiplications using Karatsuba. For cryptographically relevant values we
found that the cross-over point is at n = 22, i.e., for values n > 22 one should
use an additional layer of Karatsuba.

Figure 4 shows the performance of the different multiplication approaches for
larger n. While that general trend is visible, one still observes a jagged line. We
speculate that the main cause for this is similar to the irregularities in Fig. 3:
the variance in the increasing cost of the schoolbooks is magnified as n grows
larger and specific schoolbook sizes are repeated in the decomposition of large
multiplications. Because of the difference in decomposition between Toom-3 and
Toom-4, this favors each method for different ranges for n, resulting in alternat-
ing optimality. Another factor that is impacted by specific decomposition is the
resulting memory access pattern, and, by extension, data alignment, resulting in
a large performance penalty. In practice, comparing benchmarks for specific n
seems to be the only way to come to conclusive results. In particular, we observe
that the lines are not even monotonically increasing; note that it is trivially pos-
sible to pad a smaller-degree polynomial and use a larger multiplication routine
to benefit of a more efficient decomposition.

As Fig. 4 does not allow us to identity which method performs best for clear
bounds on n, we instead focus on individual n as relevant for the five crypto-
graphic schemes we intend to cover. This restricts n to {256, 701, 743, 1024}. In
Table 2, we report the cycle counts alongside the required additional stack space

292 M. J. Kannwischer et al.

Fig. 4. Runtime of different decomposition variants for large-degree multiplications.

for each of the multiplication methods. All cycle counts are for polynomial mul-
tiplication excluding subsequent reduction required to obtain an n-coefficient
polynomial; additional cost for reduction differs depending on the specific choice
of ring. While there is some performance benefit to performing the reduction
inline, the main gain is in stack usage. For the Toom variants, this allows for
in-place recomposition, reducing stack usage by roughly 2n coefficients. This is
not trivial for Karatsuba, though, introducing some additional complexity. We
leave this for future work.

For the rather small n = 256 (Saber, Kindi), we already see that Toom-4
(followed by two layers of Karatsuba) is slightly faster than directly applying
Karatsuba. As the difference is small, however, one might decide to not use a
Toom layer at all, at the benefit of a much simpler implementation and consider-
ably reduced stack usage. Toom-4 is not suitable for Kindi (n = 256, q = 214), as
q is too large. Again the impact is marginal, though, as Karatsuba is only a few
percent slower at this dimension, also performing just above Toom-3. For larger
n ∈ {701, 743, 1024} (NTRU-HRSS, NTRUEncrypt, RLizard) applying Toom-4 is
most efficient. The second layer ends up in the same range of small n, where it is
a close competition between applying Toom-3 or directly switching to recursive
Karatsuba.

4.2 Encapsulation and Decapsulation Results

In this section we present our performance results for RLizard, Saber, Kindi,
NTRUEncrypt, and NTRU-HRSS. All the software presented in this section
started from the reference implementations submitted to NIST but went consid-

Faster Multiplication in Z2m [x] on Cortex-M4 293

Table 2. Benchmarks for polynomial multiplication excluding reduction. Fastest app-
roach is highlighted in bold. The ‘Toom-4 + Toom-3’ and ‘Toom-4’ approaches are
not applicable to all parameter sets, as q may be too large.

Approach Schoolbook Clock cycles Stack
usage
[bytes]

Saber (n = 256,
q = 213)

Karatsuba only 16 38 000 2 020

Toom-3 11 39 043 3 480

Toom-4 16 36 274 3 800

Toom-4 + Toom-3 - - -

Kindi-256-3-4-2
(n = 256, q = 214)

Karatsuba only 16 38 000 2 020

Toom-3 11 39 043 3 480

Toom-4 - - -

Toom-4 + Toom-3 - - -

NTRU-HRSS
(n = 701, q = 213)

Karatsuba only 11 202 889 5 676

Toom-3 15 205 947 9 384

Toom-4 11 172 882 10 596

Toom-4 + Toom-3 - - -

NTRU-KEM-743
(n = 743, q = 211)

Karatsuba only 12 217 130 6 012

Toom-3 16 211 588 9 920

Toom-4 12 186 639 11 208

Toom-4 + Toom-3 16 192 503 12 152

RLizard-1024
(n = 1024, q = 211)

Karatsuba only 16 356 046 8 188

Toom-3 11 352 770 13 756

Toom-4 16 302 504 15 344

Toom-4 + Toom-3 11 310 712 16 816

erably further than just replacing the multiplication routines with the optimized
routines described in Sect. 3. For Saber, we considered starting from the already
optimized implementation by Karmakar, Bermudo Mera, Sinha Roy, and Ver-
bauwhede [KMRV18], but achieved marginally better performance starting from
the reference code. We start by describing the changes that apply to the refer-
ence implementations; some of these changes might be more generally advisable
as updates to reference software.

Memory Allocations. The reference implementations of Kindi, RLizard, and
NTRUEncrypt make use of dynamic memory allocation on the heap. The RLizard

294 M. J. Kannwischer et al.

implementation does not free all the allocated memory, which results in mem-
ory leaks; also it misinterprets the NIST API and assumes that the public key is
always stored right behind the secret key. This may result in reads from uninitial-
ized (or even unallocated) memory. Luckily none of the implementations require
dynamically allocated memory; the size of all allocated memory is reasonably
small and known at compile time. We eliminated all dynamic memory alloca-
tions and our software thus only relies on the stack to store temporary data. Our
benchmarks show that this significantly improves performance.

Hashing. The five NIST candidates we optimize in this paper make use of vari-
ants of SHA-3 and SHAKE [NIS15b] and of SHA-512 [NIS15a]. For SHA-3 and
SHAKE we use the optimized assembly implementation from pqm4 [KRSS], which
makes use of the optimized Keccak-permutation from the Keccak Code Pack-
age [DHP+]. For SHA-512, we use a C implementation from SUPERCOP [BL].

Comparison to Reference Code. Table 3 contains the performance bench-
marks for the optimized implementations as well as the reference implementa-
tions with the modifications described above. For all schemes targeted in this
paper we dramatically increase the performance; the improvements go up to a
factor of 49 for the key generation of RLizard-1024. Since both Karatsuba and
Toom-Cook require storing additional intermediate polynomials on the stack, we
increase stack usage for all schemes except Kindi-256-3-4-2. The reference imple-
mentations of Kindi-256-3-4-2 already contained optimized polynomial multipli-
cation methods, which were implemented in a stack-inefficient manner.

Side-Channel Resistance. While side-channel resistance was not a focus of
this work, we ensured that our polynomial multiplication is protected against
timing attacks. More specifically, in the multiplication routines we avoid all data
flow from secrets into branch conditions and into memory addresses. The special
multiplication routine in [SBGM+18] is less conservative and does use secret-
dependent lookup indices with a reference to [ARM12] saying that the Cortex-M4
does not have internal data caches. However, it is not clear to us that really all
Cortex-M4 cores do not have any data cache; [ARM12] states that the “Cortex-
M0, Cortex-M0+, Cortex-M1, Cortex-M3, and Cortex-M4 processors do not have
any internal cache memory. However, it is possible for a SoC design to integrate
a system level cache.” Also, it is clear that some ARMv7E-M processors (for
example, the ARM Cortex-M7) have data caches and our multiplication code is
timing-attack protected also on those devices.

Key-Generation Performance. The focus of this paper is to improve perfor-
mance of encapsulation and decapsulation. All KEMs considered in this paper
are CCA-secure, so the impact of a poor key-generation performance can in prin-
ciple be minimized by caching ephemeral keys for some time. Such caching of
ephemeral keys makes software more complex and in some cases also requires
changes to higher level protocols; we therefore believe that key-generation per-
formance, also for CCA-secure KEMs, remains an important target of optimiza-
tion. The key generation of RLizard, Saber, and Kindi is rather straight-forwardly

Faster Multiplication in Z2m [x] on Cortex-M4 295

Table 3. Benchmarks for reference implementations and optimized implementations
using fastest multiplication approach. Reporting run time (cycle count) and stack usage
(bytes) for key generation (K), encapsulation (E), and decapsulation (D).

KEMs optimized in this paper

Implementation Clock cycles Stack usage [bytes]

Saber Reference K: 6 530k K: 12 616

E: 8 684k E: 14 896

D: 10 581k D: 15 992

[KMRV18] K: 1 147k K: 13 883

E: 1 444k E: 16 667

D: 1 543k D: 17 763

This work K: 895k K: 13 248

E: 1 161k E: 15 528

D: 1 204k D: 16 624

Kindi-256-3-4-2 Reference K: 21 794k K: 59 864

E: 28 176k E: 71 000

D: 37 129k D: 84 096

This work K: 969k K: 44 264

E: 1 320k E: 55 392

D: 1 517k D: 64 376

NTRU-HRSS Reference K: 205 156k K: 10 020

E: 5 166k E: 8 956

D: 15 067k D: 10 204

This work K: 145 963k K: 23 396

E: 404k E: 14 492

D: 819k D: 22 140

NTRU-KEM-743 Reference K: 59 815k K: 14 148

E: 7 540k E: 13 372

D: 14 229k D: 18 036

This work K: 5 198k K: 25 320

E: 1 601k E: 23 808

D: 1 881k D: 28 472

RLizard-1024 Reference K: 26 423k K: 4 272

E: 32 156k E: 10 532

D: 53 181k D: 12 636

This work K: 525k K: 27 720

E: 1 345k E: 33 328

D: 1 716k D: 35 448

Other KEMs submitted to the NIST PQC project

Implementation Clock cycles Stack usage

R5ND 1PKEb [SBGM+18] K: 658k K: ?

E: 984k E: ?

D: 1 265k D: ?

R5ND 3PKEb [SBGM+18] K: 1 032k K: ?

E: 1 510k E: ?

D: 1 913k D: ?

NewHopeCCA1024 [KRSS,AJS16] K: 1 244k K: 11 152

E: 1 963k E: 17 448

D: 1 979k D: 19 648

Kyber768 [KRSS] K: 1 200k K: 10 544

E: 1 446k E: 13 720

D: 1 477k D: 14 880

296 M. J. Kannwischer et al.

optimized by integrating our fast multiplication. The key generation of NTRU-
Encrypt and NTRU-HRSS also requires inversions, which we did not optimize in
this paper; we believe that further research into efficient inversions for those two
schemes will significantly improve their key-generation performance.

Comparison to Previous Results. To the best of our knowledge, Saber is
the only scheme of those considered in this paper that has been optimized for
the ARM Cortex-M family in previous work [KMRV18]. Table 3 contains the
performance result on the same platform as ours. Our optimized implementa-
tion outperforms the CHES 2018 implementation by 22% for key generation,
20% for encapsulation, and 22% for decapsulation. Karmakar, Bermudo Mera,
Sinha Roy, and Verbauwhede report 65 459 clock cycles for their optimized 256-
coefficient polynomial multiplication, but we note that their polynomial mul-
tiplication includes the reduction. Including the reduction, our multiplication
requires 38 215 clock cycles, which is 42% faster. On a more granular level, they
claim 587 cycles for 16-coefficient schoolbook multiplication, while we require
only 343 cycles (see Table 5; this includes approximately 50 cycles of bench-
marking overhead).

Several other NIST candidates have been evaluated on the Cortex-M4 family.
We also list the performance results in Table 3 for comparison. Most recently,
record-setting results were published for Round54 on Cortex-M4 [SBGM+18].
The fastest scheme described in our work, targeting NIST security category 1,
NTRU-HRSS, is 59% faster for encapsulation and 35% faster for decapsulation
compared to the corresponding CCA variant of Round5 at the same security level.
The key generation of NTRU-HRSS is considerably slower, but its inversion is not
optimized yet. The fastest scheme implementation described here that targets
NIST security category 3, Saber, is 13% faster for key generation, 23% faster
for encapsulation, and 37% faster for decapsulation There are also optimized
implementations for NewHopeCCA1024 [KRSS,AJS16] and Kyber768 [KRSS].
Both implementations are outperformed by NTRU-HRSS and Saber.

4.3 Profiling of Optimized Implementations

The speed up achieved by optimizing polynomial multiplication clearly shows
that it vastly dominates the runtime of reference implementations. Having
replaced this core arithmetic operation with highly optimized assembly, we ana-
lyze how much time the optimized implementations still spend in non-optimized
code to capture how much performance could still be gained by hand-optimizing
scheme-specific procedures. We achieve this by measuring the clock cycles spent
in polynomial multiplication, hashing, and random number generation. Table 4
shows that still a considerable proportion of encapsulation and decapsulation is
spent in polynomial multiplication. However, cycles consumed by hashing and
randomness generation become more prominent. In the following we briefly dis-
cuss these results and emphasize how one could further speed-up those schemes.
4 R5ND {1,3,5}PKEb are the CCA-variants of Round5, whereas R5ND {1,3,5}KEMb

are CPA-secure.

Faster Multiplication in Z2m [x] on Cortex-M4 297

Table 4. Time spent in polynomial multiplication, hashing, and sampling randomness
for optimized implementations. Still considerable time is spent in polynomial multipli-
cation, but hashing is more apparent.

Scheme Total [cycles] Polymul [cycles] Hashing [cycles] Randombytes

[cycles]

Saber K: 895k 327k (37%) 475k (53%) 2.0k (<1%)

E: 1 161k 435k (38%) 615k (53%) 0.6k (<1%)

D: 1 204k 544k (45%) 500k (42%) 0

Kindi-256-3-4-2 K: 969k 342k (35%) 409k (42%) 1.2k (<1%)

E: 1 320k 456k (35%) 604k (46%) 0.6k (<1%)

D: 1 517k 570k (38%) 603k (40%) 0

NTRU-HRSS K: 145 963k 1 556k (1%) 80k (<1%) 0.6k (<1%)

E: 404k 173k (43%) 107k (26%) 0.6k (<1%)

D: 819k 519k (63%) 67k (8%) 0

NTRU-KEM-743 K: 5 198k 1 680k (32%) 0 85k (2%)

E: 1 601k 187k (12%) 1 171k (73%) 46k (3%)

D: 1 881k 373k (20%) 1 172k (63%) 0

RLizard-1024 K: 525k 303k (58%) 0 123k (23%)

E: 1 345k 605k (45%) 628k (47%) 2.2k (<1%)

D: 1 716k 908k (53%) 628k (36%) 0

Hashing. For encapsulation, hashing (SHA-3 and SHA-2) dominates the run-
time of Kindi-256-3-4-2, NTRU-KEM-743, and Saber. We have replaced these
primitives with the fastest implementations available. Still, all schemes spend a
substantial number of clock cycles computing hashes. This is partly due to the
Fujisaki-Okamoto transformation required to achieve CCA security. Further hash
function calls are required to sample pseudo-random numbers from a seed, which
most schemes implement using the SHAKE XOF. Having a hardware accelerator
for these hash function would highly benefit all of the examined schemes. While
ARM Cortex-M4 platforms with SHA-2 hardware support exist, there are (at
the time of writing) none available which have SHA-3 hardware support.

Randomness Generation. Kindi-256-3-4-2, NTRU-HRSS, and Saber do not
make use of randombytes extensively, but sample a small seed and then expand
this using SHAKE. RLizard-1024 and NTRU-KEM-743 directly sample their ran-
domness randombytes. As we implement randombytes using the hardware RNG
on the STM32F4Discovery, it is more efficient than using SHAKE to expand a
seed. There are, however, important caveats to consider when only using the
hardware number generator. It is unclear what the cryptographic properties of
such an RNG are, and how this affects the security of the various schemes, in
particular since most reveal randomness as part of the CCA transform.

298 M. J. Kannwischer et al.

A Schoolbook Multiplication Benchmarks

Table 5. Benchmarks for small schoolbook multiplication routines. The cycle counts
include an overhead of approximately 50 cycles for benchmarking.

n Cycles n Cycles n Cycles n Cycles

1 56 13 232 25 926 37 1 965

2 59 14 252 26 1 057 38 1 966

3 69 15 341 27 1 057 39 1 963

4 74 16 343 28 1 168 40 1 965

5 85 17 467 29 1 167 41 2 294

6 92 18 466 30 1 170 42 2 588

7 107 19 508 31 1 264 43 2 595

8 114 20 510 32 1 266 44 2 594

9 131 21 626 33 1 431 45 2 824

10 140 22 626 34 1 547 46 2 825

11 168 23 670 35 1 546 47 2 822

12 177 24 672 36 1 549 48 2 824

References

[AAB+17] Alkim, E., et al.: Newhope: algorithm specification and supporting
documentation. Submission to the NIST Post-Quantum Cryptogra-
phy Standardization Project (2017). https://cryptojedi.org/papers/#
newhopenist

[ABD+17] Avanzi, R., et al.: CRYSTALS-Kyber: algorithm specification and sup-
porting documentation. Submission to the NIST Post-Quantum Cryp-
tography Standardization Project (2017). https://pq-crystals.org/kyber

[ADPS16] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key
exchange - a new hope. In: Holz, T., Savage, S. (eds.) Proceedings of
the 25th USENIX Security Symposium. USENIX Association (2016).
https://eprint.iacr.org/2015/1092

[AJS16] Alkim, E., Jakubeit, P., Schwabe, P.: NewHope on ARM Cortex-M. In:
Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol.
10076, pp. 332–349. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-49445-6 19

[ARM12] ARM Cortex-M programming guide to memory barrier instruc-
tions (2012). https://static.docs.arm.com/dai0321/a/DAI0321A
programming guide memory barriers for m profile.pdf

[Ban17] El Bansarkhani, R.: KINDI: algorithm specification and supporting doc-
umentation. Submission to the NIST Post-Quantum Cryptography Stan-
dardization Project (2017). http://kindi-kem.de

https://cryptojedi.org/papers/#newhopenist
https://cryptojedi.org/papers/#newhopenist
https://pq-crystals.org/kyber
https://eprint.iacr.org/2015/1092
https://doi.org/10.1007/978-3-319-49445-6_19
https://doi.org/10.1007/978-3-319-49445-6_19
https://static.docs.arm.com/dai0321/a/DAI0321A_programming_guide_memory_barriers_for_m_profile.pdf
https://static.docs.arm.com/dai0321/a/DAI0321A_programming_guide_memory_barriers_for_m_profile.pdf
http://kindi-kem.de

Faster Multiplication in Z2m [x] on Cortex-M4 299

[BGM+16] Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hard-
ness of learning with rounding over small modulus. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 9

[BGML+18] Bhattacharya, S., et al.: Round5: compact and fast post-quantum public-
key encryption. Cryptology ePrint Archive, Report 2018/725 (2018).
https://eprint.iacr.org/2018/725

[BL] Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of crypto-
graphic systems. http://bench.cr.yp.to. Accessed 14 Oct 2018

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lat-
tices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 42

[Coo66] Cook, S.: On the minimum computation time of functions. Ph.D. thesis,
Harvard University (1966)

[CPL+17] Cheon, J.H., et al.: Lizard: algorithm specification and supporting
documentation. Submission to the NIST Post-Quantum Cryptogra-
phy Standardization Project (2017). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions

[Den03] Dent, A.W.: A Designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryp-
tography and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-40974-8 12

[DHP+] Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer,
R.: eXtended Keccak Code Package. https://github.com/XKCP/XKCP.
Accessed 14 Oct 2018

[DKRV17] D’Anvers, J.-P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber:
algorithm specification and supporting documentation. Submission to
the NIST Post-Quantum Cryptography Standardization Project (2017).
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-
submissions

[FO99] Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmet-
ric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48405-1 34

[GMZB+17] Garcia-Morchon, O., Zhang, Z., Bhattacharya, S., Rietman, R., Tol-
huizen, L., Torre-Arce, J.-L.: Round2: algorithm specification and sup-
porting documentation. Submission to the NIST Post-Quantum Cryp-
tography Standardization Project (2017). https://www.onboardsecurity.
com/nist-post-quantum-crypto-submission

[HGSSW03] Howgrave-Graham, N., Silverman, J.H., Singer, A., Whyte, W.: NAEP:
provable security in the presence of decryption failures. Cryptology ePrint
Archive, Report 2003/172 (2003). https://eprint.iacr.org/2003/172

[HHK17] Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the
fujisaki-okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70500-2 12

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based pub-
lic key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol.
1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054868

https://doi.org/10.1007/978-3-662-49096-9_9
https://eprint.iacr.org/2018/725
http://bench.cr.yp.to
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-540-40974-8_12
https://github.com/XKCP/XKCP
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://eprint.iacr.org/2003/172
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868

300 M. J. Kannwischer et al.

[HPS+17] Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.,
Zhang, Z.: Choosing parameters for NTRUEncrypt. In: Handschuh, H.
(ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 3–18. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52153-4 1

[HRSS17a] Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-speed key
encapsulation from NTRU. In: Fischer, W., Homma, N. (eds.) CHES
2017. LNCS, vol. 10529, pp. 232–252. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66787-4 12

[HRSS17b] Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: NTRU-KEM-
HRSS: algorithm specification and supporting documentation. Submis-
sion to the NIST Post-Quantum Cryptography Standardization Project
(2017). https://ntru-hrss.org

[KMRV18] Karmakar, A., Mera, J.M.B., Roy, S.S., Verbauwhede, I.: Saber on ARM.
IACR Trans. Cryptogr. Hardware Embed. Syst. 2018(3), 243–266 (2018).
https://eprint.iacr.org/2018/682

[KO63] Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on
automata. Sov. Phys. Doklady 7, 595–596 (1963). Translated from Dok-
lady Akademii Nauk SSSR, vol. 145, no. 2, pp. 293–294, July 1962.
http://cr.yp.to/bib/1963/karatsuba.html

[KRSS] Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: post-
quantum crypto library for the ARM Cortex-M4. https://github.com/
mupq/pqm4. Accessed 14 Oct 2018

[NIS15a] FIPS PUB 180–4: Secure hash standard (2015). http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.180-4.pdf

[NIS15b] FIPS PUB 202 – SHA-3 standard: Permutation-based hash and
extendable-output functions (2015). http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.202.pdf

[NIS16a] Submission requirements and evaluation criteria for the post -quantum
cryptography standardization process (2016). https://csrc.nist.gov/
csrc/media/projects/post-quantum-cryptography/documents/call-for-
proposals-final-dec-2016.pdf

[NIS16b] NIST Computer Security Division. Post-Quantum Cryptography
Standardization (2016). https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography

[Saa17] Saarinen, M.-J.O.: Hila5: algorithm specification and supporting docu-
mentation. Submission to the NIST Post-Quantum Cryptography Stan-
dardization Project (2017). https://mjos.fi/hila5

[SAL+17] Smart, N.P., et al.: Lima: algorithm specification and supporting docu-
mentation. Submission to the NIST Post-Quantum Cryptography Stan-
dardization Project (2017). https://lima-pq.github.io

[SBGM+18] Saarinen, M.-J.O., Bhattacharya, S., Garcia-Morchon, O., Rietman, R.,
Tolhuizen, L., Zhang, Z.: Shorter messages and faster post-quantum
encryption with Round5 on Cortex M. Cryptology ePrint Archive, Report
2018/723 (2018). https://eprint.iacr.org/2018/723. Version: 13 Oct 2018
08:50:18 UTC

[SS17] Schwabe, P., Stoffelen, K.: All the AES you need on Cortex-M3 and M4.
In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 180–194.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 10

[Too63] Toom, A.L.: The complexity of a scheme of functional elements realizing
the multiplication of integers. Sov. Math. Doklady 3, 714–716 (1963).
www.de.ufpe.br/∼toom/my-articles/engmat/MULT-E.PDF

https://doi.org/10.1007/978-3-319-52153-4_1
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://ntru-hrss.org
https://eprint.iacr.org/2018/682
http://cr.yp.to/bib/1963/karatsuba.html
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://mjos.fi/hila5
https://lima-pq.github.io
https://eprint.iacr.org/2018/723
https://doi.org/10.1007/978-3-319-69453-5_10
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF

Faster Multiplication in Z2m [x] on Cortex-M4 301

[WP06] Weimerskirch, A., Paar, C.: Generalizations of the Karatsuba algorithm
for efficient implementations (2006). https://eprint.iacr.org/2003/172

[ZCHW17] Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: NTRUEncrypt: algo-
rithm specification and supporting documentation. Submission to the
NIST Post-Quantum Cryptography Standardization Project (2017).
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-
submissions

https://eprint.iacr.org/2003/172
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Generic and Practical Key Establishment
from Lattice

Zhengzhong Jin1,2 and Yunlei Zhao3(B)

1 School of Mathematics, Fudan University, Shanghai, China
2 Department of Computer Science, Johns Hopkins University, Baltimore, USA

3 School of Computer Science, Fudan University, Shanghai, China
ylzhao@fudan.edu.cn

Abstract. In this work, we abstract some key ingredients in previous
key establishment and public-key encryption schemes from LWE and its
variants. Specifically, we explicitly formalize the building tool, referred
to as key consensus (KC) and its asymmetric variant AKC. KC and
AKC allow two communicating parties to reach consensus from close
values, which plays the fundamental role in lattice-based cryptography.
We then prove the upper bounds on parameters for any KC and AKC,
which reveal the inherent constraints on the parameters among security,
bandwidth, error probability, and consensus range. As a conceptual con-
tribution, this simplifies the design and analysis of these cryptosystems
in the future. Guided by the proved upper bounds, we design and ana-
lyze both generic and highly practical KC and AKC schemes, which are
referred to as OKCN and AKCN respectively for presentation simplic-
ity. We present a generic protocol structure for key establishment from
learning with rounding (LWR), which can be instantiated with either KC
or AKC. We then provide an analysis breaking the correlation between
the rounded deterministic noise and the secret, and design an algorithm
to calculate the error probability numerically. When applied to LWE-
based key establishment, OKCN and AKCN can result in more practical
or well-balanced schemes, compared to existing LWE-based protocols in
the literature.

1 Introduction

Most public-key cryptosystems currently in use, based on the hardness of solving
(elliptic curve) discrete logarithm or factoring large integers, will be broken, if
large-scale quantum computers are ever built. The arrival of such quantum com-
puters is now believed by many scientists to be merely a significant engineering

This work is supported in part by National Key Research and Development Program
of China under Grant No. 2017YFB0802000, National Natural Science Foundation of
China under Grant Nos. 61472084 and U1536205, Shanghai Innovation Action Project
under Grant No. 16DZ1100200, Shanghai Science and Technology Development Funds
under Grant No. 6JC1400801, and Shandong Provincial Key Research and Develop-
ment Program of China under Grant Nos. 2017CXG0701 and 2018CXGC0701.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 302–322, 2019.
https://doi.org/10.1007/978-3-030-21568-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_15

Generic and Practical Key Establishment from Lattice 303

challenge, and is estimated to be within the next two decades or so. Historically,
it has taken almost two decades to deploy the modern public key cryptography
infrastructure. Therefore, regardless of whether we can estimate the exact time
of the arrival of the quantum computing era, we should begin now to prepare our
information security systems to be able to resist quantum computing. In addi-
tion, for the content we want to protect over a period of 15 years or longer, it
becomes necessary to switch to post-quantum cryptography today. In the major-
ity of contexts, ephemeral key establishment (KE), which plays a central role
in modern cryptography, is among the most critical asymmetric primitives to
upgrade to post-quantum security.

Lattice-based cryptography is one of the promising mathematical approaches
to achieving security resistant to quantum attacks. For cryptographic usage,
compared with the classic hard lattice problems such as SVP and CVP, the
learning with errors (LWE) problem is proven to be much more versatile [Reg09].
One of the main technical contributions in recent years on achieving practical key
establishment based on LWE and its variants is the improvement and generaliza-
tion of the key reconciliation mechanisms [Reg09,DXL12,LPR10,LP10]. But the
key reconciliation mechanisms were only previously used and analyzed, for both
KE and PKE, in a non-black-box way. This means, for new key reconciliation
mechanisms developed in the future to be used for constructing lattice-based
cryptosystems, we need to analyze their security from scratch. Moreover, for the
various parameters involved in key reconciliation, the bounds on what could or
couldn’t be achieved are unclear. As a consequence, we lack basic criteria to
evaluate various reconciliation mechanisms and to indicate whether they can be
further improved.

Abstraction/generalization is fundamental to natural science (mathematics,
physics), and is particularly important to cryptography. For example, in the
area of signature, Schnorr signature is generalized via Fiat-Shamir transforma-
tion [FS86], with abstraction of Σ-protocol [CDS94]. The similar abstraction and
generalization also plays a fundamental role in CCA-secure PKE, and in many
more areas of modern cryptography. Abstraction and generalization is partic-
ularly helpful and expected for lattice-based cryptography, as they are usually
less easy to understand and evaluate, and are related to the ongoing NIST post-
quantum cryptography standardization [NIST].

1.1 Our Contributions

In this work, we abstract the key ingredients in previous key establishment and
PKE schemes based on LWE and its variants, by introducing and formalizing
the building tool, referred to as key consensus (KC) and its asymmetric variant
AKC. KC and AKC allow two communicating parties to reach consensus from
close values obtained by some secure information exchange, such as exchanging
their LWE samples. We then discover upper bounds on parameters for any KC
and AKC. As a conceptual contribution, this simplifies the design and analysis
of these cryptosystems in the future. We then design and analyze both generic
and highly practical KC and AKC schemes, which are referred to as symmetric

304 Z. Jin and Y. Zhao

key consensus with noise (OKCN) and asymmetric key consensus with noise
(AKCN) respectively for presentation simplicity.

We propose the first construction of key establishment merely based on the
LWR problem with concrete analysis and evaluation, to the best of our knowl-
edge. We use the randomness lifting technique to present a unified protocol struc-
ture that can be instantiated with either KC or AKC. We provide an analysis
breaking the correlation between the rounded deterministic noise and the secret,
and design an algorithm to calculate the error probability numerically. When
applied to LWE-based key establishment, OKCN and AKCN can result in more
practical or well-balanced schemes, compared to the related LWE-based proto-
cols in the literature. The protocols developed in this work are implemented. The
code and scripts, together with those for evaluating concrete security and failure
rates, are (anonymously) available from Github http://github.com/OKCN.

1.2 Related Work

AKC (resp., KC) was pioneered by the works on lattice-based PKE [LP10,
LPR10] (resp., the work on key establishment [DXL12]). LWR-based key estab-
lishment was pioneered by the Lizard protocol [CKLS16]. The Lizard proto-
col is AKC-based, and is based on (special variants of) both LWE and LWR.
To the best our knowledge, key establishment protocol merely from the LWR
problem was first achieved in an early version of our work [JZ16].1 The works
[BBG+17,DKRV17,BGL+18] considered AKC-based key transport protocols
from some variants of LWR (some of which use sparse-ternary secret keys),
and show that randomness lifting is not necessary for AKC-based protocol from
LWR. But these protocols do not support KC-based instantiations. We remark
that, for the recommended parameters in all the works, randomness lifting corre-
sponds to uniform sampling from [−2k, 2k −1] for some positive integer k, which
is fast and easy.

2 Preliminaries

A string or value α means a binary one, and |α| is its binary length. For any
real number x, �x� denotes the largest integer that less than or equal to x, and
�x� = �x + 1/2�. For any positive integers a and b, denote by lcm(a, b) the least
common multiple of them. For any i, j ∈ Z such that i < j, denote by [i, j] the
set of integers {i, i + 1, · · · , j − 1, j}. For any positive integer t, we let Zt denote
Z/tZ. The elements of Zt are represented, by default, as [0, t − 1]. Nevertheless,
sometimes, Zt is explicitly specified to be represented as [−�(t − 1)/2�, �t/2�].

If S is a finite set then |S| is its cardinality, and x ← S is the operation of
picking an element uniformly at random from S. For two sets A,B ⊆ Zq, define

1 Our work appeared in the literature since November 2016 [JZ16], and the construc-
tion and analysis of LWR-based protocol are presented in the update of February
2017.

http://github.com/OKCN

Generic and Practical Key Establishment from Lattice 305

A + B � {a + b|a ∈ A, b ∈ B}. For an addictive group (G,+), an element x ∈ G
and a subset S ⊆ G, denote by x+S the set containing x+ s for all s ∈ S. For a
set S, denote by U(S) the uniform distribution over S. For any discrete random
variable X over R, denote Supp(X) = {x ∈ R | Pr[X = x] > 0}.

We use standard notations and conventions below for writing probabilistic
algorithms, experiments and interactive protocols. If D denotes a probability
distribution, x ← D is the operation of picking an element according to D. If α
is neither an algorithm nor a set then x ← α is a simple assignment statement. If
A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on
inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · ·) denote the experiment
of picking r at random and letting y be A(x1, x2, · · · ; r). By Pr[R1; · · · ;Rn : E]
we denote the probability of event E, after the ordered execution of random
processes R1, · · · , Rn.

2.1 The LWE and LWR Problems

Given positive continuous α > 0, define the real Gaussian function ρα(x) �
exp(−x2/2α2)/

√
2πα2 for x ∈ R. Let DZ,α denote the one-dimensional discrete

Gaussian distribution over Z, which is determined by its probability density func-
tion DZ,α(x) � ρα(x)/ρα(Z), x ∈ Z. Finally, let DZn,α denote the n-dimensional
spherical discrete Gaussian distribution over Zn, where each coordinate is drawn
independently from DZ,α.

Given positive integers n and q that are both polynomials in the security
parameter λ, an integer vector s ∈ Z

n
q , and a probability distribution χ on

Zq, let Aq,s,χ be the distribution over Z
n
q × Zq obtained by choosing a ∈ Z

n
q

uniformly at random, and an error term e ← χ, and outputting the pair
(a, b = aT s + e) ∈ Z

n
q ×Zq. The error distribution χ is typically taken to be the

discrete Gaussian probability distribution DZ,α defined previously; However, as
suggested in [BCD+16], other alternative distributions of χ can be taken. Briefly
speaking, the (decisional) learning with errors (LWE) assumption [Reg09] says
that, for sufficiently large security parameter λ, no probabilistic polynomial-time
(PT) algorithm can distinguish, with non-negligible probability, Aq,s,χ from the
uniform distribution over Zn

q ×Zq. This holds even if A sees polynomially many
samples, and even if the secret vector s is drawn randomly from χn [ACPS09].

The LWR problem [BPR12] is a “decarbonized” variant of the LWE problem.
Let D be some distribution over Zn

q , and s ← D. For integers q ≥ p ≥ 2 and any
x ∈ Zq, denote

�x�p = �p

q
x�. (1)

Then, for positive integers n and q ≥ p ≥ 2, the LWR distribution An,q,p(s)
over Zn

q ×Zp is obtained by sampling a from Z
n
q uniformly at random, and out-

putting
(
a,

⌊
aT s

⌉
p

)
∈ Z

n
q ×Zp. Briefly speaking, the (decisional) LWR assump-

tion says that, for sufficiently large security parameter, no PT algorithm A can
distinguish, with non-negligible probability, the distribution An,q,p(s) from the

306 Z. Jin and Y. Zhao

distribution (a ← Z
n
q , �u�p) where u ← Zq. This holds even if A sees poly-

nomially many samples. An efficient reduction from the LWE problem to the
LWR problem, for super-polynomial large q, is provided in [BPR12]. Let B
denote the bound for any component in the secret s. It is recently shown that,
when q ≥ 2mBp (equivalently, m ≤ q/2Bp), the LWE problem can be reduced
to the (decisional) LWR assumption with m independently random samples
[BGM+16]. Moreover, the reduction from LWE to LWR is actually independent
of the distribution of the secret s.

3 Key Consensus with Noise

Before presenting the definition of key consensus (KC) scheme, we first introduce
a new function | · |t relative to arbitrary positive integer t ≥ 1: |x|t = min{x mod
t, t − x mod t}, ∀x ∈ Z, where the result of modular operation is represented
in {0, ..., (t − 1)}. For instance, | − 1|t = min{−1 mod t, (t + 1) mod t} =
min{t − 1, 1} = 1. In the following description, we use |σ1 − σ2|q to measure the
distance between two elements σ1, σ2 ∈ Zq.

Definition 1. A KC scheme KC = (params,Con,Rec) is specified as follows.

– params = (q,m, g, d, aux) denotes the system parameters, where q,m, g, d are
positive integers satisfying 2 ≤ m, g ≤ q, 0 ≤ d ≤ � q

2�, and aux denotes some
auxiliary values that are usually determined by (q,m, g, d) and could be set to
be a special symbol ∅ indicating “empty”.

– (k1, v) ← Con(σ1, params): On input of (σ1 ∈ Zq, params), the probabilistic
polynomial-time conciliation algorithm Con outputs (k1, v), where k1 ∈ Zm is
the shared-key, and v ∈ Zg is a hint signal that will be publicly delivered to
the communicating peer to help the two parties reach consensus.

– k2 ← Rec(σ2, v, params): On input of (σ2 ∈ Zq, v, params), the deterministic
polynomial-time reconciliation algorithm Rec outputs k2 ∈ Zm.

Correctness: A KC scheme is correct, if for any σ1, σ2 ∈ Zq such that |σ1 −
σ2|q ≤ d, (k1, v) ← Con(σ1, params) and k2 ← Rec(σ2, v, params), it holds
k1 = k2.

Security: A KC scheme is secure, if k1 and v are independent, and k1 is uni-
formly distributed over Zm, whenever σ1 ← Zq and k1 is the output of
Con(σ1, params). The probability is taken over the sampling of σ1 and the
random coins used by Con.

3.1 Efficiency Upper Bound of KC

The following theorem reveals an upper bound on the parameters q (dominating
security and efficiency), m (parameterizing range of consensus key), g (parame-
terizing bandwidth), and d (parameterizing error rate), which allows us to take
balance on these parameters according to different priorities. Due to space limi-
tation, the proof is given in the full version [JZ16].

Generic and Practical Key Establishment from Lattice 307

Algorithm 1. OKCN: Symmetric KC with Noise
1: params = (q, m, g, d, aux), aux = {q′ = lcm(q, m), α = q′/q, β = q′/m}
2: procedure Con((σ1, params)) � σ1 ∈ [0, q − 1]
3: e ← [−�(α − 1)/2�, �α/2�]
4: σA = (ασ1 + e) mod q′

5: k1 = �σA/β� ∈ Zm

6: v′ = σA mod β
7: v = �v′g/β� � v ∈ Zg

8: return (k1, v)
9: end procedure

10: procedure Rec(σ2, v, params) � σ2 ∈ [0, q − 1]
11: k2 = �ασ2/β − (v + 1/2)/g� mod m
12: return k2

13: end procedure

Theorem 1. If KC = (params,Con,Rec) is a correct and secure key consensus
scheme, and params = (q,m, g, d, aux), then 2md ≤ q

(
1 − 1

g

)
.

3.2 Construction and Analysis of OKCN

The key consensus scheme, named symmetric key consensus with noise
(OKCN)”, is presented in Algorithm 1. The following fact is direct from the
definition of | · |t.
Fact 1. For any x, y, t, l ∈ Z where t ≥ 1 and l ≥ 0, if |x − y|q ≤ l, then there
exists θ ∈ Z and δ ∈ [−l, l] such that x = y + θt + δ.

Theorem 2. Suppose that the system parameters satisfy (2d+1)m < q
(
1 − 1

g

)

where m ≥ 2 and g ≥ 2. Then, the OKCN scheme is correct.

Proof. Suppose |σ1 − σ2|q ≤ d. By Fact 1, there exist θ ∈ Z and δ ∈ [−d, d] such
that σ2 = σ1 + θq + δ. From line 4 and 6 in Algorithm 1, we know that there is
a θ′ ∈ Z, such that ασ1 + e + θ′q′ = σA = k1β + v′. And from the definition of
α, β, we have α/β = m/q. Taking these into the formula of k2 in Rec (line 11 in
Algorithm 1), we have

k2 = �ασ2/β − (v + 1/2)/g� mod m (2)
= �α(θq + σ1 + δ)/β − (v + 1/2)/g� mod m (3)

=
⌊
m(θ − θ′) +

1
β

(k1β + v′ − e) +
αδ

β
− 1

g
(v + 1/2)

⌉
mod m (4)

=
⌊
k1 +

(
v′

β
− v + 1/2

g

)
− e

β
+

αδ

β

⌉
mod m (5)

308 Z. Jin and Y. Zhao

Algorithm 2. OKCN simple
1: params : q = 2q̄, g = 2ḡ, m = 2m̄, d, where ḡ + m̄ = q̄
2: procedure Con(σ1, params)

3: k1 =
⌊

σ1
g

⌋

4: v = σ1 mod g
5: return (k1, v)
6: end procedure
7: procedure Rec(σ2, v, params)

8: k2 =
⌊

σ2−v
g

⌉
mod m

9: return k2

10: end procedure

Notice that |v′/β − (v + 1/2)/g| = |v′g − β(v + 1/2)|/βg ≤ 1/2g. So
∣∣∣∣
(

v′

β
− v + 1/2

g

)
− e

β
+

αδ

β

∣∣∣∣ ≤ 1
2g

+
α

β
(d + 1/2).

From the assumed condition (2d + 1)m < q(1 − 1
g), we get that the right-hand

side is strictly smaller than 1/2; Consequently, after the rounding, k2 = k1. �
Theorem 3. OKCN is secure. Specifically, when σ1 ← Zq, k1 and v are inde-
pendent, and k1 is uniform over Zm, where the probability is taken over the
sampling of σ1 and the random coins used by Con.

Proof. Recall that q′ = lcm(q,m), α = q′/q, β = q′/m. We first demonstrate that
σA is subject to uniform distribution over Zq′ . Consider the map f : Zq ×Zα →
Zq′ ; f(σ, e) = (ασ + e) mod q′, where the elements in Zq and Zα are represented
in the same way as specified in Algorithm 1. It is easy to check that f is an one-
to-one map. Since σ1 ← Zq and e ← Zα are subject to uniform distributions,
and they are independent, σA = (ασ1 + e) mod q′ = f(σ1, e) is also subject to
uniform distribution over Zq′ .

In the similar way, defining f ′ : Zm×Zβ → Zq′ such that f ′(k1, v′) = βk1+v′,
then f ′ is obviously a one-to-one map. From line 6 of Algorithm 1, f ′(k1, v′) =
σA. As σA is distributed uniformly over Zq′ , (k1, v′) is uniformly distributed over
Zm × Zβ , and so k1 and v′ are independent. As v only depends on v′, k1 and v
are independent. �

Special Parameters, and Performance Speeding-Up. The first and the
second line of Con (line 3 and 4 in Algorithm 1) play the role in transforming a
uniform distribution over Zq to a uniform distribution over Zq′ . If one chooses
q, g,m to be power of 2, i.e., q = 2q̄, g = 2ḡ,m = 2m̄ where q̄, ḡ, m̄ ∈ Z, then
such transformation is not necessary, and the random noise e used in calculating
σA in Algorithm 1 is avoided. If we take ḡ + m̄ = q̄, it can be further simplified
into the variant depicted in Algorithm 2, with the constraint on parameters is
further relaxed.

Generic and Practical Key Establishment from Lattice 309

Corollary 1. If m, g are power of 2, q = m · g, and 2md < q, then the KC
scheme described in Algorithm 2 is correct and secure. Notice that the constraint
on parameters is further simplified to 2md < q in this case.

To the best of our knowledge, OKCN is the first multi-bit reconciliation mech-
anism, and the first that can be instantiated to tightly match the upper-bound
proved in Theorem 1.

4 Asymmetric Key Consensus with Noise

Definition 2. An asymmetric key consensus scheme AKC = (params,Con,
Rec) is specified as follows:

– params = (q,m, g, d, aux) denotes the system parameters, where q, 2 ≤ m, g ≤
q, 1 ≤ d ≤ � q

2� are positive integers, and aux denotes some auxiliary values
that are usually determined by (q,m, g, d) and could be set to be empty.

– v ← Con(σ1, k1, params): On input of (σ1 ∈ Zq, k1 ∈ Zm, params), the prob-
abilistic polynomial-time conciliation algorithm Con outputs the public hint
signal v ∈ Zg.

– k2 ← Rec(σ2, v, params): On input of (σ2, v, params), the deterministic
polynomial-time algorithm Rec outputs k2 ∈ Zm.

Correctness: An AKC scheme is correct, if for any σ1, σ2 ∈ Zq such that
|σ1 − σ2|q ≤ d, and v ← Con(σ1, k1, params), k2 ← Rec(σ2, v, params), it
holds k1 = k2.

Security: An AKC scheme is secure, if v is independent of k1 whenever σ1

is uniformly distributed over Zq, and v is the output of Con(σ1, k1, params).
Specifically, for arbitrary ṽ ∈ Zg and arbitrary k̃1, k̃

′
1 ∈ Zm, it holds that

Pr[v = ṽ|k1 = k̃1] = Pr[v = ṽ|k1 = k̃′
1], where the probability is taken over

σ1 ← Zq and the random coins used by Con.

Theorem 4. Let AKC be an asymmetric key consensus scheme with params =
(q,m, d, g, aux). If AKC is correct and secure, then 2md ≤ q

(
1 − m

g

)
.

The proof of Theorem 4 is given in the full version [JZ16]. Comparing the
formula 2md ≤ q(1 − m/g) in Theorem 4 with the formula 2md ≤ q(1 − 1/g) in
Theorem 1, we see that the only difference is a factor m in g. This indicates that,
on the same values of (q,m, d), an AKC scheme has to use a bigger bandwidth
parameter g compared to KC.

4.1 Construction and Analysis of AKCN

The AKCN scheme, referred to as asymmetric key consensus with noise, is
depicted in Algorithm 3. For AKCN, we can offline compute and store k1 and
g�k1q/m� in order to accelerate online performance.

310 Z. Jin and Y. Zhao

Algorithm 3. AKCN: Asymmetric KC with Noise
1: params = (q, m, g, d, aux), where aux = ∅.
2: procedure Con(σ1, k1, params) � σ1 ∈ [0, q − 1]
3: v = �g (σ1 + �k1q/m�) /q� mod g
4: return v
5: end procedure
6: procedure Rec(σ2, v, params) � σ2 ∈ [0, q − 1]
7: k2 = �m(v/g − σ2/q)� mod m
8: return k2

9: end procedure

The design of AKCN was guided by, and motivated for, the upper-bound
for AKC proved in this work. In designing AKCN, we combine all the existing
optimizations in the literature in order to almost meet the upperbound proved
in Theorem 4. AKCN is a generalization of the basic reconciliation mechanisms
proposed in [LPR10,LP10], and its design was also inspired by the design of
our OKCN and the works [BPR12,PG13]. But AKCN and the underlying rec-
onciliation mechanism of [PG13] could be viewed as incomparable in general. In
particular, the reconciliation mechanisms proposed in [LPR10,LP10] correspond
to the special case of AKCN when g = q and m = 2. Note that, with AKCN,
we use Eq. 1 described in the definition of LWR [BPR12], which may also be
derived implicitly from [Pei09].

Theorem 5. Suppose the parameters of AKCN satisfy (2d+1)m < q
(
1 − m

g

)
.

Then, the AKCN scheme described in Algorithm 3 is correct.

Proof. From the formula generating v, we know that there exist ε1, ε2 ∈ R and
θ ∈ Z, where |ε1| ≤ 1/2 and |ε2| ≤ 1/2, such that

v =
g

q

(
σ1 +

(
k1q

m
+ ε1

))
+ ε2 + θg

Taking this into the formula computing k2 in Rec, we have

k2 = �m(v/g − σ2/q)� mod m

=
⌊
m

(
1
q
(σ1 + k1q/m + ε1) +

ε2
g

+ θ − σ2

q

)⌉
mod m

=
⌊
k1 +

m

q
(σ1 − σ2) +

m

q
ε1 +

m

g
ε2

⌉
mod m

By Fact 1 (page 6), there exist θ′ ∈ Z and δ ∈ [−d, d] such that σ1 = σ2+θ′q+δ.
Hence,

k2 =
⌊
k1 +

m

q
δ +

m

q
ε1 +

m

g
ε2

⌉
mod m

Since |mδ/q + mε1/q + mε2/g| ≤ md/q + m/2q + m/2g < 1/2, k1 = k2. �

Generic and Practical Key Establishment from Lattice 311

Theorem 6. The AKCN scheme is secure. Specifically, v is independent of k1
when σ1 ← Zq.

Proof. For arbitrary ṽ ∈ Zg and arbitrary k̃1, k̃
′
1 ∈ Zm, we prove that Pr[v =

ṽ|k1 = k̃1] = Pr[v = ṽ|k1 = k̃′
1] when σ1 ← Zq.

For any (k̃, ṽ) in Zm × Zg, the event (v = ṽ | k1 = k̃) is equivalent to the
event that there exists σ1 ∈ Zq such that ṽ = �g(σ1 + �k̃q/m�)/q� mod g. Note
that σ1 ∈ Zq satisfies ṽ = �g(σ1 + �k̃q/m�)/q� mod g, if and only if there exist
ε ∈ (−1/2, 1/2] and θ ∈ Z such that ṽ = g(σ1 + �k̃q/m�)/q + ε − θg. That is,
σ1 = (q(ṽ − ε)/g − �k̃q/m�) mod q, for some ε ∈ (−1/2, 1/2]. Let Σ(ṽ, k̃) =
{σ1 ∈ Zq | ∃ε ∈ (−1/2, 1/2] s.t. σ1 = (q(ṽ − ε)/g − �k̃q/m�) mod q}. Defining

the map φ : Σ(ṽ, 0) → Σ(ṽ, k̃), by setting φ(x) =
(
x − �k̃q/m�

)
mod q. Then

φ is obviously a one-to-one map. Hence, the cardinality of Σ(ṽ, k̃) is irrelevant
to k̃. Specifically, for arbitrary ṽ ∈ Zg and arbitrary k̃1, k̃

′
1 ∈ Zm, it holds that∣∣∣Σ(ṽ, k̃1)

∣∣∣ =
∣∣∣Σ(ṽ, k̃′

1)
∣∣∣ = |Σ(ṽ, 0)|.

Now, for arbitrary ṽ ∈ Zg and arbitrary k̃ ∈ Zm, when σ1 ← Zq we have

that Pr[v = ṽ | k1 = k̃] = Pr
[
σ1 ∈ Σ(ṽ, k̃) | k1 = k̃

]
= |Σ(ṽ, k̃)|/q = |Σ(ṽ, 0)|/q.

The right-hand side only depends on ṽ, and so v is independent of k1. �

4.2 Discussions on KC vs. AKC

Key establishment (KE) schemes based upon KC and AKC have different per-
formances and features.

– KC-based KE corresponds to Diffie-Hellman key establishment in the lattice
world, while AKC-based to El Gamal key transport.

– When deploying AKC-based KE in practice, if the randomness used by the
responder (e.g., a low-power device like smart card) is poor, it will signifi-
cantly ruin the session-key security. Or, if the responder is just lazy (or for
economic reasons), who may re-use session-keys across multiple sessions, as
demonstrated with some deployed TLS implementations in reality. In compar-
ison, with KC-based KE, the two players play a symmetric role in generating
the session-key, and thus the damage caused by poor randomness can be alle-
viated. In addition, symmetry is usually a desirable feature for cryptographic
schemes in practice.

– On the same parameters (q,m, g) (which imply the same bandwidth), OKCN-
based KE has lower error probability than AKCN-based. Or, on the same
parameters (q,m, d) (which imply the same error probability), OKCN-based
KE has smaller bandwidth than AKCN-based. This comparison is enabled
by the upper-bounds on these parameters proved in Theorems 1 and 4.

– KC-based KE is more versatile, in the sense that it can also be straightfor-
wardly adapted into a key transport protocol or a CPA-secure PKE scheme.
Moreover, in another work [CGZ18], we show that the deterministic version
of OKCN is also a fundamental building tool for lattice-based signature.

312 Z. Jin and Y. Zhao

Fig. 1. LWR-based key establishment from KC, where K1,K2 ∈ Z
lA×lB
m and |K1| =

|K2| = lA lB |m|.

– KC-based KE is more appropriate for incorporating into the existing stan-
dards like IKE and TLS that are based on Diffie-Hellman via the SIGMA
mechanism [Kra03]. We note that key transport is explicitly abandoned with
TLS1.3.

– For the parameters proposed in this work, OKCN is actually (slightly) more
efficient than AKCN.

For the above reasons, we focus more on KC-based key establishment (specif-
ically, key exchange) than AKC-based in this work. Still, we aim for a unified
protocol structure that can be instantiated with either KC or AKC, in order to
simplify system complexity.

5 LWR-Based Key Establishment

The KC-based key establishment (KE) from the LWR problem is depicted
in Fig. 1. Denote by (n, lA, lB , q, p,KC, χ) the system parameters, where
p|q, and p and q are chosen to be power of 2. Let KC = (params =
(p,m, g, d, aux),Con,Rec) be a correct and secure key consensus scheme, χ be a
small noise distribution over Zq, and Gen be a pseudo-random generator (PRG)
generating the matrix A from a small seed. In the actual implementation, we use
OKCN-simple as the underlying KC mechanism. For presentation simplicity, we
assume A ∈ Z

n×n
q to be square matrix. The length of the random seed, i.e., κ,

is typically set to be 256. The actual session-key is derived from K1 and K2 via
some key derivation function KDF . For presentation simplicity, the functions
Con and Rec are applied to matrices, meaning that they are applied to each of the
coordinates respectively. For presentation simplicity, we describe the LWR-based

Generic and Practical Key Establishment from Lattice 313

key establishment protocol from any KC scheme. But it can be trivially adapted
to work on any correct and secure AKC scheme. In this case, the responder user
Bob simply chooses K2 ← Z

lA×lB
m , and the output of Con(Σ2,K2, params) is

simply defined to be V. The security proof of the LWR-based KE protocol is
analogous to that in [Pei14,BCD+16], and is given in the full version.

5.1 Analysis of Correctness and Failure Rate

For any integer x, let {x}p denote x − q
p�x�p, where �x�p = �p

q x�. Then, for
any integer x, {x}p ∈ [−q/2p, q/2p − 1], hence {x}p can be naturally regarded
as an element in Zq/p. In fact, {x}p is equal to x mod q/p, where the result is
represented in [−q/2p, q/2p − 1]. When the notation {·}p is applied to a matrix,
it means {·}p applies to every element of the matrix respectively.

We have Σ2 = YT
1 X2 + �εT X2�p = �AX1�T

p X2 + �εT X2�p = p
q (AX1 −

{AX1}p)T X2 + �εT X2�p. And Σ1 = XT
1 Y2 = XT

1 �AT X2�p = p
q (XT

1 AT X2 −
XT

1 {AT X2}p). Hence,

Σ2 − Σ1 =
p

q
(XT

1 {AT X2}p − {AX1}T
p X2) + �εT X2�p mod p

=
⌊

p

q
(XT

1 {AT X2}p − {AX1}T
p X2 + εT X2)

⌉
mod p

The general idea is that X1,X2, ε, {AT X2}p and {AX1}p are small enough,
so that Σ1 and Σ2 are close. If |Σ1−Σ2|p ≤ d, the correctness of the underlying
KC guarantees K1 = K2. For given concrete parameters, we numerically derive
the probability of |Σ2 − Σ1|p > d by numerically calculating the distribution of
XT

1 {AT X2}p − ({AX1}T
p X2 − εT X2) for the case of lA = lB = 1, then applying

the union bound. The independency between variables indicated by the following
Theorem 7 can greatly simplify the calculation.

Let Inv(X1,X2) denote the event that there exist invertible elements of
ring Zq/p in both vectors X1 and X2. We claim that Inv(X1,X2) happens
with overwhelming probability. This claim follows from Pr[Inv(X1,X2)] =
1 − Pr[all entries of X1,X2 are non-invertible in Zq/p] = 1 − Pr[x ← χ :
x is non-invertible]n·(lA+lB). In our application, Pr[x ← χ : x is non-invertible]
is far from one, hence, Inv(X1,X2) holds with overwhelming probability.

Lemma 1. Consider the case of lA = lB = 1. For any a ∈ Zq/p,x ∈ Z
n
q/p,

denote Sx,a = {y ∈ Z
n
q/p | xT y mod (q/p) = a}. For any fixed a ∈ Zq/p,

conditioned on Inv(X1,X2) and XT
1 AT X2 mod (q/p) = a, the random vectors

{AT X2}p and {AX1}p are independent, and are subjected to uniform distribu-
tion over SX1,a, SX2,a respectively.

Proof. Under the condition of Inv(X1,X2), for any fixed X1 and X2, define the
map φX1,X2 : Z

n×n
q → Z

n
q/p × Z

n
q/p, such that A �→ ({AX1}p, {AT X2}p).

We shall prove that the image of φX1,X2 is S = {(y1,y2) ∈ Z
n
q/p × Z

n
q/p |

XT
2 y1 = XT

1 y2 mod (q/p)}. Denote X1 = (x1,X′T
1)T and y2 = (y2,y′T

2)T .

314 Z. Jin and Y. Zhao

Without loss of generality, we assume x1 is invertible in the ring Zq/p. For any
(y1,y2) ∈ S, we need to find an A such that φX1,X2(A) = (y1,y2).

From the condition Inv(X1,X2), we know that there exists an A′ ∈ Z
(n−1)×n

such that {A′X2}p = y′
2. Then, we let a1 = x−1

1 (y1 − A′T X′
1) mod (q/p), and

A = (a1,A′T). Now we check that φX1,X2(A) = (y1,y2).

{AX1}p =
{(

a1 A′T) (
x1

x′
1

)}

p

= {x1a1 + A′T X′
1}p = y1

{AT X2}p =
{(

aT
1

A′

)
X2

}

p

=
{(

aT
1 X2

A′X2

)}

p

=
{(

x−1
1 (yT

1 − X′T
1 A)X2

A′X2

)}

p

=
{(

x−1
1 (XT

1 y2 − X′T
1 y′

2)
y′
2

)}

p

=
{(

y2
y′
2

)}

p

= y2

Hence, if we treat Z
n×n
q and S as Z-modules, then φX1,X2 : Zn×n

q → S is a
surjective homomorphism. Then, for any fixed (X1,X2), ({AX1}p, {AT X2}p)
is uniformly distributed over S. This completes the proof. �
Theorem 7. Under the condition Inv(X1,X2), the following two distributions
are identical:

– (a,X1,X2, {AX1}p, {AT X2}p), where A ← Z
n×n
q , X1 ← χn, X2 ← χn, and

a = XT
1 AT X2 mod (q/p).

– (a,X1,X2,y1,y2), where a ← Zq/p,X1 ← χn, X2 ← χn, y1 ← SX2,a, and
y2 ← SX1,a.

Proof. For any ã ∈ Zq/p, X̃1, X̃2 ∈ Supp(χn), ỹ1, ỹ2 ∈ Z
n
q/p, we have

Pr[a = ã,X1 = X̃1,X2 = X̃2, {AX1}p = ỹ1, {AT X2}p = ỹ2 | Inv(X1,X2)]

= Pr[{AX1}p = ỹ1, {AT X2}p = ỹ2 | a = ã,X1 = X̃1,X2 = X̃2, Inv(X1,X2)]

Pr[a = ã,X1 = X̃1,X2 = X̃2 | Inv(X1,X2)]

From Lemma 1, the first term equals to Pr[y1 ← SX̃2,ã;y2 ← SX̃1,ã : y1 =
ỹ1,y2 = ỹ2 | a = ã,X1 = X̃1,X2 = X̃2, Inv(X1,X2)].

For the second term, we shall prove that a is independent of (X1,X2),
and is uniformly distributed over Zq/p. Under the condition of Inv(X1,X2),
the map Z

n×n
q → Zq/p, such that A �→ XT

1 AT X2 mod (q/p), is a surjective
homomorphism between the two Z-modules. Then, Pr[a = ã | X1 = X̃1,X2 =
X̃2, Inv(X1,X2)] = p/q. Hence, under the condition of Inv(X1,X2), a is inde-
pendent of (X1,X2), and is distributed uniformly at random. So the two ways
of sampling result in the same distribution. �

We design and implement the following algorithm to numerically calculate the
distribution of Σ2 −Σ1 efficiently. For any c1, c2 ∈ Zq, a ∈ Zq/p, we numerically
calculate Pr[XT

1 {AT X2}p = c1] and Pr[{AX1}T
p X2−εT X2 = c2,XT

1 AT X2 mod
(q/p) = a], then derive the distribution of Σ2 − Σ1.

Generic and Practical Key Establishment from Lattice 315

As Inv(X1,X2) occurs with overwhelming probability, for any event E, we
have |Pr[E] − Pr[E|Inv(X1,X2)]| < negl. For simplicity, we ignore the effect
of Inv(X1,X2) in the following calculations. By Theorem 7, Pr[XT

1 {AT X2}p =
c1] = Pr[X1 ← χn,y2 ← Z

n
q/p;X

T
1 y2 = c1]. This probability can be numerically

calculated by computer programs. The probability Pr[{AX1}T
p X2 − εT X2 =

c2,XT
1 AT X2 mod (q/p) = a] can also be calculated by the similar way. Then,

for arbitrary c ∈ Zq,

Pr[Σ1 − Σ2 = c] = Pr[X
T
1 {AT

X2}p − {AX1}T
p X2 + ε

T
X2 = c]

=
∑

c1−c2=c
a∈Zq/p

Pr[XT
1 {AT X2}p=c1,{AX1}T

p X2−εT X2=c2|XT
1 AT X2 mod (q/p)=a]·

Pr[XT
1 AT X2 mod (q/p)=a]

=
∑

c1−c2=c
a∈Zq/p

Pr[XT
1 {AT X2}p=c1|XT

1 AT X2 mod (q/p)=a]·
Pr[{AX1}T

p X2−εT X2=c2|XT
1 AT X2 mod (q/p)=a] Pr[XT

1 AT X2 mod (q/p)=a]

=
∑

a∈Zq/p
c1−c2=c

Pr[XT
1 {AT X2}p=c1, c1 mod (q/p)=a] Pr[{AX1}T

p X2 − εT X2 = c2, XT
1 AT X2 mod (q/p) = a]

Pr[XT
1 AT X2 mod (q/p) = a]

=
∑

a∈Zq/p
c1−c2=c

c1 mod (q/p)=a

Pr[XT
1 {AT X2}p = c1] Pr[{AX1}T

p X2 − εT X2 = c2, XT
1 AT X2 mod (q/p) = a]

Pr[XT
1 AT X2 mod (q/p) = a]

By Theorem 7, conditioned on Inv(X1,X2) and XT
1 AT X2 mod (q/p) = a,

XT
1 {AT X2}p is independent of {AX1}T

p X2 − εT X2, which implies the second
equality. The scripts are available from http://github.com/OKCN.

5.2 Parameter Selection and Evaluation

It is suggested in [ADPS16,BCD+16] that rounded Gaussian distribution can
be replaced by discrete distribution that is very close to rounded Gaussian in
the sense of Rényi divergence [BLL+15] (Table 1).

Table 1. Discrete distributions of every component in the LWR secret. We choose the
standard variances “var.” large enough to prevent potential combinational attacks.

dist. Bits var. Probability of Order Divergence

0 ±1 ±2 ±3 ±4 ±5 ±6

DR 16 2.00 18110 14249 6938 2090 389 44 3 500.0 1.0000270

DP 16 1.40 21456 15326 5580 1033 97 4 0 500.0 1.0000277

Security Estimation. The dual attack tries to distinguish the distribution
of LWE samples and the uniform distribution. Suppose (A,b = As + e) ∈
Z

m×n
q ×Z

m
q is an LWE sample, where s and e are drawn from discrete Gaussian of

variance σ2
s and σ2

e respectively. Then we choose a positive real c ∈ R, 0 < c ≤ q,
and construct Lc(A) = {(x,y/c) ∈ Z

m×(Z/c)n | xT A = yT mod q}, which is a

http://github.com/OKCN

316 Z. Jin and Y. Zhao

Table 2. Parameters for LWR-Based key establishment with OKCN-simple. “bw.”
refers to the bandwidth in kilo-bytes.“err.” refers to the overall error rate that is cal-
culated by the algorithm developed in Sect. 5.1. “|K|” refers to the length of consensus
bits.

n q p l m g distr. bw. err. |K|
Recommended 672 215 212 8 24 28 DR 16.19 2−30 256

Paranoid 832 215 212 8 24 28 DP 20.03 2−34 256

lattice with dimension m+n and determinant (q/c)n. For a short vector (x,y) ∈
Lc(A) found by the BKZ algorithm, we have xT b = xT (As+e) = c ·yT s+xT e
mod q. If (A,b) is an LWE sample, the distribution of the right-hand side will be
very close to a Gaussian of standard deviation

√
c2‖y‖2σ2

s + ‖x‖2σ2
e , otherwise

the distribution will be uniform. ‖(x,y)‖ is about δm+n
0 (q/c)

n
m+n , where δ0 is

the root Hermite factor. We heuristically assume that ‖x‖ =
√

m
m+n ‖(x,y)‖,

and ‖y‖ =
√

n
m+n ‖(x,y)‖. Then we can choose c = σe/σs that minimizes the

standard deviation of xT b. The advantage of distinguishing xT b from uniform
distribution is ε = 4 exp(−2π2τ2), where τ =

√
c2‖y‖2σ2

s + ‖x‖2σ2
e/q. This

attack must be repeated R = max{1, 1/(20.2075bε2)} times to be successful.
The primal attack reduces the LWE problem to the unique-SVP problem.

Let Λw(A) = {(x,y, z) ∈ Z
n × (Zm/w) × Z | Ax + wy = zb mod q}, and a

vector v = (s, e/w, 1) ∈ Λw(A). Λw(A) is a lattice of d = m + n + 1 dimen-
sions, and its determinant is (q/w)m. From geometry series assumption, we can
derive ‖b∗

i ‖ ≈ δd−2i−1
0 det(Λw(A))1/d. We heuristically assume that the length

of projection of v onto the vector space spanned by the last b Gram-Schmidt

vectors is about
√

b
d ‖(s, e/w, 1)‖ ≈

√
b
d (nσ2

s + mσ2
e/w2 + 1). If this length is

shorter than ‖b∗
d−b‖, this attack can be successful. Hence, the successful condi-

tion is
√

b
d (nσ2

s + mσ2
e/w2 + 1) ≤ δ2b−d−1

0

(
q
w

)m/d. We know that the optimal
w balancing the secret s and the noise e is about σe/σs.

We aim at providing parameter sets for long term security, and estimate the
concrete security in a more conservative way than [APS15] from the defender’s
point of view. We first consider the attacks of LWE whose secret and noise have
different variances. Then, we treat the LWR problem as a special LWE problem
whose noise is uniformly distributed over [−q/2p, q/2p − 1]. In our security esti-
mation, we simply ignore the difference between the discrete distribution and
the rounded Gaussian, on the following grounds: the dual attack and the pri-
mal attack only concern about the standard deviation, and the Rényi divergence
between the two distributions is very small (Table 3).

Generic and Practical Key Establishment from Lattice 317

Table 3. Security estimation of the parameters described in Table 2. “C, Q, P” stand
for “Classical, Quantum, Plausible” respectively.

Scheme Attack m′ b C Q P

Recommended Primal 665 459 143 131 104

Dual 633 456 142 130 103

Paranoid Primal 768 584 180 164 130

Dual 746 580 179 163 129

Fig. 2. LWE-based key establishment from KC and AKC, where K1,K2 ∈ Z
lA×lB
m and

|K1| = |K2| = lA lB |m|. 1 refers to the matrix which every elements are 1.

6 LWE-Based Key Establishment

In this section, following the protocol structure in [Pei14,ADPS16,BCD+16],
we present the applications of OKCN and AKCN to key establishment protocols
based on LWE. Denote by (λ, n, q, χ,KC, lA, lB , t) the underlying parameters,
where λ is the security parameter, q ≥ 2, n, lA and lB are positive integers
that are polynomial in λ (for protocol symmetry, lA and lB are usually set to
be equal and are actually small constant). To save bandwidth, we cut off t least
significant bits of Y2 before sending it to Alice.

Let KC = (params,Con,Rec) be a correct and secure KC scheme, where
params is set to be (q, g,m, d). The KC-based key establishment protocol from
LWE is depicted in Fig. 2, and the actual session-key is derived from K1 and
K2 via some key derivation function KDF . There, for presentation simplicity,
the Con and Rec functions are applied to matrices, meaning they are applied to
each of the coordinates separately. Note that 2tY′

2 + 2t−11 is an approximation
of Y2, so we have Σ1 ≈ XT

1 Y2 = XT
1 AT X2 + XT

1 E2, Σ2 = YT
1 X2 + Eσ =

318 Z. Jin and Y. Zhao

XT
1 AT X2 + ET

1 X2 + Eσ. As we choose X1,X2,E1,E2,Eσ according to a small
noise distribution χ, the main part of Σ1 and that of Σ2 are the same XT

1 AT X2.
Hence, the corresponding coordinates of Σ1 and Σ2 are close in the sense of | · |q,
from which some key consensus can be reached. The failure probability depends
upon the number of bits we cut t, the underlying distribution χ and the distance
parameter d, which will be analyzed in detail in subsequent sections. In the
following security definition and analysis, we simply assume that the output of
the PRG Gen is truly random. For presentation simplicity, we have described
the LWE-based key establishment protocol from a KC scheme. But it can be
straightforwardly adapted to work on any correct and secure AKC scheme, as
clarified in Sect. 5.

6.1 Noise Distributions and Correctness

For a correct KC with parameter d, if the distance of corresponding elements of
Σ1 and Σ2 is less than d in the sense of | · |q, then the scheme depicted in Fig. 2
is correct. Denote ε(Y2) = 2t�Y2/2t� + 2t−11 − Y2. Then

Σ1 − Σ2 = XT
1 (2tY′

2 + 2t−11) − YT
1 X2 − Eσ

= XT
1 (Y2 + ε(Y2)) − YT

1 X2 − Eσ

= XT
1 (AT X2 + E2 + ε(Y2)) − (AX1 + E1)T X2 − Eσ

= XT
1 (E2 + ε(Y2)) − ET

1 X2 − Eσ

We consider each pair of elements in matrix Σ1,Σ2 separately, then derive
the overall error rate by union bound. Now, we only need to consider the case
lA = lB = 1. In this case, Xi,Ei,Yi, (i = 1, 2) are column vectors in Z

n
q , and

Eσ ∈ Zq.
If Y2 is independent of (X2,E2), then we can directly calculate the distribu-

tion of σ1−σ2. But now Y2 depends on (X2,E2). To overcome this difficulty, we
show that Y2 is independent of (X2,E2) under a condition of X2 that happens
with very high probability.

Proposition 1. For any positive integer q, n, and a column vector s ∈ Z
n
q , let

φs denote the map Z
n
q → Zq : φs(x) = xT s. If there exits a coordinate of s which

is not zero divisor in ring Zq, then map φs is surjective.

For a column vector s composed by random variables, denote by F (s) the
event that φs is surjective. The following proposition gives a lower bound of
probability of F (s), where s ← χn. In our application, this lower bound is very
close to 1.

Proposition 2. Let p0 be the probability that e is a zero divisor in ring Zq,
where e is subject to χ. Then Pr[s ← χn : F (s)] ≥ 1 − pn

0

Theorem 8. If s, e ← χn,A ← Z
n×n
q ,y = As + e ∈ Z

n
q , then under the condi-

tion F (s), y is independent of (s, e), and is uniformly distributed over Z
n
q .

Generic and Practical Key Establishment from Lattice 319

Proof. For all ỹ, s̃, ẽ, Pr[y = ỹ | s = s̃, e = ẽ, F (s)] = Pr[As̃ = ỹ − ẽ | s = s̃, e =
ẽ, F (s)]. Let A = (a1,a2, . . . ,an)T , ỹ − ẽ = (c1, c2, . . . , cn)T , where ai ∈ Z

n
q ,

and ci ∈ Zq, for every 1 ≤ i ≤ n. Since φs is surjective, the number of possible
choices of ai, satisfying aT

i · s̃ = ci, is |Kerφs| = qn−1. Hence, Pr[As̃ = ỹ− ẽ | s =
s̃, e = ẽ, F (s)] = (qn−1)n/qn2

= 1/qn. Since the right-hand side is the constant
1/qn, the distribution of y is uniform over Z

n
q , and is irrelevant of (s, e). �

We now begin to analyze the error rate of the scheme presented in Fig. 2.
Denote by E the event |XT

1 (E2 + ε(Y2)) − ET
1 X2 − Eσ|q > d. Then Pr[E] =

Pr[E|F (S)] Pr[F (S)] + Pr[E|¬F (S)] Pr[¬F (S)]. From Theorem 8, we replace
Y2 = AT X2 + E2 in the event E|F (S) with uniformly distributed Y2. Then,

Pr[E] = Pr[Y2 ← Z
n
q : E|F (S)] Pr[F (S)] + Pr[E|¬F (S)] Pr[¬F (S)]

= Pr[Y2 ← Z
n
q : E|F (S)] Pr[F (S)] + Pr[Y2 ← Z

n
q : E|¬F (S)] Pr[¬F (S)]

+ Pr[E|¬F (S)] Pr[¬F (S)] − Pr[Y2 ← Z
n
q : E|¬F (S)] Pr[¬F (S)]

= Pr[Y2 ← Z
n
q : E] + ε

where |ε| ≤ Pr[¬F (S)]. In our application, p0 is far from 1, and n is very large, by
Theorem 2, ε is very small, so we simply ignore ε. If Y2 is uniformly distributed,
then ε(Y2) is a centered uniform distribution. Then, the distribution of XT

1 (E2+
ε(Y2)) − ET

1 X2 − Eσ can be directly computed by programs.

Discrete Distributions. In this work, for LWE-based key establishment, we
use the following discrete distributions, which are specified in Table 4, where
“bits” refers to the number of bits required to sample the distribution and “var.”
means the standard variation of the Gaussian distribution approximated.

Table 4. Discrete distributions proposed in this work, and their Rényi divergences.

dist. Bits var. Probability of Order Divergence

0 ±1 ±2 ±3 ±4 ±5

D1 8 1.10 94 62 17 2 15.0 1.0015832

D2 12 0.90 1646 992 216 17 75.0 1.0003146

D3 12 1.66 1238 929 393 94 12 1 30.0 1.0002034

D4 16 1.66 19794 14865 6292 1499 200 15 500.0 1.0000274

D5 16 1.30 22218 15490 5242 858 67 2 500.0 1.0000337

Instantiations, and Comparisons with Frodo. For “OKCN simple” pro-
posed in Algorithm 2, it achieves a tight parameter constraint, specifically,
2md < q. In comparison, the parameter constraint achieved by Frodo is 4md < q.
As we shall see, such a difference is one source that allows us to achieve bet-
ter trade-offs among error probability, security, (computational and bandwidth)
efficiency, and consensus range. In particular, it allows us to use q that is

320 Z. Jin and Y. Zhao

one bit shorter than that used in Frodo. Beyond saving bandwidth, employ-
ing a one-bit shorter q also much improves the computational efficiency (as the
matrix A becomes shorter, and consequently the cost of generating A and the
related matrix operations are more efficient), and can render stronger security
levels simultaneously. Here, we briefly highlight one performance comparison:
OKCN-T2 (resp., Frodo-recommended) has 18.58kB (resp., 22.57kB) bandwidth,
887.15kB (resp., 1060.32kB) matrix A, at least 134-bit (resp., 130-bit) quantum
security, and error rate 2−39 (resp., 2−38.9) (Table 5).

Table 5. Parameters proposed for OKCN-LWE with t least significant bits cut off.

q n l m g t d dist. err. bw. (kB) |A| (kB) |K| pq-sec

OKCN-T2 214 712 8 24 28 2 509 D5 2−39.0 18.58 887.15 256 134

OKCN-T1 214 712 8 24 28 1 509 D5 2−52.3 19.29 887.15 256 134

6.2 CCA-Secure AKCN-LWE, and Comparison with FrodoKEM

FrodoKEM [FrodoKEM] in submission to NIST PQC standardization is AKC-
based and is a CCA-secure key encapsulation mechanism (KEM). The underlying
AKC mechanism of FrodoKEM corresponds to the special case of AKCN for the
parameters params = (q,m, g, d) where g = q and m = 4 or m = 8. In addition,
FrodoKEM chooses t2 = 0, i.e., without compression of Y2. This means that, on
the same parameters, AKCN-LWE outperforms FrodoKEM in bandwidth. We
also note that the discrete distributions proposed by FrodoKEM, referred to as
χFrodo-640 and χFrodo-976, are different from those of KC-based Frodo [BCD+16].
By replacing the underlying AKC mechanism of FrodoKEM with our AKCN,
we get an AKCN-based CCA-secure KEM scheme. Two set of parameters for
our AKCN-based CCA-secure KEM, referred to as AKCN-640 and AKCN-976
respectively, are briefly summaried in Table 6.

Table 6. Brief comparison between CCA-secure AKCN-LWE and FrodoKEM. The
ciphertext size is the total length of bytes sent by Bob. For AKCN-640, its ciphertext
is 7% smaller than Frodo-640. While its error probability is larger than Frodo-640, it’s
still under 2−130 that is sufficiently smaller for 103-bit pq-security. For AKCN-976,
its ciphertext is 12.8% smaller than Frodo-976, and its error probability is still under
2−160 that is sufficiently smaller for 150-bit pq-security.

n q m g t dist ciphertext err. |K| C Q

Frodo-640 640 215 22 215 0 χFrodo-640 9720 2−148.8 128 144 103

AKCN-640 640 215 22 210 1 χFrodo-640 9040 2−132.7 128 144 103

Frodo-976 976 216 23 216 0 χFrodo-976 15744 2−199.6 192 209 150

AKCN-976 976 216 23 28 2 χFrodo-976 13728 2−164.1 192 209 150

Generic and Practical Key Establishment from Lattice 321

References

[APS15] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

[ADPS16] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key
exchange — a new hope. USENIX Security, pp. 327–343 (2016)

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 35

[BLL+15] Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved
security proofs in lattice-based cryptography: using the Rényi divergence
rather than the statistical distance. In: ASIACRYPT, pp. 3–24 (2015)

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lat-
tices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 42

[BGL+18] Bhattacharya, S., et al.: Round5: compact and fast post-quantum public-
key encryption. Cryptology ePrint Archive, 2018/725

[BBG+17] Baan, H., et al.: Round2: KEM and PKE based on GLWR. Cryptology
ePrint Archive, 2017/1183

[BGM+16] Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hard-
ness of learning with rounding over small modulus. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 9

[BCD+16] Bos, J., et al.: Frodo: take off the ring! Practical, quantum-secure key
exchange from LWE. In: ACM CCS, pp. 1006–1018 (2016)

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 1

[CGZ18] Cheng, L., Gong, B., Zhao, Y.: Lattice-based signature from key consen-
sus. Cryptology ePrint Archive, Report 2018/1180

[CKLS16] Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: cut off the tail! practical
post-quantum public-key encryption from LWE and LWR. Cryptology
ePrint Archive, Report 2016/1126

[CW90] Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic pro-
gressions. J. Symb. Comput. 9(3), 251–280 (1990)

[CDS94] Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48658-5 19

[DKRV17] D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER: Mod-
LWR based KEM. Proposal to NIST PQC Standardization

[DXL12] Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme
based on the learning with errors problem. Cryptology ePrint Archive,
Report 2012/688 (2012)

[DTV15] Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056,
pp. 173–202. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 8

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-662-49096-9_9
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-662-46800-5_8
https://doi.org/10.1007/978-3-662-46800-5_8

322 Z. Jin and Y. Zhao

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[JZ16] Jin, Z., Zhao, Y.: Optimal key consensus in presence of noise. CoRR
abs/1611.06150 (2016). https://arxiv.org/abs/1611.06150

[Kra03] Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated
Diffie-Hellman and its use in the IKE protocols. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 24

[LP10] Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based
encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp.
319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19074-2 21

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learn-
ing with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 1

[FrodoKEM] Naehrig, M., et al.: Supporting documentation: frodokem. Technical
report, National Institute of Standards and Technology (2017). https://
csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
Round-1-Submissions

[NIST] NIST: Post-Quantum Cryptography Standardization. https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-
Cryptography-Standardization

[Pei09] Peikert, C.: Public-Key Cryptosystems from the worst-case shortest vec-
tor problem. In: STOC, pp. 333–342 (2009)

[Pei14] Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.)
PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11659-4 12

[PG13] Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-
key encryption on reconfigurable hardware. In: Lange, T., Lauter, K.,
Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 68–85. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43414-7 4

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), 34–72 (2009)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://arxiv.org/abs/1611.06150
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-662-43414-7_4

One Sample Ring-LWE with Rounding
and Its Application to Key Exchange

Jintai Ding1, Xinwei Gao2, Tsuyoshi Takagi3,4, and Yuntao Wang3(B)

1 University of Cincinnati, Cincinnati, USA
jintai.ding@gmail.com

2 Beijing Jiaotong University, Beijing, China
xinwei.gao.7@yandex.com

3 The University of Tokyo, Tokyo, Japan
{takagi,y-wang}@mist.i.u-tokyo.ac.jp

4 CREST, Japan Science and Technology Agency, Kawaguchi, Japan

Abstract. In this paper, we introduce a new provably secure ephemeral-
only RLWE+Rounding-based key exchange protocol and a proper app-
roach to more accurately estimate the security level of the RLWE prob-
lem with only one sample. Since our scheme is an ephemeral-only key
exchange, it generates only one RLWE sample from protocol execution.
We carefully analyze how to estimate the practical security of the RLWE
problem with only one sample, which we call the ONE-sample RLWE
problem. Our approach is different from existing approaches that are
based on estimation with multiple RLWE samples. Though our anal-
ysis is based on some recently developed techniques in Darmstadt, our
type of practical security estimate was never done before and it produces
security estimates substantial different from the estimates before based
on multiple RLWE samples. We show that the new design improves the
security and reduce the communication cost of the protocol simultane-
ously by using one RLWE+Rounding sample technique. We also present
two parameter choices ensuring 2−60 key exchange failure probability
which cover security of AES-128/192/256 with concrete security analysis
and implementation. We believe that our construction is secure, simple,
efficient and elegant with wide application prospects.

Keywords: Key exchange · Post-quantum · Diffie-Hellman · RLWE ·
Lattice · One sample

1 Introduction

1.1 The Post-quantum World

Key exchange is a very important cryptographic primitive which allows com-
municating parties to agree on same keys over insecure network. In 1976, the
first key exchange primitive – Diffie-Hellman key exchange protocol was pro-
posed in [20]. This ground-breaking work is a key part of public key cryptogra-
phy and it inspires cryptographers to build new public key cryptosystems and
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 323–343, 2019.
https://doi.org/10.1007/978-3-030-21568-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_16

324 J. Ding et al.

key exchange protocols. With properly chosen parameters and implementations,
Diffie-Hellman key exchange and its variants are hard to break with current
computing resources.

However, such cryptosystems are no longer secure against sufficiently large
quantum computers. In 1994, Shor proposed a quantum algorithm which can
solve discrete logarithm problem (DLP) and integer factorization problem (IFP)
on a quantum computer [32] in polynomial time. Therefore, if a sufficient large
quantum computer is built, Shor’s algorithm is expected to break cryptosystems
which are constructed based on DLP, IFP and their elliptic curve variants etc.,
including RSA, DSA, ElGamal etc. It is vital to develop secure and practical
post-quantum alternatives for the upcoming post-quantum world.

During recent years, various works are focusing on the lattice-based Ring
Learning With Errors (RLWE) problem [25], which is the ring variant of Learning
With Errors (LWE) problem [27]. They enjoy high efficiency as well as strong
security, making them very promising towards the post-quantum world.

In 2015, NSA announced that it is planning the transition to quantum-
resistant cryptography suites in near future. In 2016, NIST formally published
calls for new post-quantum cryptography algorithms [19]. This stresses impor-
tance and urgency to develop post-quantum alternatives for near future. NIST
focused on three primitives: public key encryption, digital signature and key
establishment.

1.2 Quantum-Resistant RLWE+Rounding Key Exchange
with One Sample

The first complete key exchange solution appeared in the LWE & RLWE-based
key exchange protocols proposed by Ding et al. in 2012 [21]. There are various
similar works that construct LWE/RLWE-based key exchange protocols, includ-
ing BCNS [14], NewHope [6], Frodo [13], NewHope-Simple [5], HILA5 [28], Kyber
[15] etc. Also there are various new protocols in NIST’s round 1 submissions [19].

[11] proposed the Learning With Rounding (LWR) problem, which can reduce
communication cost of LWE problem through rounding. Since rounding and
recovering algorithms generate deterministic errors, [11] suggests that error term
in LWE problem can be discarded with properly chosen parameters. Till now,
concrete security of LWR and its ring variant – RLWR problem is not well
understood. In LWR and RLWR, “error” on the term a · s is only generated
by deterministic rounding and recovering algorithm, and this brings security
concerns over LWR and RLWR problems. This is also the reason why we prefer
the“RLWE+Rounding” approach, instead of using RLWR directly.

Inspired by the notion of RLWR and RLWE-based key exchange, we intro-
duce a new rounding technique dedicated to our key exchange design to
reduce the communication cost and increase the security simultaneously. Unlike
LWR/RLWR-based cryptosystems, we keep the freshly generated and secret
error term 2e in our RLWE instance a · s+ 2e, then we apply our new rounding
technique. We call this a RLWE+Rounding sample. By designing new rounding

One Sample Ring-LWE with Rounding and Its Application to Key Exchange 325

and recovering techniques, we reduce communication cost substantially and fur-
ther improve the practical efficiency of our key exchange protocol. Moreover, it
actually adds larger perturbation – “error” on a ·s compared to standard RLWE
instance, which helps to improve security of our protocol even further.

In addition, we give two flexible parameter choices and implementation
that ensure low key exchange failure probability and cover security of AES-
128/192/256 using our new security analysis technique for only one sample case.

1.3 Parameter Settings for ONE-Sample RLWE Case

It is very clear that for an RLWE-based ephemeral key exchange, an attack
can only get one sample. And each RLWE sample can be expanded to n LWE
samples by rotating elements in the convolution polynomial ring. Recently a
work of [29] developed techniques in solving standard LWE instances with a
restricted number of samples. However, it is not adapted in practical security
analysis of RLWE key exchanges directly. Especially we can not adopt the LWE-
estimator [4] directly because of the perturbations from the rounding/recovering
functions in our key exchange scheme. We developed the security analysis of
the dual embedding attack (we call “SIS attack” in this work) on solving ONE-
sample RLWE case.

Further, in Table 1 we show the complexity of solving the standard LWE
instance using SIS attack given n and 2n samples. We use Regev’s parameter
settings (n, α = 1√

2πn log2 n
, q ≈ n2) in the original LWE paper [27]. We estimate

the hardness of standard LWE for n = {128, 512, 1024, 2048} using the LWE-
estimator [4] and restrict the number of given samples to n and 2n. From the
table we can see that the gap of complexities is distinctly larger with n increasing.
Note that the n and 2n samples here can be seen as extracted from ONE-sample
RLWE case and TWO-samples RLWE case respectively. Hence for the security
analysis of RLWE instance, the available number of samples may lead a big gap
for high dimensions.

Table 1. Hardness estimation for restricted number of LWE samples with Regev’s
parameter settings from LWE-estimator.

n 128 512 1024 2048

#{given samples} 128 256 512 1024 1024 2048 2048 4096

#{used samples} 128 228 512 919 1024 1853 2048 3821

logarithmic complexity (clock cycles) 66.8 57.7 241.4 201.6 497.3 410.2 1043.8 851.5

1.4 Contribution

In this paper, we introduce an appropriate method to estimate the security
of only one RLWE sample. Complexity of various practical attacks on having
only one sample and multiple samples are very different. We discuss such differ-
ences carefully. We apply the one sample model to construct an ephemeral-
only RLWE-based key exchange protocol. Our construction is an ephemeral

326 J. Ding et al.

RLWE+Rounding variant of the classic Diffie-Hellman key exchange proto-
col, which can be regarded as a direct drop-in replacement for current widely-
deployed Diffie-Hellman key exchange protocol and its variants. We use the new
RLWE+Rounding technique instead of RLWR to improve the security of our
scheme and reduce communication cost simultaneously. We note that multiple
key reuse attacks targeting RLWE-based key exchange protocols do not work
for our protocol. Moreover, we study the practical SIS attack on the only one-
sample RLWE case. We give secure parameter settings for AES-128/192/256
security levels, which are based on the progressive BKZ simulator as a practical
reference and using the sieving-BKZ estimation as a lower bound, taking the
impact of exponential memory requirement of sieving subroutine into account.
We present protocol specifications, parameter choices, security analysis and per-
formance analysis of our protocol.

Advantages. Here we briefly summarize advantages of our construction as fol-
lows: (1) one RLWE sample and flexible parameter choices. Attackers can only
use one RLWE sample for lattice attacks since our construction is an ephemeral-
only key exchange; (2) reduced Communication Cost. Our rounding technique
gives at least 10% smaller communication cost compared with similar RLWE-
based ones at similar security level; (3) longer Final Shared Keys. Our protocol
generates a 512 or 1024 bits key, while most similar works generate 256-bit key.
We believe long shared key is extremely important for real-world applications,
e.g. the master key in TLS protocol is 384 bits; (4) forward Secure. Our protocol
is an ephemeral Diffie-Hellman-like schemes instead of KEM, where in practice,
the latter approach reuses public key. If the secret key is leaked, then all previous
captured traffic can be decrypted.

2 Ephemeral-Only RLWE+Rounding Key Exchange

2.1 Preliminaries

Let Rq = Zq[x]/f(x) be the quotient ring of integer polynomials with f(x) =
xn + 1, q a prime number, and n a number as a power of 2. A polynomial a in
Rq is represented as a = a1 + a2x + · · · + anxn−1. Coefficients of a polynomial
a can also denoted by a vector a = (a1, ..., an).

Let Λ be a discrete subset of Z
n. For any vector c ∈ R

n and any positive
parameter σ > 0, let ρσ,c(x) = e−π‖x−c‖2/σ2

be the Gaussian function on R
n

with the center c and the parameter σ. Denote ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x) be the
discrete integral of ρσ,c over Λ, and DΛ,σ,c be the discrete Gaussian distribu-
tion over Λ with the center c and the parameter σ. For all y ∈ Λ, we have
DΛ,σ,c(y) = ρσ,c(y)

ρσ,c(Λ) . In this paper, we fix Λ to be Z
n and c to be zero vector.

For ease of notation, we denote DZn,σ,0 as DZn,σ. Let U [a, b] be the uniform dis-

tribution over discrete set {a, a + 1, · · · , b − 1, b} over integers. Let $←− χ denote
a random sampling according to the distribution χ. Here we represent Zq as
{− q−1

2 , · · · , q−1
2 }. However, on occasion, we treat elements in Zq as elements in

{0, · · · , q − 1} for convenience, but we will remark the switch clearly.

One Sample Ring-LWE with Rounding and Its Application to Key Exchange 327

Let || · ||1 be the l1-norm, || · ||2 be the l2-norm, || · ||∞ be the l∞-norm. Let �x�
be the floor function which outputs the greatest integer that is less than or equal
to x, �x� be ceiling function which outputs the least integer that is greater than
or equal to x, �x� be the rounding function which rounds x to nearest integer.
Let “a‖b” denotes the concatenation of a and b. Function log denotes the natural
logarithm, log2 denotes logarithm with base 2.

First we recall and introduce useful lemmas.

Lemma 1 ([34], Lemma 2.5). For σ > 0, r ≥ 1/
√

2π, Pr[‖x‖2 > rσ
√

n;x $←−
DZn,σ] < (

√
2πer2 · e−πr2

)n. �
Lemma 2. For a,b ∈ Rq, ‖a · b‖∞ ≤ ‖a‖2 · ‖b‖2.
Proof. Denote the coefficient vector of polynomial a(x) = a1+a2x+a3x

2+ · · ·+
an−1x

n−2 + anxn−1 ∈ Rq as (a1, a2, a3, · · · , an−1, an).
For c = a · b ∈ Rq, cn equals the inner product of (a1, a2, · · · , an−1, an)

and (bn, bn−1, · · · , b2, b1). Similar computations can be applied to coefficients
cn−1, · · · , c2, c1 as well. By applying Cauchy-Schwarz inequality and property
of norm (i.e. for any vector x, ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1), we have ‖c‖∞ ≤ ‖a‖2 ·
‖b‖2. �

2.2 Core Functions

In this section, we define several functions which are crucial to construct our
RLWE-based key exchange protocols.
Hint Function. Hint functions σ0(x), σ1(x) from Zq to {0, 1} are defined as:

σ0(x) =

{
0, x ∈ [−� q

4�, � q
4�]

1, otherwise
, σ1(x) =

{
0, x ∈ [−� q

4� + 1, � q
4� + 1]

1, otherwise

Signal Function. A signal function Sig() is defined as:

For any y ∈ Zq, Sig(y) = σb(y), where b
$← {0, 1}. If Sig(y) = 1, we say y is

in the outer region, otherwise y is in the inner region.
Signal function is defined for an integer x ∈ Zq. Signal function for a ∈ Rq

is computed by applying Sig() for each coefficient ai ∈ Zq. In this document, we
use the same notation “Sig()” for both signal functions over Zq and Rq.
Reconciliation Function. Mod2() is a deterministic function with error tol-
erance δ. Mod2() is defined as: for any x in Zq and w = Sig(x), Mod2(x,w) =
(x + w · q−1

2 mod q) mod 2. Here we treat elements in Zq as elements in Z

before we perform the modulo 2 operation.
We define the error tolerance δ, as the largest integer such that for any

x, y ∈ Zq, if ‖x − y‖∞ ≤ δ, then Mod2(x,w) = Mod2(y, w), where w = Sig(y).
Error tolerance δ is q

4 −2, which is the key to ensure correctness of key exchange
over RLWE with overwhelming probability.

Reconciliation function is defined for an integer x ∈ Zq. The function for
a ∈ Rq is computed by applying Mod2() for each coefficient ai ∈ Zq. We use the
same notation “Mod2()” for reconciliation functions over Zq and Rq.

328 J. Ding et al.

Lemma 3. Let q > 8 be an odd integer. Function Mod2() as defined above
is a robust extractor with respect to signal function Sig() with error tolerance
δ = q

4 − 2.

For concrete proofs of Lemma 3, please refer to [21].
Rounding Function. For x ∈ Zq, q > p > 0 be integers. x is a coefficient of
polynomial in Rq, q, p are parameters of our protocol.

For the convenience of notation, we change the representation of x ∈
{− q−1

2 , · · · , q−1
2 } to x ∈ {0, · · · , q − 1} before Round() runs. Function

Round(x, p, q) is defined in Algorithm 1.

Algorithm 1. Round(x, p, q)

Input: x ∈ Zq, p, q
Output: Rounded value x′ of x
1: t ← �2q/p�, k ← �x/t�
2: if x is odd number then
3: x′ ← 2k + 1
4: else if x is even number then
5: x′ ← 2k
6: end if

7: if x′ = p then

8: rnd
$←− U [0, 1]

9: if rnd = 1 then
10: x′ ← x′ − 2
11: else
12: x′ ← (x′ + 2) mod (p + 1)
13: end if
14: end if

Rounding function is defined for an integer x ∈ Zq. Rounding function for
a ∈ Rq is computed by applying Round() for each coefficient ai ∈ Zq of a ∈ Rq.
In this document, we use the same notation Round() for both rounding functions
over Zq and Rq.
Recovering Function. Recover() is a deterministic function. q > p > 0 be
integers. x′ is one coefficient of rounded polynomial, q, p are parameters of our
protocol. Function Recover(x′, p, q) is defined in Algorithm 2.

Algorithm 2. Recover(x′, p, q)
Input: x′, p, q
Output: Recovered value x′′ of x′

1: t ← �q/p�
2: if x′ is odd number then
3: x′′ ← x′ · t + 1
4: else if x′ is even number then
5: x′′ ← (x′ + 1) · t
6: end if

In order to be consistent with theoretical analysis, we change representation
of x′′ ∈ {0, · · · , q − 1} to x′′ ∈ {− q−1

2 , · · · , q−1
2 } after Recover() runs.

Recovering function is defined for an integer x′. Recovering function for vector
a is computed by applying Recover() for each coefficient ai in vector a. In this
document, we use the same notation “Recover()” for both recovering functions
over integer x′ and vector a.

One Sample Ring-LWE with Rounding and Its Application to Key Exchange 329

Lemma 4. For parameter p and q, let t = �log2 q� − �log2 p�, x = (x1, x2, · · · ,
xn) be a vector whose each coefficient is uniformly random sampled integer in
Zq, x’ be a vector whose each coefficient x′

i = Recover(Round(xi, p, q),p, q).
Let d = x-x’ be a vector whose each coefficient di = xi − x′

i (i ∈
[1, n]). Then di is an even number with possible values in set {−2t,−2t + 2,
· · · , 2t − 2}. Pr[di = −2t] = Pr[di = −2t + 2] = · · · = Pr[di = 2t − 2] = 1

2t �
Note that our rounding and recovering algorithm is very different from Kyber
[15]. Our algorithms round and recover integers with same parity in order to
meet the need of our reconciliation mechanism, while Kyber directly rounds and
recovers to nearest integer with same or different parity.
A Derivation Function. In each key exchange execution, we use a 128-bit
seed to generate fresh a. Set seed to pseudorandom number generator. Each
coefficient ai ∈ Zq (i ∈ [1, n]) of a ∈ Rq is derived as follows:

Algorithm 3. Derive a(seed)
Output: Coefficient ai of polynomial a ∈ Rq

1: ai
$←− U [0, q − 1]

2.3 Protocol Specification

In this section, we present our RLWE-based key exchange protocol.

2.3.1 Specification. We give the description of key exchange between party
i and party j. In our protocol, users share following parameters: n, σ, q, p. The
protocol is illustrated in Fig. 1.

Initiate. Party i instantiates key exchange by generating 128-bit random seed,
computes fresh a = Derive a(seed) and public key pi = a · si + 2ei ∈ Rq,
where si and ei are sampled from DZn,σ. Round pi as p′

i = Round(pi, p, q),
send p′

i and seed to party j.
Response. Party j computes fresh a = Derive a(seed), public key pj =

a · sj + 2ej ∈ Rq, where sj and ej are sampled from DZn,σ. Round pj as
p′
j = Round(pj, p, q). Recover public key received from party i as p′′

i =
Recover(p′

i, p, q). Computes key exchange material kj = p′′
i · sj ∈ Rq, sig-

nal value wj = Sig(kj) and final shared key skj = Mod2(kj, wj). Send p′
j and

wj to party i.
Finish. Party i recovers public key received from party j as p′′

j =
Recover(p′

j, p, q). Compute key exchange material ki = p′′
j · si ∈ Rq and

final shared key ski = Mod2(ki, wj).

330 J. Ding et al.

Fig. 1. The proposed RLWE key exchange protocol

2.3.2 Correctness. With above protocol, we have

ki = p′′
j si = (asj + 2ej + dj)si

= asjsi + 2ejsi + djsi
(1)

kj = p′′
i sj = (asi + 2ei + di)sj

= asisj + 2eisj + disj
(2)

ki − kj = 2(ejsi − eisj) + (djsi − disj). In order to achieve key exchange
with overwhelming success probability, ‖ki − kj‖∞ ≤ error tolerance δ of error
reconciliation mechanism, i.e. ‖ki − kj‖∞ ≤ q

4 − 2. Since the elements in di and
dj are all even, we have

‖ki − kj‖∞ = ‖2(ejsi − eisj) + (djsi − disj)‖∞
≤ 4‖se‖∞ + 2‖d′s‖∞

(3)

where s, e ∈ Rq
$←− DZn,σ. Definition of d′ is consistent with Lemma 4.

With Lemmas 1 and 2, we have 4‖se‖∞ ≤ 4‖s‖2 ·‖e‖2 ≤ 4(rσ
√

n)2 = 4r2σ2n,
where r ≥ 1/

√
2π is defined in Lemma 1 and n is the degree of polynomial. With

Lemma 4, we have 2‖d′s‖∞ ≤ 2‖d′‖2 · ‖s‖2 = 2‖d′‖2 · rσ
√

n. Recall that error
tolerance δ = q

4 −2. Therefore as long as q ≥ 4 · [2+(4r2σ2n)+(2‖d′‖2 · rσ√
n)],

key exchange failure probability is estimated to be (
√

2πer2 · e−πr2
)n.

2.3.3 Parameter Choice. Parameter choices covering security of AES-
128/192/256 are given in Table 2.

Note that for parameter choice (n, σ, q, p) = (1024, 2.6, 120833, 7552), it is
enough to cover security of AES-128/192/256. We will elaborate this in Sect. 3.4.
Modulus q = 120833 can instantiate NTT efficiently as q ≡ 1 mod 2n. A failed
key exchange implies that at least one bit in ski and skj mismatches.

One Sample Ring-LWE with Rounding and Its Application to Key Exchange 331

Table 2. Our parameter choice

n σ q p Claimed security level Failure probability

512 4.19 120833 7552 AES-128 2−60

1024 2.6 120833 7552 AES-192/256 2−60

For Lemma 4 and above parameter choices, let t = �log2 q� − �log2 p�. We
have Pr[di = −2t] = Pr[di = −2t + 2] = · · · = Pr[di = 2t − 2] = 1

2t . Therefore,
n = 512, t = 4, ‖d‖2 = 32

√
43, n = 1024, t = 4, ‖d‖2 = 32

√
86.

2.4 Passive Security

We define the passive security of our Diffie-Hellman-like ephemeral-only RLWE-
based key exchange protocol in Sect. 2.3. Notations are consistent with Sect. 2.3.
We start with the security of our key exchange protocol without rounding and
recovering public key. Our proof refers to the methodology in [13]. Then we
discuss the hardness of our protocol.

Definition 1. We say a key exchange protocol is secure under passive adver-
sary, if for any PPT adversary the advantage is negligible.

Note that even if the secret information is involved in signal function com-
putation, intuitively it is infeasible for adversary A to recover secret from the
binary signal wj . Thus the signal wj can not be seen as a RLWE sample from
the perspective of both security proof and real attacks (on key exchange itself
and RLWE problem) in our setting, i.e. keys from key exchange execution are
not reused.

Intuitively, any probabilistic polynomial time (PPT) adversary should not

distinguish a real shared key (sk ∈ {0, 1}n) from a random one (rand $← {0, 1}n)
even if he gets the transcripts (public key and signal value) of the protocol. We
define the advantage of an passive adversary A as:

AdvA = |Pr(A(a,pi,pj, wj , sk) = 1) − Pr(A(a,pi,pj, wj , rand) = 1)| .

Then we want the adversary to distinguish the final shared key sk ∈ {0, 1}n

from uniformly random one (rand $← {0, 1}n) within negligible probability.

Lemma 5. For any odd q > 2, if x is uniformly random in Zq, then Mod2(x,w)
is uniformly random conditioned on signal w ∈ {0, 1}.
Please refer to [21] for concrete proofs of Lemma 5. In addition, we give the
following lemma for the security proof of our protocol.

Lemma 6. kj can be seen as a RLWE sample in the security proof, when pi is
computed as RLWE instance.

332 J. Ding et al.

Proof. Due to the proposition of multiplication distribution, the multiplication
of two Gaussians is itself a Gaussian [16]. In our protocol, both s and e are
sampled from Gaussian distribution DZn,σ with small standard deviation. Hence
the secret polynomial can be computed as kj = pi · sj = a · si · sj +2sj · ei. Since
sj and ei are sampled from DZn,σ, due to the proposition that the product of
two Gaussian PDFs is proportional to Gaussian PDF with a standard deviation

that is the square root of half of the denominator, i.e. σsj·ei
=

√
σ2
sj

·σ2
ei

σ2
sj
+σ2

ei

=
√
2
2 σ.

If we denote by a′ = a · si, e′
i = sj · ei, we can get a RLWE instance (a′, e′

i)
with parameters (n, q, σe′

i
). Namely, kj can be seen as an RLWE instance with

parameters (n, q,
√
2
2 σ) if pi is RLWE itself.

In the following Theorem and its proof, we rewrite kj as kj = a′ · sj +2e′
i for

the sake of convenience. As discussed above that essentially kj can not be used
as an RLWE instance in real attack since the secret key can not be recovered
from the published signal ωj . �
Theorem 1. The construction above is secure against passive PPT adversaries,
if the pseudorandom function Derive a() is secure and the decision RLWE hard-
ness assumption holds.

Proof. Theorem 1 can be stated in this way: Let n, q, σ be parameters in our
proposed key exchange protocol and let DZn,σ be the Gaussian distribution
defined in Sect. 2.1. If the pseudorandom function Derive a() is secure against
PPT adversary B0 and the decision RLWE problem is hard for (n, q, σ), then the
key exchange protocol in Fig. 1 guarantees keys indistinguishable from uniform
random. Namely,

AdvA ≤ AdvDerive a(B0)+Advn,q,D
Zn,

√
2

2 σ
(A◦B1)+Advn,q,DZn,σ

(A◦B2). (4)

holds where B1 and B2 are assumed PPT adversaries who can distinguish the
RLWE samples from uniform random.

We prove the security by a sequence of games and lemmas. Let Si be the
challenge where the adversary guesses b in game i. The first game Game0 is
the real game which the adversary gets all of the original published information,
while in the last game Game4 the adversary gets uniformly random parameters
without RLWE information. We show that the views of Game0 and Game4
are computational indistinguishable for any PPT adversaries, under the decision
RLWE hardness assumption.

Game0. This is the original game between the protocol challenger and the
passive adversary A. That is, the adversary obtains a,pi,pj, wj ,kb, where
pi = a · si + 2ei and pj = a · sj + 2ej. Then A outputs a guess b′. Note that
there are three RLWE pairs in Game0: (a,pi) with secret vector si, and (a,pj)
and (a′,kj) both with secret vector sj. Here we can rewrite AdvA as

AdvA = |Pr(S0) − 1/2| . (5)

One Sample Ring-LWE with Rounding and Its Application to Key Exchange 333

Game1. This game is identical to Game0 except that instead of generating a
pseudorandomly from seed using function Derive a(), the challenger samples a
uniformly at random.

Lemma 7. Any PPT passive adversary cannot distinguish Game0 and
Game1, if the assumption holds that the pseudorandom function Derive a() is
secure.

Proof. It is obvious that the two games are indistinguishable under our assump-
tion that the pseudorandom function Derive a() is secure, i.e.

|Pr(S0) − Pr(S1)| ≤ AdvDerive a(B0). (6)

�
Game2. This game is identical to Game1 except that instead of setting
pi = a · si + 2ei, the challenger sets pi = ri, where ri

$← Rq.

Lemma 8. Any PPT passive adversary cannot distinguish Game1 and
Game2, if the decision RLWE assumption holds.

That is to say, in Game1, the challenge (a,pi) is sampled honestly from
RLWE oracle. In Game2, (a,pi) is uniformly sampled from Rq × Rq at ran-
dom. These two distributions are computationally indistinguishable under the
assumption that the decision RLWE problem is hard for parameter set (n, q, σ).

Proof. We prove the lemma by showing that if there exists an adversary A who
can distinguish Game1 and Game2, then we can construct another adversary
B1 to distinguish the RLWE samples from uniform random. B1 works as follows.
Once obtaining challenges (a,bi) ∈ Rq × Rq from the RLWE oracle, where bi is

either a · si+2ei or random ri in Rq, B1 samples sj
$←− DZn,σ and sets kj = bi · sj.

B1 also computes pj = a · sj + 2ej. Finally B1 sends (a,pi = bi,pj, wj ,kj) to A.
B1 outputs whatever A outputs. We note that B1 can compute wj by himself. If
bi is an RLWE sample, then what A obtains are exactly the same as in Game1,
if bi is uniformly random in Rq, then what A obtains are exactly the same as
in Game2. This implies that if A can distinguish Game1 and Game2 with
noticeable advantage, then B can distinguish RLWE samples from uniformly
random with the same advantage. Simultaneously, the adversary B1 sets kj = uj

by uj = bi · sj, where bi is either sampled from RLWE or uniformly random ri
in Rq.

Intuitively it leads to uj = bi · sj is RLWE or uniformly random rj, accord-
ing to the analysis under Lemma 6. Hence indeed what B1 sends to A can be
rewritten as (a,pi = bi,pj, wj ,kj = uj) to A. Thus we have two RLWE sam-
ples (a,pi = bi) and (a′,kj = uj) in Game2 where under the RLWE assump-
tion, RLWE sample (a,pi) with DZn,σ is indistinguishable with random sample
(a, ri), and RLWE sample (a′,kj) with D

Zn,
√

2
2 σ

is indistinguishable with (pi, rj)
respectively. This finishes the proof and simultaneously we can get the following
inequation:

|Pr(S1) − Pr(S2)| ≤ Advn,q,D
Zn,

√
2

2 σ
(A ◦ B1). (7)

�

334 J. Ding et al.

Game3. This game is identical to Game2 except that instead of setting
pj = a · sj + 2ej, the challenger sets pj = rj, where rj

$← Rq.

Lemma 9. Any PPT passive adversary cannot distinguish Game2 and
Game3, if the decision RLWE assumption holds.

Proof. The proof for Lemma 9 is analogous to the proof for Lemma 8, i.e. we
should show if there exists an adversary A who can distinguish Game2 and
Game3, then we can construct another adversary B2 to distinguish the RLWE
samples from uniform random. B2 works as follows. Once obtaining challenges
(a,bj) where bj is either RLWE instance or random rj in Rq, B2 sets pj = bj.
Finally B2 sends (a,pi,pj = bj, wj ,kj) to A. B2 outputs whatever A outputs.
Hence we have

|Pr(S2) − Pr(S3)| ≤ Advn,q,DZn,σ
(A ◦ B2). (8)

�
Furthermore, in Game3, the adversary is given (a,bj) which is either sam-

pled uniformly at random. However, when pi is uniformly sampled, elements
of kj = pi · sj ∈ Rq is also uniformly distributed. Thus the elements in wj can
be seen uniformly distributed owing to the construction of signal function. Due
to Lemma 5, skj computed by the reconciliation function from kj and wj is
also distributed uniformly at random. Namely, there is no RLWE information
in Game3 so the adversary can not distinguish the key is generated from the
key exchange protocol or just uniformly sampled. Hence, we have the following
equation in Game3.

|Pr(S3)| = 1/2. (9)

Consequently, we can get in Eq. (4) (and finish the proof for Theorem1) by
combining the formulas from (5) to (9). �

Now we deal with the security regarding to rounding and recovering a · s+2e
in the next lemma.

Lemma 10. For following two key exchange protocols:

1. pi = a · si + 2ei,pj = a · sj + 2ej,ki = pj · si,kj = pi · sj, wj = Sig(kj), ski =
Mod2(ki, wj), skj = Mod2(kj, wj)

2. pi = a · si + 2ei,pj = a · sj + 2ej,p′
i = Round(pi, p, q),p′′

i = Recover(p′
i, p, q),

p′
j = Round(pj, p, q),p′′

j = Recover(p′
j, p, q),ki = p′′

j · si,kj = p′′
i · sj, wj =

Sig(kj), ski = Mod2(ki, wj), skj = Mod2(kj, wj)

The hardness of computing final shared key of second protocol is at least as hard
as computing final shared key of first protocol.

Proof. With publicly known algorithm Round() and Recover(), publicly known
parameters and public terms p′

i,p
′
j, any adversary can compute p′′

i ≈ pi and
p′′
j ≈ pj. However, p′′

i �= pi, p′′
j �= pj, Round() and Recover() function generate

additional errors, which makes recovering private key si or sj using transcripts
from our key exchange at least no easier than using pi,pj or ki,kj to solve RLWE
problem. �

One Sample Ring-LWE with Rounding and Its Application to Key Exchange 335

3 Estimating Security of One RLWE Sample

Before showing the analysis in this section, we stress that only ONE sample can
be used in the real attack for our ephemeral protocol settings. It is infeasible
for attacker to recover secret key or apply lattice attacks given the binary signal
vector from our ephemeral key exchange. Hence the signal w can not be used as
another RLWE sample in the real attack (and also the security proof in Sect. 2.4).

3.1 Prerequisites

Lattice Theory. A lattice L is defined as an infinite space expanded by basis
B = {b1, . . . ,bn}, where bi (i = 1, . . . , n) are a set of linearly independent
vectors in R

m. Here n is the dimension of L. The n-dimensional volume of L is
denoted by Vol(L), which is computed by the determinant of basis B, i.e. Vol(L)
= det(B). We denote Vn(R) = Rn · πn/2

Γ (n/2+1) as the volume of n-dimensional
Euclidean ball of radius R.
Ring LWE (RLWE) Problem. Let m ≥ 1 be a power of 2 and q ≥ 2 be an
integer, let Rq = Zq[x]/Φm(x), where Φm(x) = xn + 1 is the m-th cyclotomic
polynomial with n = m/2. Let χ be a β-bounded distribution. For secret poly-

nomial s $←− χ and error polynomial e $←− χ, choosing a ∈ Rq uniformly random,

output (a,b = a · s + e ∈ Rq). Search version of RLWE problem is: for s $←− χ,
given poly(n) number of samples of (a,b = a · s + e) ∈ (Rq, Rq), find s (and e
simultaneously).
Proposition. Let z = Recover(Round(a · s + 2e, p, q), p, q) = as + 2e + d =

as + 2f ∈ Rq, where s, e $←− DZn,σ and 2f = 2e + d (elements in d are even).
Hence we can regard f as error term e in the definition of RLWE above. The
attack on our protocol is given z and a, output private key s. This problem is
equivalent to:

z = a · s + 2f mod q

⇔ 2−1z = 2−1a · s + f mod q

⇔ z′′ = a′′ · s + f mod q

Standard deviation of term f is denoted as σf . Note that σf is different from
σ notation in Sect. 2.1 as f no longer follows discrete Gaussian distribution (his-
togram shows similar shape as Gaussian distribution), therefore σf is computed
as the square root of variance.
Shortest Vector Problem. Given an input basis B = (b1, . . . ,bn) of a lattice
L, Shortest Vector Problem (SVP) is to find a non-zero shortest vector in L. We
introduce the following two variants of the SVP to be used in this section.
Short Integer Solution Problem. Given an integer q and a matrix A ∈ Z

n×m
q ,

Short Integer Solution problem (SIS) is to compute a short vector y ∈ B s.t.
Ay ≡ 0 mod q, where B is a set of short vectors with some norm bound.

336 J. Ding et al.

Unique Shortest Vector Problem. Unique SVP problem (uSVP) is for a
given lattice L which satisfies λ1(L) � λ2(L), find the shortest vector in L. Here
λi(L) means the length of i-th linear independent shortest vector for i = 1, 2.
Root Hermite Factor. To evaluate the performance of lattice algorithms for
solving SVP, we use the root Hermite Factor (rHF) defined in [22] as:

δ = rHF(b1, . . . ,bn) = (‖b1‖2/Vol(L)1/n)1/n.

Geometric Series Assumption (GSA). The Geometric Series Assump-
tion [31] indicates the quality of an LLL-type reduced basis. It says l2 norm of
GSO vectors ‖b∗

i ‖ in the reduced basis decrease geometrically with a constant r

as ‖b∗
i ‖22/‖b1‖22 = ri−1 (i = 1, . . . , n and r ∈ [3/4, 1)).

Lattice Algorithms. There are some lattice algorithms such as BKZ and siev-
ing to solve SVP and its variants. BKZ algorithm was originally proposed in [30],
which computes basis that are almost β-reduced, namely the projected lengths of
each basis vectors are the shortest ones in the relative β-sized local blocks. BKZ
algorithm runs in exponential time and there are some efficient improvements
for BKZ algorithms [18,38]. In 2016, Aono et al. proposed a precise simulator to
estimate runtime of progressive BKZ algorithm (pBKZ), which processes given
basis by increasing block size with some strategy [8]. When dimension n is large
(n ≥ 100), runtime TimeBKZ(n, βt) of pBKZ with target blocksize βt is esti-
mated by Eq. (18) in [8]. Further details may be found in [8] and a reference
implementation is freely available at [9].

In 2001, Ajtai et al. proposed a sieving algorithm to solve SVP, which requires
a runtime of 20.52n+o(n) in n dimension lattice and simultaneously requires
exponential storage of 20.2n+o(n) [1]. According to recent research results, for
a n-dimensional lattice L and fixed blocksize β in BKZ, the runtime of sieving
algorithm can be estimated in 20.292β+o(β) clock cycles for a β-dimensional sub-
routine [4], and totally BKZ-β costs 8n · 20.292β+16.4 operations [12]. The phase
transition of time cost and memory cost is considered in our work. Namely, we
assume that practically the exponential large memory (β · 20.292∗β+o(β)) cost of
sieve will increase the computation cost by at least one magnitude (x10).

3.2 Algorithms for Solving RLWE

In this work we use the adapted SIS attack algorithm on solving RLWE, which
is an adaptation of the dual-embedding method mentioned in [29] and [10]. Note
that the SIS attack with “rescaling technique” is also called as “Bai-Galbraith’s”
embedding attack in [3], which is developed by Bai and Galbraith to improve
the attack on binary LWE in [10]. In the adapted SIS algorithm, we do not
introduce the rescaling technique but just enlarge the lattice dimension. There
are also some analysis to the embedding attack and its variants in previous
articles [35–37,39].

One Sample Ring-LWE with Rounding and Its Application to Key Exchange 337

3.3 Significance of Number of Samples in Practical Attack

At first we claim that because of the setting of our key exchange protocol:
only one RLWE instance (a,b = a · s + e mod q) ∈ (Rq, Rq) is given, Kan-
nan’s embedding technique [23] and Liu-Nguyen’s decoding attack [24] cannot
be adopted since the lattice L(A,q) = {v ∈ Z

m
q | v ≡ Ax (mod q),x ∈ Dn

σ} is
trivial when m ≤ n. Therefore our estimator should be different from some other
key exchange schemes as NewHope [6] and Albrecht’s estimator [3] etc. which
regard RLWE and normal LWE problem as having the same difficulty with-
out considering the number of available RLWE samples. From the discussion in
Sect. 1.3 and the estimations in Table 1, we observe that there is a big gap of
hardness estimations between ONE-sample RLWE and multiple-samples RLWE.
Note that indeed the lowest number m of required LWE samples from the 2016
estimate (Section 3.4) are as follows: m is 576 for (n, q, σf) = (512, 120833, 4.92)
and m is 1097 for (n, q, σf) = (1024, 120833, 4.72). Therefore, the optimal num-
ber in the 2016 estimate can be obtained only from “more than one RLWE
samples” (m = 576 > n = 512 and m = 1097 > n = 1024). Hence in practical
attack, we can get only one n-dimensional RLWE instance, which can be ampli-
fied to 2n + 1 without changing the distribution of error vectors. Therefore the
lattice dimension of solving RLWE in our case is d = 2n + 1.

3.4 Our Simulator

At AsiaCrypt 2017 [3], Albrecht et al. re-estimated the hardness of LWE problem
using Kannan’s embedding and Bai-Gal’s embedding respectively under estima-
tion in NewHope [6] (denoted as “2016 estimate”). 2016 estimate states that if
the Gaussian Heuristic and the GSA [31] hold for BKZ-β reduced basis and

√
β/d · ‖(e|1)‖2 ≈

√
βσ ≤ δ2β−d · Vol(L(A,q))1/d. (10)

Then error e can be found by BKZ-β with root Hermite Factor δ. In our case, we
assume f is the Gaussian distributed error vector plus the uniformly distributed
perturbation sampled from a bounded set due to Rounding-Recovering functions
and (s|f |1) is the target vector in our attack. So there is a gap between the
distribution of f and the Gaussian distribution. However, given a same standard
deviation σf , the expected length of vectors sampled from the hybrid distribution
is bigger than the one sampled from Gaussian distribution on average, by a
simple computation using the center limit theorem. Hence in our estimation we
assume f is Gaussian distributed. We adapt the left side of the inequality (10) as√

β/d · ‖(s|f |1)‖2 ≈ √
β · (σe

2 + σf
2). For BKZ reduction runtime estimation,

we will give the result of progressive BKZ and Albrecht’s BKZ with sieving
estimator.
Step 1. A short vector ‖b1‖2 = δd ·det(B) is assumed to be inside of the BKZ-β
reduced basis B of dimension d [17], where the root Hermite Factor is

δ = (((πβ)1/ββ)/(2πe))
1

2(β−1) . (11)

338 J. Ding et al.

Since σf can be experimentally derived from σe, we can compute lower
bound of σf in RLWE(n, q, σf) which covers security of AES-128/192/256 using
Eqs. (11) and (12). Note that f no longer follows discrete Gaussian distribution
(histogram shows similar shape as Gaussian distribution). Therefore we take a
heuristic approach to estimate σf .

In our case, d = 2n + 1 is the dimension of lattice and also Vol(L(A,q)) =
qn. Therefore we can pre-compute the expected root Hermite factor δ for β =
10, · · · , n and adapt inequality (10) to

√
β · (σe

2 + σf
2) ≤ δ2β−2n−1 · qn/(2n+1). (12)

To compute the target β in the progressive BKZ simulator, we use the cor-
respondence between δ and the GSA constant r: Given a d-dimensional basis,
in order to use progressive BKZ simulator, we need target βt for our parame-
ter choice. At this stage, we can get the target GSA constant rt = δ−4d/(d−1).
Therefore we can compute the terminating blocksize βt in progressive BKZ cor-
responding to rt by equations (10) and (11) given in [8].

Step 2. We compute the complexity of BKZ-β with sieving SVP oracle estimated
as 8d · 20.292β+16.4 double precision floating point operations [2,12]. we translate
this to complexity of bit unit by Tsieving−BKZ = 8d · 20.292β+16.4 · 64 (bits).

Simultaneously, TBKZ can also be replaced by progressive BKZ simulator
explained in Sect. 3.1. We run the progressive BKZ simulator for both n = 512
and n = 1024 cases. Considering the number of iterations for each fixed blocksize
in BKZ, we get following two fitting functions to estimate the runtime of two
cases respectively.

log2(TimepBKZ(secs)) =
{

0.003924 · β2 − 0.568 · β + 41.93 (n = 512)
0.004212 · β2 − 0.6886 · β + 55.49 (n = 1024)

(13)
Then we compute the complexity of bit unit by TpBKZ = TimepBKZ ×2.7×

109 × 64 (bits). on our Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz server.
We generate 1,000 and 2,000 as + 2e samples for parameter choice

(n, σ, q, p) = (1024, 2.6, 120833, 7552) and (n, σ, q, p) = (512, 4.19, 120833, 7552).
For each sample, we apply Round() and Recover() functions, giving us

z = Recover(Round(a · s + 2e, p, q), p, q) = a · s + 2f .

With z−as
2 = f , we compute standard deviation σf . Results are given in Table 3,

where the parameter settings can ensure 2−60 failure probability.
Due to the uncertainty simulation for runtime with large dimension and large

β (>1000 and >200 respectively), we are not sure about the simulation results
for our key exchange protocol. We will leave it as future work. However, our
parameter choices can cover results from pBKZ simulator. Therefore we show
results from pBKZ simulator in Table 3 as well.

The 2016 estimate for AES-128 and AES-192/256 security gives 142.27 and
279.05 bit operations respectively. Practically the exponential memory’s access

One Sample Ring-LWE with Rounding and Its Application to Key Exchange 339

Table 3. Our simulation data and parameter settings covering security of AES-
128/192/256

Security level
(n, q, σ)

AES-128 (512,120833,4.19) AES-192 and AES-256 (1024,120833,2.6)

Method pBKZ 2016 estimate pBKZ 2016 estimate

Logarithmic
computational
complexity

319.14 142.27 1473.09 279.05

Blocksize 330 366 660 831

GSA Const. 0.983 0.991

σ (for s and e) of
our parameter choice

4.19 2.6

σf 4.92 4.72

of sieving algorithm will increase the computation cost by at least one magnitude
(x10), therefore we conclude that our parameter choices with n = 512 can achieve
at least 145.59 bits security, n = 1024 can achieve at least 282.37 bits security.
With results given in Table 3, we claim that parameter choices given in Table 2
cover security of AES-128/192/256.

Furthermore, Aono et al. proposed a method to compute the lower bound
N on the cost of extreme-pruning enumeration algorithm, for a certain pruning
success probability α′ to find a shortest vector, which bases on a simulated HKZ-
reduced basis [7]. We use the formula (17) in [7] and set α′ = 1. Analogous to
the sieving-BKZ model in 2016 estimate, we compute the complexity of BKZ
with enumeration subroutine by Tenum−BKZ = 8d ·N (bits). When we compute
Tenum−BKZ using the blocksizes 366 and 831 given in Table 3, we get 194 bit
security and 596 bit security respectively. It means that our parameter settings
are safe under the BKZ with enumeration subroutine model.

4 Implementation and Performance

In this section, we introduce our implementation and performance of our key
exchange scheme in Sect. 2.3. Note that in our implementation, a number in Zq

is represented as [0, q−1]. One can convert the regions defined for hint and signal
functions from {− q−1

2 , · · · , q−1
2 } to corresponding regions in [0, q − 1].

We use Victor Shoup’s NTL library [33] in our implementation, where the
fast Number Theoretic Transformation (NTT) technique with adapted butterfly
operation is applied, for doing polynomial operations as multiplication, division,
GCD, factoring and so on. Simultaneously, we use the Discrete Gaussian Sampler
(DGS) based on Cumulative Distribution Table (CDT) in [26].

4.1 Experimental Results

Our implementation uses C++ language. We run 100,000 times experiments for
each parameter choice on a computer with Intel Xeon E5-2697 v2 @ 2.70 GHz

340 J. Ding et al.

Table 4. Runtime (millisecond) of our implementation

Security level TimeDGS TimePM TimeKeyPair TimePi TimePj

AES-128 0.05 0.40 0.48 0.92 0.74

AES-192/256 0.09 0.83 1.00 1.90 1.55

CPU, running CentOS Linux release 7.4.1708, g++ version 6.3.0. We evaluate
the average runtime for discrete Gaussian sampling (TimeDGS), polynomial mul-
tiplication (TimePM), key generation (TimeKeyPair), party i timing (TimePi)
and party j timing (TimePj) respectively. We show the experimental results in
Table 4 with two decimal precision.

Rounding, recovering and error reconciliation are extremely efficient. Most
expensive ones are discrete Gaussian sampling and polynomial multiplication.

4.2 Communication Cost Comparison

We show the communication cost of our work with several similar RLWE-based
key exchange or KEM protocols in Table 5. Our construction has smallest com-
munication cost compared with rest of the RLWE-based protocols. Thus, we
believe that our construction provides better trade-off between security and com-
munication cost.

Table 5. Communication cost comparison between several Diffie-Hellman-like key
exchange and KEM constructions from RLWE problem

Name Type n q Claimed security Public key (Bytes) Total (Bytes)

This work DH 512 120833 AES-128 145-bit 832 1744

DH 1024 120833 AES-192/256 282-bit 1664 3472

BCNS [14] DH 1024 232 − 1 128-bit 4096 8320

NewHope [6] DH 1024 12289 281-bit 1792 3872

NewHope-Simple [5] KEM 1024 12289 281-bit 1792 4000

HILA5 [28] KEM 1024 12289 255-bit 1792 3836

5 Conclusion

It is crucial to build secure and practical post-quantum cryptography primitives
for the upcoming post-quantum world. We believe that our new ephemeral-only
Diffie-Hellman-like RLWE+Rounding key exchange gives a new solution. We
also apply a proper approach to estimate the security of only one RLWE sample,
which is closely related to our key exchange protocol design. We also take the
overwhelming memory requirement of sieving algorithm into consideration. Our
elegant and simple design gives better security and smaller communication cost.

One Sample Ring-LWE with Rounding and Its Application to Key Exchange 341

Acknowledgement. Jintai Ding is partially supported by NSF grant DMS-1565748
and US Air Force grant FA2386-17-1-4067. Tsuyoshi Takagi and Yuntao Wang are
supported by JST CREST Grant Number JPMJCR14D6 and JSPS KAKENHI Grant
Number JP17J01987, Japan. Xinwei Gao is supported by China Scholarship Council.

References

1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the Thirty-Third Annual ACM Symposium on
Theory of Computing, STOC 2001, pp. 601–610 (2001)

2. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 4

3. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 11

4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without reconcili-
ation. IACR Cryptology ePrint Archive 2016, 1157 (2016). http://eprint.iacr.org/
2016/1157

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a
new hope. In: USENIX Security Symposium, pp. 327–343 (2016)

7. Aono, Y., Nguyen, P.Q., Seito, T., Shikata, J.: Lower bounds on lattice enumera-
tion with extreme pruning. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10992, pp. 608–637. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 21

8. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms
and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.-S.
(eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49890-3 30

9. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: The progressive BKZ code (2017).
http://www2.nict.go.jp/security/pbkzcode/

10. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08344-5 21

11. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

12. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pp.
10–24 (2016)

13. Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange
from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1006–1018. ACM (2016)

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
http://eprint.iacr.org/2016/1157
http://eprint.iacr.org/2016/1157
https://doi.org/10.1007/978-3-319-96881-0_21
https://doi.org/10.1007/978-3-319-96881-0_21
https://doi.org/10.1007/978-3-662-49890-3_30
http://www2.nict.go.jp/security/pbkzcode/
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42

342 J. Ding et al.

14. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy (SP), pp. 553–570. IEEE (2015)

15. Bos, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM.
IACR Cryptology ePrint Archive 2017, 634 (2017). http://eprint.iacr.org/2017/
634

16. Bromiley, P.A.: Products and convolutions of Gaussian distributions, vol. 3 (2003)
17. Chen, Y.: Lattice reduction and concrete security of fully homomorphic encryption.

Dept. Informatique, ENS, Paris, France, Ph.D. thesis (2013)
18. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,

Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

19. Computer Security Division, Information Technology Laboratory, N.I.O.S., Tech-
nology, U.D.O.C.: Post-quantum cryptography—CSRC (2017). https://csrc.nist.
gov/projects/post-quantum-cryptography

20. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

21. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. IACR Cryptology ePrint Archive 2012, 688
(2012). http://eprint.iacr.org/2012/688

22. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

23. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

24. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36095-4 19

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

26. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

28. Saarinen, M.-J.O.: HILA5: On reliability, reconciliation, and error correction for
ring-LWE encryption. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol.
10719, pp. 192–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
72565-9 10

29. Schmidt, M., Bindel, N.: Estimation of the hardness of the learning with errors
problem with a restricted number of samples. IACR Cryptology ePrint Archive
2017, 140 (2017). http://eprint.iacr.org/2017/140

30. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66(1), 181–199 (1994)

31. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

32. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2017/634
https://doi.org/10.1007/978-3-642-25385-0_1
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
http://eprint.iacr.org/2012/688
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-36095-4_19
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-319-72565-9_10
https://doi.org/10.1007/978-3-319-72565-9_10
http://eprint.iacr.org/2017/140
https://doi.org/10.1007/3-540-36494-3_14

One Sample Ring-LWE with Rounding and Its Application to Key Exchange 343

33. Shoup, V.: NTL, a library for doing number theory (2017). http://www.shoup.
net/ntl/

34. Stephens-Davidowitz, N.: Discrete Gaussian sampling reduces to CVP and SVP. In:
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1748–1764. Society for Industrial and Applied Mathematics (2016)

35. Wang, W., Wang, Y., Takayasu, A., Takagi, T.: Estimated cost for solving gen-
eralized learning with errors problem via embedding techniques. In: Inomata, A.,
Yasuda, K. (eds.) IWSEC 2018. LNCS, vol. 11049, pp. 87–103. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-97916-8 6

36. Wang, Y., Aono, Y., Takagi, T.: An experimental study of Kannan’s embedding
technique for the search LWE problem. In: Qing, S., Mitchell, C., Chen, L., Liu,
D. (eds.) ICICS 2017. LNCS, vol. 10631, pp. 541–553. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89500-0 47

37. Wang, Y., Aono, Y., Takagi, T.: Hardness evaluation for search LWE problem
using progressive BKZ simulator. IEICE Trans. 101–A(12), 2162–2170 (2018)

38. Wang, Y., Takagi, T.: Improving the BKZ reduction algorithm by quick reordering
technique. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp.
787–795. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 47

39. Wang, Y., Wunderer, T.: Revisiting the sparsification technique in Kannan’s
embedding attack on LWE. In: Su, C., Kikuchi, H. (eds.) ISPEC 2018. LNCS,
vol. 11125, pp. 440–452. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99807-7 27

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://doi.org/10.1007/978-3-319-97916-8_6
https://doi.org/10.1007/978-3-319-89500-0_47
https://doi.org/10.1007/978-3-319-93638-3_47
https://doi.org/10.1007/978-3-319-99807-7_27
https://doi.org/10.1007/978-3-319-99807-7_27

Masking Dilithium

Efficient Implementation and Side-Channel Evaluation

Vincent Migliore1, Benôıt Gérard2,3(B), Mehdi Tibouchi4,
and Pierre-Alain Fouque2

1 LAAS–CNRS, Univ. Toulouse, CNRS, INSA, Toulouse, France
vincent.migliore@laas.fr

2 Univ. Rennes, CNRS, IRISA, Rennes, France
{benoit.gerard,pierre-alain.fouque}@irisa.fr
3 Direction Générale de l’Armement, Bruz, France

4 NTT Corporation, Musashino, Japan
mehdi.tibouchi.br@hco.ntt.co.jp

Abstract. Although security against side-channel attacks is not an
explicit design criterion of the NIST post-quantum standardization
effort, it is certainly a major concern for schemes that are meant for
real-world deployment. In view of the numerous physical attacks that
have been proposed against post-quantum schemes in recent literature,
it is in particular very important to evaluate the cost and effectiveness
of side-channel countermeasures in that setting.

For lattice-based signatures, this work was initiated by Barthe et al.,
who showed at EUROCRYPT 2018 how to apply arbitrary order mask-
ing to the GLP signature scheme presented at CHES 2012 by Güneysu,
Lyubashevsky and Pöppelman. However, although Barthe et al.’s paper
provides detailed proofs of security in the probing model of Ishai, Sahai
and Wagner, it does not include practical side-channel evaluations, and
its proof-of-concept implementation has limited efficiency. Moreover, the
GLP scheme has historical significance but is not a NIST candidate, nor
is it being considered for concrete deployment.

In this paper, we look instead at Dilithium, one of the most promising
NIST candidates for postquantum signatures. This scheme, presented at
CHES 2018 by Ducas et al. and based on module lattices, can be seen as
an updated variant of both GLP and its more efficient sibling BLISS; it
comes with an implementation that is both efficient and constant-time.

Our analysis of Dilithium from a side-channel perspective is three-
fold. We first evaluate the side-channel resistance of an ARM Cortex-M3
implementation of Dilithium without masking, and identify exploitable
side-channel leakage. We then describe how to securely mask the scheme,
and verify that the masked implementation no longer leaks. Finally, we
show how a simple tweak to Dilithium (namely, replacing the prime
modulus by a power of two) makes it possible to obtain a consider-
ably more efficient masked scheme, by a factor of 7.3 to 9 for the most
time-consuming masking operations, without affecting security.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 344–362, 2019.
https://doi.org/10.1007/978-3-030-21568-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_17

Masking Dilithium Efficient Implementation and Side-Channel Evaluation 345

1 Introduction

Post-quantum Cryptography and Lattice-Based Signatures. As the
threat of quantum computers becomes increasingly concrete, the need for public-
key cryptography to transition away from legacy schemes based on factoring and
discrete logarithms and towards post-quantum secure primitives gets more press-
ing. In particular, there is a growing push to make post-quantum cryptography,
which was of somewhat theoretical interest for some time, ready for real-world
deployment. At the forefront of that push is NIST’s post-quantum standard-
ization process [1], which aims at selecting post-quantum secure schemes for
encryption and signatures that can practically replace RSA and elliptic curve
cryptography. The first round includes 69 candidates across encryption and sig-
natures, based on codes, lattices, multivariate cryptography, hash functions and
more.

Among them, lattice-based schemes stand out as particularly attractive,
thanks to their strong security foundations and their high level of efficiency,
often comparable to RSA and elliptic curves both in terms of key and cipher-
text/signature size, and of computational complexity. However, they present a
unique set of challenges from an implementation perspective, due to the reliance
on new types of operations such as Gaussian sampling, polynomial arithmetic,
number-theoretic transforms and rejection sampling.

Such new operations are a concern, in particular, from the standpoint
of fault and side-channel analysis. A number of implementation attacks
have been proposed against lattice-based schemes, including fault attacks [4,
11], cold boot attacks [2], cache timing attacks [13,18] and more standard
power/electromagnetic analysis [12], taking advantage of vulnerabilities of the
implementation of those new operations in order to mount key recovery attacks.
Lattice-based signatures have notably been the target of multiple such attacks. It
is therefore of prime importance to study how to securely and efficiently protect
implementations against those attacks.

Masking Lattice-Based Signatures. Regarding side-channels, a generic and
provable countermeasure is known: masking, in which all sensitive variables in
the signing algorithm is stored and processed as several shares, typically using
some linear secret sharing scheme. The two most common approaches are boolean
masking, where a secret bitstring x is represented as the bitwise XOR x =
x1 ⊕ · · · ⊕ xt of uniformly random shares xi’s, and arithmetic masking, where a
secret element x of Z/mZ is represented as the sum x = x1 + · · · + xt modulo
m of uniformly random elements of Z/mZ. Boolean masking is better suited to
mask logical operations, whereas arithmetic masking is convenient for operations
than can be represented in a simple way as arithmetic circuits (i.e., multivariate
polynomials modulo m).

Applying masking countermeasures to lattice-based signatures is a challeng-
ing task, mainly due to the overall structure of the corresponding signing algo-
rithm, which typically involve sampling some sensitive randomness, combining it

346 V. Migliore et al.

with the secret key, and then carrying out some form of rejection sampling on the
resulting value. The random sampling and rejection sampling are complicated
operations which are better suited for boolean masking, whereas the main part
of the signing algorithm involving the secret key is linear modulo some prime
p, and therefore convenient for arithmetic masking. Protecting the entire algo-
rithm therefore requires conversions between arithmetic and boolean masking,
targeted unmasking of provably non-sensitive variables, and the design of novel
masked gadgets to support the new sampling and rejection operations.

This was all first tackled recently by Barthe et al. [3] in a EUROCRYPT
2018 paper providing a complete, arbitrary order masking of the (relatively sim-
ple) lattice-based signature scheme of Güneysu, Lyubashevsky and Pöppelman
(GLP). The paper addresses all the issues above in the case of GLP to construct
a provably secure masked implementation of the key generation and signing
algorithms of GLP. It suffers from several limitations, however. First, the GLP
scheme itself has the advantage of being relatively simple compared to later
lattice-based signatures like BLISS and the current NIST candidates, but it is of
limited practical relevance, due to a level of efficiency that falls short of the state
of the art, and more lax security guarantees. Second, the masked implementa-
tion of Barthe et al. incurs a rather severe overhead compared to the (already
not that efficient) unmasked scheme. And finally, although the paper comes with
security proofs, it does not include a practical side-channel evaluation: this can
be a problem in practice due to discrepancies between formal specifications and
compiled code, unexpected data dependencies introduced at the CPU-level, and
other hardware issues like glitches.

Our Contributions. As a result, it is desirable to consider the application of
the masking countermeasure to a more up-to-date lattice-based signature scheme
(preferably a NIST candidate), hopefully achieving better performance than the
masked implementation of Barthe et al., and with a concrete validation of side-
channel resistance.

This is the goal pursued in this work, where we examine in particular the
Dilithium signature scheme of Ducas et al. [10], a NIST candidate that can be
seen as a descendant of both GLP and BLISS. It comes with an implementation
that emphasizes both efficiency and constant running time (so as to achieve
security against timing attacks and simple power analysis). In particular, like
GLP but unlike BLISS, its main variant excludes Gaussian distribution and
only relies on random numbers that are sampled uniformly from small intervals.

Our main contributions are as follows:

1. we carry out a side-channel evaluation of the reference design of Dilithium
when implemented on an ARM Cortex-M3 micro-controller (the STM32F1),
and identify exploitable side-channel leakage, which underscores the need for
suitable countermeasures;

2. we propose an efficient masking of Dilithium at any order, partially leveraging
the work carried out by Barthe et al. on GLP (in particular, we reuse their
formally verified masked gadgets);

Masking Dilithium Efficient Implementation and Side-Channel Evaluation 347

3. we describe a simple variant of Dilithium that lends itself to a considerably
more efficient masking while preserving security, using the key idea of switch-
ing from a prime modulus to a power of two1;

4. we implement these masked schemes on the same ARM Cortex-M3 micro-
controller, we manage to remove unexpected leakages due to some micro-
architectural features and evaluate both the efficiency and side-channel resis-
tance of the implementation, with satisfactory results on both counts.

The paper is organized as follows. Section 2 recalls the key generation and
the signing algorithms of Dilithium. Section 3 evaluates the side-channel leak-
age of sensitive operations on our STM32F1 target micro-controller. Section 4
proposes an efficient masking of the Dilithium reference design, as well as that
of our proposed variant (using a power-of-two modulus) which greatly improves
masking efficiency. Section 5 provides implementation results, both in terms of
performance and of side-channel resistance.

2 The Dilithium Signature Scheme

Dilithium is a signature scheme based on Lyubashevsky’s Fiat–Shamir with
aborts framework and is based on hard problems in module lattices. Its core
functions are KeyGen for the key generation, Sign to produce a signature of a
message, and Verify to verify the signature.

One of the main features of Dilithium (aside from its module lattice approach)
is the key compression mechanism to reduce public key size. The compression is
performed at two different levels. First, Module matrices are constructed with
an extendable output function (XOF), which generates a (deterministic) pseudo-
random string from a small seed. Thus, the public only requires the seed and
not the full matrix. Second, the public key size is reduced using a truncation
on its second component. This truncation is performed coefficient-wise and is
associated to an error-correcting code mechanism to recover truncated bits2.

In addition, Dilithium does not instantiate Module with discrete Gaussian
sampling, but with bounded coefficients. This approach greatly simplifies the
arithmetic of Dilithium (and at the same time masking) since discrete Gaussian
sampling is much more complex than a simple bound check.

In this paper, we mainly focus on the key generation and the signature gen-
eration algorithms (which will respectively be called DILITHIUM.KeyGen and
DILITHIUM.Sign) since the verification algorithm does not handle sensitive data
and hence does not require masking.

DILITHIUM.KeyGen. The DILITHIUM.KeyGen algorithm, described in
Algorithm 1, generates the secret key Skey and public key Pkey required to
respectively sign and verify a message.
1 This statement is discussed later on in Sect. 4.4.
2 For a formal description of the different truncation procedures used in Dilithium

(namely Decomposeq, HighBitsq, LowBitsq and Power2Round) the reader can refer
to the original Dilithium paper [9].

348 V. Migliore et al.

Algorithm 1. DILITHIUM.KeyGen()
1: ρ, ρ′ ← {0, 1}256

2: A = Sam(ρ) ∈ Rk×�
q

3: (S1, S2) = Sam(ρ′) ∈ R�×1
η × Rk×1

η

4: T = A · S1 + S2 ∈ Rk×1
q

5: T1 = Power2Round(T, d) ∈ Rk×1
q

6: Pkey = (ρ, T1)
7: Skey = (ρ′, S1, S2, T)
8: return (Pkey, Skey)

The randomness is obtained using an extendable output function (XOF)
called Sam which takes a random seed as input and returns an extendable
pseudo-random string. The Sam function is used to compute the matrix A (which
is part of the public key) and matrices (S1, S2) (which are part of the secret
key). Unlike coefficients of A, the coefficients of S1 and S2 are small ones.

Regarding arithmetic complexity, the Sam function and the polynomial mul-
tiplication line 4 are the most time-consuming part of the computation. For the
implementation provided for the NIST competition, the Sam function is imple-
mented using SHAKE-256, and polynomial multiplications with NTT algorithm.

DILITHIUM.Sign. The DILITHIUM.Sign algorithm is described in Algo-
rithm 2. It is constructed by a rejection sampling loop where a fresh signature
is generated until it satisfies some security properties. First of all, a uniformly
sampled matrix Y in Rγ1−1 is secretly generated, and multiplied by the public
value A to produce W (lines 6 and 7). Then a challenge C ∈ B60 is generated
as the output of a hash function H with (ρ, T1,W1, μ) as input, where W1 is
composed by the high order bits of W and μ is the message to sign.

Algorithm 2. DILITHIUM.Sign(Skey, μ)

1: A = Sam(ρ) ∈ Rk×�
q

2: T1 = Power2Round(T, d) ∈ Rk×1
q

3: T0 = T − T1 · 2d ∈ Rk×1
q

Rejection sampling loop

4: ρ′′ ← {0, 1}256

5: Y = Sam(ρ′′) ∈ R�×1
γ1−1

6: W = A · Y ∈ Rk×1
q

7: W1 = HighBitsq,2γ2
(W) ∈ Rk×1

q

8: C = H(ρ, T1, W1, μ) ∈ {0, 1}256

9: Z = Y + CS1 ∈ R�×1
q

10: R0 = LowBitsq,2γ2(W − CS2)

11: if ||Z||∞ ≥ γ1 − β or ||R0||∞ ≥ γ2 − β or ||CT0||∞ ≥ γ2 goto 4
12: H = MakeHintq,2γ2(−CT0, W − CS2 + CT0)
13: return (Z, H, C)

Masking Dilithium Efficient Implementation and Side-Channel Evaluation 349

To ensure that the signature does not leak information about the key, line
11 executes some bound checks. If this verification fails, a new signature is gen-
erated. One of the most important parameter is β, because it will determine
the number of rounds required before a valid signature is produced. For recom-
mended parameters, an average of 5 rounds are needed before producing a good
set of parameters. Eventually, the MakeHintq,2γ2 procedure line 12 will generate
some hints for the public key reconstruction (bits are due to its truncation.).

3 Side-Channel Evaluation of Unmasked Dilithium

In this section we report the results we obtained evaluating the potential side-
channel weaknesses of an unprotected implementation of Dilithium. We per-
formed Welch’s t-test to localize potential leakages and single-bit DPA on secret
variables to confirm that actually correspond to exploitable leakages.

Operation Choice Motivation. We limited the unprotected-case study to
three operations namely, the rejection, LowBitsq,2γ2 and HighBitsq,2γ2

. We detail
now the motivations that led to this choice.

The rejection is one of the most critical operations as it is both used for secret
data generation and for rejection sampling during the signature computation. A
successful attack on the rejection will leak information on S1, S2 during the key
generation, on Y during the signature or on a rejected Z (which leaks informa-
tion about S1 as stated by the designers). Regarding decomposition operations,
LowBitsq,2γ2(W − C · S2) in line 10 of Algorithm 2 and HighBitsq,2γ2

which is
part of the computation of MakeHintq,2γ2(−CT0,W −CS2 +CT0) (line 12) have
been chosen because W − C · S2 is a sensitive variable since, together with the
public value, Z it would allow the attacker to recover the secret key T .

We did not studied the Sam function. Although it is a good candidate for an
attack as it is used to generate S1, S2 and Y , its actual implementation can vary
from a Dilithium implementation to another. Indeed, designers of Dilithium state
that different implementations are free to use whichever pseudo-random gener-
ator is offering the best performance and security on their respective platform.
The situation is similar for the random oracle H as its actual implementation
from the NIST submission relies on SHAKE256 what is not mandatory. Studying
the resistance of these primitives is indeed of great importance before deploying
a solution but is out of the scope of this paper where we aim at considering
intrinsic security properties of DILITHIUM.

Note that the polynomial multiplications used to compute T = A · S1 + S2

during the key generation (line 4 of Algorithm 1) and W = A · Y during the
signature is also a sensitive step of the algorithm. Since this classical operation
has already been shown to be sensitive to side-channel attacks and is easy to
mask (due to its linearity) we did not evaluate its unprotected version.

Experimental Setup and Methodology. Our workbench were composed of
an STM32F1 micro-controller from a discovery platform (referred as the DUT in
the rest of the section) running sensitive operations, an H 2.5-2 near-field probe

350 V. Migliore et al.

coupled with a 20dB pre-amplifier to measure electromagnetic leaks, an instru-
mented RTO2014 oscilloscope from Rohde & Schwarz (with 1 GHz bandwidth)
to capture traces and a desktop computer for performing trace analysis.

The oscilloscope was configured with a sample rate ensuring 8 samples per
DUT clock cycle (that is a bit more than 160 MHz). The data was sent to the
DUT through a serial connection, then before the computation a trigger helped
the synchronization of the oscilloscope and the DUT (using a GPIO pin of the
board). A python script was used to perform t-test and DPA on the captured
traces. For the t-test we used the fixed vs random approach and took care of
randomly mix requests from both populations. The single-bit DPA has been
performed on each bit of the sensitive data in the input of the target operations.

Evaluation Results. We present here the results obtained. For the t-test
(Fig. 1), the threshold use is the classical 4.5 one (red lines).

Rejection LowBitsq,2γ2 HighBitsq,2γ2

Fig. 1. T-Test evaluation for targeted operations (using 500 traces). (Color figure
online)

Rejection LowBitsq,2γ2 HighBitsq,2γ2

Fig. 2. Single-bit DPA curves on bit 0 of sensitive data (using 5000 traces).

As can be seen in Fig. 1, basic implementation are highly leaking (we observe
clear peaks using only 500 traces). In all cases, we confirmed the threat induced
by those leakages by computing single-bit DPA curves for all sensitive inputs.
Results can be seen in Fig. 2 and show that t-test peaks are actual leakages. We
obtain similar results for other target bits even if for some bits the signal has a
smaller magnitude.

Masking Dilithium Efficient Implementation and Side-Channel Evaluation 351

Note that the point is to consider the presence of exploitable first order
leakages in the sense that they provide information about sensitive variables.
We do not claim any attack here. The exploitation of these leakages to recover
any secret is out of the scope of the paper but our experiments show that a lot
of information is available.

4 Masking Dilithium

Results of Sect. 3 confirm that an attacker having a physical access to a device
can easily perform a side-channel key-recovery on a standard Dilithium imple-
mentation. In this section, we propose some guidelines to efficiently protect the
Dilithium algorithm.

First, we provide some information about the leakage model adopted for the
determination of masking operations. Second, we present a high-level strategy
for masking. Third, we detail the implementation of secured operations.

4.1 Leakage Model

The first introduced side-channel security model was the noisy leakage model in
which the attacker obtains sensitive information mixed with noise [5,19]. The
main limitation of this approach is the deep knowledge of the noise it requires
which is strongly device-dependent.

A more generic approach is the probing model [14]. In the t-probing model,
the attacker observes t intermediate noise-free variables of the algorithm (as if
she was directly probing the bus). In [8], a reduction have been obtained proving
that security in the t-probing model implies security in the noisy leakage one.

This last model is the one to consider in the case a designer wants to totally
remove leakages up to a given order. To achieve probing security, operations on
secret variables are computed over shared values, i.e. variables which are split
into shares containing partial information of the initial variable mixed with noise.
Masking variables at order d requires at least d+1 shares. The threshold probing
model introduces the notion of t-probing secure gadget.

Definition 1. A circuit G is a t-probing secure gadget if and only if every tuple
composed of t of its intermediate variables is independent from any sensitive
variables it manipulates.

In the following, we expose our masking strategy and describe the secure
gadgets used for our implementation.

4.2 Presentation of the Masked Key Generation and Signature

We provide here design considerations on securing DILITHIUM.Keygen and
DILITHIUM.Sign in the t-probing model. The sensitive operations performed are
of different natures which implies using both arithmetic and Boolean masking.

352 V. Migliore et al.

In the following, we help the reader by disambiguating the used masking using
the prefixes arith:: for arithmetic (the sensitive variable is the sum of the
shares) and bool:: for Boolean masked operations (the sensitive variable is the
exclusive or of the shares).

Masking of DILITHIUM.Keygen. Basically, DILITHIUM.KeyGen can be
split into 3 phases: the sampling of uniform matrices A, S1 and S2; the compu-
tation of T = A · S1 + S2; and the computation of high-order bits of T using the
PowerToRound function. Variables S1 and S2 are clearly sensitive data because
they are part of the secret key what is not the case of variable T = A · S1 + S2

since it is part of the public key. Consequently, only lines 3 and 4 of Algorithm 1
require masking, i.e. the sampling of S1 and S2, usage of these secrets in the com-
putation of T and the secured reconstruction of T . The high-level description of
the masked version of DILITHIUM.Keygen is proposed in Fig. 3.

The first masked operation is arith::generate which provides a secured uni-
form sampling algorithm within a given bound. The choice of arithmetic mask-
ing will ease the following computations: the multiplication of A with masked
S1 can be performed independently on each share of S1 due to the linearity
of the operation with respect to the masking. The second masked operation is
arith::unmask which securely reconstructs an integer from its shares.

Masking of DILITHIUM.Sign. The most sensitive data used in the signature
is Y because it is directly linked with the secret S2 by the equation Z = Y +C ·S1.
Since both Z and C are public when a valid signature is produced, the attacker
just need to solve a linear system of equations to extract S2. Variable Z is also
critical because in case of a rejection, Z leaks partial information about the secret
S1 as stated in the original security proof of Dilithium. Thus, intermediate Z
must be protected. Function H however does not need to be protected. Its inputs
ρ, T1, μ and its output C are public and W1 is not sensitive (W1 is reconstructed
from public data in the signature verification).

In Fig. 4, we present the masked version of DILITHIUM.Sign. Additional
gadgets must be introduced namely:

– arith::to::bool::lowbits which securely computes the LowBitsq,2γ2 from
arithmetic masked shares, and provides the result as boolean masked shares;

ρ

arith::generate

arith::generate

Sam

×

+ arith::unmask PowerToRound

A

(S1)0≤i<t

(S2)0≤i<t

(T)0≤i<t T T1

Fig. 3. Masked implementation of DILITHIUM.Keygen. Masked functions are
represented with a double lined box.

Masking Dilithium Efficient Implementation and Side-Channel Evaluation 353

ρ

arith::generate

Sam

× arith::unmask

W

HighBitsq,2γ2

A

(Y)0≤i<t

(W)0≤i<t
H C

W1

ρ, T1, μ

C

S1

S2

Y

W

× −

× + arith::rejection
(Z)0≤i<t

Restart

fail

arith::to::bool::lowbits

R

bool::rejection

Restart

(R0)0≤i<t

fail

C

T0

R

× + arith::makehint H

Fig. 4. Masked implementation of DILITHIUM.Sign. Masked functions are rep-
resented with a double-lined box.

– arith::rejection and bool::rejection which check if the infinity norm of
polynomial A is below a constant β for respectively arithmetic and boolean
masked shares;

– arith::makehint which securely performs the MakeHintq,2γ2 operation on
arithmetic masked inputs and returns an unmasked value.

4.3 Description of Secured Gadgets of Dilithium with Prime
Modulus

In this section, we provide the description of the different masked gadgets for
Dilithium with prime modulus. The decomposition and the MakeHintq opera-
tions are newly introduced gadget while others were introduced in [3].

4.3.1 Description of Standard Gadgets. Gadgets are basically split into to
categories: linear and non-linear gadgets. Algorithmic definitions of non-linear
gadgets can be found in the full version of this paper [17].

Linear gadgets can be straightforwardly masked as they are implemented by
applying the related instruction separately on each share. Linear gadgets used for
the masking of Dilithium are arith::add (addition of arithmetic masked shares),

354 V. Migliore et al.

Algorithm 3. bool::rejection((a)0≤i<t,len, β)
1: (k0)0≤i<t= bool::mask(−β − 1)
2: (k1)0≤i<t= bool::mask(q − β − 1)
3: for i in 0 to len − 1
4: (b0)0≤i<t= bool::add((k0)0≤i<t, (a[i])0≤i<t)
5: (b0)0≤i<t= bool::rshift((b0)0≤i<t, 31)
6: (b1)0≤i<t= bool::add((k1)0≤i<t, (a[i])0≤i<t)
7: (b1)0≤i<t= bool::rshift((b1)0≤i<t, 31)
8: (b0)0≤i<t= bool::xor((b0)0≤i<t, (b1)0≤i<t)
9: (r)0≤i<t = bool::and((r)0≤i<t, (b0)0≤i<t)

10: end for
11: return bool::fullxor((r)0≤i<t)

bool::lshift (left shift of boolean masked shares), bool::rshift (right shift of
boolean masked shares), bool::not (NOT operation on boolean masked shares),
bool::neg (negation operation on boolean masked shares) and bool::xor (XOR
operation on boolean masked shares).

Non-linear gadgets are more complex, especially due to the fact that oper-
ations between shares are performed implying additional use of randomness
(refreshing). Such gadgets are bool::mask for the secured masking of a given
integer, arith::to::bool::convert for the arithmetic to boolean conversion,
bool::add for the addition on boolean masked shares and bool::and for the
AND operation on boolean masked shares. These standard gadgets are not a
contribution of this paper: for the reader’s convenience, a description is given in
the full version of this paper [17].

4.3.2 Description of arith::generate. The arith::generate gadget gener-
ates uniformly sampled integers in a given interval. For the non-masked version
of Dilithium, this operation is performed in two steps: a first step which uses the
XOF function Sam to generate random values; and a second step which checks
that the coefficient lies in the target interval and rejects it if not. As stated
before, we did not considered the Sam function since the used algorithm may
depend on the developers’ choice. Since the processing of the generation is anal-
ogous to Algorithm 15 of [3] we did not provide full details in these proceedings,
but a description can be found in the full version of this paper [17].

4.3.3 Description of arith::rejection and bool::rejection. The gadget per-
forming the rejection operation on a vector of boolean masked shares called
bool::rejection is presented in Algorithm 3. For coefficient a, bound β and
modulo q, the algorithm checks if β ≤ a ≤ q−β. The algorithm is constructed by
a loop which iterates on all masked coefficients, and evaluates if any coefficient
is out of bound by checking both lower and higher bounds.

To do so, the two bound checks are performed by subtracting the given
bound to the coefficient and checking the sign bit. It is a similar approach to

Masking Dilithium Efficient Implementation and Side-Channel Evaluation 355

Algorithm 4 . arith:makeint((r)0≤i<t, (z)0≤i<t, β). Masked algorithm of
MakeHintq,2γ2 with a prime modulus q. w is the word base (usually 32 or 64).

1: (r1)0≤i<t= arith::to::bool::highbits((r)0≤i<t, β)
2: (a)0≤i<t = arith::addmodq((r)0≤i<t, (z)0≤i<t)
3: (a1)0≤i<t= arith::to::bool::highbits((a)0≤i<t, β)
4: (t)0≤i<t = bool::xor((r1)0≤i<t, (a1)0≤i<t)
6: return bool::fullxor((t)0≤i<t) � (w − 1)

arith::generate at the except that during generation, we only need to check
one bound (namely 2 · β) and shift the result by −β.

The gadget arith::rejection is simply implemented as the composition of
arith::to::bool:convert and bool::rejection.

4.3.4 Description of Decomposition Operations. Decomposition opera-
tions are by far the most complex operations regarding masking. The corner-
stone is the function Decomposeq,2γ2

which takes an integer r as input and
returns (r0, r1) such that r = 2r1γ2 + r0. The value r0 (reps. r1) is precisely
LowBitsq,2γ2(r) (resp. HighBitsq,2γ2

(r)). Both functions are actually computed
using a call to Decomposeq,2γ2

then returning the relevant part of r since no
relevant optimization can be made when only one of the ri’s is needed.

To illustrate the complexity of this computation, a constant time implemen-
tation of Decomposeq,2γ2

is provided in the full version of this paper [17]. This
algorithm leverages the specific form of both the modulus q and the base used
to perform the Euclidean division so that only some shifts and integer addi-
tions are used. However, even with these optimizations, Decomposeq,2γ2

requires
numerous non-linear operations (addition of Boolean shares or Boolean AND).
The masked version of Decomposeq,2γ2

is also provided in the full version of this
paper [17].

4.3.5 Description of arith::makehint. The computation of MakeHintq,2γ2

strongly relies on decomposition gadgets thus its masking is straightforward as
soon as there exists a masked version of HighBitsq,2γ2

. The masked algorithm
for computing MakeHintq,2γ2 is proposed in Algorithm 4.

4.4 Optimization of Dilithium Masking for Power of Two Modulus

The main drawback of the prime modulus used in the standard version of
Dilithium is the number of non-linear operations required during decomposition
operations. As an example, the computation of LowBitsq,2γ2(W − C · S2) in line
10 of Algorithm 2 requires 12,288 bool::add and 4,608 bool::and operations.

The choice of a prime modulus q of a specific form is mainly made for effi-
ciency reasons, as it makes number-theoretic transform (NTT)-based polynomial
multiplications possible. However, when it comes to the masked scheme, using a

356 V. Migliore et al.

Algorithm 5. arith::generate(β). Generates an uniformly sampled integer
in the bounds [−β,+β].

1: mask = 1 << (NumberOfBits(β) + 1) − 1
2: do
3: for i in 0 to t − 1
4: (x)i = rand() ∧ mask
5: end for
6: (x)0 = (x)0 − 2 · β − 1
7: (b)0≤i<t = arith::to::bool::convert((x)0≤i<t)
8: while bool::recompose((b)0≤i<t) = 0
9: (x)0 = (x)0 + β + 1

10: return (x)0≤i<t

power of two modulus q instead speeds up almost all masked gadgets and greatly
simplifies the masking of Decomposeq,2γ2

. Polynomial multiplications then have
to be carried out using non-Fourier techniques like Karatsuba, but such tech-
niques turn out to be quite competitive for the parameters of Dilithium.

From a security standpoint, one expects the security level of Dilithium using
a power-of-two modulus to be essentially the same as that of the original prime
modulus scheme. Indeed, the asymptotic security arguments for the underlying
lattice problems Module-LWE and Module-SIS are known to hold for moduli
of an arbitrary arithmetic form. This was established by Langlois and Stehlé
in their paper on worst-case to average-case reductions for module lattices [15],
specifically as Theorem 3.6 for Module-SIS, and Theorem 4.8 (using a modulus
switching argument) for Module-LWE. In addition, while in practice parameters
are set to match the best concrete lattice attacks on the scheme rather than using
security reductions, using a power-of-two modulus does not appear to make any
known concrete attack faster compared to the prime modulus case. We also note
that power-of-two moduli are commonly used by designers of practice-oriented
lattice-based constructions, including the NIST-submitted encryption scheme
Saber [7].

Consequently, we propose this power-of-two variant of Dilithium as a relevant
alternative insofar as side-channel resistance is a concern.

4.4.1 Simplification of arith::generate. The new arith::generate is pro-
posed in Algorithm 5. As q is a power of two, and due to the fact that computer
units perform two’s complement arithmetic, the integer modular reduction after
the rejection sampling can be skipped. Moreover, even if the size of the modu-
lus is different from the computer base arithmetic (usually 32-bit of 64-bit), the
modular reduction is almost a truncation of high-order bits so we do not need
to take into account modular reduction during intermediate computations.

We also found that for the power of two case, it is faster to generate input
random integers with arithmetic masked shares (see Sect. 5). It is not a trivial

Masking Dilithium Efficient Implementation and Side-Channel Evaluation 357

Algorithm 6. Decomposeq,2γ2
(r).

Parameters: b such that 2b = 2γ2 and w the processor word size.
1: m = (1 � b) − 1
2: d = 1 � (b − 1)

Computation of r0

3: r0 = r � (w − b)
4: m0 = MaskFromSign(r0)
5: m0 = m0 � b
6: r0 = r0 � (w − b)
7: r0 = r0 ⊕ m0

Computation of r1

8: r1 = (r + d) � b
9: return (r0, r1)

result because the bound check loop now requires a conversion from arithmetic
to boolean masking, and this operation is known to be expensive.

4.4.2 Adaptation of bool::rejection. The bool::rejection operation is
almost unchanged. The only difference is the fact that because the integer mod-
ular reduction with a power of two modulus is a truncation of high order bits, the
implementation of the rejection sampling does not require the exact exponent of
the modulus q (see the full version of this paper [17]).

4.4.3 Simplification of Decomposition Operations. In the Dilithium spec-
ification, the decomposition operations are performed in base 2γ2 = γ1 =
(q − 1)/16 (q − 1 is divisible by 16). Using q a power of two, we have to decom-
pose using a base 2γ2 = 2b. Therefore, the decomposition operations become
straightforward and are close to a truncation (at the except that the remainder
must be zero centered).

Algorithm 6 provides the new constant time implementation of
Decomposeq,2γ2

with a power of two modulus q (hence a power of two base).
As one can see, it is now possible to separate computations of the low order
bits and high order bits. This is directly correlated with the fact that q is divis-
ible by 16 (and not q − 1) so there is no need to check the border case where
r − r0 = q − 1.

An explanation of Algorithm 6 is provided in the full version of this paper [17].
The masked versions of LowBitsq,2γ2 (referred as arith::to::bool::lowbits),
HighBitsq,2γ2

(referred as arith::to::bool::highbits) and MakeHintq,2γ2 (referred
as arith::makehint) are presented in the full version of this paper [17] as well.

5 Implementation Results

In this section, we provide details on the implementation of masking for
Dilithium, along with execution times and a side-channel leakage evaluation.

358 V. Migliore et al.

The followed approach is similar to the one used for the evaluation of the unpro-
tected implementation in Sect. 3.

5.1 Challenges of the Masked Implementation

We faced several challenges for the implementation of side channel countermea-
sures on the ARM Cortex-M3.

The first challenge was the complexity of masking itself. Top level Dilithium
gadgets are constructed by calls of common sub-gadgets (which are also possibly
large ones). Thus, inlining all procedures were not a relevant approach. Instead,
we have evaluated the trade-off between function calls and inlining to reduce
memory footprint with a limited impact on performances.

The second challenge was the limitation of the processor micro-architecture.
Even with a program following the theoretical t-probing model, the processor
micro-architecture itself can possibly leak additional information not covered
by the initial model. In the case of the ARM Cortex-M3 micro-architecture,
such sensitive components are intermediate registers ra and rb which are located
between standard registers and arithmetic units (and thus not directly accessi-
ble). These registers are not erased between instructions and consequently they
leak the transient state of successively manipulated values. Our first implemen-
tation in C was actually subject to such leakages and turned out to be unsafe.
Thus, we implemented the library in assembly language to control the scheduling
of instructions thus overcoming this phenomenon. In addition, since Dilithium
gadgets are composed of function calls, we adapted calls to only manipulate
addresses of sensitive data instead of the data itself.

A third issue was the complexity of tracking leaky instructions. We first
directly evaluated real traces captured with our workbench. However, this app-
roach is time consuming due to trace acquisition and processing. Moreover, the
correspondence between timing and assembly instructions is not trivial due to
pipelining (it is tractable but takes a lot of time if not automatized). Our final
approach was the exploitation of ARM simulators that also evaluate side-channel
leakages. We evaluated two of the most recent ones: ELMO [16] and MAPS [6].
Each simulator has some idiosyncrasies but for both, the main idea is to simulate
the number of bit flips during computations as it is directly correlated to the
power consumption. At the time of our experiments, ELMO was only supporting
the ARM Cortex-M0 while MAPS was only supporting Cortex-M3. We discuss
the relevance of both tools for our particular needs in the full version of this
paper [17]. To take into account the optimization provided by the Cortex-M3,
we finally based our simulations on MAPS and brought some modifications to
its core to manage some specific instructions.

5.2 Evaluation of Execution Times

We focused on the most costly masked operations of Dilithium and calculated
computation times for both power of two and prime arithmetic. In particular,

Masking Dilithium Efficient Implementation and Side-Channel Evaluation 359

Table 1. Execution times of main gadgets for both prime and power of two
modulus q on STM32F1 (order-1 masking, computation on 1 coefficient).

q = 8380417 q = 223 speedup

arith::to::bool::lowbits 331µs/7,944 cycles 38µs/912 cycles 8

arith::to::bool::highbits 275µs/6,600 cycles 37µs/888 cycles 7

arith::makehint 560µs/13,440 cycles 79µs/1,896 cycles 7

bool::rejection 66µs/1,584 cycles 66µs/1,584 cycles 1

we have evaluated arith::to::bool::lowbits, arith::to::bool::highbits,
arith::makehint and bool::rejection. Results are summarized in Table 1.

We can observe that the computation times of decomposition operations are
greatly improved with power of two modulus, with a speed-up from 7× (for
arith::makehint) to 8× (for arith::to::bool::lowbits). This is due to the
fact that only shifts are used for the decomposition when q is a power of two
while an Euclidean division is required if q is prime.

We also evaluated the overhead of the masking of Dilithium (power of two
implementation) compared to the non-masked version on the full implementation
on a general purpose processor. Computation results are summarized in Table 2.

Table 2. Execution times of DILITHIUM.KeyGen and DILITHIUM.Sign on an
Intel Core i7-7600U CPU running at 2.80 GHz (10,000 runs).

Unmasked Order-1 Order-2 Order-3

DILITHIUM.KeyGen 323µs 1.83 ms 2.52 ms 4.32 ms

(reference) (5.66×) (7.8×) (13.4×)

DILITHIUM.Sign 992µs 5.64 ms 11.68 ms 28.08 ms

(reference) (5.68×) (11.77×) (28.3×)

First order masking is 5× slower than unmasked implementation. The com-
plexity of masking is limited due to the possibility of partially masking Dilithium.

5.3 Evaluation of Side-Channel Security

We have evaluated masked gadgets separately due to the limited size on the
STM32F1 micro-controller. We focused on the power-of-two modulus version
since it corresponds to the main contribution of this paper. To speed up the
evaluation phase, we first used MAPS simulator to reduce the majority of leak-
ages. Then, we addressed remaining leakages with our side-channel workbench.

In Fig. 5, we provide the t-test evaluation of arith::to::bool::lowbits,
arith::to::bool::highbits, arith::makehint and arith::rejection. We
did not detected leakage using 10,000 traces on the first-order protected imple-
mentation which is to compare with the high leakages observed using only 500
curves for an unprotected implementation.

360 V. Migliore et al.

(a) bool::rejection (b) arith::to::bool::lowbits

(c) arith::to::bool::highbits (d) arith::makehint

Fig. 5. Evaluation of the t-test on masked gadgets after 10.000 traces.

6 Conclusion

In this paper, we described how to efficiently mask the Dilithium signature
scheme. Our approach is based on a slight modification of the reference imple-
mentation of Dilithium by setting a power of two modulus instead of prime.

This optimization greatly reduces the complexity of decomposition opera-
tions such as LowBitsq or HighBitsq, reducing computation times by a factor
up to 8. Regarding the overhead compared to a non-masked implementation,
the order-1 masking is slower by approximately a factor of 5.6, 11.6 for order-2
masking and 28 for order-3 masking.

We also provided a side-channel leakage analysis for both non-masked and
masked of version of Dilithium on STM32F1 micro-controller. We were able to
successfully found some leakages on decomposition functions and the rejection
operation after no more than 500 traces for the non-masked version while our
protected implementation did not show first-order leakage for 10.000 traces.

The implementation and evaluation of a full protected implementation of
the scheme is of great interest. We provided figures on a standard CPU that
would be interestingly completed by results on an embedded device. However,
this requires some memory usage optimization or the use of a larger targeted
chip than the STM32F1 (which in turns implies a harder evaluation process).
This is a valuable work in itself and would make an interesting extension to this
paper.

Masking Dilithium Efficient Implementation and Side-Channel Evaluation 361

References

1. NIST Post-Quantum Cryptography. http://csrc.nist.gov/groups/ST/post-
quantum-crypto/

2. Albrecht, M.R., Deo, A., Paterson, K.G.: Cold boot attacks on ring and module
LWE keys under the NTT. IACR Cryptology ePrint Archive 2018, 672 (2018)

3. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp.
354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 12

4. Bindel, N., Buchmann, J., Krämer, J.: Lattice-based signature schemes and their
sensitivity to fault attacks. In: FDTC (2016)

5. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

6. Le Corre, Y., Großschädl, J., Dinu, D.: Micro-architectural power simulator for
leakage assessment of cryptographic software on ARM Cortex-M3 processors. In:
Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 82–98. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89641-0 5

7. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

8. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

9. Ducas, L., et al.: Crystals-Dilithium: a lattice-based digital signature scheme. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

10. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Seiler, G., Stehlé, D.:
CRYSTALS-DILITHIUM, algorithm specifications and supporting documentation
(2017)

11. Espitau, T., Fouque, P.-A., Gérard, B., Tibouchi, M.: Loop-abort faults on lattice-
based fiat-shamir and hash-and-sign signatures. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 140–158. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69453-5 8

12. Espitau, T., Fouque, P., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS
lattice-based signatures. In: ACM CCS, pp. 1857–1874 (2017)

13. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, Gauss, and reload.
In: Cryptographic Hardware and Embedded Systems - CHES 2016 (2016)

14. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

15. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015)

16. McCann, D., Whitnall, C., Oswald, E.: ELMO: emulating leaks for the ARM
Cortex-M0 without access to a side channel lab. IACR Cryptology ePrint Archive
2016, 517 (2016)

17. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.A.: Masking Dilithium: efficient
implementation and side-channel evaluation. IACR Cryptology ePrint Archive
(2019)

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-319-89641-0_5
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-319-69453-5_8
https://doi.org/10.1007/978-3-319-69453-5_8
https://doi.org/10.1007/978-3-540-45146-4_27

362 V. Migliore et al.

18. Pessl, P., Groot Bruinderink, L., Yarom, Y.: To BLISS-B or not to be–attacking
Strongswan’s implementation of post-quantum signatures. In: ACM CCS (2017)

19. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9

Proxy Re-Encryption and Re-Signatures
from Lattices

Xiong Fan1(B) and Feng-Hao Liu2

1 Cornell University, Ithaca, NY, USA
xfan@cs.cornell.edu

2 Florida Atlantic University, Boca Raton, FL, USA
fenghao.liu@fau.edu

Abstract. Proxy re-encryption (PRE) and Proxy re-signature (PRS)
were introduced by Blaze, Bleumer and Strauss [Eurocrypt ’98]. Basi-
cally, PRE allows a semi-trusted proxy to transform a ciphertext
encrypted under one key into an encryption of the same plaintext under
another key, without revealing the underlying plaintext. Since then, many
interesting applications have been explored, and constructions in various
settings have been proposed. On the other hand, PRS allows a semi-
trusted proxy to transform Alice’s signature on a message into Bob’s
signature on the same message, but the proxy cannot produce new valid
signature on new messages for either Alice or Bob.

In this work, we first point out a subtle mistake in the security proof of
the work by Kirshanova (PKC ’14), who proposed a lattice-based CCA1
PRE. Thus, this reopens the direction of lattice-based CCA1-secure con-
structions, even in the single-hop setting. Then we construct a single-
hop PRE scheme that is proven secure in our new tag-based CCA-PRE
model. Next, we construct the first multi-hop PRE construction. Lastly,
we also construct the first PRS scheme from lattices that is proved secure
in our proposed unified security model.

1 Introduction

Proxy re-encryption (PRE) allows a (semi-trusted) proxy to transform an
encryption of m under Alice’s public key into another encryption of the same
message under Bob’s public key. The proxy, however, cannot learn the underly-
ing message m, and thus both parties’ privacy can be maintained. This primi-
tive (and its variants) have various applications ranging from encrypted email
forwarding [8], to securing distributed file systems [6]. In addition application-
driven purposes, various works have shown connections between re-encryption
(and its variants) with other cryptographic primitives, such as program obfus-
cation [13,14,23] and fully-homomorphic encryption [3,11]. Thus studies along
this line are both important and interesting for theory and practice.

Another primitive, called proxy re-signature (PRS), allows a semi-trusted
proxy to transform Alice’s signature σA on a message μ into Bob’s signature σB

on the same message μ, but the proxy cannot produce new valid signature on
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 363–382, 2019.
https://doi.org/10.1007/978-3-030-21568-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_18

364 X. Fan and F.-H. Liu

new messages for either Alice or Bob. PRS is employed in various applications,
such as providing a proof that a certain path in a graph is taken.

Both concepts of PRE and PRS were introduced by Blaze, Bleumer, and
Strauss [8], who also gave the first construction of a CPA (i.e. chosen-plaintext
attacks) secure bi-directional multi-hop PRE scheme under the Decisional Diffie-
Hellman assumption, and a restricted PRS construction. Later on, Ateniese and
Hohenberger [7] formalized security notions for PRS, and gave two PRS con-
structions (one is bi-directional, and the other one is uni-directional) based on
bilinear maps in the random oracle model. Ateniese et al. [6] constructed the first
CPA secure uni-directional scheme based on bilinear maps, yet their construc-
tion can only support a single-hop re-encryption. Hohenberger et al. [23] and
Chandran et al. [14] used an obfuscation-based approach and constructed CPA
secure uni-directional single-hop PRE scheme (and its variants). Chandran et al.
[13], using the obfuscation-based approach, constructed the first CPA secure uni-
directional multi-hop PRE scheme based on lattices assumptions.

For the PRE part, as argued that CPA security can be insufficient for some
useful scenarios, Canetti and Hohenberger [10] considered a natural stronger
security notion — chosen-ciphertext attacks (CCA) security where the adver-
sary has access to a decryption oracle. Intuitively, this security notion guaran-
tees that the underlying message of the challenge ciphertext remains hidden
even if the adversary can somehow obtain decryptions of other ciphertexts.
They give a meaningful security formulation of CCA secure PRE, and then
constructed the first CCA-secure bidirectional multi-hop PRE scheme. Later,
Shao et al. [33] constructed a CCA-secure uni-directional single-hop PRE, and
Chow et al. [16] proposed another CCA-secure uni-directional scheme in ran-
dom oracle model. Libert and Vergnaud [26] improved the result by construct-
ing a CCA uni-directional single-hop PRE without random oracles, and this
remains the state of the art of the current construction (for the setting of uni-
directional CCA-PRE under the definition of [10]). We note that it is unclear
how to extend security of the previous obfuscation-approach [13,14,23] (that are
only CPA-secure) to the CCA setting. One particular technical challenge is that
the re-encryption key output by the simulator might be distinguishable given
the CCA decryption oracle, and thus the previous security analyses cannot go
through. For CPA security, our understanding is quite well—we know how to
construct PRE schemes that are uni-directional and multi-hop in the standard
model. However, for CCA security, our understanding in the standard model
is much limited in the following sense. First, there is no known scheme that
achieves both uni-directional and multi-hop at the same time. Moreover, all cur-
rently known constructions [4,6,8,10,16,26,33] are based on Diffie-Hellman-style
assumptions. Then Kirshanova [24] proposed a single-hop construction based on
lattices, and argued that it is CCA1 secure1. However, after a careful examina-
tion of her security proof, we found a subtle mistake in the security proof. As the

1 CCA1 security is weaker in the sense that the attacker does not have the decryption
oracle after receiving the challenge ciphertext.

Proxy Re-Encryption and Re-Signatures from Lattices 365

mistake is not easily fixable, how to construct a lattice-based PRE that achieves
CCA1-security, (even for the single-hop case) remains open.

For the PRS part, Ateniese and Hohenberger [7] left some open problems such
as how to construct uni-directional PRS where the proxy can only translate
signatures in one direction. Can we avoid the random oracle analysis? Libert
and Vergnaud [25] answered these questions positively by constructing the first
multi-use unidirectional PRS in standard model relying on a new computational
assumption in bilinear group.

In this paper, we study lattice-based PRE and PRS constructions. In partic-
ular, we make contributions in the following four folds:

– First, we point out a subtle mistake in the security proof of the work [24] (the
CCA1 construction), and argue that this is not easy to fix. Briefly speaking,
the re-encryption key from the challenge user to another honest user generated
in the security proof is distinguishable from the real, and thus the analysis
breaks down. Therefore, the construction of [24] does not achieve the CCA1
notion considered in most prior work and this paper.

– Second, we propose a new model called tag-based CCA that lies in between
the CCA1 and CCA2 model. Our tag-based CCA allows the attacker to query
the decryption oracle before and after the challenge ciphertext, and the hon-
est re-encryption oracle who only re-encrypts honestly generated ciphertexts.
This is a combination of CCA and a new notion – honest re-encryption (HRA)
attacks proposed recently by Cohen [17].
We then construct a lattice-based PRE scheme that achieves our tag-based
CCA notion. We also describe a generic transformation from the relaxed func-
tionality to the full-fledged one using know techniques (i.e., zero-knowledge
proofs). Using a recent work that constructs NIZK from circularly secure
FHE [12], we are able to achieve the full-fledged CCA-security if we further
assume the required circular security on LWE.

– Third we define a selective notion of tag-based CCA security for multi-hop
PRE where the attacker needs to commit to a tree structure for the chal-
lenging ciphertext at the beginning. Then we prove that our basic single-hop
construction, with a slight modification, can be extended to the multi-hop
setting and achieve such a security notion. This is, to our knowledge, the first
construction of multi-hop PRE that achieves a relaxed yet meaningful notion
of CCA security.

– Lastly, we propose a simpler and unified security model for PRS which cap-
tures more dynamic settings. We show that the idea of our multi-hop PRE
model and the construction can be extended to construct PRS that achieves
the security notion. This is the first (to our knowledge) multi-hop unidirec-
tional PRS from lattices.

1.1 Technique Highlights

In the following, we highlight our technical ideas for the four contributions as
described above.

366 X. Fan and F.-H. Liu

Part I: The Subtle Mistake in the Work [24]. The subtle mistake comes in
the security proof where the work [24] constructs two adjacent hybrids that are
distinguishable. For clarification of exposition, we first briefly present the main
idea of the construction [24]. Then we will point out where the subtlety is and
explain why the problem cannot be easily fixed.

Basically, the PRE construction can be regarded as an extension of CCA-
secure public key encryption scheme in [28]. For concreteness, we consider two
users: User 1 has public key pk1 = (A0,A1,A2,H), and User 2 has public
key pk2 = (A′

0,A
′
1,A

′
2,H

′), where each public key consists of four matrices.
The secret key of User 1 consists of low-norm matrices R1,R2 satisfying A1 =
−A0R1,A2 = −A0R2, and it is similar for the case of User 2. We note that the
readers here do not need to worry about the dimensions. To encrypt under pk1,
we consider an encryption matrix Au = [A0|A1 +HG|A2 +HuG], where Hu is
a random invertible matrix (as a tag to the ciphertext), then encrypt messages
using the dual-Regev style encryption [22], i.e. ct = sTAu + e + encode(m).
Similarly, we can encrypt under pk2 with the same structure.

To generate a re-encryption key from User 1 to User 2, the work [24] considers
a short matrix X satisfying the following relation:

[A0|A1 + HG|A2 + HuG]

⎡
⎣
X00 X01 X02

X10 X11 X12

0 0 I

⎤
⎦ = [A′

0|A′
1 + H′G|A′

2 + HuG].

In particular, for the last column of the re-encryption key matrix, it holds that

[A0|A1 + HG]
[
X02

X12

]
= A′

2 − A2. (1)

It is not hard to see that ct · X = sT · A′
u + ẽ + encode(m), a ciphertext of m

under pk2, so the correctness property is guaranteed.
To prove security, the work [24] uses a standard reduction argument based

on the LWE assumption: suppose there exists an adversary that can break the
PRE scheme, then there exists a reduction, with oracle access to the adversary,
who can break the underlying LWE assumption. For this type of proofs, typically
the reduction needs to embed the hard instance (LWE instance for this case),
then simulates a scheme (PRE) to the adversary, and finally the reduction can
use the adversary to break the underlying hardness assumption. It is crucially
important that the simulated scheme cannot be distinguished by the adversary;
otherwise, the adversary can always output ⊥ if he detects the scheme is different
from the real scheme, and such adversary is useless to the reduction. The security
proof in the work [24] missed this point. At a high level, her reduction simulated
a PRE scheme that can be distinguishable by the adversary easily, so the whole
argument breaks down. Below we further elaborate on the details.

For simplicity we consider a simple case where there are only two honest users,
Users 1 and 2 and the adversary only gets one re-encryption key from User 1 to
User 2. The challenge ciphertext comes from an encryption of User 1, i.e. pk1.
For such case, the reduction of the work [24] pre-selects a tag matrix Hu∗ (for

Proxy Re-Encryption and Re-Signatures from Lattices 367

the challenge ciphertext), matrices R∗
1,R

∗
2, and then embeds an LWE instance

A∗ in the encryption matrix: A∗
u = [A∗| − A∗R∗

1| − A∗R∗
2 + (Hu − Hu∗)G].

In this case, the reduction sets pk1 = (A0,A1,A2,H) to be (A∗,−A∗R∗
1 −

H∗G,−A∗R∗
2 − Hu∗G,H∗) for some random invertible H∗.

To generate re-encryption key from the challenge user 1 to User 2, the reduc-
tion first pre-samples small matrices X00,X01,R′

1,R
′
2, and a random invertible

matrix H′. Then it computes:

A′
0 = [A∗| − A∗R∗

1]
[
X00

X10

]
, A′

i = [A∗| − A∗R∗
1]

[
X00

X10

]
· R′

i,∀i = 1, 2

The reduction sets

pk2 = (A′
0,A

′
1,A

′
2,H

′), rk1→2 =
[(

X00
X10

)(
X00
X10

)
R′

1

(
X00
X10

)
R′

2

0 0 I

]

generated as above. Then obviously the matrices A′
1,A

′
2 can be expressed as

A′
1 = A′

0R
′
1,A

′
2 = A′

0R
′
2, where R′

1,R
′
2 are small matrices and still act as

secret key for User 2. Therefore, the reduction can still use the same algorithm
in the real scheme to answer decryption queries for User 2.

However, if A′
2 is generated in this way, then it is easy to check and compare

with Eq. (1):

[A0|A1 + HG]
[
X02

X12

]
= [A∗| − A∗R∗

1]
[
X00

X10

]
· R′

2 �= A′
2 − A2. (2)

This means adversary, given the simulated pk1, pk2, rk1→2, can easily tell
whether they are from the real scheme or the simulated scheme. Thus, the secu-
rity proof in this way [24] is not correct.

A straightforward fix would be to set A′
2 = [A∗|−A∗R∗

1]
[
X00

X10

]
·R′

2 +A2 =

A′
0 · R′

2 + A2 so that Eqs. (1) and (2) match. But in this way it is not clear
how to express A2 as A′

0R for some small matrix R, because it is not clear
how to express A2 as A′

0R̃ for some small R̃. Note that R serves as the secret
key of pk2 to simulate decryption queries. Consequently, it is not clear how the
reduction can answer decryption queries as the previous approach. It seems that
this construction/proof is facing a dilemma: either the reduction can answer
the decryption queries but the re-encryption key can be distinguished, or the
reduction can generate an indistinguishable re-encryption key but cannot answer
the decryption queries.

Part II: Our New Construction for Single-Hop PRE. To overcome the
dilemma, we consider a new matrix structure: the setup algorithm outputs a
public matrix A, and each user extends the previous matrix structure to be
Au = [A|A1 + HG|A2 + HuG], where A1 = −AR1,A2 = −AR2 and the
matrices R1,R2 are the corresponding secret key. The shared matrix A offers
a significant advantage for the simulation: the reduction can embed the LWE
instance A∗ as the public shared matrix, and then sets

A′
2 = [A∗| − A∗R∗

1]
[
X00

X10

]
· R′

2 − A∗R∗
2.

368 X. Fan and F.-H. Liu

This allows the reduction to express A′
2 as A∗R for some small and known

matrix R. Then the reduction can use this to simulate the decryption queries,
while the Eq. (1) will match for the real scheme and the simulated scheme. Our
modified construction achieves a relaxed re-encryption functionality in compar-
ison to the construction proposed in [26], i.e. the re-encryption key can only
transform well-formed ciphertexts into indistinguishable re-encrypted cipher-
texts, but transformation of maliciously chosen cihpertexts can be distinguished
if the adversary has the secret key of the target user. In Sect. 3, we present more
detailed discussions and a simple transformation from the relaxed functionality
to the “full-fledged” functionality using zero-knowledge proofs2.

Part III: Extension to Multi-hop PRE. We further observe that the matrix
structure in our construction can be extended to the multi-hop case with a slight
modification. Interestingly, our scheme itself can support general network struc-
tures (for functionalities), yet our security proof (for CCA security), however,
requires the structure of tree-structured networks (i.e. the adversary can only
query re-encryption keys that form a tree among the users). If the adversary’s
queries form a general graph, then security of our scheme becomes unclear: we
are not able to prove security under the current techniques, but there is no known
attack, either. We leave it as an interesting open problem to determine whether
our construction is secure under general network structures.

A technical reason for this phenomenon comes from the order of sampling
for the simulation. We give a simple example for illustration: let there be three
parties in the network, Users one, two, and three. It is easy for the reduction
to simulate in the following order pk1, rk1→2, pk2, rk2→3, and then pk3 without
knowing a trapdoor of the LWE instance A∗. The reduction, however, would
get stuck if he needs to further generate rk1→3, which should be consistent with
the already sampled pk1 and pk3. We recall that the reduction is able to check
whether rk1→3 is consistent with pk1 and pk3 in both the real scheme and the sim-
ulated scheme (as Eq. (1)). Thus, the reduction must simulate such consistency
as the real scheme. Even though there are techniques from the Ring-LWE [21,27]
that allows sampling in the reverse order of pk3, rk2→3, pk2, rk1→2, pk1, it does
not help to solve the problem because the reduction still does not know how to
generate rk1→3 after pk1 and pk3 are sampled, without a trapdoor of A∗.

Part IV: Unified Model and Construction for Multi-hop PRS. An inter-
esting observation from our multi-hop CCA-PRE construction is that it is also
compatible with the lattice signature structure in the work of Boyen [9]. In par-
ticular, in that work, the signature scheme has the following structure: [A|Bμ],
where is an encoded matrix for message μ. This message-dependent matrix can
be extended to a similar structure similar to that in multi-hop PRE construc-
tion. Recall that prior PRS work [7,25] consider four scenarios for the security
requirement. In each scenario, the adversary has access to a subset of oracles
(signing, re-signing, re-key generation), and security requires that the adversary

2 Under current techniques, zero knowledge proof systems based on pure lattices
assumptions either require interactions or random oracles.

Proxy Re-Encryption and Re-Signatures from Lattices 369

cannot forge a signature on behalf of honest users (whose secret keys are not
at the adversary’s hand). Our unified security model is based on the approach
of multi-hop PRE model with necessary modifications to fit into the signature
framework.

1.2 Related Works

Proxy Re-Encryption. As mentioned above, in recent years, there has been
multiple PRE constructions achieving different security notions from different
assumptions. In addition to the bi-directional PRE-CPA constructions [8,10],
there is also some work [6,23] about building uni-directional PRE-CPA from
various assumptions. For CCA-PRE construction, we only know how to con-
struct single-hop scheme from bilinear group assumption as shown in work [26],
and single-hop scheme from LWE assumption in the random oracle model as
shown in [4]. Besides the above mentioned work, recently Nuñez et al. [31] pro-
posed a nice framework capturing more fine-grained CCA-security of PRE, cor-
responding to the adversary’s ability in the security experiment. Our multi-hop
tag-based CCA-secure PRE construction described in the full version [19] can be
categorized as CCA1,2 model in their paper regarding a special structure (trees).

Proxy Re-Signature. Bi-directional PRS was considered in the literature [7,
15]. The generation of re-key algorithm needs to take inputs both users’ secret
key. The more fine-grained notion, uni-directional PRS scheme was proposed
in [25]. Shao et al. [34] cooked up a bilinear group based scheme (in random
oracle model) that is insecure but proven secure in prior PRS model [7,25], but
their result cannot be extended to the lattice setting.

2 Preliminaries

Notations. Let ppt denote probabilistic polynomial time. We use bold upper-
case letters to denote matrices, and bold lowercase letters for vectors. We let λ
be the security parameter and [n] denote the set {1, ..., n}. We use [·|·] to denote
the concatenation of vectors or matrices, and use �∞ norm for the norms of all
vectors and matrices used in our paper. We say a function f(n) is negligible if
it is O(n−c) for all c > 0, and we negl(n) to denote a negligible function of n.
Let X and Y be two random variables taking values in Ω. Define the statistical
distance, denoted as Δ(X,Y) as

Δ(X,Y) :=
1
2

∑
s∈Ω

|Pr[X = s] − Pr[Y = s]|

Let X(λ) and Y (λ) be ensembles of random variables. We say that X and Y are
statistically close if d(λ) := Δ(X(λ), Y (λ)) is a negligible function of λ. We say
two ensembles X(λ) and Y (λ) are computationally indistinguishable (denoted
as X(λ) ≈ Y (λ)) if for every ppt distinguisher D, it holds that

|Pr[D(X(λ)) = 1] − Pr[D(Y (λ)) = 1]| = negl(λ)

370 X. Fan and F.-H. Liu

Lemma 2.1 ([1]). Regarding the norm defined above, we have the following
bounds:

– Let R ∈ {−1, 1}m×m be chosen at random, then Pr[||R|| > 12
√

2m] < e−2m.
– Let R be sampled from DZm×m,σ, then we have Pr[||R|| > σ

√
m] < e−2m.

Randomness Extraction. We will use the following lemma to argue the indis-
tinguishability of two different distributions, which is a generalization of the
leftover hash lemma proposed by Dodis et al. [18].

Lemma 2.2 ([1]). Suppose that m > (n + 1) log q + w(log n). Let R ∈
{−1, 1}m×k be chosen uniformly at random for some polynomial k = k(n). Let
A,B be matrix chosen randomly from Z

n×m
q ,Zn×k

q respectively. Then, for all
vectors w ∈ Z

m, the distribution (A,AR,RTw) is statistically close to distri-
bution (A,B,RTw).

Learning with Errors. The LWE problem was introduced by Regev [32], who
showed that solving it on the average is as hard as (quantumly) solving sev-
eral standard lattice problems in the worst case, when the error distribution is
instantiated as discrete Gaussian distribution with proper parameters.

Definition 2.3 (LWE). For an integer q = q(n) ≥ 2, and an error distribution
χ = χ(n) over Zq, the learning with errors problem LWEn,m,q,χ is to distinguish

between the distribution {A,ATs + x} from distribution {A,u}, where A $←
Z

n×m
q , s $← Z

n
q , u $← Z

m
q , and x ← χm.

Small Integer Solution. The SIS problem was first suggested to be hard on
average by Ajtai [2] and then formalized by Micciancio and Regev [30]. It is
known to be as hard as certain worst-case problems (e.g., SIVP) in standard
lattices [2,22,29,30].

Definition 2.4 (SIS). For any n ∈ Z, and any functions m = m(n), q =
q(n), β = β(n), the average-case Small Integer Solution problem (SISq,n,m,β)
is: Given an integer q, a matrix A ∈ Z

n×m
q chosen uniformly at random and

a real β ∈ R, find a non-zero integer vector z ∈ Z
m − {0}, such that Az = 0

mod q and ||z|| ≤ β.

G-Trapdoors and Sampling Algorithms. We briefly describe the main
results in [28]: the definition of G-trapdoor and the algorithms InvertO and
SampleO. Roughly speaking, a G-trapdoor is a transformation, represented by a
matrix R from a public matrix A to a special matrix G. The formal definition
is as follows:

Definition 2.5 ([28]). Let A ∈ Z
n×m
q and G ∈ Z

n×w
q be matrices with m ≥

w ≥ n. A G-trapdoor for A is a matrix R ∈ Z
m−w × w such that A

[
R
I

]
= HG

for some invertible matrix H ∈ Z
n×n
q . We refer to H as the tag or label of the

trapdoor. The quality of the trapdoor is measured by its largest singular value
s1(R).

Proxy Re-Encryption and Re-Signatures from Lattices 371

In order to embed matrix G into a uniformly looking matrix A together with
a transformation R, we should start with a uniform matrix A0 and a matrix R,
and construct A = [A0| − A0R + HG]. For an appropriate chosen dimensions
(A,AR) is negligible from uniformly random distribution by the Lattice-based
Leftover Hash Lemma.

Following the work of Micciancio and Peikert [28], our scheme uses a special
collection of elements defined over ring R = Zq[x]/(f(x)), where f(x) = xn +
fn−1x

n−1 + · · · + f0 is a irreducible modulo every p dividing q. Since R is a
free Zq-module of rank n, thus elements of R can be represented as vectors in
Zq relative to standard basis of monomials 1, x, ..., xn−1. Multiplication by any
fixed element of R then acts as a linear transformation on Z

n
q according to the

rule
x · (a0, ..., an−1)T = (0, a0, ..., an−2)T − an−1(f0, f1, ..., fn−1)T

and so can be represented by an matrix in Z
n×n
q relative to the standard basis.

In other words, there is an injective ring homomorphism h : R → Z
n×n
q that

maps any a ∈ R to matrix H = h(a) representing multiplication by a. As
introduced in [28], we need a very large set U = {u1, ..., ul} with the “unit
differences” property: for any i �= j, the difference ui − uj ∈ R∗, and hence
h(ui − uj) = h(ui) − h(uj) ∈ Z

n×n
q is invertible.

Lemma 2.6 ([28]). There is an efficient algorithm SampleO(R,A′,H,u, s),
where R is a G-trapdoor for matrix A with invertible tag H, a vector u ∈ Z

n

and an oracle O for Gaussian sampling over a desired coset Λv
q (G). It will out-

put a vector drawn from a distribution within negligible statistical distance of
DΛu (A),s, where A = [A′| − A′R + HG].

In the following, we provide two extensions of the LWE inversion algorithms
proposed by Micciancio and Peikert [28], which would be used in the security
proof and scheme respectively.

– InvertO(R1,R2,A, b): On input a vector b = sTA+eT, a matrix A = [A0| −
A0R1 + H1G| − A0R2 + H2G] and its corresponding G-trapdoor R1,R2

with invertible tag H1,H2, the algorithm first computes b′ = bT
[R1+R2

I
I

]
,

and then run the oracle O(b′) to get (s′,e′). The algorithm outputs s =
(H1 + H2)−1s′ and e = b − sTA.

– Invert′O(R1,R2,A, b): On input a vector b = sTA + eT, a matrix A =
[A0|−A0R1|−A0R2+H2G] and its corresponding G-trapdoor R1,R2 with
invertible tag H1,H2, the algorithm first computes b′ = bT

[R1+R2
I
I

]
, and then

run the oracle O(b′) to get (s′,e′). The algorithm outputs s = H−1
2 s′ and

e = b − sTA.

3 Proxy Re-Encryption: Syntax and Security Definitions

In this section, we first recall the syntax of single-hop PRE [26], and then we
define a new variant of CCA-PRE security, i.e. tag-based CCA-PRE security that

372 X. Fan and F.-H. Liu

captures constructions associated with tags. However, for lattice-based construc-
tions, our current technique cannot achieve the full-fledged PRE construction in
that the re-encryption algorithm does not provide the full-fledged functional-
ity in that it does not fully implement the regular re-encryption oracle which
decrypts first, outputs ⊥ if the decrypted value is invalid, and outputs a fresh
ciphertext of the same message, otherwise. Our re-encryption algorithm guar-
antees the functionality when the input ciphertexts are well-formed, but if the
input ciphertexts are not well-formed, the re-encryption algorithm is not able
output ⊥, yet it can only output re-encrypted ciphertexts that will be decrypted
to ⊥. This security notion is also known as security against honest re-encryption
attacks (HRA), where the re-encryption oracle only re-encrypts honestly gener-
ated ciphertexts. The HRA model was defined in a recent work by Cohen [17],
and it also identified many interesting scenarios captured by the HRA secu-
rity. The work by Cohen [17] achieves the CPA + HRA security, and this work
achieves a stronger notion – CCA + HRA security.

In fact, our relaxed functionality is not far from the full-fledged functionality
if the input-ciphertext provider is required to prove the validity of the cipher-
texts. We note that there exists an efficient lattice-based Σ protocol [5] with
interaction, and we can further use the Fiat-Shamir transform [20] to achieve a
NIZK proof system if a random oracle is assumed. Very recently, the work [12]
constructed NIZK from FHE with circular security, which can be based on LWE
with a certain circular security. Using this lattice-based NIZK, we can upgrade
our security to the full-fledge CCA-PRE security. Therefore, if we further assume
the required circular security on LWE, we are able to achieve the full-fledge
CCA-PRE. We leave it as an interesting open problem to determine whether
the circular security is inherent in achieving the full-fledge CCA-PRE.

The relaxed PRE security notion has already provided meaningful security
guarantees and allowed a modular design to achieve the full-fledged functional-
ity, e.g., the proxy additionally requests a proof of well-formness of the input
ciphertexts. We believe that this notion deserves attention for the community.

3.1 Single-Hop PRE Syntax

We recall the syntax of uni-directional PRE, which can be regarded as a natural
extension of bi-directional case defined in [10] and later studied in uni-directional
scenario by Libert and Vergnaud [26]. The PRE scheme consists a tuple of ppt
algorithms (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc), which can be defined as
follows:

– pp ← Setup(1λ) generates the public parameters pp.
– (pk, sk) ← KeyGen(pp) generates (pk, sk) for each user.
– ct ← Enc(pk, μ, i) encrypts a message μ at level i ∈ {1, 2}. The re-encryption

can only operate on ciphertexts that are at level 1.
– μ′ = Dec(sk, (ct, i)) decrypts a ciphertext ct.
– rki→j ← ReKeyGen(pki, ski, pkj) computes the re-encryption key rki→j .

Proxy Re-Encryption and Re-Signatures from Lattices 373

– (ct′, 2) ← ReEnc(rki→j , (ct, 1)) computes the re-encrypted ciphertext ct′. If
the well-formedness of ciphertext ct is publicly verifiable, the algorithm should
output “invalid” when ct is ill-formed.

Correctness. For correctness, we consider two cases for the PRE scheme: one
for “fresh” ciphertexts generated by encryption algorithm, and the other for re-
encryption ciphertexts generated by the re-encryption algorithm. We say that a
single-hop PRE scheme is correct if the following holds.

– For any pp ← Setup(1λ), any (pk, sk) ← KeyGen(pp), any message μ and level
i ∈ {1, 2}, it holds that

Pr[Dec(sk,Enc(pk, μ, i)) = μ] = 1 − negl(λ)

– For any pp ← Setup(1λ), any (pki, ski), (pkj , skj) ← KeyGen(pp), any message
μ, it holds that

Pr[Dec(skj ,ReEnc(rki→j , ct)) = μ] = 1 − negl(λ)

where ct ← Enc(pki, μ, 1), rki→j ← ReKeyGen(pki, ski, pkj).

3.2 Single-Hop PRE Security Definitions

In the security part, we first present the CCA-PRE definition proposed in [26]
with minor modifications – in particular the definition of derivative in security
model. Next, we describe a weaker security model considered in [24], whose
restriction is: the re-encryption queries submitted by the adversary are only
allowed between honest users. Then we propose an intermediate model, where
the capability of re-encryption oracle is slightly weaker than its counterpart
in [26]. Intuitively, we say a ciphertext is well-formed if it is an encryption of
a message under the claimed public key. In the re-encryption oracle in [26],
the well-formedness of ciphertext is public verifiable, i.e the verification only
needs public keys. However, in our intermediate model, the verification needs
the assistance of secret keys. Let A denote any ppt adversary, and Π be a PRE
scheme. We define the notion of CCA-secure PRE in the uni-directional setting
using the following experiment ExptCCA-PREA (1λ), which describes the interaction
between several oracles and an adversary A. As we discussed before, we include
public parameters pp in each user’s public key pk and secret key sk, so we will
omit pp in the description for simplicity. The experiment ExptsingleA (1λ) consists
of an execution of A with the following oracles with detail as follows:

– The challenger runs setup algorithm pp ← Setup(1λ) and initializes two empty
sets H = ∅, C = ∅. Then he sends pp to adversary A.

– Proceeding adaptively, adversary A has access to the following oracles:

Uncorrupted key generation oracle: Obtain a new key pair (pki, ski) ←
KeyGen(pp). Send pki back to adversary A, set the honest user set H = H∪{i}
and pass the the tuple (i, pki, ski) to re-encryption key generation oracle
OReKeyGen and decryption oracle ODec.

374 X. Fan and F.-H. Liu

Corrupted key generation oracle: Obtain a new key pair (pki, ski) ←
KeyGen(pp). Send the key pair (pki, ski) back to adversary A, set the cor-
rupted user set C = C ∪ {i} and pass the tuple (i, pki, ski) to re-encryption
key generation oracle OReKeyGen and decryption oracle ODec.

Re-encryption key generation oracle OReKeyGen: On input an index pair
(i, j) from the adversary, if the query (i, j) is made after accessing the chal-
lenge oracle, then output ⊥ if i = i∗ and j ∈ C. Otherwise, do the following:

• If the pair (i, j) is queried for the first time, the oracle returns a re-
encryption key rki→j ← ReKeyGen(pki, ski, pkj);

• else (the pair (i, j) has been queried before), the oracle returns the re-
encryption key rki→j .

Re-encryption oracle OReEnc: On input (i, j, (ct, k)), the oracle returns a spe-
cial symbol ⊥ if (ct, k) is not a well-formed first level ciphertext, or j ∈ C
and (i, ct) = (i∗, ct∗). Otherwise, it computes re-encrypted ciphertext ct′ ←
ReEnc(rki→j , ct) and sends back (ct′, 2).

Decryption oracle ODec: On input (i, ct), if i /∈ C ∪ H or ct is not a valid
ciphertext, then return a special symbol ⊥. It also outputs a special symbol
⊥ if (i, ct) is a Derivative (c.f. Definition 3.2) of the challenge pair (i∗, ct∗).
Otherwise, it returns Dec(ski, ct) to adversary A.

Challenge oracle: This oracle can be queried only once. On input (i∗, μ0, μ1),
where i∗ ∈ H and no re-encryption key from i∗ to corrupted users C has been
queried by adversary, the oracle chooses a bit b ∈ {0, 1} and returns ct∗ ←
Enc(pki∗ , μb, 1) as the challenge ciphertext, and passes i∗ to re-encryption key
generation oracle OReKeyGen, and (i∗, ct∗) to re-encryption oracle OReEnc.

Decision oracle: This oracle can be queried only once. On input b′ from adver-
sary A, the oracle outputs 1 if b′ = b, and 0 otherwise.

The advantage of an adversary in the above experiment ExptsingleA (1λ) is
defined as |Pr[b′ = b] − 1

2 |.

Definition 3.1 (CCA-PRE Model). A uni-directional PRE scheme is CCA-
PRE secure if all ppt adversaries have at most a negligible advantage in exper-
iment ExptsingleA (1λ).

In our PRE construction, every ciphertext is associated with a tag u chosen
randomly in the encryption algorithm, thus we call our security model tag-based
CCA security. In [26], a pair (i, ct) is called derivative of the challenge ciphertext
pair (i∗, ct∗) if Dec(ct, ski) ∈ {μ0, μ1}, where {μ0, μ1} are the challenge message
pair. We achieve a slightly stronger notion of derivative as defined in the following

Definition 3.2 (Derivative). A pair (i, (ct, u)) is called derivative of the chal-
lenge ciphertext pair (i∗, (ct∗, u∗)) if u = u∗.

Remark 3.3. It is obvious to see that tag-based CCA security is stronger than
CCA1 security (where the adversary cannot access the decryption oracle after the
challenge ciphertext), and is slightly weaker than CCA2 security. This relaxation

Proxy Re-Encryption and Re-Signatures from Lattices 375

is meaningful and can be nearly the best we can achieve if we further require the
property of unlinkability for re-encrypted ciphertexts. That is, if we want the re-
encrypted algorithm to produce statistically indistinguishable ciphertexts, i.e.
the re-encrypted ciphertexts are almost identically distributed as fresh ones,
then arguably it is not possible to achieve CCA2 security, because the decryp-
tion oracle cannot distinguish a re-encryption of challenge ciphertext from a
fresh ciphertext, so an adversary can easily break the security game by querying
the decryption oracle with a re-encrypted ciphertext of the challenge ciphertext.
For tag-based schemes, where the tag remains the same for re-encrypted cipher-
texts, we can ensure that the challenge ciphertext will not be decrypted by the
decryption oracle due to derivative definition (see Definition 3.2). The tag-based
CCA security guarantees the challenge ciphertext remains hidden, even if the
adversary can obtain decryptions of ciphertexts with other tags.

Remark 3.4. Our re-encryption oracle only re-encrypts well-form ciphertexts.
This is explicitly defined as honest re-encryption attacks (HRA) by Cohen [17].
The formulation of this work is slightly different from that of the work by
Cohen [17], but the two formulations have the same spirit.

The above security model only captures the CCA security of ciphertexts on
the first level. We also present the CCA security of ciphertexts on the second
level. Since the challenge ciphertext is on the second level, which means it cannot
be further re-encrypted to ciphertext under other public keys, so there is no
need to restrict the re-encryption queries regarding the challenge ciphertext. We
highlight the difference comparing to security model of first level ciphertexts in
the following definition.

Definition 3.5. (Second-Level Security). The difference of experiment
between second-level security and the security definition in Definition 3.1 are
below:

– In challenge oracle: the oracle returns ct∗ ← Enc(pki∗ , μb, 2) as the challenge
ciphertext.

– The re-encryption oracle OReEnc does not need to check whether the queried
tuple is the same as challenge ciphertext.

Definition 3.6. (PRE with Relaxed Functionality). A PRE scheme with
a relaxed functionality if the re-encryption algorithm outputs statistically close
to the distribution of fresh ciphertexts of the second level when the input
ciphertexts are well-formed. That is, if (ct, 1) is a well-formed ciphertext, then
ReEnc(rki→j , (ct, 1)) is statistically close to (ct′, 2) ← Enc(pkj ,Dec(ct, 1), 2). If
the input ciphertexts are not well-formed, then only Dec(skj , (ct′, 2)) = ⊥ is
guaranteed.

Remark 3.7. As we argued above, the relaxed functionality does not com-
pletely implement the re-encryption oracle OReEnc as in the above definition.
The difference can be bridged by a crypto proof system, (either interactively or

376 X. Fan and F.-H. Liu

non-interactively) assuming the input ciphertext is associated with a proof. We
present the formal description of this idea in the full version of this paper.

In our construction, we do not allow querying the relaxed functionality
directly with arbitrary input ciphertexts re-encrypted to a corrupted party, e.g.,
invalid input ciphertexts chosen by the adversary to some corrupted Party j.
As the transformation can leak the re-encryption key, if the adversary corrupts
Party j and can obtain a re-encryption key rki→j , then he can easily break the
security of pki.

We note that the the CCA model of [24] is weaker than the model consid-
ered in this paper. In particular, the model [24] has the following restrictions:
the re-encryption key queries (or re-encryption queries) submit by adversary A
are restricted among honest users (we ignore the re-encryption queries within
corrupted users, since adversary can generate by himself).

4 Single-Hop Tag-Based CCA-Secure PRE Construction

In this section, we present our construction of single-hop PRE. The PRE sys-
tem has message space {0, 1}nk, which we map bijectively to the cosets of
Λ/2Λ for Λ = Λ(Gt) via some encoding function encode that is efficient to
evaluate and invert. In particular, letting S ∈ Z

nk×nk be any basis of Λ,
we can map µ ∈ {0, 1}nk to encode(µ) = Sµ ∈ Z

nk. The PRE scheme
(Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) can be described as follows:

– Setup(1λ, 1N): The global setup algorithm set the lattice parameter (n, k, q, s).
Then it randomly selects a matrix A ∈ Z

n×nk
q , and outputs the public param-

eter pp = (A, n,m, q, s).
– KeyGen(pp): The key generation algorithm for i-th user chooses random

matrices Ri1,Ri2 ← DZnk×nk,s, letting Ai1 = ARi1 mod q and Ai2 =
ARi2 mod q. The public key is pki = Ai = [A| − Ai1| − Ai2], and the secret
key is ski = [Ri1|Ri2].

– Enc(pki,µ, �): The encryption algorithm does
• If � = 1, choose non-zero u ← U and let the message/level-dependent

matrix
Ai,u,l = [A| − Ai1 + h(�)G| − Ai2 + h(u)G]

Choose s ← Z
n
q ,e0,e1,e2 ← Dnk

Z,s. Let

bT = (b0, b1, b2) = 2(sTAi,u,� mod q) + eT + (0, 0, encode(µ)T) mod 2q

where e = (e0,e1,e2). Output the ciphertext ct = (u, b, 1).
• If � = 2, the algorithm uses the same procedure to encrypt the message,

except it chooses error e0,e1,e2 ← Dnk
Z,s′ , and outputs ct = (u, b, 2).

Proxy Re-Encryption and Re-Signatures from Lattices 377

– Dec(ski, ct): The decryption algorithm
1. If ct does not parse or u = 0, output ⊥. Otherwise, reconstruct the

message/level-dependent matrix Ai,u,�

Ai,u,l = [A| − Ai1 + h(�)G| − Ai2 + h(u)G]

Call InvertO([Ri1|Ri2],Au, b mod q) to get values z ∈ Z
n
q and e =

(e0,e1,e2) for which b = z + e mod q. If the algorithm Invert fail for
any reason, output ⊥.

2. Check the length of the obtained error vectors, namely if ||e0|| ≥ s′√m
or ||ei|| ≥ s′2m, for i = 1, 2, output ⊥.

3. Let v = b − e, and parse v = (v0,v1,v2). If v0 /∈ 2Λ(AT), output ⊥.
Finally, output

encode−1(vT

⎡
⎣
Ri1 Ri2

I 0
0 I

⎤
⎦ mod 2q) ∈ {0, 1}nk

if it exists, otherwise output ⊥.
– ReKeyGen(pki, ski, pkj): The re-encryption key generation algorithm does:

1. Use ski = [Ri1|Ri2] to run extended sampling algorithm SampleO to
sample X01,X02,X11,X12 ∈ Z

nk×nk such that

[A|−Ai1 + h(1)G|−Ai2 + B]

⎡
⎣
I X01 X02

0 X11 X12

0 0 I

⎤
⎦ = [A| −Aj1 + h(2)G| −Aj2 + B]

for any matrix B ∈ Z
n×nk.

2. Output the re-encryption key

rki→j = {X01,X02,X11,X12}
– ReEnc(rki→j , ct): First the re-encryption algorithm parses ct = (u, b, �) out-

puts a special symbol ⊥ if � = 2. Otherwise, it computes

bT · rki→j = sT[A| − Aj1 + h(1)G| − Aj2 + h(u)G] + e′T + ẽT + (0, 0, encode(μ)T)

where e′ = (e′
0,e

′
1,e

′
2), ẽ ← DZ3nk,s′ , and

e′
0 = e0, e′

1 = e0X01 + e1X11, e′
2 = e0X02 + e1X12 + e2 (3)

Then, it outputs ct′ = (u, b′, 2).

Parameter Setting. In this part, we set the lattice parameters used in our
construction. The correctness proof of our construction can be found in full
version [19]. G ∈ Z

n×nk
q is a gadget matrix for q = poly(n), n = poly(λ) and

k = O(log q) = O(log n). For matrix A ∈ Zn×m
q in the public parameters and

secret keys R ← D, we set m = O(nk) and D = Dm×nk
Z,w(

√
log n)

respectively. We
set the deviation s for discrete Gaussian distribution used in security proof to
be s = ω(

√
log n)

√
m, and parameter for level 2 error is s′ = s

√
m. For the error

rate α in the LWE assumption, we set sufficiently large 1/α = O(nk) ·w(
√

log n).

378 X. Fan and F.-H. Liu

5 Proxy Re-Signature with Selectively Chosen Tag

In this section, we present the syntax and our construction of PRS.

5.1 Syntax and Correctness Definition

We first recall the syntax and security definition of PRS in [7,25], then pro-
pose a simpler and unified security model that captures the security require-
ments. Our model adapts the same spirit of the prior security model of proxy re-
encryption [10,26], with necessary modifications to fit into the signature frame-
work. We also compare our new notion with the previous security model in
[7,25].

Let L = L(λ) denotes the maximum level the PRS system supports. The
scheme Σ = (Setup,KeyGen,Sign,Verify,ReKeyGen,ReSign) is described as fol-
lows:

– pp ← Setup(1λ, 1L) generates the public parameter pp for the whole system.
– (pk, sk) ← KeyGen(pp, i) generates (pki, ski) for user i.
– σ ← Sign(ski, μ, κ) computes a signature σ for μ at level κ.
– Verify(pki, σ, μ, κ) outputs 1 (accept) or 0 (reject).
– rkκ

i→j ← ReKeyGen(pki, pkj , skj , κ) computes a re-signing key from the i-th
user at level κ to the j-th user at level κ + 1.

– ReSign(rkκ
i→j , μ, σ, κ) computes a re-signature σ′ under pkj if Verify(pki, σ,

μ, κ) = 1, or ⊥ otherwise.

Correctness. For all security parameter λ, any pp ← Setup(1λ, 1L), all couples
of secret/public key pairs (ski, pki), (skj , pkj) generated by KeyGen(pp), for any
message μ and κ ∈ [L], it holds that

Verify(pki, μ, κ,Sign(ski, μ, κ)) = 1

Verify(pkj , κ + 1, μ, σ) = 1

where σ = ReSign(rkκ
i→j , μ, κ,Sign(ski, μ, κ)) and rkκ

i→j ← ReKeyGen(pki, pkj ,
skj , κ).

5.2 Our PRS Construction

Now we present our PRS construction and its security proof sketch. For simplic-
ity, we first present the scheme with security regarding a selective chosen tag,
where in the security experiment, the adversary needs to commit to the chal-
lenge tag before obtaining public parameters and public keys. In the full version,
we also describe how to modify our construction, slightly, to achieve security for
adaptively chosen tags. Let the message space be M = Zq, and the tag space be
T = Zq. The description is the following:

– Setup(1λ, 1L): The setup algorithm sets the lattice parameters (n, q,m, s),
then randomly chooses a matrix A ∈ Z

n×m
q and vectors b,v ∈ Z

n
q . Output

the public parameter pp = (A, b,v, q, n,m).

Proxy Re-Encryption and Re-Signatures from Lattices 379

– KeyGen(pp): The key generation algorithm computes (pki, ski) as follows:
1. Sample two small matrices Ri1,Ri2 from discrete Gaussian distribution

DZm×m,s.
2. Compute Ai = A · Ri1 mod q and A′

i = A · Ri2 mod q.
3. The public key pki and secret key ski for i-th user is

pki = (Ai,A′
i), ski = (Ri1,Ri2)

– Sign(pp, ski, μ, κ): The signing algorithm does:
1. Randomly select a non-zero tag t ∈ Z

∗
q , and define the signing matrix to

be
Ft,i,κ = [A|Ai + h(κ)G|A′

i + tG]

2. Sample a vector r1 ← DZm,s, then sample vector (r0, r2) ∈ Z
2m, using

(r0, r2) ← SampleO(A, tG,Ri2,TG, b + μv − (A′
i + h(κ)G)r1, s)

Therefore, it holds that Ft,i,κ · σ = b+ μv mod q, where σ = (r0, r1, r2).
3. Output the signature (σ, t, i, κ).

– Verify(pp, pki, μ, (σ, t, i, κ)): The verification algorithm dose:
1. Parse the signature tuple as σ = (r0, r1, r2), tag t, user index i and level

index κ, then first check the norm of |σ| = |(r0, r1, r2)|. Output 0 if
|σ| ≥ B.

2. Reconstruct the signing matrix

Ft,i,κ = [A|Ai + h(κ)G|A′
i + tG]

and output 1 if Ft,i,κ · σ = b + μv, otherwise output 0.
– ReKeyGen(pki, (skj , pkj), κ): The re-signing key generation:

1. Sample small matrices (X01,X11,X02,X12), using

(X01,X11) ← SampleO(A, h(κ + 1)G,Rj1,TG,Ai + h(κ)G, s),

(X02,X12) ← SampleO(A, h(κ + 1)G,Rj1,TG,A′
i − A′

j , s)

Therefore it holds that

[A|Aj + h(κ + 1)G|A′
j + tG]

⎡
⎣
I X01 X02

0 X11 X12

0 0 I

⎤
⎦ = [A|Ai + h(κ)G|A′

i + tG]

2. Output the re-signing key rkκ
i→j = (X01,X02,X11,X12).

– ReSign(rkκ
i→j , (σ, t, i, κ), μ, pki): The re-signing algorithm does:

1. First parse σ = (r0, r1, r2). Output ⊥ if Verify(pp, pki, μ, (σ, t, i, κ)) = 0.
2. Otherwise, output the re-signature tuple (σ′, t, j, κ + 1), where σ′ =

rkκ
j→j · σ.

380 X. Fan and F.-H. Liu

5.3 Parameter Setting

Let λ be the security parameter. For L = polylog(λ) maximum allowed re-signing,
we set the parameters of our scheme based on standard SIS assumption as q =
nO(L), n = poly(λ), L = polylog(λ),m = O(n log q). To ensure the SIS instance
has a worst-case lattice reduction as shown in [30], i.e. q ≥ βω(

√
n log n), we set

β = polylog(n). In order to achieve indistinguishability between real execution
and reduction, the Gaussian parameter is set to be s = ω(

√
log n). As a signature

produced by algorithm Sign has the size of O(s
√

m), and after each re-signing,
the size grows at the rate of O(sm), so we set parameter used in verification
to be B = ω(2L). Our PRS construction can support L = poly(λ)-hop using
subexponential SIS assumption.

6 Conclusion

In this work, we first point out a subtle error in work [24] and then showed how
to construct single-hop PRE that is secure in our new model, tag-based CCA
security. We then extend our security definition and construction to the multi-
hop scenario, as elaborated in the full version [19]. Lastly, we propose a simpler
and unified security model for PRS which captures more dynamic settings, then
give a construction based on SIS assumption. Due to the space constrain, the
security definition and proof of PRS are in the full version of this paper [19].

Acknowledgement. Xiong Fan is supported by NSF Award CNS-1561209. Feng-
Hao Liu is supported by the NSF Award CNS-1657040. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the sponsors.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Ajtai, M.: Determinism versus non-determinism for linear time RAMs (extended
abstract). In 31st ACM STOC, pp. 632–641. ACM Press, May 1999

3. Alwen, J., et al.: On the relationship between functional encryption, obfuscation,
and fully homomorphic encryption. In: Stam, M. (ed.) IMACC 2013. LNCS, vol.
8308, pp. 65–84. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
45239-0 5

4. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under
LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp.
1–18. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4 1

5. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-45239-0_5
https://doi.org/10.1007/978-3-642-45239-0_5
https://doi.org/10.1007/978-3-319-03515-4_1
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29

Proxy Re-Encryption and Re-Signatures from Lattices 381

6. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS 2005. The Inter-
net Society, February 2005

7. Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms,
and applications. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005, pp.
310–319. ACM Press, November 2005

8. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

9. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 29

10. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007, pp.
185–194. ACM Press, October 2007

11. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 19

12. Canetti, R., Lombardi, A., Wichs, D.: Non-interactive zero knowledge and corre-
lation intractability from circular-secure FHE. Cryptology ePrint Archive, Report
2018/1248 (2018). https://eprint.iacr.org/2018/1248

13. Chandran, N., Chase, M., Liu, F.-H., Nishimaki, R., Xagawa, K.: Re-encryption,
functional re-encryption, and multi-hop re-encryption: a framework for achieving
obfuscation-based security and instantiations from lattices. In: Krawczyk, H. (ed.)
PKC 2014. LNCS, vol. 8383, pp. 95–112. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54631-0 6

14. Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and
collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 404–421. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 23

15. Chow, S.S.M., Phan, R.C.-W.: Proxy re-signatures in the standard model. In: Wu,
T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp.
260–276. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-
7 18

16. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 316–332. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12678-9 19

17. Cohen, A.: What about Bob? the inadequacy of CPA security for proxy reen-
cryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 287–316.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 10

18. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

19. Fan, X., Liu, F.-H.: Proxy re-encryption and re-signatures from lattices. IACR
Cryptology ePrint Archive 2017, 456 (2017)

https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://eprint.iacr.org/2018/1248
https://doi.org/10.1007/978-3-642-54631-0_6
https://doi.org/10.1007/978-3-642-54631-0_6
https://doi.org/10.1007/978-3-642-28914-9_23
https://doi.org/10.1007/978-3-642-28914-9_23
https://doi.org/10.1007/978-3-540-85886-7_18
https://doi.org/10.1007/978-3-540-85886-7_18
https://doi.org/10.1007/978-3-642-12678-9_19
https://doi.org/10.1007/978-3-642-12678-9_19
https://doi.org/10.1007/978-3-030-17259-6_10
https://doi.org/10.1007/978-3-540-24676-3_31

382 X. Fan and F.-H. Liu

20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

21. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

23. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfus-
cating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–
252. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 13

24. Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 77–94. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54631-0 5

25. Libert, B., Vergnaud, D.: Multi-use unidirectional proxy re-signatures. In: Ning, P.,
Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 511–520. ACM Press, October
2008

26. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1 21

27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

28. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

29. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

30. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press, October
2004

31. Nunez, D., Agudo, I., Lopez, J.: A parametric family of attack models for proxy
re-encryption. In: 2015 IEEE 28th Computer Security Foundations Symposium
(CSF), pp. 290–301. IEEE (2015)

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

33. Shao, J., Cao, Z., Liu, P.: CCA-Secure PRE scheme without random oracles. Cryp-
tology ePrint Archive, Report 2010/112 (2010). http://eprint.iacr.org/2010/112

34. Shao, J., Feng, M., Zhu, B., Cao, Z., Liu, P.: The security model of unidirectional
proxy re-signature with private re-signature key. In: Steinfeld, R., Hawkes, P. (eds.)
ACISP 2010. LNCS, vol. 6168, pp. 216–232. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14081-5 14

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-540-70936-7_13
https://doi.org/10.1007/978-3-642-54631-0_5
https://doi.org/10.1007/978-3-642-54631-0_5
https://doi.org/10.1007/978-3-540-78440-1_21
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-40041-4_2
http://eprint.iacr.org/2010/112
https://doi.org/10.1007/978-3-642-14081-5_14
https://doi.org/10.1007/978-3-642-14081-5_14

Public Key and Commitment

DL-Extractable UC-Commitment Schemes

Behzad Abdolmaleki1, Karim Baghery1, Helger Lipmaa1(B), Janno Siim1,
and Michał Zając2

1 University of Tartu, Tartu, Estonia
helger.lipmaa@gmail.com

2 Clearmatics, London, UK

Abstract. We define a new UC functionality (DL-extractable commit-
ment scheme) that allows committer to open a commitment to a group
element gx; however, the simulator will be able to extract its discrete
logarithm x. Such functionality is useful in situations where the secrecy
of x is important since the knowledge of x enables to break privacy
while the simulator needs to know x to be able to simulate the corrupted
committer. Based on Fujisaki’s UC-secure commitment scheme and the
Damgård-Fujisaki integer commitment scheme, we propose an efficient
commitment scheme that realizes the new functionality. As another nov-
elty, we construct the new scheme in the weaker RPK (registered public
key) model instead of the CRS model used by Fujisaki.

Keywords: CRS model · Extractable commitment · RPK model ·
Universal composability · UC commitment

1 Introduction

A commitment scheme is one of the most basic primitives in cryptography. Essen-
tially, it implements a digital safe: in the commitment phase, the committer puts
her message to the safe, locks it, and hands it to the receiver. In the open phase,
the committer uses her key to open the safe. Thus, a commitment scheme sat-
isfies at least the following two properties: it is binding (the committer cannot
change the committed message) and hiding (before the opening, the receiver
does not know which message was committed to).

In many applications, commitment schemes must satisfy stronger properties.
In the case of UC-security [8], one first defines an ideal functionality (e.g., the
functionality of the commitment scheme) and then constructs a protocol that
UC-realizes this functionality. Such protocol is said to be UC-secure. Due to
Canetti’s composition theorem [8], a UC-secure protocol enjoys secure compos-
ability with arbitrary protocols, without the need to reprove its security. Impor-
tantly, UC-secure protocols do not have to be modified to be secure in a specific
software environment and thus can be used as a black-box by practitioners. As
such, UC is the recommended best practice in cryptographic engineering.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 385–405, 2019.
https://doi.org/10.1007/978-3-030-21568-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_19

386 B. Abdolmaleki et al.

The first UC-commitment scheme was proposed by Canetti and Fischlin [9].
A UC-commitment scheme was shown to be complete for the construction of UC-
secure zero knowledge protocols [9,14] and two-party and multi-party computa-
tions [10]. UC-commitment schemes have to satisfy the properties of extractabil-
ity (the simulator can unambiguously extract the committed message) and equiv-
ocability (the simulator can open a commitment to an arbitrary value) at the
same time, and thus they cannot be constructed without an additional setup
assumption [9]. The most widely known setup assumption is the common ref-
erence string (CRS, [6]) model that allows for a universally trusted entity that
generates the CRS from the correct distribution without revealing its trapdoor.

Many different CRS-model UC-commitment schemes are known, starting
with [7,9,10,14]. Lindell [21] proposed the first efficient scheme based on an
ordinary prime-order group. Blazy et al. [5] corrected a bug in Lindell’s scheme
and proposed a new scheme with additional optimizations. Fujisaki [16] further
optimized the scheme of Blazy et al., obtaining the most efficient currently known
UC-commitment scheme Fuj in an ordinary prime-order group.

The main idea of the UC-commitment schemes of [5,16,21] is that the com-
mitter C encrypts a message m. During the open phase, C outputs m together
with an interactive proof (a Σ-protocol) that she encrypted m. She also erases
the used randomizer (hence, these commitments schemes assume secure erasure).
The UC simulator simulates the Σ-protocol using the CRS trapdoor; to achieve
UC-security, the Σ-protocol has to be straight-line extractable. Due to the use
of a Σ-protocol, [5,16,21] have either an interactive commit phase (resulting
in adaptive security) or an interactive open phase (resulting in static security).
Within this paper, we will concentrate on adaptively secure variants. Fischlin,
Libert, and Manulis [15] used a Groth-Sahai proof [19] instead of a Σ-protocol
to construct a non-interactive adaptive UC-commitment scheme; however, their
scheme is computationally less efficient and uses bilinear pairings.

An important question, often asked by practitioners, is how to implement
the CRS model. More precisely, how can one guarantee the existence of a single
party R that can be trusted by everybody to choose the CRS from the correct
distribution without leaking its trapdoors? Fortunately, weaker setup models are
known. Barak, Canetti, Nielsen, and Pass [2] introduced the weaker registered
public key (RPK) model where it is essentially required that each party Gi must
trust some key registration authority Ri who registers his key. The authorities
Ri can coincide or be different, depending on the application. They do not need
to trust each other. In particular, the CRS model is a very strong case of the
RPK model where there is only one authority R whom all parties have to trust.
Barak et al. [2] proposed a UC-commitment scheme that is secure in the RPK
model: in fact, they used the property of a known UC-commitment scheme in the
CRS model that its CRS can be divided into two parts: a binding part (trusted
by the receiver R) and a hiding part (trusted by the committer C). Thus, the
binding part can be registered by the authority of R and the hiding part can be
registered by the authority of C. Unfortunately, their scheme is quite inefficient.

DL-Extractable UC-Commitment Schemes 387

Moreover, the functionality of UC-commitments is not always sufficient.
E.g., consider the following generic class of (UC-secure) pairing-based mul-
tiplicative public key generation protocols. (This protocol is motivated by a
non-UC-secure CRS-generation protocol for SNARKs [17,18,22] from [4] that
can be used also to generate the CRS of UC-secure SNARKs like [20].) Let
p = (p, G1, G2, GT , ê, g1, g2, gT) be an (asymmetric) prime-order bilinear group
where gi is a generator of Gi. Different parties Gi, i ∈ [1 .. ν], sample their
one-time public keys (gσi

1 , gσi
2), for secret key σi, and UC-commit to them.

After all parties have committed, everybody opens commitments to their pub-
lic keys. Next, they enact a sequential protocol where the ith party computes

g
σ∗

i
1 := g

∏i
j=1 σj

1 as g
σ∗

i
1 ←

(
g

σ∗
i−1

1

)σi

, by using a public group element g
σ∗

i−1
1 and

a secret integer σi. Under the minimal assumption that at least one Gi is hon-
est, it is required that the joint public key g

σ∗
ν

1 is uniformly random and that
no coalition of less than ν knows the corresponding secret key σ∗

ν . Due to this,
σi should not be leaked while opening to gσi

2 is needed for public verification
of the correctness of the operation of Gi. Namely, for this, one needs to check
that ê(gσ∗

i
1 , g2) = ê(g

σ∗
i−1

1 , gσi
2); thus, avoiding the use of costly zero-knowledge

protocols.
On the other hand, in the security proof, the UC simulator Sim needs to

recover σi (and not only (gσi
1 , gσi

2)) to be able to simulate the operation of a cor-
rupted party. Hence, we have arrived to the requirement that after the committer
commits to a message m, it should be opened to (gm

1 , gm
2) while the simulator

must be able to extract m from the functionality.
Similar functionality is needed to achieve security in other UC protocols,

especially in the setting where one uses a DL-based cryptosystem (or a com-
mitment scheme) to encrypt the witness yet needs to extract the witness for
simulation purposes. It can be implemented by encrypting the witness (that has
to be extractable) bitwise, and then giving a NIZK argument that each cipher-
text encrypts a Boolean value m ∈ {0, 1}. Protocols using such a technique have
obviously huge communication.

Finally, non-falsifiable assumptions (e.g., knowledge assumptions [12,23]) are
usually used to (i) extract a unique long message from a succinct commitment,
one can avoid such use of non-falsifiable assumptions by having a linearly-long
commitment (as done, say, in [20]), and (ii) extract the exponent from a group
element, for example, in the case one uses the Groth-Sahai commitment scheme
for scalars [19]. To avoid using non-falsifiable assumptions in this case, one can
use a DL-extractable commitment scheme that we define in the current paper.

Our Contributions. Let G be a prime-order group with generator g. We
will define the new ideal functionality Fmcomdl of a DL-extractable commitment
scheme. Intuitively, the main difference between Fmcomdl and the standard func-
tionality Fmcom of UC-commitment schemes [9] is that in Fmcomdl, the committer
sends m to the functionality who stores m. When opening the commitment, the
functionality Fmcomdl only sends gm ∈ G (while Fmcom sends m itself) to the

388 B. Abdolmaleki et al.

receiver. Since the functionality stores m, it means that after the committer is
corrupted, the UC simulator will get to know m.

We seem to be the first to formalize Fmcomdl as a separate functionality (see
Remark 1 in Sect. 3 for a comparison to the notion of P -extractability of Belenkiy
et al. [3]); such a formalization creates a common language and enables other
researchers to use our implementation of Fmcomdl as a black-box. At this moment
it is even difficult to search for papers that implicitly use this functionality
due to lack of agreed-upon language and notation. We expect there to be more
applications after the current work establishes the common language.

After that, we construct a commitment scheme Γdl that UC-realizes Fmcomdl in
the Frpk-hybrid model, i.e., assuming availability of a UC-secure realization of the
RPK model. Essentially, Γdl is based on Fujisaki’s CRS-model UC-commitment
scheme Fuj [16] with the following important modifications. First, [5,16,21] all
work in the CRS model. We crucially observe that the commitment key of Fuj
consists of two independent parts, one guaranteeing hiding and another one
guaranteeing binding. Relying on this separation, we will lift Fuj (and also its
DL-extractable version) to the weaker RPK model. Since the RPK model seems
to be relatively unknown in the community, reintroducing it and constructing
an efficient commitment scheme in this model can be seen as another major
contribution of the current work.

Second, to guarantee DL-extractability, we proceed as follows. One of the
optimizations of Fujisaki compared to [5,21] is the use of the efficient IND-PCA
secure Short Cramer-Shoup (SCS, [1]) public-key cryptosystem. We couple an
SCS encryption of gm with an additively homomorphic Paillier encryption [24] of
m, an integer commitment [13] to m, and a straight-line extractable Σ-protocol
showing that these three encryptions/commitments of m are mutually consistent.
The UC simulator uses the Paillier encryption (importantly, the simulator does
not rewind the Σ-protocol) to extract m from a corrupted committer. Thus,
the Paillier encryption is needed for extraction while the integer commitment is
needed to prove that the SCS plaintext gm1 and the Paillier plaintext m2 satisfy
m1 ≡ m2 (mod p) where p is the order of G.

The construction of Γdl and its security proof are somewhat subtle due to
the use of three different algebraic/number-theoretic settings (prime-order bilin-
ear groups, Paillier encryption modulo N = PQ, and an integer commitment
scheme). However, most of this subtlety is needed to construct the Σ-protocol
and to prove its security.

Finally, the functionality of a DL-extractable commitment scheme can be
straightforwardly generalized to that of a preimage-extractable commitment
scheme where the map m �→ gm is replaced by m �→ F (m) for any one-way
permutation F . We leave study of such a generalization to the future work.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the information-
theoretic security parameter, in practice, e.g., λ = 128. All adversaries will be

DL-Extractable UC-Commitment Schemes 389

stateful. For an algorithm A, let RND(A) denote the random tape of A, and
let r ←$ RND(A) denote sampling of a randomizer r of sufficient length for A’s
needs. By y ← A(x; r) we denote that A, given an input x and a randomizer r,
outputs y. We denote by negl(λ) an arbitrary negligible function, and by poly(λ)
an arbitrary polynomial function. D1 ≈c D2 means that the distributions D1 and
D2 are computationally indistinguishable.

Fig. 1. Functionalities Ff
rpk and FD

crs

UC Security. We work in the standard universal composability framework of
Canetti [8] with static corruptions of parties. For consistency, we use the defini-
tion of computational indistinguishability, denoted by ≈c, from that work. The
UC framework defines a PPT environment machine Z that oversees the execution
of a protocol in one of two worlds. The “ideal world” execution involves “dummy
parties” (some of whom may be corrupted by an ideal adversary/simulator Sim)
interacting with a functionality F . The “real world” execution involves PPT par-
ties (some of whom may be corrupted by a PPT real world adversary A) interact-
ing only with each other in some protocol π. We refer to [8] for a detailed descrip-
tion of the executions, and a definition of the real world ensemble EXECπ,A,Z
and the ideal world ensemble IDEALF,SimA,Z .

A protocol π UC-securely computes F if there exists a PPT Sim such that
for every non-uniform PPT Z and PPT A, {IDEALF,SimA,Z(λ, x)}λ∈N,x∈{0,1}∗ ≈c

{EXECπ,A,Z(λ, x)}λ∈N,x∈{0,1}∗ .
The importance of this definition is a composition theorem that states that

any protocol that is universally composable is secure when run concurrently with
many other arbitrary protocols; see [8,10] for discussions and definitions.

390 B. Abdolmaleki et al.

In the registered public key (RPK, [2]) model, it is assumed that each party
Gi trusts some key-registration authority Ri and has registered her key with Ri.
(The same Ri can be used by several parties, or each party can choose to trust
a separate authority.) If Gi is honest, then the secret key exists and the public
key comes from correct distribution (in this case, the public key is said to be
“safe”). If Gi is dishonest, the secret key still exists (and the public key has been
computed from it honestly) but there is no guarantee about its distribution (in
this case, the public key is said to be “well-formed”). See Fig. 1 for the description
of the functionality of the key registration from [2].

Several different variants (most importantly, the “traditional proof-of-
knowledge” version where the secret key and the public key are generated by
Gi who then sends the public key to Ri and proves the knowledge of the secret
key to Ri by using a stand-alone zero-knowledge proof) of the RPK model are
known. The new commitment can be implemented in any of such variants of
the RPK model; in particular the definition of the Frpk-hybrid model does not
depend on the variant. We assume that each party knows the identities of all
other parties and their key-registration authorities, see [2] for discussion.

In the CRS model [6], there is a single, universally trusted, third party (TTP)
that picks a common reference string crs from a well-defined probability distri-
bution and makes it available to all parties. An ideal functionality realizing the
CRS model is presented on Fig. 1. In a usual implementation, crs comes with a
secret trapdoor td, such that td is sampled from a well-defined distribution Dtd,
and for some public function f , we have crs ← f(td). In the case of a NIZK
argument system, the knowledge of td allows the simulator to prove statements
outside of the language. Here, it is assumed that TTP only provides td to the
simulator but not to the adversary. The CRS model can be seen as a very strong
version of the RPK model where all parties Gi trust the same TTP R.

We denote an execution of π in the RPK-hybrid (the CRS-hybrid case

is similar) model by HYBRID
Ff

rpk

π,A,Z(λ, x). A protocol π UC-securely com-
putes F in the Ff

rpk-hybrid model if there exists a PPT Sim such that
every non-uniform PPT Z and PPT A, {IDEALF,SimA,Z(λ, x)}λ∈N,x∈{0,1}∗ ≈c

{HYBRID
Ff

rpk

π,A,Z(λ, x)}λ∈N,x∈{0,1}∗ .

Root Assumption. An integer is C(λ)-smooth if all its prime factors are at most
C(λ), and C(λ)-rough [13] if all its prime factors are larger than C(λ).

Let G̃ = U × H be a multiplicative abelian group such that H has order
divisible only by large primes. That is, let C(λ) and l(λ) be two functions from
Z
+ to Z

+, such that C(λ) is superpolynomial and l(λ) is polynomial. Let 2B

be an efficiently computable upperbound on |G̃|, 2B ≥ ord(G̃). Denote l
G̃

:=
ord(U). We assume l

G̃
≤ l(λ), the description descr(G̃) of G̃ includes l

G̃
, and

that it is easy to verify whether some bitstring represents an element of G̃. Let
G(1λ) generate descr(G̃) that has the mentioned properties. In the following
instantiation, the root assumption is the same as the well-known Strong RSA
assumption. (Another known instantiation [13] is based on class groups.)

DL-Extractable UC-Commitment Schemes 391

Note that if G̃ = U × H is the multiplicative group modulo N = PQ where
P = 2P ′ + 1 and Q = 2Q′ + 1 are safe primes, then ord(G̃) = ϕ(N) = 4P ′Q′.
(This setting is often recommended if one uses the RSA or the Paillier cryp-
tosystem [24].) In this case, U ∼= Z2 × Z2 is a group of order l

G̃
= 4 and H is a

group of order P ′Q′. Here, descr(G̃) = {N, l
G̃
}.

Consider the following experiment:

ExptrootΠ,A(λ)

descr(G̃) ← G(1λ);Y ←$ G̃; (e,X, μ) ← A(descr(G̃), Y);
if e ∈ Z ∧ e > 1 ∧ X ∈ G̃ ∧ μ ∈ U ∧ Y = μXe

then return 1; else return 0;fi
The root assumption [13] holds relative to G, if for all λ and PPT A,

Pr[ExptrootΠ,A(λ) = 1] = negl(λ).

Commitment Schemes. A commitment scheme Γ = (Γ.Gen, Γ.Com, Γ.Vf) is
defined by three PPT algorithms: (i) Γ.Gen(1λ) generates a public key (CRS)
Γ.ck and a secret key (trapdoor) Γ.td; (ii) Γ.Com(Γ.ck;m; r) commits to m under
the CRS ck, using the random coins r. It outputs commitment c and opening
information op; (iii) Γ.Vf(Γ.ck; c,m, op) verifies that c is a commitment to m.

It is required that for any (Γ.ck, Γ.td) ← Γ.Gen(1λ) (where Γ.td is unused
unless Γ has a trapdoor property), message m, randomizer r, and (c, op) ←
Γ.Com(Γ.ck;m; r), it holds that Γ.Vf(Γ.ck; c,m, op) = 1. Γ is statistically hiding,
if the distributions of commitment c, corresponding to any two values of m, are
statistically indistinguishable. Γ is computationally binding, if given ck and c,
no PPT adversary A can create two different messages mi with corresponding
openings opi, such that Γ.Vf(Γ.ck; c,m1, op1) = Γ.Vf(Γ.ck; c,m2, op2) = 1 with a
non-negligible probability.

A commitment scheme Γ is trapdoor if there exists a PPT algorithm
Γ.tdOpen, such that given the trapdoor Γ.td (corresponding to commitment
key Γ.ck), two messages m1 (with opening op1) and m2, and any commit-
ment c: if Γ.Vf(Γ.ck;m1, c, op1) = 1 then Γ.tdOpen(Γ.td;m1, op1,m2) = op2,
such that Γ.Vf(Γ.ck;m2, c, op2) = 1. The Pedersen trapdoor commitment scheme
Ped = (Ped.Gen,Ped.Com,Ped.Vf,Ped.tdOpen) [25] in cyclic group G, with gen-
erator g, is defined as follows:

Ped.Gen(1λ): sample td ←$ Zp, set h ← gtd, and output (Ped.ck = (g, h),
Ped.td ← td).
Ped.Com(Ped.ck;m; r) for m ∈ Zp, r ←$ Zp: output (c, op) = (gmhr, r).
Ped.Vf(Ped.ck;m, c, op = r): output 1 if c = gmhr and 0 otherwise.
Ped.tdOpen(Ped.td;m1, op1 = r1,m2): output op2 = r2 ← (m1 −m2)/td+ r1.

It is well-known that Ped is perfectly hiding, computationally binding under the
discrete logarithm assumption, and trapdoor.

A commitment scheme is an ICS if the messages come from domain Z.
Thus, statistical hiding means that it is intractable to compute two differ-
ent integers m1,m2 ∈ Z and corresponding openings op1 and op2, such that

392 B. Abdolmaleki et al.

Vf(ck; c,m1, op1) = Vf(ck; c,m2, op2) = 1. In the case of Pedersen, m and m+ p
have the same commitments and thus Ped is not an ICS. Let G̃ be a group
where the root assumption holds. The Damgård-Fujisaki ICS [13] over G̃ works
as follows:

DF.Gen(1λ): V chooses an h̃ ∈ G̃ s.t. ord(h̃) is C(λ)-rough, and sets g̃ ← h̃α

where α ←$ Z22B+λ . V sends DF.ck = (g̃, h̃) to P and proves that g̃ ∈ 〈h̃〉.
DF.Com(DF.ck;m; r) for m ∈ Z, r ←$ Z2B+λ : output c ← g̃mh̃r, op = (1, r).
DF.Vf(DF.ck;m, c, op = (μ, r)): check that c = μg̃mh̃r and μl

G̃ = 1.

See [13] for a discussion on μ and other details. As proven in [13], DF is
statistically hiding and computationally binding under the root assumption.

A (multi-use) UC-commitment scheme [9] implements the functionality
Fmcom (see Fig. 2). The Fmcom functionality takes as an additional input another
unique “commitment identifier” cid, which is used if a sender commits to the
same receiver multiple times within a session. We assume that the combination
of (sid, cid) is globally unique, [9]. UC-commitment schemes have to satisfy the
properties of extractability (the simulator can unambiguously extract the com-
mitted message) and equivocability (the simulator can open a commitment to an
arbitrary value) at the same time, and thus they cannot be constructed without
an additional setup assumption [9].

Fig. 2. Functionality Fmcom for committing multiple messages

Cryptosystems. A labelled public-key cryptosystem Π is defined by three PPT
algorithms: (i) Π.KGen(1λ) generates a public key Π.pk and a secret key
Π.sk; (ii) Π.EnclblΠ.pk(m; r) encrypts the message m under the key Π.pk with
label lbl, using the random coins r; (iii) Π.DeclblΠ.sk(c) decrypts the cipher-
text c, using the secret key Π.sk with label lbl. It is required that for all
(Π.pk,Π.sk) ∈ Π.KGen(1λ), all labels lbl, all random coins r and all messages
m, Π.DeclblΠ.sk(Π.EnclblΠ.pk(m; r)) = m.

IND-CPA (indistinguishability under the chosen plaintext attack) and IND-
PCA (indistinguishability under the plaintext checking attacks, [1]) are defined
by using the following experiments:

DL-Extractable UC-Commitment Schemes 393

ExptpcaΠ,A(λ) / ExptcpaΠ,A(λ)

Q ← ∅; (Π.pk,Π.sk) ← Π.KGen(1λ); (lbl∗,m0,m1) ← AO(·,·,·)(Π.pk);
b ←$ {0, 1}; r ←$ RND(Π); c∗ ← Π.Enclbl

∗
Π.pk(mb; r); b′ ← AO(·,·,·)(c∗);

if (lbl∗, c∗) �∈ Q then return b = b′;fi ;
The experiment-dependent oracle is defined as follows: (i) in ExptcpaΠ,A(λ),

O(·, ·, ·) returns always 0. (ii) in ExptpcaΠ,A(λ), O(lbl, c,m) adds (lbl, c) to Q. It
returns 1 if the decryption of c under the label lbl is m. Otherwise, it returns 0.

Π is IND-CPA secure if for any PPT adversary A, AdvcpaΠ,A(λ) :=
|Pr[ExptcpaΠ,A(λ) = 1] − 1/2| = negl(λ). Π is IND-PCA secure if for any PPT
adversary A, AdvpcaΠ,A(λ) := |Pr[ExptpcaΠ,A(λ) = 1] − 1/2| = negl(λ).

The IND-PCA-secure Short Cramer-Shoup (SCS) labelled cryptosystem
SCS = (SCS.KGen,SCS.Enc,SCS.Dec) [1] works as follows:

SCS.KGen(1λ): g ←$ G
∗; x1, x2, y1, y2, z ←$ Zp; h ← gz, c ← gx1hx2 , d ← gy1hy2 .

Choose H from a collision-resistant hash function family H. Return SCS.pk =
(g, h, c, d,H) and SCS.sk = (x1, x2, y1, y2, z).

SCS.EnclblSCS.pk(g
m ∈ G; ·): sample r ←$ Zp; set (u, e, v) ← (gr, gmhr, (cdτ)r),

where τ ← H(lbl, u, e). Return the ciphertext (u, e, v)�.
SCS.DeclblSCS.sk((u, e, v)� ∈ G

3): set τ ← H(lbl, u, e), gm ← e/uz; if
ux1+y1τ (e/gm)x2+y2τ �= v then abort. Otherwise, output gm.

Abdalla et al. [1] proved that SCS is IND-PCA secure given H is a collision-
resistant hash function family and DDH is hard in G.

An additively homomorphic public-key cryptosystem has plaintext space
equal to ZN for integer N , s.t. the product of two ciphertexts decrypts to the
sum of the two corresponding plaintexts. We will use the Paillier cryptosys-
tem Pai [24]. It encrypts plaintexts from ZN , where N is a well-chosen RSA
modulus, and outputs ciphertexts from ZN2 : Pai.EncPai.pk(m ∈ ZN ; r ∈ Z

∗
N) =

(1 + N)mrN ≡ (1 + mN)rN (mod N2). See [24] for more details, including the
decryption algorithm. Pai is IND-CPA secure under the DCRA assumption [24].

Σ-Protocols [11] in the RPK Model. Let R = {x,w} be an NP-relation. A Σ-
protocol Σ = (Σ.P1, Σ.P2, Σ.Vf, Σ.Sim) is a three-round protocol between the
prover P and the verifier V, such that the first and the third messages are by
the prover, and the second message is by the verifier. Let rpkV be the public
key of the verifier. P has input (rpkV; x,w) and V has input (rpkV; x). The first
message is denoted as a ← Σ.P1(rpkV; x,w; s), where s ←$ RND(Σ) is sampled
from the randomizer space of the protocol. The second message e is chosen
uniformly at random from {0, 1}λ, e ←$ {0, 1}λ. The third message is denoted as
z ← Σ.P2(rpkV; x,w; e; s). The verifier accepts iff Σ.Vf(rpkV; x; a, e, z) = 1.

A Σ-protocol is complete for R if an honest verifier always accepts an honest
prover. A Σ-protocol is specially sound for R if given an input x and two accept-
able views (a, e1, z1) and (a, e2, z2), e1 �= e2, one can efficiently extract a witness
w, such that (x,w) ∈ R. A Σ-protocol is statistically special honest-verifier zero-
knowledge (SSHVZK) for R if for any rpkV, x and e, Σ.Sim(rpkV; x, e) can first

394 B. Abdolmaleki et al.

choose a z and then a, such that the simulated view (a, e, z) and the real view,
given the same e, have negligible statistical distance.

3 New Functionality Fmcomdl and Instantiation

In a DL-extractable UC-commitment scheme, one commits to an integer m from
Zp but the opening is to a group element gm ∈ G. (In particular, m should stay
secret from other participants even after the opening.) Nevertheless, we require
that there exists an efficient extraction algorithm that can retrieve the discrete
logarithm (i.e., the committed integer) m ∈ Zp of gm. That is, while opening
returns gm, the extraction returns m. See Fig. 3 for the corresponding function-
ality Fmcomdl that is parametrized by Zp and G (this means that Zp and G are
“hard-coded” into the functionality). We formalize our goal by letting parties
to commit to an integer m (which will be stored by the functionality and thus
can be extracted) but opening the commitment to gm. Hence, any commitment
scheme that implements Fmcomdl must necessarily be DL-extractable.

Fig. 3. DL-extractable functionality Fmcomdl for committing multiple messages

Remark 1. Belenkiy et al. [3] defined P -extractable commitment scheme, for an
efficient function P , as a commitment scheme where one commits to m and opens
to m but where the extractor is able to extract P (m). DL-extractable commit-
ment is a variant of P -extractable commitment for P = DL being an intractable
function. If P (m) = gm =: expg(m) then one obtains a functionality, dual to
Fmcomdl. (However, [3] did not consider UC-security and thus did not use the lan-
guage of functionalities.) Compared to DL-extractability, expg-extractability is
trivial to implement: indeed, the notion of expg-extractability was motivated by
the fact that well-known commitment schemes like the Groth-Sahai commitment
scheme for scalars [19] had this property. (The extractor of this commitment
scheme obtains gm by Elgamal-decrypting the commitment. Since computing
DL is intractable, one arrives to the notion of a expg-extractable commitment.)
Obtaining DL-extractability is non-trivial since DL is a hard function and thus
one has to take special care about making the DL of a message extractable. ��

The functionality Fmcomdl can be straightforwardly generalized to the func-
tionality Fmcom-F −1 for an arbitrary one-way permutation F , where the opening

DL-Extractable UC-Commitment Schemes 395

message includes y ← F (m) instead of y ← gm. Since we are interested in the
applications of Fmcomdl, we will omit further discussion.

We implement Fmcomdl as follows: for m ∈ Zp, we encrypt the group element
gm by using the Short Cramer-Shoup encryption [1], encrypt the integer m
by using the Paillier [24] additively homomorphic public-key cryptosystem, and
finally commit to the integer m by using the Damgård-Fujisaki [13] ICS. We
add a Σ-protocol Σeq proving the knowledge of m that was used in all cases;
importantly, only gm can be extracted from Σeq and in particular, m will remain
secret. Since UC-security does not permit to use rewinding to retrieve m, we use
straight-line extraction techniques from [16]. The Σ-protocol is started during
the commit phase, and after that the committer C erases the used random coins.
In the open phase, C opens the commitment to gm by finishing Σeq. When
simulating an honest committer, the UC simulator Sim first commits to 0; Sim
uses the properties of a trapdoor commitment scheme and the SSHVZK property
to simulate Σeq. (This guarantees equivocability.) If C is corrupted then Sim uses
the knowledge of the Paillier secret key to decrypt the Paillier encryption of m
and thus obtains m. (This guarantees extractability.) Thus, we obtain a DL-
extractable commitment scheme.

3.1 Σ-Protocol Σeq

Let SCS be the SCS cryptosystem and Pai be the Paillier cryptosystem. Recall
that the plaintext space of SCS is G (of order p) and the plaintext space of Pai
is ZN for an N > p. (The case N = p is straightforward to handle.) Let

Req =

⎧
⎪⎨
⎪⎩

(x = (p,SCS.pkP,Pai.pkP, gm, c1, c2, lbl),w = (m′, r1, r2)) :

c1 = SCS.EnclblSCS.pkP
(gm; r1) ∧ c2 = Pai.EncPai.pkP(m

′; r2)∧
m ≡ m′ (mod p) ∧ m′ < N

⎫
⎪⎬
⎪⎭

,

where p ← Pgen(1λ). Let Leq = {x : ∃w, (x,w) ∈ Req} be the corresponding lan-
guage. Thus, x ∈ Leq iff the two ciphertexts encrypt gm and m′ respectively, such
that m ≡ m′ (mod p). Note that gm is public while m is not; this corresponds
to the use of gm in the new DL-extractable UC-commitment scheme.

The proof of the following theorem uses ideas from the proof given in Sect. 5.1
of [13]. Note that in the next theorem, we actually do not need the public key to
be registered. We will assume it here for the sake of convenience since registration
is needed in the new DL-extractable UC-commitment scheme.

Theorem 1 (Security of Σeq). Let H be sampled from a collision-resistant
hash function family, SCS be the SCS cryptosystem, Pai be the Paillier cryp-
tosystem, and DF be the Damgård-Fujisaki ICS. Assume V has registered her
public key rpkV = DF.ckV. Let T be a public constant such that m < T , e.g.
T = p; let C(λ) = 2λ and let 2B be a close upperbound on ord(G̃). Assume
22λ+1p < N . The Σ-protocol Σeq in Fig. 4 (where Σeq.Sim will be defined in the
SSHVZK proof) is complete and SSHVZK for Req. The protocol Σeq is compu-
tationally specially sound under the root assumption in G̃.

396 B. Abdolmaleki et al.

Fig. 4. Σ-protocol Σeq for Req, where in the honest case, c1 = (c11, c12, c13)
� ←

SCS.EnclblSCS.pkP
(gm; r1) = (gr1 , gmhr1 , (cdτ)r1)� and c2 ← Pai.EncPai.pkP(m; r2) = (1 +

N)mrN
2 ≡ (1 + mN)rN

2 mod N2. Here, r1 ←$ Zp, τ = H(lbl, c11, c12), and r2 ←$ Z
∗
N .

Proof. Special soundness: consider two accepting views (a, e,z) and (a, e′,z′)
with e �= e′. Let m∗ ← (z′

2 − z2)/(e′ − e) mod p and r∗ ← (z′
1 − z1)/(e′ − e)

mod p. We get from the first four verification equations respectively that

c1 =(gr∗
, gmhr∗

, (cdτ)r
∗
)
�
= SCS.EncSCS.pkP(g

m; r∗),
m ≡ m∗ (mod p),

ce′−e
2 ≡ (1 + N)z

′
2−z2(z′

3/z3)N (mod N2), (1)

ãe′−e
1 = g̃z′

2−z2 h̃z′
4−z4 . (2)

For example, from (b) we get gem · a3 = gz2 and gem′ · a3 = gz′
2 . It follows that

g(e
′−e)m = gz2−z′

2 and thus gm = g(z2−z′
2)/(e

′−e) = gm∗
.

First, consider Eq. (2). Since g̃ = h̃α, ãe′−e
1 = h̃δ for δ := α(z′

2 − z2) + (z′
4 − z4).

We will next consider three possible cases. Let bad be the event that we either
have the case (i) or the case (ii).

(i) (e′ − e) � δ as an integer.
Write γ = gcd(δ, e′ − e). By the Extended Euclidean algorithm, there exist
i and j (where j < |e′ − e| < C(λ)), such that jδ + i(e′ − e) = γ. Thus,
h̃γ = h̃jδ+i(e′−e) = ã

j(e′−e)
1 h̃i(e′−e) = (ãj

1h̃
i)e

′−e. Set now μ ← (ãj
1h̃

i)(e
′−e)/γ/h̃.

Thus, μγ = 1. Since γ < C(λ), ord(μ) is C(λ)-smooth and thus μl
G̃ = 1. Since

h̃ = μ−1(ãj
1h̃

i)(e
′−e)/γ , ((e′ − e)/γ, ãj

1h̃
i, μ−1) is a solution to the root problem.

(ii) (e′ − e) | δ as an integer, but either (e′ − e) � (z′
2 − z2) or (e′ − e) � (z′

4 − z4).
Let q be a prime factor of e′ − e, such that qj is the highest power of q dividing
e′−e and at least one of z′

2−z2 or z′
4−z4 is non-zero modulo qj (such q exists due

DL-Extractable UC-Commitment Schemes 397

to the assumption of non-divisibility). If qj | (z′
2 −z2) then (due to the definition

of δ and qj) also qj | (z′
4 − z4), a contradiction. Thus, z′

2 − z2 �≡ 0 (mod qj).
Write α = a + b · ord(h̃) for some a < ord(h̃) and b. The adversary only has

information about α via the value g̃; moreover, g̃ completely determines a while
it contains no information about b. Since qj | δ,

δ = b(z′
2 − z2) · ord(h̃) + a(z′

2 − z2) + (z′
4 − z4) ≡ 0 (mod qj). (3)

Because q is a prime factor of e′ − e and e′ − e < C(λ), q < C(λ) and thus
ord(h̃) �≡ 0 (mod q). From the adversary’s viewpoint, b is chosen uniformly at
random from a set of at least 2B+λ values, and it must satisfy Eq. (3) for bad to
be true. Equation (3) has at most η := gcd((z′

2−z2)·ord(h̃), qj) solutions. Clearly,
η is a power of q but it is at most qj−1. Since 2B+λ > 2λqj , the distribution
of b mod qj is statistically close to uniform in Zqj , with the probability that b
satisfies Eq. (3) being at most 1/q−2−λ ≤ 1/2−2−λ. Thus, given the event bad,
the case (i), where we can solve the root problem, happens with high probability.

(iii) (e′ − e) | (z′
2 − z2) and (e′ − e) | (z′

4 − z4) as an integer.
Let m† ← (z′

2 − z2)/(e′ − e) ∈ Z and r† ← (z′
4 − z4)/(e′ − e) ∈ Z. Let μ ←

g̃m†
h̃r†

/ã1. W.l.o.g., assume e′ > e. By Eq. (2), μe′−e = (g̃m†
h̃r†

/ã1)e
′−e =

g̃z′
2−z2 h̃z′

4−z4/ãe′−e
1 = 1. Since e′ − e < C(λ) then ord(μ) is C(λ)-smooth and

hence μl
G̃ = 1. Thus, we can open ã1 to (m†, r†, μ).

Since z2 < T · C(λ)(2λ + 1) < 22λ+1p by the last verification equation (Item
4e), we get that |m†| < 22λ+1p < N .

Next, Assume that (iii) Holds and Consider Eq. (1). Since N and e′ − e ∈ [−2λ +
1 .. 2λ−1] are coprime, there exist integers α and β, such that αN+β(e′−e) = 1.
Let r2 ← cα

2 (z
′
3/z3)β mod N2. Thus, due to Eq. (1), c1−αN

2 = c
β(e′−e)
2 ≡ (1 +

N)β(z
′
2−z2)(z′

3/z3)βN (mod N2), and thus c2 ≡ (1 + N)β(z
′
2−z2)rN

2 (mod N2).
Clearly, β(z′

2 − z2) = β(e′ − e)m† as an integer. Thus, due to the definition
of β, β(z′

2 − z2) = β(e′ − e)m† = (1 − αN)m† ≡ m† (mod N) and thus c2 ≡
(1+N)m

†
rN
2 (mod N2). Since directly by the definition of m∗ and m†, m∗ ≡ m†

(mod p), we get that c1 and c2 encrypt the same element m∗ modulo p.
SSHVZK: Σeq.Sim(Σeq.rpkV; x, e) sets s1 ←$ Z2B+λ , s5 ←$ [0 .. C(λ)2B+2λ −

1], z1 ←$ Zp, z2 ←$ Z22λp (thus, Σeq is statistically but not perfectly zero knowl-
edge), z3 ←$ Z

∗
N2 , z4 ← s1e + s5, ã1 ← DF.Com(ckV; 0; s1) (this is indistin-

guishable from a commitment to m since DF is statistical hiding), a2 ←
((gz1 , gemhz1 , (cdτ)z1)/c1)�, a3 ← gz2−em, a4 ← (1 + z2N)zN

3 c−e
2 mod N2,

ã5 ← g̃z2 h̃z4 ã−e
1 . The simulator outputs (a,z). The claim follows. ��

3.2 New DL-Extractable UC-Commitment Scheme

The following DL-extractable UC-commitment scheme Γdl (see Fig. 5) is similar
to Fujisaki’s UC-commitment scheme Fuj [16], with the following two key dif-
ferences. (i) Based on our observation that the CRS of Fuj can be divided into
two parts, one guaranteeing binding and the second one guaranteeing hiding, we

398 B. Abdolmaleki et al.

redefine it in the (weaker) RPK model instead of the CRS model. Importantly,
the RPK model can also be used after the modification in the next step. (ii) We
replace the Σ-protocol (a proof of the knowledge of the SCS-encrypted message
gm) from [16] with Σeq, interpreted as the proof of knowledge of the discrete loga-
rithm m of the SCS-encrypted message. As explained above, Σeq achieves this by
additionally encrypting m by using Pai; hence, the UC simulator, knowing the
secret key Pai.sk, decrypts c2 to get m, and returns m mod p. (See the beginning
of Sect. 3 for a longer intuition behind the construction of Γdl.)

Due to this, if one assumes the security of Σeq then the security proof of
Γdl is similar to that given in [16]. Hence, we refer the reader to [16] for any
additional intuition about Fujisaki’s commitment scheme. While the description
of Γdl in Fig. 5 looks long, it is mainly so because of the use of three differ-
ent encryptions/commitments which means that certain steps in the Fujisaki’s
commitment scheme are tripled.

We divide the public key rpki of Gi in Γdl into the binding part (used when Gi

acts as the receiver R) and the hiding part (used when Gi acts as the committer
C). C and R use rpkhC = (Pai.pkC = N,SCS.pkC = (g, h, c, d,Hh

C)) from C’s public
key rpkC and rpkbR = (Ped.ckR,DF.ckR,Hb

R) from R’s public key rpkR. Obviously,
C knows rpkC while she has to retrieve rpkR from RR.

See Fig. 5 for the full description of Γdl. Here, Γdl.Gen for party Gi ∈ {C,R}
is executed by the key registration authority Ri as usual in the RPK model,
Γdl.Com and Γdl.Open are executed by C, and Γdl.Vf is executed by R. The algo-
rithms Γdl.tdOpen and Γdl.Ext are only executed within the security proof. To get
straight-line simulation, we use the same method as [16]. Finally, note we have
included (lbl, c3, e) to op mainly to simplify the notation.

Theorem 2. Assume that SCS is an IND-PCA secure and Pai is an IND-CPA
secure additively homomorphic cryptosystem, Ped is a computationally binding
and perfectly hiding trapdoor commitment scheme and DF is a computationally
binding and statistically hiding ICS. Assume secure erasure. Then Γdl from Fig. 5
UC-realizes Fmcomdl in the Frpk-hybrid model against adaptive attackers, i.e., it
is a secure DL-extractable UC-commitment scheme in the RPK model.

The proof of Theorem 2 follows closely the security proof of Fujisaki’s UC-
commitment scheme [16], with a few notable differences (the use of the RPK
model instead of the CRS model, and the use of a different Σ-protocol, which
causes us to use one more game to handle Paillier encryption).

Proof. As usual, we consider a sequence of hybrid games in which we change the
rules of games step by step. We denote the changes by using gray background.

Game0 = HybridFrpk : This is the real world game in the RPK model
(HybridFrpk). In Game0, the real protocol is executed between the committer
C and the receiver R. The environment Z adaptively chooses the input for hon-
est committer C and receives the output of honest parties. Adversary A attacks
the real protocol in the real world, i.e., she can see the interactions between the
honest parties or interact with the honest parties as playing the role of some

DL-Extractable UC-Commitment Schemes 399

Fig. 5. The commitment scheme Γdl in the RPK model

parties after they are corrupted. When a party is corrupted, A can read her cur-
rent inner state and A also fully controls her. Z can control A and see the inside
of the execution of the protocol (the interactions between the honest parties or
between the honest parties and the adversary) via the view of A.

400 B. Abdolmaleki et al.

Game1: In Game1, Sim simulates the authorities RC,RR generating the reg-
istered public keys rpkC and rpkR used by C and R. Sim stores tdCR = (tdhC, tdbR).
Sim simulates honest parties as in Game0, except for the case where R is
honest but C is corrupted. After obtaining (lbl, c3; e; c) from the view of the
protocol between C and R in the commit phase, where lbl = (sid, cid,C,R), Sim
stores m∗ ← Pai.DecPai.skC(c2) as a part of the state. In the open phase, when C

successfully opens to gm, Sim sends
(
open, lbl, gm∗

)
to Z.

In the case of adaptive corruption of R before the open phase, Sim simply
reveals stC = (c, gm∗

, op) to A. Honest R has no secret.

Lemma 1. If Σeq is specially sound, Ped is computationally binding, and Hb
R

is collision-resistant then Z distinguishes Game0 and Game1 with a negligible
probability.

Proof (Proof of Lemma 1). The only difference from Game0 is that in Game1,
Sim (playing as honest R) outputs gm∗

instead of gm at the open phase. Sim
opens gm∗

after C decommits to gm in a verifiable way. If not, Sim outputs
nothing. Denote by bad the event that m∗ �≡ m (mod p) where gm is the value
successfully opened by C. We claim that bad occurs only with a negligible proba-
bility; otherwise, either the soundness of Σeq, the binding of Ped, or the collision
resistance of Hb

R is broken.
Assume that m∗ �≡ m (mod p) at least in one of such executions. In the first

such execution, we rewind the adversary at the step (*) in the commit phase
and send a new random challenge e′. Assume, by contradiction, that C returns
c′ = (c′

1, c
′
2) such that c′ �= c but still successfully decommits to some value m′

with a′. Then it implies breaking of the binding of Ped or the collision-resistancy
of Hb

R, because we can simulate it without knowing the trapdoor key. For the
same reason, x′ = x (and thus m′ = m) holds except with a negligible proba-
bility. Thus, rewinding the commit phase, C outputs the same stC = (c, gm, op)
except with a negligible probability when it can successfully decommit. Note
that m∗ �≡ m (mod p) implies that x �∈ Leq. Since x (and thus m) is now fixed
with an overwhelming probability, C can convince R on false instance x only with
probability 2−λ (this follows from the special soundness of Σeq), which is neg-
ligible in λ. Hence, bad occurs only with a negligible probability and the views
of Z in the two games are computationally indistinguishable. We stress that we
rewind just in the proof of binding, but not in the simulation. ��

Game2: identical to Game1 except following cases.
Honest C: In the open phase, upon receiving (open, sid, cid) from Z, Sim sets

(a∗, e,z∗)← Σeq.Sim(Σeq.rpkR; x, e) and sends (gm, op = (lbl, c3, e; a∗ , z∗ , r3))
to R; Importantly, in the simulation of honest Cin the open phase, Sim does not
have to know w.

C was adaptively corrupted before receiving e: in the commit phase,
Sim sets r∗

3 ← Ped.tdOpen(Ped.tdR;hx, r3, h
∗
x) and then reveals the current secret

state (w = (m, r1, r2), s, r∗
3) to Z.

DL-Extractable UC-Commitment Schemes 401

C was adaptively corrupted after receiving e but before the open
phase: Sim simulates C honestly. Note that (w, s) is supposed to be erased by
honest C before sending c, and thus, Sim does not need to reveal it. The proof
of the following lemma is straightforward.

Lemma 2. If Σeq is SHVZK and Ped is trapdoor, then Z distinguishes Game1
and Game2 with negligible probability.

Game3: In this game, we do the following changes.
Honest C: In the commit phase, after receiving (commit, lbl,m) from Z,

when it receives e, Sim computes c∗
1 ← SCS.EnclblSCS.pkC

(1; r1) and sends c∗ ←
(c∗

1 , c2) to R. In the open phase, upon receiving input (open, sid, cid) from Z,
Sim first sets x∗ ← (p,SCS.pkC,Pai.pkC, gm, c∗ , lbl) where x∗ �∈ Leq because
c∗
1 = SCS.EnclblSCS.pkC

(1; r1).
In the case of adaptive corruption of C: Sim simulates C as in Game2.
Security analysis. The only difference from the previous game is

that in Game3, the simulator Sim (playing as honest C) computes c∗
1 ←

SCS.EnclblSCS.pkC
(1; r1) encrypting 1 instead of gm. As in [16], we run the (multi-

message) IND-PCA game to show this game is indistinguishable from the
previous game. Denote by badi the event in Gamei that m∗ �≡ m (mod p)
where m is the value successfully opened by C. As analysed above, Pr[bad] =
Pr[bad1] = negl(λ). In addition, Game1 is statistically close to Game2 and so,
Pr[bad1] ≈ Pr[bad2] = negl(λ). We use this fact to prove the following lemma.

Lemma 3. If SCS is IND-PCA secure then Z distinguishes Game2 and Game3
with only a negligible probability.

Proof (Proof of Lemma 3). The proof is a variant of the proof in [16], App. A.
We define the multi-message IND-PCA security for a public-key cryptosystem
Π. Let Exptmpca

Π,B (λ) be the following experiment:

Exptmpca
Π,B (λ)

QEnc ← ∅;Qpca ← ∅; (Π.pk, sk) ← Π.KGen(1λ);

b ←$ {0, 1}; b′ ← BEncb
Π.pk(·,·,·),Opca

Π.sk
(·,·,·)

(Π.pk);
if b = b′ then return 1; else return 0;fi

Here, the oracles are defined as follows:

– Encb
Π.pk(lbl∗, gm0 , gm1) rejects it if lbl∗ ∈ Qpca. Otherwise, it adds lbl∗ to QEnc

and returns c ← Π.Enclbl
∗

Π.pk(g
mb).

– Opca
Π.sk(lbl, gm, c) rejects it if lbl ∈ QEnc. Otherwise, it adds lbl to Qpca, and

returns 1 iff c is a proper ciphertext of gm on label lbl.

Π is multi-message indistinguishable against the plaintext checkable attacks
(mIND-PCA secure) if Advmpca

Π,B (λ) := |Pr[Exptmpca
Π,B (λ) = 1] − 1/2| = negl(λ)

for all non-uniform PPT B.

402 B. Abdolmaleki et al.

By using the standard hybrid argument, for any mIND-PCA adversary B
against Π with at most q = q(λ) queries to the encryption oracle, there exists
an IND-PCA adversary B′ against Π, s.t. Advmpca

Π,B (λ) ≤ q(λ) · AdvpcaΠ,B′(λ),
where the running time of B′ is roughly bounded by the running time of B
plus q − 1 encryption operations. We construct mIND-PCA adversary B using
Z and the adversary A as follows. W.l.o.g., assume that Pr[Game2(A) = 1] ≤
Pr[Game3(A) = 1], where Gamei(A) is the random variable assigning the output
bit of the environment Z in Gamei. B is given SCS.pkC as an instance in the
mIND-CPA game. B sets up rpkC and rpkR by picking the remaining parameters.
Here, she knows Ped.tdR but does not know SCS.skC. B runs Z and A and plays
the role of simulator Sim as in Game2 (or Game3), except for the following two
cases:

(i) If C is honest and A receives (lbl, c3) from Z, B submits (lbl, gm, 1) to the
oracle Encb

SCS.pkC
and receives c. Then, B plays the role of the simulator in

Game2 (or equivalently, in Game3).
(ii) If R is honest but C is corrupted, after receiving all three messages in the

commit phase with C, B simply stores it. In the open phase, when C success-
fully decommits to gm, B submits (lbl, gm, c1) to the oracle Opca

skC
and receives

the answer bit. If the answer bit is 1, then B outputs (open, lbl, gm) to the
environment. Otherwise, she halts and outputs 1 (break point).

If such an event does not occur, B proceeds the game with Z and A as playing
the role of Sim. When Z outputs a bit b′, B outputs b′ in the mIND-PCA game.

Security Analysis. Above, B perfectly simulates Game2 when b = 0 just
before the break point. Recall that badi denotes the event in Gamei that
m∗ �≡ m (mod p) where gm is the value successfully decommitted to by cor-
rupted C. The probability that the break occurs is equal to the probability
that bad2 occurs, which is negligible. Similarly, B perfectly simulates Game3
when b = 1 just before the break point. We do not know Pr[bad3]. However,
since Pr[bad2] = negl(λ), we can conclude b = 1 if the break happens. If the
break never happens, B perfectly simulates either Game2 or Game3 according
to b. Thus, the difference of the output of Z is bounded by the advantage of
B: Advmcpa

SCS,B(λ) = |Pr[Game3(Z) = 1 ∧ ¬bad3] + Pr[bad3] − (Pr[Game2(Z) =
1 ∧ ¬bad2] + Pr[bad2])|. Thus, Pr[Game3(Z) = 1] − Pr[Game2(Z) = 1] ≤
Advmcpa

SCS,B(λ) + Pr[bad2] − Pr[Game2(Z) = 1 ∧ bad2] ≤ Advmcpa
SCS,B(λ) + negl(λ). ��

Game4: In this game, Sim enacts the following changes compared to Game3.
If C is honest: upon receiving input (commit, lbl,m) from Z, after receiving

e, Sim computes c∗
2 = Pai.EncPai.pkC(0; r2) and returns c∗ ← (c∗

1, c∗
2) to R.

In the open phase, upon receiving input (open, sid, cid) from Z, Sim
first sets x = (p,SCS.pkC,Pai.pkC, gm, c, lbl) where x �∈ Leq because c∗

1 =
SCS.EnclblSCS.pkC

(1; r1) and c∗
2 = Pai.EncPai.pkC(0; r2).

If C is adaptively corrupted: Sim simulates C identically as in Game3.

Security Analysis. The only difference from Game3 is that in Game4, the sim-
ulator Sim (playing as honest C) computes c∗

2 ← Pai.EncPai.pkC(0; r2) instead of

DL-Extractable UC-Commitment Schemes 403

c2 ← Pai.EncPai.pkC(m; r2). We run the (multi-message) IND-CPA game to show
Game4 is indistinguishable from Game3.

Lemma 4. If Pai is IND-CPA secure then Z distinguishes Game3 and Game4
with only a negligible probability.

Proof. The proof is a variation of the proof of Lemma 3. We now analyse Pai,
and define CPA-related security games (like mIND-CPA) instead of PCA-related
security games. ��

Game5: In the ideal world, there additionally exists an ideal functionality
Fmcomdl and the task of the honest parties in the ideal world is simply to convey
inputs from Z to the ideal functionalities and vice versa (the ideal honest parties
communicate only with Z and the ideal functionalities).

Initialization step: Sim generates rpkR and rpkC and saves the trapdoors.
Simulating communication with Z: Every input value that Sim receives
from Z is written on A’s input tape (as if coming from Z) and vice versa.

Simulating the commit phase when C is honest: Upon receiving
(rcpt, lbl = (sid, cid,C,R)) from Fmcomdl, Sim sets m∗ ← 0 and uses it
instead of m in what follows. Unless explicitly said otherwise, we will denote
any variable X that uses m∗ instead of m as X∗ without making all the
details explicit. For example, c∗

1 ← Π.EnclblSCS.pkR
(gm∗

; r1), c∗ ← (c∗
1, c2),

a∗ ← Σeq.P1(Σeq.rpkR; x∗,w∗; s), h∗
x ← Hb

R(lbl, x∗, a∗), and Sim reveals (lbl, c∗
3).

Simulating the commit phase when C is corrupted and R is hon-
est: After receiving (lbl, c3, e, c) from C in the commit phase, Sim sets
m∗ ← Pai.DecPai.skC(c2) and uses m∗ instead of m after that.

Simulating adaptive corruption of C before receiving e in the com-
mit phase: When C is corrupted, Sim immediately reads C’s inner state and
obtains m. Sim uses m to compute all variables as in the real protocol, except
setting r3 ← Ped.tdOpen(Ped.tdR;h∗

x , r
∗
3 , hx) and revealing (m,w, s, r3).

Simulating adaptive corruption of C after the commit phase but
before the open phase: When C is corrupted, Sim immediately reads
ideal committer C’s inner state and obtains m. Sim sets all variables
as in the real protocol, except (a,z) ← Σeq.Sim(Σeq.rpkR; x, e) . Sim sets
r3 ← Ped.tdOpen(Ped.tdR;h∗

x , r
∗
3 , hx) and reveals stC.

Simulating adaptive corruption of R after the commit phase but
before the open phase: Sim stores stR = (lbl, c3, e, c) as if it comes from R.

Simulating the open phase when C is honest: Upon receiving
input (open, lbl, gm) from Fmcomdl, Sim uses gm to compute all variables
as in the real protocol, except (a,z) ← Σeq.Sim(Σeq.rpkR; x, e) . Sim sets
r3 ← Ped.tdOpen(Ped.tdR; h∗

x , r
∗
3 , hx) . Sim reveals (gm, op).

Simulating the open phase when C is corrupted and the receiver R is
honest: Upon receiving (gm, op) from C, Sim sends (open, sid, cid) to Fmcomdl.
Fmcomdl follows its code: if a tuple (sid, cid,C,R, gm∗

) with the same (sid, cid)

404 B. Abdolmaleki et al.

was previously stored by Fmcomdl, Fmcomdl sends (open, sid, cid,C,R, gm∗
) to

the ideal receiver R and Sim. Then, R conveys it to Z.

By construction, this game is identical to the previous game. ��

Acknowledgement. The authors were supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 780477 (project
PRIViLEDGE), and by the Estonian Research Council grant PRG49. The work was
done while Zając was working at the University of Tartu.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistin-
guishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 332–352. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46447-2_15

2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th FOCS, pp. 186–195 (2004)

3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8_20

4. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium
on Security and Privacy, pp. 287–304 (2015)

5. Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Analysis and improve-
ment of Lindell’s UC-secure commitment schemes. In: Jacobson, M., Locasto, M.,
Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 534–551.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_34

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112 (1988)

7. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_8

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145 (2001)

9. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8_2

10. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: 34th ACM STOC, pp. 494–503 (2002)

11. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5_19

12. Damgård, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_36

https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-642-38980-1_34
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-46766-1_36

DL-Extractable UC-Commitment Schemes 405

13. Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36178-2_8

14. Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9_37

15. Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally
composable string commitments with adaptive security. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25385-0_25

16. Fujisaki, E.: Improving practical UC-secure commitments based on the DDH
assumption. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp.
257–272. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_14

17. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

18. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_19

19. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

20. Kosba, A.E., et al.: C∅C∅: a framework for building composable zero-knowledge
proofs. Technical report 2015/1093, IACR (2015). http://eprint.iacr.org/2015/
1093. Accessed 9 Apr 2017

21. Lindell, Y.: Highly-efficient universally-composable commitments based on the
DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol.
6632, pp. 446–466. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20465-4_25

22. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

23. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4_6

24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

25. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-45708-9_37
https://doi.org/10.1007/978-3-642-25385-0_25
https://doi.org/10.1007/978-3-319-44618-9_14
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-540-78967-3_24
http://eprint.iacr.org/2015/1093
http://eprint.iacr.org/2015/1093
https://doi.org/10.1007/978-3-642-20465-4_25
https://doi.org/10.1007/978-3-642-20465-4_25
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-46766-1_9

A New Encoding Framework
for Predicate Encryption with Non-linear

Structures in Prime Order Groups

Jongkil Kim1(B), Willy Susilo1, Fuchun Guo1, Joonsang Baek1, and Nan Li2

1 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong, Australia

{jongkil,wsusilo,fuchun,baek}@uow.edu.au
2 School of Electrical Engineering and Computing,
The University of Newcastle, Newcastle, Australia

nan.li@newcastle.edu.au

Abstract. We present a new encoding framework for predicate encryp-
tion (PE) in prime order groups. Our framework captures a broader
range of adaptively secure PE schemes by allowing PE schemes to have
more flexible (i.e., non-linear) structures. The existing works dealing with
adaptively secure PE schemes in prime order groups require strict struc-
tural restrictions on PE schemes. In particular, the exponents of pub-
lic keys and master secret keys of the PE schemes, which are referred
to as common variables, must be linear. In this paper, we introduce a
modular approach which includes non-linear common variables in PE
schemes. First, we formalize non-linear structures by improving Attra-
padung’s pair encoding framework (Eurocrypt’14). Then, we provide a
generic compiler that incorporates encodings under our framework to
PE schemes in prime order groups. Notably, we prove the security of
our compiler by introducing a new technique that decomposes common
variables into two types and makes one of them shared between semi-
functional and normal spaces on processes of the dual system encryption.
As instances of our new framework, we introduce new attribute-based
encryption schemes supporting non-monotone access structures, namely
non-monotonic ABE. Our new schemes are adaptively secure in prime
order groups and have either short ciphertexts (in the case of KP-ABE)
or short keys (in the case of CP-ABE).

Keywords: Pair encoding · Non-monotone access structure ·
Attribute-based encryption · Prime order groups ·
Dual system encryption

1 Introduction

Wee [18] and Attrapadung [3] introduced generic modular frameworks which
generalize predicate encryption (PE) using encodings. They extracted common

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 406–425, 2019.
https://doi.org/10.1007/978-3-030-21568-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_20

A New Encoding Framework for Predicate Encryption 407

properties that PE schemes shared and formalized them under the encoding
frameworks. Their encoding frameworks include generic constructions (i.e., com-
pilers) of PE schemes based on encodings and approaches to proofs of adaptive
security only using the properties the encodings commonly have. Therefore, these
frameworks give a new insight into building PE schemes as the security of PE
schemes can be proven by showing that their corresponding encoding schemes
satisfy those properties.

Recently, encoding frameworks have been adopted to find a generic construc-
tion in prime order groups [1,2,5,11,14]. The benefit of the prime order groups
is the efficiency gains that they can bring to encryption schemes. However, the
constructions based on the prime order groups commonly impose a more struc-
tural restriction on encoding schemes. In particular, they require the exponents
of public and master secret keys (which are referred to as common variables) to
have a simple linear structure.

For example, if we denote the common variables of an encoding scheme by
h1, ..., hm, the constructions require that public and master secret keys to be
set as g, gh1 , ..., ghm where g is a group generator. Note that they cannot allow
encoding schemes to have the parameters of group elements whose exponents
are not linear in hi such as gh2

1 or gh1h2 . This is because most of the known
techniques in prime order groups require parameters in an encryption scheme
to be represented using matrices. Hence, the multiplication between parameters
cannot be easily handled since those matrices do not commute. It adds more
restrictions on the structures of the encoding scheme and limits the usage of
encoding frameworks.

1.1 Our Contribution

Framework with Less Structural Requirement. We introduce a modular
framework which is applicable to PE schemes having non-linear common vari-
ables in prime order groups. Prior to our work, existing frameworks [1,2,5,11,14]
in prime order groups covers PE schemes which have a simple linear structure.
Our new framework overcomes this barrier by suggesting a new framework and
a new proof technique. To mitigate the structural restriction and effectively
express non-linearity of PE schemes, we improve Attrapadung’s pair encoding
framework [3] which is one of the most popular encoding frameworks for PE and
provide a new adaptively secure compiler that incorporates an encoding scheme
under our improved framework to a PE scheme in prime order groups.

ABEs with a Non-monotone Access Structure. As instances of our new
encoding technique, we introduce two new attribute-based encryption (ABE)
schemes supporting a non-monotone access structure as follows:

• Non-monotonic CP-ABE (NM-CP-ABE) with short keys (Scheme 1).
• Non-monotonic KP-ABE (NM-KP-ABE) with short ciphertexts (Scheme 2).

Note that although Yamada et al. already introduced selectively secure
schemes in [26], no encoding framework was able to achieve adaptive security in

408 J. Kim et al.

prime order groups due to the non-linearity. For the first time, our new schemes
achieve non-monotone access structure, short parameters (key or ciphertexts)
and adaptive security at the same time. Table 1 summarizes comparison between
our schemes and the existing non-monotonic ABE schemes.

Table 1. Comparisons of Non-monotonic ABE schemes in prime order groups

Scheme Multi-use
of Att.

Security Assumptions Type NM-CP-ABE

CT Priv. Key

LSW [16] Yes Selective RO+n-MEBDH KP 3n+ 1 2t+ t′

AHLLPR [6] Yes Selective n-DBDHE KP 4 (N + 1)t

YAHK [26] Yes Selective q-types CP 3t+ 1 4n+ 2

Yes Selective q-types KP 4n+ 1 3t

OT [23] No Adaptive DLIN CP 14t+ 5 14nũ+ 5

No Adaptive DLIN KP 14nũ+ 5 14t+ 5

Scheme 1 Yes Adaptive Static + q-types CP 3(N + 2)t+ 6 21

Scheme 2 Yes Adaptive Static + q-types KP 24 3(N + 2)t+ 9

t: the number of attributes in an access policy, t′: the number of negated attributes in an access
policy,
n: the number of attributes in attribute sets, N: the maximum number of attributes in attribute
sets
ũ: the maximum number of appearances of an attribute in an access policy.
Static: ‘Static’ in Assumptions implies that LW1, LW2 and DBDH

1.2 Overview of Our Technique

Main Idea. Our solution largely adopts the notion of pair encoding framework,
which is outlined in AppendixA.1. However, the pair encoding framework can-
not properly describe non-linear common variables. Therefore, we modify the
syntax of pair encoding to be more flexible. The most significant change in our
framework is decomposing common variables in the pair encoding framework into
hidden common variables and shared common variables as we describe below:

• Hidden Common Variables (HCVs) are identical to common variables used
in existing frameworks [1,5,11,14]. The HCVs must be linear.

• Shared Common Variables (SCVs) are variables which are non-linear or cause
a non-linearity.

In detail, the exponents of public parameters and master secrets in our encod-
ing framework are the composition of those two types of common variables. We
use b(w, b0,h) = (b1,, bω) to denote the exponents of those parameters and
also use w = (w1, ..., wω1) and h = (h1, ..., hω2) to denote SCVs and HCVs,
respectively. bi is defined as a monomial which is bi = b0fi(w) or fi(w)hj where
fi(w) is a monomial consisting of the elements of w and j ∈ [ω2] and b0 is a

A New Encoding Framework for Predicate Encryption 409

variable adopted for a linear operation of monomials where HCVs do not appear.
This setting makes b(w, b0,h) linear in (b0,h). More formally, by the definition
of b, for all b0, b

′
0 ∈ Zp and h,h′ ∈ Z

ω2
p , we have

b(w, b0,h) + b(w, b′
0,h

′) = b(w, b0 + b′
0,h + h′).

We call this property linearity in HCVs.
HCVs and SCVs work differently in the security proof. Encoding frameworks

can be considered as generalizations of Waters’ dual system encryption [25]. In
the dual system encryption, semi-functional space is used to partially mimic
the construction of an encryption scheme to prove the security more simply, but
variables appeared in semi-functional space must not correlate with their original
values in the construction, which we call normal space. HCVs are variables which
are typically used in the dual system encryption. They are projected from normal
space to semi-functional space in the proofs. Their values in semi functional
space do not correlate to their original values. However, SCVs are a new type
of variables. They are also projected to the semi-functional space, but their
projected values are identical to their original values. This is possible since the
proof works in a prime order group. In other words, SCVs are shared both in
semi-functional and normal spaces, where the construction is defined. We handle
these changes by refining the security proof and the property of encodings.

Parameter b0. Additionally, due to the notational deficiency of the pair encod-
ing to express the linearity of (hidden) common variables, we have adopted a
new variable b0 in our encoding framework as done in Kim et al.’s work [14].
Speaking more precisely, even if HCVs of b are linear form (i.e. the maximum
degree of those variables is set to be 1), the linearity in HCVs of b cannot prop-
erly be notated if coordinates of b do not have an element of h. Thus, we use a
new variable b0 to denote the change the values during the linear operation and
place b0 where an element of h does not appear. Consequently, all coordinates
of b must contain either b0 or hi and linear in those variables.

Our Compiler in Prime Order Groups. To construct a new compiler of
encodings with a less restrictive structural assumption, we adopt the technique
from [14], in which the common variables are projected into semi-functional
space. This technique is built upon combining a nested dual system encryption
technique and Lewko and Waters’ IBE [17]. In particular, the simulator sets
a common variable as d · h′ + h′′ where d ∈ Zp is given by gd using a group
generator g and h′′ are values generated by the simulator. This setting hides the
values of h′ using h′′ to the adversary. Also, the simulator enables to project h′

using gd, which is indistinguishable from a random value in the assumption to
which the security is reduced.

In our framework, the exponents of public parameters are more complex
monomials, but the simulator still can hide HCVs before they are projected
into semi-functional space. In our proof, we let the simulator set a non-linear
monomial fi(w)hj = fi(w)(dh′

j +h′′
j) = d · fi(w) ·h′

j + fi(w) ·h′′
j where fi(w) is

a monomial consisting only of SCVs, which are denoted as w. In particular, if gd

410 J. Kim et al.

Table 2. Comparisons of normal and semi-functional parts in encoding frameworks

Normal parts Semi-functional parts

KSGA [14] Key k(α, x, (1, h); r) k(α′, x, (1, h′); r′)

CT c(y, (1, h); s, s) c(y, (1, h′); s′, s′)

A [4] Key k(α, x, h; r) k(α′, x, h′; r)

CT c(y, h; s, s) c(y, h′; s, s)

Ours Key k(α, x, b(w, 1, h); r) k(α′, x, b(w, 1, h′); r′)

CT c(y, b(w, 1, h); s, s) c(y, b(w, 1, h′); s′, s′)

is indistinguishable from a random value (i.e. gd+r where r is a random value),
gfi(w)hj becomes gd·fi(w)·h′

j · gr·fi(w)h′
j · gfi(w)·h′′

j . Hence, gr·fi(w)h′
j can simulate

the semi-functional space, where r and h′
j simulates a random variable and a

HCV, respectively. fi(w) appears in the semi-functional space, but its value is
the same as that of the normal space as it is defined as SCV.

Refined α Hiding. In our setting, SCVs are not hidden. It means that their
projected values in the semi-functional space are identical to their original values
as shown in Table 2. Sharing SCVs makes a security proof complex because it
means the values must be defined and fixed before receiving any query from the
adversary (i.e. when a system sets up). We address this challenge by refining
α hiding property of pair encoding framework. We use two oracles which are
indistinguishable from each other to simulate the refined α hiding property.
In our setting, the oracles output gb(w ,1,1) as an initial instance so that the
simulator creates public keys and normal parts of private keys using shared
common variables w.

It is worth noting that the oracles in the existing techniques [4,14] do not
output any value related to common values but only outputs a group generator
g as an initial instance. In the pair encoding framework, because the initial
instance does not include any public parameters, the α hiding property is proved
by selecting public parameters after they obtain the target predicate of the
challenge ciphertext (in selective security proof) or the challenge key (in co-
selective security proof). However, we observed that, even in selective security
proofs, some common variables can be set without using any information about
the challenge ciphertext. This makes us use those variables as SCVs. We show
that achieving those oracles is feasible by providing new instances.

2 Related Work

Conjunctive schemes of ABE and Identity-based revocation systems were intro-
duced [7,20] to fill the gap between practice and theory. In those schemes, only
an identity can be used to revoke users and the other attributes are used to
form an access policy. Inner product encryption [8,13,21,22] naturally achieves

A New Encoding Framework for Predicate Encryption 411

a non-monotone access structure using polynomials. However, it is well known
that expressing a Boolean formula using inner product is inefficient.

A technique to convert encryption schemes in composite order groups into
prime order groups were introduced by Lewko [15] using Dual Pairing Vec-
tor Spaces (DPVS) [21,22]. However, their conversion technique is not generic
and the size of parameters and the amount of computational work required for
encryption/decryption increase linearly with the size of vector it uses. Dual Sys-
tem Groups (DSG) [12] were recently introduced by Chen and Wee. They showed
that DSG can be utilized to construct a broad range of encryption schemes in
prime order groups. Since then, many generic constructions [1,4,11] of encoding
schemes in prime order groups have employed DSG except Kim et al.’s work
[14]. In Kim et al.’s work, instead of using DSG, they generalized Lewko and
Waters’ IBE [17] as is done in this paper, but their technique does not cover
encryption schemes with non-linear structure.

The compiler for pair encoding in a prime order group is proposed by Attra-
padung [5]. In their technique, the common values are defined as a matrix form,
which makes the encoding need more structural assumptions. To address this,
they redefined the pair encoding to regular encoding with additional structural
restrictions, which implies the linearity of common values.

Agrawal and Chase also suggested a new way to prove the security of encod-
ing schemes [2]. They proposed a technique where the security of predicate
encryption schemes can be proven by showing their encoding satisfy the symbolic
property. Namely, if it is shown that the encoding scheme is mapped to a spe-
cific format, then the security is proven without any extra efforts. However, the
technique still works under the same structural assumptions the pair encoding
framework [3] is based on and it is not clear how the symbolic property works
with a non-linear structure.

3 Preliminary

3.1 Bilinear Maps

Let G be a group generator which takes a security parameter λ as input and
outputs (p, G1, G2, GT , e), G1, G2 and GT are cyclic groups of prime order p,
and e : G1 × G2 → GT is a map such that e(ga, hb) = e(g, h)ab for all g ∈ G1

h ∈ G2 and a, b ∈ Zp and e(g, h) �= 1 ∈ GT whenever g �= 1 and h �= 1. We
assume that the group operations in G1, G2 and GT , as well as the bilinear map
e, are all computable in polynomial time with respect to λ. It should be noted
that the map e is symmetric if G1 = G2. If G1 �= G2, the map e is asymmetric.

3.2 Non-monotone Access Structure

Definition 1 (Access Structure) [10]. Let {P1, ..., Pn} be a set of parties. A
collection A ⊂ 2{P1,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊂ C, then
C ∈ A. A monotone access structure is a monotone collection A of non-empty

412 J. Kim et al.

subsets of {P1, ..., Pn}, i.e., A ⊂ 2{P1,...,Pn} \ {}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

Definition 2 (Linear Secret-Sharing Schemes (LSSS)) [10]. A secret sharing
scheme Π over a set of parties P is called linear (over Zp) if (1) The shares
for each party form a vector over Zp. (2) There exists a matrix A called the
share-generating matrix for Π. The matrix A has m rows and � columns. For
all i = 1, ...,m, the ith row of A is labeled by a party ρ(x) (ρ is a function from
{1, ...,m} to P). When we consider the column vector v = (s, r2, ..., r�), where
s ∈ Zp is the secret to be shared and r2, ..., r� ∈ Zp are randomly chosen, then Av
is the vector of m shares of the secret s according to Π. The share (Av)i belongs
to party ρ(x).

Moving from Monotone to Non-monotone Access Structures. For a
non-monotone access structure, we adopt a technique from Ostrovsky, Sahai and
Waters [24]. They assume a family of linear secret sharing schemes {ΠA}A∈A for
a set of monotone access structures A ∈ A. For each access structure A ∈ A, the
set of parties P underlying the access structures has the following properties:
The names of the parties may be of two types: either it is normal (like x) or
primed (like x′), and if x ∈ P then x′ ∈ P and vice versa. They conceptually
associate primed parties as representing the negation of normal parties.

We let P̃ denote the set of all normal parties in P. For every set S̃ ⊂ P̃,
N(S̃) ⊂ P is defined by N(S̃) = S̃ ∪ {x′|x ∈ P̃ \ S̃}. For each access structure
A ∈ A over a set of parties P, a non-monotone access structure NM(A) over
the set of parties P̃ is defined by specifying that S̃ is authorized in NM(A) iff
N(S̃) is authorized in A. Therefore, the non-monotone access structure NM(A)
will have only normal parties in its access sets. For each access set X ∈ NM(A),
there will be a set in A that has the elements in X and primed elements for each
party not in X. Finally, a family of non-monotone access structures Ã is defined
by the set of these NM(A) access structures.

3.3 Computational Assumptions

Our compiler needs three simple static assumptions which are also used in [14,
17]. For the following assumptions, we define G = (p,G1, G2, GT , e) R←− G and
let f1 ∈ G1 and f2 ∈ G2 be selected randomly.

Assumption 1 (LW1). Let a, c, d ∈ Zp be selected randomly. Given

D := {f1, f
a
1 , fac2

1 , fc
1 , fc2

1 , fc3

1 , fd
1 , fad

1 , fcd
1 , fc2d

1 , fc3d
1 ∈ G1, f2, f

c
2 ∈ G2},

it is hard to distinguish between T0 = fac2d
1 and T1

R←− G1.

Assumption 2 (LW2). Let d, t, w ∈ Zp be selected randomly. Given

D := {f1, f
d
1 , fd2

1 , f tw
1 , fdtw

1 , fd2t
1 ∈ G1, f2, f

c
2 , fd

2 , fw
2 ∈ G2},

it is hard to distinguish between T0 = fcw
2 and T1

R←− G2.

A New Encoding Framework for Predicate Encryption 413

Assumption 3 (Decisional Bilinear Diffie-Hellman (DBDH) Assumption). Let
a, c, d ∈ Zp be selected randomly. Given

D := {f1, f
a
1 , fc

1 , fd
1 ∈ G1, f2, f

a
2 , fc

2 , fd
2 ∈ G2},

it is hard to distinguish between T0 = e(f1, f2)acd and T1
R←− GT .

3.4 Predicate Encryption

We adopt the definition of PE and its adaptive security of [3].

Definition of Predicate Encryption [3]. A PE for a predicate Rκ : X ×Y →
{0, 1} consists of Setup, Encrypt, KeyGen and Decrypt as follows:

• Setup(1λ, κ) → (PK,MSK): The algorithm takes in a security parameter 1λ

and an index κ which is allocated uniquely for the function Rκ. It outputs a
public parameter PK and a master secret key MSK.

• Encrypt(x,M,PK) → CT : The algorithm takes in an attribute x ∈ X , a
public parameter PK and a plaintext M . It outputs a ciphertext CT .

• KeyGen(y,MSK,PK) → SK: The algorithm takes in an attribute y ∈ Y,
MSK and PK. It outputs a private key SK.

• Decrypt(PK,SK,CT) → M : the algorithm takes in SK for y and CT for x.
If Rκ(x, y) = 1, it outputs a message M ∈ M. Otherwise, it aborts.

Correctness. For all (x, y) ∈ X ×Y such that Rκ(x, y) = 1, if SK is the output of
KeyGen(y,MSK,PK) and CT is the output of Encrypt(x,M,PK) where PK
and MSK are the outputs of Setup(1λ, κ), Decrypt(SK,CT) outputs M for all
M ∈ M.

Definition of Adaptive Security of Predicate Encryption [3]. A predicate
encryption scheme for a predicate function Rκ is adaptively secure if there is no
PPT adversary A which has a non-negligible advantage in the game between A
and the challenge C defined below.

• Setup: C runs Setup(1λ, κ) to create (PK, MSK). PK is sent to A.
• Phase 1: A requests a private key for yi ∈ Y and i ∈ [q1]. For each yi, C

returns SKi created by running KeyGen(yi,MSK,PK).
• Challenge: When A requests the challenge ciphertext of x ∈ X , for

Rκ(x, yi) = 0; ∀i ∈ [q1], and submits two messages M0 and M1, C randomly
selects b from {0, 1} and returns the challenge ciphertext CT created by run-
ning Encrypt(x,Mb, PK).

• Phase 2: This is identical with Phase 1 except for the additional restriction
that yi ∈ Y for i = q1 + 1, ..., qt such that Rκ(x, yi) = 0; ∀i ∈ {q1 + 1, ..., qt}.

• Guess: A outputs b′ ∈ {0, 1}. If b = b′, then A wins.

We define the advantage of an adversary A as AdvPE
A (λ) := |Pr[b = b′] − 1/2|.

414 J. Kim et al.

4 Our Encoding Framework

We introduce our new encoding framework. We largely take a notion of pair
encoding framework to describe our encoding. However, our encoding framework
can capture the predicate family that has non-linear common variables.

4.1 Syntax

Our encoding scheme for a predicate function Rκ in prime order p consists of
four deterministic algorithms Param, Enc1, Enc2 and Pair.

• Param(κ) → (b := (b1, b2, ..., bω);ω1, ω2, ω): It takes as input a predicate
family κ and outputs integers ω1, ω2, ω ∈ p and a sequence of monomials
{bi}i∈[ω] ∈ Zp with the sequence of variables of {b0, hj ;hj ∈ h} and functions
fi where b0 ∈ Zp, h ∈ Z

ω2
p and fi(w) is a monomial consisting of the elements

of w ∈ Z
ω1
p . That is, for all i ∈ [ω], bi = b0fi(w) or fi(w)hj . b shared by the

following two algorithms Enc1 and Enc2. We let w = (w1, ..., wω1) denote the
SCVs and h = (h1, ..., hω2) denote the HCVs.

• Enc1(x ∈ X) → (k := (k1, k2, ..., km1);m2): It takes as inputs x ∈ X and
outputs a sequence of polynomials {ki}i∈[m1] with coefficients in Zp, and
m2 ∈ Zp where m2 is the number of random variables. Every polynomial ki

is a linear combination of monomials of the form α, rib0, αbj , ribj in variables
α, r1, ..., rm2 and b0, b1, ..., bω. In more detail, for i ∈ [m1],

ki := δiα +
∑

j∈[m2]
δi,jrjb0 +

∑
j∈[m2],k∈[ω]

δi,j,krjbk

where δi, δi,j , δi,j,k ∈ Zp are constants which define ki.
• Enc2(y ∈ Y) → (c := (c1, c2, ..., cm̃1); m̃2): It takes as inputs y ∈ Y and

outputs a sequence of polynomials {ci}i∈[m̃1] with coefficients in Zp, and m̃2 ∈
Zp where m̃2 is the number of random variables. Every polynomial ci is a
linear combination of monomials of the form sb0, sib0, sbj , sibj in variables
s, s1, ..., sm̃2 and b0, b1, ..., bω. In more detail, for i ∈ [m̃1],

ci := φis b0 +
∑

j∈[m̃2]
φi,jsjb0 +

∑
j∈[m̃2],k∈[ω]

φi,j,ksjbk

where φi, φi,j , φi,j,k ∈ Zp are constants which define ci.
• Pair(x, y) → E: It takes inputs x ∈ X and y ∈ Y. It outputs E ∈ Z

m1×m̃1
p .

Correctness: The correctness holds symbolically when b0 = 1. if Rκ(x, y) = 1,
for every (x, y) ∈ X × Y such that Rκ(x, y) = 1, there exists E ∈ Z

m1×m̃1
p

satisfying kEc� = αs where kEc� =
∑

i∈[m1],j∈[m̃1]
Ei,jkicj .

A New Encoding Framework for Predicate Encryption 415

4.2 Properties

Our encodings satisfy the following properties.

Property 1 (Linearity in hidden common variables). Suppose w, r, s and
s are fixed, our encodings are linear in α and h for all (α, b0,h) ∈ Zp ×Zp ×Z

ω2
p .

That is, for all α, α′, b0, b′
0 ∈ Zp,h,h′ ∈ Z

ω2
p , the followings hold:

k(α, x, b(w, b0, h); r) + k(α′, x, b(w, b′
0, h

′); r) = k(α + α′, x, b(w, b0 + b′
0, h + h′); r)

c(y, b(w, b0,h); s, s) + c(y, b(w, b′
0,h

′); s, s) = c(y, b(w, b0 + b′
0,h + h′); s, s)

Property 2 (Linearity in random variables). Suppose w and h are fixed,
our encodings are linear in α, s, r and s for all (α, s, r, s) ∈ Zp×Zp×Z

m2
p ×Z

m̃2
p .

That is, for all α, α′, s, s′ ∈ Zp, r, r′ ∈ Z
m̃2
p and s, s′ ∈ Z

m̃2
p , the followings hold:

k(α, x, b(w, b0,h); r) + k(α′, x, b(w, b0,h); r′) = k(α + α′, x, b(w, b0,h); r + r′)

c(y, b(w, b0,h); s) + c(y, b(w, b0,h); s′) = c(y, b(w, b0,h); s + s′)

where w, b0,h ∈ Z
ω1
p × Zp × Z

ω2
p .

Property 3 (Parameter Vanishing). For all α, b0, b
′
0 ∈ Zp,w,w′ ∈

Z
ω1
p ,h,h′ ∈ Z

ω2
p , there exists 0 ∈ Z

2k+1
p which makes the distributions of

k(α, x, b(w, b0,h);0) and k(α, x, b(w′, b′
0,h

′);0) are statistically identical.

Property 4 (α hiding). We let g1
R←− G1, g2

R←− G2, α, s
R←− Zp, w

R←− Z
ω1
p ,

h
R←− Z

ω2
p , r

R←− Z
w2
p and s

R←− Z
m2
p . For all (x, y) ∈ X ×Y such that Rκ(x, y) = 0,

the following two distributions are indistinguishable:

{g
b(w ,1,1)
1 , g

b(w ,1,1)
2 , g

c(y,(b(w ,1,h);s,s)
1 , g

k(α,x,b(w ,1,h);r)
2 }

≈ {gb(w ,1,1)
1 , g

b(w ,1,1)
2 , g

c(y,(b(w ,1,h);s,s)
1 , g

k(0,x,b(w ,1,h);r)
2 }.

4.3 The Compiler

For a predicate family Rκ : X × Y → {0, 1} and its encoding E(Rκ, p), A PE
scheme PE(E(Rκ, p)) consists of four algorithms Setup, KeyGen, Encrypt
and Decrypt.

• Setup(1λ, κ) → 〈PK,MSK〉. The setup algorithm randomly chooses bilinear
groups G = (p, G1, G2, GT , e) of prime order p > 2λ. It takes group genera-
tors g1

R←− G1, g2
R←− G2 from G. It executes (b, ω1, ω2, ω) ← Param and sets

b0 = 1. It randomly selects α, a, yu, yv, yf ∈ Zp, w ∈ Z
ω1
p and h ∈ Z

ω2
p . It sets

τ = yv + a · yu. It publishes public parameters (PK) as

{e(g1, g2)α, g1, g
a
1 , gτ

1 , g
b(w ,1,h)
1 , g

a·b(w ,1,h)
1 , g

τ ·b(w ,1,h)
1 }.

It sets MSK as {α, g2, g
b(w ,1,h)
2 , f2 = g

yf

2 , u2 = fyu

2 , v2 = fyv

2 }.

416 J. Kim et al.

• KeyGen(x,MSK) → SK. The algorithm takes as inputs x ∈ X and MSK.
To generate SK, it runs (k;m2) ← Enc1 and randomly selects r ∈ Z

m2
p and

z ∈ Z
|k|
p . It parses α from MSK and outputs SK := (D1,D2,D3) where

D1 = g
k(α,x,b(w ,1,h);r)
2 vz

2 , D2 = uz
2 , D3 = f−z

2 .
• Encrypt(M,y, PK)→ CT. The algorithm takes as inputs y ∈ Y, a

message M and PK. It runs (c; m̃2) ← Enc2 and randomly selects
s ∈ Zp and s ∈ Z

m̃2+1
p . The algorithm sets C0 = M · e(g1, g2)αs

and outputs CT := (C0,C1,C2,C3) where C1 = g
c(y,b(w ,1,h);s,s)
1 ,C2 =

(ga
1)c(y,b(w ,1,h);s,s),C3 = (gτ

1)c(y,b(w ,1,h);s,s).
• Decrypt(x, y, SK,CT)→ M. It takes as inputs SK for x ∈ X and CT for

y ∈ Y. It runs E ← Pair(x, y) and computes

A1 = e(CE �
1 ,D1), A2 = e(CE �

2 , D2), A3 = e(CE �
3 ,D3).

Suppose Rκ(x, y) = 1, A1 · A2 · A3 = e(g1, g2)αs. It outputs M =
C0/e(g1, g2)αs.

Correctness. For (x, y) ∈ X × Y such that Rκ(x, y) = 1, E is a reconstruction
matrix such that cE�k� = αs when b0 = 1. Hence, we can compute followings:

A1 = e(CE �
1 ,D1) = e(g1, g2)cE �k�

e(g1, v2)cE �z�
= e(g1, g2)αse(g1, v2)cE �z�

A2 = e(CE �
2 ,D2) = e(g1, u2)a·cE �z�

, A3 = e(CE �
3 ,D3) = e(g1, f2)−τ ·cE �z�

It should be noted that τ = yv +ayu where yv and yu are discrete logarithms
of v2 and u2 to the base f2, respectively. Therefore, A1 · A2 · A3 = e(g1, g2)αs.

Theorem 1. Suppose the assumptions LW1, LW2 and DBDH hold in G, for all
encoding E(Rκ, p) with a predicate family Rκ and a prime p, PE(E(Rκ, p)) is
adaptively secure. Precisely, for any PPT adversary A, there exist PPT algo-
rithms B1, B2, B3 and B4, whose running times are the same as A such that,
for any λ,

Adv
FE(P)
A (λ) ≤ wt·AdvLW1

B1
(λ)+2·mt·AdvLW2

B2
(λ)+AdvDBDH

B3
(λ)+q·Advα-hd

B4
(λ)

where (1) q is the number of key queries in phases I/II, (2) mt is the total number
of random variables used to simulate all private keys, (3) wt is the number of
random variables used in the challenge ciphertext and (4) Advα-hd

B4
(λ) is the

advantage of B4 to breaking α hiding.

5 Security Analysis

We define the semi-functional (SF) algorithms for the security analysis. We let
the simulator randomly select h′ ∈ Z

ω2
p .

SFKeyGen(x,MSK,h′, j, α′) → SK. The algorithm takes as inputs the master
secret key MSK, x ∈ X and j ∈ {0, ...,m2}. Then, the algorithm selects α′ R←−

A New Encoding Framework for Predicate Encryption 417

Zp and r̃j
R←− Z

m2
p of which the first j elements are random variables and the

others are 0. It also creates a normal key (D1, D2, D3) using KeyGen. It
outputs SK := 〈D′

1,D
′
2,D

′
3〉 where D′

1 = D1 · f
−ak(α′,x,b(w ,1,h′);r̃j)
2 ,D′

2 =
D2 · f

−τk(α′,x,b(w ,1,h′);r̃j)
2 ,D′

3 = D3. We define the type of SK as follows:

The type of SK :

⎧
⎨

⎩

Nominally semi-functional (NSF) if α′ = 0
Temporary semi-functional (TSF) if α′ �= 0 and j �= 0
Semi-functional (SF) if α′ �= 0 and j = 0

In SF keys, r̃0 equals to the zero vector 0 by the definition. Due to the parameter
vanishing property, we can rewrite SF keys (SF-SK) as follows:

D′
1 = D1 · f

−ak(α′,x,b(w ,0,0);0)
2 ,D′

2 = D2 · f
−τk(α′,x,b(w ,0,0);0)
2 .

SFEncrypt(M,y, PK,h′, j)→ CT. The algorithm takes as inputs a message
M , the public key PK and a description y ∈ Y and j ∈ [m̃2 +1]. It sets f1 = g

yf

1

and u1 = fyu

1 . It generates a normal ciphertext (C0,C1,C2,C3). If j = 1, it
selects s̃

R←− Zp. The algorithm sets C ′
0 = C0 and outputs CT following:

C ′
1 = C1, C ′

2 = C2 · f
c(y,b(w ,1,h′);s̃,0)
1 , C ′

3 = C3 · u1
c(y,b(w ,1,h′);s̃,0).

If j > 1, it selects a random value s̃
R←− Zp and a random vector s̃j−1

R←− Z
m̃2
p

where the first j − 1 elements are random variables and the others are 0. The
algorithm then sets C ′

0 = C0 and outputs CT := 〈C ′
0,C

′
1,C

′
2,C

′
3〉 where

C ′
1 = C1, C ′

2 = C2 · f
c(y,b(w ,1,h′);s̃,s̃j−1)
1 , C ′

3 = C3 · u1
c(y,b(w ,1,h′);s̃,s̃j−1).

In particular, we call CT a semi-functional (SF) ciphertext if j = m̃2 + 1.
We summarize the security games that we use for the security proof in

Table 3. In the proof, we will show that all games in Table 3 are indistinguishable.
The most critical proof among them is the invariance between games GN

k,j−1 and
GN

k,j where j ∈ [m2]. This shows how we feature the jth random variable in the
normal space to the semi-functional space. We provide this proof in Lemma2.
We will show the other proofs (of Lemmas 1, 3, 4 and 5) in the full version of
this paper.

Lemma 1. Suppose there exists a PPT A who can distinguish G0,i and G0,i+1

with non-negligible advantage ε. Then, we can build an algorithm B which breaks
LW1 with the advantage ε using A.

Lemma 2. Suppose there exists a PPT A who can distinguish GN
k,j−1 and GN

k,j

for j ∈ [m2] with non-negligible advantage ε where m2 is the size of random
variables that the kth key uses. Then, we can build an algorithm B which breaks
LW2 with the advantage ε using A.

418 J. Kim et al.

Table 3. Games for security analysis

GReal : This is a real game that all keys and ciphertexts are normal. (= G0,0)
G0,j : CT SFEncrypt(M, y, PK,h′, j) for j = 1, ..., m̃2 + 1
G0 : (= G0,m̃2+1 = GN

1,0 by the definitions)

GN
k,j : (k ≥ 1) α′

i
R

Zp, h′ R
Z

ω2
p

SKi

⎧⎨
⎩

SFKeyGen(x, MSK,0, 0, α′
i) if i < k (type = SF)

SFKeyGen(x, MSK,h′, j, 0) if i = k (type = NSF)
KeyGen(x, MSK) if i > k (type = Normal)

GT
k,m2−j : (k ≥ 1) α′

i
R

Zp, h′ R
Z

ω2
p

SKi

⎧⎪⎨
⎪⎩

SFKeyGen(x, MSK,0, 0, α′
i) if i < k (type = SF)

SFKeyGen(x, MSK,h′, m2 − j, α′
i) if i = k (type = TSF)

KeyGen(x, MSK) if i > k (type = Normal)
Gk : (k ≥ 1) (= GT

k,0 = GN
k+1,0 by the definitions)

α′
i

R
Zp, SKi

{
SFKeyGen(x, MSK,h′, 0, α′

i) if i <= k (type = SF)
KeyGen(x, MSK) if i > k (type = Normal)

GFinal : M ′ R M, CT SFEncrypt(M, y, PK,h′, j)

Proof: Using the given instance {f1, f
d
1 , fd2

1 , f tw
1 , fdtw

1 , fd2t
1 ∈ G1, f2,

fc
2 , fd

2 , fw
2 , T ∈ G2}, B will simulate either GameN

k,j−1 or GameN
k,j using A to

break LW2.
Setup: B randomly chooses α ∈ Zp, a, y′

v ∈ Zp,w ∈ Z
ω1
p ,h′,h′′ ∈ Z

ω2
p . It implic-

itly sets yv = d − aw + y′
v, yu = w, b = 1/d and τ = d − aw + y′

v + aw = d + y′
v.

It sets a public key PK and MSK as follows:

PK =: {e(g1, g2)α = e(fd
1 , fd

2)α, g1 = fd
1 ,

g
b(w ,1,h)
1 = (fd

1)b(w ,1,h′)f
b(w ,0,h′′)
1 , ga

1 , g
a·b(w ,1,h)
1 , gτ

1 = fd2

1 (fd
1)y′

v ,

g
τ ·b(w ,1,h)
1 = (fd2

1)b(w ,1,h′)(fd
1)b(w ,0,h′′)(fd

1)y′
vb(w ,1,h′)(f1)y′

vb(w ,0,h′′)}.

MSK := {g2 = fd
2 , gα

2 = (fd
2)α, g

b(w ,1,h)
2 = (fd

2)b(w ,1,h′)f
b(w ,0,h′′)
2 ,

v2 = fd
2 (fw

2)−af
y′
v

2 , u2 = fw
2 , f2}.

Phase I and II: The algorithm knows all MSK. Therefore, it can create the normal
keys for (> k). For the first k−1 key (< k), B first generates a normal key. Then,
it randomly selects α′ from Zp and creates an SF key. This is possible since B
knows a, α′, x and f2.

For the kth key, it randomly selects z′ from Z
|k|
p and sets z = z′ + c ·

k(0, x, b(w, 1,h′);1j) where 1j is a vector of which only the jth coordinate is 1
and all other coordinates are 0. Then, it randomly chooses r′′ from Rr and sets
r = r′′ − c · 1j . z and r are randomly distributed because of z′ and r′′. It also
generates r′

1, ..., r
′
j−1 from Zp and sets r′

j−1 = (r′
1, ..., r

′
j−1, 0, 0, 0) ∈ Rr.

A New Encoding Framework for Predicate Encryption 419

K0 =(fd
2)k(α,x,b(w ,1,h′);r ′′)f

k(0,x,b(w ,0,h′′);r ′′)
2 (fc

2)−k(0,x,b(w ,0,h′′);1j)

· (fd
2 (fw

2)−af
y′
v

2)z ′
T−ak(0,x,b(w ,1,h′);1j)(fc

2)y′
vk(0,x,b(w ,1,h′);·1j)

· f
−ak(0,x,b(w ,1,h′);r ′

j−1)

2 ,

K1 =(fw
2)z ′

T k(0,x,b(w ,1,h′);1j)f
k(0,x,b(w ,1,h′);r ′

j−1)

2 ,

K2 =f−z ′
2 (fc

2)−k(0,x,b(w ,1,h′),1j)

If T = fcw
2 , then this key is a properly distributed nominally semi-function

(NSF) key created using SFKeyGen(x,MSK,h′, j − 1, 0) because

K0 = f
d·k(α′,x,b(w ,1,h′);r ′′)
2 f

d·k(0,x,b(w ,1,h′);−c·1j)
2 f

k(0,x,b(w ,0,h′′);r ′′)
2

· f
k(0,x,b(w ,0,h′′);−c·1j)
2 f

(d−wa+y′
v)(z

′)
2 f

d·k(0,x,b(w ,1,h′);c·1j)
2

· f
−wa·k(0,x,b(w ,1,h′);c·1j)
2 f

y′
v·k(0,x,b(w ,1,h′);c·1j)

2 f
−a·k(0,x,b(w ,1,h′);r ′

j−1)

2 (1)

= f
dk(α′,x,b(w ,1,h′);r)
2 f

k(0,x,b(w ,0,h′′);r)
2 f

(d−wa+y′
v)(z

′+k(0,x,b(w ,1,h′);c·1j))
2

· f
−ak(0,x,b(w ,1,h′);r ′

j−1)

2 (2)

= f
k(dα′,x,b(w ,d,dh′+h′′);r)
2 f

(d−wa+y′
v)(z

′+k(0,x,b(w ,1,h′);c·1j))
2

· f
−ak(0,x,b(w ,1,h′);r ′

j−1)

2 (3)

= g
k(α′,x,b(w ,1,h);r)
2 vz

2 f
−ak(0,x,b(w ,1,h′);r ′

j−1)

2

K1 = (fw
2)z ′

(fcw
2)k(0,x,b(w ,1,h′);1j)f

k(0,x,b(w ,1,h′);r ′
j−1)

2 = uz
2f

k(0,x,b(w ,1,h′);r ′
j−1)

2

This implicitly sets r = r′′ − c · 1j and z = z′ + k(0, x, b(w, 1,h′); c · 1j). The
equality (1) in above equation holds by the linearity in random values. The
equality (2) holds because of the definition of r (= r′′ − c · 1j) and linearity
in random values. The equality (3) holds due to linearity in hidden common
variables.

Otherwise, if T is a random and we let fcw+γ
2 denote T , this is also a properly

distributed (NSF) key but it was created using SFKeyGen(x,MSK,h′, j, 0)
since this implicitly sets r′

j = r′
j−1+γ ·1j . It is worth noting that r′

j is uniformly
random because γ is randomly distributed.

Challenge: When the adversary requests the challenge ciphertext with two mes-
sages M0 and M1, B randomly selects β from {0, 1}. Then, it randomly selects
s′′, s̃ ∈ Zp and s′′, s̃ ∈ Rs. Then, it implicitly sets s = wts̃ + s′′, s′ = −d2ts̃,
s′ = wts̃ + s′′ and s′ = −d2ts̃. Because of s′′, s̃, s′′ and s̃, they are randomly
distributed. B sets C = Mβ · e(fdwt

1 , fd
2)αs̃e(fd

1 , fd
2)αs′′

and the others as

420 J. Kim et al.

C0 = (fdwt
1)c(y,b(w ,1,h′);s̃,s̃)(fd

1)c(y,b(w ,1,h′);s′′,s′′)(fwt
1)c(y,b(w ,0,h′′);s̃,s̃)

· f
c(y,b(w ,0,h′′);s′′,s′′)
1

= g
c(y,b(w ,1,h);s,s)
1

C1 = (C0)a(fd2t
1)−c(y,b(w ,1,h′);s̃,s̃) = g

ac(y,b(w ,1,h);s,s)
1 f

c(y,b(w ,1,h′);s′,s′)
1

C2 = (fd2

1)c(y,b(w ,1,h′);s′′,s′′)(fdwt
1)c(y,b(w ,y′

v,h′′+y′
vh′);s̃,s̃)

· (fd
1)c(y,b(w ,y′

v,h′′+y′
vh′);s′′,s′′)(fwt

1)c(y,b(w ,0,y′
vh′′);s̃,s̃)f

c(y,b(w ,0,y′
vh′′);s′′,s′′)

1

= g
τ ·c(y,b(w ,1,h);s,s)
1 u

c(y,b(w ,1,h′);s′,s′)
1 .

Therefore, the challenge ciphertext is properly distributed. The equalities
in the above equations hold by both linearity in hidden common variables and
linearity in random values. In particular, the last equalities in C0, C1 and C2

hold because of s′ = −d2ts̃, s′ = −d2ts̃ and the definitions of public parameters.
s̃ and s̃ are randomly distributed to the adversary although they also appear in
s = wts̃ + s′′, s = wts̃ + s′′ since their values are not revealed due to s′′ and s′′,
which are uniquely allocated random values. �
Lemma 3. Suppose there exists an A who can distinguish GN

k,m2
and GT

k,m2

with non-negligible advantage ε for any k < q. Then, we can build an algorithm
B who can break the α hiding property with ε using A.

Lemma 4. Suppose there exists a PPT A who can distinguish GT
k,j−1 and GT

k,j

for j ∈ [m2] with non-negligible advantage ε where m2 is the size of random
variables that the kth key uses. Then, we can build an algorithm B which breaks
LW2 with the advantage ε using A.

Lemma 5. Suppose there exists a PPT A who can distinguish Gqt and GFinal

with non-negligible advantage ε. Then, we can build an algorithm B which breaks
DBDH with the advantage ε using A.

6 Adaptively Secure NM-CP-ABE with Short Keys

We introduce an NM-CP-ABE with short keys. The part of the security proof,
co-selective security, is inspired by the selective NM-KP-ABE scheme of [6].

Assumptions for NM-CP-ABE with Short Keys. We define two computa-
tional assumptions in an asymmetric pairing. We take (n-A2) from [26] and use
n-DBDHE. We modify them to prove α hiding using the technique that Lewko
and Waters introduced in [19]. We provide the security of our assumptions in
the generic group model in the full version of this paper.

Assumption 4 (n-A2). If a group generator G and a positive integer n are
given, we define the following distribution

G = (p,G1, G2, GT , e) R←− G, c, d, a, b1, ..., bn
R←− Zp,

A New Encoding Framework for Predicate Encryption 421

g1
R←− G1, g2

R←− G2, D := {g1, g2, g
c
1, g

c
2} ∪ {gz1

1 , gz2
2 |z1 ∈ Z1, z2 ∈ Z2}

Z1 = { ∀(i, j) ∈ [n, n], dc, a, bj , dcbj , dcbibj , a
i/b2j

∀(i, j, j′) ∈ [2n, n, n], j �= j′, aibj/b2j′

∀(i, j, j′) ∈ [n, n, n], j �= j′, dcaibj/bj′ , dcaibj/b2j′

∀(i, j, j′, j′′) ∈ [n, n, n, n], j �= j′, j′ �= j′′}, dcaibjbj′/b2j′′ },

Z2 = { ∀(i, j) ∈ [n, n], dc, ai, aibj , a
i/b2j

∀(i, j) ∈ [2n, n], i �= n + 1, ai/bj

∀(i, j, j′) ∈ [2n, n, n], j �= j′, aibj/b2j′ }.

Given the instances, distinguishing between T0 = gdan+1

2 and T1
R←− G2 is hard.

Assumption 5 (n−DBDHE). If a group generator G and a positive integer n
are given, we define the following distribution

G = (p,G1, G2, GT , e) R←− G, b, c, d,
R←− Zp,

g1
R←− G1, g2

R←− G2, D := {g1, g2, g
c
1, g

c
2} ∪ {gz1

1 , gz2
2 |z1 ∈ Z1, z2 ∈ Z2}

where Z1 = Z2 := {dc, bi| ∀i ∈ [2n], i �= n + 1}.

Given D, it is hard to distinguish between T0 = gdbn+1

2 and T1
R←− G2.

We define the advantage of an algorithm A to break n-A2 or n-DBDHE as

Adv
{A2, DBDHE}
G,A,n (λ) = |Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]|

Encoding Scheme for NM-CP-ABE with Short Keys. Our encoding
scheme for NM-CP-ABE with short keys consists of the following encoding algo-
rithms:

• Param(κ): It sets ω1 = 1, ω2 = 2N + 3 and ω = 3N + 4. It selects α
R←− Zp,

w = η
R←− Zp, h = (δ, ν, ζ, y1, ..., yN , y′

1, ..., y
′
N) R←− Z

2N+3
p . It sets b(w, 1,h) =

(δ, ν, ζ, η, y1, ..., yN , y′
1, ..., y′

N , η · y′
1, ..., η · y′

N).
• Enc1(S): The algorithm selects r0, r1, r2

R←− Zp and sets r = (r0, r1, r2). It
sets d1 = α+δr2 +νr0, d2 = −r0, d3 = r2. For all wi ∈ S = {w1, ..., wk} such
that S is not an empty set and k ≤ N . It sets

d4 = −ζr2 + (y1a1 + ... + yNaN)r1, d5 = r1,

d′
6 = η(y′

1a1 + ... + y′
NaN)r2, d′

7 = ηr2

where ai is an coefficient of zi−1 in P (z) =
∏

w∈S(z − w) for i ∈ [k + 1]. It
defines k(α, S, b(w, 1,h); r) := (d1, d2, d3, d4, d5, d′

6, d
′
7).

• Enc2(Ã): For the non-monotone access structure Ã, there exists a mono-
tone access structure Ã = NM(A) where A = (A, ρ) and A is an � × m

access matrix. The algorithm randomly selects s, s2, ..., sm, t1, ..., t�
R←− Zp

and sets s = (s2, ..., sm, t1, ..., t�) and λi = Ai · φ where Ai is the ith row

422 J. Kim et al.

of A and φ = (s, s2, ..., sm). It sets c1 = s, c2 = νs. For all i ∈ [�], it sets
c(Ã, b(w, 1,h); s, s) := (c1, c2, ci,1, ci,2, ..., ci,N+2; ∀i ∈ [�]) as follows:

ci,1 = δλi + ζti, ci,2 = ti,

ci,3 = −(y2 − y1ρ(i))ti, ..., ci,N+1 = −(yN − y1ρ(i)N−1)ti if ρ(i) = xi;

ci,1 = δλi − ηy′
1ti, ci,2 = ti,

ci,3 = −(y′
2 − y′

1ρ(i))ti, ..., ci,N+1 = −(y′
N − y′

1ρ(i)N−1)ti if ρ(i) = x′
i;

where the attribute corresponding to the ith row of A by the mapping ρ is
denoted by xi (or x′

i, if it is a negated attribute).
• Pair(S, Ã): If S satisfies Ã, there exists S′ = N(S) which satisfies an access

structure A = (A, ρ) such that Ã = NM(A). We define I = {i|ρ(i) ∈ S′}.
It computes μ = (μ1, ..., μ|I|) such that μ · AI = (1, 0, ..., 0). We set γ the
index such that wγ = xi. To compute the share of i ∈ I, for Λi∈I ∀i ∈ I, it
computes a0, ..., aN which are the coefficient of zi in P (z). Then, it sets

Λi = ci,1 · d3 + ci,2 · d4 + Σj∈[N]\{1}aj · ci,1+j · d5 = λiδr2 if ρ(i) = xi;

Λi = ci,1 · d3 +
ci,2 · d′

6 + Σj∈[N]\{1}aj · ci,1+j · d′
7

Σj∈[N]aj · ρ(i)j
= λiδr2 if ρ(i) = x′

i.

Finally, the algorithm computes c1 · d1 + c2 · d2 − ∏
i∈[I] μiΛi = αs.

We computationally prove the α hiding of our scheme by Lemma 6.

Lemma 6. Suppose there exists a PPT adversary A who can break α hiding
with non-negligible advantage ε. Then, we can build an algorithm B breaking
n1−DBDHE or n2−A2 with ε using A with an attributes set of size k < n1, n2.

Proof: We provide this proof in the full version of this paper. �

6.1 Duality

We introduce NM-KP-ABE with short ciphertexts as a dual scheme of our NM-
CP-ABE with short keys using the conversion technique in [9]. The following
encoding scheme constructs NM-KP-ABE with short ciphertexts:

• Param(κ): It runs Param of NM-CP-ABE to get b(w, 1,h) and outputs
b′(w′, 1,h′) := (π, b′(w, 1,h)) where π

R←− Zp. This sets w′ = w and
h′ = (π,h).

• Enc1(Ã): It runs Enc2(Ã) of NM-CP-ABE to get c(Ã, b(w, 1,h); s, s) and sets
d′
1 = α + πs and k′(α, Ã, b(w′, 1,h′); r′) := (d′

1, c(Ã, b(w, 1,h); s, s)). It is
worth noting that s can be parsed from c. It implicitly sets r′ = (s, s).

• Enc2(S): It creates s′ R←− Zp and runs Enc1(S) of NM-CP-ABE to get k(πs′, Ã,

b(w, 1,h); r). It sets c′
1 = s′ and c′(S, b(w′, 1,h′); s′, s′) := (c′

1,k(πs′, Ã,
b(w, 1,h); r)). It implicitly sets s′ = r.

• Pair(S, Ã): Pair(S, Ã) of NM-CP-ABE outputs E such that kEc� = πss′.
The algorithm computes d′

1 · c′
1 = αs′ +πss′. Finally, the algorithm computes

αs′ = d′
1 · c′

1 − kEc�.

A New Encoding Framework for Predicate Encryption 423

A Appendix

A.1 Syntax of Pair Encoding Framework

We briefly introduce Attrapadung’s pair encoding framework [3]. In pair encod-
ing, instances for a predicate Rκ : X × Y → {0, 1} consist of four deterministic
algorithms which are Param, Enc1, Enc2 and Pair.

• Param(κ) → ω: It takes as input an index κ and outputs the number of
common variables ω of b = (b1, ..., bω). The common variables are shared
with Enc1 and Enc2.

• Enc1(x) → (k := (k1, ..., km1);m2): It takes as x ∈ X and outputs a sequence
of polynomials of {ki}i∈[m1] with coefficient in Zp and m2 which is the number
of variables. Every ki is a linear combination of monomials α, rk, bjrk where
k ∈ [m2] and α, r1, ..., rm2 ∈ Zp are variables.
Enc2(y) → (c := (c1, ..., cw1);w2) It takes as y ∈ Y and outputs a sequence of
polynomials of {ci}i∈[1,w1] with coefficient in Zp and w2 which is the number
of variables. Every ci is a linear combination of monomials s, sk, bjs, bjsk

where k ∈ [w2] and s, s1, ..., sw2 ∈ Zp are variables.
• Pair(x, y) → E takes as inputs x and y and outputs a reconstruction matrix

E such that kEc� = αs.

The instances of the pair encoding framework satisfy multiple properties,
namely linearity in random variables, parameter vanishing and (computational
or perfect) α hiding [3].

References

1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
259–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-
0 10

2. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

3. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

4. Attrapadung, N.: Dual system encryption framework in prime-order groups. IACR
Cryptology ePrint Archive 2015, 390 (2015)

5. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 20

6. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Ràfols,
C.: Attribute-based encryption schemes with constant-size ciphertexts. Theor.
Comput. Sci. 422, 15–38 (2012)

https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20

424 J. Kim et al.

7. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1 16

8. Attrapadung, N., Libert, B.: Functional encryption for inner product: achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 23

9. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg, K.
(ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16715-2 5

10. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D., thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

11. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

12. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

13. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

14. Kim, J., Susilo, W., Guo, F., Au, M.H.: Functional encryption for computational
hiding in prime order groups via pair encodings. Des. Codes Crypt. 86(1), 97–120
(2018)

15. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 20

16. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private
keys. In: IEEE Symposium on Security and Privacy, pp. 273–285. IEEE Computer
Society (2010)

17. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. IACR Cryptology ePrint Arch. 2009, 482
(2009)

18. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

19. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

20. Liu, Z., Wong, D.S.: Practical ciphertext-policy attribute-based encryption: traitor
tracing, revocation, and large universe. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 127–146. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 7

https://doi.org/10.1007/978-3-642-03298-1_16
https://doi.org/10.1007/978-3-642-13013-7_23
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-319-28166-7_7

A New Encoding Framework for Predicate Encryption 425

21. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 13

22. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

23. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

24. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F.
(eds.) ACM CCS, pp. 195–203. ACM (2007)

25. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

26. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and com-
pact constructions for non-monotonic attribute-based encryption. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54631-0 16

https://doi.org/10.1007/978-3-642-10366-7_13
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-54631-0_16

Unbounded Inner-Product Functional
Encryption with Succinct Keys

Edouard Dufour-Sans1,2 and David Pointcheval1,2(B)

1 DIENS, École normale supérieure, CNRS,
PSL University, Paris, France

2 Inria, Paris, France
{edufoursans,david.pointcheval}@ens.fr

Abstract. In 2015, Abdalla et al. introduced Inner-Product Functional
Encryption, where both ciphertexts and decryption keys are vectors of
fixed size n, and keys enable the computation of an inner product between
the two. In practice, however, the size of the data parties are dealing with
may vary over time. Having a public key of size n can also be inconve-
nient when dealing with very large vectors.

We define the Unbounded Inner-Product functionality in the con-
text of Public-Key Functional Encryption, and introduce schemes that
realize it under standard assumptions. In an Unbounded Inner-Product
Functional Encryption scheme, a public key allows anyone to encrypt
unbounded vectors, that are essentially mappings from N

∗ to Zp. The
owner of the master secret key can generate functional decryption keys
for other unbounded vectors. These keys enable one to evaluate the inner
product between the unbounded vector underlying the ciphertext and the
unbounded vector in the functional decryption key, provided certain con-
ditions on the two vectors are met. We build Unbounded Inner-Product
Functional Encryption by introducing pairings, using a technique simi-
lar to that of Boneh-Franklin Identity-Based Encryption. A byproduct of
this is that our scheme can be made Identity-Based “for free”. It is also
the first Public-Key Inner-Product Functional Encryption Scheme with
a constant-size public key (and master secret key), as well constant-size
functional decryption keys: each consisting of just one group element.

Keywords: Unbounded vectors · Functional Encryption ·
Inner product

1 Introduction

Functional Encryption (FE) [8,10,13,17] is a new paradigm for encryption
that does away with the “all-or-nothing” requirement of traditional Public-Key
Encryption. FE allows users to learn specific functions of the encrypted data:
for any function f from a class F , a functional decryption key dkf can be com-
puted such that, given any ciphertext c with underlying plaintext x, using dkf ,
a user can efficiently compute f(x), but does not get any additional information
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 426–441, 2019.
https://doi.org/10.1007/978-3-030-21568-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_21

Unbounded Inner-Product Functional Encryption with Succinct Keys 427

about x. This is the most general form of encryption as it encompasses identity-
based encryption, attribute-based encryption, broadcast encryption.

FE schemes for general functionalities have been introduced [4,5,12–14,16,19]
but have thus far always been based on non-standard assumptions such as indis-
tinguishability obfuscation or multilinear maps.

Inner-Product Functional Encryption. In 2015, Abdalla, Bourse, De Caro, and
Pointcheval [1] (ABDP) suggested it might be worthwhile to instead give FE
schemes for more restricted functionalities, but with reasonable efficiency and
security proofs relying on better understood assumptions. They built FE schemes
for the Inner-Product functionality which they proved selectively secure under
the Decisional Diffie-Hellman and Learning-with-Errors assumptions. There are
now variants with adaptive security [3].

1.1 Motivation

Inner-Product Functional Encryption (IPFE) enables many interesting applica-
tions, such as the computation of aggregate statistics or the evaluation of regres-
sion models, but, unfortunately, it until now required that the data being pro-
cessed have a fixed size. The public and secret keys also scale with this size, which
can prove an inconvenience. We would like to construct schemes in which the
public key is of constant, small size (ideally, a single group element), but where
encrypting large vectors—in fact, arbitrarily large vectors—remains possible.

Let us go back to one of the motivating examples of IPFE: that of a school
encrypting all the grades of each student, by discipline, as part of a single cipher-
text every quarter. An authority can then distribute keys that enable one to
compute a specific student’s average grade (weighted by coefficients or by class
hours), or the average over a class. It can also give keys that reveal the average
grade in Mathematics or in Physics, always without jeopardizing the confiden-
tiality of individual data, beyond what one can learn about the individuals from
their aggregate. Now assume that a new student joins the school from one quar-
ter to another. We would like to avoid the school having to query the authority
for a new, readjusted public key (or for an extension of the current one). Whether
the old keys should still work on the new, larger ciphertexts is to be decided on
a case by case basis, and justifies our introducing multiple definitions: our strict
and permissive notions.

One may wonder why the new keys could not be derived by a hash function
(in the random oracle model, as we will use) in previous IPFE schemes. This
would be for the public key, but with no way to derive the private keys required
to generate the functional decryption keys.

1.2 Our Results

We introduce the first Unbounded Inner-Product Functional Encryption schemes
(UIPFE). Both schemes share the following features:

428 E. Dufour-Sans and D. Pointcheval

1. Unboundedness: They enable the encryption of, and the generation of func-
tional decryption keys for, unbounded vectors;

2. Succinct keys: In both cases the master secret key is a single secret scalar
s ∈ Zp, and the public key is a corresponding group element gs

1 ∈ G1. Fur-
thermore, the functional decryption keys simply consist of a group element
d ∈ G2, in addition to the public vector describing the function evaluated by
the functional decryption key;

3. Identity-Based Access Control: We consider both the computation on
encrypted data aspect and the access control aspect of FE by letting users
specify an identity in their ciphertext. The master authority gives functional
decryption keys that limit evaluations of the unbounded inner product to
ciphertexts of a given identity. This only expands the possible applications
of our schemes, as the naive behavior can always be achieved by using the
constant null identity.

Our main scheme is:

1. Strict: It only allows decryption when the domain of the ciphertext matches
that of the key. In a sense, it may thus be thought of as operating infinitely
many IPFE schemes in parallel.

2. Selectively secure under a standard assumption: We prove the security
of our first scheme under the classical DBDH assumption, in the random oracle
model.

We also introduce a scheme which is:

1. Permissive: It allows decryption when the support of the key (see Sect. 3.3)
is included in the domain of the ciphertext.

2. Selectively secure: We prove the security of our second scheme in the ran-
dom oracle model under �eDBDH, an interactive assumption we introduce. It
resembles the DBDH assumption, except for the fact that the adversary can
query linear combinations that depend on the CDH of the elements of one
group, on condition that they never fully reveal it.

1.3 Concurrent Work

In concurrent and independent work, [18] also showed how to build Unbounded
Inner-Product Functional Encryption from Bilinear Maps. Remarkably, their
constructions do not require random oracles, and they prove full security under
the SXDH assumption. Their constructions, however, are significantly less suited
to practical use, since public keys require 28 group elements, ciphertexts 7 per
coordinate and decryption keys 7 per coordinate (note that our decryption keys
only require one group element regardless of the size of the function). Moreover,
when decrypting, their schemes require a number of pairing evaluations that
scales linearly with the sizes of the vectors, while ours compute a single pairing
per decryption. Their constructions (ct-dominant) are what we call permissive,
with the additional strong restriction that indices in the ciphertext must be

Unbounded Inner-Product Functional Encryption with Succinct Keys 429

contiguous (their E:con notion which requires the indices of the ciphertext to be
consecutive). Moreover, they do not explicitly consider access control, while our
schemes operate in the Identity-Based framework.

1.4 Related Work: Private-Key Multi-input Inner-Product
Functional Encryption for Unboundedly Many Inputs

Goldwasser et al. [11] introduced the notion of Multi-Input Functional Encryp-
tion for cases where we want the functions being evaluated on encrypted data
to take multiple inputs, with each input corresponding to a different ciphertext.
Abdalla et al. gave the first construction of Multi Input Functional Encryption
for Inner Products [2], and Datta, Okamato and Tomida [9] recently showed
how to achieve what they call Unbounded Private-Key Multi-Input Inner-Product
Functional Encryption. While this is an important result, we must stress that
they tackle a problem which significantly differs from ours: they encrypt vectors
of constant size, and the Unbounded adjective applies to the number of inputs:
they can generate keys which enable the evaluation of an inner product on a
number of ciphertexts (inputs) which is not a priori bounded, while in our work
it is the individual ciphertext (input) which has unbounded length. A perhaps
more striking difference is that their scheme is Private-Key, with the encryp-
tion procedure requiring the master secret key, while we tackle the Public-Key
setting.

1.5 Paper Organization

In Sect. 2, we define unbounded vectors, inner products between them and a
pseudo-norm on them. We also recall the setting of pairing groups and the DBDH
assumption. Section 3 defines FE, its security, and the different functionalities we
are interested in. We build the first Strict Identity-Based Unbounded IPFE from
standard assumptions in Sect. 4, and prove it selectively secure in the random
oracle model under the DBDH assumption. Finally, in Sect. 5, we give a construc-
tion for Permissive Identity-Based Unbounded IPFE which we prove selectively
secure in the random oracle model under an interactive variant of DBDH.

2 Notations

2.1 Unbounded Vectors

Both the plaintexts we are encrypting and the functions for which we will be
generating keys will be referred to as unbounded vectors or lists. We write them
as x = (xi)i∈D or y = (yi)i∈D′ , respectively, where both D and D′ are finite
subsets of N∗, and xi, yj ∈ Zp for i ∈ D, j ∈ D′. The vectors x and y are thus
mappings from N

∗ to Zp, and D (resp. D′) is the explicit domain of x (resp.
y). When the context is clear, we will sometimes assimilate the vector space
{(zi)i∈D|zi ∈ Zp} and the isomorphic space Z

n
p where n = |D|, the latter being

more convenient for discussing changes of bases.

430 E. Dufour-Sans and D. Pointcheval

Inner Products. For x = (xi)i∈D and y = (yi)i∈D′ we define the inner product
as:

〈x,y〉 =
∑

i∈D∩D′
xiyi.

This comes from the fact that for indices i �∈ D, implicitly xi = 0.

2.2 (Pseudo)Norm

Our proofs will require that given xb ∈ Z
n
p for b ∈ {0, 1} with x0 �= x1 (with the

same domain) and y ∈ Z
n
p , if we pick a basis (z1, . . . ,zn−1) of (x0 − x1)⊥ and

use ζ to denote the coefficient of (x0 − x1) in the decomposition of y in basis
(x0 − x1,z1, . . . ,zn−1),

〈y,x0〉 = 〈y,x1〉 =⇒ ζ = 0.

This is not true in general. From 〈y,x0〉 = 〈y,x1〉 we can deduce that ζ · 〈x0 −
x1,x0 − x1〉 = 0, but we can only conclude if 〈x0 − x1,x0 − x1〉 �= 0 mod p.
Previous works achieve this by bounding the individual components of x0 and
x1, but this is not sufficient for unbounded vectors since we do not know n a
priori. Instead, for any x = (xi)i∈D we define

||x|| = min
{(x′

i)i∈D∈ZD|x′
i≡xi(mod p) ∀i∈D}

√∑

i∈D
x′2

i

where squaring and summation take place in Z. It is easy to verify that for all
vectors a and b, ||a − b|| ≤ ||a|| + ||b|| and ||a|| = 0 =⇒ a = 0 in Z

n
p . We will

always require that plaintext vectors being encrypted verify ||x|| <
√

p

2 , so that

||x0 − x1||2 ≤ (||x0|| + ||x1||)2 < (
√

p

2
+

√
p

2
)2 ≤ p

and since 〈x0 −x1,x0 −x1〉 = 0 mod p ⇐⇒ ||x0 −x1||2 = 0 mod p that would
imply ||x0 − x1||2 = 0 and thus x0 = x1 in Z

n
p , which would contradict our

assumption.

2.3 Pairing Group

We use a pairing group generator PGGen, a PPT algorithm that on input 1λ

returns a description PG = (G1,G2, p, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are additive cyclic groups of order p for a 2λ-bit prime p, P1

and P2 are generators of G1 and G2, respectively, and e : G1 × G2 → GT is an
efficiently computable (non-degenerate) bilinear map. Define PT := e(P1, P2),
which is a generator of GT .

We always use implicit representation of group elements. For s ∈ {1, 2, T}
and a ∈ Zp, define [a]s = aPs ∈ Gs as the implicit representation of a in Gs.

Unbounded Inner-Product Functional Encryption with Succinct Keys 431

Note that from a random [a]s ∈ Gs it is generally hard to compute the value a
(discrete logarithm problem in Gs). Obviously, given [a]s, [b]s ∈ Gs and a scalar
x ∈ Zp, one can efficiently compute [ax]s ∈ Gs and [a + b]s = [a]s + [b]s ∈ Gs.

More generally, for s ∈ {1, 2, T} and a matrix A = (aij) ∈ Z
n×m
p we define

[A]s as the implicit representation of A in Gs:

[A]s :=

⎛

⎝
a11Ps ... a1mPs

an1Ps ... anmPs

⎞

⎠ ∈ G
n×m
s

Given [a]1, [a]2, one can efficiently compute [ab]T using the pairing e. For two
matrices A, B with matching dimensions define e([A]1, [B]2) := [AB]T ∈ GT .

Using these notations, we can recall the seminal Decisional Bilinear Diffie-
Hellman Assumption [7], adapted to the asymmetric setting:

Definition 1 (Decisional Bilinear Diffie-Hellman Assumption). The
Decisional Bilinear Diffie-Hellman (DBDH) Assumption in the asymmetric set-
ting states that, in a pairing group G $← PGGen(1λ), no PPT adversary can dis-
tinguish between the two following distributions with non-negligible advantage,
where a, b, c, r

$← Zp:

{([a]1, [b]1, [a]2, [c]2, [abc]T)} and {([a]1, [b]1, [a]2, [c]2, [r]T)}.

3 Definitions and Security Models

3.1 Functional Encryption

We give the definition of Functional Encryption as originally defined in [8,15].

Definition 2 (Functional Encryption). A functional encryption scheme for
a functionality F : K × X → Z (where we require that the key space K contains
the empty key ε) is a tuple of PPT algorithms SetUp,KeyGen,Enc,Dec defined
as follows.

SetUp(λ): takes as input a security parameter 1λ and outputs a master secret
key msk and a public key pk.

KeyGen(msk, k): takes as input the master secret key and a key description
k ∈ K, and outputs a functional decryption key dkk.

Encrypt(pk, x): takes as input the public key pk and a message x ∈ X , and
outputs a ciphertext c.

Decrypt(dkk, c): takes as input a functional decryption key dkk and a ciphertext
c, and returns an output y ∈ Z ∪{⊥}, where ⊥ is a special rejection symbol.

We implicitly assume that mpk is included in msk and in all the encryption
keys eki as well as the functional decryption keys dkk.

Correctness. The correctness property states that, given (pk,msk) ← SetUp(λ),
for any key description k ∈ K and any message x ∈ X , if c ← Encrypt(pk, x) and
dkk ← DKeyGen(msk, k), then Decrypt(dkk, c) = F (k, x).

432 E. Dufour-Sans and D. Pointcheval

Security. For any stateful adversary A, and any functional encryption scheme,
we define the following advantage.

AdvA(λ) := Pr

⎡

⎢⎢⎢⎢⎣
β′ = β :

(pk,msk) ← SetUp(1λ)
(x0, x1) ← AKeyGen(msk,·)(pk)
β

$← {0, 1}
c ← Encrypt(pk, xβ)
β′ ← AKeyGen(msk,·)(c)

⎤

⎥⎥⎥⎥⎦
− 1

2
,

with the restriction that F (ε, x0) = F (ε, x1) and that for all key descriptions k
queried to KeyGen(msk, ·), the equation F (k, x0) = F (k, x1) must hold. We say
the scheme is IND-CPA secure if for all PPT adversaries A, AdvA(λ) = negl(K).

A Weaker Notion. One may define a weaker variant of indistinguishability, called
Selective Security or sel-IND security: the encryption queries are sent before the
initialization.

3.2 The Unbounded Inner-Product Functionality

Inner-Product Functional Encryption as defined in [1], and later works, takes
messages of fixed length and outputs ciphertexts of the same fixed length. Mes-
sages are vectors of n scalars, indexed from 1 to n. We will show how to build
Inner-Product Functional Encryption schemes for arbitrary-size vectors.

While bounded message IPFE only considers vectors with contiguous indices
we do not require this in our definitions to make them more general.

We give four definitions of Inner-Product Functional Encryption for
Unbounded Vectors. The first two differ in their requirement on the domains
of the ciphertexts and the keys for encryption to be successful. The last two are
Identity-Based variants of the first two.

Definition 3 (Strict Unbounded IPFE).

– K = {ε} ∪ {(yi)i∈D′ |D′ ⊂ N
∗ finite, yi ∈ Zp ∀i ∈ D′};

– X = {x = (xi)i∈D|D ⊂ N
∗ finite, xi ∈ Zp ∀i ∈ D and ||x|| <

√
p

2 };
– Z = Zp;
– F (ε, (xi)i∈D) = D and

F ((yi)i∈D′ , (xi)i∈D) =
{ 〈y,x〉 if D′ = D;

⊥ otherwise.

Definition 4 (Permissive Unbounded IPFE).

– K = {ε} ∪ {(yi)i∈D′ |D′ ⊂ N
∗ finite, yi ∈ Zp ∀i ∈ D′};

– X = {x = (xi)i∈D|D ⊂ N
∗ finite, xi ∈ Zp ∀i ∈ D};

– Z = Zp;
– F (ε, (xi)i∈D) = D and

F ((yi)i∈D′ , (xi)i∈D) =
{ 〈y,x〉 if D′ ⊂ D;

⊥ otherwise.

Unbounded Inner-Product Functional Encryption with Succinct Keys 433

Definition 5 (Strict Identity-Based Unbounded IPFE).

– K = {ε} ∪ {(id’, (yi)i∈D′)|id’ ∈ {0, 1}∗,D′ ⊂ N
∗ finite, yi ∈ Zp ∀i ∈ D′};

– X = {(id,x = (xi)i∈D)|id ∈ {0, 1}∗,D ⊂ N
∗ finite, xi ∈ Zp ∀i ∈ D};

– Z = Zp;
– F (ε, (id, (xi)i∈D)) = (id,D) and

F ((id’, (yi)i∈D′), (id, (xi)i∈D)) =
{ 〈y,x〉 if D′ = D and id = id’;

⊥ otherwise.

Definition 6 (Permissive Identity-Based Unbounded IPFE).

– K = {ε} ∪ {(id’, (yi)i∈D′)|id’ ∈ {0, 1}∗,D′ ⊂ N
∗ finite, yi ∈ Zp ∀i ∈ D′};

– X = {(id,x = (xi)i∈D)|id ∈ {0, 1}∗,D ⊂ N
∗ finite, xi ∈ Zp ∀i ∈ D};

– Z = Zp;
– F (ε, (id, (xi)i∈D)) = (id,D) and

F ((id’, (yi)i∈D′), (id, (xi)i∈D)) =
{ 〈y,x〉 if D′ ⊆ D and id = id’;

⊥ otherwise.

3.3 An Alternative Security Definition

To prove our permissive scheme secure, we will require a slightly different def-
inition of security than the standard one, so we introduce it here. Like ABDP
and later works on practical IPFE, key generation in our scheme is homomor-
phic: KeyGen(msk,y1) + KeyGen(msk,y2) = KeyGen(msk,y1 + y2). Moreover,
ciphertexts are not required for inactive slots in the key. For instance, from
KeyGen(msk,y) where y = (yj)j∈D and for some i ∈ D, yi = 0, one can evaluate∑

j∈D xjyj from (Encrypt(pk, (xj))j∈D,j �=i. The standard security game of Func-
tional Encryption does not take this into account as it only considers the domain
of the vector y. Let us first define, for any unbounded vector z = (zi)i∈D, its
domain as Domain(z) = D and its support as Support(z) = {i ∈ D|zi �= 0}. The
support is thus the set of the active slots.

Definition 7 (Homomorphic Key Security). In Homomorphic Key IND

(and sel-IND) security, we modify the conditions for ignoring the adversary’s
guess as follows:

If for some m ∈ N
∗ and y1, ...,ym queried to KeyGen(msk, ·),

there are ωi ∈ Zp, for all i ∈ [m] such that, having defined y ← ∑
i ωiy

i,
Support(y) ⊆ Domain(x0) = Domain(x1) and 〈y,x0〉 �= 〈y,x1〉,

then, ignore the adversary’s guess.

Indeed, if the adversary can find a linear combination of the keys that make
an inactive slot critical on the challenge ciphertext, then it can trivially win
the game. This is very specific to the permissive constructions that allow any
D′ ⊂ D.

434 E. Dufour-Sans and D. Pointcheval

4 A Strict Identity-Based Unbounded IPFE

4.1 Description of the Scheme

We first present a selectively-secure strict identity-based UIPFE:

– SetUp(λ): Pick a pairing group PG = (G1,G2,GT , g1, g2, e) of prime order
p. Pick a full-domain hash function H into G2. Pick s

$← Zp and publish
pk = [s]1. Set msk = (s, pk).

– Encrypt(pk, id,x): Take as input an unbounded vector x = (xi)i∈D where
D ⊂ N

∗ is finite, an identity id and the public key pk. Pick r
$← Zp, and output

C = ([r]1, (ci)i∈D) where ci = [xi]T + e([s]1, r[uid||D||i]2) and [uid||D||i]2 :=
H(id||D||i) for all i ∈ D.

– KeyGen(msk, id’,y): Take as input an unbounded vector y = (yi)i∈D′ (where
D′ ⊂ N

∗ is finite) representing its associated inner-product function, an iden-
tity id’ and the master secret key msk = (s, pk). Output

dky = (y,−s
∑

i∈D′
yi[uid’||D′||i]2)

where [uid’||D′||i]2 := H(id’||D′||i) for all i ∈ D′.
– Decrypt(dky,C): Take as input a ciphertext C = (c0, (ci)i∈D) and a decryp-

tion key dky = ((yi)i∈D = y, d). Compute

[α]T = e(c0, d) +
∑

i∈D
yici

and recover the discrete logarithm to output α.

We clarify that ·||· denotes an efficient injective encoding into the set of binary
strings.

Correctness. When id = id’ we have:

[α]T = e(c0, d) +
∑

i∈D
yici

= e([r]1,−s
∑

i∈D
yi[uid||D||i]2)) +

∑

i∈D
yi([xi]T + e([s]1, r[uid||D||i]2))

= [
∑

i∈D
−sryiuid||D||i + yixi + sryiuid||D||i]T = [

∑

i∈D
yixi]T = [〈y,x〉]T .

4.2 Security Analysis

Theorem 8 (sel-IND Security). The Strict Identity-Based UIPFE scheme
described above is sel-IND-secure under the DBDH assumption, in the random
oracle model for H.

Unbounded Inner-Product Functional Encryption with Succinct Keys 435

Proof. Given an adversary A that breaks the sel-IND security of our scheme,
we construct an adversary B that breaks the DBDH assumption.

B receives a DBDH tuple ([a]1, [b]1, [a]2, [c]2, [d]T). B’s goal is to guess whether
d = abc or d is uniformly random. A chooses a pair of challenge vectors (x0 =
(x0

i)i∈D∗ ,x1 = (x1
i)i∈D∗) to be encrypted under identity id∗ and sends them to

B.
From now on, we write |D∗| = n and assimilate {(wi)i∈D∗ |wi ∈ Zp ∀i ∈ D∗}

with the vector space Z
n
p , where m : D∗ → [n] maps the original indices to those

in Z
n
p .

Then, we follow the proof technique from [1], with a basis (z1, . . . ,zn−1) of
(x0 −x1)⊥. B also picks n−1 random scalars (r1, . . . , rn−1) ∈ Z

n−1
p . The family

(x0 − x1,z1, . . . ,zn−1) is a basis of Zn
p and we can write the canonical vectors

ei as
ei = αi · (x0 − x1) +

∑

j∈[n−1]

λi,j · zj

for some αi ∈ Zp, λi,j ∈ Zp, for all i ∈ [n], j ∈ [n − 1]. B can now simulate A’s
view:

– Public Key. B simply sets pk = [a]1 (implicitly setting the master secret key
msk to be the unknown scalar a) and sends it to A.

– Random Oracle Calls. On any fresh input str = id||D||i, if id||D �= id∗||D∗

or i �∈ D∗, B returns a random group element in G2, the discrete logarithm
of which it stores as hstr and reuses upon a later request for the same input.
On input id∗||D∗||i for some i ∈ D∗, B returns

αm(i)[c]2 +
∑

j∈[n−1]

λm(i),j [rj]2

which it doesn’t need to store because the above formula is deterministic.
– Ciphertext. B picks β ∈ {0, 1} and generates a ciphertext for xβ from [b]1,

[a]2 and [d]T as c0 = [b]1 and:

ci = [xβ
i]T + αm(i)[d]T +

⎛

⎝
∑

j∈[n−1]

λm(i),jrj

⎞

⎠ e([b]1, [a]2)

for all i ∈ D∗.
– Decryption Keys. A will input id’,y = (yi)i∈D′ . Make those calls to the

random oracle that haven’t been made for inputs id’||D′||i for i ∈ D′. If
id’ �= id∗ or D′ �= D∗ simply return (y,−∑

i∈D′ hid’||D′||iyi[a]2). Otherwise
write (yi)i∈D∗ = ζ · (x0 − x1) +

∑
i∈[n−1] νi · zi for ζ ∈ Zp, νi ∈ Zp, for all

i ∈ [n − 1]. Then, return

dky =

⎛

⎝y,−
⎛

⎝
∑

i∈[n−1]

νi

⎛

⎝
∑

j∈[n−1]

λi,jrj

⎞

⎠

⎞

⎠ [a]2

⎞

⎠ .

436 E. Dufour-Sans and D. Pointcheval

At the end of the simulation if A correctly guesses β, B guesses that d = abc (the
tuple is a proper BDH tuple), otherwise it guesses that d is uniformly random.
It remains to be verified that B correctly simulates A’s environment:

– The master public key and the random oracle responses are clearly uniformly
random, thus properly distributed, despite the change of basis.

– From Sect. 2.2 we know that the coefficient ζ of x0 −x1 in the decomposition
of a y for which a key has been queried is zero, otherwise the adversary A
will not pass the final condition and its guess will be ignored. Hence, this
contribution disappears from the functional key. The simulation of this key
is perfect unless the attack is not legitimate;

– Now, notice that when B receives a true BDH tuple, it properly returns an
encryption of xβ , but when [d]T is uniformly random, the bit β is perfectly
hidden.

Under the DBDH assumption, A cannot distinguish between these situations
and thus, as in the latter, has no information on β. This concludes the proof. ��

5 A Permissive Identity-Based Unbounded IPFE

5.1 Description of the Scheme

We now present a selectively-secure permissive identity-based UIPFE:

– SetUp(λ): Pick a pairing group PG = (G1,G2,GT , g1, g2, e) of prime order
p. Pick a full-domain hash function H into G2. Pick s

$← Zp and publish
pk = [s]1. Set msk = (s, pk).

– Encrypt(pk, id,x): Take as input an unbounded vector x = (xi)i∈D where
D ⊂ N

∗ is finite, an identity id and the public key pk. Pick r
$← Zp, and output

C = ([r]1, (ci)i∈D) where ci = [xi]T + e([s]1, r[uid||i]2) and [uid||i]2 := H(id||i)
for all i ∈ D.

– KeyGen(msk, id’,y): Take as input an unbounded vector y = (yi)i∈D′ (where
D′ ⊂ N

∗ is finite) representing its associated inner-product function, an iden-
tity id’ and the master secret key msk = (s, pk). Output

dky = (y,−s
∑

i∈D′
yi[uid’||i]2)

where [uid’||i]2 := H(id’||i) for all i ∈ D′.
– Decrypt(dky,C): Take as input a ciphertext C = (c0, (ci)i∈D) and a decryp-

tion key dky = ((yi)i∈D′ = y, d). Compute

[α]T = e(c0, d) +
∑

i∈D′
yici

and recover the discrete logarithm to output α.

Unbounded Inner-Product Functional Encryption with Succinct Keys 437

Correctness. When id = id’ we have:

[α]T = e(c0, d) +
∑

i∈D
yici

= e([r]1,−s
∑

i∈D′
yi[uid||i]2)) +

∑

i∈D′
yi([xi]T + e([s]1, r[uid||i]2))

= [
∑

i∈D′
−sryiuid||i + yixi + sryiuid||i]T = [

∑

i∈D′
yixi]T = [〈y,x〉]T .

5.2 New Assumption

Unfortunately, we will not be able to prove the security of this new scheme under
a standard assumption. We thus define a new interactive one, that allows the
adversary to see some linear combinations:

Definition 9 (Linearly Extended Decisional Bilinear Diffie-Hellman
Assumption). The Linearly Extended Decisional Bilinear Diffie-Hellman
(�eDBDH) Assumption states that no PPT adversary A should be able to win
the following game against a challenger C with non-negligible advantage:

– Initialize: C picks a, b, c, r
$← Zp and δ

$← {0, 1}. If δ = 0, C sends

([a]1, [b]1, [a]2, [c]2, [abc]T)

to A, otherwise it sends

([a]1, [b]1, [a]2, [c]2, [r]T).

– Extension Queries: A has unlimited access to an oracle that, on input i ∈ N
∗:

• if it stored a value hi for i, reuses it;
• otherwise, picks hi

$← Zp, sends it to A and stores it;
– Linear Extension Queries: A has unlimited access to an oracle that, on input

(yi)i∈D for some finite S ⊂ N:
1. For each i ∈ D \ {0}:

• if it stored a value hi for i, reuses it;
• otherwise, picks hi

$← Zp and stores it;
2. stores (yi)i and sends [y0ac +

∑
i∈D,i �=0 yihia]2 to A.

– Finalize: A provides its guess δ′ on C’s bit δ. C uses the stored ((y(k)
i)i)k

to check that e0 �∈ Span((y(k))k), and if so it outputs β := δ′, otherwise it
outputs β

$← {0, 1}.

5.3 Security Analysis

Theorem 10 (Homomorphic Key sel-IND Security). The Permissive
Identity-Based UIPFE scheme described above is Homomorphic Key sel-IND-
secure under the �eDBDH assumption, in the random oracle model for H.

438 E. Dufour-Sans and D. Pointcheval

Proof. Given an adversary A that breaks the sel-IND security of our scheme,
we construct an adversary B that breaks the �eDBDH assumption.

B receives a DBDH tuple ([a]1, [b]1, [a]2, [c]2, [d]T) from a �eDBDH oracle. B’s
goal is to guess whether d = abc or d is uniformly random. A chooses a pair of
challenge vectors (x0 = (x0

i)i∈D∗ ,x1 = (x1
i)i∈D∗) to be encrypted under identity

id∗ and sends them to B.
From now on we write |D∗| = n and assimilate {(wi)i∈D∗ |wi ∈ Zp ∀i ∈ D∗}

with the vector space Z
n
p , and define m : D∗ → [n] which maps the original

indices to those in Z
n
p and m⊥ : N \ D∗ → N

∗ which maps the other indices into
N

∗.
B picks a basis (z1, . . . ,zn−1) of (x0 − x1)⊥ as well as n − 1 random scalars

(r1, . . . , rn−1) ∈ Z
n−1
p . (x0 − x1,z1, . . . ,zn−1) is a basis of Zn

p and we can write
the canonical vectors ei as

ei = αi · (x0 − x1) +
∑

j∈[n−1]

λi,j · zj

for some αi ∈ Zp, λi,j ∈ Zp, for all i ∈ [n], j ∈ [n − 1]. B can now simulate A’s
view:

– Public Key. B simply sets pk = [a]1 (implictly setting the master secret key
msk to be the unknown scalar a) and sends it to A.

– Random Oracle Calls. On any fresh input str = id||i, if id �= id∗, B returns
a random group element in G2, the discrete logarithm of which it stores as
hstr and reuses upon a later request for the same input. On input id∗||i for
some i �∈ D∗, B makes an Extension Query to the �eDBDH oracle with input
m⊥(i) and forwards its output to A. On input id∗||i for some i ∈ D∗, B
returns

αm(i)[c]2 +
∑

j∈[n−1]

λm(i),j [rj]2

which it doesn’t need to store because the above formula is deterministic.
– Ciphertext. B picks β ∈ {0, 1} and generates a ciphertext for xβ from [b]1,

[a]2 and [d]T as c0 = [b]1 and:

ci = [xβ
i]T + αm(i)[d]T +

⎛

⎝
∑

j∈[n−1]

λm(i),jrj

⎞

⎠ e([b]1, [a]2)

for all i ∈ D∗.
– Decryption Keys. A will input id’,y = (yi)i∈D′ . Make those calls to the

random oracle that haven’t been made for inputs id’||i for i ∈ D′. If id’ �= id∗

or D′ �= D∗ simply return (y,−∑
i∈D′ hid’||iyi[a]2). Otherwise write D1 =

D∗ \ {0} ∩ D′ and D2 = D′ \ D1. Decompose y as (yi)i∈D∗ = ζ(x0 − x1) +∑
i∈[n−1] νizi for ζ ∈ Zp, νi ∈ Zp, for all i ∈ [n− 1]. Make a Linear Extension

Query to the �eDBDH oracle for input (y′
i)i∈{0}∪m⊥(D2) such that y′

m⊥(i) = yi

Unbounded Inner-Product Functional Encryption with Succinct Keys 439

for all i ∈ D2 and y′
0 = ζ, which returns D ∈ G2. Then, return

dky =

⎛

⎝y,−D −
⎛

⎝
∑

i∈[n−1]

νi

⎛

⎝
∑

j∈[n−1]

λi,jrj

⎞

⎠

⎞

⎠ [a]2

⎞

⎠ .

At the end of the simulation if A correctly guesses β, B guesses that d = abc (the
tuple is a proper BDH tuple), otherwise it guesses that d is uniformly random.
It remains to be verified that B correctly simulates A’s environment:

– The master public key, functional decryption key and the random oracle
responses are clearly uniformly random, thus properly distributed, despite
the change of basis;

– From Sect. 3.3, we know that the span of all queried keys will not contain a
key with domain included in D∗ with a non zero component on x0−x1, which
guarantees that B does not break the condition that bars trivial victories in
the �eDBDH game;

– Now, notice that when B receives a true BDH tuple, it properly returns an
encryption of xβ , but when [d]T is uniformly random, the bit β is perfectly
hidden.

Under the �eDBDH assumption A cannot distinguish between these situations
and thus, as in the latter, has no information on β. This concludes the proof. ��

6 Open Problems

We have introduced constructions that are quite efficient in terms of size, since
every key involved consists of a single group element, and thus the computational
load is also much lower than in [18]. In addition, the vector ciphertexts do not
need their domain to be a unique interval as in [18]. Still, several interesting
problems remain open, and we now list promising directions for future research:

– Building Unbounded IPFE for any behavior without pairings, either groups
without multilinearity or from other assumptions.

– Building Unbounded Functional Encryption schemes for different functional-
ities, such as Quadratic Polynomials (which already require pairings in the
bounded setting [6]).

– Achieving adaptive security or removing random oracles with minimal over-
head.

Acknowledgments. We would like to thank the anonymous reviewers for detailed
comments. This work was supported in part by the European Community’s Seventh
Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud)
and the European Community’s Horizon 2020 Project FENTEC (Grant Agreement no.
780108).

440 E. Dufour-Sans and D. Pointcheval

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 21

3. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

4. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 32

5. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 557–
587. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 19

6. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 67–98. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 3

7. Boneh, D., Franklin, M.K.: Identity based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

9. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner
product functional encryption from the k -linear assumption. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 245–277. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76581-5 9

10. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

11. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

12. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

13. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June
2013

14. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-32009-5_11

Unbounded Inner-Product Functional Encryption with Succinct Keys 441

15. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/2010/556

16. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS, vol. 10,
pp. 463–472. ACM Press, October 2010

17. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

18. Tomida, J., Takashima, K.: Unbounded inner product functional encryption from
bilinear maps. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 609–639. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 21

19. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 33

http://eprint.iacr.org/2010/556
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-030-03329-3_21
https://doi.org/10.1007/978-3-030-03329-3_21
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33

Password-Authenticated Public-Key
Encryption

Tatiana Bradley1, Jan Camenisch2, Stanislaw Jarecki1(B), Anja Lehmann3,
Gregory Neven2, and Jiayu Xu1

1 University of California, Irvine, USA
{tebradle,sjarecki,jiayux}@uci.edu

2 Dfinity, Palo Alto, Germany
{gregory,jan}@dfinity.org

3 IBM Research - Zurich, Rüschlikon, Switzerland
anj@zurich.ibm.com

Abstract. We introduce password-authenticated public-key encryption
(PAPKE), a new cryptographic primitive. PAPKE enables secure end-
to-end encryption between two entities without relying on a trusted third
party or other out-of-band mechanisms for authentication. Instead, resis-
tance to man-in-the-middle attacks is ensured in a human-friendly way
by authenticating the public key with a shared password, while prevent-
ing offline dictionary attacks given the authenticated public key and/or
the ciphertexts produced using this key.

Our contributions are three-fold. First, we provide property-based and
universally composable (UC) definitions for PAPKE, with the result-
ing primitive combining CCA security of public-key encryption (PKE)
with password authentication. Second, we show that PAPKE implies
Password-Authenticated Key Exchange (PAKE), but the reverse impli-
cation does not hold, indicating that PAPKE is a strictly stronger
primitive than PAKE. Indeed, PAPKE implies a two-flow PAKE which
remains secure if either party re-uses its state in multiple sessions,
e.g. due to communication errors, thus strengthening existing notions
of PAKE security. Third, we show two highly practical UC PAPKE
schemes: a generic construction built from CCA-secure and anonymous
PKE and an ideal cipher, and a direct construction based on the Deci-
sional Diffie-Hellman assumption in the random oracle model.

Finally, applying our PAPKE-to-PAKE compiler to the above PAPKE
schemes we exhibit the first 2-round UC PAKE’s with efficiency compa-
rable to (unauthenticated) Diffie-Hellman Key Exchange.

1 Introduction

A well-known Achilles’ heel of end-to-end encryption is the distribution
and trustworthiness of long-term cryptographic keys [27]. In particular, it is
extremely hard for end users to judge the authenticity of public keys. They

Full version of this paper appears in [12].

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 442–462, 2019.
https://doi.org/10.1007/978-3-030-21568-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_22

Password-Authenticated Public-Key Encryption 443

can therefore easily be tricked into encrypting the data under a wrong key and
thereby lose all security. If the exchange of keys is facilitated by a third party such
as a certificate authority or a service provider, as is the case for most public-key
infrastructures (PKIs) as well as for end-to-end encrypted messengers such as
Signal, WhatsApp, or iMessage, users need to trust that third party to provide
the correct keys. Indeed, if a service provider is able to substitute its own keys
for those of the intended recipients, it can mount a man-in-the-middle (MITM)
attack and decrypt all subsequent communication.

An article in The Guardian [18] describes this trust required in the service
provider and its capability of striking MITM attacks as a “backdoor” and a
“security loophole” in the encryption scheme used by WhatsApp. This charac-
terization was repudiated in an open letter signed by over seventy cryptogra-
phers and security experts [26], stating that this is not a “backdoor”, but simply
how cryptography works. While technically correct, this explanation is not very
satisfactory from an end-user’s perspective and prompts the question: should
cryptography work like that? Is there really no way to protect encrypted com-
munication between end users from such MITM and key substitution attacks?

Ad-Hoc Solutions Against MITM Attacks. Many approaches to preventing man-
in-the-middle attacks in the context of secure end-to-end communication exist,
but they either rely on trusted third parties, or on mostly ad-hoc solutions built
on top of conventional encryption schemes, aiming to allow end-users to verify
the correctness of public keys. None of these approaches provides the degree of
usability and security that one can hope for, and which our solution provides.

Trust-on-first-use, as commonly used by Secure Shell (SSH), reduces the
likelihood of MITM attacks, but cannot completely prevent them. The web of
trust [24] as used e.g. in Pretty Good Privacy (PGP), establishes a distributed
trust model via individual vetting: it requires users to endorse associations of
public keys to specific people, and to endorse other people as trusted endorsers.
Even though this approach was popular in the early days of cryptography, it
was never widely adopted, possibly because of the strong level of involvement it
requires from users to inspect each others’ keys and to issue endorsements.

Today, the most common method to establish trust in end users’ public keys is
to let users manually verify a hash value of keys, known as a key fingerprint, using
an out-of-band channel. Fingerprints are often represented in human-friendly for-
mats to ease verification, e.g., as digits [28], pronounceable strings [20], ASCII
art [23], or QR codes [28], but they require either physical proximity of communi-
cation partners (QR codes) or they are tedious to verify.1 A crucial problem with
key fingerprints is the far-from-optimal trade-off between security and usability:
Strong fingerprints with 60 decimal or 32 hexadecimal digits are simply too
long to verify by hand. Shorter fingerprints are more human-friendly but are
vulnerable to preimage attacks, allowing an adversary to generate a key with
the same fingerprint. A recent study comparing different manual key verification

1 Users also struggle with the notion of key fingerprints, e.g. all Telegram users in one
study [5] believed the fingerprint to be either the encryption key or a ciphertext.

444 T. Bradley et al.

mechanisms found that all were subject to attacks whose success rates ranged
between 6% and 72% [25].

Introducing a New Tool. We propose a new cryptographic primitive, Password-
Authenticated Public-Key Encryption (PAPKE), which authenticates an encryp-
tion public key using human-memorable passwords, but does so in a way which
is not subject to offline dictionary attacks given the authenticated public key or
the ciphertexts encrypted using that key.

More precisely, PAPKE modifies the notion of public-key encryption so that
both the key generation and the encryption algorithms take as an additional
input a password, i.e. an arbitrary human-memorable string. The semantics of
this password input is that Alice, when generating her public key, implicitly
authenticates and “locks” this key with a password, and to encrypt a message,
Bob must use a matching password to “unlock” the authenticated public key cor-
rectly. The correctness guarantee is that Alice decrypts the message encrypted
by Bob if Bob encrypted it using the same password that Alice used in key gen-
eration. The notion of password-authentication of the public key which PAPKE
enforces is the following: If a man-in-the-middle attacker substitutes Alice’s pub-
lic key with its own, the confidentiality of messages which Bob encrypts under
this key is guaranteed as long as the adversary fails to guess the password shared
by Alice and Bob. Crucially, the attacker must guess this password at the time
it creates the substituted public key, and the eventual leakage of the password
after generation of the adversarial key has no impact on encryption security.

PAPKE thus enables end-to-end secure communication without relying on
a trusted party or exchanging long fingerprints on an out-of-band channel, and
instead it bootstraps security from a short human-memorizable password.

PAPKE and Offline Dictionary Attacks. The challenge of password-based
schemes is obtaining strong security based on weak secrets. In particular, such
a scheme must be resilient against offline password attacks. For PAPKE this
means that an adversary who receives an authenticated public key and the
ciphertexts created using this key cannot use offline computation to find the
passwords used to create either object. In other words, the adversary cannot use
the public key or the intercepted ciphertexts to locally test password guesses.
Otherwise, the low entropy of passwords would hardly provide any extra secu-
rity: according to NIST [13] even a 16-character human-memorizable password
has only 30 bits of entropy on average, and hence can easily be brute-forced.

To illustrate this challenge, consider a few simple but failed attempts at
constructing a secure PAPKE scheme. A natural way to password-authenticate
any information, including a public key, would be to MAC it using the (hashed)
password as a MAC key. This, however, would be subject to an offline dictionary
attack, as the attacker can locally test password guesses until it finds the one
for which the MAC verifies. More generally, any procedure which allows for
explicit verification of the authenticated public key under a password would be
subject to an offline attack. What if the key was not authenticated itself but the
encrypting party included the password in the plaintext? This would be insecure

Password-Authenticated Public-Key Encryption 445

against a man-in-the-middle attack which sends its public key to the encryptor
and decrypts it to read the encryptor’s password.

Indeed, in a secure PAPKE the authenticated public key must commit the
receiver Alice to the password used in the key generation, and the sender Bob
cannot verify this commitment explicitly, but it can create a ciphertext such
that (1) it is correct if Bob’s and Alice’s passwords match, (2) the plaintext is
undecryptable if the two passwords differ, (3) the encryptor cannot tell which is
the case, and (4) if the two passwords do not match then no one, including Alice
who created the public key, can learn anything about Bob’s password beyond
the fact that it does not match the unique password she used to generate her
public key.

We stress that PAPKE uses passwords to strictly enhance encryption secu-
rity, i.e., for non-substituted keys, PAPKE provides standard CCA security that
does not depend on the strength of the user’s password. Thus the purpose of
the password is solely to hedge security in case the encryptor uses a substituted
key, but we stress that this hedging is applicable only if the encryptor shares a
password with the party who generates the public key.

Our Contribution. We provide a thorough study of the proposed PAPKE
primitive, and our contributions fall into the following three categories:

(Ia) Strong Security Notions for PAPKE. First, we formally introduce the con-
cept of password-authenticated public key encryption, and define the desired
security properties both via a universally composable (UC) functionality [14]
and a set of property-based definitions. While property-based definitions are
often more intuitive, a formalization in the UC framework provides stronger and
more realistic security guarantees because it does not require any assumptions
on the password distribution and correctly models real-world phenomena such
as password reuse and making typing mistakes when entering the password. We
prove that our UC security definition implies our property-based ones, hence
proving a scheme secure in the UC setting implies its security under the more
intuitive property-based notions.

(Ib) Relation to PAKE. To better understand the strength of the PAPKE prim-
itive we compare it to the well-studied primitive of Password-Authenticated Key
Exchange (PAKE) [7,11,15] The relation between PAPKE and PAKE is two-
fold. First, PAPKE immediately implies a two-round PAKE: Alice and Bob can
perform password-authenticated key exchange if Alice sends to Bob a PAPKE
public key authenticated by her password, and Bob encrypts a session key using
the received key and his password. Indeed, we show that if this simple proto-
col is instantiated with any scheme satisfying our UC PAPKE notion then the
resulting protocol satisfies the strong UC notion of PAKE [15].

Regarding the other direction it might seem at first glance that any 2-round
PAKE protocol, e.g. [4,7,8], can generically imply a PAPKE scheme as follows:
The PAKE requester’s flow can define a PAPKE public key, and the PAKE
responder’s flow, together with an encryption of the plaintext under the estab-
lished session key, can define a PAPKE ciphertext. However, we show that this

446 T. Bradley et al.

intuition is in fact incorrect, as the non-interactive usage of encryption that is
required by PAPKE is not compatible with standard PAKE security notions.
Indeed, as we discuss below, the two-round PAKE implied by PAPKE has
stronger security than what is implied by standard PAKE notions because it
remains secure (and robust) even if either party re-uses its state. Summing up,
the relation of PAPKE and PAKE is that PAPKE implies a 2-round PAKE with
a (novel) property of security under session state re-use.

(II) Efficient PAPKE Constructions. We show two very practical constructions
that securely realize the UC PAPKE functionality. Our first construction gener-
ically builds a PAPKE scheme from a public-key encryption (PKE) scheme and
an ideal cipher: The authenticated public key is an encryption of the PKE public
key under the password, with the encryption implemented using an ideal cipher
over the space of PKE public keys. To obtain the desired UC-security, the PKE
scheme must satisfy a number of properties beyond standard CCA security, such
as key-anonymity [6] and strong robustness [1]. We show a concrete instantia-
tion of this scheme using a variant of DHIES [2] which satisfies these properties
under the so-called Oracle Diffie-Hellman (ODH) assumption. This results in a
highly-efficient construction secure under ODH in the Ideal Cipher model, which
uses 1 exponentiation for key generation, 2 for encryption, and 1 for decryption.

However, ideal ciphers over arbitrary cyclic groups, e.g. an elliptic curve, are
not so easy to implement. While generic constructions for ideal ciphers from
random oracles exist [16,19], implementing ideal ciphers over a specific algebraic
group is not straightforward, and if not done carefully can result in timing and/or
offline password guessing attacks. Thus we also provide an alternative concrete
construction that does not rely on ideal ciphers and therefore might be easier
to implement. It uses the Fujisaki-Okamoto transform [17] of a twisted “twin-
key” ElGamal construction of independent interest. This construction uses 2
exponentiations for key generation, 2 multi-exponentiations for encryption, and
1 exponentiation and 1 multi-exponentiation in decryption, and relies on the
Decisional Diffie-Hellman (DDH) assumption in the Random Oracle Model.

(IIIa) Efficient 2-Round UC PAKE Schemes. Our generic PAPKE-to-PAKE
compiler discussed above implies two highly efficient UC PAKE protocols when
instantiated with the above two PAPKE schemes. To the best of our knowledge
these are the first two-round UC-secure PAKE’s which rely on standard cyclic
groups, i.e., do not use groups with bilinear maps or other trapdoor structure,
and which resort instead to either the Ideal Cipher (IC) or the Random Oracle
Model (ROM) to achieve practical efficiency. Specifically, our results imply a UC
PAKE which uses 2 expentiations per party but relies on an ideal cipher over a
group, and a UC PAKE which uses 4 (multi)-exponentiations for the requester
and 2 exponentiations for the responder and relies on a random oracle model for
hash functions. Note that the first scheme matches and the second scheme comes
very close to the 2 exponentiations/party cost of unauthenicated Diffie-Hellman
Key Exchange, with is the minimum cost for PAKE one can reasonably expect.
The closest efficiency-wise UC PAKE we know of is by Abdalla et al. [3], which

Password-Authenticated Public-Key Encryption 447

was shown secure under comparable assumptions, but which requires 3 message
flows while our UC PAKE’s use only 2 flows.

(IIIb) PAKE’s with Session Re-use Security. As we argued in (Ib) above, the
PAPKE-to-PAKE compiler results in a 2-round PAKE which has novel secu-
rity and reliability properties which follow from the fact that PAPKE enforces
ciphertext security when the same public key is used to encrypt multiple mes-
sages. Recall that the PAKE requester message is a PAPKE public key, and the
PAKE responder message is a PAPKE ciphertext encrypting a random session
key under this public key, and both the public key and the ciphertext are created
using the passwords of resp. the requester and the responder. (See Sect. 3 for the
full description of this PAKE.) The novel security property of this PAKE is that
each of these keys is secure even though all sessions re-use the same session state
and the first message flow of the requester. The standard model of PAKE secu-
rity does not guarantee security in this case, but a PAKE which is secure in this
way can be beneficial to higher-level applications. For example it can help han-
dle communication faults: A responder session which believes that its response
has not been delivered correctly can safely respond to the same requester mes-
sage again, and a requester who gets multiple responses can securely spin off a
subprocess for each of them without re-starting a new session from scratch.

Roadmap. In Sect. 2 we define PAPKE as a strengthened version of public-key
encryption. Section 3 discusses the relation between PAKE and PAPKE, and
shows a generic compiler from any UC PAPKE to UC PAKE. Section 4 presents
our two highly efficient UC PAPKE schemes. In AppendixA we exemplify one
highly-efficient concrete 2-round UC PAKE protocol obtained via the generic
compiler of Sect. 3 applied to one of the PAPKE schemes of Sect. 4.

2 Security Model for PAPKE

In this section we introduce our security models for password-authenticated
encryption. A peculiarity of formal security definitions for password-based prim-
itives is that they must model the inherent probability of an adversary correctly
guessing the low-entropy password. Property-based definitions [7] (sometimes
also called game-based definitions) typically do so by requiring that the adver-
sary’s probability of winning the security game is negligibly more than a (non-
negligible) threshold determined by its number of online queries and the entropy
of the distribution from which the password is chosen. Composable security
definitions [15] such as those in Canetti’s Universal Composability (UC) frame-
work [14], on the other hand, model the possibility of guessing the password
directly into the ideal behavior of the primitive.

As argued by Canetti et al. [15], composable definitions provide stronger and
more realistic security guarantees than property-based ones, because they do not
make any implicit assumptions about the password distribution and correctly
model real-world phenomena such as password reuse and typos while entering

448 T. Bradley et al.

the password. Nevertheless, property-based definitions are often more intuitive
and easier to understand than UC definitions. Below we present the property-
based PAPKE security notions, and in the full version [12] we define UC notion
of PAPKE and show that it implies the property-based notion.

Definition 1 (PAPKE). Let D be a dictionary of possible passwords, and M
be a message space. A password-authenticated public-key encryption scheme is a
tuple of algorithms PAPKE = (KGen,Enc,Dec) with the following behavior:

KGen(κ, pwd) →R (apk , sk): on input a security parameter κ and password
pwd ∈ D, output an authenticated public key apk and a secret key sk.

Enc(apk , pwd ,m) →R c: on input an authenticated public key apk, password
pwd and a message m ∈ M, output a ciphertext c.

Dec(sk , c) → m: on input a secret key sk and ciphertext c, output a message
m ∈ M ∪ {⊥} where ⊥ indicates that the ciphertext is invalid.

For correctness we require that for any password pwd ∈ D, key pair
(apk , sk) ←R KGen(κ, pwd), and ciphertexts c ←R Enc(apk , pwd ,m), we have
that m = Dec(sk , c). Informally, the desired security properties of PAPKE
schemes are:

Resistance against Offline-Attacks: None of the values that are (partially)
derived from a password allows offline dictionary attacks on the passwords
that were used to generate them: The authenticated public key apk does
not leak anything about the setup password pwd , and ciphertexts c formed
under apk do not leak any information about the password attempt pwd ′

that was used in the encryption. The only and inevitable information leaked
is that the party who holds the secret key sk corresponding to apk learns
whether pwd ′ = pwd , because that holds if and only if Dec(sk , c) �= ⊥.

CCA Security: Ciphertexts encrypted under an honestly generated authenti-
cated public key apk hide the encrypted message from any adversary who
doesn’t know the secret key. This property is modeled in the standard CCA
setting, and it holds even if the adversary knows all passwords used.

Security against Man-in-the-Middle (MITM) Attacks: The choice of
an authenticated public key apk∗ commits the adversary to some single
password guess pwd∗, and all ciphertexts encrypted under apk∗ using any
password pwd �= pwd∗ hide the encrypted message. The only available attack
is an online attack, where the adversary guesses password pwd used by
the honest encryptor and generates apk∗ so that it commits to pwd∗ =
pwd . Thus the MITM attack gains effectively one password guess per each
adversarial public key apk∗ which the honest party uses in encryption.

Long-Term Security: The security of encryptions under an adversarially cho-
sen key apk∗ is preserved in a forward-secure manner because it holds even
if the adversary (eventually) learns the encryptor’s password pwd �= pwd∗.

Ciphertext Authenticity: The password also guarantees authenticity of
ciphertexts. That is, an adversary who knows an honestly generated key apk ,
but not the password pwd (or the secret key sk), cannot create valid cipher-
texts, i.e., ciphertexts that decrypt under sk into some message m �= ⊥.

Password-Authenticated Public-Key Encryption 449

2.1 Property-Based Security Definition

We formalize the above intuitive security requirements using two game-based
definitions, namely indistinguishability against chosen-ciphertext and chosen-key
attack (IND-CCKA), and ciphertext authenticity (AUTH-CTXT). For the sake of
brevity, we will refer to property IND-CCKA as the privacy property. The privacy
experiment formalizes the first four properties listed above:

ExperimentExpIND-CCKA
A,PAPKE (κ):

pwd ←R D, L ← ∅, (apk , sk) ←R KGen(κ, pwd)
b ←R {0, 1}, revealed ← 0
b′ ←R ALoR(b,pwd,·,·,·),Dec(sk,·),Reveal(pwd)(apk)
oracle LoR on input a public key apk∗ and
two messages m0 and m1 where |m0| = |m1|

if apk∗ �= apk and revealed = 1, return ⊥
else, compute C ←R Enc(apk∗, pwd ,mb),

if apk∗ = apk add C to L
return C

oracle Dec on input a ciphertext C /∈ L :
return m ← Dec(sk, C) where m ∈ M ∪ {⊥}

oracle Reveal: return pwd and set revealed ← 1
return 1 if b′ = b

Definition 2 (IND-CCKA). A PAPKE scheme is called indistinguishable under
chosen-ciphertext and key attacks if for all efficient adversaries A, and any
password space D it holds that

Pr[ExpIND-CCKA
A,PAPKE (κ) = 1] ≤ 1

2
+

1
2

· qapk∗ + qDec

|D| + negl(κ)

for a negligible function negl, where qapk∗ denotes the number of public keys
apk∗ �= apk that A used in its queries to the LoR oracle, and where:

– if qapk∗ > 0, then qDec is the number of A’s queries to the Dec oracle while
revealed = 0 (active/MITM security)

– if qapk∗ = 0, then qDec ← 0 (passive/CCA security)

In the IND-CCKA definition above we set qDec = 0 for passive attacks, i.e. if
qapk∗ = 0, then the security bound is 1/2 + negl(κ). In other words, if A does
not stage any MITM attack, i.e. it never substitutes the challenge public key
apk with apk∗ �= apk , then IND-CCKA is like standard CCA-security of PKE,
i.e. A can make any number of encryption and decryption queries and they will
not impact its success probability.

Authenticity (AUTH-CTXT). The ciphertext authenticity property (Defini-
tion 3) formalizes that the adversary A, given apk generated for password pwd
chosen at random in dictionary D, cannot create a valid ciphertext except for

450 T. Bradley et al.

probability (1+qapk∗ +qDec)/|D|, where qapk∗ is the number of encryption queries
A makes under bad and distinct keys apk∗ �= apk , and qDec is the number of
decryption queries. (See [12] for full discussion of these definitional choices.) Note
that here we do not let A learn pwd because knowing pwd suffices to form a valid
ciphertext. The password-guessing count is qapk∗ + qDec plus 1 because the final
ciphertext A creates can itself be used to guess a password.

The authenticity experiment is defined as follows:

ExperimentExpAUTH-CTXTA,PAPKE (κ):
pwd ←R D, L ← ∅, (apk , sk) ←R KGen(κ, pwd)
C∗ ←R AEnc(pwd,·,·),Dec(sk ,·)(apk)
oracle Enc on input a key apk∗ and message m :

compute C ←R Enc(apk∗, pwd ,m)
if apk∗ = apk add C to L
return C

oracle Dec on input a ciphertext C :
return m ← Dec(sk, C), where m ∈ M ∪ {⊥}

return 1 if Dec(sk , C∗) �= ⊥ and C∗ /∈ L

Definition 3 (AUTH-CTXT). A PAPKE scheme provides authenticity of
ciphertexts if for all efficient adversaries A, and any password space D it holds
that

Pr[ExpAUTH-CTXTA,PAPKE (κ) = 1] ≤ qapk∗ + qDec + 1
|D| + negl(κ)

for a negligible function negl, where qapk∗ is the number of bad keys apk∗ �= apk
in A’s Enc oracle queries and qDec is the number of A’s Dec oracle queries.

3 Relation Between PAPKE and PAKE

PAPKE, the new cryptographic primitive we propose, is closely related to Pass-
word Authenticated Key Agreement (PAKE) [7,11,15]. Specifically, we show
that it is easy to build a (UC-secure) two-round PAKE scheme from a (UC-
secure) PAPKE scheme, but that while the converse looks like it should be true
at first sight, it is not true in general, because PAPKE has stricter properties
than a standard PAKE. In particular, we give a counterexample of a secure
two-round PAKE scheme that, when converted into a PAPKE scheme in the
straightforward fashion, yields an insecure PAPKE scheme. Indeed, PAPKE can
be thought of as a two-round PAKE with a novel property of security under
session state re-use, which to the best of our knowledge has not been observed
and provably realized before.

Password-Authenticated Public-Key Encryption 451

Constructing PAKE from PAPKE. We show that any UC-secure PAPKE
can be converted into a two-round UC-secure PAKE. This construction is shown
in Fig. 1, and it is fairly simple: The initiator Pi generates an authenticated
public key apk from the input password pwd and sends it to Pj . The responder
Pj , given its password pwd ′ and the received public key apk , picks a random
session key k ←R {0, 1}κ, and responds to Pi with an encryption of k under apk
and pwd ′. Pi receives key k by decrypting the received ciphertext, or outputs
⊥ if the decryption fails. Note that all communication is done over an insecure
channel, fully controlled by the adversary. In particular, an adversary can replace
Pi’s public key and/or Pj ’s ciphertext. However, PAPKE security implies that
neither Pi’s public key nor Pj ’s ciphertext reveal anything about passwords, resp.
pwd and pwd ′, and the only attack the adversary can stage is an on-line guessing
attack, because each substituted public key apk∗ or ciphertext c∗ commits the
adversary to a single password guess pwd∗, and is guaranteed to fail (e.g. Pj

fails to encrypt anything useful under apk∗ or Pi fails to decrypt c∗) unless the
guessed password pwd∗ matches the password of resp. Pj or Pi.

Fig. 1. Two-round PAKE protocol PAPKE-2-PAKE given PAPKE= (KGen,Enc,Dec).

The proof of Theorem 1 is included in the full version [12]. Note that if the PAKE
initiator Pi chooses to re-use its state (sk , apk) across protocol instances which
share the same input pwd then Pi reveals that all these instances share the same
input, hence such protocol can only realize functionality FPAKE modified so that
a party can choose to reveal that two of its sessions run on the same password.

Theorem 1. If PAPKE realizes the UC PAPKE functionality FPAPKE, defined
in [12], then the PAPKE-2-PAKE scheme shown in Fig. 1 realizes the UC PAKE
functionality FPAKE [15].

An Intuitive PAKE-2-PAPKE Compiler, and Why It Doesn’t Work. It
turns out that the intuitive approach of building PAPKE from two-round PAKE
does not work due to subtle differences in the security notions of both primitives.

452 T. Bradley et al.

Indeed, PAPKE has some security properties which are stronger than PAKE,
and this in particular implies that the PAPKE-to-PAKE compiler shown above
adds a new security property to the resulting PAKE. (We discuss that PAKE
security property below.) For the ease of exposition, we state our results for
the game-based representations of PAKE and PAPKE instead of using their
UC variants, and refer to parties Pi and Pj as A and B respectively. On a first
glance, it seems reasonable to generically build a PAPKE scheme from any two-
round PAKE protocol, e.g. [4,7,8]. Specifically, any two-round PAKE protocol
〈(A1,A2) � (B1,B2)〉 can be abstracted as follows:

Party A (input pwd) Party B (input pwd ′)

(stateA,mA) ←R A1(κ, pwd) �mA

� mB (stateB ,mB) ←R B1(κ, pwd ′)
kA ← A2(stateA,mB) kB ← B2(stateB ,mA)

The natural approach to constructing PAPKE would combine a two-round
PAKE with an authenticated encryption scheme AE: The PAKE message mA

from A would be A’s static authenticated public key apk , and to encrypt message
m under A’s key apk = mA any party could complete the two-round PAKE
protocol in the role of B and append the AE encryption of m under the derived
session key kB to B’s PAKE message mB . For decryption, A uses mB to complete
her side of the PAKE protocol to derive the same session key kA = kB (if
pwd = pwd ′) and uses kA to decrypt the attached ciphertext. More formally,
given a 2-round PAKE = 〈(A1,A2) � (B1,B2)〉 and authenticated encryption
AE = (AE.Enc,AE.Dec) sharing the same key space K, one could consider the
following PAPKE construction:

PAPKE.KGen(κ, pwd):
run (stateA,mA) ←R A1(κ, pwd), return (sk ← stateA, apk ← mA)

PAPKE.Enc(apk , pwd ′,m):
run (stateB ,mB) ←R B1(κ, pwd ′) and kB ← B2(stateB , apk)
encrypt c ← AE.Enc(kB ,m) and return c′ ← (mB , c)

PAPKE.Dec(sk , c′):
parse c′ = (mB , c) and sk = stateA

get kA ← A2(stateA,mB) and return m ← AE.Dec(kA, c)

Intuitively, this should yield a secure PAPKE if PAKE is secure. However,
this generic construction uses PAKE in a way that is not covered by its security
definition: Whenever party A decrypts a PAPKE ciphertext it effectively re-uses
the same local PAKE session state stateA (and the same first-round message
mA) across multiple PAKE sessions. Indeed, this gap can be exploited to craft
special PAKE and AE schemes that are secure by themselves but result in an
insecure PAPKE when used in this natural compiler. (The full formal description
of this counterexample is included in [12]).

Implications for UC PAKE Protocols. We discuss the main conclusions we
draw from the two technical facts above.

Password-Authenticated Public-Key Encryption 453

First 2-Round UC PAKE’s Competitive with Game-Based PAKE’s. In
AppendixA we include two highly efficient UC PAKE protocols by instanti-
ating the PAPKE-2-PAKE compiler with the PAPKE constructions of Sect. 4. To
the best of our knowledge these are the first 2-round UC PAKE’s which rely
on standard cyclic groups with efficiency comparable to the Diffie-Hellman key
exchange in the IC or RO model. While UC PAKE can be achieved using even
1 (simultaneous) round of communication, all 1-round UC PAKEs we know, e.g.
[21,22], use groups with bilinear maps and are significantly costlier. Thus prac-
titioners are likely to resort to constructions which require IC or ROM models
but give much better concrete efficiency.

Concretely, we show two 2-round UC PAKE protocols: PAKE-IC-DHIES,
secure under Oracle Diffie-Hellman (ODH) [2] in the IC model which uses 2
exponentiations per party, and PAKE-FO, secure under DDH in ROM which uses
4 (multi-)exps for the requester and 2 for the responder. The Universally Com-
posable notion of PAKE security [15] has long been recognized as stronger than
the game-based notions [7,11], not only because it implies concurrent security
and can be used in protocol composition, but also because, unlike the game-
based notions, the UC PAKE implies security for non-uniform password distri-
butions, password re-use, correlated passwords, misstyped passwords, and any
other forms of information leakage. However, there has been an efficiency and
round-complexity gap between UC PAKE’s and PAKE’s shown secure under
game-based notions with the 3-round 2-exp/party UC PAKE of Abdalla et al.
[3], which assumes DDH in IC model, coming closest to the 2-round 2-exp/party
game-based PAKE of Abdalla-Pointcheval [4], which assumes DDH in ROM.
Our UC PAKE constructions match [4] in round complexity, and our IC model
construction also matches [4] in the number of exponentiation operations.2

PAKE with Security on Session Re-use. As we argued above, the reason the
compiler from 2-round PAKE to PAPKE does not work is that a standard PAKE
security model does not extend to the case of the requester party, A, re-using
the local state stateA of a single PAKE session across many sessions, each of
which would derive a session key kA from same state kA but potentially different
responder messages mB . By contrast, PAKE created from the secure PAPKE
in Fig. 1 does have this property: The requester party Pi can use the same
local state, which is the PAPKE secret key sk , across many sessions, deriving
kA ← PAPKE.Dec(sk , c) on any number of responder messages c. By the same
token, the responder Pj in this PAKE protocol is free to re-use Pi’s first-round
message apk in multiple sessions, because PAPKE ciphertexts created in each
such session are all secure, and their plaintexts can all be used as session keys.

Indeed, this shows that protocol PAPKE-2-PAKE is a secure 2-round PAKE
with security under re-use of requester’s session state across multiple sessions.
This can improve efficiency in PAKE applications where the initiator re-uses
same password across multiple sessions (and does not mind revealing that fact),
and it can also make it easier to handle communication faults, because both

2 However, our local computation cost also includes Ideal Cipher operations.

454 T. Bradley et al.

parties can keep their session information, the session state stateA = sk for Pi

and the requester’s first message mA = apk for Pj , and re-use them in case of
communication faults instead of re-starting from scratch.

4 Efficient and UC-Secure PAPKE Constructions

First attempts to construct PAPKE schemes that authenticate public keys and
plaintexts with a password would probably involve message authentication codes
(MACs) of the public key and/or the encrypted plaintext under a key derived
from the password. Such solutions, however, fall prey to offline dictionary attacks,
either given just the authenticated public key, or by substituting the real public
key with an adversarial one and testing the decrypted MAC. Thus the challenge
is to devise schemes that withstand offline attacks and achieve the strong security
guarantees formalized in our UC and property-based definitions. We present two
very practical PAPKE constructions that achieve this goal.

The first construction, PAPKE-IC in Sect. 4.1, combines any CCA secure
public-key encryption and an ideal cipher, using the ideal cipher to encrypt
the public key with the password as a key. We prove this PAPKE scheme secure
in the ideal-cipher model if the PKE scheme satisfies a number of properties
that go beyond the standard CCA security, namely key anonymity, robustness,
and the requirement that public keys are uniform in the (ideal) cipher domain.

While the PAPKE-IC construction is conceptually simple, instantiating the
combination of ideal ciphers and public-key encryption requires some care, and
subtle implementation mistakes could render the PAPKE-IC construction inse-
cure (see the discussion in Sect. 4.1 below). Hence we propose a second PAPKE
construction, PAPKE-FO in Sect. 4.2, which is not generic, but it does not need
an ideal cipher and therefore might be easier to implement. It is based on a
twin-key version of the Fujisaki-Okamoto transform of ElGamal encryption, and
it is secure under the DDH assumption in ROM.

4.1 PAPKE-IC: Generic Construction from PKE and Ideal Cipher

Our first construction, protocol PAPKE-IC in Fig. 2, builds PAPKE generically
from a public-key encryption PKE and an ideal cipher IC = (IC.Enc, IC.Dec).
The basic idea of the construction is simple and similar to the Encrypted Key
Exchange (EKE) PAKE of Bellovin and Merritt [8]: The receiver generates a key
pair for the PKE scheme and encrypts the public key under the ideal cipher using
the password as a key. The resulting encrypted public key is used as PAPKE
authenticated public key apk . To encrypt a message, the sender decrypts apk
under the ideal cipher using the password as a key, and encrypts the message
under the resulting public key. Our PAPKE-IC shares this basic design with EKE,
except that we use a CCA-secure encryption while EKE implicitly uses a version
of (CPA-secure) ElGamal whose security as encryption is less clear.

Protocol PAPKE-IC requires a number of properties of the PKE scheme that
go beyond the standard notion of CCA security. First, its public keys must be

Password-Authenticated Public-Key Encryption 455

uniformly distributed over the domain of the ideal cipher, because otherwise an
attacker can test passwords offline by trying to decrypt apk . Second, ciphertexts
of the PKE cannot reveal under which public key they were encrypted, as that
would allow offline attacks as well. The second property is known as key privacy
or anonymity [6]. Third, and perhaps a bit harder to see, is that an adversary
should be unable to construct ciphertexts that decrypt correctly under multiple
secret keys, but such ciphertext would allow the adversary to test multiple pass-
word guesses in one query to the decryption oracle. This property is known as
strong robustness [1]. The latter two properties are formalized as, respectively,
AI-CCA and SROB-CCA (see [12]). Finally, PKE and IC have to be “compatible”
in the sense that IC is an ideal cipher over the key space PK of PKE.

Fig. 2. The generic PAPKE scheme PAPKE-IC.

The proof of the following theorem appears in the full version [12]:

Theorem 2. Protocol PAPKE-IC in Fig. 2 securely realizes functionality FPAPKE

in the FIC-hybrid model, if the public key encryption PKE has uniform public-key
space PK and is AI-CCA and SROB-CCA-secure.

Implementing Ideal Ciphers over Groups. Our PAPKE-IC construction assumes
an ideal cipher over a key space PK that for many PKE schemes will be a
cyclic group G. We stress that such an assumption is also used in several PAKE
schemes, beginning from the Bellare et al. analysis [7] of the Encrypted Key
Exchange (EKE) PAKE scheme of Bellovin and Merritt [8]. Ideal ciphers over
variable domains can be implemented for a variety of domains, e.g. [10]. However,
for many groups implementing an ideal cipher is somewhat cumbersome and can
introduce possibilities for offline and/or timing attacks. Simply applying a block
cipher to the public key doesn’t work as not all strings of the same length are
valid group elements, and an adversary could offline tests by decrypting the
authenticated public key under a guessed password and testing if the decryption
yields a valid group element. If PK = G is any elliptic curve group, there are
deterministic methods that map any string onto a group element [9] and hence
offline and timing attacks are not a concern. The opposite direction can be

456 T. Bradley et al.

implemented as in [9], but that encoding works only for subspace S of roughly 1/2
of G elements. This slows down key generation, i.e. pair (pk , sk) ←R PKE.KGen
has to be chosen s.t. pk ∈ S, but it does not lead to timing attacks on passwords.
Still, these mappings complicate key generation and are non-trivial to implement,
which motivates searching for alternative solutions that do not rely on ideal
ciphers over arbitrary groups.

DHIES-Based Instantiation. In AppendixA, we specify an efficient concrete
instantiation of PAPKE-IC, called PAPKE-IC-DHIES, which uses a variant of
DHIES as the robust and anonymous PKE. Scheme PAPKE-IC-DHIES is as effi-
cient as one could hope for in a DH-based cryptosystem, i.e. it uses 1 exponen-
tiation in key generation, 2 exponentiations in encryption, and 1 in decryption.
The DHIES variant we use (DHIES∗) was shown to satisfy the required properties
under the Oracle-Diffie-Hellman assumption (ODH), using a collision-resistant
hash function and a secure authenticated encryption scheme [1]. The authen-
ticated encryption (or rather the combination of symmetric encryption and a
MAC) needs to satisfy some additional, non-standard properties, and the ODH
assumption also has an impact on the choice of the hash function. We refer to
AppendixA for a more detailed discussion. Thus, similar to the challenges that
arise when securely instantiating the ideal cipher, implementing DHIES∗ also
requires some care in the implementation and choice of its underlying primi-
tives.

4.2 PAPKE-FO: Concrete Construction from DDH and ROM

Our second PAPKE construction, protocol PAPKE-FO in Fig. 3, does not require
an ideal cipher over a group of PKE public keys, and may thus be easier to imple-
ment. It is however slightly more costly, with 2 exponentiations for key gener-
ation, 2 multi-exponentiations (with two bases) for encryption, and 1 exponen-
tiation and 1 (two base) multi-exponentiation for decryption. This construction
is built using the Fujisaki-Okamoto (FO) transform [17] for ElGamal encryption
but with a “twin” Diffie-Hellman key instead of a single key.

The high-level idea is to derive the authenticated public key apk by “blind-
ing” the public key gx of the ElGamal encryption scheme with the hash of the
password as apk ← gx ·H0(pwd), where H0 is a hash function onto G, which can
be implemented in deterministic way (to avoid timing attacks) using e.g. [9]. To
encrypt message m under password pwd ′ and key apk , the encryptor “unblinds”
the public key as y ← apk ·H0(pwd ′)−1 and then encrypts m under y using FO-
ElGamal, i.e. the Fujisaki-Okamoto transform applied to ElGamal which lifts its
security from CPA to CCA, required to achieve the CCA-security and ciphertext
authenticity properties of PAPKE.

None of the password-derived values apk or c allows an offline attack: Any
“unblinding” of apk would yield a valid public key gx for some x, and ElGamal
ciphertexts are known to guarantee key anonymity [6], meaning that ciphertexts
do not leak information about the public key used in encryption. (Note that
the leakage of the unblinded public key y = gx used in encryption would allow

Password-Authenticated Public-Key Encryption 457

an adversary who sees apk = y · H0(pwd) to mount an offline attack on pwd .)
The scheme is correct because if pwd ′ = pwd then the hash values cancel and
encryption is done under the “original” public key y = gx. However, if the
passwords do not match then encryption is done under an effectively random
public key y ←R G. The latter gives us the desired security against active attacks:
If an honest party is tricked into encryption under a malicious apk∗ but uses a
different password than the one which was used to blind apk∗, then the ciphertext
will be indistinguishable from random, even if A knows the secret key to apk∗.
Note, however, that unlike the ideal cipher encryption of apk under pwd used in
PAPKE-IC, the method used here to blind key gx and form the authenticated key
apk is essentially a one-time pad over G, and thus is not by itself a commitment
to password pwd . Below we discuss how we modify the above sketch and in
particular make this blinding password-committing.

Note that in Fig. 3 the message space is M = {0, 1}n for fixed n but it can
be extended to arbitrary messages e.g. using H2(R) as a key in symmetric-key
encryption instead of as a one-time pad.

Fig. 3. Our DDH-based PAPKE scheme PAPKE-FO.

Achieving UC-Security via “Twin” Keys. To achieve UC security we have to
ensure that both the key apk and the ciphertext c commit each party to a well-
defined password choice. Technically, the simulator SIM must be able to extract
(i) pwd from an adversarial apk∗ and (ii) pwd ′ and m from an adversarial cipher-
text c. While (ii) can be realized via the Fujisaki-Okamoto transform, case (i)

458 T. Bradley et al.

requires more care. We need (i) for the reasons outlined above, i.e. a ciphertext
encrypted by an honest party under an adversarial key apk∗ must be decrypt-
able only if apk∗ commits to the encryptor’s password. In the UC functionality
FPAPKE this is enforced by SIM having to pass a single password guess pwd∗ cor-
responding to the real-life adversary’s choice of apk∗, and if pwd∗ �= pwd ′, i.e.,
the guess does not match the encryptor’s password pwd ′, then the encryption
must reveal no information on the encrypted plaintext.

We achieve this by generating a “twin” public key using two generators g1, g2
in the CRS. The apk then consists of y1 ← gx

1 and Y2 ← gx
2 · H0(pwd), i.e., we

keep one public key in the clear and the other one is blinded with the password
hash. In the security proof we set g2 ← gs

1, which allows the simulator to decrypt
H0(pwd) from apk , and look up pwd from the random oracle queries. Further,
encryption is done under both public keys: y1 and the “unblinded” y2 = Y2 ·
H0(pwd)−1. This double encryption under the plain and derived key is crucial,
as it prevents an adversary A from providing a malformed apk∗ which would
allow A to still decrypt, but from which SIM cannot extract a password. Thus,
our “twin” key construction enforces that only a well-formed apk can lead to
decryptable ciphertexts (if the passwords match), without requiring heavy tools
such as zero-knowledge proofs.

For space-saving reasons the proof of the following theorem is relegated to
the full version of the paper. Functionalities FCRS and FRO are UC models for
resp. the CRS string and the RO hash functions we assume in this construction.

Theorem 3. Protocol PAPKE-FO in Fig. 3 securely realizes functionality
FPAPKE under the DDH assumption in group G in the FCRS,FRO-hybrid model.

Acknowledgments. Anja Lehmann was supported by the European Union’s Horizon
2020 research and innovation program under Grant Agreement No. 786725 (OLYM-
PUS). Tatiana Bradley, Stanislaw Jarecki, and Jiayu Xu were supported by the
NSF Cybersecurity Innovation for Cyberinfrastructure (CICI) Grant Award No. ACI-
1547435.

A Concrete PAPKE and PAKE Instantiation Example

Here we show particular instantiations of some of our results, a PAPKE scheme
PAPKE-IC-DHIES and a PAKE protocol PAKE-IC-DHIES. PAPKE-IC-DHIES is a
particular instantiation of the generic PAPKE-IC scheme of Sect. 4.1 based on
the DHIES∗ PKE by Abdalla et al. [1], and protocol PAKE-IC-DHIES is derived
via the PAPKE-2-PAKE compiler of Sect. 3 applied to PAPKE-IC-DHIES.

Concrete Instantiation of PAPKE-IC Using DHIES. In Sect. 4.1 we show a
generic UC-secure PAPKE scheme that relies on an ideal cipher and a public-key
encryption scheme that is both AI-CCA and SROB-CCA-secure. Abdalla et al. [1]
show that these properties can be realized by DHIES∗, a simple modification of
DHIES [2] which excludes zero randomness at encryption, i.e., samples r from

Password-Authenticated Public-Key Encryption 459

Fig. 4. Concrete PAPKE instantiation PAPKE-IC-DHIES.

Z
∗
p instead of Zp, and rejects ciphertexts that have 1 as first component. We

specify DHIES∗ below relying on authenticated encryption AE, a hash function
H and a cyclic group (G, p, g) of prime order p. Scheme PAPKE-IC-DHIES in
Fig. 4 is a (semi) concrete instantiation of PAPKE-IC using DHIES∗, which uses
2 exponentiations for encryption and 1 for decryption, as well as an ideal cipher
over group G and hashing onto G.

DHIES∗.KGen(κ): x ←R Zp, y ← gx, set pk ← y, sk ← x and return (pk , sk)
DHIES∗.Enc(pk,m): parse pk = y, get r ←R Z

∗
p, k ← H(yr), c1 ← gr, c2 ←

AE.Enc(k,m) and return c = (c1, c2).
DHIES∗.Dec(sk, c): parse c = (c1, c2) and sk = x, get k ← H(cx

1). If c1 = 1
output m ← ⊥ and m ← AE.Dec(k, c2) else.

Concrete PAKE Protocols. We specify an example of a concrete UC PAKE
instantiation obtained by applying the generic PAPKE-2-PAKE compiler shown
in Fig. 1 to the PAPKE scheme PAPKE-IC-DHIES shown in Fig. 4. In [12] we also
specify PAKE protocol PAKE-FO implied by our second PAPKE construction,
PAPKE-FO of Fig. 3. To the best of our knowledge, these are the first two-round
UC-secure PAKE’s which rely on standard groups, i.e. no bilinear maps, but
resort to the IC and/or ROM model to achieve practical efficiency. Concretely,
PAKE-IC-DHIES uses from 2 exponentiations per party and PAKE-FO uses 4
(multi-)exponentiations for one party and 2 for the other. This almost matches
the efficiency and assumptions used by two-round PAKE’s which were shown
secure under only game-based security notions, e.g. [4,7,11], and it reduces from
3 to 2 the rounds of previously known UC PAKE secure under comparable
assumptions of Abdalla et al. [3].

Protocol PAKE-IC-DHIES shown in Fig. 5 requires the same setup as the
PAPKE scheme PAPKE-IC-DHIES in Fig. 4, i.e. G is a cyclic group of prime

460 T. Bradley et al.

order p with generator g, IC = (IC.Enc, IC.Dec) is an ideal cipher over group G

with key space {0, 1}∗, AE = (AE.Enc,AE.Dec) is an authenticated encryption
with key space {0, 1}κ, and H : G → {0, 1}κ is a collision-resistant hash. The
following security statement for PAKE-IC-DHIES follows from Theorems 1, 2, and
the security properties of DHIES∗ [1]:

Corollary 1. The PAKE-IC-DHIES scheme described in Fig. 5 securely realizes
FPAKE in the FCRS,FIC-hybrid model if the Oracle-Diffie-Hellman assumption is
hard for G, H is a collision-resistant hash, and AE is a secure, strongly unforge-
able and collision-resistant authenticated encryption scheme.

Fig. 5. Two-round PAKE protocol PAKE-IC-DHIES.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. Cryptology ePrint
Archive, Report 2008/440 (2008). http://eprint.iacr.org/2008/440

2. Abdalla, M., Bellare, M., Rogaway, P.: The oracle diffie-hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 12

3. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party
password-based key exchange protocols in the UC framework. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 335–351. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79263-5 22

4. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 14

5. Abu-Salma, R., Sasse, M.A., Bonneau, J., Danilova, A., Naiakshina, A., Smith,
M.: Obstacles to the adoption of secure communication tools. In: 2017 IEEE Sym-
posium on Security and Privacy, pp. 137–153. IEEE Computer Society Press, May
2017

http://eprint.iacr.org/2008/440
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-540-79263-5_22
https://doi.org/10.1007/978-3-540-79263-5_22
https://doi.org/10.1007/978-3-540-30574-3_14

Password-Authenticated Public-Key Encryption 461

6. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

7. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

8. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, pp. 72–84. IEEE Computer Society Press, May 1992

9. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013, pp. 967–980. ACM Press, November 2013

10. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45760-7 9

11. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

12. Bradley, T., Camenisch, J., Jarecki, S., Lehmann, A., Neven, G., Xu, J.: Password-
authenticated public key encryption. Cryptology ePrint Archive, Report 2019/199
(2019). http://eprint.iacr.org/2019/199

13. Burr, W.E., et al.: Electronic Authentication Guideline. NIST Special Publication,
Gaithersburg (2011)

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

15. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

16. Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 4

17. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

18. Guardian: Whatsapp design feature means some encrypted messages could be
read by third party (2017). https://www.theguardian.com/technology/2017/jan/
13/whatsapp-design-feature-encrypted-messages/

19. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.)
43rd ACM STOC, pp. 89–98. ACM Press, June 2011

20. Huima, A.: The Bubble Babble binary data encoding (2000). http://web.mit.edu/
kenta/www/one/bubblebabble/spec/jrtrjwzi/draft-huima-01.txt/

21. Jutla, C.S., Roy, A.: Dual-system simulation-soundness with applications to UC-
PAKE and more. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 630–655. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 26

https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
http://eprint.iacr.org/2019/199
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/3-540-48405-1_34
https://www.theguardian.com/technology/2017/jan/13/whatsapp-design-feature-encrypted-messages/
https://www.theguardian.com/technology/2017/jan/13/whatsapp-design-feature-encrypted-messages/
http://web.mit.edu/kenta/www/one/bubblebabble/spec/jrtrjwzi/draft-huima-01.txt/
http://web.mit.edu/kenta/www/one/bubblebabble/spec/jrtrjwzi/draft-huima-01.txt/
https://doi.org/10.1007/978-3-662-48797-6_26
https://doi.org/10.1007/978-3-662-48797-6_26

462 T. Bradley et al.

22. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. J. Cryptology 26(4), 714–743 (2013)

23. OpenSSH 5.1 release announcement (2008). https://www.openssh.com/txt/
release-5.1/

24. Rivest, R.L., Lampson, B.: SDSI - a simple distributed security infrastructure
(1996). http://people.csail.mit.edu/rivest/sdsi10.html/

25. Tan, J., Bauer, L., Bonneau, J., Cranor, L.F., Thomas, J., Ur, B.: Can unicorns help
users compare crypto key fingerprints? In: Mark, G., et al. (eds.) CHI Conference
on Human Factors in Computing Systems, pp. 3787–3798. ACM (2017)

26. Tufekci, Z.: In response to guardian’s irresponsible reporting on whatsapp: a
plea for responsible and contextualized reporting on user security (2017). http://
technosociology.org/?page id=1687/

27. Unger, N., et al.: SoK: secure messaging. In: 2015 IEEE Symposium on Security
and Privacy, pp. 232–249. IEEE Computer Society Press, May 2015

28. WhatsApp encryption overview: technical white paper (2016). https://www.
whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf/

https://www.openssh.com/txt/release-5.1/
https://www.openssh.com/txt/release-5.1/
http://people.csail.mit.edu/rivest/sdsi10.html/
http://technosociology.org/?page_id=1687/
http://technosociology.org/?page_id=1687/
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf/
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf/

Theory of Cryptographic
Implementations

Public Immunization Against Complete
Subversion Without Random Oracles

Giuseppe Ateniese1, Danilo Francati1(B), Bernardo Magri2,
and Daniele Venturi3

1 Stevens Institute of Technology, Hoboken, NJ, USA
dfrancat@stevens.edu

2 Department of Computer Science, Aarhus University, Aarhus, Denmark
3 Department of Computer Science, Sapienza University of Rome, Rome, Italy

Abstract. We seek constructions of general-purpose immunizers that
take arbitrary cryptographic primitives, and transform them into ones
that withstand a powerful “malicious but proud” adversary, who
attempts to break security by possibly subverting the implementation
of all algorithms (including the immunizer itself!), while trying not to be
detected. This question is motivated by the recent evidence of crypto-
graphic schemes being intentionally weakened, or designed together with
hidden backdoors, e.g., with the scope of mass surveillance.

Our main result is a subversion-secure immunizer in the plain model
(assuming collision-resistant hashing), that works for a fairly large class
of deterministic primitives, i.e., cryptoschemes where a secret (but tam-
perable) random source is used to generate the keys and the public param-
eters, whereas all other algorithms are deterministic. The immunizer
relies on an additional independent source of public randomness, which
is used to sample a public seed. While the public source is untamperable,
the subversion of all other algorithms is allowed to depend on it.

Previous work in the area only obtained subversion-secure immuniza-
tion for very restricted classes of primitives, often in weaker models of
subversion and relying on random oracles, or by leveraging a higher num-
ber of independent random sources.

1 Introduction

A common trend in modern cryptography is to design cryptographic schemes
that come with a proof of security in a well-defined model. The proof is typically
by reduction, meaning that violating the security of the scheme implies the
existence of an efficient algorithm for solving some well-studied mathematical
problem which is believed to be hard (e.g., factoring certain integers, or inverting
a one-way function). While having such a security proof is a desirable feature,
it is at least as important to make sure that the security model fits reality, as
otherwise provably secure schemes are of little use in practice.

B. Magri—The author was supported by the Concordium Blockchain Research Center,
Aarhus University, Denmark.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 465–485, 2019.
https://doi.org/10.1007/978-3-030-21568-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_23

466 G. Ateniese et al.

Unfortunately, security models often make idealized assumptions that are not
always fulfilled in the real world. In this paper, we focus on one of those gaps,
which is the discrepancy between the specification of a cryptographic scheme
and its implementation. In particular, we consider the extreme case where the
implementation is fully adversarial, i.e., the adversary is allowed to subvert or
substitute some (or possibly all) algorithms in the original specification, with
the purpose of weakening security.

The above scenario recently gained momentum due to the NSA leaks by
Edward Snowden [3,18,21], and because of the EC DUAL PRG1 incident [9].
These hazards challenge modern cryptographers to design protection mecha-
nisms withstanding subversion and tampering, as it was also highlighted by Phil
Rogaway in his 2015 IACR Distinguished Lecture [22].

1.1 Background

To guarantee some form of security in such an adversarial setting, we must put
some restrictions on the adversary, as otherwise, it is easy to subvert a crypto-
graphic scheme in a way that becomes insecure (e.g., the subverted scheme could
always output the secret key). A natural restriction, which is also inspired by
real-world attacks, is to demand that subversion should be undetectable by hon-
est users. In other words, the adversary’s goal is to tamper with the specification
of a cryptographic scheme in such a way that the produced outputs appear indis-
tinguishable from that of a faithful implementation, yet they allow an adversary
to break security given some additional pieces of information altogether.

As it turns out, the possibility of such attacks was already uncovered more
than twenty years ago by Young and Yung [29,30], who dubbed the field kleptog-
raphy (a.k.a. “cryptography against cryptography”). At Crypto 2014, Bellare,
Paterson, and Rogaway [7] revisited this setting for the concrete case of symmet-
ric encryption. In particular, on the one hand, they showed that it is possible to
hide a backdoor in the encryption algorithm of any sufficiently randomized sym-
metric encryption scheme in such a way that the produced ciphertexts appear
indistinguishable from honestly computed ones, yet knowledge of the backdoor
allows the adversary to extract the secret key in full; on the other hand, they
suggested that deterministic symmetric encryption schemes are secure against
all subversion attacks that meet some form of undetectability. Their results were
later extended in several ways [6,10], while follow-up work studied similar ques-
tions for the case of digital signatures [1], pseudorandom generators [11,12], non-
interactive zero knowledge [5], key encapsulation [2], and hash functions [16,25].

Complete Subversion. A common feature of the works above is that only some of
the algorithms underlying a given cryptographic scheme are subject to subver-
sion, while the others are assumed to follow the original specification faithfully.

1 The PRG was standardized by NIST in 2006, and later withdrawn in 2014 as it
was including a potential backdoor allowing to predict future outputs of the PRG
algorithm.

Public Immunization Against Complete Subversion 467

Motivated by this limitation, Russell et al. [23] put forward a new framework
where the adversary is allowed to subvert all algorithms; furthermore, in order
to cast undetectability, they introduced a trusted third party, a so-called watch-
dog, whose goal is to test whether the (possibly subverted) implementation is
compliant with the original specification of a cryptographic scheme. In a nut-
shell, a primitive is subversion secure if there exists a universal watchdog such
that either no adversary subverting all algorithms can break the security of the
scheme, or, if instead, a subversion attack is successful, the watchdog can detect
it with non-negligible probability.

The testing procedure executed by the watchdog is typically performed only
once before the (possibly subverted) scheme is used “in the wild”. This is known
as the offline watchdog model. Unfortunately, there are subversion attacks that
cannot be detected in an offline fashion. Think, e.g., of a signature scheme where
the signature algorithm is identical to the original specification, except that upon
input of a special message (that is also hard-wired in the implementation) it
compromises security (e.g., it returns the secret key). Now, assuming that the
message space is large enough, an offline watchdog has a negligible chance of
hitting this hidden trigger, so that the subverted implementation will pass the
test phase; yet, the subverted scheme is clearly insecure (in the standard sense
of unforgeability against chosen-message attacks).

To cast such attacks, [23] introduces the online watchdog model, where the
watchdog is essentially allowed to additionally monitor the public interaction
between users while the scheme is being used “in the wild” (on top of performing
the same offline testing, as before).2

Cliptography. The main contribution of Russell et al. [23], apart from introduc-
ing the model of complete subversion, is to propose a methodology to clip the
power of subversion attacks against one-way (trapdoor) permutations. More-
over, they show how to rely on such subversion-secure one-way permutations
to derive subversion-secure pseudorandom generators and digital signatures. All
their results are in the random oracle model (ROM) of Bellare and Rogaway [8].

In a follow-up paper [24], the same authors show how to obtain public-key
chosen-plaintext attack secure encryption resisting complete subversion, again in
the ROM. This result (inherently) requires the assumption of two independent
secret, but tamperable, sources of randomness. They further show that their
construction can be instantiated in the standard model (i.e., without random
oracles) assuming a super-constant number of independent sources.

Open Questions. The works of [23,24] only cover a limited set of cryptographic
primitives. Furthermore, the assumption of having a large number of independent
sources is quite a strong one in practice [28]. Hence, the natural question:

2 One can imagine even more powerful watchdogs monitoring public transcripts while
being given the user’s secret keys; these are known as omniscent watchdogs, but will
not be considered in this paper.

468 G. Ateniese et al.

Is it possible to protect other primitives against complete subversion, by
relying on a single source of secret, but tamperable, randomness, and with-
out assuming random oracles?

1.2 Our Contributions

In this paper, we make significant progress towards answering the above question.
Our starting point is a notion of subversion-resistant immunizer Ψ , whose goal is
to take an arbitrary primitive Π that is secure w.r.t. some game G, and transform
it into an immunized primitive Π∗ = Ψ(Π) (for the same cryptographic task)
that is secure w.r.t. G under complete subversion (in the sense of [23]). The
immunizer leverages two independent random sources, which we denote by R
and S: The source R is an m-bit source which is assumed to be secret, but
tamperable; the source S is an �-bit source which is assumed to be public but
untamperable. The subversion ˜Π is allowed to depend on the seed s sampled
from S and used by the immunized cryptosystem (i.e., first s is sampled and
made public, and then the adversary subverts Π∗).

Next, we show how to construct a subversion-secure immunizer tailored to
protect deterministic primitives Π (secure w.r.t. some game G), where the latter
means that the original specification of Π consists of a secret random m-bit
source R that is sampled in order to generate the public/secret keys of the
scheme (via an algorithm K), and the public parameters (via an algorithm P),
whereas every other algorithm Fi underlying Π is deterministic. Our immunizer
can be instantiated using any collision-resistant hash function, but for certain
primitives Π two additional properties are required (more on this later).

Interestingly, our results allow us to protect new cryptographic primitives
against complete subversion; examples include: (weak) pseudorandom func-
tions and permutations, message authentication codes, collision/second pre-
image/pre-image resistant hash functions, deterministic symmetric encryption,
and more. Previously to our work, for the primitives mentioned above, it was
only known how to obtain security in weaker models of subversion, or with ran-
dom oracles. We refer the reader to Table 1 for a comparison of our results with
state-of-the-art research in the area.

1.3 Techniques

We turn to a high-level description of the techniques behind our results. Let
Π = (P,K,R,F1, . . . ,FN) be a deterministic cryptographic scheme. As explained
above, algorithms P and K are responsible to generate, respectively, global public
parameters ρ and a public/secret key pair (pk, sk) that are taken as input by all
other algorithms Fi.3 Importantly, all algorithms are deterministic, except for
P and K which further take as input independent random coins r ∈ {0, 1}m

generated by sampling a secret, uniformly random, source R.

3 The string pk might be empty for secret-key primitives.

Public Immunization Against Complete Subversion 469

Table 1. Comparing our constructions with other results for security under subver-
sion. We use the following abbreviations: “Pub” for public, “Sec” for secret, “CPA-
SKE/CPA-PKE” for public/secret-key encryption under chosen-plaintext attacks,
“PRG” for pseudorandom generator, “OWF/TDF” for one-way (trapdoor) func-
tion, “CRH” for collision-resistant hash function, “ROM” for random oracle model,
“∀ det-unp” for all deterministic primitives with security w.r.t. an unpredictability
game, “∀ det-ind2” for all deterministic primitives with square security w.r.t. an indis-
tinguishability game. The value δ is a small constant. The green color means the source
is assumed to be untamperable.

Our immunization strategy follows the design principle of “decomposition
and trusted amalgamation” introduced in [24], by means of hash functions
hs1 , hs2 : {0, 1}n → {0, 1}m with seeds s1, s2 sampled independently from a pub-
lic source S. More in details, we take 2k def= 2n/m samples r11, . . . , r

1
k and r21, . . . , r

2
k

from the (possibly subverted) source R, and then we hash the amalgamated
strings r1

def= r11|| · · · ||r1k and r2
def= r21|| · · · ||r2k, respectively, using seeds s1 and s2.

Finally, the immunized parameter generation algorithm P∗ runs P(1λ;hs1(r1)),
whereas the immunized key generation algorithm K∗ runs K(1λ;hs2(r2)); the
algorithms (Fi)i∈N are not modified.

Intuitively, the above immunizer tries to sanitize the randomness used for
parameters/keys generation in such a way that it is harder for an adversary to
generate such values together with a backdoor. We stress that the trick of hashing
the random coins for key generation was introduced by [23], although there it
was applied only to immunize trapdoor permutations in the ROM, whereas we
generalize their approach in such a way that it can be applied to a large class of
deterministic primitives (as defined above) in the plain model.

Input Constrained/Unconstrained Games. Recall that for some primitives it is
inherently impossible to obtain subversion security in the offline watchdog model.
Hence, in our analysis of the above immunizer, we identify a natural property of
cryptographic games which allows us to prove security in the offline watchdog
model; for games not satisfying this property we instead obtain security in the
online watchdog model.

More in details, a game G for some primitive Π consists of an interaction
between an adversary A and a challenger C, where C is given oracle access to

470 G. Ateniese et al.

the algorithms underlying Π in order to answer queries from A, and determine
whether A wins the game or not. We call G input constrained, if the inputs
xi upon which each (deterministic) algorithm Fi is queried during the game
are sampled by C via some public distribution Di that is independent of the
adversary. On the other hand, a game that is not input constrained is called
input unconstrained. Examples of input-constrained games G include, e.g., the
standard security games for weak pseudorandom functions and one-way permu-
tations. See Sect. 2.2 for more examples.

Security Proof. We prove security of the above immunizer assuming the hash
functions hs1 , hs2 are min-entropy condensers for seed-dependent sources. Intu-
itively, this means that given a uniform �-bit seed s and an n-bit input x com-
ing from a possibly adversarial (but efficiently sampleable) source which might
depend on s, and with min-entropy at least k, the output hs(x) is an m-bit string
whose distribution is computationally close to that of an efficiently sampleable
source Y with min-entropy at least m − d. Such condensers were constructed by
Dodis et al. [14] using sufficiently strong collision-resistant hash functions.

Fix some primitive Π with input-constrained game G. Let us start with
the original subversion game, where first the seeds s1, s2 are sampled (from the
untamperable public source S) and given to the adversary. Then, the attacker
specifies a subversion ˜Π for the immunized cryptosystem; hence, the adversary
interacts with the challenger, which first samples random strings r1 = r11|| · · · ||r1k
and r2 = r21|| · · · ||r2k, using the subverted source ˜R as explained above, and
then plays the game G for Π, given oracle access to the subverted algorithms
˜P, ˜K, (˜Fi)i∈[N]. By contradiction, assume that there is an adversary A that wins
the subversion game, but for which no watchdog W can detect the subversion.
We then proceed with a sequence of hybrids, as outlined below:

1. In the 1st hybrid, we replace algorithms ˜K, ˜P, and ˜Fi, with their gen-
uine immunized implementation K∗(1λ; ·) = K(1λ;hs1(·)), P∗(1λ; ·) =
P(1λ;hs2(·)), and (F∗

i)i∈[N] = (Fi)i∈[N]. One can show that any distinguisher
between the original game and this hybrid can be turned into an efficient
offline watchdog W detecting the subversion of A. Thus, the two experiments
are computationally close.

2. In the 2nd hybrid, we now generate the public parameters and the keys by
running P(1λ; y1) and K(1λ; y2), where y1, y2 come from the source Y guar-
anteed by the condenser. To argue indistinguishability, assume for simplicity
that the subverted source ˜R is stateless.4 First, we show that ˜R has a non-
trivial amount of min-entropy, as otherwise, it is again possible to construct a
watchdog W that detects subversion. Second, we argue that since ˜R is stateless
and efficiently sampleable, the strings r1 = r11|| · · · ||r1k and r2 = r21|| · · · ||r2k
have min-entropy at least k, so that indistinguishability of the two experi-
ments follows by security of the min-entropy condenser. Note that the last

4 The case of stateful subversion can be reduced to that of stateless subversion if we
assume that watchdogs are allowed to reset the state of a tested implementation, a
trick due to [23].

Public Immunization Against Complete Subversion 471

step is possible because the public random source S is untamperable, and
moreover, the subverted random source ˜R has non-trivial min-entropy even
conditioned on s1, s2 sampled from S.

3. Finally, in order to conclude the proof, we exploit the framework of “overcom-
ing weak expectations” by Dodis and Yu [15], who established that for a large
class of primitives5 there is a natural trade-off between concrete security and
the capacity to withstand a certain entropy deficiency d on the distribution
of the key A technical challenge here comes from the fact that this framework
only applies to cryptosystems Π where the secret key is uniformly random
(and moreover there are no public parameters, or those are generated using
uniform randomness). However, we show a similar tradeoff still holds for our
specific setting, at least for single-instance games where the original random
source R is sampled only twice (one for generating the public parameters, and
one for sampling the keys).6

1.4 Comparison with Russell et al. [23,24]

The trick of splitting a cryptographic algorithm into several sub-components (as
we do for P,K,R) was originally introduced in [23], and later refined in [24],
under the name of “split-program” methodology. Remarkably, [24] shows that
for semantically-secure public-key encryption (an inherently randomized primi-
tive) de-coupling the encryption algorithm in a randomized component R (for
generating the random coins) and a deterministic component Enc (for computing
the ciphertext) is not sufficient to defeat kleptographic attacks. For this reason,
they propose a “double-splitting” technique where R is further split into two
(tamperable) components R1,R2. In this perspective, our immunization strategy
can be thought of as a form of “double splitting”, where one of the two sources
is assumed to be untamperable but made public.

The fact that subversion-secure immunization in the offline watchdog model
only works for input-constrained games is reminiscent of a general observation
made in [23] stating that an offline watchdog can always detect the subversion of
deterministic algorithms with public input distributions (see [23, Lemma 2.3]).

Finally, we would like to stress that our work only covers immunization
against complete subversion in the form of algorithm-substitution attacks. In
particular, the adversary always specifies an algorithm ˜P that is used for sam-
pling the public parameters during the security game. Hence, our immunizers
do not provide any guarantee in the “adversarially chosen parameters model”
considered in [11,12,16,23] (where the adversaries specify the malicious public
parameters directly).

5 In particular, the result of [15] applies to all unpredictability primitives, and all
indistinguishability primitives meeting so-called square security.

6 Hence, our results do not cover, e.g., multi-instance games where several public
parameters and keys might be generated.

472 G. Ateniese et al.

1.5 Further Related Work

The original attacks in the kleptographic setting extended previous work on sub-
liminal channels by Simmons [26,27]. This research is also intimately connected
to the problem of steganography, whose goal in the context of secret communi-
cation is to hide the mere fact that messages are being exchanged [19].

Dodis et al. [12], study different immunization strategies for backdoored pseu-
dorandom generators. While they do not consider complete subversion, as the
immunizer and the PRG algorithm are assumed to be trusted, they deal with
the case where a cryptographic scheme might be subverted “by design” (e.g.,
because it is standardized with maliciously generated public parameters).

Another line of work suggests defeating subversion attacks employing a cryp-
tographic reverse firewall [1,13,20]. Such a firewall is used to re-randomize the
incoming/outgoing messages of a potentially subverted primitive. The firewall
itself is assumed to be trusted, and moreover, it relies on a secret, and untamper-
able, random source. Yet another approach consists of designing self-guarding
schemes [17], which allow us to defeat subversion without relying on external par-
ties (such as watchdogs or reverse firewalls), at the price of assuming a secure
initialization phase where the primitive to protect was not under subversion.

2 Preliminaries

2.1 Notation

We use the notation [n] def= {1, . . . , n}. Capital letters (such as X) are used to
denote random variables, caligraphic letters (such as X) to denote sets, and sans
serif letters (such as A) to denote algorithms. All algorithms in this paper are
modelled as (possibly interactive) Turing machines.

For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X | represents
the number of elements in X . When x is chosen randomly in X , we write x ← X .
If A is an algorithm, we write y ← A(x) to denote a run of A on input x and
output y; if A is randomized, then y is a random variable and A(x; r) denotes a
run of A on input x and (uniform) randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in a polynomial number of steps (in the size
of the input). We denote the expected value of a random variable X as E[X].

Negligible Functions. Throughout the paper, we denote by λ ∈ N the secu-
rity parameter. A function ν : N → [0, 1] is called negligible in the security
parameter λ if it vanishes faster than the inverse of any polynomial in λ, i.e.
ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We sometimes write negl(λ)
(resp., poly(λ)) to denote all negligiblie functions (resp., polynomial functions)
in the security parameter.

Public Immunization Against Complete Subversion 473

Unpredictability and Indistinguishability. The min-entropy of a random variable
X ∈ X is H∞(X) def= − log maxx∈X P [X = x], and intuitively it measures the
best chance to predict X (by a computationally unbounded algorithm). For
conditional distributions, unpredictability is measured by the conditional average
min-entropy ˜H∞(X|Y) def= − logEy

[

2−H∞(X|Y =y)
]

.
The statistical distance between two random variables X ∈ X and Y ∈ Y, is

defined as SD(X ;Y) def= 1
2

∑

v∈X∪Y |P [X = v] − P [Y = v]|. Let X = {Xλ}λ∈N

and Y = {Yλ}λ∈N be two ensembles of random variables. We say that X
and Y are statistically indistinguishable, denoted X ≈s Y , as a shortening
for SD(Xλ;Yλ) ∈ negl(λ). Similarly, we say that X and Y are computationally
indistinguishable, denoted X ≈c Y , if for all PPT distinguishers D we have
ΔD(Xλ;Yλ) ∈ negl(λ), where

ΔD(Xλ;Yλ) def=
∣

∣P
[

D(1λ,Xλ) = 1
] − P

[

D(1λ,Yλ) = 1
]∣

∣ .

An ensemble X = {Xλ}λ∈N is efficiently sampleable if there exists a PPT
algorithm X such that, for each λ ∈ N, the output of X(1λ) is distributed iden-
tically to Xλ.

2.2 Abstract Games

In this work, we deal with abstract cryptographic schemes. Usually, a crypto-
graphic scheme is just a sequence of (possibly randomized) efficient algorithms.
However, for our purpose, it will be convenient to specify two special algorithms
which are common to any cryptographic scheme; those are the algorithms for
generating the public/secret keys and the public parameters (if any). Moreover,
our focus will be on deterministic schemes (see below).

In this vein, a deterministic cryptographic scheme is a sequence of efficient
algorithms Π

def= (P,K,R,F1, . . . ,FN), where:

– P is a deterministic algorithm that upon input the security parameter 1λ, and
random coins r ∈ R, outputs public parameters ρ ∈ P;

– K is a deterministic algorithm that upon input the security parameter 1λ,
and random coins r ∈ R,7 outputs a pair of keys (pk, sk) ∈ PK × SK;

– The random coins for (P,K) are obtained via independent calls to algorithm
R, which outputs a uniformly random string r ∈ R upon each invocation.

– For each i ∈ [N], algorithm Fi : Xi → Yi is deterministic.

We stress that the above syntax is meant to capture both secret-key and
public-key primitives; in the former case the public key is simply equal to the
empty string pk = ε, and PK = ∅. Further, without loss of generality, we assume
that all algorithms F1, . . . ,FN take as input both ρ and (pk, sk); the key gener-
ation algorithm also receives ρ as additional input.

7 We assume the amount of randomness to generate the public parameters and the
keys is the same; a generalization is straightforward.

474 G. Ateniese et al.

Typically, a cryptographic scheme must meet two properties. The first is a
correctness requirement, which essentially says that Π correctly implements the
desired functionality;8 although we will not define correctness in general, we will
later assume Π meets some well-defined correctness property. The second is a
security requirement, which we model as an interactive process (a.k.a. game)
between an adversary and a challenger.

Definition 1 (Cryptographic game). A cryptographic game G def= (C, γ) is
defined by a challenger C and a constant γ ∈ [0, 1); the game is (implicitly)
parametrized by a cryptographic scheme Π = (P,K,R,F1, . . . ,FN), an adversary
A, and the security parameter λ ∈ N. In an execution of the game the (efficient)
challenger C(1λ) interacts with the (efficient) adversary A(1λ), and at the end
the challenger outputs a decision bit d ∈ {0, 1}. We denote the output of the game
as d ← 〈A(1λ),CP,K,R,(Fi)i∈[N](1λ)〉; we sometimes also write (d, τ) ← (A(1λ) �
CP,K,R,(Fi)i∈[N](1λ)) for a transcript of the interaction between the adversary and
the challenger, CΠ as a shorthand for CP,K,R,(Fi)i∈[N] , and GΠ,A,C for the random
variable corresponding to an execution of game G with scheme Π, adversary A,
and challenger C.

We say that Π is (t, ε)-secure w.r.t. game G = (C, γ) if the following holds:
For all probabilistic attackers A running in time t we have

∣

∣

∣P

[

d = 1 : d ← 〈A(1λ),CP,K,R,(Fi)i∈[N](1λ)〉
]

− γ
∣

∣

∣ ≤ ε.

Moreover, whenever for all t ∈ poly(λ) there exists ε ∈ negl(λ) such that Π is
(t, ε)-secure w.r.t. game G, we simply say that Π is secure w.r.t. game G.

Input-Constrained Games. An important distinction will be whether the adver-
sary is allowed or not to choose the inputs for the oracle calls made by the chal-
lenger. We call games where the latter is not possible input-constrained games.

Definition 2 (Input-constrained games). Let Π = (P,K,R,F1, . . . ,FN) be
a cryptographic scheme, and G = (C, γ) be a security game for Π. We call G
input constrained if the following holds: For each i ∈ [N], there exists a public
and efficiently samplable distribution Di, such that the challenger chooses the
inputs to each oracle Fi by sampling a fresh and independent value from Di.

In contrast, games where the above property is not met are called input uncon-
strained. We provide a few clarifying examples below.

One-Way Functions: A one-way function (OWF) is a cryptographic scheme
Π = (P,R,OWF) where N = 1, and OWF : X → Y is a function. Security
of Π is characterized by a game Gowf = (Cowf , 0) defined as follows: (i)
Cowf picks ρ = P(1λ; r) (for uniform r ← R(1λ)), samples x ← X , computes

8 For instance, if Π is a signature scheme, correctness demands that honestly computed
signatures (w.r.t. a valid secret key) always verify correctly (w.r.t. the corresponding
public key).

Public Immunization Against Complete Subversion 475

y = OWF(1λ, ρ, x), and sends (ρ, y) to the adversary; (ii) A wins iff it returns
a values x′ ∈ X such that OWF(1λ, ρ, x′) = y. Notice that Cowf needs to
invoke oracle OWF upon input x′ in order to determine the decision bit d,
and thus the game is input unconstrained.

One-Way Permutations: A one-way permutation (OWP) is a cryptographic
scheme Π = (P,R,OWP) where N = 1, and OWP : X → X is a permuta-
tion. Security of Π is characterized by a game Gowp = (Cowp, 0) defined as
follows: (i) Cowp picks ρ = P(1λ; r) (for uniform r ← R(1λ)), samples x ← X ,
computes y = OWP(1λ, ρ, x), and sends (ρ, y) to the adversary; (ii) A wins iff
it returns a value x′ ∈ X such that x′ = x. Notice that Cowp does not need
to make any oracle call in order to determine the decision bit d, and thus the
game is input constrained with public distribution D equal to the uniform
distribution over the domain X .

(Weak) Pseudorandom Functions: A pseudorandom function (PRF) is a
cryptographic scheme Π = (P,R,R,PRF) where N = 1, and PRF : K × X →
Y is a keyed function. Security of Π is characterized by a game Gprf =
(Cprf , 1/2) defined as follows: (i) Cprf samples a bit b ← {0, 1}, picks ρ =
P(1λ; r1) and κ = K(1λ, ρ; r2) (where r1, r2 ← R(1λ)), and sends ρ to the
adversary; (ii) A can ask queries of the form x ∈ X , upon which Cprf either
replies with y = PRF(κ, x) (in case b = 0) or y ← Y (in case b = 1); (iii) A
returns a bit b′ and wins iff b = b′. Notice that Cprf needs to invoke oracle
PRF upon inputs specified by the adversary, and thus the game is input
unconstrained.
For weak PRFs the game is changed as follows: In step (ii) the queries made
by the adversary are empty, and instead Cprf samples x ← X and returns
(x, y), where y is computed as before. Hence, the game is constrained with
public distribution equal to the uniform distribution over X .

Hash Functions: A cryptographic hash function is a cryptographic scheme
Π = (P,R,Hash) where N = 1, and Hash : X → Y is a (typically compressing)
function. Security of Π is characterized by a game Gcr = (Ccr, 0) defined as
follows: (i) Ccr picks ρ = P(1λ; r) (for uniform r ← R(1λ)), and sends ρ to
the adversary; (ii) A wins iff it returns a pair of values (x, x′) ∈ X 2 such that
Hash(1λ, ρ, x) = Hash(1λ, ρ, x′) and x
= x′. Notice that Ccr needs to invoke
oracle Hash upon input x, x′ in order to determine the decision bit d, and
thus the game is input unconstrained.

Secret-Key Encryption: A deterministic secret-key encryption scheme is a
cryptographic scheme Π = (P,K,R,Enc,Dec) where N = 2. The (deter-
ministic) encryption algorithm takes as input the secret key κ ∈ K and
a message m ∈ M, and outputs a ciphertext c ∈ C. The (deterministic)
decryption algorithm takes as input the secret key κ ∈ K and a cipher-
text c ∈ C, and outputs a message m ∈ M (or an error symbol). Secu-
rity of a deterministic encryption scheme is characterized, e.g., by a game
Gcca-ske = (Ccca-ske, 1/2) specified as follows: (i) Ccca-ske picks ρ = P(1λ; r1)
and κ = K(1λ, ρ; r2) (where r1, r2 ← R(1λ)), and sends ρ to the adversary;
(ii) A can specify encryption queries: Upon input a message m ∈ M, the

476 G. Ateniese et al.

challenger returns c = Enc(1λ, κ,m); (iii) A can specify decryption queries:
Upon input a ciphertext c ∈ C, the challenger returns m = Dec(1λ, κ, c);
(iv) A can specify a challenge query: Upon input (m∗

0,m
∗
1) ∈ M2, the chal-

lenger returns c∗ = Enc(1λ, κ,m∗
b) where b ← {0, 1} is a hidden bit; (v) A can

continue to specify encryption/decryption queries, with the restriction that
c∗ cannot be part of a decryption query; (vi) A returns a bit b′ and wins iff
b = b′. Notice that Ccca-ske needs to invoke oracles Enc,Dec in order to answer
encryption/decryption queries, and thus the game is input unconstrained.

Single-Instance Games. As mentioned in the introduction, our results only apply
to a sub-class of games where the random source R is sampled only twice, in order
to obtain the randomness needed for generating the public parameters and the
keys. We call such games single instance.

Definition 3 (Single-instance games). Let Π = (P,K,R,F1, . . . ,FN) be a
cryptographic scheme, and G = (C, γ) be a security game for Π. We call G
single instance if during a game execution the challenger invokes the oracle R
twice, in order to obtain coins r1, r2 that are later fed to oracles P,K.

3 Security Model

In this section, we consider a standard-model definition for subversion security,
via so-called immunizers. An immunizer is a transformation that takes as input a
cryptographic scheme (for some task) and transforms it into another scheme for
the same task that withstands complete subversion; the immunizer is allowed to
leverage a single source of public, but untamperable, randomness. Importantly,
we seek security in the standard model (i.e., without random oracles) and in a
setting where the immunizer itself is subject to subversion.

We first define our model formally, in Sect. 3.1, for the case of offline watch-
dogs. Then, in Sect. 3.2, we discuss some definitional choices and compare our
definitions with previous work in the area. In the full version, we explain how to
extend our framework to the case of online watchdogs.

3.1 Subversion-Secure Immunizers

Let Π = (P,K,R,F1, . . . ,FN) be a cryptographic scheme (as defined in Sect. 2.2),
where we assumed that R def= {0, 1}m (i.e., the source R is a random m-bit
source). An immunizer for Π is a transformation Ψ [H,S] parameterized by a
family of hash functions H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}� and a public
random source S over {0, 1}�. We write Π∗ def= Ψ(Π) def= (P∗,K∗,R∗,F∗

1, . . . ,F
∗
N)

for the specification of the immunized cryptosystem, where:

– R∗ ≡ R (i.e., the immunized scheme uses the same secret random source as
the original scheme);

– P∗ and K∗ take as input a seed s ∈ {0, 1}�, and have n-bit random tapes;

Public Immunization Against Complete Subversion 477

Fig. 1. Games defining subversion security of an immunizer Ψ [H,S], in the standard

model. We use the notation C
˜P(s,·),˜K(s,·),˜F1(s,·),...,˜FN (s,·)(1λ, r1, r2) to denote a run of the

challenger C with random coins r1, r2 (that will be used as input of algorithms ˜P, ˜K
during the game).

– (F∗
i)i∈N take as input a seed s ∈ {0, 1}� plus the same inputs as the corre-

sponding algorithm in Π;
– The seed s is obtained by sampling the public random source S (i.e., s ←

S(1λ)).

We require an immunizer Ψ to satisfy two properties. The first property is the
usual correctness requirement, meaning that the immunized primitive Π∗ meets
the same correctness condition as that of Π (for every possible choice of the seed
for the hash function). The second property is some flavor of security to subver-
sion attacks. More in details, the public source S is assumed to be untamperable
and uniform. The adversary A knows a description of the immunizer Ψ and of the
original primitive Π, and is allowed to choose ˜Π = (˜P, ˜K, ˜R, (˜Fi)i∈N) depending
on the actual seed s ∈ {0, 1}� that is sampled from the public source S during
a trusted setup phase (which might be run by an external party). Finally, the
adversary plays the security game for Π, where the challenger picks 2n/m := 2k
samples (r1i , r2i)i∈[k] from ˜R, amalgamates them into strings r1 = r11|| · · · ||r1k
and r2 = r21|| · · · ||r2k, and finally interacts with A given black-box access to
˜P(s, ·), ˜K(s, ·), ˜Fi(s, ·) (i.e., to the subversion specified by the adversary using
seed s ∈ {0, 1}�), where r1 and r2 are used as inputs for ˜P and ˜K, respec-
tively. Note that ˜Π is completely arbitrary, and thus all algorithms (including
the immunizer) are subject to subversion.

We define the advantage of adversary A in the subversion game with primitive
Π, immunizer Ψ , and challenger C as:

Advpub
Π,Ψ,A,C(λ) def=

∣

∣

∣P

[

Gpub
Π,Ψ,A,C(λ) = 1

]

− γ
∣

∣

∣ , (1)

where the game Gpub
Π,Ψ,A,C(λ) is depicted in Fig. 1, and the probability is taken

over the randomness of ˜S, ˜R,S,R, and over the coin tosses of A.

478 G. Ateniese et al.

Fig. 2. Description of the detection game of an immunizer Ψ [H,S] with offline (left)
and online (right) watchdogs, in the standard model. The auxiliary information aux is
taken from the subversion game (cf. Fig. 1).

Clearly, since the subverted cryptosystem ˜Π specified by the adversary is
completely arbitrary, it might be trivial to break security in the above setting.
(E.g., consider Π to be a signature scheme and the corresponding subversion to
have the signing algorithm return the signing key.) Hence, we need to restrict
the adversary in some way. Following previous work, we will consider the adver-
sary to be “malicious-but-proud” in the sense that in order to be successful a
subversion attack should also be undetectable by the honest user. The latter
is formalized by a detection game featuring an efficient algorithm, called the
watchdog, whose goal is to detect whether a subversion took place. In particu-
lar, given a description of the immunizer and the original scheme, the watchdog
has to distinguish the immunized cryptosystem Π∗ from the subversion ˜Π used
by the adversary in the subversion game. The detect advantage of watchdog W
is defined as:9

Advdet
Π,Ψ,W(λ) def=

∣

∣P
[

Gdet
Π,Ψ,W(λ, aux, 0) = 1

] − P
[

Gdet
Π,Ψ,W(λ, aux, 1) = 1

]∣

∣ , (2)

where the game Gdet
Π,Ψ,W(λ, aux, b) is depicted in Fig. 2, and the probability is

taken over the randomness of ˜S, ˜R,S,R, and over the coin tosses of W; the values
in the auxiliary information aux are taken from Gpub

Π,Ψ,A,C(λ). Similarly to pre-
vious work, we assume that W has rewinding black-box access to its oracles, a
feature required in order to detect stateful subversion [23, Remark 2.5].
We are now ready to define subversion security of an immunizer for the offline
watchdog.

9 Of course, we could also treat the detection game as an indistinguishability game
G = (C, γ), and thus define the detection advantage as a function of γ = 1/2.
However, we prefer the above formulation in order to be consistent with previous
work [23,24].

Public Immunization Against Complete Subversion 479

Definition 4 (Subversion-resistant immunizer). Let Π = (P,K,R,F1,
. . . ,FN) be a cryptographic scheme, and G = (C, γ) be a security game for
Π. For a constant c∗ ≥ 1, and a family of hash functions H = {hs : {0, 1}n →
{0, 1}m}s∈{0,1}� , we say that an immunizer Ψ [H,S] is (tA, tW, c∗, ε∗)-subversion-
resistant with an offline watchdog if the following holds: There exists a watchdog
W with running time tW such that for all adversaries A with running time tA for
which Advpub

Π,Ψ,A,C(λ) > ε∗, we have

Advdet
Π,Ψ,W(λ) ≥ 1

c∗ · Advpub
Π,Ψ,A,C(λ).

Moreover, for all s ∈ {0, 1}�, we require that the immunized cryptosystem
with seed s meets the same correctness requirement as that of Π.

Remark 1 (On subverting the immunizer). We stress that the subversion ˜Π
should be thought of as the subversion of the immunized cryptosystem Π∗ =
Ψ(Π). In particular, since the subversion is completely arbitrary, the latter means
that the adversary can tamper with (and, in fact, completely bypass) the immu-
nizer itself.

Remark 2 (On including the seed in the auxiliary information). Note that the
seed s sampled during the subversion game is part of the auxiliary information
aux, and later given as additional input to the watchdog in the detection game.

It is easy to see that the latter is necessary. Consider, for instance, a signature
scheme Π = (P,K,R,Sign,Vrfy), and let Π∗ = (P∗,K∗,R∗,Sign∗,Vrfy∗) = Ψ(Π)
be the immunized version of Π. Since the subversion ˜Π is allowed to depend on
the seed s, the adversary could instruct ˜K to output a fixed verification/signature
key pair (vk, sk), known to the adversary, whenever ˜K is run upon input s. Now,
if the watchdog W would not be given as input the actual seed s, the above
attack would be undetectable, as W has only a negligible chance of hitting the
seed s while sampling the source S.

3.2 Discussion

On rough terms, Definition 4 says the following. There exists a universal (effi-
cient) watchdog algorithm such that for any adversary that has advantage at
least ε∗ in the subversion game (cf. Eq. (1)), the probability that the watch-
dog detects the subversion (cf. Eq. (2)) is at least equal to the advantage of the
adversary in the subversion game divided by some positive constant c∗ ≥ 1.

We observe that there could be a substantial gap between the value of ε∗ and
the actual advantage of an adversary in the subversion game. In practice, we
would like to obtain Definition 4 for small ε∗, c∗, such that either the advantage
in the subversion game is smaller than ε∗, or the advantage in the detection
game has a similar magnitude as that in the subversion game (which might be
much larger than ε∗).

480 G. Ateniese et al.

Looking ahead, the choice to state security of immunizers in the style of con-
crete security will allow us to lower bound the level of unpredictability in the
subverted random source ˜R with a concrete (rather than asymptotic) value, a
feature that will be exploited by our immunizer. One might wonder why Def-
inition 4 considers only a single parameter ε∗, instead of having two distinct
parameters (i.e., one parameter, say ε∗, for the advantage of A in breaking the
scheme, and another parameter, say δ∗, for the advantage of W in detecting
a subversion). While this might seem like a natural way of phrasing concrete
security, it is problematic since such a definition conveys information about a
single point over the range of values ε∗, δ∗ ∈ [0, 1]. A similar issue was already
observed in [10], who also suggested the approach of relating the advantage in
the two games.

4 The Immunizer

4.1 Ingredients: Seed-Dependent Randomness Condensers

We recall the notion of seed-dependent randomness condenser [14]. Intuitively,
this corresponds to a family of hash functions indexed by an �-bit seed, and
mapping n into m bits. The security guarantee is that when the seed s is uniform,
and the input x comes from an adversarial, efficiently sampleable, source which
might depend on s, and with min-entropy at least k, the output of the hash
function has at least m − d bits of min-entropy, for deficiency parameter d ≥ 1.

Definition 5 (Seed-dependent condenser). Let G def= {gs : {0, 1}n →
{0, 1}m}s∈{0,1}� be a family of efficiently computable functions. We say that G
is a family of (k

n → m−d
m , t, ε)-seed-dependent condensers if for all probabilistic

adversaries A running in time t who take a seed s ← {0, 1}� and output (using
more coins) a distribution X ← A(s) of entropy ˜H∞(X|S) ≥ k, the joint distri-
bution (S , gS (X)) is ε-close to some (S ,Y), where ˜H∞(Y |S) ≥ m − d and S is
uniform over {0, 1}�.

4.2 Immunizer Description

We refer the reader to Fig. 3 for a formal description of our immunizer, where we
assumed that R def= {0, 1}m. Roughly, the immunizer sanitizes the random coins
used to generate the public parameters ρ and the public/secret keys (pk, sk)
by first sampling (r1i , r2i)i∈[k] ← R(1λ) and amalgamating r1 = r11|| · · · ||r1k and
r2 = r21|| · · · ||r2k, and then using, respectively, hs1(r1) and hs2(r2) as random
coins for P and K, where the seeds s1, s2 ∈ {0, 1}� are sampled using the public
source S. All other algorithms are unchanged.

Public Immunization Against Complete Subversion 481

Fig. 3. Description of our subversion-resistant immunizer; the seeds s1, s2 are sampled
from the public source S, and correspond to hash functions hs1 , hs2 ∈ H mapping n-bit
strings into m-bit strings.

4.3 Security Analysis

Here, we analyze the security of the immunizer described in Fig. 3. For input-
constrained games, we obtain the following result whose proof appears in the
full version. An analogous statement holds for input-unconstrained games, in
the online watchdog model.

Theorem 1. Let Π = (P,K,R,F1, . . . ,FN) be a deterministic cryptographic
scheme, with R = {0, 1}m, and consider any input-constrained, single-instance
game G = (C, γ) for Π. Then, for any n, c∗ > 4, the immunizer Ψ [G,S] of
Fig. 3 is (tA, tW, c∗, ε∗)-subversion-resistant with an offline watchdog, as long as
G def= {gs : {0, 1}n → {0, 1}m}s∈{0,1}� is a family of (k

n → m−d
m , tcond, εcond)-seed-

dependent condensers and Π is either (t, ε)-secure w.r.t. game G (in case of
unpredictability games) or (t, ε)-square-secure w.r.t. game G (in case of indis-
tinguishability games), for parameters tcond, t, tW ≈ tA, and

ε ≤
⎧

⎨

⎩

c∗−1
c∗ · ε∗

22d − 2εcond
22d if G is anunpredictability game

(

c∗−1
c∗ · ε∗ − 2εcond

)2

· 1
22d if G is an indistinguishability game.

Remark 3. Looking ahead, the reason for which Theorem1 does not work for all
deterministic primitives is that its proof crucially relies on the “overcoming weak
expectations” framework. In particular, for single-instance indistinguishability
games, this theorem requires square security, and it is well known that some
primitives such as pseudorandom generators and pseudorandom functions do
not have good square security [4,15].

Remark 4. The fact that our immunizer samples 2k times from the source R
does not contradict the assumption that G is a single-instance game, as the
latter condition only concerns the game G for the original primitive Π.

482 G. Ateniese et al.

One can also show that the limitation of Remark 3 is inherent, in the sense
that our immunizer is might be insecure for primitives that are not square
friendly. Take, for instance, any PRG Π = (R,K,PRG), where K(1λ; r) = r out-
puts directly a seed sampled from the secret source R, and PRG(1λ, r) stretches
the seed to a pseudorandom output. Let Π∗ = (R∗,K∗,PRG∗) = Ψ(Π) be the
immunized version of Π. Now, consider the attacker A(s) that plays the subver-
sion game by specifying the subversion ˜Π where:

– ˜K and ˜PRG are unchanged (i.e., ˜K ≡ K∗, and ˜PRG ≡ PRG∗);
– ˜R embeds a key κ for a pseudorandom function PRF with one-bit output, and

performs the following rejection-sampling procedure:
• Sample a random r;
• If PRF(1λ, κ, y) = 1, where PRG(hs(r)) = y, return r;
• Else, sample a fresh r and start again.

Intuitively, the above subversion allows A to win the subversion game by simply
checking whether PRF(1λ, κ, y) = 1, where y is the challenge. Moreover, this
attack is undetectable as a watchdog not knowing the key κ has a negligible
advantage in distinguishing ˜R from R∗ (by the security of the pseudorandom
function). Note that the above attack requires the adversary to choose the sub-
version depending on the seed.

Instantiating the Immunizer. When instantiating seed-dependent randomness
condensers with state-of-the-art constructions [14,15], we obtain the following
parameters.

Corollary 1. For any cryptographic primitive Π that is either (poly (λ) , ,
negl (λ))-secure (in case of unpredictability games) or (poly (λ) , negl (λ))-
square-secure (in case of indistinguishability games) w.r.t. an input-
constrained, single-instance game G, there exists an immunizer for Π that
is (poly(λ) , poly(λ) , 5, negl(λ))-subversion-resistant for the pub-model with an
offline watchdog, with parameters n,m, � ∈ ω(log(λ)).

Proof. By choosing t, tA, tW ∈ poly (λ), ε, ε∗ ∈ negl(λ), c∗ = 5, and setting
n ∈ ω(log(λ)) in Theorem 1, we need a family of seed-dependent randomness
condensers that achieves tcond ∈ poly(λ), εcond ∈ negl(λ), k ∈ ω(log(λ)), and
entropy deficiency d ∈ O(log(λ)).

Dodis, Ristenpart, and Vadhan [14] (see also [15]) have shown that any
(poly(λ) , poly(λ) /2m)-collision-resistant family of hash functions directly yields
such a family of condensers. The statement follows. �

5 Conclusions

We have shown how to immunize arbitrary deterministic cryptographic prim-
itives against complete subversion, meaning that the adversary is allowed to
tamper with all the underlying algorithms, and with the immunizer itself. In

Public Immunization Against Complete Subversion 483

the random oracle model, there is a simple immunizer that relies on a single
secret, but tamperable, source of randomness [23,24]. In the standard model,
instead, we need to assume an additional independent public, and in some case
untamperable, random source.

Open problems include, e.g., finding better immunizers, both in terms of com-
putational assumptions and/or the number of assumed trusted random sources.
Also, exploring alternative approaches to achieve subversion security in the plain
model for larger classes of cryptographic schemes (e.g., randomized ones), while
still relying on O(1) independent random sources, is an interesting direction for
future research.

References

1. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
CCS, pp. 364–375 (2015)

2. Auerbach, B., Bellare, M., Kiltz, E.: Public-key encryption resistant to parame-
ter subversion and its realization from efficiently-embeddable groups. In: Abdalla,
M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 348–377. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76578-5 12

3. Ball, J., Borger, J., Greenwald, G.: Revealed: how US and UK spy agencies defeat
internet privacy and security. Guardian Weekly, September 2013

4. Barak, B., et al.: Leftover hash lemma, revisited. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 1

5. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 26

6. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: CCS, pp. 1431–1440 (2015)

7. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS, pp. 62–73 (1993)

9. Checkoway, S., et al.: On the practical exploitability of dual EC in TLS implemen-
tations. In: USENIX Security Symposium, pp. 319–335 (2014)

10. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 28

11. Degabriele, J.P., Paterson, K.G., Schuldt, J.C.N., Woodage, J.: Backdoors in
pseudorandom number generators: possibility and impossibility results. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 403–
432. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 15

https://doi.org/10.1007/978-3-319-76578-5_12
https://doi.org/10.1007/978-3-642-22792-9_1
https://doi.org/10.1007/978-3-642-22792-9_1
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-53018-4_15

484 G. Ateniese et al.

12. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 5

13. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls - secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 13

14. Dodis, Y., Ristenpart, T., Vadhan, S.P.: Randomness condensers for efficiently
samplable, seed-dependent sources. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 618–635. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 35

15. Dodis, Y., Yu, Y.: Overcoming weak expectations. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 1–22. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36594-2 1

16. Fischlin, M., Janson, C., Mazaheri, S.: Backdoored hash functions: immunizing
HMAC and HKDF. In: IEEE Computer Security Foundations Symposium, pp.
105–118 (2018)

17. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks. In: IEEE Computer Security Foundations Symposium, pp.
76–90 (2018)

18. Greenwald, G.: No place to hide: Edward Snowden, the NSA, and the U.S. surveil-
lance state. Metropolitan Books, May 2014

19. Hopper, N.J., von Ahn, L., Langford, J.: Provably secure steganography. IEEE
Trans. Comput. 58(5), 662–676 (2009)

20. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

21. Perlroth, N., Larson, J., Shane, S.: N.S.A. able to foil basic safeguards of privacy
on web. The New York Times, September 2013

22. Rogaway, P.: The moral character of cryptographic work. IACR Cryptology ePrint
Archive 2015, 1162 (2015). http://eprint.iacr.org/2015/1162

23. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 2

24. Russell, A., Tang, Q., Yung, M., Zhou, H.: Generic semantic security against a
kleptographic adversary. In: ACM CCS, pp. 907–922 (2017)

25. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 241–
271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 9

26. Simmons, G.J.: The Prisoners’ problem and the subliminal channel. In: Chaum,
D. (ed.) Advances in Cryptology, pp. 51–67. Springer, Boston (1984). https://doi.
org/10.1007/978-1-4684-4730-9 5

27. Simmons, G.J.: The subliminal channel and digital signatures. In: Beth, T., Cot, N.,
Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 364–378. Springer,
Heidelberg (1985). https://doi.org/10.1007/3-540-39757-4 25

28. Trevisan, L., Vadhan, S.P.: Extracting randomness from samplable distributions.
In: FOCS, pp. 32–42 (2000)

https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/978-3-642-36594-2_1
https://doi.org/10.1007/978-3-642-36594-2_1
https://doi.org/10.1007/978-3-662-46803-6_22
http://eprint.iacr.org/2015/1162
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/978-1-4684-4730-9_5
https://doi.org/10.1007/978-1-4684-4730-9_5
https://doi.org/10.1007/3-540-39757-4_25

Public Immunization Against Complete Subversion 485

29. Young, A.L., Yung, M.: The dark side of “Black-Box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

30. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6

Strong Leakage and Tamper-Resilient
PKE from Refined Hash Proof System

Shi-Feng Sun1,3, Dawu Gu1(B), Man Ho Au2, Shuai Han1, Yu Yu1,
and Joseph Liu3

1 Shanghai Jiao Tong University, Shanghai, China
dwgu@sjtu.edu.cn

2 Hong Kong Polytechnic University, Hung Hom, China
3 Monash University, Melbourne, Australia

Abstract. We revisit the problem of constructing public key encryption
(PKE) secure against both key-leakage and tampering attacks. First,
we present an enhanced security against both kinds of attacks, namely
strong leakage and tamper-resilient chosen-ciphertext (sLTR-CCA) secu-
rity, which imposes only minimal restrictions on the adversary’s queries
and thus captures the capability of the adversary in a more reason-
able way. Then, we propose a generic paradigm achieving this security
on the basis of a refined hash proof system (HPS) called public-key-
malleable HPS . The paradigm can not only tolerate a large amount of
bounded key-leakage, but also resist an arbitrary polynomial of restricted
tampering attacks, even depending on the challenge phase. Moreover,
the paradigm with slight adaptations can also be proven sLTR-CCA
secure with respect to subexponentially hard auxiliary-input leakage. In
addition, we instantiate our paradigm under certain standard number-
theoretic assumptions, and thus, to our best knowledge, obtain the first
efficient PKE schemes possessing the strong bounded/auxiliary-input
leakage and tamper-resilient chosen-ciphertext security in the standard
model.

Keywords: Public key encryption · Hash proof system ·
Chosen-ciphertext security · Leakage attack · Tampering attack

1 Introduction

Traditionally, cryptographic algorithms are always proven secure under the
assumption that the randomness and secrets involved are completely hidden
from adversaries. In reality, however, various kinds of physical attacks demon-
strated that attackers usually managed to extract partial secret information by
observing the physical characteristics of executing cryptographic devices.

In recent years, motivated by the proliferation of key-leakage attacks such as
[24,30], a line of research usually called leakage-resilient cryptography [2,8,9,13,
16,29,33,34,36,37], was initiated with the purpose of designing provably secure

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 486–506, 2019.
https://doi.org/10.1007/978-3-030-21568-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_24

Strong Leakage and Tamper-Resilient PKE from Refined Hash Proof System 487

cryptographic primitives against adversaries that can obtain secret information
via such kind of attacks. Generally, key-leakage attacks are captured by a leakage
oracle, which enables the adversary to get partial secret information by specifying
an efficient leakage function chosen by himself, and the property of leakage-
resilience stipulates that the cryptographic primitives remain secure even for the
adversary that has access to the leakage oracle. Thus, some restrictions should
be imposed on the leakage functions, such that it is hard for the adversary to
recover the whole secret key. According to the constrains on leakage function
f , the main types of leakage we are interested in this work are (1) bounded-
memory leakage [1], where f is required to be efficiently computable and with
output length much less than |sk|, and (2) auxiliary-input leakage [14], where f is
stipulated to be sufficiently hard to invert for all efficient algorithms, but with no
limitation on its output. We note that the latter can be seen as a generalization
of the former, which captures a larger class of key-leakage attacks.

Although leakage-resilient cryptography provides a promising way for pro-
tecting against key-leakage attacks, they are still vulnerable to fault injection
and memory tampering attacks [6,22]. The theoretical treatment of such attacks
was initiated by Bellare et al. [4], and then a series of research [3,5,32,35,39,40]
was conducted for designing various provably secure cryptographic primitives
against this kind of attacks. Similarly, tampering attacks are captured by a fam-
ily of efficiently computable functions T : SK → SK, and the tamper-resilience
requires that the cryptographic primitives remain provably secure even for the
adversary that can learn partial secret information by observing the output of
cryptographic devices executed under a transformed secret state. Take a signa-
ture scheme as an example: the adversary given a target verification key vk can
observe the signatures of adaptively chosen messages under not only the original
secret key sk but also the related keys ft(sk), where ft is the tampering function
adaptively chosen by the adversary from T ; identical to the standard security,
the goal of the adversary is to produce a valid signature on a new message under
vk. Obviously, tamper-resilience implies the original standard security.

In light of the fact that physical attacks include key-leakage attacks as well as
tampering attacks in the real world, another concerned line of research—starting
from the seminal work of Kalai et al. [28]—aims at developing cryptographic
systems that resist both kinds of attacks. However, it is not an easy task to design
cryptographic algorithms resilient to both key-leakage and tampering attacks.
As far as we know, there are only few works [11,19–21,28,31,38] considering how
to realize leakage and tamper-resilience at the same time. More details about
these works will be given in the following section.

1.1 Related Works

In 2011, Kalai et al. [28] initiated the study of designing public key cryptosys-
tems resilient to both key-leakage and tampering attacks. With the support of
key-update mechanism, they presented a one-bit-message encryption scheme and
a digital signature scheme in the continuous tampering and leakage (CTL) model,

488 S.-F. Sun et al.

where the adversary is allowed to continuously issue leakage queries and tam-
pering queries. However, their encryption scheme is only chosen-plaintext attack
(CPA) secure, meaning that the adversary is not permitted to observe the effect
of tampering on the output of decryption oracle. In addition, they presented a
more efficient signature scheme without key-update algorithms in the so-called
continuous tampering and bounded leakage (CTBL) model by assuming the
existence of a protected self-destruct.

Following the above framework, Fujisaki et al. [21] further investigated how
to construct chosen-ciphertext attack (CCA) secure PKE in the CTL or CTBL
model. In particular, they showed that the encryption scheme in [34] can be
proven CCA secure against continuous tampering and bounded leakage attacks
(CTBL-CCA secure) under the self-destructive mechanism. Moreover, they pre-
sented a new PKE scheme with a key-update algorithm, which is proven CCA
secure against continuous tampering and leakage attacks (CTL-CCA secure).

Different from the previous approach, Damg̊ard et al. [11] introduced an
alternative path to achieve security against both key-leakage and tampering
attacks with neither self-destruction nor key-update mechanism. Note that, as
observed by Gennaro et al. [23], it is impossible to achieve security against any
polynomial number of arbitrary (and efficiently computable) tampering attacks
without making further assumptions (such as self-destruction). Therefore, they
imposed a restriction on the number of allowed tampering attempts made by the
adversary, and introduced the so-called bounded leakage and tampering (BLT)
model. To achieve security in this model, their main idea is to reduce tampering
to leakage. By this way, they could achieve tamper-resilience against arbitrary
key-relations, but disallowed the adversary to make any “post-challenge” tam-
pering attempts. Moreover, the tamper-resilience is realized at the heavy cost
of decreasing the amount of tolerated leakage. Following this attractive work,
Faonio et al. further [19] showed that the already existing signature scheme [13]
and encryption scheme [34] are proven secure in this model, thus giving the first
BLT secure signature without random oracle and the first BLT-CCA secure PKE
scheme avoiding non-interactive zero-knowledge proofs.

Recently, motivated by the feasibility of “post-challenge” tampering attacks,
[38] studied leakage and tamper-resilient CCA secure PKE from a distinct per-
spective, where they made a constraint on the type of tampering functions
(exactly non-arbitrary tampering attacks) instead of the number of tampering
attacks as in BLT model. Precisely, they introduced the leakage and tamper-
resilient (LTR) model, which is generally parameterized by a family T of tam-
pering functions and a class F of leakage functions. Apart from having access
to bounded-memory or auxiliary-input leakage, the adversary in this model
is also allowed to make any polynomial number of both “pre-challenge” and
“post-challenge” tampering queries. In contrast to previous models, the tamper-
ing functions in LTR model should be restricted instead of arbitrary efficiently
computable functions. Otherwise, there exists no (F , T)-LTR secure encryption
schemes, since it is impossible to realize security against arbitrary post-challenge
tampering as proven in [11,23]. Moreover, they proposed a generic construction

Strong Leakage and Tamper-Resilient PKE from Refined Hash Proof System 489

of pubic key encryption based on the newly introduced (key-homomorphic) HPS
and showed its LTR-CCA security in the standard model.

Another relevant line of research is to protect cryptosystems against phys-
ical attacks by leveraging (leakage-resilient) non-malleable codes [17,20,27,31].
While this yields a generic way for resisting leakage and/or tampering attacks,
it usually relies on certain hardware requirements such as self-destruction, key-
update mechanism or split-state model. Moreover, this way might bring certain
expansion to the key storage. In this work, we are more interested in designing
leakage and tamper-resilient public cryptosystems without such constrains.

1.2 Motivations

It is well-known that properly defining security models is of great importance
to provable security. If a security model fails to capture the power of adversary,
the cryptographic algorithms proven secure in such model may still suffer from
serious security threats. Hence, it is crucial to catch the minimal restrictions on
the adversary and then establish the security models as reasonable as possible.

Although the LTR security introduced by [38] is meaningful in practice, there
is still an artificial restriction on the adversary. More specifically, the adversary
in their model is disallowed to ask for any tampering query (ft, ct) such that
ct = ct∗, where ct∗ is the challenge ciphertext. That is, the adversary is unable to
issue challenge-dependent tampering queries and thus cannot observe the effect
of tampering on the decryption of ct∗, even if the related key ft(sk) �= sk. In
practice, this is an unreasonable constraint since the adversary may launch tam-
pering attacks depending on the target ciphertext, so it is natural to ask whether
or not we can overcome this shortcoming and achieve an improved security that
allows the adversary to issue challenge-dependent tampering queries satisfying
(ft(sk), ct) �= (sk, ct∗)?

On the other hand, it is still unreasonable, as shown in [26], to impose the
restriction (ft(sk), ct) �= (sk, ct∗) to the adversary since s/he is only capable of
choosing tampering functions and without any knowledge of sk in practice, so
we ask if we can further reduce the above constraint to (ft, ct) �= (I, ct∗), where
I denotes the identity function?

1.3 Contributions

With these questions in mind, we first present an enhanced security notion
for PKE, namely strong bounded leakage and tamper-resilient chosen-ciphertext
security, i.e., (λ, T)-sLTR-CCA security. In contrast to the original LTR-CCA
security, it only stipulates that (ft, ct) �= (I, ct∗) rather than ct �= ct∗, which is
obviously the minimal restriction on the adversary’s capability and captures the
essential constraint on challenge-dependent tampering queries since otherwise
there exists no provably secure PKE schemes in the LTR model.

To the end, we then introduce a refined HPS named Tpm-public-key-malleable
HPS (Tpm-PM-HPS) and present a generic paradigm for (λ, T)-sLTR-CCA

490 S.-F. Sun et al.

secure PKE from Tpm-PM-HPS and true-simulation extractable NIZK argu-
ment system. For our construction, the tamper-resilience captured by T and
the amount λ of leakage depend on the Tpm-public-key malleability and leakage-
resilience property of the underlying PM-HPS. Particularly, the tampering func-
tion family we achieve is T = Tpm ∩ (Fpfp ∪ {I}), where Fpfp denotes a family
of functions with poly-fixed points. It means that our construction can obtain
tamper-resilience against Fpfp only if Fpfp-PM-HPS exists.

Moreover, we present a strong auxiliary-input and tamper-resilient chosen-
ciphertext security, i.e., (α, T)-sLTR-CCA security, where the adversary has
access to α-hard-to-invert auxiliary-input leakage but limited to submit tam-
pering queries s.t. (ft(sk), ct) �= (sk, ct∗). Then we show that a sightly adapted
variant of the paradigm mentioned before can also achieve the (α, T)-sLTR-
CCA security. We also explain why the proposed construction cannot meet the
minimal restriction (ft, ct) �= (I, ct∗).

At last, we instantiate the PM-HPS with the DDH and DLIN problems,
and get the first efficient PKE schemes in the strong bounded/auxiliary-input
leakage and tamper-resilient CCA security model. The instantiated scheme from
Sect. 3 (resp. Sect. 4) is secure against (l − 2) log p − ω(log κ) bits of key-leakage
(resp. 2−lδ -auxiliary input). Unfortunately, the instantiated PM-HPS only sup-
port affine-public-key malleability, and thus our concrete constructions can
only achieve tamper-resilience against affine function class. Therefore, how to
construct Fpfp-PM-HPS from number-theoretical assumptions is an interesting
question.

2 Preliminaries

2.1 Definitions and Lemmas

Definition 1 (Statistical Distance [15]). For two random variables X,Y over
Ω, their statistical distance is defined as Δ(X,Y) = 1

2

∑
ω∈Ω |Pr[X = ω] −

Pr[Y = ω]|. Then, X and Y are called ε-close if Δ(X,Y) ≤ ε. Particularly, they
are called statistically close for some negligible ε.

Definition 2 (Randomness Extractors [15]). A function Ext : K×{0, 1}τ →
{0, 1}� is called an average-case (v, ε)-strong randomness extractor if for any
pair of random variables (X,Z) such that X ∈ K and H̃∞(X|Z) ≥ v, it holds
that Δ((Ext(X,R), R, Z), (U�, R, Z)) ≤ ε, where R and U� are uniformly and
independently distributed over {0, 1}τ and {0, 1}�, respectively.

Definition 3 (Function Family with Poly-Fixed Points). Suppose that F
is a family of functions onto a finite set X , we call it a function family with
poly-fixed points over X , denoted by Fpfp, if it holds that maxf∈F |{x ∈ X :
f(x) = x}| ≤ p(κ), where p(κ) is some polynomial in κ.

Lemma 1 (Generalized Leftover Hash Lemma [15]). Let H = {h : X →
Y} be a family of universal hash functions. Then, for arbitrarily random variables

Strong Leakage and Tamper-Resilient PKE from Refined Hash Proof System 491

(X,Z) it holds that Δ((h(X), h, Z), (UY , h, Z)) ≤ 1
2

√
2−H̃∞(X|Z)|Y|, where h ←

H and UY ← Y.
This lemma states that a family of universal hash functions gives an average-

case (v, ε)-strong randomness extractor as long as log |Y| ≤ v − 2 log(1/ε).

Lemma 2 ([25]). Let X,U be two random variables over X , such that
U ← X , and Z be some (correlated) random variable. If for any ε ∈ [0, 1],
Δ((X,Z), (U,Z)) ≤ ε, then it holds that H̃∞(X|Z) ≥ − log(1

|X | + ε).

Lemma 3 ([15]). Let X,Y,Z be arbitrarily correlated random variables assum-
ing Y takes at most 2λ possible values, then H̃∞(X|(Y,Z)) ≥ H̃∞(X|Z) − λ.
Particularly, H̃∞(X|Y) ≥ H∞(X) − λ.

2.2 Hardness Assumptions

We let Group be a PPT algorithm that takes a security parameter κ and outputs
a tuple (G, g, p), where G is a cyclic group of order p with generator g.

Decisional Diffie-Hellman Assumption [33]. The decisional Diffie-Hellman
(DDH) problem is hard if for all PPT algorithm A, the following advantage

Adv DDH
A,Group(1

κ) =
∣
∣ Pr[A(G, g1, g2, g

x
1 , gx

2) = 1] − Pr[A(G, g1, g2, g
x1
1 , gx2

2) = 1]
∣
∣,

is negligible in κ, where G = (G, g, p) ← Group(1κ), g1, g2 ∈ G and x, x1, x2 ∈ Zp

are chosen uniformly at random and independently.

d-Linear Assumption [18,33,41]. The d-linear (d-LIN) problem is called hard
if for all PPT algorithm A, the following advantage is negligible in κ:

Adv d-LIN
A,Group(1

κ) =
∣
∣
∣Pr[A(G, g1, · · · , gd, g0, g

x1
1 , · · · , gxd

d , g
∑d

i=1 xi

0) = 1]−
Pr[A(G, g1, · · · , gd, g0, g

x1
1 , · · · , gxd

d , gx0
0) = 1]| ,

where G = (G, g, p) ← Group(1κ), the elements g0, g1, · · · , gd ∈ G and x0, x1,
· · · , xd ∈ Zp are chosen uniformly at random and independently.

Alternatively, this assumption can be restated under the algebraic framework
of [18], and it is usually named Ld-Matrix Diffie-Hellman (Ld-MDDH) assump-
tion where Ld is a matrix distribution defined as below. More formally, it is said
that the Ld-MDDH assumption holds relative to Group if for all PPT adversaries
A, the following advantage is negligible in κ:

AdvLd-MDDH
A,Group (1κ) =

∣
∣ Pr[A(G, gA, gx�A) = 1] − Pr[A(G, gA, gr�

) = 1]
∣
∣,

where G = (G, g, p) ← Group(1κ), x ← Z
d
p and r ← Z

d+1
p . Moreover, A is sam-

pled according to the distribution Ld and the distribution is defined as follows:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1 0 · · · 0 0 1
0 a2 · · · 0 0 1
...

...
. . .

...
...

...
0 0 · · · ad−1 0 1
0 0 · · · 0 ad 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
d×(d+1)
p

492 S.-F. Sun et al.

where ai ∈ Z
∗
p. Notice that (A,x�A) can be compactly written as (a1, · · · , ad,

a1x1, · · · , adxd,
∑d

i=1 xi) with ai ← Z
∗
p (Precisely, ai can be seen as the implicit

representatoin of gi in Z
∗
p, i.e., ai = logg0

gi.) and xi ← Zp for all i ∈ [d].

2.3 Public-Key-Malleable HPS

Inspired by [26], we present a new variant of HPS, called public-key malleable
HPS. Precisely, it is refined from the regular one by introducing some new prop-
erties, such as public-key malleability and public-key collision resistance. For
simplicity, we present it similarly as in [33,38], by viewing it as a key encapsu-
lation mechanism. For clarity, we follow the notations of [38] in the following.

Public-Key-Malleable Projective Hashing. Suppose G be the set of system
parameters, such as the underlying algebraic groups, and let HK,PK and K
be the sets of secret hash keys, public keys and encapsulated symmetric keys,
respectively. Besides, we let C be the set of all ciphertexts and V the set of
all valid ones. Also, we assume that there are efficient algorithms for sampling
hk ← HK, c ← V (together with a corresponding witness w) and c ← C\V.

Let Λ = {Λhk : C → K} be a family of hash functions indexed with hk ∈ HK
and μ : HK → PK be a projection function. We call Λ ε-smooth, T -public-key-
malleable and projective if it satisfies the following properties:

Projectivity: Λ is said to be projective if for all c ∈ V, hk1 �= hk2 but μ(hk1) =
μ(hk2), it holds that Λhk1(c) = Λhk2(c), meaning that the action of Λhk(·) on V
is completely determined by μ(hk) and c.

Tpm–Public-Key Malleability: Λ is said to be Tpm–public-key-malleable if for all
hk ∈ HK and ft ∈ Tpm, there exists a polynomial-time algorithm, called Tpm-
public-key transformer Trans : Tpm × PK → PK, such that

μ(ft(hk)) = Trans(ft, μ(hk)).

Smoothness: Λ is said to be ε-smooth if the action of Λhk(·) on C\V is completely
undetermined. That is, the following distributions are ε-close:

Δ
(
(c,pk,Λhk(c)), (c,pk,K)

)
≤ ε

where hk ← HK, pk = μ(hk), c ← C\V and K ← K.

Public-Key-Malleable HPS. Generally, a public-key-malleable HPS com-
prises three polynomial-time algorithms PM-HPS = (Param,Pub,Priv): on input
a security parameter κ, Param(1κ) generates a parameterized instance params =
(G, C,V,HK,PK, K,Λ, μ); on input a public key pk = μ(hk), a valid ciphertext
c and a witness w of the fact that c ∈ V, Pub(pk, c, w) outputs an encapsulated
key K = Λhk(c); with a secret key hk and a ciphertext c ∈ C as input, the
algorithm Priv(hk, c) returns the encapsulated key K = Λhk(c).

In addition, we assume that μ(·) is efficiently computable and so is Λhk(·)
for each hk ∈ HK. For all hk ∈ HK,pk = μ(hk) and c ∈ V with witness w, it is
obvious that we have Pub(pk, c, w) = Priv(hk, c) = Λhk(c).

Strong Leakage and Tamper-Resilient PKE from Refined Hash Proof System 493

Subset Membership Problem: A subset membership (SMP) problem asso-
ciated with a PM-HPS is hard if for any PPT adversary A, its advantage

AdvSMP
PM-HPS,A(1κ) =

∣
∣ Pr[A(C, V, c0) = 1 : c0 ← V] − Pr[A(C, V, c1) = 1 : c1 ← C\V]

∣
∣,

is negligible in κ, which means it is difficult for all A to distinguish a random
valid ciphertext c0 ∈ V from a random invalid ciphertext c1 ∈ C\V.

Public-Key Collision Problem: A public-key collision (PKC) problem asso-
ciated with a PM-HPS is called hard if for any PPT adversary A, the following
advantage is negligible in κ,

AdvPKC
PM-HPS,A(κ) =

∣
∣
∣
∣Pr

[

hk �= hk′ ∧ μ(hk) = μ(hk′) :
params ← Param(1κ),
(hk, hk′) ← A(params)

]∣
∣
∣
∣ ,

which means it is difficult for all A to find a collision of μ. For a PM-HPS, it is
called public-key collision resistant if the associated PKC problem is hard.

Definition 4. A PM-HPS is called a smooth HPS with Tpm-public-key mal-
leability and public-key collision resistance, if for all κ ∈ N and outcomes of
Param(1κ): (1) the underling projective hash is ε(κ)-smooth and Tpm-public-key
malleable for some negligible ε(κ); (2) both the SMP and PKC problems are hard.

2.4 True-Simulation Extractability

The notion of true-simulation extractability is proposed by Dodis et al. [13].
More formally, for an NP relation R with corresponding language L = {y :
∃ x s.t. (y, x) ∈ R}, a tSE-NIZK proof system for R generally consists of a triple
of polynomial-time algorithms (Gen, Prov, Verf):

Gen(1κ): on input a security parameter κ, the algorithm generates a common
reference string crs together with a trapdoor tk and an extraction key ek.

Prov(y, x)1: on input a valid pair (y, x) ∈ R, the algorithm outputs an argu-
ment π proving that R(y, x) = 1.

Verf(y, π): on input a pair (y, π), the algorithm verifies whether or not the
argument π w.r.t. y is true and outputs 0/1.

For such a proof system Π = (Gen,Prov,Verf), it is called true simulation
extractable (tSE) if it satisfies all the following properties:

Completeness. For all (y, x) s.t. R(y, x) = 1 and (crs, tk, ek) ← Gen(1κ), it holds

Pr[Verf(y, π) = 1 : π ← Prov(y, x)] = 1.

Composable Non-interactive Zero Knowledge. There exists an efficient simulator
S such that, for all PPT algorithm A in the following game, it holds that

∣
∣
∣
∣
Pr

[

b′ = b :
(crs, tk, ek) ← Gen(1κ); (y, x) ← A(crs); b ← {0, 1}
π0 = Prov(y, x); π1 = S(y, tk); b′ ← A(crs, πb)

]

− 1

2

∣
∣
∣
∣
≤ negl(λ).

1 Note that the algorithm Prov (as well Verf) also takes crs as implicit input. Unless
otherwise stated, we don’t give it explicitly henceforth.

494 S.-F. Sun et al.

Strong True Simulation Extractability. There is an efficient algorithm Ext(y,
π, ek) such that for all PPT algorithm A in the following game, it holds that

Pr

⎡

⎣ (y∗, x∗) ∈ R ∨ (y∗, π∗) ∈ Q
∨ Verf(y∗, π∗) = 0 :

(crs, tk, ek) ← Gen(1κ)
(y∗, π∗) ← AOtk(·,·)(crs)
x∗ ← Ext(y∗, π∗, ek).

⎤

⎦ ≥ 1 − negl(λ).

where Q denotes the set of all (y, π) that A obtained via the oracle Otk(·, ·).
Specifically, if A asks only for a single query to the simulation oracle, then

Π is called one-time strong true simulation extractable. From the above, we
know that Ext succeeds to extract a valid witness for y∗ with an overwhelming
probability, if A could output a fresh and valid pair (y∗, π∗) at the end.

2.5 Public Key Encryption

A PKE is a tuple of polynomial time algorithms (Setup, KeyGen, Enc, Dec)
with the following syntax: given a security parameter κ, Setup(1κ) generates the
public parameters pp; given pp, KeyGen(pp) outputs a public and secret key pair
(pk, sk) ∈ PK × SK; given a public key pk and a message m ∈ M, Enc(pk, m)
outputs a ciphertext c ∈ C; given a secret key sk and a ciphertext c, Dec(sk, c)
returns a plaintext or ⊥ which indicates that the ciphertext is invalid.

The public parameters pp are system-wide and implicitly taken as part of
the inputs of all algorithms. In an implementation, these parameters could be
hardwired into the algorithm code and stored in a tamper-proof way. For the
standard correctness, it is required that m = Dec(sk, Enc(pk,m)) for any message
m ∈ M, pp ← Setup(1κ) and (pk, sk) ← KeyGen(pp).

2.6 Security Definitions

In this part, we present two enhanced security notions against the leakage and
tampering attacks, both of which are stronger than that in [38]. Similarly, the
definitions are parameterized by a key-leakage bound λ (or a class F of computa-
tionally uninvertible functions) and a class T of restricted tampering functions.

First, we give the formal definition of CCA security against bounded-memory
leakage and tampering attacks (i.e., (λ, T)-sLTR-CCA Security), as follows.

Definition 5 ((λ, T)-sLTR-CCA Security). Let PKE=(Setup, KeyGen, Enc,
Dec) be a PKE scheme, it is (λ, T)-strong leakage and tamper-resilient CCA
(sLTR-CCA) secure if for any PPT adversary A = (A1,A2), its advantage

Advλ-sLTR-CCA
A,PKE,T (κ) =

∣
∣
∣Pr[Exptλ-sLTR-CCA

A,PKE,T (κ) = 1] − 1/2
∣
∣
∣ ≤ negl(κ),

is negligible in κ, where the experiment Exptλ-sLTR-CCA
A,PKE,T (κ) is defined as:

Strong Leakage and Tamper-Resilient PKE from Refined Hash Proof System 495

Exptλ-sLTR-CCA
A,PKE,T (κ) :

pp ← Setup(1κ), (pk, sk) ← KeyGen(pp)

(m0,m1, st) ← AOλ
sk(·),OT

sk(·,·)
1 (pp, pk) s.t. |m0| = |m1|

b ← {0, 1}, ct∗ ← Enc(pk,mb)

b′ ← AOT
sk(·,·)

2 (st, ct∗)
return (b′ = b).

In the experiment, Oλ
sk(·) denotes a leakage oracle, by which A is allowed to

learn at most λ-bit secret information. Particularly, whenever receiving the i-th
leakage query fi(·), the oracle returns fi(sk) if

∑i
j=1 |fj(sk)| ≤ λ; otherwise,

outputs ⊥. OT
sk(·, ·) denotes a tampering oracle, by which A can observe the

effect of decryption under a transformed key. Specifically, given a tampering
query (ft(·), ct) s.t. ft ∈ T , the oracle returns Dec(ft(sk), ct). After seeing ct∗,
A is disallowed to ask for any leakage query, but sill permitted to issue tampering
queries only if (ft, ct) �= (I, ct∗), where I denotes the identity function.

Notice that, this notion is parameterized by a leakage bound λ and a class
T of tampering functions, where each ft ∈ T has the form of ft : SK → SK
and the leakage bound indicates that the whole lifetime of the system leaks at
most λ-bit secret information. Specially, if T = {I}, OT

sk(·, ·) is the standard
decryption oracle, and the above defines λ-leakage resilient CCA (LR-CCA)
security. Moreover, when OT

sk(·, ·) is completely omitted from the experiment, it
is exactly the definition of λ-LR-CPA security.

Remark 1. The sole limitation on tampering query is (ft, ct) �= (I, ct∗), which
means that A is allowed to obtain the decryption of ct∗ under the tampered secret
key ft(sk) only if ft �= I. Clearly, this definition is much stronger than that in
[38] where (ft, ct) is subject to ct �= ct∗. On the other hand, (ft, ct) �= (I, ct∗) is
the minimal restriction on tampering queries, since otherwise there is no PKE
achieving the above security, thus our definition captures the essential constraint
on tampering queries. Note that the challenger in above game needs to check if
ft = I when ct = ct∗, so it is necessary for A to give a clear description of ft,
like in related-key attack security [5,40] where the description of key-derivation
function should be known by the challenger. Otherwise (e.g., ft is obfuscated),
it may be difficult to verify ft belongs to the targeted function class and to
simulate the tampering query.

Next, we introduce the definition of CCA security against auxiliary-input
leakage and tampering attacks (i.e., (α, T)-sLTR-CCA Security). In contrast to
bounded-memory leakage, auxiliary-input initialized by [14], may information-
theoretically reveal the whole secret key, but still hard for any efficient algorithm
to recover it. Hence, it captures a wider class of physical attacks and can be seen a
generalization of bounded-memory leakage. Before presenting the formal security
definition, we first recall the hardness of inverting a function family given in [38].

Definition 6 (Hard to Invert Function). A family of functions F = {f :
PK × SK → SK} is said to be α-hard to invert, denoted by F(α), if for any

496 S.-F. Sun et al.

PPT algorithm A, α = α(k) ≥ 2−k and f ∈ F , the probability of A inverting f
is no more than α. That is,

Advf
A(k) = Pr[A(1κ, f(pk, sk)) = sk : (pk, sk) ← KeyGen(1κ)] ≤ α,

where k denotes the min-entropy of sk. If the probability Advf
A(k) ≤ α holds

even for the adversary that also takes pk as input, the function family F is
called α-strongly hard to invert.

Definition 7 ((α, T)-sLTR-CCA Security). Let PKE=(Setup, KeyGen, Enc,
Dec) be a PKE scheme, it is said to be (α, T)-strong leakage and tamper-resilient
CCA (sLTR-CCA) secure if for any PPT adversary A = (A1,A2) and α-hard
to invert function f ∈ F(α), its advantage

Advα-sLTR-CCA
A,PKE,T (κ) =

∣
∣
∣Pr[Exptα-sLTR-CCA

A,PKE,T (κ) = 1] − 1/2
∣
∣
∣ ≤ negl(κ),

where the experiment Exptα-sLTR-CCA
A,PKE,T (κ) is defined as:

Exptα-sLTR-CCA
A,PKE,T (κ) :

pp ← Setup(1κ), (pk, sk) ← KeyGen(pp)

(m0,m1, st) ← AOT
sk(·,·)

1 (pp, pk, f(pk, sk)) s.t. |m0| = |m1|
b ← {0, 1}, ct∗ ← Enc(pk,mb)

b′ ← AOT
sk(·,·)

2 (st, ct∗)
return (b′ = b).

The experiment above is almost the same as Exptλ-sLTR-CCA
A,PKE,T (κ), except

that the leakage query f ∈ F(α) is now an α-hard to invert function rather
than a function with bounded output-length. Furthermore, the tampering ora-
cle OT

sk(·, ·) in this experiment imposes a slightly stricter restriction on tampering
queries (ft(·), ct). In fact, the adversary after seeing ct∗ is only allowed to submit
tampering queries s.t. (ft(sk), ct) �= (sk, ct∗). Obviously, this limitation is not so
reasonable as before since the adversary has no knowledge of sk, but it is still
much weaker than [38] where (ft(·), ct) is required to satisfy ct �= ct∗. Therefore,
this new definition is much stronger than the previous.

3 Construction of (λ,T)-sLTR-CCA Secure PKE

In this section, we present a generic construction of (λ, T)-sLTR-CCA secure
PKE from a smooth HPS (with Tpm-public-key malleability and public-key col-
lision resistance) PM-HPS = (Param,Pub,Priv), where Param on input 1κ gen-
erates a parameterized instance (G, C,V,HK,PK,K,Λ, μ). In addition, we need
an average-case (log |K| − λ, ε)-strong extractor Ext : K × {0, 1}τ → {0, 1}� and
a tSE-NIZK proof system Π = (Gen,Prov,Verf) for the language

L = {(pk, c0, c1, s) : ∃ (m,w) s.t. Ext
(
Pub(pk, c0, w), s

)
⊕m = c1 ∧ (c0, w) ∈ RV},

Strong Leakage and Tamper-Resilient PKE from Refined Hash Proof System 497

where pk ∈ PK, m ∈ {0, 1}�, w is the witness of c0 ∈ V (i.e., (c0, w) belongs to
the relation RV defined by V) and s is a random seed from {0, 1}τ .

More concretely, our construction with message space {0, 1}� consists of four
efficient algorithms PKE = (Setup, KeyGen, Enc, Dec):

Setup(1κ): given a security parameter κ, the algorithm runs Param(1κ) and
Gen(1κ) to generate params = (G, C,V,HK,PK,K,Λ, μ) and the common ref-
erence string crs. It then outputs pp = (params, crs).

KeyGen(pp): given parameters pp, the algorithm samples a uniform secret
hash key hk and outputs the public and secret key pair (pk, sk) = (μ(hk), hk).

Enc(pk, m): on input pk and a message m ∈ {0, 1}�, the algorithm samples
c0 ∈ V with witness w, chooses s ← {0, 1}τ , and outputs the ciphertext ct = (c0,
c1, s, π), where c1 = Ext

(
Pub(pk, c0, w), s

)
⊕m, π = Prov

(
(pk, c0, c1, s); (m,w)

)
.

Dec(sk, ct): given secret key sk and a ciphertext ct = (c0, c1, s, π), the
algorithm first checks if Verf

(
(μ(sk), c0, c1, s), π

)
= 1 (Note that pk here is

computed from secret key sk, which is important for achieving the enchanced
security). If not, returns ⊥. Otherwise, it recovers the message by computing
m = Ext

(
Priv(sk, c0), s

)
⊕ c1.

We recall that the algorithm Priv(sk, c) computes the (public-key-malleable)
projective hash function Λsk(c) with secret hash key sk = hk for any c ∈ C
and Pub(pk, c0, w) evaluates Λsk(c0) with public key pk = μ(sk) and the witness
w of c0 ∈ V. Regarding the correctness, it follows easily from the fact that
Pub(pk, c0, w) = Λsk(c0) = Priv(sk, c0) for any c0 ∈ V with witness w as well as
the completeness of the tSE-NIZK proof system Π.

Remark 2. We remark that the generic construction is similar to [38] from a
high level, but the underlying HPS needs to be carefully refined for our purpose.
More precisely, the main differences of this construction from [38] are reflected
in the following aspects: (1) it is built upon a refined HPS with some extra
properties, e.g., T -public-key malleability and public-key collision resistance; (2)
the consistency of ciphertext is verified with sk instead of pk, which is crucial
for achieving our security; (3) its security analysis in the stronger model is much
more complicated, although the framework seems similar. A high-level idea of
the proof is shown below, whereas the details are given in the full version due
to the limited pages.

Theorem 1. Assuming that PM-HPS is a ε(κ)-smooth HPS with Tpm-public-key
malleability and public-key collision resistance, Ext is an average-case (log |K| −
λ, ε(κ))-strong extractor and Π is a tSE-NIZK proof system, then the proposed
construction is (λ, T)-sLTR-CCA secure for any λ ≤ log |K| − � − ω(log κ) and
T ⊆ (Tpm ∩ F̃pfp), where � is the length of encrypted message, ε(κ) and ε(κ) ≤
(2� − 1)/|K| are negligible in κ, and F̃pfp = Fpfp ∪ {I}. Particularly, for all
parameter κ and PPT adversary A, it holds that

Advλ-sLTR-CCA
A,PKE,T (κ) ≤ 2(AdvSMP

PM-HPS,B(κ) + ε(κ) + ε(κ)) + AdvPKC
PM-HPS,B′(κ)

+ Qt · p(κ) · 2λ · (1/|K| + ε) + negl(κ).

498 S.-F. Sun et al.

Proof (Sketch). In an overview, the leakage oracle could be perfectly simulated
since the simulator always possesses the secret key. Moreover, the T -type tamper-
ing queries could be properly answered by exploiting the public-key malleability
together with the tSE property of NIZK. Thus, once all the tampering queries are
well processed, the leakage-resilience of the construction can be easily reduced
to the underlying CPA secure PKE directly derived from HPS.

4 Construction of (α,T)-sLTR-CCA Secure PKE

In this part, we show that a slightly adapted version of the previous construc-
tion (in Sect. 3) can achieve (α, T)-sLTR-CCA security. In particular, the strong
extractor Ext will never be used. For simplicity, we just present the different
algorithms, exactly the encryption and decryption algorithms, in the following:

Enc(pk, m): on input pk and m ∈ M, it samples c0 ∈ V with wit-
ness w, chooses a random seed s, and computes c1 = Pub(pk, c0, w) · m and
π = Prov

(
(pk, c0, c1); (m,w)

)
. Finally, it outputs the ciphertext ct = (c0, c1, π).

Dec(sk, ct): on input sk and ct = (c0, c1, π), the algorithm first verifies
whether Verf

(
(μ(sk), c0, c1), π

)
= 1. If not, returns ⊥. Otherwise, it recovers

the message by computing m = c1/Priv(sk, c0).
The correctness holds as analyzed before. Like the previous scheme, there is

also a similar underlying PKE w.r.t. this adapted version. Similar to the proof
given in the previous section, the leakage-resilience property of this construction
essentially inherits from the underlying PKE′. Therefore, if PKE′ is CPA-secure
against auxiliary-input leakage, then the construction can be proven secure
against both the auxiliary-input and tampering attacks with a similar proof
idea. However, it cannot realize tamper-resilience w.r.t. the minimal restriction,
i.e., (ft, ct) �= (I, ct∗), the reason for which will be explained as below.

Theorem 2. Assuming that PM-HPS is a ε(κ)-smooth HPS with Tpm-public-
key malleability and public-key collision resistance, and Π is a tSE-NIZK proof
system, if the underlying PKE′ constructed only from PM-HPS is α-LR-CPA
secure, then the above construction is (α, T)-sLTR-CCA secure for α-hard to
invert functions and tampering functions T = Tpm, where ε(κ) is negligible in κ.
Particularly, for all parameter κ and PPT adversary A, it holds that

Advα-sLTR-CCA
A,PKE,T (κ) ≤ 2Advα-LR-CPA

PKE′,A (κ) + AdvPKC
PM-HPS,B′(κ) + negl(κ).

The proof idea is similar to the previous scheme, except that (1) the leakage-
resilience of this construction is reduced to a PKE scheme resilient to auxiliary-
input and (2) we need not to process all queries (ft, ct) s.t. ct = ct∗, ft �= I
and ft(sk) = sk since the definition of (α, T)-sLTR-CCA security requires that
(ft(sk), ct) �= (sk, ct∗) for each allowed tampering query (ft, ct). In fact, the
main point of achieving tamper-resilience w.r.t. the restriction (ft, ct) �= (I, ct∗)
(rather than (ft(sk), ct) �= (sk, ct∗)) is that ft �= I implies ft(sk) �= sk with an
overwhelming probability. For the (λ, T)-sLTR-CCA security, this is possible as
sk may still have high min-entropy even conditioned on the λ-bit leakage. In the

Strong Leakage and Tamper-Resilient PKE from Refined Hash Proof System 499

context of auxiliary input leakage, however, the leakage may reveal the whole
entropy of sk, thus we cannot derive ft(sk) �= sk from ft �= I. This is why we
have to restrict (ft(sk), ct) �= (sk, ct∗) for each tampering query (ft, ct) in the
definition of (α, T)-sLTR-CCA security.

5 Instantiations

In this section, we present some instantiations based on the standard assump-
tions such as DDH and d-LIN assumption, which shows that the enhanced secu-
rity notions can be achieved on basis of well-known hardness assumptions.

5.1 PM-HPS from DDH Assumption

The public-key-malleable HPS PM-HPS= (Param, Pub, Priv) based on the DDH
assumption is described as below. In fact, it is the same as the HPS presented
in [10,38], then we further show it also satisfies the extended properties for our
applications. First, we recall the description of PM-HPS as follows:

Param(1κ): on input a security parameter κ, it generates (G, g, p) ←
Group(1κ), and then chooses g1, g2 ← G and outputs params = (G, C,V,HK,
PK,K,Λ, μ):

– G = (G, p, g1, g2), C = G × G,V = {(gw
1 , gw

2) : w ∈ Zp},HK = Zp × Zp,PK =
G, K = G.

– pk = μ(hk) = gx1
1 gx2

2 , Λhk(c) = cx1
1 cx2

2 for any hk = (x1, x2) ∈ HK and
c = (c1, c2) ∈ C.

Pub(pk, c, w): given public key pk and ciphertext c = (c1, c2) ∈ V with witness
w ∈ Zp, the algorithm computes the hash value as pkw.

Priv(hk, c): on input secret key hk = (x1, x2) ∈ HK and any ciphertext
c = (c1, c2) ∈ C, this algorithm computes the hash value on c as cx1

1 cx2
2 .

The projectiveness and smoothness of this construction could be readily ana-
lyzed as in [10,33]. In the following, we mainly show that it satisfies the proper-
ties of T -public-key malleability and public-key collision resistance. Before going
ahead, we first define the class T of functions associated with the former prop-
erty, which is exactly a family of restricted affine functions on HK defined as
Traff = {f(a,b)(hk) = (ax1 + b1, ax2 + b2) : a ∈ Zp, hk = (x1, x2), b = (b1, b2) ∈
HK}. Now we proceed to show the properties mentioned above:

Traff-public-key malleability : For all hk = (x1, x2) ∈ HK and f(a,b)(·) ∈ Traff with
a ∈ Zp and b = (b1, b2) ∈ HK, it is easy to observe that

μ(f(a,b)(hk)) = μ(ax1 + b1, ax2 + b2) = gax1+b1
1 gax2+b2

2 = (gx1
1 gx2

2)a · gb1
1 · gb2

2 .

Then for all pk = μ(hk) ∈ PK and f(a,b) ∈ Traff with a ∈ Zp and b =
(b1, b2) ∈ HK, the Traff-public-key transformer Trans : Traff × PK → PK is
defined as: Trans(f(a,b), μ(hk)) = μ(hk)a · gb1

1 · gb2
2 . Now due to μ(hk) = gx1

1 gx2
2 ,

we have that μ(f(a,b)(hk)) = Trans(f(a,b), μ(hk)).

500 S.-F. Sun et al.

Public-Key Collision Resistance: Under the discrete logarithm (DL) assump-
tion, the PKC problem associated with the above PM-HPS is hard. Suppose for
contradiction that there exists an adversary A that can break the property of
public-key collision resistance, i.e., finding hk = (x1, x2) �= (x′

1, x
′
2) = hk′ s.t.

μ(hk) = μ(hk′), then we can construct an efficient algorithm B that can solve
the DL problem by invoking A.

Given a random DL instance (G, p, g, h), the algorithm B aiming at com-
puting α = logg h sets g1 = g and g2 = h, and then produces and returns
the public parameters params to A. After that, if A eventually outputs a col-
lision hk = (x1, x2) �= (x′

1, x
′
2) = hk′ of μ s.t. μ(hk) = μ(hk′), then we have

gx1+αx2
1 = g

x′
1+αx′

2
1 and can get from the equation that α = x1−x′

1
x′
2−x2

. Hence, the
PKC problem associated with PM-HPS is as hard as the DL problem.

As to the hardness of SMP problem, it is directly from the hardness of DDH
problem, the detailed analysis of which can be found in [10,33].

The preceding PM-HPS is constructed directly from the DDH problem. Next,
we present its generalized version, as shown in [33,38]. More concretely, the
generalized construction is depicted as follows:

Param(1κ): on input a security parameter κ, the algorithm generates
(G, g, p) ← Group(1κ), and then chooses g = (g1, · · · , gl) ∈ G

l where l ≥
2 log p + ω(log κ), and sets params = (G, C,V,HK,PK,K,Λ, μ) as:

– G = (G, p, g), C = G
l = {(gr1

1 , · · · , grl

l) : r1, · · · , rl ∈ Zp},V = {(gw
1 , · · · , gw

l) :
w ∈ Zp},HK = Z

l
2,PK = G, K = G.

– pk = μ(hk) =
∏l

i=1 gxi
i , Λhk(c) =

∏l
i=1 cxi

i for any hk = (x1, · · · , xl) ∈ HK
and c = (c1, · · · , cl) ∈ C.

Pub(pk, c, w): given pubic key pk and ciphertext c = (c1, · · · , cl) ∈ V with
witness w ∈ Zp, the algorithm computes the hash value as pkw.

Priv(hk, c): given hk = (x1, · · · , xl) ∈ HK and c = (c1, · · · , cl) ∈ C, the
algorithm evaluates the hash value on c as

∏l
i=1 cxi

i .
The projectiveness and smoothness could be analyzed similarly to [38]. We

notice that smoothness holds only if l ≥ 2 log p + ω(log κ), due to the gener-
alized leftover hash lemma. In the following, we mainly demonstrate that the
construction satisfies both the T -public-key malleability and public-key collision
resistance property. With respect to the function class T associated with the for-
mer property, it is formalized in a similar way as before. Specifically, it is defined
as Traff = {f(a,b)(hk) = (ax1 + b1, · · · , axl + bl) : a ∈ Zp, hk = (x1, · · · , xl), b =
(b1, · · · , bl) ∈ HK}. Now we continue to show the properties as desired:

Traff-Public-Key Malleability : For all hk = (x1, · · · , xl) ∈ HK and f(a,b)(·) ∈ Traff

with a ∈ Zp and b = (b1, · · · , bl) ∈ HK, it is easy to observe that

μ(f(a,b)(hk)) = μ(ax1 + b1, · · · , axl + bl) =
l∏

i=1

gaxi+bi
i = (

l∏

i=1

gxi
i)a ·

l∏

i=1

gbi
i .

Then for all pk = μ(hk) ∈ PK and f(a,b) ∈ Traff with a ∈ Zp and b =
(b1, · · · , bl) ∈ HK, we define the Traff-public-key transformer Trans : Traff ×

Strong Leakage and Tamper-Resilient PKE from Refined Hash Proof System 501

PK → PK as: Trans(f(a,b), μ(hk)) = μ(hk)a ·
∏l

i=1 gbi
i . Following from μ(hk) =

∏l
i=1 gxi

i , we have μ(f(a,b)(hk)) = Trans(f(a,b), μ(hk)).

Public-Key Collision Resistance: Under the DL assumption, the PKC problem
associated with the above PM-HPS is hard. Suppose that there exists an efficient
adversary A that can break the property of public-key collision resistance, i.e.,
finding hk = (x1, · · · , xl) �= (x′

1, · · · , x′
l) = hk′ s.t. μ(hk) = μ(hk′), then we can

design an efficient algorithm B to solve the DL problem by invoking A.
Given a random DL instance (G, p, g, h), the algorithm B aiming at com-

puting α = logg h randomly picks j ∈ [l], βi ∈ Zp for all i ∈ [l] \ {j}, and sets
g = (g1, · · · , gl) as gi = gβi for i �= j and gj = h.

Then, it produces the public parameters params and sends them to the
adversary A. After that, if A eventually outputs a collision hk = (x1, · · · , xl) �=
(x′

1, · · · , x′
l) = hk′ s.t. μ(hk) = μ(hk′), then we have that

∏l
i=1 gxi

i =
∏l

i=1 g
x′

i
i

which is equivalent to hxj−x′
j =

∏
i�=j gβi(x

′
i−xi). Furthermore, we get that α =

∑
i�=j βi(x

′
i−xi)

xj−x′
j

conditioned on xj �= x′
j .

For analyzing B’s success probability, we denote by coll the event that A
outputs hk �= hk′ but μ(hk) = μ(hk′). Then the probability of B solving the
DL problem is Pr[B(G, p, g, h) = α] ≥ Pr[B(G, p, g, h) = α ∧ coll ∧ xj �= x′

j] ≥
2
l AdvPKC

PM-HPS,A(κ).
Hence, the PKC problem associated with PM-HPS is hard as long as the DL

assumption holds. As to the hardness of SMP problem, it follows readily from
the hardness of the (generalized) DDH problem [12].

5.2 PM-HPS from d-LIN Assumption

The public-key malleable HPS PM-HPS= (Param, Pub, Priv) based on d-LIN
assumption is described below, which is in fact the same as the HPS in [38].

Param(1κ): on input parameter κ, it generates (G, g, p) ← Group(1κ), then
randomly chooses A ∈ Z

d×(d+1)
p and outputs params = (G, C,V, HK,PK,

K,Λ, μ):

– G = (G, g, p, gA), C = {gr�
: r ∈ Z

d+1
p },V = {gw�A : w ∈ Z

d
p},HK =

Z
d+1
p ,PK = G

d×1, K = G.
– pk = μ(hk) = gAx , Λhk(c) = gr�x for hk = x ∈ HK and c = gr� ∈ C.

Pub(pk, c,w): given pk = gAx and c = gw�A ∈ V with witness w ∈ Z
d
p, the

algorithm computes gw�Ax .
Priv(hk, c): given hk = x ∈ HK and c = gr� ∈ C, it computes gr�x .
The projectiveness and smoothness could be shown as in [38], and the hard-

ness of SMP problem follows readily from that of Ld-MDDH problem. What
remains to do is to show this construction satisfies both the T -public-key mal-
leability and public-key collision resistance property as well. As to the function
class T associated with the malleability property, it is defined similarly as before.

502 S.-F. Sun et al.

More precisely, Traff = {f(a,b)(hk) = ax + b : a ∈ Zp, hk = x, b ∈ HK}. Now we
continue to show the desired properties below:

Traff -Public-Key Malleability : For all hk = x ∈ HK and f(a,b) ∈ Traff with
a ∈ Zp and b ∈ HK, it is easy to observe that

μ(f(a,b)(hk)) = μ(ax + b) = gA(ax+b) = (gAx)a · gAb .

Then for all pk = μ(hk) ∈ PK and f(a,b) ∈ Traff with a ∈ Zp and b ∈
HK, we define the Traff-public-key transformer Trans : Traff × PK → PK as:
Trans(f(a,b), μ(hk)) = μ(hk)a · gAb . Following from that μ(hk) = gAx , we get
μ(f(a,b)(hk)) = Trans(f(a,b), μ(hk)).

Public-Key Collision Resistance: Under the Ld-MDDH assumption, the PKC
problem associated with the above construction is intractable. Suppose for con-
tradiction that there exists a PPT adversary A that can find two different secret
key hk = (x1, x2) �= (x′

1, x
′
2) = hk′ s.t. μ(hk) = μ(hk′), then we can construct

an efficient algorithm B that can use A to solve the Ld-MDDH problem.
Given (G, p, g, gA, gu�

), where u� = w�A or r� with w ← Z
d
p and r ←

Z
d+1
p , the algorithm B sets G = (G, p, g, gA) and generates the public parameters

params. After receiving params, A outputs a pair of secret keys (hk, hk′) =
(x,x′). If they are distinct but satisfies μ(hk) = μ(hk′), i.e., gAx = gAx′

, we
get gA(x−x′) = g0. Then B sets v = x − x′ and distinguishes u� = w�A from
u� = r� by checking if gu�v = g0. Obviously, B successfully solves the Ld-
MDDH problem as long as A breaks the public-key collision resistance property.

At last, with respect to efficient constructions of tSE-NIZKs, they could be
built in a generic and efficient way from any standard CCA-secure encryption
scheme and NIZK argument system, just as shown and argued in [11,13].

6 Comparison with Related Works

Next we give a brief comparison of our schemes with those works [11,19,38]
that rely not on hardware assumptions. CCA security against both key-leakage
and tampering attacks was initially studied by Damg̊ard et al. [11], where they
introduced the notion of BLT-CCA security. Their main idea is to reduce tam-
pering to leakage. Although this enables to achieve tamper-resilience against
arbitrary tampering attacks (or arbitrary key-relations), the total number of
tampering attacks, due to the limited amount of key-leakage, must be strictly
bounded and no post-tampering attempts are permitted (i.e., tampering attacks
launched after observing challenge ciphertext). Moreover, this method leads to
a significant reduction of the amount of leakage tolerated by the construction.
In contrast, [38] revisited the problem from an alternative perspective and intro-
duced the notion of LTR-CCA security, where the adversary is allowed to issue
an arbitrary polynomial of tampering queries even after challenge phase. Fur-
thermore, it can be realized in a more flexible way without any dependence
between tampering and leakage. However, there is still a restriction on their

Strong Leakage and Tamper-Resilient PKE from Refined Hash Proof System 503

Table 1. Brief comparison with related works

Schemes Leakage Tampering sLTR Inst. Assum.

BML∗ AIL C.-Dep. T Unb.

[11] (l − t − 2) log p − ω(log κ) × × Tall × × L DDH

[19] O(ξκ − (t + 1)κ − �) × × Tall × × L RSI

[38] (l − 2) log p − ω(log κ)
√ × Traff

√ × F DDH

Section 3 (l − 2) log p − ω(log κ) × √ Traff
√ √

F DDH/DLIN

Section 4 —
√ √ Traff

√ √
F DDH

∗: the amount of leakage tolerated by the related constructions based on BHHO [7],
except for FV [19] that are instantiated with [34]; t: the number of tampering attacks
permitted by [11] and [19]; ξ: a parameter specified in the instantiation of [19]; l:
the length of message encrypted in [19]; Inst.: instantiation; Unb.: unbounded; L:
limited; F: flexible; Tall: the class of all kinds of tampering functions; Traff: the class
of all restricted affine functions

security that the adversary is not allowed to issue any challenge-dependent (for
short, C.-Dep.) tampering query. Instead, our enhanced security notion called
sLTR-CCA security only stipulates that (ft, ct) �= (I, ct∗), instead of ct �= ct∗.

As to efficiency, our constructions are similar to [11,38], which are all built
upon tSE-NIZK proof system, but they can achieve a better leakage-resilience
than [11] and a higher security level than [38]. Recently, Faonio et al. [19] showed
that the already existing scheme [34] can also achieve BLT security, and thus
obtained the first direct, pairing free IND-CCA BLT secure PKE without relying
on tSE-NIZK. However, we do not know how to realize sLTR-CCA security
without using tSE-NIZK yet, and we leave it as an interesting future work. The
results and comparison with related works is summarized in Table 1.

7 Conclusion

We introduced an enhanced security against both key-leakage and tampering
attacks. Then, we show that our new security is achievable by presenting a
generic construction on the basis of public-key-malleable HPSs. Our construc-
tion can tolerate a large amount of key-leakage and resist an arbitrary polynomial
number of restricted tampering attempts. Moreover, we show that the construc-
tion with slight modifications can also achieve chosen-ciphertext security against
both auxiliary-input leakage and tampering attacks. However, our instantiations
based on DDH/DLIN assumption only achieve security against affine-tampering
attacks, due to the restricted public-key malleability of the PM-HPS. We left
open the constructions of PM-HPS with more general public-key malleability
and sLTR-CCA secure PKE against more wider tampering function classes. In
addition, designing CCA-secure PKE against both challenge-dependent leakage
and tampering attacks is very meaningful, which is left as future work.

Acknowledgements. The authors would like to thank all anonymous reviewers for
their valuable comments. This work is supported by the National Key R&D Pro-

504 S.-F. Sun et al.

gram of China (No. 2016YFB0801201), the Natural Science Foundation of China (No.
61802255, 61602396, U1636217) and the China Postdoctoral Science Foundation (No.
2017M621472).

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00457-5 28

2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 6

3. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486–503. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 26

4. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 31

5. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier:
IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 21

6. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

7. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 7

8. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 1

9. Chen, Y., Wang, Y., Zhou, H.-S.: Leakage-resilient cryptography from puncturable
primitives and obfuscation. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11273, pp. 575–606. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03329-3 20

10. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

11. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: how
to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-42045-0 8

https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-13190-5_6
https://doi.org/10.1007/978-3-642-13190-5_6
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/978-3-642-34961-4_21
https://doi.org/10.1007/978-3-642-34961-4_21
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-030-03329-3_20
https://doi.org/10.1007/978-3-030-03329-3_20
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-42045-0_8
https://doi.org/10.1007/978-3-642-42045-0_8

Strong Leakage and Tamper-Resilient PKE from Refined Hash Proof System 505

12. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-11799-2 22

13. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 35

14. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC
2009, pp. 621–630 (2009)

15. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

16. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008, pp.
293–302 (2008)

17. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS 2010, pp.
434–452 (2010)

18. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

19. Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage
and tamper resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10031, pp. 877–907. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53887-6 32

20. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

21. Fujisaki, E., Xagawa, K.: Public-key cryptosystems resilient to continuous tam-
pering and leakage of arbitrary functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 908–938. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 33

22. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

23. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 15

24. Halderman, J.A., et al.: Lest we remember: cold boot attacks on encryption keys.
In: USENIX Security 2008, pp. 45–60 (2008)

25. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19571-6 8

26. Han, S., Liu, S., Lyu, L.: Super-strong RKA secure MAC, PKE and SE from
tag-based hash proof system. Des. Codes Cryptogr. 86, 1411–1449 (2017)

27. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 19

28. Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky
memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 21

https://doi.org/10.1007/978-3-642-11799-2_22
https://doi.org/10.1007/978-3-642-11799-2_22
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-53887-6_33
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-642-19571-6_8
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-642-22792-9_21

506 S.-F. Sun et al.

29. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 41

30. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

31. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

32. Lu, X., Li, B., Jia, D.: Related-key security for hybrid encryption. In: Chow, S.S.M.,
Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 19–32.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0 2

33. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 2

34. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42045-0 20

35. Qin, B., Liu, S., Yuen, T.H., Deng, R.H., Chen, K.: Continuous non-malleable
key derivation and its application to related-key security. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 557–578. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 25

36. Sun, S.F., Gu, D., Liu, S.: Efficient chosen ciphertext secure identity-based encryp-
tion against key leakage attacks. Secur. Commun. Netw. 9(11), 1417–1434 (2016)

37. Sun, S.-F., Gu, D., Liu, S.: Efficient leakage-resilient identity-based encryption
with CCA security. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365,
pp. 149–167. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04873-4 9

38. Sun, S., Gu, D., Parampalli, U., Yu, Y., Qin, B.: Public key encryption resilient to
leakage and tampering attacks. J. Comput. Syst. Sci. 89, 142–156 (2017)

39. Sun, S.-F., Parampalli, U., Yuen, T.H., Yu, Y., Gu, D.: Efficient completely non-
malleable and RKA secure public key encryptions. In: Liu, J.K., Steinfeld, R. (eds.)
ACISP 2016. LNCS, vol. 9723, pp. 134–150. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40367-0 9

40. Wee, H.: Public key encryption against related key attacks. In: Fischlin, M., Buch-
mann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 16

41. Wee, H.: KDM-security via homomorphic smooth projective hashing. IACR Cryp-
tology ePrint Archive 2015, 721 (2015)

https://doi.org/10.1007/978-3-642-10366-7_41
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-319-13257-0_2
https://doi.org/10.1007/978-3-642-03356-8_2
https://doi.org/10.1007/978-3-642-42045-0_20
https://doi.org/10.1007/978-3-662-46447-2_25
https://doi.org/10.1007/978-3-662-46447-2_25
https://doi.org/10.1007/978-3-319-04873-4_9
https://doi.org/10.1007/978-3-319-40367-0_9
https://doi.org/10.1007/978-3-319-40367-0_9
https://doi.org/10.1007/978-3-642-30057-8_16

Privacy Preserving Techniques

Benchmarking Privacy Preserving
Scientific Operations

Abdelrahaman Aly1 and Nigel P. Smart1,2(B)

1 Imec-COSIC, KU Leuven, Leuven, Belgium
abdelrahaman.aly@esat.kuleuven.be, nigel.smart@kuleuven.be

2 University of Bristol, Bristol, UK

Abstract. In this work, we examine the efficiency of protocols for secure
evaluation of basic mathematical functions (sqrt, sin, arcsin, amongst
others), essential to various application domains. e.g., Artificial Intelli-
gence. Furthermore, we have incorporated our code in state-of-the-art
Multiparty Computation (MPC) software, so we can focus on the algo-
rithms to be used as opposed to the underlying MPC system. We make
use of practical approaches that, although, some of them, theoretically
can be regarded as less efficient, can, nonetheless, be implemented in
such software libraries without further adaptation. We focus on basic
scientific operations, and introduce a series of data-oblivious protocols
based on fixed point representation techniques. Our protocols do not
reveal intermediate values and do not need special adaptations from the
underlying MPC protocols. We include extensive computational experi-
mentation under various settings and MPC protocols.

1 Introduction

Secure Multiparty Computation (MPC) allows a set of parties to compute an
arbitrary function of their inputs without revealing anything about them, except
for what can be deduced from the output of the function. Standard MPC pro-
tocols usually provide secure basic operations, such as additions, multiplications
and logic gates, from which more complex functionalities can be built. In many
data processing applications one requires access to standard scientific opera-
tions, and thus to an approximation of what in the C language is represented by
the data types float and double. There are two techniques for performing this
approximation in the literature: fixed point representations and floating point
representations. Both of which have been implemented in various MPC systems;
for example [2,6,10].

Efficient algorithms for fixed point representations were introduced in a series
of works by Catrina et al. (see [8] for a detailed summary). Typically, fixed point
arithmetic uses a publicly available, predefined precision to which all data values
are kept. This is more efficient than a floating point representation, as examined
in [1] for example, where the operations are closer to what one would expect for
the equivalent C data types. However, the increased cost of using floating point

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 509–529, 2019.
https://doi.org/10.1007/978-3-030-21568-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_25&domain=pdf
http://orcid.org/0000-0003-2038-5668
http://orcid.org/0000-0003-3567-3304
https://doi.org/10.1007/978-3-030-21568-2_25

510 A. Aly and N. P. Smart

representations makes their use highly problematic in practice. In addition, it is
sufficient, in many applications, to work with a fixed point precision, for example
in various statistical or machine learning applications.

Despite many prior works on fixed point operations in MPC, there has been
little work on benchmarking these operations. In this work we provide a number
of benchmarks of simple scientific operations on fixed point numbers in a variety
of cases. In particular, we focus on standard mathematical operations such as
sqrt(x), sin(x), cos(x), arcsin(x), exp(x), loga(x), etc, in both the full thresh-
old setting with two and three players, and in the honest majority three party
setting. We build our protocols on top of the actively-secure-with-abort MPC
protocols available in the SCALE-MAMBA system [2]. This system is chosen as it
is publicly available and allows different access structures to be utilized for the
same input program.

A number of previous works have looked at algorithms to implement these
operations [1,3,4,11,21,22]; however our paper concentrates on investigating
practical performance and in addition looks at optimizations to such protocols
in the case of MPC systems which allow a certain amount of pre-processing (for
example in SCALE-MAMBA shared random bits are produced in the pre-processing,
and so come for free in the ‘online’ phase).

One can consider the current state of the art of MPC development as mir-
roring the development of standard computer programming and architectures.
Thus, one often needs to go an revisit earlier works to understand simple ways of
implementing functions which might be taken for granted. In this work we make
extensive use of the methods used in the 1960s and 1970s to build mechanisms
to evaluate scientific operations on fixed and floating point data. In particular
we use the work on function approximation by Taylor and Padé approximations
provided in the seminal work of Hart [16].

In our work a secret fixed point value is represented by a secret integer v
in the range [−2k−1, . . . , 2k−1] (k is fixed and public) and a public precision
value f . The fixed point number represented by v is v/2f . In the kind of MPC
systems we consider (i.e. those based on linear secret sharing) the value v is
embedded in a finite field Fq. We shall denote by [[v]] the fact that v is shared
over Fq. To represent a fixed point number x, whose sharing we denote by 〈x〉,
we take an integer v in the above range such that x ≈ v/2f . Thus we can write
〈x〉 = {[[v]], k, f}.

Given secure protocols for addition and multiplication of Fq elements, one
can construct secure protocols for addition and multiplication of fixed point
values, see [8] for the precise protocols. These protocols will be secure as long as
the underlying protocols for addition and multiplication of Fq elements are also
secure.

The addition and multiplication protocols of [8] often require one to open
‘masked’ values of fixed point values. To do this, there is a statistical security
parameter κ, and we require that κ + 2 · k < log2 q. The statistical security
parameter measures the statistical distance of certain opened values in the proto-
col from a uniform distribution. In particular, when we want to open a masked k
or 2·k bit integer value, we use a mask of k+κ or 2·k+κ bits. This ensures that the

Benchmarking Privacy Preserving Scientific Operations 511

distribution of the masked output is within statistical distance of 2−κ from the
uniform distribution. In our implementation we take (log2 q, κ, k) = (128, 40, 41)
and f = 20.

We emphasize that our work is centered around MPC based on secret sharing
based-MPC, as opposed to systems based on Garbled Circuits or Homomorphic
Encryption. More specifically, our works is aimed at any set of individuals that
want to perform these operations, whilst using some LSSS based system. Clearly,
on this regard, there are different tradeoffs and algorithms if the underlying MPC
system chosen is one based on, say Garbled Circuits, however, this falls outside
the scope of this work.

Square Root Function: The problem of computing securely the sqrt has been
studied by several authors in both the floating point and fixed point settings
e.g., [1,18,21,22]. The collection of work that addressed this problem before,
approached it by either expressing the output as a Taylor series, or via some
other kind of numerical approximation (e.g. via Goldschmidt or Newton-Raphson
approximation).

Liedel’s [22] method at first glance seems to be the most efficient. This
method assumes a fixed point representation in line to what is expressed in [8],
produces (given private input 〈x〉) first an initial approximation of

√〈x〉. This
initial approximation is then improved by performing iterations of Goldschmidt
and Newton-Raphson. Liedel offers a way to calculate the initial approximation
by solving a system of equations over normalized inputs. However, there is a hid-
den assumption in the method, which turns out to be very restrictive in practice.
This makes the applicability of Liedel’s method less useful, and has motivated
modern multiparty frameworks, such as Sharemind to use Taylor series based
protocols [18]. In our method we use the spirit of Liedel’s method, i.e. we use
Goldshmidt and Newton-Raphson to perform the final approximation, however
we produce the initial approximation to the

√
(〈x〉) by computing its closest

power of two.

Trigonometric Functions: There are a number of works that explore alter-
natives to build trigonometric functions [3,4]. All use numerical approximations
or series evaluations, but restrict the values to specific ranges (i.e. angle reduc-
tion is not performed before the trigonometric function is computed). We on the
other hand, offer an angle reduction protocol that is designed to take advantage
of the fixed point representation of [8]. This would naively utilize a division with
remainder operation which is usually a more expensive primitive [1,21], than a
multiplication. Instead, we make an intelligent use of the fixed point represen-
tation of our inputs and a series of more basic operations. We then utilize, as
do the two prior works, the numerical methods of Hart [16] to produce the final
approximation to sin(x) and cos(x). Our method is then extended to tan(x).

Inverse Trigonometric Functions: In the same direction as our other contri-
butions in this paper, we propose an approach to build oblivious inverse trigono-
metric functions, by using numerical approximations. We again use the methods

512 A. Aly and N. P. Smart

of Hart here. Bayatbabolghani et al. [4], introduced a protocol based on the
work of Medina [24], using a sequence of polynomials to obtain the arctan(〈x〉)
of a secret shared input x. In their work, they provided secure protocols to
achieve this, and some discussion about complexity and performance, comparing
it with [16]. However no specific implementation details were provided, except for
the usage of these operations within spectrum fingerprint detection algorithms.
Their experimentation was performed using the PICCO compiler [27].

The Functions Exp and Log: Following the same methodology, we present
protocols for algorithms such as exponentiation (considering the base and expo-
nent as secret shared inputs) and log (to a public available base). We achieve
this, by numerically approximating to We both operations using the methods
of Hart [16] (base two), and then making use of standard logarithmic identities,
with the aim of computing both functions. Previous work on exponentiation
algorithms, initially used binary expansions and utilized existing work on bit-
decomposition for field elements. The basic relevant work in this regard was
introduced by Damg̊ard et al. [11], where the authors hide both the exponent
and the base by evaluating the binary expansion of the exponent. Further works
have centered on reducing the influence of the binary expansion [25,26]. For
logarithmic functions, there is virtually no prior work on fixed point MPC vari-
ants, although there has been some work on floating point variants. For instance,
Kamm [17] makes use of Taylor series to obtain the natural logarithm of a given
floating point input.

In summary we provide methods to securely compute various scientific oper-
ations, and we evaluate their performance in practice using an off-the-shelf MPC
system. We hope our work stimulates others to investigate improvements to our
methods. Our choice of fixed point representation is to enable fast secure evalu-
ation of the scientific functions, clearly it would be better to use floating point
representations.

2 Preliminaries

In this section we outline the necessary details to understand the following contri-
butions. In particular, how we perform fixed point arithmetic, numerical approx-
imation, our arithmetic black box, as well as our experimental setup.

Notation for Fixed Point Arithmetic: We make use of the square bracket
notation from [13], where [[a]] denotes a secret shared value a ∈ Fq. Note that
our protocols are designed to work regardless of the underlying Linear Secret
Sharing Scheme (LSSS). We assume all our inputs are elements of some field
elements Fq, where q is a prime of bit-size �. We use typical assumptions while
encoding integer values in Fq. That is to say that we consider half of the input
domain to represent positive numbers, and the other half negative. Let P be the
set of all parties of size |P |.

We follow a representation proposed by Catrina and Saxena [8], which is
common in the MPC literature and libraries [2–4]. We define Z〈k〉 as the set of

Benchmarking Privacy Preserving Scientific Operations 513

integers {x ∈ Z : −2k−1 ≤ x ≤ 2k−1 − 1}, which we embed into Fq via the
map x �→ x (mod q). We define Q〈k,f〉 as the set of rational numbers {x ∈ Q :
x = x · 2−f , x ∈ Z〈k〉}. We represent x ∈ Q as the integer x · 2f = x ∈ Z〈k〉,
which is then represented in Fq via the mapping used above. Thus x ∈ Q is in
the range [−2e, 2e − 2−f] where e = k − f . As we are working with fixed point
numbers we assume that the parameters f and k are public. For our following
algorithms to work (in particular fixed point multiplication and division) we
require that q > 22·k. We can then imagine a minimal representation of a secret
shared fixed point number x, as 〈x〉 to be a tuple composed by {[[v]], k, f}. We
extend the notation in [13], encoding secret shared field elements as [[x]] and
fixed-point inputs as 〈x〉. Note that operations with public fixed-point operations
are possible by using the same basic encoding. Vectors of secret shared inputs
are also denoted by [[Y]] or 〈Y 〉, and its size is |Y |, with the context being
implicitly clear.

Experimental Setup: All experiments in this paper were run using a LAN
network test-bed (10 Gb switch and connections), with dedicated machines. Each
machine had the same hardware and software configuration, namely 32 GB RAM,
256 SSD storage, Intel Core i7-770 3.6 GHZ processor, and were running Ubuntu
16.04.5 LTS. The machines ran the SCALE-MAMBA system [2] for their base MPC
protocols. This is an MPC framework which runs in the offline-online paradigm,
namely work is performed in two distinct phases: a function independent offline
phase (used to generate correlated randomness) and an online phase (where
the function is evaluated). More specifically, the former phase is dedicated to
generating Beaver Triples [5] and random shared bits.

SCALE-MAMBA allows us to test our protocols in an actively secure environ-
ment (in particular active security with abort) for various access structures. For
comparison purposes we looked at three setups;

– A two and three party full-threshold access structure which uses (essentially)
the SPDZ protocol from [12,14,19],

– A three party honest majority setting using Shamir secret sharing. This vari-
ant uses Maurer’s protocol [23] to generate offline data, which is then pro-
cessed as in [20].

SCALE-MAMBA has built in protocols for performing fixed point arithmetic
based on the methodology of [8] described above. We made use of the default
configuration of SCALE-MAMBA to run all our experiments, except for those for
the exponentiation and logarithm functions. This implies that we used a 128-bit
modulus for Fq. Additionally, fixed point inputs are k = 41 bits in length of
which f = 20 bits are dedicated to its fixed point precision. This implies an
implicit statistical security parameter κ for the fixed point arithmetic emulation
of 40 bits.

We note that the implementation of SCALE-MAMBA optimizes execution times
by running parallel threads to create offline data “just-in-time”. However, for
the cases where the offline phase can be executed in advance, we also run exper-
iments to measure exclusively the online phase and to estimate the execution

514 A. Aly and N. P. Smart

time of any associated offline phase. Communication cost greatly influences the
overall running times of the system; and because of this the compiler will try to
optimize execution times so as to maximize throughput. This is done by execut-
ing multiple operations in a single round. Our experiments include configurations
for cases when compilation is optimized in this way, and when is not. Thus, we
get estimates for when one wants to maximize throughput, and when one wants
to minimize latency.

In all our experimental reports in what follows we present three figures.

– Offline Phase. We measure the average time it takes to produce enough
triples during the offline phase for a single execution of the functionality
(e.g., a single 〈sin(x)〉 or 〈tan(x)〉 call).

– Latency Measurement. In this setting we evaluate the online phase of our
protocol executing a single operation at a time (i.e. sequential as opposed
to parallel execution). We then present the average run time for the online
phase only. This gives an estimate of the expected latency a user can expect
if latency of computation is the main performance issue.

– Throughput Maximization. We also measured when we run several
instances of the functionality (in our case 50) in parallel. Thus this enables us
to give a lower bound for the expected throughput, i.e. how many operations
can be performed per second, if throughput is the main performance issue.

Note that computational costs for the offline phase dominate on overall per-
formance, and that in SCALE-MAMBA, the offline phase works on the same way
regardless of whether the online phase is configured to maximise throughput or
minimize latency.

Arithmetic Black Box: To facilitate the understanding of the implications
of using functionalities that are as secure as the underlying MPC protocols
that implement them, we follow literature on the field by describing an arith-
metic blackbox (FABB). This was originally introduced by [13], in the context
of abstracting away finite field operations in Fq via shares [[x]], but one can also
extend it to operations on our fixed point sharing 〈x〉, as well as more complex
operations which have already been proved to be secure under composition.

The FABB works as an idealized functionality, capable to store secret values
over Fq (input) and make them public under request (output). A stored x ∈ Fq

will be denoted by [[x]]. Furthermore, it can perform a series of operations under
request by the computational parties, for example addition and multiplication of
such elements. Hence, it can be asked to compute any function, by constructing
the associated functionality as an arithmetic circuit. This allows our protocols to
abstract themselves from the specific details of how the MPC system implements
them. The basic functionality, which includes addition and multiplication of
field elements as well as fixed-point inputs and is detailed in Table 1. With the
protocols used to implement these functions, in our experiments, being taken
from the underlying protocols in SCALE-MAMBA described above. In the same
table, we also present the number of rounds needed to execute each function in

Benchmarking Privacy Preserving Scientific Operations 515

the online phase of the SCALE-MAMBA system. Additionally, we make occasional
use of high level functionalities which have been given and proven secure by
various other authors. These protocols are given by Table 2.

Table 1. Secure arithmetic operations provided by the FABB .

Operation Purpose Rounds

x ← [[x]] Opening/outputting a secret field element 1

[[x]] ← x Inputting secret a field element 1

[[z]] ← [[x]] + [[y]] Adds secret field elements 0

[[z]] ← [[x]] + y Adds secret field and public element 0

[[z]] ← [[x]] · y Multiplies secret field and public element 0

[[z]] ← [[x]] · [[y]] Multiply secret elements 1

〈z〉 ← 〈x〉 + 〈y〉 Adds secret fixed point numbers 0

〈z〉 ← 〈x〉 + y Adds secret and public fixed point numbers 0

〈z〉 ← 〈x〉 · 〈y〉 Multiplies secret fixed point numbers 1

〈z〉 ← 〈x〉 · y Multiplies secret and public fixed point numbers 0

〈z〉 ← [[x]] + 〈y〉 Adds secret fixed point number with secret field element 0

〈z〉 ← [[x]] · 〈y〉 Multiplies secret fixed point number with secret field element 1

Table 2. Secure complex functionalities derived from the FABB .

Operation Purpose Rounds Protocol

[[b]] ← [[x]] < [[y]] Compares a secret and
field elements

1 + log2(�) [7]

[[b]] ← [[x]] < y Compares a secret and
public field elements

1 + log2(�) [7]

[[b]] ← 〈x〉 < 〈y〉 Compares a secret and
fixed point numbers

1 + log2(�) [7]

[[b]] ← 〈x〉 < y Compares a secret and
public fixed point
numbers

1 + log2(�) [7]

〈z〉 ← 〈x〉/〈y〉 Divides secret
fixed point numbers

2 · log2(
k
3.5

) + 8 [8]

〈z〉 ← choose([[b]], 〈x〉, 〈y〉) MUX. Returns 〈x〉 or
〈y〉 depending on bit
[[b]] s.t.
(〈y〉 − 〈x〉) · [[b]] + 〈x〉

1 [11]

〈z〉 ← choose(b, 〈x〉, 〈y〉) MUX. Returns 〈x〉 or 〈y〉
depending on bit b s.t.
(〈y〉 − 〈x〉) · b + 〈x〉

1 [11]

[[b]]0, . . . , [[b]]�−1 ← bit decompose([[x]]) Bit decomposition of
secret field element

log2(q) [11,26]

[[b]]0, . . . , [[b]]k−1 ← pre OR([[x]]0, .., [[x]]k−1) fan-in or 1 [11]

[[z]] ← trunc(〈x〉) trunc(x) so that
returns
x’s integral magnitude

2 [8]

516 A. Aly and N. P. Smart

On Mixed Type Operations: In some cases, and as denoted by Table 1, we may
need to either add or multiply secret share fixed point with a standard shared
modulo p value. In this case we are assumed to know a bound on the number
of bits in the shared modulo p value; i.e. it is never a general element in Fp

but one of bounded size when reduced to a centre around zero. As described
by Catrina and Saxena [8] we need to scale the integer inputs by 2f . This way,
integer operands share the same encoding than their fixed point counterparts.
This process is called “scaling”, and can be achieved by shifting the input to the
left by |f | bits. We refer the reader to [8], for a more complete explanation of
this process.

Note that subtractions, can be trivially derived from the functionality
described by Table 1. Given that we can encode negative numbers, subtractions
can be seen as a special case of addition, where the substracted input is multi-
plied by −1.

On Numerical Approximation: As it was previously mentioned, our proto-
cols are based on the results outlined by Hart in his work, Computer Approxima-
tions [16]. We make use of numerical methods that, through the use of Polynomial
and Padé approximants, can obtain “good enough” approximations to transcen-
dental functions, over a given input interval. To be able to operate, we reduce
(normalize) our inputs to such intervals and keep track of their cyclic position.
Throughout this work, polynomials are referred in the same way as in the original
work by Hart; that is to say a polynomial is described as capital Pi and Qi where
i, refers to the index of table, taken directly from Hart’s work [16]. In the case of
a polynomial approximation to a function f we have f(x) ≈ Pi(x), whilst in the
case of a Padé approximation we have f(x) ≈ Pi(x)/Qi(x). We have included, an
appendix with all the polynomials used in this work, as well as their precision.

3 Approximated Square Root

In this section, we introduce our results, with respect to the oblivious computa-
tion of the square root. The intuition of our work is as follows, given a shared
fixed point number 〈x〉 = {[[v]], k, f}; we create an initial approximation of the
form 〈v〉/2

[[m]]
2 , where [[m]] is the secret shared location of the most significant

bit in [[v]]. Following Liedel [22], we then improve our approximation by using
a number of Newton-Raphson and Goldschmidt iterations. However, the initial
approximation to the square root presented by Liedel does not work on all pos-
sible input numbers. In particular the approximation algorithm requires a fixed
point division by the number 23·k−2·f = 2t. To perform this we create the clear
fixed point representation of the value 1/2t and then perform a multiplication
between a clear and a shared value. However, to represent 1/2t in our fixed point
representation we require there to be a value i ∈ [0, . . . , k) such that i − f = −t,
i.e. t = f − i < f . Thus there are some inputs for which Liedel’s method to
produce the first approximation would require us to increase our precision, and
hence our costs, and potentially the underlying prime size. However, we will see
that a more crude initial approximation suffices.

Benchmarking Privacy Preserving Scientific Operations 517

Most Significative Bit: Our protocols require us to identify the Most Signi-
ficative Bit (MSB) from any Fq element. To achieve this, we adapt the results
from [11,22], in such a way that we can isolate it. Our adapted construction
makes use of the following inputs:

– [[v]]: Integer input value.
– k: Represents a bound on the size of v as an integer. In particular |v| < 2k.

Our protocol will return the most significative bit, which is less than k, but
encoded as an index vector. Protocol 1, encompass the method used to achieve
this. Note that, to improve the understanding (implementation-wise) of the pro-
tocols in this section (and, in particular Protocol 2), the output index vector will
be of size k when k is even and k + 1 when k is odd. This is needed to enable
the indexing in our parity extraction step in Protocol 2 to be correct.

Protocol 1. Most Significative Bit Extraction
Input: Secret shared integer input[[v]]. Bit-wise upper bound k
Output: Returns secret shared vector [[z]] with z ∈ {0, 1}k or {0, 1}k+1, which

is all zero except for the location of the MSB of v.
1 [[V]]b ← bit decompose([[v]]);
2 [[V ′]]b ← {01, ..., 0|Vb|};
3 for i ← k to 1 do
4 [[V ′]]l−i+1 ← [[V]]i; //invert its order

5 [[Y]] ← pre OR([[V ′]]b);
6 [[Y ′]] ← {01, ..., 0|Y |};
7 for i ← k to 1 do
8 [[Y ′]]k−i+1 ← [[Y]]i; //restore its order

9 [[z]] ← {01, ..., 0k+1−(k mod 2)};
10 for i ← 1 to k − 1 do
11 [[z]]i ← [[Y ′]]i − [[Y]]i+1;
12 [[z]]k ← [[Y ′]]k;
13 return [[z]];

The protocol works by first obtaining the bit decomposition of our field ele-
ment, we then obtain the fan-in OR (pre OR([[x]])) of the binary expansion of
the input, in inverse order. Note that, without loss of generality, our protocol is
explained by using full integers of size k, however it can be used to select the
MSB of any substring of size smaller than k. We then simply proceed to obliv-
iously identify the point where, the pre OR([[a]]) stop returning [[0]] and become
[[1]]. Finally, we adjust the return vector size depending on k.

Initial Square Root Approximation: By extracting the MSB of the input
we can obtain our initial approximation via [[w]] ← 2

[[m]]
2 if [[m]] is even, or 〈w〉 ←

2
[[m−1]]

2 if odd, where [[m]] is the MSB of [[v]]. Note, this needs to be done without

518 A. Aly and N. P. Smart

disclosing the parity of m, as explained in Protocol 2. This would suffice to obtain
the desired approximation. Additionally, we have to deal with the effects of the
parity of f (by making minor changes depending on whether f is even or odd).

Protocol 2. Approximation of the Square Root (app sq)
Input: Secret shared integer input [[v]], and bit-wise upper bound k.
Output: MSB index position [[m]], its parity [[o]] and a power of 2

approximation for 〈√x〉 in [[w]]
1 [[z]] ← MSB([[v]], k); (i.e. Protocol 1)
2 [[m]] ← [[0]];
3 [[o]] ← [[0]]; //is odd

4 for i ← 1 to k do
5 [[m]] ← [[m]] + (i) · [[z]]i−1;
6 if (i mod 2) = 1 then
7 [[o]] ← [[o]] + [[z]]i;

8 [[W]] ← {[[0]]1, ..., [[0]]� k
2 +1�}; //size is � k

2
� + 1

9 [[W]] ← [[0]];

10 for i ← 1 to k
2

+ 1 do
11 [[w]] ← [[w]] + (2i−1) · [[W]]i;
12 return [[o]], [[m]], [[w]];

The protocol converts the sharing of the {0, 1}k vector in [[z]] produced by
Protocol 1 into an integer sharing [[m]] with m ∈ {1, . . . , k}. At the same time
we identify the parity of m, and we then calculate [[w]] by evaluating the binary
expansion of the index encoding vector.

Privacy Preserving Square Root: Once, we have obtained our initial approx-
imation, following Liedel [22] results, which we present in Protocol 3. We fix the
maximum number of iterations for the Goldshmidt Newton-Raphson combina-
tion, just as in Liedel [22], and assign it to θ. The precision of our construction
is tied to θ and, has to be tunned in according to the application at hand. Our
experiments yielded an accuracy of around six digits after six repetitions. We
first obtain [[w]] by invoking Protocol 2 and then proceed to build an instance of
[[w]] as a fixed point number, in accordance to the parity of f , [[m]] and Proto-
col 2. The protocol works by executing a Goldschmidt’s iteration followed by a
final Newton iteration.

Results: To provide a comparison with the previous work of Liedel, we also
present run-times for his results as well. However, we stress again that Liedel’s
method is not as general as the method we propose, as we can cope with a much
larger set of input parameters. In Table 3 we present the required offline data, per
single square root operation. Then in Table 4 we present the execution times for
the offline phase (for a single square root operation), plus the minimum latency

Benchmarking Privacy Preserving Scientific Operations 519

Table 3. Offline data needed for a single fixed point square root operation

Protocol Liedel This work

Multiplication triples 197 684

Square tuples 1 0

Shared bits 2598 4049

Table 4. Performance figures for full threshold (2 and 3 parties) and Shamir with 3
parties for the fixed point square root calculation.

Protocol Full threshold 2 parties Full threshold 3 parties Shamir 3 parties

Liedel This work Liedel This work Liedel This work

Offline (sec) 2.49 3.90 2.905 4.708 0.065 0.088

Latency (sec) 0.0034 0.0048 0.0043 0.0060 0.0039 0.0062

Throughput (ops/sec) 1042 491 795 313 785 308

Protocol 3. Optimized Approximated 〈√x〉 for fixed point
Input: Secret shared fixed point input 〈x〉 = {[[v]], k, f}.
Output: Square root of input 〈√x〉.

1 θ ← max(�log2(xk)�, 6);
2 [[o]], [[m]], [[w]] ← app sq([[xv]], xk);
3 [[o]] ← choose((f mod 2), 1 − [[o]], [[o]]);
4 [[w]] ← choose((1 − [[o]]) · (f mod 2), 2 · [[w]], [[w]]);
5 t ← (f − (f mod 2))/2;
6 〈w′〉 ← ([[w]] · 2t, k − f, f);

7 〈w′〉 ← choose([[o]], 〈w′〉 · √
2, 〈w′〉);

8 〈y〉 ← 〈w′〉−1;
9 〈g〉 ← 〈x〉 · 〈y〉;

10 〈h〉 ← 〈y〉/2;
11 for i ← 1 to θ do
12 〈r〉 ← 3

2
− 〈g · h〉;

13 〈g〉 ← 〈g〉 · 〈r〉;
14 〈h〉 ← 〈h〉 · 〈r〉;
15 〈r〉 ← 3

2
− 〈g · h〉;

16 〈h〉 ← 〈h〉 · 〈r〉;
17 〈H〉 ← 3 − 4 · 〈x〉 · 〈h〉2;
18 〈H〉 ← 〈h〉 · 〈H〉;
19 〈√x〉 ← 〈x〉 · 〈H〉;

and maximum throughput we obtained in the three different configurations we
tested. We see that, when Liedel’s method can be applied then the performance
is better, but the extra cost of our method in dealing with general inputs is only
about a factor of two.

520 A. Aly and N. P. Smart

Discussion: A recent implementation, with regards to the secure evaluation
of square root functions on distributed environments, was introduced by Dim-
itrov et al. [15]. These implementations where part of their work on alternative
representations for real numbers. Their results make use of a golden number
encoding, as well as some logarithmic based representation for real numbers.
The authors followed the Liedel line of work for their implementation, and used
(the passively secure) Sharemind [6] system as their test-bed. They made use of a
similar configuration (3 parties) on high-end machines, except for the fact they
ran their experiments using Intel Xeon microprocessor series. For comparison
reasons, they included experimentation against 32 and 64 bit long fixed point
representations included in Sharemind. Their work however only gives estima-
tions on the number of operations per second, but no mention on whether these
are batched together. The fastest implementation is their logarithmic represen-
tation using a low bit-size for the inputs and a somewhat small precision. Direct
comparison is hard to make as they target only passively secure MPC, whereas
we focus on actively secure MPC.

4 Trigonometric Functions

We introduce a series of adaptations of the numerical approximations given by
Hart [16] for the basic trigonometric functions, and then implement them in an
oblivious fashion. The approximations have been chosen to balance accuracy and
low degree (i.e. efficiency).

Angle Reduction: We first introduce a mechanism, Protocol 4, to map any
input 〈x〉 to the range [0, π

2], and the quadrant which 〈x〉 lies in (given by b1 and
b2). The quadrant is a byproduct of the process of the initial mapping. Protocol 4
requires a trunc(x) operation call, and a low number of fundamental operations.
The outputs of the operation, are as follows:

– 〈w〉: w = x (mod π/2).
– [[b1]]: b1 = (x (mod 2 · π)) > π.
– [[b2]]: b2 = (x (mod π)) > π/2.

Sine, Cosine and Tangent Functions: First, the input 〈x〉 has to be mapped
to the correct interval. We then can obtain the sin of any angle by using the
polynomial approximation sin(x) = ν · P3307(ν2) where ν = w · 2/π for w = x
(mod π/2), with the polynomial P3307 from Hart [16] given in the Appendix.
We can produce the cosine function, by evaluating P3508(w2) from [16] (again
details in Appendix). Given the cyclic nature of both sin and cos, we adjust the
sign of the outputs by b1 and b2 accordingly. Finally, using the standard identity,
tan(x) = sin(x)/ cos(x) we can then give the tangent function.

Benchmarking Privacy Preserving Scientific Operations 521

Protocol 4. Angle reduction protocol
Input: Secret shared fixed point input 〈x〉 = {[[v]], p, f}.
Output: Secret shared reduced angle 〈w〉 such that 0 ≤ 〈w〉 ≤ π

2
, and flags

[[b1]] and [[b2]].
1 〈d〉 ← 〈x〉 · 1

2·π ; //This is a scalar mult.

2 [[d]] ← trunc(〈d〉);
3 〈y〉 ← 〈x〉 − [[d]] · (2 · π);
4 [[b1]] ← 〈y〉 > π;
5 〈w〉 ← choose([b1], (2 · π) − 〈y〉, 〈y〉);
6 [[b2]] ← 〈w〉 > π

2
;

7 〈w〉 ← choose([[b2]], (π − w) − 〈w〉, 〈w〉);
8 return 〈w〉, [[b1]], [[b2]];

Inverse Trigonometric Functions: Inverse trigonometric functions can be
built directly, from an approximation to the arctan function via

arcsin(x) = arctan
(

x√
1 − x2

)
and arccos(x) =

π

2
− arcsin(x).

For arctan we have to perform a somewhat similar input reduction proce-
dure as was done for the main trigonometric functions above; as is also the
case in [4]. We first simplify the process by operating on positive values only,
since arctan(−x) = − arctan(x). Thus, we first need to identify the sign of 〈x〉
sign. We then can reduce 〈x〉 value to the interval [0, 1], by using the formula
arctan(x) = π

2 − arctan
(
1
x

)
. From this point, it suffices to obtain an approx-

imation for arctan(x) in the interval x ∈ [0, 1]. Which we again do via a
Padé approximation P5102(X)/Q5102(X) from [16] (see the Appendix). Proto-
col 5 shows how we obtain this value, by using the building blocks, enumerated
in previous sections.

Protocol 5. Approximated arctan(〈x〉)
Input: Secret shared fixed point input 〈x〉 = {[[v]], k, f}.
Output: Approximation for 〈arctan(〈x〉)〉

1 [[s]] ← 〈x〉 < 0;
2 〈abs(x)〉 ← choose([[s]], −1 · 〈x〉, 〈x〉);
3 [[b]] ← 〈abs(x)〉 > 1;
4 〈ν〉 ← choose([[b]], 1

〈abs(x)〉 , 〈abs(x)〉);
5 〈y〉 ← P5102(〈ν〉2)/Q5102(〈ν〉2);
6 〈arctan(〈x〉)〉 ← 〈x〉 · 〈y〉;

Results: Just as in the case of the square root function we present our results in
two tables. To calculate 〈arccos(x)〉, trivially follows from solving 〈arcsin(x)〉,
hence, running times are essentially the same and thus ignored. The first table,
Table 5, gives the offline cost per function call, whereas the second, Table 6, gives
the actual measured costs using our programs.

522 A. Aly and N. P. Smart

Table 5. Offline data needed for a single fixed point trigonometric operation

Discussion: There are some related works that explore similar results but differ
in regards to the underlying method to compute on encrypted data. The problem
of computing trigonometric functions using Homomorphic Encryption was most
recently addressed by Cheon et al. [9]. In their work they tackle various topics
related to fixed point representation in the homomorphic encryption domain.
The authors included results for several operations related to statistical func-
tions. Amongst them, the authors provided timings for sigmoids, using Taylor
series. Their test-bed (a single machine) was fairly similar to the set-up of our
own machines, but they have used Intel i5 processors instead. On their timings
themselves, they were slightly slower than what it was achieved by this work.
Namely, their variant of the HEEAN protocol, was capable of evaluating sigmoid
functions in around 167 ms (non-amortized cost), whereas our most common
set-up, which considers three parties using Shamir’s secret sharing such a func-
tion could be evaluated in 4 ms. As a final note, it has to be taken into account
that Homomorphic Encryption and MPC are often targetted at different scenar-
ios, thus making difficult to establish direct comparison, given that the protocol
selection does not exclusively depends on their performance.

Table 6. Performance figures for full threshold (2 and 3 parties) and Shamir with 3
parties for the fixed point trigonometric operations.

Benchmarking Privacy Preserving Scientific Operations 523

5 Exponentiation and Logarithms

In this section, we explore how to obtain the power and the logarithm of any
base, to any exponent. This can be achieved by the use of standard logarithmic
identities and numerical approximations; namely logb(x) = log2(b) · log2(x)
and exp(x, y) = xy = exp(2, y · log2(x)).

Logarithmic Function: To calculate 〈log2(x)〉, we first need to express 〈x〉
using the secret shared floating point notation used in [1]. This is to enable us to
extract the normalized value of x in the range [0.5, 1], to enable the calculation of
the function via numerical approximation. We denote this operation as follows:

([[vf]], [[ff]], [[s]], [[z]]) ← f cast(〈x〉),
which produces the elements to encode the shared fixed point number 〈x〉 as a
shared floating point number. The details of these elements is as follows:

– [[s]] is a sharing of the sign of x.
– [[z]] is a sharing determining whether x is zero or not.
– [[ff]] is the secret shared significand for the representation.
– [[vf]] is the mantissa, namely an integer value which is normalized to be in the

range [2k−1, . . . , 2k).

The underlying floating point number can thus be expressed as (1 − 2 · s) · (1 −
z) · vf · 2ff . To compute f cast(〈x〉) we make use of the method introduced by
Aliasgari et al. [1]. Internally, this functionality determines the position of the
MSB in [[v]], this enables us to obtain the number of bit shifts needed to compute
[[vf]] and, hence, 〈ff 〉 from the [[v]] and f values used to represent 〈x〉. We direct
the reader to [1] for a more complete explanation of this conversion routine.

Let us define [[ef]] = k + [[ff]]. To obtain the 〈log2(x)〉 we map 〈x〉 to the
range [0.5, 1], by computing 〈ν〉 = 〈 1

2k
〉 · [[vf]]. Then we can use it to compute

〈log2(x)〉 = [[ef]] + 〈log2(ν)〉. The approximation to 〈log2(ν)〉 can then be
produced by a Padé approximation, calculated by the means of the P2524/Q2524

polynomials, introduced by [16] (and given in the Appendix). Note that we define
for this function log2(x) = 0 when x ≤ 0. The motivation behind this behaviour
is given because, including any abort would signal, when the answer is opened,
information related to the input.

Exponentiation Functions: We are left with deriving 〈exp(2, x)〉, for a secret
shared input 〈x〉. Due to standard identities, this can be obtained from a polyno-
mial approximation to exp(2, x) in the interval [0, 1]. In this regard, we first need
to isolate the integral part [[i]] and fractional remainder 〈r〉 of the input value
〈x〉 such that 〈x〉 = [[i]] + 〈r〉. We can then calculate 2[[i]], using conventional
techniques for bit-decomposition and exponentiation e.g., [11]. We can obtain
2〈r〉 using a polynomial approximation, by means of P1045(〈r〉), as given in the
Appendix. From that point on, it suffices to follow the identities outlined at the
beginning of this section to obtain 〈exp(x, y)〉.

524 A. Aly and N. P. Smart

Protocol 6. Approximated 〈exp(2, x)〉
Input: Secret shared fixed point input 〈x〉 = {[[v]], k, f}.
Output: Approximation for 〈exp(2, x)〉

1 [[s]] ← 〈x〉 < 0;
2 〈x〉 ← choose([[s]], −1 · 〈x〉, 〈x〉); //Convert input to positive number

3 [[i]] ← trunc(x); //extract integer component of x

4 〈r〉 ← 〈x〉 − [[i]]; //Extract fractional component of x

5 ([[i]]0, ..., [[i�−1]]) ← bit decompose([[i]]);

6 [[d]] ← ∏�−1
j=0([[ij]] · 22j + 1 − [[ij]]);

7 〈u〉 ← P1045(〈r〉);
8 〈g〉 ← 〈u〉 · [[d]];
9 〈exp(2, x)〉 ← choose(1 − [[s]], 〈g〉, 1

〈g〉);

Table 7. Offline data needed for a single fixed point exp/log operation

Protocol 〈log2(x)〉 〈exp(2, x)〉
Multiplication triples 1880 1337

Square tuples 0 1

Shared bits 5937 7688

Results: Under default precision parameters of the SCALE-MAMBA system, and
because of the size of the polynomials used for our approximations of both base
two functions i.e., 〈log2(x)〉 and 〈exp(2, x)〉, numerical results become less accu-
rate and numerically unstable. Thus, to run our experiments in this example,
we doubled the size of our inputs and their precision i.e. we use k = 81, f = 40,
κ = 80. This, of course, influences the field size on which we operate, which has
to be of at least 245 bits, instead of the 128 bits modulus used on our other
experiments. Bigger field sizes also imply an increase on communication cost
given that the size of the shares increases accordingly. Note that, as we use some
level of bit decomposition in our protocols, the number of triples required also
increases with the size of k and κ. Our results are presented in Tables 7 and 8.

Table 8. Performance figures for full threshold (2 and 3 parties) and Shamir with 3
parties for the fixed point exp/log operations.

Protocol Full threshold 2 parties Full threshold 3 parties Shamir 3 parties

〈log2(x)〉 〈exp(2, x)〉 〈log2(x)〉 〈exp(2, x)〉 〈log2(x)〉 〈exp(2, x)〉
Offline (s) 14 18 15.89 19.83 0.27 0.35

Latency (s) 0.015 0.015 0.018 0.016 0.021 0.18

Throughput (ops/s) 66 76 56 66 50 64

Benchmarking Privacy Preserving Scientific Operations 525

Discussion: Just as for the trigonometric functions we can compare our work
to that of Cheon et al. [9] using homomorphic encryption. They perform can
perform exponentiation operations in about 164 ms (not amortized), whereas we
can perform an exponentiation, with a known public base, in about 2.5 ms (under
our 3 parties Shamir based setting). It is worth noting that Dimitrov et al. [15]
also provided implementations for the exponent function, using alternative ways
to represent these rational numbers, using MPC. However, it is difficult to draw
direct comparisons with this later work as they target passively secure MPC,
whereas we focus on actively secure MPC.

Acknowledgements. This work has been supported in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific)
under contract No. N66001-15-C-4070, and by the FWO under an Odysseus project
GOH9718N.

A Polynomial and Padé Approximations

Tables in this appendix provide the concrete polynomials for the Polyno-
mial/Padé approximations used by our protocols. The tables were extracted
from Hart’s Computer Approximations [16]. We follow the same nomenclature
as the book’s author. That is to say, scientific notation where each of the poly-
nomial coefficients, is given by its Significand (s) and its coefficient Magnitude
(m). Let ci, be the coefficient of term i, for all i ∈ P (x). Then ci can be obtained
by calculating mi · 10si . This is true for all polynomials in this Appendix.

P3307(X): The polynomial that is used to approximate the function sin(x) on
the interval [0, π

2]. The absolute error of the approximation is given by:
∣
∣∣sin(x) − x · P3307(x2)

∣
∣∣ < 10−20.19 for x ∈ [0,

π

2
].

s Magnitudes (m) of P3307

0 1 +0.15707 96326 79489 66192 31314 989

1 0 −0.64596 40975 06246 25365 51665 255

2 −1 +0.79692 62624 61670 45105 15876 375

3 −2 −0.46817 54135 31868 79164 48035 89

4 −3 +0.16044 11847 87358 59304 30385 5

5 −5 −0.35988 43235 20707 78156 5727

6 −7 +0.56921 72920 65732 73962 4

7 −9 −0.66880 34884 92042 33722

8 −11 +0.60669 10560 85201 792

9 −13 −0.43752 95071 18174 8

10 −15 +0.25002 85418 9303

526 A. Aly and N. P. Smart

P3508(X): The polynomial that is used to approximate the function cos(x) on
the interval [0, π

2]. The absolute error, for this polynomial is given by:
∣∣
∣cos(x) − P3508(x2)

∣∣
∣ < 10−23.06 for x ∈ [0,

π

2
].

s Magnitudes (m) of P3508

0 0 +0.99999 99999 99999 99999 99914 771

1 0 −0.49999 99999 99999 99999 91637 437

2 −1 +0.41666 66666 66666 66653 10411 988

3 −2 −0.13888 88888 88888 88031 01864 15

4 −4 +0.24801 58730 15870 23300 45157

5 −6 −0.27557 31922 39332 25642 1489

6 −8 +0.20876 75698 16541 25915 59

7 −10 −0.11470 74512 67755 43239 4

8 −13 +0.47794 54394 06649 917

9 −15 −0.15612 26342 88277 81

10 −18 +0.39912 65450 7924

P5102(X) and Q5102(X): These are the polynomials we use to calculate the
Padé approximation for the function arctan(x) on the [0, tan(π/4)] interval.
Note that, tan(π/4) = 1. We can express the relative error for this approximation
as:

∣∣∣
arctan(x) − x · P5102(x2)

Q5102(x2)

arctan(x)

∣∣∣ < 10−22.69. for x ∈ [0, tan π/4].

s Magnitudes (m) of P5102 s Magnitudes (m) of Q5102

0 5 +0.21514 05962 60244 19331 93254 468 5 +0.21514 05962 60244 19331 93298 234

1 5 +0.73597 43380 28844 42408 14980 706 5 +0.80768 78701 15592 48851 76713 209

2 6 +0.10027 25618 30630 27849 70511 863 6 +0.12289 26789 09278 47762 98743 322

3 5 +0.69439 29750 03225 23370 59765 503 5 +0.97323 20349 05355 56802 60434 387

4 5 +0.25858 09739 71909 90257 16567 793 5 +0.42868 57652 04640 80931 84006 664

5 4 +0.50386 39185 50126 65579 37791 19 5 +0.10401 13491 56689 00570 05103 878

6 3 +0.46015 88804 63535 14711 61727 227 4 +0.12897 50569 11611 09714 11459 55

7 2 +0.15087 67735 87003 09877 17455 528 2 +0.68519 37831 01896 80131 14024 294

8 −1 +0.75230 52818 75762 84445 10729 539 1 +0.1

P2524(X) and Q2523(X): These are the polynomials that are used to calculate
the Padé approximation for the function log2(x) on the interval [0.5, 1]. The
relative error for this approximation is given by:

Benchmarking Privacy Preserving Scientific Operations 527

∣∣∣
log2(x) − P2524(x)

Q2524(x)

log2(x)

∣∣∣ < 10−8.32 for x ∈ [0.5, 1].

s Magnitudes (m) of P2524 s Magnitudes (m) of Q2524

0 1 −0.20546 66719 51 0 +0.35355 34252 77

1 1 −0.88626 59939 1 1 +0.45451 70876 29

2 1 +0.61058 51990 15 1 +0.64278 42090 29

3 1 +0.48114 74609 89 1 +0.1

P1045(X): We use this polynomial, to calculate the Padé approximation for the
function exp(2, x) on the interval [0, 1]. The relative error of the approximation
is given by: ∣

∣∣
exp(2, x) − P1045(x)

exp(2, x)

∣
∣∣ < 10−12.11 for x ∈ [0, 1].

s Magnitudes (m) of P1045

0 1 +0.10000 00077 44302 1686

1 0 +0.69314 71804 26163 82779 5756

2 0 +0.24022 65107 10170 64605 384

3 −1 +0.55504 06862 04663 79157 744

4 −2 +0.96183 41225 88046 23749 77

5 −2 +0.13327 30359 28143 78193 29

6 −3 +0.15510 74605 90052 57397 8

7 −4 +0.14197 84739 97656 06711

8 −5 +0.18633 47724 13796 7076

References

1. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: NDSS 2013. The Internet Society, February 2013

2. Aly, A., et al.: SCALE and MAMBA documentation (2018). https://homes.esat.
kuleuven.be/∼nsmart/SCALE/

3. Bayatbabolghani, F., Blanton, M., Aliasgari, M., Goodrich, M.: Secure computa-
tions of trigonometric and inverse trigonometric functions. In: IEEE Symposium
on Security and Privacy (IEEE S&P 2017), San Jose, May 2017

4. Bayatbabolghani, F., Blanton, M., Aliasgari, M., Goodrich, M.: Secure fingerprint
alignment and matching protocols. arXiv preprint arXiv:1702.03379 (2017)

https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
http://arxiv.org/abs/1702.03379

528 A. Aly and N. P. Smart

5. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-46766-1 31

6. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

7. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-
4 13

8. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14577-3 6

9. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approx-
imate homomorphic encryption. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018.
LNCS, vol. 11349, pp. 347–368. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-10970-7 16

10. Cybernetica SA: Sharemind (2018). https://sharemind.cyber.ee
11. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure

constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 15

12. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

13. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 15

14. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

15. Dimitrov, V., Kerik, L., Krips, T., Randmets, J., Willemson, J.: Alternative imple-
mentations of secure real numbers. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 553–564. ACM Press, October
2016

16. Hart, J.F.: Computer Approximations. Krieger Publishing Co. Inc., Melbourne
(1978)

17. Kamm, L.: Privacy-preserving statistical analysis using secure multi-party compu-
tation. Ph.D. thesis, University of Tartu, Estonia (2015)

18. Kamm, L., Willemson, J.: Secure floating-point arithmetic and private satellite col-
lision analysis. Cryptology ePrint Archive, Report 2013/850 (2013). http://eprint.
iacr.org/2013/850

19. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://sharemind.cyber.ee
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-642-32009-5_38
http://eprint.iacr.org/2013/850
http://eprint.iacr.org/2013/850
https://doi.org/10.1007/978-3-319-78372-7_6

Benchmarking Privacy Preserving Scientific Operations 529

20. Keller, M., Rotaru, D., Smart, N.P., Wood, T.: Reducing communication channels
in MPC. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp.
181–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 10

21. Kerik, L., Laud, P., Randmets, J.: Optimizing MPC for robust and scalable integer
and floating-point arithmetic. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wal-
lach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 271–287.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 18

22. Liedel, M.: Secure distributed computation of the square root and applications.
In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp.
277–288. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29101-
2 19

23. Maurer, U.: Secure multi-party computation made simple. Discret. Appl. Math.
154(2), 370–381 (2006)

24. Medina, H.A.: A sequence of polynomials for approximating arctangent. Am. Math.
Mon. 113(2), 156–161 (2006). http://www.jstor.org/stable/27641866

25. Ning, C., Xu, Q.: Multiparty computation for modulo reduction without bit-
decomposition and a generalization to bit-decomposition. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 28

26. Ning, C., Xu, Q.: Constant-rounds, linear multi-party computation for exponenti-
ation and modulo reduction with perfect security. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 572–589. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25385-0 31

27. Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private
distributed computation. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM
CCS 2013, pp. 813–826. ACM Press, November 2013

https://doi.org/10.1007/978-3-319-98113-0_10
https://doi.org/10.1007/978-3-662-53357-4_18
https://doi.org/10.1007/978-3-642-29101-2_19
https://doi.org/10.1007/978-3-642-29101-2_19
http://www.jstor.org/stable/27641866
https://doi.org/10.1007/978-3-642-17373-8_28
https://doi.org/10.1007/978-3-642-25385-0_31

Turbospeedz: Double Your Online SPDZ!
Improving SPDZ Using Function

Dependent Preprocessing

Aner Ben-Efraim1, Michael Nielsen2, and Eran Omri1(B)

1 Department of Computer Science, Ariel University, Ariel, Israel
anermosh@post.bgu.ac.il, omrier@gmail.com

2 Uber, Aarhus, Denmark
michael@cryptax.com

Abstract. Secure multiparty computation allows a set of mutually dis-
trusting parties to securely compute a function of their private inputs,
revealing only the output, even if some of the parties are corrupt. Recent
years have seen an enormous amount of work that drastically improved
the concrete efficiency of secure multiparty computation protocols. Many
secure multiparty protocols work in an “offline-online” model. In this
model, the computation is split into two main phases: a relatively slow
“offline phase”, which the parties execute before they know their input,
and a fast “online phase”, which the parties execute after receiving their
input.

One of the most popular and efficient protocols for secure multiparty
computation working in this model is the SPDZ protocol (Damg̊ard et
al., CRYPTO 2012). The SPDZ offline phase is function independent,
i.e., does not require knowledge of the computed function at the offline
phase. Thus, a natural question is: can the efficiency of the SPDZ pro-
tocol be improved if the function is known at the offline phase?

In this work, we answer the above question affirmatively. We show
that by using a function dependent preprocessing protocol, the online
communication of the SPDZ protocol can be brought down significantly,
almost by a factor of 2, and the online computation is often also sig-
nificantly reduced. In scenarios where communication is the bottleneck,
such as strong computers on low bandwidth networks, this could poten-
tially almost double the online throughput of the SPDZ protocol, when
securely computing the same circuit many times in parallel (on different
inputs).

We present two versions of our protocol: Our first version uses the
SPDZ offline phase protocol as a black-box, which achieves the improved
online communication at the cost of slightly increasing the offline com-
munication. Our second version works by modifying the state-of-the-art

A. Ben-Efraim and E. Omri—Research supported by ISF grant 152/17 and the Ariel
Cyber Innovation Center.
M. Nielsen—Partially supported by the European Research Council (ERC) under the
European Unions’s Horizon 2020 research and innovation programme under grant
agreement No. 669255 (MPCPRO).

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 530–549, 2019.
https://doi.org/10.1007/978-3-030-21568-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_26

Turbospeedz: Double Your Online SPDZ! 531

SPDZ preprocessing protocol, Overdrive (Keller et al., Eurocrypt 2018).
This version improves the overall communication over the state-of-the-
art SPDZ.

Keywords: Secure multiparty computation · SPDZ ·
Concrete efficiency · Offline/online

1 Introduction

Secure multiparty computation allows a set of mutually distrusting parties to
securely compute a function of their private inputs, revealing only the output,
even if some of the parties are corrupt. Secure computation was introduced by
Yao [41] for 2 parties and by Goldreich et al. [26] for the multiparty case. Soon
afterwards strong feasibility results were established, e.g., [9,13,15,26,34,38].
Establishment of feasibility led to research of efficiency, and a long series of
works, [1,4,19,20,22,29,30] and others, reduced the asymptotic communication
and computational complexity of secure computation to almost optimal. In this
work and in the following, we focus on the setting of dishonest majority with
active security, in which all parties except one can be dishonest, and dishonest
players may deviate from the protocol description.

However, many of these asymptotically efficient protocols perform poorly
when it comes to real world applications. For example, secure multiparty pro-
tocols based on fully-homomorphic encryption, e.g., [4], have almost optimal
communication and computational complexity, but their concrete efficiency (i.e.,
their run-time in practice on real world problems) makes them somewhat imprac-
tical. The necessity of secure computation in real-world applications has therefore
encouraged the study of concretely efficient protocols. Recent years have seen
an enormous amount of work in this direction, and the concrete efficiency of
secure multiparty computation protocols has also been significantly improved,
e.g., [11,16,23,24,35,40].

Real world scenarios have also led to the study of the “preprocessing” or
“offline-online” model. In this model, the parties run a relatively expensive
“offline” phase, i.e., a preprocessing protocol, before they know their inputs.
After receiving their inputs, the parties then run a very efficient “online” proto-
col that uses the computations made at the offline phase. Such protocols can be
used to make “real-time” secure computations, when it is known well in advance
that these computations would take place.

Some of the works in the offline-online model, most notably SPDZ [23,24],
have a function independent offline phase, i.e., they assume the parties do not
know the function to be computed during the preprocessing. Other works, such
as most concretely efficient constant round secure multiparty protocols [11,28,
36,40], have a function dependent offline phase, i.e., they assume the parties
already know the function at the expensive offline phase.

Both function independent offline and function dependent offline make sense
in different real world applications. For example, assume a set of parties wish

532 A. Ben-Efraim et al.

to securely compute an online auction at a specific date. On the one hand, a
function dependent offline phase might allow the parties to run the auction more
quickly. On the other hand, a function independent preprocessing would allow
the parties more flexibility, such as changing the auction details up to the last
minute. Therefore, it is important to study both of these models. In fact, several
recent works in concretely efficient secure multiparty protocols, e.g., [28,36,40],
separate the offline phase into two parts: a function independent preprocessing
phase and a function dependent preprocessing phase.

Despite the SPDZ protocol being one of the most popular and efficient secure
multiparty computation protocols, we observe that all previous works on the
SPDZ protocol, e.g., [6,18,23,24,39], have only a function independent prepro-
cessing phase. Thus, a natural question arises:

Question 1. Can the famous SPDZ protocol profit from using a function depen-
dent preprocessing protocol?

1.1 Our Contribution and Techniques

In this work we answer Question 1 affirmatively. We present a new “SPDZ-like”
protocol for secure computation against malicious adversaries, which requires
approximately only half the communication in the online phase compared to the
current state-of-the-art SPDZ online [23]. Furthermore, our protocol requires
approximately only half the computation in the online MACCheck protocol,
which is one of the main computational costs of the SPDZ online phase. Thus, we
expect that our protocol could almost double the online throughput compared to
SPDZ in some scenarios, e.g., strong machines on low-bandwidth networks that
securely compute the same function multiple times in parallel on different inputs.
We remark that these scenarios are of interest in real world applications; for
example, increasing the throughput of secure multiple parallel AES computations
has been discussed in [2] for Kerberos.

For semi-honest security, Beaver [8] showed how to randomize circuits. Our
technique can be seen as compiling the original circuit randomization technique
to tolerate active security. Compared to protocols based on so-called “multiplica-
tion triples”, e.g., [14,23,24], we correlate the randomness across gates through-
out the circuit, which in turn allows us to save roughly half the communica-
tion in the online phase. Our protocols show that such techniques are useful
for arithmetic circuits with a dishonest majority, which we present through an
improvement of the well-studied SPDZ protocol.

More specifically, in our preprocessing protocol, the parties compute at each
output wire of a multiplication gate an additional secret-shared random value.
At the online phase, the parties reveal the sum of the real value and this random
value. Then, using this revealed sum and additional information revealed at our
preprocessing protocol, the parties can locally compute the shares for the output
wires of the multiplication gates of the following layer in the circuit. Therefore,
the only communication in the online phase for multiplication gates is revealing
a single secret-shared value – the sum of the real value and a random value

Turbospeedz: Double Your Online SPDZ! 533

– whereas in [23] they reveal two values at each multiplication gate. However,
our preprocessing protocol requires knowledge of the computed function. So in
contrast to previous works on SPDZ, such as [6,18,23,24,39], our protocol’s
offline phase is function dependent.

For intuition, one could see this as follows: the extra randomness allows
“shifting” the revealed values from corresponding to the input wires of multipli-
cation gates (2 input wires for each gate) to corresponding to the output wires
of the multiplication gates (1 output wire per gate) in the previous layer of the
circuit. This “shift” is made possible because we know the function at the offline
phase. Thus, our online protocol requires only half the amount of revealed val-
ues per multiplication gate compared to the improved online SPDZ [23], and
additionally, we also save revealing values for input wires by observing that ran-
dom values used for input distribution, which are “thrown out” in SPDZ, can
be reused securely in our protocol. Since almost all the online communication
comes from the revealing of these values, our online protocol requires almost
half the amount of communication required by the online protocol in [23].1 We
further observe that the number of revealed values directly affects the amount
of computation in the SPDZ MACCheck protocol, which is run at the end of the
online phase to verify that no cheating has occurred.

We present two versions of a protocol that achieve an improved online phase.
In the first version, we work on top of the SPDZ offline phase; that is, we first
run the SPDZ offline preprocessing protocol (with values as detailed below), and
then run another preprocessing protocol. This additional preprocessing protocol
is constant-round and its communication and computation is comparable to the
SPDZ online phase, i.e., relatively small compared to the main cost of the SPDZ
offline phase.

The number of Beaver triples (see Sect. 2 for the definition of Beaver triples)
we need for our protocol is exactly the same as in SPDZ. In this version of our
protocol, we also require generating an additional (in comparison with SPDZ)
random shared value for each multiplication gate at the function independent
preprocessing. However, we note that generating a random shared value is sig-
nificantly cheaper than generating a Beaver triple. Thus, in total, our offline
phase, including both our new function dependent preprocessing protocol and
the SPDZ preprocessing with additional random shared values, should not be
significantly worse than the SPDZ offline phase.

The second version for the protocol achieving an improved online phase is
obtained by modifying the state-of-the-art SPDZ preprocessing protocol, Over-
drive [33]. In this version of our protocol, we “align” randomness generated in
Overdrive with the randomness needed for our online protocol. As a result, this
version of the protocol requires at most the same amount of offline communica-
tion as Overdrive, and in some cases (depending on the computed circuit) even

1 Additional online communication includes squaring gates and communication in the
MACCheck protocol, where we do not improve over [23]. However, this communica-
tion is relatively small, especially in large circuits. Therefore, our online communi-
cation is only slightly more than half the online communication of [23].

534 A. Ben-Efraim et al.

less. In order to “align” the randomness, the new offline phase requires some extra
computation (compared to Overdrive), but this computation consists of simple
additions. Experiments in Overdrive suggest that communication is often the
bottleneck also in the offline phase. Therefore, we expect our offline to improve
the offline time in many instances (since we save communication), and even in
circuits where we do not save offline communication, the extra additions needed
for our protocol should not significantly increase the offline time.

To summarize, our protocol significantly improves over the SPDZ protocol
in the online phase. If we modify the state-of-the-art Overdrive, we also improve
the overall communication, while if we use the SPDZ offline phase as a black-
box our offline phase is only slightly worse (which is still desirable in accordance
with the spirit of the offline-online model). Thus, in cases where the computed
function is known in advance, our protocol should be preferred over SPDZ.

1.2 Related Works

Works that focus on the preprocessing phase of the SPDZ protocol, such as
MASCOT [31], Overdrive [33], and others, e.g., [7], are somewhat complementary
to our work, since we use them for our offline phase. In the first version of our
protocol we use these protocols as a black-box. In the second version of our
protocol, we show that if the function is known at the offline phase, Overdrive can
be slightly modified to “align” with our online protocol, increasing the efficiency
(of the overall time) even further.2

There have also been several works that modified the SPDZ online phase in
order to achieve additional properties, such as public auditability [6], efficient
cheater detection [39], and extension to the integers modulo 2k [18]. It is inter-
esting to check if our ideas can also be used to improve the online phase in these
protocols.

Another line of related works is secure computation based on lookup-tables,
e.g., [17,25,32]. Similarly to our work, these protocols require a function depen-
dent offline phase, and further require sending only a single field element to
each other party per gate at the online phase. Furthermore, protocols based
on lookup-tables can have significantly more sophisticated gates, whereas we
only have addition and multiplication gates. However, known protocols based
on lookup-tables in the malicious setting, e.g., [25,32], require memory that
grows linearly with the size of the field, per gate. Therefore, in contrast to our
protocol (and SPDZ), protocols based on lookup-tables are useful mainly over
small fields.3 We note that in the semi-honest setting, Couteau [17] showed an
2 We note that our “aligning” method works even better with the SPDZ preprocessing

of [23], but the overall improvement would still probably not surpass using Over-
drive. In contrast, due to a randomization technique used in MASCOT [31] triple
generation, it is not clear if this “alignment” can also be applied to MASCOT pre-
processing.

3 To be more precise, these protocols perform best over small characteristic fields.
However, they can be somewhat efficiently extended to arithmetic computations
over the integers using the Chinese Remainder Theorem, e.g., [5,10], and to extension
fields with small characteristic using multiplication embedding.

Turbospeedz: Double Your Online SPDZ! 535

extension of the lookup-table approach to arbitrarily large fields, where only a
constant number of field elements is stored per gate per party.

A different approach to secure multiparty computation is based on garbled
circuits. In the garbled circuit approach, the parties in some sense encrypt the
function circuit at the offline phase. Then, at the online phase, the parties reveal
keys for the inputs and locally compute the output of the circuit. This app-
roach, for the multiparty setting, was originally proposed by Beaver et al. [9],
and has recently received significant attention for concrete efficiency in sev-
eral works, e.g., [10,11,28,36,40]. In contrast to SPDZ and protocols based on
look-up tables, these protocols are constant round. Thus, the main advantage of
secure multiparty protocols based on garbled circuits is to reduce the online time
of deep circuits over high-latency networks. However, due to their large online
computation complexity (for a large number of parties) they are generally not
suitable for a high-throughput online goal, which is the main advantage of our
protocol. Furthermore, it was shown (e.g., [11]) that in low-latency networks
(e.g., LAN), protocols based on garbled circuits perform relatively poorly. And
last, similarly to protocols based on lookup-tables, protocols based on garbled
circuits require memory that is linear in the field size per gate, and are therefore
impractical over large fields (See footnote 3).

We remark that there are also secure computation protocols which are spe-
cialized for restricted scenarios such as a semi-honest adversary, an honest major-
ity, and/or a small number of parties, e.g., [2,3,21,27]. We cannot compete with
these protocols since achieving malicious security for any number of corrupt
parties is significantly harder.

Regarding technique, our method can be seen as optimizing the computa-
tion by computing the gates on random values revealed on the wires. Simi-
lar ideas have been considered in previous works in various scenarios, such as
Beaver’s original circuit randomization in the semi-honest setting [8], the point-
and-permute technique for garbled circuits [9] (that this technique implies com-
puting the gates on revealed random values is seen more clearly in arithmetic
garbled circuits [5,10,37]), in protocols based on look-up tables [25,32], in pro-
tocols for an honest majority, e.g., [21], and recently for an extremely efficient
protocol for 4 parties with an honest majority [27]. Our protocols show that this
technique can also be used to improve the well studied SPDZ protocol.

Organization. In Sect. 2 we recall the ideas of the SPDZ protocol and Overdrive.
In Sect. 3 we describe our function dependent offline protocols that uses SPDZ
offline as a black-box, and our new online protocol. In Sect. 4 we explain how
to improve the overall time of our protocol when using Overdrive. In Sect. 5 we
prove correctness and state our security theorems; the proof of security can be
found in [12].

Notation and Conventions. Similarly to SPDZ, throughout this paper we assume
the computation is performed by n parties over some finite field F. We also
assume that |F| is exponential in the security parameter κ. When we refer to the
computed function, we assume it is encoded as an arithmetic circuit C over F.

536 A. Ben-Efraim et al.

2 Review of the SPDZ Protocol and Overdrive

In this section, we briefly review the (improved) SPDZ protocol presented in [23].
Then we partially explain how Overdrive [33] generates multiplication triples
using a public-key semi-homomorphic encryption. We follow [23] for SPDZ
because it has the currently most efficient online phase. Overdrive [33] is cur-
rently the state-of-the-art protocol for generating multiplication triples. The
results in this section are given only as a preliminary to our work in the fol-
lowing sections, and are taken mainly from [23] and [33].

The SPDZ protocol executes a relatively expensive “offline” preprocessing
phase in order to achieve a very efficient online phase, which is secure against
any number of corruptions (in the model of security with abort). Before giving
an overview of the SPDZ protocol, we recall Beaver multiplication triples [8],
which is one of the main building blocks of the SPDZ protocol.

Definitions of [[·]]-Shared Elements and Beaver Multiplication Triples. Assume
each party has a uniform additive share αi ∈ F of a secret global MAC value
α = Σn

i=1αi. An element a ∈ F is [[·]]-shared if each party holds a pair (ai, γ(a)i),
where ai is an additive secret-sharing of a, i.e., a = Σn

i=1ai, and γ(a)i is an
additive secret-sharing of γ(a) = α · a, i.e., γ(α) = Σn

i=1γ(a)i. For an element
a ∈ F we denote [[a]] def= ((a1, . . . , an), (γ(a)1, . . . , γ(a)n)).

A nice feature of [[·]]-shared elements is that addition of 2 [[·]]-shared ele-
ments, addition of a public scalar, and multiplication by a public scalar can be
computed locally.

Property 1. For a, b, e ∈ F with [[a]], [[b]] being [[·]]-shares of a,b respectively and
e a public value

– [[a]] + [[b]] def= ((a1 + b1, . . . , an + bn), (γ(a)1 + γ(b)1, . . . , γ(a)n + γ(b)n)) is a
[[·]]-share of a + b,

– e · [[a]] def= ((e · a1, . . . , e · an), (e · γ(a)1, . . . , e · γ(a)n)) is a [[·]]-share of e · a,
– e + [[a]] def= ((e + a1, a2, . . . , an), (γ(a)1 + e · α1, . . . , γ(a)n + e · αn)) is a [[·]]-

share of e + a.

However, to perform multiplication of 2 [[·]]-shared elements in the SPDZ pro-
tocol, the parties require interaction and a Beaver multiplication triple [8].

A Beaver multiplication triple is a triple, ([[a]], [[b]], [[c]]), of [[·]]-shared values
such that c = a · b. Similarly, a squaring pair is a pair, ([[a]], [[c]]), of [[·]]-shared
values such that c = a2; squaring pairs are used in [23] to compute the square
of a [[·]]-shared value more efficiently.

MACCheck Protocol. During both the offline and the online phase of the SPDZ
protocol, certain [[·]]-shared values are (partially) revealed to some or all of the
parties. I.e., the parties learn the shared value (but not the MAC). A malicious
adversary may attempt to manipulate its shares to reveal different values than
the ones actually shared. Thus, some procedure must be run to ensure such a
cheating does not occur.

Turbospeedz: Double Your Online SPDZ! 537

This procedure is the MACCheck protocol of [23], which receives a set of
revealed [[·]]-shared values and efficiently verifies, with failure probability ≤ 2

|F|
(|F| being the size of the field), that no cheating has occurred. Note that in
this paper we discuss only large fields (i.e., F is exponential in the security
parameter), so MACCheck verifies that the adversary did not cheat except with
negligible probability. The details of this protocol can be found in [23, Fig. 10].
We will need only the following claim:

Claim 1 (Informal) [23, Lemma 1]. Given a set of partially revealed [[·]]-shared
values, if the revealed values do not match the [[·]]-shared values, MACCheck
aborts except with probability ≤ 2

|F| . Furthermore, if the adversary does not cheat,
MACCheck leaks no information on the queried values, the global MAC α, and
the honest parties’ shares.

The SPDZ Offline Phase. The main part of the SPDZ offline phase is a prepro-
cessing protocol that securely generates Beaver triples and additional random
[[·]]-shared values. There have been several works that significantly improved
the original SPDZ preprocessing protocol, e.g., [7,31,33]. The current state-of-
the-art protocols are Overdrive [33] for large prime fields, which is based on
semi-homomorphic encryption, and MASCOT [31] for large fields of character-
istic 2, which is based on oblivious transfer.

In Sect. 3 we assume black-box access to the SPDZ offline functionality (which
in practice would probably be implemented using Overdrive). I.e., we assume
that the parties can access a functionality FPrep that gives the parties the shares
of the requested number of Beaver triples ([[a]], [[b]], [[c]]), square pairs ([[a]], [[c]]),
random [[·]]-shared elements [[r]], and input maskings (ri, [[ri]]).4 The function-
ality FPrep can be found in [23, Fig. 16]. For concrete protocols, one should look
at [7,23,31,33].

In Sect. 4 we show how to modify Overdrive (SPDZ offline protocol) so that
the values generated at the offline are “aligned” with the values needed in our
online protocol. A partial overview of Overdrive, in particular of the triple gen-
eration protocol and the SPDZ sacrifice step, is given at the end of this section,
and the modification is explained in Sect. 4.

The SPDZ Online Phase. As mentioned, one of the highlights of the SPDZ
protocol is its very efficient online protocol that is secure against any number of
corruptions (in the model of security with abort), which is achieved using the
relatively expensive preprocessing protocol. In the online protocol, the parties
first compute [[·]]-shares of their inputs as follows: party i shares its input xi

by revealing xi − ri, where ri is an input masking that was generated at the
offline phase. The parties then locally compute [[xi]] ← [[ri]] + (xi − ri) using
Property 1.

Addition gates are computed locally: let the input wires be x, y and the
output wire be z. The parties locally compute [[z]] ← [[x]]+[[y]] using Property 1.
4 An input masking (ri, [[ri]]) is a random [[·]]-shared element, where the value ri is

known to party i.

538 A. Ben-Efraim et al.

In order to compute multiplication gates, the parties use a Beaver triple
([[a]], [[b]], [[c]]) as follows: let the input wires be x, y and the output wire be z.
The parties locally compute [[ε]] ← [[x]] − [[a]] and [[ρ]] ← [[y]] − [[b]], and then
communicate to partially reveal ε and ρ. Then, the parties use Property 1 to
locally compute

[[x · y]] ← [[c]] + ε · [[b]] + ρ · [[a]] + ε · ρ (1)

Squaring gates are computed in a similar but slightly simpler way, using a
square pair.

At the end of the protocol, before outputting the result, the parties run
a MACCheck protocol to verify that the corrupt parties did not cheat. If the
corrupt parties did attempt to cheat, the cheating is detected with overwhelming
probability, and the honest parties abort. Note that fairness is not guaranteed,
i.e., the adversary can learn the output while the honest parties do not.

Triple Generation Using Overdrive. Overdrive [33] (and previously [14]) con-
struct multiplication triples using a public-key semi-homomorphic encryption
Enc. For efficiency, Overdrive uses the BGV encryption that introduces noise,
which needs to be “drowned” for security reasons. Furthermore, the parties need
to prove that some encryptions are generated correctly using zero-knowledge
proofs. Due to space constraints we do not go into the details here, and encour-
age the reader to read [33] for the details.

The multiplication scheme is as follows: assume the parties hold additive
shares a = Σiai, b = Σibi, then ab = (Σiai · Σbi) = Σiaibi + Σi�=jaibj . Each aibi

can be computed locally by party i, and (shares of) aibj are computed using
the following two party protocol: Party i sends Enc(ai) encrypted under its own
public key. Party j, using Party i’s public key and the received Enc(ai), responds
with Ci = bj · Enc(ai) − Enc(cj), where cj is a randomly chosen share. Then
party i decrypts ci = Dec(Ci) and by the homomorphic property ci + cj = aibj ,
so (ci, cj) is a secret-sharing of aibj .

The above multiplication is used in two places in Overdrive: (1) To compute
the shares of c = ab in the multiplication triple, and (2) To generate the MACed
shares [[a]], [[b]], [[c]]; we shall assume the latter is done by calling the function-
ality F[[]]. Due to space constraints we do not include the implementation of
F[[]] or the original Overdrive triple generation protocol, which can be found in
[33, Figs. 4 and 7]. Our modified version of the triple generation protocol, used
for our protocol in Sect. 4, is given in Fig. 3.

One issue that arises is that the adversary might attempt to cheat in the triple
generation. For efficiency reasons, only some of this is captured in Overdrive
using zero-knowledge proofs. In particular, the adversary is able to create triples
(a, b, ab + e) for some error e of her choice. This is solved in Overdrive using the
“SPDZ sacrifice” – triples are generated in pairs, and one is “sacrificed” to ensure
the other triple is correct. The SPDZ sacrifice was slightly improved in [31], show-
ing that it suffices to use correlated triple pairs ([[a]], [[b]], [[c]]), ([[a]], [[b̂]], [[ĉ]]).

The (improved) SPDZ sacrifice works roughly as follows: a random element r

is chosen after the triples are (possibly incorrectly) generated. Then, ρ = rb− b̂ is

Turbospeedz: Double Your Online SPDZ! 539

partially opened. Using ρ, the parties compute (using Property 1) and partially
reveal τ = rc − ĉ − ρa, and abort if τ �= 0. It can be shown that if the adversary
cheated in generating the triples, i.e., c = ab + e and ĉ = ab̂ + ê with e �= 0
and/or ê �= 0, then τ �= 0 with overwhelming probability. If the adversary tries
to cheat in the revealing of ρ and/or τ , she is later be caught by the MACCheck
protocol with overwhelming probability. It is easy to see that if the adversary
does not cheat then the parties do not abort. And because b̂ and ĉ are “sacrificed”
(i.e., not used elsewhere in the protocol), ρ does not leak any information on
([[a]], [[b]], [[c]]).

3 Our New Protocol, Using SPDZ Offline as Black-Box

In this section we describe our two new protocols – our added function dependent
offline protocol and our new “SPDZ-like” online protocol. The offline protocol
in this section uses the SPDZ preprocessing protocol as a black-box. A more
efficient version of our protocol, which is achieved by modifying the state-of-the-
art SPDZ preprocessing protocol, Overdrive, is given in Sect. 4.

We use slightly different notation and equations than the ones explained in
Sect. 2, so we first give the details of our notation and equations.

3.1 Notation and Equations

Similarly to the online phase of the SPDZ protocol, in our online protocol the
parties compute (in topological order on the circuit) for each wire a [[·]]-shared
value that corresponds to the real value on the wire. We denote the real value on
wire ω by vω and correspondingly its [[·]]-shared value by [[vω]].5 Observe that
the real values depend on the inputs, and are thus determined only at the online
phase.

In our online protocol, the parties additionally hold at each wire ω shares of a
random field element, which we term the permutation element and denote by λω

(and its [[·]]-share by [[λω]]). The shares of these permutation elements are gen-
erated and computed in the offline phase. Note that these permutation elements
are independent of the real values. It is also important that the permutation
elements are independent of the multiplication triples.

At the online phase, after computing the shares corresponding to the real
value, the parties open the sum of the real value and the permutation element.
We call this sum the external value, and denote it by eω

def= vω + λω. The impor-
tant observation is that since the permutation element is independently random
and unknown, the external value reveals no information on the real value; similar
observations are implicitly used in SPDZ, e.g., when revealing ε, ρ of multiplica-
tion input wires.

5 In [23,24] they do not distinguish between the wire and its value – there vω and
[[vω]] are denoted ω and [[ω]], respectively. Our notation is similar to notations used
for multiparty garbled circuits, e.g., [9,11].

540 A. Ben-Efraim et al.

For addition gates with input wires x, y, we let the permutation element of
the output wire z be the sum of the permutation elements on the input wires,
i.e., λz = λx +λy. Thus, the shares of λz can be computed locally by the parties
from the shares of λx and λy. Furthermore, we observe that during the online
phase, the external value on the output wire can also be computed locally by
the parties, since the above implies that the external value of the output wire is
the sum of the external values of the input wires:

ez = vz + λz = (vx + vy) + (λx + λy) = (vx + λx) + (vy + λy) = ex + ey (2)

For a multiplication gate with input wires x and y and output wire z, assume
the beaver triple ([[a]], [[b]], [[c]]) is associated with the multiplication gate. We
denote the input offsets by

˜λx
def= a − λx (3)

and
˜λy

def= b − λy. (4)

We further denote the adjusted external values on the input wires by

êx
def= ex + ˜λx = (vx + λx) + (a − λx) = vx + a, (5)

êy
def= ey + ˜λy = (vy + λy) + (b − λy) = vy + b. (6)

Then, we have the following resulting equation:

vxvy = (vx + a)(vy + b) − a(vy + b) − b(vx + a) + ab = êxêy − êya − êxb + c (7)

Equation (7) is used in our online protocol in order to compute the shares of
the multiplication. For the output wire, we set the permutation element on the
output wire to be λz = c + r, where r is a fresh random [[·]]-shared value.6

Remark 1. Note that Eq. (7) we use is slightly different than Eq. (1) used in [23,
24] – Eq. (1) uses the values ε = vx − a and ρ = vy − b instead of the values
êx = vx + a and êy = vy + b. However, this change is only semantic.

Similarly to [23] we observe that squaring gates can be computed using a
square pair, i.e., a pair ([[a]], [[c]]) such that c = a2, instead of a multiplication
triple. Squaring gates are computed using the following equation:

(vx)2 = (vx + a)2 − 2a(vy + a) + a2 = (êx)2 − 2êxa + c (8)

Remark 2. In [23] squaring requires partially revealing only a single value, and
therefore we do not have any saving over [23] for squaring gates. Due to space
constraints and the similarity with regular multiplication gates, we omit further
discussion on squaring gates.
6 It might be tempting to näıvely set λz = c, but this would not be secure, because

λz must be independently random. However, in Sect. 4 we show that by modifying
Overdrive, this part can be optimized.

Turbospeedz: Double Your Online SPDZ! 541

3.2 Function Dependent Offline Protocol

In this section we describe our new function dependent offline protocol and
the functionality it implements. Our offline protocol and its functionality and
simulator use the SPDZ offline protocol, functionality, and simulator. For clar-
ification, we denote the SPDZ offline of [23] using “Prep” and the new offline
using “FDPrep”, i.e.,

– The protocols are denoted ΠPrep and ΠFDPrep.
– The functionalities are denoted FPrep and FFDPrep.
– The simulators are denoted SPrep and SFDPrep.

Our function dependent offline protocol is formally described in Fig. 1. Our
offline protocol runs the original SPDZ offline as a sub-protocol, and implements
a very similar functionality to the SPDZ offline functionality. The main differ-
ences of our new offline from the original SPDZ offline are:

1. The new offline protocol/functionality receives the circuit as input. The orig-
inal SPDZ protocol/functionality is then run with the number of multiplica-
tion gates, squaring gates, and input wires as in the circuit. For each mul-
tiplication and squaring gate, the SPDZ offline also generates an additional
random [[·]]-shared element.

2. Each generated multiplication triple is associated with a specific multiplica-
tion gate. Similarly each square pair is associated with a specific squaring
gate, and each input wire is assigned a specific random [[·]]-shared element
revealed only to Party i.

3. For each multiplication and squaring gate, the protocol/functionality also
associates a random [[·]]-shared element, called the permutation element.

4. The protocol/functionality reveals specific “offset values”, where an “offset
value” is the difference between 2 random [[·]]-shared elements. The protocol
runs a MACCheck on these revealed values to ensure the adversary did not
cheat on any of these values.

Notice that all the offsets can be revealed in parallel. Therefore, we added only a
constant number of communication rounds to the SPDZ preprocessing protocol.

3.3 New Online Protocol

In this section we explain our new online protocol, which is formally given in
Fig. 2. As explained in the introduction, the main difference of our new online
protocol from previous SPDZ online protocols, e.g., [23,24], is that the parties
have at each wire more values, which helps them compute the output values
more efficiently. Concretely, in the SPDZ online phase only the real value on
the wire is secret-shared amongst the parties. In our protocol, another random
field element, the permutation element, is secret-shared amongst the parties.
Furthermore, in our protocol the external value, i.e., the sum of the real value
and the permutation element, is revealed to all the parties.

542 A. Ben-Efraim et al.

Fig. 1. Our new function dependent preprocessing protocol

These external values, after certain adjustment, help in computing [[·]]-shares
of the output value of multiplication gates: In order to connect the shared and
revealed values on the output wire to the input wires of the following multipli-
cation gates, the parties use the revealed offsets from the function dependent
preprocessing, to compute the adjusted external values on the input wires. The
permutation elements that correspond to these adjusted external values match
the shared values of the multiplication triples, which allows the parties to use
Eq. (7). Thus, the [[·]]-shares of the product and the [[·]]-shares of the output
external value are in fact computed locally, and all that remains (to continue
this process to the following gates) is to partially reveal the output external
value.

We observe that we also save communication on input wires compared to [23]
because we “reuse” the shares used for distribution of the input (ri in Input
part of Fig. 2) by letting ri be equal to the permutation element on that wire.

The main advantage of our new protocol over the SPDZ protocol of [23] is
that it requires opening only a single value for each multiplication gate at the
online phase. However, notice that in the function dependent preprocessing we
open 2 additional values, so in total we open 1.5 times more values than SPDZ.
To counter this undesirable side-effect, we present in Sect. 4 a more efficient
version of our protocol that works by modifying Overdrive.

Turbospeedz: Double Your Online SPDZ! 543

Fig. 2. Our new online phase protocol

4 Improvement via Modification in Overdrive

In this section we explain how to improve the overall time of our protocol, by
modifying Overdrive (SPDZ offline protocol), instead of using it as a black-box.
The main benefit of this optimization is that (1) It avoids creating more random
elements in the offline phase than in SPDZ, and (2) It avoids partially opening
more elements in the offline phase than in SPDZ.

A first näıve attempt might be to set the permutation element of the output
wire to equal c of the multiplication triple, but this would be insecure, because
the proof of security requires the permutation of the output wire to be indepen-
dently random. In contrast, if the output wire is an input to a multiplication
gate, then setting the permutation element to equal a of the multiplication triple
of the following gate is secure. It turns out that by a slight tweak, this can also
be extended to general arithmetic circuits.

Furthermore, the efficiency can be even further improved by setting all a’s
corresponding to the same wire to be equal. Clearly, this cannot be done using

544 A. Ben-Efraim et al.

Fig. 3. Our modified triple generation protocol

SPDZ offline in a black-box fashion, since SPDZ offline generates independently
random multiplication triples. Therefore, it is not clear that this optimization
can be achieved for every SPDZ offline protocol. Nevertheless, we show that it
is possible to achieve this optimization securely by modifying some SPDZ offline
protocols, and in particular Overdrive, which is currently the state-of-the-art
SPDZ preprocessing protocol. The formal details of creating these correlated
triples are given in Fig. 3.

The result of this optimization is that ˜λx, ˜λy in Eqs. (3) and (4) always equal
0, implying that during the online phase the adjusted external values ê are equal
to the external values e on the gates’ input wires. Thus, this optimization also
slightly simplifies and improves our online protocol.

Additionally, depending on the circuit, in some cases the same encryptions
Enc(ai) in Step 2a could be used in several multiplications. For example, this
may be possible when the same wire is input to several gates7 (or even using
the semi-homomorphic property Enc(a + a′) = Enc(a) + Enc(a′)). Reusing the

7 Note that due to the asymmetry in the multiplication, this is not possible if the
value plays b in the other multiplication.

Turbospeedz: Double Your Online SPDZ! 545

same encryption reduces both the computation and communication, and choos-
ing which wires should play a and b in the 2-party protocol to gain maximal
reduction can be computed based solely on the circuit.

Since the only operations we perform in addition to those already necessary
in Overdrive are additions corresponding to addition gates, we do not increase
communication and only slightly increase computation in the worst case. Fur-
thermore, due to reusing the encryptions, in many circuits our offline protocol
will even have less computation and communication then using Overdrive for
generating independent triples.

Note that since we changed the triple generation, it implies that in the SPDZ
sacrifice step the shares of a and b in the multiplication step now correspond
to a linear combination of shares input to F[[]]. Therefore, we must show that
this change maintains the security. Recall that the security requirements from
the SPDZ sacrifice are that (1) If the adversary cheats and sets c = ab + e

or ĉ = ab̂ + ê with e �= 0 and/or ê �= 0 then the honest parties abort with
overwhelming probability, and (2) If b̂ and ĉ are “sacrificed” (not used later in
the protocol) then no information is leaked on ([[a]], [[b]], [[c]]).

The proof is similar to the proof of the original SPDZ sacrifice. Two crucial
points are that (1) a and b are linear combinations of the permutation elements
(which are input into F[[]]) and thus so are rb and ρa (when ρ is treated as
a constant), and that (2) b̂ is independently and randomly chosen for each
sacrifice, and therefore ρ = tb − b̂ revels nothing even if some of the b’s in
different multiplications are correlated (or even equal).

5 Correctness and Security

In this section we explain the correctness and state our security theorem. Due
to space constraints, the proof of security is deferred to full version.

Correctness. Assuming no party tries to cheat, the correctness follows from
observing that at each wire

– The parties hold shares of the correct real value,
– The revealed external value corresponds to the sum of the real value and the

shared permutation element.

This statement is proved by induction in topological order on the wires:

– For input wires this follows from the Input part in Protocol Πonline.
– For output wires of addition gates, the claim on the real values follows from

Property 1, and the claim on the external value follows from Eq. (2).
– For output wires of multiplication and squaring gates the claim on the real

value follows from Eqs. (7) and (8), respectively, and the claim on the external
value follows immediately from the protocol.

546 A. Ben-Efraim et al.

Security. We now state our security theorems. The proofs and the functionalities
can be found in [12]. We first state following security theorem for our function
dependent offline protocol in Sect. 3,

Theorem 2. In the FPrep-hybrid model, Protocol ΠFDPrep securely computes
FFDPrep in the presence of a static malicious adversary corrupting up to n − 1
of the parties.

For the online phase protocol, we prove the following theorem,

Theorem 3. In the FFDPrep-hybrid model, the protocol ΠOnline securely com-
putes the function in the presence of a static malicious adversary corrupting up
to n − 1 of the parties.

Regarding our protocol in Sect. 4, we need to show that the triples are cor-
rectly generated, i.e., c = ab for every output triple (note that the fact that
a and b are computed correctly from the permutation elements is captured in
the MACCheck) and that no information is leaked on the permutation elements
(again, note that this implies no non-trivial information is leaked on the triples).8

Theorem 4. If Enc is a public-key semi-homomorphic encryption, then in Pro-
tocol ΠFDTriple in every output triple c = ab, where a and b are as defined in
ΠFDTriple. Furthermore, assuming b̂, ĉ are not used outside ΠFDTriple, at the
end of the offline protocol the value λω is uniformly random in the view of the
adversary, for every wire ω that is either an input wire of an honest party or an
output wire of a multiplication gate.

Acknowledgements. We would like to thank Amos Beimel for helpful discussions.
Special thanks to Ivan Damg̊ard and Marcel Keller for helping us to understand SPDZ
and Overdrive better.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with con-
stant online rate or how to compress garbled circuits keys. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 166–184. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40084-1 10

2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: ACM CCS,
pp. 805–817 (2016)

3. Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - break-
ing the 1 billion-gate per second barrier. In: IEEE SP, pp. 843–862 (2017)

8 Of course a full proof would also require including the details of the zero-knowledge
proofs, noise drowning, etc., as done in [33]. But these are beyond the scope of this
paper and therefore left to the full version.

https://doi.org/10.1007/978-3-642-40084-1_10

Turbospeedz: Double Your Online SPDZ! 547

4. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

5. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for boolean and arithmetic
circuits. In: ACM CCS, pp. 565–577 (2016)

6. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party com-
putation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 11

7. Baum, C., Damg̊ard, I., Toft, T., Zakarias, R.: Better preprocessing for secure mul-
tiparty computation. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS
2016. LNCS, vol. 9696, pp. 327–345. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39555-5 18

8. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

9. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
STOC, pp. 503–513 (1990)

10. Ben-Efraim, A.: On multiparty garbling of arithmetic circuits. In: Peyrin, T., Gal-
braith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 3–33. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3 1

11. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: ACM CCS, pp. 578–590 (2016)

12. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: double your online SPDZ!
Improving SPDZ using function dependent preprocessing. On ePrint: Report
2019/080

13. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computations. In: STOC, pp. 1–10 (1988)

14. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

15. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: STOC, pp. 11–19 (1988)

16. Choi, S.G., Hwang, K.-W., Katz, J., Malkin, T., Rubenstein, D.: Secure multi-
party computation of boolean circuits with applications to privacy in on-line mar-
ketplaces. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 416–432.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6 26

17. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. In: EUROCRYPT (2019, to appear)

18. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 26

19. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

20. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 30

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-319-10879-7_11
https://doi.org/10.1007/978-3-319-39555-5_18
https://doi.org/10.1007/978-3-319-39555-5_18
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-030-03332-3_1
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-27954-6_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/11818175_30

548 A. Ben-Efraim et al.

21. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

22. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

23. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

24. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

25. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable protocol for
2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 6

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC,
pp. 218–229 (1987)

27. Gordon, S.D., Ranellucci, S., Wang, X.: Secure computation with low communica-
tion from cross-checking. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11274, pp. 59–85. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03332-3 3

28. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 21

29. Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear communication
complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 28

30. Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party computation. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 12

31. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: ACM CCS, pp. 830–842 (2016)

32. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–
249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 12

33. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

34. Kilian, J.: Basing cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)
35. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation

for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 28

https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-030-03332-3_3
https://doi.org/10.1007/978-3-030-03332-3_3
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/11818175_28
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/978-3-319-61204-1_12
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-44381-1_28

Turbospeedz: Double Your Online SPDZ! 549

36. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 16

37. Malkin, T., Pastero, V., Shelat, A.: An algebraic approach to garbling (Unpublished
manuscript)

38. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: STOC, pp. 73–85 (1989)

39. Spini, G., Fehr, S.: Cheater detection in SPDZ multiparty computation. In: Nasci-
mento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015, pp. 151–176.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49175-2 8

40. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
ACM CCS, pp. 39–56 (2017)

41. Yao, A.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)

https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-319-49175-2_8

pRate: Anonymous Star Rating
with Rating Secrecy

Jia Liu1(B) and Mark Manulis2

1 Thales UK Ltd., Cambridge, UK
jia.liu@thalesgroup.com

2 Surrey Centre for Cyber Security,
University of Surrey, Guildford, UK

mark@manulis.eu

Abstract. We introduce pRate, a novel reputation management scheme
with strong security and privacy guarantees for the users and their rep-
utation scores. The reputation scores are computed based on the (aggre-
gated) number(s) of stars that users receive from their raters. pRate
allows users to advertise privacy-friendly statements about their repu-
tation when searching for potential transaction partners. Ratings can
only be submitted by partners who have been initially authorised by the
ratee and issued a rating token. The scheme is managed by a possibly
untrusted reputation manager who can register users and assist ratees
in updating their reputation scores, yet without learning these scores.
In addition to ensuring the secrecy of the ratings, a distinctive feature
of pRate over prior proposals, is that it hides the identities of raters
and ratees from each other during the transaction and rating stages.
The scheme is built from a number of efficient cryptographic primitives;
its security is formally modeled and proven to hold under widely used
assumptions on bilinear groups.

Keywords: Reputation management · Star rating · Anonymity ·
Rating secrecy

1 Introduction

Establishing trust between prospective transaction partners on online platforms
is a major challenge for today’s digital economy. Reputation systems have gained
popularity as an important risk assessment mechanism for measuring and manag-
ing the trustworthiness of involved parties and a variety of reputation systems is
already deployed across many online marketplaces, e.g., eBay, Yelp!, BlaBlaCar,
Airbnb, etc. Reputation is one of the most important assets of an individual
and has its special market value [19,35]. Online reviews are extremely influential
for businesses. Studies have shown that 90% of customers read reviews before
making a purchase decision and 94% of customers would use a business with a
four-star rating [1].
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 550–570, 2019.
https://doi.org/10.1007/978-3-030-21568-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_27

PRate: Anonymous Star Rating with Rating Secrecy 551

In a reputation system, typically provided and managed by an online plat-
form (reputation manager), each user is associated with a reputation score and
transaction partners can rate each other, leave feedback and recommendations.
The concern of repercussions thereby often deters users from providing hon-
est ratings. It is particularly hard to get honest opinions when users are not
anonymous, e.g., over 95% of Airbnb listings and almost all of the ratings of
the BlaBlaCar rides are above 4.5-star scores which are overwhelmingly positive
[35,36]. The fear of retaliation is considered as a major factor for users to with-
hold truthful feedback after having some negative experience [32,35]. Retaliation
can be in any form such as unfairly low ratings, refusal of future transactions,
or even physical assault. There is also fear that shared personal information
can create racial and/or gender bias among users when choosing transaction
partners. For example, Airbnb had to face racial discrimination complaints from
African-American and Latino would-be renters. Moreover, the great amount of
information shared on the online platform poses a serious threat to personal pri-
vacy and security. Take for instance car sharing or riding services where booked
trips and travel patterns can be misused for person abductions or car thefts. The
reputation score itself is also a potential threat to privacy as it can possibly be
used to link users across transactions. The linkage between user activities and
ratings can also de-anonymise users [29,30].

Another point of concern is a potential bias from the service provider that
manages the online reputation system. For many years, the online rating site
Yelp! has been accused of removing positive reviews and highlighting negative
ones, thus causing a massive downgrading of businesses in an attempt to force
them to purchase advertisements [2–4,19]. Hence protecting honest users and
the integrity of their ratings from a potentially biased reputation manager is
another important requirement in the design of the reputation systems. One way
to achieve this is to prevent the reputation manager from learning the individual
scores obtained by the users.

Various privacy-preserving reputation schemes [5,6,9–11,15,20–22] (see also
Sect. 7 for more discussion) have been proposed to protect anonymity of raters
and ratees to some extent, but none of these aims to hide reputation scores
against the reputation manager. As far as we know, only [27,31,37] discuss the
protection of reputation scores. The scheme in [27] hides rating scores from the
users but not from the reputation manager and does not provide anonymity of
the users. The scheme in [31] only supports unidirectional rating, i.e., a buyer
can use pseudonyms to anonymously rate a service provider but not vice versa.
Also, this system lacks accountability on users since users can arbitrarily cre-
ate uncertified pseudonyms. AnonRep [37] is an anonymous reputation system
designed for evaluating the quality of messages posted on a public board. Since
any posted message can be rated by arbitrary users, AnonRep cannot be used to
rate transactions where only transaction partners are allowed to rate each other.

Our Contribution. We propose a star rating scheme called pRate that provides
strong privacy and security guarantees for the users and their reputation scores.
In our scheme, a reputation manager issues and updates reputation credentials

552 J. Liu and M. Manulis

for the users without learning the actual scores. Users can advertise their repu-
tation scores anonymously and selectively to other parties. Two users are able
to transact and rate each other without leaking any identity information to each
other. Despite being anonymous, transaction partners are held accountable for
their behaviours. This is achieved by enabling the reputation manager to learn
the identities of transacting partners (but not the details of their transaction)
when they submit their ratings, i.e., misbehaving users can thus be reported to
and identified by the reputation manager. We also describe a batch accumulation
mechanism which enables the reputation manager to aggregate multiple ratings,
hiding the link between the transaction and the rating sessions, and prevent-
ing the ratee from learning individual rating values. Our construction is based
on BBS+ signature [17], Bulletproofs [14], Chaum-Pedersen-Signed ElGamal
Encryption [34], and several standard (non-interactive) zero-knowledge proofs
of knowledge. We formally model and prove the security properties of pRate
under well-known assumptions on bilinear maps in the random oracle model.

Organisation. The rest of this paper is organised as follows: Sect. 2 gives an
overview of pRate. Section 3 presents formal definitions of its functionality and
security. Section 4 describes the cryptographic assumptions and building blocks.
The construction of pRate is specified in Sect. 5. Section 6 provides its security
analysis. Section 7 describes other related work. The paper concludes in Sect. 8.

2 Overview of the pRate Scheme

pRate is a star rating system that provides strong security guarantees for pro-
tecting reputation scores and user privacy. pRate is managed by the reputation
manager (RM) who issues and updates reputation credentials for the users with-
out learning their reputation scores. Users can advertise their reputation scores
and exchange rating tokens enabling them to rate each other anonymously by
submitting their (encrypted) ratings to the RM. A user i who submits a rating
for another user j is called the rater, whereas user j is called the ratee.

In pRate each user’s reputation is measured by a v-star score (n1, · · · , nv),
where v is fixed and each ni represents the number of received i-stars. For exam-
ple, v = 5 implies that a single rating can contain up to five stars and a score
(10, 20, 30, 40, 50) in this case would mean that the user has received a total of
ten 1-star, twenty 2-star, thirty 3-star, forty 4-star and fifty 5-star individual
ratings. A user’s reputation score is aggregated in a reputation credential which
is blindly signed by the RM. Using the reputation credential, a user can pub-
lish an anonymous advertisement for their current reputation score. Instead of
revealing the exact reputation score in the advertisement, the user can show
that it satisfies some predicate P , e.g., that the average score is higher than
four stars or that 90% of ratings are above three stars. Based on their adver-
tisements, two anonymous users can establish an authenticated and confidential
communication channel over which they exchange their rating tokens. These rat-
ing tokens encrypt the identities of the two transaction partners which can only
be decrypted by the RM. Hence, both user identities are kept anonymous and

PRate: Anonymous Star Rating with Rating Secrecy 553

unlinkable from each other during the transaction and rating phases. In order
to rate each other, each transaction partner would use the received rating token
to encrypt the rating value (which can only be decrypted by the ratee), sign
and submit his encrypted rating to the RM. This phase does not require any
online presence of the ratee and can be performed at any time. Each rating token
has a unique serial number and can be used only once. Upon receiving the sub-
mitted (encrypted) rating, the RM extracts the identities of the rater and the
ratee, aggregates the ratee’s rating, and sends an update to the ratee enabling
the latter to update his reputation credential. The rating tokens make users
accountable for their behaviour and can also be used to directly report misbe-
having users in case of wrongdoings. The fact that the RM is able to retrieve the
identities of the rater and the ratee during the rating accumulation phase pre-
vents a number of conventional attacks against reputation systems, such as Sybil
attacks, self-promotion attacks, ballot stuffing attacks, whitewashing attacks and
bad mouthing attacks [25]. Furthermore, pRate offers the following security and
privacy properties:

– Anonymity: This property allows users to advertise their reputation scores
and rate each other in an anonymous and unlinkable way. More specifically,
a user can prove statements about his reputations score without revealing his
identity and the actual score. Moreover, the link between the advertisements
and ratings of transaction partners based on these advertisements remains
unknown to the RM and any other users in the system. Multiple advertise-
ments by the same user also remain unlinkable against other users and the
RM. Different ratings submitted by the same user also remain unlinkable from
the ratee’s perspective.

– Rating-secrecy: Only the user knows the exact values from his reputation
score. The submitted ratings are encrypted and thus remain hidden from the
RM and other users. The RM can aggregate a newly submitted rating for
some user into that user’s reputation credential without learning the actual
value of the rating.

– Unforgeability: This property ensures that none of the advertisements, rat-
ing tokens, or submitted rating values can be forged. In particular, any valid
advertisement can only be generated by a user with a valid reputation cre-
dential which ensures that each user is accountable for their behaviours. It
is impossible to forge a rating token exchanged during the transaction or to
submit a forged rating for an honest user, even if the attacker corrupts the
RM and other users. When a rater submits a new (encrypted) rating to the
RM, the latter can check that the rater has been previously authorised by
the ratee and that the rating is well-formed. A ratee can verify that updates
for the reputation score received from the RM are correctly formed and were
received from raters who have been previously authorised by the ratee. This
ensures that the RM is not able to introduce fake ratings nor forge or modify
ratings received from authorised honest raters.

In pRate, users publish anonymous advertisements to remain unlinkable across
multiple transactions and use temporary public keys to set up independent secure

554 J. Liu and M. Manulis

communication channels for each transaction. Although the use of temporary
keys preserves users’ anonymity during the transaction and rating submission,
we note that in real-world applications the identities of transacting users can
be leaked due to some side-channel information. For example, in Airbnb, guests
would meet home owners in person. For these applications, we provide a batch
accumulation mechanism which enables the RM to aggregate multiple ratings for
the same user prior to sending its reputation score update. This accumulation can
be used to break the link between a single transaction session and the submitted
rating for that transaction. The ratee would thus learn only the aggregated rating
value from multiple transactions.

In addition to the above security properties, pRate is highly non-interactive
and efficient. pRate allows users to publish and verify the reputation advertise-
ments published by other users without any interaction with other users or the
RM. Submission of ratings to the RM does not require online presence of the
ratee, while the update of a rating by the ratee does not require interaction with
the rater. The scheme provides short reputation credentials and utilises a num-
ber of efficient cryptographic mechanisms, including short and computationally
efficient zero-knowledge proofs.

3 Syntax and Security Properties of pRate

In this section, we formalise the syntax of our pRate scheme and define its
main security and privacy properties. A pRate scheme consists of the following
polynomial-time algorithms and protocols:

– (ik, ok, pp) ← Setup(1λ) : With this algorithm the RM initialises the rating
scheme. On input of a security parameter λ, it outputs a master issuing key
ik, a master opening key ok, and a set of public parameters pp.

– ((urep[i], scr[i]) ← Join(pp, i), reg[i] ← Issue(pp, ik, i)) : This is a registration
protocol between a new user i and the RM, modeled as a pair of interactive
algorithms, Join executed by i, and Issue executed by the RM. Upon successful
completion, the protocol outputs a reputation credential urep[i] and an initial
reputation score scr[i] to the user, and a registration record reg[i] to the RM
which is stored in the registration database.

– (aid, πrep) ← RepAds(pp, urep[i], scr[i],m, P) : With this algorithm any regis-
tered user i can anonymously advertise its reputation. The algorithm takes
some message m and a predicate P as an additional input and outputs a
reputation advertisement consisting of an advertisement identifier aid and
a reputation proof πrep. We consider m as a placeholder for any additional
information about the advertised transaction. Moreover, since the advertiser
is anonymous, we assume that m includes information on how the adver-
tiser can be securely contacted by prospective transaction partners, e.g., by
including some temporary public key for establishing a secure channel. With
predicate P as an input to the algorithm we enable advertisements proving
statements about user’s scr[i], i.e. P (scr[i]) = 1, without disclosing the score.

PRate: Anonymous Star Rating with Rating Secrecy 555

– 1/0 ← RepVer(pp, aid, πrep,m, P) : This algorithm verifies the validity of a
published reputation advertisement, in particular of the reputation proof πrep

in relation to the predicate P . It outputs 1 if πrep is valid and 0 otherwise.
– ((sn0, sn1,RT0,UT0) ← Token(pp, urep[i0], aid0, aid1), (sn1, sn0,RT1,UT1) ←

Token(pp, urep[i1], aid1, aid0)) : This is an interactive protocol for the exchange
of rating tokens between two users i0 and i1. Upon successful execution,
the interactive algorithm Token(pp, urep[ib], aidb, aid1−b) run by each user ib
(b ∈ {0, 1}) outputs unique serial numbers snb, sn1−b, a rating token RTb that
user ib will use to rate i1−b, and an update token UTb that ib will retain and
use later to update its own reputation credential.

– δ ← RateGen(pp, urep[i],RT, x) : This algorithm enables a user i to generate a
rating. On input of the public parameters pp, a reputation credential urep[i],
a rating token RT received from the transaction partner, and a chosen rating
value x ∈ [1, v], it outputs a rating δ. This algorithm may fail and output ⊥
if the process could not be completed successfully, e.g., x /∈ [1, v].

– (i, j, aux)/⊥ ← RateAcc(pp, ok, reg, δ) : Using this algorithm the RM accu-
mulates received ratings into the reputation credential of the ratee. Upon
successful execution, the algorithm outputs the extracted rater’s identity i,
ratee’s identity j, and an update information aux, which the RM sends to
the ratee j. As part of this algorithm, the RM may also update the record
reg[j] of the ratee. This algorithm may fail and output ⊥ if the accumulation
process could not be completed successfully, e.g., if the rating δ submitted by
the rater is invalid.

– 1/0 ← Upd(pp, urep[j], scr[j],UT, aux) : With this algorithm a rated user j
after receiving the update information aux from the RM and in possession
of the matching update token UT can update its own reputation credential
urep[j] and score scr[j]. The algorithm outputs 1 if the update is successful
and 0 otherwise.

A secure pRate scheme must possess the anonymity, rating-secrecy and unforge-
ability properties that were introduced informally in Sect. 2. In the full version of
this paper [28], we formalise these properties using game-based security defini-
tions which are loosely based on security models for group signatures [8,13]. For
unforgeability, we model three different aspects: (i) advertisement-unforgeability
to ensure that only users in possession of a valid reputation credential urep can
create valid advertisements for their reputations scores, (ii) ratee-unforgeability
to ensure that only users in possession of a valid reputation credential urep can
issue rating tokens during the execution of the Token protocol that can then be
used to produce ratings, (iii) rater-unforgeability to ensure that only users in
possession of rating tokens issued to them by some other user can submit valid
ratings for that user.

4 Cryptographic Building Blocks and Assumptions

In the following we recall some well-known assumptions on bilinear maps and
cryptographic building blocks used in our scheme.

556 J. Liu and M. Manulis

Bilinear Maps. Let G1,G2 and GT be multiplicative groups of prime order p.
A function ê : G1 × G2 → GT is a bilinear map if it satisfies the following three
properties:

1. Bilinear: ê(ga, hb) = ê(g, h)ab for all g ∈ G1, h ∈ G2 and a, b ∈ Z
∗
p.

2. Non-degenerate: there exists g ∈ G1, h ∈ G2 such that ê(g, h) �= 1.
3. Computable: ê(g, h) is efficiently computable for all g ∈ G1, h ∈ G2.

Our scheme can be implemented using both Type 2 and Type 3 pairings [24], as
long as the XDH and q-SDH assumptions described below are supported.

EXternal Diffie-Hellman (XDH) Assumption [16]. Given groups G1,G2,
GT associated with a bilinear pairing ê : G1 × G2 → GT . The XDH assumption
holds if the Decision Diffie-Hellman (DDH) problem is hard in G1.

q-SDH Assumption [12]. The q-Strong Diffie-Hellman (SDH) assumption
states that given two multiplicative groups G1 and G2 of prime order p with gen-
erators g1 for G1 and g2 for G2, for any PPT adversary A, the following advan-

tage is negligible in λ: Advq-SDH
A (1λ) = Pr[A(g1, g

γ
1 , · · · , gγq

1 , g2, g
γ
2) = (g

1
γ+x

1 , x) :

γ
$←− Z

∗
p].

BBS+ Signature [7,17]. The BBS+ signature allows a signer to issue and
update a signature on a tuple of messages in a blind way, i.e., without learning
the values of the messages. In pRate these techniques are used to construct
reputation credentials. A user in possession of a BBS+ signature can selectively
disclose some messages and produce zero-knowledge proofs for statements about
other messages.

Zero-Knowledge Proofs. Following the notations in [18], we use
PoK {(x) : h = gx} to denote a non-interactive zero-knowledge proof of knowl-
edge of x that satisfies h = gx and use SoK [m] {(x) : h = gx} to refer to a
signature of knowledge on m. A range proof is a special zero-knowledge proof
which shows that a committed value lies within a certain interval. Recent Bullet-
proofs [14] that do not require a trusted setup are used in our scheme to produce
privacy-preserving statements about reputation scores. A proof that some secret
lies within an interval statement v ∈ [0, 2n − 1] requires only 2�log n� + 4 group
elements and 5 elements in Zp. Bulletproofs support aggregation, i.e., k range
proofs, possibly over different intervals, can be combined into a single proof with
only 2 log k additional group elements.

Chaum-Pedersen-Signed ElGamal Encryption (CPS-EG) [34]. The
CPS-EG scheme is a modified version of the Schnorr-Signed ElGamal encryption
that achieves IND-CCA2-security in the random oracle model. pRate uses the
techniques from CPS-EG in generation of rating tokens and ratings. Its IND-
CCA2 security provides decryption oracle that is used in the proof of anonymity
of pRate.

PRate: Anonymous Star Rating with Rating Secrecy 557

5 Our pRate Scheme

5.1 Specifications of pRate Algorithms and Protocols

In the following we provide detailed specifications of the algorithms and pro-
tocols behind the proposed pRate scheme which allows users to advertise their
reputation, to rate and be rated by other users in a privacy-friendly way. The
scheme is managed by the reputation manager RM. The communication between
a user and the RM is assumed to be over secure channels.

Initialisation of the Scheme. The algorithm Setup(1λ) executed by the RM

performs the following steps. Choose γ, ξ
$←− Z

∗
p, g0, g1, · · · , gv+3, g, u

$←− G1, w
$←−

G2, compute W = wγ and U = uξ. Output the master issuing key ik = γ,
the master opening key ok = ξ, and the public parameters pp = (g0, g1, · · · ,
gv+3, g, w,W, u, U).

Registration of New Users. The interactive protocol (Join(pp, i), Issue
(pp, ik, i)) executed between a new user i and the RM is specified below.

– Join(pp, i):

• User i chooses randoms k, s1
$←− Z

∗
p. Compute K = gk

v+2, S1 = gs1
v+3 and a

proof πid = PoK{(k, s1) : K = gk
v+2 ∧ S1 = gs1

v+3} (see Fig. 2 for details).
User i sends (K,S1, πid) to the RM.

• Upon receiving (n1, · · · , nv, t, e, s2, C) from RM, user i computes s = s1+
s2 and R = g0g

n1
1 · · · gnv

v gt
v+1g

k
v+2g

s
v+3. Verify if ê(C,W · we) ?= ê(R,w).

If successful, set urep[i] = (k, s, e, R,C) and scr[i] = (n1, n2, · · · , nv, t).
– Issue(pp, ik, i): Upon receiving (K,S1, πid) from user i, RM verifies if πid is valid

using the verification algorithm in Fig. 2. If successful, select initial values
n1, · · · , nv and a timestamp t. Choose e, s2

$←− Z
∗
p. Compute T = gt

v+1, S2 =
gs2

v+3, R = g0g
n1
1 · · · gnv

v TKS1S2 and C = R
1

γ+e . Set reg[i] = (K, e, t, R,C)
and send (n1, · · · , nv, t, e, s2, C) to user i.

We remark that the algorithm Join executed by the user i outputs the initial
reputation credential urep[i] = (k, s, e, R,C) and score scr[i] = (n1, n2, · · · , nv, t)
where the star values n1, · · · , nv can all be set to 0 or any other fixed values,
which the system assigns to its new users. The timestamp t initially represents
the time at which the reputation credential was issued. The secret key k stored
in the reputation credential is the long-term key of the user i and is chosen
by the user as part of the protocol. Its knowledge is proven in πid along with
the knowledge of randomness s1. The randomness s = s1 + s2 which is used to
seal the information stored in C is generated jointly by the user and the RM to
ease the proof of advertisement-unforgeability. The algorithm Issue executed by
the RM outputs the registration record reg[i] = (K, e, t, R,C) where K = gk

v+2

represents the identity of the new user within the system. Some information from
the user’s reputation credential, i.e., (e,R,C), are stored by the RM and will be
used later to compute reputation updates.

558 J. Liu and M. Manulis

Reputation Advertisements and Their Verification. The algorithm
RepAds(pp, urep[i], scr[i],m, P) outputs a reputation advertisement (aid, πrep) by

computing its identifier aid = (d, dk) using some random d
$←− G1, and the reputa-

tion proof πrep = SoK [m] {(urep[i], scr[i]) : C = (g0gn1
1 · · · gnv

v gt
v+1g

k
v+2g

s
v+3)

1
γ+e ∧

P (scr[i]) = 1 ∧ aid = (d, dk)} that shows the current user’s score scr[i] satisfies
some predicate P . In our specification P is left general to show support for arbi-
trary predicates with corresponding zero-knowledge proofs. Nonetheless, in the
full version of this paper [28], we show an example on how to create proofs for
predicates P =

∧ζ
i=1

(
ψi ∈ [0, 2�i)

)
involving interval statements computed from

the number of stars n1, · · · , nv and timestamp t in the reputation score, using
Bulletproofs [14], a recent zero-knowledge protocol for range proofs. Note that
aid = (d, dk) is computed using the long-term secret key k in urep[i] and will
be used in the token exchange protocol below to generate a ciphertext ct that
encrypts the user’s identity K = gk

v+2.
The algorithm RepVer(pp, aid, πrep,m, P) performs verification of the repu-

tation proof πrep and outputs 1 if the proof is valid, otherwise it outputs 0.
Clearly, verification of πrep involves verification of the zero-knowledge proof for
P (scr[i]) = 1 which depends on P .

Exchange of Rating Tokens. The detailed specification of the Token protocol
in which two prospective transaction partners i0 and i1 exchange their rating
tokens is given in Fig. 1 with the details of underlying zero-knowledge proofs πenc

and πtok provided in Fig. 2. It is assumed that both users have already obtained
and verified their respective advertisements and have setup a secure channel prior
to engaging in the Token protocol (cf. Sect. 5.2 for the discussion on anonymous
advertisements and secure channels). We observe that the protocol is symmetric.
User i0 obtains the rating token RT and the update token UT whereas user i1
obtains the rating-token RT′ and the update-token UT′. Note that aidb with
b = 0, 1 are used to generate ciphertexts ct, ct′ that encrypt the identities K,K ′

of the users. Only RM can decrypt ct, ct′ with the opening key. The serial number
sn = gr resp. sn′ = gr′

is used to ensure that each rating token can only be used
once. The rating token computed by each user further includes randomness r
resp. r′ which corresponds to the update token retained by the other user.

Rating Generation. A user in possession of a rating token received from
another user can act as a rater for that user and prepare their own rat-
ing that will be submitted to the RM. The rating generation algorithm
RateGen(pp, urep[i],RT, x) executed by user i with reputation credential urep[i] =
(k, s, e, R,C) and the chosen rating value gx with x ∈ [1, v] performs the follow-
ing steps. Parse RT = (sn, r, a, ct, ct′, sn′, π′

tok). Verify π′
tok using the algorithm

from Fig. 2 to check whether RT is a valid rating token. Compute V = gxgr
v+3

and a proof πsub = PoK{(r, a, x, k) : V = gxgr
v+3 ∧ gx ∈ {g1, · · · , gv} ∧ sn =

gr ∧ ct = (ua, gk
v+2 ·Ua)} using the algorithm from Fig. 2. V serves as an encryp-

tion of the rating value gx under the random r, and the proof πsub guarantees
that the rating encrypted in V is valid, i.e., gx ∈ {g1, · · · , gv}, and that user i is
authorised to rate. Finally, output a rating δ = (sn, V, ct, ct′, sn′, π′

tok, πsub).

PRate: Anonymous Star Rating with Rating Secrecy 559

Fig. 1. Exchange of rating tokens. urep[ib] = (kb, sb, eb, Rb, Cb), aidb = (db, Db), b ∈
{0, 1}.

Rating Accumulation. Upon receiving a new rating δ, the RM can check
its validity, identify the rater and the ratee, and accumulate the new rating by
issuing an update information to the ratee. The algorithm RateAcc(pp, ok, reg, δ)
run by the RM proceeds as follows. Parse δ = (sn, V, ct, ct′, sn′, π′

tok, πsub) with
ct = (ct1, ct2) and ct′ = (ct′1, ct

′
2). Check that the serial number sn has not

been used before. Verify π′
tok and πsub using the algorithms in Fig. 2 to check

the validity of δ. In the last step of verification of πtok and πsub, the opening key
ok = ξ is used to compute K = ct2/ct

ξ
1 and K ′ = ct′2/ct

′
1
ξ. Find registration

records reg[i] and reg[j] such that Ki = K and Kj = K ′ to identify the user i
who is rating user j. To accumulate δ into reg[j] = (Kj , e, t, R,C) with current

time t̃, choose s̃
$←− Z

∗
p and compute R̃ = R · gt̃−t

v+1 · V · gs̃
v+3. Create a new

reputation credential for user j by choosing a new random ẽ
$←− Z

∗
p and computing

C̃ = R̃
1

γ+ẽ . Update the registration record reg[j] ← (Zj , ẽ, t̃, R̃, C̃), send aux =
(δ, ẽ, t̃, s̃, C̃) to user j, and output (i, j, aux).

Rating Update. Upon receiving the update information from the RM
users can update their own reputation credential and score. The algorithm
Upd(pp, urep[j], scr[j],UT, aux) executed by user j to update own reputation
credential and score performs the following steps. Parse urep[j] = (k, s, e, R,
C), scr[j] = (n1, · · · , nv, t), aux = (δ, ẽ, t̃, s̃, C̃) with δ = (sn, V, ct, ct′, sn′, π′

tok,
πsub), and UT = r. Verify validity of the update information aux by check-
ing the proofs π′

tok and πsub, checking gUT
?= sn and ensuring that UT hasn’t

been used in any previous update. If all successful, compute gx = V/gr
v+3 and

R̃ = R · gt̃−t
v+1 · V · gs̃

v+3. Check if ê(C̃,W · wẽ) ?= ê(R̃, w). If successful, update
urep[j] ← (k, s+r+s̃, ẽ, R̃, C̃) and scr[j] ← (n1, · · · , nx+1, · · · , nv, t̃) and output
1, otherwise output 0.

560 J. Liu and M. Manulis

5.2 Further Remarks and Extensions

In the following we provide several remarks regarding the functionality and
design rationale of our scheme.

Timestamps. In pRate, each score includes a timestamp t which indicates when
the score was updated last. Upon advertising the user can choose not to disclose
the exact time t but to provide a zero-knowledge proof that their score is recent.
We do not enforce each user to have the most recent reputation credential,
otherwise it would significantly limit the flexibility on when users would need to
submit and update their ratings. However, users who have not been rated for a
longer period of time could possibly be disadvantaged because of that. In that
case, these users can ask the RM to update the timestamp in their reputation
credential without disclosing or changing their scores. For this, the RM chooses
a fresh timestamp t̃, picks ẽ, s̃

$←− Z
∗
p, computes C̃ = (R · gt̃−t

v+1 · gs̃
v+3)

1
γ+ẽ and

sends (ẽ, t̃, s̃, C̃) to the corresponding user.

Anonymous Advertisements. The one-time advertisements published by
users prior to each new transaction are anonymous and cannot be linked to
the same publisher. Although this provides strong privacy protection, a mali-
cious user may generate a large amount of advertisements to consume resources
of online platforms. The RM can restrict users to publish no more than n adver-
tisements in some period of time (e.g., one day) by publishing a set of generators
{d1, · · · , dn} that would be valid for that period and requiring users to use these
di for generation of their advertising identifiers aid = (di, d

k
i) during that period.

Note that any user who generates more advertisements than allowed by the RM
would become linkable.

Secure Channels for Token Exchange. We require that rating tokens are
exchanged over a secure channel that must be setup between the two prospective
transaction partners. Note that these partners do not know each other identi-
ties since their reputation advertisements are anonymous. For this purpose we
can let each user choose a temporary private-public key pair and include the
corresponding public key as part of the published advertisement information m.
These temporary keys can then be used to execute any standard secure channel
establishment protocol to create an authenticated and confidential channel (see
[26] for the property of such channels) over which parties would exchange their
tokens. The authentication property in this case would imply that the channel is
established between the two original yet anonymous advertisers. Communication
between two anonymous users can be established through the platform on which
the advertisements are published and to which users could connect anonymously
via Tor [23] or with the help of distributed ledger techniques as in [33].

Accountability. In the rating accumulation algorithm RateAcc, the RM learns
the identities of the rater and ratee (without being able to link them to the
advertisements containing transaction details). This can be useful in the detec-
tion of conventional attacks against reputation systems [25] such as Sybil attacks,
self-promotion attacks where a dishonest user arbitrarily creates rating tokens to

PRate: Anonymous Star Rating with Rating Secrecy 561

Fig. 2. Specifications of zero-knowledge proofs utilised in pRate.

562 J. Liu and M. Manulis

increase their own reputation score, and ballot stuffing attacks where dishonest
users collude to conduct fake transactions and ratings to improve their reputation
scores. The RM can detect such malicious behaviours heuristically, for example,
when a user gets an unusual large amount of ratings within a short time period
or submits too many ratings. If the RM notices any suspicious activity, the RM
can investigate, e.g., request users to provide supporting documents to show that
these ratings are based on real transactions, and punish misbehaving users.

Batch Accumulation and Unlinkability. In the rating accumulation algo-
rithm RateAcc, the RM updates user’s j reputation credential and sends a update
aux to the corresponding user j. We observe that the rating accumulation part
does not have to be performed immediately for each new rating that the RM
receives for user j. In our scheme this process can be delayed and performed
in a batch in order to reduce the overhead from the reputation update. More
precisely, the RM can accumulate multiple ratings in a batch by multiplying
all ciphertexts into a single product V =

∏
� V� and produce a single update

information.
When updating a single rating V� = gx�

gr�
v+3, the ratee uses the update

token UT� = r� to extract gx�
from V�. The update token UT� is linked to the

serial number sn� = gr� from the token exchange session. We stress that this
link does not compromise rater’s anonymity because of the anonymous (one-
time) advertisement that was used in the token exchange session. Therefore, the
ratee is not able to link any previous or future ratings produced by the same
rater. In practice, there might be scenarios where some side channel information
could leak the identity of the user, e.g., in Airbnb, a guest would meet the home
owner in person. For these applications, we can break the link between the token
exchange session and the submitted rating by using a more sophisticated batch
accumulation technique that applies additional randomisation as described in
the following.

The basic idea is to let the RM randomly blind the ratings and give the ratee
a decryption key to remove this randomness from the aggregated ratings. The
ratee will no longer be able to learn that a rating value x� is linked to the serial
number sn� and only learn their aggregated value of {x�}�. Below we describe
how the RM randomises the ratings and how the ratee removes this randomness
prior to updating its reputation score. The part for updating reg[j], C,R is the
same as before and is omitted here.

– When a user i submits a rating δ� = (sn�, V�, ct�, ct
′
�, sn

′
�, π

′
tok,�, πsub,�) to the

RM, the user additionally picks a randomiser r′
�

$←− Z
∗
p, computes V ′

� = V� ·hr′
�

and a proof πupd,� = PoK{(r�, r
′
�, x�) : V ′

� = gx�
gr�

v+3h
r′

� ∧ gx�
∈ {g1, · · · , gv}}

and sends (r′
�, V

′
� , πupd,�) to the RM. The details of πupd,� are given in Fig. 2.

– After the RM receives n ratings (possibly from different raters) for some user
j, it can accumulate these ratings together and update user’s j reputation
credential once. For this, the RM computes r′ =

∑
� r′

�, H = hr′
, πdec =

PoK{(r′) : H = hr′}, and sends ({V ′
� , πupd,�}�, {sn�}�,H, πdec) to user j. The

details of πdec are given in Fig. 2.

PRate: Anonymous Star Rating with Rating Secrecy 563

– User j computes V ′ =
∏

� V ′
� and eliminates the randomisers {r′

�}� by com-
puting V = V ′/H(=

∏
� V�). Further, user j finds a set of update tokens

{UT� = r�}� corresponding to the serial numbers {sn�}� and removes the ran-
domisers {r�}� by computing r =

∑
� r� and M = V/gr

v+3(=
∏

� gx�
). User j

can then use a brute-force approach to find (m1, · · · ,mv) s.t. M = gm1
1 · · · gmv

v

and n = m1 + · · · + mv, and, finally, update own reputation score as
scr[j] = (n1 + m1, · · · , nv + mv, t̃).

We remark that the total number of possible combinations for (m1, · · · ,mv)
is Cv−1

n+v−1 which is a polynomial of degree v and is feasible to brute-force.
For example, if n = 20 and v = 5, then Cv−1

n+v−1 = 10626. Since genera-
tors g1, · · · , gv are randomly chosen, the tuple (m1, · · · ,mv) that satisfies the
above conditions is unique with overwhelming probability. Otherwise, if there
is another tuple (m′

1, · · · ,m′
v) for which M = g

m′
1

1 · · · gm′
v

v then the equa-
tion g

m1−m′
1

1 · · · gmv−m′
v

v = 1 can be used to find a non-trial relation between
g1, · · · , gv and break the DL assumption.

The above technique achieves unlinkability between the token exchange
sessions and submitted ratings based on the following argument: Let Tb =
(pp, x0, x1, r0, r1, V

′
0 = gxb

gr0
v+3h

r′
0 , V ′

1 = gx1−b
gr1

v+3h
r′
1 ,H = hr′

0+r′
1) with

r′
0, r

′
1

$←− Z
∗
p for b = 0, 1. In T0, V ′

0 encrypts the rating value x0 and V ′
1 encrypts

the rating value x1, while in T1, V ′
0 encrypts the rating value x1 and V ′

1 encrypts
the rating value x0. We can easily see that H = V ′

0V
′
1/(gx0gx1g

r0
v+3g

r1
v+3) holds

for both T0 and T1. Since r′
0, r

′
1 are chosen uniformly at random, T0 and T1 have

the same distribution.

5.3 Performance Analysis

In the following we evaluate the computational costs of pRate algorithms and
sizes of utilized zero-knowledge proofs. We start with the latter.

Size of Zero-Knowledge Proofs. All zero-knowledge proofs used in pRate are
short as can be observed based on the summary in Table 1, where v is the rating
score and � =

∑
i �i is the size of the intervals in predicate P = ∧i(ψi ∈ [0, 2�i)),

and both can be seen as small constants. Furthermore, the size of the proof πrep

in the advertisement can be further reduced to (v + 11)Zp + (2�log �� + 5)G1

using an inner-product proof according to [14].
We illustrate with a concrete example based on a five-star rating scheme,

i.e. v = 5. Suppose, Alice has a reputation score scr = (n1, n2, n3, n4, n5, t) =
(9, 2, 11, 30, 328, 6940) where t = 6940 is the number of days elapsed from 1 Jan
2000 to 1 Jan 2019. Alice can prove the following statements about her score:

– The number of 1-star, 2-star and 3-star ratings is less than 16, i.e., n1, n2, n3 ∈
[0, 24). The average score is higher than 4.6, i.e., (n1 + 2n2 + 3n3 + 4n4 +
5n5)/(n1 +n2 +n3 +n4 +n5) > 4.6 which can be proved by showing n4, n5 ∈
[0, 210) and (−18n1 − 13n2 − 8n3 − 3n4 + 2n5) ∈ [0, 210).

564 J. Liu and M. Manulis

– The score was updated no earlier than 1 Oct 2018, i.e., t > 6848 where 6848
is the number of days elapsed from 1 Jan 2000 to 1 Oct 2018. This can be
proved using t ∈ [0, 213) and t − 6848 ∈ [0, 213).

This leads to � = 4 ∗ 3 + 10 ∗ 3 + 13 ∗ 2 = 68 and �log �� = 7.

Computational Costs. We summarize the amount of computations for each
pRate algorithm in Table 2, where mulG1 and mulGT

denote scalar multiplica-
tions in G1 and GT , respectively; expG1

and expGT
are exponentiations in G1

and GT , respectively; RepAds and RepVer denote time-consuming pairing oper-
ations which can be optimized further (details can be found in the full version
of this paper [28]).

Table 1. Sizes of zero-knowledge proofs in pRate.

Zero-knowledge proofs Numbers of group elements

πid 3Zp

πenc 3Zp

πdec 2Zp

πtok 3Zp + 2G1

πsub (2v + 2)Zp + 2G1

πupd (3v)Zp

πrep (v + 2� + 9)Zp + 3G1

Table 2. Computational costs of pRate algorithms.

Operations Numbers of group operations

Join (v + 4)mulG1 + (v + 8)exp
G1

+ 2pairing

Issue (v + 6)mulG1 + (v + 7)exp
G1

+ 2pairing

RepAds (4� + 1)mulG1 + (4� + 3)exp
G1

+ (v + 4)mulGT + (v + 5)exp
GT

RepVer (v + 2� + 6)mulG1 + (v + 2� + 10)exp
G1

+ 1mulGT + 2pairing

Token 12mulG1 + 28exp
G1

RateGen 9mulG1 + (2v + 15)exp
G1

RateAcc 18mulG1 + (4v + 21)exp
G1

Upd 20mulG1 + (4v + 23)exp
G1

+ 2pairing

6 Security Analysis of pRate

pRate is designed to minimize the trust put on the RM. In particular, to ensure
that (1) the RM cannot learn any rating values submitted by the users, (2) the

PRate: Anonymous Star Rating with Rating Secrecy 565

RM cannot link submitted ratings to the published anonymous advertisements,
and (3) all data sent by the RM to the intended recipients is verifiable. The
security of our pRate scheme is established formally in Theorems 1, 2, 3, 4 and
5 based on the properties of anonymity, rating secrecy, and the three flavours
of unforgeability from Sect. 3. The assumptions on the capabilities of each party
vary for different security properties. In the following we provide only high-
level intuition for the security of pRate. Due to the space limitation, the formal
proofs of all theorems are provided in the full version of this paper [28]. We
note that all security properties hold in the random oracle model due to the use
of non-interactive zero-knowledge proofs based on the well-known Fiat-Shamir
transformation.

Theorem 1. The pRate scheme is anonymous under the XDH assumption.

Following [8], the anonymity is defined in a way that an adversary does not
need to recover a user’s identity but only distinguish which of the two users of
its choice produced an advertisment, engaged in a token generation session and
generated a rating. The adversary can learn the RM’s master issuing key and any
user’s reputation credential and score except for the two users in the challenge.
An advertisement (aid, πrep) created by a user is fully anonymous due to the
use of randomly chosen one-time identifiers aid = (d, dk) and the zero-knowledge
property of πrep. The token exchange protocol is performed over a secure channel
so that the RM cannot link the exchanged tokens to the ratings that it receives.
The ciphertexts ct and ct′ encrypting the identities of participating users can
only be decrypted by the RM so that users remain anonymous to each other.
The anonymity holds even when the RM’s issuing key ik becomes compromised.
However, the adversary cannot learn the RM’s master opening key ok; otherwise
it is trivial to decrypt ct, ct′ and learn the identities of the users. The proofs
πtok used in rating tokens and πsub used in ratings are constructed based on
techniques from CPS-EG which allow us to create a decryption oracle without
knowing the RM’s opening key ok.

Theorem 2. The pRate scheme is rating-secret under the XDH assumption.

Rating-secrecy is defined in a way that an adversary does not need to recover
the rating value in a rating but needs to distinguish which of two rating values
of its choice is encrypted in the rating. The adversary can learn the RM’s master
issuing key and the master opening key. Each rating is encrypted in V = gxgr

v+3

using random r that is only known to the rater and the ratee. The zero-knowledge
proof πsub ensures that V is correctly formed without leaking any information
about x. The RM accumulates ciphertexts V to the ratee’s reputation credential
without learning the value of x. Of course, if RM colludes with the rater, RM
can find out the rating value, but this case is trivial because a rater can reveal
his rating to whomever he wants. Our design guarantees that as long as the
corresponding rater and ratee are honest, their rating stays confidential. This
holds even if the RM’s issuing and opening keys become compromised.

566 J. Liu and M. Manulis

Theorem 3. The pRate scheme is advertisement-unforgeable under the q-SDH
assumption.

Advertisement-unforgeability ensures that an adversary cannot produce an
advertisement that cannot be traced back to a valid user. The adversary can
learn the RM’s master opening key. Note that only users in possession of valid
reputation credentials issued to them by the RM can generate verifiable adver-
tisements. The unforgeability of advertisements relies on the unforgeability of
the BBS+ signature scheme and holds for honest users, even if the RM’s open-
ing key becomes compromised. Note that this property would be trivially broken
when the RM’s master issuing key was compromised because the adversary could
then create fake users using the key.

Theorem 4. The pRate scheme is ratee-unforgeable under the DL assumption.

Ratee-unforgeability ensures that an adversary cannot forge a valid rating token
that involves an honest user as ratee unless this user does produce it. The adver-
sary can compromise both the RM’s master issuing key and the master opening
key. Unforgeability of rating tokens RT, computed using the long-term secret
key k of the ratee, relies on the zero-knowledge and soundness properties of the
proofs πtok used in the token exchange protocol and πid used in the registra-
tion protocol. Note that in case of successful forgery, the forking lemma can be
used to extract k. The ratee-unforgeability property holds for honest ratees, in
presence of the possibly corrupted RM.

Theorem 5. The pRate scheme is rater-unforgeable under the DL assumption.

Rater-unforgeability ensures that an adversary cannot forge a valid rating that
involves an honest user as rater unless this user does produce it. The adversary
can compromise both the RM’s master issuing key and the master opening key.
Unforgeability of ratings δ, computed using the long-term secret key k of the
rater, relies on the zero-knowledge and soundness properties of the proofs πsub

used in the rating generation algorithm and πid used in the registration protocol.
Note that in case of successful forgery, the forking lemma can be used to extract
k. The rater-unforgeability property holds for honest raters, in presence of the
possibly corrupted RM.

7 Other Related Work

In terms of privacy, pRate is superior to a number of existing reputation schemes
where anonymity of users is provided without considering the secrecy of their
reputation scores. The scheme in [22] adopts controlled anonymity and clus-
ter filtering to leverage against the effects of unfair ratings and discriminating
seller. The system relies on a trusted third party called marketplace to publish
the estimated reputation of buyers and sellers and assigns them pseudonyms
to perform transactions. PERM [6] provides reputation-based blacklisting which
enables a service provider to score users’ anonymous sessions and deny access to

PRate: Anonymous Star Rating with Rating Secrecy 567

users with insufficient reputation. A user’s reputation score is uniquely identified
with a serial number which will be revealed after the service provider updates
the score and generates a new serial number. Therefore the rating by the ser-
vice provider must be performed sequentially, i.e., one session after another.
The work in [21] studies relations on several privacy definitions for reputation
systems and presents a reputation function that can satisfy k-anonymity and
rating secrecy. An anonymous reputation system based on pseudonymous sys-
tem and e-cash is described in [5]. An authority called Bank keeps the record
of each user’s reputation score. Two users communicate with each other under
their one-time pseudonyms where one user can rate the other user by transfer-
ring a certain amount of repcoins assigned by the Bank via e-cash. This system
lacks accountability since users can create an arbitrary number of pseudonyms
which are not registered with any authority. A reputation framework for par-
ticipatory sensing applications is proposed in [20], where a user reports sensor
readings to an application server and the server computes a score by evaluating
the accuracy of the readings. Each user uses a pseudonym for reporting readings
within a certain period and transfers the gained score to the next pseudonym
when the next time period starts while preventing attackers from linking these
pseudonyms. Reputation systems proposed in [9–11] allow each user to anony-
mously rate a product at most once. If a user rates the same product multiple
times, his anonymity will be broken because these ratings are linkable. The sys-
tem in [11] is based on group signatures with linkability while the scheme in [9]
combines anonymous credentials with a reputation system. These systems focus
on protecting anonymity for the rater but not for the ratee and they do not
consider how to manage and protect reputation scores. Similar considerations
apply to the scheme in [10] which provides a Universal Composability Frame-
work for reputation systems. An anonymous reputation system which gives users
rewards for submitting useful comments is presented in [15]. Users can publish
their assessment opinions which can then be endorsed by other users such that
the original rater receives some reward upon receiving a threshold number of
endorsements.

8 Conclusion

In this paper we introduced pRate, a novel privacy-preserving reputation system,
where scores are computed based on the (aggregated) number(s) of stars that
users receive from their raters. The scheme is managed by a possibly untrusted
reputation manager who can register users and assist ratees in updating their
reputation scores, yet without learning these scores. In addition to ensuring the
secrecy of the ratings, a distinctive feature of pRate over prior proposals, is that
it hides the identities of raters and ratees from each other during the transaction
and rating stages. pRate can be extended with a randomised batch accumulation
technique that will further prevent the ratee from linking the received ratings to
the corresponding transactions, thus offering even stronger privacy protection for
the ratee. We note that pRate is widely independent of the actual transactions

568 J. Liu and M. Manulis

that occur between users and eventual payments associated with these transac-
tions. As such pRate can be used in combination with many other approaches
for anonymous transaction processing and payment.

References

1. How online reviews will impact your practice in 2018. https://virayo.com/online-
reputation-management/importance-of-online-reviews/

2. Yelp accused of bullying businesses into paying for better reviews. http://www.
cbc.ca/news/business/yelp-accused-of-bullying-businesses-into-paying-for-better-
reviews-1.2899308

3. Yelp accused of extortion. https://www.wired.com/2010/02/yelp-sued-for-alleged-
extortion/

4. Yelp accused of hiding positive reviews for non-advertiser. https://dfw.cbslocal.
com/2018/01/09/yelp-accused-hiding-positive-reviews-non-advertiser/

5. Androulaki, E., Choi, S.G., Bellovin, S.M., Malkin, T.: Reputation systems for
anonymous networks. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol.
5134, pp. 202–218. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-70630-4 13

6. Au, M.H., Kapadia, A.: PERM: practical reputation-based blacklisting without
TTPS. In: CCS 2012, pp. 929–940 (2012)

7. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

8. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

9. Bemmann, K., et al.: Fully-featured anonymous credentials with reputation system.
In: ARES (2018)

10. Blömer, J., Eidens, F., Juhnke, J.: Practical, anonymous, and publicly linkable
universally-composable reputation systems. In: Smart, N.P. (ed.) CT-RSA 2018.
LNCS, vol. 10808, pp. 470–490. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76953-0 25

11. Blömer, J., Juhnke, J., Kolb, C.: Anonymous and publicly linkable reputation
systems. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 478–
488. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 29

12. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

13. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

14. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: IEEE S&P, pp. 319–338
(2018)

15. Busom, N., Petrlic, R., Sebé, F., Sorge, C., Valls, M.: A privacy-preserving repu-
tation system with user rewards. J. Netw. Comput. Appl. 80, 58–66 (2017)

https://virayo.com/online-reputation-management/importance-of-online-reviews/
https://virayo.com/online-reputation-management/importance-of-online-reviews/
http://www.cbc.ca/news/business/yelp-accused-of-bullying-businesses-into-paying-for-better-reviews-1.2899308
http://www.cbc.ca/news/business/yelp-accused-of-bullying-businesses-into-paying-for-better-reviews-1.2899308
http://www.cbc.ca/news/business/yelp-accused-of-bullying-businesses-into-paying-for-better-reviews-1.2899308
https://www.wired.com/2010/02/yelp-sued-for-alleged-extortion/
https://www.wired.com/2010/02/yelp-sued-for-alleged-extortion/
https://dfw.cbslocal.com/2018/01/09/yelp-accused-hiding-positive-reviews-non-advertiser/
https://dfw.cbslocal.com/2018/01/09/yelp-accused-hiding-positive-reviews-non-advertiser/
https://doi.org/10.1007/978-3-540-70630-4_13
https://doi.org/10.1007/978-3-540-70630-4_13
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-319-76953-0_25
https://doi.org/10.1007/978-3-319-76953-0_25
https://doi.org/10.1007/978-3-662-47854-7_29
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7

PRate: Anonymous Star Rating with Rating Secrecy 569

16. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

17. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

18. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

19. Cheung, A.S.Y., Schulz, W.: Reputation protection on online rating sites. Stanf.
Technol. Law Rev. 21, 310 (2018)

20. Christin, D., Roßkopf, C., Hollick, M., Martucci, L.A., Kanhere, S.S.: IncogniSense:
an anonymity-preserving reputation framework for participatory sensing applica-
tions. Pervasive Mobile Comput. 9(3), 353–371 (2013)

21. Clauß, S., Schiffner, S., Kerschbaum, S.: K-anonymous reputation. In: ASIA CCS
(2013)

22. Dellarocas, C.: Immunizing online reputation reporting systems against unfair rat-
ings and discriminatory behavior. In: EC 2000, pp. 150–157 (2000)

23. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: 13’th USENIX Security (2004)

24. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

25. Hasan, O.: A Survey of privacy preserving reputation systems. Technical report,
LIRIS UMR 5205CNRS (2017)

26. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

27. Kerschbaum, F.: A verifiable, centralized, coercion-free reputation system. In:
WPES 2009, pp. 61–70 (2009)

28. Liu, J., Manulis, M.: pRate: anonymous star rating with rating secrecy. Cryptology
ePrint Archive: Report 2019/378 (2019). https://eprint.iacr.org/2019/378

29. Minkus, T., Ross, K.W.: I know what you’re buying: privacy breaches on eBay. In:
De Cristofaro, E., Murdoch, S.J. (eds.) PETS 2014. LNCS, vol. 8555, pp. 164–183.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08506-7 9

30. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: 2008 IEEE Symposium on Security and Privacy (S&P 2008), pp. 111–125 (2008)

31. Petrlic, R., Lutters, S., Sorge, C.: Privacy-preserving reputation management. In:
SAC 2014, pp. 1712–1718 (2014)

32. Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: empir-
ical analysis of eBay’s reputation system. In: Advances in Applied Microeconomics,
vol. 11, pp. 127–157 (2002)

33. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
2014 IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

34. Seurin, Y., Treger, J.: A robust and plaintext-aware variant of signed ElGamal
encryption. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 68–83.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36095-4 5

35. Teubner, T., Hawlitschek, F., Dann, D.: Price determinants on Airbnb: how rep-
utation pays off in the sharing economy. J. Self-Gov. Manage. Econ. 5(4), 53–80
(2017)

https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://eprint.iacr.org/2019/378
https://doi.org/10.1007/978-3-319-08506-7_9
https://doi.org/10.1007/978-3-642-36095-4_5

570 J. Liu and M. Manulis

36. Zervas, G., Proserpio, D., Byers, J.: A first look at online reputation on Airbnb,
where every stay is above average. In: SSRN Working Paper 2554500 (2015)

37. Zhai, E., Wolinsky, D.I., Chen, R., Syta, E., Teng, C., Ford, B.: Anonrep: towards
tracking-resistant anonymous reputation. NSDI 2016 pp. 583–596 (2016)

Masking Fuzzy-Searchable Public
Databases

Alexandra Boldyreva1, Tianxin Tang1(B), and Bogdan Warinschi2

1 Georgia Institute of Technology, Atlanta, USA
{sasha,ttang}@gatech.edu

2 University of Bristol, Bristol, UK
csxbw@bristol.ac.uk

Abstract. We introduce and study the notion of keyless fuzzy search
(KlFS) which allows to mask a publicly available database in such a way
that any third party can retrieve content if and only if it possesses some
data that is “close to” the encrypted data – no cryptographic keys are
involved. We devise a formal security model that asks a scheme not to
leak any information about the data and the queries except for some
well-defined leakage function if attackers cannot guess the right query to
make. In particular, our definition implies that recovering high entropy
data protected with a KlFS scheme is costly. We propose two KlFS
schemes: both use locality-sensitive hashes (LSH), cryptographic hashes
and symmetric encryption as building blocks. The first scheme, is generic
and works for abstract plaintext domains. The second scheme is specif-
ically suited for databases of images. To demonstrate the feasibility of
our KlFS for images, we implemented and evaluated a prototype system
that supports image search by object similarity on masked database.

Keywords: Keyless searchable encryption · LSH · Image search

1 Introduction

Motivation. Consider an app for finding lookalikes. (This is mostly to gain
intuition, we discuss more interesting applications further in the paper.) Using
this app, people can post their photos and emails and are willing to be contacted
by users who look very similar. Nowadays, image similarity search can be fully
automated using modern image recognition/retrieval techniques. The downside
is the obvious privacy concerns associated to posting personal information online.
As the public is increasingly privacy-cautious, it is strongly desirable to reveal
pictures and contact information only to lookalikes and not everybody else.

It is not clear how, if at all, existing cryptographic techniques can strengthen
privacy of data in the application above. Multiparty computation techniques are
not appropriate for this setting. The users are not likely to be all available at the
same time to run the protocol. The (public) repository where data is held should
neither have access to the raw data. Other cryptographic techniques which rely
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 571–591, 2019.
https://doi.org/10.1007/978-3-030-21568-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_28

572 A. Boldyreva et al.

on secret keys are also not suitable since people who should be able to access the
data are not known a-priory and we want to avoid a completely trusted third
party in our de-centralized setting.

We propose and rigorously study solutions to this problem. In short, we show
how to mask publicly-accessible databases to allow users who know (some infor-
mation about) what they are looking for to get that information, yet ensure that
mass-harvesting or data mining is prohibitive. From here on, we use “masking”
and “encrypting” interchangeably: our methods do not use keys but use (unstruc-
tured) data to protect privacy of some content, and the desired hiding properties
are somewhat reminiscent of those of encryption.

Narayanan and Shmatikov [32] have proposed obfuscated databases to tackle
the same general problem. They treat the case of exact match queries and is not
suitable for applications where the match does not have to be exact, such as in
the applications we consider. In this paper, we treat the general case of fuzzy
queries.

Our Results. We propose the concept of keyless fuzzy search (KlFS), where a
user can query a masked database, retrieve its parts and unmask the content
if only if it possesses some data “close to” the masked data. We introduce
syntax and security models for this primitive and present constructions. We give
constructions for the general case (where the structure of the masked data is
arbitrary) and for the specific case of image data and show that even without
secret keys useful levels of security are possible.

Syntax and Security. The masking algorithm of a KlFS scheme takes inputs
access data I (e.g. an image of a face) and an auxiliary message M to return a
ciphertext C. To query a database of such ciphertexts, a user executes the query
algorithm that takes input some access data I ′ (e.g. an image) and outputs the
query. Given the database and the query, the server can efficiently find and return
the ciphertexts of all data that have been created with access data “similar” to
I ′ (e.g. all images containing the face in the query). The user can then decrypt
and recover the auxiliary message M and optionally the original data I. The
formal definition is in Sect. 3.

For security, we want to capture the idea the attacker obtains information
only if it makes the “right” query to retrieve the information. In our formal
definition (found in Sect. 3) we measure if an adversary can compute some use-
ful information about the queries and the underlying with significantly better
probability than a simulator who only has access to a leakage function of the
data. Such definitions (with leakage functions) are common for primitives like
searchable encryption and property-preserving encryption [18–20,28,29].

Discussion. Since in our setting there are no keys or trusted parties, security
depends on how hard it is for the adversary to come up with data that is close
to the one in the masked database. Unlike prior definitions from which we draw
inspiration, e.g. those for public-key deterministic encryption [4] and message-
lock encryption [7], we do not require this task be computationally infeasible.
For the type of applications we envision, message unpredictability is a strong

Masking Fuzzy-Searchable Public Databases 573

assumptions which is often not true (though later in the paper we discuss a
method to improve unpredictability for image encryption). We therefore take a
more flexible approach and define security for an arbitrary data set with some
(not necessarily negligible) min entropy which we leave as an unspecified param-
eter, and the difficulty of coming up with an “interesting” query will be reflected
by the advantage of the adversary.

This hardness is tightly related to the application domain (how much entropy
is there in the stored data) and the closeness threshold which allows unmasking
protected data. A KlFS would allow an easy check to see if a specific license plate
occurs in a surveillance video recording of an airport parking lot yet, determining
all license plates that occur in the video would require exhaustive search. While
feasible, it complicates the adversary’s goal. Similarly, if KlFS is used to mask a
database containing fingerprint readings, then harvesting it would require brute-
forcing all possible fingerprints, which could be prohibitive.

The above suggests that in some scenarios KlFS should provide reasonable
levels of security, yet it also indicates that the precise level of security may be
difficult to assess. Empirical studies for particular datasets could be useful.

We note that it is extremely important that if our schemes get deployed, the
users understand that their data is not getting a very strong level of security.
The goal is not to hide the data, but to mask it to prevent easy harvesting of
information. In other words, we do not show that adversaries do not exist; we
show that adversaries can be tethered.

As such, we envision KlFS as an additional layer of protection to be used
in conjunction with other mechanisms. For example, the cloud server may be
trusted to protect its data storage against malicious compromises with tradi-
tional crypto and security tools, but it may not be trusted enough to not mine
the data. In this case, the use of a KlFS scheme will protect the data from mass
harvesting by the server.

Basic Construction. All our constructions use, as a building block, a fam-
ily of locality-sensitive hash (LSH) functions. A randomly chosen LSH function
has the property that it collides with high probability when applied to “close”
messages, and “far” messages are likely to yield distinct hash values. There are
various constructions of LSH families known for different closeness metrics such
as Hamming and Euclidean distances, etc. [3,22,26]. Most schemes employ the
so-called And-Or construction, where a hash value is actually a vector of inde-
pendent hashes applied to the same input.

The idea behind our Basic KlFS scheme is simple. To mask with access data
I a message M we first apply an LSH to I to compute a hash vector G. From
G we compute a vector of tags T by applying a cryptographic hash function to
each entry in G. In addition, we encrypt M (and optionally I) using a standard
symmetric encryption scheme under the keys H(G[i]), where 1 ≤ i ≤ |G| and
H is a cryptographic hash function. In practice we recommend to use a slow
hash as those used to slow down offline dictionary attacks on passwords, such
as a repeated hash. To query I ′ a user computes the tag vector T′ the same
way using the LSH. The server (who indexed the database by the tags) can then

574 A. Boldyreva et al.

efficiently find the required records by the common tags. The user can unmask
as the common tag will yield one of the keys used for masking.

KlFS for Image Search. Since KlFS may be particularly suited to support
search on images, we further focus on such data. Existing algorithms for such
(unencrypted) search use of feature vectors. An image is characterized by a set
of such vectors and two images are close if sufficiently many features of the two
images are close. What “sufficient” and “close” means is defined by the search
algorithm.

Our generic KlFS scheme is not immediately suitable since it cannot take
advantage of structured information about the images such as feature vectors.
Our high-level idea for an extension is as follows. First, we encode the LSH tags
of all extracted feature vectors, so that only their equality is leaked. This way the
search algorithm can still identify close feature vectors of database pictures and
queried images. Next we encrypt database pictures using the standard symmetric
encryption scheme under a key K that can be computed only if one knows a
threshold number of feature vectors close to those in the picture or, in other
words, possesses an image close to that included in the picture. Technically,
we achieve this by secret-sharing the key K (one share per LSH tag) and then
encrypting each share with a key deterministically derived from each LSH tag.
To unmask, one would need to have an image that shares sufficiently many tags
with the image used to mask. We define the scheme in detail and analyze its
security (again, in the random oracle model) in Sect. 5.

Refinements. The security of the scheme described above depends tightly on
the closeness unpredictability of masking data. While some images are reason-
ably unpredictable, our empirical experiments on some common image datasets
showed that feature vectors are likely to be quite predictable. I.e., after trying
several images, an attacker will likely have a feature overlap with that of the
masked image, and hence will be able to unmask. Another implication is that
our search would yield many false positives (approx. 4%), in the sense that each
query would receive a fraction of ciphertexts of images that are “technically”
close via a common feature, but visually not close. This is a general observation
regarding the primitive which we propose: devising KlFS schemes requires careful
analysis to ensure that “closeness” as implemented by the schemes corresponds,
to the largest extent possible, to “closeness” as desired by applications.

We show how to alleviate this problem for image search. We adapt an
“entropy-filling” technique used by Dong et al. [24] to eliminate false positives in
image search to work with masked data. We show that it is possible to extract
features in a way that best characterizes the images. The technique filters out
the most common features therefore making overlaps between distinct images
unlikely. In addition, to improve the true-positive rate while keeping the false-
positive rate significantly low, we modify the search algorithm to rely on the
PageRank-Nibble algorithm derived from [2] and also used in [24] to improve
precision in (unencrypted) image search with very few false positives. We pro-
vide more intuition in Sect. 6 and more details in the full version [10].

Masking Fuzzy-Searchable Public Databases 575

Implementation. We realized our findings about KlFS for images as a working
prototype system that adds privacy to image search. We describe our implemen-
tation and its evaluation in Sect. 6 and in the full version [10].

Applications. In [10] we discuss application domains where KlFS may be useful.
These include image classification, 3D model storage, vision-based navigation of
Unmanned Aerial Vehicles (UAV), self-driving cars and network fault detection.
We omit the details here because of lack of space.

More Related Work. Our work is related to the vast literature on efficient
searchable encryption, e.g., [9,18,20,21,28] and especially to fuzzy searchable
encryption [8,29], and to the related areas of property-preserving [34] and struc-
tured encryption [19], but all these works are for the symmetric key setting,
where a user possesses a secret key. Our focus is on the keyless setting.

Our work is also related to fuzzy vaults [27] and fuzzy extractors [11,16,
23], even though their main applications are authorization and key generation
based on biometrics. These primitives, however, do not permit efficient search
on encrypted data in a remote storage setting, as this would require the users
to share a state (helper data).

The works on privacy-preserving data mining, e.g. [30,31], provide solutions
for mining data while preserving hiding privacy of the users. Our goal is different,
we want to restrict access to the data for those who do not know what to look
for.

Security in the keyless setting has also been considered by the work on
message-locked encryption (MLE) [7], which is a generalization of convergent
encryption [25]. The main use of these primitives is for secure file de-duplication.
KlFS can be viewed as fuzzy MLE (MLE ciphertexts leak equality of the under-
lying plaintexts and KlFS ciphertexts leak their closeness).

From this perspective, KlFS is related to the idea of obfuscation for (fuzzy)
point function (PFO) [14], i.e. the task of obfuscating the function which returns
the result of the comparison x

?= a for some fixed a. A fuzzy PFO (which only
reveals closeness of x and a) can be used in the obvious way to implement linear
(therefore inefficient) search over encrypted data. The added ability to decrypt
can be obtained using (a fuzzy variant of the) multibit output point function
obfuscation with auxiliary information (MB-APFO) [15] and refined in later
works [13]. While to explore these connections may be theoretically interesting,
it is unclear if this would yield efficient enough constructions of KlFS.

2 Preliminaries

Due to lack of space we provide the notation and recall some basic primitives,
such as symmetric encryption and secret sharing, in the full version [10].

Closeness Domains. We adopt the definitions from [8]. We say that Λ =
(D,Cl) is a closeness domain if

1. D is a finite or an infinite set;

576 A. Boldyreva et al.

2. Cl is the (partial) closeness function that takes any x, y ∈ D and outputs a
member of {close, far}, so that Cl is symmetric (i.e., Cl(x, y) = Cl(y, x)).

For example, for a metric space (D, d) and closeness parameters δC and δF we
define the closeness domain (D,Cl) as follows. For V, V ′ ∈ D,

Cl(V, V ′) =

{
close, if d(V, V ′) ≤ δC

far, if d(V, V ′) > δF

There are no requirements on the output of close for pairs that are “near” (i.e.
points that neither close nor far).

Locality Sensitive Hashing (LSH). All of our constructions utilize locality-
sensitive hashing (LSH), so we start with recalling the LSH primitive introduced
in [26]. Below, we give definitions for an arbitrary metric space (D, d).

Definition 1 (Locality-sensitive Hashing). A family H is called (δC, δF, p1,
p2)-sensitive if for any two points x, y ∈ D [35].

– if d(x, y) ≤ δC then PrH[h(x) = h(y)] ≥ p1,
– if d(x, y) > δF then PrH[h(x) = h(y)] ≤ p2.

In this paper we use an extension of LSH which amplifies the accuracy of
the parameters via the following construction. The construction, known in the
literature as the And-Or construction, is the following.

Definition 2 (Extended LSH (eLSH). Let H be an (δC, δF, p1, p2)-sensitive
hash family. For positive integers k, L, choose random hi,j ∈ H for all i ∈ [L],
all j ∈ [k] and define the hash functions gi(·) by

gi(x) = (hi,1(x), hi,2(x), . . . , hi,k(x)) for all i ∈ [L].

We refer to the set of functions g as the (L, k)-eLSH extension of H.

One can think of (L, k)-eLSH extension of H as an LSH function with improved
parameters. The parameters (δC, δF, P1, P2) are established by [26] which we
recall in the full version [10].

One construction of an LSH scheme that we use in this paper is for the
Hamming distance on the set of binary strings of length l, i.e. D = {0, 1}l.
Starting from a simple LSH function which simply projects on a single bit of its
input, i.e. to sample a function from this family simply select a random index
j ∈ {1, . . . , l} and define hj(x) = xj (where x ∈ D and xj is the j’th bit of x). It
follows that for any two points p, q ∈ D collide with probability 1− d(p,q)

l , where
d(p, q) is the Hamming distance on D. The parameters for the corresponding
(L, k)-eLSH are derived using the formulas from [26].

Masking Fuzzy-Searchable Public Databases 577

3 Keyless Fuzzy Search (KlFS)

Syntax for a KlFS Scheme. A Keyless Fuzzy Search (KlFS) scheme KlFS is
defined for a closeness domain (D,Cl) and message space MS by six algorithms
KlFS = (Init,Mask,Unmask,Query,CreateDS,FuzzyS), where,

– Init is a randomized algorithm which outputs a public parameter P ∈ {0, 1}∗;
– Mask is randomized. It takes P , an element I ∈ D, and an element M ∈ MS

and outputs a ciphertext C; We abuse notation and for any subset D ⊆
D × MS we write C ← Mask(P,D) for the set of ciphertexts obtained by
encrypting each (I,M) ∈ D using parameters P . We call the elements of
D the access data and those of MS the auxiliary message, or simply the
message;

– Unmask is deterministic. It takes P , C, an access data I ′ ∈ D, and outputs
either message M or ⊥;

– CreateDS, takes a set of ciphertexts C, which we call an (encrypted) database,
and outputs a data structure DS;

– Query is deterministic. It takes parameters P , query data I ∈ D, and outputs
a query T ; notice that access data used in encryption and query data live in
the same domain;

– FuzzyS is deterministic. On input a database C, data structure DS, and query
T it outputs a set of ciphertexts.

Notice that we mask messages M ∈ MS under access data I ∈ D and
demand that unmasking returns M (see below). We do not preclude that M
contains some, or even all of the information about I.

Correctness and Efficiency: We split the correctness requirement of a KlFS
scheme in two parts. The first part is concerned with the masking/unmasking
algorithms. It demands that unmasking a ciphertext with query data far from
the access data used to mask will fail whereas decrypting with data that is close
to the original access data will succeed (i.e. return the auxiliary message used
to encrypt). Note that the former is needed for filtering out the false positives.

The second part deals with the results returned by a search query. We demand
that, searching using some query data I ′ will not return ciphertexts created
with access data that is not close to I; conversely, we demand that the search
returns all ciphertexts created with access data that is close to I. All of these
requirements need to hold with sufficiently high probability, which is a parameter
of the scheme.

ε-Correct Decryption: Let P
$← Init be parameters and (I, M) ∈ D × MS and

I ′ ∈ D be arbitrary. Let C
$← Mask(P, I,M). Then for all I, I ′ ∈ D, all M ∈ MS

– if Cl(I, I ′) = close then

Pr[Unmask(P, I ′, C) = M] ≥ 1 − ε,

578 A. Boldyreva et al.

– if Cl(I, I ′) = far

Pr[Unmask(P, I ′, C) = ⊥] ≥ 1 − ε.

The probabilities are over the choice of P and the coins used by the algorithms
involved.

ε-Correct Fuzzy Search: Let P
$← Init be parameters, D ⊆ D × MS be arbi-

trary and let C $← Mask(P,D). Consider the associate data structure DS =
CreateDS(C), an arbitrary I ′ ∈ D and T ← Query(P, I ′).

We require that:

– For any (I,M) ∈ D; let C be the resulting ciphertext in C. Then, if Cl(I, I ′) =
close then

Pr[C ∈ FuzzyS(C, DS, T)] ≥ 1 − ε,

– For any (I,M) ∈ D; let C be the resulting ciphertext in C. Then, if Cl(I, I ′) =
far then

Pr[C �∈ FuzzyS(C, DS, T)] ≥ 1 − ε.

The probabilities are over the choice of P and any coins used by subsequent
algorithms. We do not impose a specific bound on ε; the correctness analysis
for each scheme would need to determine the best value for ε, and, of course,
one may be able to derive different bounds for each of the four aspects of the
correctness definition.

We say that a KlFS scheme is ε-correct if it satisfies ε-correct decryption and
ε-correct fuzzy search.

We say KlFS is an efficiently keyless fuzzy-searchable encryption (EKlFS)
scheme if for any P generated by Init, (sufficiently large) database C, data struc-
ture DS = CreateDS(C), and query T with |FuzzyS(C, DS, T)| sub-linear in the
size of C, the running time of FuzzyS is sub-linear in the size of C. Notice this
condition on the running time limits the number of false positives for a fuzzy
query.

KlFS Security. We define security of a KlFS scheme using the semantic secu-
rity approach. As common with such simulation-based definitions for searchable
encryption, the definition requires a leakage function, which describes whatever
the adversary can (unavoidably) glean from the encrypted database, the search
data structure and the queries. Since we cannot (and do not want to) fix a one-
size-fits-all leakage function, our definition is parametrized by a function leak
which takes as input the parameters of the scheme P , the access data I, the aux-
iliary messages M and the search queries Q and outputs some information to
be passed to the simulator. Ideally, this information should be as benign as pos-
sible, and a scheme designer/user should understand the consequences entailed
by leaking this information. Notice that the function depends on the parameters
of the scheme which essentially means that the information leaked may vary as
a function of the parameters of the scheme.

Our definition can be seen as a non-trivial extension of the semantic-security-
based definition for deterministic asymmetric encryption by Bellare et al. [6]. We

Masking Fuzzy-Searchable Public Databases 579

compare two executions, a real one and an idealized one. In the real execution a
database D and search queries Q are sampled according to some source M. In
addition, we let the source sample some target information target that models
any possible information about the data and the queries the attacker can guess.
The adversary is provided with the parameters of the scheme, an encryption of
the database the search queries and attempts to guess the target information.
We compare this execution with that of an adversary (simulator) who needs to
guess the same information but only having as input the information which is
allowed to be leaked.

If an ideal adversary exists, then the real adversary cannot learn more from
the system beyond the information passed to the simulator. Unlike the tradi-
tional security definitions, we do not ask that the ideal adversary perform neg-
ligibly close to the real one, as this may not be achievable for some classes of
sources. Instead, we let the advantage of the attacker (the difference between its
and the ideal adversary’s performances) be an arbitrary function of the given
resources and the data source. We leave it to applications to estimate whether
the given bounds are acceptable.

Fig. 1. The PRV real (left) and ideal (right) experiments.

Definition 3. For a KlFS scheme, closeness domain (D,Cl), source M, leakage
function leak, an adversary A with given resources, simulator S we define the
prv-advantage as Advprv

KlFS,M,leak(A,S) as the difference

Pr
[
Expprv-real

KlFS,M (A) = 1
]

− Pr
[
Expprv-ideal

KlFS,M,leak(S) = 1
]
,

where the experiments are defined on Fig. 1.

Remarks. Note that the above definition is achievable only if the adversary can-
not come up with data that is close to the data stored in the database (otherwise,
it will be entitled to get the relevant data). This is similar to the requirements of
data unpredictability for deterministic and message-lock encryption. We could
formally define closeness unpredictability and consider only the sources with
such a property. However, our constructions will rely on stronger assumptions

580 A. Boldyreva et al.

so we do not define the minimal assumption for the source and instead define
the assumptions required for each scheme.

It is likely that the data set of an application contains data of variable degree
of unpredictability. For example, a database of names would have very common
names like Adam Smith, somewhat common names like Brent Waters, and rare
names like Muthukrishnan Venkitasubramaniam. In this case it makes sense to
use the bound on the advantage separately to estimate security for each group,
by considering several sources. This would require that there is no correlation
between groups (correlations within each group are fine).

We note that our security definition is for a particular source but it is possible
to extend the definition to consider a class of sources.

Two remarks are in order regarding the public parameters in the security
game. First, our definition only captures security of messages that do not depend
on public parameters. This is almost always a reasonable assumption in practice,
and is an assumption which is also required in other settings like deterministic
and hedged encryption [5] and MLE. Secondly, in our definition the simulator
needs to work with honestly generated parameters. One could consider a more
permissive definition with a simulator that generates the public parameters of
the scheme.

Note that our security notion does capture (though only implicitly) the intu-
itive goal that it should be harder to extract the entire database than to extract
a single entry. The definition demands that the attacker who does not know the
right query, gets no information. This means that getting information reduces
to coming up with the right queries. Each of these may take time, depending on
the underlying message. This brings us back to the essential goal of hardness of
retrieving records and tethering the attacker.

4 Basic KlFS

The idea behind the scheme is as follows. The parameters of the scheme consist
of an (L, k)-eLSH family. To mask with data I some message M we calculate
gi(I) for each i ∈ [L] and use these values in two different ways. First, for each
i we derive a key for a standard symmetric encryption scheme by using a hash
function H and encrypt M under each of these keys. If the information to be
encrypted is large, one may use a “hybrid” scheme where M is encrypted once
under a random key K and K is encrypted under each H(gi(I)). As mentioned
in the Introduction, in practice we recommend to use a slow hash function to
slow down the exhaustive search. In addition, we calculate L tags by applying a
(different) hash function G to each gi(I). The ciphertext of M under I consists
of the list of ciphertexts together with the set of tags.

The scheme can support search in a masked database as follows. Given some
query data I ′ one can compute the tags associated to I ′ (i.e. G(gi(I ′)) for each i)
to form a query. The server (who can index the database by the tags) can then
efficiently locate and return all of the ciphertexts with at least one overlapping
tag. The user who is given some data I ′ close enough to I can then recover at

Masking Fuzzy-Searchable Public Databases 581

least one of the keys used to mask M by calculating gi(I ′) (for all i) and decrypt
the ciphertext.

Basic KlFS Scheme. We now define a basic KlFS for any closeness domain
(D,Cl) for which there exists an extended (L, k)-eLSH scheme H with parameters
(δC, δF, P1, P2) that are “compatible” with the closeness function, that is for any
I, I ′ ∈ D if Cl(I, I ′) = close then d(I, I ′) ≤ δC and if Cl(I, I ′) = far then
d(I, I ′) ≥ δF. Given a standard symmetric encryption scheme SE = (K, E ,D) we
define the Basic KlFS scheme as shown in Fig. 2. The initialization algorithm
picks two additional hash functions H,G (which we model as random oracles).

Note that although we present search as a linear operation on the database
in practice this search is sublinear due to the use of data structures such as
K-D trees [12]. In addition, we remark that although the decryption algorithm
computes the tags associated to the access data I ′ used for decryption, in practice
this computation is not needed: these tags were computed as part of creating
the search query for I ′ and could be saved to be used in decryption. Moreover,
only the “matching” tags could be sent by the server as part of each returned
ciphertext.

Correctness and Security. The following theorem establishes the correct-
ness of the basic scheme. Its proof is in the full version [10].

Theorem 1. If H is an (L, k)-eLSH with parameters (δC, δF, P1, P2) then the
basic scheme defined above is ε-correct, with ε = max((1 − P1) + L

2h
, P2 + L

2h
),

where h is the output length of the random oracle G.

Next, we analyze the security of the basic scheme. Each ciphertext consists
of a symmetric encryption and a set of tags, each tag is of the form G(gi(I))
(for 1 ≤ i ≤ L) and each search query is a collection of tags. We show that the
only information that is leaked is the overlap between tags and nothing more,
provided a minimal requirement on the interplay between this leakage and the
keys used for symmetric encryption.

In our analysis, first we formalize the unavoidable leakage of the scheme, and
then spell out and discuss the assumption that the source needs to satisfy.

Given some parameters P = k||L||gL(·), random oracles G and H and
I,M,Q, target $← M let T be the set of all tags (both associated to cipher-
texts and to search queries) that are computed in the experiment. Clearly, the
size of T is at most L · (|I| + |Q|): each entry in I and Q (has at most L asso-
ciated tags). We can then formalize the information leaked leak(P, (I,Q)) as a
map L : [|T |] → P([|I| + |Q|])× [L] which for each tag indicates (the indexes of)
the ciphertexts and the queries in which that tag occurs, and the position in the
list of tags where it does.

Assume that T is ordered (i.e. lexicographically) and let T [t] be the t’th
tag in this order. By abusing notation we write T [t] ∈ I[i] to indicate that
tag T [t] occurs in the ciphertext associated to I[i] and we write T [t] ∈ Q[j] to
indicate that tag occurs in the query associated to Q[j]. We can then define the
information leaked as

582 A. Boldyreva et al.

Fig. 2. Algorithms defining Basic KlFS.

L(t) = {(i, u) | 〈u, T [t]〉 ∈ I[i]} ∪ {〈j + |I|, u〉 | 〈u, T [t]〉 ∈ Q[j]}.

Notice that we expressly do not pass M as input to the leakage function leak
since its output L is independent of M – this indicates that the scheme leaks no
information on the underlying plaintexts.

Next, we identify and explain the assumption on the interplay between the
source M and the parameters of the scheme. Recall that, sensitive data is
encrypted under keys of the form H(gi(I)), where H is a random oracle and
gi(·) are hash functions form the extended LSH function H, part of the param-
eters of the scheme. For security, we need that these keys are unpredictable,
even given the information unavoidably leaked by the scheme. That is, for any
gi(·) (sampled from H) and for any index j ∈ [|I|] and any index k ∈ [|Q|] we
have that H̃∞(gi(I[j] | leak(P, I,Q))) ≥ l for some sufficiently large l. To simplify
notation, and avoid the multiple quantifiers we write H̃∞(H(M) | L(M)) ≥ l for
this requirement. Notice that this requirement is strictly stronger than closeness-
unpredictability of M.

Masking Fuzzy-Searchable Public Databases 583

The next theorem (which we prove in the full version [10]) establishes the
security of the basic scheme, namely that it leaks no information beyond the tag
overlap, unless the attacker can predict the tags. This holds under the assump-
tion that the symmetric encryption scheme used in the implementation hides the
plaintext and is key-private. This latter assumption is needed since otherwise,
ciphertexts will leak information about equality of keys which translates to more
specific information about equality of tags than leaked by L: an adversary could
tell not only that there are tag overlaps, but can tell to which keys these tags
correspond.

Theorem 2. Let (D,Cl) be a closeness domain. Let M be an arbitrary source
and let H be a compatible (L, k)-eLSH scheme with parameters (δC, δF, P1, P2)
such that H̃∞(H(M) | L(M)) ≥ l. Let SE = (E ,D) be a symmetric encryption
scheme. We assume that keys for the scheme are bitstrings length l selected
uniformly at random. Let Π be the Basic KlFS and let leak be the leakage
function defined above. Then for any adversary A, we construct a simulator S
such that there exist adversaries B and C so that, in the random oracle model,
Advprv

Π,M,leak(A,S) is upperbounded by

Advkh
SE(B) + Advind-cpa

SE (C) +
L · (qG + qH) · (|I| + |Q|))

2l
,

where qG is the number of queries that A makes to oracle G. Furthermore, the
running times of S, B and C are essentially that of A; the number of encryption
queries that B and C make is |I|.

Discussion. As the theorem above states, evaluating security requires estimat-
ing unpredictability of LSH tags, and we understand this is a difficult task.
Evaluation of this property has to be done for the specific LSH instantiation.
For example, for the aforementioned random-bit-projection LSH construction for
Hamming distance, it is known [16,36] that the rate of source unpredictability
is preserved by random random projections (or samples, using the terminology
of [16]). It is shown in [16] that for some specific sources it is possible to preserve
more entropy. In addition, one still has to estimate the unpredictability of the
data (empirically or otherwise).

Similarly, it may not be easy to evaluate the implications of the leak function,
a key challenge in studying property-preserving encryption in general. Hopefully
future works will bring novel methods that facilitate such analysis. For our case,
further work is needed to understand how leakage about tags translates into
leakage about the data, but this requires a case by case analysis, depending on
the use of a particular LSH and closeness domain.

For the case of random-bit-projection LSH, leak implies leaking the “overlap
pattern” of LSH tags. In particular, each LSH tag (for eLSH construction) is
a list of k bits. The attacker will learn to which data each tag corresponds to,
but it does not learn what each tag is or what random bit positions each tag
corresponds to (the latter is due to keeping tags as sets as opposed to lists, and

584 A. Boldyreva et al.

by employing key-private encryption). An interesting challenge would be to see
empirical inference attacks in the style of [17,33] which may rely on domain
specific knowledge.

Also recall that the definition of the source implies that we only ensure secu-
rity for messages that do not depend on public parameters. This is a rather
reasonable assumption in practice and moreover, it is possible future research
will remove this assumption, similarly to the case of MLE [1].

As we explained in Sect. 3, the bound can be used to estimate security of data
with different entropy, if we consider several independent sources and assume
that the data produced by different sources is not correlated across different
sources.

5 KlFS for Fuzzy Image Search

Feature Vectors. Most algorithms for image search deal with image feature
vectors. Feature vectors are small pieces of data containing information about the
image or parts of the image, such as color, shape, object boundaries, etc. Some
applications may need to work with several types of features. For simplicity, in
this work we focus on feature vectors of the same type. We remark that our
definitions could easily be extended to handle multiple types of feature vectors.
E.g., one could assign a specific index to indicate which type the feature vector
belongs to.

We consider a domain of feature vectors V and assume that there exists
an efficient deterministic algorithm extractV that takes an image I ∈ D and
outputs a set of feature vectors V ⊂ V (such algorithms are well-documented in
the computer vision and graphics literature).

Intuition for the Scheme. We aim to add security to the existing image
search applications. In one such application, a user can search a database of
pictures by an image of a face. The user is able to retrieve the pictures containing
the person in question. More generally, a user holding an image I should be able
to find database pictures that contain (as part of the picture) an image close to
I in some metrics. As we discussed in the Introduction, the existing algorithms
for unencrypted search work roughly by determining how many features are
close between those for query and database data and this is done by comparing
equality of LSH tags.

Our goal is to let such algorithms work on masked data. I.e., we want to
hide information about the database and the queries besides the information
necessary for efficient search, such as similarity of underlying feature vectors.
And again, since we are working in the keyless setting, security depends on how
hard it is to predict the images. Of course, we want to state and prove the
exact security guarantees for our construction, even though we do not expect
the security guarantees to be very strong (as we also have functionality and
efficiency considerations on the other side of the scale).

Masking Fuzzy-Searchable Public Databases 585

Since our general KLFS scheme from Sect. 4 is not immediately suitable
(mainly because it does not consider feature vectors), we propose a scheme tai-
lored for the task. First, we encode the LSH tags of all extracted feature vec-
tors, so that only their equality is leaked. This way the search algorithm can
still identify close feature vectors of database pictures and queried images. Next
we encrypt database pictures using the standard symmetric encryption scheme
under a key K that can be computed only if one knows a threshold number
of feature vectors close to those in the picture or, in other words, possesses an
image close to that included in the picture. We achieve this by secret-sharing
the key K and for each feature encrypting the corresponding share with a key
deterministically derived from each LSH tag. We now provide the details.

The Construction. We consider closeness domain Λ = (D,Cl), where D is
a domain of images and Cl determines when two images are close for a match.
The latter can depend on the application. (See Sect. 6 for a concrete exam-
ple.) We assume the existence of deterministic algorithm extractV that takes
an image in D and outputs a set of feature vectors V. We also assume that
Cl defines the parameter thr which is the number of close features needed to
determine a match (closeness) between two images. The construction will use
a (δC, δF, p1, p2)-sensitive hash family HL,k with parameters L and k, matching
the closeness domain as defined for the general schemes, cryptographic hashes
H,G (will be treated as random oracles in the security analysis), a symmetric
encryption scheme SE = (K, E ,D) and a secret sharing scheme (KS,KR). We
remark that in the secret sharing scheme, the parameter n (from t-out-of-n) will
vary and will be determined in the construction.

The parameter generation algorithm is as of the Basic KlFS scheme. The rest
of the algorithms are defined in Fig. 3. Similarly to the Basic KlFS description,
we do not specify in Fig. 3 how FuzzyS makes use of the data structure DS or
that the server could only return the matched tags. And in practice unmasking
can be sped up if the user stores the tags (and their corresponding indices) so
they are not re-computed during decryption.

Correctness and Security. The correctness of fuzzy search is as of the
Basic KlFS. Correctness of decryption is similar to that of the Basic KlFS, but
it also relies on correctness and security of the key sharing scheme. Specifically,
correctness of the latter ensures that the threshold number of shares are sufficient
to reconstruct the key, which in turn will ensure that decryption using an image
close to the one used to encrypt will be correct. Decryption with a “far” image
fails due to the use of the key sharing scheme: in this case the decryptor will not
have enough shares. We observe that security of key sharing is actually stronger
than what we need here (failure of key reconstruction with insufficient number
of shares), as correctness is not an adversarial notion.

Before we specify the security of the scheme, we formalize the information
that we expect that the scheme leaks. Given some parameters P = k||L||gL(·),
random oracles G and H and (I,M,Q, aux) $← M we define the leakage function
leak(P, (I,Q)) as follows. (As for the previous scheme we do not pass M as input
to the leak function to indicate that the information revealed by the scheme does

586 A. Boldyreva et al.

Fig. 3. Algorithms defining the KlFS for images.

not depend on M.) We let F be the (lexicographically ordered) set of features
associated to the images in I,Q; we write F [i] for the i’th feature in F and let
f = |F |. Let T be the (lexicographically ordered) set of tags associated to the
features above; we let T [i] be the i’th tag and let n = |T |. Define the matrix M
of |I|+ |Q| rows, and f columns where the entry on row i and column j of matrix
M is the list of tags associated to feature F [j] if F [j] is a feature of I[i]. In other
words l is part of the list M(i, j) if F [j] is a feature of I[i] and T [l] is a tag derived
from F [j]. The leakage function L : [n] → P(([|I|+ |Q|])× [f]× [L])) is defined by
L(t) = {(i, j, u) | 〈u, T [t]〉 ∈ M(i, j)}. Informally, the function reveals for each
tag (identified by an index t ≤ n) all access data or query entries (identified by
i ∈ [|I| + |Q|]) and all features (identified by some j ≤ f) for which the tag was
derived from feature j belong to access data (or query) i.

The security theorem below (proved in the full version [10]) establishes that
unless the attacker guesses successfully some tag, provided the unavoidable

Masking Fuzzy-Searchable Public Databases 587

leakage of the scheme, no information is leaked about the data that is masked.
Specifically, we assume that we know l such that for any fixed gi of H, and
j ∈ [|I|] if we let Vk(I[i]) be the k’th feature extracted by extractV from I[i],
then H̃∞(gi(Vk(I[j]) | leak(P, I,Q))) ≥ l: that is there is sufficient entropy left
in the (LSH projection) of each feature vector, even given the inherent leakage
of the scheme (i.e. the different feature vector overlaps). We make the analo-
gous requirement for Q by abuse of notation we write H̃∞(H(extractV(M)) |
L(M)) ≥ l for the resulting condition.

Theorem 3. Let (D,Cl) be a closeness domain. Let M be an arbitrary source
and let H be a (L, k)-eLSH scheme with parameters (δC, δF, P1, P2) such that
H̃∞(H(extractV(M)) | L(M)) ≥ l. Let SE be a symmetric encryption scheme,
let Π-IM be the KlFS described above Then for any adversary A, we construct
a simulator S and adversaries B and C so that Advprv

Π-IM,M,leak(A,S) is upper-
bounded by

Advkh
SE(B) + 2Advind-cpa

SE (C) +
L · f · (qG + qH) · (|I| + |Q|)

2l
,

where leak is as defined above, and qH and qG are the number of random oracle
calls to H and G. Furthermore, the running time of S, B and C are essentially
that of A; the number of queries that B and C make to the encryption oracle is
|I| · f · L (where f is the maximum number of features per image).

Discussion. As we discussed in Sect. 4, it is important to provide general means
to further understand the extent and implications of leakage. Meanwhile, to gain
more intuition about the leakage function, assume that the database contains
2 similar images I1, I2, so that I1 and I2 have close features V1, V2, V3. Further
assume that V1, V2 share LSH tags t1, t2; V1, V3 share LSH tags t1, t3; and V1, V3

share t4. Then, according to leak function we defined, the adversary learns exactly
that, namely the Venn diagram of the set of tags overlaps.

One could strengthen our theorem by relaxing the tag unpredictability
requirement. Instead, one could require that only the threshold (from the key
sharing scheme) tags be unpredictable as opposed to each individual one. In
this case, the security of the scheme will also rely on security of the key sharing
scheme.

6 Experimental Results and the Revised Scheme

Empirical study of the Basic KlFS for images. We implemented the
KlFS for images from the previous section. We implemented the random bit
projection LSH. We used the feature extraction algorithm from OpenCV 2.4.13.
We limited the number of extracted features to 200 for each image and considered
images close if they have at least two close ORB features (have an overlapping
tag).

588 A. Boldyreva et al.

We experimentally evaluated the security of our scheme and found that it
does not provide reasonable security, without any contradiction with the theo-
retical results. The problem is not with the scheme or its analysis. The problem
is that the assumption on which security relies on is not true for the data sets
we have experimented with. I.e., the feature vectors and hence the tags are pre-
dictable, in that images that are not visually close end up being “technically”
close since their feature vectors overlap. An attacker can try several images until
one of the features will match a feature from the masked image, and then the
attacker will succeed.

Modified KlFS for Images. To alleviate the problem, we revise the scheme
to incorporate two important modifications. First, to eliminate false positives
during image search, we change the feature extraction extractV by adopting
the “entropy-filling” technique used by Dong et al. [24]. Specifically, we extract
and keep only features that best characterize the images; the common ones
are filtered out. This technique significantly reduces the rate of (visually) false
positives, which implies much improved closeness unpredictability of the feature
vectors and tags.

However, the true-positive rate also reduces. To improve the true-positive rate
while keeping the false-positive rate significantly low, one could try to extend
the basic scheme to perform multiple search rounds by querying every returned
result following the initial query, and then outputting the union of the results.
However, this basic extension has two major drawbacks, one is to determine
how many recursive calls should we enforce on every query, which seems to be
a tough problem on its own. Second, if some images contain features that are
close to the initial query, and lead to other large clusters that are not close to
the initial query they will inevitably lead to a large number of false-positives.
A better way, used in [24] is to incorporate a customized PageRank algorithm
(PR-Nibble) derived from [2] as part of the image search scheme. We adapt it
for search on masked data. We provide more details on our new KlFS for images
in full version [10].

Implementation and Evaluation of Modified KlFS for Images. In the
full version [10] we present the results of evaluating our implementation. We used
the same database as in [24]. In total, 81 groups of famous paintings and CD
covers were chosen and manually checked that they were visually close. The test
database consists of 10839 images in total. We implemented the masking scheme
with cryptographic library Crypto++6.5.4 in C++ on Ubuntu 16.04 with 6-core
processor (Intel� CoreTM i7-8750H CPU @ 2.20 GHz ×12) with 16 GB RAM
and demonstrated that the masking scheme was efficient and the number of
false-positives is very low.

The true-positive rate is not very high, but this is as expected, given the
necessity for almost no false positives and inability to execute advanced search
techniques on unencrypted images use because the data is masked (such as, for
example, feeding images into the trained deep neural networks). Still, for data
domains where similar images are closely clustered together and clusters are
reasonably far apart low true-positive rate may be sufficient. For example, for

Masking Fuzzy-Searchable Public Databases 589

applications which needs to check for the presence of a specific and highly distinct
image in a database where the multiples variations of that picture are present
(and therefore does not need to recover all occurrences of that image). This
is the case, for example, when determining if a particular human face, license
plate number, animal, or logo appears in a collection of frames of a given video.
Similarly, in machine learning applications, if an image (with objects or scenes)
needs to be classified using a database of labeled images, then it is enough to
match the image with the most likely class, and it is not necessary to match all
close images.

Acknowledgements. We thank Dima Damen, Walterio Mayol Cuevas, Hugo
Krawczyk, Leo Reyzin, Tom Ristenpart and Dan Shepard for useful comments and sug-
gestions. We also thank the anonymous reviewers. Alexandra Boldyreva and Tianxin
Tang were supported in part by NSF 1422794 and 1749069 awards.

References

1. Abadi, M., Boneh, D., Mironov, I., Raghunathan, A., Segev, G.: Message-locked
encryption for lock-dependent messages. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 374–391. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 21

2. Andersen, R., Chung, F.R.K., Lang, K.J.: Local graph partitioning using PageRank
vectors. In: FOCS, pp. 475–486. IEEE Computer Society (2006)

3. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: FOCS, pp. 459–468. IEEE Computer Society
(2006)

4. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

5. Bellare, M., et al.: Hedged public-key encryption: how to protect against bad ran-
domness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 14

6. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 20

7. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9 18

8. Boldyreva, A., Chenette, N.: Efficient fuzzy search on encrypted data. In: Cid, C.,
Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 613–633. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46706-0 31

9. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 33

10. Boldyreva, A., Tang, T., Warinschi, B.: Masking fuzzy-searchable public databases.
Full version of this paper (2019). ePrint archive https://eprint.iacr.org/2019/434

https://doi.org/10.1007/978-3-642-40041-4_21
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-642-10366-7_14
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-662-46706-0_31
https://doi.org/10.1007/978-3-642-22792-9_33
https://eprint.iacr.org/2019/434

590 A. Boldyreva et al.

11. Boyen, X.: Reusable cryptographic fuzzy extractors. In: ACM Conference on Com-
puter and Communications Security, pp. 82–91. ACM (2004)

12. Brown, L., Gruenwald, L.: Tree-based indexes for image data. J. Vis. Commun.
Image Represent. 9(4), 300–313 (1998)

13. Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point
obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8874, pp. 142–161. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45608-8 8

14. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052255

15. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 28

16. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors
for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 5

17. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: ACM Conference on Computer and Communications
Security, pp. 668–679. ACM (2015)

18. Cash, D., et al.: Dynamic searchable encryption in very-large databases: data struc-
tures and implementation. In: NDSS. The Internet Society (2014)

19. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

20. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption
with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 24

21. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: ACM Conference
on Computer and Communications Security, pp. 79–88. ACM (2006)

22. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Symposium on Computational Geom-
etry, pp. 253–262. ACM (2004)

23. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

24. Dong, W., Wang, Z., Charikar, M., Li, K.: High-confidence near-duplicate image
detection. In: ICMR, p. 1. ACM (2012)

25. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: ICDCS, pp. 617–624
(2002)

26. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC, pp. 604–613. ACM (1998)

27. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt. 38(2), 237–257
(2006)

28. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM Conference on Computer and Communications Security, pp. 965–
976. ACM (2012)

https://doi.org/10.1007/978-3-662-45608-8_8
https://doi.org/10.1007/978-3-662-45608-8_8
https://doi.org/10.1007/BFb0052255
https://doi.org/10.1007/978-3-540-78967-3_28
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-662-52993-5_24

Masking Fuzzy-Searchable Public Databases 591

29. Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted
data. In: ICDE, pp. 1156–1167. IEEE Computer Society (2012)

30. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 3

31. Matwin, S.: Privacy-preserving data mining techniques: survey and challenges. In:
Custers, B., Calders, T., Schermer, B., Zarsky, T. (eds.) Discrimination and Privacy
in the Information Society. SAPERE, vol. 3, pp. 209–221. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-30487-3 11

32. Narayanan, A., Shmatikov, V.: Obfuscated databases and group privacy. In: ACM
Conference on Computer and Communications Security, pp. 102–111. ACM (2005)

33. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: ACM Conference on Computer and Communications
Security, pp. 644–655. ACM (2015)

34. Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
375–391. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 23

35. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning
and Vision: Theory and Practice (Neural Information Processing). The MIT Press,
Cambridge (2006)

36. Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in
the bounded-storage model. J. Cryptol. 17(1), 43–77 (2004)

https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/978-3-642-30487-3_11
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23

Homomorphic Training of 30,000 Logistic
Regression Models

Flavio Bergamaschi1(B), Shai Halevi2, Tzipora T. Halevi3, and Hamish Hunt1

1 IBM Research, Winchester, UK
{flavio,hamishhun}@uk.ibm.com

2 IBM Research, Albany, NY, USA
shaih@alum.mit.edu

3 Brooklyn College, Brooklyn, NY, USA
thalevi@nyu.edu

Abstract. In this work, we demonstrate the use the CKKS homomor-
phic encryption scheme to train a large number of logistic regression
models simultaneously, as needed to run a genome-wide association study
(GWAS) on encrypted data. Our implementation can train more than
30,000 models (each with four features) in about 20 min. To that end, we
rely on a similar iterative Nesterov procedure to what was used by Kim,
Song, Kim, Lee, and Cheon to train a single model [14]. We adapt this
method to train many models simultaneously using the SIMD capabili-
ties of the CKKS scheme. We also performed a thorough validation of this
iterative method and evaluated its suitability both as a generic method
for computing logistic regression models, and specifically for GWAS.

Keywords: Approximate numbers · Homomorphic encryption ·
GWAS · Implementation · Logistic regression

1 Introduction

In the decade since Gentry’s breakthrough [9] we saw rapid improvement in
homomorphic encryption (HE) techniques. What started as a mere theoretical
possibility is now a promising technology on its way from the lab to the field.
Many of the real-world problems to which this technology was applied origi-
nated in the yearly competitions that are organized by the iDASH center [12].
These competitions, organized annually since 2014, pose specific technical prob-
lems related to privacy preserving analysis of medical data and ask for solutions
using specific technologies. Some of the problems posed in the 2017 and 2018
instalments dealt with training logistic regression (LR) models on encrypted
data.

In 2017, the task was to devise a single model. Many solutions were suggested
that perform this task in a matter of a few minutes to a few hours [1,6,8,11,14,
15]. In particular, the winning entry in the 2017 competition was due to Kim
et al. [14], using the HE scheme due to Cheon et al. [7] (which we call below
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 592–611, 2019.
https://doi.org/10.1007/978-3-030-21568-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_29&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_29

Homomorphic Training of 30,000 Logistic Regression Models 593

the CKKS scheme). For 2018, the goal was to train a very large number of
models, as needed for a Genome-Wide Association Study (GWAS). In GWAS
a large number of markers are simultaneously tested for their association with
some condition (such as a specific disease). The modus operandi in GWAS is to
devise a large number of LR models at once, each model using only a handful
of markers, then test these models to see which of them have good predictive
power. For the 2018 competition, the iDASH organizers provided a dataset with
over 10,000 markers, noting that “implementation of linear or logistic regression
based GWAS would require building one model for each SNP, which requires a
lot of time.” (SNP is a single genomic marker). Instead they suggested to use
the semi-parallel algorithm of Sikorska et al. [18] for that purpose.

1.1 Our Work

The goal of the current work was to show that “building one model for each SNP”
can actually be accomplished with reasonable resources, by a careful adaptation
of the techniques used in the iDASH competition from 2017. Specifically, we
implemented a solution along the same lines as the procedure used by Kim et al.
[14] with some corrections and optimizations. Our implementation is able to
compute more than 30,000 LR models in parallel taking only about 20 min.

This work consists of two parts: In one part, we adapted the iterative pro-
cedure of Kim et al. [14] to the setting of GWAS, using the SIMD capabilities
of the CKKS HE scheme, to compute a large number of models simultaneously.
In the other part, we performed a thorough validation of this iterative method,
evaluating its suitability both as a generic method for computing LR models and
specifically for GWAS.

Adapting and Validating the Iterative Procedure. The iterative procedure
of Kim et al. [14] applies Nesterov’s accelerated gradient descent [16] with a
very small number of iterations (and uses the CKKS cryptosystem to run it on
encrypted data). While Kim et al. evaluated the accuracy of their method, the
GWAS setting raises some other demands that were not evaluated in [14]. For
one thing, in [14] they only devised a handful of models on data with a rather
strong signal, whereas in GWAS we need to devise many thousands of models
on data that ranges from having very strong to very weak signal (and many in
between). Moreover, for GWAS we had to train the model on encrypted data,
and also evaluate it homomorphically by computing the log-likelihoods ratio.

We found that some details of the iterative procedure had to be adapted to
this setting. One notable issue was that when the data was not balanced (e.g.,
with more 0’s than 1’s), as the signal weakens the model tends to degenerate
to the constant predictor that always says zero (hence getting a recall value of
zero). In our tests, we found that sub-sampling the training data to ensure that
it is balanced resulted in much better recall values with almost no effect on
the accuracy of the model. We also found and fixed a few minor mistakes and
inconsistencies in the procedure from [14] and its evaluation, see Sect. 3.

In the tests ran, we compared the adequacy of the iterative procedure (in
terms of ordering the genomic markers by relevance) to that of the semi-parallel

594 F. Bergamaschi et al.

algorithm. We concluded that the ordering in both methods are mostly equiv-
alent, but the iterative procedure often provided better model parameters. We
also compared the approximate LR models of the iterative procedure to the LR
models computed by Matlab’s glmfit function. Surprisingly, even when we use
very few iterations, the resulting LR models are just as predictive as the ones
produced by Matlab, see Sect. 3.1.

We used several datasets of very different characteristics for testing. One was
the genome dataset provided by the iDASH team. Others include the Edinburgh
myocardial infarction dataset [13] (also used by Kim et al.), a credit-card fraud
dataset [2,17], and the dataset related to the sinking of the RMS Titanic [3].1

Homomorphic Implementation. Like many contemporary homomorphic
encryption schemes, the CKKS approximate number scheme of Cheon et al.
[7] supports Single-Instruction-Multiple-Data (SIMD) operations: ciphertexts in
CKKS encrypt vectors of numbers and each homomorphic operation induces
element-wise operations on the corresponding vectors. This provides the basis
of our GWAS procedure: simply pack the parameters of the different models in
different entries of these vectors, then use the SIMD structure to run the iter-
ative procedure on all of them in parallel. Specifically in our setting, we used
ciphertexts that can pack upto 215 = 32768 numbers, so we can compute that
many models in parallel.

Implementing this approach requires some care, particularly with regards to
RAM consumption. We need to ensure that the computation fits in the available
RAM as packed ciphertexts are typically large. A notable optimization described
in Sect. 4.2 takes advantage that CKKS ciphertexts can pack a vector of complex
numbers (not just real numbers). Our optimization uses that fact to reduce the
number of operations by almost a factor of two by packing twice as many real
numbers in each ciphertext, but paying some price in larger noise accumulation.

We also mention that our CKKS implementation, done over the HElib engine
[10], differs from other implementations in some details (which makes working
with it a little easier). These details are described in Sect. 4. As mentioned above,
using this implementation we can compute all the LR models for a GWAS with
upto 215 markers and three clinical variables in about twenty minutes.

We note that the running time would grow nearly quadratically with the
number of clinical variables: since to train models with more variables we also
need more records, then the size of the input matrix grows quadratically with
the number of variables. With three clinical variables we were able to train the
models in under 20 min, and a back-of-an-envelope calculation indicates that we
could handle 8–10 clinical variables in about an hour.

Organization. In Sect. 2, we provide some background on LR, GWAS, and
Nesterov’s Accelerated Gradient Descent [16]. In Sect. 3, we provide details on
our variant of the iterative procedure, and our testing methodology and results.

1 The last three datasets are much smaller than we would like. Nonetheless, they
contain features with strong signal and others with very weak signal, so we can still
use them to evaluate the GWAS setting.

Homomorphic Training of 30,000 Logistic Regression Models 595

In Sect. 4, we describe the implementation of this procedure on encrypted data
and provide various runtime measurements.

2 Background

2.1 Logistic Regression

Logistic regression (LR) is a machine-learning technique trying to predict one
attribute (condition) from other attributes. In this work, we only deal with
the case where the condition that we want to predict is binary (e.g., sick or
healthy). The data that we get consists of n records (rows) of the form (yi,xi)
with yi ∈ {0, 1} and xi ∈ R

d. We would like to predict the value of y ∈ {0, 1}
given the attributes x, and the logistic regression technique postulates that the
distribution of y given x is given by

Pr[y = 1|x] =
1

1 + exp
(− w0 − ∑n

i=1 xiwi

) =
1

1 + exp
(− x′Tw

) ,

where w is some fixed (d + 1)-vector of real weights that we need to find, and
x′
i = (1|xi) ∈ R

d+1. Given the training data {(yi,xi)}n
i=1, we thus want to find

the vector w that best matches this data, where the notion of “best match” is
typically maximum likelihood. Using the identity 1 − 1

1+exp(−z) = 1
1+exp(z) , we

therefore want to compute (or approximate)

w∗ = arg max
w

{
∏

yi=1

1

1 + exp
(− x′

i
T
w

) ·
∏

yi=0

1

1 + exp
(
x′
i
T
w

)

}

.

The last condition can be written more compactly: let y′
i = 2yi − 1 ∈ {±1} and

zi = y′
i · x′

i, then our goal is to compute/approximate

w∗ = arg max
w

{
n∏

i=1

1

1 + exp
(− zi

Tw
)
}

= arg min
w

{
n∑

i=1

log
(
1 + exp(−zi

Tw)
)}

.

For a candidate weight vector w, we denote the (normalized) loss function for
the given training set by

J(w) def=
1
n

·
n∑

i=1

log
(
1 + exp(−zi

Tw)
)
, (1)

and our goal is to find w that minimizes that loss.

Gradient Descent and Nesterov’s Method. In this work, we use a variant
of the iterative method used by Kim et al. in [14] based on Nesterov’s accelerated
gradient descent [16]. Let σ be the sigmoid function σ(x) def= 1/(1 + e−x), it can
be shown that the gradient of the loss function with respect to w is

∇J(w) = − 1
n

n∑

i=1

1
1 + exp(ziTw)

· zi = − 1
n

n∑

i=1

σ
(− zi

Tw
) · zi . (2)

596 F. Bergamaschi et al.

Nesterov’s method initializes two evolving vectors (e.g., to the average of the
input records), then in each iteration it computes

w(t+1) = v(t) − αt · ∇J(v(t)),
v(t+1) = (1 − γt) · w(t+1) + γt · w(t), (3)

where αt, γt are scalar parameters that change from one iteration to the next.
(α is the learning rate and γ is called the moving average smoothing parameter,
see section 3 for how they are set).

Approximating the Sigmoid. As in [14], we use low-degree polynomials to
approximate the sigmoid function in a bound range around zero. We use the
same degree-3 and degree-7 approximation polynomials in the interval [−8,+8],
namely

SIG3(x) def= 0.5 − 1.2
(x

8

)
+ 0.81562

(x

8

)3

and (4)

SIG7(x) def= 0.5 − 1.734
(x

8

)
+ 4.19407

(x

8

)3

− 5.43402
(x

8

)5

+ 2.50739
(x

8

)7

2.2 Genome-Wide Association Study (GWAS)

In genetic studies, LR is often used for Genome-Wide Association Study
(GWAS). Such studies take a large set of genomic markers (SNPs) and determine
which of them are associated with a given trait. A GWAS typically considers
one condition variable (e.g., sick or healthy), a small number of clinical variables
(such as age, gender, etc.) and a large number of SNPs. For each SNP separately,
the study builds a LR model that tries to predict the condition from the clinical
variables and that one SNP, then tests how good that model is at predicting the
condition. (The clinical variables are sometimes called covariates, below we use
these terms almost interchangeably).

Assessing a Model: Likelihood Ratio, p-values, Accuracy, Recall. One
way to evaluate the quality of a LR model is to compute its loss function J(w),
Eq. (1). We note that this number has a semantic meaning, it is the logarithm
of the likelihood of the training data according to the LR model (with param-
eters w). This number can then be used to compute the likelihood-ratio-test
(LRT)2 which is sometimes called the “p-value” of the model. We note that Eq.
(1) is not the only formula used for computing p-values (indeed the iDASH com-
petition organizers used a different formula for it). However, at least according
to Wikipedia, the LRT is “the recommended method to calculate the p-value for
logistic regression” (cf. [19]).

2 The LRT measures how much more likely we are to observe the training data if the
true probability distribution of the yi’s is what we compute in the model vs. the
probability to observe the same training data according to the null hypothesis in
which the yi’s are independent of the xi’s.

Homomorphic Training of 30,000 Logistic Regression Models 597

Another way to evaluate the model is to use it for prediction and test how
well it performs. Typically, you would divide your dataset into training and
test data, devise the model on the training data, then use it on the test data
to predict the value of the yi’s (predicting yi = 1 if Pr[y = 1|xi] > 1/2 and
yi = 0 otherwise). The fraction of correct predictions is called the accuracy of
the model. It is common to use five-fold testing where the procedure above is
repeated five times, each time choosing 80% of the records for training and the
rest for testing, then averaging the accuracy values of the five runs.

Overall accuracy may not always be a good measure of performance. For
example, if 90% of the records in our dataset have yi = 0 then even the constant
predictor y = 0 will have 90% accuracy. We therefore also test the recall of the
model, which is its success probability over only the records with yi = 1. This
too is typically measured with a five-fold testing.

3 The Logistic Regression Iterative Procedure

The LR procedure that we used is similar to the one used by Kim et al. [14],
but we had to make some changes and correct a few inaccuracies:

Balancing the Input. We observed that when the input dataset is unbalanced,
the model obtained from the iterative procedure is highly biased as well, some-
times to the point of having recall value of zero. Our program therefore trains
the model always on a random subset of the input dataset where 50% of the
records have yi = 0 and 50% have yi = 1. This simple solution corrects the
recall values of the resulting models and in our tests it only has a very minor
effect on their accuracy.

We remark that this solution can be applied even when the data is encrypted,
for example, by storing the y = 0 encrypted records separately from the y = 1
records. This of course will reveal the y value of all the records, but nothing else
about them. If we want to hide also the y value of the records and if we know a
priori the fraction p of records with y = 1, then we could just choose at random
which records to use in the study during encryption. For example, if p < 1/2 we
can choose each y = 1 record with probability one and each y = 0 record with
probability p/(1 − p).

The Number of Iterations. The number of iterations that we can perform
is very limited as we are using a somewhat-homomorphic encryption scheme to
implement the procedure on encrypted data. We denote this number by τ , and
in our implementation and tests we used τ = 7 iterations.

Initializing the Evolving State. Since we need to use a small number of
iterations, the initial values of v,w is important to the convergence of the
weights. Our tests show that setting them as the average of the inputs (i.e.,
v(0) = w(0) = 1

n

∑n
i=1 zi) yields better results than choosing them at random.3

3 This form of initialization differs from the description in [14], but it is consistent
with the code shared online by the authors.

598 F. Bergamaschi et al.

The α and γ Parameters. The learning-rate parameter α was set just as in
[14], namely in iteration t = 1, . . . , τ we used αt = 10/(t + 1).

For the moving average smoothing parameter γ, Kim et al. stated in [14]
that they used γ ∈ [0, 1], but positive γ values result in bad performance of the
Nesterov algorithm. Instead, we used negative values for gamma as suggested in
[5]: Setting λ0 = 0, we compute for t = 1, . . . , τ

λt =
1 +

√
1 + 4λ2

t−1

2
and γt =

1 − λt−1

λt
.

The values of γ for the first few steps are therefore γ ≈ (1, 0,−0.28,−0.43,−0.53,
−0.6,−0.65, . . .).

Precision. We tested our procedure in order to decide how much precision is
needed since the CKKS scheme only offers limited precision. Our tests found
no significant difference in performance, even with only six bits of precision
(i.e. error of upto 2−7 per operation). We therefore decided to set the precision
parameter for the homomorphic scheme at r = 8, corresponding to 2−8 error.
As there was no real effect, we ran most of our plaintext tests below with full
precision.

Computing the Log-Likelihood. In addition to computing the model param-
eters, we extended the procedure from above to also compute the loss function
(i.e., the log-likelihood of the resulting model). For this purpose, we needed to
approximate also the log-sigmoid function using a low-degree polynomial, in par-
ticular we used the degree-4 approximation in the range [−8, 8] (obtained using
Python’s numpy.polyfit):

LOGSIG4(x) def= 0.000527x4 − 0.0822x2 + 0.5x − 0.78 ≈ log(σ(x)) (5)

We then approximate the log-likelihood of each model w as LOSS(w) ≈
−∑n

i=1 LOGSIG4(zT
i w).

3.1 Experimental Evaluation

We evaluated our procedure across multiple parameters and settings, and com-
pared it to alternative procedures. When attempting such evaluation, it is impor-
tant to ensure that the procedure is not over-engineered to fit just one type of
data, so we run our tests against four different datasets with very different char-
acteristics (though not every test was run on every dataset). These datasets
included the iDASH 2018 dataset for correlating cancer with genomic markers,
a credit-card fraud dataset, the Edinburgh dataset for correlating heart attacks
with various tests and symptoms, and a dataset for correlating various passenger
characteristics with the rate of survival in the Titanic disaster. See Appendix B
for more details on these datasets.

Sorting the Columns in Order of Relevance. One focus of this work is
GWAS-like procedures where we want to filter out the irrelevant columns. Hence,

Homomorphic Training of 30,000 Logistic Regression Models 599

many of our tests examined the order of relevance of the different columns rather
than the actual model parameters for their respective models. In these tests, we
computed all the LR models, one model per SNP (all models containing the
clinical variables), approximated the log-likelihood for each, and ordered the
SNPs in decreasing order of their log-likelihood. This order is our procedure’s
estimate of the order of relevance of the different SNPs to the condition. We
then used the following methodology to evaluate the “quality” of this ordering:

– We applied the Matlab implementation of LR to re-compute the LR model
on the same data, using the glmfit function. The resulting LR models (one
per SNP) could be different than those produced by our iterative procedure;

– Next, we ran a five-fold test on the data using Matlab’s glmval to compute
the predicted condition values, and computed the accuracy and recall for each
model;

– Finally, we plotted the accuracy and recall values against the order of columns
from our iterative procedure.

If the procedure works well, we expect a decreasing order of accuracy and recall,
since the first models in the order are supposed to correspond to the most relevant
SNPs, and hence to the highest accuracy and recall values.

We compared the column ordering from our iterative procedure to the order-
ing generated by the p-values of the semi-parallel algorithm of Sikorska et al. [18].
(We used the R implementation provided by the iDASH organizers for that pur-
pose). We also tested the column ordering using the accuracy and recall results
as produced by the Matlab LR models (using glmfit and glmval), plotting
them against the column ordering of the semi-parallel algorithm.

We stress that for both orderings, we plot the exact same accuracy and
recall numbers, i.e. the ones corresponding to the Matlab LR models. The only
difference is the order in which we plot these numbers.

Evaluating the Model Parameters. Since our procedure yields not only
the log-likelihood (a.k.a. p-value) for each model but also the model parame-
ters themselves, we ran a few tests to examine how well these models perform.
Namely, we compared the accuracy and recall of our models with those of the
Matlab LR models on the same data. Again, we plotted all the accuracy and
recall results in the order of columns of our iterative procedure.

Different Approximations of the Sigmoid Function. We tested our itera-
tive procedure in two settings, one using nine iterations with the degree-3 approx-
imation of the sigmoid, and the other using seven iterations with the degree-7
approximation. While there were no significant differences in the order of SNPs
produced by the two variants, the model parameters produced by the degree-7
approximation were often improved than those produced by the degree-3 approx-
imation. We therefore ran most of our tests using only the seven-step degree-7
approximation.

600 F. Bergamaschi et al.

3.2 Accuracy and Recall Results

Here, we summarize the test results. All of these tests were run with our iterative
procedure using the degree-7 approximation of the sigmoid function and τ = 7
iterations. All accuracy and recall results below were obtained using five-fold
testing (described in Sect. 2.2). One point that needs care when running a five-
fold test, is ensuring that the test data has similar characteristics to the training
data: Some datasets are collected from multiple sources, hence the first records
may have very different characteristics than the last ones. (In particular the data
provided for the iDASH competition had that problem). Randomizing the order
of the records in the dataset before running the test fixes this.

Comparing the Column Ordering, Iterative vs. Semi-parallel. As we
explained above, we run our iterative procedure and the semi-parallel algorithm
from [18] side by side on the same data, computing the p-values from each
and ordering the SNPs according to these p-values. We then used the Matlab
implementation of LR to compute the accuracy and recall values of the model
corresponding to each SNP (with the same clinical variable), and plotted these
accuracy and recall values in the two orders.

The results for the iDASH dataset are depicted in Fig. 2. For that dataset, the
two orders more or less coincide for the most relevant 1500 columns or so (out of
10643). For the next 1500 columns, the orders are no longer the same. Moreover,
while the accuracy results are very similar, the iterative ordering yields better
recall values than the semi-parallel ordering. The last 8000 columns no longer
contain much information on the condition variable, hence the ordering of these
columns is essentially random. We also ran the same test for the credit-card fraud
dataset, which contains only 30 columns. Here while the two orders identify the
same top nine, middle seven, and bottom fourteen columns, the ordering within
each of the first two groups was somewhat more accurate for the semi-parallel
algorithm than for the iterative method.

Comparing the Iterative vs. Matlab Models. Next, we tried to evaluate
the quality of the models generated by the iterative method to the standard LR
models of Matlab. Since the iterative method with so few steps is only a crude
approximation, we expected the Matlab model to perform better, but wanted to
check by how much. We therefore computed for each column the accuracy and
recall values of both models (iterative vs. Matlab), and plotted them against
the p-value ordering from our procedure. (See the full version for a plot of the
results).

To our surprise, the crude approximated model computed by the iterative
method performed at least as well (and sometimes better) than the LR model
that Matlab computed for the same data. We can see that the iterative model
has some bias for outputting y = 1, resulting in better recall and somewhat
worse accuracy values. For example, notice that around the 1000’th SNP the
iterative model has recall value of 1, while the Matlab model’s recall values are
capped around 0.9 (with essentially the same accuracy). We ran the same test

Homomorphic Training of 30,000 Logistic Regression Models 601

also on the Titanic dataset, and again the iterative models did about as well
(and sometimes better) than the Matlab models.

The Edinburgh Dataset. We also ran our iterative procedure on the Edin-
burgh datasets computing the accuracy/recall for the Matlab model for each
column and plotting these values against the p-value ordering of the columns as
produced by the iterative procedure.

3.3 Conclusions and Some Comments

Summarizing the tests above, the iterative procedure that we used produces
models which are competitive to what we get from Matlab, and that the rel-
evance order that we get from our p-values is just as reasonable as the one
obtained by the semi-parallel algorithm. While the semi-parallel algorithm is
faster (especially when there are many covariates), for a small number of covari-
ates the iterative procedure has reasonable performance. A reasonable conclusion
to draw is that one should still run the semi-parallel algorithm in the context
of GWAS, but use the iterative model if it is desired to also get the actual LR
models (in addition to ordering the columns by relevance).

In this context, the semi-parallel algorithm assumes that the model weights
for the covariates are more or less the same when you devise a model for just
the covariates as when you devise a model for the covariates and a single SNP.
For the iDASH dataset, this was true for most SNPs (since most SNPs were
not correlated with the condition at all), but our tests showed that it seems to
not be true for the most relevant SNPs. This observation implies that while the
semi-parallel algorithm is a good screening tool to filter out the irrelevant SNPs
(for which the assumption on the covariates should hold), it probably should not
be used to compute the model parameters for the more relevant SNPs.

Finally, during our work we encountered two minor bugs/inconsistencies in
the literature, notified the relevant authors, and document them in Appendix A.

4 Homomorphic Evaluation of the LR Procedure

To evaluate the procedure from Sect. 3 on encrypted data, we used the CKKS
approximate-number HE scheme of Cheon et al. [7], which we implemented in
the HElib library [10]. The underlying plaintext space of this scheme are complex
numbers (with limited precision), and the scheme can pack many such complex
numbers in a single ciphertext. In Sect. 4.3 below, we briefly describe some details
of our HElib-based implementation, see the original work [7] for details about
the scheme itself. The API provided by our implementation is as follows:

Parameters. Security parameter λ, plus two functionality parameters: The
packing parameter � determines how many complex numbers can be encoded
in a single ciphertext, and the accuracy parameter r determines the supported
precision. Operations of the scheme are accurate up to additive noise of magni-
tude bounded by 2−r. We refer to entries in the encrypted vectors as plaintext
slots.

602 F. Bergamaschi et al.

Noisy Encoding. The native objects manipulated in the CKKS scheme belong
to an algebraic ring (specifically algebraic integers in cyclotomic number fields).
The scheme provides routines to encode and decode plaintext complex vector
v ∈ C

� into and out of that ring. However the encoding is noisy, which introduces
additive errors of magnitude up to 2−r in each entry.

Encryption, Decryption, and Homomorphic Operations. Once encoded
in the “native ring,” data can be encrypted and decrypted using the public and
secret keys, respectively.

– The scheme supports addition and multiplication operations, both plaintext-
to-ciphertext and ciphertext-to-ciphertext, including element-wise addi-
tion/multiplication on the underlying complex vectors. Providing wt = ut+vt

for every entry t for addition, and similarly wt = ut · vt for multiplication.
– There are procedures (which are essentially free) for multiplying and dividing

ciphertexts by real numbers, namely setting vt = ut · x or vt = ut/x for all t.
– Included is the support for “homomorphic automorphisms”. Our application

uses automorphisms for computing complex conjugates. Namely, given an
encoded (or encrypted) vector u, the conjugate operation outputs a similarly
encoded/encrypted vector v such that vt = ūt for every entry t. Used to
homomorphically extract the real and imaginary parts, via im(x) = (x− x̄)/2i
and re(x) = (x + x̄)/2 (with i denoting the imaginary square root of −1).

All the operations above (including encoding and encryption) accrue additive
errors. Namely, an operation can return a vector v′ that differs from the intended
result v, with the guarantee that for every entry t we have |vt − v′

t| ≤ 2−r.

4.1 The Homomorphic LR Procedure

The input to the LR procedure consists of n records, each containing k covariates
(i.e., clinical variables such as age or gender), N genomic markers (or SNPs),
and a single binary condition variable (sick or healthy). Our solution is tailored
for the case where k is small (up to five), N is large (many thousands) and the
number of records is moderate (hundreds to a few thousands).

Our goal is to compute N (approximate) LR models, one per SNP, where the
t’th model includes parameters for all the k clinical variables and the (single)
t’th SNP. As described in Sect. 3, our approach follows the approach by Kim
et al. [14]. Namely, we run an iterative method using Nesterov’s algorithm and
a low-degree approximation of the sigmoid function implemented on top of the
CKKS approximate-number homomorphic encryption scheme [7].

The main difference is that we use the inherent SIMD properties of CKKS
to compute all the N models at once: We run the LR computation in a bitslice
mode, where we pack the data into a number of N -vectors with the t’th entry
in each vector corresponds to the t’th model. Each input record has k + 2 input
ciphertexts: One for the condition variable (with all the slots holding the same

Homomorphic Training of 30,000 Logistic Regression Models 603

Fig. 1. The homomorphic logistic regression procedure

condition bit), one for each of the covariates (with all the slots holding the same
covariate value), and one more ciphertext for all the SNPs (with the different
SNPs in the different slots).

We denote by C the n × (k + 2) matrix of input ciphertexts, where each
row i corresponds to an input record and each column j corresponds to a model
parameter.4 Given the input matrix C, we evaluate homomorphically the iter-
ative Nesterov-based procedure described in Sect. 3 for as many steps as our
parameters allow. Our main solution uses seven iterations, each employing a
degree-seven approximation of the sigmoid function. The homomorphic proce-
dure is described on a high-level in Fig. 1 with details discussed below.

Fitting the Computation in RAM. Note that as described in Fig. 1, each
iteration of the main loop requires two passes over the input matrix C, one
for computing C × v in Line 3 and another to compute y × C in Line 5. If C
does not fully fit in memory, then each iteration would require swapping it
twice in and out of main memory. Instead, partitioning C into bands that fit
in RAM requires a single pass over it in each iteration. Let I1, I2, . . . , Ib be a
partition of the row indexes [n] and let CI1 , . . . , Cib be the corresponding parti-
tion of the rows of C (and similarly xI1 , . . . ,xib be the partition of the entries
of x, and the same for y). We replace lines 3–5 by the following computation:

4 Another “hidden” dimension are the slots t = 1, . . . , N in each ciphertext, but since
our computation is completely SIMD then we can ignore that dimension.

604 F. Bergamaschi et al.

[...]
2. Repeat for τ steps: // run the iterative process
2a. g := 0
2. For h = 1 to b // go over the bands of C
3′. x

Ih
:= CIh × vT // xIh is part of x

4′. y
Ih

:= SIG7(x
Ih

) // approximate the sigmoid on each entry of x
5′. g := g − yT

Ih
× CIh // the contribution of CIh to the gradient

6. [...] // continue with the update of v,w as before

Computing the Log Likelihood. As we explained in Sect. 2.2, after computing
the model parameters w we need to also evaluate this model by computing its
p-value, i.e, the loss function from Eq. (1). This computation is very similar to
the computation of the gradient, but here we use the approximation of the log-
sigmoid LOGSIG4 instead of the SIG7 approximation of the sigmoid itself.
Namely we first compute x := C ×w, then y := LOGSIG4(x), and finally sum
up (or average) the entries in the vector y.

4.2 Fewer Multiplications via Complex Packing

We implemented a second variant of our solution, which is faster and uses half
the number of ciphertexts, but adds more noise per iteration. This was done by
packing the data more tightly, utilizing both the real part and the imaginary part
of each plaintext slot, thus encrypting two input records in each ciphertext (one
in the real part of all the slots and the other in the imaginary parts). Specifically,
let z2i−1,j , z2i,j be the two real values that were encrypted in the two ciphertexts
C2i−1,j , C2i,j in the matrix C from above. In the new variant we instead use a
single ciphertext C ′

i,j , encrypting the complex value z′
i,j = z2i−1,j + i · z2i,j (with

i the imaginary square root of −1). Let C ′ = [C ′
i,j] be the resulting ciphertext

matrix, and N ′ = �N/2� be the number of rows in the matrix C ′.
During the computation we maintain the evolving state vectors v,w as real

vectors (i.e., their imaginary part is zero). This sometimes requires spliting the
encrypted complex numbers into their real and imaginary parts (using the con-
jugate operation mentioned above). For example, we initialize the evolving state
by computing the average of the (complex) rows of C ′. Then we split the result
into its real and complex parts and average the two.

Similarly, we sometimes also need to assemble two real values into a complex
one, just by computing zc = zr + i ·zi homomorphically. These split and assemble
operations cause this variant to accrue more noise than before. However, it uses
half as many input ciphertexts and roughly half as many operations per iteration
of the Nesterov algorithm.

Computing the Gradient. The most interesting aspect of this complex-packed
procedure is the computation of the gradient in Steps 3–5 from Fig. 1. The
multiplication in Step 3 is quite straightforward: since v encrypts a real vector,

Homomorphic Training of 30,000 Logistic Regression Models 605

we can compute x′ := C ′×vT just as before and the multiplication by v operates
separately on the real and imaginary parts of C ′.

To apply the sigmoid function, requires spliting the resulting x′ into its
real and imaginary components and compute the sigmoid approximation on
each of them separately. Namely, we set xr := re(x) and xi := im(x), then
yr := SIG7(xr) and yi := SIG7(xi). To save on noise, we fold into the sigmoid
computation some of the multiply-by-constant operations from splitting x′.

More interesting is how to compute the product y × C ′ from Step 5 with
our tightly packed version of the ciphertext matrix. Here we use the happy
coincidence that for complex numbers we have (a + ib)(a′ − ib′) = aa′ + bb′ +
i · something, giving us the inner product 〈(a, b), (a′, b′)〉 in the real part. We
therefore pack y′ := yr − i · yi, compute g′ = −y × C ′, and the real part of g′

turns out to be exactly the gradient vector that we need. To see this, recall that
for all i, j we have y′

j = y2j−1 − i · y2j and C ′
i,j = z2j−1 + i · z2j , and therefore

g′
j =

N′∑
i=1

y′
i · C′

i,j =

N/2∑
i=1

(
y2i−1 − i · y2i

) · (z2i−1,j + i · z2i,j
)

=

N/2∑
i=1

(
y2i−1 · z2i−1,j + y2i · z2i,j + i · something

)
=

(N∑
i=1

yi · zi,j
)

+ i · something′.

We complete the gradient computation just by extracting the real part, g :=
re(g′). This new gradient calculation performs half as many multiplications in
the inner-product steps (3 and 5), the same number of operations in the sigmoid
step 4, and a few more operations to split and recombine complex vectors from
real and imaginary parts. Since the inner product operations are by far the most
expensive parts of each Nesterov computation, this saves nearly half of the overall
number of multiplications. However, in our tests it only saved about 20% of the
running time. (We think that this discrepancy is partially because we worked
harder on optimized the standard procedure than the complex packed one).

4.3 Implementing CKKS in HElib

The CKKS scheme from [7] is a Regev-type cryptosystem, with a decryption
invariant of the form [〈sk, ct〉]q = p̃t, where sk, ct are the secret-key and ciphertext
vectors, respectively, [·]q denotes reduction modulo q into the interval [−q/2, q/2],
and p̃t is an element that encodes the plaintext and includes also some noise.

The CKKS scheme is similar in many ways to the BGV scheme from [4]:
both schemes use an element p̃t of low norm, |p̃t|
 q, and the homomorphic
operations are implemented almost exactly the same in both. The difference
between these schemes lies in the way they interpret the element p̃t, i.e., how it
is decoded into plaintext pt and noise e: We tend to think in the BGV of the
low-order bits of p̃t as pt and the high-order bits as e, and in CKKS it is the
other way around. Specifically, the BGV decodes p̃t = pt + p · e, where p is the
plaintext space modulus and |pt| < p, whereas CKKS decodes p̃t = e + Δ · pt
where Δ is some scaling factor and (hopefully) |e| < Δ.

606 F. Bergamaschi et al.

This difference in interpretation of p̃t implies very different plaintext algebras
for the two schemes: While BGV deals with integral plaintext elements modulo p,
in CKKS the plaintext elements are complex numbers with limited precision.
Some other (rather small) differences between the homomorphic operations in
BGV and CKKS are related to the way the scaling factor Δ is handled:

– The plaintext modulus p in BGV typically does not change throughout the
computation, but the scaling factor Δ in CKKS does vary: Specifically, Δ is
squared on multiplication and is scaled via modulus switching.

– In both CKKS and BGV, ciphertexts can only be added when they are defined
relative to the same modulus q. However, it is also important for CKKS
addition that they have the same scaling factor Δ.

Our CKKS implementation in HElib relies on the same chassis as the BGV
cryptosystem that supports the required homomorphic operations and handles
any cyclotomic field.5 Differently from the way it is described in [7], the HElib
implementation does not rely on the application to use explicit scaling, instead
the library can automatically scale all the ciphertexts as needed. Each ciphertext
in our implementation is tagged with both a noise estimate and the scaling
factor Δ and the library uses these tags to decide how and when to scale these
ciphertexts using modulus-switching. These scaling decisions balance the need
to scale the ciphertexts down before multiplication to keep the noise small with
the need to keep the scaling factor Δ sufficiently larger than the noise element e.

The cryptosystem is initialized with an accuracy parameter r that from the
application perspective roughly means the additive noise terms in the various
operations is bounded by 2−r in magnitude. The library tries to ensure that
operations with added noise term η will only be applied to ciphertexts with scal-
ing factors Δ ≥ η · 2r. Note, that this logic only “does the right thing” when
the complex values throughout the computation are close to one in magnitude.
For smaller values, the requested accuracy bound will typically not be enough,
while for larger values the implementation will spend too much resources trying
to keep the precision way too high. The logic works quite well for the LR proce-
dure (Sect. 3) where indeed all the encrypted quantities are kept at size Θ(1).

4.4 Performance of the Homomorphic Procedure

We tested the running time and memory consumption in a few different settings,
depending on the number of available threads, and the number of bands in the
matrix C. (As we explained in Sect. 4.1, using more bands is useful when the
machine has limited RAM and cannot fit all the encrypted input ciphertexts in
memory at once.) We also tested the complex packing optimization from Sect. 4.2
vs. the “standard” way of packing only real numbers in the slots.

These tests were run on a machine with Intel E5-2640 CPU running at
2.5 GHz, with 2 × 12 cores, 64 GB memory (split 32 GB for each chip in
a NUMA configuration), and 15 MB cache. The software configurations (on
5 Our logistic regression procedure uses a power of two cyclotomic field for efficiency.

Homomorphic Training of 30,000 Logistic Regression Models 607

Ubuntu 16.04.5) included HElib commit dbaa108b66c5 from Sep 2018, NTL
version 11.3.2, GMP version 6.1.2, and Armadillo version 9.200.7. All compiled
with gcc 8.1.0 including our LR code.

Parameters. The parameters were chosen so as to get at least 128 security level
while having enough levels to complete seven iterations (followed by computing
the log likelihood of the resulting model). Specifically, the largest modulus in
the chain had |q| = 900 bits, and the scheme was instantiated over the m’th
cyclotomic field with m = 217 = 131072 (so the dimension of the relevant lattice
was φ(m) = 65536). This setting gave us estimated security level of 142 bits.
These parameters give us φ(m)/2 = 32768 slots in which to pack data, so we
could compute up to 32768 LR models in parallel.

The results that we describe below were measured on the iDASH 2018
dataset, where each model has three clinical variables and a single SNP. This
dataset had only 10643 SNPs, so we only packed that many numbers in the slots,
but the performance numbers are not affected by the number of “empty slots,”
we would have identical results even if all 32767 slots were filled.

On the other hand, the number of records in the training set does influence
the running time (as well as the memory consumption). Here we used the fact
that small LR models can be computed accurately by sub-sampling the data.
The common “one in ten” rule of thumb states that a model with k features
requires at least 10k records with 0 and 10k records with 1. Since in these tests
we had four features in each model (three clinical variables and one SNP), and
since we sub-sampled the data to get 50% 0’s and 50% 1’s, then we needed at
least 80 total record, and we run all our tests on 100 records in the training test.

Without the complex-packing optimization, each iteration of the Nesterov
procedure took four levels in the modulus chain. This is a little surprising, as
each iteration includes a degree-7 polynomial sandwiched between two vector-
matrix multiplications so we expect it to take five levels rather than four. The
reason is that we used 44 bits “wide” levels, and the noise management logic
of HElib performed two consecutive operations at the same level. This indicates
some waste in the HElib noise management. With complex packing, we could
only perform six iterations with the same parameters as each iteration of the
Nesterov procedure used an average six levels.

Results. The results are described in Tables 1 and 2. The optimization of using
complex packing cuts the input-reading time in half (as there are half as many
ciphertexts), but only reduces the running time by about 20% (for the same
number of iterations). There is approximately a linear speedup when the number
of threads is increased from one to twelve, but not more due to cache contention
on the testing server architecture. The memory requirements grow slowly with
the number of threads, twelve threads consumed 1.5× to 2× more memory than
a single threads.

608 F. Bergamaschi et al.

Table 1. CPU time and RAM consumption of the “standard packing” method with
seven iterations and a single band, vs. number of threads

Parallelization vs. run-time, seven iterations

threads Read input time Training time RAM consumption

1 435 s 8847 s 24 GB

2 220 s 4190 s 26 GB

6 78 s 1673 s 28 GB

12 44 s 1202 s 30 GB

24 44 s 1128 s 33 GB

Table 2. CPU time and RAM consumption with six iterations and a single band, both
complex and standard packing, vs. number of threads

Standard vs. complex packing, six iterations

Packing # threads Read input time Training time RAM consumption

Standard 1 464 s 7620 s 24 GB

2 223 s 3677 s 26 GB

6 79 s 1449 s 28 GB

12 44 s 1128 s 30 GB

24 40 s 1016 s 33 GB

Complex 1 223 s 5960 s 13 GB

2 111 s 2998 s 14 GB

6 42 s 1242 s 16 GB

12 25 s 859 s 18 GB

24 23 s 818 s 24 GB

5 Conclusions

In this work, we demonstrated that the CKKS cryptosystem [7] can be used to
implement homomorphic training of a very large number of logistic regression
models simultaneously in a reasonable amount of time.

For that purpose, we adopted the iterative method used by Kim et al. [14]
based on Nesterov’s accelerated gradient descent. Our implementation can train
simultaneously over 30,000 small models, each with four variables, in about
20 min. We estimate that the same number of models with 8–10 variables can
be trained in about an hour. We also provided extensive evaluation of this iter-
ative procedure, testing it on a number of different datasets and comparing its
predictive power with a few alternatives. Our tests show that this method is
competitive.

Homomorphic Training of 30,000 Logistic Regression Models 609

A Corrections in the Literature

During our work we encountered two minor bugs/inconsistencies in the litera-
ture. We have notified the relevant authors and document these issues here:

– The Matlab code used in the iDASH 2017 competition had a bug in the
way it computed the recall values, computing it as false positive+true positive

false negative+true positive

instead of true positive
false negative+true positive .

– Some of the mean-squared-error (MSE) results reported in [14] seem incon-
sistent with their accuracy values: For the Edinburgh dataset, they report
accuracy value of 86%, but MSE of only 0.00075. We note that 86% accuracy
implies MSE of at least 0.14 · (0.5)2 = 0.035 (likely a typo).

B The Datasets that We Used

Recall that we tested the iterative procedure against a few different datasets, to
ensure that it is not “tailored” too much to the characteristics of just one type
of data. We had some difficulties finding public datasets that we could use for
this evaluation, eventually we converged on the following four:

– The iDASH 2018 dataset, as provided by the organizers of the competition, is
meant to correlate various genetic markers with the risk of developing cancer.
It consists of 245 records, each with a binary condition (cancer or not), three
covariates (age, weight, and height), and 10643 markers (SNPs). The last 120
records were missing the covariates, so we ran our procedure by replacing each
missing covariate by the average of the same covariate in the other records.

– A credit card dataset [2] attempts to correlate credit-card fraud with observed
characteristics of the transaction. This dataset has 984 records each with
thirty columns.

– The Edinburgh dataset [13] correlates the condition of Myocardial Infarction
(heart attack) in patients who presented to the emergency room in the Edin-
burgh Royal Infirmary in Scotland with various symptoms and test results
(e.g., ST elevation, New Q waves, Hypoperfusion, depression, vomiting, etc.).
The same dataset was also used to evaluate the procedure of Kim et al. [14].
The data includes 1253 records, each with nine features.

– The Titanic dataset [3], consisting of 892 records with sixteen features, cor-
relating passenger’s survival in that disaster with various characteristics such
as gender, age, fare, etc.

The first dataset comes with a distinction between SNPs and clinical vari-
ables, but the other three have just the condition variable and all the rest. We
had to decide which of the features (if any) to use for covariates. We note that
whatever feature we designate as covariate will be present in all the models, so
choosing a feature with very high signal will make the predictive power of all
the models very similar. We therefore typically opted to choose for a covariate
the features which is least correlated with the condition. We also ran the same
test with no covariates, and the results were very similar.

610 F. Bergamaschi et al.

C Model Evaluation Figures

Fig. 2. Accuracy/recall of the Matlab LR models for the iDASH 2018 dataset ordered
according to the p-value order of the iterative procedure (top) or the semi-parallel
algorithm (bottom).

References

1. Bonte, C., Vercauteren, F.: Privacy-preserving logistic regression training.
BMC Medi. Genom. 11(Suppl 4), 86 (2018). https://doi.org/10.1186/s12920-018-
0398-y

2. Bontempi, G., Pozzolo, A.D., Caelen, O., Johnson, R.A.: Credit card fraud detec-
tion. Technical report, Université Libre de Bruxelles (2015)

3. Bootwala, A.: Titanic for Binary logistic regression. https://www.kaggle.com/
azeembootwala/titanic/home

https://doi.org/10.1186/s12920-018-0398-y
https://doi.org/10.1186/s12920-018-0398-y
https://www.kaggle.com/azeembootwala/titanic/home
https://www.kaggle.com/azeembootwala/titanic/home

Homomorphic Training of 30,000 Logistic Regression Models 611

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: Innovations in Theoretical Computer Science (ITCS
2012) (2012). http://eprint.iacr.org/2011/277

5. Bubeck, S.: ORF523: Nesterov’s accelerated gradient descent. https://blogs.
princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent. Accessed Jan-
uary 2019, 2013

6. Chen, H., et al.: Logistic regression over encrypted data from fully homomorphic
encryption. BMC Med. Genom. 11(Suppl 4), 81 (2018). https://doi.org/10.1186/
s12920-018-0397-z

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

8. Crawford, J.L.H., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work with
FHE: the case of logistic regression. In: Brenner, M., Rohloff, K. (eds.) Proceed-
ings of the 6th Workshop on Encrypted Computing and Applied Homomorphic
Cryptography, WAHC@CCS 2018, pp. 1–12. ACM (2018). https://eprint.iacr.org/
2018/202

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st ACM Symposium on Theory of Computing - STOC 2009, pp. 169–178.
ACM (2009)

10. Halevi, S., Shoup, V.: HElib - an implementation of homomorphic encryption.
https://github.com/shaih/HElib/, Accessed January 2019

11. Han, K., Hong, S., Cheon, J.H., Park, D.: Efficient logistic regression on large
encrypted data. Cryptology ePrint Archive, Report 2018/662 (2018). https://
eprint.iacr.org/2018/662

12. Integrating Data for Analysis, Anonymization and SHaring (iDASH). https://
idash.ucsd.edu/

13. Kennedy, R.L., Fraser, H.S., McStay, L.N., Harrison, R.F.: Early diagno-
sis of acute myocardial infarction using clinical and electrocardiographic data
at presentation: derivation and evaluation of logistic regression models. Eur.
Heart J. 17(8), 1181–1191 (1996). https://github.com/kimandrik/IDASH2017/
tree/master/IDASH2017/data/edin.txt

14. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC Med. Genom. 11(4),
83 (2018)

15. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based on
homomorphic encryption: design and evaluation. JMIR Med. Inf. 6(2), e19 (2018).
https://doi.org/10.2196/medinform.8805. https://eprint.iacr.org/2018/074

16. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course.
Applied Optimization, vol. 87. Springer, New York (2004). https://doi.org/10.
1007/978-1-4419-8853-9

17. Pozzolo, A.D., Caelen, O., Johnson, R.A., Bontempi, G.: Calibrating probability
with undersampling for unbalanced classification. In: 2015 IEEE Symposium Series
on Computational Intelligence, pp. 159–166, December 2015

18. Sikorska, K., Lesaffre, E., Groenen, P.J., Eilers, P.H.: GWAS on your notebook:
fast semi-parallel linear and logistic regression for genome-wide association studies.
BMC Bioinf. 14, 166 (2013)

19. Logistic regression. https://en.wikipedia.org/wiki/Logistic regression#Discussion.
Accessed January 2017

http://eprint.iacr.org/2011/277
https://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent
https://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent
https://doi.org/10.1186/s12920-018-0397-z
https://doi.org/10.1186/s12920-018-0397-z
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://eprint.iacr.org/2018/202
https://eprint.iacr.org/2018/202
https://github.com/shaih/HElib/
https://eprint.iacr.org/2018/662
https://eprint.iacr.org/2018/662
https://idash.ucsd.edu/
https://idash.ucsd.edu/
https://github.com/kimandrik/IDASH2017/tree/master/IDASH2017/data/edin.txt
https://github.com/kimandrik/IDASH2017/tree/master/IDASH2017/data/edin.txt
https://doi.org/10.2196/medinform.8805
https://eprint.iacr.org/2018/074
https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1007/978-1-4419-8853-9
https://en.wikipedia.org/wiki/Logistic_regression#Discussion

Author Index

Abdolmaleki, Behzad 385
Aly, Abdelrahaman 509
Ateniese, Giuseppe 217, 465
Au, Man Ho 110, 486

Baek, Joonsang 406
Baghery, Karim 385
Banik, Subhadeep 43
Ben-Efraim, Aner 530
Bergamaschi, Flavio 592
Boldyreva, Alexandra 571
Bossert, Jannis 43
Bradley, Tatiana 442
Brinkmann, Marcus 24

Camenisch, Jan 442
Cardenas, Alvaro A. 175
Castellanos, John Henry 196
Chang, Sang-Yoon 241
Chen, Chang-Wu 241
Cheng, Xiaoyang 155
Coretti, Sandro 3

Ding, Jintai 323
Dufour-Sans, Edouard 426

Eldefrawy, Karim 259
Esgin, Muhammed F. 67

Fan, Xiong 363
Faonio, Antonio 3
Fouque, Pierre-Alain 344
Francati, Danilo 465

Gao, Debin 155
Gao, Xinwei 323
Gardham, Daniel 89
Gasti, Paolo 217
Gehani, Ashish 259
Gérard, Benoît 344
Giraldo, Jairo 175
Gu, Dawu 486
Guo, Fuchun 406

Halevi, Shai 592
Halevi, Tzipora T. 592
Han, Shuai 486
Hitaj, Briland 217
Hunt, Hamish 592

Jana, Amit 43
Jarecki, Stanislaw 442
Jia, Chunfu 155
Jin, Zhengzhong 302

Kannwischer, Matthias J. 281
Kim, Jongkil 406

Lehmann, Anja 442
Li, Nan 406
Lin, Yan 155
Lipmaa, Helger 385
List, Eik 43, 131
Liu, Dongxi 67
Liu, Feng-Hao 363
Liu, Jia 550
Liu, Joseph K. 67
Liu, Joseph 486
Lu, Xingye 110
Lucks, Stefan 43

Magri, Bernardo 465
Manulis, Mark 89, 550
Matton, Alexandre 259
Meier, Willi 43
Migliore, Vincent 344
Moch, Alexander 131
Müller, Jens 24

Neven, Gregory 442
Nielsen, Michael 530

Omri, Eran 530

Park, Younghee 241
Perez-Cruz, Fernando 217
Poddebniak, Damian 24
Pointcheval, David 426

Rahman, Mostafizar 43
Rijneveld, Joost 281

Saha, Dhiman 43
Sakzad, Amin 67
Sasaki, Yu 43
Schinzel, Sebastian 24
Schwabe, Peter 281
Schwenk, Jörg 24
Siim, Janno 385
Smart, Nigel P. 509
Steinfeld, Ron 67
Sun, Shi-Feng 486
Susilo, Willy 406

Takagi, Tsuyoshi 323
Tang, Tianxin 571
Tibouchi, Mehdi 344
Tippenhauer, Nils Ole 175

Urbina, David 175

Venturi, Daniele 3, 465

Wang, Yuntao 323
Warinschi, Bogdan 571
Wuthier, Simeon 241

Xu, Jiayu 442

Yu, Yu 486

Zając, Michał 385
Zhang, Zhenfei 110
Zhao, Yunlei 302
Zhou, Jianying 196

614 Author Index

	Preface
	Organization
	Contents
	Integrity and Cryptanalysis
	Rate-Optimizing Compilers for Continuously Non-malleable Codes
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Non-malleable Codes
	2.3 Authenticated Encryption
	2.4 Error-Correcting Sharing Schemes

	3 Split-State Tampering
	3.1 Rate-One Compiler (Non-adaptive Tampering)
	3.2 Rate-1/2 Compiler (Adaptive Tampering)
	3.3 Rate-One Compiler (Adaptive Tampering)

	4 Bit-Wise Tampering
	4.1 Description of the Compiler
	4.2 Security Analysis

	5 Instantiating the Compilers
	5.1 Split-State Model
	5.2 Bit-Wise Independent Model

	6 Conclusions
	References

	Re: What's Up Johnny?
	1 Introduction
	2 Background
	2.1 OpenPGP
	2.2 S/MIME
	2.3 MIME Email
	2.4 HTML Email

	3 Related Work
	4 Attacker Model
	5 Decryption Oracles
	6 Signing Oracles
	7 Evaluation
	7.1 Decryption Oracles
	7.2 Signing Oracles

	8 Countermeasures
	8.1 Decryption Oracles
	8.2 Signing Oracles

	9 Conclusion
	A Screenshots of Decryption Oracles
	A.1 Plaintext Hidden in a Referenced Inline `Image'

	B HTML/CSS Email Support
	C Other Conditional Features
	References

	Cryptanalysis of ForkAES
	1 Introduction
	2 Preliminaries
	3 Attack on ForkAES-*-4-4 with Reflection Trails
	4 Impossible-Differential Attack with Reflection Trails
	5 Yoyo Key-Recovery Attack on ForkAES-*-3-3
	6 Rectangle Attack with Encryption Queries
	7 Impossible-Differential Attack with Encryption Queries
	A Previous Yoyo Game
	References

	Digital Signature and MAC
	Short Lattice-Based One-out-of-Many Proofs and Applications to Ring Signatures
	1 Introduction
	1.1 Technical Difficulties
	1.2 Our Contributions

	2 Preliminaries
	2.1 Module-SIS, Module-LWE Problems and Commitment Scheme
	2.2 Technical Definitions and General Lemmas
	2.3 -protocols

	3 New Technical Tools for Lattice-Based Proofs
	3.1 Proving a Value Binary in Rq
	3.2 Bounding the Extracted Witness Norm for Monomial Challenges

	4 -protocol for Commitment to a Sequence of Bits
	5 Lattice-Based One-out-of-Many Protocol
	6 Lattice-Based Ring Signature
	6.1 Parameter Setting

	References

	Hierarchical Attribute-Based Signatures: Short Keys and Optimal Signature Length
	1 Introduction
	2 HABS Model: Entities and Definitions
	2.1 Security Properties

	3 Our Short HABS Construction
	3.1 Underlying Hardness Assumptions
	3.2 Cryptographic Building Blocks
	3.3 Specification of Our HABS Scheme
	3.4 Security Analysis

	4 Efficiency Comparison
	5 Conclusion
	References

	Raptor: A Practical Lattice-Based (Linkable) Ring Signature
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Overview of Our Construction
	1.4 Organization

	2 Preliminary
	2.1 Notation
	2.2 Lattices and Hardness Assumptions
	2.3 Preimage Sampleable Functions and Falcon
	2.4 Syntax

	3 Our Generic Constructions
	3.1 Chameleon Hash Plus
	3.2 A New Framework for Ring Signatures
	3.3 A New Framework for Linkable Ring Signatures

	4 Instantiation
	4.1 Instantiation of CH+ from Standard Lattice
	4.2 Instantiation of CH+ from NTRU
	4.3 Full Description of Linkable Raptor

	5 Parameters and Implementation
	References

	Parallelizable MACs Based on the Sum of PRPs with Security Beyond the Birthday Bound
	1 Introduction
	2 Preliminaries
	2.1 H-Coefficient Technique
	2.2 Mirror Theory

	3 Constructions
	4 Security Analysis of HPxNP
	4.1 Bad Transcripts
	4.2 Ratio of Good Transcripts
	4.3 Using average

	5 Security Analysis of HPxHP
	5.1 Bad Transcripts
	5.2 Good Transcripts
	5.3 Using k-Wise Independent Hash Functions

	6 Conclusion
	References

	Software and Systems Security
	DynOpVm: VM-Based Software Obfuscation with Dynamic Opcode Mapping
	1 Introduction
	2 Background and Related Work
	2.1 VM-Based Program Protection
	2.2 Attacks on VM-Protected Programs
	2.3 Instruction-Set Randomization and Control-Flow Carrying Code

	3 Frequency Attacks on VM-Based Program Obfuscation
	3.1 Frequency Profile of Native Instructions
	3.2 Frequency Analysis as an Attack
	3.3 Threat Model and Assumptions

	4 Design and Implementation of DynOpVm
	4.1 Overview of DynOpVm
	4.2 Control-Flow-Aware Encoding of Basic Blocks
	4.3 Embedding a VM
	4.4 Supporting Partial Protection
	4.5 Implementation

	5 Evaluation
	5.1 Security Evaluation
	5.2 Performance Evaluation

	6 Limitations and Conclusion
	References

	Hide and Seek: An Architecture for Improving Attack-Visibility in Industrial Control Systems
	1 Introduction
	2 Background
	2.1 ICS Network Layers
	2.2 Previous Work

	3 An Architecture to Reveal Hidden Attacks
	3.1 Limitations of Security Monitors Located (Only) at the Supervisory Control Network
	3.2 Detectability of Attacks
	3.3 Attack Detection Architecture

	4 Implementation of Our Security Monitor
	4.1 Testbed Description
	4.2 Challenges for Parsing the FCN Layer
	4.3 Extracting the Semantics of FCN Data

	5 Experiments
	5.1 Sensor Attack (Water Level)
	5.2 Actuator Attack (Inlet Water Valve)
	5.3 PLC Attack (RC-Detection)
	5.4 Multi-loop Anomaly Detection (ML-PBAD)

	6 Conclusions
	References

	A Modular Hybrid Learning Approach for Black-Box Security Testing of CPS
	1 Introduction
	2 Background
	2.1 Hybrid Systems
	2.2 Definition of CPS as Hybrid Automaton

	3 Approach
	3.1 Learning Phase - HybLearner
	3.2 Evaluation Phase - HybTester
	3.3 A Security Metrics: Time-to-Critical-State (tq)

	4 Use Case: Model-Based Attack Detection
	5 Implementation
	5.1 Testbed: A Water Treatment Plant
	5.2 Toy Example: A Water Tank Filling Subsystem
	5.3 Infrastructure

	6 Evaluation
	6.1 Learning the Hybrid Model
	6.2 Simulating the System
	6.3 Security Metrics: Time-to-Critical-States (tq)
	6.4 Attack Scenarios
	6.5 HybTester as a Model-Based Attack Detection Mechanism

	7 Related Works
	8 Conclusion
	A Model-Based Detection Mechanism
	B Continuous-Time Models for Stage One of SWaT
	References

	PassGAN: A Deep Learning Approach for Password Guessing
	1 Introduction
	1.1 Our Approach
	1.2 Contributions
	1.3 Organization

	2 Background and Related Work
	2.1 Generative Adversarial Networks
	2.2 Password Guessing

	3 Experiment Setup
	3.1 Training and Testing
	3.2 Password Sampling Procedure for HashCat, JTR, Markov Model, PCFG and FLA

	4 Evaluation
	4.1 PassGAN's Output Space
	4.2 Evaluating the Passwords Generated by PassGAN
	4.3 Combining PassGAN with HashCat
	4.4 Comparing PassGAN with FLA
	4.5 A Closer Look at Non-matched Passwords

	5 Remarks
	6 Conclusion
	References

	Blockchain and Cryptocurrency
	Uncle-Block Attack: Blockchain Mining Threat Beyond Block Withholding for Rational and Uncooperative Miners
	1 Introduction
	2 Background in Blockchain Mining
	3 Related Work in Mining Security
	4 Threat Model: Uncooperative and Rational Attacker
	5 Mining Game
	5.1 Mining and Computational Power Model
	5.2 BWH Attack and FAW Attack Analyses

	6 Uncle-Block Attack
	6.1 Uncle-Block Model: and
	6.2 In Main Pool: Advance with New Block
	6.3 Uncle-Block Attack Reward Analyses

	7 Simulation Analyses
	7.1 Simulation Setup and Parameters
	7.2 UBA: Dynamic Control and -Capacity
	7.3 UBA's Impact Beyond the State of the Art

	8 Discussions for Potential Countermeasures
	8.1 Detection Based on Reward Behavior
	8.2 Block Obfuscation and Oblivious Share
	8.3 Payout and Reward Function Control
	8.4 Share Timestamping
	8.5 Mining Pool Unification

	9 Conclusion
	References

	Longitudinal Analysis of Misuse of Bitcoin
	1 Introduction
	1.1 Cryptocurrency Studies
	1.2 Contributions
	1.3 Summary of Findings
	1.4 Study Limitations
	1.5 Outline

	2 Bitcoin Preliminaries
	2.1 Identifying Bitcoin Addresses
	2.2 Mixing Transactions

	3 Bitcoin and Dark Web Data Sets
	3.1 Bitcoin's Blockchain
	3.2 Dark Web Data
	3.3 Bitcoin on the Dark Web

	4 Detecting CoinJoins
	4.1 Algorithm Details
	4.2 Analysis Results

	5 Bitcoin Neighborhood Analysis
	5.1 Across the Blockchain
	5.2 Addresses on the Dark Web

	6 Future Work
	References

	Post Quantum Cryptography
	Faster Multiplication in Z2m[x] on Cortex-M4 to Speed up NIST PQC Candidates
	1 Introduction
	2 Preliminaries
	2.1 Cryptosystems Targeted in This Paper
	2.2 ARM Cortex-M4

	3 Multiplication in Z2m[x]
	3.1 Toom/Karatsuba Strategies
	3.2 Small Schoolbook Multiplications

	4 Results and Discussion
	4.1 Multiplication Results
	4.2 Encapsulation and Decapsulation Results
	4.3 Profiling of Optimized Implementations

	A Schoolbook Multiplication Benchmarks
	References

	Generic and Practical Key Establishment from Lattice
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 The LWE and LWR Problems

	3 Key Consensus with Noise
	3.1 Efficiency Upper Bound of KC
	3.2 Construction and Analysis of OKCN

	4 Asymmetric Key Consensus with Noise
	4.1 Construction and Analysis of AKCN
	4.2 Discussions on KC vs. AKC

	5 LWR-Based Key Establishment
	5.1 Analysis of Correctness and Failure Rate
	5.2 Parameter Selection and Evaluation

	6 LWE-Based Key Establishment
	6.1 Noise Distributions and Correctness
	6.2 CCA-Secure AKCN-LWE, and Comparison with FrodoKEM

	References

	One Sample Ring-LWE with Rounding and Its Application to Key Exchange
	1 Introduction
	1.1 The Post-quantum World
	1.2 Quantum-Resistant RLWE+Rounding Key Exchange with One Sample
	1.3 Parameter Settings for ONE-Sample RLWE Case
	1.4 Contribution

	2 Ephemeral-Only RLWE+Rounding Key Exchange
	2.1 Preliminaries
	2.2 Core Functions
	2.3 Protocol Specification
	2.4 Passive Security

	3 Estimating Security of One RLWE Sample
	3.1 Prerequisites
	3.2 Algorithms for Solving RLWE
	3.3 Significance of Number of Samples in Practical Attack
	3.4 Our Simulator

	4 Implementation and Performance
	4.1 Experimental Results
	4.2 Communication Cost Comparison

	5 Conclusion
	References

	Masking Dilithium
	1 Introduction
	2 The Dilithium Signature Scheme
	3 Side-Channel Evaluation of Unmasked Dilithium
	4 Masking Dilithium
	4.1 Leakage Model
	4.2 Presentation of the Masked Key Generation and Signature
	4.3 Description of Secured Gadgets of Dilithium with Prime Modulus
	4.4 Optimization of Dilithium Masking for Power of Two Modulus

	5 Implementation Results
	5.1 Challenges of the Masked Implementation
	5.2 Evaluation of Execution Times
	5.3 Evaluation of Side-Channel Security

	6 Conclusion
	References

	Proxy Re-Encryption and Re-Signatures from Lattices
	1 Introduction
	1.1 Technique Highlights
	1.2 Related Works

	2 Preliminaries
	3 Proxy Re-Encryption: Syntax and Security Definitions
	3.1 Single-Hop PRE Syntax
	3.2 Single-Hop PRE Security Definitions

	4 Single-Hop Tag-Based CCA-Secure PRE Construction
	5 Proxy Re-Signature with Selectively Chosen Tag
	5.1 Syntax and Correctness Definition
	5.2 Our PRS Construction
	5.3 Parameter Setting

	6 Conclusion
	References

	Public Key and Commitment
	DL-Extractable UC-Commitment Schemes
	1 Introduction
	2 Preliminaries
	3 New Functionality Fmcomdl and Instantiation
	3.1 -Protocol eq
	3.2 New DL-Extractable UC-Commitment Scheme

	References

	A New Encoding Framework for Predicate Encryption with Non-linear Structures in Prime Order Groups
	1 Introduction
	1.1 Our Contribution
	1.2 Overview of Our Technique

	2 Related Work
	3 Preliminary
	3.1 Bilinear Maps
	3.2 Non-monotone Access Structure
	3.3 Computational Assumptions
	3.4 Predicate Encryption

	4 Our Encoding Framework
	4.1 Syntax
	4.2 Properties
	4.3 The Compiler

	5 Security Analysis
	6 Adaptively Secure NM-CP-ABE with Short Keys
	6.1 Duality

	A Appendix
	A.1 Syntax of Pair Encoding Framework

	References

	Unbounded Inner-Product Functional Encryption with Succinct Keys
	1 Introduction
	1.1 Motivation
	1.2 Our Results
	1.3 Concurrent Work
	1.4 Related Work: Private-Key Multi-input Inner-Product Functional Encryption for Unboundedly Many Inputs
	1.5 Paper Organization

	2 Notations
	2.1 Unbounded Vectors
	2.2 (Pseudo)Norm
	2.3 Pairing Group

	3 Definitions and Security Models
	3.1 Functional Encryption
	3.2 The Unbounded Inner-Product Functionality
	3.3 An Alternative Security Definition

	4 A Strict Identity-Based Unbounded IPFE
	4.1 Description of the Scheme
	4.2 Security Analysis

	5 A Permissive Identity-Based Unbounded IPFE
	5.1 Description of the Scheme
	5.2 New Assumption
	5.3 Security Analysis

	6 Open Problems
	References

	Password-Authenticated Public-Key Encryption
	1 Introduction
	2 Security Model for PAPKE
	2.1 Property-Based Security Definition

	3 Relation Between PAPKE and PAKE
	4 Efficient and UC-Secure PAPKE Constructions
	4.1 PAPKE-IC: Generic Construction from PKE and Ideal Cipher
	4.2 PAPKE-FO: Concrete Construction from DDH and ROM

	A Concrete PAPKE and PAKE Instantiation Example
	References

	Theory of Cryptographic Implementations
	Public Immunization Against Complete Subversion Without Random Oracles
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Techniques
	1.4 Comparison with Russell et al. RussellTYZ16,RussellTYZ16b
	1.5 Further Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Abstract Games

	3 Security Model
	3.1 Subversion-Secure Immunizers
	3.2 Discussion

	4 The Immunizer
	4.1 Ingredients: Seed-Dependent Randomness Condensers
	4.2 Immunizer Description
	4.3 Security Analysis

	5 Conclusions
	References

	Strong Leakage and Tamper-Resilient PKE from Refined Hash Proof System
	1 Introduction
	1.1 Related Works
	1.2 Motivations
	1.3 Contributions

	2 Preliminaries
	2.1 Definitions and Lemmas
	2.2 Hardness Assumptions
	2.3 Public-Key-Malleable HPS
	2.4 True-Simulation Extractability
	2.5 Public Key Encryption
	2.6 Security Definitions

	3 Construction of (, T)-sLTR-CCA Secure PKE
	4 Construction of (, T)-sLTR-CCA Secure PKE
	5 Instantiations
	5.1 PM-HPS from DDH Assumption
	5.2 PM-HPS from d-LIN Assumption

	6 Comparison with Related Works
	7 Conclusion
	References

	Privacy Preserving Techniques
	Benchmarking Privacy Preserving Scientific Operations
	1 Introduction
	2 Preliminaries
	3 Approximated Square Root
	4 Trigonometric Functions
	5 Exponentiation and Logarithms
	A Polynomial and Padé Approximations
	References

	Turbospeedz: Double Your Online SPDZ! Improving SPDZ Using Function Dependent Preprocessing
	1 Introduction
	1.1 Our Contribution and Techniques
	1.2 Related Works

	2 Review of the SPDZ Protocol and Overdrive
	3 Our New Protocol, Using SPDZ Offline as Black-Box
	3.1 Notation and Equations
	3.2 Function Dependent Offline Protocol
	3.3 New Online Protocol

	4 Improvement via Modification in Overdrive
	5 Correctness and Security
	References

	pRate: Anonymous Star Rating with Rating Secrecy
	1 Introduction
	2 Overview of the pRate Scheme
	3 Syntax and Security Properties of pRate
	4 Cryptographic Building Blocks and Assumptions
	5 Our pRate Scheme
	5.1 Specifications of pRate Algorithms and Protocols
	5.2 Further Remarks and Extensions
	5.3 Performance Analysis

	6 Security Analysis of pRate
	7 Other Related Work
	8 Conclusion
	References

	Masking Fuzzy-Searchable Public Databases
	1 Introduction
	2 Preliminaries
	3 Keyless Fuzzy Search (KlFS)
	4 Basic KlFS
	5 KlFS for Fuzzy Image Search
	6 Experimental Results and the Revised Scheme
	References

	Homomorphic Training of 30,000 Logistic Regression Models
	1 Introduction
	1.1 Our Work

	2 Background
	2.1 Logistic Regression
	2.2 Genome-Wide Association Study (GWAS)

	3 The Logistic Regression Iterative Procedure
	3.1 Experimental Evaluation
	3.2 Accuracy and Recall Results
	3.3 Conclusions and Some Comments

	4 Homomorphic Evaluation of the LR Procedure
	4.1 The Homomorphic LR Procedure
	4.2 Fewer Multiplications via Complex Packing
	4.3 Implementing CKKS in HElib
	4.4 Performance of the Homomorphic Procedure

	5 Conclusions
	A Corrections in the Literature
	B The Datasets that We Used
	C Model Evaluation Figures
	References

	Author Index

