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Abstract. In collaborative tasks, people rely both on verbal and non-
verbal cues simultaneously to communicate with each other. For human-
robot interaction to run smoothly and naturally, a robot should be
equipped with the ability to robustly disambiguate referring expres-
sions. In this work, we propose a model that can disambiguate multi-
modal fetching requests using modalities such as head movements, hand
gestures, and speech. We analysed the acquired data from mixed real-
ity experiments and formulated a hypothesis that modelling temporal
dependencies of events in these three modalities increases the model’s
predictive power. We evaluated our model on a Bayesian framework to
interpret referring expressions with and without exploiting the temporal
prior.
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1 Introduction

In most industrial applications, robots typically work in isolation from humans
in repetitive tasks with or without very little interaction with humans. There has
been however, the need for developing collaborative robots that can communicate
their intent to humans, but also understand human communicative behaviours
[21]. This means that we need to go beyond designing classical pre-scripted
robots for industrial settings, and more towards assistive robot co-workers with
interaction capabilities that empower human workers. For humans to establish
successful communication with robotic agents, robots need to use multisensory
approaches to perceive human multimodal data and interpret social cues that
communicate humans’ intent.

One of the challenges in understanding human intent is the multisensory
fusion problem [11,23]. The goal of multisensory fusion is to get data from differ-
ent sensors, combine it in some fashion and, ultimately, a come up with a model
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of the user’s intentions. The main problem is interpretation of each modality
in combination with each other. Our focus in this research is currently on the
following modalities: head movements, hand gestures and speech. The interac-
tion scenario we are interested in is a fetching task, where a human participant
explains which object he/she needs from the shared workspace and the robot
has to interpret the request from the multimodal sensor observations (Fig. 1).

Fig. 1. Interaction scenario. The human agent is requesting a robot to give them Lego
blocks. Any modality can be used in a natural way, no restriction to the interaction is
applied. The only tracked modalities are head movements, hand gestures and speech.
The participant wears a mixed reality headset to see which block to request and what
is the robot’s estimation of their command.

Recent studies focused on intent recognition by combining different features
from speech with gaze fixations [1], head movements [25], and gestures [6]. How-
ever, in non-guided natural human-robot interaction this approach has its own
limitations. Our previous human study [10] showed that participants often look
at each other more than at the target object or spend more time looking at the
next object in the sequence while still describing the previous one. This lead
us to look for more high level behaviour patterns that consist of events hap-
pening in all the modalities. Our hypothesis is that it is important to look at
when a certain event happened (e.g. head fixation, pointing gesture) given events
in other modalities and not for how long. This way we assume that individual
events in modalities can be combined in higher level behaviour patterns based
on temporal dependencies.
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In this paper we present our findings on the answers to the following ques-
tions:

– Q1: Do common temporal patterns emerge in participants’ behaviour during
the fetching request task?

– Q2: If we encode these patterns as temporal priors, will they be helpful in
inferring the intended object from multimodal referring expressions?

– Q3: Are temporal patterns common across most participants or are they
person-dependent?

We discuss what we learned from the analysis of a human study and how we
see the future development of efficient and natural human-robot interaction in
shared workspaces.

2 Related Work

Disambiguation of referring expressions is a well-researched topic in the human-
robot interaction community. While written text understanding can be per-
formed in batches, real-time interaction requires continuous reference resolution.

Many works focused exclusively on the language part of the request through
incremental reference resolution [4,7]. However incremental reference resolution
is sometimes not enough to completely disambiguate a verbal request. Additional
information can be inferred from other modalites, since studies show that people
convey considerable amount of information through non-verbal cues [21]. For
instance, through gaze [1,13], head movements [25], and gestures [6]. Our focus is
on combining three modalities - speech, head movements, and pointing gestures.

While originally relationships between modalities were encoded through a
heuristic approach [3], currently probabilistic graphical models [17,20] and deep
learning [24,27] are the most common ways to handle the multimodal repre-
sentation. We are interested in investigating multimodal behaviour patters and
modelling them explicitly in a probabilistic manner. Thus we implemented mul-
timodal fusion as a Bayesian filter, which already showed promising results for
reference resolution [26].

More specifically, Whitney et al. [26] developed a Bayesian filter to calculate
the belief of an object being the target given observed person’s gestures and
speech. In this approach, the longer a person is pointing at an object, the more
probable it is to be the target. Basing prediction on the longest fixation in
continuous modalities such as pointing and gaze [9] are a common way to model
them. However, as was shown in our previous study [10], when the complexity of
the task is increased, nosiness of these modalities increases accordingly to such
an extent that it becomes nearly impossible to make a prediction solely from the
longest fixation.

Behaviour studies [2] showed that gestures are temporally coordinated with
speech, when people are retelling a scene from their favourite movie. Based on
these finding, we hypothesise that by incorporating timing of gestures and head
fixations with relation to speech in our model, we can filter out unrelated to
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the request non-verbal behaviour. In our work, we expand Whitney’s framework
[26] by learning a temporal prior and adding it to the observations update. Our
focus is on the temporal relationships between events in modalities and whether
this prior can increase filter’s accuracy.

3 Methodology

3.1 Bayesian Filter

Having three continuous modalities, we want to fuse them together in order to
get a probability distribution over all objects (X ), given observed speech, head,
and pointing inputs (Z) at each time step (t). We apply probabilistic inference
based on Bayesian filtering [22]. The hidden state, xt ∈ X , is the target object in
the scene that the person is currently referencing. The robot observes the user’s
non-verbal actions and speech, Z, and at each time step estimates a distribution
over the current state, xt (Fig. 2):

p(xt|z0:t). (1)

First, a prediction about current state is made based only on previous obser-
vations and then two types of update are made: time update without any con-
textual information and observation update, as proposed in [26].

Speech
recognition

Audio

Keyword
classification

Pointing
recognition

Hand Movement

Pointing 
calibration (SVR)

Temporal prior 
(GMM)

Fixation 
recognition

Head Movement

Head movement 
calibration (SVR)

Fig. 2. Observation update with a temporal prior



112 E. Sibirtseva et al.

3.2 Observation Update

The posterior distribution of xt given a history of observations, p(xt|z0:t), also
known as the belief B(xt), is obtained using the Bayesian rule:

B(xt) = p(xt|z0:t) =
p(zt|xt) × p(xt|z0:t−1)

p(zt|z0:t−1)
∝ p(zt|xt)p(xt|z0:t−1). (2)

By substituting p(xt|z0:t−1) =
∑

xt−1∈X p(xt|xt−1)p(xt−1|z0:t−1) in the above
equation (considering Markovian properties), the Bayes filter algorithm can be
used to obtain a recursive update rule:

B(xt) = p(zt|xt)
∑

xt−1∈X
p(xt|xt−1)B(xt−1), (3)

where, p(xt|xt−1) is the transition probability found similarly as in [26],

p(xt|xt−1) =

{
c, if xt = xt−1.
1−c

|X |−1 , otherwise.
, (4)

where c is a constant value.
The observation model calculates the probability of the observation given the

state. Each observation is a set of the user’s head movement, hands pointing,
and speech, < h, l, r, s > where:

– h represents a 3D vector of roll, pitch and yaw angles of the head.
– l represents a 3D vector as the direction of the participant’s left index finger.
– r represents a 3D vector as the direction of the participant’s right index finger.
– s represents a list of words uttered by the participant.

More formally, the observation model looks as follows:

p(zt|xt) = p(h, l, r, s|xt). (5)

We factor the expression by assuming that each observation is conditionally
independent of the others given the target object. In other words, if we know
the intended target object, knowledge about e.g., right hand pointing does not
provide any further information about the head movements. This results in the
following factorization:

p(zt|xt) = p(ht|xt) × p(lt|xt) × p(rt|xt) × p(st|xt). (6)

In the following, we discuss how the above likelihoods can be modelled in our
proposed approach.



Exploring Temporal Dependencies in Multimodal Referring Expressions 113

Head Movement. We first learn a model p ← fh(h) that maps an angular
position of the participant head (h) into a 2D position on the table (p) where the
participant is looking at. Following the guidelines of the device [8], we calibrated
it as an eye-tracker by training a Support Vector Regression (SVR) [19] with a
RBF kernel (C = 10, gamma = 5) on 14 known points on the table. Participants
were asked to look at each point for a duration of 1950 ms out of which the first
700 ms period was ignored. This calibration process results in ±4.85 cm gaze
positioning error.

Similar to the earlier study [26], we assign distributions over different head
angular positions according to the distance between the corresponding gaze loca-
tion and the target object location, i.e.,

p(ht|xt = i) ∝ exp [−(fh(ht) − pi)TΣh(fh(ht) − pxt
)], (7)

where, pi is the position of the ith object on the table, and Σh is a diagonal
co-variance matrix with trainable parameters.

Hand Gestures. Similarly, two separate SVM models are trained to map the
directions of the left (p ← fl(l)) and right (p ← fr(r)) hands to the corre-
sponding 2D positions on the table. Pointing detection is made with the help of
LeapMotion device. The same expression as in Eq. 7 is used to assign probability
distributions over left lt and right rt hand pointing directions conditioned on the
target object xt.

Speech. First, we use speech recognition to convert audio to text and then
perform keywords dictionary-based classification to identify the following speech
events:

– attribute - adjectives that describes size, shape or colour of a Lego block from
the workspace, e.i. red, large, cylinder, etc.

– deictic - i.e. here, there, this, that, etc.
– other - any other word that is not included into the previous two categories

As an extra speech event, the beginning of a verbal request is detected from
the audio directly. These specific classes were inferred from the initial data col-
lection. The highest correlation was shown between them and events in other
modalities.

After detecting speech events, we represent it with a unigram model. Namely,
we take each word w in a given speech input s and calculate the probability that,
given state xt, that word would have been spoken.

p(s|x) =
∏

w∈s

p(w|x) (8)
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3.3 Temporal Priors

The main hypothesis of this paper, is whether incorporating the knowledge of
temporal correlations between high-level events in the input modalities can help
the robot to better understand the intentions of a human while the person is
referring to something. In order to validate this hypothesis, we propose to use
temporal conditional probabilities to represent the observation likelihood intro-
duced in Eq. 2. This yields,

p(st, ht, ΔTh, lt, ΔTl, rt, ΔTr|xt) =

= p(st|xt) × p(ht|xt) × p(lt|xt) × p(rt|xt) × p(ΔTh, ΔTl, ΔTr|xt), (9)

where ΔTh = Ts − Th, i.e., the time difference between the speech and head
movement events. Similarly, ΔTl = Ts − Tl and ΔTr = Ts − Tr. We used Ts

as the time reference, since it is less affected by noises compared to the other
modalities. Furthermore, we assumed independence between, e.g., the current
value of the head position and its event time. However, the time differences
between the events are highly correlated.

In this paper, multivariate Gaussian Mixture Models (GMMs) are used to
represent the PDF of p(ΔTh,ΔTl,ΔTr|xt). We assume that modalities are tem-
porally dependent; thus, the co-variance matrix is learned alongside kernels’
means. We train GMMs with an Expectation Maximisation (EM) algorithm.
Online adaptation of the model is performed via Maximum A Posteriori (MAP)
estimation approach, as in Reynolds’ work [16], due to a limited number of
samples that we are able to collect during the interaction.

4 Data Collection

In order to test our hypothesis of existing temporal dependencies in behaviour
patterns, we collected data of people interacting with a robot controlled by a
wizard of Oz.

Our previous experiments showed that human behaviour varies dramatically
in human-human interaction versus human-robot interaction. For instance, if the
person has a human partner, they were more prone to use gestures and look at
their partner. On the other hand, with a robot partner, participants favoured
other modalities, like speech and exaggerated head movements. Moreover, robots
can interpret some modalities with more precision than humans do. For humans,
it is easier to understand where the person is pointing at than where they are
looking. For robots using head movement tracking sensors, this modality becomes
much more precise and easy to interpret than hand gestures. Our goal is to
recreate the data collection scenario as close as possible to the target settings of
the real human-robot interaction we plan our robot to operate in.
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Fig. 3. First person view of the mixed reality interface. The participant is instructed to
request an Lego block, that has an augmented orange circle around it. Robot’s guess is
indicated as a white cylinder. The virtual robot shows the future trajectory of a pick-
ing up motion before the participant confirms whether the object was disambiguated
correctly. (Color figure online)

4.1 Scenario

In our study, participants are instructed though a projection in a mixed reality
headset to request Lego blocks (see Fig. 3) from the robot in an ambiguous
environment, i.e., there are several blocks of the same colour and shape. Thus,
it is impossible to disambiguate a human request only from speech and the
interpretation of other modalities is necessary. Mixed reality was chosen as the
way to convey robot’s current belief and augment additional information on
the shared workspace, based on the results of our previous human study [18]. A
human wizard interprets the human requests by looking at what a robot would be
able to sense and tries to infer the intended object. When the human participant
acknowledges that the robot understood which object the participant meant, the
mixed reality headset suggests the next object for the participant to describe to
the wizard. The wizard’s interface contains data from all the sensors. Namely,

– 3D position and rotation of the participant’s head tracked by the headset1

and updated at frequency 60 Hz;
– Projection from the centre of their head on the table;
– 3D coordinates of both hands, a projection from the index finger on the table

when pointing occurs. The original frame rate of the sensor is 120 Hz but to
align data streams of head and hand tracking, we record only each second

1 https://www.microsoft.com/en-us/hololens.

https://www.microsoft.com/en-us/hololens
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frame, resulting in 60 Hz frequency. Tracking is performed by the Leap Motion
sensor2;

– Speech recognition represented as text, acquired from using Microsoft Speech
Platform3. Speech data is recorded every time the dictation hypothesis is
updated. We don’t wait for the utterance to be completed, and instead employ
a riskier but also faster approach (Fig. 4).

please give me this
um... small block

Fig. 4. Wizard interface with wizard’s guess visualised as a white cylinder around an
object. Multimodal input is represent as (a) text from speech recognition; (b) white
rectangle being participant’s head position and rotation, while a blue circle on the
table surface is a projected vector from the centre of the head; (c) skeleton of a
hand and a projected position from its finger on the table plane as a green circle.
(Color figure online)

4.2 Participants

Subjects were recruited using mailing lists and flyers on the university campus.
A total of 30 subjects (16 female, 14 male), ages between 23 and 34 (M = 27.7),
participated in the data collection. All participants had to meet the following
requirements: to be fluent in English, not require glasses to see objects 1.5-2
away from them (due to the mixed reality head-mounted display) and not have
any colour vision deficiencies. In general, participants indicated their experience
with digital technology as M = 1.3 on a scale from 5 to 1 (where 1 denotes “very

2 https://www.leapmotion.com/.
3 https://msdn.microsoft.com/en-us/library/hh361572(v=office.14).aspx.

https://www.leapmotion.com/
https://msdn.microsoft.com/en-us/library/hh361572(v=office.14).aspx
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highly”). Moreover, 57% had some experience with virtual reality and only 10%
tried augmented/mixed reality head-mounted displays before.

4.3 Dataset

Each participant made a total of 20 fetching requests. The time of each request
was not fixed; the start time of the request is considered to be the moment a par-
ticipant was shown a new object in the Mixed Reality interface, and the request
was considered resolved when a participant verbally confirmed the robot’s guess.
Thus, enabling the data collection to proceed to the next randomly selected
object and marking the current timestamp as the end of the request. Overall, 600
requests were collected with a total duration of 429 min of uninterrupted record-
ing. Each request consisted of multiple datapoints with the following fields: a
timestamp, a 3D vector of head position, a boolean variable representing whether
the current head movement is a fixation, a 3D vector of each hand index finger
positions, a boolean variable indicating whether the current gesture was point-
ing, the text of the verbal request so far from speech recognition, the current
target object, and current wizard’s guess of the target object. The final dataset
contains N = 30705 datapoints.

5 Results

This section presents our findings on the questions Q1 - Q3.

Q1: Do common temporal patterns emerge in participants’ behaviour
during the fetching request task?

A pre-processing step is performed before training temporal priors encoded
as GMMs. All fixations from both head movements and gestures are labelled as
intentional or accidental. By intentional, we imply a fixation on the target object.
All the other fixations are considered accidental, or noise. In a request, fixations
on the minimum distance from the ground truth target object are labelled as
intended. Moreover, time intervals of head fixations and pointing gestures are
computed relative to the events in the speech modality. As a result, the training
data set consists of time intervals and labels of head fixations, gestures and types
of the corresponding event in the speech modality. Finally, through leave-one-
participant-out cross validation, we train GMMs temporal priors on the training
dataset. Analysis of the GMMs densest regions discovers three most common
temporal patterns in participants’ behaviour, namely:

– P1 Head fixation + beginning of the verbal request
– P2 Head fixation + deictic keyword + pointing gesture
– P3 Object attribute keyword + head fixation

Let’s observe how these patterns appear in the human-robot interaction
during a fetching request. On the Fig. 5, we visualise a timeline of events in
each modality during one of the participant’s request. This request contains all
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three of the common patterns (highlighted with rectangles). In the beginning
of the request, the participant, firstly, fixates his/her head on an unrelated to
the request object. Then, he starts to verbalise his request with words “please
gimme...”. Just before the beginning of the utterance, the first common pattern
occurs (P1) - the participant fixates on the target object. After that several
unintentional head fixations are detected alongside with the left hand pointing
gesture in an uninformative direction. At the timestamp 800 ms the second pat-
tern (P2) is detected - deictic keyword“this” with an intended head fixation and
the left hand pointing at the target object. Later on, at timestamps 1300 ms
and 1800 ms we can observe P3. The participant clarifies his request by saying
an attribute key-word “small” and“blue” simultaneously with head fixations on
the target object.

Fig. 5. A timeline of events in each modality during request 3 from participant 27.
The top line is speech recognition of participant’s request. Black rectangles represent
fixations on the target object, white on any other. Grey rectangles indicate common
behaviour patters. (Color figure online)

Q2: If we encode these patterns as temporal priors, will they be help-
ful in inferring the intended object from multimodal referring expres-
sions?

To answer this question, we compare performance of Bayesian filter with
(BF+TP) and without (BF) temporal priors through leave-one-participant-
out cross validation. Bayesian filter without temporal priors (BF) is considered
as a control condition. Our evaluation consists of two measures - accuracy (%)
and decision making time (sec). Accuracy is measured as a ratio of correctly
disambiguated target objects to the total number of requests. Decision making
time is computed from the moment a person started speaking and until the robot
makes a final decision which object is the target.

There are two possible scenarios of how a model can make a decision.

– Voluntary decision. We define a decision making line as 85%, a commonly
used value for such scenarios [26]. This means that if probability of an object
being the target reaches 85% or higher, given all previous multimodal obser-
vations, then the model selects it as a target object.

– Forced decision. If during a request no object’s probability to be the target
one crossed the decision line and there are no datapoints left in this request,
then the object with the highest probability is chosen the target.
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Models have to make forced decisions due to the way we collected the dataset.
A human wizard was imitating a robot during the data collection process; there-
fore, a request was considered resolved when the wizard guessed the correct
target object. However, our models have a limited understanding of multimodal
human behaviour and are not as sophisticated as a human wizard reasoning.

To find out what causes the main issues for the models, compared to the
human wizard, we analysed only cases where models had to make forced deci-
sions. We manually checked video recordings of the interactions and discovered
that the majority of such cases contained utterances such as “to the left”,“in
the corner”, “he same as the previous one” A human is able to infer much more
information from such phrases, while our speech system is only corpus-based.
This bottleneck can be addressed by implementing a more sophisticated natural
language recognition system, for instance, BERT [5].

For models’ evaluation we take into account both voluntary and forced deci-
sions.

Two types of evaluation is performed. In the first case, only the first attempt
of the model to make a decision is considered. In the second, though, we employ
the same way of interaction as during the data collection phase. The model can
make several attempts to guess the target object while there is still data left in
the request. After each guess it gets feedback whether the guess is correct or
not. If it is incorrect, the model excludes the previous object from the possible
objects set and proceeds disambiguation participant’s request as before. For the
multiple attempts case, the decision making time is measured from the beginning
and until the guess is either correct or the request is over and the model is forced
to make the final guess.

We performed a repeated measurement one-tailed t-test to test significance of
our results on the 95% interval. According to the Table 1, BF+TP dramatically
(p < 0.00) decreases decision making time from 24.99 ± 7.94 sec to 15.32 ± 3.08
sec. Accuracy of the Bayesian Filter with Temporal Priors (M = 68.45, SE =
5.73) is also significantly (p < 0.00) higher than without (M = 55.83, SE =
12.01).

In the multiple attempts case (Table 2), the tendency of BF+TP (Mtime =
18.85, SEtime = 3.73,Macc = 86.22, SEacc = 4.34) outperforming BF on both
measurements is even more evident. Time and accuracy of BF does not signifi-
cantly (p > 0.05) change from the first attempt. Number of attempts per request
gives us insight into why this is the case. For BF, number of attempts is nearly
one per request (M = 1.14), while BF+TP can make 2.58 on average. An expla-
nation to this can be drawn from the Table 2, specifically the decision making
time. BF takes approximately 1.6 times more to make the first decision and it
does not have enough time left of the request to make an accurate guess on the
second attempt. In a multiple attempt scenario BF+TP model can potentially
make more guesses on the same amount of data, while being more accurate than
the control condition.
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Therefore, we can conclude that temporal priors have a significant positive
influence on both decision making time and accuracy for the both evaluation
scenarios.

Table 1. Models evaluation on the first attempt at disambiguating a multimodal
referring expression

Model Time (sec) Accuracy

BF 24.99 ± 7.94 55.83% ± 12.01%

BF+TP 15.32 ± 3.08 68.45% ± 5.73%

BF+TP+OA 13.41 ± 2.93 76.58% ± 5.65%

Table 2. Models evaluation on multiple number of attempts at disambiguating a
multimodal referring expression

Model Time (sec) Accuracy # Attempts

BF 25.50 ± 8.11 57.38% ± 12.24% 1.14

BF+TP 18.85 ± 3.73 86.22% ± 4.34% 2.58

BF+TP+OA 18.92 ± 3.70 89.16% ± 4.28% 2.63

Q3: Are temporal patterns common across most participants or
person-dependent?

Our approach to Q3 is to evaluate what is the effect of online adap-
tation (BF+TP+OA) on the decision making time and accuracy versus
no participant-based adaptation (BF+TP). The model with online adapta-
tion of temporal priors is performed in the same fashion as in the previous
section, through leave-one-participant-out cross validation. However, we itera-
tively update the GMMs temporal priors by feeding them datapoints from the
previously resolved request. The following request disambiguation is made with
the refitted with all the previous requests model. This implies that with time,
the GMMs become more fitted to the temporal patterns of this particular par-
ticipant. The first requests of each participant in both models with and without
adaptation are based on the same temporal priors GMMs.

Our results show that while BF+TP+OA accuracy (M = 76.58, SE =
5.65) increases significantly (p = 0.04) in comparison to the temporal priors
without online adaption during the first attempt (Table 1). Decision making time
(M = 13.41, SE = 2.93) , even though has a decreasing trend, is not statistically
significant (p = 0.13).

For the multiple attempts case (Table 2), adaptation results also show the
best accuracy (M = 89.16, SE = 4.28) out of the evaluated models. In regards
of decision making time (M = 18.92, SE = 4.28) and number of attempts, there
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was no statistically significant difference found between models BF+TP and
BF+TP+OA.

We can reason that adaptation has a positive effect on model’s accuracy,
slightly adjusting temporal priors for each participant. The structure of the com-
mon patterns stays mostly the same between participants, while the Gaussian
Mixtures shift to accommodate to the different timing of each participant indi-
vidually.

6 Conclusion

In this paper, we explored temporal dependencies in multimodal human-robot
interaction and developed a Bayesian-based model to evaluate our hypothesis.
We developed a system in Mixed Reality to efficiently collect data of humans
interacting with a robot in a fetching scenario. As our results showed, taking
temporal dependencies between high-level events in all input modalities (i.e.
fixations in head movements, key words in speech, etc.) increases the model’s
speed and accuracy of the person’s intention predictions. Moreover, we tested
how online adaptation influences results of the prediction and found out that,
while both speed and accuracy increase, the change is not as dramatic as between
using a Bayesian filter with or without temporal priors. Thus, we came to a
conclusion that common temporal patterns exist in human behaviour during
referencing objects and have a significant impact on the intention prediction.
We encoded temporal priors as a Gaussian Mixture Model and used it with the
Bayesian filter to compute probabilities of objects being the target ones.

The next step for this project is to test how scalable our approach is to
more complex tasks. Our initial motivation to explore temporal dependencies
comes from our previous work [10], where participants where building furniture
together. The main challenge there came from the nosiness of input modalities.
And the more complex the interaction, the nosier participant’s behaviour is. In
other words, participants are less distracted and more focused on the task during
simple interactions, such as fetching requests. We see the potential benefits of
employing temporal priors to tackle nosiness in the more complex interactions.

Another direction will be to add more modalities and explore how they can be
represented as high-level events and encoded into temporal behaviour patterns.
For instance, body posture and gaze tracking. A more nuanced, not key-words
based, approach to natural language understanding can also enrich the possibil-
ities for diverse interactions.

And finally, in the future we would like to focus more on the deep reinforce-
ment learning approaches to multimodal human-interaction. So far our study
was necessary for gaining a deeper understanding of human behaviour and mul-
timodal data. However, we want to move away from feature engineering and
formulate our human-robot interaction scenario as a deep reinforcement learn-
ing problem. Recent studies in HRI showed impressive results in employing deep
reinforcement learning for various applications [12,14,15]. The main challenge
for deep learning approaches is the lack of training data from human studies
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but we plan to tackle this problem using our current Bayesian-based model to
simulate human behaviour data as a prior for the deep reinforcement learning
model.
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