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Abstract. Public key encryption with equality test (PKEET) allows
testing whether two ciphertexts are generated by the same message or
not. PKEET is a potential candidate for many practical applications
like efficient data management on encrypted databases. Potential appli-
cability of PKEET leads to intensive research from its first instantiation
by Yang et al. (CT-RSA 2010). Most of the followup constructions are
secure in the random oracle model. Moreover, the security of all the
concrete constructions is based on number-theoretic hardness assump-
tions which are vulnerable in the post-quantum era. Recently, Lee et al.
(ePrint 2016) proposed a generic construction of PKEET schemes in the
standard model and hence it is possible to yield the first instantiation
of PKEET schemes based on lattices. Their method is to use a 2-level
hierarchical identity-based encryption (HIBE) scheme together with a
one-time signature scheme. In this paper, we propose, for the first time,
a direct construction of a PKEET scheme based on the hardness assump-
tion of lattices in the standard model. More specifically, the security of
the proposed scheme is reduces to the hardness of the Learning With
Errors problem. We have used the idea of the full identity-based encryp-
tion scheme by Agrawal et al. (EUROCRYPT 2010) to construct the
proposed PKEET.

1 Introduction

Public key encryption with equality test (PKEET), which was first introduced
by Yang et al. [21], is a special kind of public key encryption that allows anyone
with a given trapdoor to test whether two ciphertexts are generated by the
same message. This property is of use in various practical applications, such
as keyword search on encrypted data, encrypted data partitioning for efficient
encrypted data management, personal health record systems, spam filtering in
encrypted email systems and so on. Due to its numerous practical applications,
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there have been intensive researches in this direction with the appearance of
improved schemes or ones with additional functionalities [9,12,16–18]. However,
they are all proven to be secure in the random oracle model which does not exist
in reality. Therefore it is necessary to construct such a scheme in the standard
model.

Up to the present, there are only a few PKEET schemes in the standard
model. Lee et al. [8] first proposed a generic construction of a PKEET scheme.
Their method is to use a 2-level hierarchical identity-based encryption (HIBE)
scheme together with a one-time signature scheme. The HIBE scheme is used for
generating an encryption scheme and for equality test, and the signature scheme
is used for making the scheme CCA2-secure, based on the method of transform-
ing an identity-based encryption (IBE) scheme to a CCA2-secure encryption
scheme of Canetti et al. [4]. As a result, they obtain a CCA2-secure PKEET
scheme given that the underlying HIBE scheme is IND-sID-CPA secure and the
one-time signature scheme is strongly unforgeable. From their generic construc-
tion, it is possible to obtain a PKEET in standard model under many hard
assumptions via instantiations. In a very recent paper, Zhang et al. [22] pro-
posed a direct construction of a CCA2-secure PKEET scheme based on pairings
without employing strong cryptographic primitives such as HIBE schemes and
strongly secure signatures as the generic construction of Lee et al. [8]. Their
technique comes from a CCA2-secure public key encryption scheme by [7] which
was directly constructed by an idea from IBE. A comparison with an instantia-
tion from Lee et al. [8] on pairings shows that their direct construction is much
more efficient than the instantiated one.

All aforementioned existing schemes base their security on the hardness of
some number-theoretic assumptions which will be efficiently solved in the quan-
tum era [14]. The generic construction by Lee et al. [8] is the first one with the
possibility of yielding a post-quantum instantiation based on lattices, since lat-
tice cryptography is the only one among other post-quantum areas up to present
offers HIBE primitives, e.g., [1]. It is then still a question of either yielding an
efficient instantiation or directly constructing a PKEET based on lattices.

Our Contribution: In this paper, we give a direct construction of a PKEET
scheme based on lattices from IBE. According to the best of our knowledge,
this is the first construction of a PKEET scheme based on lattices. We first
employ the multi-bit full IBE by Agrawal et al. [1] and then directly transform
it into a PKEET scheme. In our scheme, a ciphertext is of the form CT =
(CT1,CT2,CT3,CT4) where (CT1,CT3) is the encryption of the message m, as
in the original IBE scheme, and (CT2,CT4) is the encryption of H(m) in which
H is a hash function. In order to utilize the IBE scheme, we employ a second
hash function H ′ and create the identity H ′(CT1,CT2) before computing CT3

and CT4; see Sect. 3 for more details. Finally, we have proved that the proposed
PKEET scheme is CCA2-secure. As compared to the previous constructions, the
proposed one is computationally efficient due to the absence of exponentiation.
But, the size of the public parameters is more.
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2 Preliminaries

2.1 Public Key Encryption with Equality Test (PKEET)

In this section, we will recall the model of PKEET and its security model.
We remark that a PKEET system is a multi-user setting. Hence we assume

that in our system throughout the paper, each user is assigned with an index i
with 1 ≤ i ≤ N where N is the number of users in the system.

Definition 1 (PKEET). Public key encryption with equality test (PKEET) con-
sists of the following polynomial-time algorithms:

– Setup(λ): On input a security parameter λ and set of parameters, it outputs
the a pair of a user’s public key PK and secret key SK.

– Enc(PK,m): On input the public key PK and a message m, it outputs a cipher-
text CT.

– Dec(SK,CT): On input the secret key SK and a ciphertext CT, it outputs a
message m′ or ⊥.

– Td(SKi): On input the secret key SKi for the user Ui, it outputs a trapdoor
tdi.

– Test(tdi, tdj ,CTi,CTj): On input two trapdoors tdi, tdj and two ciphertexts
CTi,CTj for users Ui and Uj respectively, it outputs 1 or 0.

Correctness. We say that a PKEET scheme is correct if the following three
condition hold:

(1) For any security parameter λ, any user Ui and any message m, it holds that

Pr

[
Dec(SKi,CTi) = m

∣∣∣∣∣ (PKi,SKi) ← Setup(λ)
CTi ← Enc(PKi,m)

]
= 1.

(2) For any security parameter λ, any users Ui, Uj and any messages mi,mj ,
it holds that:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣
Test

⎛
⎜⎜⎜⎝

tdi

tdj

CTi

CTj

⎞
⎟⎟⎟⎠ = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(PKi,SKi) ← Setup(λ)
CTi ← Enc(PKi,mi)
tdi ← Td(SKi)
(PKj ,SKj) ← Setup(λ)
CTj ← Enc(PKj ,mj)
tdj ← Td(SKj)

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

if mi = mj regardless of whether i = j.
(3) For any security parameter λ, any users Ui, Uj and any messages mi,mj ,

it holds that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣
Test

⎛
⎜⎜⎜⎝

tdi

tdj

CTi

CTj

⎞
⎟⎟⎟⎠ = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(PKi,SKi) ← Setup(λ)
CTi ← Enc(PKi,mi)
tdi ← Td(SKi)
(PKj ,SKj) ← Setup(λ)
CTj ← Enc(PKj ,mj)
tdj ← Td(SKj)

⎤
⎥⎥⎥⎥⎥⎥⎦



A Lattice-Based Public Key Encryption 141

is negligible in λ for any ciphertexts CTi, CTj such that Dec(SKi,CTi) �=
Dec(SKj ,CTj) regardless of whether i = j.

Security Model of PKEET. For the security model of PKEET, we consider
two types of adversaries:

• Type-I adversary: for this type, the adversary can request to issue a trap-
door for the target user and thus can perform equality tests on the challenge
ciphertext. The aim of this type of adversaries is to reveal the message in the
challenge ciphertext.

• Type-II adversary: for this type, the adversary cannot request to issue a
trapdoor for the target user and thus cannot perform equality tests on the
challenge ciphertext. The aim of this type of adversaries is to distinguish
which message is in the challenge ciphertext between two candidates.

The security model of a PKEET scheme against two types of adversaries above
is described in the following.

OW-CCA2 Security Against Type-I Adversaries. We illustrate the game
between a challenger C and a Type-I adversary A who can have a trapdoor for
all ciphertexts of the target user, say Uθ, that he wants to attack, as follows:

1. Setup: The challenger C runs Setup(λ) to generate the key pairs (PKi,SKi)
for all users with i = 1, · · · , N , and gives {PKi}N

i=1 to A.
2. Phase 1: The adversary A may make queries polynomially many times adap-

tively and in any order to the following oracles:
– OSK: an oracle that on input an index i (different from θ), returns the

Ui’s secret key SKi.
– ODec: an oracle that on input a pair of an index i and a ciphertext CTi,

returns the output of Dec(SKi,CTi) using the secret key of the user Ui.
– OTd: an oracle that on input an index i, return tdi by running tdi ←

Td(SKi) using the secret key SKi of the user Ui.
3. Challenge: C chooses a random message m in the message space and run

CT∗
θ ← Enc(PKθ,m), and sends CT∗

θ to A.
4. Phase 2: A can query as in Phase 1 with the following constraints:

– The index θ cannot be queried to the key generation oracle OSK;
– The pair of the index θ and the ciphertext CT∗

θ cannot be queried to the
decryption oracle ODec.

5. Guess: A output m′.

The adversary A wins the above game if m = m′ and the success probability of
A is defined as

AdvOW-CCA2
A,PKEET(λ) := Pr[m = m′].
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Remark 2. If the message space is polynomial in the security parameter or the
min-entropy of the message distribution is much lower than the security param-
eter then a Type-I adversary A with a trapdoor for the challenge ciphertext can
reveal the message in polynomial-time or small exponential time in the secu-
rity parameter, by performing the equality tests with the challenge ciphertext
and all other ciphertexts of all messages generated by himself. Hence to prevent
this attack, we assume that the size of the message space M is exponential in the
security parameter and the min-entropy of the message distribution is sufficiently
higher than the security parameter.

IND-CCA2 Security Against Type-II Adversaries. We present the game
between a challenger C and a Type-II adversary A who cannot have a trapdoor
for all ciphertexts of the target user Uθ as follows:

1. Setup: The challenger C runs Setup(λ) to generate the key pairs (PKi,SKi)
for all users with i = 1, · · · , N , and gives {PKi}N

i=1 to A.
2. Phase 1: The adversary A may make queries polynomially many times adap-

tively and in any order to the following oracles:
– OSK: an oracle that on input an index i (different from t), returns the

Ui’s secret key SKi.
– ODec: an oracle that on input a pair of an index i and a ciphertext CTi,

returns the output of Dec(SKi,CTi) using the secret key of the user Ui.
– OTd: an oracle that on input an index i (different from t), return tdi by

running tdi ← Td(SKi) using the secret key SKi of the user Ui.
3. Challenge: A chooses two messages m0 m1 of same length and pass to C,

who then selects a random bit b ∈ {0, 1}, runs CT∗
θ,b ← Enc(PKθ,mb) and

sends CT∗
θ,b to A.

4. Phase 2: A can query as in Phase 1 with the following constraints:
– The index t cannot be queried to the key generation oracle OSK and the

trapdoor generation oracle OTd;
– The pair of the index θ and the ciphertext CT∗

θ,b cannot be queried to the
decryption oracle ODec.

5. Guess: A output b′.

The adversary A wins the above game if b = b′ and the advantage of A is defined
as

AdvIND-CCA2
A,PKEET :=

∣∣∣∣Pr[b = b′] − 1
2

∣∣∣∣ .
2.2 Lattices

Throughout the paper, we will mainly focus on integer lattices, which are discrete
subgroups of Z

m. Specially, a lattice Λ in Z
m with basis B = [b1, · · · ,bn] ∈

Z
m×n, where each bi is written in column form, is defined as

Λ :=

{
n∑

i=1

bixi|xi ∈ Z ∀i = 1, · · · , n

}
⊆ Z

m.
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We call n the rank of Λ and if n = m we say that Λ is a full rank lattice. In
this paper, we mainly consider full rank lattices containing qZm, called q-ary
lattices, defined as the following, for a given matrix A ∈ Z

n×m and u ∈ Z
n
q

Λq(A) :=
{
e ∈ Z

m s.t. ∃s ∈ Z
n
q where ATs = e mod q

}
Λ⊥

q (A) := {e ∈ Z
m s.t. Ae = 0 mod q}

Λu
q (A) := {e ∈ Z

m s.t. Ae = u mod q}

Note that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥
q (A) + t.

Let S = {s1, · · · , sk} be a set of vectors in R
m. We denote by ‖S‖ :=

maxi ‖si‖ for i = 1, · · · , k, the maximum l2 length of the vectors in S. We also
denote S̃ := {s̃1, · · · , s̃k} the Gram-Schmidt orthogonalization of the vectors
s1, · · · , sk in that order. We refer to ‖S̃‖ the Gram-Schmidt norm of S.

Ajtai [2] first proposed how to sample a uniform matrix A ∈ Z
n×m
q with an

associated basis SA of Λ⊥
q (A) with low Gram-Schmidt norm. It is improved later

by Alwen and Peikert [3] in the following Theorem.

Theorem 1. Let q ≥ 3 be odd and m := �6n log q. There is a probabilistic
polynomial-time algorithm TrapGen(q, n) that outputs a pair (A ∈ Z

n×m
q , S ∈

Z
m×m) such that A is statistically close to a uniform matrix in Z

n×m
q and S is

a basis for Λ⊥
q (A) satisfying

‖S̃‖ ≤ O(
√

n log q) and ‖S‖ ≤ O(n log q)

with all but negligible probability in n.

Definition 1 (Gaussian distribution). Let Λ ⊆ Z
m be a lattice. For a vector

c ∈ R
m and a positive parameter σ ∈ R, define:

ρσ,c(x) = exp
(

π
‖x − c‖2

σ2

)
and ρσ,c(Λ) =

∑
x∈Λ

ρσ,c(x).

The discrete Gaussian distribution over Λ with center c and parameter σ is

∀y ∈ Λ, DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ)

.

For convenience, we will denote by ρσ and DΛ.σ for ρ0,σ and DΛ,σ,0 respec-
tively. When σ = 1 we will write ρ instead of ρ1. We recall below in Theorem 2
some useful results. The first one comes from [11, Lemma 4.4]. The second one is
from [5] and formulated in [1, Theorem 17] and the last one is from [1, Theorem
19].

Theorem 2. Let q > 2 and let A,B be a matrix in Z
n×m
q with m > n and B

is rank n. Let TA, TB be a basis for Λ⊥
q (A) and Λ⊥

q (B) respectively. Then for
c ∈ R

m and U ∈ Z
n×t
q :
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1. Let M be a matrix in Z
n×m1
q and σ ≥ ‖T̃A‖ω(

√
log(m + m1)). Then there

exists a PPT algorithm SampleLeft(A,M, TA, U, σ) that outputs a matrix e ∈
Z
(m+m1)×t distributed statistically close to DΛU

q (F1),σ where F1 := (A | M).
In particular e ∈ ΛU

q (F1), i.e., F1 · e = U mod q.
2. Let R be a matrix in Z

k×m and let sR := sup‖x‖=1 ‖Rx‖. Let F2 := (A | AR+
B). Then for σ ≥ ‖T̃B‖sRω(

√
log m), there exists a PPT algorithm

SampleRight(A,B,R, TB , U, σ) that outputs a matrix e ∈ Z
(m+k)×t distributed

statistically close to DΛU
q (F2),σ. In particular e ∈ Λu

q (F2), i.e., F2 · e = U
mod q.
Note that when R is a random matrix in {−1, 1}m×m then sR < O(

√
m) with

overwhelming probability (cf. [1, Lemma 15]).

The security of our construction reduces to the LWE (Learning With Errors)
problem introduced by Regev [13].

Definition 2 (LWE problem). Consider publicly a prime q, a positive integer
n, and a distribution χ over Zq. An (Zq, n, χ)-LWE problem instance consists of
access to an unspecified challenge oracle O, being either a noisy pseudorandom
sampler Os associated with a secret s ∈ Z

n
q , or a truly random sampler O$ who

behaviors are as follows:

Os: samples of the form (ui, vi) = (ui,uT
i s + xi) ∈ Z

n
q × Zq where s ∈ Z

n
q is a

uniform secret key, ui ∈ Z
n
q is uniform and xi ∈ Zq is a noise withdrawn

from χ.
O$: samples are uniform pairs in Z

n
q × Zq.

The (Zq, n, χ)-LWE problem allows responds queries to the challenge oracle O.
We say that an algorithm A decides the (Zq, n, χ)-LWE problem if

AdvLWE
A :=

∣∣Pr[AOs = 1] − Pr[AO$ = 1]
∣∣

is non-negligible for a random s ∈ Z
n
q .

Regev [13] showed that (see Theorem 3 below) when χ is the distribution Ψα

of the random variable �qX mod q where α ∈ (0, 1) and X is a normal random
variable with mean 0 and standard deviation α/

√
2π then the LWE problem is

hard.

Theorem 3. If there exists an efficient, possibly quantum, algorithm for decid-
ing the (Zq, n, Ψα)-LWE problem for q > 2

√
n/α then there is an efficient quan-

tum algorithm for approximating the SIVP and GapSVP problems, to within
Õ(n/α) factors in the l2 norm, in the worst case.

Hence if we assume the hardness of approximating the SIVP and GapSVP
problems in lattices of dimension n to within polynomial (in n) factors, then it
follows from Theorem 3 that deciding the LWE problem is hard when n/α is a
polynomial in n.
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3 Our PKEET Construction

3.1 Construction

Setup(λ): On input a security parameter λ, set the parameters q, n,m, σ, α as
in Sect. 3.2
1. Use TrapGen(q, n) to generate uniformly random n × m-matrices A,A′ ∈

Z
n×m
q together with trapdoors TA and TA′ respectively.

2. Select l + 1 uniformly random n × m matrices A1, · · · , Al, B ∈ Z
n×m
q .

3. Let H : {0, 1}∗ → {0, 1}t and H ′ : {0, 1}∗ → {−1, 1}l be hash functions.
4. Select a uniformly random matrix U ∈ Z

n×t
q .

5. Output the public key and the secret key

PK = (A,A′, A1, · · · , Al, B, U), SK = (TA, TA′).

Encrypt(PK,m): On input the public key PK and a message m ∈ {0, 1}t, do:
1. Choose a uniformly random s1, s2 ∈ Z

n
q

2. Choose x1,x2 ∈ Ψ
t

α and compute1

c1 = UT s1 + x1 + m
⌊q

2
⌋
, c2 = UT s2 + x2 + H(m)

⌊q

2
⌋ ∈ Z

t
q.

3. Compute b = H ′(c1‖c2) ∈ {−1, 1}l, and set

F1 = (A|B +
l∑

i=1

biAi), F2 = (A′|B +
l∑

i=1

biAi).

4. Choose l uniformly random matrices Ri ∈ {−1, 1}m×m for i = 1, · · · , l

and define R =
∑l

i=1 biRi ∈ {−l, · · · , l}m×m.
5. Choose y1,y2 ∈ Ψ

m

α and set z1 = RTy1, z2 = RTy2 ∈ Z
m
q .

6. Compute

c3 = FT
1 s1 + [yT

1 |zT
1 ]T , c4 = FT

2 s2 + [yT
2 |zT

2 ]T ∈ Z
2m
q .

7. The ciphertext is

CT = (c1, c2, c3, c4) ∈ Z
2t+4m
q .

Decrypt(PK,SK,CT): On input public key PK, private key SK and a ciphertext
CT = (c1, c2, c3, c4), do:
1. Compute b = H ′(c1‖c2) ∈ {−1, 1}l and sample e ∈ Z

2m×t from

e ← SampleLeft(A,B +
l∑

i=1

biAi, TA, U, σ).

Note that F1 · e = U in Z
n×t
q .

1 Note that for a message m ∈ {0, 1}t, we choose a random binary string m′ of fixed
length t′ large enough and by abusing of notation, we write H(m) for H(m′‖m).
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2. Compute w ← c1 − eT c3 ∈ Z
t
q.

3. For each i = 1, · · · , t, compare wi and � q
2�. If they are close, output

mi = 1 and otherwise output mi = 0. We then obtain the message m.
4. Sample e′ ∈ Z

2m×t from

e′ ← SampleLeft(A′, B +
l∑

i=1

biAi, TA′ , U, σ).

5. Compute w′ ← c2 − (e′)T c4 ∈ Z
t
q.

6. For each i = 1, · · · , t, compare w′
i and � q

2�. If they are close, output hi = 1
and otherwise output hi = 0. We then obtain the vector h.

7. If h = H(m) then output m, otherwise output ⊥.
Trapdoor(SKi): On input a user Ui’s secret key SKi = (Ki,1,Ki,2), it outputs

a trapdoor tdi = Ki,2.
Test(tdi, tdj ,CTi,CTj): On input trapdoors tdi, tdj and ciphertexts CTi,CTj

for users Ui, Uj respectively, computes
1. For each i (resp. j), do the following:

– Compute bi = H ′(ci1‖ci2) = (bi1, · · · , bil) and sample ei ∈ Z
2m×t

from

ei ← SampleLeft(A′
i, Bi +

l∑
k=1

bikAik, TA′
i
, Ui, σ).

Note that Fi2 · ei = Ui in Z
n×t
q .

– Compute wi ← ci2−eT
i ci4 ∈ Z

t
q. For each k = 1, · · · , t, compare each

coordinate wik with � q
w � and output hik = 1 if they are close, and 0

otherwise. At the end, we obtain the vector hi (resp. hj).
2. Output 1 if hi = hj and 0 otherwise.

Theorem 4. Our PKEET construction above is correct if H is a collision-
resistant hash function.

Proof. It is easy to see that if CT is a valid ciphertext of m then the decryption
will always output m. Moreover, if CTi and CTj are valid ciphertext of m and m′

of user Ui and Uj respectively. Then the Test process checks whether H(m) =
H(m′). If so then it outputs 1, meaning that m = m′, which is always correct
with overwhelming probability since H is collision resistant. Hence our PKEET
described above is correct. ��

3.2 Parameters

We follow [1, Section 7.3] for choosing parameters for our scheme. Now for the
system to work correctly we need to ensure

– the error term in decryption is less than q/5 with high probability, i.e., q =
Ω(σm3/2) and α < [σlmω(

√
log m)]−1,

– that the TrapGen can operate, i.e., m > 6n log q,
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– that σ is large enough for SampleLeft and SampleRight, i.e., σ > lmω(
√

log m),
– that Regev’s reduction applies, i.e., q > 2

√
n/α,

– that our security reduction applies (i.e., q > 2Q where Q is the number of
identity queries from the adversary).

Hence the following choice of parameters (q,m, σ, α) from [1] satisfies all of the
above conditions, taking n to be the security parameter:

m = 6n1+δ, q = max(2Q,m2.5ω(
√

log n))

σ = mlω(
√

log n), α = [l2m2ω(
√

log n)]−1
(1)

and round up m to the nearest larger integer and q to the nearest larger prime.
Here we assume that δ is such that nδ > �log q = O(log n).

3.3 Security Analysis

In this section, we will prove that our proposed scheme is OW-CCA2 secure
against Type-I adversaries (cf. Theorem 5) and IND-CCA2 secure against Type-
II adversaries (cf. Theorem 6).

Theorem 5. The PKEET with parameters (q, n,m, σ, α) as in (1) is OW-CCA2
secure provided that H is a one-way hash function, H ′ is a collision-resistant
hash function, and the (Zq, n, Ψ̄α)-LWE assumption holds. In particular, sup-
pose there exists a probabilistic algorithm A that wins the OW-CCA2 game with
advantage ε, then there is a probabilistic algorithm B that solves the (Zq, n, Ψ̄α)-
LWE problem with advantage ε′ such that

ε′ ≥ 1
2q

(
ε − 1

2
εH′,CR − εH,OW

)
.

Here εH′,CR is the advantage of breaking the collision resistance of H ′ and εH,OW

is the advantage of breaking the one-wayness of H.

Proof. The proof is similar to that of [1, Theorem 25]. Assume that there is a
Type-I adversary A who breaks the OW-CCA2 security of the PKKET scheme
with non-negligible probability ε. We construct an algorithm B who solves the
LWE problem using A. Assume again that there are N users in our PKEET sys-
tem. We now describe the behaviors of B. Assume that θ is the target index of the
adversary A and the challenge ciphertext is CT∗

θ = (CT∗
θ,1,CT

∗
θ,2,CT

∗
θ,3,CT

∗
θ,4).

We will proceed the proof in a sequence of games. In game i, let Wi denote
the event that the adversary A win the game. The adversary’s advantage in
Game i is Pr[Wi].

Game 0. This is the original OW-CCA2 game between the attacker A against
the scheme and the OW-CCA2 challenger.
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Game 1. This is similar to Game 0 except that in Phase 2 of Game 1, if
the adversary queries the decryption oracel ODec(θ) of a ciphertext CTθ =
(CTθ,1,CTθ,2,CTθ,3,CTθ,4) such that H ′(CTθ,1‖CTθ,2) = b∗, where b∗ =
H ′(CT∗

θ,1‖CT∗
θ,2), but CTθ �= CT∗

θ then the challenger aborts the game and
returns a random guess. We denote this event by E1. In this event, the adver-
sary has found a collision for the hash function H ′ and so

Pr[E1] ≤ εH′,CR

where εH′CR is the advantage of the adversary A against the collision resis-
tance of H ′. Now the advantage of A in Game 1 is

Pr[W1] = Pr[W1|E1]Pr[E1] + Pr[W1|¬E1]Pr[¬E1]

=
1
2
Pr[E1] + Pr[W0 ∩ ¬E1]

=
1
2
Pr[E1] + Pr[W0] − Pr[W0 ∩ E1]

≥ Pr[W0] − 1
2
Pr[E1]

≥ Pr[W0] − 1
2
εH′,CR

and hence
Pr[W0] − Pr[W1] ≤ 1

2
εH′,CR.

Game 2. This is similar to Game 1 except that at the challenge phase, B chooses
two message m and m′ in the message space and encrypt m in CTθ,1 and
H(m′) in CTθ,2. Other steps are similar to Game 1. Here we can not expect
the behavior of A. And since A has a trapdoor TA′ and he can obtain H(m′).
At the end if A outputs m′, call this event E2, then A has broken the one-
wayness of the hash function H. Thus

Pr[E2] ≤ εH,OW

where εH,OW is the advantage of A in breaking the one-wayness of H. There-
fore we have

Pr[W2] = Pr[W2|E2]Pr[E2] + Pr[W2|¬E2]Pr[¬E2]
= Pr[W2|E2]Pr[E2] + Pr[W1]Pr[¬E2]

≥ 1
|M|Pr[E2] + Pr[W1] − Pr[W1]Pr[E2]

≥ Pr[W1] − Pr[E2]
≥ Pr[W1] − εH,OW

and hence
Pr[W1] − Pr[W2] ≤ εH,OW.



A Lattice-Based Public Key Encryption 149

Game 3. This is similar to Game 2 except the way the challenger B generates the
public key for the user with index θ, as the following. Let R∗

i ∈ {−1, 1}m×m

for i = 1, · · · , l be the ephemeral random matrices generated for the creation
of the ciphertext CT∗

θ. In this game, the challenger chooses l matrices R∗
i

uniformly random in {−1, 1}m×m and chooses l random scalars hi ∈ Zq for
i = 1, · · · , l. Then it generates A,A′ and B as in Game 1 and constructs the
matrices Ai for i = 1, · · · , l as

Ai ← A · R∗
i − hi · B ∈ Z

n×m
q .

The remainder of the game is unchanged with R∗
i , i = 1, · · · , l, used to

generate the challenge ciphertext. Similar to the proof of [1, Theorem 25] we
have that the Ai are close to uniform and hence they are random independent
matrices in the view of the adversary as in Game 0. Therefore

Pr[W3] = Pr[W2].

Game 4. Game 4 is similar to Game 3 except that we add an abort that is
independent of adversary’s view. The challenger behaves as follows:

– The setup phase is identical to Game 3 except that the challenger also
chooses random hi ∈ Zq, i = 1, · · · , l and keeps it to itself.

– In the final guess phase, the adversary outputs a guest m′ for m. The
challenger now does the following:
1. Abort check: for all queries CT = (CT1,CT2,CT3,CT4) to

the decryption oracle ODec, the challenger checks whether b =
H ′(CT1‖CT2) satisfies 1 +

∑h
i=1 bihi �= 0 and 1 +

∑h
i=1 b∗

i hi = 0
where b∗ = H ′(CT∗

θ,1‖CT∗
θ,2). If not then the challenger overwrites

m′ with a fresh random message and aborts the game.
2. Artificial abort: the challenger samples a message Γ such that

Pr[Γ = 1] is calculated through a function G (defined as in [1])
evaluated through all the queries of A. If Γ = 1 the challenger over-
writes m′ with a fresh random message and we say that the challenger
aborted the game due to artificial abort; see [1] for more details.

A similar proof as in that of [1, Theorem 25] yields that

Pr[W4] ≥ 1
2q

Pr[W3].

Game 5. We now change the way how A and B are generated in Game 4.
In Game 5, A is a random matrix in Z

n×m
q and B is generated through

TrapGen(q, n) together with an associated trapdoor TB for Λ⊥
q (B). The con-

struction of Ai for i = 1, · · · , l remains the same as in Game 3, i.e., Ai =
AR∗

i − hiB. When A queries ODec(θ,CTθ) where CTθ = (CTθ,1,CTθ,2,CTθ,3,
CTθ,4), B performs as follows:

– B computes b = H ′(CTθ,1‖CTθ,2) ∈ {−1, 1}l and set

Fθ := (A|B +
l∑

i=1

Ai) = (A|AR + hθB)
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where

R ←
l∑

i=1

biR
∗
i ∈ Z

n×m
q and hθ ← 1 +

l∑
i=1

bihi ∈ Zq. (2)

– If hθ = 0 then abort the game and pretend that the adversary outputs a
random bit γ′ as in Game 3.

– Set e ← SampleRight(A, hθB,R, TB , U, σ) ∈ Z
2m×t
q . Note that since hθ is

non-zero, and so TB is also a trapdoor for hθB. And hence the output
e satisfies Fθ · e = U in Z

t
q. Moreover, Theorem 2 shows that when σ >

‖T̃B‖sRω(
√

m) with sR := ‖R‖, the generated e is distributed close to
DΛU

q
(Fθ) as in Game 3.

– Compute w ← CTθ,1 − eTCTθ,3 ∈ Z
t
q. For each i = 1, · · · , t, compare wi

with � q
2�, and output 1 if they are close, and output 0 otherwise. Then B

can answer the decryption query ODec(θ,CTθ) made by A.
Game 5 is otherwise the same as Game 4. In particular, in the challenge phase,
the challenger checks if b∗ satisfies 1 +

∑l
i=1 bihi = 0. If not, the challenger

aborts the game as in Game 4. Similarly, in Game 5, the challenger also
implements an artificial abort in the guess phase. Since Game 4 and Game 5
are identical in the adversary’s view, we have that

Pr[W5] = Pr[W4].

Game 6. Game 6 is identical to Game 5, except that the challenge ciphertext
is always chosen randomly. And thus the advantage of A is always 0.

We now show that Game 5 and Game 6 are computationally indistinguishable.
If the abort event happens then the games are clearly indistinguishable. We,
therefore, consider only the queries that do not cause an abort.

Suppose now A has a non-negligible advantage in distinguishing Game 5 and
Game 6. We use A to construct B to solve the LWE problem as follows.

Setup. First of all, B requests from O and receives, for each j = 1, · · · , t a fresh
pair (ai, di) ∈ Z

n
q ×Zq and for each i = 1, · · · ,m, a fresh pair (ui, vi) ∈ Z

n
q ×Zq.

A announces an index θ for the target user. B executes (PKi,SKi) ← Setup(λ)
for 1 ≤ i �= θ ≤ N . Then B constructs the public key for user of index θ as
follows:
1. Assemble the random matrix A ∈ Z

n×m
q from m of previously given LWE

samples by letting the i-th column of A to be the n-vector ui for all
i = 1, · · · ,m.

2. Assemble the first t unused the samples a1, · · · ,at to become a public
random matrix U ∈ Z

n×t
q .

3. Run TrapGen(q, σ) to generate uniformly random matrices A′, B ∈ Z
n×m
q

together with their trapdoor TA′ and TB respectively.
4. Choose l random matrices R∗

i ∈ {−1, 1}m×m for i = 1, · · · , l and l random
scalars hi ∈ Zq for i = 1, · · · , l. Next it constructs the matrices Ai for
i = 1, · · · , l as

Ai ← AR∗
i − hiB ∈ Z

n×m
q .
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Note that it follows from the leftover hash lemma [15, Theorem 8.38] that
A1, · · · , Al are statistically close to uniform.

5. Set PKθ := (A,A′, A1, · · · , Al, B, U) to A.
Then B sends the public keys {PKi}N

i=1 to the adversary A.
Queries. B answers the queries as in Game 4, including aborting the game if

needed.
Challenge. Now B chooses random messages m∗ and computes the challenge

ciphertext CT∗
θ = (CT∗

θ,1,CT
∗
θ,2,CT

∗
θ,3,CT

∗
θ,4) as follows:

1. Assemble d1, · · · , dt, v1, · · · , vm from the entries of the samples to form
d∗ = [d1, · · · , dt]T ∈ Z

t
q and v∗ = [v1, · · · , vm]T ∈ Z

m
q .

2. Set CT∗
θ,1 ← d∗ + m∗� q

2� ∈ Z
t
q.

3. Choose a uniformly random s2 ∈ Z
n
q and x2 ← Ψ

t

α, compute

CT∗
θ,2 ← UT s2 + x2 + H(m∗)�q

2
� ∈ Z

t
q.

4. Compute b∗ = H ′(CT∗
θ,1‖CT∗

θ,2) ∈ {−1, 1}l and R∗ :=
∑l

i=1 b∗
i R

∗
i ∈

{−l, · · · , l}m×m.
5. Set

CT∗
θ,3 :=

[
v∗

(R∗)Tv∗

]
∈ Z

2m
q .

6. Choose y2 ← Ψ
m

α and set

CT∗
θ,4 :=

[
(A′)T s2 + y2

(AR∗)T s2 + (R∗)Ty2

]
∈ Z

2m
q .

Then B sends CT∗
θ = (CT∗

θ,1,CT
∗
θ,2,CT

∗
θ,3,CT

∗
θ,4) to A.

Note that in case of no abort, one has hθ = 0 and so Fθ = (A|AR∗). When
the LWE oracle is pseudorandom, i.e., O = Os then v∗ = AT s + y for some
random noise vector y ← Ψ

m

α . Therefore CT∗
θ,3 in Step 5 satisfies:

CT∗
θ,3 :=

[
AT s + y

(AR∗)T s + (R∗)Ty

]
= (Fθ)T s +

[
y

(R∗)Ty

]
.

Moreover, d∗ = UT s + x for some x ← Ψ
t

α and therefore

CT∗
θ,1 = UT s + x + m∗�q

2
�.

One can easily see that

CT∗
θ,4 = [A′|AR∗]T s2 +

[
y2(R∗)Ty2

]
.

Therefore CT∗
θ is a valid ciphertext.

When O = O$ we have that d∗ is uniform in Z
t
q and v∗ is uniform in Z

m
q .

Then obviously CT∗
θ,1 is uniform. It follows also from the leftover hash lemma

(cf. [15, Theorem 8.38]) that CT∗
θ,3 is also uniform.
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Guess. After Phase 2, A guesses if it is interacting with a Game 5 or Game 6.
The simulator also implements the artificial abort from Game 5 and Game 6
and output the final guess as the answer to the LWE problem.

We have seen above that when O = Os then the adversary’s view is as in
Game 5. When O = O$ then the view of adversary is as in Game 6. Hence the
advantage ε′ of B in solving the LWE problem is the same as the advantage of
A in distinguishing Game 5 and Game 6. Since Pr[W6] = 0, we have

Pr[W5] = Pr[W5] − Pr[W6] ≤ ε′.

Hence combining the above results, we obtain that

ε = Pr[W0] ≤ 1
2
εH′,CR + εH,OW + 2qε′

which implies

ε′ ≥ 1
2q

(
ε − 1

2
εH′,CR − εH,OW

)
as desired. ��
Theorem 6. The PKEET with parameters (q, n,m, σ, α) as in (1) is IND-CCA2
secure provided that H ′ is a collision-resistant hash function, and the (Zq, n, Ψ̄α)-
LWE assumption holds. In particular, suppose there exists a probabilistic algo-
rithm A that wins the IND-CCA2 game with advantage ε, then there is a prob-
abilistic algorithm B that solves the (Zq, n, Ψ̄α)-LWE problem with advantage ε′

such that

ε′ ≥ 1
4q

(
ε − 1

2
εH′,CR

)

where εH′,CR is the advantage of A in breaking the collision resistance of H ′.

Proof. The proof is similar to that of Theorem5. Assume that there is a Type-II
adversary A who breaks the IND-CCA2 security of the PKKET scheme with
non-negligible probability ε. We construct an algorithm B who solves the LWE
problem using A. Assume again that there are N users in our PKEET system.
We now describe the behavior of B. Assume that θ is the target index of the
adversary A and the challenge ciphertext is CT∗

θ = (CT∗
θ,1,CT

∗
θ,2,CT

∗
θ,3,CT

∗
θ,4).

We will proceed the proof in a sequence of games. In game i, let Wi denote the
event that the adversary A correctly guesses the challenge bit. The adversary’s
advantage in Game i is

∣∣Pr[Wi] − 1
2

∣∣.
Game 0. This is the original IND-CCA2 game between the attacker A against

the scheme and the IND-CCA2 challenger.
Game 1. This is similar to Game 1 in the proof of Theorem5. Thus the advan-

tage of A in Game 1 is∣∣∣∣Pr[W0] − 1
2

∣∣∣∣ −
∣∣∣∣Pr[W1] − 1

2

∣∣∣∣ ≤ 1
2
εH′,CR.
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Game 2. This is similar to Game 3 in the proof of Theorem5 and we have

Pr[W2] = Pr[W1].

Game 3. Game 3 is similar to Game 2 except that we add an abort as in the
proof of Theorem5. It follows from the proof of [1, Theorem 25] that∣∣∣∣Pr[W3] − 1

2

∣∣∣∣ ≥ 1
4q

∣∣∣∣Pr[W2] − 1
2

∣∣∣∣ .
Game 4. This game is similar to Game 5 in the proof of Theorem5, and we

have
Pr[W3] = Pr[W4].

Game 5. Game 5 is identical to Game 4, except that the challenge ciphertext
is always chosen randomly. And thus the advantage of A is always 0.

We now show that Game 4 and Game 5 are computationally indistinguishable.
If the abort event happens then the games are clearly indistinguishable. We,
therefore, consider only the queries that do not cause an abort.

Suppose now A has a non-negligible advantage in distinguishing Game 4 and
Game 5. We use A to construct B to solve the LWE problem similar to the
proof of Theorem 5. Note that in the IND-CCA2 game, we allow the adversary
to query the trapdoor oracle OTd. And since we generate A′ together with TA′

from TrapGen(q, n) and we can answer TA′ to such queries.
We have seen above that when O = Os then the adversary’s view is as in

Game 4. When O = O$ then the view of the adversary is as in Game 5. Hence
the advantage ε′ of B in solving the LWE problem is the same as the advantage
of A in distinguishing Game 4 and Game 5. Since Pr[W5] = 1

2 , we have∣∣∣∣Pr[W4] − 1
2

∣∣∣∣ = |Pr[W4] − Pr[W5]| ≤ ε′.

Hence combining the above results, we obtain that

ε =
∣∣∣∣Pr[W0] − 1

2

∣∣∣∣ ≤ 1
2
εH′,CR + 4qε′

which implies

ε′ ≥ 1
4q

(
ε − 1

2
εH′,CR

)
as desired. ��

4 Conclusion

In this paper, we propose a direct construction of PKEET based on the hard-
ness of Learning With Errors problem. Efficiency is the reason to avoid the
instantiation of lattice-based PKEET from the generic construction by Lee et
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al. [8]. A concrete instantiation from [8] and comparative study are left for the
complete version. In addition, our PKEET scheme can be further improved by
utilizing improved IBE schemes [19,20] together with the efficient trapdoor gen-
eration [10] and faster Gaussian sampling technique [6], which we leave as future
work.
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