
Julian Jang-Jaccard
Fuchun Guo (Eds.)

 123

LN
CS

 1
15

47

24th Australasian Conference, ACISP 2019
Christchurch, New Zealand, July 3–5, 2019
Proceedings

Information Security
and Privacy

Lecture Notes in Computer Science 11547

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Julian Jang-Jaccard • Fuchun Guo (Eds.)

Information Security
and Privacy
24th Australasian Conference, ACISP 2019
Christchurch, New Zealand, July 3–5, 2019
Proceedings

123

Editors
Julian Jang-Jaccard
Massey University
Palmerston North, New Zealand

Fuchun Guo
University of Wollongong
Wollongong, NSW, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-21547-7 ISBN 978-3-030-21548-4 (eBook)
https://doi.org/10.1007/978-3-030-21548-4

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1002-057X
https://doi.org/10.1007/978-3-030-21548-4

Preface

This volume contains the papers presented at the 24th Australasian Conference on
Information Security and Privacy (ACISP 2019), which was held at the University of
Canterbury during July 3–5, 2019, in Christchurch, New Zealand. ACISP is an annual
international forum for international researchers and industry experts to present and
discuss the latest research, trends, breakthroughs, and challenges in the domain of
information security, privacy, and cybersecurity.

This year we received 129 submissions of excellent quality from 31 countries
around the world. Submitted papers were initially screened based on the submission
guidelines. Then, the papers were assigned to and evaluated by at least three Program
Committee members. Further, the papers were scrutinized during an extensive dis-
cussion. Finally, we accepted 32 full papers and eight short papers to be included in the
conference program a total of 40 papers. The revised papers were not subject to
editorial review and the authors bear full responsibility for their content. The sub-
mission and review process was supported by the EasyChair conference submission
server.

Among the accepted papers, the ACISP chairs selected two papers to be given the
Best Paper Award based on their novelty and scores. Further, one paper was awarded
the Best Student Paper.

The Best Paper Award went to:

– “Ciphertext-Delegatable CP-ABE for a Dynamic Credential: A Modular Approach”
by Jongkil Kim, Willy Susilo, Joonsang Baek, Surya Nepal, and Dongxi Liu

– “Field Extension in Secret-Shared Form and Its Applications to Efficient Secure
Computation” by Ryo Kikuchi, Nuttapong Attrapadung, Koki Hamada, Dai Ikarashi,
Ai Ishida, Takahiro Matsuda, Yusuke Sakai, and Jacob Schuldt

The Best Student Paper was awarded to:

– “Fast-to-Finalize Nakamoto-Like Consensus Protocol” by Shuyang Tang,
Sherman S. M. Chow, Zhiqiang Liu, and Joseph Liu

This year, we were very honoured to have the Jennifer Seberry Lecture delivered by
Professor Jennifer Seberry herself (University of Wollongong, Australia). The program
also included three invited talks by Professor Jong Sou Park (Korea Aerospace
University, South Korea), Associate Professor Joseph K. Liu (Monash University,
Australia), and Professor Zbigniew Kalbarczyk (University of Illinois at
Urbana-Champaign, USA).

We would like to thank all authors who submitted their papers to ACISP 2019, and
the conference attendees for their interest and support. We thank the Program
Committee members and the external reviewers for their hard work in reviewing the
submissions—the conference could not be successful without their expert reviews.

We thank the publication chairs, Mengmeng Ge and Hyoungshick Kim, for their hard
work in preparing the proceedings. We also thank the Organizing Committee and all
volunteers for their time and effort dedicated to managing the conference.

April 2019 Julian Jang-Jaccard
Fuchun Guo

vi Preface

Organization

General Chairs

Dong Seong Kim The University of Queensland, Australia
Jin B. Hong University of Western Australia, Australia

Program Chairs

Julian Jang-Jaccard Massey University, New Zealand
Fuchun Guo University of Wollongong, Australia

Publication Chairs

Mengmeng Ge Deakin University, Australia
Hyoungshick Kim Sungkyunkwan University, South Korea

Publicity Chairs

William Liu Auckland University of Technology, New Zealand
Simon Yusuf-Enoch University of Canterbury, New Zealand

Financial Chairs

Miguel Morales University of Canterbury, New Zealand

Program Committee

Cristina Alcaraz University of Malaga, Spain
Muhammad Rizwan Asghar The University of Auckland, New Zealand
Man Ho Au The Hong Kong Polytechnic University, SAR China
Joonsang Baek University of Wollongong, Australia
Shi Bai Florida Atlantic University, USA
Zubair Baig Edith Cowan University, Australia
Lynn Batten Deakin University, Australia
Elisa Bertino Purdue University, USA
Jinjun Chen University of Technology, Sydney
Liqun Chen University of Surrey, UK
Rongmao Chen National University of Defense Technology, China
Shiping Chen CSIRO, Australia
Xiaofeng Chen Xidian University, China
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Ernest Foo Queensland University of Technology, Australia

Fuchun Guo University of Wollongong, Australia
Gerhard Hancke City University of Hong Kong, SAR China
Jin Hong University of Western Australia, Australia
Qiong Huang South China Agricultural University, China
Xinyi Huang Fujian Normal University, China
Tibor Jager Paderborn University, Germany
Julian Jang-Jaccard Massey University, New Zealand
Peng Jiang The Hong Kong Polytechnic University, SAR China
Dong Seong Kim The University of Queensland, Australia
Huy Kang Kim Korea University, South Korea
Jongkil Kim University of Wollongong, Australia
Noboru Kunihiro The University of Tokyo, Japan
Fabien Laguillaumie Université de Lyon 1/LIP, France
Jianchang Lai Nanjing Normal University, China
Dongxi Liu CSIRO, Australia
Joseph Liu Monash University, Australia
Javier Lopez University of Malaga, Spain
Mark Manulis University of Surrey, UK
Mitsuru Matsui Mitsubishi Electric, Japan
Kazuhiko Minematsu NEC Corporation, Japan
Chris Mitchell Royal Holloway, University of London, UK
Kirill Morozov University of North Texas, USA
Yi Mu Fujian Normal University, China
Khoa Nguyen Nanyang Technological University, China
Thomas Peyrin Nanyang Technological University, China
Duong-Hieu Phan University of Limoges, France
Josef Pieprzyk Queensland University of Technology, Australia
Chun Ruan Western Sydney University, Australia
Pierangela Samarati University of Milan, Italy
Marcos Simplicio Escola Politecnica of the University of São Paulo,

Brazil
Leonie Simpson Queensland University of Technology, Australia
Ron Steinfeld Monash University, Australia
Willy Susilo University of Wollongong, Australia
Atsushi Takayasu The University of Tokyo, Japan
Qiang Tang New Jersey Institute of Technology, USA
Clark Thomborson The University of Auckland, New Zealand
Damien Vergnaud Université Pierre et Marie Curie, France
Ding Wang Peking University, China
Huaxiong Wang Nanyang Technological University, China
Guomin Yang University of Wollongong, Australia
Ji Won Yoon Korea University, South Korea
Yong Yu Shaanxi Normal University, China
Mingwu Zhang Hubei University of Technology, China

viii Organization

Additional Reviewers

Anglès-Tafalla, Carles
Bamiloshin, Michael
Banegas, Gustavo
Banik, Subhadeep
Bemmann, Pascal
Bert, Pauline
Blanco Justicia, Alberto
Buriro, Attaullah
Castagnos, Guilhem
Chen, Haixia
Choudhuri, Arka Rai
Chu, Cheng-Kang
Chvojka, Peter
Cominetti, Eduardo
Cui, Shujie
Davies, Gareth
Dragan, Constantin

Catalin
Du, Jiangyi
Duong, Dung Hoang
El Kassem, Nada
Fernandez, Carmen
Ferraris, Davide
Gao, Yansong
Gardham, Daniel
Gerault, David
González, Alonso
Granger, Robert
Gunasinghe, Hasini
Guo, Kaiwen
Guo, Qingwen
Hassan, Fadi
He, Jingnan

Herranz, Javier
Hu, Jingwei
Hu, Kexin
Hu, Qinwen
Hua, Zhen
Huang, Jianye
Hébant, Chloé
Inoue, Akiko
Isobe, Takanori
Iwata, Tetsu
Jiang, Shaoquan
Keller, Marcel
Kim, Intae
Kim, Jon-Lark
Komo, Andrea Erina
Kuchta, Veronika
Li, Bingbing
Li, Nan
Li, Yanan
Li, Yannan
Li, Zhe
Lin, Chengjun
Liu, Jia
Lu, Xingye
Lu, Zhenliang
Luo, Xiapu
Ma, Xu
Martinez, Sergio
Miller, Shaun
Niehues, David
Parra Arnau, Javier
Phuong, Tran Viet Xuan
Pryvalov, Ivan

Ramchen, Kim
Ruan, Ou
Sakzad, Amin
Santini, Paolo
Sarkar, Santanu
Shen, Hua
Silva, Marcos V. M.
Singla, Ankush
Soria-Comas, Jordi
Sun, Hung-Min
Sun, Shifeng
Suzuki, Daisuke
Takashima, Katsuyuki
Trinh, Viet Cuong
Tucker, Ida
Wang, Haoyang
Wang, Yilei
Wang, Yuanhao
Wen, Weiqiang
Xia, Zhe
Xu, Dongqing
Xue, Haiyang
Yamakawa, Takashi
Yamamoto, Takumi
Yang, S. J.
Yu, Jiangshan
Yuen, Tsz Hon
Zhang, Xiaoyu
Zhang, Yuexin
Zhao, Shengnan
Zhou, Yanwei

Organization ix

Contents

Encryption

Ciphertext-Delegatable CP-ABE for a Dynamic Credential:
A Modular Approach. 3

Jongkil Kim, Willy Susilo, Joonsang Baek, Surya Nepal, and Dongxi Liu

Location Based Encryption. 21
Tran Viet Xuan Phuong, Willy Susilo, Guomin Yang, Jun Yan,
and Dongxi Liu

Group ID-Based Encryption with Equality Test. 39
Yunhao Ling, Sha Ma, Qiong Huang, Ru Xiang, and Ximing Li

Strong Post-Compromise Secure Proxy Re-Encryption 58
Alex Davidson, Amit Deo, Ela Lee, and Keith Martin

Offline Witness Encryption from Witness PRF and Randomized Encoding
in CRS Model . 78

Tapas Pal and Ratna Dutta

Two-Client and Multi-client Functional Encryption for Set Intersection 97
Tim van de Kamp, David Stritzl, Willem Jonker, and Andreas Peter

Post-quantum Security

Improving the Security of the DRS Scheme with Uniformly Chosen
Random Noise . 119

Arnaud Sipasseuth, Thomas Plantard, and Willy Susilo

A Lattice-Based Public Key Encryption with Equality Test
in Standard Model. 138

Dung Hoang Duong, Kazuhide Fukushima, Shinsaku Kiyomoto,
Partha Sarathi Roy, and Willy Susilo

Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets 156
Wilson Alberto Torres, Veronika Kuchta, Ron Steinfeld, Amin Sakzad,
Joseph K. Liu, and Jacob Cheng

Two New Module-Code-Based KEMs with Rank Metric 176
Li-Ping Wang and Jingwei Hu

Adding Distributed Decryption and Key Generation to a Ring-LWE Based
CCA Encryption Scheme . 192

Michael Kraitsberg, Yehuda Lindell, Valery Osheter, Nigel P. Smart,
and Younes Talibi Alaoui

Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem 211
Terry Shue Chien Lau and Chik How Tan

Pseudorandom Functions from LWE: RKA Security and Application 229
Nan Cui, Shengli Liu, Yunhua Wen, and Dawu Gu

d-subgaussian Random Variables in Cryptography 251
Sean Murphy and Rachel Player

Cryptocurrency Related

Fast-to-Finalize Nakamoto-Like Consensus. 271
Shuyang Tang, Sherman S. M. Chow, Zhiqiang Liu, and Joseph K. Liu

A Flexible Instant Payment System Based on Blockchain 289
Lin Zhong, Huili Wang, Jan Xie, Bo Qin, Joseph K. Liu,
and Qianhong Wu

Risk of Asynchronous Protocol Update: Attacks to Monero Protocols 307
Dimaz Ankaa Wijaya, Joseph K. Liu, Ron Steinfeld, and Dongxi Liu

A Combined Micro-block Chain Truncation Attack on Bitcoin-NG 322
Ziyu Wang, Jianwei Liu, Zongyang Zhang, Yanting Zhang, Jiayuan Yin,
Hui Yu, and Wenmao Liu

Foundations

Field Extension in Secret-Shared Form and Its Applications to Efficient
Secure Computation . 343

Ryo Kikuchi, Nuttapong Attrapadung, Koki Hamada, Dai Ikarashi,
Ai Ishida, Takahiro Matsuda, Yusuke Sakai, and Jacob C. N. Schuldt

Efficient Secure Multi-Party Protocols for Decision Tree Classification 362
Atsunori Ichikawa, Wakaha Ogata, Koki Hamada, and Ryo Kikuchi

The Wiener Attack on RSA Revisited: A Quest for the Exact Bound 381
Willy Susilo, Joseph Tonien, and Guomin Yang

Function-Dependent Commitments from Homomorphic Authenticators 399
Lucas Schabhüser, Denis Butin, and Johannes Buchmann

Security Against Subversion in a Multi-surveillant Setting 419
Geng Li, Jianwei Liu, and Zongyang Zhang

xii Contents

System and Network Security

Dimensionality Reduction and Visualization of Network Intrusion
Detection Data . 441

Wei Zong, Yang-Wai Chow, and Willy Susilo

DOCSDN: Dynamic and Optimal Configuration
of Software-Defined Networks . 456

Timothy Curry, Devon Callahan, Benjamin Fuller, and Laurent Michel

A Low Overhead Error Correction Algorithm Using Random Permutation
for SRAM PUFs . 475

Liang Zheng, Donglei Han, Zongbin Liu, Cunqing Ma, Lingchen Zhang,
and Churan Tang

Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error
in Java Applications . 494

Mohammadreza Ashouri

AMOGAP: Defending Against Man-in-the-Middle and Offline Guessing
Attacks on Passwords . 514

Jaryn Shen, Timothy T. Yuen, Kim-Kwang Raymond Choo,
and Qingkai Zeng

MineAuth: Mining Behavioural Habits for Continuous Authentication
on a Smartphone. 533

Xiaojian Pang, Li Yang, Maozhen Liu, and Jianfeng Ma

Symmetric Cryptography

Related-Key Boomerang Attacks on GIFT with Automated Trail Search
Including BCT Effect . 555

Yunwen Liu and Yu Sasaki

Fast Chosen-Key Distinguish Attacks on Round-Reduced AES-192. 573
Chunbo Zhu, Gaoli Wang, and Boyu Zhu

A Highly Secure MAC from Tweakable Blockciphers with Support
for Short Tweaks . 588

Yusuke Naito

Short Papers

Witness Encryption with (Weak) Unique Decryption and Message
Indistinguishability: Constructions and Applications 609

Dongxue Pan, Bei Liang, Hongda Li, and Peifang Ni

Contents xiii

Speeding up Scalar Multiplication on Koblitz Curves
Using l4 Coordinates . 620

Weixuan Li, Wei Yu, Bao Li, and Xuejun Fan

Constructing Hyperelliptic Covers for Elliptic Curves over Quadratic
Extension Fields . 630

Xuejun Fan, Song Tian, Bao Li, and Weixuan Li

Secure and Compact Elliptic Curve Cryptosystems 639
Yaoan Jin and Atsuko Miyaji

A Quantitative Study of Attribute Based Correlation in Micro-databases
and Its Effects on Privacy . 651

Debanjan Sadhya and Bodhi Chakraborty

Tagging Malware Intentions by Using Attention-Based
Sequence-to-Sequence Neural Network . 660

Yi-Ting Huang, Yu-Yuan Chen, Chih-Chun Yang, Yeali Sun,
Shun-Wen Hsiao, and Meng Chang Chen

A Novel Semi-supervised Adaboost Technique Based
on Improved Tri-training . 669

Dunming Li, Jenwen Mao, and Fuke Shen

Automated Cash Mining Attacks on Mobile Advertising Networks 679
Woojoong Ji, Taeyun Kim, Kuyju Kim, and Hyoungshick Kim

Author Index . 687

xiv Contents

Encryption

Ciphertext-Delegatable CP-ABE
for a Dynamic Credential:

A Modular Approach

Jongkil Kim1(B), Willy Susilo1, Joonsang Baek1, Surya Nepal2,
and Dongxi Liu2

1 School of Computing and Information Technology, University of Wollongong,
Wollongong, Australia

{jongkil,wsusilo,baek}@uow.edu.au
2 Data61, Commonwealth Scientific and Industrial Research Organisation,

Marsfield, Australia
{surya.nepal,dongxi.liu}@data61.csiro.au

Abstract. We introduce a new technique converting Ciphertext-policy
Attribute-based Encryption (CP-ABE) to Ciphertext-delegatable CP-
ABE (CD-CP-ABE). Ciphertext delegation is an important technique
to deal with dynamic credentials, which enable users to be joined and
revoked at any time while the system is operating. The delegation of CD-
CP-ABE allows third parties such as cloud or proxy servers to convert
a ciphertext to the other one with a more restrictive policy. Therefore,
it can be used to revoke users dynamically in an access control sys-
tem. Prior to our work, a delegation algorithm of CD-CP-ABE is not
generic and the completeness of the delegation is shown when the size
of the delegated access structure increases quadratically with the sizes
of original and revocation access structures. In this paper, we provide
a generic delegation algorithm to reform CP-ABE to CD-CP-ABE. We
generalize properties necessary for the ciphertext delegation using the
syntax of encodings for the modularity and construct a generic delega-
tion algorithm based on those properties. In our new technique, we build
the delegated access structures, which generally determines the size of
the ciphertext, in a defined way. The size of delegated access structures
grows only linearly with those of original and revocation access struc-
tures. Through presenting instances, we show that our technique is read-
ily applicable to existing CP-ABE schemes including CP-ABE scheme
with non-monotonic access structures.

Keywords: Ciphertext-delegation · Revocation ·
Attribute-based Encryption · Dynamic access control

1 Introduction

Attribute-based Encryption (ABE) [22] is an encryption scheme that supports
fine-grained access control. ABE is an effective solution to building up access
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-21548-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_1

4 J. Kim et al.

control systems that need a flexible and complicated access policy such as a
Boolean formula. There are two types of ABE schemes, Key-policy Attribute-
based Encryption (KP-ABE) and Ciphertext-policy Attribute-based Encryption
(CP-ABE) [11]. In particular, CP-ABE is known as a more intuitive and practical
system because users have a key based on their attributes and a ciphertext is
encrypted using an access policy.

An access control system realized by CP-ABE is often static rather than
dynamic. In a static CP-ABE system, once ciphertexts are generated, they can-
not be modified. For example, if Alice has lost her secret key, then a static access
control system must decrypt and encrypt again all encrypted credentials that
Alice can access to revoke her secret key from the system. This rather greedy
technique puts a significant computational burden on the system because the
decryption of ABE schemes usually requires computationally demanding oper-
ations such as pairing computations. Moreover, in the system, the decryption
process can be permitted only by a centralized authority who can decrypt any
ciphertexts.

Revocable ABE [4,5,16,24] enables revocation by either including a revoca-
tion policy in the ciphertext when the sender encrypts data or requiring a regular
update of users’ private keys to revoke users. The former is called direct revoca-
tion. Direct revocation cannot support dynamic credential. It needs a revocation
list when the data is encrypted. The later is called indirect revocation. Indirect
revocation supports a dynamic access control system, but updating users’ pri-
vate keys requires significant communication burdens on the system since it
needs secure key distribution between a key generator and users for the update.

Ciphertext-delegation is also useful for the dynamic access control. Sahai,
Seyalioglu and Waters [21] showed that ciphertexts of CP-ABE schemes based
on Linear Secret Sharing Scheme (LSSS) can be updated through a delegation
process. In particular, if an access structure A

′ can be spanned from another
access structure A and a ciphertext satisfies several properties of replicating
operations necessary for the span, the ciphertext encrypted under A′ is delegated
from the ciphertext encrypted under A. However, their delegation algorithm is
operation-wise. It is not clear how we construct A

′ when the revocation list is
given and whether we can generically formulate a delegation algorithm.

Moreover, deriving the delegated access structure A′ directly from the original
access structure of A is not trivial according to Lewko and Waters [15]. Lewko
and Waters state that it is not always possible even if A′ is more restrictive than
A. Due to this, the completeness of the delegation over LSSS can be proved only
by an inefficient composite of those two access structures. Moreover, the size of
this composited access structure increases quadratically with the sizes of both
A and A

′.

1.1 Our Contributions

We introduce a generic technique converting a CP-ABE scheme to a ciphertext-
delegatable CP-ABE (CD-CP-ABE) scheme. In our work, a ciphertext encrypted
under an access structure A can be reformed to a ciphertext under another access

Ciphertext-Delegatable CP-ABE for a Dynamic Credential 5

structure A′ through a delegation process. Compared with the existing delegation
techniques for LSSS suggested by Sahai et al. [21] and Lewko and Waters [15],
ours has the following advantages:

– We provide a generic delegation algorithm using a novel encoding technique.
We take a modular approach as suggested in the encoding techniques for ABE
schemes [3,23]. We generalize properties commonly shared among CP-ABE
schemes and provide a new delegation algorithm based on those properties.
Therefore, our delegation algorithm for the resulting CP-ABE schemes is
constructed in a modular way using the encryption algorithms of their original
CP-ABE schemes.

– The size of a delegated access structure A
′ increases only linearly with the

sizes of the original access structure A and the revocation access structure A∗.
In order to achieve this, we define a delegated access policy T ′ corresponding
to A

′ as T ′ = (T AND R) where T and R are Boolean access policies corre-
sponding to A and A

∗, respectively. By defining the delegated access policy
in this way, we can efficiently construct a delegated access structure A

′ by
combining A and A

∗. We show the completeness of our proposed algorithm
using the composition model suggested by Nikov and Nokova [18].

– Our technique applied to multiple existing CP-ABE schemes for LSSS. In
particular, we applied our technique to CP-ABE schemes supporting different
types of access policies, a monotonic access policy [13] and a non-monotonic
access policy [25]. As results, we show that they proved that they are cipher-
text delegatable. Notably, in our CD-CP-ABE scheme with a non-monotonic
access policy, a sender dynamically revokes users based on their attributes by
updating access policies with “NOT” gates through the delegation algorithm.
For example, a ciphertext can be encrypted for whole university students (i.e.
“The University” AND “Student”). Later, this ciphertext can be updated to
a new ciphertext to revoke users in “CS group” by appending NOT “CS
group” to the original policy (i.e. (“The University” AND “Student”) AND
NOT “CS group”)).

1.2 Related Work

Revocation systems [10,14,17] are a type of broadcast encryption (BE) [9]. In
revocation systems, revoked users cannot decrypt ciphertexts although all other
users in the system can decrypt ciphertexts. More fine-grained access control is
archived by ABE supporting a non-monotonic access structure [19,20,25]. Non-
monotonic access structure allows NOT gates. Hence, revocation can be more
expressively described by negating attributes in an access policy.

Re-encryption is one of the techniques that efficiently support dynamic
credentials. It can be used to revoke users without decryption by re-encrypting
ciphertexts. Updating an access policy through re-encryption is faster since it
saves the time taken to decrypt ciphertexts. Moreover, it enables to delegate
re-encryption to third parties such as a proxy server without sharing the master
key. Existing re-encryption techniques in the literature were introduced only for

6 J. Kim et al.

schemes whose access policies in ciphertexts are simple (e.g. Broadcast Encryp-
tion (BE), Hierarchical Identity-based Encryption (HIBE) and KP-ABE). Re-
encrypting ciphertexts for CP-ABE is difficult since ciphertexts in CP-ABE are
associated with a complex logic such as monotonic and non-monotonic boolean
access policies.

Revocable Attribute-based Encryption [4,5,16,24] were introduced to
revoke illegitimate users efficiently. They are conjunctive schemes which combine
broadcast encryption (BE) and ABE. An access policy can be set using both
users’ attributes and identities. However, in those schemes, revocation can be
archived through BE using users’ identities, and Only “AND” gates allowed for
revoked identities (i.e. all users in a revocation list must be revoked).

Delegation is widely used in Hierarchical Identity Based Encryption [8,15],
Wildcarded Identity Based Encryption [1,2], and KP-ABE [15]. In those
schemes, a user can delegate its access rights to the other users by issuing dele-
gated keys from their keys. Although those schemes do not aim to revoke users in
a ciphertext, there may be an interesting extension of our works since converting
KP-ABE to CP-ABE is well researched in [6].

2 Preliminaries

2.1 Bilinear Maps

Let G be a group generator which takes a security parameter λ as input and
outputs (p, G1, G2, GT , e), G1, G2 and GT are cyclic groups of prime order p,
and e : G1 × G2 → GT is a map such that e(ga, hb) = e(g, h)ab for all g ∈ G1

h ∈ G2 and a, b ∈ Zp and e(g, h) �= 1GT
∈ GT whenever g �= 1G1 and h �= 1G2 .

We assume that the group operations in G1, G2 and GT as well as the bilinear
map e are all computable in polynomial time with respect to λ. It should be
noted that the map e is symmetric if G1 = G2. If G1 �= G2, the map e is
asymmetric.

2.2 Monotonic and Non-monotonic Access Structure

Definition 1 (Access Structure) [7]. Let {P1, . . . , Pn} be a set of parties. A
collection A ⊂ 2{P1,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊂ C, then
C ∈ A. An monotonic access structure is a monotone collection A of non-empty
subsets of {P1, . . . , Pn}, i.e., A ⊂ 2{P1,...,Pn} \ {}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

Definition 2 (Linear Secret-Sharing Schemes (LSSS)) [7]. A secret sharing
scheme Π over a set of parties P is called linear (over Zp) if (1) The shares
for each party form a vector over Zp. (2) There exists a matrix A called the
share-generating matrix for Π. The matrix A has m rows and � columns. For
all i = 1, . . . , m, the ith row of A is labeled by a party ρ(x) (ρ is a function from
{1, . . . , m} to P). When we consider the column vector v = (s, r2, . . . , r�), where
s ∈ Zp is the shared secret and r2, . . . , r� ∈ Zp are randomly chosen, then Av is

Ciphertext-Delegatable CP-ABE for a Dynamic Credential 7

the vector of m shares of the secret s according to Π. The share (Av)i belongs
to party ρ(x).

Definition 3 (A valid access structure). A Linear Secret Sharing Scheme Π
is valid iff there exists ω = (ω1, . . . , ωm) ∈ Z

m
p such that

∑
x∈[1,m] ωxAx =

(1, 0, . . . , 0) ∈ Z
n
p .

Our method is also applicable to CP-ABE schemes with non-monotonic
access structures. For a non-monotonic access structure, we adopt a technique
from Ostrovsky, Sahai and Waters [20].

Moving from Monotone to Non-monotonic Access Structure. They
assume a family of linear secret sharing schemes {ΠA}A∈A for a set of monotonic
access structures A ∈ A. For each access structure A ∈ A, the set of parties P
underlying the access structures has the following properties: The names of the
parties may be of two types: either it is normal (like x) or negated (like x̄), and
if x ∈ P then x̄ /∈ P and vice versa.

We let P̃ denote the set of all normal parties in P. For every set S̃ ⊂ P̃,
N(S̃) ⊂ P is defined by N(S̃) = S̃ ∪ {x̄|x ∈ P̃ \ S̃}. For each access structure
A ∈ A over a set of parties P, a non-monotonic access structure NM(A) over
the set of parties P̃ is defined by specifying that S̃ is authorized in NM(A) iff
N(S̃) is authorized in A. Therefore, the non-monotonic access structure NM(A)
will have only normal parties in its access sets. For each access set X ∈ NM(A),
there will be a set in A that has the elements in X and negated elements for
each party not in X. Finally, a family of non-monotonic access structures Ã is
defined by the set of these NM(A) access structures.

2.3 Definition of CD-CP-ABE

Our CD-CP-ABE consists of the following five algorithms. In the algorithms, a
user has a set of attributes S, and each encryption needs an access policy A.
Particularly, a delegation algorithm can convert a ciphertext CTA to CTA′ only
using public parameters pp.

– Setup(1n) → (pp, msk): It takes as inputs the security parameter n and gen-
erate public parameters pp (which are shared among all users) and msk.

– KeyGen(S, msk) → SKS : For a user who has a set of attributes S, It computes
SKS using msk.

– Encrypt (pp, A, M) → CTA: It takes as inputs the public parameters pp, an
access policy A and a message M ∈ M to be encrypted. It outputs CTA

– Delegate (pp, CTA, A∗) → CTA′ : It takes as inputs the public parameters pp,
a revocation access policy A

∗ and a ciphertext CTA. It outputs CTA′ for the
delegated access structure A

′.
– Decrypt (SKS , CTA′) → M : It takes as inputs the private key SKS and CTA′ .

If the set of attribute S of SKS satisfies the policy A
′ of the ciphertext CTA′ ,

it outputs the message M encrypted in the ciphertext.

8 J. Kim et al.

2.4 IND-CPA Security of the CD-CP-ABE

A CD-CP-ABE is selectively secure if there is no PPT adversary A who has
a non-negligible advantage in the game between A and the challenge C defined
below.

Init: A declares the access structure A
′ for the challenge ciphertext to C.

Setup: C runs Setup(1n) to create (pp, msk). pp is sent to A.
Phase 1: A requests private keys corresponding to a set of attributes Si. For

each Si, C returns SKSi
created by running KeyGen(Si, msk).

Challenge: When A requests the challenge ciphertext of A′ such that Si does
not satisfy A

′ for ∀i ∈ {1, . . . , q1}, and submits two messages M0 and
M1, C randomly selects b from {0, 1} and returns the challenge ciphertext
CTA′ created by 1) running Encrypt(pp,A′,Mb) or 2) generating CTA from
Encrypt(pp,A,Mb) for any A that can be delegated to A

′ through A
∗ and

converting it to CTA′ using Delegate(pp, CTA,A∗).
Phase 2: This is identical with Phase 1 except for the additional restriction

that Si does not satisfy A
′ for ∀i ∈ {q1 + 1, ..., qt}

Guess: A outputs b′ ∈ {0, 1}. If b = b′, then A wins.

We define an adversary A’s advantage as AdvABE
A (λ) := |Pr[b = b′] − 1/2|.

We define adaptive security of CD-CP-ABE by removing Init. In the adap-
tive security model, the challenger cannot get any information of the challenge
ciphertext before it sees the adversary’s challenge ciphertext query.

3 Delegated Access Structures

Notation. For the rest of the discussion, we briefly explain the terms used
in this paper. We use an access policy to denote the human-readable Boolean
formula such as (“The University” AND “Student”). An access policy can be
presented using an access structure of a linear secret sharing scheme. Each access
structure consists of an access matrix and a mapping function ρ (i.e., A =
(A, ρ)). An original access policy means the access policy of the input ciphertext
of the delegation algorithm. A revocation access policy is the access policy to
revoke invalid users from the original access policy. The delegated access policy
means that the resulting access policy where the invalid users are revoked from
the original access policy by the revocation access policy. We often use T , R
and T ′ to an original access policy, a revocation policy and a delegated access
policy, respectively. We also use A, A∗ and A

′ to denote the access structures
corresponding to T , R and T ′, respectively across the paper.

The delegation process only revokes attributes from T . Hence, an access
policy T ′ delegated from T is always equivalent or more restrictive than the
original access policy T [15]. We define equivalent or more restrictive access
policy as follows:

Definition 4 (Equivalent or more restrictive access policy) [15]. For two boolean
access policies T and T ′, T ′ is equivalent or more restrictive than T iff T ′ = T
AND T ′.

Ciphertext-Delegatable CP-ABE for a Dynamic Credential 9

3.1 Difficulty

Lewko and Waters [15] introduced a key-delegatable KP-ABE where the private
key for an original access structure A = (A, ρ) is delegated to the key for a
delegated access structure A

′ = (A′, ρ′) if T ′ is equivalent or more restrictive
than T where T ′ and T are access policies corresponding to A

′ and A. However,
given A and A

′, the completeness of the delegation algorithm is only proved by
an access matrix (A′′, ρ′′) where

A′′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A E1 E2 · · · Em

0 A′ 0 · · · 0
0 0 A′ · · · 0
...

...
...

. . .
...

0 0 0 · · · A′

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Here, Ei is a matrix of which the ith entry of the first column is 1 and the all
others are 0. Therefore, the size of A′′ is quadratic to the sizes of A and A′.

Later, Sahai et al. show that if a ciphertext supports several properties that
support the spanning operations necessary to convert A to A′, then, those CP-
ABE schemes are also ciphertext-delegatable. Nevertheless, because their algo-
rithm is also depending on spanning operations which are similar to Lewko and
Waters’ delegation technique, the complete delegation algorithm can be built
only through the inefficient access structure of which the size increases quadrat-
ically in the sizes of an original access structure and a delegated access structure
as shown above. Moreover, it is not clear whether we can construct the generic
delegation algorithm using the properties they proposed.

3.2 Delegated Access Structures

In this paper, we show that there exists a more efficient way to construct a
delegated access structure from an original access structure and a revocation
access structure.

Delegated Access Policies. For the purpose of revocation, we specifically
define a delegated access policy T ′ by combining a revocation policy R to an
original policy T . We use “AND” gate to set T ′ so that T ′ = T AND R.
This combined access policy T ′ is always equivalent or more restrictive than T
whatever the revocation policy R is. We prove it in Proposition 1 following:

Proposition 1. For any boolean policy T and R, T ′ = T AND R is equivalent
or more restrictive than T .

Proof: Proposition 1 is proved because T ′ AND T = (T AND R) AND T =
T AND R = T ′. �

10 J. Kim et al.

Fig. 1. A delegated access structure with multiple revocation access structures

The delegated access policy T ′ = T AND R can be used to dynamically
revoke users in an ABE scheme. For example, in ABE with a monotonic access
policy which only uses “AND” and “OR” gates, if the original access policy was
(“CS group” OR “Math group”). If all users have either “Student” or “Staff”
as an attribute, we can revoke all students by appending “Staff” with an AND
gate to the original access policy (i.e. T = (“CS group” OR “Math group”), R
= “Staff”, T ′ = (“CS group” OR“Math Group”) AND “Staff”).

Delegated Access Structures. We let A, A
∗ and A

′ be access structures
corresponding respectively to the access policies T , R and T ′. Using the com-
position model suggested by Nikov and Nokova [18], we can derive a compact
delegated access structure A

′ using A and A
∗. Formally, we define a delegated

access structure, A′, for LSSS as follows:

Definition 5 (Delegated Access Structure). Given an m × n access structures
A = (A, ρ) and an m̂ × n̂ access structure A

∗ = (A∗, ρ∗), the (m + m̂) × (n + n̂)
access policy A

′ = A ∧ A
∗ consisting of the following (A′, ρ′):

A′ =
(

A −a1| 0
0 A∗

)

, ρ′(i) =
{

ρ(i) if i ≤ m
ρ∗(i − m) if i > m

where a1 is the first column of A. We call A′ the delegated access structure of A
and A

∗.

Recursiveness. Revocations may be required repeatedly in the an dynamic access
control system. In this case, our delegation algorithm also can be applied recur-
sively to a ciphertext because the delegation of a ciphertext does not change
the structure of ciphertext. We depict multiple revocation structures can be
appended to the original access structure repeatedly in Fig. 1.

Particularly, we let A = (A, ρ) and A
〈ri〉 = (A〈ri〉, ρ〈ri〉) denote access struc-

tures of T and Ri, respectively, and A
[k] = (A[k], ρ[k]) represents an access

structure of a delegated access policy T ′ = ((. . . ((T AND R1) AND R2) AND
. . .) AND Rk) where the revocation was permitted k times. Then, we can gen-
erate A

[k] by computing A
[k] = ((. . . ((A∧A

〈r1〉)∧A
〈r2〉)...)∧A

〈rk〉). A[k] consists
of the access matrix A[k] and the mapping function ρ[k]) following:

Ciphertext-Delegatable CP-ABE for a Dynamic Credential 11

A[k] =

(
A[k−1] −a

[k−1]
1 | 0

0 A〈rk〉

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A −a1|0 · · · −a1|0 −a1|0
0 A〈r1〉 · · · 0 0
...

...
. . .

...
...

0 0 · · · A〈rk−1〉 0
0 0 · · · 0 A〈rk〉

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

ρ[k](i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(i) if i ≤ m0

ρ〈r1〉(i − m0) if m0 < i ≤ m0 + m1

...
...

ρ〈rk〉(i −
∑

j∈[0,k−1] mj) if
∑

j∈[0,k−1] mj < i ≤
∑

j∈[0,k] mj

.

Here, a1 is a matrix of which the first column of A and m0 × n0 and mi × ni

denotes the sizes of A and A〈ri〉, respectively. Table 1 compares the secrets shared
by rows of A[k−1] and A[k] when the kth revocation access structure, A〈rk〉, is
composited to the delegated access structure A

[k−1] = (A[k−1], ρ[k−1]).
In the table, s and s〈ri〉 denote the first and the (

∑
j∈[0,i−1] mj+1)th elements

of a random vector s[k] corresponding to A[k] and x is the index of rows for the
access matrix. For example, the first m0 rows of the access matrix A[k−1] are used
to share s−s〈r1〉 − . . .−s〈rk−1〉, but after the additional revocation, in the access
matrix A[k], the first m0 rows are updated to share s−s〈r1〉− . . .−s〈rk−1〉−s〈rk〉.

Table 1. Shared secrets before and after the kth revocation

A[k−1]

x ∈ [1, m0] : s − s〈r1〉 − . . . − s〈rk−1〉

x ∈ [m0 + 1, m0 + m1] : s〈r1〉

...

x ∈ [(
∑

j∈[0,k−2] mj) + 1,
∑

j∈[0,k−1] mj] : s〈rk−1〉

A[k]

x ∈ [1, m0] : s − s〈r1〉 − . . . − s〈rk−1〉 − s〈rk〉

x ∈ [m0 + 1, m1] : s〈r1〉

...

x ∈ [(
∑

j∈[0,k−2] mj) + 1,
∑

j∈[0,k−1] mj] : s〈rk−1〉

x ∈ [(
∑

j∈[0,k−1] mj) + 1,
∑

j∈[0,k] mj] : s〈rk〉

Completeness. The following Propositions 2 and 3 show that the completeness
of the delegated access structure defined above. Those propositions are refined
for LSSS from Nikov and Nokova’s proofs in [18].

Proposition 2. If an m×n sized A = (A, ρ) and an m̂× n̂ sized A
∗ = (A∗, ρ∗)

are valid LSSS access structures, A′ := A ∧ A
∗ = (A′, ρ′), is also a valid LSSS

access structure.

12 J. Kim et al.

Proof: Because A and A
∗ are valid access structures, there exist ω =

(ω1, . . . , ωm) ∈ Z
m
p and ω̂ = (ω̂1, . . . , ω̂m̂) ∈ Z

m̂
p such that

∑
x∈[1,m] ωxAx =

(1, 0, . . . , 0) ∈ Z
n
p and

∑
x∈[1,m̂] ω̂xA∗

x = (1, 0, . . . , 0) ∈ Z
n̂
p where Ax and A∗

x are
the xth row of A and A∗, respectively.

Then, the vector ω′ := (ω′
1, . . . , ω

′
m′) = (ω1, . . . , ωm, ω̂1, . . . , ω̂m̂) satisfies∑

x∈[1,m′] ω
′
xA′

x = (1, 0, . . . , 0) where m′ = m + m̂ because

∑

x∈[1,m′]

ω′
xA′

x =
∑

x∈[1,m]

ωxA′
x +

∑

x∈[1,m̂]

ω̂xA′
x+m

= (1, 0, . . . , 0
︸ ︷︷ ︸

n

,−1, 0, . . . , 0
︸ ︷︷ ︸

n̂

) + (0, 0, . . . , 0
︸ ︷︷ ︸

n

, 1, 0, . . . , 0
︸ ︷︷ ︸

n̂

)

= (1, 0, . . . , 0
︸ ︷︷ ︸

n+n̂

).

Note that the (n + 1)th coordinate of
∑

x∈[1,m] ωxA′
x equals to -1 since ω�a1

equals to the first entity of
∑

x∈[1,m] ωxAx where ω = (ω1, ..., ωm). �

Proposition 3. If A′ := A ∧ A
∗ = (A′, ρ′) for an m × n sized A = (A, ρ) and

an m̂ × n̂ sized A
∗ = (A∗, ρ∗) is a valid LSSS access structure, A and A

∗ are
also valid LSSS access structures.

Proof: We let ai and a′
i denote the ith column of A and A′, respectively.

Because A
′ is a valid access structure, there exist ω = (ω1, . . . , ωm+m̂) ∈ Z

m+m̂
p

such that
∑

x∈[1,m+m̂] ωxA′
x = (1, 0, . . . , 0) ∈ Z

n+n̂
p . Therefore, ω� · a′

1 = 1 and
ω� · a′

i = 0 for all i ∈ [2, n + n̂].
We use ω1 and ω2 to write vectors consisting of the first m coordinators and

the next m̂ coordinator of ω, respectively (i.e. ω = (ω1, ω2)). Then,

ω� · A′ = (ω1,ω2)� ·
(

A −a1| 0
0 A∗

)

= (ω�
1 · A + ω2

� · 0
︸ ︷︷ ︸

n

,−ê1 + ω�
2 · A∗

︸ ︷︷ ︸
n̂

)

= (e1︸︷︷︸
n

, 0︸︷︷︸
n̂

).

where an n sized vector e1 and an n̂ sized vector ê1 has 1 as the first coordinator
and 0 as the all other coordinates.

The first n columns of ω� · A′ is equivalent to e1. Therefore, A is a valid
LSSS matrix since there exist ω1 such that ω�

1 ·A = e1 = (1, 0, . . . , 0). Moreover,
because −ê1 + ω�

2 · A∗ = 0 (i.e. ω�
2 · A∗ = ê1), A∗ is a also valid access matrix.

�

Ciphertext-Delegatable CP-ABE for a Dynamic Credential 13

Intuitively, Propositions 2 and 3 show that the delegated access structure A
′

is a share of secrets between two policies A and A
∗. If we set a random vector

s′ corresponding to the access matrix (A′, ρ′) to (s′
1, . . . , s

′
n+1, . . .). The first m

rows of A′ used to share s′
1 − s′

n+1 and the rest will share s′
n+1. This specific

composition between A and A∗ enables a ciphertext encrypted under (A, ρ) to
be delegated to the other ciphertext encrypted under (A′, ρ′).1

4 Ciphertext Delegation

For our generic delegation algorithm, we use a notation of encoding frameworks
[3,12,23]. Our algorithm does not require the full syntax of encoding frameworks.
We only need to use encoding notations for ciphertexts and public parameters
which are required for the delegation process.

Syntax. We define common values h ∈ Z
κ
p to denote exponents of public param-

eters (i.e. pp = gh) where κ is a parameter related with the size of public param-
eters. Then, we use a sequence of polynomials c(A,h; s, r) to denote the expo-
nents of ciphertext CTA for an m × n access structure A = (A, ρ) (i.e. CTA =
{M · e(g, g)αs, gc(A,h;s,r)}) where s = s1 or s is a coordinate of r.

Therefore, each ci of c is a linear combination of monomials sj , r�, hksj and
hkr� where sj and r� are random variables which are only used to randomize
ciphertexts. Specifically, {c1, . . . , cw1} is defined by a set of coefficients {ai,j , a

′
i,�,

ai,j,k, a′
i,�,k : i ∈ [1, w1], j ∈ [1, n], � ∈ [1, w2], k ∈ [1, κ]} as follows:

ci(A,h; s, r) =
∑

j∈[1,n]

ai,jsj +
∑

�∈[1,w2]

a′
i,�r� +

∑

j∈[1,n]
k∈[1,κ]

ai,j,khksj +
∑

�∈[1,w2]
k∈[1,κ]

a′
i,�,khkr�

where w2 represents the number of the random variables in r (i.e., the size of
the vector r).

It is worth noting that we slightly change the notation of random variables
from the pair encoding [3] to separately represent the variables which are used
to share a secret for an LSSS access matrix from the other random variables.
We use s to represent random variables to share the secret using A and r to
present the other random variables.

4.1 Properties

We let A
′ = (A′, ρ′) be a delegated access structure of an access structure

A = (A, ρ) and a revocation access structure A
∗ = (A∗, ρ∗) (i.e. A′ = (A ∧ A

∗))
where A ∈ Z

m×n
p and A∗ ∈ Z

m̂×n̂
p . Also, we use s = (s1, . . . , sn) ∈ Z

n
p and

r = (r1, . . . , rw2) ∈ Z
w2
p to denote randomization parameters. h is a vector of

common variables used in gc(A,h;s,r).
1 We will explain the detailed properties required for this composition method in

Sect. 4.

14 J. Kim et al.

Property 1 (Linearity). A ciphertext of an ABE scheme is linear iff

c(A,h; s, r) + c(A,h; s′, r′) = c(A,h; s + s′, r + r′).

Property 2 (Expandability). Given gc(A,h;s,r) and A, for any m̂× n̂ sized access
structure A

∗, gc(A′,h;s′,r ′) is efficiently computable where A
′ = A ∧ A

∗, s′ =
(s1, . . . , sn, 0, . . . , 0) ∈ Zn+n̂

p and r′ = (r1, . . . , rw2 , 0, . . . , 0) ∈ Z
w′

2
p .

(Remark 1). In Expandability, we set random vectors s′ = (s1, . . . , sn, 0,
. . . , 0) ∈ Z

n+n̂
p and s = (s1, . . . , sn) ∈ Z

n
p . Therefore,

A′ · s′ =
(

A −a1| 0
0 A∗

)

·
(

s
0

)

=
(

A · s
0

)

.

This simple relation allows ABE schemes to compute gA ′·s′
of the revoked cipher-

text for any A
∗ = (A∗, ρ∗) without knowing the values of s when gA ·s is given in

the original ciphertext where g is a group element. Particularly, linearity prop-
erty is for re-randomization of s′ so that the delegated ciphertext is also properly
distributed.

4.2 Generic Delegation Algorithm

We present our delegation algorithm Delegate only using the two properties of
a ciphertext defined in the previous subsection. Given a ciphertext CTA which
satisfies Properties 1 and 2 and a revocation access structure A

∗, the following
delegation algorithm can generate CT′

A′ for A′ = A∧A
∗. Note that our delegation

algorithm takes as an input a revocation access structure A
∗ instead of the

delegated access structure A
′ for a notational convenience. This is acceptable

since A
′ is clearly defined as A ∧ A

∗.

Delegate(pp, CTA, A∗) → CT′
A′ : The algorithm takes as inputs public parameters

pp, a ciphertext CTA with an access structure A and a revocation access struc-
ture A

∗ and outputs a new ciphertext CT′
A′ such that A

′ = A ∧ A
∗. First, the

algorithm implicitly sets CTA to {CM , gc(A,h;s,r)}. It, then, efficiently computes
gc(A′,h;s′,r ′) with s′ = (s1, . . . , sn, 0, . . . , 0) and r′ = (r1, . . . , rw2 , 0, . . . , 0) using
Expandability property where s = (s1, . . . , sn) and r = (r1, . . . , rw2) are random
values from CTA. The algorithm computes a new ciphertext using Encrypt(pp,
1GT

, A′) to get CT′′
A′ = {C ′′

1GT
, gc(A′,h;s′′,r ′′)} where 1GT

is the identity element
of GT . Using Linearity property, the algorithm outputs the following delegated
CT′

A′ :

{CM · C ′′
1GT

, gc(A′,h;s′,r ′) · gc(A′,h;s′′,r ′′) = gc(A′,h;s′+s′′,r ′+r ′′)}.

Ciphertext-Delegatable CP-ABE for a Dynamic Credential 15

Theorem 1. A ciphertext-policy attribute-based encryption scheme which is
(selectively or adaptively) IND-CPA secure and satisfies Properties 1 and 2 is
ciphertext-delegatable.

Proof: We already show that a delegated access policy is equivalent or more
restrictive than an original policy, which means that, in the security model, the
delegated ciphertext does not increase the advantage of the adversary A. We
additionally show that the delegated ciphertext of Delegate is secure from the
newly revoked attributes by proving that the distribution of delegated ciphertext
is statistically identical to that of the ciphertext generated by Encrypt in the
following Lemma 1. Therefore, the security of the ciphertext-delegated is proved
by the IND-CPA security of the original scheme. �

Lemma 1 (Delegation invariance). CTA′ which is an output of Delegate(pp,
CTA, A′) is distributed identically to CT′

A′ which is an output of Encrypt(pp, M ,
A

′).

Proof: In the Delegate process, due to the Linearity and Expandability proper-
ties, all randomization parameters in s and r used in the input ciphertext CTA

are properly re-randomized. We let s′ and r′ denote the randomized parame-
ters of the output ciphertext CTA′ . They are re-randomized by s′′ and r′′ (i.e.,
s′ = (s,0) + s′′ and r′ = (r,0) + r′′) in Delegate. Because all coordinates in s′′

and r′′ are random and being allocated uniquely to their corresponding variables
in s′ and r′, the ciphertext CTA′ is identically distributed with the ciphertext
CT′

A′ generated by Encrypt(pp, M , A′). �

5 Instantiations

In this section, we will show that our delegation algorithm can be applied to
existing CP-ABE schemes. We choose two popular CP-ABE schemes. The first
CP-ABE scheme, as referred to as LOSTW, was introduced by Lewko et al. [13].
It is adaptively secure and supports a monotonic access structure. The second
CP-ABE scheme, as referred to as YAHK, is from Yamada et al. [25]. This
scheme is selectively secure and supports a non-monotonic access structure.

5.1 CD-CP-ABE

Theorem 2. Lewko et al.’s CP-ABE scheme [13] is ciphertext-delegatable.

Proof: To show that LOSTW is ciphertext-delegatable, we must show that a
ciphertext of their scheme is expandable and linear. First, we denote the cipher-
text CTA and common variables h of public parameters pp in a encoding format
where A = (A, ρ) is m × n sized. We use Ax to denote the xth row of A.

16 J. Kim et al.

Common variables (h) {a, ti : i ∈ U} where U is an attribute universe

An encoding of CTA (c) Let s = (s1, . . . , sn), r = (r1, . . . , rm) and

c(A, h; s, r) = (s1, aAxs, −tρ(x)rx, rx; ∀x ∈ [1, m]),

Then CTA = {M · e(g, g)αs1 , gc(A,h ;s,r)}

(Linearity). For all s, s′ ∈ Z
n
N and r, r′ ∈ Z

m
N ,

c(A,h; s, r) + c(A,h; s′, r′)
=(s1, aAxs,−tρ(x)rx, rx) + (s′

1, aAxs′,−tρ(x)r
′
x, r′

x)
=(s1 + s′

1, aAx(s + s′),−tρ(x)(rx + r′
x), rx + r′

x)
=c(A,h; s + s′, r + r′).

(Expandability). Given an access policy A = (A, ρ) and gc(A,h;s,r), we use
(s1, . . . , sn) ∈ Z

n
N and (r1, . . . , rm) ∈ Z

m
N to denote s and r. We let s′ =

(s1, . . . , sn, 0, . . . , 0) ∈ Z
n+n̂
N and r′ = (r1, . . . , rm, 0, . . . , 0) ∈ Z

m+m̂
N . Then, for

any m̂× n̂ sized access policy A
∗ = (A∗, ρ∗), we (implicitly) set c(A′,h; s′, r′) =

(s′
1, aA′

xs′,−tρ(x)r
′
x, r′

x) for A
′ = (A′, ρ′) by setting s′

1 = s1,

aA′
xs′ = aAxs, −tρ(x)r

′
x = −tρ(x)rx, r′

x = rx ∀x ∈ [1,m]
aA′

xs′ = 0, −tρ(x)r
′
x = 0, r′

x = 0 ∀x ∈ [m + 1,m + m̂]

where A′ =
(

A −a1| 0
0 A∗

)

, ρ′(x) =
{

ρ(x) if x ≤ m
ρ∗(x − m) if x > m.

Because gc(A,h;s,r) = {gs1 , gaAxs , g−tρ(x)rx , grx : ∀x ∈ [1,m]} is given, we can
compute gc(A′,h;s′,r ′) (without knowing the values of s and r) by setting

gs′
1 = gs1 ,

{
gaA ′

xs′
= gaA xs , g−tρ(x)r′

x = g−tρ(x)rx , gr′
x = grx ∀x ∈ [1, m]

gaA ′
xs′

= 1GN , g−tρ(x)r′
x = 1GN , gr′

x = 1GN ∀x ∈ [m + 1, m + m̂].

where 1GN
is the identity matrix in GN . �

Dedicated Delegate algorithm for LOSTW [13]. We let A
∗ = (A∗, ρ∗) and

A = (A, ρ) denote a revocation access structure and an original access policy
of the ciphertext CTA, respectively, where A∗ ∈ Z

m̂×n̂
N and A ∈ Z

m×n
N . Then,

we can compute CT′
A′ for A

′(:= (A′, ρ′)) = A ∧ A
∗ using the following Delegate

algorithm.

Delegate (pp, CT
A
,A∗): The algorithm takes as inputs public parameters pp, an

original ciphertext CTA, a revocation policy A
∗. It parses CTA to {C,C0, Cx,Dx :

∀x ∈ [1,m]}. To expand CTA to CTA′ , it sets s′ = (s, s2, . . . , sn, 0, . . . , 0) ∈ Z
n+n̂
N

and set r′ = (r1, r2, . . . rm, 0, . . . , 0) ∈ Z
m+m̂
N . Then, it sets CTA′ = {Ĉ, Ĉ0,

Ĉx, D̂x : ∀x ∈ [1,m + m̂]} where Ĉ = C, Ĉ0 = C0,

Ĉx = Cx, D̂x = Dx ∀x ∈ [1,m]

Ciphertext-Delegatable CP-ABE for a Dynamic Credential 17

Ĉx = 1GN
, D̂x = 1GN

∀x ∈ [m + 1,m + m̂].

It then generates CT′′
A′ from Encrypt(pp, 1GT

,A′). It parses CT′′
A′ to C ′′, C ′′

0 ,

C ′′
x ,D′′

x and computes C ′ = Ĉ · C ′′, C ′
0 = Ĉ0 · C ′′

0 , C ′
x = Ĉx · C ′′

x ,D′
x = D̂x · D′′

x .
It outputs CT′

A′ = {C ′, C ′
0, C

′
x,D′

x : ∀x ∈ [1,m + m̂]}.

5.2 CD-CP-ABE with Non-monotonic Access Structure

Yamada et al.’s scheme [25] is a CP-ABE scheme supporting ”NOT” gates. We
will show that this scheme is also ciphertext delegatable.

Theorem 3. Yamada et al.’s scheme [25] is ciphertext delegatable.

Proof: We show that Yamada et al.’s scheme is revocable by showing that their
ciphertext is expandable and linear. It is worth noting that their scheme supports
a non-monotonic access structure and “¯” used to denote a negated attribute
so that x̄i is a negated attribute such as (NOT xi). We let A = (A, ρ) be m × n
sized. We use Ai to denote the ith row of A.

Common variables (h) {b, yh, yu, yv, yw}
An encoding of CT (c) Let s = (s1, . . . , sn), r = (r1, . . . , rm) and

c(A, h; s, r) = (s1, ywAis + f(ri), −(yuxi + yh)ri, ri)

where f(ri) =

{
yuri if ρ(i) = xi

byuri if ρ(i) = x̄i

.

Then, CTA = {M · e(g, g)αs , gc(A,h ;s,r)}

(Linearity). For all s, s′ ∈ Z
n and r, r′ ∈ Z

m,

c(A, h; s, r) + c(A, h; s′, r′)

= (s1, ywAis + f(ri), −(yuxi + yh)ri, ri) + (s′
1, ywAis

′ + f(r′
i), −(yuxi + yh)r′

i, r
′
i)

= (s1 + s′
1, ywAi(s + s′) + f(ri + r′

i), −(yuxi + yh)(ri + r′
i), ri + r′

i)

= c(A, h; s + s′, r + r′)

(Expandability). Given an access policy A = (A, ρ) and gc(A,h;s,r), we use
(s1, . . . , sn) ∈ Z

n
N and (r1, . . . , rm) ∈ Z

m
N to denote s and r. For any m̂ × n̂

sized access policy A
∗ = (A∗, ρ∗), we set s′ = (s1, . . . , sn, 0, . . . , 0) ∈ Z

n+n̂
N and

r′ = (r1, . . . , rm, 0, . . . , 0) ∈ Z
m+m̂
N . Then, we (implicitly) set c(A′,h; s′, r′) =

(s′
1, ywAis

′ + f(r′
i),−(yuxi + yh)r′

i, r
′
i) for A

′ = (A′, ρ′) by setting s′
1 = s1,

ywA′
is

′ + f(r′
i) = ywAis + f(ri), −(yuxi + yh)r′

i = −(yuxi + yh)ri, r′
i = ri ∀x ∈ [1, m]

ywA′
is

′ + f(r′
i) = 0, −(yuxi + yh)r′

i = 0, r′
i = 0 ∀x ∈ [m + 1,m + m̂]

18 J. Kim et al.

where A′ =
(

A −a1| 0
0 A∗

)

, ρ′(i) =
{

ρ(i) if x ≤ m
ρ∗(i − m) if x > m.

Because gc(A,h;s,r) = {gs1 , gywAis+f(ri), g−(yuxi+yh)ri , gri : ∀i ∈ [1,m]} is
given, we also can compute gc(A′,h;s′,r ′) by setting gs′

1 = gs1 ,

gywAis
′+f(r′

i) = gywAis+f(ri), g−(yuxi+yh)r
′
i = g−(yuxi+yh)ri , gr′

i = gri ∀x ∈ [1,m]

gywAis
′+f(r′

i) = 1Gp
, g−(yuxi+yh)r

′
i = 1Gp

, gr′
i = 1Gp

∀x ∈ [m + 1,m + m̂].

�

Dedicated Delegate Algorithm of YAHK [25]. We let A∗ = (A∗, ρ∗) and A =
(A, ρ) denote a revocation policy and an access policy of the original ciphertext,
respectively, where A∗ ∈ Z

m̂×n̂
p and A ∈ Z

m×n
p . Then, we can compute CT′

A′ for
A

′ = (A′, ρ′) := A ∧ A
∗ using the following Delegate algorithm.

Delegate (pp, CT
A
,A∗): First, the algorithm parses CTA to {C0, C1, Ci,1, Ci,2,

Ci,3 : i ∈ [1,m]}. Then, it computes a delegated access structure A
′ = (A′, ρ′)

using A and A
∗ as defined in Definition 5. To delegate CTA to CT′

A′ encrypted
under A′, it implicitly sets s′ = (s1, . . . , sn, 0, . . . , 0) and r′ = (r1, . . . , r�, 0, . . . , 0)
where s1, . . . , sn, r1, . . . , r� is a random values used in CTA. Then, it computes a
new ciphertext CTA′ = {C̃0, C̃1, C̃i,1, C̃i,2, C̃i,3 : i ∈ [1,m + m̂]} by setting

C̃0 = C0, C̃1 = C1,

{
C̃i,1 = Ci,1, C̃i,2 = Ci,2 C̃i,3 = Ci,3 ∀i ∈ [1,m],

C̃i,1 = C̃i,2 = C̃i,3 = 1G2 ∀i ∈ [m + 1,m + m̂].

It, then, computes CT′′
A′ by running Encrypt(pp, 1GT

,A′). It parses CT′′
A′ to

{C ′′
0 , C ′′

1 , C ′′
i,1, C

′′
i,2, C

′′
i,3; i ∈ [1,m + m̂]} and sets

C ′
0 = C̃0 · C ′′

0 , C ′
1 = C̃1 · C ′′

1 ,

C ′
i,1 = C̃i,1 · C ′′

i,1, C
′
i,2 = C̃i,2 · C ′′

i,2, C
′
i,3 = C̃i,3 · C ′′

i,3 ∀i ∈ [1,m + m̂].

It outputs CT′
A′ = {C ′

0, C
′
1, C

′
i,1, C

′
i,2, C

′
i,3 : ∀i ∈ [1,m + m̂]}.

6 Conclusion

In this paper, we introduce a generic delegation algorithm for CP-ABE schemes.
Our delegation technique directly revokes a group of users through updating a
ciphertext without decryption. Therefore, it efficiently supports dynamic access
control. We suggest a new composition method of access policies and their corre-
sponding access structure where a ciphertext encrypted. Additionally, we gener-
alize the structures and properties required for the ciphertext delegation of CP-
ABE and formalize them using an encoding technique. We, then, present a new
generic delegation algorithm converting CP-ABE to ciphertext-delegatable CP-
ABE. We show that existing monotonic and non-monotonic CP-ABE schemes
to CD-CP-ABE schemes using our technique.

Ciphertext-Delegatable CP-ABE for a Dynamic Credential 19

References

1. Abdalla, M., et al.: Wildcarded identity-based encryption. J. Cryptol. 24(1), 42–82
(2011)

2. Abdalla, M., De Caro, A., Phan, D.H.: Generalized key delegation for wildcarded
identity-based and inner-product encryption. IEEE Trans. Inf. Forensics Secur.
7(6), 1695–1706 (2012)

3. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

4. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 278–
300. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6 17

5. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1 16

6. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg, K.
(ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16715-2 5

7. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

8. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

9. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 40

10. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups
of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
511–527. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 31

11. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di
Vimercati, S. (eds.) ACM Conference on Computer and Communications Security,
pp. 89–98. ACM (2006)

12. Kim, J., Susilo, W., Guo, F., Au, M.H.: A tag based encoding: an efficient encoding
for predicate encryption in prime order groups. In: Zikas, V., De Prisco, R. (eds.)
SCN 2016. LNCS, vol. 9841, pp. 3–22. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-44618-9 1

13. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

14. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private
keys. In: IEEE Symposium on Security and Privacy, pp. 273–285 (2010)

15. Lewko, A.B., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-642-10868-6_17
https://doi.org/10.1007/978-3-642-03298-1_16
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/978-3-540-28628-8_31
https://doi.org/10.1007/978-3-540-28628-8_31
https://doi.org/10.1007/978-3-319-44618-9_1
https://doi.org/10.1007/978-3-319-44618-9_1
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-20465-4_30

20 J. Kim et al.

16. Liu, Z., Wong, D.S.: Practical ciphertext-policy attribute-based encryption: traitor
tracing, revocation, and large universe. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 127–146. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 7

17. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 3

18. Nikov, V., Nikova, S.: New monotone span programs from old. IACR Cryptology
ePrint Archive, 2004:282 (2004)

19. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

20. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Ning, P., De Capitani di Vimercati, S., Syver-
son, P.F. (eds.) ACM Conference on Computer and Communications Security, pp.
195–203. ACM (2007)

21. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 13

22. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

23. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

24. Yamada, K., Attrapadung, N., Emura, K., Hanaoka, G., Tanaka, K.: Generic con-
structions for fully secure revocable attribute-based encryption. In: Foley, S.N.,
Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 532–
551. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9 29

25. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and com-
pact constructions for non-monotonic attribute-based encryption. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54631-0 16

https://doi.org/10.1007/978-3-319-28166-7_7
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-32009-5_13
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-319-66399-9_29
https://doi.org/10.1007/978-3-642-54631-0_16

Location Based Encryption

Tran Viet Xuan Phuong1,2(B), Willy Susilo1, Guomin Yang1, Jun Yan1,
and Dongxi Liu2

1 Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology,
University of Wollongong, Wollongong, Australia

{txuan,wsusilo,gyang,jyang}@uow.edu.au
2 Data61, CSIRO, Syndey, Australia

Dongxi.Liu@data61.csiro.au

Abstract. We first propose a 2D Location Based Encryption (LBE)
scheme, where the setting includes a geography center system and the 2D
triangle area including the set of locations. A user joining in the system
is provided with a pre-arranged key, which belongs to her/his location.
If the user’s location is belonging to this area, he/she can decrypt the
message. Our proposed scheme achieves a constant ciphertext size in
encryption algorithm and decryption cost. Beyond the 2D-LBE scheme,
we explore the 3D-LBE scheme; whereby the location is set up in the 3D
dimensions. This proposed scheme is an extension of 2D-LBE scheme,
which the ciphertext is also constant. Both two schemes are proved in
the selective model under the decisional �−wBDHI assumption.

Keywords: 2D/3D · Location based encryption ·
Constant ciphertext size · w-lBDHI

1 Introduction

We consider the scenario where there is a geography center system and the
2D triangle area including the set of locations. Each location comprises the X
and Y coordinator. When a user joining in the system, he/she is provided a
pre-arranged key, which belongs to her/his location. At some point, the center
wants to broadcast a message to a specific triangle area, which user’s location
belonging to this area can decrypt the message. In such a way, any other users
located outside specific area cannot learn the information. In addition, according
to Fig. 1, we require the user’s X and Y coordinate to belong to the distance
NE, NW respectively, in the NEWS triangle area if the decryption of message
is processed.

The solution is that the center encrypts the message by embedding the set of
locations from N to E, and from N to W, then it broadcast the ciphertext to the
area NEWS. However, when the broadcasting is adjusted to cover larger area
of triangle NESW, the size of the ciphertext will be increased. This requires a

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 21–38, 2019.
https://doi.org/10.1007/978-3-030-21548-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_2

22 T. Viet Xuan Phuong et al.

W S

N E

Map

Fig. 1. Broadcasting encrypted message in the triangle area NESW. (Color figure
online)

center system generating a ciphertext, which can reduce the size even the area of
triangle is rescaled. Likewise, the ciphertext size is constant if the set of locations
is increased or decreased.

Motivated from the above scenario, we present a solution which produces a
constant ciphertext size. Even the set of locations is increased, the ciphertext size
is constant. We also aim that the scheme should be computationally efficient.
According Fig. 1, let’s assume that the user is located in the red location p1. If
p1 belongs to [N,E], and [N,W], he/she can decrypt the broadcasted message.
There is an obvious solution from [9], which we consider the distance [N,E],
[N,W] as the range queries, and the user location as the query. This approach
can not deal with the reduce the ciphertext size, since the proposed scheme
considers each encrypted data stored in the (d × l) matrix, and encrypts each
data producing in each components in the ciphertext. In another approach, our
scenario can be applied directly the Attribute-based encryption [1,5] and Pred-
ication Encryption [7]. In fact, a class of policies in Attribute Based Encryption
expresses the distance [N, E], [N, W], attributes express user’s location, and with
the center system playing the role of attribute authority. However, in [1,5,7], the
access policy embedded in ciphertext cannot be aggregated into one components,
then ciphertext size increase linearly depending on the size of access policy gen-
erating by set of attributes. In order to construct a constant size of ciphertext
even the resizing of the set of locations, we need to aggregate the ciphertext
components corresponding to each location. Moreover, the scheme should guar-
antee that the successful decryption of one satisfied location belongs to the set
of locations embedded in the ciphertext.

Contributions: We first propose a 2D Location Based Encryption (2D-LBE)
scheme, which achieves the constant ciphertext size. We apply the Time Specific
Encryption (TSE) scheme [6,8] to exploit the time interval properties to con-
struct our idea. In TSE scheme, the decryption is processed when a time t falls
into the specific distance time [t1, t2]. Consequently, we consider each distance
[p1, p2] as the interval [t1, t2] in TSE scheme. We then produce our scheme by
evaluating the location p belonging to the [p1, p2], and [p3, p4]; achieving the
constant ciphertext size in encryption algorithm and decryption cost. Beyond
the 2D-LBE scheme, we explore the 3D-LBE scheme, where there are a center

Location Based Encryption 23

system and a 3D triangle area including the set of locations. Each location com-
prises the X, Y, and Z coordinator. Hence, the decryption is processed when a
location p is belonging to the specific distance [p1, p2], [p3, p4], and [p5, p6]. This
proposed scheme is an extension of the 2D-LBE scheme, which the ciphertext
size is also constant.

We give a detailed comparison between the aforementioned obvious solution
of Multi-Search Range Queries [9] and our proposed schemes in Table 1. The
schemes are compared in terms of the order of the underlying group, ciphertext
size, decryption cost, and security assumption. In the table, p denotes the pairing
operation, (d, l) the dimension of the matrix.

Table 1. Performance comparison

Scheme Ciphertext size Decryption cost Assumption

MQRED [9] (6× d × l)|G|+ 1|GT | 5dp D-BDH

2D-LBE 5|G|+ 1|GT | 5p l �−wBDHI

3D-LBE 7|G|+ 1|GT | 7p l �−wBDHI

Related Works: In 2009, Chandran et al. [4] proposed a Position Based Cryp-
tography scheme, which utilizes the geographic location to derive the user’s
identity. In addition, the scheme is position-secured to hide the user’s position,
however, the verifier still authenticates the location of the user. Buhrman et al.
[2] constructed the position based cryptography in the quantum setting, which
uses the geographical position of a party as its only credential. Extension in
the mobile environment, You et al. [11] proposed a novel location-based encryp-
tion model based on a fuzzy vault scheme to protect the sensitive data and the
location data. Recently, Yang et at. [10] constructed a secure positioning pro-
tocol with location privacy in the bounded retrieval model deploying in a fog
computing environment.

2 Preliminaries

2.1 Bilinear Map on Prime Order Groups

Let G and GT be two multiplicative cyclic groups of same prime order p, and
g a generator of G. Let e : G × G → GT be a bilinear map with the following
properties:

1. Bilinearity: e(ua, vb) = e(ub, va) = e(u, v)ab for all u,v ∈ G and a, b ∈ Zp.
2. Non-degeneracy: e(g, g) �= 1

Notice that the map e is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

24 T. Viet Xuan Phuong et al.

2.2 The Decisional �−wBDHI Assumption

The Decision �-wBDHI problem in G is defined as follows: Let � ∈ N, and G

be a bilinear group of prime order p, and g, h two independent generators of
G. Denote −→y g,α,� = (g1, g2, . . . , g� ∈ G

� where gi = gαi

for some unknown
α ∈ Z

∗
p. We say that the �-wBDHI assumption holds in G if for any probabilistic

polynomial-time algorithm A

|Pr[A(g, h,−→y g,α,�, e(g�+1, h)) = 1] − Pr[A(g, h,−→y g,α,�,W) = 1]| ≤ ε(k)

where the probability is over the random choive of g, h in G, the random choice
α ∈ Z

∗
p, the random choice W ∈ GT , and ε(k) is negligible in the security

parameter k.

2.3 Location Based Encryption

A Location Based Encryption (LBE) scheme consists of the following four prob-
abilistic polynomial-time algorithms:

• Setup(1k, T = 2� − 1): on input a security parameter 1n, and the maximum
T = 2� − 1, the algorithm outputs a public key PK and a master secret key
MSK.

• Encrypt(PK, [t1N , t2E], [t2N , t2W],M): on input a public key PK, a message
M , two distances [t1N , t2E], [t2N , t2W], the algorithm outputs a ciphertext CT .

• KeyGen(MSK, [t1, t2]): on input a master secret key MSK, a location
[t1, t2], the algorithm outputs a decryption key SK.

• Decrypt(CT, SK): on input a ciphertext CT and a secret key SK, the algo-
rithm outputs either a message M if [t1, t2] belongs to [t1N , t2E], [t2N , t2W],
or a special symbol ⊥.

2.4 Security Model

The security model for an LBE scheme is defined via the following game between
an adversary A and a challenger B.

• Setup: The challenger B run Setup(1k, T = 2� −1) to generate the PK and
MSK. PK is then passed to A.

• Query Phase 1: The challenger answers all location extraction queries t1i
, t2i

by generating SKt1i
,t2i

as in the KeyGen algorithm.
• Challenge: A submits two equal-length messages M0 and M1, challenge

X-Y [t∗1N , t∗1E][t∗2N , t∗2W] such that t1i
/∈ [t∗1N , t∗1E], t2i

∈ [t∗2N , t∗2W] or t1i
∈

[t∗1N , t∗1E], t2i
/∈ [t∗2N , t∗2W] that has been queried in Phase 1. The challenger

then flips a coin β ← {0, 1} and computes the challenge ciphertext CT ∗,
which is given to A.

• Query Phase 2: same as Query Phase 1
• Output: A outputs a bit β′ as her guess for β.

Location Based Encryption 25

Define the advantage of A as AdvLBE
A (k) = |Pr[β′ = β] − 1/2|.

Selective Security. In the selective security model, the adversary A is required
to submit the target challenge X-Y [t∗1N , t∗1E][t∗2N , t∗2W] before the game setup,
and A is only allowed to make private key queries for any t1i

/∈ [t∗1N , t∗1E], t2i
∈

[t∗2N , t∗2W] or t1i
∈ [t∗1N , t∗1E], t2i

/∈ [t∗2N , t∗2W] throughout the game.

3 2D Location Based Encryption

In this section, we propose a 2D Location Based Encryption scheme. Let � ∈ N,
we consider the binary tree B with T = 2�−1 nodes, where T will be the number
of segments between the location N and E. By using the transformation [3], we
map the distance location [N.E] to the binary tree as the following:

We present the vector dXt
and set {Xt}. dXt

be a vector consisting of the
indices corresponding to the root node of B as 2T + 1.

Suppose that we balance a binary tree of depth T = 2� −1, which T segments
in the specific distance from N and E. The root node is installed with 2T + 1,
and each node is labeled with a string in {0, 1}≤�. In addition, the left and the
right children of a node is assigned 0 and 1, Without loss of generality, from the
root to E we view a binary string of length m ≤ � as an N-tuple of length m
as dXt1E+1 = {N0, . . . , Nm}, and from the root to N we view a binary string of
length n ≤ � as an E-tuple of length n as dX2T −t1N

= {E0, E1, . . . En}. Therefore,
when encrypting a message with a distance [N,E], the algorithm will associate
the [N,E] into a binary tree, and construct the path way from the root tree to
the [N,E] by indexing two binary strings (N0, . . . , Nm), (E0, . . . , En). Then to
retrieve t ∈ [N,E], the algorithm invoke as:

For t ∈ [1, 2T], Xt = {dXt
}, XT+1 = {dXT+1}. Recursively, for t ∈

[1, 2T]\{1, T + 1}, Xt+1 is computed on Xt as: Let s = min{u : Xu ∈ Xt}.
If dXs

is a leaf node, then Xt+1 is retrieved by removing the vector dXs
from

the set Xt. Otherwise, let αl, αr be the index of the left, right node of node s
respectively. Xt+1 is the set obtained by removing dXs

and adding dXαl
, dXαr

to the set Xt (1). Hence, the setting of segments between the location N and W
is similarly to the location N and E.

In addition, we should face another problem of a key generation when using
master key gαβ to generate the user key securely. Hence, our idea is to share αβ,
we re-generate r, z by randomly choosing and obtaining the re-share (αβ + r −
r), (z,−z), which r, z are also blinding factors. As a result, the extract keys are
computed by the master key completely obviousness.

We elaborate the Setup, Encryption, Key Extraction, Decryption algorithms
defined above. Let G,GT, e be bilinear maps, and T = 2� − 1 (� ∈ N) be a
polynomial that indicates the segments of X and Y coordinate. Our 2D Location
based scheme is presented in the following:

� Setup(1k, T = 2� −1): The algorithm first chooses randomly α, β ∈ Zp, and
chooses uniformly g1N , g1E , g2N , g2W , h0, . . . , h� ∈ G. Then it computes:

MSK = gαβ ,

MPK = (g, g1, g1N , g1E , g2N , g2W , h0, . . . , h�, Y = e(gα, gβ)),

26 T. Viet Xuan Phuong et al.

and returns MPK,MSK.
� Encryption(MPK, [t1N , t2E], [t2N , t2W],M): Firstly, let

dXt1E+1 = (N0, N1, . . . Nm), dX2T −t1N
= (E0, E1, . . . En),

dYt2W +1 = (N̂0, N̂1, . . . N̂m), dY2T −t2N
= (W0,W1, . . . Wn),

with fixed numbers m,n. The algorithm then chooses randomly s ∈ Zp, and
computes:

C0 = Y s · M,

C1 = gs,

C2 = (
m∏

i=0

hNi
i · g1N)s, C3 = (

n∏

i=0

hEi
i · g1E)s

C4 = (
m∏

i=0

hN̂i
i · g2N)s, C5 = (

m∏

i=0

hWi
i · g2W)s,

and returns CT = (C0, C1, C2, C3, C4, C5, [t1N , t1E], [t2N , t2W]).
� Extract(MSK, [t1, t2]): The algorithm chooses randomly r, z ∈ Zp.

• For each X1 = (N0, N1, . . . , Nm) ∈ Xt1+1, the algorithms picks randomly
r1N ∈ Zp, and computes:

dX1 = (gαβ+r · (
m∏

i=0

hNi
i · g1N)r1N , gr1N , hr1N

m+1, . . . , h
r1N

�).

• For each X2 = (E0, E1, . . . , En) ∈ X2T−t1 , it picks randomly r1E ∈ Zp.
and computes:

dX2 = (g−r · (
n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

�).

• For each Y1 = (N̂0, N̂1, . . . , N̂m) ∈ Yt2+1, it picks randomly r2N ∈ Zp.
and computes:

dY1 = (gz · (
m∏

i=0

hN̂i
i · g2N)r2N , gr2N , hr2N

m+1, . . . , h
r2N

�).

• For each Y2 = (W0,W1, . . . ,Wn) ∈ Y2T−t2 , it picks randomly r2W ∈ Zp.
and computes:

dY2 = (g−z · (
n∏

i=0

hWi
i · g2W)r2W , gr2W , hr2W

n+1, . . . , h
r2W

�).

Finally, it sets:

SKt1,1N
= {dX1}X1∈Xt1+1 , SKt1,1E

= {dX2}X2∈X2T −t1

SKt2,2N
= {dY1}Y1∈Yt2+1 , SKt2,2W

= {dY2}Y2∈Y2T −t2
,

and returns SKt1,t2 = {SKt1,1N
, SKt1,1E

, SKt2,2N
, SKt2,2W

, {t1, t2}}.

Location Based Encryption 27

� Decryption(SKt1,t2 , CT): If {t1, t2} /∈ ([t1N , t1E], [t2N , t2W]) return ⊥. Oth-
erwise, the algorithm retrieves:

dXt1E+1 = (N1, N2, . . .), dX2T −t1N
= (E1, E2, . . .),

dYt2W +1 = (N̂1, N̂2, . . .), dY2T −t2N
= (W1,W2, . . .),

Then, it computes:

C0 · e(dX12 , C2) · e(dX22 , C3) · e(dY12 , C4) · e(dY22 , C5)
e(dX11 · dX21 · dY11 · dY21 , C1)

Let:

A = e(dX12 , C2) · e(dX22 , C3) · e(dY12 , C4) · e(dY22 , C5)

= e(gr1N , (
m∏

i=0

hNi
i · g1N)s) · e(gr1E , (

n∏

i=0

hEi
i · g1E)s)

· e(gr2N , (
m∏

i=0

hN̂i
i · g2N)s) · e(gr2W , (

m∏

i=0

hWi
i · g2W)s)

B = e(dX11 · dX21 · dY11 · dY21 , C1)

= e(gαβ+r · (
m∏

i=0

hNi
i · g1N)r1N · g−r · (

n∏

i=0

hEi
i · g1E)r1E

· gz · (
m∏

i=0

hN̂i
i · g2N)r2N · g−z · (

n∏

i=0

hWi
i · g2W)r2W , gs)

To recover message M :

Y s · M · A

B
= M

4 Security Proof

Theorem 1. Assume that the �-wBDHI assumption holds, then no polynomial-
time adversary against our 2D Location based Encryption scheme can have a
non-negligible advantage over random guess in the Selective IND-CPA security
game.

We assume our our 2D Location based Encryption with the size of X-Y coor-
dinate which is polynomial in the security parameter k. We consider the selective
adversary the decides the challenge X-Y [t∗1N , t∗1E][t∗2N , t∗2W] at the beginning of
the IND-CPA game.

Let A be any IND-CPA adversary that attacks our proposed scheme. We then
build an algorithm B that solves the decisional �-wBDHI problem in (G,GT , e)
by using A.

Let g, h choose uniformly in G, randomly α ∈ Zp, and sets yi = gαi+1
. B is

given as input (g, h, y0, y1, . . . , y�, Y), where Y is e(g, h)αl+2
or a random value

in GT . B interacts with A as follows:

28 T. Viet Xuan Phuong et al.

– Setup: A outputs the challenge X [t∗1N , t∗1E], and Y [t∗2N , t∗2W]. Then lets:

dXt∗
1E

+1
= (N∗

0 , N∗
1 , . . . N∗

m), dX2T −t∗
1N

= (E∗
0 , E∗

1 , . . . E∗
n),

dYt∗
2W

+1
= (N̂∗

0 , N̂∗
1 , . . . N̂∗

m), dY2T −t∗
2N

= (W ∗
0 ,W ∗

1 , . . . W ∗
n),

B picks randomly γ, γ0, γ1, . . . , γ�, αN , αE , αN̂ , αW ∈ Zp, and g1 = y0, then
computes:

g1N = gαN ·
m∏

i=0

y
N∗

i

�−1g1E = gαE ·
n∏

i=0

y
E∗

i

�−1

g2N = gαN̂ ·
m∏

i=0

y
N̂∗

i

�−1g2W = gαW ·
n∏

i=0

y
W ∗

i

�−1

hi = gγi · y�−i = gγi−α�−i+1
Y = e(y0, y�g

γ),

where α�+1 + γ is implicitly setting as β. B then sets MPK =
(g, g1, g1N , g1E , g2N , g2W , h0, . . . , h�, Y = e(gα, gβ)), and gives it to A.

– Phase 1: If A submits a location extraction query t1i
, t2i

, B responds to each
query by generating SKt1i

,t2i
as follows:

• Case 1: t1i
< t∗1N , t2i

∈ [t∗2N , t∗2W]
B implicitly sets r′ = α�+2 + r, where r, z is chosen randomly from Zp,
and r′ is distributed uniformly in Zp. Then:

∗ For each X1 = (N0, N1, . . . , Nm) ∈ Xt1i
+1, B picks r1N randomly

in Zp, and computes:

dX1 =

(
yγ
0 gr′

(
m∏

i=0

gγi−α�−i+1
gαN ·

m∏
i=0

y
N∗

i
�−1)

r1N , gr1N , hr1N
m+1, . . . , h

r1N
�

)

=

(
gα�+2+γα · gr′−α�+2 · (

m∏
i=0

hNi
i · g1N)r1N , gr1N , hr1N

m+1, . . . , h
r1N
�

)

=

(
gαβ+r · (

m∏
i=0

hNi
i · g1N)r1N , gr1N , hr1N

m+1, . . . , h
r1N
�

)
.

∗ We consider the secret keys of X2 ∈ X2T−t1i
. For X2 = (E∗

0 , . . . ,
E∗

d−1, Ed, . . . , En). B then generates the secret key of (E∗
0 , . . . ,

E∗
d−1, Ed), and use this secret key to derive the secret key of X2. B

picks randomly r′
1E , which implicitly sets r′

1E =αd+1+r1E(E∗
d −Ed).

B computes:

dX2 =

(
gr′ · gα�−d+1r′

1E ·
{(

d−1∏
i=0

y
γiE∗

i
d · yγdEd

d · yαE
d ·

n∏
j=d+1

y
E∗

i
�−j+d+1

)

·
(

d−1∏
i=0

gγiE∗
i · gγdEd · gαE ·

n∏
j=d+1

(gα�−j+d+1
)E

∗
i

)−r′
1E

} 1
E∗

d
−Ed

,

Location Based Encryption 29

(gr′
1E · y−1

d)
1

E∗
d

−Ed , (gγd+1r′
1E · y−γd+1

d · y
r′
1E

�−d−1 · y�)
1

E∗
d

−Ed ,

hr1E

d+2, . . . , h
r1E

�

)

=

(
g−r′ · gα�+2 · gα�−d+1(E∗

d−Ed)r1E ·
(

d−1∏

i=0

gγiE
∗
i · gγdEd · gαE ·

n∏

j=d+1

(gα�−j+d+1
)E∗

i

)r1E

,

g
r′
1E−αd+1

E∗
d

−Ed , (gγd+1−α�−d

)
r′
1E−αd+1

E∗
d

−Ed , hr1E

d+2, . . . , h
r1E

�

)

=

(
g−r′+α�+2 ·

(
d−1∏

i=0

g(γi−α�−i+1)E∗
i · g(γd−α�−d+1)Ed · gαE

·
n∏

j=0

(gα�−j+1
)E∗

i

)r1E

,

gr1E , hr1E

d+1, h
r1E

d+2, . . . , h
r1E

�

)

=

(
g−r · (

n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

�

)

∗ For each Y1 = (N̂0, N̂1, . . . , N̂m)∈Yt2+1, B picks randomly r2N ∈Zp.
and computes:

dY1 = (gz · (
m∏

i=0

hN̂i
i · g2N)r2N , gr2N , hr2N

m+1, . . . , h
r2N

�).

∗ For each Y2 = (W0,W1, . . . ,Wn) ∈ Y2T−t2 , B picks randomly r2W ∈
Zp. and computes:

dY2 = (g−z · (
n∏

i=0

hWi
i · g2W)r2W , gr2W , hr2W

n+1, . . . , h
r2W

�).

When simulating dX2 , the components hr1E

d+2, . . . , h
r1E

� are not
involved a α�+2, then B can simulate these components simi-
larly as in the main construction. Finally, B sets SKt1i

,t2i
=

{SKt1i,1N
, SKt1i,1E

, SKt2i,2N
, SKt2i,2W

, {t1i
, t2i

}, and sends the SKt1i
,t2i

to A.
– Case 2: t2i

> t∗1E , t2i
∈ [t∗2N , t∗2W]

B chooses r, z is chosen randomly from Zp. Then:

30 T. Viet Xuan Phuong et al.

• For each X1 = (N0, N1, . . . , Nm) ∈ Xt1i
+1, we consider the secret keys

of X1 ∈ Xt1i
+1. For X1 = (N∗

0 , . . . , N∗
d−1, Nd, . . . , Nm). B then generates

the secret key of (E∗
0 , . . . , E∗

d−1, Ed), and use this secret key to derive
the secret key of X1. B picks randomly r′

1N , which implicitly sets r′
1N =

αd+1 + r1N (E∗
d − Ed). B computes:

dX1 =

(
yγ
0 g

r · gα�−d+1r′
1N ·

{(
d−1∏
i=0

y
γiN∗

i
d · yγdNd

d · yαN
d ·

m∏
j=d+1

y
N∗

i
�−j+d+1

)

·
(

d−1∏
i=0

gγiN∗
i · gγdNd · gαN ·

m∏
j=d+1

(gα�−j+d+1
)N

∗
i

)−r′
1N

} 1
N∗

d
−Nd

,

(gr′
1N · y−1

d)
1

N∗
d

−Nd , (gγd+1r′
1N · y−γd+1

d · yr′
1N

�−d−1 · y�)
1

N∗
d

−Nd , h
r1N
d+2, . . . , h

r1N
�

)

• For X2 ∈ X2T−t1i
. For X2 = (E∗

0 , . . . , E∗
d−1, Ed, . . . , En). B picks ran-

domly r1E , then computes:

dX2 =

(
g−r · (

n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

�

)

• For each Y1 = (N̂0, N̂1, . . . , N̂m) ∈ Yt2+1, B picks randomly r2N ∈ Zp.
and computes:

dY1 = (gz · (
m∏

i=0

hN̂i
i · g2N)r2N , gr2N , hr2N

m+1, . . . , h
r2N

�).

• For each Y2 = (W0,W1, . . . ,Wn) ∈ Y2T−t2 , B picks randomly r2W ∈ Zp.
and computes:

dY2 = (g−z · (
n∏

i=0

hWi
i · g2W)r2W , gr2W , hr2W

n+1, . . . , h
r2W

�).

– Case 3: t1i
∈ [t∗1N , t∗1E], t2i

< t∗2N

B chooses r, z is chosen randomly from Zp. Then:
• For each X1 = (N0, N1, . . . , Nm) ∈ Xt1i

+1, B picks r1N randomly in Zp,
and computes:

dX1 =

(
yγ
0 gr(

m∏

i=0

gγi−α�−i+1
gαN ·

m∏

i=0

y
N∗

i

�−1)
r1N , gr1N , hr1N

m+1, . . . , h
r1N

�

)

• For X2 ∈ X2T−t1i
. For X2 = (E∗

0 , . . . , E∗
d−1, Ed, . . . , En). B picks ran-

domly r1E , then computes:

dX2 =

(
g−r · (

n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

�

)

Location Based Encryption 31

• For each Y1 = (N̂0, N̂1, . . . , N̂m) ∈ Yt2+1, B picks randomly r2N ∈ Zp.
and computes:

dY1 = (gz · (
m∏

i=0

hN̂i
i · g2N)r2N , gr2N , hr2N

m+1, . . . , h
r2N

�).

• We consider the secret keys of Y2 ∈ Y2T−t2i
. For Y2 =

(W ∗
0 , . . . ,W ∗

d−1,Wd, . . . ,Wn). B then generates the secret key of
(W ∗

0 , . . . ,W ∗
d−1,Wd), and use this secret key to derive the secret key of Y2.

B picks randomly r′
2W , which implicitly sets r′

2W = αd+1+r2W (W ∗
d −Wd).

B computes:

dY2 =

(
g−z · gα�−d+1r′

2W ·
{(

d−1∏

i=0

y
γiW

∗
i

d · yγdWd

d · yαW

d ·
n∏

j=d+1

y
W ∗

i

�−j+d+1

)

·
(

d−1∏

i=0

gγiW
∗
i · gγdWd · gαW ·

n∏

j=d+1

(gα�−j+d+1
)W ∗

i

)−r′
2W

} 1
W ∗

d
−Wd

,

(gr′
2W · y−1

d)
1

W ∗
d

−Wd , (gγd+1r′
2W · y−γd+1

d · y
r′
2W

�−d−1 · y�)
1

W ∗
d

−Wd ,

hr2W

d+2 , . . . , hr2W

�

)

=

(
g−z · (

n∏

i=0

hWi
i · g2W)r2W , gr2W , hr2W

n+1, . . . , h
r2W

�

)

– Case 4: t1i
∈ [t∗1N , t∗1E], t2i

> t∗2W

B chooses r, z is chosen randomly from Zp. Then:
• For each X1 = (N0, N1, . . . , Nm) ∈ Xt1i

+1, B picks r1N randomly in Zp,
and computes:

dX1 =

(
yγ
0 gr(

m∏

i=0

gγi−α�−i+1
gαN ·

m∏

i=0

y
N∗

i

�−1)
r1N , gr1N , hr1N

m+1, . . . , h
r1N

�

)

• For X2 ∈ X2T−t1i
. For X2 = (E∗

0 , . . . , E∗
d−1, Ed, . . . , En). B picks ran-

domly r1E , then computes:

dX2 =

(
g−r · (

n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

�

)

• We consider the secret keys of Y1 ∈ Yt2i
+1. For Y1 =

(N̂∗
0 , . . . , N̂∗

d−1, N̂d, . . . , N̂m). B then generates the secret key of
(N̂∗

0 , . . . , N̂∗
d−1, N̂d), and use this secret key to derive the secret key of Y1.

B picks randomly r′
2N̂

, which implicitly sets r′
2N̂

= αd+1 + r1N̂ (N̂∗
d − N̂d).

B computes:

32 T. Viet Xuan Phuong et al.

dY1 =

(
gz · gα�−d+1r′

2N̂ ·
{(

d−1∏

i=0

y
γiN̂

∗
i

d · yγdN̂d

d · y
αN̂

d ·
m∏

j=d+1

y
N̂∗

i

�−j+d+1

)

·
(

d−1∏

i=0

gγiN̂
∗
i · gγdN̂d · gαN̂ ·

m∏

j=d+1

(gα�−j+d+1
)N̂∗

i

)−r′
2N̂

} 1
N̂∗

d
−N̂d

,

(gr′
2N̂ · y−1

d)
1

N̂∗
d

−N̂d , (gγd+1r′
2N̂ · y−γd+1

d · y
r′
2N̂

�−d−1 · y�)
1

N̂∗
d

−N̂d ,

h
r2N̂

d+2, . . . , h
r2N̂

�

)

=

(
gs · (

m∏

i=0

hN̂i
i · g2N̂)r2N̂ , gr2N̂ , h

r2N̂
m+1, . . . , h

r2N̂

�

)

• For each Y2 = (W0,W1, . . . ,Wn) ∈ Y2T−t2i
, B picks randomly r2W ∈ Zp.

and computes:

dY2 = (g−z · (
n∏

i=0

hWi
i · g2W)r2W , gr2W , hr2W

n+1, . . . , h
r2W

�).

– Challenge: When A decides that Phase 1 is over, it outputs the challenge
plaintexts M0,M1. B picks a random bit b ∈U {0, 1}, and computes the
challenge ciphertext by

CT ∗ = (Mb · T · e(y0, hγ), h, h
αN+

m∑

i=0
N∗

i γi

, h
αE+

n∑

i=0
E∗

i γi

, h
αN̂+

m∑

i=0
N̂∗

i γi

,

h
αW +

n∑

i=0
NW∗iγi

, [t∗1N , t∗1E][t∗2N , t∗2W])

If T = e(g, h)α�+2, then CT ∗ is of the following form by letting logg h = s

CT ∗ = (Mb · e(g, h)α�+2s · e(g, g)αγs, gs, (gαN ·
m∏

i=0

y
N∗

i

�−1)
s, (gαE ·

n∏

i=0

y
E∗

i

�−1)
s,

(gαN̂ ·
m∏

i=0

y
N̂∗

i

�−1)
s, (gαW ·

n∏

i=0

y
W ∗

i

�−1)
s)

B sends the following challenge ciphertext to A:

CT ∗ = (MbT,C1, C2, C3, C4, C5, [t∗1N , t∗1E][t∗2N , t∗2W]).

– Phase II: Same as Phase I.
– Guess: A outputs b′ ∈ {0, 1}. If b′ = b then B outputs 1, otherwise outputs 0.

Analysis: If T = e(g, h)α�+2
, then the simulation is the same as in the real

game. Hence, A will have the probability 1
2 + ε to guess b correctly. If T is a

random element of GT , then A will have probability 1
2 to guess b correctly.

Therefore, B can solve the Decision�-wBDHI assumption also with advan-
tage ε. 	

Location Based Encryption 33

5 3D Location Based Encryption

We extend the 2D-LBE scheme to 3D-LBE scheme, where each location com-
prises the X, Y, and Z coordinator. Hence, the decryption is processed when
a location t is belonging to the specific distance [t1, t2], [t3, t4], and [t5, t6]. In
order to share αβ, we re-generate r, z, k by randomly choosing and obtaining the
re-share (αβ + r − r), (z,−z), (k,−k), which r, z, k are also blinding factors. We
elaborate the Setup, Encryption, Key Extraction, Decryption algorithms defined
above.

Let G,GT, e be bilinear maps, and T = 2� − 1 (� ∈ N) be a polynomial
that indicates the segments of X,Y and Z coordinate. Our 3D Location Based
scheme is presented in the following:

� Setup(1k, T = 2� −1): The algorithm first chooses randomly α, β ∈ Zp, and
chooses uniformly g1N , g1E , g2N , g2W , h0, . . . , h� ∈ G. Then it computes:

MSK = gαβ ,

MPK = (g, g1, g1N , g1E , g2N , g2W , g3N , g3E , h0, . . . , h�, Y = e(gα, gβ)),

and returns MPK,MSK.
� Encryption(MPK, [t1N , t1E], [t2N , t2W], [t3N , t3E],M): Firstly, let

dXt1E+1 = (N0, N1, . . . Nm), dX2T −t1N
= (E0, E1, . . . En),

dYt2W +1 = (N̂0, N̂1, . . . N̂m), dY2T −t2N
= (W0,W1, . . . Wn),

dZt3E+1 = (N ′
0, N

′
1, . . . N

′
m), dZ2T −t3N

= (E′
0, E

′
1, . . . E

′
n),

with fixed numbers m,n. The algorithm then chooses randomly s ∈ Zp, and
computes:

C0 = Y s · M,

C1 = gs,

C2 = (
m∏

i=0

hNi
i · g1N)s, C3 = (

n∏

i=0

hEi
i · g1E)s

C4 = (
m∏

i=0

hN̂i
i · g2N)s, C5 = (

m∏

i=0

hWi
i · g2W)s,

C6 = (
m∏

i=0

h
N ′

i
i · g3N)s, C7 = (

m∏

i=0

h
E′

i
i · g3E)s,

and returns CT = (C0, C1, C2, C3, C4, C5, C6, C7, [t1N , t1E], [t2N , t2W], [t3N ,
t3E]).
� Extract(MSK, [t1, t2, t3]): The algorithm chooses randomly r, z, k ∈ Zp.

• For each X1 = (N0, N1, . . . , Nm) ∈ Xt1+1, the algorithms picks randomly
r1N ∈ Zp, and computes:

dX1 = (gαβ+r · (
m∏

i=0

hNi
i · g1N)r1N , gr1N , hr1N

m+1, . . . , h
r1N

�).

34 T. Viet Xuan Phuong et al.

• For each X2 = (E0, E1, . . . , En) ∈ X2T−t1 , it picks randomly r1E ∈ Zp.
and computes:

dX2 = (g−r · (
n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

�).

• For each Y1 = (N̂0, N̂1, . . . , N̂m) ∈ Yt2+1, it picks randomly r2N ∈ Zp.
and computes:

dY1 = (gz · (
m∏

i=0

hN̂i
i · g2N)r2N , gr2N , hr2N

m+1, . . . , h
r2N

�).

• For each Y2 = (W0,W1, . . . ,Wn) ∈ Y2T−t2 , it picks randomly r2W ∈ Zp.
and computes:

dY2 = (g−z · (
n∏

i=0

hWi
i · g2W)r2W , gr2W , hr2W

n+1, . . . , h
r2W

�).

• For each Z1 = (N ′
0, N

′
1, . . . , N

′
m) ∈ Z ′

t3+1, the algorithms picks randomly
r3N ∈ Zp, and computes:

dZ1 = (gk · (
m∏

i=0

h
N ′

i
i · g3N)r3N , gr3N , hr3N

m+1, . . . , h
r3N

�).

• For each Z2 = (E′
0, E

′
1, . . . , E

′
n) ∈ Z ′

2T−t3
, it picks randomly r3E ∈ Zp.

and computes:

dZ2 = (g−k · (
n∏

i=0

h
E′

i
i · g3E)r3E , gr3E , hr3E

n+1, . . . , h
r3E

�).

Finally, it sets:

SKt1,1N
= {dX1}X1∈Xt1+1SKt1,1E

= {dX2}X2∈X2T −t1

SKt2,2N
= {dY1}Y1∈Yt2+1SKt2,2W

= {dY2}Y2∈Y2T −t2
,

SKt3,3N
= {dZ1}Z1∈Xt3+1SKt3,3E

= {dZ2}Z2∈X2T −t3

and returns SKt1,t2 = {SKt1,1N
, SKt1,1E

, SKt2,2N
, SKt2,2W

, SKt3,3N
, SKt3,3E

,
{t1, t2, t3}}.
� Decryption(SKt1,t2,t3 , CT): If {t1, t2, t3} /∈ ([t1N , t1E], [t2N , t2W], [t3N , t3E])
return ⊥. Otherwise, the algorithm retrieves:

dXt1E+1 = {N1, N2, . . .}, dX2T −t1N
= {E1, E2, . . .},

dYt2W +1 = {N̂1, N̂2, . . .}, dY2T −t2N
= {W1,W2, . . .},

dZt3E+1 = {N ′
1, N

′
2, . . .}, dZ2T −t3N

= {E′
1, E

′
2, . . .},

Location Based Encryption 35

Then, it computes:

C0 · e(dX12 , C2) · e(dX22 , C3) · e(dY12 , C4) · e(dY22 , C5) · e(dZ12 , C6) · e(dZ22 , C7)

e(dX11 · dX21 · dY11 · dY21 · dZ11 · dZ21 , C1)

Let:

A = e(dX12 , C2) · e(dX22 , C3) · e(dY12 , C4) · e(dY22 , C5) · e(dZ12 , C6) · e(dZ22 , C7)

= e(gr1N , (
m∏

i=0

hNi
i · g1N)s) · e(gr1E , (

n∏
i=0

hEi
i · g1E)s)

· e(gr2N , (

m∏
i=0

hN̂i
i · g2N)s) · e(gr2W , (

m∏
i=0

hWi
i · g2W)s)

· e(gr3N , (
m∏

i=0

h
N′

i
i · g3N)s) · e(gr3E , (

n∏
i=0

h
E′

i
i · g3E)s)

B = e(dX11 · dX21 · dY11 · dY21 · dZ11 · dZ21 , C1)

= e(gαβ+r · (
m∏

i=0

hNi
i · g1N)r1N · g−r · (

n∏
i=0

hEi
i · g1E)r1E

· gz · (
m∏

i=0

hN̂i
i · g2N)r2N · g−z · (

n∏
i=0

hWi
i · g2W)r2W

· e(gk · (
m∏

i=0

h
N′

i
i · g3N)r3N · g−k · (

n∏
i=0

h
E′

i
i · g3E)r3E , gs)

To recover message M :

Y s · M · A

B
= M

Security Proof

Theorem 2. Assume that the �-wBDHI assumption holds, then no polynomial-
time adversary against our 3D Location Based Encryption scheme can have a
non-negligible advantage over random guess in the Selective IND-CPA security
game.

We assume our 3D Location Based Encryption with the size of X,Y,
and Z coordinate which is polynomial in the security parameter k. We
consider the selective adversary the decides the challenge X,Y, and Z
[t∗1N , t∗1E][t∗2N , t∗2W][t∗3N , t∗3E] at the beginning of the IND-CPA game.

Let A be any IND-CPA adversary that attacks our proposed scheme. We then
build an algorithm B that solves the decisional �-wBDHI problem in (G,GT , e) by
using A as in Theorem 1. Let g, h choose uniformly in G, randomly α ∈ Zp, and
sets yi = gαi+1

. B is given as input (g, h, y0, y1, . . . , y�, Y), where Y is e(g, h)αl+2

or a random value in GT . B interacts with A as follows:

36 T. Viet Xuan Phuong et al.

– Setup: A outputs the challenge X [t∗1N , t∗1E], and Y [t∗2N , t∗2W]. Then lets:

Xt∗
1E+1 = (N∗

0 , N∗
1 , . . . N∗

m),X2T−t∗
1N

= (E∗
0 , E∗

1 , . . . E∗
n),

Yt∗
2W +1 = (N̂∗

0 , N̂∗
1 , . . . N̂∗

m), Y2T−t∗
2N

= (W ∗
0 ,W ∗

1 , . . .W ∗
n),

Zt∗
3E+1 = (N ′∗

0 , N ′∗
1 , . . . N ′∗

m), Z2T−t∗
3N

= (E′∗
0 , E′∗

1 , . . . E′∗
n),

B picks randomly γ, γ0, γ1, . . . , γ�, αN , αE , αN̂ , αW , α′
N , α′

E ,∈ Zp, and g1 =
y0, then computes:

g1N = gαN ·
m∏

i=0

y
N∗

i

�−1g1E = gαE ·
n∏

i=0

y
E∗

i

�−1

g2N = gαN̂ ·
m∏

i=0

y
N̂∗

i

�−1g2W = gαW ·
n∏

i=0

y
W ∗

i

�−1

g3N = gα′
N ·

m∏

i=0

y
N ′∗

i

�−1g3E = gα′
E ·

n∏

i=0

y
E′∗

i

�−1

hi = gγi · y�−i = gγi−α�−i+1
, Y = e(y0, y�g

γ),

where α�+1 + γ is implicitly setting as β. B then sets MPK =
(g, g1, g1N , g1E , g2N , g2W , h0, . . . , h�, Y = e(gα, gβ)), and gives it to A.

– Phase 1: If A submits a location extraction query t1i
, t2i

, t3i
, B responds to

each query by generating SKt1i
,t2i

as follows:
• Case 1: t1i

< t∗1N , t2i
∈ [t∗2N , t∗2W], t3i

∈ [t∗3N , t∗3E]
• Case 2: t1i

> t∗1E , t2i
∈ [t∗2N , t∗2W], t3i

∈ [t∗3N , t∗3E]
• Case 3: t1i

∈ [t∗1N , t∗1E], t2i
< t∗2N , t3i

∈ [t∗3N , t∗3E]
• Case 4: t1i

∈ [t∗1N , t∗1E], t2i
> t∗2W , t3i

∈ [t∗3N , t∗3E]
• Case 5: t1i

∈ [t∗1N , t∗1E], t2i
∈ [t∗2N , t∗2W], t3i

< t∗3N

• Case 6: t1i
∈ [t∗1N , t∗1E], t2i

∈ [t∗2N , t∗2W], t3i
> t∗3E

This query phase 1 is simulated similarly as in Phase 1.
– Challenge: When A decides that Phase 1 is over, it outputs the challenge

plaintexts M0,M1. B picks a random bit b ∈U {0, 1}, and computes the
challenge ciphertext by

CT ∗ = (Mb · T · e(y0, h
γ), h, h

αN+
m∑

i=0
N∗

i γi

, h
αE+

n∑

i=0
E∗

i γi

, h
α

N̂
+

m∑

i=0
N̂∗

i γi

,

h
αW +

n∑

i=0
NW∗iγi

, h
α′

N+
m∑

i=0
N′∗

i γi

, h
α′

E+
n∑

i=0
E′∗

i γi

, [t∗
1N , t∗

1E][t∗
2N , t∗

2W][t∗
3N , t∗

3E])

If T = e(g, h)α�+2, then CT ∗ is of the following form by letting logg h = s

CT ∗ = (Mb · e(g, h)α�+2s · e(g, g)αγs, gs, (gαN ·
m∏

i=0

y
N∗

i

�−1)
s, (gαE ·

n∏

i=0

y
E∗

i

�−1)
s,

(gαN̂ ·
m∏

i=0

y
N̂∗

i

�−1)
s, (gαW ·

n∏

i=0

y
W ∗

i

�−1)
s, (gα′

N ·
m∏

i=0

y
N ′∗

i

�−1)
s, (gα′

E ·
n∏

i=0

y
E′∗

i

�−1)
s)

Location Based Encryption 37

B sends the following challenge ciphertext to A:

CT ∗ = (MbT,C1, C2, C3, C4, C5, C6, C7, [t∗1N , t∗1E][t∗2N , t∗2W][t∗3N , t∗3E]).

– Phase II: Same as Phase I.
– Guess: A outputs b′ ∈ {0, 1}. If b′ = b then B outputs 1, otherwise outputs 0.

Analysis: If T = e(g, h)α�+2
, then the simulation is the same as in the real

game. Hence, A will have the probability 1
2 + ε to guess b correctly. If T is a

random element of GT , then A will have probability 1
2 to guess b correctly.

Therefore, B can solve the Decision�-wBDHI assumption also with advan-
tage ε. 	

6 Conclusion

This work is the first endeavor to develop Location Based Encryption with
constant ciphertext size. We proposed two new schemes, called 2D Location
Based Encryption and 3D Location Based Encryption. Both of them are con-
stant ciphertext size and are proven under in the selective model under the
decisional �−wBDHI assumption. In future work, we will consider the privacy of
the area purposed for encryption, since the ciphertext component can disclose
the area information. This leads to a privacy preserving location scheme to pro-
tect the information encryption, and guarantee the user’s location. Furthermore,
we will deploy our proposed schemes on IoT devices to analyze the efficiency of
transmitting message protocol in the practical scenario.

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334
(2007)

2. Buhrman, H., et al.: Position-based quantum cryptography: impossibility and con-
structions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 429–446.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 24

3. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 13

4. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptogra-
phy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 23

5. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, pp. 89–98 (2006)

6. Kasamatsu, K., Matsuda, T., Emura, K., Attrapadung, N., Hanaoka, G., Imai,
H.: Time-specific encryption from forward-secure encryption. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 184–204. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32928-9 11

https://doi.org/10.1007/978-3-642-22792-9_24
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-642-03356-8_23
https://doi.org/10.1007/978-3-642-32928-9_11

38 T. Viet Xuan Phuong et al.

7. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

8. Paterson, K.G., Quaglia, E.A.: Time-specific encryption. In: Garay, J.A., De Prisco,
R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15317-4 1

9. Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig, A.: Multi-dimensional
range query over encrypted data. In: Proceedings of the 2007 IEEE Symposium
on Security and Privacy, SP 2007, pp. 350–364 (2007)

10. Yang, R., Xu, Q., Au, M.H., Yu, Z., Wang, H., Zhou, L.: Position based cryptogra-
phy with location privacy: a step for fog computing. Future Gener. Comput. Syst.
78, 799–806 (2018)

11. You, L., Chen, Y., Yan, B., Zhan, M.: A novel location-based encryption model
using fuzzy vault scheme. Soft Comput. 22, 3383–3393 (2018)

https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-15317-4_1

Group ID-Based Encryption
with Equality Test

Yunhao Ling, Sha Ma(B), Qiong Huang, Ru Xiang, and Ximing Li

South China Agricultural University, Guangzhou, Guangdong, China
yunhaolingyy@163.com, shamahb@163.com, {qhuang,liximing}@scau.edu.cn,

xiangru327@163.com

Abstract. In era of cloud computing, how to search on encrypted data
has been studied extensively. ID-based encryption with equality test
(IBEET) as a type of searchable encryption allows a tester (insider) to
check whether two ciphertexts encrypted under different identities con-
tain the same message. Due to its equality test functionality, IBEET has
many interesting applications, such as personal health record systems. In
this paper, we first introduce group mechanism into IBEET and propose
a new primitive, namely group ID-based encryption with equality test
(G-IBEET). By the group mechanism, G-IBEET supports group gran-
ularity authorization. That is, a group administrator, who is trusted by
group users, would issue the insider a group trapdoor to specify that it
can only compare on ciphertexts of the group users but cannot compare
with ciphertexts of any users other than them. Moreover, the workload of
generation and management of trapdoors can be greatly reduced due to
the group granularity authorization. For the insider attack which exists
in most IBEET schemes with the goal of recovering the message from
a ciphertext by mounting an offline message recovery attack, G-IBEET
provides a nice solution for IBEET to resist it by the group mechanism.
We propose a G-IBEET scheme in bilinear pairings, prove its security
in the random oracle model and show that the proposed scheme has a
more efficient test algorithm.

Keywords: ID-based encryption · Equality test · Group ·
Insider attack

1 Introduction

In era of cloud computing, how to search on encrypted data has been studied
extensively. Public key encryption with equality test (PKEET) [27], which was
introduced by Yang et al. in CT-RSA 2010, is a type of searchable encryption
in multi-user environment that allows a tester (the insider) to check whether
two ciphertexts encrypted under different public keys contain the same message
without decrypting them. To simplify the certificate management for PKEET,
Ma proposed ID-based encryption with equality test (IBEET) [12], integrating

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 39–57, 2019.
https://doi.org/10.1007/978-3-030-21548-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_3

40 Y. Ling et al.

identity-based cryptosystem into PKEET. Due to its equality test functionality,
IBEET has many interesting applications, such as personal health record sys-
tems. In this paper, we first introduce group mechanism into IBEET and propose
a new primitive, namely group ID-based encryption with equality test (G-IBEET).
By the group mechanism, G-IBEET supports group granularity authorization.
That is, a group administrator, who is trusted by group users, would issue the
insider a group trapdoor to specify that it can only compare on ciphertexts of
the group users but cannot compare with ciphertexts of any users other than
them. Moreover, the workload of generation and management of trapdoors can
be greatly reduced due to the group granularity authorization. For the insider
attack which exists in most IBEET schemes with the goal of recovering the mes-
sage from a ciphertext by mounting an offline message recovery attack, G-IBEET
provides a nice solution for IBEET to resist it by the group mechanism.

Fig. 1. A comparison with the group mechanism and authorization mechanism.

Fig. 2. A G-IBEET cryptosystem model

Group Granularity Authorization. The original PKEET scheme [27] only
achieves one-wayness under chosen-ciphertext attack (OW-CCA) against any

Group ID-Based Encryption with Equality Test 41

entity. For the improvement of security, [18] introduced authorization mechanism
that allows users to specify who can perform the equality test between their
ciphertexts into PKEET, which achieves OW-CCA against the adversary who
has been authorized by the user and indistinguishability under chosen-ciphertext
attack (IND-CCA) against the adversary who has not been authorized by the
user. Then most PKEET and IBEET schemes and their variants [4,5,7,8,10,13,
16–20,22,25,28] with the authorization mechanism have been presented. But we
argue that the authorization mechanism is probably not safe enough. That is, the
insider who has been authorized by the users can compare ciphertexts of users
arbitrarily, which may exceed the intention of the users. Using our example from
Fig. 1, let U1, U2, U3 and U4 be users in a PKEET cryptosystem supporting
authorization. If U1 and U2 want the insider to compare cipheretexts only for
them, they should issue trapdoors td1 and td2 to the insider, respectively. If
U3 and U4 want the insider to compare cipheretexts only for them, they also
should issue trapdoors td3 and td4 to the insider, respectively. Then the insider
obtaining td1, td2, td3 and td4 can not only compare U1’s ciphertexts with U2’s
ciphertexts and compare U3’s ciphertexts with U4’s ciphertexts but also do other
things such as comparing U1’s ciphertexts with U3’s ciphertexts, which exceeds
the intention of U1 and U3. G-IBEET with granularity authorization can address
this problem. Its cryptosystem model is illustrated in Fig. 2. There is a group
administrator (GA) trusted by group users. GA should issue the insider a group
trapdoor to specify that it can compare ciphertexts of group users. The insider
can get the correct result of comparison if both the group trapoor and ciphertexts
are from the same group. Therefore, insider who has been authorized by GA can
only compare ciphertexts of the group users but cannot use their ciphertexts to
compare with ciphertexts of any users other than them. From Fig. 2, if U1, U2

and U3, U4 are in different groups, the insider only compares U1’s ciphertexts
with U2’s ciphertexts and U3’s ciphertexts with U4’s ciphertexts.

Fig. 3. A comparison with the group mechanism and authorization mechanism.

Group Trapdoor. From Fig. 3, to specify the insider to compare ciphertexts
of n group users, GA would issue 1 group trapdoor to the insider under the
group mechanism, but these users would issue n trapdoors to the insider under
authorization mechanism. Obviously, the former costs much lower than the latter
in the workload of generation and management of trapdoors.

42 Y. Ling et al.

Resistance Against Insider Attack. The insider can recover the message
from a ciphertext due to the capability to access to user’s trapdoor and pub-
lic generation of PKEET ciphertexts, which was described by [19]. Roughly
speaking, given a ciphertext C = Enc(pki,M), the insider can choose a guessing
message M ′ from the message space M and then generate C ′ = Enc(pkj ,M

′),
where pki and pkj represent different public keys, respectively. Therefore, when
the actual message space M is polynomial size, it can mount an offline message
recovery attack by checking every M ′ ∈ M so that recover the message M . We
call this type of attack insider attack (IA). Due to the desired equality test func-
tionality, IA is inherent, which is similar to inside keyword guessing attack [1]
(IKGA) in public key encryption with keyword search [3] (PEKS). One possible
solution to against IA is to disable the public generation of ciphertexts. There-
fore, the generation of ciphertexts should be embedded some secret information
only known by the sender. We make the assumption that the insider plays the
role of adversarial tester without having the group warrants for each group. In
other words, there is no overlap between group users and the insider. From Fig. 3,
GA should generate a group warrant, which is the secret information, for each
group user, and then the each group user should embed own group warrant to
generate ciphertexts. Due to lack of the group warrants, the insider cannot gen-
erate ciphertexts of group users for the guessing messages, so that it launches IA
on them unsuccessfully. The detail about the generation of G-IBEET ciphertext
will be introduced in Sect. 3.1.

Comparison. In Table 1, we compare relevant PKEET schemes [5,14,18,19,27]
with G-IBEET scheme. It can be learnt from Table 1 that only G-IBEET supports
the group mechanism. [5,13,14,18,19] support the authorization mechanism. G-
IBEET and [19] can resist IA. Finally, G-IBEET scheme has more efficient test

Table 1. Comparison with relevant PKEET and IBEET schemes on properties and
computational efficiency.

Gr Aut IA Test Security

[27] � � � 2P OW-CCA

[18] � � � 4P OW/IND-CCA

[19] � � � 4P OW/IND-CCA

[5] � � � 2P+6Exp OW/IND-CCA

[14] � � � 2P+2Exp OW/IND-CCA

[12] � � � 4P OW-ID-CCA

[24] � � � 4P SS-CKA/SS-KGA

[23] � � � 2P+2Exp OW-ID-CCA

[9] � � � 2P/4P (Type-2, 3/Type-1) OW-ID/IND-ID-CCA

[25] � � � 2P W-IND-ID-CCA

Ours � � � 2P W-IND-ID/IND-ID-CCA

Note: Gr: group mechanism. Aut: authorization mechanism. P: pairing computation.
Exp: exponent computation.

Group ID-Based Encryption with Equality Test 43

algorithm compared with [5,13,14,18,19]. Then we compare IBEET schemes
[9,12,23–25] with G-IBEET scheme. It can be learnt from Table 1 that only G-
IBEET supports the group mechanism. [9,12,23,24] support the authorization
mechanism. G-IBEET and [23–25] can resist IA. Compared with [9,12,23,24],
G-IBEET scheme has more efficient test algorithm. With regard to the security,
G-IBEET achieves W-IND-ID/IND-ID-CCA, which is more stronger than the
security of [9,12,23–25].

1.1 Related Work

PKEET Supporting Authorization. [18] introduced the authorization mech-
anism into PKEET. Then [5] and [14] introduced different granularity authoriza-
tion into PKEET, respectively. Their authorization mechanism, however, do not
support the group granularity authorization.

IBEET. [12] first introduced IBEET. Then [23] improved the efficiency of [12].
[9] introduced the flexible authorization mechanism based on [14] into IBEET.
In [9,14], there is a user-specific ciphertext level authorization. That is, a spe-
cific ciphertext of Alice could be only compared with a specific ciphertext of a
specific receiver, for example, Bob, but could not be compared with any cipher-
text of any receiver other than Bob. However, under user-specific ciphertext
level authorization, the insider can only compare ciphertexts of two users, not
more users such as three users. Hence [9,14] do not support the group granu-
larity authorization. To resist IA, [24] extended the traditional single server to
dual-server setting and proposed dual-server setting IBEET schemes. Under this
setting, two servers need to work together to check whether two ciphertexts con-
tain the same message. In other words, neither of them can independently run
the test algorithm. Hence two servers cannot launch IA successfully if they do
not collude. However, two servers setting generally is more time-consuming and
complicated in communication compared with single server setting. [25] gave a
better solution to resist IA. In the generation of their ciphertexts, a group user
should embed a group token, which is secret information, shared by all group
users, so that the insider cannot generate ciphertexts of group users without the
knowledge of group token. But [25] does not has the authorization mechanism
or group mechanism, and their scheme only achieves Weak-IND-ID-CCA.

Resistance Against IA/IKGA. To resist IA, [11,15,19,24] proposed dual-
server setting PKEET or IBEET schemes, respectively. And then [25] gave a
better solution to resist the attack (see above). To against IKGA, [1,2,21] used
the dual-server setting, and [6] proposed the idea that the generation of trapdoor
should take input sender’s secret key. However, their schemes do not support the
functionality of equality test.

44 Y. Ling et al.

1.2 Our Contributions

The contributions of this paper are as follows.

1. We propose a new primitive, namely G-IBEET, which is the first time to
introduce group mechanism into IBEET. By the group mechanism, G-IBEET
supports group granularity authorization. Moreover, the workload of genera-
tion and management of trapdoors can be greatly reduced due to the group
granularity authorization.

2. For the insider attack, G-IBEET provides a nice solution for IBEET to resist
it by the group mechanism.

3. We define G-IBEET security models and propose a concrete construction in
bilinear pairings. We prove its security in the random oracle model and show
that the proposed scheme has a more efficient test algorithm.

1.3 Paper Organization

In the next section we give preliminaries. Then we give the definition and security
model of G-IBEET in Sect. 3 and its construction in Sect. 4. In Sect. 5, we give
the security analysis of G-IBEET. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

Bilinear Map. Let G1 = 〈g1〉, G2 = 〈g2〉 and GT be cyclic groups of prime
order p. A bilinear map e : G1 × G2 → GT satisfies the following properties:

1. Bilinear: For any g1 ∈ G1, g2 ∈ G2 and a, b ∈ Z
∗
p, e(ga

1 , gb
2) = e(g1, g2)ab;

2. Non-degenerate: e(g1, g2) �= 1GT
, where 1GT

is the generator of GT ;
3. Computable: e is efficiently computable.

In this paper, our scheme is constructed by Type 3 (asymmetric) pairing,
i.e., there exists no efficiently computable isomorphism from G2 to G1.

Bilinear Diffie-Hellman Assumption (BDH). Let G = 〈g〉 and GT be a
cyclic group of prime order p, and let e : G×G → GT be an admissible bilinear
map. The BDH assumption states that given a tuple (g, ga, gc, gd) ∈ G

4, where
a, c, d

R← Z
∗
p, any probabilistic polynomial-time (PPT) algorithm has negligible

advantage εBDH in computing e(g, g)acd. Note that we denote by R← the process
of uniformly sampling a random element.

Variant Bilinear Diffie-Hellman Assumption (V-BDH). Our G-IBEET
scheme uses a variant BDH assumption (V-BDH). Let G1 = 〈g1〉, G2 = 〈g2〉
and GT be a cyclic group of prime order p, and let e : G1 × G2 → GT be
an admissible bilinear map. The V-BDH assumption states that given a tuple
(g1, g2, ga

1 , gc
1, g

a
2 , gd

2) ∈ G1 × G2 × G
2
1 × G

2
2, where a, c, d

R← Z
∗
p, any PPT

algorithm has negligible advantage εV-BDH in computing e(g1, g2)acd. Similar
to BDH ⇒ CDH in [26], where ⇒ denotes a polynomial Turing reduction, we

Group ID-Based Encryption with Equality Test 45

also have V-BDH ⇒ CDH. Because given oracle CDH input (g1, ga
1 , gc

1) ∈ G
3
1

((g2, ga
2 , gd

2) ∈ G
3
1), and get back gac

1 (gad
2), and then compute e(gac

1 , gd
2) =

e(g1, g2)acd (e(ga
1 , gad

2) = e(g1, g2)acd).

Decisional Diffie-Hellman Assumption (DDH). Let G = 〈g〉 be a cyclic
group of prime order p. The DDH assumption states that given a tuple
(g, ga, gb, gr) ∈ G

4, where a, b, r
R← Z

∗
p, any PPT algorithm has negligible advan-

tage εddh in deciding whether gab = gr.

Symmetric eXternal Diffie-Hellman Assumption (SXDH). Let G1 = 〈g1〉
and G2 = 〈g2〉 and GT be cyclic groups of prime order p and e : G1 ×G2 → GT

be a Type 3 pairing. The SXDH assumption states that the DDH assumption
holds in both groups G1 and G2.

3 Definition

3.1 Group ID-Based Encryption with Equality Test

A G-IBEET cryptosystem consists of the following algorithms (Setup, Key-
Gengroup, Join, Extract, Enc, Dec, Aut, Test) operating over plaintext space M,
ciphertext space C and key space K. Suppose that Ui, Uj , Ui′ and Uj′ are group
users. We use Ci,j to denote a G-IBEET ciphertext, where i and j refer to as a
sender and a receiver, respectively.

– Setup(λ): On input a security parameter λ, this algorithm outputs a public
system parameter PP and a master key msk.

– KeyGengroup(PP): On input the public system parameter PP , this algorithm
outputs a group key gsk. It is run by GA.

– Join(gsk, IDi): On input the group key gsk and an identity IDi, this algorithm
outputs a group warrant gwi for IDi. It is run by GA.

– Extract(msk, IDi): On input the master key msk and an identity IDi, this
algorithm outputs a private decryption key dkIDi

for IDi. It is run by KGC.
– Enc(PP, gwi, IDi, IDj ,M): On input the PP , Ui’s group warrant gwi and

identity IDi, Uj ’s identity IDj and a message M , this algorithm outputs a
ciphertext Ci,j . Note that the similarity between G-IBEET and IBEET is that
a sender i uses the identity of receiver j to generate a ciphertext Ci,j, and
Ci,j can be only decrypted by receiver j. But their difference between them
is that only group users can act as sender, not any user, which means that
dishonest users cannot act as sender.

– Dec(IDi, dkIDj
, Ci,j): On input Ui’s identity IDi, Uj ’s private decryption key

dkIDj
and a ciphertext Ci,j , this algorithm outputs a plaintext M .

– Aut(gsk): On input the group key gsk, this algorithm outputs a group trap-
door gtd. It is run by GA.

– Test(Ci,j , Ci′,j′ , gtd): On input a ciphertext Ci,j produced by Ui, a ciphertext
Ci′,j′ produced by Ui′ and the group trapdoor gtd, this algorithm returns 1
if Ci,j and Ci′,j′ contain the same message and 0 otherwise.

46 Y. Ling et al.

Correctness. If a G-IBEET scheme is correct, these algorithms must satisfy the
following three conditions. Note that ∀M,M ′ ∈ M, where M �= M ′.

(1) If PP ← Setup(λ), gwi ← Join(gsk, IDi) and dkIDj
← Extract(msk, IDj),

then Pr[M ← Dec(IDi, dkIDj
,Enc(PP, gwi, IDi, IDj ,M))] = 1.

(2) If PP ← Setup(λ), gwi ← Join(gsk, IDi), gwi′ ← Join(gsk, IDi′),
gtd ← Aut(gsk), Ci,j ← Enc(PP, gwi, IDi, IDj ,M) and Ci′,j′ ←
Enc(PP, gwi′ , IDi′ , IDj′ ,M), then Pr[Test(Ci,j , Ci′,j′ , gtd) = 1] = 1.

(3) If PP ← Setup(λ), gwi ← Join(gsk, IDi), gwi′ ← Join(gsk, IDi′),
gtd ← Aut(gsk), Ci,j ← Enc(PP, gwi, IDi, IDj ,M) and Ci′,j′ ←
Enc(PP, gwi′ , IDi′ , IDj′ ,M ′), then Pr[Test(Ci,j , Ci′,j′ , gtd) = 1] is negligible.

3.2 Security Models

We make the assumption that the insider plays the role of adversarial tester
without having the group warrants for each group. In other words, there is no
overlap between group users and the insider. We consider the following adver-
saries to define the security model for G-IBEET.

1. Type-I adversary. The attacker who has been authorized by GA, that is, the
insider.

2. Type-II adversary. The attacker who has not been authorized by GA, includ-
ing group user other than sender and receiver.

Weak Indistinguishability Under Chosen Ciphertext Attack Against
a Non-adaptive Chosen Identity (W-IND-ID-CCA). Assume that A1

is the type-I adversary. We define W-IND-ID-CCA against the adversary for G-
IBEET scheme by the following game. Furthermore, in the game, the adversary
can obatin group warrants of all group users, which implies that even if it can
obtain them, the G-IBEET ciphertext does not reveal any information about the
underlying message to it. This provides somewhat worst-case security guarantee.

1. Setup: The challenger runs the Setup algorithm using a security parameter
λ to generate the public system parameter PP . Then it runs the KeyGengroup

algorithm to generate a group key gsk, runs the Join algorithm n times using
IDi to generate group warrants gwi (1 ≤ i ≤ n) of the group users and runs
the Aut algorithm to generate a group trapdoor gtd. Finally, it randomly
chooses a target sender Ui∗ and a target receiver Uj∗ (1 ≤ i∗, j∗ ≤ n), gives
i∗, j∗, PP and gtd to the adversary A1.

2. Phase 1: A1 is allowed to issue the following queries. The constraint is that
〈IDj∗〉 does not appear in the ODK oracle.

– Ogw query 〈i〉. The challenger returns gwi to A1.
– ODK query 〈IDi〉. The challenger returns dkIDi

← Extract(msk, IDi) to
A1.

– OE query 〈i, IDi, IDj ,M〉. The challenger issues the Ogw to obtain gwi

and then returns Ci,j ← Enc(PP, gwi, IDi, IDj ,M) to A1.

Group ID-Based Encryption with Equality Test 47

– OD query 〈j, IDi, IDj , Ci,j〉. The challenger issues the ODK to obtain
dkIDj

and then returns M ← Dec(IDi, dkIDj
, Ci,j) to A1.

3. Challenge: A1 randomly chooses M0,M1 ∈ M which have not appeared
in encryption queries in Phase 1 and sends them to the challenger.
The challenger randomly chooses a bit b ∈ {0, 1} and sets C∗

i∗,j∗ ←
Enc(PP, gwi∗ , IDi∗ , IDj∗ ,Mb). Finally, it sends C∗

i∗,j∗ to A1.
4. Phase 2: A1 is able to issue queries in the same way as in Phase 1. But the

constraint is that neither M0 or M1 does not appear in the OE oracle and
〈j∗, IDi∗ , IDj∗ , C∗

i∗,j∗〉 does not appear in the OD oracle.
5. Guess: A1 outputs b′ and wins if b′ = b.

We define A1’s advantage on breaking the G-IBEET scheme as

AdvW-IND-ID-CCA
G-IBEET,A1

(λ) = |Pr[b′ = b] − 1/2|.

Indistinguishability Under Chosen Ciphertext Attack Against a Non-
adaptive Chosen Identity (IND-ID-CCA). Assume that A2 is the type-II
adversary. We define IND-ID-CCA against the adversary for G-IBEET scheme by
the following game. The adversary would obtain group warrants of all group
users as well.

1. Setup: The challenger runs the Setup algorithm using a security parameter
λ to generate the public system parameter PP . Then it runs the KeyGengroup

algorithm to generate a group key gsk, runs the Join algorithm n times using
IDi to generate group warrants gwi (1 ≤ i ≤ n) of the group users and runs
the Aut algorithm to generate a group trapdoor gtd. Finally, it randomly
chooses a target sender Ui∗ and a target receiver Uj∗ (1 ≤ i∗, j∗ ≤ n), gives
i∗, j∗ and PP to the adversary A2.

2. Phase 1: A2 is allowed to issue the following queries. The constraint is that
〈IDj∗〉 does not appear in the ODK oracle.

– Ogw query 〈i〉. The challenger returns gwi to A2.
– ODK query 〈IDi〉. The challenger returns dkIDi

← Extract(msk, IDi) to
A2.

– OE query 〈i, IDi, IDj ,M〉. The challenger issues the Ogw to obtain gwi

and then returns Ci,j ← Enc(PP, gwi, IDi, IDj ,M) to A2.
– OD query 〈j, IDi, IDj , Ci,j〉. The challenger issues the ODK to obtain

dkIDj
and then returns M ← Dec(IDi, dkIDj

, Ci,j) to A2.
3. Challenge: A2 randomly chooses M0,M1 ∈ M and sends them to the

challenger. The challenger randomly chooses a bit b ∈ {0, 1} and sets
C∗

i∗,j∗ ← Enc(PP, gwi∗ , IDi∗ , IDj∗ ,Mb). Finally, it sends C∗
i∗,j∗ to A2.

4. Phase 2: A2 is able to issue queries in the same way as in Phase 1. But the
constraint is that 〈j∗, IDi∗ , IDj∗ , C∗

i∗,j∗〉 does not appear in the OD oracle.
5. Guess: A2 outputs b′ and wins if b′ = b.

Note that due to the lack of gtd, A2 is allowed to choose M0,M1 ∈ M which
have appeared in encryption queries in Phase 1. We define A2’s advantage on
breaking the G-IBEET scheme as

AdvIND-ID-CCA
G-IBEET,A2

(λ) = |Pr[b′ = b] − 1/2|.

48 Y. Ling et al.

4 Construction

Our G-IBEET scheme is described as follows:

– Setup(λ): This algorithm outputs system parameter PP = (G1, G2, GT , p,
g1, g2, Ppub, e, H1, H2, H3, H4, H5) as follows.
Generate type 3 bilinear pairing parameters: group G1, G2 and GT of prime
order p, a bilinear map e : G1 × G2 → GT , a random generator g1 of G1 and
a random generator g2 of G2. Select msk = s

R← Z
∗
p and set Ppub = gs

1. Select
five hash functions H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → G2, H3 : {0, 1}∗ → G1,
H4 : GT → {0, 1}l1+l2 and H5 : {0, 1}∗ → {0, 1}λ, where l1 and l2 represent
the length of messages and Zp, respectively, and λ is the security parameter.

– KeyGengroup(PP): This algorithm randomly selects x, y
R← Z

∗
p and outputs a

group key gsk = (x, y).
– Join(gsk, IDi): This algorithm computes h1,i = H1(IDi) and outputs group

warrant gwi = (hx
1,i, y) for IDi.

– Extract(msk, IDi): This algorithm computes h2,i = H2(IDi) and ouputs a
private decryption key dkIDi

= hs
2,i for the identity IDi.

– Enc(PP, gwi, IDi, IDj ,M): This algorithm randomly selects α1, α2
R← Z

∗
p,

computes h1,i = H1(IDi), h2,j = H2(IDj) and outputs Ci,j =
(Ci,j,1, Ci,j,2, Ci,j,3, Ci,j,4, Ci,j,5) as follows,

Ci,j,1 = hα1
1,i, Ci,j,2 = hxα1

1,i · H3(M)y,

Ci,j,3 = gα2
1 , Ci,j,4 = H4(e(Ppub, h2,j)α2) ⊕ (M ||α1),

Ci,j,5 = H5(Ci,j,1||Ci,j,2||Ci,j,3||Ci,j,4||M ||α1).

– Dec(IDi, dkIDj
, Ci,j): This algorithm computes h1,i = H1(IDi) and (M ||α1) =

Ci,j,4 ⊕ H4(e(Ci,j,3, h
s
2,j)). If

Ci,j,1 = hα1
1,i, Ci,j,5 = H5(Ci,j,1||Ci,j,2||Ci,j,3||Ci,j,4||M ||α1),

return M ; otherwise, return ⊥.
– Aut(gsk): This algorithm randomly selects β

R← Z
∗
p, and outputs a gtd,

gtd = (gtd1, gtd2) = (gβ
2 , gxβ

2).

– Test(Ci,j , Ci′,j′ , gtd): This algorithm outputs 1 if

e(
Ci,j,2

Ci′,j′,2
, gtd1) = e(

Ci,j,1

Ci′,j′,1
, gtd2),

otherwise returns 0.

Correctness. The G-IBEET scheme above satisfies the correctness.

(1) It is straightforward to be verified.

Group ID-Based Encryption with Equality Test 49

(2) For M ∈ M, we have

e(
Ci,j,2

Ci′,j′,2
, gtd1) = e(

hxα1
1,i · H3(M)y

h
xα′

1
1,i′ · H3(M)y

, gβ
2) = e(

hα1
1,i

h
α′

1
1,i′

, gxβ
2) = e(

Ci,j,1

Ci′,j′,1
, gtd2).

(3) For ∀M,M ′ ∈ M and M �= M ′, we have

e(
Ci,j,2

Ci′,j′,2
, gtd1) �= e(

Ci,j,1

Ci′,j′,1
, gtd2).

5 Security Analysis

Theorem 1: G-IBEET scheme is W-IND-ID-CCA secure against type-I adversary
in the random oracle model assuming both V-BDH and SXDH are intractable.

Proof. Let A1 be a PPT adversary attacking the W-IND-ID-CCA security of G-
IBEET scheme. Suppose that A1 makes at most qH1 H1 hash queries, qH2 H2

hash queries, qH3 H3 hash queries, qH4 H4 hash queries, qH5 H5 hash queries,
qgw group warrant queries, qDK decryption key queries, qE encryption queries
and qD decryption queries. Let AdvW-IND-ID-CCA

G-IBEET,A1
(λ) denotes the advantage of A1

in the W-IND-ID-CCA experiment. The analysis is done by a sequence of games.
Game 1.0. We consider the original game.

1. Setup: The challenger runs the Setup algorithm using a security parameter
λ to generate the public system parameter PP . Then it runs the KeyGengroup

algorithm to generate a group key gsk and Aut algorithm to generate a group
trapdoor gtd, respectively. It runs the Join algorithm using IDi to generate
group warrants gwi respectively, as follows:
(1) The challenger queries OH1 (see below) on IDi to obtain h1,i;
(2) Set gwi = (hx

1,i, y). Add (i, (hx
1,i, y)) into the W list, which is initially

empty.
Finally, it chooses a target sender Ui∗ and a target receiver Uj∗ , gives i∗, j∗,
PP and gtd to the adversary A1 and keeps msk and gsk by itself.

2. Phase 1: A1 is allowed to issue the following queries. The constraint is that
〈IDj∗〉 does not appear in the ODK oracle.

– OH1 query 〈IDi〉. The challenger picks a random number ui∗ ∈ Z
∗
q , com-

putes h1,i∗ = gui∗
1 ∈ G

∗
1 and adds the tuple 〈IDi∗ , ui∗ , h1,i∗〉 to the H list

1 .
It responds as follows:
(1) If the query IDi already appears on the H list

1 in a tuple 〈IDi, ui, h1,i〉,
the challenger responds with h1,i ∈ G

∗
1.

(2) Otherwise, the challenger picks a random number ui ∈ Z
∗
q and com-

putes h1,i = gui
1 ∈ G

∗
1. It adds the tuple 〈IDi, ui, h1,i〉 to the H list

1 ,
which is initially empty, and responds to A1 with H1(IDi) = h1,i.

– OH2 query 〈IDi〉. The challenger picks a random number vj∗ ∈ Z
∗
q , com-

putes h2,j∗ = g
vj∗
2 ∈ G

∗
2 and responds as follows:

50 Y. Ling et al.

(1) If the query IDi already appears on the H list
2 in a tuple 〈IDi, vi, h2,i〉,

the challenger responds with h2,i ∈ G
∗
2.

(2) Otherwise, it picks a random number vi ∈ Z
∗
q and computes h2,i =

gvi
2 ∈ G

∗
2. The challenger adds the tuple 〈IDi, vi, h2,i〉 to the H list

2 ,
which is initially empty, and responds to A1 with H2(IDi) = h2,i.

– OH3 query 〈v1〉. On input the tuple v1 ∈ {0, 1}∗, a compatible random
value h3 from G

∗
1 is returned, where by compatible we mean that if the

same input is asked multiple times, the same answer will be returned.
The challenger adds (v1, h3) into the H list

3 , which is initially empty.
– OH4 query 〈v1〉. On input the tuple v1 ∈ G

∗
T , a compatible random value

h4 from the set {0, 1}l1+l2 is returned. The challenger adds (v1, h4) into
the H list

4 , which is initially empty.
– OH5 query 〈v1〉. On input the tuple v1 ∈ {0, 1}∗, a compatible random

value h5 from the set {0, 1}λ is returned. The challenger adds (v1, h5) into
the H list

5 , which is initially empty.
– Ogw query 〈i〉. The challenger searches the W list for i and responds A1

with gwi = (hx
1,i, y).

– ODK query 〈IDi〉. The challenger responds as follows:
(1) The challenger queries OH2 on IDi to obtain h2,i. Let 〈IDi, vi, h2,i〉 be

the corresponding tuple in the H list
2 .

(2) The challenger responds A1 with dkIDi
= gvis

2 by running Extract
algorithm on 〈IDi〉.

– OE query 〈i, IDi, IDj ,M〉. The challenger issues the Ogw to obtain gwi

and then returns Ci,j ← Enc(PP, gwi, IDi, IDj ,M) to A1.
– OD query 〈j, IDi, IDj , Ci,j〉. The challenger issues the ODK to obtain

dkIDj
and then returns M ← Dec(IDi, dkIDj

, Ci,j) to A1.
3. Challenge: A1 randomly chooses M0,M1 ∈ M which have not appeared

in encryption queries in Phase 1 and sends them to the challenger. The
challenger randomly chooses a bit b ∈ {0, 1} and α1, α2

R← Z
∗
p, queries OH1

on IDi∗ to obtain h1,i∗ , queries OH2 on IDj∗ to obtain h2,j∗ and sets C∗
i∗,j∗ as

follows.
Ci∗,j∗,1 = hα1

1,i∗ , Ci∗,j∗,2 = hxα1
1,i∗ · H3(Mb)y,

Ci∗,j∗,3 = gα2
1 , Ci∗,j∗,4 = H4(e(Ppub, h2,j∗)α2) ⊕ (Mb||α1),

Ci∗,j∗,5 = H5(Ci∗,j∗,1||Ci∗,j∗,2||Ci∗,j∗,3||Ci∗,j∗,4||Mb||α1).

Finally, it sends C∗
i∗,j∗ = (Ci∗,j∗,1, Ci∗,j∗,2, Ci∗,j∗,3, Ci∗,j∗,4, Ci∗,j∗,5) to A1.

4. Phase 2: A1 is able to issue queries in the same way as in Phase 1. But the
constraint is that neither M0 or M1 does not appear in the OE oracle and
〈j∗, IDi∗ , IDj∗ , C∗

i∗,j∗〉 does not appear in the OD oracle.
5. Guess: A1 outputs b′ and wins if b′ = b.

Let S1.0 be the event that M ′ = M in Game 1.0. We have

AdvW-IND-ID-CCA
G-IBEET,A1 (qH1 , qH2 , qH3 , qH4 , qH5 , qgw, qDK , qE , qD) = |Pr[S1.0] − 1/2| (1)

Game 1.1. In this game, the challenger performs identically to that in Game 1.0
except that the followings.

Group ID-Based Encryption with Equality Test 51

– OE query 〈i, IDi, IDj ,M〉. Same as that in Game 1.0, except that the challenger

randomly selects α1, α2
R← Z

∗
p, queries OH1 on IDi to obtain h1,i, queries OH2

on IDj to obtain h2,j , queries OH3 on M to obtain h3 and queries OH4 on
e(Ppub, h2,j)α2 to obtain h4. Then it computes as follows:

Ci,j,1 = hα1
1,i, Ci,j,2 = hxα1

1,i · hy
3, Ci,j,3 = gα2

1 , Ci,j,4 = h4 ⊕ (M ||α1).

Finally, it queries OH5 on (Ci,j,1||Ci,j,2||Ci,j,3||Ci,j,4||M ||α1) to obtain h5, sets
Ci,j,5 = h5 and returns Ci,j = (Ci,j,1, Ci,j,2, Ci,j,3, Ci,j,4, Ci,j,5) to A1.

– OD query 〈j, IDi, IDj , Ci,j〉. Same as that in Game 1.0, except that the
challenger computes (M ||α1) = Ci,j,4 ⊕ H4(e(Ci,j,3, dkIDj

)) and queries
OH1 on IDi to obtain h1,i, and verifies Ci,j,1 = hα1

1,i. If the verification
fails, return ⊥. Then the challenger checks whether there exists a tuple
(Ci,j,1||Ci,j,2||Ci,j,3||Ci,j,4||M ||α1, h5) in the H list

5 that satisfies Ci,j,5 = h5. If
so, return M ; otherwise return ⊥. Denoted by E1 event that in some Ci,j , a
fresh input (Ci,j,1||Ci,j,2||Ci,j,3||Ci,j,4||M ||α1) to H5 results in Ci,j,5.

Let S1.1 be the event that M ′ = M in Game 1.1. We have

|Pr[S1.1] − Pr[S1.0]| ≤ Pr[E1]. (2)

Game 1.2. In this game, the challenger performs identically to that in Game 1.1
except that it randomly chooses W ∗

2.1 ← {0, 1}l1+l2 and sets C∗
i∗,j∗ as follows.

Ci∗,j∗,1 = hα1
1,i∗ , Ci∗,j∗,2 = hxα1

1,i∗ · H3(Mb)
y, Ci∗,j∗,3 = gα2

1 , Ci∗,j∗,4 = W ∗
2.1 ⊕ (Mb||α1),

Ci∗,j∗,5 = H5(Ci∗,j∗,1||Ci∗,j∗,2||Ci∗,j∗,3||Ci∗,j∗,4||Mb||α1).

Finally, it adds (e(Ppub, h2,j∗)α2 ,W ∗
2.1) into the H list

4 .
Let S1.2 be the event that M ′ = M in Game 1.2. Since the idealness of the

random oracle, Game 1.2 is identical to Game 1.1. We have

Pr[S1.2] = Pr[S1.1]. (3)

Game 1.3. In this game, the challenger performs identically to that in Game 1.2
except that the followings.

– OH4 query 〈v1〉. Same as that in Game 1.2, except that if A1 asks
e(Ppub, h2,j∗)α2 , the game is aborted. We denote the event by E2.

– OD query 〈j, IDi, IDj , Ci,j〉. Same as that in Game 1.2, except that if A1

asks for decryption of C∗
i∗,j∗ = (Ci∗,j∗,1, Ci∗,j∗,2, Ci∗,j∗,3, C

′
i∗,j∗,4, Ci∗,j∗,5)

after obtaining the challenge ciphertext C∗
i∗,j∗ (see below), where C ′

i∗,j∗,4 �=
Ci∗,j∗,4, ⊥ is returned.

The challenger randomly chooses W ∗
3.1 ← {0, 1}l1+l2 and sets C∗

i∗,j∗ as follows.

Ci∗,j∗,1 = hα1
1,i∗ , Ci∗,j∗,2 = hxα1

1,i∗ · H3(Mb)y, Ci∗,j∗,3 = gα2
1 , Ci∗,j∗,4 = W ∗

3.1,

Ci∗,j∗,5 = H5(Ci∗,j∗,1||Ci∗,j∗,2||Ci∗,j∗,3||Ci∗,j∗,4||Mb||α1).

52 Y. Ling et al.

Finally, it adds (e(Ppub, h2,j∗)α2 ,W ∗
3.1 ⊕ (Mb||α1)) into the H list

4 .
Let S1.3 be the event that M ′ = M in Game 1.3. Since Ci∗,j∗,4 is a random

value in both Game 1.3 and Game 1.2, the challenge ciphertext generated in
Game 1.3 is identically distributed to that in Game 1.2. Hence if event E2 does
not occur, Game 1.3 is identical to Game 1.2. We have

|Pr[S1.3] − Pr[S1.2]| ≤ Pr[E2]. (4)

Next, we show that the event E2 occurs with negligible probability.

Lemma 1: Event E2 happens in Game 1.3 with negligible probability if V-BDH
is intractable.

Pr[E2] ≤ AdvV-BDH +
qD

2l1+l2
. (5)

where AdvV-BDH is the maximal advantage of a PPT adversary B1 in breaking
the V-BDH assumption.

Proof. Suppose that Pr[E2] is non-negligible. We construct a PPT algorithm B2

to break the V-BDH problem. Given a tuple (g′
1, g

′
2, g

′a
1 , g′c

1 , g′a
2 , g′d

2) ∈ G
∗
1 ×G

∗
2 ×

(G∗
1)

2 × (G∗
2)

2. B2 generates PP ′ = (G1,G2,GT , p, g1, g2, e,H1,H2,H3,H4,H5):
Generate type 3 bilinear pairing parameters: group G1, G2 and GT of prime order
p, a bilinear map e : G1 ×G2 → GT , a random generator g1 of G1 and a random
generator g2 of G2. Select five functions H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → G2,
H3 : {0, 1}∗ → G1, H4 : GT → {0, 1}l1+l2 and H5 : {0, 1}∗ → {0, 1}λ, where l1
and l2 represent the length of messages and the length of Zp, respectively.

It sets Ppub1 = g′a
1 , Ppub2 = g′a

2 and adds 〈IDj∗ ,, g′d
2 〉 to H list

2 , where
 means that the value is unknown yet. This implicitly sets msk = a and
h1,j∗ = g′d

2 . Note that the Ppub2 is used to answer the oracle ODK here, but it
is unnecessary for the challenger in the above games because the challenger has
the master key msk = a and can generate the decryption keys without Ppub2.
B2 performs identically to that in Game 1.3 except that the followings.

The generation of challenge ciphertext C∗
i∗,j∗ = (Ci∗,j∗,1, Ci∗,j∗,2, Ci∗,j∗,3,

Ci∗,j∗,4, Ci∗,j∗,5) for M is defined as follows:

Ci∗,j∗,1 = hα1
1,i∗ , Ci∗,j∗,2 = hxα1

1,i∗ · H3(Mb)y, Ci∗,j∗,3 = g′c
1 , Ci∗,j∗,4 = W ∗

3.1,

Ci∗,j∗,5 = H5(Ci∗,j∗,1||Ci∗,j∗,2||Ci∗,j∗,3||Ci∗,j∗,4||Mb||α1).

It adds the (,W ∗
3.1 ⊕ (Mb||α1)) into the H list

4 . The following oracles are
simulated as follows.

– ODK query 〈IDi〉. Same as that in Game 1.3, except that the challenger
responds A1 with dkIDi

= P vi

pub2 by running Extract algorithm on 〈IDi〉.
– OE query 〈i, IDi, IDj ,M〉. Same as that in Game 1.3, except that the challenger

queries OH4 on e(Ppub1, h2,j)α2 to obtain h4.

Group ID-Based Encryption with Equality Test 53

– OD query 〈j, IDi, IDj , Ci,j〉. Same as that in Game 1.3, except that if A1

asks for the decryption of C∗
i∗,j∗ = (Ci∗,j∗,1, Ci∗,j∗,2, Ci∗,j∗,3, C

′
i∗,j∗,4, Ci∗,j∗,5)

after obtaining C∗
i∗,j∗ , where C ′

i∗,j∗,4 �= Ci∗,j∗,4, ⊥ is returned. Oth-
erwise, B1 searches H list

4 to get h4. For each tuple (v1, h4), B1 com-
putes (M ||α1) = Ci,j,4 ⊕ h4 and checks if Ci,j,1 = hα1

1,i and Ci,j,5 =
H5(Ci,j,1||Ci,j,2||Ci,j,3||Ci,j,4||M ||α1). If so, B1 returns M ; otherwise, ⊥ is
returned.

Denote E′
2 the event that A1 asks OH4 for e(Ppub1, h2,j∗)α2 . If E′

2 does not
occur, B1 aborts with failure. Next we prove that Game 1.3 and the simula-
tion above are indistinguishable. We only focus on the simulation of OD. We
distinguish the following two cases.

(1) e(g′
1, g

′
2)

acd has been queried to OH4 before a decryption query
(Ci,j,1, Ci,j,2, Ci,j,3, Ci,j,4, Ci,j,5) is issued. In this case, Ci,j,4 is uniquely
determined after e(g′

1, g
′
2)

acd is queried to OH4 . Therefore, ODec is simu-
lated perfectly.

(2) e(g′
1, g

′
2)

acd has never been queried to OH4 before a decryption query
(Ci,j,1, Ci,j,2, Ci,j,3, Ci,j,4, Ci,j,5) is issued. In this case, ⊥ is returned by
the OD. The simulation fails if (Ci,j,1, Ci,j,2, Ci,j,3, Ci,j,4, Ci,j,5) is a valid
ciphertext. However, due to the idealness of the random oracle, it occurs
with probability at most 1/2l1+l2 .

Denote by D the event that a valid ciphertext is rejected in the simulation,
and then we have Pr[D] ≤ 1/2l1+l2 . If D does not occur, the simulation is
identical to Game 1.3. Thus, Pr[E′

2|¬D] = Pr[E2]. We have

Pr[E′
2] = Pr[E′

2|D]Pr[D] + Pr[E′
2|¬D]Pr[¬D] ≥ Pr[E′

2|¬D]Pr[¬D]
= Pr[E′

2|¬D](1 − Pr[D]) ≥ Pr[E′
2|¬D] − Pr[D]

Therefore, we have Pr[E′
2] = AdvV-BDH ≥ Pr[E2] − qD/2l1+l2 . If Pr[E2] is

non-negligible, the probability of breaking the V-BDH problem is non-negligible
as well. The proof of Lemma 1 is completed.

Game 1.4. In this game, the challenger performs identically to that in Game 1.3
except that the followings.

– OH5 query 〈v1〉. Same as that in Game 1.3, except that if A1 asks
(Ci∗,j∗,1||Ci∗,j∗,2||Ci∗,j∗,3||Ci∗,j∗,4||Mb||α1), the game is aborted. We denote
the event by E3.

– OD query 〈j, IDi, IDj , Ci,j〉. Same as that in Game 1.3, except that if A1 asks
for decryption of C∗

i∗,j∗ = (Ci∗,j∗,1, Ci∗,j∗,2, Ci∗,j∗,3, C
′
i∗,j∗,4, C

′
i∗,j∗,5) after

obtaining the challenge ciphertext C∗
i∗,j∗ (see below), where C ′

i∗,j∗,4 �= Ci∗,j∗,4

and C ′
i∗,j∗,5 �= Ci∗,j∗,5, ⊥ is returned.

The challenger randomly chooses W ∗
4.1 ← {0, 1}l1+l2 and W ∗

4.2 ← {0, 1}λ and
sets C∗

i∗,j∗ as follows.

Ci∗,j∗,1 = hα1
1,i∗ , Ci∗,j∗,2 = hxα1

1,i∗ · H3(Mb)y, Ci∗,j∗,3 = gα2
1 , Ci∗,j∗,4 = W ∗

4.1,

54 Y. Ling et al.

Ci∗,j∗,5 = W ∗
4.2.

Finally, it adds (e(Ppub, h2,j∗)α2 ,W ∗
4.1 ⊕ (Mb||α1)) and (Ci∗,j∗,1||Ci∗,j∗,2||

Ci∗,j∗,3||Ci∗,j∗,4||Mb||α1,W
∗
4.2) into the H list

4 and H list
5 , respectively.

Let S1.4 be the event that b′ = b in Game 1.4. Since the idealness of the
random oracle, Pr[E3] is negligible. If event E3 does not occur, Game 1.4 is
identical to Game 1.3. We have

|Pr[S1.4] − Pr[S1.3]| ≤ Pr[E3]. (6)

Game 1.5. In this game, the challenger performs identically to that in Game 1.4
except that the following.

– OE query 〈i, IDi, IDj ,M〉. Same as that in Game 1.4, except that if α1 which
equals to the random vale in the challenge step is chosen for answering encryp-
tion queries, the game is aborted. We denote the event by E4.

Let S1.5 be the event that b′ = b in Game 1.5. It is straightforward to know
that Pr[E4] is negligible. If event E4 does not occur, Game 1.5 is identical to
Game 1.4. We have

|Pr[S1.5] − Pr[S1.4]| ≤ Pr[E4]. (7)

Game 1.6. In this game, the challenger performs identically to that in Game
1.5, except that it randomly chooses W ∗

6.1 ← {0, 1}l1+l2 , W ∗
6.2 ← {0, 1}λ and

W ∗
6.3 ← G

∗
1 and then sets C∗

i∗,j∗ as follows.

Ci∗,j∗,1 = hα1
1,i∗ , Ci∗,j∗,2 = W ∗

6.3 · H3(Mb)y, Ci∗,j∗,3 = gα2
1 , Ci∗,j∗,4 = W ∗

6.1,

Ci∗,j∗,5 = W ∗
6.2.

Finally, it adds (e(Ppub, h2,j∗)α2 ,W ∗
6.1 ⊕ (Mb||α1)) and (Ci∗,j∗,1||Ci∗,j∗,2||

Ci∗,j∗,3||Ci∗,j∗,4||Mb||α1,W
∗
6.2) into the H list

4 and H list
5 , respectively.

Let S1.6 be the event that b′ = b in Game 1.6. If the adversary A1 cannot
distinguish hx,α1

1,i (A1 can obtain hα1
1,i∗ = Ci∗,j∗,1 and gwi = hx

1,i∗) from the
random value W ∗

6.3 in Ci∗,j∗,2, Game 1.6 is identical to Game 1.5. We have

|Pr[S1.6] − Pr[S1.5]| ≤ AdvSXDH. (8)

Game 1.7. In this game, the challenger performs identically to that in Game
1.6 except that it randomly chooses W ∗

7.1 ← {0, 1}l1+l2 , W ∗
7.2 ← {0, 1}λ and

W ∗
7.3 ← G

∗
1, and then sets C∗

i∗,j∗ as follows.

Ci∗,j∗,1 = hα1
1,i∗ , Ci∗,j∗,2 = W ∗

7.3, Ci∗,j∗,3 = gα2
1 , Ci∗,j∗,4 = W ∗

7.1,

Ci∗,j∗,5 = W ∗
7.2.

It adds (Mb, (W ∗
7.3/hxα1

1,i∗)−y), (e(Ppub, h2,j∗)α2 ,W ∗
7.1 ⊕ (Mb||α1)) and (Ci∗,j∗,1||

Ci∗,j∗,2||Ci∗,j∗,3||Ci∗,j∗,4||Mb||α1,W
∗
7.2) into the H list

3 , H list
4 and H list

5 , respec-
tively.

Group ID-Based Encryption with Equality Test 55

Let S1.7 be the event that b′ = b in Game 1.7. It is straightforward to know
that Game 1.7 is identical to Game 1.6. We have

Pr[S1.7] = Pr[S1.6]. (9)

Finally, it is evident that all the five components in the challenge ciphertext
of Game 1.7 are independent of the Mb, so A1 is able to make a correct guess
b′ = b in Game 1.7 with probability at most 1/2. That is,

Pr[S1.7] = 1/2. (10)

Combining (1)–(10), we have that

AdvW-IND-ID-CCA
G-IBEET,A1

(qH1 , qH2 , qH3 , qH4 , qH5 , qgw, qDK , qE , qD)

≤Pr[E1] + Pr[E3] + Pr[E4] + AdvSXDH + AdvV-BDH +
qD

2l1+l2
.

Since Pr[E1], Pr[E3], Pr[E4], AdvSXDH, AdvV-BDH and qD/2l1+l2 are negli-
gible, we also have AdvW-IND-ID-CCA

G-IBEET,A1
(qH1 , qH2 , qH3 , qH4 , qH5 , qgw, qDK , qE , qD) is

negligible, which completes the proof.

Theorem 2: G-IBEET scheme is IND-ID-CCA secure against type-II adversary
in the random oracle model assuming both V-BDH and SXDH are intractable.

Proof. The proof of Theorem 2 can be easily obtained by above the proof of
Theorem 1, and hence we omitted it.

6 Conclusion

In this paper, we introduced the group mechanism into IBEET and proposed G-
IBEET. By the group mechanism, G-IBEET supports group granularity autho-
rization. Moreover, the workload of generation and management of trapdoors can
be greatly reduced due to the group granularity authorization. For the insider
attack, G-IBEET provides a nice solution for IBEET to resist it by the group
mechanism. We proved its security in the random oracle and showed that the
proposed scheme has a more efficient test algorithm.

Acknowledgement. This work is supported by National Natural Science Foundation
of China (No. 61872409, 61872152), Pearl River Nova Program of Guangzhou (No.
201610010037), Guangdong Natural Science Funds for Distinguished Young Scholar
(No. 2014A030306021) and Guangdong Program for Special Support of Topnotch
Young Professionals (No. 2015TQ01X796).

56 Y. Ling et al.

References

1. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: A new general framework for
secure public key encryption with keyword search. In: Foo, E., Stebila, D. (eds.)
ACISP 2015. LNCS, vol. 9144, pp. 59–76. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19962-7 4

2. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server public-key encryption
with keyword search for secure cloud storage. IEEE Transa. Inf. Forensics Secur.
11(4), 789–798 (2016)

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

4. Huang, K., Tso, R., Chen, Y.-C., Li, W., Sun, H.-M.: A new public key encryption
with equality test. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014.
LNCS, vol. 8792, pp. 550–557. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11698-3 45

5. Huang, K., Tso, R., Chen, Y.C., Rahman, S.M.M., Almogren, A., Alamri, A.:
Pke-aet: public key encryption with authorized equality test. Comput. J. 58(10),
2686–2697 (2015)

6. Huang, Q., Li, H.: An efficient public-key searchable encryption scheme secure
against inside keyword guessing attacks. Inf. Sci. 403, 1–14 (2017)

7. Lee, H.T., Ling, S., Seo, J.H., Wang, H.: Semi-generic construction of public key
encryption and identity-based encryption with equality test. Inf. Sci. 373, 419–440
(2016)

8. Lee, H.T., Ling, S., Seo, J.H., Wang, H., Youn, T.Y.: Public key encryption with
equality test in the standard model. IACR Cryptology ePrint Archive 2016, 1182
(2016)

9. Li, H., Huang, Q., Ma, S., Shen, J., Susilo, W.: Authorized equality test on identity-
based ciphertexts for secret data sharing via cloud storage. IEEE Access (Early
Access) 7, 1 (2019)

10. Lin, X.J., Qu, H., Zhang, X.: Public key encryption supporting equality test and
flexible authorization without bilinear pairings. IACR Cryptology ePrint Archive
2016, 277 (2016)

11. Ling, Y., Ma, S., Huang, Q., Li, X.: A general two-server framework for ciphertext-
checkable encryption against offline message recovery attack. In: Sun, X., Pan, Z.,
Bertino, E. (eds.) ICCCS 2018. LNCS, vol. 11065, pp. 370–382. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00012-7 34

12. Ma, S.: Identity-based encryption with outsourced equality test in cloud comput-
ing. Inf. Sci. 328, 389–402 (2016)

13. Ma, S.: Authorized equality test of encrypted data for secure cloud databases.
In: 2018 17th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications/12th IEEE International Conference on Big Data
Science and Engineering (TrustCom/BigDataSE), pp. 223–230 (2018)

14. Ma, S., Huang, Q., Zhang, M., Yang, B.: Efficient public key encryption with
equality test supporting flexible authorization. IEEE Trans. Inf. Forensics Secur.
10(3), 458–470 (2015)

15. Ma, S., Ling, Y.: A general two-server cryptosystem supporting complex queries.
In: Kang, B.B.H., Kim, T. (eds.) WISA 2017. LNCS, vol. 10763, pp. 249–260.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93563-8 21

https://doi.org/10.1007/978-3-319-19962-7_4
https://doi.org/10.1007/978-3-319-19962-7_4
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-319-11698-3_45
https://doi.org/10.1007/978-3-319-11698-3_45
https://doi.org/10.1007/978-3-030-00012-7_34
https://doi.org/10.1007/978-3-319-93563-8_21

Group ID-Based Encryption with Equality Test 57

16. Ma, S., Zhang, M., Huang, Q., Yang, B.: Public key encryption with delegated
equality test in a multi-user setting. Comput. J. 58(4), 986–1002 (2015)

17. Qu, H., Yan, Z., Lin, X.J., Zhang, Q., Sun, L.: Certificateless public key encryption
with equality test. Inf. Sci. 462, 76–92 (2018)

18. Tang, Q.: Towards public key encryption scheme supporting equality test with fine-
grained authorization. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS,
vol. 6812, pp. 389–406. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22497-3 25

19. Tang, Q.: Public key encryption schemes supporting equality test with authorisa-
tion of different granularity. Int. J. Appl. Crypt. 2(4), 304–321 (2012)

20. Tang, Q.: Public key encryption supporting plaintext equality test and user-
specified authorization. Secur. Commun. Netw. 5(12), 1351–1362 (2012)

21. Wang, C.H., Tai-Yuan, T.U.: Keyword search encryption scheme resistant against
keyword-guessing attack by the untrusted server. J. Shanghai Jiaotong Univ. (Sci.)
19(4), 440–442 (2014)

22. Wang, Y., Pang, H.: Probabilistic public key encryption for controlled equijoin in
relational databases. Comput. J. 60(4), 600–612 (2017)

23. Wu, L., Zhang, Y., Choo, K.K.R., He, D.: Efficient and secure identity-based
encryption scheme with equality test in cloud computing. Future Gener. Comput.
Syst. 73, 22–31 (2017)

24. Wu, L., Zhang, Y., He, D.: Dual server identity-based encryption with equality
test for cloud computing. J. Comput. Res. Dev. 54(10), 2232–2243 (2017)

25. Wu, T., Ma, S., Mu, Y., Zeng, S.: ID-based encryption with equality test against
insider attack. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342,
pp. 168–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0 9

26. Yacobi, Y.: A note on the bilinear Diffie-Hellman assumption. IACR Cryptology
ePrint Archive 2002, 113 (2002)

27. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption
with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–
131. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5 9

28. Zhang, K., Chen, J., Lee, H.T., Qian, H., Wang, H.: Efficient public key encryption
with equality test in the standard model. Theor. Comput. Sci. 755, 65–80 (2019).
https://doi.org/10.1016/j.tcs.2018.06.048

https://doi.org/10.1007/978-3-642-22497-3_25
https://doi.org/10.1007/978-3-642-22497-3_25
https://doi.org/10.1007/978-3-319-60055-0_9
https://doi.org/10.1007/978-3-642-11925-5_9
https://doi.org/10.1016/j.tcs.2018.06.048

Strong Post-Compromise Secure Proxy
Re-Encryption

Alex Davidson1,2, Amit Deo1, Ela Lee1(B), and Keith Martin1

1 ISG, Royal Holloway University of London, Egham, UK
Ela.Lee.2010@live.rhul.ac.uk

2 Cloudflare, London, UK

Abstract. Proxy Re-Encryption (PRE) allows a ciphertext encrypted
using a key pki to be re-encrypted by a third party so that it is an
encryption of the same message under a new key pkj , without revealing
the message. We define Post-Compromise Security (PCS) in the context
of PRE. This ensures that an adversary cannot distinguish which of two
adversarially chosen ciphertexts a re-encryption was created from even
when given the old secret key and the update token used to perform
the re-encryption. We give separating examples demonstrating how PCS
is stronger than existing security definitions for PRE achieving similar
goals, before showing that PCS can be achieved using a combination of
existing security properties from the literature. In doing so, we show there
are existing PRE schemes satisfying PCS. Finally, we give a construction
demonstrating that natural modifications of practical PRE schemes prov-
ably have PCS directly, without incurring overheads from the security
reductions we have shown, and from weaker assumptions than existing
schemes.

1 Introduction

Cloud storage has become increasingly popular in recent years, evolving from
acting as a source of backup data to becoming the default storage for many
applications and systems. For example, popular media streaming platforms such
as Netflix and Spotify allow clients to subscribe to on-demand access for media
files as opposed to storing them locally. This also incentivises the design of
devices with small local storage, but high connectivity.

Since the cloud is usually a third party, clients must encrypt their files to
ensure data confidentiality. This poses problems when a client wants to change
the key for their encrypted files as a means of satisfying compliance directives
[2,17,18] or to enforce access control policies. One trivial solution has the client
download, decrypt, encrypt using the new key, then re-upload the file. However,

A. Davidson, A. Deo and E. Lee—These authors are supported by the EPSRC and
the UK government as part of the Centre for Doctoral Training in Cyber Security at
Royal Holloway, University of London (EP/K035584/1).

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 58–77, 2019.
https://doi.org/10.1007/978-3-030-21548-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_4

Strong Post-Compromise Secure Proxy Re-Encryption 59

this can be very expensive, particularly for modern applications involving large
databases, or if the client has limited processing capability.

The primitive of Proxy Re-Encryption (PRE), introduced by Blaze et al. [3],
presents a more elegant solution. In a PRE scheme, the client creates an update
token Δi,j using the current secret key ski and a new public key pkj . The server
can then use this token to re-encrypt the ciphertext, transforming it into an
encryption of the same message which can now be decrypted using skj . The
most basic security notion for PRE states that the server performing the re-
encryption learns nothing about the underlying message.

Post-Compromise Security. The notion of Post-Compromise Security (PCS)
was first defined in [8] for messaging protocols, and informally states that security
guarantees can still exist after the compromise of past secrets. This differs from
forward security, which conveys that the compromise of future states does not
affect the security of those in the past.

Motivation for PCS PRE. A common approach to PRE is to use a hybrid
model where the message is encrypted under one static key and a ciphertext
header is formed by encrypting this key with a PRE key. When the key changes,
the header is re-encrypted while the body remains unchanged. Whilst this app-
roach succeeds at granting access, the use of a static key is not appropriate
for key rotation (key life-cycles) or access revocation. PCS therefore has clear
applications for key rotation and dynamic access control schemes where keys are
shared amongst groups and removing a user requires re-encrypting files.

One particular application of post-compromise PRE of interest is to com-
plement PCS of messages in transit, by giving PCS security to backed up mes-
sages stored in the cloud. The Signal Protocol for encrypting messages in transit
between two devices provides PCS [8]. However, popular Signal implementations
such as WhatsApp back up client messages to cloud services, by encrypting using
a static encryption key. This means that while messages in transit have PCS,
it is lost once messages are backed up. Ideally, the user should have a means of
mitigating a compromise by re-encrypting the backup to an uncompromised key.
If the entire message history were stored locally, updated message history could
be encrypted under a new key and re-uploaded at regular time intervals, but this
will have a huge cost both in terms of computation and bandwidth, particularly
as much messaging is done via smart-phones. A PRE scheme with PCS could be
used instead, so the PCS of messages in transit is extended to message backups.

1.1 Contributions

In this paper we set out the first formalisation of PCS for PRE schemes. In our
model, the adversary cannot distinguish a re-encrypted ciphertext given the old
key, old ciphertexts and the token used to perform the re-encryption. In other
words, we view a compromise as the loss of all previous public and secret states
associated with a given ciphertext, and limit the information that must remain
secret to the current secret key alone. To date there is no security definition that
gives the adversary the update token used in the challenge re-encryption. Our

60 A. Davidson et al.

definition implies unidirectionality (as opposed to treating unidirectional and
bidirectional schemes differently), and that additional randomness beyond that
given in the update token is added upon re-encryption. Since we do not make as
many assumptions on which algorithms are deterministic or on the flow of re-
encryption operations, our security model can be applied to more general PRE
schemes and applications than similar definitions in the literature (see Sect. 3).

We analyse our model, proving several results that associate PCS with exist-
ing security models for PRE and related primitives such as updatable encryption
[13], and provide separating examples that distinguish PCS as a separate secu-
rity characteristic in its own right. One of our major contributions is to show
how a combination of existing security notions leads to PCS, meaning that some
of the PRE schemes given by Fuchsbauer et al. [11] immediately satisfy PCS.
However, these schemes were designed with different goals in mind and do not
necessarily lead to the most practical lattice-based PREs with PCS. We there-
fore give a new PRE scheme, pcBV-PRE, adapted from BV-PRE – the practical
RLWE-based scheme of Polyakov et al. [19]. This new scheme leverages the speed
of the original construction with minimal changes, implying efficiency. We prove
that our adaptation achieves PCS and IND-CPA-security via a tighter reduc-
tion than using the combination of properties previously mentioned, meaning
this combination is sufficient, but not necessary for achieving PCS.

Paper Structure. We begin by reviewing necessary preliminaries in Sect. 2
before reviewing related work in Sect. 3. In Sect. 4 we define PCS and show how
our definition relates to those already in the literature. We then give an explicit
construction of a PRE scheme satisfying PCS in Sect. 5.

2 Preliminaries

We introduce Proxy Re-Encryption and some related definitions and conven-
tions. Whilst we stick to the asymmetric setting in the body of this work, we
present symmetric variants in the full version [9] for easier comparison with
related work in the symmetric setting such as key rotation and updatable encryp-
tion.

Definition 1. A Proxy Re-Encryption (PRE) scheme consists of the following
algorithms:

– Setup(1λ) → params: Outputs a set of public parameters, including the mes-
sage space and ciphertext space. Note that params is input to every subsequent
algorithm, but we leave it out for compactness of notation. We often omit the
Setup algorithm for the same reason.

– KeyGen(1λ) → (pk, sk): Generates a public-private key pair.
– Enc(pk,m) → C: Encrypts a message m using a public key pk, producing a

ciphertext C.1

1 Note that some definitions of a PRE scheme have an additional input � to indicate
a level the ciphertext should be at. In this work, we leave out � unless discussing
schemes and results that use levelling explicitly.

Strong Post-Compromise Secure Proxy Re-Encryption 61

– Dec(sk, C) → m′∪ ⊥: Decrypts a ciphertext C to produce either an element
of the message space m′ or an error symbol ⊥.

– ReKeyGen(ski, pkj) → Δi,j∪ ⊥: Takes a secret key ski and public key pkj and
outputs an update token Δi,j, or ⊥ when i = j. This last condition is often
left out of constructions for compactness.

– ReEnc(Δi,j , C) → C ′: Takes a ciphertext C under pki and outputs a new
ciphertext C ′ under pkj.

A PRE scheme is correct if, for all m ∈ M, (pk, sk) $← KeyGen(1λ), then:

Dec(sk,Enc(pk,m)) → m

and if, for all C ∈ C such that Dec(ski, C) → m, then:

Dec(skj ,ReEnc(Δi,j , C)) → m

where (pki, ski), (pkj , skj)
$← KeyGen(1λ) and Δi,j ← ReKeyGen(ski, pkj).

Some PRE constructions have a correctness bound, L – a limit on the number of
re-encryptions possible before the resulting ciphertext fails to decrypt properly.

A common approach to PRE is the key encapsulation approach. Encryption
involves generating a symmetric key k for a symmetric encryption scheme SE
and computing C1

$← SE .Enc(k,m), before encrypting k using a public-key PRE
scheme PRE to obtain C0 ← PRE .Enc(pk, k). For re-encryption, the ciphertext
header C0 is re-encrypted so it is now an encryption of k under some specified pk′,
whilst C1 remains unchanged. We describe why this approach is not sufficient
for PCS in Sect. 3.2.

Definition 2. If an update token Δi,j
$← PRE .ReKeyGen(ski, pkj) computed

using a PRE scheme PRE can be used to derive a token Δj,i that can re-encrypt
ciphertexts from pkj to pki then we say the scheme PRE is bidirectional. If
PRE is not bidirectional then it is unidirectional.

Directionality is often used in security games to determine the adversary’s
limitations.

We now move on to giving definitions for message confidentiality in PRE.
IND-CPA-security is a well-known notion in public-key encryption which states
that given a ciphertext, an adversary cannot distinguish which of two messages
it is an encryption of. We refer to this as PKE-CPA security for PRE schemes,
defining it as a separate notion to IND-CPA to avoid confusion and for easier
comparison between definitions.

Definition 3. A PRE scheme PRE is ε-PKE-CPA secure if the Public
Key Encryption (PKE) scheme given by PKE = {PRE .KeyGen,PRE .Enc,
PRE .Dec} is ε-IND-CPA-secure, where ε is the advantage over random guessing
the adversary has in winning the game.

If ε is negligible as parameterised by the security parameter, then we say PRE
is PKE-CPA-secure.

62 A. Davidson et al.

2.1 Re-encryption Graphs

We often use a directed re-encryption graph (DRG) when discussing the security
of PRE schemes. A DRG tracks queries the adversary A makes during a security
game to represent re-encryptions that A can make locally – nodes vi represent
key pairs whilst directed2 edges

→
e i,j represent update tokens The DRG is often

used to enforce the condition that A cannot query oracles in such a way that
reveals a challenge under a corrupted key.

Re-encryption graphs often reflect applications. For example, for simply
rotating keys the resulting graph will be a chain, as is assumed in updatable
encryption [4,13] and key rotation for authenticated encryption [10], whereas
some access control hierarchies may lead to trees. Some results such as those
given in [11] between selective and adaptive security mainly apply to some types
of graph. Throughout this paper, we assume DRGs are acyclic.

2.2 Common Oracles

Most definitions use the same oracles, which we define in Fig. 1 for compactness.
The main variations between definitions are how the challenge oracle Ochallenge

is defined, and sometimes whether OReEnc affects the DRG. We therefore define
these in each individual game. Games often keep track of lists updated by the
oracles, namely a list of challenge keys Kchal, corrupted keys Kcorrupted, oracle-
generated ciphertexts Chonest, challenge ciphertexts Cchal and oracle-generated
tokens Thonest.

Fig. 1. Common oracles used in security games for PRE. κ is the number of keys in the

game. Boxed values indicate steps to update lists that may not be used depending
on the game. The lists a particular game uses are indicated in the game’s setup phase.

In our syntax, the restrictions on what tokens the adversary is allowed to
learn is not enforced by oracles (as in other work), but instead by the list of
challenge keys Kchal being updated using the graph DRG at the end of the
game. It is a winning condition in all PRE security definitions considering key

2 If a scheme is bidirectional, then edges added would be directionless. In this work
we mainly focus on unidirectional schemes.

Strong Post-Compromise Secure Proxy Re-Encryption 63

corruption that the adversary cannot have queried oracles in such a way that
reveals a challenge ciphertext under a corrupted key. We refer to this as the
trivial win condition.

If the adversary has learned a series of update tokens that allow them to
re-encrypt the challenge ciphertext, then the keys that tokens re-encrypt to are
also considered challenge keys as the adversary can re-encrypt the challenge
ciphertext locally. We therefore use the following function to update the set of
challenge keys:

UpdateChallengeKeys(Kchal,DRG)

∀i such that ski ∈ Kchal :

∀j such that ∃ a path from vi to vj in DRG :

Kchal.add skj

return Kchal

We enforce the trivial win condition by calling UpdateChallengeKeys at the
end of the game, and checking that Kchal ∩ Kcorrupted = ∅.

3 Related Work

3.1 Confidentiality Definitions

The basic security definition for PRE was first given in [3] for bidirectional
schemes. Informally, it states the scheme should still be IND-CPA-secure when
given the additional functionality of re-encryption. This means the proxy should
not learn the message during the re-encryption process. Unidirectional PRE
schemes were introduced by Ateniese et al. [1] together with an equivalent secu-
rity definition. Similar definitions conveying this notion appear in all work on
PRE. We refer to such notions as PRE-CPA as opposed to IND-CPA, to avoid
confusion with IND-CPA (for PKE schemes) and PKE-CPA (for PRE schemes).

Definition 4. A PRE scheme PRE is said to be (selectively) ε-PRE-
Indistinguishable against Chosen Plaintext Attacks (ε-PRE-CPA-secure) if for
all Probabilistic Polynomial-Time (PPT) adversaries A = (A0,A1):

∣
∣
∣Pr

[

PRE-CPA0,PRE
A (1λ) = 1

]

− Pr
[

PRE-CPA1,PRE
A (1λ) = 1

]∣
∣
∣ ≤ ε,

where PRE-CPAb,PRE
A is defined in Fig. 2.

If ε is negligible as parameterised by the security parameter, then we say
the scheme is PRE-Indistinguishable against Chosen Plaintext Attacks (PRE-
CPAsecure).

Whilst the above definition is based on the one given in [11], our formulation
is slightly different as we account for there being multiple possible tokens per
key pair, meaning OReEnc allows A to input an honestly-generated update token

64 A. Davidson et al.

Fig. 2. The PRE-CPA game – an extension of PKE-CPA which accounts for re-
encryption. OKeyGen,OEnc,OReKeyGen are as defined in Fig. 1.

as opposed to only having indexes as input. Note that the DRG is created by
adding an edge whenever OReEnc is called.

A definition of IND-CCA security for PRE first appears in [6] for bidirectional
single-hop (ciphertexts can only be re-encrypted once) schemes. This allows the
adversary to adaptively corrupt secret keys. A definition of IND-CCA security
for unidirectional schemes is given in [14].

Honest Re-encryption Attacks. Recently, a stronger notion was introduced
which allows the adversary to re-encrypt non-challenge ciphertexts to any key,
as long as they were honestly generated. Cohen formalised these as Honest Re-
encryption Attacks (HRA) [7] but the same idea is also used elsewhere [13].
We base our formulation of security against Honest Re-encryption Attacks on
IND-ENC-security [13], IND-HRA-security [7] and IND-CPA-security [19].

Definition 5. A PRE scheme PRE is said to be (selectively)
ε-Indistinguishable against Honest Re-encryption Attacks (ε-IND-HRA-secure)
if for all PPT adversaries A = (A0,A1):

∣
∣
∣Pr

[

IND-HRA0,PRE
A (1λ) = 1

]

− Pr
[

IND-HRA1,PRE
A (1λ) = 1

]∣
∣
∣ ≤ ε,

where IND-HRAb,PRE
A is defined in Fig. 3.

If ε is negligible as parameterised by the security parameter, then we say the
scheme is (selectively) Indistinguishable against Honest Re-encryption Attacks
(IND-HRA-secure).

Strong Post-Compromise Secure Proxy Re-Encryption 65

Fig. 3. The IND-HRA game. Like the IND-HRA model [7], it allows re-encryptions of
non-challenge ciphertexts to compromised keys using OReEnc.

We discuss security with respect to adaptive key corruptions in the full ver-
sion [9].

Theorem 1. IND-HRA =⇒ PRE-CPA =⇒ PKE-CPA.

As each game builds directly on the last but gives the adversary access to
more information, proof of this theorem follows trivially.

Cohen also defines re-encryption simulatability [7] and demonstrates that
PRE-CPA-secure schemes which have this property are IND-HRA-secure. We
leave out the definition of re-encryption simulatability for brevity.

3.2 Ciphertext Re-randomisation

Thus far we have not considered key revocation explicitly. In this case, stronger
definitions requiring re-encryption to re-randomise the ciphertext are required,
as is demonstrated in the key encapsulation approach discussed in Sect. 1. Whilst
this method grants the benefits of hybrid encryption, key-scraping attacks are
possible: a malicious user simply retains the message encryption key k and can
derive the message regardless of how often the ciphertext is re-encrypted. It may

66 A. Davidson et al.

be unrealistic for a malicious revoked user to download all the plaintexts due
to storage constraints, as is the case for subscriber-based streaming platforms.
However, as symmetric keys are typically much shorter than the plaintexts, it is
more realistic that a malicious subscriber could retain the message key. Although
constructions based on this model can be shown to meet typical confidentiality
definitions for PRE shown in Sect. 3.1, they are not appropriate for PCS.

Randomised re-encryption for PRE schemes has been studied in [6,10,13].
However, these works do not consider an adversary who can learn the old secret
key and update token and therefore they do not cover full compromise of the user
who generated the update token. Other related work models PCS by giving a
bound on the amount of information the adversary retains about a the ciphertext
prior to re-encryption [12,16]. Such definitions do not account for the possibility
of revoked users storing parts of the original ciphertexts colluding, and lead to
more complicated, less intuitive proofs than our approach.

IND-UPD. We now discuss the IND-UPD security notion [13]. This definition
was created to convey PCS for updatable encryption schemes - a variant of PRE
that uses symmetric keys and where re-encryption always happens sequentially
from ki to ki+1. This is the most relevant definition in the literature with respect
to achieving PCS for PRE. We consider a version of IND-UPD adapted to the
public key setting which we call pkIND-UPD, for easier comparison to our defi-
nitions. We give the main points of the definition here, and a full description in
the full version [9].

In the pkIND-UPD game, key updates happen sequentially. The challenge
oracle outputs a re-encrypted ciphertext and the adversary must guess which
ciphertext it is a re-encryption of. Challenge ciphertexts are updated whenever
a new key is generated, but only given to the adversary if the oracle OpkIU

LearnChal

is called. One of the winning conditions given in OpkIU
ReEnc is that when ReEnc is

deterministic, the adversary A cannot have re-encrypted either of the challenge
input ciphertexts C̄0, C̄1. Another notable condition is A cannot learn the token
updating to the key that the first challenge is given under, as enforced by a
condition in OpkIU

LearnTok. The final constraint relates to directionality; if the scheme
is bidirectional then A cannot have learned any tokens leading from corrupted
keys to challenge keys. We will readdress these points in Sect. 4.

Source-Hiding. Fuchsbauer et al. [11] define source-hiding as a component
for demonstrating that PRE security with selective key corruptions can imply
security with adaptive key corruptions in restricted re-encryption circumstances.
Informally, in a source-hiding scheme it is possible to create a fresh encryption
of a message that is indistinguishable from a re-encrypted ciphertext that is
an encryption of the same message. This means re-encrypted ciphertexts reveal
no history as to the keys they were previously encrypted under, or similarities
between components of previous ciphertexts.

We give a formal description of the game defining the source-hiding property
in Fig. 4. Our formulation generalises the original definition in [11] by allowing

Strong Post-Compromise Secure Proxy Re-Encryption 67

the adversary to receive κ keypairs rather than 1. Moreover, as before, we allow
the adversary to query multiple re-key tokens between any key pairs of their
choice.

Fig. 4. Experiments for the source-hiding property. Here, � denotes a level for the
ciphertext to be encrypted at – essentially the number of times C has been re-encrypted.
This is important for noisy PRE schemes, but ignored for PRE schemes without level-
ling. L is the number of times a ciphertext can be re-encrypted without breaking the
correctness conditions (the correctness bound).

Definition 6. A PRE scheme PRE is said to be ε-source-hiding (ε-SH) if for
all PPT adversaries A = (A0,A1):

∣
∣
∣Pr

[

SH0,PRE
A (1λ, 1κ, 1L) = 1

]

− Pr
[

SH1,PRE
A (1λ, 1κ, 1L) = 1

]∣
∣
∣ ≤ ε

where SHb,PRE
A is defined in Fig. 4.

If ε is negligible as parameterised by the security parameter, then we say the
scheme is source-hiding (SH).

4 Strong PCS for PRE

We have two main motivations for creating a new definition of PCS in the PRE
context. The first is that there is currently no definition that implies unidi-
rectionality and ciphertext re-randomisation. These properties are vital in the
post-compromise scenario to model the corruption of used update tokens. The
second motivation is to remove assumptions as to which algorithms in the PRE
scheme are probabilistic. By addressing these concerns, we formalise a provably
stronger definition of PCS in the PRE setting.

Explicit Unidirectionality. IND-UPD places restrictions based on inferable
information, defined by the following notions of directionality [13]:

– When skj cannot be derived from ski and Δi,j (LT-unidirectional)3

3 The general understanding of unidirectionality is not so strong - the new key does
not necessarily have to be derivable, but the token and old key should lead to the
message being learned.

68 A. Davidson et al.

– When skj can be derived from ski and Δi,j (LT-bidirectional).

In the LT-unidirectional case, the adversary can acquire re-encryption tokens
from a corrupted key to a challenge key, but not the other way around. In the
LT-bidirectional case, the adversary is additionally prevented, by definition, from
learning tokens from challenge keys to corrupted keys or vice versa. This means
that for bidirectional schemes, the adversary queries tokens in such a way that
the resulting re-encryption graphs form disjoint sub-graphs – one containing cor-
rupted keys and the other containing challenge keys. Proving security is therefore
reduced to proving that unrelated, randomly-generated keys cannot be used to
infer information about an encrypted message. We consider this too restrictive
for the intuition of PCS.

Assuming Probabilistic Algorithms. There appear to be only two exist-
ing security definitions explicitly considering re-randomisation of re-encryption,
[10,13]. The [10] definition of a key rotation scheme assumes that ReKeyGen is
randomised but ReEnc is deterministic. This leads to a necessary condition that
the update token used to create the challenge re-encryption cannot be learned
by the adversary, otherwise the adversary could use it to re-encrypt the input
ciphertexts locally and compare this to the challenge to win the game. For this
reason, it is important that new randomness is not just introduced via the update
token to prevent trivial downgrading of the challenge ciphertext if the adversary
compromises the update token used, but also in ReEnc. As such, UP-REENC [10]
does not model compromise of the update token used.

In the [13] definition of an updatable encryption scheme, the opposite
assumption is made – that ReEnc is randomised and ReKeyGen is deterministic.
This means that for keys ski, pkj , there is only one update token Δi,j . This is
reflected in the IND-UPD security game (and pkIND-UPD) by having all tokens
generated at the start of the game and later having oracles reveal tokens for
the adversary. More importantly, such an assumption rules out the possibility
that secret keys are masked in the update token, which is important for PCS.
The BV-PRE scheme is an example of this, where knowledge of the key ‘pkj ’
together with Δi,j can be used to derive ski. Another example are ElGamal-
based symmetric PRE schemes (e.g. [3,13]) where update tokens have the form
Δi,j = skj/ski. Clearly, given the update token, compromise of the old key leads
to compromise of the new key. Introducing extra randomness also means the
client no longer solely relies on the proxy for adding new randomness during the
re-encryption process. This may be more appropriate for some trust scenarios.

For constructions where randomness is added in both ReKeyGen and ReEnc,
neither definition is suitable. It is therefore of interest to create a security notion
for PCS which factors in the possibility that both the ReKeyGen and ReEnc
algorithms are probabilistic.

4.1 Post-Compromise Security

We model Post-Compromise Security (PCS) using an adversary A who chooses
two ciphertexts (whose decryption key can be known) and a re-encryption token,

Strong Post-Compromise Secure Proxy Re-Encryption 69

and receives a challenge ciphertext which is a re-encryption of one of the original
ciphertexts created using the specified token. A attempts to distinguish which
ciphertext was re-encrypted. This models the compromise of all key-related mate-
rial prior to the challenge re-encryption.

As in IND-HRA security, we also allow A to re-encrypt oracle-generated non-
challenge ciphertexts to corrupted keys, and oracle-generated update tokens. In
the first stage, A0 can access a key corruption oracle OCorrupt; in the second stage
A1 can access the challenge oracle OPC

challenge and re-encryption oracle OReKeyGen.

Fig. 5. The PostComp game. This reflects full compromise of the old secret key and
update token used to perform the re-encryption.

Definition 7. A PRE scheme PRE is said to have (selective) ε-Post-
Compromise Security (ε-PCS) if for all PPT adversaries A = (A0,A1):

∣
∣
∣Pr

[

PostComp0,PRE
A (1λ) = 1

]

− Pr
[

PostComp1,PRE
A (1λ) = 1

]∣
∣
∣ ≤ ε,

where PostCompb,PRE
A is defined in Fig. 5. If ε is negligible as parameterised by

the security parameter, then we say the scheme achieves (selective) PCS.

Definitions of PCS for symmetric PRE schemes and adaptive key corruptions
can be found in the full version [9].

70 A. Davidson et al.

4.2 Basic Observations

Lemma 1. No PRE scheme where ReEnc is deterministic has PCS.

Proof. If ReEnc is deterministic then A can submit (C0, C1, i, j,Δi,j) to Ochallenge

to learn challenge C ′. Then A can locally compute C ′
0 ← ReEnc(Δi,j , C0) and

compare this with C ′ – if they match then output b′ = 0, otherwise output
b′ = 1.

Lemma 2. PCS =⇒ unidirectional.

Proof. We show that if a scheme is bidirectional then it cannot have PCS. Bidi-
rectionality implies that an update token Δi,j , can be used to derive Δj,i. There-
fore A can corrupt ski, and calculate Δj,i for challenge query (C0, C1, i, j,Δi,j),
where C0 and C1 are encryptions of different messages. A can then re-encrypt
the challenge ciphertext back to its original key and decrypt to win the game.

4.3 Separating Examples

We now demonstrate the relationship between PCS and existing security notions
and constructions via a number of separating examples.

Lemma 3. pkIND-UPD-security �=⇒ PCS.

Proof. Let PRE be a pkIND-UPD-secure PRE scheme where ReEnc is deter-
ministic. By Lemma 1, this scheme is not post-compromise secure.

Lemma 4. Let PRE be a PRE scheme where ReKeyGen is deterministic. If
PRE has PCS, then it is pkIND-UPD-secure.

Proof Sketch. The PostComp adversary A can simulate the pkIND-UPD game. It
begins by generating enough keys to cover the number of epochs in pkIND-UPD.
Before the challenge is issued, ONext can be easily simulated by generating a new
keypair, corrupting the old secret key and creating an update token between
the old key and the new. The adversary replaces the challenge ciphertext with
the output from OPC

challenge(C0, C1, ẽ − 1, ẽ). The PostComp adversary A0 must
guess the remaining keys which the pkIND-UPD will corrupt, which will result
in a sub-exponential loss of security as the challenge graph will be a chain.
The simulator can update both challenge and honest ciphertexts using OReEnc,
and ReKeyGen can be simulated with calls OReKeyGen. Re-encrypting a challenge
ciphertext directly to the requested key as opposed to going through all previous
keys in the chain first will go unnoticed, as if the number of times a ciphertext has
been re-encrypted could be detected then this could be use to win the PostComp
game.

Lemma 5. IND-HRA-security �=⇒ PCS.

Strong Post-Compromise Secure Proxy Re-Encryption 71

Proof. Consider the key encapsulation approach, where the ciphertext header is
an encryption of the message key using an IND-HRA-secure PRE scheme, and
the message is encrypted using a PRE-CPA-secure encryption. This scheme is
also IND-HRA-secure, but is not PCS, as the ciphertext body does not change.

Lemma 6. PCS �=⇒ IND-HRA-security.

Proof. Let PRE be a PRE scheme that is IND-HRA-secure and has PCS. We
use it to construct the following PRE scheme:

– KeyGen(1λ) : (pk, sk) ← KeyGen(1λ)
– Enc(pk,m) : C ← (m,Enc(pk,m))
– Dec(sk, C) : m′ ← Dec(sk, C1)
– ReKeyGen(ski, pkj) : Δi,j ← ReKeyGen(ski, pkj)
– ReEnc(Δi,j , C) : C ′

0 ← Enc(pkj , 0), C ′
1 ← ReEnc(Δi,j , C1)

Clearly this scheme is not IND-HRA-secure, as fresh ciphertexts contain the
plaintext. However the scheme has PCS, as re-encryptions C ′

1 will be unrelated
to C1 since PRE has PCS, and C ′

0 is created independently of both C0 and Δi,j .

Since PCS does not imply any security notion concerning confidentiality of the
message, confidentiality definitions must be proven separately for in order to
demonstrate that a PRE scheme is useful in practice.

4.4 PCS via Source-Hiding and IND-HRA

In this section we show that a PRE scheme that is both source-hiding and IND-
HRA-secure also has PCS.

Theorem 2. Let PRE be a PRE scheme that satisfies ε1-IND-HRA-security
and is ε2-SH. Let A, B and C be PPT algorithms that are attempting to succeed
in the PostCompPRE

A , SHPRE
B and IND-HRAPRE

C security games, respectively. Let
A have advantage ε in PostCompPRE

A . Then:

ε ≤ 2ε2 + ε1 < negl(n) ,

for a negligible function negl(n), and thus PRE has PCS.

We prove this theorem using a sequence of hybrid steps as described below. The
full proof is deferred to the full version [9].

Proof. Let PostCompPRE,b
A refer to the experiment in Fig. 5, where the choice of

b is made explicit. We start with the execution of PRE in PostCompPRE,0
A and

show via a sequence of security reductions that this situation is computationally
indistinguishable from the case where A witnesses the execution in b = 1. We
define a new oracle:

72 A. Davidson et al.

Ochallenge(C0, C1, i, j,Δi,j)

if |C0| �= |C1| OR called = true : return ⊥
if (i, C0), (i, C1) �∈ Chonest OR (i, j, Δi,j) �∈ Thonest : return ⊥
(m0, m1) ← (Cmsg[(i, C0)], Cmsg[(i, C1)])

if (i, j, Δi,j) �∈ Thonest OR skj ∈ Kcorrupted : return ⊥

C′ $← Enc(pkj , mb)

Cmsg[(j, C
′)] = mb

Chonest.add (j, C′), Cchal.add (j, C′), Kchal.add (skj)

called ← true

return C′

Let Ochallenge,b and Ochallenge,b be the executions of the oracles where the choice
of b ∈ {0, 1} is made explicit.

– Game0: This is the original PRE construction in PostCompPRE,0
A .

– Game1: Replace outputs from the oracle Ochallenge,0 with outputs from the
oracle Ochallenge,0.

– Game2: Replace Ochallenge,0 with Ochallenge,1.
– Game3: Replace Ochallenge,1 with Ochallenge,1.

It is not hard to see that Game3 is identical to the execution in the case of
PostCompPRE,1

A . Therefore, if we can bound the advantage in distinguishing the
game transitions above by a negligible function, then the probability of distin-
guishing in PostCompPRE,b

A is also negligible.
For the sake of brevity, we complete the proof via the following observations:

– Distinguishing Game0 from Game1 or Game2 from Game3 with some advantage
implies an adversary wins the source-hiding game with the same advantage.

– Distinguishing Game1 from Game2 with some advantage implies an adversary
wins the IND-HRA game with the same advantage.

The advantage in distinguishing Game0 and Game1 is bounded by ε2, and the
advantage in distinguishing Game1 and Game2 is bounded by ε1. Full details of
this breakdown is given in the full version [9].

Theorem 3. Let PRE be a PRE scheme which is both PKE-CPA-secure and
source-hiding. Then PRE also has PCS.

Proof. It has been shown that PKE-CPA-security and source-hiding imply IND-
HRA-security [11, Theorem 6]. This, together with Theorem 2, gives us the
result. A more precise security bound can be deduced from the results of [11].

Existing PRE Schemes that Satisfy PCS. The result of Theorem 2 means
a number of existing PRE schemes satisfy PCS. This is advantageous, as it
shows PCS is not a vacuous security model in the sense that it is achievable via
well-known techniques. Specifically, any PRE scheme that satisfies PRE-CPA-
security and is source-hiding is immediately a scheme that has PCS. Therefore,
[11, Construction 2, Construction 4, Construction 7.b] all have PCS.

Strong Post-Compromise Secure Proxy Re-Encryption 73

5 An Efficient Construction from Lattices

We introduce a natural construction with PCS, based on BV-PRE – the ring-
LWE (RLWE) construction given in [19]. Whilst Theorem 3 shows that source-
hiding can lead to PCS, the existing constructions with this property [11] make
sub-optimal parameter choices that significantly impact the scheme’s practical-
ity. Our construction has PCS but is not source-hiding, implying that source-
hiding is not necessary for PCS. This means that our construction can make
much better parameter choices in terms of efficiency. We also achieve trans-
parency, which means decryption is the same regardless of how many times the
ciphertext has been re-encrypted, and the cost of decryption does not grow for
repeatedly re-encrypted ciphertexts. This fits better with motivations for out-
sourcing re-encryption. Our construction makes some adaptations to BV-PRE
to fit the workflow of PRE; making use of the key resampling technique of [5] to
re-randomise the ciphertext. Any scheme that permits similar re-randomisation
can be proven secure using related methods.

5.1 Lattice Preliminaries

We represent the set of integers modulo q as Zq = {�−q/2, . . . , 0, . . . , �q/2}. We
will be working over power-of-two cyclotomic rings of the form Rq = Zq[x]/(xn+

1) where n is a power of two. We use the notation s
$← D to denote that

the element s is sampled according to distribution D. If D is a set, then we
assume s

$← D means that s is sampled uniformly from the set D. We denote
the discrete Gaussian distribution over Zq as χσ. The distribution χσ has its
support restricted to Zq and a probability mass function proportional to that
of a Gaussian distribution with variance σ2. Slightly abusing notation, we can
sample a polynomial s

$← χσ by sampling each of the coefficients of s according
to the distribution χσ.

We now informally introduce the RLWE assumption [15]. Let s be some
secret polynomial in Rq. Samples from the RLWEn,q,χe

(s) distribution take the

form (a, b = as + e) ∈ Rq × Rq where a
$← Rq, e

$← χe. Note that χe is
referred to as the error distribution. The (normal form) RLWEn,q,χe

problem
is to distinguish between an oracle that outputs samples from RLWEn,q,χe

(s)

where s
$← χe and an oracle that outputs uniform elements in Rq × Rq. The

RLWEn,q,χe
assumption states that no probabilistic polynomial-time algorithm

can solve the RLWEn,q,χe
problem with a non-negligible advantage. For details

on secure parameter selection for the construction, see [19] or the full version [9].

5.2 Adapting BV-PRE for PCS

The underlying scheme, BV-PRE [19], is based on the BV-encryption scheme [5],
which is based on RLWE. This scheme is parameterised by ciphertext modulus q,
plaintext modulus p ≥ 2, ring dimension n, polynomial ring Rq = Zq[n]/〈xn +1〉

74 A. Davidson et al.

and relinearisation window r. BV-PRE is not fully public-key, relying on an
additional ‘public’ key ‘pk’B for the target key sB to generate update tokens.
However, this key together with the token can be used to derive the old secret
key. We get around this problem using the key resampling technique ReSample [5]
shown in Fig. 6 which takes a public key pkB and outputs a fresh public key pk′

B

with the same underlying secret. We also use same relinearisation technique as
[19] to reduce error growth.

Fig. 6. Key resampling technique given in [5] for re-randomizing public keys.

We give our construction, pcBV-PRE, in Fig. 7. It builds on BV-PRE in that
randomness is also added by the proxy in the ReEnc operation. Recall that this is
necessary for a scheme to have PCS, as otherwise an adversary could re-encrypt
locally to obtain the same re-encryption. This additional randomness has minor
implications for the correctness bound on multiple re-encryptions over that given
in [19]. Note that pcBV-PRE inherits the IND-CPA-security proven in [19]. We
defer further details including proof of correctness and correctness bound to the
full version [9].

Theorem 4. pcBV-PRE has Post-Compromise Security. In other words, any
adversary A to the PostComp game,

∣
∣
∣Pr

[

PostComp0,PRE
A (1λ) = 1

]

− Pr
[

PostComp1,PRE
A (1λ) = 1

]∣
∣
∣ ≤ ε,

for some ε = negl(n) under the RLWEn,q,χe
assumption.

We restrict ourselves to a proof overview of Theorem 4, giving the full proof in
the full version [9], as the ideas are analogous to the proofs found in [19]. Recall
that we do not leverage the result of Theorem 2 to prove PCS via source-hiding
security, as pcBV-PRE is not source-hiding.

Proof Overview. The proof follows a sequence of game hops beginning with the
PostCompb,PRE security game where b

$← {0, 1}. In this game, the adversary is
challenged to guess the bit b. Suppose that there are N honest entities who were
not corrupted by the adversary. We make N game hops, each of which replaces:

Strong Post-Compromise Secure Proxy Re-Encryption 75

Fig. 7. pcBV-PRE: an adaptation of the BV-PRE construction with Post-Compromise
Security.ReSample is the key resampling algorithm described in [5]

1. the public key of a single honest (uncorrupted) entity with a uniform random
value

2. the re-encryption keys created using the honest entity’s public key with uni-
form random values.

In the final game hop, the challenge ciphertext given to the adversary is a
uniformly sampled value and thus the adversary has no advantage in this game.
This implies that PostComp0,PRE and PostComp1,PRE are indistinguishable.

6 Conclusions and Future Work

In this paper, we have formalised a provably stronger notion of Post-Compromise
Security for PRE than existing and related security notions. We have shown PCS
can be achieved via a number of existing PRE security notions which immedi-
ately shows that there are existing PRE schemes that satisfy PCS [11]. Finally,
we give an efficient construction of a PCS secure PRE scheme based on lattices
whose security can be proved directly without relying on the aforementioned
existing and related security notions. We leave as future work the possibility of
proving tighter bounds between security notions, and further investigating the
relationship between selective and adaptive security for more generic graphs.

Acknowledgements. Special thanks to Katriel Cohn-Gordon for his help in moti-
vating this work and providing the context for using PCS PRE to compliment the PCS
messages in transit.

76 A. Davidson et al.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

2. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management part 1: general (revision 3). NIST Spec. Publ. 800(57), 1–147 (2012)

3. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

4. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

5. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

6. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) Proceedings of the
2007 ACM Conference on Computer and Communications Security, CCS 2007, pp.
185–194. ACM (2007)

7. Cohen, A.: What about bob? The inadequacy of CPA security for proxy reencryp-
tion. Cryptology ePrint Archive, Report 2017/785 (2017)

8. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
IEEE 29th Computer Security Foundations Symposium, CSF 2016, pp. 164–178.
IEEE Computer Society (2016)

9. Davidson, A., Deo, A., Lee, E., Martin, K.: Strong post-compromise secure proxy
re-encryption. Cryptology ePrint Archive, Report 2019/368 (2019). https://eprint.
iacr.org/2019/368

10. Everspaugh, A., Paterson, K.G., Ristenpart, T., Scott, S.: Key rotation for authen-
ticated encryption. IACR Cryptology ePrint Archive, 2017:527 (2017)

11. Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy re-
encryption. Cryptology ePrint Archive, Report 2018/426 (2018)

12. Lee, E.: Improved security notions for proxy re-encryption to enforce access control.
Cryptology ePrint Archive, Report 2017/824 (2017)

13. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
685–716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 22

14. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1 21

15. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

16. Myers, S., Shull, A.: Efficient hybrid proxy re-encryption for practical revocation
and key rotation. IACR Cryptology ePrint Archive, 2017:833 (2017)

https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://eprint.iacr.org/2019/368
https://eprint.iacr.org/2019/368
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-540-78440-1_21
https://doi.org/10.1007/978-3-642-13190-5_1

Strong Post-Compromise Secure Proxy Re-Encryption 77

17. OWASP. Cryptographic storage cheat sheet (2018). https://www.owasp.org/index.
php/Cryptographic Storage Cheat Sheet. Accessed 9 Oct 2018

18. PCI Security Standards Council. Payment card industry (PCI) data security stan-
dard (version 3.2.1) (2018)

19. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanathan, V.: Fast proxy re-encryption
for publish/subscribe systems. ACM Trans. Priv. Secur. 20(4), 14:1–14:31 (2017)

https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

Offline Witness Encryption from Witness
PRF and Randomized Encoding in CRS

Model

Tapas Pal(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

tapas.pal@iitkgp.ac.in, ratna@maths.iitkgp.ernet.in

Abstract. Witness pseudorandom functions, in short witness PRFs,
(Zhandry, TCC 2016) and witness encryption (Garg et al., ACM 2013)
are two powerful cryptographic primitives where the former produce a
pseudorandom value corresponding to an instance of an NP language and
the latter possesses the ability to encrypt a message with an NP problem.
Mostly, these primitives are constructed using computationally expensive
tools like obfuscation or multilinear maps. In this work, we build (single
relation) witness PRFs using a puncturable pseudorandom function and
a randomized encoding in common reference string (CRS) model. Next,
we propose construction of an offline witness encryption having short
ciphertexts from a public-key encryption scheme, an extractable witness
PRF and a randomized encoding in CRS model. Furthermore, we show
how to convert our single relation witness PRF into a multi-relation wit-
ness PRF and the offline witness encryption into an offline functional
witness encryption scheme.

Keywords: Witness PRF · Offline witness encryption ·
Randomized encoding

1 Introduction

Witness PRF. Zhandry [15] generalizes the idea of witness encryption to ini-
tiate the study of a relatively modern and rich primitive witness pseudorandom
functions (wPRFs). The power of wPRFs lie in the fact that it can be used
in place of obfuscation to build many cryptographic tools that do not need to
hide a programme P completely, like multiparty non-interactive key exchange
without trusted setup, poly-many hardcore bits, re-usable witness encryption,
Rudich secret sharing and fully distributed broadcast encryption.

Witness PRF for an NP language L is capable of computing a pseudorandom
function F on an input statement x without the knowledge of secret key whenever
a valid witness w for x ∈ L is known and F(x) can not be recognized in its
domain if x �∈ L, that is there does not exist a witness explaining x ∈ L. More
specifically, wPRF first computes a pair of keys (fk, ek) depending on a relation
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 78–96, 2019.
https://doi.org/10.1007/978-3-030-21548-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_5

Offline Witness Encryption from Witness PRF 79

circuit R corresponding to an NP language L where fk is the function secret
key and ek is the function evaluation key. We note that R(x,w) = 1 if w is a
valid witness for x ∈ L; otherwise 0. A user having the secret key fk generates a
pseudorandom value F(fk, x) ∈ Y for any input x. The same pseudorandom value
can be recovered using Eval(ek, x, w) without the secret key fk if a valid witness w
for x ∈ L is known. From the adversary’s point of view, the pseudorandom value
F(fk, x) is computationally indistinguishable from a uniformly chosen element in
Y if there does not exist a witness w for x ∈ L. On the other hand, if x ∈ L then,
an adversary distinguishing F(fk, x) from a random element in Y is to mean that
there exists an efficient extractor that can be used to obtain a witness for x ∈ L.
A wPRF processing this security assumption is called an extractable witness
pseudorandom function (extractable wPRF). Another variant of wPRF is termed
as multi-relation wPRF where one generates different function evaluation keys
associated with many relation circuits of the same language L.

Witness Encryption. Garg et al. [8] introduced the notion of witness encryp-
tion (WE) which is closely related to wPRFs. In a plain public-key encryption
(PKE), we encrypt data using a public key and decryption is possible if the
corresponding secret key is known. WE enables us to encrypt a message with
respect to an instance x of an NP language L. Only a witness holder can recover
the original message from the ciphertext if he has a valid witness w for x ∈ L.
The notion of Functional witness encryption was introduced by Boyle et al. [4]
where a decrypter can only learn a function of the message if a valid witness for
the instance is known.

Witness encryption consists of only two algorithms encryption and decryp-
tion. As a result, all the heavy-duty parts have been included in the encryption
algorithm that makes WE more inefficient to use in small devices. Abusalah et
al. [1] added a Setup phase which processes necessary tools to produce public
parameters for encryption and decryption. Witness encryption with additional
setup phase is called offline witness encryption (OWE).

Motivation. WEs and wPRFs are relatively new cryptographic primitives
mostly built from either multilinear maps or obfuscation. As a result these prim-
itives are experiencing inefficiency due to the existing noisy multilinear maps
and impracticality of obfuscation. We aim to construct more efficient wPRF and
OWE for any class of NP languages. Zhandry [15] used multilinear maps to con-
struct wPRFs which are instance dependence and multilinearity level increases
with respect to the size of relation circuits. The recent line of attacks on mul-
tilinear maps [3,5,6,9] is a threat to the cryptosystems where security is based
on complexity assumptions related to multilinear maps. It was mentioned in [15]
that wPRFs can be obtained from obfuscation but there was no explicit con-
struction. In the same work, wPRFs were used to replace obfuscation from many
cryptographic tools but those applications may not be fruitful in the practical
sense as the existing multilinear maps are only approximate and encountered
many non-trivial attacks.

The OWE scheme of [1] was realized using ElGamal public-key encryp-
tion and Gorth-Sahai proofs (GS-proofs) [12]. We note that GS-proofs are

80 T. Pal and R. Dutta

efficient non-interactive witness-indistinguishable proofs for some specific lan-
guages involving pairing product equations, multi-scaler multiplication equa-
tions or quadratic equations over some groups. The ElGamal ciphertexts can be
represented in a way to get a set of pairing product equations so that a statis-
tical simulation-sound non-interactive zero-knowledge (SSS-NIZK) proof can be
ensured using the GS-proofs for those equations. Therefore, for practical use of
the OWE scheme of [1], we need to carefully choose the PKE scheme so that
a SSS-NIZK proof can be achieved through the GS-proofs. Otherwise, we need
to use the transformation of [2,7] to achieve a SSS-NIZK proof that involves
indistinguishability obfuscation and it may unnecessarily increase the size of
OWE-ciphertexts. More specifically, for a given circuit C, an NIZK proof [11]
for circuit satisfiability problem requires a size of O(|C|k) where O(k) is the
size of common reference string and |C| denotes size of circuit C. Therefore, the
SSS-NIZK proof is of size at least linear in the size of the encryption circuit of
the underlying PKE. We aim to get an OWE with relatively short ciphertexts
where we do not require to generate such proofs and can use any PKE schemes
as far as our requirement. Getting an efficient encryption algorithm producing
short ciphertexts is a desirable property while constructing OWE so that one
can use it in other cryptographic constructions.

Our Contribution. In this work we construct a single relation wPRF (Sect. 3)
using a puncturable pseudorandom function and sub-exponentially secure ran-
domized encoding scheme in CRS model. Our approach is to use the puncturable
programming technique of [14] and incorporate the idea of getting obfusca-
tion from randomized encoding (RE) scheme in common reference string (CRS)
model [13]. A sub-exponentially secure randomized encoding scheme in CRS
model can be achieved from a sub-exponentially secure public key functional
encryption scheme and learning with error assumptions with sub-exponential
hardness [13]. The security proof of our wPRF is independent of instances and
does not rely on non-standard assumptions. We turn our single relation wPRF
into a multi-relation wPRF (Remark 3) where one can use the scheme with a
class of relations related to an NP language.

Furthermore, we build an OWE scheme (Sect. 4) utilizing an extractable
wPRF. We replace SSS-NIZK by wPRF from the construction of [1] to reduce
the size of ciphertext by at least linear to the size of encryption circuit of the
elementary PKE scheme required in the building block. More precisely, our
scheme is based on a public-key encryption, an extractable wPRF and employs
a sub-exponentially secure randomized encoding scheme in CRS model. Conse-
quently, the ciphertexts contain a pseudorandom string of fixed size instead of
a SSS-NIZK proof. Using the same blueprint of [1], our OWE can be turned
into an offline functional witness encryption (OFWE) scheme (Remark 4) where
decryption releases a function of a message and witness as output. Inherently,
our OFWE also possesses short ciphertext as compared to that of [1]. Unfortu-
nately, the only extractable wPRF is known to be constructed from multilinear
maps [15]. Our construction of OWE would be more interesting if wPRF with

Offline Witness Encryption from Witness PRF 81

extracting feature can be built from standard assumptions without multilinear
maps which is still an open problem.

2 Preliminaries

We use λ as the security parameter and follow the notations in Table 1 through-
out this paper. We take ⊥ as a distinguishing symbol.

Table 1. Notations

a ← A a is an output of the procedure A

a
$←− X a is chosen uniformly at random from set X

Negligible function μ : N → R is a negligible function if μ(n) ≤ 1
p(n) holds for every

polynomial p(·) and all sufficiently large n ∈ N

(λ0, S(·))-indistinguishability Two ensembles {Xλ} and {Yλ} are (λ0, S(·))-indistinguishable means

|Pr[x
$←− Xλ : D(x) = 1]− Pr[y

$←− Yλ : D(y) = 1]| ≤ 1
S(λ) for any

security parameter λ > λ0 and every S(λ)-size distinguisher D, S : N → N

δ-sub-exponential

indistinguishability

Two ensembles {Xλ} and {Yλ} are δ-sub-exponential indistinguishable

means |Pr[x
$←− Xλ : D(x) = 1] − Pr[y

$←− Yλ : D(y) = 1]| < δ(λ)Ω(1), for

any security parameter λ and every poly-size distinguisher D, where

δ(λ) < 2λε
, 0 < ε < 1.

Expt(1λ, 0) ≈δ Expt(1λ, 1) For any polynomial size distinguisher D, the advantage

Δ = |Pr[D(Expt(1λ, 0)) = 1] − Pr[D(Expt(1λ, 1)) = 1]| is bounded by δ

Definition 1 (Puncturable pseudorandom function). A puncturable pseudoran-
dom function (pPRF) consists of a tuple of algorithms pPRF = (Gen, Eval,
Punc) over the domain X and range Y such that pPRF.Gen(1λ) produces a
secret key K ∈ {0, 1}λ, pPRF.Eval(K ′, x) outputs a pseudorandom value y ∈ Y
corresponding to x ∈ X using a key K ′ and pPRF.Punc(K,S) returns a punc-
tured key K{S} for a polynomial size set S ⊂ X . The pPRF also satisfy the
following properties:

– Functionality preserving under puncturing. For all polynomial-size subset S
of X , and for all x ∈ X \ S we have

Pr[pPRF.Eval(K,x)= pPRF.Eval(K{S}, x)]=1.

– Pseudorandomness at punctured points. For any PPT adversary A and
polynomial size subset S of X , where K ← pPRF.Gen(1λ), K{S} ←
pPRF.Punc(K,S) we have

|Pr[A(K{S}, {pPRF.Eval(K,x)}x∈S) = 1] − Pr[A(K{S}, U |S|) = 1]| ≤ μ(λ)

where U denotes the uniform distribution over Y and μ is a negligible function
in λ. The pPRF is said to be δ-secure for some specifies negligible function
δ(·) if the above indistinguishability gap μ(λ) is less than δ(λ)Ω(1).

82 T. Pal and R. Dutta

Fig. 1. Security experiments for PKE, wPRF and OWE

Definition 2 (Public-key encryption). A public-key encryption (PKE) scheme
for a message space M is a tuple of PPT algorithms PKE = (Gen, Enc, Dec)
where PKE.Gen(1λ) generates a public key PK and a secret key SK, PKE.Enc
(PK, m; r) outputs a ciphertext c for a message m ∈ M using a randomness r
and PKE.Dec(SK, c) recovers the original message m if c is a valid ciphertext
corresponding to the message, otherwise it returns ⊥.

Definition 3 (Selectively secure PKE under chosen-plaintext attacks). We say
that a public-key encryption scheme PKE = (Gen, Enc, Dec) is δ-selectively
secure under chosen plaintext attacks (CPA) if

|Pr[ExptPKE
A (1λ, 0) = 1] − Pr[ExptPKE

A (1λ, 1) = 1]| ≤ μ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptPKE
A (1λ, b)

defined in Fig. 1a where b ∈ {0, 1} and μ is a negligible function of λ smaller
than δ(λ)Ω(1).

Definition 4 (Witness PRF) [15]. A witness PRF (wPRF) for an NP language
L with the witness relation R : χ × W → {0, 1} consists of three algorithms
wPRF = (Gen, F, Eval) where wPRF.Gen(1λ, R) generates a secret function
key fk and a evaluation key ek, wPRF.F(fk, x) returns a pseudorandom value
y ∈ Y corresponding to x ∈ X and wPRF.Eval(ek, x, w) deterministically
recovers y if x ∈ L and R(x,w) = 1, otherwise it returns ⊥.

Definition 5 (Selectively secure witness PRF) [15]. We say that a witness PRF
scheme wPRF = (Gen, F, Eval) for an NP language L, a relation R : χ × W →
{0, 1}, a set Y, is δ-selectively secure if

∣
∣Pr

[

ExptwPRF
A (1λ, 0) = 1

] − Pr
[

ExptwPRF
A (1λ, 1) = 1

]∣
∣ ≤ μ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptwPRF
A (1λ, b)

defined in Fig. 1b where b ∈ {0, 1} and μ is a negligible function of λ smaller
than δ(λ)Ω(1).

Definition 6 (Extractable witness PRFs) [15]. A witness PRF scheme wPRF
= (Gen, F, Eval) for an NP language L with relation R is said to be a secure

Offline Witness Encryption from Witness PRF 83

extractable witness PRF if there exists a PPT adversary A having a non-
negligible advantage (1/2+1/p(λ)), for a polynomial p(·), in the selective security
experiment described in Fig. 1b with a small change that the challenge instance
x∗ may belong to L, then there is a polynomial time extractor E which on input
(ek, x∗,Aux, y∗, {xi}, r) outputs a witness w∗ satisfying R(x∗, w∗) = 1 with a
significant probability greater than 1/q(λ) for a polynomial q(·) depending on
p(·) where Aux is an auxiliary input, {xi} are the wPRF.F queries of A and r is
a random coin.

Definition 7 (Offline witness encryption) [1]. An offline witness encryption
(OWE) scheme for an NP language L with witness relation R : χ × W → {0, 1}
is a tuple of algorithms OWE = (Setup, Enc, Dec) where OWE.Setup(1λ, R)
publishes a public parameter ppe for encryption and a public parameter ppd for
decryption, OWE.Enc(1λ, x,m, ppe) outputs a ciphertext c corresponding to a
message m ∈ M with an instance x ∈ χ and OWE.Dec(c, w, ppd) recovers the
original message m if R(x,w) = 1, otherwise it returns ⊥.

Definition 8 (Selectively secure offline witness encryption) [1]. We say that an
offline witness encryption OWE = (Setup, Enc, Dec) for an NP language L and
a relation R : χ × W → {0, 1}, is δ-selectively secure if

∣
∣Pr

[

ExptOWE
A (1λ, 0) = 1

] − Pr
[

ExptOWE
A (1λ, 1) = 1

]∣
∣ ≤ μ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptOWE
A (1λ, b)

defined in Fig. 1c where b ∈ {0, 1} and μ is a negligible function of λ smaller
than δ(λ)Ω(1).

Remark 1. An offline functional witness encryption (OFWE) [1] scheme for
an NP language L with witness relation R : χ × W → {0, 1} and a class of
functions {fλ}λ∈N is a tuple of algorithms OFWE = (Setup, Enc, Dec) that
follows the same syntax of Definition 7 except here Enc takes a message of the
form (f,m) ∈ fλ × M instead of m. The security is defined similarly as in
Definition 8.

Definition 9 (Randomized encoding schemes in CRS model) [13]. A random-
ized encoding (RE) scheme in CRS model for a class of Turing machines {Mλ} is
a tuple of algorithms RE = (Setup, Enc, Eval) where RE.Setup(1λ, 1m, 1n, 1T , 1l)
generates a common reference string crs and a public key pk, RE.Enc(pk,Π, x)
outputs an encoding Π̂x corresponding to a Turing machine Π ∈ Mλ and
RE.Eval(Π̂x, crs) returns ΠT (x) if Π̂x is a valid encoding of (Π,x). Here, ΠT (x)
denotes the output of the Turing machine Π on input x when run in at most
T steps. The bounds on machine size, input length, time, output length are
m(λ), n(λ), T (λ), l(λ) respectively.

Definition 10 ((λ0, S(·))-simulation security of randomized encoding in CRS
model) [13]. We say that a randomized encoding scheme RE for a class of Turing
machines {Mλ} in CRS model is (λ0, S(·))-simulation secure if there exists a

84 T. Pal and R. Dutta

Fig. 2. The special circuit G[˜Π[
−→
pk1, C, ε, α], −→crs]

PPT algorithm Sim and a constant c such that for every {Π,x,m, n, l, T} where
Π ∈ Mλ and |Π|, |x|,m, n, l, T ≤ B(λ) for some polynomial B, the ensembles

{

(crs, pk, ̂Πx) : (crs, pk) ← RE.Setup(1λ, 1m, 1n, 1T , 1l), ̂Πx ← RE.Enc(pk, Π, x)
}

and
{

(crs, pk, ̂Πx) : (crs, pk, ̂Πx) ← Sim(1λ, ΠT (x), 1|Π|, 1|x|, 1m, 1n, 1T , 1l)
}

are (λ0, S
′(λ))-indistinguishable (see Table 1), with S′(λ) = S(λ) − B(λ)c for

all λ ∈ N. The RE is said to be δ-simulation secure for some specific negligible
function δ(·) if S′(λ) is greater than δ(λ)Ω(1). Also, we say that RE is δ-sub-
exponential simulation secure if δ(λ) < 2λε

, 0 < ε < 1.

Definition 11 (Sub-linear compactness of randomized encoding for Turing
machines) [13]. A (λ0, S(·))-simulation secure randomized encoding scheme is
said to be sub-linearly compact for a class of Turing machines {Mλ} if we have
TimeRE.Enc(1λ,Π, x, T) ≤ poly(λ, |Π|, |x|) · T 1−ε for some ε ∈ (0, 1).

Remark 2. In [13], an iO is instantiated from a sub-exponentially secure and
sub-linearly compact RE scheme in CRS model (Definition 11) and a sub-
exponentially secure pseudorandom generator (PRG). They followed the tech-
nique of GGM construction [10] of building a PRF from a PRG using a tree.
To get an iO, the PRG in the GGM construction is replaced with a sub-
exponentially secure sub-linear compact RE in CRS model. Let {Cλ}λ∈N be a
circuit class with maximum size S, input size n, output size l and the running
time bound T . The obfuscation procedure for a circuit C ∈ Cλ works as follows:

– We generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l), for i ∈ {0, 1, . . . , n},
where crsi is a common reference string and pki is an encoding key. Let
−→crs = {crsi}n

i=0,
−→
pki = {pkj}n

j=i.

– We construct an input less Turing machine Π[
−→
pki+1, C, z, αi

zi
] where hard-

coded entities are
−→
pki+1, C, z = z1z2 . . . zi ∈ {0, 1}i and a string αi

zi
∈

Offline Witness Encryption from Witness PRF 85

{0, 1}2p(λ,i) (p being a polynomial depending on λ, i)1 for all i ∈ {0, 1, . . . , n−
1}. When i = 0, z is the null string ε and αi

zi
is a random string α

$←−
{0, 1}2p(λ,0). The Turing machine Π[

−→
pk1, C, ε, α] computes randomized encod-

ings of Π[
−→
pk2, C, 0, α1

0] and Π[
−→
pk2, C, 1, α1

1] where (α1
0, α

1
1) ← PRG(α) with

|α1
0| = |α1

1| = 2p(λ, 1), PRG being a sub-exponentially secure pseudoran-
dom generator. To be more specific, the Turing machine Π[

−→
pk1, C, ε, α] first

generates (α1
0, α

1
1) ← PRG(α) and uses the randomness α1

0 to compute encod-
ing Π̃[

−→
pk2, C, 0, α1

0] ←RE.Enc(pk1,Π[
−→
pk2, C, 0, α1

0], ε) and the randomness α1
1

to compute the encoding Π̃[
−→
pk2, C, 1, α1

1] ←RE.Enc(pk1,Π[
−→
pk2, C, 1, α1

1], ε).
More generally, the Turing machine Π[

−→
pki+1, C, z, αi

zi
] computes randomized

encodings Π̃[
−→
pki+2, C, z0, αi+1

0] ← RE.Enc(pki+1,Π[
−→
pki+2, C, z0, αi+1

0], ε)
and Π̃[

−→
pki+2, C, z1, αi+1

1] ← RE.Enc(pki+1,Π[
−→
pki+2, C, z1, αi+1

1], ε), where
(αi+1

0 , αi+1
1) ← PRG(αi

zi
) for i ∈ {1, 2, . . . , n − 1}. When i = n, the machine

Π[
−→
pki+1, C, z, αi

zi
] outputs C(z). We denote the class of all such Turing

machines associated with the class of circuits {Cλ} as {Mλ}.
– We compute an encoding Π̃[

−→
pk1, C, ε, α] ← RE.Enc(pk0,Π[

−→
pk1, C, ε, α], ε).

Next, we construct the special circuit G[Π̃[
−→
pk1, C, ε, α],−→crs] as described in

Fig. 2 which takes input an n bit string z = z1z2 · · · zn. For each i ∈ {0, 1, . . . ,

n − 1}, the circuit recursively computes RE.Eval(Π̃ [
−→
pki+1, C, z1z2 · · · zi, α

i
zi

],
crsi) which by correctness of RE, is equal to the output of the Tur-
ing machine Π[

−→
pki+1, C, z1z2 · · · zi, α

i
zi

] i.e. two randomized encodings
Π̃[

−→
pki+2, C, z1z2 · · · zi0, αi+1

0] and Π̃[
−→
pki+2, C, z1z2 · · · zi1, αi+1

1] (as in line 3 of
Fig. 2). Finally, the circuit returns RE.Eval(Π̃ [

−→
pkn+1, C, z, αn

zn
], crsn) which

actually is equal to C(z). The obfuscation of the circuit C is iO(1λ, C) =
G[Π̃[

−→
pk1, C, ε, α],−→crs].

– To evaluate the circuit C for an input z, we compute G[Π̃[
−→
pk1, C, ε, α],−→crs](z).

Lin et al. [13] proved that for any pair of functionally equivalent circuits
C0, C1 ∈ Cλ, the joint distribution (Π̃[

−→
pk1, C0, ε, α],−→crs) is indistinguishable

from (Π̃[
−→
pk1, C1, ε, α],−→crs). In particular, they have shown using the method

of induction that for any label i ∈ {0, 1, . . . , n}, z ∈ {0, 1}i the joint distribu-
tions (Π̃[

−→
pki+1, C0, z, αi

zi
],−→crsi,

−→
pki) and (Π̃[

−→
pki+1, C1, z, αi

zi
],−→crsi,

−→
pki) are indis-

tinguishable. The indistinguishability was achieved by the simulation security of
the RE scheme as described in the following theorem.

Theorem 1 [13]. Assuming the existence of sub-exponentially secure one-way
functions, if there exists a sublinearly compact randomized encoding scheme in

1 For every λ ∈ N, i ≤ 2λ, p(λ, i) = p(λ, i−1)+(2dλ)1/ε and p(λ, −1) = λ where ε is a
constant associated with the sub-exponential security of PRG, d > 0 is any constant
strictly greater than c and the constant c represents the security loss associated with
the indistinguishability security of RE (Sect. 4, [13]).

86 T. Pal and R. Dutta

Fig. 3. Evaluation circuit E = EC[K]

the CRS model with sub-exponential simulation security, then there exists an
bounded-input indistinguishability obfuscator for Turning machines.

We stress that RE.Enc(pk0,Π[
−→
pk1, C, ε, α], ε) is actually a ciphertext

obtained from the encryption algorithm of underlying PKFE that uses
(Π[

−→
pk1, C, ε, α], ε, 0λ+1) as the plaintext. The size of the special circuit G

is bounded by poly(λ, |C|, T) and runtime of G on input z is bounded by
poly(λ, |z|, |C|, T). We will use the notation G[Π̃[

−→
pk1, C, ε, α],−→crs] for obfuscating

a circuit C using a randomized encoding scheme in CRS model.

3 Our Witness PRF

Construction 1. We describe our construction of witness PRF (wPRF) that
uses a puncturable pseudorandom function pPRF = (Gen, Eval, Punc) with
domain X = {0, 1}k and range Y and a randomized encoding scheme RE =
(Setup, Enc, Eval) which is a bounded input sub-linearly compact randomized
encoding scheme in CRS model. Our scheme wPRF = (Gen, F, Eval) for an NP
language L with relation circuit R : X ×W → {0, 1}, X = {0, 1}k, W = {0, 1}n−k

and |R| ≤ s, is given by the following algorithms.

• (fk, ek) ← wPRF.Gen(1λ, R): A trusted third party generates a secret func-
tion key fk and a public evaluation key ek for a relation R by executing the
following steps where λ is a security parameter.

– Choose a pPRF key K ← pPRF.Gen(1λ) where K ∈ {0, 1}λ.
– Construct the circuit E = EC[K] ∈ {Eλ} as defined in Fig. 3. Let the

circuit E be of size S with input size n, output size l and T is the runtime
bound of the circuit.

– Generate (crsi, pki) ←RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n}
where crsi is a common reference string and pki is an encoding key. We
define −→crs = {crs}n

i=0 and
−→
pki = {pkj}n

j=i.

– Compute the randomized encoding Π̃[
−→
pk1, E, ε, α] ← RE.Enc(pk0,Π[

−→
pk1,

E, ε, α], ε) where ε is a null string, α is a random binary string and
Π[

−→
pk1, E, ε, α] is a Turing machine defined in Remark 2.

– Build the special circuit G[Π̃[
−→
pk1, E, ε, α],−→crs] as described in Fig. 2.

Offline Witness Encryption from Witness PRF 87

Fig. 4. Hybd0 associated with our wPRF

– Set fk = K, ek = G [Π̃[
−→
pk1, E, ε, α],−→crs] and output (fk, ek). The secret

function key fk is sent to a user over a secure channel and the evaluation
key ek is made public.

• y ← wPRF.F(fk, x): This algorithm is run by the user who has a secret
function key fk and outputs a wPRF value y ← pPRF.Eval(K,x) ∈ Y for an
instance x ∈ X using the secret function key fk as a pPRF key K.

• wPRF.Eval(ek, x, w): An evaluator takes a witness w ∈ W for x ∈ L and uses
the public evaluation key ek = G[Π̃[

−→
pk1, E, ε, α],−→crs] to get back the wPRF

value as G[Π̃[
−→
pk1, E, ε, α],−→crs](z) where z = (x,w) ∈ {0, 1}n.

Correctness. By the correctness of randomized encoding scheme (Remark 2),
we have G[Π̃[

−→
pk1, E, ε, α],−→crs](z) = E(x,w). Therefore a valid witness-holder of

x ∈ L can recompute the wPRF value y ∈ Y associated with x using the witness
w and the evaluation key ek = G[Π̃[

−→
pk1, E, ε, α],−→crs]. Note that, if w is not valid

witness for x ∈ L then the output of E(x,w) is the distinguished symbol ⊥.

Padding Parameter. The proof of security relies on the indistinguishability of
randomized encodings of the machines Π[

−→
pk1, E, ε, α] and Π[

−→
pk1, E

∗, ε, α](where
E and E∗ are defined in Figs. 3 and 5 respectively). For this we set pad =
max(|E|, |E∗|). The circuits E and E∗ compute the relation circuit R on an input
(x,w) of size n and evaluate a puncturable PRF over the domain X = {0, 1}k

of size 2k using a hardwired element which is a pPRF key for E or a punctured
pPRF key for E∗. Thus, pad ≤ poly(λ, s, k) where s is the size of relation
circuit R.

Efficiency. In this analysis, we discuss the size of wPRF.F and wPRF.Eval.
The size of X is 2k and wPRF.F includes a PRF evaluation over the domain X .
Therefore, size of wPRF.F is bounded by poly(λ, k). We note that, wPRF.Eval
only runs the circuit G[Π̃[

−→
pk1, E, ε, α],−→crs] over an input of size n. The running

time of G[Π̃[
−→
pk1, E, ε, α],−→crs] is poly(λ, n, |E|, T) = poly(λ, n, k, s, T) and the

88 T. Pal and R. Dutta

size of G[Π̃[
−→
pk1, E, ε, α],−→crs] is poly(λ, |E|, T) = poly(λ, k, s, T). In particular,

the running time and size of wPRF.Eval are respectively poly(λ, n, k, s, T) and
poly(λ, k, s, T). Here we note that the runtime T of the circuit E is bounded by
the runtime of the relation R and the runtime of a pPRF evaluation. So, T ≤
TR+ poly(λ, k) where TR is the runtime of the relation circuit R on input (x,w)
of size n. Hence, the runtime of wPRF.Eval is bounded by poly(λ, n, k, s, TR)
and size of wPRF.Eval is bounded by poly(λ, k, s, TR).

Theorem 2. Assume existence of δ-sub-exponentially secure one-way functions.
Our construction 1 of wPRF = (Gen, F, Eval) is δ-selectively secure witness
PRF if the pPRF is a δ-secure puncturable PRF and the RE is a bounded input
sub-linearly compact randomized encoding scheme in CRS model with δ-sub-
exponential simulation security for the class of Turing machines {Mλ} associ-
ated with the circuit class {Eλ}.
Proof. We prove this by showing that for any non-uniform PPT adversary A,
the distinguishing advantage between the two experiments ExptwPRF

A (1λ, 0) and
ExptwPRF

A (1λ, 1) (Fig. 1b) is negligible. Consider the following hybrid games:

Hybd0. This is the standard experiment ExptwPRF
A (1λ, 0) described in Fig. 4.

Hybd1. In this hybrid game we change K ← pPRF.Gen(1λ) into a punctured
key K{x∗} ← pPRF.Punc(K,x∗) and ek = G[Π̃[

−→
pk1, E

∗, ε, α],−→crs] instead of
G[Π̃[

−→
pk1, E, ε, α],−→crs] where E∗ = EC[K{x∗}] is the circuit as defined in Fig. 5

and y∗ ← pPRF.Eval(K,x∗) ∈ Y. We note that the functionality and run-
ning time of both the circuits E and E∗ are the same. Also, the size of the
two machines Π[

−→
pk1, E, ε, α] and Π[

−→
pk1, E

∗, ε, α] is the same due to padding.
Therefore, the joint distribution (Π̃[

−→
pki+1, E, z, αi

zi
],−→crsi,

−→
pki) is indistinguish-

able from (Π̃[
−→
pki+1, E

∗, z, αi
zi

],−→crsi,
−→
pki) for every label i ∈ {0, 1, . . . , n} and

z ∈ {0, 1}i (as discussed in Remark 2). Hence by simulation security of the
RE scheme, we have Hybd0 ≈δ Hybd1.

Hybd2. This hybrid game is the same as previous one except that here we
take y∗ as a uniformly random element from Y instead of setting y∗ ←
pPRF.Eval(K,x∗) ∈ Y. From the pseudorandomness at punctured points
(Definition 1) of the pPRF we have,

μ(λ) ≥ |Pr[A(K{x∗},pPRF.Eval(K,x∗)) = 1] − Pr[A(K{x∗}, U) = 1]| ≥
|Pr[Hybd1(λ) = 1] − Pr[Hybd2(λ) = 1]|

for infinitely many λ and a negligible function μ where U denotes uniform
distribution over the domain Y of pPRF.Eval. Since the pPRF is δ-secure,
we have μ(λ) ≤ δ(λ)ω(1). Thus it holds that Hybd1 ≈δ Hybd2.

Hybd3. In this hybrid game, again we consider ek = G[Π̃[
−→
pk1, E, ε, α],−→crs] cor-

responding to the circuit E = EC[K] as in the original experiment Hybd0.
Everything else is the same as in Hybd2. Following the similar argument as
in Hybd1, we have Hybd2 ≈δ Hybd3.

Offline Witness Encryption from Witness PRF 89

Fig. 5. Evaluation circuit E∗ = EC[K{x∗}]

Note that Hybd3 is actually the regular experiment ExptwPRF
A (1λ, 1). Hence, by

the above sequence of hybrid arguments, ExptwPRF
A (1λ, 0) is indistinguishable

from ExptwPRF
A (1λ, 1) and we write ExptwPRF

A (1λ, 0) ≈δ ExptwPRF
A (1λ, 1). This

completes the proof of Theorem 2.

Corollary 1. Assuming LWE with sub-exponential hardness and the existence
of δ-sub-exponentially secure one-way functions, if there exists a weakly sub-
linear compact public key functional encryption scheme for P/poly with δ-sub-
exponential security, then there exists a δ-secure witness PRF scheme. (The
proof is available in the full version of this paper.)

Remark 3. A multi-relation wPRF [15] can be obtained from the above single-
relation wPRF by generating evaluation keys for various relation circuits. This
can be accomplished by splitting the key generation algorithm into two separate
parts, one for function secret-key and the other is for function evaluation key.
(We describe this in the full version of this paper.)

4 Our Offline Witness Encryption

Construction 2. We now construct an offline witness encryption scheme OWE
= (Setup, Enc, Dec) for any NP language L with relation circuit R : X × W →
{0, 1}. The main ingredients are the following:

(i) A public-key encryption PKE = (Gen, Enc, Dec) semantically secure under
chosen plaintext attack.

(ii) An extractable witness PRF wPRF = (Gen, F, Eval) for the NP
language L′ = {(c1, c2,PK1,PK2) : ∃ (x,m, r1, r2) such that ci =
PKE.Enc(PKi, (x,m); ri) for i = 1, 2} with the relation R′ : χ′ × W ′ →
{0, 1}. Therefore, R′((c1, c2,PK1, PK2), (x,m, r1, r2)) = 1 if c1 and c2 are
both encryptions of the same message (x,m) using public keys PK1, PK2

and randomness r1, r2 respectively; otherwise 0. Here we assume that mes-
sage, ciphertext of the PKE and the wPRF value can be represented as
bit-strings.

(iii) A sub-linearly compact bounded input randomized encoding scheme RE =
(Setup, Enc, Eval) in CRS model with δ-sub-exponential simulation security
for Turing machines.

90 T. Pal and R. Dutta

• (ppe, ppd) ← OWE.Setup(1λ, R): This is run by a trusted authority to gen-
erate public parameters for both encryption and decryption where R is a
relation circuit and λ is a security parameter. It works as follows:

– Obtain two pairs of PKE keys (SK1,PK1) ← PKE.Gen(1λ) and
(SK2,PK2) ← PKE.Gen(1λ).

– Generate (fk, ek)← wPRF.Gen(1λ, R′) for the relation circuit R′.
– Construct the circuit C1 = MOC[SK1, fk] ∈ {Cλ} as defined in Fig. 6. Let

S be the size of the circuit C1 with input size n, output size l and T is
the runtime bound of the circuit on an input of size n.

– Generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n}
where crsi is a common reference string and pki is an encoding key. Set
−→crs = {crs}n

i=0 and
−→
pki = {pkj}n

j=i.

– Compute the randomized encoding Π̃[
−→
pk1, C1, ε, α] ← RE.Enc(pk0,Π

[
−→
pk1, C1, ε, α], ε) where ε is a null string, α is a random binary string
and Π[

−→
pk1, C1, ε, α] is a Turing machine defined in Remark 2.

– Build the special circuit G[Π̃[
−→
pk1, C1, ε, α],−→crs] described in Fig. 2.

– Set and output (ppe = (PK1,PK2, ek), ppd = G[Π̃[
−→
pk1, C1, ε, α],−→crs]).

• c ← OWE.Enc(1λ, x,m, ppe): An encrypter encrypts a message m ∈ M with
respect to an NP statement x ∈ X using the public parameters for encryption
ppe and produces a ciphertext as follows:

– Choose r1, r2
$←− {0, 1}lPKE(λ) where lPKE is a polynomial in λ.

– Compute two ciphertexts ci = PKE.Enc(PKi, (x,m); ri) for i = 1, 2.
– Generate a wPRF evaluation of the statement (c1, c2,PK1,PK2) with wit-

ness (x,m, r1, r2) as y ← wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m, r1, r2))
and output c = (c1, c2, x, y) as ciphertext.

• OWE.Dec(c, w, ppd): On receiving a ciphertext c, a receiver who has a witness
w for x ∈ L, runs this algorithm using ppd = G[Π̃[

−→
pk1, C1, ε, α],−→crs] to learn

the message by outputting G[Π̃[
−→
pk1, C1, ε, α],−→crs](z) where z = (c, w).

Correctness. If c1, c2 are the encryptions of the same message (x,m),
then wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m, r1, r2)) = wPRF.F(fk, (c1, c2,PK1,
PK2)). Since w ∈ W is a valid witness for the statement x ∈ L, then R(x,w) = 1
and by the correctness of RE scheme (Remark 2), we have G[Π̃[

−→
pk1, C1, ε, α],−→crs](z) = C1(z) = m where z = (c, w).

Efficiency. The encryption algorithm OWE.Enc computes two public-key
encryption on a message of size (|x| + |m|) and one wPRF evaluation of an
input of the form (c1, c2,PK1,PK2) with size-bound poly(λ, |x| + |m|) using a
witness of the form (x,m, r1, r2) with size-bound (|x|+ |m| + 2.poly(λ)). There-
fore, time of encryption is bounded by the time of PKE.Enc and evaluation time
of wPRF and we have that TimeOWE.Enc ≤ 2. poly(λ, |x|+|m|) + TimewPRF.Eval.
Also, the size of the ciphertext is SizeOWE.c = 2 SizePKE.c + |x| + |y| where
SizePKE.c denotes the size of PKE-ciphertext. We note that |y| can be bounded
by a constant that does not depend on the PKE scheme.

Offline Witness Encryption from Witness PRF 91

Fig. 6. Message output circuit Cj = MOC[SKj , fk], j = 1, 2

Theorem 3. Assuming the existence of sub-exponentially secure one-way func-
tions, our construction 2 of OWE = (Setup, Enc, Dec) is δ-selectively secure
offline witness encryption if the underlying PKE is a δ-secure public-key encryp-
tion under chosen plaintext attack (Definition 2), the wPRF is a δ-secure
extractable witness PRF (Definition 6) and the RE is a bounded input δ-sub-
exponential simulation secure (Definition 10) sub-linear compact randomized
encoding scheme (Definition 11) in CRS model for the class of Turing machines
{Mλ} associated with the class of circuits {Cλ}.
Proof. We show that the distinguishing advantage between two experiments
ExptOWE

A (1λ, 0) and ExptOWE
A (1λ, 1) (Fig. 1c) for any PPT adversary A is neg-

ligible by defining the following sequence of hybrid games and proving the indis-
tinguishability between them. Let the challenge messages be m0 and m1.

Hybd0. The first game is the standard selective security experiment
ExptOWE

A (1λ, 0) described in Fig. 7.
Hybd1. In this hybrid game we choose y randomly from Y instead of computing

y ← wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m0, r1, r2)). The following claim
shows that these games are indistinguishable in A’s view.

Claim 1. Assuming the PKE is a semantically secure public-key encryption2

and the wPRF is an extractable witness PRF, Hybd0 and Hybd1 are δ-
indistinguishable.

Proof. Suppose the OWE-adversary A has a non-negligible advantage in dis-
tinguishing Hybd0 and Hybd1. Then A is now an adversary for wPRF relative
to the relation R′ and the security of extractable wPRF (Definition 6) implies
that there is an extractor E that on input ek, (c1, c2,PK1,PK2),Aux, y, {xi}, r,
is able to find a witness w′ = (x,m0, r1, r2), where Aux contains stA, the wPRF
queries {xi} and r indicates the random coin used by A. Therefore, E breaks the
semantic security of the underlying PKE scheme used in our construction and
we arrive at a contradiction. Hence, Hybd0 ≈δ Hybd1.

2 We know that indistinguishability security implies semanitc security for a public key
encryption scheme.

92 T. Pal and R. Dutta

Fig. 7. Hybd0 associated with our OWE

Hybd2. In this hybrid game, we set c2 ← PKE.Enc(PK2, (x,m1); r2) instead
of c2 ← PKE.Enc(PK2, (x,m0); r2). The distribution of ciphertexts in Hybd1

and Hybd2 are computationally indistinguishable due to the CPA-security of
underlying PKE scheme (Definition 3). We prove this in the following claim.

Claim 2. Assuming the PKE is a δ-secure public-key encryption under chosen
plaintext attack, Hybd1 and Hybd2 are δ-indistinguishable.

Proof. To prove this we construct a PKE-adversary B against the security (Def-
inition 3) of PKE scheme for the key PK2 as described in Fig. 8. From the
construction we see that if c′

b ← PKE.Enc(PK2, (x,m0); r2), then B simulates
Hybd0. If c′

b ← PKE.Enc(PK2, (x,m1); r2), then B simulates Hybd1. Therefore,
the distinguishing advantage of A between Hybd0 and Hybd1 can be bounded as

|Pr[Hybd0(λ) = 1] − Pr[Hybd1(λ) = 1]|
≤ |Pr[ExptPKE

B (1λ, 0) = 1] − Pr[ExptPKE
B (1λ, 1) = 1]|.

Then, we can use the indistinguishability guarantee of the underlying PKE to
make the above advantage less than a negligible function of λ. Therefore, we
have Hybd1 ≈δ Hybd2.

Hybd3. This hybrid game is the same as the previous game except that
we take ppd as the circuit G[Π̃[

−→
pk1, C2, ε, α],−→crs] instead of setting ppd ←

G[Π̃[
−→
pk1, C1, ε, α],−→crs]. We show indistinguishability in the following claim.

Offline Witness Encryption from Witness PRF 93

Fig. 8. The PKE-adversary B simulating Hybd2

Claim 3. Assuming the RE is a δ-sub-exponential simulation secure sub-linear
compact randomized encoding scheme in CRS model for the class of Turing
machines {Mλ} associated with the class of circuits {Cλ}, Hybd2 and Hybd3

are δ-indistinguishable.

Proof. We need to show that the joint distributions (Π̃[
−→
pki+1, C1, z, αi

zi
],−→crsi,−→

pki) and (Π̃[
−→
pki+1, C2, z, αi

zi
],−→crsi,

−→
pki) for every label i ∈ {0, 1, . . . , n} and z ∈

{0, 1}i, are indistinguishable. It will imply that the two hybrids Hybd2, Hybd3

are indistinguishable. If the functionality, runtime and size of two circuits C1 and
C2 are the same then the above indistinguishability follows from the underlying
simulation security of RE scheme in CRS model according to the discussion in
Remark 2.

We define an RE-adversary B against the indistinguishability secure RE scheme
in Fig. 9. We note RE is δ-indistinguishability secure implies that, if the two
ensembles {Π1(x1), |Π1|, |x1|, T1 : (Π1, x1, T1)

$←− X1,λ} and {Π2(x2), |Π2|,
|x2|, T2 : (Π2, x2, T2)

$←− X2,λ} are δ-indistinguishable then the two distri-

butions {RE.Enc(pk,Π1, x1): (Π1, x1, T1)
$←− X1,λ} and {RE.Enc(pk,Π2, x2):

(Π2, x2, T2)
$←− X2,λ} are also δ-indistinguishable, where Πj ∈ Mλ and Tj

denotes the runtime of Πj on input xj for j = 1, 2.
Therefore, if ppd = G[Π̃[

−→
pk1, C1, ε, α],−→crs] then B simulates Hybd1 and if ppd

= G[Π̃[
−→
pk1, C2, ε, α],−→crs] then B simulates Hybd2. Now we show the functional

94 T. Pal and R. Dutta

Fig. 9. The RE-adversary B simulating Hybd3

equivalence of the circuits C1 and C2. Let (c, w) be any arbitrary input to the
circuits Cj , j = 1, 2 where c = (c1, c2, x, y).

Case 1. (x = x̄, c1 = c̄1 and c2 = c̄2): Since x̄ �∈ L, we have R(x,w) = 0 in line
4 of Cj (Fig. 6), thus C1 and C2 both output ⊥.

Case 2. (x �= x̄, c1 = c̄1 and c2 = c̄2): Correctness of PKE scheme implies
PKE.Dec(SKj , cj) = (x̄, m̄j) in line 3 of Cj (Fig. 6) and both the circuits returns
⊥ as x �= x̄ in line 4.

Case 3. (c1 �= c̄1 or c2 �= c̄2): If c1 and c2 are encryptions of the same message
then we have PKE.Dec(SK1, c1) = PKE.Dec(SK2, c2). Therefore, the behavior
of both circuits C1 and C2 are the same as they differ only in line 3. If the
decryptions of c1 and c2 are not equal then (c1, c2,PK1,PK2) �∈ L′ and by the
correctness of wPRF scheme we have y �= wPRF.F(fk, (c1, c2,PK1,PK2)). Hence,
the circuits C1 and C2 return ⊥ due to line 2 (Fig. 6).

This shows that C1 and C2 are functionally equivalent. Also, we note that
size and time bound for both the circuits are the same. Hence, we have Hybd2 ≈δ

Hybd3. This completes the proof of Claim 3.

Hybd4. The only difference of this hybrid from Hybd3 is that we compute
c1 ←PKE.Enc(PK1, (x,m1); r1) instead of c1 ←PKE.Enc(PK1, (x,m0); r1).
Therefore, Hybd3 and Hybd4 are computationally indistinguishable by the
CPA security of the underlying PKE scheme for the key PK1.

Claim 4. Assuming the PKE is a δ-secure public-key encryption under chosen
plaintext attack, Hybd3 and Hybd4 are δ-indistinguishable.

Offline Witness Encryption from Witness PRF 95

Fig. 10. Modified message output circuit Fj = MMOC[SKj , fk], j = 1, 2

Hybd5. In this hybrid game we take ppd as the circuit G[Π̃[
−→
pk1, C1, ε, α],−→crs]

instead of G[Π̃[
−→
pk1, C2, ε, α],−→crs] as in the standard scheme. Therefore, by

the underlying simulation secure RE scheme we have Hybd4 and Hybd5 are
computationally indistinguishable as stated in the following claim.

Claim 5. Assuming the RE is a δ-sub-exponential simulation secure sub-linear
compact randomized encoding scheme in CRS model for the class of Turing
machines {Mλ} associated with the class of circuits {Cλ}, Hybd4 and Hybd5

are δ-indistinguishable.

Hybd6. In this hybrid we compute y ← wPRF.Eval(ek, (c1, c2,PK1,PK2),
(x,m0, r1, r2)) instead of choosing y randomly from Y. The indistinguishabil-
ity is guaranteed by the following claim.

Claim 6. Assuming the PKE is a semantically secure public-key encryption
and the wPRF is an extractable witness PRF, Hybd5 and Hybd6 are δ-
indistinguishable.

The proofs of Claims 4, 5, and 6 are analogous to that of Claims 2, 3, and 1
respectively. Observe that Hybd6 is the experiment ExptOWE

A (1λ, 1). The indis-
tinguishability between the above hybrid games implies that ExptOWE

A (1λ, 0) ≈δ

ExptOWE
A (1λ, 1) and the distinguishing advantage for the adversary A is strictly

less than μ(λ), where μ is a negligible function of λ. This completes the proof.

Remark 4. We convert our OWE scheme into an offline functional witness
encryption (OFWE) scheme for a class of functions {fλ}λ∈N. The encryption
algorithm of OFWE is the same as our OWE except that it takes an additional
input a function f ∈ fλ and then encrypts the pair of the function f and a
message m with the statement x using the PKE encryption to produce cipher-
texts ci ← PKE.Enc(PKi, (x, (f,m)); ri) for i = 1, 2. In line 3 of the circuit
Cj (Fig. 6), we will have PKE.Dec(SKj , cj) = (x̂, (f̂ , m̂)) and in line 5 it will
return f̂(m̂, w) instead of m̂ (see circuit Fj in Fig. 10). Rest of the algorithms
of OFWE.Setup and OFWE.Dec will be the same as that of our OWE scheme.
The time of encryption of the OWEF is bounded by poly(λ, |x|+ |m|+ |f |) where
|x|, |m|, |f | are the size of x,m, f respectively. The correctness and the security
of the OFWE depend on the same assumptions as in the case of our OWE.

96 T. Pal and R. Dutta

References

1. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Offline witness encryption. In: Manulis,
M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 285–303.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 16

2. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 16

3. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. Cryptology ePrint Archive, Report 2014/930 (2014). https://eprint.
iacr.org/2014/930

4. Boyle, E., Chung, K.-M., Pass, R.: On extractability (aka differing-inputs) obfus-
cation. In: TCC (2014)

5. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehle, D.: Cryptanalysis on the multilinear
map over the integers and its related problems. Cryptology ePrint Archive, Report
2014/906 (2014). https://eprint.iacr.org/2014/906

6. Coron, J.-S., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate fixes of
multilinear maps over the integers. IACR Cryptology ePrint Archive, 2014:975
(2014)

7. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

8. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applica-
tions. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing, pp. 467–476. ACM (2013)

9. Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes: cryptan-
alyzing multilinear maps without encodings of zero. Cryptology ePrint Archive,
Report 2014/929 (2014). https://eprint.iacr.org/2014/929

10. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33, 792–807 (1986)

11. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

12. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

13. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings
and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9562, pp. 96–124. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49096-9 5

14. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Proceedings of the Forty-sixth Annual ACM Symposium on
Theory of Computing, pp. 475–484. ACM (2014)

15. Zhandry, M.: How to avoid obfuscation using witness PRFs. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 421–448. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49099-0 16

https://doi.org/10.1007/978-3-319-39555-5_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://eprint.iacr.org/2014/930
https://eprint.iacr.org/2014/930
https://eprint.iacr.org/2014/906
https://eprint.iacr.org/2014/929
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-662-49099-0_16

Two-Client and Multi-client Functional
Encryption for Set Intersection

Tim van de Kamp(B) , David Stritzl , Willem Jonker, and Andreas Peter

University of Twente, Enschede, The Netherlands
{t.r.vandekamp,w.jonker,a.peter}@utwente.nl,

d.l.stritzl@alumnus.utwente.nl

Abstract. We propose several functional encryption schemes for set
intersection and variants on two or multiple sets. In these schemes, a
party may learn the set intersection from the sets of two or more clients,
without having to learn the plaintext set of each individual client. For
the case of two clients, we construct efficient schemes for determining the
set intersection and the cardinality of the intersection. To evaluate the
cardinality of the intersection, no overhead is incurred when compared
to operating on plaintext data. We also present other functionalities with
a scheme for set intersection with data transfer and a threshold scheme
that only discloses the intersection if both clients have at least t elements
in common. Finally, we consider set intersection and set intersection
cardinality schemes for the case of three or more clients from a theoretical
perspective. Our proof-of-concept implementations show that the two-
client constructions are efficient and scale linearly in the set sizes.

Keywords: Multi-client functional encryption · Non-interactive ·
Set intersection

1 Introduction

In functional encryption (FE) scheme, decryption keys are associated with a
functionality f and the decryption of an encrypted message m returns the func-
tion applied to the message, f(m), instead of the original message m. This con-
cept can be extended to functions with more than one input, resulting in a multi-
input functional encryption (MI-FE) scheme. Correspondingly, the decryption
algorithm of an MI-FE scheme requires a decryption key, associated with an
n-ary function f , and n encrypted values x1, . . . , xn to output f(x1, . . . , xn).

A strict subset of these MI-FE schemes are termed multi-client functional
encryption (MC-FE) schemes [15]. In such an MC-FE scheme, the inputs for
the n-ary function f are given by n distinct parties, termed clients. Each client
encrypts their input using their own encryption key and a time-step or session
identifier. This identifier is used to determine which ciphertexts from the var-
ious clients belong together. To evaluate a function f using the corresponding

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 97–115, 2019.
https://doi.org/10.1007/978-3-030-21548-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_6&domain=pdf
http://orcid.org/0000-0002-9794-9882
http://orcid.org/0000-0001-7001-7308
http://orcid.org/0000-0003-2929-5001
https://doi.org/10.1007/978-3-030-21548-4_6

98 T. van de Kamp et al.

Table 1. Overview of the presented MC-FE schemes for set operations.

Functionality Two-client Multi-client

Set intersection Sect. 6.2 Sect. 7.3

Set intersection cardinality Sect. 6.1 Sects. 7.1, 7.2

Set intersection with data transfer Sect. 6.3 Open problem

Threshold set intersection Sect. 6.4 Open problem

decryption key, all inputted ciphertexts need to be associated with the same
identifier or otherwise decryption will fail.

In this work, we explore the set intersection functionality and several variants.
Inspired by the popularity of private set intersection (PSI) protocols [27], we
define a scheme for determining the set intersection of two clients’ sets in a
non-interactive manner. Additionally, we propose several other non-interactive
variants to interactive PSI protocols that were previously proposed in literature.
We construct a two-client functional encryption (2C-FE) scheme for determining
the cardinality of the intersection (i.e., |Sa ∩Sb|, where Sγ is the set belonging to
client γ), similar to PSI cardinality [21]. We also consider a non-interactive 2C-
FE version of the less common PSI with data transfer [9,16], where the common
set elements are shared with associated data (i.e., { (xj , ϕa(xj), ϕb(xj)) | xj ∈
Sa ∩ Sb }, where ϕγ(xj) is the data associated with xj by client γ). Finally, we
construction a threshold scheme where the set intersection is only revealed if two
clients have at least t set elements in common.

Following our 2C-FE schemes, we also explore the much harder multi-client
case where we propose MC-FE schemes for determining the (cardinality of the)
set intersection of more than two sets. While 2C-FE schemes could also be used
to determine the intersection of multiple sets, doing so would leak information
about the intersection of each pair of sets. To prevent this undesirable leak-
age and achieve secure MC-FE for set intersection, we require more involved
constructions.

An overview of constructions for MC-FE for set intersection presented in this
work is given in Table 1.

Although the functionalities for our MC-FE schemes are inspired by various
PSI protocols, the usage scenario differs in a crucial way: We apply our MC-
FE schemes in a scenario where a third party, termed the evaluator, learns the
function outcome. In Sect. 5.1 we explain why non-interactive 2C-FE cannot be
secure if one of the clients also serves as the evaluator. We highlight the difference
between PSI and our MC-FE for set intersection in Fig. 1.

Using the functionalities provided by our constructions, it is possible to
achieve privacy-preserving profiling. For example, consider a case where the
police is looking for suspects which were both present at a concert and recently
received a large sum of money on their bank account. Using a 2C-FE scheme

Two-Client and Multi-client Functional Encryption for Set Intersection 99

Fig. 1. Fundamental difference between a private set intersection (PSI) protocol and
our multi-client functional encryption (MC-FE) schemes for set intersection.

for determining the set intersection, the police will only learn about the sus-
pects matching the two profiles, while learning nothing about the other visi-
tors of the concert or other people that received an unusual amount of money.
Another use case is privacy-preserving data mining, such as the computation of
various set similarity scores. For example, by determining the cardinality of a
set intersection we can compute the Jaccard index (i.e., |S1 ∩ S2|/|S1 ∪ S2| =
|S1 ∩ S2|/(|S1| + |S2| − |S1 ∩ S2|)), without requiring the evaluator to learn the
clients’ sets themselves.

To asses the practicability of our constructions, we implemented several of
our proposed schemes. Our 2C-FE constructions are quite efficient: Determining
the cardinality of the set intersection of two encrypted sets is as fast as any
plaintext solution and determining the set intersection of sets of 100 thousand
elements in size can be done in just under a second.

2 Preliminaries

A t-out-of-n Shamir’s secret sharing scheme (SSSS) uses a t-degree polyno-
mial f over a finite field Fp. To share the secret s, pick a random polynomial
with f(0) = s and pick shares

(
i, f(i)

)
for distinct values i. To recover the secret

from a set of at least t distinct shares
{(

i, f(i)
)}

i∈S , Lagrange interpolation is
used, f(0) =

∑
i∈S f(i) · ΔS,i,where ΔS,i =

∏
j∈S,j �=i

(
j · (j − i)−1

)
.

A Bloom filter is a data structure that can be used for efficient set mem-
bership testing. An (m, k) Bloom filter consists of a bit string bs of length m
(indexed using bs[�] for 1 ≤ � ≤ m) and is associated with k independent hash
functions, hi : {0, 1}∗ → {1, . . . ,m} for 1 ≤ i ≤ k. The Bloom filter is initialized
with the bit string of all zeros. To add an element x to the Bloom filter, we hash
the element for each of the k hash functions to obtain hi(x) and set the hi(x)th
position in the bit string bs to 1, i.e., bs[hi(x)] = 1 for 1 ≤ i ≤ k. To test the
membership of an element x∗, we simply check if hi(x∗) = 1 for 1 ≤ i ≤ k.

100 T. van de Kamp et al.

Note that Bloom filters have no false negatives for membership testing, but
may have false positives. Furthermore, we point out that the hash functions hi

do not necessary need to be cryptographic hash functions.

3 Related Work

While the term MC-FE [15] only recently gained traction, a couple of MC-FE
schemes have already been proposed several years ago. For example, for the
functionality of summing inputs from distinct clients, Shi et al. [28] proposed a
construction. Around the same time, Lewko and Waters [22] proposed a mul-
tiauthority attribute-based encryption scheme. Their construction can also be
seen as MC-FE since the evaluated function only outputs a plaintext if the user
has the right inputs (i.e., attributes) to the function (i.e., policy). More recently,
MC-FE constructions for computing vector equality [30] and inner products [3,8]
have been proposed. However, no MC-FE schemes for functionalities related to
set operations have been proposed.

Despite being interactive by definition, PSI protocols are functionality-wise
the closest related to our constructions. While the concept of PSI dates from the
mid-80s [25], renewed interest in PSI protocols started in the beginning of the
new millennium [13,21]. A comprehensive overview of various PSI constructions
and techniques is given by Pinkas, Schneider, and Zohner [27]. While most PSI
constructions achieve their functionality through techniques different from ours,
Bloom filters have been used by interactive PSI protocols before [11,19].

The type of PSI protocols that are most related to our MC-FE schemes are
termed outsourced PSI [1,2,17–19,23,31]. In outsourced PSI, a client may upload
its encrypted set to a service provider, which will then engage in a PSI protocol
on the client’s behalf. Hence, in outsourced PSI the other client still learns the
outcome of the evaluated set intersection, while in our definition of MC-FE
for set intersection we require a dedicated evaluator to learn this outcome. This
difference is typified by the difference in homomorphic encryption and FE: While
both techniques allow us to compute over encrypted data, with homomorphic
encryption we learn the encrypted output of the computation while with FE we
learn the plaintext result. The two-client set intersection protocol by Kerschbaum
[18] is a notable exception to regular outsourced PSI: In that construction the
service provider also learns the outcome of the set intersection. However, besides
their limited scope of considering only two-client set intersection, they consider
a weaker security notion. Their construction is only collusion resistant if the
two clients collude against the evaluator, not if the evaluator colludes with one
client against the other client (something we show impossible in Sect. 5.1). As
a consequence, their construction cannot be extended to a secure scheme in the
multi-client case. Moreover, their proposed construction is malleable and thus
does not provide any form of integrity.

Two-Client and Multi-client Functional Encryption for Set Intersection 101

4 Multi-client Functional Encryption for Set Operations

An MC-FE [15] scheme for a specific set operation consists of n parties, termed
clients. Each of these clients encrypts their own set. Another party, which we
term evaluator, having a decryption key and receiving these encrypted sets, can
evaluate an n-ary set operation f over the clients’ inputs.

To run the same functionality f multiple times without the possibility for the
evaluator to mix old clients’ inputs with newly received inputs, MC-FE schemes
associate an identifier ID with every ciphertext. An evaluator is only able to
evaluate the function if all ciphertexts use the same identifier ID.

The MC-FE schemes we propose support only a single functionality f (e.g.,
set intersection). Therefore, our schemes do not need to define a key generation
algorithm to create a decryption key for each of the functionalities. Instead,
we can suffice with the creation of a decryption key for the single functionality
in Setup. This type of FE schemes is commonly referred to as single key [20].
However, to avoid confusion in our multi-client case – where we still have a key
for each client – we refer to this setting as single evaluation key MC-FE.

Definition 1 (Multi-client Functional Encryption for Set Operations).
A single evaluation key MC-FE scheme for set operation f , consists of the fol-
lowing three polynomial time algorithms.

Setup(1λ, n) → (pp, esk, usk1, . . . , uskn). On input of the security parameter λ
and the number of clients, the algorithm outputs the public parameters pp, the
evaluator’s evaluation key esk, and the clients’ secret keys uski for each client 1 ≤
i ≤ n. The public parameters are implicitly used in the other algorithms.

Encrypt(uski, ID,Si) → ctID,i. For a client i to encrypt a set Si for identifier ID,
the client uses its secret key uski and outputs the ciphertext ctID,i.

Eval(esk, ctID,1, . . . , ctID,n) → f(S1, . . . ,Sn). An evaluator having the evaluation
key esk and a ciphertext for identifier ID from every client, outputs the function
evaluation f(S1, . . . ,Sn).

4.1 Schemes Without an Evaluator Key

While having schemes with an evaluation secret key might be desirable in some
cases, in other cases it is desirable that anyone may learn the outcome of the func-
tion, e.g., similar to property-revealing encryption [6,26]. However, observe that
we can always adapt an MC-FE scheme without an evaluation key to the above
defined single evaluation key MC-FE by using public key encryption. Indeed,
instead of sending the ciphertexts resulting from the MC-FE scheme directly to
the evaluator, we simply require the clients to encrypt these ciphertexts again,
but now using the public key of the evaluator. This ensures that only the evalua-
tor with the corresponding private key (used as an evaluation key) can evaluate
the functionality f . An alternative solution is to require the clients to send their
ciphertexts over a secure channel to the evaluator. This way, no other party has
access to the ciphertexts.

102 T. van de Kamp et al.

We conclude that, since schemes without an evaluation key can be turned into
a single evaluation key MC-FE scheme, MC-FE schemes without an evaluation
key are at least as powerful as single evaluation key MC-FE. For this reason, we
construct only MC-FE schemes without an evaluation key and stress that our
resulting schemes can thus be used both with and without an evaluation key.

5 Security

We use the indistinguishability-based security notion from Goldwasser et al. [15,
Sect. 3.2] for MC-FE. In this notion, the adversary’s goal is to decide which of
the two, by the adversary chosen, plaintexts is encrypted. The notion allows
the adversary to adaptively query for the encryption of plaintext, while it can
locally evaluate the received ciphertext using Eval(ct1, . . . , ctn). Additionally, the
adversary is allowed to statically corrupt the clients by announcing the corrupted
clients before it receives the public parameters.

The adversary can thus be seen as a malicious evaluator that tries to learn
information about the ciphertexts, other than what it should be allowed accord-
ing to the functionality of the scheme. It its attempts, the malicious evaluator
may collude with the clients in an effort to learn more about other clients’ cipher-
texts.

Let f be the supported function of the MC-FE scheme for n clients. This
function has n inputs, one for every client. For a subset I ⊆ {1, . . . , n}, we use
the notation f({xi}i∈I , ·) to denote the function that has its inputs xi, for i ∈ I,
hardwired in the function.

Definition 2 (Adaptive IND-security of MC-FE [15]). An MC-FE scheme
without an evaluation key is secure if any probabilistic polynomial time (p.p.t.)
adversary A has at most a negligible advantage in winning the following game.

Corruptions. The adversary sends a set of uncorrupted and corrupted clients to
the challenger, I and Ī, respectively.

Setup. The challenger B picks a bit b R← {0, 1}, and sends the public parame-
ters pp along with the user keys of the corrupted clients {uski}i∈Ī to the adver-
sary A.

Query 1. The adversary may query the challenger for the encryption of sets Si

for uncorrupted clients i ∈ I associated with an ID that has not been used
before. For each uncorrupted client i ∈ I, the challenger returns the encrypted
set ctID,i ← Encrypt(uski, ID,Si).

Challenge. The adversary sends two equally sized sets S∗
i,0, S∗

i,1, |S∗
i,0| = |S∗

i,1|,
for every uncorrupted client i ∈ I together with an ID∗ that has not been
used before. The challenger checks if the challenge is allowed by checking
if f({S∗

i,0}i∈I , ·) = f({S∗
i,1}i∈I , ·). If this is not the case the challenger aborts the

game. Otherwise, it returns the encrypted sets Encrypt(uski, ID,S∗
i,b) for every

uncorrupted client i ∈ I.

Two-Client and Multi-client Functional Encryption for Set Intersection 103

Query 2. Identical to Query 1.

Guess. The adversary outputs its guess b′ for the challenger’s bit b.

Note that by definition, the ciphertext does not need to hide the set size.
This is similar to the semantic security notion where the ciphertext does not
need to hide the plaintext size. If this is undesirable, fixed-sized sets can easily
be obtained by adding dummy elements to each set.

5.1 Corruptions in Two-Client Functional Encryption

We observe that any single evaluation key 2C-FE scheme can never be secure
against corruptions for non-trivial functionalities. To see why this is the case,
consider a 2C-FE scheme for the functionality f(x, y). Assume, without loss of
generality, that the adversary corrupts the client which determines the input y.
By definition of the game for adaptive IND-security of MC-FE, the adversary
submits two values x0 and x1 to the challenger. For the challenge inputs to be
allowed, it is required that f(x0, ·) = f(x1, ·), i.e., we require fx0(y) = fx1(y) for
all possible y. So, unless f is a constant function in y, we have to require that x0 =
x1, for which it is trivial to see that the challenge will be indistinguishable.

Generalizing the result, we see that in an MC-FE scheme for n clients, at
least two clients need to remain uncorrupted. Phrased differently, this means
that for MC-FE with n clients, we can allow for at most n − 2 corruptions.

6 Two-Client Constructions for Set Intersections

We propose several 2C-FE schemes for various set operations: computing the
cardinality of the set intersection, computing the set intersection itself, comput-
ing the set intersection with data transfer or projection, and computing the set
intersection only if a threshold is reached. We discuss constructions supporting
more than two clients in Sect. 7.

6.1 Two-Client Set Intersection Cardinality

To compute the cardinality of a set intersection from two clients, we can suf-
fice with a simple scheme using a pseudorandom function (PRF) (e.g., see [29,
Sect. 11.2]). The two clients encrypt each set element individually using a PRF
under the same key. Since a PRF has a deterministic output, the evaluator can
now use any algorithm for determining the cardinality of the intersection, even
algorithms that only operate on plaintext data (e.g., see [10] for an overview).

Setup(1λ) → (pp, usk1, usk2). Let Φ = {φκ} be a PRF ensemble for func-
tions φκ : ID × {0, 1}∗ → {0, 1}≥λ. Pick a PRF φmsk. The public parameters
are pp = (Φ) and the clients’ keys usk1 = usk2 = (φmsk).

104 T. van de Kamp et al.

Encrypt(uski, ID,Si) → ctID,i. For a client i to encrypt its set Si for an iden-
tifier ID ∈ ID, the client computes the PRF for each set element xj ∈ Si. It
outputs the set ctID,i = {φmsk(ID, xj) | xj ∈ Si }.

Eval(ctID,1, ctID,2) → |S1 ∩ S2|. To evaluate the cardinality of the set intersection,
output |ctID,1 ∩ ctID,2|.

We can use a block cipher, keyed-hash function, hash-based message authen-
tication code, or a similar function as the PRF.

Theorem 1. The two-client set intersection cardinality scheme defined above is
secure under the assumption that the PRF is indistinguishable from a random
function.

Proof. This directly follows from the security of the PRF. Note that the evaluator
only learns whether two set elements x1,j ∈ S1 and x2,j′ ∈ S2 equal or not.
Nothing else is revealed about the set elements x1,j and x2,j′ .

6.2 Two-Client Set Intersection

In case of two-client set intersection, we need not only to determine whether two
encrypted set elements are the same, but also learn the plaintext set element if
they are the same. We achieve this by adapting our construction for two-client
set intersection cardinality with a combination of convergent encryption [12] (cf.
message-locked encryption [4]) and secret sharing: We encrypt the set element
under a key derived from the message itself and secret share the encryption key.
If both clients encrypted the same message, the decryption key can be recovered
from the secret shares and the ciphertext can be decrypted. To encrypt the set
element itself, we use an authenticated encryption (AE) scheme [5].

Setup(1λ) → (pp, usk1, usk2). Let 〈g〉 = G be a group of prime order p and
let Φ = {φκ} be a PRF ensemble for functions φκ : ID ×{0, 1}∗ → G and AE an
AE scheme. Define a mapping from the group to the key space of the AE scheme,
H : G → KAE. Pick a PRF φmsk and pick σ1

R← Zp to set σ2 = 1−σ1 (mod p). The
public parameters are pp = (G, Φ,H,AE) and the clients’ keys usk1 = (φmsk, σ1)
and usk2 = (φmsk, σ2).

Encrypt(uski, ID,Si) → ctID,i. For a client i to encrypt its set Si for an iden-
tifier ID ∈ ID, the client computes the PRF for each set element xj ∈ Si. It
outputs the set of tuples {(ctID,i,j,1, ctID,i,j,2)}1≤j≤|Si|,

ctID,i =
{ (

k σi
ID,j ,AE.EncH(kID,j)(xj)

) | kID,j = φmsk(ID, xj), xj ∈ Si

}
.

Eval(ctID,1, ctID,2) → S1 ∩ S2. For all ctID,1,j,2 = ctID,2,k,2 (and hence x = x1,j =
x2,k), determine

kID,x = ctID,1,j,1 · ctID,2,k,1

= φmsk(ID, x)σ1 · φmsk(ID, x)σ2 = φmsk(ID, x)σ1+σ2 = φmsk(ID, x) ,

to decrypt ctID,i,j,2 using AE.DecH(kID,x)(ctID,i,j,2) for i = 1 or, equivalently, i = 2.

Two-Client and Multi-client Functional Encryption for Set Intersection 105

Theorem 2. The two-client set intersection scheme defined above is secure
under the decisional Diffie-Hellman (DDH) assumption, a secure PRF, and a
secure AE scheme.

Proof. We construct an algorithm that is able to break the DDH problem if a
p.p.t. adversary A has a non-negligible advantage in winning the game.

Setup. The challenger B receives the DDH tuple (g, ga, gb, T) from the group G

of prime order p. It defines a PRF ensemble Φ = {φκ} and mapping H : G → KAE

according to the scheme. The public parameters pp = (G, Φ,H,AE) are sent to
the adversary. The challenger indirectly sets σ1 = a and σ2 = 1−a, i.e., gσ1 = ga

and gσ2 = g · (ga)−1.

Query. Upon receiving an allowed encryption query for (i, ID,S), the challenger
encrypts the elements of the set S as follows. It models the PRF as follows: On
input (ID, xj), output grID,xj , where, if the input has not been queried before,
rID,xj

R← Zp. The challenger encrypts an element xj ∈ S as

ctID,i,j =

{(
(ga)rID,xj ,AE.Enck(xj)

)
if i = 1;

(
(g · (ga)−1)rID,xj ,AE.Enck(xj)

)
if i = 2,

where k = H(grID,xj).

It outputs the encrypted set ctID,i to the adversary.

Challenge. An allowed challenge request from the adversary for the sets S∗
1,0,

S∗
1,1, S∗

2,0, and S∗
2,1 with identifier ID∗, is answered by the challenger by sending

the encrypted sets S∗
1,b and S∗

2,b back to the adversary. An element xj �∈ (S1,b ∩
S2,b) is encrypted as

ctID,i,j =

{(
T

rID∗,xj ,AE.Enck(xj)
)

if i = 1;
(
(gb · T−1)rID∗,xj ,AE.Enck(xj)

)
if i = 2,

where k = H
(
(gb)rID,xj

)
.

Note that this indirectly sets the output of the PRF to g
brID∗,xj for xj �∈ (S1,b ∩

S2,b). The elements xj ∈ (S1,b ∩ S2,b) are encrypted as in the query phase.

If the adversary A outputs a correct guess b′ = b, the challenger outputs the
guess that T = gab, otherwise, it outputs its guess T ∈R G.

6.3 Two-Client Set Intersection with Data Transfer or Projection

The two-client set intersection scheme described above can be extended into a
two-client set intersection scheme with data transfer (analogous to PSI with data
transfer [9,16]). Instead of only encrypting the set element xj itself, ctID,i,j,2 =
AE.Enck(xj), we can also choose to encrypt both the element itself and the data
associated to the set element ρ(xj). The security of the scheme is the same as
before since we rely on the security of the AE scheme.

106 T. van de Kamp et al.

Moreover, the proposed scheme also allows for a two-client set intersection
projection scheme (analogous to PSI with projection [7]). We construct such a
scheme by encrypting only the associated data ρ(xj), ctID,i,j,2 = AE.Enck(ρ(xj)),
not the set element xj itself. Security follows from the fact that the AE decryp-
tion key k = H(φmsk(ID, xj)) does not reveal any information about the set
element xj , assuming the security of the used PRF. However, the evaluator does
learn that the projections of both clients correspond to the same set element.

6.4 Two-Client Threshold Set Intersection

To allow the evaluator to learn the cardinality of the intersection, but only the set
elements in the intersection if the clients have at least t set elements in common,
we propose a two-client threshold set intersection scheme. We achieve this by
encrypting the share of the decryption key for the AE ciphertext k σi

ID,j using
another encryption key. This newly added encryption key can only be obtained
by the evaluator if the clients have at least t set elements in common.

Although the construction is based on the previous scheme, the precise con-
struction is quite technical. We therefore state the complete scheme below.

Setup(1λ, t) → (pp, usk1, usk2). Let AE an AE scheme and 〈g〉 = G be a group
and Fp be a field, both of prime order p. Let Φ = {φκ} and Ψ = {ψκ} be
PRF ensembles for functions φκ : ID ×{0, 1}∗ → G and ψκ : ID ×{0, 1}∗ → Fp,
respectively. Define a mapping from the group to the key space of the AE scheme,
H : G → KAE. Pick three PRFs φ ∈ Φ, ψ1, ψ2 ∈ Ψ and σ1

R← Zp, ρ1
R← Zp−1,

setting σ2 = 1 − σ1 (mod p) and ρ2 = 1 − ρ1 (mod p − 1).
The public parameters are pp = (G, Φ, Ψ,H,AE, t) and the clients’

keys usk1 = (φ, ψ1, ψ2, σ1, ρ1) and usk2 = (φ, ψ1, ψ2, σ2, ρ2).

Encrypt(uski, ID,Si) → ctID,i. For a client i to encrypt its set Si for an identi-
fier ID ∈ ID, the client computes the PRF for each set element xj ∈ Si. It defines
the (t − 1)th degree polynomial fID by setting the coefficients ci = ψ2(ID, i), for
0 ≤ i < t, to obtain the polynomial fID(x) = ct−1x

t−1 + · · · + c1x + c0.
The client outputs the set

ctID,i =
{ (

kID,j,2, f(kID,j,2)ρi ,AE.EncH(c0)(k
σi
ID,j,1),AE.EncH(kID,j,1)(xj)

)

| kID,j,1 = φ(ID, xj), kID,j,2 = ψ1(ID, xj), xj ∈ Si } .

Eval(ctID,1, ctID,2) → (|S1∩S2|, {xj | xj ∈ S1∩S2, |S1∩S2| ≥ t }). The evaluation
algorithm consists of two stages; the second stage is only executed if |S1∩S2| ≥ t.

1. To determine the cardinality of the set intersection |S1 ∩ S2|, the evaluator
counts the number of times a value kID,j,2 occurs both in ctID,1 and ctID,2.

2. If |S1 ∩ S2| ≥ t, the evaluator uses Lagrange interpolation to compute the
value c0 = f(0). It can do so by taking t distinct tuples

(
kID,j,2, f(kID,j,2)

)
,

where f(kID,j,2) = f(kID,j,2)ρ1 · f(kID,j,2)ρ2 . Now, when the secret c0 has
been recovered from the shares, the evaluator can use it to decrypt the val-
ues AE.EncH(c0)(k

σi
ID,j,1). So, the evaluator obtains kσi

ID,j,1 for every set element

Two-Client and Multi-client Functional Encryption for Set Intersection 107

in xj ∈ Si if |S1∩S2| ≥ t. Observe that for the elements in the intersection, the
evaluator has both kσ1

ID,j,1 and kσ2
ID,j,1, and can compute kID,j,1 = kσ1

ID,j,1 · kσ2
ID,j,1.

Finally, using H(kID,j,1), it can decrypt AE.EncH(kID,j,1)(xj) to obtain xj ∈
S1 ∩ S2.

Since the construction above builds upon the set intersection scheme, which
can be modified into a set intersection with data transfer scheme or a set intersec-
tion with projection scheme, we similarly obtain both threshold set intersection
with data transfer and projection.

Theorem 3. The two-client threshold set intersection scheme defined above is
secure under the DDH assumption, a secure PRF, and a secure AE scheme.

Proof. We only have to prove that the values kσi
ID,j,1 can only be obtained if |S1 ∩

S2| ≥ t, as the rest of the proof directly follows from Theorem 2. Since the
values kσi

ID,j,1 are encrypted using an AE scheme using the key H(c0), the values
are only know to the evaluator if it has the key H(c0) (under the assumption of
a secure AE scheme). The fact that c0 (and hence H(c0)) can only be obtained
from the secret shares follows from the information-theoretic security of SSSS if
a random polynomial fID was used. Note that the (t − 1)th degree polynomial is
random under the assumption of a secure PRF. Finally, using a similar argument
as in Theorem 2, we can show that, under the DDH assumption, f(kID,j,2)ρ1

or f(kID,j,2)ρ2 does not reveal any information about f(kID,j,2) if f(kID,j,2)ρ2 or
f(kID,j,2)ρ1 , respectively, is unknown.

7 Multi-client Constructions for Set Intersections

While the 2C-FE constructions from Sect. 6 could be used in a multi-client case,
this would leak information about each pair of sets. For the same reason, deter-
ministic encryption cannot be used in secure MC-FE constructions, which makes
it much harder to develop efficient MC-FE schemes.

7.1 Multi-client Set Intersection Cardinality

We construct an MC-FE scheme for testing the set intersection using only a
hash function and secret sharing. The proposed scheme incurs no additional
leakage and is proven adaptive IND-secure. While our scheme has an evaluation
algorithm which does not rely on heavy cryptographic machinery and runs in
polynomial time (for a fixed number of clients n), it is not very efficient. The
running time of evaluation algorithm grows in the product of the cardinality
of the individual clients’ set size. However, for relatively small sets or a small
number of clients this scheme might still be efficient enough to use in practice.

Setup(1λ, n) → (pp, usk1, . . . , uskn). Let 〈g〉 = G be a group of prime order p
and let H : ID × {0, 1}∗ → G be a hash function. Create random shares of 0 by
picking σi

R← Zp, for all 2 ≤ i ≤ n, and setting σ1 = −∑n
i=2 σi (mod p). The

public parameters are pp = (H) and the clients’ keys uski = (σi).

108 T. van de Kamp et al.

Encrypt(uski, ID,Si) → ctID,i. For a client i to encrypt its set Si using an identi-
fier ID ∈ ID, the client encrypts each set element xj ∈ Si individually. It outputs
the set ctID,i = { H(ID, xj)

σi | xj ∈ Si } .

Eval(ctID,1, . . . , ctID,n) → |⋂n
i=1 Si|. For each n-tuple (cID,1, . . . , cID,n) ∈ ctID,1 ×

· · · × ctID,n, the evaluator evaluates
∏n

i=1 cID,i
?= 1. The evaluator outputs the

count for the number of times the expression above evaluates to true.
We will prove the construction secure under selective corruptions, but we note

that it is also possible to achieve a proof under dynamic corruptions (although
less tight) by adapting the proofs from [28].

Theorem 4. The improved multi-client set intersection cardinality scheme
defined above is secure up to (n − 2) corruptions under the DDH assumption
in the random oracle model (ROM).

Proof. Let A be a p.p.t. adversary playing the adaptive IND-security game
for MC-FE. We will show how to use A as a distinguisher for a DDH tuple,
winning with a non-negligible advantage if A has a non-negligible advantage in
winning the security game.

Random Oracle. On input of a tuple (ID, xj) the oracle checks if it has
answered the query before. If not, it picks a value βID,xj

R← Zp. Next, the chal-
lenger B guesses whether the query is for the challenge ID. If so, the oracle out-
puts (gb)βID,xj , otherwise, it outputs gβID,xj . If the guess turns out to be wrong
later, B can simply abort the game.

Corruptions. The adversary A announces the set of uncorrupted and corrupted
clients, I and Ī, respectively.

Setup. For i ∈ Ī, the challenger B picks σi
R← Zp and sends the values to the

adversary A. Let i′ ∈ I, for i ∈ I \ {i′}, B indirectly sets σi = a · αi, where
αi

R← Zp, by setting gσi = (ga)αi . For i′, it indirectly sets σi′ = −∑
i�=i′ σi,

gσi′ =
∏

i∈Ī

g−σi ·
∏

i∈I,i �=i′
(ga)−αi .

Query. To answer an encryption query Si for an uncorrupted client i ∈ I, the
challenger uses the oracle to obtain {βID,xj

| xj ∈ Si } and construct the cipher-
text as ctID,i =

{
(gσi)βID,xj | xj ∈ Si

}
.

Challenge. Upon receiving the challenge sets { (S∗
i,0,S∗

i,1) | i ∈ I } and an ID∗

from the adversary, the challenger picks b R← {0, 1}. The challenger returns the
ciphertexts

ctID∗,i′ =
{ ∏

i∈Ī

(gb)−σi·βID∗,xj ·
∏

i∈I,i �=i′
T

−αi·βID∗,xj | xj ∈ S∗
i,b

}
and

ctID∗,i =
{

T
αiβID∗,xj | xj ∈ S∗

i,b

}
for i �= i′.

Two-Client and Multi-client Functional Encryption for Set Intersection 109

Note that if T = gab, the ciphertext is distributed properly according the scheme.
If T ∈R G, the challenger returns a ciphertext of a randomly distributed set
element. So, the challenger B guesses that T = gab if A correctly guessed b′ = b
and otherwise, B guesses that T ∈R G.

We remark that while the security of the two-client schemes could be proven
in the standard model, our multi-client constructions can only be proven in
the ROM. The difference in the constructions is that in the two-client case, no
corruptions are taken place, and thus we can use a programmable PRF instead
of a programmable random oracle.

7.2 Efficient Multi-client Set Intersection Cardinality

A drawback of the multi-client set intersection cardinality scheme might be that
the computational complexity for the evaluator grows quickly in the total number
of set elements (i.e.,

∏n
i=1|Si|). To address this problem, we propose an alter-

native scheme using Bloom filters. In this scheme, we first combine the Bloom
filter representation of every client’s set in the encrypted domain, resulting in an
encrypted Bloom filter representing the intersection of all clients’ sets. Next, the
evaluator uses the encrypted set elements of any client to determine the cardinal-
ity of the intersection. This method used by the evaluator to determine the cardi-
nality of the intersection can be seen as computing |Si ∩ (

⋂n
i=1 Si)| = |⋂n

i=1 Si|.
The theoretical efficiency of O(n + minn

i=1|Si|) ciphertext operations is much
better than the other scheme. However, the proposed scheme is only secure if no
corruptions are taking place.

Setup(1λ, n,m, k) → (pp, usk1, . . . , uskn). Let 〈g〉 = G be a group of prime
order p and let BF be a specification for an (m, k) Bloom filter. Let Φ = {φκ} be a
PRF ensemble for functions φκ : {0, 1}∗ → {0, 1}≥λ and let H : ID×{0, 1}∗ → G

be a hash function. Pick a PRF φ ∈ Φ. Additionally, pick for 1 ≤ i ≤ n,
values ci

R← Zp and define the n-degree polynomial f(x) = cnxn + · · · + c1x over
the field Fp. The public parameters are pp = (BF, Φ,H) and the clients’ secret
keys are uski =

(
φ, f(i), f(n + i)

)
for 1 ≤ i ≤ n. Note that every client receives

the same PRF φ, but different secret shares f(i) and f(n + i).

Encrypt(uski, ID,Si) → (ctID,i,bsS , ctID,i,S). First, the client initializes the Bloom
filter to obtain bsS . Next, it adds its encrypted set elements { φ(xj) | xj ∈ Si } to
the Bloom filter. For each 1 ≤ � ≤ m, the client sets ri,	

R← Zp, if bsS [�] = 0, and
ri,	 = 0, otherwise. The client encrypts the Bloom filter for bsS as the ordered
set

ctbsS =
{

H(ID, �)f(i) · gri,� | 1 ≤ � ≤ m
}

.

Additionally, the client initializes a new bit string bsj for every set element xj ∈
Si. It encrypts each element xj and adds φ(xj) to the Bloom filter for bsj . Let tj
denote the Hamming weight (i.e., the number of 1s) of the resulting bit string bsj .
For the resulting bit string bsj pick ri,j,	

R← Zp for 1 ≤ � ≤ m. Additionally, set

110 T. van de Kamp et al.

ρi,j,	
R← Zp if bsj [�] = 0, and ρi,j,	 = tj · ri,j,	, otherwise. It encrypts the Bloom

filter for bsj as

ctbsj =
({

H(ID, �)f(n+i) · gρi,j,� , gri,j,� | 1 ≤ � ≤ m
})

.

Finally, the client outputs the ciphertext
(
ctbsS ,

{
ctbsj | xj ∈ Si

})
.

Eval(ctID,1, . . . , ctID,n) → |⋂n
i=1 Si|. Since the clients’ ciphertext are encryptions

of the individual set elements, we can determine a client with the smallest
(encrypted) set. Let γ be such a client. Now, for 1 ≤ � ≤ m, compute the
partial Lagrange interpolation

a	 =
n∏

i=1

(
ctID,i,bsS []

)Δ{1,...,n,n+γ},i .

Set d = 0. Next, to determine if an encrypted set element xj ∈ Sγ (represented
by a tuple (ctID,γ,bsj , g

rγ,j,�) ∈ ctID,γ,S) is in the intersection of all sets, check for
each 1 ≤ � ≤ m, if

(
ctID,γ,bsj []

)Δ{1,...,n,n+γ},n+γ · a	
?= (grγ,j,�)tj,�·Δ{1,...,n,n+γ},n+γ

for values 1 ≤ tj,	 ≤ k. If the value tj,	 occurs tj,	 times for the values 1 ≤ � ≤ m,
increase the value d by one.

After all encrypted set element xj ∈ Sγ have been checked, output the car-
dinality of the set intersection d.

Correctness. To see that the above defined scheme is correct, observe that if
a set element xj ∈ Si is in the intersection of all clients’ sets, the values ri,j,	

equal 0 for the same values of � in the encrypted Bloom filters ctID,i,bsS . Hence,
by using the Lagrange interpolation on these elements (corresponding to a)
together with an encrypted Bloom filter for a single set element xj ∈ Sγ

(corresponding to ctID,γ,bsj), we obtain H(ID, �)f(0) · gri,j,�·Δ{1,...,n,n+γ},n+γ =
gri,j,�·Δ{1,...,n,n+γ},n+γ . Now, note that we set ρi,j,	 = tj · ri,j,	 if the bit string
value bsj [�] = 1. So, if exactly tj bit string values in the set intersection are set
to 1, we know that the element is a member of the set intersection.

Theorem 5. The improved multi-client set intersection cardinality scheme
defined above is secure without corruptions under the DDH assumption in the
ROM.

Proof. We construct an algorithm that is able to break the DDH problem if a
p.p.t adversary A has a non-negligible advantage in winning the game.

Random Oracle. On input of a tuple (ID, �) the oracle checks if it has answered
the query before. If not, it picks a value βID,	

R← Zp. Next, the challenger B
guesses whether the query is for the challenge ID. If so, the oracle outputs (gb)βID,� ,

Two-Client and Multi-client Functional Encryption for Set Intersection 111

otherwise, it outputs gβID,� . If the guess turns out to be wrong later, B can simply
abort the game.

Setup. The challenger B receives the DDH tuple (g, ga, gb, T) from the group G

of prime order p. It defines a PRF ensemble Φ = {φκ} and the Bloom filter BF
according to the scheme. Pick for 1 ≤ i ≤ n, values ci

R← Zp and define the
n-degree polynomial f ′(x) = cnxn + · · · + c1x over the field Fp. The challenger
uses f(x) = a · f ′(x) to indirectly define the secret shares. Note that this still
allows B to compute gf(x) = (ga)f ′(x) for all values of x.

Query. To answer an encryption query Si for a client i, the challenger uses the
oracle to obtain {βID,	 | xj ∈ Si } and construct the ciphertext as in the scheme,
but using H(ID, �)f(x) = (ga)βID,�f ′(x).

Challenge. Upon receiving the challenge sets (S∗
i,0,S∗

i,1) for 1 ≤ i ≤ n and an ID∗

from the adversary, the challenger picks b R← {0, 1}. The challenger returns the
encryptions of the sets S∗

i,b using the scheme’s encrypt algorithm, but replacing
H(ID∗, �)f(x) by T βID∗,�f ′(x). Note that if T = gab, the ciphertext is distributed
properly according the scheme. If T ∈R G, the challenger returns a ciphertext of
a randomly distributed set element. So, the challenger B guesses that T = gab

if A correctly guessed b′ = b and otherwise, B guesses that T ∈R G.

To construct efficient multi-client functional encryption schemes for set oper-
ations that resist corruptions, we need to be able to check the membership of an
encrypted set element against the encrypted intersection of the clients’ sets. The
above construction fails to be secure against corruptions as it (partially) reveals
the individual bits in the bit string of a Bloom filter for a set element, i.e., the
adversary learns (part of) the bit string representation of the set element.

7.3 Multi-client Set Intersection

The set intersection can be computed using a notion similar to non-interactive
distributed encryption (DE) schemes [14,24]. A DE scheme is characterized by
two distinctive features. Firstly, we have that multiple clients can encrypt a plain-
text under their own secret key. Secondly, if enough clients have encrypted the
same plaintext, anyone can recover this plaintext from the clients’ ciphertexts.

We construct an MC-FE scheme for set intersection from a DE scheme.

Setup(1λ, n) → (pp, usk1, . . . , uskn). Run DE.Gen(1λ, n, n) to generate
an n-out-of-n DE scheme defined by pp and obtain the encryption
keys (usk1, . . . , uskn).

Encrypt(uski, ID,Si) → ctID,i. To encrypt the set Si, encrypt the identifier ID

together with each set element xj ∈ Si individually,

ctID,i = {DE.Enc(uski, ID ‖ xj) | xj ∈ Si } ,

112 T. van de Kamp et al.

where ID has a fixed length (e.g., by applying padding). The algorithm’s output
is a random ordering of the set ctID,i.

Eval(ctID,1, . . . , ctID,n) → ⋂n
i=1 Si. For each n-tuple (cID,1, . . . , cID,n) ∈ ctID,1 ×

· · ·×ctID,n, the evaluator uses DE.Comb(cID,1, . . . , cID,n) to obtain either the mes-
sage ID ‖ xj or ⊥. If the message starts with the expected ID, it adds xj to the
initially empty set R.

After evaluating all tuples, the evaluator outputs the set R.

Theorem 6. The multi-client set intersection scheme defined above is secure
under the security of the DE scheme.

Proof. For b ∈ {0, 1}, we consider for every set element xj,b ∈ ⋃
i∈I S∗

i,b two
cases:

– if xj,b ∈ ⋂
i∈I S∗

i,b, xj,b is also contained in every client i’s set S∗
i,1−b;

– if xj,b �∈ ⋂
i∈I S∗

i,b, there is at least one set S∗
k,1−b which does not contain xj,b,

but an element xj,1−b �∈ ⋂
i∈I S∗

i,1−b (and hence xj,1−b �∈ ⋂
i∈I S∗

i,b) instead.

For the elements xj satisfying the first case, the adversary does not learn
anything about b since for every client i we have that xj ∈ S∗

i,b and xj ∈ S∗
i,1−b,

while |S∗
i,b| = |S∗

i,1−b| (remember that the set elements are randomly ordered).
For the elements xj,b satisfying the second case, we claim that the adversary

does not learn anything about b by the security of the DE scheme. To see this,
note that there exist at least two uncorrupted clients, with at least one client
which did not encrypt the plaintext ID∗ ‖ xj,b. Observe that the security of the
DE scheme gives us that one cannot distinguish an encryption of a plaintext m0

from an encryption of a plaintext m1 as long as at most t−1 uncorrupted clients
have encrypted the same plaintext. Combined with the fact that in our scheme
we have set t = n and the fact that we know that at least one uncorrupted client
did not encrypt the message ID∗ ‖ xj,b and also that at least one uncorrupted
client did not encrypt the message ID∗ ‖ xj,1−b, we know that the encryption of
the message ID∗‖xj,b is indistinguishable from the encryption of the message ID∗‖
xj,1−b.

To improve efficiency, we can combine the above multi-client set intersection
scheme with the efficient multi-client set intersection cardinality scheme. The
construction for determining the cardinality can be used first to identify which
ciphertext elements correspond to set elements that are in the set intersection.
Next, we only have to use the evaluation algorithm of the multi-client set inter-
section scheme on these elements from which we know that they belong to the
set intersection.

8 Evaluation

We created proof-of-concept implementations1 of the proposed 2C-FE schemes
and the two MC-FE schemes for determining the cardinality of the intersec-
tion. The implementations are done in Python using the Charm library at a
1 Available at https://github.com/CRIPTIM/nipsi.

https://github.com/CRIPTIM/nipsi

Two-Client and Multi-client Functional Encryption for Set Intersection 113

Fig. 2. Evaluations for determining the cardinality (CA); set intersection (SI); and
cardinality (Th-CA) and set intersection (Th-SI) in the threshold scheme.

128 bit security level. The evaluations are done on a commodity laptop (i5-
4210U@1.7GHz, 8 GB RAM) using only a single core. In Fig. 2 we show the time
it took to run Eval on encrypted sets of varying sizes. Each client encrypted a
set of the same size and had 10% of their set in common with the other clients.

We see that the 2C-FE constructions can be evaluated in under a second,
even for sets of 100 thousand elements in size. A lower bound of the timings
is given by the 2C-FE cardinality scheme, CA, since it uses the same built-in
Python algorithm that is used on plaintext data. The MC-FE constructions are
polynomial in the set sizes. We evaluated the Bloom filter (BF) construction with
a worst-case false positive rate of 0.001. While it scales linear for fixed Bloom
filter sizes, the length of the bit strings have to increase linearly for larger sets,
resulting in quadratic efficiency of the Eval algorithm.

9 Conclusion

We initiated the study of non-interactive two-client functional encryption (2C-
FE) and multi-client functional encryption (MC-FE) schemes for set intersection.
We show that very efficient 2C-FE schemes can be constructed for set intersec-
tion and related set operations. Additionally, the problem of constructing non-
interactive set intersection schemes for three or more clients is addressed by our
MC-FE schemes from a theoretical perspective. Finally, we show the practica-
bility of the proposed schemes using proof-of-concept implementations.

Acknowledgments. This work was supported by the Netherlands Organisation for
Scientific Research (Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO)
in the context of the CRIPTIM project.

114 T. van de Kamp et al.

References

1. Abadi, A., Terzis, S., Dong, C.: O-PSI: delegated private set intersection on out-
sourced datasets. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol.
455, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-
8 1

2. Abadi, A., Terzis, S., Dong, C.: VD-PSI: verifiable delegated private set intersection
on outsourced private datasets. In: Grossklags, J., Preneel, B. (eds.) FC 2016.
LNCS, vol. 9603, pp. 149–168. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54970-4 9

3. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II.
LNCS, vol. 11443, pp. 128–157. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 5

4. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9 18

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

6. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 19

7. Carpent, X., Faber, S., Sander, T., Tsudik, G.: Private set projections & variants.
In: WPES. ACM (2017). https://doi.org/10.1145/3139550.3139554

8. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 24

9. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 13

10. Ding, B., König, A.C.: Fast set intersection in memory. In: Jagadish, H.V., Koudas,
N. (ed.) Proceedings of the VLDB Endowment 4.4, pp. 255–266, January 2011.
ISSN: 2150–8097. https://doi.org/10.14778/1938545.1938550

11. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: CCS. ACM (2013). https://doi.org/10.1145/
2508859.2516701

12. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: ICDCS. IEEE (2002).
https://doi.org/10.1109/ICDCS.2002.1022312

13. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

14. Galindo, D., Hoepman, J.-H.: Non-interactive distributed encryption: a new prim-
itive for revocable privacy. In: WPES. ACM (2011). https://doi.org/10.1145/
2046556.2046567

https://doi.org/10.1007/978-3-319-18467-8_1
https://doi.org/10.1007/978-3-319-18467-8_1
https://doi.org/10.1007/978-3-662-54970-4_9
https://doi.org/10.1007/978-3-662-54970-4_9
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1145/3139550.3139554
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.14778/1938545.1938550
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1109/ICDCS.2002.1022312
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1145/2046556.2046567
https://doi.org/10.1145/2046556.2046567

Two-Client and Multi-client Functional Encryption for Set Intersection 115

15. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

16. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 26

17. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45472-5 13

18. Kerschbaum, F.: Collusion-resistant outsourcing of private set intersection. In:
SAC. ACM (2012). https://doi.org/10.1145/2245276.2232008

19. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryp-
tion. In: ASIACCS. ACM (2012). https://doi.org/10.1145/2414456.2414506

20. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98113-0 29

21. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

22. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

23. Liu, F., Ng, W.K., Zhang, W., Giang, D.H., Han, S.: Encrypted set intersection
protocol for outsourced datasets. In: IC2E. IEEE (2014). https://doi.org/10.1109/
IC2E.2014.18

24. Lueks, W., Hoepman, J.-H., Kursawe, K.: Forward-secure distributed encryption.
In: De Cristofaro, E., Murdoch, S.J. (eds.) PETS 2014. LNCS, vol. 8555, pp. 123–
142. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08506-7 7

25. Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: S&P. IEEE (1986). https://doi.
org/10.1109/SP.1986.10022

26. Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
375–391. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 23

27. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX Security. USENIX Association (2014)

28. Shi, E., Chan, T.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: NDSS. The Internet Society (2011)

29. Smart, N.P.: Cryptography Made Simple. Information Security and Cryptography.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21936-3. ISBN: 978-3-
319-21936-3. Ed. by D. Basin and K. Paterson

30. van de Kamp, T., Peter, A., Everts, M.H., Jonker, W.: Multi-client predicate-
only encryption for conjunctive equality tests. In: Capkun, S., Chow, S.S.M. (eds.)
CANS 2017. LNCS, vol. 11261, pp. 135–157. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02641-7 7

31. Zheng, Q., Xu, S.: Verifiable delegated set intersection operations on outsourced
encrypted data. In: IC2E. IEEE (2015). https://doi.org/10.1109/IC2E.2015.38

https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1145/2245276.2232008
https://doi.org/10.1145/2414456.2414506
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1109/IC2E.2014.18
https://doi.org/10.1109/IC2E.2014.18
https://doi.org/10.1007/978-3-319-08506-7_7
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-319-21936-3
https://doi.org/10.1007/978-3-030-02641-7_7
https://doi.org/10.1007/978-3-030-02641-7_7
https://doi.org/10.1109/IC2E.2015.38

Post-quantum Security

Improving the Security of the DRS
Scheme with Uniformly Chosen Random

Noise

Arnaud Sipasseuth(B), Thomas Plantard, and Willy Susilo

iC2: Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, University of Wollongong,

Wollongong, Australia
{as447,thomaspl}@uowmail.edu.au, wsusilo@uow.edu.au

Abstract. At PKC 2008, Plantard et al. published a theoretical frame-
work for a lattice-based signature scheme. Recently, after ten years, a new
signature scheme dubbed as the Diagonal Reduction Signature (DRS)
scheme was presented in the NIST PQC Standardization as a concrete
instantiation of the initial work. Unfortunately, the initial submission
was challenged by Yu and Ducas using the structure that is present on
the secret key noise. In this paper, we are proposing a new method to
generate random noise in the DRS scheme to elimite the aforementioned
attack, and all subsequent potential variants.

Keywords: Lattice-based cryptography · DRS ·
Lattice-based signatures · NIST PQC · Diagonal dominant

1 Introduction

The popularity of post-quantum cryptography has increased significantly after
the formal announcement by the National Institute of Standards and Technol-
ogy (NIST) to move away from classical cryptography [18]. This is due to the
potential threat that will be brought by the upcoming large scale quantum com-
puters, which theoretically break the underlying traditional hard problem by
using Shor’s algorithm [25]. There are currently three main families in post-
quantum cryptology, namely code-based cryptography, multivariate cryptogra-
phy, and lattice-based cryptography. This work primarily concerns with lattice-
based cryptography. First introduced by Minkowski in a pioneering work [15]
to solve various number problems, lattices have the advantage to often base
their security on worst-case assumptions [1] rather than the average case, and
to be highly parallelizable and algorithmically simple enough to compete with
traditional schemes in terms of computing speed. Inspired by this, Goldreich,
Goldwasser and Halevi (GGH) [7] proposed an efficient way to use lattices to
build a public-key encryption scheme. Their practical scheme has been broken
using lattice reduction techniques [16], however the central idea remains viable
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 119–137, 2019.
https://doi.org/10.1007/978-3-030-21548-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_7

120 A. Sipasseuth et al.

and it has enabled a wide array of applications and improvements, such as using
tensor products [5], Hermite Normal Forms [14], polynomial representations [19],
rotations [26], and the most popular one being Learning With Errors [23] or its
variants.

More recently, the NIST attempt at standardizing post-quantum cryptogra-
phy [17] received a lot of interest from the community and the vast majority
of the lattice-based submissions for “Round 1” are actually based on LWE [17].
One of the few lattice-based submissions which is not using LWE or ideal lattices
is the Diagonal Reduction Signature Scheme (DRS) [20], which uses a diagonal
dominant matrix that can be seen as a sum between a diagonal matrix with very
big coefficients and a random matrix with low coefficients. DRS was based on a
paper from PKC 2008 [21] however the original paper had mostly a theoretical
interest and did not provide an explicit way to construct the random matrix
with low values, rather than merely stating conditions on norm bounds it should
respect for the signature scheme to be proven functioning. The NIST submis-
sion however provides a more straight-forward way to generate the noise, using
another proof and condition to ensure the functionality of the scheme. This new
way to generate the noise, however, is shown to be insecure: soon after DRS was
made public, Yu and Ducas used machine learning techniques to severely reduce
the security parameters [30]. Although according to Ducas’ comments on the
NIST forum [17], the attack was not devastating as it still seems asymptotically
secure, however its concrete security was significantly decreased. On the same
work, Yu and Ducas also provided several suggestions in order to fix those issues
and one of those comments suggested using a statistical analysis. Another more
recent attack from Li, Liu, Nitaj and Pan [11] on a randomized version of the
initial scheme proposed by Plantard, Susilo and Win [21] can also be indirectly
considered an attack to the DRS scheme, although this attack does not seem as
important as Yu and Ducas’s one.

In the following work, we do follow some of those suggestions and we aim to
provide a new noise generation method to eliminate the aforementioned attack
and restore some of the DRS’ concrete security. We will present some statistical
heuristics and remove some of the structure that allow the initial DRS scheme
to be attacked.

Our Contribution and Paper Organization.
The rest of the paper is organized as follows. We first present some relevant
background on lattice theory and re-introduce the DRS scheme from Plantard
et al. Subsequently, we will comment on the attack of Li, Liu, Nitaj and Pan [11]
and explain why it is not applicable. Then we discuss the weakness found by Yu
and Ducas and our idea to correct this. We finally present the detail algorithms
about our security patch and raise some open questions.

2 Background

In this section, we briefly recall the basics of lattice theory.

Improving the Security of the DRS Scheme 121

2.1 Lattice Theory

Definition 1. We call lattice a discrete subgroup of Rn where n is a positive
integer. We say a lattice is an integer lattice when it is a subgroup of Zn. A basis
of the lattice is a basis as a Z − module. If M is a matrix, we define L(M) the
lattice generated by the rows of M .

In this work we only consider full-rank integer lattices, i.e., such that their
basis can be represented by a n × n non-singular integer matrix.

Theorem 1 (Determinant). For any lattice L, there exists a real value we call
determinant, denoted det(L), such that for any basis B, det(L) =

√
det(BBT).

The literature sometimes call det(L) as the volume of L [15].

Definition 2. We say a lattice is a diagonally dominant type lattice if it admits
a basis of the form D + R where D = d × Id, d ∈ Z, and R is a “noise” matrix
whose diagonal entries are zeroes and the absolute sum of each entry is lower
than d per each row separately.

We note that the definition is similar to the one which can be found in
fundamental mathematics books [3] for diagonal dominant matrices. We will
just adapt the lattice to its diagonal dominant basis.

Definition 3 (Minima). We note λi(L) the i−th minimum of a lattice L.
It is the radius of the smallest zero-centered ball containing at least i linearly
independant elements of L.

Definition 4 (Lattice gap). We note δi(L) the ratio λi+1(L)
λi(L) and call that a

lattice gap. When mentioned without index and called “the” gap, the index is
implied to be i = 1.

In practice, only the case i = 1 is used, but other values are sometimes useful
to consider [29]. We also define the “root lattice gap”, i.e., elevated to the power
1
n where n is the dimension of the lattice.

Definition 5. We say a lattice is a diagonally dominant type lattice (of dimen-
sion n) if it admits a diagonal dominant matrix as a basis B as in [3], i.e.,

∀i ∈ [1, n], Bi,i ≥
∑n

j=1,i �=j
|Bi,j |

We can also see a diagonally dominant matrix B as a sum B = D +R where
D is diagonal and Di,i > ‖Ri‖1. In our scheme, we use a diagonal dominant
lattice as our secret key, and will refer to it as our “reduction matrix” (as we
use this basis to “reduce” our vectors).

Definition 6. Let F be a subfield of C, V a vector space over F k, and p a
positive integer or ∞. We call lp norm over V the norm:

122 A. Sipasseuth et al.

– ∀x ∈ V, ‖x‖p = p

√∑k
i=1 |xi|p

– ∀x ∈ V, ‖x‖∞ = maxi∈[1,k] |xi|
l1 and l2 are commonly used and are often called taxicab norm and euclidean

norm, respectively. We note that we also define the maximum matrix norm as
the biggest value among the sums of the absolute values in a single column.

The norm that was used by Plantard et al. for their signature validity is the
maximum norm. However, as far as the security heuristics are concerned the
euclidean norm (l2) is used, and as far as the reduction termination proof is
concerned the taxicab norm (l1) is used.

2.2 Lattice Problems

The most famous problems on lattice are the Shortest Vector Problem (SVP)
and the Closest Vector Problem (CVP). We tend to approximatively solving
CVP by solving heuristically SVP in an expanded lattice [7].

Definition 7 (CVP: Closest Vector Problem). Given a basis B of a lattice
L of dimension n and t ∈ R

n, find v ∈ L such that ∀w ∈ L, ‖t − v‖ ≤ ‖t − w‖.
Definition 8 (SVP: Shortest Vector Problem). Given a basis B of a lattice
L of dimension n, find v ∈ L such that ∀w ∈ L, v �= w, ‖v‖ ≤ ‖w − v‖, i.e
‖v‖ = λ1(B).

In cryptography, we rely on the “easier” versions of those problems:

Definition 9 (uSVPδ: δ-unique Shortest Vector Problem). Given a basis
of a lattice L with its lattice gap δ > 1, solve SVP.

Since λ1(L) is also hard to determine (it is indeed another lattice problem we
do not state here), measuring the efficiency of an algorithm is another challenge
by itself. Therefore, to measure algorithm efficiency we must be able to define a
problem with easily computable parameters, which is where the Hermite factor
is originated from:

Definition 10 (HSVPγ : γ-Hermite Shortest Vector Problem). Given a
basis B of a lattice L of dimension n and a factor γ we call Hermite Factor, find
y ∈ L such that ‖y‖ ≤ γdet(L)1/n.

Some cryptosystems are based on worst-case hardness on uSVP with poly-
nomial gap as [2] and [23]. The practical hardness of uSVP depends on its gap
compared to a fraction of the Hermite factor, where the constant in front of the
factor depends of the lattice and the algorithm used [6]. There exists an attack
that was specifically built to exploit high gaps [12].

Definition 11 (BDDγ : γ-Bounded Distance Decoding). Given a basis B
of a lattice L, a point x and a approximation factor γ ensuring d(x,L) < γλ1(B)
find the lattice vector v ∈ L closest to x.

Improving the Security of the DRS Scheme 123

It has been proved that BDD1/(2γ) reduces itself to uSVPγ in polynomial
time and the same goes from uSVPγ to BDD1/γ when γ is polynomially
bounded by n [13], in cryptography the gap is polynomial the target point x
must be polynomially bounded therefore solving one or the other is relatively
the same in our case. To solve those problems, we usually use an embedding tech-
nique that extends a basis matrix by one column and one row vector that are full
of zeroes except for one position where the value is set to 1 at the intersection of
those newly added spaces, and then apply lattice reduction techniques on these.
As far as their signature scheme is concerned, the GDDγ is more relevant:

Definition 12 (GDDγ : γ-Guaranteed Distance Decoding). Given a basis
B of a lattice L, any point x and a approximation factor γ, find v ∈ L such that
‖x − v‖ ≤ γ.

3 The Initial DRS Scheme and Its Security Pitfall

We will briefly summarize the DRS scheme below, which can be considered
a fork of the theoretical framework of PKC 2008 [21]. The DRS scheme uses
the maximum norm to check if a vector is reduced. To achieve that purpose,
they use a diagonal dominant basis, where every substraction from a diagonally
dominant basis vector reduces a coefficient by a lot more than it potentially adds
to the other coefficients. By repeating those steps for each coefficient, we end
up reducing the vector. The initial DRS scheme requires multiple parameters to
be preset (see the file api.h in their NIST submission), which we give here the
main ones describing their choice for a secret key: D, a big diagonal coefficient,
NB , the number of occurences per vector of the “big” noise {−B,B}, and is the
lowest positive number such that 2NB

(
n

Nb

) ≥ 2λ, B, the value of the“big” noise,
and is equal to D/(2NB), and N1, the number of occurences per vector of the
small noise {−1, 1}, and is equal to D− (NBB)−Δ. As we will see by discussing
previous work, this structure directly impact the security.

3.1 The Original DRS Scheme

Setup. Using the same notation as the report given in [20], we briefly restate
their initial algorithm. Those parameters are chosen such that the secret key
matrix stays diagonal dominant as per the definition written previously. From
our understanding, the large coefficients B were used to increase the euclidean
norm, as an attempt to enhance its security against lattice reduction attacks.
Algorithm 1 is the original secret key computation.

The public key is obtained by successive additions/substractions of pair of
vectors (see Algorithm 2). Note that the only difference with the original scheme
is that we do not store the log2 of the maximum norm. We estimate this infor-
mation to be easily computed at will.

This is equivalent to a multiplication of random pairs of vectors (a 2 × n
matrix) by a square invertible matrix of dimension 2 and maximum norm of

124 A. Sipasseuth et al.

Input: - all initial parameters;
- another extra random seed x2;
Output: - x, S the secret key;
// Initialization

S ← 0;
t ∈ Z

n;
// Algorithm start

InitiateRdmSeed(x2);
// Set t[1] to D, NB elements to B, N1 to 1, the rest to 0
t ← [D,B, ..., B

︸ ︷︷ ︸

NB

,1, ..., 1
︸ ︷︷ ︸

N1

,0,...,0];

// Randomly permute values of t with a function RdmPmtn

// RdmPmtn leaves t[1] unchanged

t ← RdmPmtn(t);
for i = 1 ; i ≤ n ; i = i + 1 do

S[i][i] ← t[1];
// Apply a circular permutation and randomly flip signs

for j = 2 ; j ≤ n ; j = j + 1 do
S[i][((i + j) mod n) + 1] ← t[j] ∗ RdnSgn();

end

end
return x, S;

Algorithm 1. Secret key generation (square matrix of dimension n)

Input: - S the reduction matrix of dimension n, obtained previously;
- a random seed x;
Output: - P the public key, and p2 a power of two;
// Initialization

P ← S;
// Algorithm start

InitiateRdmSeed(x);
// Apply R rounds

for i = 1 ; i < R ; i = i + 1 do
P ← RdmPmtn(P);
for j = 1 ; j ≤ n − 1 ; j = j + 2 do

t ← RdmSgn();
P [j] = P [j] + t ∗ P [j + 1];
P [j + 1] = P [j + 1] + t ∗ P [j];

end

end
P ← RdmPmtn(P);
return P, p2;

Algorithm 2. Public key generation

Improving the Security of the DRS Scheme 125

2. In their case, every vector go through exactly one matrix multiplication per
round, for a total of R rounds where R is defined by the system. The number
of rounds R is decided upon security consideration but also efficiency reasons as
the authors of DRS wanted to fit every computation within 64-bits. For more
details we refer again to [20]. From our understanding, the power of 2 p2 has
no security impact, and is used mostly for the verification process to make sure
intermediate computation results stay within 64-bits. This type of public key
is very different from the Hermite Normal Form proposed in [21], however the
computation time of a Hermite Normal Form is non-negligible. As we will see
later this directly impact the signature.

Signature. Given the fact that the secret key is a diagonally dominant matrix,
Algorithm 3 is guaranteed to complete. The proof can be seen in [20]. Plantard
et al. did not have a second vector k to output in their initial scheme and thus
only had to deal with the reduction part [21].

Input: - A vector v ∈ Z
n;

- S the secret key matrix, with diagonal coefficient d;
- s a seed value;
Output: - w with v ≡ w [L(S)], ‖w‖∞ < d and k with kP = v − w;
// Initialization

w ← v, i ← 0, k ← [0, ..., 0];
// Algorithm start

// Reduce until all coefficients are low enough

while ‖w‖∞ < d do
q ← wi

d
, ki ← ki + q, w ← w − qS[i], i ← i + 1 mod n;

end
// Use the seed to modify k such that kP = v − w
// The seed defines the output of RdmPmtn and RdmSgn

InitiateRdmSeed(x);
for i = 1 ; i ≤ R ; i = i + 1 do

k ← RdmPmtn(k);
for j = 1 ; j ≤ n − 1 ; j = j + 2 do

t ← RdmSgn();
k[j + 1] = k[j + 1] − t ∗ k[j];
k[j] = k[j] − t ∗ k[j + 1];

end

end
k ← RdmPmtn(k);
return k, v, w;

Algorithm 3. Sign: coefficient reduction first, validity vector then

126 A. Sipasseuth et al.

Verification. Algorithm 4 checks if the vector v is reduced enough i.e ‖v‖∞ < D
where D is the diagonal coefficient of the secret key matrix S. Then it tries to
check the validity of kP = v − w. By using the power p2, the authors of DRS
want to ensure the computations stay within 64-bits. If multiprecision integers
were used (as GMP), we note it would not take a while loop with multiple rounds
to check. Whether this is more efficient or not remains to be tested.

Input: - A vector v ∈ Z
n;

- P, p2 the public key matrix and the log2 of its maximum norm;
- w the reduced form of v;
- k the extra information vector;
Output: - w a reduced vector, with v ≡ w [L(P)];
// Test for max norm first

if ‖w‖∞ >= D then return FALSE;
// Loop Initialization

q ← k, t ← v − w;
while q �= 0 ∧ t �= 0 do

r ← q mod p2, t ← rP − t;
// Check correctness

if t �= 0 mod y then return FALSE;
t ← t/p2, q ← (q − r)/p2;
if (t = 0) � (q = 0) then return FALSE;

end
return TRUE ;

Algorithm 4. Verify

3.2 Li, Liu, Nitaj and Pan’s Attack on a Randomized Version
of the Initial PKC’08

In ACISP 2018, Li, Liu, Nitaj and Pan [11] presented an attack that makes
use of short signatures to recover the secret key. Their observation is that two
different signatures from the same message is also a short vector of the lattice.
Then, gathering sufficient number of short vectors enable easier recovery of the
secret key using lattice reduction algorithms with the vectors generated. Their
suggestion to fix this issue is to either store previous signed messages to avoid
having different signatures, or padding a random noise in the hash function. We
should note that the initial DRS scheme is not randomized as the algorithm is
deterministic and produce a unique signature per vector.

We do note that the authors of DRS suggested in their report [20] to use a
random permutation to decide the order of the coefficient reduction, and thus
Li, Liu, Nitaj and Pan’s attack might apply to their suggestion. However, the
order of the coefficient reduction could also be decided deterministically by the
hashed message itself, and therefore, Li, Liu, Nitaj and Pan’s attack is not fully
applicable, as this method would produce an unique signature per message. They
can still generate a set of relatively short vectors (r1, ..., r2) ∈ Ln of the lattice L,

Improving the Security of the DRS Scheme 127

however it is unclear whether the specialized version of their attack using vectors
s,(v1, ..., vn) where s−vi ∈ L is still applicable. It seems to be easier to recover the
key when using multiple signatures from the same message as a lattice basis when
using lattice reduction algorithms rather than using random small vectors of the
lattice: this could imply that diagonal dominant basis have inner weaknesses
beyond the simple instantiation of DRS. From our understanding, the secret
key matrices they generated for their tests used a noise matrix with coefficients
within {−1, 0, 1}, which could have had an impact in their experimentations. It
is still unknown if other noise types such as the ones in DRS or the type of noise
we are about to propose are affected: to the best of our knowledge, DRS was not
quoted in their work.

We stress that we do not claim the new setup to be perfectly secure against
Li, Liu, Nitaj and Pan’s attack, we merely claim more experimentations would
need to be done as of now. Furthermore, the countermeasures proposed by Li,
Liu, Nitaj and Pan also apply to those new keys, and should be applied if one
wishes for a more concrete security. The next attack however does not have clear
known countermeasures as of now and is the main focus of this paper.

3.3 Yu and Ducas’s Attack on the DRS Instantiation
of the Initial Scheme of PKC’08

We explained in the previous section about the security of DRS against Li, Liu,
Nitaj and Pan’s attack. On the other hand, it is unclear if such a modification
would add an extra weakness against Yu and Ducas’s heuristic attack. Their
attack work in two steps. The first one is based on recovering certain coefficients
of a secret key vector using machine learning and statistical analysis. The second
is classical lattice-reduction attack to recover the rest of the secret key.

For the first step, Yu and Ducas noticed that the coefficients B of the secret
key and the 1 could be distinguished via machine learning techniques [30], notic-
ing for one part that the non-diagonal coefficients follow an “absolute-circulant”
structure, and the fact that only two types of non-zero values exist. Based on
this information, a surprisingly small amount of selected “features” to specialize
a “least-square fit” method allowed them to recover both positions and signs of
all if not most coefficients B of a secret vector. We note they did not conduct a
exhaustive search on all possible methods according to their paper thus stressing
that their method might not be the best. We did not conduct much research on
the related machine learning techniques therefore we cannot comment much on
this part as of now.

On the second step, the recovered coefficients and their positions and signs
allowed them to apply the Kannan embedding attack on a lattice with the exact
same volume as the original public key but of a much lower dimension than
the original authors of DRS based their security on, by scrapping the known B
noise coefficients. Strictly speaking, using the same notation as in the previous
description of DRS and assuming the diagonal coefficient is equal to the dimen-
sion, the initial search of a shortest vector of length

√
B2Nb + N1 + 1 in a lattice

of dimension n of determinant nn becomes a search of a shortest vector of length

128 A. Sipasseuth et al.

√
N1 + 1 in a lattice of dimension n − Nb of determinant nn. The efficiency of

lattice reduction techniques then affects the evaluation of the security strength
of the original DRS scheme.

Yu and Ducas conducted experiments and validated their claims, reducing the
security of the initial submission of DRS from 128-bits to maybe at most 80-bits,
using BKZ-138. The original concept (not the instantiation) from [21], however,
still seems to be safe for now: although it has no security proof, to the best of
our knowledge, no severe weaknesses have been found so far. Furthermore, Yu
and Ducas advised of some potential countermeasures to fix DRS, i.e breaking
the structure of the particular instance that was submitted: the deterministic
approach of the number of B, 1, being limited to those 2 values (5 if we consider
zeroes and signs), and the “absolute-circulant” structure. They also pointed that
a lack of security proof could be problematic and gave some opinions about how
one can potentially find provable security for the DRS scheme.

In the following section, we provide a countermeasure which follows some of
the recommendations given by Yu and Ducas as breaking the secret key noise
structure and giving some statistical heuristic, while still preserving the original
idea given in PKC 2008 [21].

4 New Setup

We do not change any algorithm here aside the setup of the secret key: the public
key generation method is left unchanged, along with the signature and verifica-
tion. Compared to the old scheme, this new version is now determined by less
parameters, which leave 6 of them using the previous DRS: the dimension n, a
random generator seed s, a signature bound D, a max norm for hashed messages
δ, a sparsity parameter Δ that we always set to one, and R a security parameter
determining the number of multiplication rounds to generate the public key.

We choose random noise among all the possible noises vectors which would
still respect the diagonal dominant property of the secret key. This choice is
following Yu and Ducas’s suggestions on breaking the set of secret coefficients,
the “absolute-circulant” structure of the secret key, and allowing us to provide
statistical evidence.

Although we want to have random noise, we must ensure we can still sign
every message and thus guarantee the diagonal dominant structure of our secret
key. Hence, the set of noise vectors we need to keep are all the vectors v ∈ Z

n

that have a taxicab norm of ‖v‖1 ≤ D − 1. Let us call that set Vn.
This new setup will also change the bounds used for the public key, as the

original DRS authors linked several parameters together to ensure computations
stay within 64−bits. However, our paper has a more theoretical approach and
we do not focus on the technical implementations yet, which could be left for
further work.

Improving the Security of the DRS Scheme 129

4.1 Picking the Random Vectors

We are aiming to build the new noise matrix M , which is a n × n matrix such
that M ∈ V n

n . In that regard, we construct a table we will call T with D entries
such that

T [i] = #vectors v ∈ Vn with i zeroes.

This table is relatively easy to build and does not take much time, one can for
example use the formulas derivated from [24] and [10].

From this table, we construct another table TS such that TS [k] =
∑k

i=0 T [i].
The generation algorithm of the table TS , which we will use as a precompu-

tation for our new setup algorithm can be seen in Algorithm5.

Input: - all initial parameters;
Output: - TS the table sum;
// Initialization

m ← min(dimension, diagonal value D);
T ← {1}m+1;
TS ← {1}m+1;
// Construct array T
// Construct array T : loop over the norm

for j = 2 ; j ≤ D ; j = j + 1 do
// Construct array T : loop over the number of non-zeroes

elements in each possibility

for i = 2 ; i ≤ m + 1 ; i = i + 1 do

x ← 2i−1
(

n
i−1

)(
j−1
i−2

)

;

T [m + 1 − i] ← T [m + 1 − i] + x;

end

end
// Construct array TS from T
for i = 1 ; i ≤ m ; i = i + 1 do

T [i + 1] ← T [i + 1] + T [i];
end
TS ← T ;
return TS ;

Algorithm 5. Secret key table precomputation

Let us denote the function Z(x) → y such that TS [y − 1] < x ≤ TS [y].
Since TS is trivially sorted in increasing order Z(x) is nothing more than a

dichotomy search inside an ordered table.
If we pick randomly x from [0;TS [D − 1]] from a generator with uniform

distribution g() → x then we got Zero() → Z(g(x)) a function that selects
uniformly an amount of zeroes amount all vectors of the set Vn, i.e.

Zero() → #zeroes in a random v ∈ Vn

130 A. Sipasseuth et al.

Now that we can generate uniformly the number of zeroes we have to deter-
mine the coefficients of the non-zero values randomly, while making sure the
final noise vector is still part of Vn. A method to give such a vector with chosen
taxicab norm is given in [27] as a correction of the Kraemer algorithm. As we do
not want to choose the taxicab norm M directly but rather wants to have any
random norm available, we add a slight modification: the method in [27] takes
k non-zero elements x1, ..., xk such that xi ≤ xi+1 and forces the last coefficient
to be equal to the taxicab norm chosen, i.e xk = M . By removing the restriction
and using xk ≤ D, giving the amount of non-zero values, we modify the method
to be able to take over any vector values in Vn with the help of a function we
will call

KraemerBis(z) → random v ∈ Vn

such that v has z zeroes which is described in Algorithm 6

Input: - all initial parameters;
- a number of zeroes z;
Output: - a vector v with z zeroes and a random norm inferior or equal to D;
// Algorithm start

v ∈ N
n;

Pick randomly n − z + 1 elements such that 0 ≤ x0 < x1 < ... < xn−z ≤ D;
for i = 1 ; i ≤ n − z ; i = i + 1 do

v[i] ← xi − xi−1;
end
for i = n − z + 1 ; i ≤ n ; i = i + 1 do

v[i] ← 0;
end
return v;

Algorithm 6. KraemerBis

With both those new parts, the new setup algorithm we construct is presented
in Algorithm 7 using Kraemer bis. We note that in our algorithm, the diagonal
coefficient in the secret key is not guaranteed to be equal to the bound used
for the maximum norm of the signatures. Nevertheless, we will show that the
termination is still ensured in Sect. 4.2. This heavy setup naturally affects the
speed of the DRS setup, as we noticed in our experiments as shown in Sect. 4.3.

4.2 A Slightly More General Termination Proof

The proof stated in the DRS report on the NIST website [20] was considering
that the diagonal coefficient of S = d ∗ Id + M stayed equal to the signature
bound, which is not our case. We show here that the reduction is still guaranteed
nevertheless. Suppose that some coefficients of the noise matrix M are non-zero
on the diagonal. Re-using for the most part notations of the original report,
where:

Improving the Security of the DRS Scheme 131

Input: - all initial parameters;
- another extra random seed x2;
Output: - x, S the secret key;
S ← D × Idn;
t ∈ Z

n;
InitiateRdmSeed(x2);
for i = 1 ; i ≤ n ; i = i + 1 do

Z ← Zero();
t ← KraemerBis(Z);
for j = 1 ; j ≤ n − Z ; j = j + 1 do

t[j] ← t[j] × RdmSgn()
end
t ← RdmPmtn(t);
S[i] ← S[i] + t;

end
return x, S;

Algorithm 7. New secret key generation (square matrix of dimension n)

– m is the message we want to reduce, which we update step by step.
– M is the noise matrix (so Mi is the i-th noise row vector).
– d is the signature bound for which the condition ‖m‖∞ < d has to be verified.

We note di the i-th diagonal coefficient of the secret key S.

Obviously, the matrix will still be diagonal dominant in any case. Let us
denote di the diagonal coefficient Si,i of S = D − M .

If d > di we can use the previous reasoning and reduce |mi| to |mi| < di < d,
but keep in mind we stop the reduction at |mi| < d to ensure we do not leak
information about the noise distribution.

Now di > d for some i: reducing to |mi| < di is guaranteed but not sufficient
anymore as we can reach d < |mi| < di ≤ d + Δ < 2d. Let us remind that
Δ = d − ∑n

j=1 |Mi,j |, where Δ is strictly positive as an initial condition of
the DRS signature scheme (both on the original submission and this paper),
di = d + c where c = |Mi,i|.

Without loss of generality as we can flip signs, let us set mi = d + k < di =
d + c with k ≥ 0 the coefficient to reduce. Substracting by Si transforms

mi ← (d + k) − di = (d + k) − (d + c) = k − c < 0

with d > c > k ≥ 0. Therefore the reduction of ‖m‖1 without the noise is

‖m‖1 ← ‖m‖1 − (d + k) + (c − k) = ‖m‖1 − (d − c) − 2k.

132 A. Sipasseuth et al.

but the noise contribution on other coefficients is at worst (d − Δ) − c thus

‖m‖1 ← ‖m‖1 − (d − c) − 2k + (d − c − Δ).
‖m‖1 ← ‖m‖1 − 2k − Δ = ‖m‖1 − (2k + Δ).

where 2k +Δ > 0. Therefore the reduction is also ensured in the case di > d.

4.3 Setup Performance

Compared to the initial NIST submission where the code was seemingly made for
clarity and not so much for performance, we wrote our own version of DRS using
NIST specifications and managed to have much higher performance. However,
most of the performance upgrade from the initial code have nothing much to do
with the algorithms of the DRS scheme: we did notice that most of the time taken
by the DRS initial code was used for the conversion from the character arrays
to integer matrices and vice-versa, which they had to do to respect the NIST
specifications: the algebraic computations themselves were actually reasonably
fast, considering the size of the objects manipulated.

This is the reason why we decided to isolate the secret matrix generation
code from the rest of the initial original DRS code, in order to have a fair
comparison between our own secret key generation algorithm to theirs. In that
regard we choose to compare similar matrix sizes instead of similar security, as
initial security estimates for the DRS submission were severely undermined by
Yu and Ducas’s recent discoveries and thus would lead to comparing efficiency
on matrices with massively different sizes. Therefore we are making tests on
the initial parameters of the DRS scheme. Looking purely at the secret key
generation, we are indeed much slower, as shown in Table 1.

Table 1. Secret key generation time in seconds for 104 keys

Dimension 912 1160 1518

OldDRS 28.71 44.15 79.57

NewDRS 317.45 631.89 993.92

Note that we use the options −march = native and −Ofast which led us
to use AV X512 instructions and other gcc optimization tweaks. The new setup
is barely parallelizable as there is almost no code that can be vectorized which
also explains the huge difference.

5 Security Estimates

5.1 BDD-based attack

The security is based on what is known as the currently most efficient way to
attack the scheme, a BDD-based attack as described in Algorithm 8.

Improving the Security of the DRS Scheme 133

Input: public key Pk of full rank n, diagonal coefficient d, BDDγ solver φ
Output: secret key Sk = (D − M)
Sk ← d ∗ Idn;
foreach {i ∈ [1..n]} do

r ← φ(L(Pk), Sk[i]), Sk[i] ← Sk[i] + r;;
end
return Sk ;

Algorithm 8. Diagonal Dominant Key recovery attack

Currently, the most efficient way to perform this attack will be, first, to
transform a BDD problem into a Unique Shortest Vector Problem (uSVP)
(Kannan’s Embedding Technique [9]), assuming v = (0, ...0, d, 0, ..., 0), and use
lattice reduction techniques on the lattice spanned by [v|1] and the rows of [B|0].
By using this method, we obtain a uSVP with a gap

γ ≈ Γ
(

n+3
2

) 1
n+1 Det(L)

1
n+1

√
π‖M1‖2 ≈ Γ

(
n+3
2

) 1
n+1 dn

1
n+1

√
π‖M1‖2 . (1)

Lattice reduction methods are well studied and their strength are evaluated
using the Hermite factor. Let L a d−dimensional lattice, the Hermite factor
of a basis B of L is given by ‖B[1]‖2/det(L)

1
n . Consequently, lattice reduction

algorithms strengths are given by the Hermite factor of their expected output
basis. In [6], it was estimated that lattice reduction methods solve uSVPγ with
γ a fraction of the Hermite factor. We will use a conservative bound of 1

4 for the
ratio of the uSVP gap to the Hermite factor. As we do not have a fixed euclidean
norm for our secret vectors we have to rely on the approximates given to us by
our new random method in sampling noise vectors Mi. In our case, we know
that for any vector v ∈ Z

n we have ‖v‖2 ≥ ‖v‖1√
n

, and our experiments (as seen

below) allow us to use a higher bound ‖v‖2 �
√

2‖v‖1√
n

.

5.2 Expected Security Strength

Different papers are giving some relations between the Hermite factor and the
security parameter λ [8,22] often using BKZ simulation [4]. Aiming to be con-
servative, we are to assume a security of 2128, 2192, 2256 for a Hermite factor of
1.006d, 1.005d, 1.004d, respectively. We set D = n, pick hashed messages h(m)
such that log2(‖h(m)‖∞) = 28, R = 24 and Δ = 1.

Table 2 parameters have been choosen to obtain a uSVP gap (Eq. 1) with γ <
δd+1

4 for δ = 1.006, 1.005, 1.004. Our experiments show us that the distribution of
zeroes among sampled noise vectors form a Gaussian and so does the euclidean
norm of noise vectors when picking our random elements x, xi uniformly. Here
we include below the distribution of 106 randomly generated noise vectors v with

the x-axis representing f(v) = �100
√

‖v‖2
2

D � where D is the signature bound (see
Fig. 1).

134 A. Sipasseuth et al.

Table 2. Parameter sets.

Dimension Δ R δ γ 2λ

1108 1 24 28 < 1
4
(1.006)d+1 2128

1372 1 24 28 < 1
4
(1.005)d+1 2192

1779 1 24 28 < 1
4
(1.004)d+1 2256

Fig. 1. f(v) distribution for n = 1108, 1372, 1779 and D = n − 1 over 106 samples

We can see that the generated noise vectors follow a Gaussian distribution as
far as their norms are concerned, and we believe it makes guessing values much
harder for an attacker should they choose to focus on finding specific values or
vectors (as it was the case in the original attack from Yu and Ducas [30]). We
also conducted experiments, using BKZ20 from the fplll library [28] (see Fig. 2).
Without any surprise we notice our new setup is seemingly resistant around
dimension 400, where conservative bounds led us to believe the break happen
until approximately dimension 445. However the sample size is relatively small

370 380 390 400

0

20

40

60

80

100

365 370 375 380 385 390 395 400 405

Dimension

Fig. 2. Percentage of key recoveries of BKZ20 (20 sample keys/dim)

Improving the Security of the DRS Scheme 135

(yet computationally expensive to obtain) and thus should not be taken as a
proof value, but rather as a heuristic support against heuristic attacks.

6 Conclusion and Open Questions

We presented in this paper a new method to generate secret keys for the DRS
scheme, providing experimental results on the statistical distribution of the keys
generated. We demonstrate that our new approach is sufficient to improve DRS
to be secure against machine learning attacks as reported earlier in the literature.
However, the secret matrix is still diagonal dominant and it remains an open
question whether there exists a tight security proof to a well-known problem or
if there is any unforeseen weaknesses to diagonal dominant lattices as both Li,
Liu, Nitaj and Pan’s [11] and Yu and Ducas’s attacks [30] could lead to. The
open questions for improvement stated in the original DRS report are also still
applicable to our proposed iteration.

On the technical side, our method to generate random samples is also slow
and might need improvement. It also impacts the setup as mentioned earlier, as
keeping the current DRS parameters one can see the possibility to overflow and
go over 64−bits, even though the probability is extremely low, thus changing the
public key generation is also left as an open question. The initial DRS scheme was
very conservative not only on their security but also the manipulated integer size
bounds: one might use heuristics to drastically increase the memory efficiency
of the scheme.

Acknowledgements. We would like to thank Yang Yu, Léo Ducas and the anony-
mous reviewers for useful comments and suggestions.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: STOC 1996, pp. 99–
108. ACM (1996)

2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: STOC 1997, pp. 284–293. ACM (1997)

3. Brualdi, R.A., Ryser, H.J.: Combinatorial Matrix Theory, vol. 39. Cambridge Uni-
versity Press, Cambridge (1991)

4. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

5. Fischlin, R., Seifert, J.-P.: Tensor-based trapdoors for CVP and their application
to public key cryptography (extended abstract). In: Walker, M. (ed.) Cryptogra-
phy and Coding 1999. LNCS, vol. 1746, pp. 244–257. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-46665-7 29

6. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/3-540-46665-7_29
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3

136 A. Sipasseuth et al.

7. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

8. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.:
Choosing parameters for NTRUEncrypt. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-52153-4 1

9. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

10. Knuth, D.E., Graham, R.L., Patashnik, O., et al.: Concrete Mathematics. Addison
Wesley, Boston (1989)

11. Li, H., Liu, R., Nitaj, A., Pan, Y.: Cryptanalysis of the randomized version of
a lattice-based signature scheme from PKC ’08. In: Susilo, W., Yang, G. (eds.)
ACISP 2018. LNCS, vol. 10946, pp. 455–466. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93638-3 26

12. Liu, M., Wang, X., Xu, G., Zheng, X.: Shortest lattice vectors in the presence of
gaps. IACR Cryptology ePrint Archive 2011/139 (2011)

13. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03356-8 34

14. Micciancio, D.: Improving lattice based cryptosystems using the hermite normal
form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2 11

15. Minkowski, H.: Geometrie der Zahlen. B.G. Teubner, Leipzig (1896)
16. Nguyen, P.: Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from

crypto ’97. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–304.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 18

17. NIST: Post-quantum cryptography standardization (2018). https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography

18. NIST: Nist kicks off effort to defend encrypted data from quantum computer threat,
28 April 2016. www.nist.gov/news-events/news-updates/

19. Paeng, S.-H., Jung, B.E., Ha, K.-C.: A lattice based public key cryptosystem using
polynomial representations. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567,
pp. 292–308. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-
6 22

20. Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: DRS: diagonal domi-
nant reduction for lattice-based signature. In: PQC Standardization Conference,
Round 1 submissions (2018). https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/round-1/submissions/DRS.zip

21. Plantard, T., Susilo, W., Win, K.T.: A digital signature scheme based on CVP ∞.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 288–307. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 17

22. van de Pol, J., Smart, N.P.: Estimating key sizes for high dimensional lattice-based
systems. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 290–303. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0 17

23. Regev, O.: New lattice-based cryptographic constructions. J. ACM (JACM) 51(6),
899–942 (2004)

24. Serra-Sagristà, J.: Enumeration of lattice points in l1 norm. Inf. Process. Lett.
76(1–2), 39–44 (2000)

https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/978-3-319-52153-4_1
https://doi.org/10.1007/978-3-319-52153-4_1
https://doi.org/10.1007/978-3-319-93638-3_26
https://doi.org/10.1007/978-3-319-93638-3_26
https://doi.org/10.1007/978-3-642-03356-8_34
https://doi.org/10.1007/978-3-642-03356-8_34
https://doi.org/10.1007/3-540-44670-2_11
https://doi.org/10.1007/3-540-48405-1_18
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
www.nist.gov/news-events/news-updates/
https://doi.org/10.1007/3-540-36288-6_22
https://doi.org/10.1007/3-540-36288-6_22
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DRS.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DRS.zip
https://doi.org/10.1007/978-3-540-78440-1_17
https://doi.org/10.1007/978-3-642-45239-0_17

Improving the Security of the DRS Scheme 137

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

26. Sloane, N.J.A.: Encrypting by random rotations. In: Beth, T. (ed.) EUROCRYPT
1982. LNCS, vol. 149, pp. 71–128. Springer, Heidelberg (1983). https://doi.org/10.
1007/3-540-39466-4 6

27. Smith, N.A., Tromble, R.W.: Sampling uniformly from the unit simplex (2004)
28. The FPLLL team: FPLLL, a lattice reduction library. https://github.com/fplll
29. Wei, W., Liu, M., Wang, X.: Finding shortest lattice vectors in the presence of

gaps. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 239–257. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16715-2 13

30. Yu, Y., Ducas, L.: Learning strikes again: the case of the DRS signature scheme. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 525–543.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 18

https://doi.org/10.1007/3-540-39466-4_6
https://doi.org/10.1007/3-540-39466-4_6
https://github.com/fplll
https://doi.org/10.1007/978-3-319-16715-2_13
https://doi.org/10.1007/978-3-030-03329-3_18

A Lattice-Based Public Key Encryption
with Equality Test in Standard Model

Dung Hoang Duong1(B), Kazuhide Fukushima2, Shinsaku Kiyomoto2,
Partha Sarathi Roy2(B), and Willy Susilo1

1 Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, University of Wollongong,

Northfields Avenue, Wollongong, NSW 2522, Australia
{hduong,wsusilo}@uow.edu.au

2 Information Security Laboratory, KDDI Research, Inc.,
2-1-15 Ohara, Fujimino-shi, Saitama 356-8502, Japan
{ka-fukushima,kiyomoto,pa-roy}@kddi-research.jp

Abstract. Public key encryption with equality test (PKEET) allows
testing whether two ciphertexts are generated by the same message or
not. PKEET is a potential candidate for many practical applications
like efficient data management on encrypted databases. Potential appli-
cability of PKEET leads to intensive research from its first instantiation
by Yang et al. (CT-RSA 2010). Most of the followup constructions are
secure in the random oracle model. Moreover, the security of all the
concrete constructions is based on number-theoretic hardness assump-
tions which are vulnerable in the post-quantum era. Recently, Lee et al.
(ePrint 2016) proposed a generic construction of PKEET schemes in the
standard model and hence it is possible to yield the first instantiation
of PKEET schemes based on lattices. Their method is to use a 2-level
hierarchical identity-based encryption (HIBE) scheme together with a
one-time signature scheme. In this paper, we propose, for the first time,
a direct construction of a PKEET scheme based on the hardness assump-
tion of lattices in the standard model. More specifically, the security of
the proposed scheme is reduces to the hardness of the Learning With
Errors problem. We have used the idea of the full identity-based encryp-
tion scheme by Agrawal et al. (EUROCRYPT 2010) to construct the
proposed PKEET.

1 Introduction

Public key encryption with equality test (PKEET), which was first introduced
by Yang et al. [21], is a special kind of public key encryption that allows anyone
with a given trapdoor to test whether two ciphertexts are generated by the
same message. This property is of use in various practical applications, such
as keyword search on encrypted data, encrypted data partitioning for efficient
encrypted data management, personal health record systems, spam filtering in
encrypted email systems and so on. Due to its numerous practical applications,
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 138–155, 2019.
https://doi.org/10.1007/978-3-030-21548-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_8

A Lattice-Based Public Key Encryption 139

there have been intensive researches in this direction with the appearance of
improved schemes or ones with additional functionalities [9,12,16–18]. However,
they are all proven to be secure in the random oracle model which does not exist
in reality. Therefore it is necessary to construct such a scheme in the standard
model.

Up to the present, there are only a few PKEET schemes in the standard
model. Lee et al. [8] first proposed a generic construction of a PKEET scheme.
Their method is to use a 2-level hierarchical identity-based encryption (HIBE)
scheme together with a one-time signature scheme. The HIBE scheme is used for
generating an encryption scheme and for equality test, and the signature scheme
is used for making the scheme CCA2-secure, based on the method of transform-
ing an identity-based encryption (IBE) scheme to a CCA2-secure encryption
scheme of Canetti et al. [4]. As a result, they obtain a CCA2-secure PKEET
scheme given that the underlying HIBE scheme is IND-sID-CPA secure and the
one-time signature scheme is strongly unforgeable. From their generic construc-
tion, it is possible to obtain a PKEET in standard model under many hard
assumptions via instantiations. In a very recent paper, Zhang et al. [22] pro-
posed a direct construction of a CCA2-secure PKEET scheme based on pairings
without employing strong cryptographic primitives such as HIBE schemes and
strongly secure signatures as the generic construction of Lee et al. [8]. Their
technique comes from a CCA2-secure public key encryption scheme by [7] which
was directly constructed by an idea from IBE. A comparison with an instantia-
tion from Lee et al. [8] on pairings shows that their direct construction is much
more efficient than the instantiated one.

All aforementioned existing schemes base their security on the hardness of
some number-theoretic assumptions which will be efficiently solved in the quan-
tum era [14]. The generic construction by Lee et al. [8] is the first one with the
possibility of yielding a post-quantum instantiation based on lattices, since lat-
tice cryptography is the only one among other post-quantum areas up to present
offers HIBE primitives, e.g., [1]. It is then still a question of either yielding an
efficient instantiation or directly constructing a PKEET based on lattices.

Our Contribution: In this paper, we give a direct construction of a PKEET
scheme based on lattices from IBE. According to the best of our knowledge,
this is the first construction of a PKEET scheme based on lattices. We first
employ the multi-bit full IBE by Agrawal et al. [1] and then directly transform
it into a PKEET scheme. In our scheme, a ciphertext is of the form CT =
(CT1,CT2,CT3,CT4) where (CT1,CT3) is the encryption of the message m, as
in the original IBE scheme, and (CT2,CT4) is the encryption of H(m) in which
H is a hash function. In order to utilize the IBE scheme, we employ a second
hash function H ′ and create the identity H ′(CT1,CT2) before computing CT3

and CT4; see Sect. 3 for more details. Finally, we have proved that the proposed
PKEET scheme is CCA2-secure. As compared to the previous constructions, the
proposed one is computationally efficient due to the absence of exponentiation.
But, the size of the public parameters is more.

140 D. H. Duong et al.

2 Preliminaries

2.1 Public Key Encryption with Equality Test (PKEET)

In this section, we will recall the model of PKEET and its security model.
We remark that a PKEET system is a multi-user setting. Hence we assume

that in our system throughout the paper, each user is assigned with an index i
with 1 ≤ i ≤ N where N is the number of users in the system.

Definition 1 (PKEET). Public key encryption with equality test (PKEET) con-
sists of the following polynomial-time algorithms:

– Setup(λ): On input a security parameter λ and set of parameters, it outputs
the a pair of a user’s public key PK and secret key SK.

– Enc(PK,m): On input the public key PK and a message m, it outputs a cipher-
text CT.

– Dec(SK,CT): On input the secret key SK and a ciphertext CT, it outputs a
message m′ or ⊥.

– Td(SKi): On input the secret key SKi for the user Ui, it outputs a trapdoor
tdi.

– Test(tdi, tdj ,CTi,CTj): On input two trapdoors tdi, tdj and two ciphertexts
CTi,CTj for users Ui and Uj respectively, it outputs 1 or 0.

Correctness. We say that a PKEET scheme is correct if the following three
condition hold:

(1) For any security parameter λ, any user Ui and any message m, it holds that

Pr

[
Dec(SKi,CTi) = m

∣∣∣∣∣ (PKi,SKi) ← Setup(λ)
CTi ← Enc(PKi,m)

]
= 1.

(2) For any security parameter λ, any users Ui, Uj and any messages mi,mj ,
it holds that:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣
Test

⎛
⎜⎜⎜⎝

tdi

tdj

CTi

CTj

⎞
⎟⎟⎟⎠ = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(PKi,SKi) ← Setup(λ)
CTi ← Enc(PKi,mi)
tdi ← Td(SKi)
(PKj ,SKj) ← Setup(λ)
CTj ← Enc(PKj ,mj)
tdj ← Td(SKj)

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

if mi = mj regardless of whether i = j.
(3) For any security parameter λ, any users Ui, Uj and any messages mi,mj ,

it holds that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣
Test

⎛
⎜⎜⎜⎝

tdi

tdj

CTi

CTj

⎞
⎟⎟⎟⎠ = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(PKi,SKi) ← Setup(λ)
CTi ← Enc(PKi,mi)
tdi ← Td(SKi)
(PKj ,SKj) ← Setup(λ)
CTj ← Enc(PKj ,mj)
tdj ← Td(SKj)

⎤
⎥⎥⎥⎥⎥⎥⎦

A Lattice-Based Public Key Encryption 141

is negligible in λ for any ciphertexts CTi, CTj such that Dec(SKi,CTi) �=
Dec(SKj ,CTj) regardless of whether i = j.

Security Model of PKEET. For the security model of PKEET, we consider
two types of adversaries:

• Type-I adversary: for this type, the adversary can request to issue a trap-
door for the target user and thus can perform equality tests on the challenge
ciphertext. The aim of this type of adversaries is to reveal the message in the
challenge ciphertext.

• Type-II adversary: for this type, the adversary cannot request to issue a
trapdoor for the target user and thus cannot perform equality tests on the
challenge ciphertext. The aim of this type of adversaries is to distinguish
which message is in the challenge ciphertext between two candidates.

The security model of a PKEET scheme against two types of adversaries above
is described in the following.

OW-CCA2 Security Against Type-I Adversaries. We illustrate the game
between a challenger C and a Type-I adversary A who can have a trapdoor for
all ciphertexts of the target user, say Uθ, that he wants to attack, as follows:

1. Setup: The challenger C runs Setup(λ) to generate the key pairs (PKi,SKi)
for all users with i = 1, · · · , N , and gives {PKi}N

i=1 to A.
2. Phase 1: The adversary A may make queries polynomially many times adap-

tively and in any order to the following oracles:
– OSK: an oracle that on input an index i (different from θ), returns the

Ui’s secret key SKi.
– ODec: an oracle that on input a pair of an index i and a ciphertext CTi,

returns the output of Dec(SKi,CTi) using the secret key of the user Ui.
– OTd: an oracle that on input an index i, return tdi by running tdi ←

Td(SKi) using the secret key SKi of the user Ui.
3. Challenge: C chooses a random message m in the message space and run

CT∗
θ ← Enc(PKθ,m), and sends CT∗

θ to A.
4. Phase 2: A can query as in Phase 1 with the following constraints:

– The index θ cannot be queried to the key generation oracle OSK;
– The pair of the index θ and the ciphertext CT∗

θ cannot be queried to the
decryption oracle ODec.

5. Guess: A output m′.

The adversary A wins the above game if m = m′ and the success probability of
A is defined as

AdvOW-CCA2
A,PKEET(λ) := Pr[m = m′].

142 D. H. Duong et al.

Remark 2. If the message space is polynomial in the security parameter or the
min-entropy of the message distribution is much lower than the security param-
eter then a Type-I adversary A with a trapdoor for the challenge ciphertext can
reveal the message in polynomial-time or small exponential time in the secu-
rity parameter, by performing the equality tests with the challenge ciphertext
and all other ciphertexts of all messages generated by himself. Hence to prevent
this attack, we assume that the size of the message space M is exponential in the
security parameter and the min-entropy of the message distribution is sufficiently
higher than the security parameter.

IND-CCA2 Security Against Type-II Adversaries. We present the game
between a challenger C and a Type-II adversary A who cannot have a trapdoor
for all ciphertexts of the target user Uθ as follows:

1. Setup: The challenger C runs Setup(λ) to generate the key pairs (PKi,SKi)
for all users with i = 1, · · · , N , and gives {PKi}N

i=1 to A.
2. Phase 1: The adversary A may make queries polynomially many times adap-

tively and in any order to the following oracles:
– OSK: an oracle that on input an index i (different from t), returns the

Ui’s secret key SKi.
– ODec: an oracle that on input a pair of an index i and a ciphertext CTi,

returns the output of Dec(SKi,CTi) using the secret key of the user Ui.
– OTd: an oracle that on input an index i (different from t), return tdi by

running tdi ← Td(SKi) using the secret key SKi of the user Ui.
3. Challenge: A chooses two messages m0 m1 of same length and pass to C,

who then selects a random bit b ∈ {0, 1}, runs CT∗
θ,b ← Enc(PKθ,mb) and

sends CT∗
θ,b to A.

4. Phase 2: A can query as in Phase 1 with the following constraints:
– The index t cannot be queried to the key generation oracle OSK and the

trapdoor generation oracle OTd;
– The pair of the index θ and the ciphertext CT∗

θ,b cannot be queried to the
decryption oracle ODec.

5. Guess: A output b′.

The adversary A wins the above game if b = b′ and the advantage of A is defined
as

AdvIND-CCA2
A,PKEET :=

∣∣∣∣Pr[b = b′] − 1
2

∣∣∣∣ .
2.2 Lattices

Throughout the paper, we will mainly focus on integer lattices, which are discrete
subgroups of Z

m. Specially, a lattice Λ in Z
m with basis B = [b1, · · · ,bn] ∈

Z
m×n, where each bi is written in column form, is defined as

Λ :=

{
n∑

i=1

bixi|xi ∈ Z ∀i = 1, · · · , n

}
⊆ Z

m.

A Lattice-Based Public Key Encryption 143

We call n the rank of Λ and if n = m we say that Λ is a full rank lattice. In
this paper, we mainly consider full rank lattices containing qZm, called q-ary
lattices, defined as the following, for a given matrix A ∈ Z

n×m and u ∈ Z
n
q

Λq(A) :=
{
e ∈ Z

m s.t. ∃s ∈ Z
n
q where ATs = e mod q

}
Λ⊥

q (A) := {e ∈ Z
m s.t. Ae = 0 mod q}

Λu
q (A) := {e ∈ Z

m s.t. Ae = u mod q}

Note that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥
q (A) + t.

Let S = {s1, · · · , sk} be a set of vectors in R
m. We denote by ‖S‖ :=

maxi ‖si‖ for i = 1, · · · , k, the maximum l2 length of the vectors in S. We also
denote S̃ := {s̃1, · · · , s̃k} the Gram-Schmidt orthogonalization of the vectors
s1, · · · , sk in that order. We refer to ‖S̃‖ the Gram-Schmidt norm of S.

Ajtai [2] first proposed how to sample a uniform matrix A ∈ Z
n×m
q with an

associated basis SA of Λ⊥
q (A) with low Gram-Schmidt norm. It is improved later

by Alwen and Peikert [3] in the following Theorem.

Theorem 1. Let q ≥ 3 be odd and m := �6n log q. There is a probabilistic
polynomial-time algorithm TrapGen(q, n) that outputs a pair (A ∈ Z

n×m
q , S ∈

Z
m×m) such that A is statistically close to a uniform matrix in Z

n×m
q and S is

a basis for Λ⊥
q (A) satisfying

‖S̃‖ ≤ O(
√

n log q) and ‖S‖ ≤ O(n log q)

with all but negligible probability in n.

Definition 1 (Gaussian distribution). Let Λ ⊆ Z
m be a lattice. For a vector

c ∈ R
m and a positive parameter σ ∈ R, define:

ρσ,c(x) = exp
(

π
‖x − c‖2

σ2

)
and ρσ,c(Λ) =

∑
x∈Λ

ρσ,c(x).

The discrete Gaussian distribution over Λ with center c and parameter σ is

∀y ∈ Λ, DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ)

.

For convenience, we will denote by ρσ and DΛ.σ for ρ0,σ and DΛ,σ,0 respec-
tively. When σ = 1 we will write ρ instead of ρ1. We recall below in Theorem 2
some useful results. The first one comes from [11, Lemma 4.4]. The second one is
from [5] and formulated in [1, Theorem 17] and the last one is from [1, Theorem
19].

Theorem 2. Let q > 2 and let A,B be a matrix in Z
n×m
q with m > n and B

is rank n. Let TA, TB be a basis for Λ⊥
q (A) and Λ⊥

q (B) respectively. Then for
c ∈ R

m and U ∈ Z
n×t
q :

144 D. H. Duong et al.

1. Let M be a matrix in Z
n×m1
q and σ ≥ ‖T̃A‖ω(

√
log(m + m1)). Then there

exists a PPT algorithm SampleLeft(A,M, TA, U, σ) that outputs a matrix e ∈
Z
(m+m1)×t distributed statistically close to DΛU

q (F1),σ where F1 := (A | M).
In particular e ∈ ΛU

q (F1), i.e., F1 · e = U mod q.
2. Let R be a matrix in Z

k×m and let sR := sup‖x‖=1 ‖Rx‖. Let F2 := (A | AR+
B). Then for σ ≥ ‖T̃B‖sRω(

√
log m), there exists a PPT algorithm

SampleRight(A,B,R, TB , U, σ) that outputs a matrix e ∈ Z
(m+k)×t distributed

statistically close to DΛU
q (F2),σ. In particular e ∈ Λu

q (F2), i.e., F2 · e = U
mod q.
Note that when R is a random matrix in {−1, 1}m×m then sR < O(

√
m) with

overwhelming probability (cf. [1, Lemma 15]).

The security of our construction reduces to the LWE (Learning With Errors)
problem introduced by Regev [13].

Definition 2 (LWE problem). Consider publicly a prime q, a positive integer
n, and a distribution χ over Zq. An (Zq, n, χ)-LWE problem instance consists of
access to an unspecified challenge oracle O, being either a noisy pseudorandom
sampler Os associated with a secret s ∈ Z

n
q , or a truly random sampler O$ who

behaviors are as follows:

Os: samples of the form (ui, vi) = (ui,uT
i s + xi) ∈ Z

n
q × Zq where s ∈ Z

n
q is a

uniform secret key, ui ∈ Z
n
q is uniform and xi ∈ Zq is a noise withdrawn

from χ.
O$: samples are uniform pairs in Z

n
q × Zq.

The (Zq, n, χ)-LWE problem allows responds queries to the challenge oracle O.
We say that an algorithm A decides the (Zq, n, χ)-LWE problem if

AdvLWE
A :=

∣∣Pr[AOs = 1] − Pr[AO$ = 1]
∣∣

is non-negligible for a random s ∈ Z
n
q .

Regev [13] showed that (see Theorem 3 below) when χ is the distribution Ψα

of the random variable �qX mod q where α ∈ (0, 1) and X is a normal random
variable with mean 0 and standard deviation α/

√
2π then the LWE problem is

hard.

Theorem 3. If there exists an efficient, possibly quantum, algorithm for decid-
ing the (Zq, n, Ψα)-LWE problem for q > 2

√
n/α then there is an efficient quan-

tum algorithm for approximating the SIVP and GapSVP problems, to within
Õ(n/α) factors in the l2 norm, in the worst case.

Hence if we assume the hardness of approximating the SIVP and GapSVP
problems in lattices of dimension n to within polynomial (in n) factors, then it
follows from Theorem 3 that deciding the LWE problem is hard when n/α is a
polynomial in n.

A Lattice-Based Public Key Encryption 145

3 Our PKEET Construction

3.1 Construction

Setup(λ): On input a security parameter λ, set the parameters q, n,m, σ, α as
in Sect. 3.2
1. Use TrapGen(q, n) to generate uniformly random n × m-matrices A,A′ ∈

Z
n×m
q together with trapdoors TA and TA′ respectively.

2. Select l + 1 uniformly random n × m matrices A1, · · · , Al, B ∈ Z
n×m
q .

3. Let H : {0, 1}∗ → {0, 1}t and H ′ : {0, 1}∗ → {−1, 1}l be hash functions.
4. Select a uniformly random matrix U ∈ Z

n×t
q .

5. Output the public key and the secret key

PK = (A,A′, A1, · · · , Al, B, U), SK = (TA, TA′).

Encrypt(PK,m): On input the public key PK and a message m ∈ {0, 1}t, do:
1. Choose a uniformly random s1, s2 ∈ Z

n
q

2. Choose x1,x2 ∈ Ψ
t

α and compute1

c1 = UT s1 + x1 + m
⌊q

2
⌋
, c2 = UT s2 + x2 + H(m)

⌊q

2
⌋ ∈ Z

t
q.

3. Compute b = H ′(c1‖c2) ∈ {−1, 1}l, and set

F1 = (A|B +
l∑

i=1

biAi), F2 = (A′|B +
l∑

i=1

biAi).

4. Choose l uniformly random matrices Ri ∈ {−1, 1}m×m for i = 1, · · · , l

and define R =
∑l

i=1 biRi ∈ {−l, · · · , l}m×m.
5. Choose y1,y2 ∈ Ψ

m

α and set z1 = RTy1, z2 = RTy2 ∈ Z
m
q .

6. Compute

c3 = FT
1 s1 + [yT

1 |zT
1]T , c4 = FT

2 s2 + [yT
2 |zT

2]T ∈ Z
2m
q .

7. The ciphertext is

CT = (c1, c2, c3, c4) ∈ Z
2t+4m
q .

Decrypt(PK,SK,CT): On input public key PK, private key SK and a ciphertext
CT = (c1, c2, c3, c4), do:
1. Compute b = H ′(c1‖c2) ∈ {−1, 1}l and sample e ∈ Z

2m×t from

e ← SampleLeft(A,B +
l∑

i=1

biAi, TA, U, σ).

Note that F1 · e = U in Z
n×t
q .

1 Note that for a message m ∈ {0, 1}t, we choose a random binary string m′ of fixed
length t′ large enough and by abusing of notation, we write H(m) for H(m′‖m).

146 D. H. Duong et al.

2. Compute w ← c1 − eT c3 ∈ Z
t
q.

3. For each i = 1, · · · , t, compare wi and � q
2�. If they are close, output

mi = 1 and otherwise output mi = 0. We then obtain the message m.
4. Sample e′ ∈ Z

2m×t from

e′ ← SampleLeft(A′, B +
l∑

i=1

biAi, TA′ , U, σ).

5. Compute w′ ← c2 − (e′)T c4 ∈ Z
t
q.

6. For each i = 1, · · · , t, compare w′
i and � q

2�. If they are close, output hi = 1
and otherwise output hi = 0. We then obtain the vector h.

7. If h = H(m) then output m, otherwise output ⊥.
Trapdoor(SKi): On input a user Ui’s secret key SKi = (Ki,1,Ki,2), it outputs

a trapdoor tdi = Ki,2.
Test(tdi, tdj ,CTi,CTj): On input trapdoors tdi, tdj and ciphertexts CTi,CTj

for users Ui, Uj respectively, computes
1. For each i (resp. j), do the following:

– Compute bi = H ′(ci1‖ci2) = (bi1, · · · , bil) and sample ei ∈ Z
2m×t

from

ei ← SampleLeft(A′
i, Bi +

l∑
k=1

bikAik, TA′
i
, Ui, σ).

Note that Fi2 · ei = Ui in Z
n×t
q .

– Compute wi ← ci2−eT
i ci4 ∈ Z

t
q. For each k = 1, · · · , t, compare each

coordinate wik with � q
w � and output hik = 1 if they are close, and 0

otherwise. At the end, we obtain the vector hi (resp. hj).
2. Output 1 if hi = hj and 0 otherwise.

Theorem 4. Our PKEET construction above is correct if H is a collision-
resistant hash function.

Proof. It is easy to see that if CT is a valid ciphertext of m then the decryption
will always output m. Moreover, if CTi and CTj are valid ciphertext of m and m′

of user Ui and Uj respectively. Then the Test process checks whether H(m) =
H(m′). If so then it outputs 1, meaning that m = m′, which is always correct
with overwhelming probability since H is collision resistant. Hence our PKEET
described above is correct. ��

3.2 Parameters

We follow [1, Section 7.3] for choosing parameters for our scheme. Now for the
system to work correctly we need to ensure

– the error term in decryption is less than q/5 with high probability, i.e., q =
Ω(σm3/2) and α < [σlmω(

√
log m)]−1,

– that the TrapGen can operate, i.e., m > 6n log q,

A Lattice-Based Public Key Encryption 147

– that σ is large enough for SampleLeft and SampleRight, i.e., σ > lmω(
√

log m),
– that Regev’s reduction applies, i.e., q > 2

√
n/α,

– that our security reduction applies (i.e., q > 2Q where Q is the number of
identity queries from the adversary).

Hence the following choice of parameters (q,m, σ, α) from [1] satisfies all of the
above conditions, taking n to be the security parameter:

m = 6n1+δ, q = max(2Q,m2.5ω(
√

log n))

σ = mlω(
√

log n), α = [l2m2ω(
√

log n)]−1
(1)

and round up m to the nearest larger integer and q to the nearest larger prime.
Here we assume that δ is such that nδ > �log q = O(log n).

3.3 Security Analysis

In this section, we will prove that our proposed scheme is OW-CCA2 secure
against Type-I adversaries (cf. Theorem 5) and IND-CCA2 secure against Type-
II adversaries (cf. Theorem 6).

Theorem 5. The PKEET with parameters (q, n,m, σ, α) as in (1) is OW-CCA2
secure provided that H is a one-way hash function, H ′ is a collision-resistant
hash function, and the (Zq, n, Ψ̄α)-LWE assumption holds. In particular, sup-
pose there exists a probabilistic algorithm A that wins the OW-CCA2 game with
advantage ε, then there is a probabilistic algorithm B that solves the (Zq, n, Ψ̄α)-
LWE problem with advantage ε′ such that

ε′ ≥ 1
2q

(
ε − 1

2
εH′,CR − εH,OW

)
.

Here εH′,CR is the advantage of breaking the collision resistance of H ′ and εH,OW

is the advantage of breaking the one-wayness of H.

Proof. The proof is similar to that of [1, Theorem 25]. Assume that there is a
Type-I adversary A who breaks the OW-CCA2 security of the PKKET scheme
with non-negligible probability ε. We construct an algorithm B who solves the
LWE problem using A. Assume again that there are N users in our PKEET sys-
tem. We now describe the behaviors of B. Assume that θ is the target index of the
adversary A and the challenge ciphertext is CT∗

θ = (CT∗
θ,1,CT

∗
θ,2,CT

∗
θ,3,CT

∗
θ,4).

We will proceed the proof in a sequence of games. In game i, let Wi denote
the event that the adversary A win the game. The adversary’s advantage in
Game i is Pr[Wi].

Game 0. This is the original OW-CCA2 game between the attacker A against
the scheme and the OW-CCA2 challenger.

148 D. H. Duong et al.

Game 1. This is similar to Game 0 except that in Phase 2 of Game 1, if
the adversary queries the decryption oracel ODec(θ) of a ciphertext CTθ =
(CTθ,1,CTθ,2,CTθ,3,CTθ,4) such that H ′(CTθ,1‖CTθ,2) = b∗, where b∗ =
H ′(CT∗

θ,1‖CT∗
θ,2), but CTθ �= CT∗

θ then the challenger aborts the game and
returns a random guess. We denote this event by E1. In this event, the adver-
sary has found a collision for the hash function H ′ and so

Pr[E1] ≤ εH′,CR

where εH′CR is the advantage of the adversary A against the collision resis-
tance of H ′. Now the advantage of A in Game 1 is

Pr[W1] = Pr[W1|E1]Pr[E1] + Pr[W1|¬E1]Pr[¬E1]

=
1
2
Pr[E1] + Pr[W0 ∩ ¬E1]

=
1
2
Pr[E1] + Pr[W0] − Pr[W0 ∩ E1]

≥ Pr[W0] − 1
2
Pr[E1]

≥ Pr[W0] − 1
2
εH′,CR

and hence
Pr[W0] − Pr[W1] ≤ 1

2
εH′,CR.

Game 2. This is similar to Game 1 except that at the challenge phase, B chooses
two message m and m′ in the message space and encrypt m in CTθ,1 and
H(m′) in CTθ,2. Other steps are similar to Game 1. Here we can not expect
the behavior of A. And since A has a trapdoor TA′ and he can obtain H(m′).
At the end if A outputs m′, call this event E2, then A has broken the one-
wayness of the hash function H. Thus

Pr[E2] ≤ εH,OW

where εH,OW is the advantage of A in breaking the one-wayness of H. There-
fore we have

Pr[W2] = Pr[W2|E2]Pr[E2] + Pr[W2|¬E2]Pr[¬E2]
= Pr[W2|E2]Pr[E2] + Pr[W1]Pr[¬E2]

≥ 1
|M|Pr[E2] + Pr[W1] − Pr[W1]Pr[E2]

≥ Pr[W1] − Pr[E2]
≥ Pr[W1] − εH,OW

and hence
Pr[W1] − Pr[W2] ≤ εH,OW.

A Lattice-Based Public Key Encryption 149

Game 3. This is similar to Game 2 except the way the challenger B generates the
public key for the user with index θ, as the following. Let R∗

i ∈ {−1, 1}m×m

for i = 1, · · · , l be the ephemeral random matrices generated for the creation
of the ciphertext CT∗

θ. In this game, the challenger chooses l matrices R∗
i

uniformly random in {−1, 1}m×m and chooses l random scalars hi ∈ Zq for
i = 1, · · · , l. Then it generates A,A′ and B as in Game 1 and constructs the
matrices Ai for i = 1, · · · , l as

Ai ← A · R∗
i − hi · B ∈ Z

n×m
q .

The remainder of the game is unchanged with R∗
i , i = 1, · · · , l, used to

generate the challenge ciphertext. Similar to the proof of [1, Theorem 25] we
have that the Ai are close to uniform and hence they are random independent
matrices in the view of the adversary as in Game 0. Therefore

Pr[W3] = Pr[W2].

Game 4. Game 4 is similar to Game 3 except that we add an abort that is
independent of adversary’s view. The challenger behaves as follows:

– The setup phase is identical to Game 3 except that the challenger also
chooses random hi ∈ Zq, i = 1, · · · , l and keeps it to itself.

– In the final guess phase, the adversary outputs a guest m′ for m. The
challenger now does the following:
1. Abort check: for all queries CT = (CT1,CT2,CT3,CT4) to

the decryption oracle ODec, the challenger checks whether b =
H ′(CT1‖CT2) satisfies 1 +

∑h
i=1 bihi �= 0 and 1 +

∑h
i=1 b∗

i hi = 0
where b∗ = H ′(CT∗

θ,1‖CT∗
θ,2). If not then the challenger overwrites

m′ with a fresh random message and aborts the game.
2. Artificial abort: the challenger samples a message Γ such that

Pr[Γ = 1] is calculated through a function G (defined as in [1])
evaluated through all the queries of A. If Γ = 1 the challenger over-
writes m′ with a fresh random message and we say that the challenger
aborted the game due to artificial abort; see [1] for more details.

A similar proof as in that of [1, Theorem 25] yields that

Pr[W4] ≥ 1
2q

Pr[W3].

Game 5. We now change the way how A and B are generated in Game 4.
In Game 5, A is a random matrix in Z

n×m
q and B is generated through

TrapGen(q, n) together with an associated trapdoor TB for Λ⊥
q (B). The con-

struction of Ai for i = 1, · · · , l remains the same as in Game 3, i.e., Ai =
AR∗

i − hiB. When A queries ODec(θ,CTθ) where CTθ = (CTθ,1,CTθ,2,CTθ,3,
CTθ,4), B performs as follows:

– B computes b = H ′(CTθ,1‖CTθ,2) ∈ {−1, 1}l and set

Fθ := (A|B +
l∑

i=1

Ai) = (A|AR + hθB)

150 D. H. Duong et al.

where

R ←
l∑

i=1

biR
∗
i ∈ Z

n×m
q and hθ ← 1 +

l∑
i=1

bihi ∈ Zq. (2)

– If hθ = 0 then abort the game and pretend that the adversary outputs a
random bit γ′ as in Game 3.

– Set e ← SampleRight(A, hθB,R, TB , U, σ) ∈ Z
2m×t
q . Note that since hθ is

non-zero, and so TB is also a trapdoor for hθB. And hence the output
e satisfies Fθ · e = U in Z

t
q. Moreover, Theorem 2 shows that when σ >

‖T̃B‖sRω(
√

m) with sR := ‖R‖, the generated e is distributed close to
DΛU

q
(Fθ) as in Game 3.

– Compute w ← CTθ,1 − eTCTθ,3 ∈ Z
t
q. For each i = 1, · · · , t, compare wi

with � q
2�, and output 1 if they are close, and output 0 otherwise. Then B

can answer the decryption query ODec(θ,CTθ) made by A.
Game 5 is otherwise the same as Game 4. In particular, in the challenge phase,
the challenger checks if b∗ satisfies 1 +

∑l
i=1 bihi = 0. If not, the challenger

aborts the game as in Game 4. Similarly, in Game 5, the challenger also
implements an artificial abort in the guess phase. Since Game 4 and Game 5
are identical in the adversary’s view, we have that

Pr[W5] = Pr[W4].

Game 6. Game 6 is identical to Game 5, except that the challenge ciphertext
is always chosen randomly. And thus the advantage of A is always 0.

We now show that Game 5 and Game 6 are computationally indistinguishable.
If the abort event happens then the games are clearly indistinguishable. We,
therefore, consider only the queries that do not cause an abort.

Suppose now A has a non-negligible advantage in distinguishing Game 5 and
Game 6. We use A to construct B to solve the LWE problem as follows.

Setup. First of all, B requests from O and receives, for each j = 1, · · · , t a fresh
pair (ai, di) ∈ Z

n
q ×Zq and for each i = 1, · · · ,m, a fresh pair (ui, vi) ∈ Z

n
q ×Zq.

A announces an index θ for the target user. B executes (PKi,SKi) ← Setup(λ)
for 1 ≤ i �= θ ≤ N . Then B constructs the public key for user of index θ as
follows:
1. Assemble the random matrix A ∈ Z

n×m
q from m of previously given LWE

samples by letting the i-th column of A to be the n-vector ui for all
i = 1, · · · ,m.

2. Assemble the first t unused the samples a1, · · · ,at to become a public
random matrix U ∈ Z

n×t
q .

3. Run TrapGen(q, σ) to generate uniformly random matrices A′, B ∈ Z
n×m
q

together with their trapdoor TA′ and TB respectively.
4. Choose l random matrices R∗

i ∈ {−1, 1}m×m for i = 1, · · · , l and l random
scalars hi ∈ Zq for i = 1, · · · , l. Next it constructs the matrices Ai for
i = 1, · · · , l as

Ai ← AR∗
i − hiB ∈ Z

n×m
q .

A Lattice-Based Public Key Encryption 151

Note that it follows from the leftover hash lemma [15, Theorem 8.38] that
A1, · · · , Al are statistically close to uniform.

5. Set PKθ := (A,A′, A1, · · · , Al, B, U) to A.
Then B sends the public keys {PKi}N

i=1 to the adversary A.
Queries. B answers the queries as in Game 4, including aborting the game if

needed.
Challenge. Now B chooses random messages m∗ and computes the challenge

ciphertext CT∗
θ = (CT∗

θ,1,CT
∗
θ,2,CT

∗
θ,3,CT

∗
θ,4) as follows:

1. Assemble d1, · · · , dt, v1, · · · , vm from the entries of the samples to form
d∗ = [d1, · · · , dt]T ∈ Z

t
q and v∗ = [v1, · · · , vm]T ∈ Z

m
q .

2. Set CT∗
θ,1 ← d∗ + m∗� q

2� ∈ Z
t
q.

3. Choose a uniformly random s2 ∈ Z
n
q and x2 ← Ψ

t

α, compute

CT∗
θ,2 ← UT s2 + x2 + H(m∗)�q

2
� ∈ Z

t
q.

4. Compute b∗ = H ′(CT∗
θ,1‖CT∗

θ,2) ∈ {−1, 1}l and R∗ :=
∑l

i=1 b∗
i R

∗
i ∈

{−l, · · · , l}m×m.
5. Set

CT∗
θ,3 :=

[
v∗

(R∗)Tv∗

]
∈ Z

2m
q .

6. Choose y2 ← Ψ
m

α and set

CT∗
θ,4 :=

[
(A′)T s2 + y2

(AR∗)T s2 + (R∗)Ty2

]
∈ Z

2m
q .

Then B sends CT∗
θ = (CT∗

θ,1,CT
∗
θ,2,CT

∗
θ,3,CT

∗
θ,4) to A.

Note that in case of no abort, one has hθ = 0 and so Fθ = (A|AR∗). When
the LWE oracle is pseudorandom, i.e., O = Os then v∗ = AT s + y for some
random noise vector y ← Ψ

m

α . Therefore CT∗
θ,3 in Step 5 satisfies:

CT∗
θ,3 :=

[
AT s + y

(AR∗)T s + (R∗)Ty

]
= (Fθ)T s +

[
y

(R∗)Ty

]
.

Moreover, d∗ = UT s + x for some x ← Ψ
t

α and therefore

CT∗
θ,1 = UT s + x + m∗�q

2
�.

One can easily see that

CT∗
θ,4 = [A′|AR∗]T s2 +

[
y2(R∗)Ty2

]
.

Therefore CT∗
θ is a valid ciphertext.

When O = O$ we have that d∗ is uniform in Z
t
q and v∗ is uniform in Z

m
q .

Then obviously CT∗
θ,1 is uniform. It follows also from the leftover hash lemma

(cf. [15, Theorem 8.38]) that CT∗
θ,3 is also uniform.

152 D. H. Duong et al.

Guess. After Phase 2, A guesses if it is interacting with a Game 5 or Game 6.
The simulator also implements the artificial abort from Game 5 and Game 6
and output the final guess as the answer to the LWE problem.

We have seen above that when O = Os then the adversary’s view is as in
Game 5. When O = O$ then the view of adversary is as in Game 6. Hence the
advantage ε′ of B in solving the LWE problem is the same as the advantage of
A in distinguishing Game 5 and Game 6. Since Pr[W6] = 0, we have

Pr[W5] = Pr[W5] − Pr[W6] ≤ ε′.

Hence combining the above results, we obtain that

ε = Pr[W0] ≤ 1
2
εH′,CR + εH,OW + 2qε′

which implies

ε′ ≥ 1
2q

(
ε − 1

2
εH′,CR − εH,OW

)
as desired. ��
Theorem 6. The PKEET with parameters (q, n,m, σ, α) as in (1) is IND-CCA2
secure provided that H ′ is a collision-resistant hash function, and the (Zq, n, Ψ̄α)-
LWE assumption holds. In particular, suppose there exists a probabilistic algo-
rithm A that wins the IND-CCA2 game with advantage ε, then there is a prob-
abilistic algorithm B that solves the (Zq, n, Ψ̄α)-LWE problem with advantage ε′

such that

ε′ ≥ 1
4q

(
ε − 1

2
εH′,CR

)

where εH′,CR is the advantage of A in breaking the collision resistance of H ′.

Proof. The proof is similar to that of Theorem5. Assume that there is a Type-II
adversary A who breaks the IND-CCA2 security of the PKKET scheme with
non-negligible probability ε. We construct an algorithm B who solves the LWE
problem using A. Assume again that there are N users in our PKEET system.
We now describe the behavior of B. Assume that θ is the target index of the
adversary A and the challenge ciphertext is CT∗

θ = (CT∗
θ,1,CT

∗
θ,2,CT

∗
θ,3,CT

∗
θ,4).

We will proceed the proof in a sequence of games. In game i, let Wi denote the
event that the adversary A correctly guesses the challenge bit. The adversary’s
advantage in Game i is

∣∣Pr[Wi] − 1
2

∣∣.
Game 0. This is the original IND-CCA2 game between the attacker A against

the scheme and the IND-CCA2 challenger.
Game 1. This is similar to Game 1 in the proof of Theorem5. Thus the advan-

tage of A in Game 1 is∣∣∣∣Pr[W0] − 1
2

∣∣∣∣ −
∣∣∣∣Pr[W1] − 1

2

∣∣∣∣ ≤ 1
2
εH′,CR.

A Lattice-Based Public Key Encryption 153

Game 2. This is similar to Game 3 in the proof of Theorem5 and we have

Pr[W2] = Pr[W1].

Game 3. Game 3 is similar to Game 2 except that we add an abort as in the
proof of Theorem5. It follows from the proof of [1, Theorem 25] that∣∣∣∣Pr[W3] − 1

2

∣∣∣∣ ≥ 1
4q

∣∣∣∣Pr[W2] − 1
2

∣∣∣∣ .
Game 4. This game is similar to Game 5 in the proof of Theorem5, and we

have
Pr[W3] = Pr[W4].

Game 5. Game 5 is identical to Game 4, except that the challenge ciphertext
is always chosen randomly. And thus the advantage of A is always 0.

We now show that Game 4 and Game 5 are computationally indistinguishable.
If the abort event happens then the games are clearly indistinguishable. We,
therefore, consider only the queries that do not cause an abort.

Suppose now A has a non-negligible advantage in distinguishing Game 4 and
Game 5. We use A to construct B to solve the LWE problem similar to the
proof of Theorem 5. Note that in the IND-CCA2 game, we allow the adversary
to query the trapdoor oracle OTd. And since we generate A′ together with TA′

from TrapGen(q, n) and we can answer TA′ to such queries.
We have seen above that when O = Os then the adversary’s view is as in

Game 4. When O = O$ then the view of the adversary is as in Game 5. Hence
the advantage ε′ of B in solving the LWE problem is the same as the advantage
of A in distinguishing Game 4 and Game 5. Since Pr[W5] = 1

2 , we have∣∣∣∣Pr[W4] − 1
2

∣∣∣∣ = |Pr[W4] − Pr[W5]| ≤ ε′.

Hence combining the above results, we obtain that

ε =
∣∣∣∣Pr[W0] − 1

2

∣∣∣∣ ≤ 1
2
εH′,CR + 4qε′

which implies

ε′ ≥ 1
4q

(
ε − 1

2
εH′,CR

)
as desired. ��

4 Conclusion

In this paper, we propose a direct construction of PKEET based on the hard-
ness of Learning With Errors problem. Efficiency is the reason to avoid the
instantiation of lattice-based PKEET from the generic construction by Lee et

154 D. H. Duong et al.

al. [8]. A concrete instantiation from [8] and comparative study are left for the
complete version. In addition, our PKEET scheme can be further improved by
utilizing improved IBE schemes [19,20] together with the efficient trapdoor gen-
eration [10] and faster Gaussian sampling technique [6], which we leave as future
work.

Acknowledgement. The authors acknowledge the useful comments and suggestions
of the referees. The first author would like to thank Hyung Tae Lee for sending him
a copy of [22] and useful discussions, and acknowledges the support of the Start-Up
Grant from University of Wollongong.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In 26th
International Symposium on Theoretical Aspects of Computer Science, STACS
2009, Proceedings, 26–28 February 2009, Freiburg, Germany, pp. 75–86 (2009)

4. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 13

5. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

6. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9 7

7. Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-secure PKE from identity-
based techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 132–
147. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5 10

8. Lee, H.T., Ling, S., Seo, J.H., Wang, H., Youn, T.Y.: Public key encryption with
equality test in the standard model. Cryptology ePrint Archive, Report 2016/1182
(2016)

9. Lee, H.T., Ling, S., Seo, J.H., Wang, H.: Semi-generic construction of public key
encryption and identity-based encryption with equality test. Inf. Sci. 373, 419–440
(2016)

10. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

11. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In 45th Symposium on Foundations of Computer Science (FOCS 2004),
Proceedings, 17–19 October 2004, Rome, Italy, pp. 372–381 (2004)

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-642-11925-5_10
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41

A Lattice-Based Public Key Encryption 155

12. Ma, S., Zhang, M., Huang, Q., Yang, B.: Public key encryption with delegated
equality test in a multi-user setting. Comput. J. 58(4), 986–1002 (2015)

13. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

14. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

15. Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2nd
edn. Cambridge University Press, Cambridge (2008)

16. Tang, Q.: Towards public key encryption scheme supporting equality test with fine-
grained authorization. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS,
vol. 6812, pp. 389–406. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22497-3 25

17. Tang, Q.: Public key encryption schemes supporting equality test with authorisa-
tion of different granularity. IJACT 2(4), 304–321 (2012)

18. Tang, Q.: Public key encryption supporting plaintext equality test and user-
specified authorization. Secur. Commun. Netw. 5(12), 1351–1362 (2012)

19. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymp-
totically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 2

20. Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 161–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 6

21. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption
with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–
131. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5 9

22. Zhang, K., Chen, J., Lee, H.T., Qian, H., Wang, H.: Efficient public key encryption
with equality test in the standard model. Theor. Comput. 755, 65–80 (2019)

https://doi.org/10.1007/978-3-642-22497-3_25
https://doi.org/10.1007/978-3-642-22497-3_25
https://doi.org/10.1007/978-3-662-49896-5_2
https://doi.org/10.1007/978-3-662-49896-5_2
https://doi.org/10.1007/978-3-319-63697-9_6
https://doi.org/10.1007/978-3-642-11925-5_9

Lattice RingCT V2.0 with Multiple Input
and Multiple Output Wallets

Wilson Alberto Torres1, Veronika Kuchta1, Ron Steinfeld1, Amin Sakzad1,
Joseph K. Liu1(B), and Jacob Cheng2

1 Faculty of IT, Monash University, Melbourne, Australia
{Wilson.Torres,Veronika.Kuchta,Ron.Steinfeld,

Amin.Sakzad,Joseph.Liu}@monash.edu
2 Collinstar Capital, Melbourne, Australia

jacob@collinstar.com

Abstract. This paper presents the Lattice-based Ring Confidential
Transactions “Lattice RingCT v2.0” protocol. Unlike the previous Lat-
tice RingCT v1.0 (LRCT v1.0) protocol, the new protocol supports
Multiple-Input and Multiple-Output (MIMO) wallets in transactions,
and it is a fully functional protocol construction for cryptocurrency appli-
cations such as Hcash. Since the MIMO cryptocurrency setting intro-
duces new balance security requirements (and in particular, security
against out-of-range amount attacks), we give a refined balance security
model to capture such attacks, as well as a refined anonymity model to
capture amount privacy attacks. Our protocol extends a previously pro-
posed ring signature scheme in the LRCT v1.0 protocol, to support the
MIMO requirements while preserving the post-quantum security guar-
antees, and uses a lattice-based zero-knowledge range proof to achieve
security against out-of-range attacks. Preliminary parameter estimates
and signature sizes are proposed as a point of reference for future studies.

Keywords: Cryptocurrencies · Lattice-based cryptography ·
Post-quantum cryptography · RingCT

1 Introduction

In the current digital age, cryptocurrencies are applications that use virtual
assets and cryptographic mechanisms to conduct e-commerce operations such
as electronic payments or money transfers. Those payments can be carried out
among accounts or wallets, independently of a central party [10]. Cryptocur-
rencies lead to some advantages like lower transaction fees, theft resistance and
anonymous transactions. Bitcoin [24] is by far the most widely known and decen-
tralised cryptocurrency to date, having its three underlying building blocks:
transactions, blockchain and consensus protocol. Contrary to the traditional
banking model, Bitcoin allows electronic financial operations in a decentralised
Peer-to-Peer (P2P) network. Although Bitcoin was intended to achieve the secu-
rity properties of privacy and anonymity by using pseudonyms, some analyses
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 156–175, 2019.
https://doi.org/10.1007/978-3-030-21548-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_9

Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets 157

[16,28] show that these security properties can be compromised, therefore infor-
mation about the payers, payees and transactions can be revealed. Thus Bitcoin
is only a pseudo-anonymous cryptocurrency.

Nonetheless, since its creation, Bitcoin has revolutionised the field of digi-
tal currency and motivated the invention of new cryptocurrencies, also known
as alcoins. As an example, CryptoNote [31] was proposed to address the privacy
weaknesses of Bitcoin, as it also offers a framework that can be extended by other
cryptocurrencies such Bytecoin [6] and Monero [23]. CryptoNote uses traceable
ring signatures [15] as a fundamental component to achieve true anonymity, where
any member of the ring (or group) can create a signature, but it is infeasible by a
verifier to identify the real signer. This type of signature hides information about
the sender and receiver, and it also has a linking tag to prevent double spending
coins. Further enhancements to this framework have resulted in an extended pro-
tocol called Ring Confidential Transactions “RingCT” [25]. The RingCT protocol
uses three techniques: a new type of ring signature Linkable Ring Signatures
[18], a homomorphic commitment and a range proof, to preserve the privacy of
the sender and the receiver as well as the transaction amounts.

However, the security of this RingCT protocol relies on classical number-
theory assumptions, such as the hardness of discrete logarithms [13]. As a conse-
quence, this protocol will be vulnerable in the event of powerful quantum com-
puters [29]. This situation has motivated researchers in the area of post-quantum
cryptography to construct secure approaches against quantum attacks. Among
the alternatives, lattice-based cryptography has attracted attention due to its
distinguishing features and robust security guarantees [8,22].

To the best of our knowledge, the first post-quantum RingCT scheme using
Lattice-based cryptography was proposed in [2]. However, this proposal is lim-
ited. Firstly, it only enables transfers from a single input wallet to a single
output wallet (SISO). In the RingCT model, signatures are one-time, then if one
needs to receive change after making a payment or transfer, a new output wal-
let is required, so this points out the importance of supporting multiple input
and output wallets. Secondly, having more than one output wallet also intro-
duces a new security problem like the negative output amount (or out-of-range)
attack [5], where an adversary is capable of creating extra coins. This attack is
addressed in the previous RingCT [25] by using a range proof technique; however,
this technique is not post-quantum secure.

1.1 Contributions

– We construct the Lattice-based Ring Confidential Transactions (LRCT) for
Multiple-Input and Multiple-Output wallets (MIMO). This construction is a
generalisation of the SISO.LRCT scheme in [2] where we changed its underly-
ing framework (L2RS signature) to be compatible. Our MIMO.LRCT inherits
the post-quantum security guarantees, like the hardness of lattice mathemat-
ical assumptions as well as unconditional anonymity.

– We improve the MIMO.LRCT’s security model, in particular, the balance and
anonymity properties. We explicitly define a balance model that considers
out-of-range attacks [5], and we prove the security of our protocol which

158 W. Alberto Torres et al.

previous RingCT’s proposals [2,30] did not address. User anonymity is only
addressed in [30], while we include the analysis of both user anonymity and
amount privacy.

– We show how to incorporate a lattice-based range proof into our MIMO.LRCT
protocol, which was a missing ingredient in former proposals [2,30]. To begin
with, our protocol deals with the difficulties of the imperfection of lattice-
based zero-knowledge proofs, Sect. 5.1 discusses more on this. In particular,
range proofs follow the approach based on 1-of-2 OR-proofs, but our analysis
shows that directly applying lattice-based OR-proofs from [11] does not pro-
vide soundness for the range proof. This argument leads us to carefully select
the challenge space as we describe in Lemma 3. Although these challenges
are smaller (in norm) than the ones used in the OR-proofs, they are still
larger than the challenges in [17]. In this framework, we achieve lower sound-
ness error than the previous lattice-based range proof [17]. We also provide
a thorough concrete analysis of the MIMO.LRCT protocol by including this
range proof analysis.

– We apply our concrete bounds to derive preliminary scheme parameters for
regular RingCT transactions that support 64-bit amounts along with fewer
Multiple Input and Output wallets. This analysis serves as a benchmark for
future practical implementations.

The organisation of this work is as follows. Section 1.2 presents CryptoNote and
RingCT protocols literature. After introducing the notation and concepts used
in our work in Sect. 2, we define the MIMO.LRCT as well as its security model
in Sect. 3. Section 4 involves the concrete construction of the homomorphic com-
mitment and the MIMO.L2RS signature schemes, then Sect. 5 illustrates the con-
struction of MIMO.LRCT. Sections 6 and 7 point out the MIMO.LRCT’s security
and performance analyses, respectively. We note that all proofs of this paper are
shown in the full version which is in [1].

1.2 Related Work

Evaluations [20,26] of CryptoNote have discovered serious vulnerabilities which
impact the privacy of the involved parties in the transactions. Therefore, the
Ring Confidential Transactions RingCT [25] protocol was devised to address
these issues. The RingCT extends the CryptoNote scheme by using a new class
of linkable ring signature called Multi-layered Linkable Spontaneous Anonymous
Group Signature (MLSAG) [18]. This signature is spontaneous (or ad-hoc), which
removes the dependency of a trusted third party and group members are unaware
of belonging to a determined group, thereby enhancing the anonymity property.
It is also multilayered, meaning that it enables multiple input and output wallets
in transactions. The security of RingCT is ameliorated by introducing the Confi-
dential Transactions [21], which enables amounts to be hidden by using the Ped-
ersen Commitment [27] technique. This cryptographic primitive enables a party
to commit to a chosen secret value while keeping it hidden to other parties, where
this commitment can later be opened. Such a primitive offers homomorphic prop-
erties allowing parties to prove the account balance by computing homomorphi-
cally input and output accounts to show that their result is zero. RingCT added

Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets 159

another verification mechanism for the committed output amounts which was
called range proof, guaranteeing that this amount lies in a range of non-negative
values and avoiding the creation of free money. Bulletproofs [5] is an efficient
technique for this range preservation.

RingCT v2.0 [30] was later proposed. It provided sound security analysis of
the (RingCT) protocol as well as improved the size of the signature by using one-
way accumulators [3] along with signatures of knowledge “SoK” [7]. However, it
requires a trusted setup for its accumulator to achieve the signature constant size.
The first post-quantum RingCT protocol was proposed in [2], where the authors
named it Lattice RingCT v1.0. This construction uses lattice-based cryptography
to design a new Linkable Ring Signature, which is called Lattice-based Linkable
Ring Signature (L2RS). The L2RS follows the well known Fiat-Shamir [14] trans-
formation signature: Bimodal Lattice Signature Scheme (BLISS) [12], a practi-
cal and secure lattice-based signature scheme. The L2RS offers computational
security as per the hardness of lattice assumptions for unforgeability, linkabil-
ity and non-slanderability, it also achieves unconditional anonymity. However,
the proposed Lattice RingCT v1.0 showed no security definition or proofs, and
transactions were restricted to Single Input and Single Output wallets.

2 Preliminaries

The polynomial ring R = Z[x]/f(x), where f(x) = xn + 1 with n being a power
of 2. The ring Rq is then defined to be the quotient ring Rq = R/(qR) =
Zq[x]/f(x), where Zq denotes the set of all positive integers modulo q (a prime
number q = 1 mod 2n) in the interval [−q/2, q/2]. The challenge space Sn,κ, is
the set of all binary vectors of length n and weight κ. A hash function modeled
as Random Oracle Model (ROM), H1 with range Sn,κ ⊆ R2q. When we use
x ← D, it means that x is chosen uniformly from the distribution D. The
discrete Gaussian distribution over Zm with standard deviation σ ∈ R and center
at zero, is defined by Dm

σ (x) = ρσ(x)/ρσ(Zm), where ρσ is the m-dimensional
Gaussian function ρσ(x) = exp(−‖x‖2/(2σ2)). Vector transposition is denoted
by vT . The hardness assumption of this work is the Module-SIS (Short Integer
Solution) problem and is defined as follows.

Definition 1 (MSISK
q,m,k,β problem). Let K be some uniform distribution

over the ring Rk×m
q . Given a random matrix A ∈ Rk×m

q sampled from K dis-
tribution, find a non-zero vector v ∈ Rm×1

q such that Av = 0 and ‖v‖2 ≤ β,
where ‖ · ‖2 denotes the Euclidean norm.

Lemma 1 (Rejection Sampling). (Based on [12], Lemma 2.1). Let V be an
arbitrary set, and h : V → R and f : Zm → R be probability distributions. If
gv : Zm → R is a family of probability distributions indexed by v ∈ V with the
property that there exists a M ∈ R such that ∀v ∈ V,∀v ∈ Z

m,M · gv(z) ≥ f(z).
Then the output distributions of the following two algorithms are identical:

1. v ← h, z ← gv, output(z, v) with probability f(z)/(M · gv(z)).
2. v ← h, z ← f, output(z, v) with probability 1/M .

160 W. Alberto Torres et al.

Lemma 2 (Based on [4]). Let R = Z[X]/(Xn + 1) where n > 1 is a power of
2 and 0 < i, j < 2n − 1. Then all the coefficients of 2(Xi − Xj)−1 ∈ R are in
{−1, 0, 1}. This implies that ‖2(Xi − Xj)−1‖ ≤ √

n.

Lemma 3. For a, b ∈ Rq = Zq[X]/(Xn + 1) the following relations hold ‖a‖ ≤√
n‖a‖∞, ‖a · b‖ ≤ √

n‖a‖∞ · ‖b‖∞, ‖a · b‖∞ ≤ ‖a‖ · ‖b‖.

For detailed definitions of the homomorphic commitment scheme and the Fiat-
Shamir non-interactive zero-knowledge proof, we refer the reader to full version
of this paper in [1].

3 Ring Confidential Transaction Protocol (RCT)

The RCT protocol is defined based on the former RingCT 2.0 protocol in [30].

Definition 2 (Account or wallet). A wallet has a public component “act”
and a private component “ask”. The act is composed of the user’s pk (or a valid
address) and the coin cn, while the ask is formed of the user’s sk along with the
coin-key ck.

The RCT protocol has five PPT algorithms (RCT.Setup, RCT.KeyGen, RCT.Mint,
RCT.Spend, RCT.Verify) as well as the correctness (RCT.Correctness). The RCT’s
algorithms are defined as follows:

– RCT.Setup: this PPT algorithm takes the security parameter λ and outputs
the public parameters Pub-Params.

– RCT.KeyGen: this PPT algorithm uses the Pub-Params to produce a pair of
keys, the public-key pk and the private-key sk.

– RCT.Mint: a PPT algorithm generating new coins by receiving Pub-Params
and the amount $. This algorithm outputs a coin cn and a coin-key ck.

– RCT.Spend: a PPT algorithm that receives the Pub-Params, a set of input
wallets {IWi}i∈[w] with w being the size of the ring, a user π’s input wallets
IWπ along with its set of secret keys Kπ, a set of output addresses OA,
some transaction string μ ∈ {0, 1}∗, the output amount $ and the set of
output wallets OW . Then, this algorithm outputs: the transaction TX =
(μ, IW,OW), the signature sig and a set of transaction/serial numbers TN ,
which is used to prevent the double spending coins.

– RCT.Verify: a deterministic PPT algorithm that takes as input the Pub-
Params, the signature sig, the TX, and the TN and verifies if the transaction
was legitimately generated and outputs either: Accept or Reject.

Transaction Correctness requirements: RCT.Correctness ensures that
an honest user (payer) is able to spend or transfer any of his accounts (wal-
lets) into a group of destination accounts (payee), where this transaction
is accepted with overwhelming probability by a verifier. Thus the correct-
ness of RCT is guaranteed if for all PPT adversaries A, if Pub-Params ←
RCT.Setup(1λ), (μ, IW,OA) ← A(Pub-Params, IWπ,Kπ),with (IWπ,Kπ),
(pk, sk) ← RCT.KeyGen(Pub-Params), (cn, ck) ← RCT.Mint(Pub-Params, $), and
(TX, sig, TN) ← RCT.Spend(μ,Pub-Params, IWπ,Kπ, IW,OA, $(out)), it holds
that: Pr[RCT.Verify (sig, TX, TN) = 1] = 1.

Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets 161

3.1 Oracles for Adversaries

We now list all the adversarial oracles used in RCT, and we define them as:

– AddGen(i): on input a query number i, this oracle picks randomness τi, runs
algorithm

(
pki, ski

)
← RCT.KeyGen(Pub-Params, τi), and returns the public-

key or one-time address pki.
– ActGen(i, $i): on input a query number i and an amount $i, it runs

(cni, cki) ← RCT.Mint
(
Pub-Params, $i

)
. Then, ActGen adds i and the account

acti =
(
pki, cni

)
to empty lists I and IW , respectively. ActGen outputs

(acti, cki) for the one-time address pki, where these addresses are added to
a list PK. The associated secret key with account acti is defined as aski �
(ski, cki). With this aski, the challenger calls MIMO.L2RS.SigGen(ski, · , · , ·)
to determine the transaction number TNi of acti and adds it to a list T N .

– O-Spend(μ, IW, IWπ, OA, $(out),Pub-Params): on input the transaction string
μ, input accounts (wallets) IW containing IWπ and output addresses OA,
it runs (TX, sig, TN) ← RCT.Spend(μ,Kπ, IW, IWπ, OA, $(out),Pub-Params)
and adds the outputs to T , where IWπ ∈ IW . We assume that at least
one account/address in IWπ has not been corrupted. We define the set of
transaction numbers in the RCT.Spend queries as T N ∗.

– Corrupt(i): on input query number i ∈ I, uses account key aski to determine
the transaction/serial number TNi of account acti with address pki, then
adds TNi and (TNi, $i) to lists C and B respectively and finally returns τi.

3.2 Threat Model

The protocol RCT is modeled in terms of balance, anonymity and non-
slanderability for security analysis purposes, which are defined as follows.

Definition 3 (Balance). This property requires that any malicious user cannot
spend any account without her control and spend her own/controllable accounts
with a larger output amount. This security property is guaranteed if for all PPT
adversaries A, if Pub-Params ← RCT.Setup(1λ) and ({IW

(k)
i }i∈[w],k∈[Nin], T) ←

AAddGen,ActGen,O-Spend,Corrupt(Pub-Params), it holds that: Pr[A wins] = negl(λ),
where adversaries’ oracles are defined in Sect. 3.1. We have that IW

(k)
i =

{pk(k)(in),i, cn
(k)
(in),i}i∈[w],k∈[Nin] and T = (TX, sig, TN). These spends can be trans-

ferred to the challenger with the account address pk(out) = {pk(j)(out)}j∈[Nout],
where we assume not all of them are corrupted, and at least one of them is hon-
est. This pk(out) has been created by the AddGen oracle, so the challenger knows
all balances of the spent accounts and output accounts involved in the adversarial
spends T . This means that TX = (μ, IW,OW) with OW = {OW (j)}j∈[Nout] =
{pk(j)(out), cn

(j)
(out)}j∈[Nout] being the output wallet corresponding to output account

pk(out). The adversary A wins this experiment if her outputs satisfy the fol-

lowing conditions: (a) RCT.Verify(TX, sig, TN) = 1, (b)
∑

k∈E(in)
$(k)(in),π <

∑
j∈G(out)

$(j)(out), where we Let π ∈ [w] s.t. π′s row {pk(1)(in),π, . . . , pk
(Nin)
(in),π} are

162 W. Alberto Torres et al.

the ones that have {TN
(1)
π , . . . , TN

(Nin)
π } which are found in ActGen, E(in)

are the corrupted inputs, and G(out) are the not corrupted outputs in T . For
each TN (k) let $(k)(in) be the amount queried to ActGen at query i∗ such that

TNik
= TN (k) s.t. TNik

exist because TN ⊆ T N , $(k)(in) is also defined as

equal to zero if IW
(k)
i is equal to some input wallet IW queried to O-Spend,

using same TN , meaning that IW
(k)
i has been spent; otherwise, it is defined

as the amount queried to ActGen. (c) TN cannot be the output of previous
queries to the O-Spend(·) (i.e. TN ∩ T N ∗ = ∅), and (d) PK ⊆ PK, where
PK � {pk(k)(in),i}i∈[w],k∈[Nin].

Our extended anonymity property captures two types of attacks (compared to
one type in [30]) that depend on the adversary’s choices for users π0, π1 ∈ [w] and
output amounts $(out),0, $(out),1. It starts with the user anonymity attack where
the adversary selects π0 = π1 with $(out),0 = $(out),1, while in the amount privacy
attack this adversary chooses π0 = π1 with $(out),0 = $(out),1. We formally define
this property as:

Definition 4 (Anonymity). This property requires that two proofs of knowl-
edge with the same transaction string μ, input accounts IW , output addresses
OA, distinct both output amounts ($(out),0, $(out),1) and spent accounts
IWπ0 , IWπ1 ∈ IW are indistinguishable, meaning that the spender’s accounts
and amounts are successfully hidden among all the honestly generated accounts.
The protocol RCT is called anonymous if for all PPT adversaries A = (A1,A2),
if Pub-Param ← Setup(1λ), (μ, IWπ0 , IWπ1 , IW,OA, $(out),0, $(out),1) ←
AAddGen,ActGen,O-Spend,Corrupt

1 (Pub-Params), b ← {0, 1}, (TX∗, sig∗
b , TN∗) ←

RCT.Spend(μ,Kπb
, IWπb

, IW,OA, $(out)b
Pub-Params), and b′ ←

AO-Spend,Corrupt
2 (Pub-Params, (TX∗, sig∗

b , TN∗)) it holds that:
∣
∣Pr[b′ = b :] − 1

2

∣
∣ , is

negl(λ), where adversaries’ oracles are defined in Sect. 3.1. In addition, the fol-
lowing restrictions should be satisfied: (a) For all b ∈ {0, 1}, any account in IWπi

has not been corrupted and (b) Any query in the form of (·, IWπ, ·, ·), such that
IWπ ∩ IWπi

= ∅ has not been issued to O-Spend oracle.

Definition 5 (Non-slanderability). This property requires that a malicious
user cannot slander any honest user after observing an honestly generated spend-
ing. That is, it is infeasible for any malicious user to produce a valid spending
that shares at least one transaction/serial number with a previously generated
honest spending. The protocol RCT is non-slanderable if for all PPT adversaries
A, if Pub-Params ← RCT.Setup(1λ) and ((TX, sig, TN), (TX∗, sig∗, TN∗)) ←
AAddGen,ActGen,O-Spend,Corrupt(Pub-Params) it holds that: Pr[A wins] = negl(λ),
where adversaries’ oracles are defined in Sect. 3.1, and (TX, sig, TN) is one out-
put of the oracle O-Spend for some (μ, IWπ, IW,OA). We say A succeeds if the
output satisfies: (a) RCT.Verify(TX∗, sig∗, TN∗) = 1, (b) (TX∗, sig∗, TN∗) /∈ T ,
and (c) TN ∩ C = ∅ but TN ∩ TN∗ = ∅.

Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets 163

4 Building Blocks Construction

In this section, we summarize the underlying lattice-based primitives that will
be used in the construction of MIMO.LRCT. This includes a lattice-based homo-
morphic commitment scheme and a MIMO version of L2RS specified in [1].

4.1 Lattice-Based Commitment Construction

The MIMO.LRCT protocol requires a non-interactive homomorphic commitment
(Com) as an essential primitive. We construct the three algorithms: (KeyGen,
Com, Open), using the MIMO.L2RS scheme [1]:

– A ← KeyGen(1λ): A PPT algorithm that produces a public commitment
parameter A ∈ R2×(m−1)

q after receiving the security parameter (λ). In doing
so, we call the MIMO.L2RS.Setup (from [1]) to generate A ∈ R2×(m−1)

q .
– c ← ComA(m, sk): A PPT algorithm that receives the public parameter
A (from KeyGen), the randomness sk and the message formed as m =
(0,m)T ∈ R1×2

q . This algorithm generates the commitment c ∈ R2
q. The

randomness sk ∈ Domsk ⊆ R(m−1)×1
q with every component chosen uniformly

and independently with coefficients in (−2γ , 2γ), is produced by calling the
MIMO.L2RS.KeyGen (Algorithm 1) and the message m ∈ Domm = Rq, then
the commitment c = ComA(m, sk) = A · sk + m ∈ R2

q.
– m′ ← OpenA(c, sk): A PPT algorithm receiving commitment c and random-

ness sk, and it outputs m′. A valid c is opened if (m′ = m). This algorithm
computes m′ = (0,m′)T = OpenA(c, sk) = c − A · sk.

Remark 1. Domm is full and not a small subset Rq, whereas Domsk is only a
small domain versus q. These adjustments help us to obtain better parameters
than SISO.LRCT and security against out-of-range attacks.

This homomorphic commitment scheme performs the following operations:

ComA(m, sk) ± ComA(m′, sk′) � ComA(m, sk) ± ComA(m′, sk′) mod q

� ComA(m ± m′, sk ± sk′) mod q. (1)

Theorem 1 (Hiding). If 1
2

√
q2n

2(γ+1)·(m−1)·n is negligible in security parameter
λ, then the above Com is information theoretically hiding.

Theorem 2 (β−Binding). The described Commitment Scheme is computa-
tionally β−binding if the MSISK

q,m,k,2β problem is hard.

164 W. Alberto Torres et al.

4.2 Multiple-input Multiple-output Wallets L2RS (MIMO.L2RS)

We adapt all the notations from [2] into our MIMO.L2RS. The MIMO.L2RS signs
a signature for multiple wallets, which means that it signs Nin L2RS signatures in
parallel. This MIMO.L2RS is an extension of the single-input and single-output
proposal from [2]. In such extension, we needed to modify the Lattice-based
Linkable Ring Signature (L2RS) to be capable of signing multiple wallets. Pre-
cisely, we adjusted the key generation, the signature generation and the verifi-
cation algorithms to sign the total number of input wallets that a user wants to
transfer to some output wallets. We call these algorithms: MIMO.L2RS.KeyGen,
MIMO.L2RS.SigGen and MIMO.L2RS.SigVer, and we describe them in Algorithms
1, 2 and 3, respectively.

Algorithm 1. MIMO.L2RS.KeyGen - Key-pair Generation (a,S)
Input: Pub-Param: A ∈ R2×(m−1)

q .

Output: (a,S), being the public-key and the private-key, respectively.
1: procedure MIMO.L2RS.KeyGen(A)

2: Let ST = (s1, . . . , sm−1) ∈ R1×(m−1)
q , where si ← (−2γ , 2γ)n, for 1 ≤ i ≤ m − 1

3: Compute a = (a1, a2)
T = A · S mod q ∈ R2

q .

4: return (a,S).

Algorithm 2. MIMO.L2RS.SigGen - MIMO Signature Generation σL′(μ)
Input: {S(k)

(in),π
}k∈[Nin+1], μ, L′ as in (5), and Pub-Params.

Output: σL′ (μ) =
(
c1,

{
t
(k)
1 , . . . , t(k)

w

}
k∈[Nin+1],

{
h(k)}

k∈[Nin]

)

1: procedure MIMO.L2RS.SigGen(S
(k)
(in),π

, μ, L′,Pub-Params)

2: for (1 ≤ k ≤ Nin + 1) do

3: Set H
(k)
2q =

(
2 · H, −2 · h(k) + q

) ∈ R2×m
2q , where h(k) = H · S(k)

(in),π
∈ R2

q .

4: Call L2RS.Lift(A, a
(k)
(in),π

) to obtain A
(k)
2q,π = (2 · A, −2 · a(k)

(in),π
+ q) ∈ R2×m

2q .

5: Let u(k) = (u1, . . . , um)T , where ui ← Dn
σ , for 1 ≤ i ≤ m.

6: Compute cπ+1 = H1

(
L′,

{
H

(k)
2q

}
k∈[Nin+1], μ,

{
A

(k)
2q,π · u(k)}

k∈[Nin+1],
{
H

(k)
2q ·

u(k)}
k∈[Nin+1]

)
.

7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ k ≤ Nin + 1) do

9: Call L2RS.Lift(A, a
(k)
(in),i

) to obtain A
(k)
2q,i = (2 · A, −2 · a(k)

(in),i
+ q) ∈ R2×m

2q .

10: Let t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ← Dn

σ , for 1 ≤ j ≤ m.

11: Compute ci+1 = H1

(
L′,

{
H

(k)
2q

}
k∈[Nin+1], μ,

{
A

(k)
2q,i · t(k)

i + q · ci

}
k∈[Nin+1],

{
H

(k)
2q ·

t
(k)
i + q · ci

}
k∈[Nin+1]

)
.

12: for (1 ≤ k ≤ Nin + 1) do

13: Choose b(k) ← {0, 1}.
14: Let t(k)

π ← u(k) + S
(k)
2q,π · cπ · (−1)b(k)

, where S
(k)
2q,π = [(S(k)

π)T , 1]T .

15: Continue with prob.

(
M exp

(
−

‖S(k)
2q,π · cπ‖2

2σ2

)
cosh

(〈t(k)
π ,S

(k)
2q,π · cπ〉
σ2

))−1

other-

wise Restart.

16: return σL′ (μ) =
(
c1,

{
t
(k)
1 , . . . , t(k)

w

}
k∈[Nin+1],

{
h(k)}

k∈[Nin]

)
.

Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets 165

Algorithm 3. MIMO.L2RS.SigVer - MIMO Signature Verification
Input: σL′ (μ) as in (8), L′ as in (5), μ, and Pub-Params.
Output: Accept or Reject
1: procedure MIMO.L2RS.SigVer(σL′ (μ), L′, Pub-Params)
2: for (1 ≤ k ≤ Nin + 1) do

3: if H
(k)
2q =

(
2 · H, −2 · h(k) + q

) ∈ R2×m
2q then Continue

4: for (i = 1, . . . , w) do
5: for (1 ≤ k ≤ Nin + 1) do

6: Call L2RS.Lift(A, a
(k)
(in),i

) to obtain A
(k)
2q,i = (2 · A, −2 · a(k)

i + q) ∈ R2×m
2q .

7: if ci+1 = H1

(
L′,

{
H

(k)
2q

}
k∈[Nin+1], μ,

{
A

(k)
2q,i · t(k)

i + q · ci

}
k∈[Nin+1],

{
H

(k)
2q · t(k)

i +

q · ci

}
k∈[Nin+1]

)
then Continue

8: else if ‖t(k)
i ‖2 ≤ βv (the acceptance bound based on [12]) then Continue

9: else if ‖t(k)
i ‖∞ < q/4 then Continue

10: if c1 = H1

(
L′,

{
H

(k)
2q

}
k∈[Nin+1], μ,

{
A

(k)
2q,w · t

(k)
i + q · cw

}
k∈[Nin+1],

{
h

(k)
2q · t(k)

w + q ·
cw

}
k∈[Nin+1]

)
then Accept

11: else Reject

12: return Accept or Reject

4.3 MIMO.L2RS Security Properties

The security properties of the MIMO.L2RS are inherited from the L2RS’ secu-
rity analysis. By appropriately modifying these analysis, we can obtain the same
results for unforgeability, anonymity, linkability and non-slanderability, which
are shown in Theorems (2, 3, 4, 5 from [2]), respectively. The following proposi-
tion summarises these inherited properties:

Proposition 1. If MSISK
q,m,k,β problem (with β = 2βv) is hard and√

q4n

2(γ+1)·(m−1)·n is negligible in n, then the MIMO.L2RS achieves one-time
unforgeability, anonymity, linkability and non-slanderability as in Definitions (3,
4, 5, 6 from [2]).

We also use the MIMO.L2RS signature scheme as a Proof of Knowledge (PoK)
to accomplish, in part, the MIMO.LRCT’s balance property. This proof is for-
malised, namely as:

Proposition 2. The MIMO.L2RS.SigGen and MIMO.L2RS.SigVer which are
described in Algorithms 2 and 3, respectively, are a Fiat-Shamir Non-Interactive
Proof of Knowledge in the Random Oracle Model (from [1]) for the relations
RPoK and R′

PoK that we represent as:

RPoK �
{

{a(k)(in),i, cn
(k)
(in),i, cn

(j)
(out), μ}; {S(k)

(in),i, ck
(k)
(in),i, ck

(j)
(out), $in, $out} :

∃i ∈ [w] s.t. a(Nin+1)
(in),i = ComA(0,S(Nin+1)

(in),i); ‖S(Nin+1)
(in),i ‖ ≤ βwit

}

R′
PoK �

⎧
⎪⎪⎨

⎪⎪⎩

{a(k)(in),i, cn
(k)
(in),i, cn

(j)
(out), μ

′}; {S(k)
(in),i, ck

(k)
(in),i, ck

(j)
(out), $in, $out} :

∃z ∈ [w] s.t. v(Nin+1)
z = (v(Nin+1)

z,(1) ,v(Nin+1)
z,(2))T ;

a(Nin+1)
(in),z · vNin+1

z,(2) = ComA(0,v(Nin+1)
z,(1));

∥
∥v(Nin+1)

z

∥
∥ ≤ β′

wit

⎫
⎪⎪⎬

⎪⎪⎭

166 W. Alberto Torres et al.

where βwit = 3·2γ is said to be the honest prover’s witness norm and β′
wit = 2·βv

being the extracted malicious prover’s witness norm. βv is the acceptance bound
of t from Algorithm 3 and a(Nin+1)

(in),i is defined in (6).

5 MIMO Lattice-Based RingCT Construction

In this section, we construct the MIMO Lattice-based RingCT (MIMO.LRCT)
protocol (Table 1 shows the MIMO.LRCT’s notations), where one is allowed
to have multiple (IW) and to spend them into multiple (OW). Further-
more, two sub-protocols are needed to support the MIMO.LRCT’s threat
model, which are: MIMO.L2RS security properties (Subsect. 4.3) and range
preservation (Subsect. 5.1). MIMO scheme works using a set of algorithms
MIMO.LRCT = (MIMO.LRCT.Setup, MIMO.LRCT.KeyGen, MIMO.LRCT.Mint,
MIMO.LRCT.Spend, MIMO.LRCT.Verify) and they are listed as:

1. (Pub-Params) ← MIMO.LRCT.Setup(λ): On input the security parameter
λ, this algorithm calls MIMO.L2RS.Setup (from [1]) and outputs the public
parameters A ∈ R2×(m−1)

q and H ∈ R2×(m−1)
q .

Table 1. Notation of the Lattice RingCT v2.0

Notation Description

act Account or Wallet “Public part” =
(
pk, cn

) ∈ R2
q × R2

q

ask Account or Wallet “Private part” =
(
sk, ck

) ∈ R2
q × R2

q

Sn,κ Binary vectors of length n of weight κ

$ Amount ∈ Sn,κ

$(in) Group of input amounts $
(k)

(in) for k ∈ [Nin]

$(out) Group of output amounts $
(j)

(out) for j ∈ [Nout]

�$ The bit-length of $

w Number of users in the ring

Nin Number of input wallets of a user

IWi Input wallet of the i-th user acti =
{
pk

(k)

(in),i, cn
(k)

(in),i

}

k∈[Nin]

IW Set of input wallet = {IWi}i∈[w]

IWπ Input wallet of user π =
{
pk

(k)

(in),π, cn
(k)

(in),π

}

k∈[Nin]

Kπ User π’s private-keys = askπ =
{
sk

(k)

(in),π, ck
(k)

(in),π

}

k∈[Nin]

Nout Number of output wallets

OW Set of output wallet = {OW (j)}j∈[Nout] = {pk(j)(out), cn
(j)

(out)}j∈[Nout]

OA Set of output addresses =
{
pk

(j)

(out)

}

j∈[Nout]

TX Transaction = (μ, IW, OW)

TN Set of serial/transaction numbers (linking tag)

In this work, we consider that all users have a fixed number of input wallets Nin.

Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets 167

2. (a,S) ← MIMO.LRCT.KeyGen(A): Given the public parameter A ∈
R2×(m−1)

q , it runs MIMO.L2RS.KeyGen (Algorithm 1) and outputs a pair
of keys, the public-key or one-time address pk as a ∈ R2

q and the private-

key sk as S ∈ R(m−1)×1
q . A homomorphic commitment is generated as

a = ComA(0,S) = A · S + 0 mod q ∈ R2
q.

3. (cn, ck) ← MIMO.LRCT.Mint(A, $): It receives the public parameter A and
input amount $ ∈ [0, 2�$ − 1]. It computes a coin cn, by choosing a coin-key
ck ∈ DomS, where every component of ck is chosen uniformly and indepen-
dently, then compute cn (as below) and this algorithm returns (cn, ck):

cn � ComA($, ck) = A · ck + $ mod q ∈ R2
q with $ = (0, $)T ∈ R1×2

q . (2)

4. (TX, sig, TN)←MIMO.LRCT.Spend(μ, IW, IWπ,Kπ, OA, $(j)(out),Pub-Params):
This algorithm spends/transfers amounts from the user π’s input wallets
to some output wallets. We denote the user π who successfully created its
input wallets IWπ, based on determine amounts $(in). Note that notation of
these parameters are defined in Table 1, and this spend algorithm is briefly
described in Algorithm 4. Then, π selects the recipients’ valid public keys or
output addresses OA where π wants to spend his/her amount. To do so π
performs the following steps:
(a) π receives {$(j)(out)}j∈[Nout], with $(j)(out) ∈ [0, . . . , 2�$ − 1], for j ∈ [Nout],

such balance satisfies, we call this condition amount preservation. This
checks that input amounts are equal to output amounts, by checking if
the following equality holds:

Nin∑

k=1

$(k)(in),π =
Nout∑

j=1

$(j)(out). (3)

π then runs MIMO.LRCT.Mint(A, $(j)(out)) for j ∈ [Nout] and obtain

(cn(j)
(out), ck

(j)
(out))j∈[Nout], which define the output wallets as

OW = {OW (j)}j∈[Nout] = {a(j)(out), cn
(j)
(out)}j∈[Nout]. (4)

Then, the output coin-keys and amounts {ck(j)
(out), $

(j)
(out)}j∈[Nout] are

securely sent to users with valid OAj = {a(j)(out)}j∈[Nout].
(b) User π selects (w − 1) input wallets from the blockchain which he/she

uses to anonymously transfer her/his input wallets {IW
(k)
π }k∈[Nin]. Then,

a preliminary ring signature list is built as IW = {IWi}i∈[w] =
{a(k)(in),i, cn

(k)
(in),i}i∈[w],k∈[Nin].

(c) π adds a record to IWi in order to homomorphically compute and verify
the amount preservation; this uses the homomorphic commitment scheme
(defined in Sect. 4). The result of this computation is a commitment to
zero, where the user π is only able to obtain since he/she knows both

168 W. Alberto Torres et al.

IWπ and OW . This new record is placed in the position (Nin + 1) and
then a list L′ is defined as:

L′ =
{
a(k)(in),i

}

i∈[w],k∈[Nin+1]
, (5)

with a(Nin+1)
(in),i � ComA

(∑Nin

k=1 $(k)(in),i −
∑Nout

j=1 $(j)(out),S
(Nin+1)
(in),i

)
, where

S(Nin+1)
(in),i �

∑Nin

k=1 S
(k)
(in),i + ck(k)

(in),i −
∑Nout

j=1 ck(j)
(out) ∈ R(m−1)×1

q . This
implies that

a(Nin+1)
(in),i =

Nin∑

k=1

a(k)(in),i + cn(k)
(in),i −

Nout∑

j=1

cn(j)
(out). (6)

Note that if the amount preservation conditions (3) and (7) (for every
k ∈ [Nin]) are achieved, then a(Nin+1)

(in),i = ComA(0,S(Nin+1)
(in),i).

a(k)(in),i = ComA(0,S(k)
(in),i) = A · S(k)

(in),i + 0 mod q ∈ R2
q. (7)

(d) To sign the transaction, we use the π’s private-keys: {S(k)
(in),π}k∈[Nin+1],

the list L′ and a transaction string μ ∈ {0, 1}∗. Then, we run
MIMO.L2RS.SigGen (Algorithm 2) which outputs:

σL′(μ) =
(
c1, {t(k)1 , . . . , t(k)w }k∈[Nin+1], {h(k)}k∈[Nin]

)
. (8)

(e) Decompose $(j)(out) into its binary representation, i.e. $(j)(out) =

(b(j)0 , . . . , b
(j)
l$

) and run MIMO.LRCT.Mint(A, b
(j)
i) for each i ∈ [0, l$] to

obtain ck(j)
(out),i and cn(j)

(out),i.
(f) We show that the output amount lies in a non-zero range value, by

running a range proof (see Sect. 5.1). This proof outputs: σ
(j)
range =

Prange

(
cn(j)

(out), {b
(j)
(out),i, ck

(j)
(out),i}

�$−1
i=0 , $(j)(out), ck

(j)
(out),

)
, with σ

(j)
range =

(
{σ

(j)
OR, cn(j)

(out),i, σ
(j)
PoK∗}j∈[Nout],i∈[0,l$−1]

)
.

(g) We set the transaction TX as (μ, IW,OW) and TN = {h(k)}k∈[Nin]. This
algorithm outputs TX, TN , sigπ = (σL′(μ), {σ

(j)
range}j∈[Nout]).

5. (Accept/Reject) ← MIMO.LRCT.Verify(TX, sigπ, TN): This algorithm calls
MIMO.L2RS.SigVer(sigπ,1, L

′,Pub-Params) (Algorithm 3) with sigπ,1 =

σL′(μ), and on input sigπ,2 = {σ
(j)
range}j∈[Nout], it runs Vrange (Sect. 5.1). This

MIMO.LRCT.Verify outputs Accept if both MIMO.L2RS.SigVer and Vrange out-
put Accept, else it outputs Reject.

Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets 169

Algorithm 4. MIMO.LRCT.Spend

Input: (μ, IW, IWπ, Kπ, OA, $
(j)

(out),Pub-Params), being the message, the input wal-
lets, π’s input wallet, π’s private keys, the output addresses, the output amount
and the public parameter, respectively.

Output:
(
TX, σL′(μ), TN

)

1: procedure MIMO.LRCT.Spend(μ, IW, IWπ, Kπ, OA, $
(j)

(out),Pub-Params)

2: User π selects
{
$
(j)

(out)

}
j∈[Nout]

such that (3) is satisfied.

3: User π runs MIMO.LRCT.Mint
(
A, $

(j)

(out)

)
for j ∈ [Nout] to generate

(
cn

(j)

(out), ck
(j)

(out)

)
and sets OW as in (4).

4: User π sends securely coin-keys and amounts
{
ck

(j)

(out), $
(j)

(out)

}
j∈[Nout]

to user’s

OAj = a
(j)

(out) for j ∈ [Nout].

5: Create the list of input wallets IW =
{
IWi

}
i∈[w]

=
{
a
(k)

(in),i, cn
(k)

(in),i

}
i∈[w],k∈[Nin]

.

6: Let L′ =
{
a
(k)

(in),i

}
i∈[w],k∈[Nin+1]

, where a
(k)

(in),i are defined in (7) and (6) for

1 ≤ k ≤ Nin and k = Nin + 1, respectively.

7: Call MIMO.L2RS.SigGen
({

S
(k)

(in),π

}

k∈[Nin+1]
, L′, μ,Pub-Params

)
and obtain

σL′(μ) as in (8).

8: Decompose $
(j)

(out) = (b
(j)
0 , . . . , b

(j)
l$

) and run MIMO.LRCT.Mint(A, b
(j)
i) for each

i ∈ [0, l$] to obtain ck
(j)
out,i and cn

(j)

(out),i.

9: Run σ
(j)
range ← Prange

(
cn

(j)

(out), {b
(j)

(out),i, ck
(j)

(out),i}
�$−1
i=0 , $

(j)

(out), ck
(j)

(out),
)

for j ∈
[Nout].

10: Set sigπ = (σL′(μ), {σ
(j)
range}j∈[Nout]).

11: Let TX = (μ, IW, OW) and TN =
{
h(k)

}
k∈[Nin+1]

.

12: return
(
TX, sigπ, TN

)

5.1 Range Preservation

In this section, we present a range proof for the statement that an amount
$ ∈ Sn,κ belongs to [0, 2�$ − 1]. To do so, we need first to prove that $ has the
following binary representation $ =

∑�$−1
i=0 2ibi, where bi ∈ {0, 1}. To prove that

bi, for 1 ≤ i ≤ 	$ − 1, is binary, we use an OR proof introduced by [11] but
adapted to our commitment scheme, defined in Sect. 4.

Binary Proof [11] We want to prove ROR � R0 ∨ R1 and the corresponding
relaxed relation R′

OR � R′
0 ∨ R′

1, where

R0 � {(cn, ck) ∈ R2
q × R(m−1)×1

q , cn = A · ck + 0, ‖ck‖ ≤ BOR},

R1 � {(cn, ck) ∈ R2
q × R(m−1)×1

q , cn = A · ck + 1, ‖ck‖ ≤ BOR},

R′
0 � {(cn, ck, f), f · cn = A · ck + 0 · f, ‖ck‖ ≤ B′

OR, ‖f‖ ≤ 2
√

κ},

R′
1 � {(cn, ck, f), f · cn = A · ck + 1 · f, ‖ck‖ ≤ B′

OR, ‖f‖ ≤ 2
√

κ},

for a public parameter A ∈ R2×(m−1)
q . We further let:

170 W. Alberto Torres et al.

C0 � {Xi ∈ Rq, i = 0, . . . , 2n − 1}, (9)

with all the coefficients of (Xi − Xj)−1 in {−1, 0, 1} according to Lemma 2.
The challenge space P consists of the set of all permutations of dimension n,
Perm(n), and a vector of κ bits, i.e. P � {p = (s, c) ∈ Perm(n) × {0, 1}}.
Each p ∈ P permutes the exponents of a polynomial in C0 according to the
permutation s as follows: Let f, g ∈ C0 be two monomials. In particular, if
f = Xif , g = Xig and s(if) − ig, then we denote such a permutation s(f) = g.
It holds Pr[p(f) = g] = 1/|C0|. Let σOR and BOR be two positive real numbers.
We also need a collision resistant hash function H, mapping arbitrary inputs to
the uniform distribution over the challenge space P. Note that the digit $ can
be encoded into a coefficient vector b = (b0, . . . , b�$−1) ∈ {0, 1}�$ Our OR proof
is defined in R′

bi
protocol in Table 2.

Table 2. ZKP- OR-Composition ΠOR-Protocol

POR(ck, b ∈ {0, 1}) VOR(cn = (cn(1) . . . cn(θ))
for j ∈ [θ] compute

f
(j)
1−b ← C0, r

(j)
1−b ← D

n(m−1)
σOR

u(j) ← D
n(m−1)
σOR

a(j)
b = A · u(j)

a(j)
1−b = A · r(j)1−b − f

(j)
1−b · cn(j) + f1−b(1 − b)

p � H
(
{cn(j),a(j)

b ,a(j)
1−b}θ

j=1

)
← P

f
(j)
b = p2b−1(f (j)

1−b)
r(j)b = u(j) + f

(j)
b · ck(j)

Let u|| =
(
u(1), . . . ,u(θ)

)

Let (f · ck)|| =
(
f
(1)
b · ck(1), . . . , f

(θ)
b · ck(θ)

)

r|| = u|| + (f · ck)||
Abort with prob. ρb as in (10) .

{f
(j)
0 , f

(j)
1 , r(j)0 , r(j)1 }θ

j=1−−−−−−−−−−−−−−−−−→
for j ∈ [θ] compute

a(j)
0 = A · r(j)0 − f

(j)
0 · cn(j)

a(j)
1 = A · r(j)1 + f

(j)
1 · (1 − cn(j))

Let p = H({cn(j),a(j)
0 ,a(j)

1 }θ
j=1)

Check ‖r(j)0 ‖ ≤ B′
OR ∧ ‖r(j)1 ‖ ≤ B′

OR

Check f
(j)
0 ∈ C0 ∧ f

(j)
1 = p(f (j)

0)

Based on Lemma 1, note that the abort probability used in the protocol is
defined as

ρb(r||) � 1 − min

⎧
⎨

⎩
D

n(m−1)θ
σOR (r||)

M · D
n(m−1)θ
(f ·ck)||,σOR

(r||)
, 1

⎫
⎬

⎭
, (10)

for b ∈ {0, 1}. We let σOR = 2γ+1
√

κθn(m − 1) since ‖(f · ck)||‖ ≤√
θ‖f||‖∞‖ck||‖∞ ≤ 2

√
θκ · 2γ

√
n(m − 1) = 2γ+1

√
κθn(m − 1).

Range Proof Construction. We define a range proof Πrange(Prange,Vrange)
with common input (cn = {cni}�$−1

i=0 , {cn(j)}j∈[Nout]) and prover’s input
($, {bi}�$−1

i=0 , r, {cki}�$−1
i=0) for the following relations:

Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets 171

Rrange �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{cn(j)
i , cn(j)}, {$, b

(j)
i , ck(j)

i , r(j)} : ∃i ∈ [0, 	$ − 1] s.t.

(b(j)
i = 0 ∨ b

(j)
i = 1) ∧ cn(j)

i = ComA(bi, ck
(j)
i) ∧ ∀j ∈ [N(out)]

s.t.cn(j) = ComA($(j), r(j)) ∧ $(j) ∈ [0, 2�$ − 1]
∧ ‖r(j)‖ ≤ 2β, ‖ck(j)

i ‖ ≤ BOR

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

R′
range �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{cn(j)
i , cn(j)}, {$, b

(j)
i , ck(j)

i , r(j)
′
, f, fi} : ∃i ∈ [0, 	$ − 1] s.t.

(b(j)i = 0 ∨ b
(j)
i = 1) ∧ fi · cn(j)

i = ComA(fi · b
(j)
i , ck(j)

i) ∧
∀j ∈ [N(out)] s.t.f · cn(j) = ComA(f · $(j), r(j)

′
) ∧

$(j) ∈ [0, 2�$ − 1] ∧ ‖r(j)′‖ ≤ βrange, ‖ck(j)
i ‖ ≤ B′

OR∧
‖fi‖ ≤ 2

√
κ, ‖f‖ ≤ 4

√
κ

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

The range prove is defined for each output amount $(j)(out), j ∈ [Nout], i.e, for the

sum of output amounts $(j)out over Nout output wallets, the prover runs in parallel
the R′

range protocols for all j ∈ [Nout]: In the last step of the range proof protocol
in Table 3 we use the proof of knowledge (PoK∗) of opening a zero-commitment
from [19] with

ρ0 := 1 − min

⎧
⎨

⎩
D

n(m−1)
σ0 (r)

M · D
n(m−1)
(f ′·r),σ0

(r)
, 1

⎫
⎬

⎭
(11)

Table 3. ZK-Range Proof Πrange-Protocol

Prange({ck(j)
i , b

j)
i }i∈[�$]

, r(j), cn(j), $(j)) Vrange(cn(j))
For all j ∈ Nout and all i ∈ [0, l$ − 1]:
Run POR(ck

(j)
i , b

(j)
i)

Output {σ
(j)
OR, cn(j)

i }j∈Nout

Compute D(j) :=
∑�$−1

i=0 2icn(j)
i − cn(j)

= ComA(0, r(j)

Run PPoK∗(D(j), r(j)):
Pick r0 ∈ D

m(n−1)
σ0

Compute U := A · r0
Set f ′ := H(A · r0)
Compute r(j) := f ′r(j) + r0
Abort with prob. ρ0 from (11)
Output σ

(j)
PoK∗ = {(f ′, r(j))}j∈[Nout], {D(j)}

{σ
(j)
OR, cn(j)

i , σPoK∗−−−−−−−−−−−−−−→
(j)}j∈[Nout]

For all j ∈ [Nout] :
Run VOR(σ

(j)
OR, cn(j)

i)
Compute D(j) :=

∑�$−1
i=0 2icn(j)

i − cn(j)

Run VPoK ({σ
(j)
PoK∗ , D(j)}j):

Check f ′ := H(Ar(j) − f ′D(j))

and σ0 = 12n
√

n(m − 1). The prover’s inputs of this proof of knowledge are
given by a randomness r(j), while the verifier’s input is a commitment D(j) of
zero. The proof in [19] allows us to use the same relaxation factor f ′ in each of
the parallel runs of our range proof protocol in Table 3, which is significant for
the proof of balance of our MIMO.LRCT.

172 W. Alberto Torres et al.

Remark 2. The main difference between our OR proof and the OR proof from
[11] is the size of the challenges. As we cannot achieve soundness of our range
proof using the same challenge space as in [11], we adapt their protocol to another
challenge space which we call C0 (this space was introduced in [4]). It consists of
monomials in Rq as defined in (9). Because of these relatively small challenges,
we need to repeat R′

b-protocol θ times, where the rejection sampling as defined
in Lemma 1, returns something after θ−1 repeats. With this new space C0 we are
now able to prove soundness of our relaxed range proof to the relaxed relation
R′

range. In practice, we only need a relatively small θ < 20, whereas previous
lattice based range proofs [17] need much larger θ > 100 for the same soundness
level.

Theorem 3. If σOR ≥ 22
√

κBOR and B′
OR ≥ 2

√
nσOR, then the protocol in

Table 2 is a R′
b-Protocol complete for relation ROR and sound for relation R′

OR.

Theorem 4. The protocol described in Step 2 of the range proof is a proof of
knowledge (from [19]) complete for relation Rrange and sound for relation R′

range

with βrange = 2�$+2n
√

κn(m − 1)σOR + 22
√

nβv.

6 Security Analysis

Theorem 5 (Balance). If MIMO.L2RS is unforgeable, linkable and ComA

is β−binding with β = 4
√

κ(2βv)2 + κ(2βv)2n(m − 1)((2Nin + Nout)2γ)2 +
2βvNout(2�$+2n

√
κn(m − 1)σOR+22

√
nβv), then MIMO.LRCT satisfies balance.

Remark 3. In the balance proof, we only need zero-time unforgeability, meaning
that in the reduction the attacker produces a forgery without seeing any signa-
tures. Secondly, we do not need the message part of the signature, and thus this
is treated as a Proof of Knowledge.

Theorem 6 (LRCT-Anonymity). If the MIMO.L2RS scheme is uncondi-
tionally anonymous as Proposition 1 and the homomorphic commitment scheme
is hiding, then MIMO.LRCT achieves anonymity. Hence, the unconditional
anonymity of MIMO.LRCT can also be reduced from unconditional anonymity
of MIMO.L2RS.

Theorem 7 (LRCT-Non-Slanderability). If MIMO.LRCT satisfies bal-
ance, then it satisfies non-slanderability as in Definition 5. In addition, the
non-slanderability of MIMO.LRCT can be reduced to the non-slanderability of
MIMO.L2RS.

7 Performance Analysis

In this section, we propose a set of parameters for the MIMO.LRCT scheme. This
construction is secure against direct lattice attacks in terms of the BKZ algorithm
Hermite factor δ, using the value of δ = 1.007, based on the BKZ 2.0 complexity

Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets 173

estimates with pruning enumeration-based Shortest Vector Problem (SVP) [9].
We let n = 1024, m = 132, log q = 196, κ = 14, η = 1.1, α = 0.5, σ = 22010,
σOR = 277350 and 	$ = 64 to achieve the security parameter λ = 100, with α
being the rejection sampling parameter determined in ([12] Sect. 3.2). Signature
sizes of this analysis are illustrated in Table 4, where regular numbers for Nin

and Nout were taken from Monero blockchain network1.

Table 4. Size estimation for MIMO.LRCT

MIMO.LRCT (Nin, Nout) = (1, 2) (Nin, Nout) = (2, 2) (Nin, Nout) = (3, 2)

log(β) (Theorem 5) ≈ 126.3 ≈ 126.3 ≈ 126.3

Signature size (w = 1) ≈ 4.8 MB ≈ 5.1 MB ≈ 5.4 MB

Signature size (w = 5) ≈ 6.7 MB ≈ 8 MB ≈ 9.2 MB

Private-key size ≈ 49 KB ≈ 73 KB ≈ 98 KB

Public-key size ≈ 97 KB ≈ 146 KB ≈ 195 KB

Acknowledgement. This research project was supported by the Monash-HKPU
(Hong Kong Polytechnic University)-Collinstar Blockchain Research Lab, whereas the
work of Ron Steinfeld and Amin Sakzad was supported in part by ARC Discovery
Project grant DP150100285. The work of Ron Steinfeld and Joseph K. Liu were also
supported in part by ARC Discovery Project grant DP180102199.

References

1. Alberto Torres, W., Kuchta, V., Steinfeld, R., Sakzad, A., Liu, J.K., Cheng, J.:
Lattice RingCT v2.0 with Multiple Input and Output Wallets. https://eprint.iacr.
org/2019/ (2019)

2. Alberto Torres, W.A., et al.: Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (lattice RingCT v1.0). In:
Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 32

3. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

4. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 29

5. Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: short proofs for confidential transactions and more. In: IEEE Symposium
on Security and Privacy. IEEE (2018)

6. Bytecoin Team: Aggregate Addresses in CryptoNote: Towards Efficient Privacy
(2015). https://bytecoin.org/static/files/docs/aggregate-addresses.pdf

1 https://moneroblocks.info/.

https://eprint.iacr.org/2019/
https://eprint.iacr.org/2019/
https://doi.org/10.1007/978-3-319-93638-3_32
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://bytecoin.org/static/files/docs/aggregate-addresses.pdf
https://moneroblocks.info/

174 W. Alberto Torres et al.

7. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

8. Chen, L., et al.: Report on Post-Quantum Cryptography. NIST (2016)
9. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,

Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

10. Conti, M., Kumar, E.S., Lal, C., Ruj, S.: A survey on security and privacy issues
of bitcoin. IEEE Commun. Surv. Tutorials 20, 3416–3452 (2018)

11. del Pino, R., Lyubashevsky, V., Neven, G., Seiler, G.: Practical quantum-safe vot-
ing from lattices. In: CCS, pp. 1565–1581. ACM Press (2017)

12. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

13. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

14. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

15. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71677-8 13

16. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using
P2P network traffic. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol.
8437, pp. 469–485. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45472-5 30

17. Libert, B., Ling, S., Nguyen, K., Wang, H.: Lattice-based zero-knowledge argu-
ments for integer relations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10992, pp. 700–732. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 24

18. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

19. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

20. Mackenzie, A., Noether, S., Team, M.C.: Improving obfuscation in the CryptoNote
protocol (2015). https://lab.getmonero.org/pubs/MRL-0004.pdf

21. Maxwell, G.: Confidential Transactions (2015). https://xiph.org/confidential
values.txt

22. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Berlin (2009). https://doi.org/10.1007/978-3-540-88702-7 5

23. Monero: About Monero — Monero - secure, private, untraceable (2014). https://
getmonero.org/resources/about/

24. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009). https://
bitcoin.org/bitcoin.pdf

25. Noether, S.: Ring Signature Confidential Transactions for Monero (2015). https://
eprint.iacr.org/2015/1098

https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-662-45472-5_30
https://doi.org/10.1007/978-3-662-45472-5_30
https://doi.org/10.1007/978-3-319-96881-0_24
https://doi.org/10.1007/978-3-319-96881-0_24
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-642-29011-4_43
https://lab.getmonero.org/pubs/MRL-0004.pdf
https://xiph.org/confidential_values.txt
https://xiph.org/confidential_values.txt
https://doi.org/10.1007/978-3-540-88702-7_5
https://getmonero.org/resources/about/
https://getmonero.org/resources/about/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098

Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets 175

26. Noether, S., Noether, S., Mackenzie, A.: A Note on Chain Reactions in Traceability
in CryptoNote 2.0 (2014). https://lab.getmonero.org/pubs/MRL-0001.pdf

27. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

28. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

29. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

30. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency Monero.
In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol.
10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66399-9 25

31. Van Saberhagen, N.: CryptoNote v 2.0 (2013). https://cryptonote.org/whitepaper.
pdf

https://lab.getmonero.org/pubs/MRL-0001.pdf
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-642-39884-1_2
https://doi.org/10.1007/978-3-319-66399-9_25
https://doi.org/10.1007/978-3-319-66399-9_25
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

Two New Module-Code-Based KEMs
with Rank Metric

Li-Ping Wang1,2(B) and Jingwei Hu3

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
wangliping@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore, Singapore
davidhu@ntu.edu.sg

Abstract. In this paper, we use a class of module codes to construct
a suite of code-based public-key schemes—Piglet, which includes a new
IND-CPA-secure public-key encryption scheme Piglet-1.CPAPKE and
an IND-CCA-secure key encapsulation mechanism (KEM for short)
Piglet-1.CCAKEM by applying the KEM variant of Fujisaki-Okamoto
transform to Piglet-1.CPAPKE. We also put a new IND-CPA-secure
KEM Piglet-2.CPAKEM into Piglet. Then, we present the parameters
comparison between our schemes and some code-based NIST submis-
sions. The results show that our schemes are good long-term-secure can-
didates for post-quantum cryptography.

Keywords: Code-based post-quantum cryptography ·
Rank syndrome decoding problem · Quasi-cyclic codes ·
Gabidulin codes · LRPC codes

1 Introduction

1.1 Background

Perceivable advances in quantum computers render Shor’s quantum algorithm a
threat to the widely used public key cryptosystems based on integer factor-
ing and discrete logarithm problems [43]. As a consequence, NIST develops
a post-quantum cryptography standardization project to solicit, evaluate, and
standardize one or more quantum-resistant public cryptographic algorithms in
recent years [38]. The cryptographic research community is stimulated by this
initiation to construct practicable cryptographic systems that are secure against
both quantum and classic computers, and can incorporate with existing com-
munications protocols and networks. It is commonly thought that code-based
cryptosystems can be resistant to quantum computing attack and so they are
still becoming a hot topic even if NIST has ended the call.

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 176–191, 2019.
https://doi.org/10.1007/978-3-030-21548-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_10

Two New Module-Code-Based KEMs with Rank Metric 177

The first code-based cryptosystem was proposed by McEliece in 1978 by
hiding a generator matrix of a Goppa code [33]. Another equivalent Niederreiter-
type code-based scheme is constructed by scrambling a parity-check matrix of a
Goppa code [35]. They are still secure under approximate parameters. However,
the size of public keys in above schemes using Goppa codes is very huge. In
order to reduce the size of public keys, LDPC (Low Density Parity Check) codes,
convolutional codes, Gabidulin codes, Reed-Muller codes, and generalized Reed-
Solomon codes were used to replace Goppa codes in the above cryptosystems
framework, however, all were proven to be insecure [7,27,36,45,46].

As we all know, there are significant analogies between lattices and cod-
ing theory and the difference mainly consists in the use of different metrics
(Euclidean metric for lattices, Hamming metric or rank metric for codes).
Recently, inspired by the merits of lattices such as ideal rings and ring-LWE
[2,32,39,40], diverse code-based public-key schemes such as RQC, HQC, BIKE,
LOCKER, and Ouroboros-R, were proposed by using specific quasi-cyclic codes
so that the size of public key is significantly reduced [1,4,5,17]. Those quasi-
cyclic codes, i.e., we called one-dimensional module codes here, are also used in
the many other code-based cryptosystems to advance compact key size [8,9,34].
However, the added quasi-cyclic structure may be exploited to initiate an alge-
braic attack and therefore brings about less confidence in the underlying security
[18,41,42].

In lattice-based public key cryptosystems, Kyber which employs module lat-
tices was proposed to thwart attacks from exploiting the algebraic structure of
cyclotomic ideal lattices [11–15]. However, in code-based cryptosystems, there
are no similar schemes.

In this paper, motivated by Kyber based on module lattices, we use the con-
cept of module codes to redefine quasi-cyclic codes and propose an alternative
assumption that rank module syndrome decoding (RMSD for short) problem
is difficult so that our schemes are distinguishable from those so-called quasi-
cyclic-code-based cryptosystems. It is worth mentioning that a handful of cryp-
tosystems using rank codes exist in literature due to nice properties of rank
metric such as RQC, Ouroboros-R, GPT’s variant [31]. Therefore, based on
the hardness of RMSD problem, we construct a suite of code-based public-key
schemes—Piglet, which includes a new IND-CPA-secure public-key encryption
scheme Piglet-1.CPAPKE and an IND-CCA-secure key encapsulation mecha-
nism (KEM for short) Piglet-1.CCAKEM by applying the KEM variant of
Fujisaki-Okamoto transform to Piglet-1.CPAPKE. We also put a new IND-CPA-
secure KEM Piglet-2.CPAKEM into this suite. Then, we present the parameters
comparison between our schemes and some code-based NIST submissions. The
results show that our schemes are good long-term-secure candidates for post-
quantum cryptography.

1.2 Our Contribution and Techniques

In this paper, the main contribution is that we propose a semantically secure
public-key encryption scheme Piglet-1.CPAPKE and a new IND-CPA-secure

178 L.-P. Wang and J. Hu

KEM Piglet-2.CPAKEM based on the hardness of rank module syndrome decod-
ing problem. We believe that our schemes would be good candidates for post-
quantum public-key cryptosystems with long-term security. The following are
some advantages:

Security. The security of our schemes is established on the hardness of RMSD
problem with two dimensions, while current code-based schemes are built upon
rank quasi-cyclic syndrome decoding (RQCSD) problem which is RMSD problem
with one dimension. In [42], the authors used the quasi-cyclic algebraic structure
to propose a generic decoding attack. It shows that higher dimension of a mod-
ule code can diminish the impact that possible attacks introduce. Furthermore,
it cannot be excluded that some fatal attacks which exploits the quasi-cyclic
structure embedded in the code might be proposed in the future. Therefore, we
use module codes with two dimensions to construct new schemes, which would
be good candidates for post-quantum public-key cryptosystems with long-term
security.

More Plaintext Bits. In kyber, the size of plaintext is fixed to 256 bits, how-
ever, in our schemes, the size of plaintext depends on the extension degree of
the finite field and the dimension of the auxiliary code in our scheme Piglet-1.
So the sizes of plaintexts in Piglet-1 in 128, 192, and 256 bits security level are
267, 447, and 447 bits, respectively.

Efficiency. Although the operations in our schemes are implemented in large
finite fields, it is also efficient in practice.

Decoding Failure. There is no decoding failure in Piglet-1.CPAPKE and
Piglet-1.CCAKEM since we use the decoding algorithm for Gabidulin codes. As
to Piglet-2.CPAKEM, the decoding failure rate is extremely low and tolerable.

1.3 Road Map

The rest of the paper is organized as follows. Section 2 introduces some basic
concepts and some results needed in our paper. In Sect. 3, we describe a dif-
ficult problem on which the security of our schemes is based. In Sect. 4, we
propose Piglet-1.CPAPKE and give the security proof. Then, we apply Fujisaki-
Okamoto transform to Piglet-1.CPAPKE and then construct Piglet-1.CCAKEM
with CCA security. Next, we give three parameter sets achieving 128, 192 and 256
bits of security, and make comparison on parameters between our schemes and
some NIST candidates. In Sect. 5, we present Piglet-2.CPAKEM, whose session
key is the hash value of error vectors without encrypting plaintexts. In Sect. 6,
we provide analysis on the existing attacks to our schemes. Finally, Sect. 7 is
devoted to our conclusions.

2 Preliminaries

2.1 Results on Rank Codes

We represent vectors by lower-case bold letters and matrices by upper-case
letters, and all vectors will be assumed to be row vectors. Let F

n
qm be an n-

Two New Module-Code-Based KEMs with Rank Metric 179

dimensional vector space over a finite field Fqm where q is a prime power, and
n, m are positive integers.

Let β = {β1, . . . , βm} be a basis of Fqm over Fq. Let Fi be the map from
Fqm to Fq where Fi(u) is the i-th coordinate of an element u ∈ Fqm in the
basis representation with β. To any u = (u1, . . . , un) in F

n
qm , we associate the

m × n matrix (Fi(uj))1≤i≤m,1≤j≤n over Fq. The rank weight of a vector u can
be defined as the rank of its associated matrix, denoted by wR(u). We refer to
[29] for more details on rank codes.

For integers 1 ≤ k ≤ n, an [n, k] linear rank code C over Fqm is a subspace of
dimension k of Fn

qm embedded with the rank metric. The minimum rank distance
of the code C, denoted by dR(C), is the minimum rank weight of the non-zero
codewords in C. A k×n matrix is called a generator matrix of C if its rows span
the code. The dual code of C is the orthogonal complement of the subspace C of
F
n
qm , denoted by C⊥. A parity-check matrix H for a linear code C is a generator

matrix for C⊥.
For any vector x = (x1, . . . , xn) in F

n
qm , the support of x, denoted by

Supp(x), is the Fq-linear subspace of Fqm spanned by the coordinates of x,
that is, Supp(x) = <x1, . . . , xn>Fq

. So we have wR(x) = dim(Supp(x)).
Let r be a positive integer and a vector v = (v1, . . . , vr) ∈ F

r
qm . The circulant

matrix rot(v) induced by v is defined as follows:

rot(v) =

⎛
⎜⎜⎜⎝

v1 vr . . . v2
v2 v1 . . . v3
...

...
. . .

...
vr vr−1 . . . v1

⎞
⎟⎟⎟⎠ ∈ F

r×r
qm ,

where F
r×r
qm denotes the set of all matrices of size r × r over Fqm .

For any two vectors u,v ∈ F
r
qm , u · v can be expressed to vector-matrix

product as follows.

u · v = u × rot(v)T = (rot(u) × vT)T = v × rot(u)T = v · u.

Let R = Fqm [x]/(xr − 1). Then F
r
qm is an Fqm-algebra isomorphic to R

defined by (v1, v2, . . . , vr) �→ ∑r
i=1 vix

i.

Definition 1. An [n, k]-linear block code C ∈ F
n
qm is a quasi-cyclic with index

s if for any c = (c1, . . . , cs) ∈ C with s|n, the vector obtained after applying a
simultaneous circulant shift to every block c1, . . . , cs is also a codeword.

When n = sr, it is convenient to have parity-check matrices composed by
r× r circulant blocks. In this paper, we use another viewpoint to describe quasi-
cyclic codes so that it is clear to distinguish the quasi-cyclic codes used in our
schemes from the many other quasi-cyclic-code-based cryptosystems.

Definition 2. An [n, k]-linear block code C over R is called an R-module code
if C is a k-dimensional R-submodule of Rn.

180 L.-P. Wang and J. Hu

Remark 1. 1. The module code C over R is also quasi-cyclic over Fqm since
(xc1, · · · , xcn) is also a codeword of C for any (c1, · · · , cn) ∈ C.

2. The quasi-cyclic codes over Fqm used in RQC, HQC, Ouroboros-R, BIKE,
etc, are module codes over R with dimension k = 1.

3. The module codes are reduced to a general linear cyclic code if n = 1.
4. The module codes are a general linear code if r = 1.

Definition 3. A systematic [n, k] module code over R has the form of a parity-
check matrix as H = (I|A), where A is an (n − k) × k matrix over R.

For example, in our schemes we use a systematic [4, 2] module code over R
and A has the form

(
a1,1 a1,2

a2,1 a2,2

)
, where aij ∈ R, i = 1, 2, j = 1, 2, and so aij

can also be seen a circulant matrix over Fqm . In fact, the systematic cyclic codes
used in RQC, HQC, Ouroboros-R, BIKE are [2, 1] module codes over R and
have such forms A = (a), where a ∈ R.

Next, we generalize the rank weight of a vector in F
n
qm to Rn.

Definition 4. Let v = (v1, . . . , vn) ∈ Rn, where vi =
∑r−1

j=0 aijx
j

for 1 ≤ i ≤ n. The support of v is defined by Supp(v) =
〈a1,0, . . . , a1,r−1, . . . , an,0, . . . , an,r−1〉Fq

. The rank weight of v is defined to be
the dimension of the support of v, also denoted by wR(v).

2.2 Gabidulin Codes and Their Decoding Technique

Gabidulin codes were introduced by Gabidulin in [20] and independently by
Delsarte in [16]. They exploit linearized polynomials instead of regular ones,
which was introduced in [37].

A q-linearized polynomial over Fqm is defined to be a polynomial of the form

L(x) =
d∑

i=0

aix
qi , ai ∈ Fqm , ad �= 0

where d is called the q-degree of f(x), denoted by degq(f(x)). Denote the set of
all q-linearized polynomials over Fqm by Lq(x,Fqm).

Let g1, . . . , gn ∈ Fqm be linearly independent over Fq and the Gabidulin code
G is defined by

G = {(L(g1), . . . , L(gn)) ∈ F
n
qm |L(x) ∈ Lq(x,Fqm) and degq(L(x)) < k}.

The Gabidulin code G with length n has dimension k over Fqm and the
generator matrix of G is

G =

⎛
⎜⎜⎜⎝

g1 . . . gn
gq1 . . . gqn
...

. . .
...

gq
k−1

1 . . . gq
k−1

n

⎞
⎟⎟⎟⎠ . (1)

Two New Module-Code-Based KEMs with Rank Metric 181

The minimum rank distance of Gabidulin code G is n − k + 1, and so it can
efficiently decode up to n−k

2 rank errors [20]. The decoding algorithm employed
in our scheme was proposed in [44], which is the generalization of Berlekamp-
Massey algorithm and its computational complexity is O(n2), see details in [44].

2.3 Low Rank Parity Check Codes and Their Decoding Algorithm

The Low Rank Parity Check (LRPC) codes have been introduced in [24]. LRPC
codes are widely used in code-based cryptosystems because they have a weak
algebraic structure and efficient decoding algorithms.

An LRPC code of rank d, length n and dimension k is an [n, k]-linear block
code over Fqm that has its parity-check matrix H = (hij)1≤i≤n−k,1≤j≤n such
that the dimension of the subspace spanned by all hij is d.

The rank syndrome decoding for an LRPC code is that given a parity-check
matrix H ∈ F

(n−k)×n
qm of an LRPC code of rank d and a syndrome s ∈ F

n−k
qm , the

goal is to find a vector x ∈ F
n
qm with wR(x) ≤ r such that HxT = sT .

In fact, what we want in Piglet-2.CPAKEM is just to recover the subspace
E spanned by x instead of x, which is called rank support recovery problem.
The rank support recovery algorithm was provided in [17], which combines the
general decoding algorithm of LRPC codes in [21] and a tweak of the improved
algorithm in [3]. The following is the rank support recovery algorithm in detail
(RS-Recover for short).

In the following algorithm, S and E are the vector spaces generated by the
coordinates of the syndrome s = (s1, · · · , sn−k) and of the vector x, respectively.
Si is defined by Si = F−1

i ·S = 〈F−1
1 s1, F

−1
1 s2, · · · , F−1

d sn−k〉, with Fi an element
of a basis of H, and Sij = Si ∩ Sj .

RS-recover(H, s, r)

Input: H = 〈F1, F1, . . . Fd〉, s = (s1, . . . , sn−k), r (the dimension of E)
Output: The vector space E
// Part 1: Compute the vector space E·F
1 Compute S = 〈s1, . . . , sn−k〉
2 Precompute every Si for i = 1 to d
3 Precompute every Si,i+1 for i = 1 to d − 1
4 for i from 1 to d − 2 do
5 tmp ← S + F·(Si,i+1 ⊕ Si1,i+2 ⊕ Si,i+2)
6 if dim(tmp) ≤ rd then
7 S ← tmp
8 end
9 end
// Part 2: Recover the vector space E
10 E ← F−1

1 ·S ∩ . . . ∩ F−1
d ·S

11 return E

The above algorithm will probably fail in some cases and the decode failure
probability is given in Ouroboros-R [17].

182 L.-P. Wang and J. Hu

Proposition 1. The probability of failure of the above algorithm is
max(q(2−r)(d−2) × q−(n−k−rd+1), q−2(n−k−rd+2)), where r is the rank weight of
the error vector.

3 Difficult Problems for Code-Based Cryptography

In this section, we describe some difficult problems which are used in code-based
cryptography. In particular, we introduce a difficult problem, i.e., rank module
syndrome decoding (RMSD for short) problem, which is the security assumption
for our schemes.

Definition 5 (Rank Syndrome Decoding (RSD for short) Problem).
Given a parity-check matrix H = (In−k|A(n−k)×k) ∈ F

(n−k)×n
qm of a random

linear code, and y ∈ F
n−k
qm , the goal is to find x ∈ F

n
qm with wR(x) ≤ w such that

HxT = yT .

The RSD problem has recently been proven difficult with a probabilistic
reduction to the Hamming setting in [22]. As we all know, syndrome decoding
problem in Hamming metric is NP-hard [10]. Most of QC-code-based cryptosys-
tems in rank metric are built upon the following difficult problem.

Definition 6 (Rank Quasi-Cyclic Syndrome Decoding (RQCSD) Prob-
lem). Given a parity-check matrix H = (In−1|A(n−1)×1) ∈ R(n−1)×n of a sys-
tematic random module code over R and a syndrome y ∈ Rn−1, to find a word
x ∈ Rn with ωR(x) ≤ w such that yT = HxT .

RQCSD problem is not proven to be NP-hard, however, the size of public-key
is much shorter of variant code-based cryptosystems constructed on this problem
such as RQC, Ouroboros-R, LOCKER. As for Hamming metric, one use quasi-
cyclic syndrome decoding (QCSD for short) problem as security assumption [8],
[34]. We give a new difficult problem as follows:

Definition 7 (Rank Module Syndrome Decoding (RMSD) Problem).
Given a parity-check matrix H = (In−k|A(n−k)×k) ∈ R(n−k)×n of a systematic
random module code over R and a syndrome y ∈ Rn−k, to find a word x ∈ Rn

with ωR(x) ≤ w such that yT = HxT .
Simply denote the above problem by the (n, k, w, r)-RMSD problem over R.

Remark 2. 1. If k = 1, the (n, k, w, r)-RMSD problem over R is the RQCSD
problem, which is used in some NIST submissions such as RQC, Ouroboros-
R, LOCKER. The result holds for the Hamming metic.

2. If r = 1, the (n, k, w, r)-RMSD problem over R is the usual RSD problem
over Fqm .

3. The RSD problem is proved to be NP-hard [22], however, the RQCSD and the
RMSD problem are still not yet proven to be NP-hard. Furthermore, smaller
k implies more algebraic structure makes the scheme potentially susceptible
to more avenues of attacks. Therefore, the security of RMSD-based schemes
(k ≥ 2 by default) is supposed to be in between RSD and RQCSD based
cryptosystems.

Two New Module-Code-Based KEMs with Rank Metric 183

The above problem is also called the search version of RMSD problem. We
also give the definition of the decisional rank module syndrome decoding problem
(DRMSD). Since the best known attacks on the (n, k, w, r)-DRMSD problem
consist in solving the same instance of the (n, k, w, r)-RMSD problem, we make
the assumption that the (n, k, w, r)-DRMSD problem is difficult.

Definition 8. Given input (H,y) ∈ R(n−k)×n × Rn−k, the decisional RMSD
problem asks to decide with non-negligible advantage whether (H,yT) came from
the RMSD distribution or the uniform distribution over R(n−k)×n × Rn−k.

The above problem is simply denoted as (n, k, w, r)-DRMSD problem.

4 Piglet-1: A New Module-Code-Based Public-Key
Scheme

4.1 Piglet-1.CPAPKE

In this subsection, we first present a new IND-CPA-secure public-key encryption,
i.e., Piglet-1.CPAPKE, in which XOF(·) denotes an extendable output function
and S := XOF(x) denotes the output of the function is distributed uniformly
over a set S while x is as input.

In this scheme, we exploit an [r, l]-Gabidulin code G, since the Gabidulin code
is a unique rank code family with an efficient decoding algorithm. The minimum
distance is r − l + 1 and so one can efficiently decode up to r−l

2 rank errors. The
plaintext m is chosen from the plaintext space F

l
qm .

Piglet-1.CPAPKE.keyGen(): key generation

1. ρ
$←− {0, 1}256, σ

$←− {0, 1}320
2. H ∈ Rk×k := XOF(ρ)
3. (x,y) ∈ Rk × Rk := XOF(σ) with wR(x) = wR(y) = w
4. s := xH + y
5. return (pk := (H, s), sk := x)

Piglet-1.CPAPKE.Enc(ρ, s,m ∈ F
l
qm): encryption

1. τ
$←− {0, 1}320

2. H ∈ Rk×k := XOF(ρ)
3. (r, e, e′) ∈ Rk × Rk × R := XOF(τ) with wR(r) = wR(e) = wR(e′) = we

4. u := HrT + eT

5. v := srT + e′ + mG, where G is an l × r generator matrix over Fqm of a
Gabidulin code G.

6. return a ciphertext pair c := (u,v)

Piglet-1.CPAPKE.Dec(sk = x, c = (u,v)): decryption

1. Compute v − xu := mG + yrT + e′ − xeT

184 L.-P. Wang and J. Hu

2. m := DG(v − xu), where DG(·) is a decoding algorithm for the Gabidulin
code G.

Remark 3. 1. The secret key x and y share the same support including 1 with
dimension w. The r, e and e′ share the same support with dimension we. So
that the rank weight of overall error vector yrT + e′ − xeT is less than or
equal to wwe.

2. The plaintext m can be obtained by decoding algorithm of the Gabidulin
code G if wR(yrT + e′ − xeT) = wwe ≤ r−l

2 .

4.2 Proof of Security

In this subsection, we show that Piglet-1.CPAPKE is IND-CPA secure under
the RMSD hardness assumption.

Theorem 1. For any adversary A, there exists an adversary B such that
AdvCPA

Piglet-1.CPAPKE(A) ≤ AdvDRMSD
2k,k,w,r(B) + AdvDRMSD

2k+1,k,we,r(B).

Proof. Let A be an adversary that is executed in the IND-CPA security exper-
iment which we call game G1, i.e.,

AdvCPA
Piglet-1.CPAPKE(A) = |Pr[b = b′ in game G1] − 1/2|,

In game G2, the view of s = xH + y generated in KeyGen is replaced by a
uniform random matrix. It is possible to verify that there exists an adversary B
with the same running time as that of A such that

|Pr[b = b′ in game G1] − Pr[b = b′ in game G2]| ≤ AdvDMRSD
2k,k,w,r(B),

since (I HT)
(

yT

xT

)
= sT , where (I HT) is a systematic parity-check matrix of

a module code over R while x and y are drawn randomly with low rank weight
w.

In game G3, the values of u = HrT + eT and v = srT + e′ +mG used in the
generation of the challenge ciphertext are simultaneously substituted with uni-
form random values. Again, there exists an adversary B with the same running
time as that of A such that

|Pr[b = b′ in game G2] − Pr[b = b′ in game G3]| ≤ AdvDMRSD
2k+1,k,we,r(B),

since
(

Ik H
I1 s

)⎛
⎝

eT

e′

rT

⎞
⎠ =

(
u

v − mG

)
, where

(
Ik H

I1 s

)
is a systematic

parity-check matrix of a module code while H, s are uniform and r, e, e′ are
drawn randomly with low rank weight we.

Note that in game G3, the value v from the challenge ciphertext is indepen-
dent of b and therefore Pr[b = b′ in game G3] = 1

2 + ε, in which ε is arbitrarily
small. We build a sequence of games allowing a simulator to transform a cipher-
text of a message m0 to a ciphertext of a message m1. Hence the result is
required. �

Two New Module-Code-Based KEMs with Rank Metric 185

4.3 Piglet-1.CCAKEM: A New IND-CCA-Secure KEM

In this subsection, let G : {0, 1}∗ → {0, 1}3×256 and H : {0, 1}∗ → {0, 1}2×256 be
hash functions, and z is a random, secret seed. Then, we apply the KEM variant
of Fujisaki-Okamoto transform to Piglet-1.CPAPKE to construct an IND-CCA-
secure KEM, i.e., Piglet-1.CCAKEM when the hash functions G and H are
modeled random oracle.

Piglet-1.CCAKEM.Keygen() is the same as Piglet-1.CPAPKE. Keygen()
Piglet-1.CCAKEM.Encaps(pk = (ρ, s))

1. m ← F
l
qm

2. (K̂, σ, d) := G(pk,m)
3. (u,v) := Piglet-1.CPAPKE.Enc((ρ, s),m;σ)
4. c := (u,v, d)
5. K := H(K̂, c)
6. return(c,K)

Piglet-1.CCAKEM.Decaps(sk = (x, z, ρ, s), c = (u,v, d))

1. m′ := Piglet-1.CPAKEM.Dec(x, (u,v))
2. (K̂ ′, σ′, d′) := G(pk,m′)
3. (u′,v′) := Piglet-1.CPAKEM.Enc((ρ, s),m′;σ′)
4. if (u′,v′, d′) = (u,v, d) then
5. return K := H(K̂ ′, c)
6. else
7. return K := H(z, c)
8. end if

4.4 Parameter Sets

In this subsection, we give three sets of parameters for Piglet-1.CCAKEM,
achieving 128, 192 and 256 bits of security, respectively.

First we choose the dimension of the module code used in our schemes k = 2
so that the size of public key is as small as possible. In this case, we consider
1 ∈ Supp(x,y), since finding a small weight codeword of weight w with support
containing 1 is harder than finding a small weight codeword of w −1. Therefore,
the security of the (2k, k, w, r)-RMSD over R in our scheme can be reduced to
decoding [4r, 2r]-linear codes over Fqm with rank weight w − 1. The security of
the (2k + 1, k, we, r)-RMSD over R can be reduced to decoding [5r, 2r]-linear
codes over Fqm with rank weight we. One can use the best combinatorial attack
algorithm in [22] to determine the choice of parameters such as m, r,w,we. Fur-
thermore, we can determine l since wwe ≤ r−l

2 . Those parameters also need to
resist the algebraic attacks which are presented in Sect. 6. The concrete param-
eters are listed in Table 1.

186 L.-P. Wang and J. Hu

Table 1. Parameter sets of Piglet-1.CCAKEM

Instance k q m r w we l Security level

Piglet-1.CCAKEM-I 2 2 89 53 5 5 3 128

Piglet-1.CCAKEM-II 2 2 149 53 5 5 3 192

Piglet-1.CCAKEM-III 2 2 149 75 6 6 3 256

Table 2. The theoretical sizes in bytes for Piglet-1.CCAKEM

Instance pk size sk size ct size ss size Security level

Piglet-1.CCAKEM-I 1212 40 1801 64 128

Piglet-1.CCAKEM-II 2007 40 2994 64 192

Piglet-1.CCAKEM-III 2826 40 4223 64 256

Table 2 presents the theoretical sizes in bytes for Piglet-1.CCAKEM. The
size of pk is kmr + 256 bits, i.e., 2mr+256

8 bytes. The size of sk is 256 bits, i.e.,
32 bytes. The size of ciphertext is 3mr+256 bits, i.e., 3mr/8+32 bytes. The size
of ss (session secret) is 2 × 256 bits, i.e., 64 bytes.

Table 3. Comparison on sizes of public keys (in bytes)

Instance 128 bits 192 bits 256 bits

Classic McEliece 368,282 1,046,737

NTS-kem 319,488 929,760 1,419,704

Piglet-1.CCAKEM 1212 2007 2826

Piglet-2.CPAKEM 1212 2007 2826

RQC 786 1411 1795

HQC 2819 5115 7417

LEDAKem 3,480 7,200 12,384

BIKE-I 2541 5474 8181

BIKE-II 1271 2737 4094

BIKE-III 2757 5421 9033

Ouroboros-R 676 807 1112

LOCKER 737 1048 1191

Table 3 presents parameters comparison between our scheme and some NIST
submissions which proceed the second round of NIST PQC standardization pro-
cess. As we have analyzed in Sect. 3, it shows that the size of public key in our
schemes is slightly larger than those in RQC, Ouroboros-R and LOCKER, which
are based RQCSD hardness problem. The size of public key in our schemes is

Two New Module-Code-Based KEMs with Rank Metric 187

better than those in HQC, LEDAkem, BIKE which are based on the QCSD
hardness problem. And it is much better than those in Classic McEliece and
NTS-kem which are original McEliece cryptosystems.

5 Piglet-2: A New Module-Code-Based KEM

In this section, we propose a new IND-CPA-secure KEM Piglet-2.CPAKEM. The
difference lies in choice of the auxiliary codes we use (LRPC codes for Piglet-
2.CPAKEM, Gabidulin codes for Piglet-1.CPAPKE). The session key is the hash
value of error vectors without encrypting a plaintext. As for LRPC codes, we
introduced them in Sect. 2. In addition, G : {0, 1}∗ → {0, 1}2×256 denotes a hash
function.

Piglet-2.CPAKEM.Keygen(): key generation

1. ρ
$←− {0, 1}256, σ

$←− {0, 1}320
2. H ∈ Rk×k := XOF(ρ)
3. (x,y) ∈ Rk × Rk := XOF(σ) with wR(x) = wR(y) = w
4. s := xH + y
5. return (pk := (H, s), sk := (x,y))

Piglet-2.CPAKEM.Encaps(ρ, s): encapsulation

1. τ
$←− {0, 1}320

2. H ∈ Rk×k := XOF(ρ)
3. (r, e, e′) ∈ Rk × Rk × R := XOF(τ) with wR(r) = wR(e) = wR(e′) = we

4. E := Supp(r, e, e′) and K := G(E)
5. u := HrT + eT

6. v := srT + e′

7. return a ciphertext pair c := (u,v)

Piglet-2.CPAKEM.Decaps(sk = (x,y), c = (u,v)): decapsulation

1. F := Supp(x,y)
2. Compute v − xu := yrT + e′ − xeT

3. E := RS-recover(F,v − xu, we)
4. K := G(E)

Remark 4. 1. In the above scheme, E = RS-recover(F,v−xu, we) denotes that
the decoding algorithm outputs the support E of error vectors r, e and e′

with dimension we given the support F of x and y and the syndrome v−xu.
2. The security proof of Piglet-2.CPAKEM is the same as that of Piglet-

1.CPAPKE and so we omit it here.
3. The choice of parameter sets for Piglet-2.CPAKEM are the same as that for

Piglet-1.CCAKEM.

188 L.-P. Wang and J. Hu

4. The rank support recovery algorithm is probabilistic and the decoding failure
probability can be computed by Proposition 1. So in our case the result is
max(q(2−w)(we−2) × q−(r−wwe+1), q−2(r−wwe+2)) = 2−38 for both 128 and 192
bits security levels, and 2−52 for 256 bits security level.

5. Since rank support recovery decoding techniques do not attain a negligible
decoding failure rate, this makes it challenge to achieve higher security notions
such as IND-CCA.

6 Known Attacks

There are two types of generic attacks on our schemes, which play an important
role in choice of parameter sets in our schemes. One is general combinatorial
decoding attack and the other is algebraic attack using Gröbner basis.

The decoding algorithm was proposed in [3,21] and the best result is as
follows.

For an [n, k] rank code C over Fqm , the time complexity of the known best
combinatorial attack to decode a word with rank weight d is

O((nm)3qd�m(k+1)
n �−m). (2)

As for algebraic attack, the time complexity is much greater than the decod-
ing attack when q = 2. The complexity of the above problem is qd� d(k+1)−(n+1)

d �

[28].
Next, the general attacks from [42] which use the cyclic structure of the code

have less impact on module codes than quasi-cyclic codes in RQC, Ouroboros-R,
LOCKER, etc.

In addition, as for the choice of r, no attacks of quasi-cyclicity of a code are
known if there are only two factors of xr − 1 mod q [26]. Therefore, r should be
prime, and q is a generator of the multiplicative group of (Z/rZ)∗.

7 Conclusions

In this paper, we propose an IND-CCA-secure KEM Piglet-1.CCAKEM and
an IND-CPA-secure Piglet-2.CPAKEM, both of which are based on the RMSD
difficult problem. More importantly, the size of public key in our schemes is
much shorter than those of NIST submissions which entered the second round
except the candidates based on RQCSD hardness problem. The shorter keys from
the RQCSD-problem related candidates are due to simple quasi-cyclic structure
used. However, the advantage of our new construction is the elimination of pos-
sible quasi-cyclic attacks and thus makes our schemes strong and robust. The
parameter comparison between Piglet and other NIST proposals shows that our
schemes would be good candidates for post-quantum cryptosystems with long-
term security. Moreover, we expect to further reduce the public key size by using
similar Kyber’s approach in our future work.

Two New Module-Code-Based KEMs with Rank Metric 189

Acknowledgment. The author would like to thank the anonymous reviewers for their
valuable comments and suggestions which improved the quality of this paper. The work
of L.-P. Wang was supported in part by the National Natural Science Foundation of
China (Grant No. 61872355) and National Cryptography Development Fund (MMJJ
20170124).

References

1. Aguilar-Melchor, C., Blazy, O., Deneuville, J.-C., Gaborit, P., Zémor, G.: Efficient
encryption from random quasi-cyclic codes. IEEE Trans. Inf. Theory 64(5), 3927–
3943 (2018)

2. Alekhnovich, M.: More on average case vs approximation complexity. Comput.
Complex. 20(4), 755–786 (2011)

3. Aragon, N., Gaborit, P., Hautevile, A., Tillich, J.-P.: Improvement of generic
attacks on the rank syndrome decoding problem (2017). Pre-print https://www.
unilim.fr/pages perso/philippe.gaborit/newGRS.pdf

4. Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., et al.: BIKE: bit
flipping key encapsulation. Submission to the NIST Post Quantum Standardization
Process (2017)

5. Aragon, N., Blazy, O., Deneuville, J.-C., Gaborit, P., Hauteville, A., et al.:
LOCKER: low rank parity check codes encryption. Submission to the NIST Post
Quantum Standardization Process (2017)

6. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

7. Baldi, M.: QC-LDPC Code-Based Cryptography. Springer Briefs in Electrical and
Computer Engineering. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-02556-8

8. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDAkem: a post-
quantum key encapsulation mechanism based on QC-LDPC codes. In: Lange, T.,
Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 3–24. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-79063-3 1

9. Barreto, P.S.L.M., Lindner, R., Misoczki, R.: Monoidic codes in cryptography.
In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 179–199. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 12

10. Berlekamp, E., McEliece, R., Van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

11. Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields. In:
Krauthgamer, R. (ed.) 27th SODA, pp. 893–902. ACM-SIAM (2016)

12. Bos, J.W., et al.: CRYSTALS- Kyber: a CCA-secure module-lattice-based KEM.
In: EuroS&P 2018, pp. 353–367 (2018)

13. Campbell, P., Groves, M., Shepherd, D.: Soliloquy: a cautionary tale. In: ETSI 2nd
Quantum-Safe Crypto Workshop, pp. 1–9 (2014)

14. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 20

https://www.unilim.fr/pages_perso/philippe.gaborit/newGRS.pdf
https://www.unilim.fr/pages_perso/philippe.gaborit/newGRS.pdf
https://doi.org/10.1007/978-3-319-02556-8
https://doi.org/10.1007/978-3-319-02556-8
https://doi.org/10.1007/978-3-319-79063-3_1
https://doi.org/10.1007/978-3-642-25405-5_12
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20

190 L.-P. Wang and J. Hu

15. Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations and appli-
cation to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 12

16. Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory.
J. Comb. Theory Ser. A 25(3), 226–241 (1978)

17. Deneuville, J.-C., Gaborit, P., Zémor, G.: Ouroboros: a simple, secure and efficient
key exchange protocol based on coding theory. In: Lange, T., Takagi, T. (eds.)
PQCrypto 2017. LNCS, vol. 10346, pp. 18–34. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59879-6 2

18. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of
McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13190-5 14

19. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

20. Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm.
21(1), 3–16 (1985)

21. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decod-
ing problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)

22. Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance
problem for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016)

23. Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.-P.: Identity-based encryption
from codes with rank metric. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 194–224. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9 7

24. Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low rank parity check codes and
their application to cryptography. In: Proceedings of the Workshop on Coding and
Cryptography WCC 2013, Bergen, Norway (2013)

25. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-
commutative ring and their application in cryptology. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 41

26. Hauteville, A., Tillich, J.-P.: New algorithms for decoding in the rank metric and
an attack on the LRPC cryptosystem. In: 2015 IEEE International Symposium on
Information Theory (ISIT), pp. 2747–2751 (2015)

27. Landais, G., Tillich, J.-P.: An Efficient attack of a McEliece cryptosystem variant
based on convolutional codes. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol.
7932, pp. 102–117. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38616-9 7

28. Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. In: Pro-
ceedings of YACC 2006 (2006)

29. Loidreau, P.: Properties of codes in rank metric. http://arxiv.org/abs/cs/0610057
30. Loidreau, P.: A Welch–Berlekamp like algorithm for decoding Gabidulin codes. In:

Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 36–45. Springer, Heidelberg
(2006). https://doi.org/10.1007/11779360 4

31. Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T.,
Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59879-6 1

https://doi.org/10.1007/978-3-319-56620-7_12
https://doi.org/10.1007/978-3-319-56620-7_12
https://doi.org/10.1007/978-3-319-59879-6_2
https://doi.org/10.1007/978-3-319-59879-6_2
https://doi.org/10.1007/978-3-642-13190-5_14
https://doi.org/10.1007/978-3-642-13190-5_14
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-319-63697-9_7
https://doi.org/10.1007/978-3-319-63697-9_7
https://doi.org/10.1007/3-540-46416-6_41
https://doi.org/10.1007/978-3-642-38616-9_7
https://doi.org/10.1007/978-3-642-38616-9_7
http://arxiv.org/abs/cs/0610057
https://doi.org/10.1007/11779360_4
https://doi.org/10.1007/978-3-319-59879-6_1

Two New Module-Code-Based KEMs with Rank Metric 191

32. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

33. McEliece, R.J.: A public key crytosystem based on algebraic coding theory. DSN
progress report 44, pp. 114–116 (1978)

34. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPCMcEliece: new
McEliece variants from moderate density parity-check codes. In: Proceedings of the
IEEE International Symposium on Information Theory - ISIT 2013, pp. 2069–2073
(2013)

35. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl.
Control. Inf. Theory 15, 159–166 (1986)

36. Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin
codes. J. Cryptol. 21, 280–301 (2008)

37. Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34(3), 480–508
(1933)

38. NIST. Post Quantum Crypto Project (2017). http://csrc.nist.gov/groups/
ST/post-quantum-crypto. Available at https://csrc.nist.gov/Projects/Post-
Quantum-for-Cryptography/Post-Quantum-Cryptography-Standardization/call-
for-Proposalls. List of First Round candidates available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions

39. Pietrzak, K.: Cryptography from learning parity with noise. In: Bieliková, M.,
Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 99–114. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27660-6 9

40. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93 (2005)

41. Santini, P., Baldi, M., Cancellieri, G., Chiaraluce, F.: Hindering reaction attacks
by using monomial codes in the McEliece cryptosystem. In: IEEE International
Symposium on Information Theory (ISIT) 2018, pp. 951–955 (2018)

42. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25405-5 4

43. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

44. Sidorenko, V., Richter, G., Bossert, M.: Linearized shift-register synthesis. IEEE
Trans. Inf. Theory 57(9), 6025–6032 (2011)

45. Sidelnikov, V.M.: A public-key cryptosystem based on binary Reed-Muller codes.
Discrete Math. Appl. 4, 191–207 (1994)

46. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on gen-
eralized Reed-Solomon codes. Discrete Math. Appl. 2, 439–444 (1992)

https://doi.org/10.1007/978-3-642-13190-5_1
http://csrc.nist.gov/groups/ST/post-quantum-crypto
http://csrc.nist.gov/groups/ST/post-quantum-crypto
https://csrc.nist.gov/Projects/Post-Quantum-for-Cryptography/Post-Quantum-Cryptography-Standardization/call-for-Proposalls
https://csrc.nist.gov/Projects/Post-Quantum-for-Cryptography/Post-Quantum-Cryptography-Standardization/call-for-Proposalls
https://csrc.nist.gov/Projects/Post-Quantum-for-Cryptography/Post-Quantum-Cryptography-Standardization/call-for-Proposalls
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-642-27660-6_9
https://doi.org/10.1007/978-3-642-27660-6_9
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/978-3-642-25405-5_4

Adding Distributed Decryption and Key
Generation to a Ring-LWE Based CCA

Encryption Scheme

Michael Kraitsberg3, Yehuda Lindell1,3 , Valery Osheter3,
Nigel P. Smart2,4(B) , and Younes Talibi Alaoui2

1 Bar-Ilan University, Ramat Gan, Israel
yehuda.lindell@biu.ac.il

2 KU Leuven, Leuven, Belgium
{nigel.smart,younes.talibialaoui}@kuleuven.be

3 Unbound Technology, Petah Tikva, Israel
{michael.kraitsberg,valery.osheter}@unboundtech.com

4 University of Bristol, Bristol, UK

Abstract. We show how to build distributed key generation and dis-
tributed decryption procedures for the LIMA Ring-LWE based post-
quantum cryptosystem. Our protocols implement the CCA variants of
distributed decryption and are actively secure (with abort) in the case
of three parties and honest majority. Our protocols make use of a combi-
nation of problem specific MPC protocols, generic garbled circuit based
MPC and generic Linear Secret Sharing based MPC. We also, as a by-
product, report on the first run-times for the execution of the SHA-3
function in an MPC system.

1 Introduction

Distributed decryption enables a set of parties to decrypt a ciphertext under
a shared (i.e. distributed) secret key. Distributed decryption protocols for tra-
ditional public key encryption and signature schemes have had a long history
of innovation [9–12,14,16,19,20,25,26]. But the research on such protocols for
schemes based on Ring-LWE (Learning-With-Errors) has only been started quite
recently.

Despite research on Ring-LWE, and Fully/Somewhat Homormorphic Encryp-
tion (FHE/SHE) schemes derived from Ring-LWE being relatively new, applica-
tions of distributed decryption have found numerous applications already. One
of the earliest applications we could find is the two-round passively secure FHE-
based multiparty computation (MPC) protocol of Gentry [13]. In this MPC
protocol, n parties encrypt their inputs to the MPC computation via an FHE
scheme, and broadcast the ciphertexts. All parties can then homomorphically
compute the desired function, with the result finally obtained via a distributed
decryption. A similar methodology is applied in the multi-key FHE techniques
of Asharov et al. [4]. These two works only aim for passive security, whereas
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 192–210, 2019.
https://doi.org/10.1007/978-3-030-21548-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_11&domain=pdf
http://orcid.org/0000-0002-8176-690X
http://orcid.org/0000-0003-3567-3304
http://orcid.org/0000-0002-7947-9450
https://doi.org/10.1007/978-3-030-21548-4_11

Adding Distributed Decryption and Key Generation to a Ring-LWE 193

a similar technique is applied in [21] to obtain low-round MPC via the BMR
methodology [5], and in [7] to utilize Gentry’s technique via an SHE scheme (and
not an FHE scheme) for non-full-threshold access structures (such as the ones
considered in this paper). Despite the overal protocols obtaining active security,
the distributed decryption procedures in [7,21] are only required to be actively
secure up to additive errors. A similar situation occurs in the SPDZ protocol [8]
in which an actively secure (up to additive errors) distributed decryption pro-
tocol is required to produce the multiplication triples in the offline phase. The
same technique is used in the High Gear variant of the Overdrive [17] offline
phase for SPDZ.

The application of such distributed decryption protocols is however not just
restricted to usage in MPC protocols. It is well established in the side-channel
community that such key-splitting techniques can form the basis of various
defences based on ‘masking’; see for example a recent initiative of NIST in this
area [6]. However, every masking technique requires a recombination technique,
which is exactly what distributed decryption provides.

More importantly, the interest in standard Ring-LWE schemes due to the
need to find suitable Post-Quantum Crypto (PQC) algorithms, as evidenced by
the current NIST “competition”, means that PQC schemes which can support
distributed decryption will become of more interest. However there is a major
issue with prior techniques to this problem. Firstly the methods require “noise-
flooding” to ensure that no information leaks about the underlying secret key
during decryption. This requires that the ciphertext modulus q needs to be
made much larger than in a standard system which does not support distributed
decryption. Secondly, the methods are only actively secure up to additive error
(i.e. they are not fully actively secure) and they only allow distributed decryption
of the IND-CPA versions of the underlying encryption schemes.

In this paper we present efficient methods to perform actively secure dis-
tributed decryption for IND-CCA versions of Ring-LWE based encryption in
the case of three party honest majority protocols. This is done by combining in
a novel manner traditional garbled circuit based MPC, with bespoke protocols
for the specific functionality we require. On the way we also provide, to our
knowledge, the first MPC implementation of the evaluation of the SHA-3 func-
tion; previously in [28] an MPC-optimized circuit was given, but no execution
times for an actual MPC evaluation of SHA-3 has been presented. We also show
how to utilize secret sharing based protocols such as embodied in the SCALE-
MAMBA system [3] to produce an efficient distributed key generation procedure
suitable for our underlying distributed decryption procedure.

Prior work on CCA secure distributed decryption protocols, even for encryp-
tion schemes based on “traditional” assumptions (such as RSA or Discrete Log-
arithms), such as those in [11,19,26], have looked at designing special purposes
encryption procedures which are both CCA secure, and which enable an efficient
distributed decryption procedure. In this work we instead take an off-the-shelf
CCA secure encryption scheme and show how it can be made into a scheme
which supports both distributed decryption and distributed key generation. This

194 M. Kraitsberg et al.

brings added challenges as the method for ciphertext checking is not immedi-
ately “MPC-friendly”. Despite this drawback we show that such schemes can be
implemented via MPC.

In total we use four different types of secret sharing between the three parties
in order to obtain efficient protocols for the various sub-steps:

1. INS-sharing [15] modulo q of the Ring-LWE secret key.
2. Shamir secret sharing modulo q to generate the INS secret key via SCALE-

MAMBA.
3. An additive 3-party binary sharing of the output of the Round function, before

we pass it to the KMAC operation. This additive sharing is non-standard and
looks like a cross between INS and replicated sharing.

4. An additive sharing modulo q of the output of the KMAC operation between
two of the parties S1 and S2.

To illustrate our methods in terms of a concrete Ring-LWE system we take
the LIMA submission [1] to the PQC contest. We take the latest version of
this submission (version 1.1 at the time of writing). However, almost all our
techniques will apply, with minor changes to the specific definitions of usage of
SHA-3 etc, to a number of the other Ring-LWE systems under submission. A
major advantage of the LIMA proposal versus a proposal such as say NTRU is
that key generation and encryption are essentially linear operations; thus provid-
ing a distributed actively secure protocol for key generation and re-encryption
becomes easy. For NTRU the key generation method, for example, needs to
generate polynomials with distributions which cannot be generated in a linear
fashion; in particular distributions with given coefficients with a given weight of
−1 and +1 coefficients.

We end this section by noting that running our distributed decryption proto-
col using two as opposed to three parties, and using traditional passively secure
Yao protocols, results in a passively secure distributed decryption protocol. For
the two party case of the key generation protocol we could utilize the SPDZ
[8] implementation within the SCALE-MAMBA framework. The two-party key
generation would be actively secure and, more importantly, is possible since the
modulus q = 40961 used in the LIMA v1.1 scheme is “FHE-Friendly” and hence
can be used as the plaintext modulus for the SPDZ-offline phase.

2 Preliminaries

To focus our discussion we pick a specific Ring-LWE submission to the NIST
PQC “competition”; in particular v1.1 of LIMA [1]. This was selected as it uti-
lizes a relatively standard transform for ciphertext validity checking; namely
randomness recovery followed by re-encryption which could pose a particular
problem for a distributed decryption protocol. In addition the encryption and
key generation procedures are also relatively linear, allowing one to utilize simple
MPC protocols to perform re-encryption and distributed key generation.

Adding Distributed Decryption and Key Generation to a Ring-LWE 195

We will focus on the main parameter sets in the LIMA proposal. In particular
N = 1024 and q = 40961. However, our protocol can be easily adapted to the
other parameter sets (in fact the protocol stays the same, all that needs to change
is the specific implementation of the underlying garbled and arithmetic circuits).

In this section we summarize the LIMA construction and also summarize some
tools from the MPC literature which we will be using. Our focus in the MPC
literature will be on three party honest majority protocols which offer active
security with abort.

2.1 The LIMA IND-CCA Encryption Scheme

Here we summarize the LIMA v1.1 construction. For more details readers are
referred to [1]. As explained above we use the latest version of the proposal
which avoids the rejection sampling in encryption of the first proposal and has,
as a result, smaller parameters.

Cycloctomic Rings: LIMA makes use of two types of cyclotomic rings, in this
paper we will concentrate on only the first type (minor modifications in what
follows are needed to support the second type proposed in LIMA). We select N
to be power of two, q to be a prime such that q ≡ 1 (mod 2 · N). The scheme
makes use of the following rings R = Z[X]/(XN + 1), R2 = Z2[X]/(XN + 1),
and Rq = Zq[X]/(XN +1). Note that Φ2·N (X) = XN +1 in this case. Elements
of these rings are degree (N − 1) polynomials with coefficients from Z,Z2,Zq,
respectively. Equivalently, these are represented as vectors of length N , with
elements in Z,Z2,Zq, respectively.

LIMA makes a lot of use of the number theoretic FFT algorithm to enable
fast multiplication of ring elements. We will denote this operation in this paper
by f ← FFT(f) for the forward FFT, and f ← FFT−1(f) for the inverse FFT
operation. The forward direction maps a polynomial of degree N − 1 into a
vector of length N over the same finite field Fq (by choice of q). For our MPC
operations it is important to note that the FFT operation is a linear operation,
i.e. FFT(f + g) = FFT(f) + FFT(g).

Use of SHA-3 in KMAC256: LIMA makes use of KMAC256, to create an
XOF (Extendable Output Function) and a KDF (Key Derivation Function).
The algorithm KMAC256 is itself derived from the SHA-3 hash function and is
defined in NIST SP 800 185 [24]. Following the LIMA specification we use the
following notation for the various uses of KMAC256. When called in the form
XOF ← KMAC(key, data, 0) the output is an XOF object, and when called in
the form K ← KMAC(key, data, L) the output is a string of L bits in length. In
both cases the input is a key key (of length at least 256 bits), a (one-byte) data
string data, and a length field L in bits. The data string data is a diversifier and
corresponds to the domain separation field in the KMAC standard. Different
values of data will specify different uses of the KMAC construction. In the case
when L = 0 we shall let a ← XOF[n] denote the process of obtaining n bytes from
the XOF object returned by the call to KMAC. The KDF in LIMA is given by the
notation KDF[n](k), which outputs the result of computing KMAC(k, 0x00, n).

196 M. Kraitsberg et al.

Fig. 1. LIMA key generation

In the full version we describe how LIMA uses the XOF to generate random
values in different domains and with different distributions. These are a ←

XOF
Fq

to generate uniformly random single finite field element, a ←
XOF

F
n
q to generate a

vector of such elements, and GenerateGaussianNoiseXOF(σ) to generate elements
in Fq from a distribution which is an approximation to a discrete Gaussian with
standard deviation σ. It will turn out their method here is particularly well
suited to enabling distributed key generation. In particular the LIMA algorithm
uses the method of approximating a Discrete Gaussian via a centred binomial
distribution given in [2], to produce a Gaussian with standard deviation σ ≈ 3.19.

LIMA Key Generation: The specification of LIMA details that the private
component of a public/private key pair is generated from the KMAC256 XOF.
However, in practice this component can come from any source of random bits,
thus the XOF output in lines 2 and 3 of Fig. 1 can be replaced by any source of
random bits known to the secret key creator. We will make use of this fact in
our distributed key generation procedure later on. Key Generation proceeds as
in Fig. 1, where we assume a XOF has already been initiated and the operations
⊗ and ⊕ denote pointwise multiplication and addition (mod q).

Encryption and Decryption: Both the CCA encryption and decryption oper-
ations make use of a sub-procedure, called Enc-CPA-Sub(m, pk,XOF) which takes
as input a message in m ∈ {0, 1}�, a public key and an initialized XOF object
XOF , and outputs a ciphertext c. The associated inverse operation is denoted
Dec-CPA(c, sk). These algorithms are defined in the full version. The operations
make use of three sub-routines:

– Trunc denotes a procedure which throws away unnecessary coefficients of c0,
retaining only the � elements corresponding to message component.

– BV-2-RE is a procedure which takes a bit string of length at most N and
maps it into R2.

– RE-2-BV is the inverse operation to BV-2-RE.

We can then define the CCA LIMA encryption, decryption, encapsulation and
decapsulation operations as in Fig. 2.

Adding Distributed Decryption and Key Generation to a Ring-LWE 197

Fig. 2. CCA secure encryption, decryption, encapsulation and decapsulation algo-
rithms for LIMA

2.2 Three Party Honest Majority MPC Using Garbled Circuits

Our protocols make use of actively secure garbled circuit based MPC for honest
majority in the three party setting. In this situation we use the techniques from
[23]. The basic protocol to evaluate a function F on inputs x1, x2 and x3 from
parties P1, P2 and P3 is as follows. Parties P1 and P2 agree on a random seed s
and then use s to generate a garbled circuit. Party P3 acts as evaluator. If P1

or P2 cheats then this is detected by P3 as they will obtain different circuits,
where as if P3 cheats in sending output tables values incorrectly back to P1 or
P2 (for their output), then the table values will not decode correctly. The overall
protocol is described in Fig. 3. Thus we cheaply obtain active security with abort
in this scenario.

198 M. Kraitsberg et al.

Fig. 3. Garbled circuit based three party computation

2.3 Three Party Honest Majority MPC Using Shamir Secret
Sharing

We also require honest majority three party actively secure MPC with abort
based on linear secret sharing over the finite field Fq. For this we use a protocol
based on Shamir secret sharing implemented in the SCALE-MAMBA system [3].
This uses an offline phase to produce multiplication triples and shared random
bits (using Maurer’s multiplication protocol [22]) and then an online phase which
checks for correctness by using the error detection properties of the underlying
Reed-Solomon codes. See [18,27] for precise details of how this protocol works.
This arithmetic circuit based MPC protocol is used in our distributed key gen-
eration phase, and we make crucial use of the ability of the SCALE-MAMBA
system to generate shared random bits in the offline phase; as then our online
phase becomes essentially a local operation.

Adding Distributed Decryption and Key Generation to a Ring-LWE 199

We denote secret shared values over Fq by the notation [a]. In this notation
linear operations, such as [z] ← α · [x]+β · [y]+γ are local operations, and hence
essentially for free. Where as non-linear operations, such as [z] ← [x] · [y] require
interaction. In the SCALE-MAMBA system these are done using a pre-processed
set of Beaver triples ([a], [b], [c]) with c = a · b.

Output/opening values to all players will be denoted by Output([a]) by which
we mean all players learn the value of a, and abort if the value is not output
correctly. Outputing to a specific player we will denote by Output-To(i, [a]), in
which case player i will learn the value of a, and abort if the value is not correct.

One can also use these pre-processed Beaver triples to generate random
shared elements (by taking a triple and using [a] and [b] as the random ele-
ments. Of course when using Shamir sharing one could also generate such shar-
ings using a PRSS, however the SCALE-MAMBA system does not currently
support this functionality. So when generating random elements in the online
phase we simply consume the first two components of a Beaver triple, and we
will write ([a], [b], [c]) ← Triples, this is secure as long as [c] is never used later.
The offline phase also produced shared random bits, namely sharings of the form
[b] with b ∈ {0, 1}. We will denote this operation in what follows as [b] ← Bits.

3 SHA3 in MPC

The TinyGarble compiler [28] has been reported to produce a circuit for the
SHA-3 core internal Keccak-f function of 38,400 AND gates (160,054 total gates).
Using similar techniques to the TinyGarble paper we compiled our own circuit
for Keccak-f, finding a circuit with the same number of gates and 193,686 wires.
This function takes as input, a sequence of 1600 bit values, and returns a 1600
bit value. The output is either then passed into the next round, during the
absorption phase where it is combined with additional input, or part of the
output is used as the output of SHA-3, in the squeezing phase.

Using our garbled circuit based protocol for honest majority computation
amongst three parties, we were able to execute the Keccak-f function with a
latency of 16ms per operation. With the testing being conducted on a set of
three Linux RHEL servers running on AWS of type t2.small, which correspond
to one “virtual CPU” and 2 GB of RAM.

4 Distributed Decryption for CCA-Secure Ring-LWE
Encryption

Recall that a public key is a pair (a,b) and a secret key is a value s, where
a,b, s ∈ Z

N
q . Given our three servers, of which we assume at least two are honest,

we share the secret key using Ito–Nishizeki–Saito sharing [15]. In particular S1

is assumed to hold (s1,2
1 , s1,3

1) ∈ Z
N
q , S2 is assumed to hold (s1,2

2 , s2,3
1) ∈ Z

N
q , and

S3 is assumed to hold (s1,3
2 , s2,3

2) ∈ Z
N
q such that

s1,2
1 + s1,2

2 = s1,3
1 + s1,3

2 = s2,3
1 + s2,3

2 = s.

200 M. Kraitsberg et al.

How one generates a valid secret key satisfying this secret sharing we discuss
in the next section. We call such a sharing an INS-sharing of s. Our overall
distributed decryption and decapsulation protocols are then build out of a num-
ber of special protocols which either utilize our generic 3-party garbled circuit
based protocol from earlier, or utilize special purpose MPC protocols built on
top the ISN-sharing of inputs or other sharings of inputs. Thus in this protocol
we combine a variety of MPC techniques together in a novel manner.

4.1 Sub-protocol: Round Function

We first require a protocol which takes an ISN-sharing of a vector f and produces
the output of the function

μ ←
∣
∣
∣
∣

⌊2
q
f
⌉
∣
∣
∣
∣

from the procedure Dec-CPA(c, sk). In particular it needs to evaluate the func-
tionality given in Fig. 4, which we do via the protocol given in Fig. 5.

We note that this protocol is secure by definition since the only thing defined
here is the circuit, and a protocol that is secure for malicious adversaries is used
to compute it. Let |q| denote the number of bits needed to represent q and recall
that addition and each less-than-comparison can be computed using a single
AND gate per bit. Thus, a+ b mod q can be computed using exactly 4 · |q| AND
gates, and all the initial additions require 12 · |q| AND gates. Next, the bitwise
NOR of v, w requires 2 · |q| − 1 AND gates, each of the 2 less-than-comparisons
(and greater-than etc.) of x are computed using |q| AND gates, and there is 1
more AND gate. Overall, we therefore have a cost of 12 · |q|+2 · |q| − 1+2 · |q|+
1 = 16 · |q| AND gates. In our experiments we used the parameter set of LIMA
with q = 40961 and thus |q| = 16. Hence, each execution of this protocol for
an individual coefficient requires 256 AND gates. When iterated over the 1024
coefficients we end up with a total of 262, 144 AND gates.

4.2 Sub-protocol: Secure Evaluation of the Enc-CPA-Sub Function

Our next sub-protocol is to evaluate the Enc-CPA-Sub function on inputs which
have been INS-shared. The protocol is given in Fig. 7 but from a high level works
as follows: Firstly the three parties execute the KMAC function on their suitably
padded inputs (which have been shared via a different secret sharing scheme),
from this S1 and S2 obtain an additive Fq-sharing of the output bits. This
operation utilizes the SHA-3 implementation given earlier as a sub-procedure,
and to aid readability we separate this operation into a sub-protocol in Fig. 6.
In this protocol the parties have as input a sharing of a bit string μ defined
as follows: S1 holds (μ1, ν1), S2 holds (μ1, ν2), and S3 holds (μ2, ν1) such that
μ = μ1 ⊕μ2 = ν1 ⊕ν2. The output of the function will be an Fq-sharing between
S1 and S2 of the XOF applied to this input with diversifier D. The diversifier will
be 0x03 for decryption and 0x05 for decapsulation). Note, that the first thing
the circuit does is to ensure the input values are consistent, i.e. μ1⊕μ2 = ν1⊕ν2.

Adding Distributed Decryption and Key Generation to a Ring-LWE 201

Fig. 4. The functionality: FRound

Also note that only party S2 obtains output from this step. Since the number
of AND gates in the permutation function is 38,400 and we have 114 rounds,
then the total number of AND gates needed to execute this step is approximately
114 · 38, 400 = 4, 377, 600, plus the number of AND gates needed to create S2’s
output (which is approximately 3 · 40 · N · log2 q ≈ 1, 966, 080).

The additive Fq-sharing between S1 and S2 output from Fig. 6 is then used
in a completely local manner by S1 and S2 to obtain a modulo q additive sharing
of the supposed ciphertext. The fact we can perform mainly local operations is
because the method to generate approximate Gaussian noise is completely linear
and the FFT algorithm is itself linear. This is then revealed to players S1 and
S2, via means of a garbled circuit computation between the three players. See
Fig. 7 for details.

The privacy of the protocol to evaluate Enc-CPA-Sub is inherent in the fact we
use secure actively secure protocols to evaluate the two required garbled circuits.
The only place that an active adversary could therefore deviate is by entering
incorrect values into the evaluation of the Trunc function; e.g. S1 could enter
the incorrect value for μ1 or y(1). Any incorrect adversarial behaviour here will
result in an incorrect value of c′

0, which will be detected by the calling algorithm.

4.3 Secure Evaluation of Dec-CCA(c, sk)

We can now give the method for decryption for the CCA public key encryption
algorithm, see Fig. 8. The secret key sk is shared as described earlier, with the
ciphertext c = (c0, c1) being public.

202 M. Kraitsberg et al.

Fig. 5. The protocol: ΠRound

Adding Distributed Decryption and Key Generation to a Ring-LWE 203

Fig. 6. Protocol to securely evaluate KMAC on shared inputs

Security of the Protocol: The Round function is computed by a protocol that is
secure against malicious adversaries. Intuitively, this means that the view of each
party can be trivially simulated since S1, S2 and S3 receive nothing but random
shares as output from this subprotocol and no other messages are even sent.
However, the parties can provide incorrect values at all steps of the protocol.
Specifically, a corrupt S1 can input an incorrect f1 into Round, similarly a corrupt
S2 can input an incorrect f2 into Round, etc. We resolve this problem by adding
redundancy into the computation.

First, we compute the initial f values three times; once between each different
pair or parties. Since at least one of these pairs is guaranteed to be honest, we
have that the output of the operation c0 −Trunc(FFT−1(s⊗ c1)) will be correct
for this pair. Since the Round function computation verifies that all these values
are equal (or else γ = 0 in the output and the parties learn nothing and abort),
we have that this must be correct.

The parties then the protocol to evaluate Enc-CPA-Sub from Fig. 7 to obtain
the re-encryption (c′

0, c
′
1). Note, that for this to be correct, and so the equality

check to pass, the servers must act honestly. Otherwise an invalid ciphertext is
produced. Finally, the output message is obtained, and checked for correctness,
using the redundancy inherent in the output of the Round function.

204 M. Kraitsberg et al.

Fig. 7. Protocol to securely evaluate Enc-CPA-Sub((μ1, ν1), (μ1, ν2), (μ2, ν1), pk, D)

We prove the security of the protocol via simulation by constructing a sim-
ulator S for the adversary A. The simulator S knows the shares of the key held
by each party, and works as follows:

– If S1 is corrupted by A, then the simulator S sends c0, c1 to the trusted party
computing the functionality and receives back m = x‖s. Then, S invokes A
and receives the inputs (f1,2

1 , f1,3
1) that A inputs to the Round function. Since

S knows s1,2
1 and s1,3

1 , it can verify if A computed these correctly. If not, then
S sends ⊥ to the trusted party, simulates the output of Round providing γ = 0
at the appropriate places and halts. (All other outputs of Round are given as
random.) Else, S provides output of Round to be γ = 1 and the μ2, ν2 values
as random.
The simulation of the application of KMAC via a Garbled Circuit can be
done, assuming an ideal functionality for the secure computation of KMAC,
in the standard way. Note, that if S1 lies about its input into the KMAC algo-
rithm, or lies about its value (y(1), μ1) input into the Trunc evaluation, then
with overwhelming probability party S2 will abort when checking c′

0 = c′
1 or

c′
1 = c1.

The view of A in the simulation is clearly identical to its view in a hybrid
execution where the function Round, Trunc and a function to perform secure
computation are ideal functionalities. Thus, the output distributions are com-
putationally indistinguishable, as required.

– The simulation for S2 and S3 is similar; with S3 being a little simpler.

Adding Distributed Decryption and Key Generation to a Ring-LWE 205

Fig. 8. Secure evaluation of Dec-CCA(c, sk)

4.4 Secure Evaluation of Decap-CCA(c, sk)

The distributed decapsulation routine works much like the distributed decryp-
tion routine. However, to obtain the same ideal functionality of a real decapsu-
lation routine we need to evaluate the KDF computation within a secure compu-
tation. This can be done using the same method we use to evaluate the KMAC
needed in the XOF computation; since in LIMA both are based on different modes
of the SHA-3 based KMAC operation. The overal protocol is similar and is given
in the full version.

4.5 Experimental Results

Using the basic LIMA parameters of q = 40961 and N = 1024 we implemented
the above protocol, and run it on a set of three Linux RHEL servers running on
AWS of type t2.small with 2 GB of RAM. The total run time for distributed
decryption was 4280 ms. The main cost was the need to perform the initial

206 M. Kraitsberg et al.

decryption, and then re-encrypt, without recovering the message in plaintext.
This is inherent in the methodology adopted by LIMA, and many other of the
PQC candidate algorithms, for producing a chosen ciphertext secure encryption
algorithm. More MPC friendly methods to obtain CCA security could reduce
this run time considerably, but that does not seem to have been a design goal
for any of the candidate submissions. For distributed decapsulation in the KEM
algorithm we achieved an execution time of 4342 ms.

5 Distributed Key Generation for Ring-LWE Encryption

Distributed key generation can be performed relatively straightforwardly using
a generic MPC system based on linear secret sharing which supports two-out-
of-three threshold access structures and gives active security with abort. As
explained earlier we selected SCALE-MAMBA to do this, as we could use an
off-the-shelf system.

Fig. 9. Securely generating approximate Gaussians

The main difficulty in key generation would appear to be the need to gen-
erate the approximate Gaussian distributions needed for LIMA. However, the
specific distribution method chosen in LIMA dovetails nicely with the offline pre-
processing found in SCALE-MAMBA. This results in the method to securely
generate approximate Gaussian distributions given in Fig. 9, which we note
becomes a completely local operation in the online phase of the MPC protocol.

From this it is easy to produce the key generation procedure which we give in
terms of an inner MPC-core of the algorithm (which mainly consists of local oper-
ations and opening values to different players which is implemented in SCALE-
MAMBA) (lines 3 to 5 of Fig. 10). plus non-interactive local operations which
are purely about placing data into the correct formats. We make extensive use
of the fact that the FFT operation is linear. In our algorithms we utilize vec-
tors/polynomials of secret shared values which we will write as [f] which we use
to represent the element in R given by [f]0 + [f]1 · X + . . . + [f]N−1 · XN−1.

Adding Distributed Decryption and Key Generation to a Ring-LWE 207

Fig. 10. Main key generation routine

5.1 Experimental Results

We implemented the above key generation phase within the SCALE-MAMBA
framework for the parameters N = 1024 and q = 40961 of LIMA. We used the
settings of Shamir secret sharing and the Maurer [22] based offline settings of
SCALE-MAMBA. Our experiments for this component were executed on three
Linux Ubuntu machines with Intel i7-7700K processors running at 4.20 GHz, and
with 8192 KB cache and 32 GB RAM.

The SCALE-MAMBA system runs in an integrated offline–online manner,
however one can program it so as to obtain estimates for the execution times of
both the offline and the online phases. Within the system there is a statistical
security parameter secp which defines the probability that an adversary can get
the pre-processing to invalid data. The variable s = sacrifice_stat_sec in the
system defines the value of secp via the equation

secp =
log2 q� ·
⌈ s

log2 q�
⌉

.

When q is large (i.e. q > 2128), as it is in most envisioned executions of SCALE-
MAMBA the default value of s = 40 results in a suitable security parameter.
However, for our small value of q we needed to modify s so as to obtain a suitable
value of secp. We note, that this setting only affects the runtime for the offline
phase; and as can be seen the effect on the run times in Table 1 is marginal.

The online run time takes 1.22 s, although roughly one second of this is used
in performing the 6144 output operations. On further investigation we found this

208 M. Kraitsberg et al.

Table 1. Times to produce the offline data for the Key Generation operation. This is
essentially producing 81920 shared random bits, 2048 multiplication triples and enough
shared randomness to enable the output of the shared keys.

s secp Time (Seconds)

40 48 20.2

80 80 20.7

128 128 23.1

was because SCALE-MAMBA performs all the reveals in a sequential as opposed
to batch manner (requiring 6144 rounds of communication as opposed to one).
We suspect a more careful tuned implementation could reduce the online time
down to less than a quarter of a second. However, our implementation of the
Key Generation method in SCALE-MAMBA took about a day of programmers
time; thus using a general system (even if inefficient) can be more efficient on
the development time.

Acknowledgements. This work has been supported in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT and by the Defense Advanced Research Projects
Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific)
under contract No. N66001-15-C-4070, and by the FWO under an Odysseus project
GOH9718N.

References

1. Albrecht, M.R., et al.: LIMA-1.1: a PQC encryption scheme (2018). https://lima-
pq.github.io/

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Sym-
posium, USENIX Security 2016, Austin, TX, USA, 10–12 August 2016,
pp. 327–343. USENIX Association (2016). https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/alkim

3. Aly, A., et al.: SCALE and MAMBA documentation (2018). https://homes.esat.
kuleuven.be/∼nsmart/SCALE/

4. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

6. Brandao, L.T.A.N., Mouha, N., Vassilev, A.: Threshold schemes for crypto-
graphic primitives: challenges and opportunities in standardization and validation
of threshold cryptography (2018). https://csrc.nist.gov/publications/detail/nistir/
8214/draft

https://lima-pq.github.io/
https://lima-pq.github.io/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://csrc.nist.gov/publications/detail/nistir/8214/draft
https://csrc.nist.gov/publications/detail/nistir/8214/draft

Adding Distributed Decryption and Key Generation to a Ring-LWE 209

7. Choudhury, A., Loftus, J., Orsini, E., Patra, A., Smart, N.P.: Between a rock and
a hard place: interpolating between MPC and FHE. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8270, pp. 221–240. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42045-0 12

8. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

9. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-48184-2 8

10. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

11. Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-
ciphertext attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
351–368. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 21

12. Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key
generation for semi-honest and malicious adversaries. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 331–361. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 12

13. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

14. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and
threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27954-6 20

15. Ito, M., Nishizeki, T., Saito, A.: Secret sharing scheme realizing general access
structure. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 72, 56–64
(1989)

16. Katz, J., Yung, M.: Threshold cryptosystems based on factoring. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 192–205. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 12

17. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

18. Keller, M., Rotaru, D., Smart, N.P., Wood, T.: Reducing communication channels
in MPC. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp.
181–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 10

19. Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with
adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28914-9 5

20. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 21

21. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53641-4 21

https://doi.org/10.1007/978-3-642-42045-0_12
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-45682-1_21
https://doi.org/10.1007/978-3-319-96881-0_12
http://crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/3-540-36178-2_12
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-98113-0_10
https://doi.org/10.1007/978-3-642-28914-9_5
https://doi.org/10.1007/978-3-642-28914-9_5
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21

210 M. Kraitsberg et al.

22. Maurer, U.: Secure multi-party computation made simple. Discrete Appl. Math.
154(2), 370–381 (2006)

23. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
the garbled circuit approach. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015,
pp. 591–602. ACM Press, October 2015

24. NIST National Institute for Standards and Technology: SHA-3 derived functions:
cSHAKE, KMAC, TupleHash and ParallelHash (2016). http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-185.pdf

25. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

26. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113

27. Smart, N.P., Wood, T.: Error detection in monotone span programs with appli-
cation to communication-efficient multi-party computation. In: Matsui, M. (ed.)
CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-12612-4 11

28. Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Tiny-
Garble: highly compressed and scalable sequential garbled circuits. In: 2015 IEEE
Symposium on Security and Privacy, pp. 411–428. IEEE Computer Society Press,
May 2015

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/BFb0054113
https://doi.org/10.1007/978-3-030-12612-4_11
https://doi.org/10.1007/978-3-030-12612-4_11

Cryptanalysis on CCA2-Secured
LRPC-Kronecker Cryptosystem

Terry Shue Chien Lau(B) and Chik How Tan

Temasek Laboratories, National University of Singapore,
5A Engineering Drive 1, #09-02, Singapore 117411, Singapore

{tsltlsc,tsltch}@nus.edu.sg

Abstract. Recently, a new rank metric code, namely LRPC-Kronecker
Product codes was proposed in APKC 2018 Workshop, and adapted
into a construction of a new cryptosystem, namely the LRPC-Kronecker
cryptosystem. The LRPC-Kronecker cryptosystem has compact key size,
with their parameters achieve 256-bit security with key size (9,768 bits)
smaller than the RSA’s key size (15,360 bits). It was also shown that
the LRPC-Kronecker cryptosystem is CCA2-secured via the Kobara-Imai
conversion. In this paper, we point out some errors in the original LRPC-
Kronecker cryptosystem and suggest a reparation for the errors. We
show that the LRPC-Kronecker cryptosystem in fact is equivalent to the
LRPC cryptosystem. With this equivalence shown, we suggest alterna-
tive encryption and decryption, namely AKron for the LRPC-Kronecker
cryptosystem. Furthermore, we show that there exists design weakness
in the LRPC-Kronecker cryptosystem. We exploit this weakness and suc-
cessfully cryptanalyze all the suggested parameters for k1 = n1. We are
able to recover secret key for all the proposed parameters within the
claimed security level.

Keywords: Code-based cryptography · McEliece ·
Kronecker Product · Key recovery attack · Public-key encryption ·
Rank metric codes · LRPC codes

1 Introduction

Code-based cryptography was first introduced by McEliece [15] using Goppa
codes in Hamming metric. In particular, the McEliece cryptosystem generates
a public key matrix Gpub = SGQ where S is a random k × k invertible matrix
over Fq, G is a generator matrix for a random decodable Goppa code, Q is a
random n×n permutation matrix, with the secret key (S,G,Q). The sender first
encrypts the message by multiplying the plaintext m ∈ F

k
q with Gpub and adds

a random error vector e ∈ F
n
q of weight at most r, producing c = mGpub + e.

The recipient decrypts the ciphertext by computing cQ−1 = mSGQQ−1+eQ−1

and perform decoding of G on cQ−1 to recover mS. Finally, the plaintext can
be recovered by computing m = (mS)S−1. Although McEliece cryptosystem is
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 211–228, 2019.
https://doi.org/10.1007/978-3-030-21548-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_12&domain=pdf
http://orcid.org/0000-0002-1218-9133
https://doi.org/10.1007/978-3-030-21548-4_12

212 T. S. C. Lau and C. H. Tan

secured up to date, its key size of 1 MB for 256-bit security level is significantly
larger than RSA.

To reduce the key size of code-based cryptography, an alternative metric,
called the rank metric was introduced. Up to date, there are only two classes
of rank metrics codes with efficient decoding algorithms, namely the Gabidulin
codes [4] (and its variants such as generalized Gabidulin codes [2], λ-Gabidulin
codes [14]), and the Low Rank Parity Check (LRPC) codes [6] that are used
in the rank metric code-based cryptosystem. In the Asia PKC Workshop 2018,
Kim et al. [10] proposed a new variant of the LRPC codes, namely the LRPC-
Kronecker Product code, C generated by G = G1 ⊗ G2 where ⊗ is the Kro-
necker product for two matrices, and G1 and G2 are generator matrices for
codes C1 and C2. Kim et al. employed this code and proposed a new McEliece-
type cryptosystem, namely an LRPC-Kronecker cryptosystem. They claimed
that their crytosystem provides compact key size of 4,692 bits, 7,656 bits and
9,768 bits for 128-bit, 192-bit and 256-bit security level respectively. Moreover,
the γ-conversion proposed by Kobarai and Imai [11] was used to convert the
LRPC-Kronecker cryptosystem into a CCA2-secured encryption scheme.

In order to optimize the size of public key Gpub = SGQ for LRPC-Kronecker
cryptosystem, Kim et al. employed double circulant LRPC codes for the C2 used
in the Kronecker product, i.e., C2 is an [n2,

n2
2 , d2]-LRPC code. For C1, they

consider two constructions, i.e., [2, 2]-C1 where n1 = k1 = 2 and [3, 2]-C1 where
n1 = 3 and k1 = 2. Furthermore, the matrix S and Q were chosen such that
they are block circulant matrices and Gpub is of the systematic block circulant
form. For the first set of parameters where [2, 2]-C1 is used, Kim et al. claimed
that their proposal achieved 128-bit, 192-bit and 256-bit security level with key
size of 4, 692 bits, 7, 656 bits and 9, 768 bits respectively. For the second set of
parameters where [3, 2]-C1 is used, they claimed that their proposal achieved
128-bit, 192-bit and 256-bit security level with key size of 9, 568 bits, 13, 920 bits
and 17, 760 bits respectively.

Our Contribution. In this paper, we point out some errors in the original
LRPC-Kronecker cryptosystem and suggest a reparation for the errors. We show
that the LRPC-Kronecker cryptosystem is equivalent to the LRPC cryptosystem
by suitable algebraic manipulations. With this equivalence, we suggest alterna-
tive encryption and decryption, namely AKron for the LRPC-Kronecker cryp-
tosystem. Furthermore, we show that there exists design weakness in the LRPC-
Kronecker cryptosystem for k1 = n1 when choosing [n1, k1]-C1 for the Kronecker
product code. We exploit this weakness and successfully cryptanalyze all the
suggested parameters for k1 = n1. Our cryptanalysis is able to recover secret
key for all the proposed parameters within the claimed security level.

Organization of the Paper. The rest of the paper is organized as follows: we
first review in Sect. 2 some preliminaries for rank metric and the hard problems
in rank metric code-based cryptography. We also review the definitions and
properties of LRPC codes, LRPC-Kronecker Product codes, and the LRPC-
Kronecker cryptosystem. In Sect. 3, we point out some errors in the original
LRPC-Kronecker cryptosystem and make reparations in the encryption and

Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem 213

update the parameters. In Sect. 4, we show that the LRPC-Kronecker cryp-
tosystem is equivalent to the LRPC cryptosystem and propose an alternative
LRPC-Kronecker cryptosystem called AKron. We also make some comparisons
in terms of secret key, decoding failure probability and decoding complexity
between AKron and the corrected LRPC-Kronecker cryptosystem (KronF). In
Sect. 5, we discuss design weakness for LRPC-Kronecker cryptosystem when
k1 = n1. We exploit this weakness to cryptanalyze the proposed DC-LRPC-
Kronecker cryptosystem for k1 = n1 by recovering the support basis for H2 and
recovering secret key within the claimed security level. Finally, we give our final
considerations of this paper in Sect. 6.

2 Preliminaries

In this section we recall the backgrounds for rank metric code. We also include
the hard problems in coding theory, namely the Rank Syndrome Decoding (RSD)
problem which LRPC-Kronecker cryptosystem is based on and give the complex-
ity for existing generic attacks on the RSD problem. Furthermore, we recall some
definitions and results related to the LRPC-Kronecker Product codes.

2.1 Rank Metric Background

Let Fqm be a finite field with qm elements and let {β1, . . . , βm} be a basis of Fqm

over the base field Fq.

Definition 1. A linear code of length n and dimension k is a linear subspace C
of the vector space F

n
qm .

Given a matrix M over a field F, the rank of M , rk(M) is the dimension of the
row span of M as a vector space over F. The row span of a matrix M over F is
denoted as 〈M〉F. We define the rank metric of a vector on F

n
qm :

Definition 2. Let x = (x1, . . . , xn) ∈ F
n
qm and M ∈ F

k×n
qm . The rank of x

in Fq, denoted by rk(x) is the rank of the matrix X = [xij] ∈ F
m×n
q where

xj =
∑m

i=1 xijβi.

Lemma 1 [9, Proposition 3.1]. Let x ∈ F
n
qm such that rk(x) = r. Then there

exists x̂ ∈ F
r
qm with rk(x̂) = r and U ∈ F

r×n
q with rk(U) = r such that x = x̂U .

We call such x̂ and U as a support basis and a support matrix for x respectively.

We now define circulant matrix induced by x:

Definition 3. Let x = (x0, . . . , xn−1) ∈ F
n
qm . The circulant matrix, Cirn(x)

induced by x is defined as Cirn(x) =
[
x〈i−j〉n

] ∈ F
n×n
qm , where 〈i − j〉n :=

i − j mod n.

214 T. S. C. Lau and C. H. Tan

Definition 4. An [m′n, s′n] block circulant matrix M ∈ F
m′n×s′n
qm is a matrix of

the form M =

⎡

⎢
⎣

M11 . . . M1s′

...
. . .

...
Mm′1 . . . Mm′s′

⎤

⎥
⎦ where each Mij is an n×n circulant matrix for

1 ≤ i ≤ m′, 1 ≤ j ≤ s′. Let m′ ≤ s′, a systematic block circulant matrix Msys ∈

F
m′n×s′n
qm is a matrix of the form Msys =

⎡

⎢
⎣

In 0 M11 . . . M1,s′−m′

. . .
...

. . .
...

0 In Mm′1 . . . Mm′,s′−m′

⎤

⎥
⎦ where

each Mij is an n × n circulant matrix for 1 ≤ i ≤ m′, 1 ≤ j ≤ s′ − m′.

2.2 Hard Problems in Coding Theory

We describe the hard problems which rank metric code-based cryptosystem is
based on.

Definition 5. (Rank Syndrome Decoding (RSD) Problem). Let H ∈ F
(n−k)×n
qm

of full rank, s ∈ F
n−k
qm and an integer, w. The Rank Syndrome Decoding Problem

RSD(q,m, n, k, w) needs to determine x ∈ F
n
qm with rk(x) = w and HxT = sT .

Recently, the RSD problem has been proven to be NP-complete with a probabilis-
tic reduction to the Hamming setting [7]. Nevertheless, there are two approaches
for practical attacks on a generic RSD problem. The combinatorial approach
depends on counting the number of possible support basis of size r or support
matrix of rank r for a rank code of length n over Fqm , which corresponds to the
number of subspaces of dimension r in Fqm . On the other hand, the nature of the
rank metric favors algebraic attacks using Gröbner bases and became efficient
when q increases. There are mainly three methods to translate the notion of
rank into algebraic setting: considering directly the RSD problem [12]; reducing
RSD problem into MinRank [3]; using linearized q-polynomials [5].

[13, Tables 1 and 2] summarizes the best attacks on RSD with their conditions
and complexities (Table 1):

Table 1. Conditions and complexities of the best combinatorial and algebraic attacks
on RSD

Attacks Conditions Complexity

AGHT-Combi [1] O
(
(n − k)3m3qr

(k+1)m
n

−m
)

GRS-Combi [5] O
(
(n − k)3m3q(r−1)k

)

OJ-Combi [16] O
(
r3m3q(r−1)(k+1)

)

CG-Kernel [8] O
(
k3m3qr� km

n �)

GRS-Basic [5] n ≥ (r + 1)(k + 1) − 1 O
(
((r + 1)(k + 1) − 1)3

)

GRS-Hybrid [5]
⌈

(r+1)(k+1)−(n+1)
r

⌉
≤ k O

(
r3k3q

r
⌈
(r+1)(k+1)−(n+1)

r

⌉)

Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem 215

2.3 LRPC Codes and LRPC-Kronecker Product Codes

We now give the definitions for LRPC codes, Quasi-Cyclic codes and Quasi-
Cyclic LRPC codes. Then, we give the definitions of LRPC-Kronecker Prod-
uct codes and state the block decoding algorithm for LRPC-Kronecker Product
codes.

Definition 6 (Low Rank Parity Check (LRPC) Codes). An [n, k, d]-Low Rank
Parity Check (LRPC) code of rank d, length n and dimension k over Fqm is
a code such that the code has for parity check matrix, an (n − k) × n matrix
H = [hij] such that the coefficients hij generate a vector subspace, V of Fqm

with dimension at most d. We call this dimension the weight of H. We denote
one of V ’s bases by {F1, . . . , Fd}.

There exists efficient probabilistic decoding algorithm for [n, k, d]-LRPC codes,
with error correcting capabilities of r ≤ ⌊

n−k
d

⌋
. Gaborit et al. proposed a

decoding algorithm, [6, Algorithm 1] to decode an [n, k, d]-LRPC codes, with
q−(n−k+1−rd) probability of decoding failure and r2(4d2m + n2) decoding com-
plexity.

Definition 7 (Quasi-Cyclic Codes). An [n, k] linear code is an [n, k]-Quasi-
Cyclic code if there is some integer n0 such that every cyclic shift of a codeword
by n0 places is again a codeword.

When n = n0p for some integer p, it is possible to have both the generator and
parity check matrices composed by p × p circulant blocks.

Definition 8 (Quasi-Cyclic LRPC). An [n, k, d]-Quasi-Cyclic Low Rank Parity
Check (QC LRPC) code of rank d, is an [n, k]-Quasi-Cyclic code which has for
parity check matrix, an (n − k) × n matrix H = [hij] such that the coefficients
hij generate a vector subspace, V of Fqm with dimension at most d.

Now, we give the definition for LRPC-Kronecker Product codes:

Definition 9 (LRPC-Kronecker Product Codes [10]). Let C1 be an [n1, k1]-
linear code generated by the matrix G1 = [aij] ∈ F

k1×n1
qm and C2 be an [n2, k2, d2]-

LRPC code generated by matrix G2 ∈ F
k2×n2
qm with error correcting capability

r2. Then an [n, k]-LRPC-Kronecker Product code, C is generated by the matrix

G = G1 ⊗ G2 =

⎡

⎢
⎣

a11G2 . . . a1n1G2

...
. . .

...
ak11G2 . . . ak1n1G2

⎤

⎥
⎦ ∈ F

k×n
qm

where n = n1n2 and k = k1k2.

Decoding LRPC-Kronecker Codes. Kim et al. [10] proposed a decoding
algorithm, namely the block decoding algorithm for LRPC-Kronecker Prod-
uct codes when the error vector e satisfies certain properties. In particular, let

216 T. S. C. Lau and C. H. Tan

y = c + e where c = xG and e = (e1, . . . ,en1) with each ei ∈ F
n2
qm and

rk(ei) ≤ r2. Let x = (x1, . . . ,xk1) where each xi ∈ F
k2
qm , the vector y can be

rewritten in blockwise form:

y = (y1, . . . ,yn1) where yj =
k1∑

i=1

aijxiG2 + ej ∈ F
n2
qm .

Let I = {dj1 , . . . , djk1
}. We can perform LRPC decoding on each yj for each

j ∈ I to recover
∑k1

i=1 ai,jxiG2, since rk(ej) ≤ r2. Then, the vectors xi can be
recovered from this system of equations, since aij are known.

2.4 LRPC-Kronecker Cryptosystem

In this section, we describe briefly the LRPC-Kronecker cryptosystem. Let n,
n1, n2, k, k1, k2, r, r2, d1 and d2 be integers such that k = k1k2 and n = n1n2.
The steps in the algorithm is outlined as follows:

1. KKron(n, n1, n2, k, k1, k2, r, r2):
(a) Randomly choose an [n1, k1, d1]-LRPC codes C1 with parity check matrix

H1 ∈ F
(n1−k1)×n1
qm of weight d1. Construct generator matrix G1 for C1.

(b) Randomly choose an [n2, k2, d2]-LRPC codes C2 with parity check matrix
H2 ∈ F

(n2−k2)×n1
qm of weight d2 such that C2 can correct errors of rank r2.

Construct generator matrix G2 for C2.
(c) Construct the matrix G = G1 ⊗ G2.
(d) Randomly generate a vector a ∈ F

k
qm such that S = Cirk(a) is invertible.

(e) Randomly generate a vector b ∈ F
n
q such that Q = Cirn(b) is invertible.

(f) Compute the public matrix Gpub = SGQ.
Output: pk = Gpub, sk = (S−1, Q−1, G1,H2).

2. EKron(m,e,pk = Gpub): let m be a plaintext to be encrypted
(a) Randomly generate vector e ∈ F

n
qm with rk(e) ≤ r = n1r2, where r2 is

the number of errors that can be corrected by C2.
(b) Compute c = mGpub + e.
Output: ciphertext c.

3. DKron(c, sk = (Q−1, S−1, G1,H2)): let c be the received ciphertext
(a) Compute c′ = cQ−1 = mSG + eQ−1.
(b) Determine m′ = mS by correcting the errors in c′ using the LRPC Block

decoding algorithm.
(c) Compute m = m′S−1.
Output: plaintext m.

To reduce the key size, Kim et al. [10] employed double circulant LRPC (DC-
LRPC) codes and used the fact that the sum and product of circulant square
matrices are also circulant. In particular, they choose n2 to be even and k2 = n2

2 .
Then the generator matrix for C2 is of the form G2 = [A1 | A2] where A1 and A2

are n2
2 × n2

2 circulant matrices. They also consider the matrix Q to be invertible

Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem 217

block circulant matrix in the form of Q =

⎡

⎢
⎣

Q11 . . . Q1,2n1

...
. . .

...
Q2n1,1 . . . Q2n1,2n1

⎤

⎥
⎦ where each Qij

is an n2
2 × n2

2 circulant matrix over Fq. Then the product GQ is a block circulant

matrix of the form GQ =

⎡

⎢
⎣

B11 . . . B1,2n1

...
. . .

...
Bk1,1 . . . Bk1,2n1

⎤

⎥
⎦ where each Bij is an n2

2 × n2
2

circulant matrix over Fq. Finally, the matrix S is an invertible block circulant
matrix such that

S =

⎡

⎢
⎣

S11 . . . S1,k1

...
. . .

...
Sk1,1 . . . Sk1,k1

⎤

⎥
⎦ ⇒ Gpub =

⎡

⎢
⎣

In2
2

0 B′
11 . . . B′

1,(2n1−k1)

...
. . .

...
...

. . .
...

0 In2
2

B′
k1,1

. . . B′
k1,(2n1−k1)

⎤

⎥
⎦

where Sij and B′
ij are n2

2 × n2
2 circulant matrices. The suggested parameters for

LRPC-Kronecker cryptosystem will be shown in Sect. 3, Table 2.

3 Errors in LRPC-Kronecker Cryptosystem and Its
Reparations

In this section, we identify some errors in the original encryption EKron(m,e,pk)
and decryption DKron(c, sk).1 Then, we repair the cryptosystem and update the
correct parameters at the end of this section.

3.1 Some Errors in LRPC-Kronecker Cryptosystem

In the EKron(m,e,pk), an error vector e with rk(e) ≤ r = n1r2 is randomly
generated, where r2 is the number of errors that can be corrected by C2.

Suppose that rk(e) = r = n1r2. In the DKron(c), c′ = cQ−1 = mSG+eQ−1

is computed. Let e′ = eQ−1 = (e′
1, . . . ,e

′
n1

), where each e′
j ∈ F

n2
qm for 1 ≤ j ≤ n1.

Since Q ∈ GLn(Fq), we have rk(e′) = rk(e) = r.
To apply the LRPC Block decoding algorithm [10, Sect. 3.1], it is required

that the vector rk(e′
j) ≤ r2. However, rk(e′

1, . . . ,e
′
n1

) = n1r2 does not necessarily
imply that rk(e′

j) = r2 for each 1 ≤ j ≤ n1. In fact, it is very likely that
rk(e′

j) = r > r2, which creates problem in applying the LRPC Block decoding
algorithm. The recipient may not be able to decode correctly and recover the
vector e′. Thus, the decryption DKron(c, sk) will fail.

In [10, Table 2], the values for the columns of “block decoding” (LRPC block
decoding complexity),“failure” (decryption failure) and security (RSD complex-
ity) were calculated based on the parameters in [10, Table 2]. The following is
the list of the formula for the mentioned calculations:

1 We have pointed out the errors mentioned in this section to the authors of [10]. They
have recognized these errors and our suggestions to fix the errors as in Table 3.

218 T. S. C. Lau and C. H. Tan

block decoding : k6
1 + k1r

2
2(4d22m + n2

2), (1)

failure :
k1∑

i=1

(
k1
i

)

q−i(n2−k2+1−r2d2)
(
1 − q−(n2−k2+1−r2d2)

)k1−i

, (2)

RSD(q,m, n, k, r) : min
{

(n − k)3m3qr
(k+1)m

n −m, r3k3qr� r(k+1)−(n+1)
r 	} . (3)

Remark 1. From the description of LRPC-Kronecker cryptosystem, we notice
that there are errors in the general DKron(c, sk). However, when choosing the
parameters for LRPC-Kronecker cryptosystem, instead of choosing rk(e) ≤ r =
n1r2 as described in EKron(m,e,pk), Kim et al. chose the error vector e with
rk(e) ≤ r2 = n2−k2

d2
such that the decoding would be successful. For example, the

error vector in [2, 2]-Kron-I has rank rk(eQ−1) = rk(e) = 6 ≤ 46−23
3 . Thus the

LRPC block decoding can be applied. As a consequence, the value of rk(e) = r
should be replaced with r2.

3.2 Reparation for LRPC-Kronecker Cryptosystem

To fix the problem during decoding, we need to ensure the vector e′
j has rank

at most r2. This could be achieved by restricting the error e to have rk(e) ≤ r2.
We propose the following reparation, KronF for the original LRPC-Kronecker
cryptosystem. Note that the key generation KKronF is the same as the original
KKron. We underline the reparation for the encryption EKronF(m,e,pk = Gpub)
and decryption DKronF(c, sk = (Q−1, S−1, G1,H2)) of KronF:

2. EKronF(m,e,pk = Gpub): let m be a plaintext to be encrypted
(a) Randomly generate vector e ∈ F

n
qm with rk(e) ≤ r2, where r2 is the num-

ber of errors that can be corrected by C2.
(b) Compute c = mGpub + e.
Output: ciphertext c.

3. DKronF(c, sk = (Q−1, S−1, G1,H2)): let c be the received ciphertext
(a) Compute c′ = cQ−1 = mSG + eQ−1.
(b) Determine m′ = mS by correcting the errors in c′ using the LRPC Block

decoding algorithm.
(c) Compute m = m′S−1.
Output: plaintext m.

Table 2 is the original parameters for LRPC-Kronecker cryptosystem taken from
[10, Table 2]. Notice that r2 is inaccurate, as it should be r2 ≤ n2−k2

d2
.

By Remark 1, we consider the same parameters for (n1, k1, n2, k2,m, q, d2)
and update r, r2, “block decoding”,“failure” and “security” in Table 3.
The value for “block decoding” and “failure” is calculated using formula
(1) and (2) respectively. While the value for security is calculated using

min
{

q
r2

⌈
r2(k+1)−(n+1)

r2

⌉
, (n − k)3m3qr2

(k+1)m
n −m

}

.

Comparing Tables 2 and 3, notice that the parameters, key size and decoding
failure for both Kron and KronF are the same, except for the values r2.

Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem 219

Table 2. Suggested parameters for LRPC-Kronecker cryptosystem

Table 3. Suggested parameters corrected for KronF

4 Equivalence of LRPC-Kronecker Cryptosystem and
LRPC Cryptosystem

In this section, we first show that the LRPC-Kronecker cryptosystem and KronF
cryptosystem is equivalent to the LRPC cryptosystem [6]. With this equivalence,
we give an alternative encryption and decryption algorithm for the KronF cryp-
tosystem.

220 T. S. C. Lau and C. H. Tan

4.1 General Idea for Equivalence

For a general C1 and C2 generated by G1 and G2 respectively, we can rewrite the
matrix

G = G1 ⊗ G2 =

⎡

⎢
⎣

a11G2 . . . a1n1G2

...
. . .

...
ak11G2 . . . ak1n1G2

⎤

⎥
⎦ =

⎡

⎢
⎣

a11Ik2 . . . a1n1Ik2

...
. . .

...
ak11Ik2 . . . ak1n1Ik2

⎤

⎥
⎦

︸ ︷︷ ︸
k1k2×n1k2

⎡

⎢
⎣

G2 0
. . .

0 G2

⎤

⎥
⎦

︸ ︷︷ ︸
n1k2×n1n2

=

⎡

⎢
⎣

D11 . . . D1n1

...
. . .

...
Dk11 . . . Dk1n1

⎤

⎥
⎦

⎡

⎢
⎣

G2 0
. . .

0 G2

⎤

⎥
⎦ = DG2

where Dij = aijIk2 is a diagonal matrix with its entries equal to aij for 1 ≤ i ≤
k1, 1 ≤ j ≤ n1. Recall that S ∈ GLk(Fqm) and Q ∈ GLn(Fq), we rewrite

Gpub = SGQ = SD
k×n1k2
︸ ︷︷ ︸

S′

G2Q
n1k2×n
︸ ︷︷ ︸

G′

= S′G′.

Let H2 be the low rank parity check matrix of G2 with weight d2, then the
matrix G′ has parity check matrix

H ′ =

⎡

⎢
⎣

H2 0
. . .

0 H2

⎤

⎥
⎦

[
Q−1

]T
.

The matrix G′ generates an [n, n1k2, d2]-LRPC, C′ with a low rank parity check
matrix H ′, which can correct error up to

⌊
n−n1k2

d2

⌋
=

⌊
n1n2−n1k2

d2

⌋
= n1r2.

In an LRPC-Kronecker cryptosystem, a message m ∈ F
k
qm is encrypted into

c = mGpub + e where rk(e) ≤ n1r2. Note that this can be viewed as an LRPC
cryptosystem, as c = mS′G′ + e. Therefore, once the low rank parity check
matrix H ′ is known, then we can perform LRPC decoding algorithm [6, Algo-
rithm 1] on c [H ′]T = e [H ′]T and thus recover the error vector e, as long as
rk(e) × n ≤ (n − k)m. Finally, substitute e into the equation c = mGpub + e
and solve for the plaintext m.

4.2 Alternative Encryption and Decryption for KronF
Cryptosystem

By the equivalence shown in Sect. 4.1, we can view the LRPC-Kronecker cryp-
tosystem as an LRPC cryptosystem. In particular, since c = mGpub + e =
mSGQ + e = mS′G′ + e, the recipient can deduce the low rank parity check

Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem 221

matrix H ′ of G′, since he has information on H2 and Q−1. Then he can per-
form LRPC decoding algorithm on c [H ′]T and recover the vector e. Finally, the
vector e could be substituted into c = mGpub +e and solve for the plaintext m.

We now give an alternative encryption and decryption for KronF cryptosys-
tem to convert it into an LRPC cryptosystem, namely AKron. Note that the key
generation KAKron is the same as the original KKron, except that the encryption
and decryption are different. The followings are the encryption and decryption
of AKron:

2. EAKron(m,e,pk = Gpub): let m be a plaintext to be encrypted
(a) Randomly generate vector e ∈ F

n
qm with rk(e) ≤ r = n1r2, where r2 is

the number of errors that can be corrected by C2.
(b) Compute c = mGpub + e.
Output: ciphertext c.

3. DAKron(c, sk = (Q−1,H2)): let c be the received ciphertext
(a) Compute c′ = c [H ′]T = mS′G′ [H ′]T + e [H ′]T = e [H ′]T .
(b) Determine e by correcting the errors in c′ using LRPC decoding algorithm

for [n, n1k2, d2]-LRPC, C′.
(c) Compute c − e = mGpub and solve for m.
Output: plaintext m.

Correctness of AKron: Since the LRPC decoding algorithm for C′ can correct
errors up to r = n1r2, the error vector e with rk(e) ≤ r can be recovered. Note
that the matrix Gpub is of dimension k × n. Since k ≤ n, by linear algebra we
can solve for a unique m from c − e.

Remark 2. Since an LRPC-Kronecker cryptosystem is equivalent to an LRPC
cryptosystem (AKron), we do not suggest new parameters for AKron. Instead,
we compare the codes used, secret key, the rank of error vector, decoding failure
probability and decoding complexity for KronF (the corrected LRPC-Kronecker
cryptosystem) and AKron. Table 4 summarizes the comparison between KronF
and AKron.

Notice the secret key size of AKron is smaller than the secret key size of
KronF. Moreover, since r ≥ r2, there are more choices for e in AKron as com-
pared to KronF. AKron has lower decoding failure probability as compared to
KronF. On the other hand, the decoding complexity for AKron is higher than
the decoding complexity for KronF. We conclude that an LRPC-Kronecker cryp-
tosystem (KronF) can be viewed as an LRPC cryptosystem (AKron).

5 Cryptanalysis on DC-LRPC-Kronecker Cryptosystem

We show that there are some design weaknesses in LRPC-Kronecker cryptosys-
tem using double circulant LRPC (DC-LRPC) codes. In particular, if [n1, k1]-
linear code C1 and [n2, k2, d2]-LRPC codes C2 satisfying k1 = n1 and k2 = n2/2,
then the security of LRPC-Kronecker cryptosystem would be reduced. We crypt-
analyze the proposed QC-LRPC-Kronecker cryptosystem with all the parame-
ters for [2, 2]-C1 proposed in [10].

222 T. S. C. Lau and C. H. Tan

Table 4. Comparing KronF and AKron

KronF AKron (as LRPC
cryptosystem)

Code C C = C1 ⊗ C2, C2 is
[n2, k2, d2]-LRPC

C = C1 ⊗ C2, C2 is
[n2, k2, d2]-LRPC

Secret key (Q−1, S−1, G1, H2) (Q−1, H2)

Error vector rk(e) ≤ r2 rk(e) ≤ r = n1r2

Decoding LRPC Block decoding LRPC decoding

Decoding failure probability
∑k1

i=1

(k1
i

)
ai (1 − a)k1−i,

a = q−(n2−k2+1−r2d2)

q−(n−k+1−rd2)

Decoding complexity k61 + k1r22(4d
2
2m+ n2

2) r2(4d22m+ n2)

5.1 Simplication of DC-LRPC-Kronecker Cryptosystem

Consider k2 = n2/2 and an [n2, k2, d2]-DC-LRPC code C2 as proposed in [10].
There exists n2

2 × n2
2 circulant matrices A1 and A2 such that G2 = [A1 | A2].

Since the matrix G2 has low rank parity check matrix H2 of rank d2, there exists
n2
2 × n2

2 circulant matrices L1 and L2 of low rank d2 such that

G2H
T
2 = [A1 | A2]

[
L1

L2

]

= 0.

Assume that L1 is invertible (which happens at high probability), we can rewrite
A1L1 + A2L2 = 0 ⇔ A1 = −A2L2L

−1
1 . Let R = A2L

−1
1 , then G2 can be

expressed as

G2 = [A1 | A2] = [−A2L2L
−1
1 | A2] = A2L

−1
1 [−L2 | L1] = R[−L2 | L1].

Rewrite G as

G = G1 ⊗ G2 =

⎡

⎢
⎣

a11G2 . . . a1n1G2

...
. . .

...
ak11G2 . . . ak1n1G2

⎤

⎥
⎦ =

⎡

⎢
⎣

a11Ik2 . . . a1n1Ik2

...
. . .

...
ak11Ik2 . . . ak1n1Ik2

⎤

⎥
⎦

⎡

⎢
⎣

G2 0
. . .

0 G2

⎤

⎥
⎦

=

⎡

⎢
⎣

D11 . . . D1n1

...
. . .

...
Dk11 . . . Dk1n1

⎤

⎥
⎦

⎡

⎢
⎣

−RL2 | RL1 0
. . .

0 −RL2 | RL1

⎤

⎥
⎦

=

⎡

⎢
⎣

D11 . . . D1n1

...
. . .

...
Dk11 . . . Dk1n1

⎤

⎥
⎦

⎡

⎢
⎣

R . . . 0
...

. . .
...

0 . . . R

⎤

⎥
⎦

⎡

⎢
⎣

−L2 | L1 0
. . .

0 −L2 | L1

⎤

⎥
⎦

= D︸︷︷︸
k1k2×n1k2

R︸︷︷︸
n1k2×n1k2

L︸︷︷︸
n1k2×n1n2

where Dij = aijIk2 is a diagonal matrix with its entries equal to aij for 1 ≤
i, j ≤ n1.

Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem 223

Note that S =

⎡

⎢
⎣

S11 . . . S1k1

...
. . .

...
Sk11 . . . Sk1k1

⎤

⎥
⎦ is a block circulant matrix with each Sij is

n2
2 × n2

2 circulant matrices for 1 ≤ i, j ≤ k1. Let T = SDR, then T is a block
circulant matrix such that

T =

⎡

⎢
⎣

T11 . . . T1n1

...
. . .

...
Tk11 . . . Tk1n1

⎤

⎥
⎦ =

⎡

⎢
⎣

S11 . . . S1k1

...
. . .

...
Sk11 . . . Sk1k1

⎤

⎥
⎦

⎡

⎢
⎣

D11 . . . D1n1

...
. . .

...
Dk11 . . . Dk1n1

⎤

⎥
⎦

⎡

⎢
⎣

R . . . 0
...

. . .
...

0 . . . R

⎤

⎥
⎦

where Tij is a n2
2 × n2

2 circulant matrix for 1 ≤ i ≤ k1, 1 ≤ j ≤ n1. We can now
rewrite Gpub as

Gpub = SGQ = S(DRL)Q = T

⎡

⎢
⎣

−L2 | L1 0
. . .

0 −L2 | L1

⎤

⎥
⎦

⎡

⎢
⎣

Q11 . . . Q1,2n1

...
. . .

...
Q2n1,1 . . . Q2n1,2n1

⎤

⎥
⎦

where each Qij is an n2
2 × n2

2 circulant matrix over Fq for 1 ≤ i, j ≤ n1. Since
L1, L2 and Qij are n2

2 × n2
2 circulant matrices, for 1 ≤ a ≤ n1 and 1 ≤ b ≤ 2n1,

there exists n2
2 × n2

2 circulant matrices L′
ab such that

L′ = LQ =

⎡

⎢
⎣

L′
11 L′

12 . . . L′
1,2n1−1 L′

1,2n1
...

...
. . .

...
...

L′
n11 L′

n12 . . . L′
n1,2n1−1 L′

n1,2n1

⎤

⎥
⎦ (4)

where each L′
ab is of low rank d2. Finally, Gpub can be simplified into

Gpub = TLQ = TL′ =

⎡

⎢
⎣

T11 . . . T1n1

...
. . .

...
Tk11 . . . Tk1n1

⎤

⎥
⎦

⎡

⎢
⎣

L′
11 L′

12 . . . L′
1,2n1−1 L′

1,2n1
...

...
. . .

...
...

L′
n11 L′

n12 . . . L′
n1,2n1−1 L′

n1,2n1

⎤

⎥
⎦

=

⎡

⎢
⎣

Ik2 0 B′
11 . . . B′

1,(2n1−k1)

. . .
...

. . .
...

0 Ik2 B′
k11

. . . B′
k1,(2n1−k1)

⎤

⎥
⎦ (5)

where the last equation is the form of Gpub which [10] considered, with each B′
ij

are n2
2 × n2

2 circulant matrices for 1 ≤ i ≤ k1 and 1 ≤ j ≤ 2n1 − k1.

224 T. S. C. Lau and C. H. Tan

5.2 Recover Support Basis for H2 when k1 = n1

Now, suppose that k1 = n1, then 2n1 − k1 = n1. From (5) we have
⎡

⎢
⎣

Ik2 0
. . .

0 Ik2

⎤

⎥
⎦ =

⎡

⎢
⎣

T11 . . . T1n1

...
. . .

...
Tn11 . . . Tn1n1

⎤

⎥
⎦

⎡

⎢
⎣

L′
11 . . . L′

1n1
...

. . .
...

L′
n11 . . . L′

n1n1

⎤

⎥
⎦ , (6)

⎡

⎢
⎣

B′
11 . . . B′

1n1
...

. . .
...

B′
n11 . . . B′

n1n1

⎤

⎥
⎦ =

⎡

⎢
⎣

T11 . . . T1n1

...
. . .

...
Tn11 . . . Tn1n1

⎤

⎥
⎦

⎡

⎢
⎣

L′
1,n1+1 . . . L′

1,2n1
...

. . .
...

L′
n1,n1+1 . . . L′

n1,2n1

⎤

⎥
⎦ . (7)

Substituting (6) into (7),

⎡

⎢
⎣

T11 . . . T1n1

...
. . .

...
Tn11 . . . Tn1n1

⎤

⎥
⎦ =

⎡

⎢
⎣

L′
11 . . . L′

1n1
...

. . .
...

L′
n11 . . . L′

n1n1

⎤

⎥
⎦

−1

⇒

⎡

⎢
⎣

L′
11 . . . L′

1n1
...

. . .
...

L′
n11 . . . L′

n1n1

⎤

⎥
⎦

⎡

⎢
⎣

B′
11 . . . B′

1n1
...

. . .
...

B′
n11 . . . B′

n1n1

⎤

⎥
⎦ =

⎡

⎢
⎣

L′
1,n1+1 . . . L′

1,2n1
...

. . .
...

L′
n1,n1+1 . . . L′

n1,2n1

⎤

⎥
⎦ . (8)

Let B′ =

⎡

⎢
⎣

B′
11 . . . B′

1n1
...

. . .
...

B′
n11 . . . B′

n1n1

⎤

⎥
⎦. Since all the matrices L′

ab are circulant matrices

induced by vectors lab ∈ F

n2
2

qm , we can view (8) in vector form, i.e., for 1 ≤ a ≤ n1,

(la,1, . . . , la,n1)B′ = (la,n1+1, . . . , la,2n1)

⇒ (la,1, . . . , la,n1 , la,n1+1, . . . , la,2n1)
[−B′

In1n2
2

]

= 0. (9)

Let F =
[−B′

In1n2
2

]

and la = (la,1, . . . , la,2n1). Note that rk(la) = d2 of low rank,

therefore solving for la from (9) is equivalent to solve RSDF (q,m, n1n2,
n1n2
2 , d2)

problem. Note that a basis for L′ is also a basis for L, which is also a support
basis for H2. Once la is determined, we are able to determine L′ and recover a
support basis F2 for the low rank parity check matrix H2.

5.3 Recover Alternative Secret Key for DC-LRPC-Kronecker
Cryptosystem

Although L′ is known, we do not know a low rank parity check matrix for L′.
We are required to compute an alternative low rank parity check matrix for L′.

Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem 225

First of all, we rewrite

Pij :=
[

Q2i−1,2j−1 Q2i−1,2j

Q2i,2j−1 Q2i,2j

]

⇒ Q =

⎡

⎢
⎣

P11 . . . P1,n1

...
. . .

...
Pn1,1 . . . Pn1,n1

⎤

⎥
⎦ .

for 1 ≤ i, j ≤ n1. Then we have

Q =

⎡

⎢
⎢
⎢
⎣

P11 0
P11

. . .
0 P11

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

In2 P−1
11 P12 . . . P−1

11 P1,n1

P−1
11 P21 P−1

11 P22 . . . P−1
11 P2,n1

...
...

. . .
...

P−1
11 Pn1,1 P−1

11 Pn1,2 . . . P−1
11 Pn1,n1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

P11 0
P11

. . .
0 P11

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

In2 W12 . . . W1,n1

W21 W22 . . . W2,n1

...
...

. . .
...

Wn1,1 Wn1,2 . . . Wn1,n1

⎤

⎥
⎥
⎥
⎦

= PW

where P =

⎡

⎢
⎢
⎢
⎣

P11 0
P11

. . .
0 P11

⎤

⎥
⎥
⎥
⎦

, W =

⎡

⎢
⎢
⎢
⎣

In2 W12 . . . W1,n1

W21 W22 . . . W2,n1

...
...

. . .
...

Wn1,1 Wn1,2 . . . Wn1,n1

⎤

⎥
⎥
⎥
⎦

and Wij =

P−1
11 Pij . From (4), we have [L′

11 | L′
12] = [−L2 | L1]

[
Q11 Q12

Q21 Q22

]

. Let L′ = LQ as

in (4), then

L′ =

⎡

⎢
⎣

L′
11 L′

12 . . . L′
1,2n1−1 L′

1,2n1
...

...
. . .

...
...

L′
n11 L′

n12 . . . L′
n1,2n1−1 L′

n1,2n1

⎤

⎥
⎦ (10)

LQ =

⎡

⎢
⎣

−L2 | L1 0
. . .

0 −L2 | L1

⎤

⎥
⎦PW =

⎡

⎢
⎣

L′
11 | L′

12 0
. . .

0 L′
11 | L′

12

⎤

⎥
⎦ W. (11)

Consider the system (10)=(11) over Fq, we have m(n2
1 − 1)n2 equations with

2(n2
1 − 1)n2 unknown variables for Wij . Since m > 2, we have m(n2

1 − 1)n2 >
2(n2

1 − 1)n2, thus W could be solved uniquely in (2(n2
1 − 1)n2)3 operations.

Once W is computed, we can compute an alternative low rank parity check
matrix, HL′ for L′:

226 T. S. C. Lau and C. H. Tan

HL′ =

⎡

⎢
⎣

−[L′
12]

T | [L′
11]

T 0
. . .

0 −[L′
12]

T | [L′
12]

T

⎤

⎥
⎦ [W−1]T

⇒ L′ [HL′]T =

⎡

⎢
⎣

L′
11 | L′

12 0
. . .

0 L′
11 | L′

12

⎤

⎥
⎦ WW−1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−L′
12 0

L′
11

. . .
−L′

12

0 L′
11

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= 0.

Finally, compute

c[HL′]T = mGpub[HL′]T + e[HL′]T = mSDRL′[HL′]T + e[HL′]T = e[HL′]T .

As the basis F2 is known and rk(e) ≤ r2, we can apply decoding algorithm of
LRPC and recover e and thus solve for the plaintext m.

5.4 Cryptanalysis on DC-LRPC-Kronecker Cryptosystem for C1 of
Dimension [2, 2]

By the cryptanalysis in Sect. 5.2, we first solve the RSDF (q,m, 2n2, n2, d2) for all
the parameters in [10, Table 2] which C1 is of dimension [2, 2]. Then we determine
an alternative low rank parity check matrix with the strategies in Sect. 5.3 in
(6n2)3 operations. Table 5 shows the complexity to recover the plaintext of the
LRPC-Kronecker cryptosystem. In other words, for all the original parameters
with C1 of dimension [2, 2], our cryptanalysis is able to recover alternative secret
key HL′ within the claimed security level. We denote the complexity to solve the
RSDF (q,m, 2n2, n2, d2) and alternative low rank parity check matrix as “CO1”
and “CO2” respectively. We calculate the total complexity of our attack by
“CO1+CO2” and denote it as “TO”.

From Table 5, we can observe that the LRPC-Kronecker cryptosystem with
C1 of dimension [2, 2] in fact does not achieve the required security level. Our
attack can recover all the secret key for the all parameters set with k1 = n1.
As a consequence, the parameters need to be adjusted to achieve the required
security level, which will result in larger public key size. We conclude that the
design of C1 with k1 = n1 in fact is insecure against our attack.

Table 5. Complexity to recover alternative secret key HL′ of LRPC-Kronecker cryp-
tosystem with C1 of dimension [2, 2]

Schemes q m n2 d2 CO1 CO2 TO Claimed security

[2, 2]-KronF-I 8 17 46 3 56 24 80 128

[2, 2]-KronF-II 8 29 44 3 77 24 101 192

[2, 2]-KronF-III 8 37 44 3 91 24 115 256

Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem 227

5.5 Limitations of Our Attack

Our attack in this section may not work well on the case where k1 �= n1. For
instance, when k1 = 2 < 3 = n1, from (5) we have

[
T11 T12 T13

T21 T22 T23

]
⎡

⎣
L′
11 L′

12 L′
13 L′

14 L′
15 L′

16

L′
21 L′

22 L′
23 L′

24 L′
25 L′

26

L′
31 L′

32 L′
33 L′

34 L′
35 L′

36

⎤

⎦ =
[

Ik2 0 B′
11 B′

12 B′
13 B′

14

0 Ik2 B′
21 B′

22 B′
23 B′

24

]

.

Let L′
1 =

⎡

⎣
L′
11 L′

12 L′
13

L′
21 L′

22 L′
23

L′
31 L′

32 L′
33

⎤

⎦ and L′
2 =

⎡

⎣
L′
14 L′

15 L′
16

L′
24 L′

25 L′
26

L′
34 L′

35 L′
36

⎤

⎦, we have

[
T11 T12 T13

T21 T22 T23

]

L′
1 =

[
Ik2 0 B′

11

0 Ik2 B′
21

]

,

[
T11 T12 T13

T21 T22 T23

]

L′
2 =

[
B′

12 B′
13 B′

14

B′
22 B′

23 B′
24

]

⇒
[

T11 T12 T13

T21 T22 T23

]

=
[

Ik2 0 B′
11

0 Ik2 B′
21

]

[L′
1]

−1

⇒
[

T11 T12 T13

T21 T22 T23

]

L′
2 =

[
Ik2 0 B′

11

0 Ik2 B′
21

]

[L′
1]

−1
L′

2 =
[

B′
12 B′

13 B′
14

B′
22 B′

23 B′
24

]

.

Here, the matrices [L′
1]

−1 and L′
2 do not commute, we are not able to rewrite

the system in the form of (8). Therefore this attack fails.

6 Conclusion

We point out some errors in the original LRPC-Kronecker cryptosystem and
repair the errors and parameters as KronF cryptosystem. We also show that an
LRPC-Kronecker cryptosystem is equivalent to an LRPC cryptosystem (AKron)
by modifying the encryption and decryption of the original LRPC-Kronecker
cryptosystem. Furthermore, we show that KronF cryptosystem in fact has design
weakness when k1 = n1 for C1. In particular, we are able to cryptanalyze the
KronF cryptosystem whenever k1 = n1 and successfully recover secret key for
all the proposed parameters. In other words, although KronF with k1 = n1 = 2
promises compact key size of 4, 692 bits, 7, 656 bits and 9, 768 bits, in fact the
schemes only achieve 80-bit, 101-bit and 115-bit security level. As a consequence,
Kim et al.’s claim that their parameters for [2, 2]-C1 could achieve 128-bit, 192-bit
and 256-bit security level has to be revised.

Acknowledgments. The authors would like to thank the Galvez et al. (the authors
of [10]) for their feedback on our identification of the errors in the original proposal.

228 T. S. C. Lau and C. H. Tan

References

1. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.-P.: A new algorithm for solv-
ing the rank syndrome decoding problem. In: Proceedings of IEEE International
Symposium on Information Theory (ISIT 2018), pp. 2421–2425 (2018)

2. Augot, D., Loidreau, P., Robert, G.: Generalized Gabidulin codes over fields of any
characteristic. Des. Codes Crypt. 86(8), 1807–1848 (2018)

3. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85174-5 16

4. Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Peredachi
Informatsii 21(1), 3–16 (1985)

5. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decod-
ing problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)

6. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: New results for rank-based cryptog-
raphy. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol.
8469, pp. 1–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-
6 1

7. Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance
problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016)

8. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44448-3 4

9. Horlemann-Trautmann, A., Marshall, K., Rosenthal, J.: Extension of overbeck’s
attack for Gabidulin based cryptosystems. Des. Codes Crypt. 86(2), 319–340
(2018)

10. Kim, J.-L., Galvez, L., Kim, Y.-S., Lee, N.: A new LRPC-Kronecker product codes
based public-key cryptography. In: Proceedings of the 5th ACM on ASIA Public-
Key Cryptography Workshop (APKC 2018), pp. 25–33 (2018)

11. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -
conversions for McEliece PKC. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp.
19–35. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2 2

12. Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. In: Pro-
ceedings of Yet Another Conference on Cryptography (YACC 2006), pp. 142–152
(2006)

13. Lau, T.S.C., Tan, C.H.: A new technique in rank metric code-based encryption.
Cryptography 2, 32 (2018)

14. Lau, T.S.C., Tan, C.H.: A new Gabidulin-like code and its application in cryptog-
raphy. In: Carlet, C., Guilley, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2019. LNCS,
vol. 11445, pp. 269–287. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-16458-4 16

15. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. The
Deep Space Network Progress Report 42-44, pp. 114–116. Jet Propulsion Labora-
tory, Pasedena, CA (1978)

16. Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank metric
and its cryptography applications. Probl. Inf. Transm. 38(3), 237–246 (2002)

https://doi.org/10.1007/978-3-540-85174-5_16
https://doi.org/10.1007/978-3-319-06734-6_1
https://doi.org/10.1007/978-3-319-06734-6_1
https://doi.org/10.1007/3-540-44448-3_4
https://doi.org/10.1007/3-540-44586-2_2
https://doi.org/10.1007/978-3-030-16458-4_16
https://doi.org/10.1007/978-3-030-16458-4_16

Pseudorandom Functions from LWE:
RKA Security and Application

Nan Cui1,2, Shengli Liu1,2,3(B), Yunhua Wen1, and Dawu Gu1

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{cuinan913,slliu,happyle8,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. Pseudorandom Functions (PRF) is a basic primitive in cryp-
tography. In this paper, we study related key attacks (RKA) with which
the adversary is able to choose function φ and observe the behavior of
the PRF under the modified secret key φ(k). We focus on the PRF from
the Learning with Errors (LWE) assumption by Banerjee and Peikert
in CRYPTO 2014. We prove that the PRF is secure against unique-
input key shift attacks and restricted affine attacks. After that, we use
this RKA-secure PRF to construct a robustly reusable fuzzy extractor,
which enjoys higher efficiency and better error correction rate.

Keywords: PRF · Related key attacks ·
Robustly reusable fuzzy extractor

1 Introduction

As an essential cryptographic primitive, pseudorandom function (PRF) family
plays an important role in modern cryptography. A pseudorandom function [1]
F : K × X → Y requires that the output of F (k, ·) is pseudorandom when k
is uniform. In other words, the behavior of function F (k, ·) is computationally
indistinguishable from that of a truly random function U : X → Y. Research on
construction of PRF can be founded in [1,2].

Traditionally, pseudorandomness of PRF is always studied under the assump-
tion that the key k is uniformly distributed and unchanged in the function eval-
uations. However, recent research showed that the key in cryptography device
may suffer from leaking or tampering, for instance, fault injection attacks [3],
side-channel attacks [4], etc. In this case, the key might not be uniform to the
adversary, then the pseudorandomness of the PRF may not be guaranteed in case
of such attacks. To solve this problem of key tampering, researchers developed
the notion of related-key attack (RKA) security. RKA security for PRF captures
the computational indistinguishabilility between the F (φ(k), x) and U(φ(k), x),
where U(·, ·) is the keyed truly random function, and the tampering function φ
together with input x are adaptively designated by the adversary. A RKA-secure
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 229–250, 2019.
https://doi.org/10.1007/978-3-030-21548-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_13

230 N. Cui et al.

PRF enjoys a wide range of applications. It can be used to construct many other
RKA-secure primitives like signature, identity-based encryption, chosen cipher-
text secure encryption scheme [5] and fuzzy extractor [6].

In 2000, Bellare and Cash [7] presented the first RKA-secure PRF under
standard assumption. Besides, they developed a framework to build RKA-
secure PRFs and presented instantiations under DDH, DLIN assumptions. Later,
Boneh et al. [8] constructed the first key-homomorphic PRF without random ora-
cle and Lewi et al. [9] proved that this key-homomorphic PRF [8] is RKA secure
for restricted affine functions under a strong LWE assumption. In 2014, Peikert
et al. [10] proposed an improved key homomorphic PRF which is more efficient
and rely on a weaker LWE assumption compared with [8]. Natural questions
arise:

Is this improved key-homomorphic PRF RKA secure?
If yes, what RKA function set does this PRF support?

In this paper, we will answer these questions. We will prove the RKA security
of the improved PRF [10] and show the supported RKA function set. Moreover,
we construct a more efficient robustly reusable fuzzy extractor based on this
improved RKA secure PRF.

1.1 Our Contribution

• Unique-input RKA security against key-shift family. We prove the
key-homomorphic PRF in [10] is unique-input RKA secure against the key-
shift family Φshift = {ψb : ψb(k) = k + b}, where b is an arbitrary vector
in Z

n
q .

• Unique-input RKA security against restricted affine family. We
extend the PRF to a matrix version F (K, x) := �K · AT (x)�p, then prove
the PRF is unique-input RKA secure against affine function family Φraff =
{φC,B : φC,B(K) = CK + B}, where C is a full rank matrix with low norm
and B is an arbitrary matrix in Z

n×n
q .

• Robustly Reusable Fuzzy Extractor. We use this RKA-secure PRF to
construct a robustly reusable fuzzy extractor of higher efficiency and better
error correction rate.

2 Preliminaries

2.1 Notation

We use normal, bold and capital bold letters like x,x,X to denote element,
column vector and matrix, respectively. For a set X , x ←$ X means randomly
choosing an element x from set X . For a distribution X over set X , let x ← X
denotes sampling x according to X. For two random variables X and Y over the
same set X , let H∞(X) = − log2 maxx∈X Pr[X = x] denotes the min-entropy
of X, H̃∞(X|Y) = − log(Ey←Y [2−H∞(X|Y =y)]) denotes the conditional min-
entropy. X ≈c Y means that the distributions X and Y are computationally

Pseudorandom Functions from LWE: RKA Security and Application 231

indistinguishable. For a bit string x of length at least i, we use x(i) to denote the
first i bits of string x while x(i) denote the remainder. Let ε denote the empty
string. Then, for a bit string x of length �, x(�) = ε.

For real number x, let �x� denote rounding x to the largest integer which
does not exceed it. For an integer q ≥ 1, Zq = Z/qZ denotes the quotient ring of
integers modulo q. For integers p, q where q ≥ p ≥ 2, define rounding function
�·� : Zq → Zp as �x�p = �p

q · x�. For a vector x ∈ Z
n
q , we define �x�p as the

vector in Z
n
p obtained by rounding each coordinate of x individually. For an

algorithm Alg, we denote by y ← Alg(x) the operation of running Alg with input
x (possibly together with randomness r) and assigning y as the output of Alg. A
function f(λ) is negligible if it is o(λ−c) for all c > 0. We use negl(λ) to denote
a negligible function of λ and PPT to denote probabilistic polynomial-time.

Remark 1. In this paper, we concentrate on Hamming metric space M = {0, 1}∗

with dis(w1, w2) the number of positions in which the strings w1 and w2 differ.

2.2 Related Key Attack (RKA) Secure PRFs

Before introducing related key attack (RKA) secure PRFs, we review the security
definition of pseudorandom functions (PRF) in [9] which considers the PRF with
public parameters pp. Let U(x) denote a truly random function.

Definition 1 (PRF). PRF consists of two algorithms PRF.Setup and PRF.Eval.
The setup algorithm PRF.Setup takes security parameter λ as input and outputs
a public parameter pp, namely pp ← PRF.Setup(λ). The public parameter pp
defines a family of keyed functions Fpp : K × X → Y. The evaluation algorithm
PRF.Eval takes k, x as input and calculates Fpp(k, x). The PRF Fpp : K × X →
Y is secure if AdvPRF

A,F (λ) := |Pr[ExpPRF
A,F (0) ⇒ 1] − Pr[ExpPRF

A,F (1) ⇒ 1]| is
negligible for any PPT adversary A, where the experiment ExpPRF

A,F (b), b ∈ {0, 1},
is formalized in Fig. 1.

Fig. 1. The security game ExpPRF
A,F (b) of PRF.

Φ-RKA security of PRF deals with Φ-RKA attacks where the adversary is
able to choose a function φ from Φ = {φ : K → K} and observe the output

232 N. Cui et al.

of the PRF under the modified secret key φ(k). Φ-RKA security asks for the
pseudorandomness of PRF under φ(k). Formally, we define the Φ-RKA security
for a pseudorandom function F : K × X → Y in Definition 2. Let U(k, x) denote
a keyed random function.

Definition 2 (Φ-RKA Security). A PRF F : K × X → Y is RKA-
secure with respect to function class Φ = {φ : K → K} if AdvRKA

Φ,F,A(λ) :=
|Pr[ExpRKA

Φ,F,A(0) ⇒ 1] − Pr[ExpRKA
Φ,F,A(1) ⇒ 1]| is negligible for any PPT adver-

sary A, where the experiment ExpRKA
Φ,F,A(b), b ∈ {0, 1}, is formalized in Fig. 2.

Fig. 2. The Φ-RKA security game ExpRKA
Φ,F,A(b) of PRF.

Unique-input Φ-RKA security is a weaker notion of RKA security defined
in Definition 2, and it only deals with unique-input adversaries. For a
unique-input adversary, it is required that x1, · · · , xQ are distinct in queries
(φ1, x1), · · · , (φQ, xQ), which are submitted by the adversary to oracle ORKA

k (·, ·)
in ExpRKA

Φ,F,A(b).

Definition 3 (Unique-input RKA Security) [7]. A PRF is unique-input Φ-
RKA secure if it is Φ-RKA secure against unique-input adversaries, who are
required to submit distinct x1, · · · , xQ in queries (φ1, x1), · · · , (φQ, xQ) to oracle
ORKA

k (·, ·) in ExpRKA
Φ,F,A(b).

2.3 The Learning with Errors (LWE) Assumption

The learning with errors (LWE) problem was introduced by Regev in [11,12].

Definition 4 (LWE Assumption). Let n = n(λ), m = m(λ), q ≥ 2, and let
χ denote a distribution over Zq. The LWEn,m,q,χ problem is to distinguish the
following distributions

(A, s�A + e�) and (A,u�),

Pseudorandom Functions from LWE: RKA Security and Application 233

where A ←$ Z
n×m
q , s ←$ Z

n
q , e ← χm, and u ←$ Z

m
q . The LWEn,m,q,χ assump-

tion means that Advn,m,q,χ
LWE,A (λ) is negligible for any PPT adversary A, i.e.,

Advn,m,q,χ
LWE,A (λ) : = |Pr[A ←$ Z

n×m
q , s ←$ Z

n
q , e ← χm : A(A, s�A + e�) ⇒ 1]

− Pr[A ←$ Z
n×m
q ,u ←$ Z

m
q : A(A,u�) ⇒ 1]| = negl(λ). (1)

The LWEn,m,�,q,χ assumption means that Advn,m,�,q,χ
LWE,A (λ) is negligible for any

PPT adversary A, i.e.,

Advn,m,�,q,χ
LWE,A (λ) : = | Pr[S ←$ Z

�×n
q ,A ←$ Z

n×m
q ,E ← χ�×m : A(A,SA + E) ⇒ 1]

− Pr[A ←$ Z
n×m
q ,U ←$ Z

�×m
q : A(A,U) ⇒ 1]| = negl(λ). (2)

A simple hybrid argument [9] implies Advn,m,�,q,χ
LWE,A (λ) ≤ � · Advn,m,q,χ

LWE,A (λ).
For a parameter r > 0 and a prime q, let Φr denote the distribution over Zq of

a random variable X mod q where X follows the discrete Gaussian distribution
DZ,r with mean 0 and standard deviation r/

√
2π for each z ∈ Z. We have the

following lemma.

Lemma 1 [11]. For r > 0, n is an integer and q is a prime such that r ≥ 3
√

n. If
there exists an efficient algorithm that solves the decisional LWEn,m,q,Φr

problem,
then there exists an efficient quantum algorithm that approximates the shortest
vector problem (SVP) and the shortest independent vectors problem (SIVP) to
within Õ(n · q/r) in the wost case.

3 Unique-Input RKA Secure Pseudorandom Function

In this section, we recall the PRF in [10] and prove the unique-input RKA
security of it. In Sect. 3.1, we recall the construction of the PRF and review
some relevant definitions in [10]. In Sect. 3.2, we prove that the PRF is unique-
input Φshift-RKA secure against key-shift attacks. And in Sect. 3.3, we extend
the construction of the PRF to a matrix version and prove the matrix version is
unique-input Φraff -RKA secure against restricted affine attacks.

First of all, we present some notations. For q ≥ 1, let � = �log q� and gadget
vector g� = (1, 2, 4, · · · , 2�−1) ∈ Z

�
q. Define the deterministic binary decom-

position function g−1 : Zq → {0, 1}� as g−1(a) = (x0, x1, · · · , x�−1)�, where
xi ∈ {0, 1}, and a =

∑�−1
i=0 xi2i is the binary representation of a. Clearly, we

have g� · g−1(a) = a. Similarly, we can extend the gadget vector g to matrix
G = diag(g�, · · · ,g�) = In ⊗ g�

n ∈ Z
n×n�
q . Define function G−1 : Z

n×m
q →

{0, 1}n�×m as follows: for any matrix A = (aij) ∈ Z
n×m
q , let aij =

∑�−1
w=0 aij,w2w

be the binary representation of aij , and âij := (aij,0, · · · , aij,�−1)�. Then,

G−1(A) :=

⎡

⎢
⎣

â11 · · · â1m

...
. . .

...
ân1 · · · ânm

⎤

⎥
⎦ .

234 N. Cui et al.

Clearly, it holds that G · G−1(A) = A.
A fully binary tree T (not necessarily complete) means that each non-leaf node
has two children. Let |T | denote the number of leaves, and let T.l, T.r respectively
denote the left and right subtrees of T if |T | ≥ 1.

3.1 Construction

Before presenting the construction of PRF, we review some definitions related
to the pseudorandom functions in [10] in this subsection.

Definition 5 (Pruning) [10]. For a full binary tree T , pr(T) removes its left-
most leaf x1 of T and replaces the subtree rooted at x1’s parent (if it exists)
with the subtree rooted at x1’s sibling (i.e., Figs. 3 and 4). It can be formalized
inductively as follows:

T ′ = pr(T) :=

{
T ′ = T.r if |T.l| ≤ 1

T ′.l = pr(T.l), T ′.r = T.r otherwise.

Let T (i) denote the resulting tree after the i-th successive pruning of T , then
T (0) = T and T (i) = pr(T (i−1)).

Fig. 3. A full binary tree T Fig. 4. The pruning tree T ′ = pr(T)

Definition 6 (AT (x) Function) [10]. For a full binary tree T of at least one
node and A0,A1 ∈ Z

n×n�
q , the function AT (x) : {0, 1}|T | → Z

n×n�
q is defined as

AT (x) :=

{
Ax if |T | = 1

AT.l(xl) · G−1(AT.r(xr)) otherwise,

where x = xl||xr, xl ∈ {0, 1}|T.l| denotes the leaves of left subtree T.l, and
xr ∈ {0, 1}|T.r| denotes the leaves of right subtrees T.r.

Remark 2. For an empty tree, Aε(ε) := G.

Definition 7 (ST (x) Function) [10]. For a full binary tree T of at least one
node and A0,A1 ∈ Z

n×n�
q , the function ST (x) : {0, 1}|T |−1 → Z

n�×n�
q is defined

as

ST (x) :=

{
I (the identity matrix) if |T | = 1

ST.l(xl) · G−1(AT.r(xr)) otherwise.

Pseudorandom Functions from LWE: RKA Security and Application 235

Given a full binary tree T with leaves x ∈ {0, 1}|T |, for any subtree T ′ of T ,
let x′

T ′ denote the leaves of the subtree T ′. Suppose that d is the depth of the
leftmost leaf x1 ∈ {0, 1}, and subtree Ti is the right child of x1’s ith ancestor.
Then x = x1‖x′ = x1‖x′

T1
‖ · · · , ‖x′

Td︸ ︷︷ ︸
x′

with x1 ∈ {0, 1}, x′
Ti

∈ {0, 1}|Ti|. Let

T ′ := pr(T), then we can rewrite the function AT (x) and ST (x) as

AT (x) := Ax1 ·
d

Π
i=1

G−1(ATi
(x′

Ti
))

︸ ︷︷ ︸
ST (x′)

. (3)

ST (x′) := G−1(AT1(x
′
T1

)) ·
d

Π
i=2

G−1(ATi
(x′

Ti
))

︸ ︷︷ ︸
ST ′ (x′)

. (4)

Based on Eqs. (3) and (4), we can obtain

AT (x) = Ax1 · ST (x′), (5)
G · ST (x′) = AT ′(x′), (6)

where x = x1‖x′ ∈ {0, 1}|T | with x1 ∈ {0, 1}, and x′ ∈ {0, 1}|T |−1.

Definition 8 (Expansion e(T) and Sequentiality s(T)) [10]. Let T be a full
binary tree, the expansion e(T) is the maximum number of terms of the form
G−1(·) that are ever consecutively multiplied together in function AT (x). It can
be defined inductively as

e(T) :=

{
0 if |T | = 1

max{e(T.l) + 1, e(T.r)} otherwise.

The sequentiality s(T) is the maximum nesting depth of G−1(·) expression in
function AT (x). It can be defined inductively as

s(T) :=

{
0 if |T | = 1

max{e(T.l), e(T.r) + 1} otherwise.

Definition 9 (Error Functions for Vector) [10]. Let T be a full binary tree,
matrix A0,A1 ∈ Z

n×n�
q , and distribution χ = Φr (see Sect. 2.3). The error

function family E = EA0,A1,T (x) : {0, 1}|T | → Z
n�
q can be defined inductively as

follows:

• Set the error function E(ε) = 0 if |T | = 0.
• If |T | > 0, set T ′ = pr(T), and x = x1 ‖ x′ ∈ {0, 1}|T | with x1 ∈ {0, 1}, x′ ∈

{0, 1}|T |−1. An error function E(x) is sampled from E as follows (E(x) ← E
is defined inductively):

Ee0,e1,E′
0,E′

1
(x) := e�

x1
· ST (x′) + E′

x1
(x′),

where e0, e1 ← χn�, E′
0, E

′
1 ← EA0,A1,T ′ , and ST (x′) is defined in Defini-

tion 7.

236 N. Cui et al.

Construction 1 (Construction of PRF) [10]. Let λ denote the security
parameter. The PRF family GA0,A1,T is a set of functions F (k, x) : {0, 1}λ →
Z

n�
q with public parameter pp = (A0,A1, T). It consists of the following two

algorithms.

– PRF.Setup(λ): On input λ, choose A0,A1 ←$ Z
n×n�
q , and set e = s =

�log4(λ)�. Next, do the following:
1. Check if

(
e+s

e

)
≥ λ. If yes, go to the next step. Else, set e := e + 1 and

s := s + 1 until
(
e+s

e

)
≥ λ.

2. Let t(e, s) denote the size of the binary tree and construct the full binary
tree T by using the recurrence equation:

t(e, s) :=

{
1 if e = 0 or s = 0.

t(e − 1, s) + t(e, s − 1) otherwise.
(7)

Finally, output pp = (A0,A1, T).
– PRF.Eval(k, x): On input a secret key k ∈ Z

n
q , x ∈ {0, 1}λ, the algorithm

computes
F (k, x) := �k� · AT (x)�p.

Remark 3. Indeed, we know that the real domain set of the PRF in Construc-
tion 1 is as large as {0, 1}|T |, where |T | =

(
e+s

e

)
≥ λ. Hence, we acquiesce that

the domain set of the PRF is {0, 1}|T | in the later proof.

Lemma 2 [10]. Let matrix A0,A1 ∈ Z
n×n�, T be a full binary tree and distri-

bution χ = Φr. Then for any x ∈ {0, 1}|T |, sampling an error function E ∈ E
according to Definition 9, it holds that

Pr[E(x) ∈ [−R,R]n�] ≥ 1 − negl(λ)

for R = r
√

|T | · (n�)e(T) · ω(
√

log λ).

Lemma 3 [10]. Let n, q ≥ 1, distribution χ = Φr, and T be a full binary tree.
Then for any PPT adversary A, we have

| Pr[k ←$ Z
n
q , A0, A1 ←$ Z

n×n�
q , E(x) ← E : AOT (·) ⇒ 1] − Pr[AOU(·) ⇒ 1]| ≤ |T | · Adv

n,Q,2n�,q,χ
LWE,A (λ),

where OT (x) returns k� · AT (x) + E(x), OU(x) returns the output of the truly
random function U(x), and AT (x) is defined as in Definition 6. Here � = �log q�,
and Q denotes the number of oracle queries.

3.2 Unique-Input RKA Security for Key-Shift Function Family

In this section, we prove the pseudorandom function in Construction 1 is unique-
input Φshift-RKA secure against the key-shift family Φshift = {ψb : ψb(k) =
k + b,b ∈ Z

n
q }.

Pseudorandom Functions from LWE: RKA Security and Application 237

Theorem 1. For F (k, x) := �k� · AT (x)�p in Construction 1 with respect to
pp = (A0,A1, T), if distribution χ = Φr, r ≥ 3

√
n and p, q satisfies

q ≥ p · r
√

|T | · (n�)e(T) · λω(1),

then for any PPT adversary A,

AdvRKA
Φ,F,A(λ) ≤ 2|T | · Advn,Q,2n�,q,χ

LWE,A (λ) + (2R + 1) · 2n� · p/q + negl(λ),

for class Φshift, where R = r
√

|T | · (n�)e(T) · ω(
√

log λ), e(T) is the expansion of
T and Q is the number of RKA oracle queries.

Proof. We will prove the unique-input RKA security via a series of games. Let
Pr[Gj] denote the probability that A wins in game Gj .

Game G0: G0 is the unique-input RKA attack game ExpRKA
Φ,F,A(0) played

between the challenger and a PPT adversary A. More precisely,

1. The challenger chooses A0,A1 ←$ Z
n×n�
q , a binary tree T and k ←$ Z

n
q , and

sends pp = (A0,A1, T) to A.
2. Upon receiving the query (ψb, x) from A, the challenger invokes ORKA

k (ψb, x)
to calculate y = (k + b)� · AT (x) and returns �y�p to A.

3. As long as the adversary A outputs a bit b′ ∈ {0, 1}, the game returns b′.

Clearly, we have
Pr[G0] = Pr[A ⇒ 1|b = 0]. (8)

Game G1: G1 is identical to G0 except for the way of answering A’s oracle
queries in step 2. More precisely, the challenger answers each query (ψb, x) as
follows:

2. • Compute y = (k� · AT (x) + E(x)) + b� · AT (x).
• Check whether �y+[−R,R]n��p �= �y�p. If yes, game aborts. Else, return

�y�p.

Recall that E(x) is defined in Definition 9 and R = r
√

|T | · (n�)e(T) · ω(
√

logλ).
Based on Lemma 2, we know that E[x] ∈ [−R,R]n� with overwhelming proba-
bility 1−negl(λ). Define event badi as �y+[−R,R]n��p �= �y�p in Game i. Then,
as long as bad1 does not happen, we have

�(k� · AT (x) + [−R,R]n�) + b� · AT (x)�p = �(k + b)� · AT (x)�p,

so
|Pr[G1] − Pr[G0]| ≤ Pr[bad1]. (9)

The analysis is complicated, so we defer it to later games.

Game G2: G2 is almost the same as G1, but the reply of query (ψb, x) is
changed as follows:

238 N. Cui et al.

2. • Compute y = U(x) + b� · AT(x), where U(·) : {0, 1}|T | → Z
n�
q is a truly

random function.
• Check whether �y+[−R,R]n��p �= �y�p, If yes, game aborts. Else, return

�y�p.

Based on Lemma 3, we get

|Pr[G2] − Pr[G1]| ≤ |T | · Advn,Q,2n�,q,χ
LWE,A (λ). (10)

Consequently, we have

|Pr[bad2] − Pr[bad1]| ≤ |T | · Advn,Q,2n�,q,χ
LWE,A (λ). (11)

Game G3: G3 is almost the same as G2, but the reply of query (ψb, x) is
changed again.

2. • Compute y = U(x).
• Check whether �y+[−R,R]n��p �= �y�p. If yes, game aborts. Else, return

�y�p.

Owing to the fact that U(x) + b� · AT(x) and U(x) are both independently and
uniformly distributed over the same set for distinct x, we have

Pr[G3] = Pr[G2], (12)
Pr[bad3] = Pr[bad2]. (13)

Lemma 4 [10]. Pr[bad3] ≤ (2R + 1) · n� · p/q.

Proof. For y ∈ Z
n�
q , define z := y + [−R,R]n�. Then event bad3 means �y�p �=

�z�p. Since q/p � R, then bad3 happens if and only if there exists a coordinate
y in y such that �y − R�p �= �y + R�p. In G3, y is uniform over Z

n�
q . Clearly,

Pr[bad3] ≤ (2R + 1) · n� · p/q = negl(λ), (14)

since R = r
√

|T | · (n�)e(T) · ω(
√

log λ) and q ≥ p · r
√

|T | · (n�)e(T) · λω(1). ��

If bad3 does not happen, Game G3 is identical to ExpRKA
Φ,F,A(1). Thus, we have

|Pr[A ⇒ 1|b = 1] − Pr[G3]| ≤ Pr[bad3] ≤ (2R + 1) · n� · p/q. (15)

Consequently,

|Pr[G1] − Pr[G0]| ≤ Pr[bad1] ≤ Pr[bad2] + |T | · Advn,Q,2n�,q,χ
LWE,A (λ)

≤ Pr[bad3] + |T | · Advn,Q,2n�,q,χ
LWE,A (λ)

≤ (2R + 1) · n� · p/q + |T | · Advn,Q,2n�,q,χ
LWE,A (λ), (16)

according to Eqs. (9), (13), and (14).
Finally, taking Eqs. (8), (12), (15), and (16) together, Theorem 1 follows. ��

Pseudorandom Functions from LWE: RKA Security and Application 239

3.3 Unique-Input RKA Security for Restricted
Affine Function Family

Construction 1 can be extended to a matrix version

F (K, x) := �K · AT (x)�p, (17)

where K ∈ Z
n×n
q . Now, we prove the unique-input RKA security for this matrix

version of PRF with respect to the restricted affine function family. Beforehand,
we present some definitions which will be used in the proof.

Definition 10 (Error Functions for Matrix). Let T be a full binary tree,
matrix A0,A1 ∈ Z

n×n�
q , and distribution χ = Φr(see Sect. 2.3). The error func-

tion family E = EA0,A1,T (x) : {0, 1}|T | → Z
n×n�
q can be defined inductively as

follows:

• Set the error function E(x) = 0 if |T | = 0.
• If |T | > 0, set T ′ = pr(T), and x = x1 ‖ x′ ∈ {0, 1}|T | with x1 ∈ {0, 1},

x′ ∈ {0, 1}|T |−1. The error function E(x) ∈ E is defined inductively as

EE0,E1,E′
0,E′

1
(x) := Ex1 · ST (x′) + E′

x1
(x′).

where E0,E1 ← χn×n�, E′
0, E

′
1 ∈ EA0,A1,T ′ , and ST (x′) is defined in Defini-

tion 7.

(�) Algorithm Sample(E) independently chooses E0,E1 according to χn×n�

and E′
0, E

′
1 from EA0,A1,T ′ , and outputs EE0,E1,E′

0,E′
1
(x).

(�) Though E is indexed by exponentially matrices, E(x) only depends on matri-
ces Ex(i) , i ∈ [0, |T |] when x is determined. Hence, Sample(E) can be con-
ducted in polynomial time for a given x.

(�) For error function family, we use E(i) to denote EA0,A1,T (i) .

Definition 11 (Auxiliary Functions) [10]. Let T be a full binary tree of
at least one node, matrix A0,A1 ∈ Z

n×n�
q , and P ⊂ Z

n×n�
q denote a set of

representatives of the quotient group Z
n×n�
q /(Zn×n

q · G). The auxiliary function

family V(i) = V(i)

A0,A1,T (i−1) consists of functions from {0, 1}|T | to Z
n×n�
q for

0 ≤ i ≤ |T |. And the sampling algorithm Sample(V(i)) performs as follows:

• If i = 0, Sample(V(0)) outputs zero function.
• If i > 0, for each x ∈ {0, 1}|T |, Sample(V(i)) outputs a function Vx(i)(·)

which behaves as follows:
1. Choose Wx(i) ←$ P.
2. Invoke Vx(i−1) ← Sample(V(i−1)).
3. Compute Vx(i)(x

(i)) := Wx(i) · ST (i−1)(x(i)) + Vx(i−1)(x
(i−1)), where

ST (i−1)(x(i)) is defined in Definition 7, and T (i) denotes the i-th successive
pruning of T , i.e., T (i) = pr(T (i−1)).

240 N. Cui et al.

Remark 4. Though V(i) is indexed by exponentially matrices, Vx(i)(x
(i))

only depends on matrices Wx(i) , i ∈ [0, |T |] when x is determined. Hence,
Sample(V(i)) can be conducted in polynomial time for a given x.

Remark 5. Based on the fact that Z
n×n
q · G is a subgroup of Z

n×n�
q , then for

Ux(i) ←$ Z
n×n�
q , we can rewrite it as Ux(i) = Kx(i) · G + Wx(i) where Kx(i) ∈

Z
n×n
q , Wx(i) ∈ P. Moreover, we can construct a bijection from Ux(i) to the pair

(Kx(i) ,Wx(i)). Because Ux(i) is uniform, then Kx(i) and Wx(i) are independent
of each other, and uniformly distributed over Z

n×n
q and Z

n×n�
q , respectively.

Definition 12 [10]. Let T be a full binary tree of at least one node, two matrices
A0,A1 ∈ Z

n×n�
q , and H(i) = HA0,A1,T (i) be a set of functions HKx(i)

(x(i)) :

{0, 1}|T | → Z
n×n�
q indexed by Kx(i) ∈ Z

n×n
q . Given x, Sample(H(i)) outputs a

function HKx(i)
(x(i)) which behaves as follows:

– Choose Kx(i) ←$ Z
n×n
q .

– Compute HKx(i)
(x(i)) := Kx(i) · AT (i)(x(i)), where AT (x) is defined in Defi-

nition 6.

With the above definitions, we will prove following theorem.

Theorem 2. For F (K, x) := �K · AT (x)�p defined in Eq. (17) with respect to
pp = (A0,A1, T), if distribution χ = Φr, r ≥ 3

√
n and p, q satisfies

q ≥ u · p · r
√

|T | · (n�)e(T) · n3l · λω(1),

then for any PPT adversary A,

AdvRKA
Φraff ,F,A(λ) ≤ 2|T | · Advn,Qn,2n�,q,χ

LWE,A (λ) + (2nuR + 1) · 2n2l · p/q + negl(λ),

where R = r
√

|T | ·(n�)e(T) ·ω(
√

log λ), e(T) is the expansion of T and Q denotes
the number of RKA oracle queries. Meanwhile, Φraff = {φC,B : φC,B(K) =
CK + B,C ∈ [−u, u]n×n, rank(C) = n,B ∈ Z

n×n
q }, where u is a small constant

such that (2nuR + 1) · n2l · p/q is negligible.

Proof. We will prove the unique-input RKA security via a series of games.

Game G0: G0 is the unique-input RKA attack experiment ExpRKA
Φ,F,A(0) played

between the challenger and a PPT adversary A. More precisely,

1. The challenger chooses A0,A1 ←$ Z
n×n�
q , a binary tree T and K ←$ Z

n×n
q ,

and sends pp = (A0,A1, T) to A.
2. Upon receiving the query (φC,B, x) from A, the challenger invokes

ORKA
k (φC,B, x) to calculate Y = (CK + B) · AT (x) and returns �Y�p to

A.
3. As long as the adversary A outputs a bit b′ ∈ {0, 1}, the game returns b′.

Pseudorandom Functions from LWE: RKA Security and Application 241

Clearly,
Pr[G0] = Pr[A ⇒ 1|b = 0]. (18)

Game G1: G1 is identical to G0 except for the way of answering A’s oracle
queries in step 2. More precisely, the challenger answers each query (φC,B, x) as
follows:

2. • Compute Y = C(K · AT (x) + E(x)) + B · AT (x).
• Check whether �Y + C[−R,R]n×n��p �= �Y�p. If yes, game aborts. Else,

return �Y�p.

Recall E(x) ← Sample(E) is defined in Definition 10 and R = r
√

|T | ·
(n�)e(T) · ω(

√
logλ). Based on Lemma 5 (see below), we know that E[x] ∈

[−R,R]n×n� with overwhelming probability 1 − negl(λ). Define event badi as
�Y + C[−R,R]n×n��p �= �Y�p in Game i. As long as bad1 does not happen, we
have

�C(K · AT (x) + [−R,R]n×n�) + B · AT (x)�p = �(CK + B) · AT (x)�p.

So
|Pr[G1] − Pr[G0]| ≤ Pr[bad1]. (19)

The analysis is complicated, so we defer it to later games.

Lemma 5. Let matrix A0,A1 ∈ Z
n×n�
q , T be a full binary tree and distribution

χ = Φr. Then for any x ∈ {0, 1}|T |, sampling an error function E ∈ E according
to Definition 10, it holds that

Pr[E(x) ∈ [−R,R]n×n�] ≥ 1 − negl(λ)

for R = r
√

|T | · (n�)e(T) · ω(
√

log λ).

Proof. E(x) ∈ Z
n×n� can be regarded as a matrix composed of n row vectors

e(x)� of dimensional n�, where e(x) is defined in Definition 9. Then by Lemma 2,
each e(x) ∈ [−R,R]n� except with negl(λ) probability for R = r

√
|T | · (n�)e(T) ·

ω(
√

logλ). Hence, E(x) ∈ [−R,R]n×n� holds with probability 1 − negl(λ). ��

Game G2: G2 is almost the same as G1, but the reply of query (φC,B, x) is
changed as follows:

2. • Compute Y = C · U(x) + B · AT (x).
• Check whether �Y + C[−R,R]n×n��p �= �Y�p, If yes, game aborts. Else,

return �y�p.

where U(x) : {0, 1}|T | → Z
n×n�
q is a truly random function.

Lemma 6. |Pr[G1] − Pr[G2]| ≤ |T | · Advn,Qn,2n�,q,χ
LWE,A (λ).

Proof. We will prove this lemma by a series of games G1.i.

Game G1.i: G1.i is identical to G1, but the reply of query (φC,B, x) is changed
as follows:

242 N. Cui et al.

2. • For each x, run Ex(i)(x
(i)) ← Sample(E(i)), Vx(i)(x

(i)) ← Sample(V(i)),
HKx(i)

(x(i)) ← Sample(H(i)).

• Compute Y = C(HKx(i)
(x(i)) + Ex(i)(x

(i)) + Vx(i)(x
(i))) + B · AT (x).

• Check whether �Y + C[−R,R]n×n��p �= �Y�p. If yes, game aborts. Else,
return �Y�p.

Lemma 7. Pr[G1.0] = Pr[G1].

Proof. In G1.0, based on V(0) = {zero function}, x(0) = ε, and x(0) = x, we have

Y = C(HKx(0)
(x(0)) + Ex(0)(x

(0)) + Vx(0)(x
(0))) + B · AT (x)

= C(Kx(0) · AT (0)(x(0)) + Ex(0)(x
(0)) + Vx(0)(x

(0))) + B · AT (x)

= C(Kε · AT (x) + Eε(x)) + B · AT (x),

which is the same as in G1. Hence, Pr[G1.0] = Pr[G1]. ��

Lemma 8. |Pr[G1.i] − Pr[G1.i+1]| ≤ Advn,Qn,2n�,q,χ
LWE,A (λ) for i ∈ [0, |T | − 1].

Proof. We define games named G1.i∗ and prove G1.i ≈c G1.i∗ and G1.i∗ =
G1.i+1.
Game G1.i∗ : G1.i∗ is identical to G1.i but the reply of query (φC,B, x) is changed
as follows:

2. • For each x, run Ex(i+1)(x
(i+1)) ← Sample(E(i+1)), Vx(i)(x

(i)) ← Sample
(V(i)) and choose Ux(i+1) ←$ Z

n×n�
q .

• Compute Y = C(Ux(i+1) · ST (i)(x(i+1)) + Ex(i+1)(x
(i+1)) + Vx(i)(x

(i))) +
B · AT (x).

• Check whether �Y + C[−R,R]n×n��p �= �Y�p. If yes, game aborts. Else,
return �Y�p.

We prove G1.i ≈c G1.i∗ by showing that if there exists a PPT adversary A
such that |Pr[G1.i∗]−Pr[G1.i]| = ε, then we can construct a PPT algorithm A′,
which can solve the decisional LWEn,Qn,2n�,q,χ problem with the same probability
ε. Algorithm A′ simulates G1.i∗/G1.i as follows.

– A′ queries its own oracle to obtain (A,D) ∈ Z
n×2n�
q × Z

Qn×2n�
q , where Q

denotes the number of queries of A.
– A′ creates an empty table L : {0, 1}i × Z

n×2n�
q , and initializes it to empty.

Besides, A′ creates a list of matrices List ∈ (Zn×2n�
q)Q such that List =

{Di}i∈[1,Q] where Di contains the (i − 1)n-th row to the in-th row of D.
Clearly, D� = [D�

1 |D�
2 | · · · |D�

Q]
– A′ constructs a full binary tree T , parses A = [A0|A1] where A0,A1 ∈
Z

n×n�
q , and returns pp = (A0,A1, T) to A.

– Upon receiving a query (φC,B, x) = (C,B, x) from A, algorithm A′ does
following.

Pseudorandom Functions from LWE: RKA Security and Application 243

• A′ runs Ex(i+1)(x
(i+1)) ← Sample(E(i+1)) and Vx(i)(x

(i)) ← Sample
(V(i)) for each x.

• A′ checks whether x(i) is in L. If no, choose an unused Di, parse it as
[Dx(i)‖0|Dx(i)‖1] and add (x(i),Di) to L. Else, pick the corresponding Di

and parse it as [Dx(i)‖0|Dx(i)‖1].
• A′ computes Y = C(Dx(i+1) ·ST (i)(x(i+1))+Ex(i+1)(x

(i+1))+Vx(i)(x
(i)))+

B · AT (x) where if xi+1 = 0, Dx(i+1) = Dx(i)‖0, else Dx(i+1) = Dx(i)‖1.
• A′ checks whether �Y + C[−R,R]n×n��p �= �Y�p. If yes, game aborts.

Else, return �Y�p to A.
– As long as A outputs a guessing bit b′, A′ outputs b′ as its own guess.

Now we analyze the advantage of A′.

• If D is a uniform sample, i.e., D ←$ Z
Qn×2n�
q , then Y = C(Dx(i+1) ·

ST (i)(x(i+1))+Ex(i+1)(x
(i+1))+Vx(i)(x

(i)))+B · AT (x) enjoys the same dis-
tribution as in G1,i∗ . In this case, algorithm A′ perfectly simulates G1,i∗ for
A.

• If D = K′ · A + E where A ←$ Z
n×2n�
q , K′ ←$ Z

Qn×n
q , and E ← χQn×2n�,

we parse K′ as K′� = [K′�
1 |K′�

2 | · · · |K′�
Q] where K′

j ∈ Z
n×n
q (j ∈ [1, Q]), and

E� = [E�
1 |E�

2 | · · · |E�
Q] where Ej ∈ Z

n×2n�
q (j ∈ [1, Q]). Therefore, Dj = K′

j ·
A+Ej . Furthermore, for each Ej , we can parse it as Ej = [Ej‖0|Ej‖1]. Hence,
Dj‖0 = K′

j ·A0 +Ej‖0 and Dj‖1 = K′
j ·A1 +Ej‖1. If [Dx(i)‖0|Dx(i)‖1] = Dj ,

let [Ex(i)‖0|Ex(i)‖1] := [Ej‖0|Ej‖1] and Kx(i) := K′
j . As a result, Dx(i+1) =

Kx(i) ·A1 +Ex(i)‖1 if xi+1 = 1, and Dx(i+1) = Kx(i) ·A0 +Ex(i)‖0 if xi+1 = 0.
Hence, we can rewrite algorithm A′’s answer as
Y = C(Dx(i+1) · S

T (i) (x
(i+1)

) + Ex(i+1) (x
(i+1)

) + Vx(i) (x
(i)

)) + B · AT (x)

= C((Kx(i) · Ax+1 + Ex(i)‖xi+1
) · S

T (i) (x
(i+1)

) + Ex(i+1) (x
(i+1)

) + Vx(i) (x
(i)

)) + B · AT (x)

= C((Kx(i) · Ax+1 · S
T (i) (x

(i+1)
) + Ex(i)‖xi+1

· S
T (i) (x

(i+1)
) + Ex(i+1) (x

(i+1)
)+Vx(i) (x

(i)
)))

+ B · AT (x) (20)
= C(Kx(i) · A

T (i) (x
(i)

)) + Ex(i) (x
(i)

) + Vx(i) (x
(i)

)) + B · AT (x). (21)

Note that Eq. (20) follows from Eqs. (5), and (21) is the same as in G1,i.
Hence, in this case, algorithm A′ perfectly simulates G1,i for A.

Consequently,

|Pr[G1.i] − Pr[G1.i∗]| ≤ Advn,Qn,2n�,q,χ
LWE,A (λ) for i ∈ [0, |T |]. (22)

Next we prove that G1.i∗ = G1.i+1 for 1 ≤ i ≤ |T | − 1. For Ux(i) ←$ Z
n×n�
q , we

can rewrite it as Ux(i) = Kx(i) · G + Wx(i) where Kx(i) ∈ Z
n×n
q and Wx(i) ∈ P

are independent and uniformly distributed according to Definition 11. Hence,

Y =C(Ux(i+1) · S
T (i) (x

(i+1)
) + Ex(i+1) (x

(i+1)
) + Vx(i) (x

(i)
)) + B · AT (x) (23)

=C((Kx(i+1) · G + Wx(i+1)) · S
T (i) (x

(i+1)
) + Ex(i+1) (x

(i+1)
) + Vx(i) (x

(i)
)) + B · AT (x)

=C(Kx(i+1) · A
T (i+1) (x

(i+1)
)+Ex(i+1) (x

(i+1)
)+Wx(i+1) · S

T (i) (x
(i+1)

)+Vx(i) (x
(i)

))+B · AT (x)

(24)
=C(HKx(i+1)

(x
(i+1)

) + Ex(i+1) (x
(i+1)

) + Vx(i+1) (x
(i+1)

)) + B · AT (x) (25)

244 N. Cui et al.

Note that Eq. (23) is the same as G1.i∗ , Eq. (24) follows from Eqs. (6), and (25)
is the same as in G1.i+1. Consequently,

Pr[G1.i∗] = Pr[G1.i+1] for i ∈ [0, |T | − 1]. (26)

Taking Eqs. (22) and (26) together, Lemma 8 follows. ��
Lemma 9. Pr[G1.|T |] = Pr[G2].

Proof. If i = |T |, A′’s answer is

Y = C(HKx(|T |)
(x(|T |)) + Ex(|T |)(x

(|T |)) + Vx(|T |)(x
(|T |))) + B · AT (x),

where x(|T |) = x, x(|T |) = ε. Then Ex(ε) = 0 according to Defini-
tion 10. Vx(|T |)(x

(|T |)) = Wx + Vx(|T |−1)(x
(|T |−1)) according to Definition 11.

HKx(|T |)
(x(|T |)) = Kx · G according to Definitions 1 and 12. Thus, we have

Y = C(Kx · G + Wx + Vx(|T |−1)(x
(|T |−1))) + B · AT (x). (27)

In Eq. (27), Kx and Wx are uniformly distributed, so Kx · G + Wx is uni-
form according to Remark 5. Recall that C is full rank, and Vx(|T |−1)(x

(|T |−1))
and B · AT (x) are both independent of (Kx,Wx). Therefore, Y is uniformly
distributed in G1.|T |, and Lemma 9 follows. ��
Based on Lemmas 7, 8, 9, Lemma 6 follows. ��

Consequently, we have

|Pr[bad2] − Pr[bad1]| ≤ |T | · Advn,Qn,2n�,q,χ
LWE,A (λ). (28)

Game G3: G3 is almost the same as G2, but the reply of query (φC,B, x) is
changed again.

2. • Compute Y = U(x).
• Check whether �Y + C[−R,R]n×n��p �= �Y�p. If yes, game aborts. Else,

return �Y�p.

Owing to the fact that C is full rank, and C · U(x) + B · AT (x) and U(x) are
both uniformly distributed over the same set for distinct x, we have

Pr[G3] = Pr[G2]. (29)
Pr[bad3] = Pr[bad2]. (30)

Lemma 10. Pr[bad3] ≤ (2nuR + 1) · n2l · p/q.

Proof. For Y ∈ Z
n×n�
q , define Z := Y+C[−R,R]n×n�. Then bad3 means �Y�p �=

�Z�p. Since q/p � R, C is a full rank matrix in [−u, u]n×n, then bad3 happens
if and only if there exists a coordinate y in Y such that

�y − (nuR)�p �= �y + (nuR)�p.

In G3, Y is uniform over Z
n×n�
q . Clearly,

Pr[bad3] ≤ (2nuR + 1) · n2� · p/q = negl(λ), (31)

since R = r
√

|T | · (n�)e(T) ·ω(
√

logλ) and q ≥ up · r
√

|T | · (n�)e(T) ·n3� · λω(1). ��

Pseudorandom Functions from LWE: RKA Security and Application 245

If bad3 does not happen, Game G3 is identical to ExpRKA
Φ,F,A(1). Thus, we have

|Pr[A ⇒ 1|b = 1] − Pr[G3]| ≤ Pr[bad3] ≤ (2nuR + 1) · n2� · p/q. (32)

Meanwhile,

|Pr[G1] − Pr[G0]| ≤ Pr[bad1] ≤ Pr[bad2] + |T | · Advn,Q,2n�,q,χ
LWE,A (λ)

≤ Pr[bad3] + |T | · Advn,Q,2n�,q,χ
LWE,A (λ)

≤ (2nuR + 1) · n2� · p/q + |T | · Advn,Q,2n�,q,χ
LWE,A (λ). (33)

according to Eqs. (19), (28), (30) and (31).
Taking Eqs. (18), (29), (33) and Lemma 6 together, Theorem 2 follows. ��

3.4 Comparsion to the PRF in [8]

In [9], Lewi et al. proved the unique-input Φraff -RKA security for the PRF pro-
posed by Boneh et al. [8] in Crypto13. In comparison, we prove the unique-input
Φraff -RKA security for the PRF proposed by Banerjee et al. [10] in Crypto14.
With the same security parameter λ and under the same unique-input Φraff -RKA
security, the PRF in [10] is more efficient than [8] according to [10]. More pre-
cisely, by omitting logO(1) λ, the key size is reduced from λ3 to λ bits, the pp size
is reduced from λ6 to λ2 bits, and the best known runtime of the PRF.Eval is
decreased from λ5 per output bit to λω where ω ∈ [2, 2.373]. See Fig. 5 for more
details.

Fig. 5. Comparison of BP14 [10] with BLMR13 [13] in running time, parameter’s size,
key size and output size. All values omit logO(1) λ. “Bit-length of Key” denote the
bit length of the PRF key. “Runtime” denote the best known runtime of PRF, where
ω ∈ [2, 2.373]. “Bit-length of pp” denotes the length of public parameter pp. “Bit length
of Output” denotes the length of PRF output.

4 Application to Robustly Reusable Fuzzy Extractor

In this section, we will use this Φ-RKA secure PRF to construct a robustly
reusable fuzzy extractor (rrFE).

Most recently, Wen, Liu and Gu (denoted by WLG19) [6] proposed a frame-
work of establishing a robustly reusable fuzzy extractor with unique-input RKA
secure PRF, Secure Sketch (denoted by SS=SS.Gen, SS.Rec) and Universal Hash

246 N. Cui et al.

(HI = {Hi : X → Y}i∈I) in PKC 2019. See Fig. 6 for extraction in the frame-
work. In the concrete construction, the authors instantiated the PRF with the
unique-input RKA secure PRF proposed in [9]. Now we can replace this PRF
with the one in Construction 1, then a more efficient rrFE is obtained, following
the framework in Fig. 6.

Fig. 6. The extraction in the framework.

Before introducing our more efficient rrFE, we recall the definitions of robustly
reusable fuzzy extractor.

Definition 13 (Robustly Reusable Fuzzy Extractor). An (M,m,R, t, ε1,
ε2)-robustly reusable Fuzzy Extractor (rrFE) consists of three algorithms rrFE =
(Init,Gen,Rep).

– Init(1λ) → crs. The Init algorithm takes the security parameter as input and
outputs the common reference string crs.

– Gen(crs,w) → (P,R). The Gen algorithm takes the common reference string
crs and an element w ∈ M as input. It outputs a public helper string P and
an extracted string R ∈ R.

– Rep(crs,w′,P) → R/⊥. The Rep algorithm takes the common reference string
crs, an element w′ ∈ M and the public helper string P as input. It outputs an
extracted string R or ⊥.

The Correctness, Reusability and Robustness of rrFE are defined below.

– Correctness. If dis(w,w′) < t, then for all crs ← Init(λ) and (P,R) ←
Gen(crs,w), R = Rep(crs,w′,P).

– Reusability. For any PPT adversary A and any distribution W over
M such that H∞(W) ≥ m, the advantage function Advreu

A,rrFE(λ) :=
|Pr[Expreu

A,rrFE(λ) ⇒ 1]−1/2| ≤ ε1 where experiment Expreu
A,rrFE(λ) is specified

in the left side of Fig. 7.
– Robustness. For any PPT adversary A and any distribution W over

M such that H∞(W) ≥ m, the advantage function Advrob
A,rrFE(λ) :=

Pr[Exprob
A,rrFE(λ) ⇒ 1] ≤ ε2 where experiment Exprob

A,rrFE(λ) is specified in
the right side of Fig. 7.

Pseudorandom Functions from LWE: RKA Security and Application 247

Fig. 7. Left: The experiment for defining the reusability game Expreu
A,rrFE(λ) for a rrFE.

Right: The experiment for defining the robustness game Exprob
A,rrFE(λ) for a rrFE.

4.1 New Construction of rrFE

According to [6], the rrFE is composed of three building blocks, i.e., the
syndrome-based secure sketch SS= (SS.Gen, SS.Rec), the homomorphic univer-
sal hash HI = {Hi : M → K}i∈I , and the Φshift-RKA secure PRF with key space
K. By using the PRF in Construction 1, we obtain a specific new construction
of rrFE as shown in Fig. 8.

Fig. 8. New construction of rrFE.

For the PRF function F (·, ·) : {0, 1}λ → Z
n�
q in Construction 1, to obtain

provable 2λ security against the best known lattice algorithms, choose n = e(T) ·
λ logO(1) λ, log q = e(T) · logO(1) λ as suggested in [10]. Moreover, according to
Theorem 1, to achieve the unique-input Φshift-RKA security, set e(T) = s(T) =
log4 λ (so that |T | ≈ λ), rf = 3

√
n, p = ω(log λ) such that q ≥ p · rf

√
|T | ·

(n�)e(T) · λω(1). Then, the PRF F (·, ·) is unique-input RKA secure against key-
shift family Φshift = {ψb : ψb(k) = k + b,k ∈ K = Z

n
q }.

In the new construction, the input of F (k, ·) is x = (s, t), and we set |s| =
|t| = λ/2 where t ∈ T = {0, 1}λ/2. We parse the output of the PRF as (r, v)
where r ∈ R = Z

n(�−1)
p , v ∈ V = Z

n
p .

According to [6], we have the following theorem.

248 N. Cui et al.

Theorem 3. For the rrFE scheme in Fig. 8, let n = e(T) · λ logO(1) λ, log q =
e(T) · logO(1) λ with e(T) = s(T) = log4 λ. Let χ = Φrf

with rf = 3
√

n,
p = ω(log λ), T = {0, 1}λ/2 and V = Z

n
p such that log |T | ≥ ω(log λ) and

log |V| ≥ ω(log λ). If SS = (SS.Gen,SS.Rec) is instantiated with a homomorphic
(M,m, m̃, 2t)-secure sketch with linearity property and HI = {Hi : M → K}i∈I
is instantiated with a family of homomorphic universal hash functions such that
m̃−log |K| ≥ ω(log λ)1, then the rrFE scheme in Fig. 8 is an (M,m,R, t, ε1, ε2)-
robustly reusable Fuzzy Extractor with ε1 = 2AdvRKA

Φshift,F,A(λ) + 2−ω(log λ) and
ε2 = 2AdvRKA

Φshift,F,A(λ)+2−ω(log λ) where AdvRKA
Φshift,F,A(λ) is defined in Theorem1.

Similarly to the LWE-based rrFE in WLG19 [6], our construction enjoys
both robustness and reusability, both of which are based on LWE assumption
(see Fig. 9).

Fig. 9. Comparison with known FE schemes [6,13–16].

We compare our scheme in property and the underlying assumption with
others in Fig. 9. Besides, we analyze the runtime and error correction rate of our
scheme.

– The running time of Gen,Rep are dominated by the evaluation of the under-
lying PRF, so we compare the computational efficiency of the PRF in
the scheme. In our scheme, the output length of the PRF is n� log p =
n log q log p = λ(log4 λ)2(logO(1) λ) · log log λ = λ · logO(1) λ · log log λ, the best
runtime per output bit is λω logO(1) λ where ω ∈ [2, 2.373] according to [10],
and the length of extracted string R is n(� − 1) log p = λ · logO(1) λ · log log λ.
Hence, the runtime per extracted bit is (n� log p·λω logO(1) λ)/n(�−1) log p) ≈
λω logO(1) λ. With a similar analysis, their runtime per extracted bit is λ5.

– For error correction rate, our construction could support higher error cor-
rection rate. In WLG19 [6]’s construction, the length of s is ω(log λ) so the
error correction rate is ω(log λ)/|w| while ours is Θ(λ)/|w| (since the length
of |s| = Θ(λ)) (Fig. 10).

1 See [6] for the definitions and instantiations of SS and HI .

Pseudorandom Functions from LWE: RKA Security and Application 249

Fig. 10. Comparison with WLG19 [6].

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (NSFC Nos.61672346 and U1636217) and National Key R&D Program
of China (No. 2016YFB0801201).

References

1. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

2. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of psuedo-random functions. In 36th Annual Symposium on Foundations of
Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 170–181
(1995)

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

4. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11894063 16

5. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486–503. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 26

6. Wen, Y., Liu, S., Gu, D.: Generic constructions of robustly reusable fuzzy extractor.
In: Public-Key Cryptography - PKC 2019 - 22nd IACR International Conference
on Practice and Theory of Public-Key Cryptography, Beijing, China, April 14–
17, 2019, Proceedings, Part II, pp. 349–378 (2019). https://doi.org/10.1007/978-
3-030-17259-6 12

7. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 666–684. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 36

8. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic prfs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

9. Lewi, K., Montgomery, H., Raghunathan, A.: Improved constructions of PRFs
secure against related-key attacks. In: Boureanu, I., Owesarski, P., Vaudenay, S.
(eds.) ACNS 2014. LNCS, vol. 8479, pp. 44–61. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07536-5 4

https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/11894063_16
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-030-17259-6_12
https://doi.org/10.1007/978-3-030-17259-6_12
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-319-07536-5_4
https://doi.org/10.1007/978-3-319-07536-5_4

250 N. Cui et al.

10. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2 20

11. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

12. Regev, O.: The learning with errors problem (invited survey). In: Proceedings
of the 25th Annual IEEE Conference on Computational Complexity, CCC 2010,
Cambridge, Massachusetts, USA, 9–12 June 2010, pp. 191–204 (2010)

13. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

14. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 9

15. Apon, D., Cho, C., Eldefrawy, K., Katz, J.: Efficient, reusable fuzzy extractors
from LWE. In: Dolev, S., Lodha, S. (eds.) CSCML 2017. LNCS, vol. 10332, pp.
1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60080-2 1

16. Wen, Y., Liu, S.: Robustly reusable fuzzy extractor from standard assumptions. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 459–489.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3 17

https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/978-3-319-60080-2_1
https://doi.org/10.1007/978-3-030-03332-3_17

δ-subgaussian Random Variables
in Cryptography

Sean Murphy and Rachel Player(B)

Royal Holloway, University of London, Egham, UK
{s.murphy,rachel.player}@rhul.ac.uk

Abstract. In the Ring-LWE literature, there are several works that
use a statistical framework based on δ-subgaussian random variables.
These were introduced by Miccancio and Peikert (Eurocrypt 2012) as a
relaxation of subgaussian random variables. In this paper, we completely
characterise δ-subgaussian random variables. In particular, we show that
this relaxation from a subgaussian random variable corresponds only
to the shifting of the mean. Next, we give an alternative noncentral
formulation for a δ-subgaussian random variable, which we argue is more
statistically natural. This formulation enables us to extend prior results
on sums of δ-subgaussian random variables, and on their discretisation.

Keywords: Ring Learning with Errors · Subgaussian random variable

1 Introduction

A subgaussian random variable [4] is a random variable that is bounded in a
particular technical sense by a Normal random variable. Subgaussian random
variables cover a wide class of random variables: for example is well known
that any centred and bounded random variable is subgaussian [17]. They have
many of the attractive properties of Normal random variables: for example, they
form a linear space and their tails that are bounded by the tails of a Normal
random variable [15]. Subgaussian random variables have been used widely in
cryptography [2].

In [7], Micciancio and Peikert introduced the notion of a δ-subgaussian ran-
dom variable, where δ can take a value δ ≥ 0, as a relaxation of a subgaussian
random variable. In the formulation of [7], the case δ = 0 gives a 0-subgaussian
random variable, which is exactly a subgaussian random variable. Statistical
arguments based on δ-subgaussian random variables have been used in Ring-
LWE cryptography in many application settings including signature schemes [7],
key exchange [10] and homomorphic encryption [6].

In this paper, we re-examine the relaxation in [7] of subgaussian random
variables to give δ-subgaussian random variables. We completely characterise δ-
subgaussian random variables by showing that this relaxation corresponds only
to the shifting of the mean. This enables us to give a noncentral formulation for
δ-subgaussian random variables which we argue is more statistically natural.
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 251–268, 2019.
https://doi.org/10.1007/978-3-030-21548-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_14

252 S. Murphy and R. Player

Amongst the prior literature using δ-subgaussian random variables, perhaps
the prominent work is A Toolkit for Ring-LWE Cryptography [6]. This work
gives an algebraic and statistical framework for Ring-LWE cryptography that is
widely applicable. Using our noncentral formulation for δ-subgaussian random
variables, we extend results presented in the Toolkit on sums of δ-subgaussian
random variables, and on their discretisation.

1.1 Contributions

The first main contribution of this paper is to give a full and particularly simple
characterisation of δ-subgaussian random variables. We show in Lemma 5 that
any δ-subgaussian random variable with mean 0 must be a 0-subgaussian random
variable. We then show in Lemma 6 that shifting a δ-subgaussian random variable
by its mean gives a 0-subgaussian random variable. Finally, we show in Lemma7
that any shift of a 0-subgaussian random variable is a δ-subgaussian random
variable for some δ ≥ 0. These results give our main result in this section,
Proposition 1, that the relaxation from 0-subgaussian random variables to δ-
subgaussian random variables corresponds only to a shifting of the mean.

The second main contribution of this paper is to generalise results about
δ-subgaussian random variables that have previously appeared in the literature.
Firstly, we give an alternative noncentral formulation for a δ-subgaussian random
variable which enables us in Theorem 1 to generalise the results in [6,10] for sums
of δ-subgaussian random variables. Secondly, in Theorem2 we improve the result
of the Toolkit [6] for the δ-subgaussian standard parameter of the coordinatewise
randomised rounding discretisation (termed CRR-discretisation in our paper) of
the Toolkit [6, Sect. 2.4.2] of a δ-subgaussian random variable.

1.2 Structure

We review the necessary background in Sect. 2. We analyse and characterise δ-
subgaussian random variables in Sect. 3. We give a noncentral formulation for
δ-subgaussian random variables in Sect. 4. We consider the discretisations of
random variables arising in Ring-LWE in Sect. 5.

2 Background

2.1 Algebraic Background

This section mainly follows [6]. We consider the ring R = Z[X]/(Φm(X)), where
Φm(X) is the mth cyclotomic polynomial of degree n, and we let Ra denote
R/aR for an integer a. For simplicity, we only consider the case where m is a
large prime, so n = φ(m) = m − 1, though our arguments apply more generally.

Let ζm denote a (primitive) mth root of unity, which has minimal polynomial
Φm(X) = 1+X + . . .+Xn. The mth cyclotomic number field K = Q(ζm) is the
field extension of the rational numbers Q obtained by adjoining this mth root of
unity ζm, so K has degree n.

δ-subgaussian Random Variables in Cryptography 253

There are n ring embeddings σ1, . . . , σn : K → C that fix every element of
Q. Such a ring embedding σk (for 1 ≤ k ≤ n) is defined by ζm �→ ζk

m, so∑n
j=1 ajζ

j
m �→ ∑n

j=1 ajζ
kj
m . The canonical embedding σ : K → C

n is defined by

a �→ (σ1(a), . . . , σn(a))T .

The ring of integers OK of a number field is the ring of all elements of the
number field which are roots of some monic polynomial with coefficients in Z.
The ring of integers of the mth cyclotomic number field K is

R = Z [ζm] ∼= Z [x] /(Φm).

The canonical embedding σ embeds R as a lattice σ(R). The conjugate dual of
this lattice corresponds to the embedding of the dual fractional ideal

R∨ = {a ∈ K | Tr(aR) ⊂ Z}.

The ring embeddings σ1, . . . , σn occur in conjugate pairs, and much of the
analysis of Ring-LWE takes place in a space H of conjugate pairs of complex
numbers. The conjugate pairs matrix T gives a basis for H that we call the
T -basis.

Definition 1. The conjugate pair matrix is the n × n complex matrix T , so
T : Cn → C

n, given by

T = 2− 1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 0 . . . 0 i
0 1 . . . 0 0 . . . i 0
...

...
. . .

...
...

...
...

0 0 . . . 1 i . . . 0 0
0 0 . . . 1 −i . . . 0 0
...

...
...

...
. . .

...
...

0 1 . . . 0 0 . . . −i 0
1 0 . . . 0 0 . . . 0 −i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

	

Definition 2. The complex conjugate pair space H is given by H = T (Rn),
where T is the conjugate pairs matrix. 	

Our results on discretisation will rely on the spectral norm of the basis for
H being considered. We note that the spectral norm for the T -basis is 1.

Definition 3. Suppose that the lattice Λ has (column) basis matrix B. The
Gram matrix of the basis matrix B is B†B, where B† = B

T
is the complex

conjugate of B. The spectral norm λ(B) > 0 of the basis matrix B is the square
root of largest eigenvalue of the Gram matrix B†B. 	

254 S. Murphy and R. Player

2.2 The Ring-LWE Problem

The Learning with Errors (LWE) problem [13,14] has become a standard hard
problem in cryptology that is at the heart of lattice-based cryptography [8,11].
The Ring Learning with Errors (Ring-LWE) problem [5,16] is a generalisation of
the LWE problem from the ring of integers to certain other number field rings.
Both the LWE problem and the Ring-LWE problem are related to well-studied
lattice problems that are believed to be hard [1,5,6,9,12,13].

Definition 4 ([5,16]). Let R be the ring of integers of a number field K. Let
q ≥ 2 be an integer modulus. Let R∨ be the dual fractional ideal of R. Let
Rq = R/qR and R∨

q = R∨/qR∨. Let KR = K ⊗Q R.
Let χ be a distribution over KR. Let s ∈ R∨

q be a secret. A sample from the
Ring-LWE distribution As,χ over Rq ×KR/qR∨ is generated by choosing a ← Rq

uniformly at random, choosing e ← χ and outputting

(a, b = (a · s)/q + e mod qR∨) .

Let Ψ be a family of distributions over KR. The Search Ring-LWE problem
is defined as follows: given access to arbitrarily many independent samples from
As,χ for some arbitrary s ∈ R∨

q and χ ∈ Ψ , find s.
Let Υ be a distribution over a family of error distributions, each over KR. The

average-case Decision Ring-LWE problem is to distinguish with non-negligible
advantage between arbitrarily many independent samples from As,χ for a ran-
dom choice of (s, χ) ← U (

R∨
q

) × Υ , and the same number of uniformly random
samples from Rq × KR/qR∨. 	

2.3 Moment Generating Functions

The moment generating function is a basic tool of probability theory, and we
first give a definition for a univariate random variable.

Definition 5. The moment generating function MW of a real-valued univariate
random variable W is the function from a subset of R to R defined by

MW (t) = E (exp(tW)) for t ∈ R whenever this expectation exists.

	

Fundamental results underlying the utility of the moment generating function

are given in Lemma 1.

Lemma 1 ([3]). If MW is the moment generating function of a real-valued uni-
variate random variable W , then MW is a continuous function within its radius
of convergence and the kth moment of W is given by E(W k) = M

(k)
W (0) when

the kth derivative of the moment generating function exists at 0. In particular,
(i) MW (0) = 1, (ii) E(W) = M ′

W (0) and (iii) Var(W) = M ′′
W (0) − M ′

W (0)2,
where these derivatives exist. 	

δ-subgaussian Random Variables in Cryptography 255

More generally, the statistical properties of a random variable W can be deter-
mined from its moment generating function MW , and in particular from the
behaviour of this moment generating function MW in a neighbourhood of 0 as
its Taylor series expansion (where it exists) is given by

MW (t) = 1 + M ′
W (0) t + 1

2M ′′
W (0) t2 + . . . + 1

k!M
(k)
W (0) tk + . . .

= 1 + E(W) t + 1
2E(W 2) t2 + . . . + 1

k!E(W k) tk +

The definition of a moment generating function for a real-valued univariate
random variable generalises to multivariate random variables and to random
variables on H, and the above results also generalise in the appropriate way.

Definition 6. The moment generating function MW of a multivariate random
variable W on R

l is the function from a subset of Rl to R defined by

MW (t) = E (exp(〈t,W 〉) = E
(
exp

(
tT W

))
whenever this expectation exists.

	

Definition 7. The moment generating function MW of a multivariate random
variable W on H is the function from a subset of H to R defined by

MW (t) = E (exp(〈t,W 〉) = E
(
exp

(
t†W

))
whenever this expectation exists.

	

2.4 Subgaussian Random Variables

In Lemma 2 we recall the standard result for the moment generating function of
a Normal random variable with mean 0.

Lemma 2 ([3]). If W ∼ N(0, b2) is a Normal random variable with mean 0
and standard deviation b ≥ 0, then W has moment generating function

MW (t) = E (exp(tW)) = exp(12b2t2) for all t ∈ R.

	

Lemma 2 gives rise to the idea of considering random variables with mean

0 whose moment generating function is dominated everywhere by the moment
generating function of an appropriate Normal random variable with mean 0.
Such a random variable is known as a subgaussian random variable [15] and is
specified in Definition 8.

Definition 8. A real-valued random variable W is subgaussian with standard
parameter b ≥ 0 if its moment generating function MW satisfies

MW (t) = E(exp(tW)) ≤ exp(12b2t2) for all t ∈ R.

	

256 S. Murphy and R. Player

2 1 0 1 2

1

2

3

4

5

6

Fig. 1. Moment generating function MX(t) = cosh t for the random variable X taking
values ±1 with probability 1

2
(solid line) and subgaussian bounding function exp(1

2
t2)

(dashed line).

An example of a subgaussian random variable is illustrated in Fig. 1, which
shows the moment generating function MX(t) = cosh t for the subgaussian
random variable X taking values ±1 with probability 1

2 (so E(X) = 0 and
Var(X) = 1), together with its corresponding bounding function exp(12 t2), which
is the moment generating function of a standard Normal N(0, 1) random variable
having the same mean and variance.

3 δ-subgaussian Random Variables

In this section, we give a complete and particularly simple characterisation of δ-
subgaussian random variables. Statistical arguments based on δ-subgaussian ran-
dom variables have been widely used in Ring-LWE [6,7,10], as noted in Sect. 1.
Our main result, Proposition 1, shows that a δ-subgaussian random variable (for
δ ≥ 0) is simply a translation of some 0-subgaussian random variable.

3.1 Defining a δ-subgaussian Random Variable

A δ-subgaussian random variable is a generalisation of a subgaussian random
variable in the following sense: δ is allowed to be any value δ ≥ 0, and taking the
case δ = 0 gives a subgaussian random variable. In other words, what is termed
a 0-subgaussian random variable for example in [6,7] is exactly a subgaussian
random variable.

δ-subgaussian Random Variables in Cryptography 257

We now give two definitions for a univariate δ-subgaussian random vari-
able to make this generalisation precise. Definition 9 corresponds with the usual
probability theory of moment generating functions [3]. Definition 10 is used for
example in [6]. Lemma 3 shows that these definitions are equivalent.

Definition 9. A real-valued random variable W is δ-subgaussian (δ ≥ 0) with
standard parameter b ≥ 0 if its moment generating function MW satisfies

MW (t) = E(exp(tW)) ≤ exp(δ) exp(12b2t2) for all t ∈ R.

	

Definition 10. A real-valued random variable W is δ-subgaussian (δ ≥ 0) with
scaled parameter s ≥ 0 if its moment generating function MW satisfies

MW (2πt) = E(exp(2πtW)) ≤ exp(δ) exp(πs2t2). for all t ∈ R.

	

Lemma 3. A real-valued univariate random variable is δ-subgaussian with stan-
dard parameter b if and only if it is δ-subgaussian with scaled parameter (2π)

1
2 b.

The definition of a univariate δ-subgaussian random variable generalises to a
multivariate δ-subgaussian random variable and a δ-subgaussian random variable
on H in the obvious way.

Definition 11. A multivariate random variable W on R
l is δ-subgaussian (δ ≥

0) with standard parameter b ≥ 0 if its moment generating function MW satisfies

MW (t) = E
(
exp

(
tT W

)) ≤ exp(δ) exp(12b2|t|2) for all t ∈ R
l.

	

Definition 12. A random variable W on H is δ-subgaussian (δ ≥ 0) with stan-
dard parameter b ≥ 0 if its moment generating function MW satisfies

MW (t) = E
(
exp

(
t†W

)) ≤ exp(δ) exp(12b2|t|2) for all t ∈ H.

	

3.2 Characterisation of Univariate δ-subgaussian Random Variables

In this section, we give a complete characterisation of a univariate δ-subgaussian
random variable. We show that the relaxation of the 0-subgaussian condition
to give the δ-subgaussian condition for a univariate random variable does not
correspond to any relaxation in the fundamental statistical conditions on the
random variable except for the location of its mean.

We firstly recall in Lemma 4 a property of 0-subgaussian random variables
proved in [15], namely that their mean is 0. This can be heuristically explained

258 S. Murphy and R. Player

1.0 0.5 0.0 0.5 1.0 1.5 2.0

5

10

15

20

25

30

Fig. 2. Moment generating function MX+1(t) = 1
2
(1+exp(2t)) for the random variable

X + 1 (for X ∼ Uni({−1, 1}) of Fig. 1) taking values 0 and 2 with probability 1
2

and
having mean 1 (solid line), δ-subgaussian bounding function exp(7

5
+ 1

2
t2) (dashed line),

and “noncentral” subgaussian bounding function exp(t + 1
2
t2) (dotted line).

as follows. Lemma 1 (i) shows that any moment generating function must pass
through (0, 1). However, a 0-subgaussian bounding function exp(12b2t2) also
passes through (0, 1) and has derivative 0 at 0. Thus any moment generating
function bounded by exp(12b2t2) must have derivative 0 at 0. Lemma 1 (ii) then
shows that such a 0-subgaussian random variable with moment generating func-
tion bounded by exp(12b2t2) must have mean 0.

Lemma 4 ([15]). If W is a univariate real-valued 0-subgaussian random vari-
able, then E(W) = 0. 	

We now give some results to show that the relaxation of the 0-subgaussian
condition to the δ-subgaussian condition (for δ ≥ 0) corresponds exactly to the
relaxation of the condition that the mean of the random variable is 0. These
results are illustrated in Fig. 2 for a random variable with mean 1.

Intuitively, relaxing the constraint that δ = 0 in the δ-subgaussian bound-
ing function exp(δ) exp(12b2t2) essentially shifts the bounding function “up the
y-axis”, and in particular away from the point (0, 1). However, a moment gen-
erating function must pass through the point (0, 1). This relaxation essentially
permits us to “tilt” the moment generating function of a 0-subgaussian random
variable, pivoting about the point (0, 1), so that the moment generating function
has a nonzero derivative at 0. This allows random variables with nonzero mean
potentially to be δ-subgaussian random variables.

δ-subgaussian Random Variables in Cryptography 259

We now make the intuition described above and illustrated by Fig. 2 more
precise in a number of ways. First, Lemma 5 shows that any δ-subgaussian ran-
dom variable with mean 0 must be a 0-subgaussian random variable.

Lemma 5. If W is a univariate real-valued δ-subgaussian random variable (δ ≥
0) with mean E(W) = 0, then W is a 0-subgaussian random variable. 	

Proof. The δ-subgaussian bounding function exp(δ) exp(12b2t2) is bounded above
and away from 1 when δ > 0. However, the moment generating function MW of
W is continuous at 0 with MW (0) = 1, so the δ-subgaussian bounding function
exp(δ) exp(12b2t2) is neccesarily always a redundant bounding function for any
moment generating function in some open neighbourhood of 0. The proof there-
fore proceeds by considering the moment generating function MW of W in two
separate regions: an open neighbourhood containing 0 and the region away from
this open neighbourhood.

We first consider a region that is some open neighbourhood of 0. Taylor’s
Theorem (about 0) shows that the moment generating function MW of W can
be expressed in this open neighbourhood of 0 as

MW (t) = E (exp(tW)) = 1 + E(W)t + 1
2E

(
W 2

)
t2 + o(t2)

= 1 + 1
2E

(
W 2

)
t2 + o(t2),

where a function g(t) = o(t2) in the infinitesimal sense near 0 if t−2g(t) → 0 as
t → 0. Similarly we can write exp(12c2t2) = 1 + 1

2c2t2 + o(t2), so we have

MW (t) − exp(12c2t2)
t2

= 1
2

(
E

(
W 2

) − c2
)

+
o(t2)
t2

.

Thus for values of c such that c2 > E
(
W 2

)
we have

lim
t→0

MW (t) − exp(12c2t2)
t2

= 1
2

(
E

(
W 2

) − c2
)

< 0,

in which case there exists an open neighbourhood (−ν, ν) of 0 (ν > 0) such that

MW (t) − exp(12c2t2)
t2

< 0

in this neighbourhood, so

MW (t) ≤ exp(12c2t2) [|t| < ν].

We now consider the complementary region away from the open neighbour-
hood (−ν, ν) of 0. If W is δ-subgaussian with standard parameter b ≥ 0, then its
moment generating function satisfies MW (t) ≤ exp(δ) exp(12b2t2) for all t ∈ R,
and in particular for |t| ≥ ν. If we let d2 = b2 + 2ν−2δ, then in this other region
the moment generating function MW of W satisfies

MW (t) ≤ exp(δ) exp(12b2t2) = exp(δ) exp(12d2t2) exp(−δν−2t2)
≤ exp(δ(1 − ν−2t2)) exp(12d2t2) ≤ exp(12d2t2) [|t| ≥ ν].

260 S. Murphy and R. Player

Taking the two regions together shows that the moment generating function
MW of W satisfies

MW (t) ≤ exp(1
2 max{c2, d2} t2) for all t ∈ R.

Thus W is a 0-subgaussian random variable. 	

Next, Lemma 6 shows that shifting a δ-subgaussian random variable by its

mean results in a 0-subgaussian random variable.

Lemma 6. If W is a univariate real-valued δ-subgaussian random variable (δ ≥
0), then the centred random variable W0 = W −E(W) is a 0-subgaussian random
variable. 	

Proof. If W is a δ-subgaussian random variable with standard parameter b, then
its moment generating function MW satisifies

MW (t) ≤ exp(δ) exp(12b2t2) for all t ∈ R.

The centred random variable W0 = W − E(W) with mean E(W0) = 0 has
moment generating function MW0 given by

MW0(t) = E (exp(tW0)) = E (exp(t(W − E(W))))
= exp(−E(W)t) E (exp(tW))
= exp(−E(W)t) MW (t).

The required result can be obtained by noting that for c > b > 0, the inequality

(
δ +

(
1
2b2t2 − E(W)t

)) ≤
((

δ +
1
2
E(W)2

c2 − b2

)

+ 1
2c2t2

)

holds, which can be demonstrated as
((

δ +
1
2
E(W)2

c2 − b2

)

+ 1
2c2t2

)

−(
δ +

(
1
2b2t2 − E(W)t

))
=

c2 − b2

2

(

t +
E(W)
c2 − b2

)2

is non-negative for c > b > 0. This inequality means that the moment generating
function MW0 of W0 satisfies

MW0(t) = exp(−E(W)t) MW (t)
≤ exp(−E(W)t) exp(δ) exp(12b2t2)
≤ exp

(
δ + (12b2t2 − E(W)t)

)

≤ exp
(

δ +
1
2
E(W)2

c2 − b2

)

exp(12c2t2).

Thus W0 is a
(
δ + 1

2
E(W)2

c2−b2

)
-subgaussian random variable. As W0 has mean

E(W0) = 0, Lemma 5 therefore shows that W0 = W − E(W) is a 0-subgaussian
random variable. 	

δ-subgaussian Random Variables in Cryptography 261

Finally, Lemma 7 shows that any shift of a δ0-subgaussian random variable
with mean 0 is a δ-subgaussian random variable for some δ ≥ 0.

Lemma 7. If W0 is a univariate real-valued δ0-subgaussian random variable
with mean E(W0) = 0, then for β ∈ R the real-valued shifted random variable
W = W0 + β is a δ-subgaussian random variable for some δ ≥ 0. 	

Proof. If W0 is a δ0-subgaussian random variable with mean 0, then Lemma5
shows that W0 is a 0-subgaussian random variable with some standard parameter
c ≥ 0. The moment generating function MW0 of W0 is therefore bounded as

MW0(t) ≤ exp(12c2t2). If b > c ≥ 0 and δ ≥ β2

2(b2 − c2)
, then we note that

(12b2t2 + δ) − (12c2t2 + βt) =
(b2 − c2)

2

(

t − β

b2 − c2

)2

+ δ − β2

2(b2 − c2)
≥ 0.

In this case, the moment generating function MW of W = W0 + β satisfies

MW (t) = exp(βt)MW0(t) ≤ exp(12c2t2 + βt) ≤ exp(δ) exp(12b2t2).

Thus W = W0 + β is δ-subgaussian with standard parameter b. 	

Lemmas 5, 6 and 7 collectively give the main result Proposition 1 of this

section. Proposition 1 precisely characterises δ-subgaussian random variables as
shifts of 0-subgaussian random variables, which must have mean 0.

Proposition 1. A real-valued univariate δ-subgaussian random variable can
essentially be described in terms of a 0-subgaussian random variable (which
must have mean 0) as:

δ-subgaussian univariate RV = 0-subgaussian univariate RV + constant.

	

3.3 Properties of δ-subgaussian Random Variables

In this section, we give some basic properties of δ-subgaussian random variables.
These are analogous to well-known properties of subgaussian random variables,
given for example in [15].

Lemma 8. Suppose that W is a univariate real-valued δ-subgaussian random
variable (δ ≥ 0) with standard parameter b ≥ 0. Such a random variable W
satisfies: (a) Var(W) ≤ b2, (b) P (|W − E(W)| > α) ≤ 2 exp

(− 1
2b−2α2

)
and

(c) E
(
exp(a(W − E(W))2)

) ≤ 2 for some a > 0. 	

Lemma 9. The set of δ-subgaussian random variables form a linear space. 	

Lemma 10. If W is a bounded univariate real-valued random variable, then W
is a δ-subgaussian random variable for some δ ≥ 0. 	

262 S. Murphy and R. Player

Proof. If W is a bounded random variable, then W0 = W −E(W) is a bounded
random variable with mean 0. However, Theorem 2.5 of [15] or Theorem 9.9
of [17] shows that a bounded random variable with mean 0, such as W0, is a
0-subgaussian random variable. Thus Lemma7 shows that W = W0 + E(W) is
a δ-subgaussian random variable for some δ ≥ 0. 	

4 Noncentral Subgaussian Random Variables

Proposition 1 shows that the class of δ-subgaussian random variables are pre-
cisely those random variables that can be obtained as shifts of 0-subgaussian
random variables. In this section, we use this characterisation to give an alter-
native noncentral formulation for a δ-subgaussian random variable. We then use
this formulation to analyse sums and products of δ-subgaussian random vari-
ables. Our main result is Theorem 1, which generalises a result of [6] on sums of
δ-subgaussian random variables.

4.1 A Noncentral Formulation for δ-subgaussian Random Variables

Proposition 1 enables us to see a δ-subgaussian random variable as a shifted
0-subgaussian random variable. This motivates the following definition.

Definition 13. A random variable Z (on R
l or H) is a noncentral subgaussian

random variable with standard parameter d ≥ 0 if the centred random variable
Z − E(Z) is a 0-subgaussian random variable with standard parameter d. 	

Lemma 11 establishes the equivalence of the δ-subgaussian and noncentral
subgaussian definitions. Lemma11 also gives a basic property of noncentral sub-
gaussian random variables, which follows from Lemma 9.

Lemma 11. A noncentral subgaussian random variable Z (on R
l or H) is a

δ-subgaussian random variable and vice versa, and the set of noncentral sub-
gaussian random variables (on R

l or H) is a linear space. 	

4.2 Motivation for the Noncentral Formulation

In this section, we motivate the alternative noncentral formulation. We begin
by specifying a noncentral subgaussian random variable in terms of its moment
generating function.

Lemma 12. The random variable Z is a noncentral subgaussian random vari-
able (on R

l or H) with standard parameter d if and only if the moment generating
function MZ of Z satisfies MZ(t) ≤ exp (〈t,E(Z)〉) exp(12d2|t|2). 	

Proof. If Z is a noncentral subgaussian random variable, then Z − E(Z) is a
0-subgaussian random variable with standard parameter d and so has moment
generating function MZ−E(Z) satisfying MZ−E(Z)(t) ≤ exp(12d2|t|2). Thus MZ

satisfies MZ(t) = ME(Z)(t) MZ−E(Z)(t) ≤ E(exp(〈t,E(Z)〉)) exp(12d2|t|2).

δ-subgaussian Random Variables in Cryptography 263

Conversely, if MZ(t) ≤ exp (〈t,E(Z)〉) exp(12d2|t|2) = ME(Z)(t) exp(12d2|t|2),
then Z − E(Z) has moment generating function MZ−E(Z) = MZM−E(Z) sat-
isfying MZ−E(Z)(t) = ME(Z)(t) exp(12d2|t|2)M−E(Z)(t) ≤ exp(12d2|t|2). Thus
Z − E(Z) is a 0-subgaussian random variable with standard parameter d, and
so Z is a noncentral subgaussian random variable with standard parameter d.

	

We now argue that the noncentral subgaussian formulation is more natural

from a statistical point of view, for the following reasons.
Firstly, the bounding function of Lemma12 allows us to directly compare

such a noncentral subgaussian random variable with a corresponding Normal
random variable. Figure 2 illustrates an example of a noncentral subgaussian
bounding function and a δ-subgaussian bounding function. It can be seen that
this noncentral subgaussian bounding function is a tight bounding function to
the moment generating function at 0, and hence captures better the behaviour at
0. Moreover, the noncentral subgaussian bounding function is actually a moment
generating function of some Normal random variable.

Secondly, the standard parameter of a noncentral subgaussian random vari-
able is invariant under translation of the random variable, mirroring a funda-
mental property of standard deviation. By contrast, in Example 1 we show that
the standard parameter of a δ-subgaussian random variable is not necessarily
invariant under translation.

Example 1. Suppose that W ∼ N(0, σ2) is a Normal random variable with mean
0 and variance σ2, so has moment generating function MW (t) = exp(12σ2t2).
In terms of Definition 13, it is clear that W is a noncentral subgaussian random
variable with mean 0 and standard parameter σ. Similarly, the translated random
variable W + a ∼ N(a, σ2) is by definition a noncentral random variable with
mean a and standard parameter σ.

In terms of Definition 9, W is a 0-subgaussian random variable with standard
parameter σ. If W +a is a δ-subgaussian random variable with the same standard
parameter σ, then MW+a(t) = exp(12σt2 + at) ≤ exp(δ + 1

2σ2t2) so at ≤ δ for all
t, which is impossible for a �= 0. Thus even though W + a is a Normal random
variable with standard deviation σ, it is not a δ-subgaussian random variable
with standard parameter σ when a �= 0. 	

4.3 Sums of Univariate Noncentral Subgaussian Random Variables

In this section, we give our main result, Theorem 1, on sums of noncentral sub-
gaussian (equivalently δ-subgaussian) random variables. This a far more general
result than previous results [6,10] on sums of δ-subgaussian random variables,
which apply only in restricted settings. For example, [10, Fact 2.1] applies when
the summands are independent, and [6, Claim 2.1] applies in a martingale-like
setting.

Theorem 1. Suppose that W1, . . . , Wl are noncentral subgaussian, or equiva-
lently δ-subgaussian, random variables where Wj has standard parameter dj ≥ 0
for j = 1, . . . , l.

264 S. Murphy and R. Player

(i) The sum
∑l

j=1 Wj is a noncentral subgaussian random variable with mean
∑l

j=1 E(Wj) and standard parameter
∑l

j=1 dj .
(ii) If W1, . . . , Wl are independent, then the standard parameter of the sum

∑l
j=1 Wj can be improved to

(∑l
j=1 d2j

) 1
2
. 	

Proof. If Wj is a noncentral subgaussian random variable with standard param-
eter dj ≥ 0, then W ′

j = Wj − E(Wj) is a 0-subgaussian random variable with
standard parameter dj . Theorem 2.7 of [15] therefore shows that

∑l
j=1 W ′

j =
∑l

j=1 Wj − ∑l
j=1 E(Wj) is a 0-subgaussian random variable with standard

parameter
∑l

j=1 dj . Thus
∑l

j=1 Wj is a noncentral subgaussian random variable

with mean
∑l

j=1 E(Wj) and standard parameter
∑l

j=1 dj . The second (inde-
pendence) result similarly follows from the independence result of Theorem 2.7
of [15]. 	

5 Discretisation

Discretisation is a fundamental part of Ring-LWE cryptography in which a point
is “rounded” to a nearby point in a lattice coset. In fact, such a discretisation pro-
cess usually involves randomisation, so discretisation typically gives rise to a ran-
dom variable on the elements of the coset. We consider the coordinate-wise ran-
domised rounding method of discretisation [6, Sect. 2.4.2] or CRR-discretisation,
as an illustration of a discretisation process, though most of our comments apply
more generally.

We begin by giving a formal definition of CRR-discretisation in terms of a
Balanced Reduction function. This allows us to establish general results about
the CRR-discretisation of δ-subgaussian random variables. In particular, our
main result is Theorem 2, which improves prior results [6] for the δ-subgaussian
standard parameter of the CRR-discretisation of a δ-subgaussian random
variable.

5.1 Coordinate-Wise Randomised Rounding Discretisation

In this section we describe the coordinate-wise randomised rounding discreti-
sation method of the first bullet point of [6, Sect. 2.4.2], which we term CRR-
discretisation. We first introduce the Balanced Reduction function in Defini-
tion 14, and give its basic properties in Lemma13.

Definition 14. The univariate Balanced Reduction function R on R is the ran-
dom function with support on [−1, 1] given by

R(a) =
{

1 − (�a� − a) with probability �a� − a
−(�a� − a) with probability 1 − (�a� − a).

The multivariate Balanced Reduction function R on R
l with support on [−1, 1]l

is the random function R = (R1, . . . ,Rl) with component functions R1, . . . ,Rl

that are independent univariate Balanced Reduction functions. 	

δ-subgaussian Random Variables in Cryptography 265

Lemma 13. The random variable R(a) + (�a� − a) ∼ Bern(�a� − a) has a
Bernoulli distribution for any a ∈ R, and the random variable R(a) satisifies
(i) E(R(a)) = 0, (iii) Var(R(a)) ≤ 1

4 and (iii) a − R(a) ∈ {�a�, �a�} ⊂ Z. 	

We are now in a position to define CRR-discretisation in terms of the Bal-

anced Reduction function.

Definition 15. Suppose B is a (column) basis matrix for the n-dimensional
lattice Λ in H. If R is the Balanced Reduction function, then the coordinate-
wise randomised rounding discretisation or CRR-discretisation �X�B

Λ+c of the
random variable X to the lattice coset Λ + c with respect to the basis matrix B
is the random variable

�X�B
Λ+c = X + B R (

B−1(c − X)
)
.

	

In Lemma 14 we show that the specification of coordinate-wise randomised

rounding in Definition 15 is well-defined.

Lemma 14. The CRR-discretisation �X�B
Λ+c of the random variable X with

resect to the (column) basis B is (i) a random variable on the lattice coset Λ+c,
(ii) is valid (does not depend on the chosen coset representative c) and (iii) has
mean E(�X�B

Λ+c) = E(X). 	

Proof. For part (i), the CRR-discretisation can be expressed as

�X�B
Λ+c = X + BR (

B−1(c − X)
)

= B
(
B−1X + R (

B−1(c − X)
))

= c − B
(
B−1(c − X) − R (

B−1(c − X)
))

∈ Λ + c,

as Lemma 13 (iii) shows that B−1(c−X)−R (
B−1(c − X)

)
is a random variable

on Z
n. For part (ii), if c′ ∈ Λ+c, so c−c′ ∈ Λ, then there exists an integer vector z

such that c− c′ = Bz, so B−1(c−X)−B−1(c′ −X) = z, that is to say B−1(c−
X) and B−1(c′ − X) differ by an integer vector. Thus R (

B−1(c − X)
)

and
R (

B−1(c′ − X)
)

have identical distributions. The distribution of �X�B
Λ+c on the

lattice coset Λ + c does not therefore depend on the chosen coset representative
c, and so the discretisation is valid. Finally, for part (iii), Lemma13 (i) shows
that E(�X�B

Λ+c) = E(X) + BE
(R (

B−1(c − X)
))

= E(X). 	

5.2 The CRR-Discretisation of δ-Subgaussian Random Variables

In this section we examine the subgaussian properties of the CRR-discretisation
of a noncentral subgaussian random variable. Our main result is Theorem2,
which gives a subgaussian standard parameter for such a CRR-discretisation
arising in Ring-LWE, that is to say discretisation for a lattice in H. Theorem 2
uses a factor of 1

2 with the standard parameter of a random variable obtained
by such a CRR-discretisation. By contrast, any comparable result in [6] uses a

266 S. Murphy and R. Player

factor of 1 (see for example the first bullet point of [6, Sect. 2.4.2]). Thus the
results of this Section improve and extend any comparable result in [6] about a
CRR-discretisation of a δ-subgaussian random variable.

We first give in Lemma 15 the subgaussian property of the (multivariate)
Balanced Reduction function.

Lemma 15. The (multivariate) Balanced Reduction R(v) (Definition 14) is a
0-subgaussian random variable with standard parameter 1

2 for all v ∈ R
l. 	

Proof. We first consider the univariate random variable Rj = R(p) given by
the Balanced Reduction of the constant p, where 0 ≤ p ≤ 1 without loss of
generality. Thus Rj takes the value p with probability 1 − p and the value p − 1
with probability p, so has moment generating function

MRj
(t) = E(exp(tRj)) = (1 − p) exp(pt) + p exp((p − 1)t) = exp(pt)h(t),

where h(t) = (1 − p) + p exp(−t). We consider the logarithm of the moment
generating function given by the function

g(t) = log MRj
(t) = pt + log h(t).

The first three derivatives of g are given by

g′(t) =
p(1 − p)(1 − exp(−t))

h(t)
, g′′(t) =

p(1 − p) exp(−t)
h(t)2

and g′′′(t) =
−p(1 − p) exp(−t) ((1 − p) − p exp(−t))

h(t)3
.

We see that g′′(t) ≥ 0 and that solving g′′′(t) = 0 shows that the maximum of g′′

occurs at t0 = log
(

p
1−p

)
with a maximum value of g′′(t0) = 1

4 , so 0 ≤ g′′(t) ≤ 1
4

for all t ∈ R, and we also note that g(0) = g′(0) = 0. The Lagrange remainder
form of Taylor’s Theorem shows that there exists ξ between 0 and t such that
g(t) = 1

2g′′(ξ)t2, so 0 ≤ g(t) ≤ 1
8 t2. Thus MRj

(t) = exp(g(t)) ≤ exp(12 (12)2t2), so
Rj is a 0-subgaussian random variable with standard parameter 1

2 .
We now consider the multivariate random variable R = (R1, . . . , Rl)T given

by the Balanced Reduction of a vector, which has moment generating function
MR satisfying

MR(t) = E(exp(tT R)) = E
(
exp

(∑l
j=1tjRj

))
= E

(∏l
j=1 exp(tjRj)

)

=
l∏

j=1

E(exp(tjRj)) =
l∏

j=1

MRj
(tj)

≤
l∏

j=1

exp(12 (12)2t2j) = exp
(

1
2 (12)2

∑l
j=1t

2
j

)
= exp(12 (12)2|t|2).

Thus R is a 0-subgaussian random variable with standard parameter 1
2 . 	

δ-subgaussian Random Variables in Cryptography 267

We now give in Theorem 2 a subgaussian standard parameter for a CRR-
discretisation. The details of the CRR-discretisation depend on the lattice basis
used, and in particular on the spectral norm of a lattice basis matrix.

Theorem 2. Suppose that B is a (column) basis matrix for a lattice Λ in H
with spectral norm λ(B). If Z is a noncentral subgaussian random variable
with standard parameter b, then its CRR-discretisation �Z�B

Λ+c is a noncen-
tral subgaussian random variable with mean E(Z) and standard parameter
(
b2 + (12λ(B))2

) 1
2 . 	

Proof. Lemma 14 (iii) shows that �Z�B
Λ+c = Z+BR(B−1(c−Z)) has mean E(Z).

For v ∈ H, Lemma 15 allows us to bound the relevant conditional expectation
as

E
(
exp

(
v†�Z�B

Λ+c

)∣
∣ Z = z

)
= E

(
exp

(
v† (

z + BR(B−1(c − z))
)))

= exp(v†z) E
(
exp

(
v†BR(B−1(c − z))

))

= exp(v†z) E
(
exp

(
(B†v)†R(B−1(c − z))

))

= exp(v†z) MR(B−1(c−z))

(
B†v

)

≤ exp(v†z) exp
(
1
2 (12)2|B†v|2)

≤ exp(v†z) exp
(
1
2 (12λ(B))2|v|2) ,

so the corresponding conditional expectation random variable is bounded as

E
(
exp

(
v†�Z�B

Λ+c

)∣
∣ Z

) ≤ exp(v†Z) exp
(
1
2 (12λ(B))2|v|2) .

Thus the Law of Total Expectation shows that the moment generating function
M�Z�B

Λ+c
of the discretisation �Z�B

Λ+c is bounded by

M�Z�B
Λ+c

(v) = E
(
exp

(
v†�Z�B

Λ+c

))
= E

(
E

(
exp

(
v†�Z�B

Λ+c

)∣
∣ Z

))

≤ exp
(
1
2 (12λ(B))2|v|2) E

(
exp(v†Z)

)

= exp
(
1
2 (12λ(B))2|v|2) MZ(v)

≤ exp
(
1
2 (12λ(B))2|v|2) exp(v†E(Z)) exp(12b2|v|2)

≤ exp(v†E(Z)) exp
(
1
2

(
b2 + (12λ(B))2

))

as Z is a noncentral subgaussian random variable with standard parameter b.
Thus its discretisation �Z�B

Λ+c is a noncentral subgaussian random variable with

standard parameter
(
b2 + (12λ(B))2

) 1
2 . 	

Acknowledgements. We thank the anonymous referees for their comments on previ-
ous versions of this paper, and we thank Carlos Cid for his interesting discussions about
this paper. Rachel Player was supported by an ACE-CSR Ph.D. grant, by the French
Programme d’Investissement d’Avenir under national project RISQ P141580, and by
the European Union PROMETHEUS project (Horizon 2020 Research and Innovation
Program, grant 780701).

268 S. Murphy and R. Player

References

1. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
Annual ACM Symposium on Theory of Computing (2013)

2. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit:
subgaussian sampling and more. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11477, 655–684. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3

3. Grimmett, G., Stirzaker, D.: Probability And Random Processes, 3rd edn. Oxford
University Press, Oxford (2001)

4. Kahane, J.: Propriétés locales des fonctions à séries de Fourier aléatoires. Stud.
Math. 19, 1–25 (1960)

5. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors Over Rings. IACR Cryptology ePrint Archive 2012:230 (2012)

6. Lyubashevsky, V., Peikert, C., Regev, O.: A Toolkit for Ring-LWE Cryptography.
IACR Cryptology ePrint Archive 2013:293 (2013)

7. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

8. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 5

9. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: Mitzenmacher, M. (ed.), 41st Annual ACM Symposium on Theory of Comput-
ing (2009)

10. Peikert, C.: Lattice cryptography for the Internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

11. Peikert, C.: A Decade of Lattice Cryptography. IACR Cryptology ePrint Archive
2015:939 (2016)

12. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: Hatami, H., McKenzie, P., King, V. (eds.), Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, pp. 461–473 (2017)

13. Regev, O.: On lattices, learning with errors, random linear codes and cryptogra-
phy. In: Gabow, H., Fagin, R. (eds.), 37th Annual ACM Symposium of Theory of
Computing (2005)

14. Regev, O.: The learning with errors problem (invited survey). In: IEEE Conference
on Computational Complexity, pp. 191–204 (2010)

15. Rivasplata, O.: Subgaussian Random Variables: An Expository Note. http://www.
stat.cmu.edu/∼arinaldo/36788/subgaussians.pdf (2015)

16. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

17. Stromberg, K.R.: Probability for Analysts. Chapman and Hall (1994)

https://doi.org/10.1007/978-3-030-17656-3
https://doi.org/10.1007/978-3-030-17656-3
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
http://www.stat.cmu.edu/~arinaldo/36788/subgaussians.pdf
http://www.stat.cmu.edu/~arinaldo/36788/subgaussians.pdf
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

Cryptocurrency Related

Fast-to-Finalize Nakamoto-Like
Consensus

Shuyang Tang1, Sherman S. M. Chow2 , Zhiqiang Liu1,3(B),
and Joseph K. Liu4(B)

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

ilu zq@sjtu.edu.cn
2 Department of Information Engineering, The Chinese University of Hong Kong,

Shatin, N.T., Hong Kong
3 Shanghai Viewsource Information Science and Technology Co., Ltd,

Shanghai, China
4 Faculty of Information Technology, Monash University, Clayton, VIC, Australia

Joseph.Liu@monash.edu

Abstract. As the fundamental component of blockchains, proof-of-work
(PoW) scheme has been widely leveraged to provide consensus for main-
taining a distributed public ledger. However, the long confirmation time,
and hence the slow finality rate, is far from satisfactory. Alternative
paradigms with performance improvement emerge. Nevertheless, there
are fewer attempts in modifying the PoW mechanism itself.

We find that the slow finality rate in PoW is caused by using only one
bit to measure the computational power, namely, whether the attained
hash value is smaller than a given target. In this paper, we first propose
Demo-of-Work (DoW), a generalized PoW which assigns the computa-
tional work with a score depending on the hash value. We also treat the
bitcoin blockchain as a global “clock” to attain synchronization for ensur-
ing that each participant takes part in DoW for roughly the same time
interval for ensuring fairness. With these two tools, we construct an alter-
native blockchain called AB-chain which provides a significantly faster
finality rate when compared with the existing PoW-based blockchains,
without sacrificing communication complexity or fairness.

Keywords: Blockchain · Consensus · Cryptocurrency · Proof-of-work

1 Introduction

Since 2008, the blockchain mechanism has been providing a consensus protocol
for maintaining a distributed ledger in a decentralized manner. The blockchain

Part of the work was done while the first author was a research intern in CUHK.
The second author is supported by General Research Funds (CUHK 14210217) of the
Research Grants Council, Hong Kong. The third author is supported by the National
Natural Science Foundation of China (Grant No. 61672347). A preliminary version
appeared as “Fast-to-Converge PoW-like Consensus Protocol” in China Blockchain
Conference 2018.

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 271–288, 2019.
https://doi.org/10.1007/978-3-030-21548-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_15&domain=pdf
http://orcid.org/0000-0001-7306-453X
https://doi.org/10.1007/978-3-030-21548-4_15

272 S. Tang et al.

structure is a chain of blocks, each of which contains transactions in the
ledger. To generate a block, participants called miners perform a proof-of-work
(PoW) [11,16] by brute force to find an admissible nonce. A nonce is an admis-
sible solution when the hash of the nonce concatenating with the necessary
information is smaller than a predetermined value governing the difficulty of
PoW. The information includes the hash of the previous block header, (the root
of a Merkle tree of) transactions, and other auxiliary data. When such a nonce
is found, a block is assembled and appended to the end of the blockchain, i.e.,
it extends the ledger. This process is referred to as mining due to the award
of proposing a block. Such a consensus scheme is referred to as Nakamoto or
bitcoin blockchain [20].

A fork emerges when two sets of blocks are mined after the same previous
block, due to malicious purposes or by coincidence. Fork resolution is needed to
converge the branches into one. In Nakamoto blockchain, honest miners always
mine on the longest valid branch, hence malicious forking attempt for tampering
the ledger requires significant work to outrace these honest miners. When any
given block is followed by a sufficient number of new blocks, it is considered as
finalized (or confirmed) since it will never be outraced except for a (sufficiently)
small probability. We say that such resolution ensures secure finality.

Existing blockchain mechanism requires a long confirmation time to reach
secure finality. It is a serious constraint of applications which rely on blockchains
(e.g., see [19])1. To address this issue, a possible approach is to replace PoW by
alternative mechanisms such as the proof-of-stake (PoS) or its generalization [18]
that transfer the decision power from miners to stakeholders, e.g., Algorand [15]
and Ouroboros Praos [10]. However, they require utter reconstructions of the
consensus mechanism, which may be harder to deploy in practice. Moreover,
recent results have shown the necessity of PoW [23] in the presence of late
spawning.Optimizations at an application level on top of blockchain are also
considered, such as the lightning network [24] for rapid micropayments, and
blockchain fabrics [1,22,26] that also leverage a permissioned Byzantine fault-
tolerance protocol.

In this paper, we adopt the third approach [6] which modifies the blockchain
itself. In principle, it can be used with any application-layer optimizations.
Although there are alternative blockchains [12,21] or attempts which extend the
linked list in blockchain to directed acyclic graph (DAG) [7,25], for a greater
throughput or better fairness, improving the finality rate by an alternative
blockchain principle is seldom considered.

1.1 Roadmap

To the best of our knowledge, we provide the first formal study of improving
the finality rate of a Nakamoto-like blockchain by replacing the underlying PoW
principle. The roadmap of our fast-to-finalize blockchain is as follows.

1 For improving throughput, many sharding protocols are also proposed (e.g., see [9]).

Fast-to-Finalize Nakamoto-Like Consensus 273

Demo-of-Work. We observe (to be justified later) that the finality of PoW is
slow since it assesses the computational power via only one bit of information
of whether attaining a hash value smaller than a target. We propose Demo-of-
Work (DoW) which utilizes a potential function2 to assign a score to each block
according to the block hash, without a hard target of the hash puzzle.

Blockchain as a Global Clock. Blockchain has been leveraged for various pur-
poses, for example, publicly verifiable source of randomness [2,4,8] or penalty
mechanism (e.g. in the context of secure multiparty computations [3,5,17]).
Inspired by these usages, here we leverage the bitcoin blockchain as a global
clock. To the best of our knowledge, this treatment is the first in the research
literature.

AB-Chain with Fast Finality. Based on the two tools above, we build an
alternative blockchain which we call AB-chain. Similar to bitcoin, it consists of
a linear order of blocks, but now each block has a block weight assigned by its
hash according to a potential function. When there is ambiguity, honest miners
always build blocks onto the chain branch with the greatest the total weight –
the sum of all block weights on the branch, as the score in our DoW. However,
apart from the previous block, each block should also refer to the last block on
the longest chain of the underlying (bitcoin) blockchain. In case the underlying
blockchain has a fork with multiple newest blocks, any one of them can be chosen.

We use blockchain as a synchronization mechanism, for assuring that each
participant performs DoW for roughly the same time when they are attempting
to assemble each block. A round starts from the generation of the newest block
and ends with the generation of the next block. During a round, each miner
tries to compose a block and find a proper nonce to lessen the block hash as far
as possible. It broadcasts the block if the hash is “competitive” (with a positive
block weight no less than that of existing blocks in its view of this round). All the
participating peer nodes take part only in the forwarding of competitive blocks.

1.2 Evaluation of the Improvement

The finality rate indicates the speed of reaching a secure finality on a new
block. With our round-based mechanism, we aim to lessen the number of rounds
expected to reach confidence that one block remains on the chain forever except
for a small probability q. The finality rate varies with different potential func-
tion L. To analyze the finality rate, we propose a novel finality model and eval-
uate it experimentally under some selected potential functions.

We prove that the general bound of the communication cost, i.e., the
total amount of all communications during the protocol execution, is at most

2 Potential function is a term borrowed from the Physics literature. The existing PoW
is a special case of DoW, whose potential function assigns one to all hashes smaller
than a predetermined parameter, and zero to others.

274 S. Tang et al.

O(N log N), where N stands for the total number of network nodes3. Finally,
we pick a potential function with an O(N) communication cost as bitcoin.

Our protocol should also be fair. Fairness in this paper is defined as the
property that the most competitive block of each round with the greatest weight
is generated by each party with a probability according to its proportion of
hash power. The fairness is guaranteed as long as the potential function is valid
(monotonously non-increasing regarding the input hash)4.

Organization. We first describe our notations and assumptions as well as our
protocol framework in the next section. In Sect. 3, we build a model to study
the rate of secure finality. In Sect. 4, the communication cost is analyzed and the
fairness is shown to be reached under our finality model, then we suggest one
potential function to instantiate our AB-chain protocol.

2 AB-Chain: DoW-Based Blockchain with Fast Finality

2.1 Notations and Assumptions

Table 1 lists the major notations. We regard the range of the hash function H(·)
as [M] where the notation [M] := {1, 2, . . . ,M} is defined to be all positive
integers no greater than M . We denote the global hash rate by T , which is
the total number of hash attempts taken by all participants in one round. We
assume that T is significantly smaller than M and its value is accessible to all
participants.

For easier exposition, multiplying a ratio (α, β, δ) with T results in integers.
We use B to denote a block. B.nonce is the nonce solution provided by the

proposer and B.hash is the hash of B. B.preBlock1 (or just B.preBlock) is the
previous block that B follows (or B itself in case that it is the genesis block, i.e.,
the first block of the chain). B.preBlockk (k ∈ N

+ \ {1}) is defined recursively,

B.preBlockk :=
{

B , isGenesisBlock(B)
(B.preBlockk−1).preBlock1 , otherwise

,

where isGenesisBlock(·) is a predicate of whether one block is the genesis block.

The notation B.preBlocks := ∪∞
i=1{B.preBlocki} denotes the set of all “ances-

tor” blocks of B (include all B.preBlockk’s). For an AB-chain block, B.btcBlock
is the block of the underlying (bitcoin) blockchain it refers.

3 The cost is hard to be measured by any specific quantity, so we measure it with
complexity.

4 There are other works which analyze or evaluate blockchain or blockchain-based
cryptocurrencies. For example, Bitcoin backbone [13] has shown common prefix and
chain quality, two basic properties of the bitcoin protocol. There is also model for
formally analyzing the security and performance of various cryptocurrencies [14].

Fast-to-Finalize Nakamoto-Like Consensus 275

We assume a peer-to-peer network where each node forwards only compet-
itive nodes in its view, i.e., any block forwarding is aborted if L(B.hash) ≤ 0.
When receiving a block B following an AB-chain block B−1 that is already fol-
lowed by B′, each node forwards B only if L(B.hash) ≥ L(B′.hash) > 0. We con-
sider that the network is robust, hence any newly generated block on the bitcoin
blockchain is revealed to all nodes of AB-chain almost simultaneously. We assume
that each round is long enough and omitted network issues such as latency. For
simplicity, we regard that all participants mining on a chain branch that is finally
overrun by another branch during a fork are controlled by an adversary.

2.2 The Incentive Problem

With an improper establishment of L(·), miners may tend to deviate from the
standard mining protocol to maximize their profits. In the discussion below,
ϕL(t) denotes the expected value of the maximal block weight that one party
with hash rate t achieves in one round. Suppose the global hash rate is T .

Table 1. Table of notations

Notation Description

N The total number of nodes participating in the network

T The global hash rate, the number of hash attempts taken by all participants
in one round

M The cardinality of the range of H(·), for example, M = 2256 for SHA-256

D The difficulty parameter defined by D := M/T

α The fraction of the adversary hash power within the global rate

L(·) A potential function that returns the block weight of a hash value input

q The small probability that a confirmed branch is later outraced

Γ α,T
L,q The (α, T, q)-trust gap, see Definition 6

Λα,T
L,q The inverse of the (α, T, q)-finality rate, see Definition 7

HT
min An oracle that returns the minimal hash value for T hash attempts

Rev(y) The inverse function of y = x ln M
x

, well-defined for 0 < x < M/e

sgn(x) A function that returns 1 for positive x, −1 for negative x, and 0 for 0

e, γ The natural constant e ≈ 2.718 and Euler’s constant γ ≈ 0.577

1. In case of a too-convex establishment that ϕL((α+β)T) < ϕL(αT)+ϕL(βT)
happens with a considerable gap5 for any two parties with α, β fraction of
global hash power respectively, miners are lured to maximize their total profits
by node spawning and hash power splitting. In this case, massively spawned
nodes may cause a significant burden to the network. Honest nodes then are
less likely to receive their deserved profits without massive spawning. Even
worse, nodes may perform block-splitting by dividing their total power for
a long sequence of blocks and cause selfish mining. That is why we use the
bitcoin blockchain as a global clock to avoid such a block splitting.

5 |ϕL((α + β)T) − (ϕL(αT) + ϕL(βT))| is non-negligible for certain 0 < α, β < 1.

276 S. Tang et al.

2. In case of a too-concave establishment that ϕL((α+β)T) > ϕL(αT)+ϕL(βT)
happens with a considerable gap for any two parties with α, β fraction of
global hash power, miners tend to aggregate their hash power. Thereby, exist-
ing mining pools are lured to combine their resource and become one or few
unified pools. This is a serious centralization which is likely to lead to a pool
controlling more than a half total hash power.

Both cases cause a loss of fairness. However, most ϕL(·) under sensible
establishments of L(·) are somewhat convex (but not too convex, including the
Nakamoto case) so all terrifying ending mentioned above would not happen. We
assume that all our chosen L(·) are neither too convex or too concave in this
paper. A more formal and thorough treatment of fairness is left as future work.

2.3 Our Demo-of-Work and AB-Chain Framework

Demo-of-Work. We apply our finality model (to be formalized in the next
section) to formulate the notion of Demo-of-Work (DoW). In this scheme, we
evaluate computation work by using the potential function instead of checking
whether the attained hash value is smaller than a given target or not. Specifically,
we assign a score (the weight) to each block according to the block hash and
the potential function. This allows exploiting more information related to hash
powers, which more accurately measures the work accumulated over a chain via
the total weight of the chain. Furthermore, the accumulation of work in DoW
scheme grows faster than that in the original PoW protocol if a nice potential
function is adopted. The hope is that it can lead to a faster finality rate.

Fig. 1. Outline of The AB-Chain (the length in the graph indicates the block weight)

Chain Structures. The AB-chain structure is similar to the blockchain struc-
ture of bitcoin, except for a few differences (see Fig. 1). First, each block con-
tains a weight corresponding to the block hash. Specifically, the weight of block

Fast-to-Finalize Nakamoto-Like Consensus 277

B equals L(B.hash) , where L(·) is the potential function that maps a hash
value to a specific block weight. No block with non-positive weight will survive.
Second, each AB-chain block B refers to both the previous block B.preBlock
and a bitcoin block B.btcBlock that

(B.preBlock).btcBlock = (B.btcBlock).preBlock.

Mining. At the beginning of each round, each miner packs hashes of the previ-
ous block of AB-chain and the newest block of bitcoin blockchain, its collected
transactions, along with other auxiliary information into the block record. After-
wards, it tries to find a proper nonce value B.nonce to minimize (as far as possi-
ble) the block hash. At the same time, the miner takes part in the forwarding of
blocks from others and records the block with the greatest weight w that refers
to the same previous block as its. It broadcasts its own block if it finds a nonce
that leads to a competitive block weight no less than w. It is possible that no
block of positive weight is proposed in a few rounds, so not necessarily every
round has a block. In this case, we regard that this round has a block of zero
weight.

Fork Resolutions. When multiple blocks are built following the same block,
the fork happens. Each honest node builds blocks following the valid branch with
the largest total weight. The branch with a total weight greater than others by a
“trust gap” is considered to be confirmed. A block might suddenly appear in the
view, so fork may happen anytime before the finality. No matter forks happen or
not in the current view, it is a must to wait for our notion of “trust gap” to form
before reaching the block finality. In our analysis, we assume the worst case that
fork is likely to happen for every block generation, without explicitly considering
the probability of forking. The next section formally defines the notion of trust
gap and explains its role in fork resolution.

3 Rate of Secure Finality

We build a model to describe the finality rate of all AB-chains with different
potential functions.

3.1 Finality Model

To facilitate the description of our finality model, we propose the notion of
“minimal hash value oracle”, which provides an equivalent simulation of the
mining process of each participant. Specifically, this oracle inputs the number of
hash attempts T0, and returns which is the least value among T0 uniform random
selections from the range of the cryptographic hash function H(·). This simulates
the mining since the event of “mining an AB-block” is essentially “having the
least hash value of T0 hash attempts small”. Now we formalize this definition.

278 S. Tang et al.

Definition 1 (Minimal Hash Value Oracle). For a positive integer T0, ora-

cle HT0
min outputs the minimal hash value in T0 hash attempts. For a fixed T0,

∀i ∈ [M], it is equivalent to a discrete probabilistic distribution with

Pr
[
h ← HT0

min

∣∣∣h ≤ i
]

= 1 − (1 − i

M
)T0 .

Then, we define the potential function L(·) which assigns a weight to each
block regarding the block hash h, to measure the work required to reach a hash
value no greater than h. In addition, we ask for each potential function L(·) to
be valid, i.e., L(h) should be monotonously non-increasing by h, since smaller
the least hash value is, more hash attempts are done in expectation.

Definition 2 (Valid Potential Function). In the AB-chain consensus, a
potential function L : [M] → R

+ is called valid if and only if for all integer
1 ≤ i < M , L(i) ≥ L(i + 1).

Now we describe definition regarding the study of finality (i.e., resolving
of chain forks) one-by-one. To begin, we define the chain weight and formally
discuss the chain competition criteria.

Definition 3 (The Total Weight of A Chain). For a chain of blocks chain =
(B0, B1, . . . , B�) (from the genesis block to the newest valid block), with Bi−1 =
Bi.preBlock1 for all i ∈ [�], its total weight is weight(chain) :=

∑�
i=1 L(Bi.hash).

Figure 2 depicts the fork resolutions. For finality, we require that one chain
branch has a total weight greater than all others by a “gap” to be defined below.

Fig. 2. AB-Chain with Fork Resolutions

Definition 4 (The Chain Competition). When two chains of blocks
chain1 = (B0, B1, . . . , B�) and chain2 = (B′

0, B
′
1, . . . , B

′
�′) cause a chain fork,

where the fork starts from the kth block (i.e., Bi = B′
i for all natural number

i < k), chain1 outraces chain2 if and only if

�∑
i=k

L(Bi.hash) −
�′∑

j=k

L(B′
j .hash) > Γ,

Fast-to-Finalize Nakamoto-Like Consensus 279

which is equivalent to

weight(chain1) − weight(chain2) > Γ,

for a certain gap Γ (to be determined in Definition 6).

Definition 5 ((R,Δ,α, T, q)-Confidence). For an AB-chain consensus with
potential function L(·) and round number R, it achieves (R,Δ,α, T, q)-
confidence if

Pr

⎡
⎣ x1, x2, . . . , xR ← Hα·T

min

y1, y2, . . . , yR ← H(1−α)T
min

∣∣∣∣
R∑

i=1

L(xi) −
R∑

j=1

L(yj) > Δ

⎤
⎦ ≤ q.

To measure the finality rate regarding the establishment of a potential func-
tion L(·), we introduce the notion of the trust gap parameterized by the propor-
tion of the hash rate of the adversary α, the global hash rate T , a probability q.
As long as one chain branch has a total weight greater than all others’ with a
sufficiently large enough gap Γ , we have the confidence that this branch reaches
a secure finality, i.e., will never be outraced except for a small probability q.

Definition 6 ((α, T, q)-Trust Gap). For an AB-chain with potential func-

tion L(·), we denote (α, T, q)-trust gap Γα,T
L,q as the least Δ satisfying its

(R,Δ,α, T, q)-confidence for all R ∈ N.

Once such a trust gap is achieved by one chain branch over others, the fork
is resolved and the secure finality is reached. The quicker chain competitions are
concluded (i.e., fewer rounds expected to attain such a trust gap), the better a
finality rate is reached. Finally, the finality rate is the inverse of the expected6

number of rounds required to reach a safety gap.

Definition 7 ((α, T, q)-Finality Rate). For an AB-chain consensus with

potential function L(·), its (α, T, q)-finality rate is 1/Λα,T
L,q with

Λα,T
L,q :=

Γα,T
L,q

E

[
x ← Hα·T

min

y ← H(1−α)T
min

∣∣∣∣ L(y) − L(x)
] ,

where the denominator is the expected gap formed in one round.

To facilitate comparisons, we will only use Λα,T
L,q (which is essentially the

inverse of the finality rate) to signify the finality rate in later parts. The greater
Λα,T

L,q is, a slower finality rate is attained. Λα,T
L,q is denoted by Λα when no

ambiguity exists (in which case 1/Λα is the finality rate).

6 It is not exactly the mathematical expectation, but it simplifies descriptions.

280 S. Tang et al.

3.2 Testimony of Our Finality Model

With a slight difference7, we view the Nakamoto blockchain as an AB-chain with
potential function

L(h) =
{

1, h ≤ D
0, otherwise .

The difficulty parameter D here is determined to have one block with the weight
of 1 mined in expectation for one round, i.e., T · (D/M) = 1. Mining a bitcoin
block corresponds to mining an AB-chain block with the weight 1.

To show this claim and also the reliability of our model, a Monte Carlo exper-
iment (Appendix A) is conducted to calculate the finality rate under different
assumptions on the adversary hash rate with the above L(h).8 We set q = 0.001.
For the results in Table 2, the first column reflects the adversary hash rate, the
second and the third columns are the numbers of rounds needed to confirm a
block provided by two independent Monte Carlo experiments of our model. We
can observe from the fourth and fifth columns that the experimental result is
coherent with that of Nakamoto in 2008 [20].

Table 2. Experimental results for finality rate on Nakamoto Blockchain

Adversary

hash rate α

Experiment I Experiment II Average result Result of

Bbitcoin [20]

0.10 4.0258 4.0128 4.0193 5

0.15 6.9477 7.0094 6.9785 8

0.20 10.2896 8.1600 9.2248 11

0.25 16.1332 15.1540 15.6436 15

0.30 24.5419 25.2738 24.9079 24

0.35 44.1077 41.7835 42.9456 41

0.40 105.5780 89.7551 97.6666 89

0.45 363.5730 311.9380 337.7555 340

4 Communication Cost and Fairness

When devising a new protocol, communication cost and fairness need to be taken
into account since they are vital for efficiency and security. In the following, we
can also see that the choice of potential function L(·) is closely related to the com-
munication cost and fairness. Our analysis of these two factors gives the bounds
of communication cost for valid potential functions, and proves that fairness
always holds as long as the potential function is a monotonously non-increasing
function. This gives a basis for determining a “good” potential function which
balances the finality rate and communication cost without compromising fair-
ness. We then choose a “good” potential function experimentally and come up
with AB-chain accordingly.
7 A coherence on experimental results even with “noise” from such a difference further

justifies the reliability of our finality model and the experiment.
8 We are showing that the Nakamoto chain can be regarded as one instantiation of

our model. We are not competing with Nakamoto blockchain in this part.

Fast-to-Finalize Nakamoto-Like Consensus 281

4.1 Communication Cost

Since hashes of amount O(1) can be found to satisfy h < D by all participants
each round (T · (D/M) = 1), we can infer that as long as L(h) ≤ 0 holds
for all h > kD with some constant k, the communication cost should remain
O(kN) = O(N) (N is the total number of nodes of the network), since the
expected number of proposed blocks will be no greater than k times that of
bitcoin. For instance, for L(h) we eventually chose in Sect. 4.3, L(h) ≤ 0 holds for
all h > 2D, and the overall communication cost is bounded by O(2N) = O(N).

A General Bound. Although an O(N) communication cost is guaranteed for
certain cases, such complexity is not reached by all cases of the generalized model.
As an analysis of the general model, we can prove that the overall communication
cost will not exceed O(N log N).

We assume that each miner generates a block with a unique block hash,
and their blocks are proposed in turn. Each block is successfully proposed (and
cause an O(N) communication burden to the network) only if its block has a
hash smaller than all previously proposed blocks, or no node forwards its block.

Theorem 1. For any valid potential function L(·), assuming each node i ∈ [N]
has a nonce solution of hash value hi, and proposes successfully (i.e., causing an
O(N) network burden) only if L(hi) > maxi−1

j=1 L(hj). Then, the overall commu-
nication cost is bounded by the complexity O(N log N).

Proof. Without a significant twist on results, we assume all nodes submit solu-
tions with different hash values. We let indicator Ii be 1 if L(hi) > maxi−1

j=1 L(hj),
0 otherwise. Similarly, we let indicator Ji be 1 if hi < mini−1

j=1 hj , 0 oth-
erwise. Since L(·) is a valid potential function, we can infer that L(hi) >
maxi−1

j=1 L(hj) ⇒ hi < mini−1
j=1 hj , and hence Ii ≤ Ji for each i ∈ [N].

The overall communication cost is
∑N

i=1 Ii times O(N), which should be
smaller than

∑N
i=1 Ji times O(N). Let Fn be

∑n
i=1 Ii for each n ∈ [N], we have

E[Fn] = (
1
n

· 0 +
1
n
E[F1] +

1
n
E[F2] + · · · +

1
n
E[Fn−1]) + 1

for each n ∈ [N]. Denoting Sn :=
∑n

i=1 E[Fi], we have

Sn − Sn−1 =
1
n

Sn−1 + 1

for each n ∈ [N] \ {1}, and S1 = 1. Denoting Tn := Sn

n+1 , we next have

Tn = Tn−1 +
1

n + 1
,

for each n ∈ [N] \ {1}, and T1 = S1
2 = 1

2 . Thereby Tn =
∑n

i=1
1

i+1 , and Sn =
(n + 1)

∑n
i=1

1
i+1 . Finally,

282 S. Tang et al.

E[Fn] = Sn − Sn−1 = (n + 1)
n∑

i=1

1
i + 1

− n
n−1∑
i=1

1
i + 1

= (n + 1) · 1
n + 1

+
n−1∑
i=1

1
i + 1

=
n∑

i=1

1
i

≈ ln n − γ

for each n ∈ [N] \ {1}. To conclude, the overall communication cost is bounded
by O(N log N).

4.2 Fairness

Fairness considers the most competitive block with the greatest weight for a
single round is proposed by a participant according to its hash power.

Definition 8 (Fairness). For an AB-chain consensus scheme with the poten-
tial function L(·), it achieves fairness if and only if

Pr
[
x ← Hβ·T

min, y ← H(1−β)T
min

∣∣∣L(x) ≥ L(y)
]

≥ β − ε

holds for any party holding β rate of global hash power, where (ε = o(T
M) is a

negligible component,) T is the number of hash attempts done by all participants
in one round.

We prove that if the potential function L(·) is valid, fairness is achieved.

Theorem 2. Basic fairness of an AB-chain consensus always holds as long as
the potential function L(·) is a monotonously non-increasing function.

Proof. Suppose that L(·) is monotonously non-increasing, then

x ≤ y ⇒ L(x) ≥ L(y).

Hence

Pr
[
x ← Hβ·T

min, y ← H(1−β)T
min

∣∣∣L(x) ≥ L(y)
]

≥ Pr
[
x ← Hβ·T

min, y ← H(1−β)T
min

∣∣∣x ≤ y
]
,

and
Pinf ≤ Pr

[
x ← Hβ·T

min, y ← H(1−β)T
min

∣∣∣x ≤ y
]

≤ Psup ,

where

Pinf =
∑M

i=1
1
M · βT · (M−i

M)βT−1 · (M−i
M)(1−β)T

= βT
MT

∑M
i=1(M − i)T−1 = βT

MT

∑M−1
i=0 iT−1

= βT
MT

∫ M

0
xT−1dx − O

(
(T

M)2
)

= βT
MT · MT

T − O
(
(T

M)2
)

= β − O
(
(T

M)2
)
,

Fast-to-Finalize Nakamoto-Like Consensus 283

and that

Psup =
∑M

i=1
1
M · βT · (M−i+1

M)βT−1 · (M−i+1
M)(1−β)T

� βT
MT · (M+1)T

T

= β · (1 + 1
M)T ≈ β · eT/M .

Since we may assume that T � M , we have

Pr
[
x ← Hβ·T

min, y ← H(1−β)T
min

∣∣∣x ≤ y
]

� β − O

(
(

T

M
)2

)
,

and so forth

Pr
[
x ← Hβ·T

min, y ← H(1−β)T
min

∣∣∣L(x) ≥ L(y)
]

≥ β − O

(
(

T

M
)2

)
.

This achieves our defined fairness since O
(
(T/M)2

)
= o(T/M) is negligible.

4.3 The Choice of Potential Function and the Resulting AB-Chain

With the above analysis, we have a rough direction in picking a potential func-
tion which reaches a “nice” balance between the finality rate and communication
cost while not sacrificing fairness. We selected representatives of monotonously
non-increasing functions according to the gross type of function curve, and run
independent experiments for different types of potential functions via the Monte
Carlo simulations under our finality model. For the adversary assumptions of
10%, 20%, 30%, and 40%, Table 3 in Appendix A shows the estimated commu-
nication complexity and the experimental results of the finality rate for each
experimented potential function.

With a faster finality rate and O(N) communication, we decide L(h) to be

L(h) =

⎧⎨
⎩

2, h ≤ D
1, D < h ≤ 2D
0, h > 2D

.

For instance, according to the result of Table 3, for the adversary assumption of
α = 10%, 4 rounds are sufficient for the safety of q = 10−3, while it is 6 rounds
for the bitcoin. For α = 30%, 15 rounds for AB-chain reaches roughly the same
security as 25 rounds for bitcoin. Our experiments confirm that the finality rate
in DoW is significantly improved when compared with that of Nakamoto.

5 Conclusion and Discussion

We proposed demo-of-work that assigns a weighting score to evaluate the com-
putation work on each block more accurately by introducing potential functions.
Further, we used the blockchain as a global clock that divides the protocol execu-
tion into rounds. Based on these two tools, we constructed a blockchain protocol
with a faster finality rate as well as satisfactory communication cost and fairness.

284 S. Tang et al.

This protocol changed the underlying mechanism of proof-of-work and could be
applicable to any blockchains adopting proof-of-work.

This work spawns various future research directions, especially regarding
the potential function. A systematic approach to finding an optimal potential
function is desired. A formal analysis of incentives from the perspective of game
theory is expected. More relationship between the potential function and the
finality rate needs to be discovered. Finally, this model is expected to be put
into practice and attested with real and empirical data.

With different establishments of the potential function L(·) miners tend to
adopt different mining strategies due to an alternative incentive model (espe-
cially when mining pools are also taken into consideration). So, we think that
the mining behavior on AB-chain is unlikely to be identical to that of any exist-
ing blockchain and omitted an empirical analysis based on existing data from
Bitcoin. Further study in this regard is left as future work.

A Detailed Protocols of The Simulation Experiment

For each instantiation of the generalized model with a potential function L(·), an
experiment is performed to reveal its finality rate with a Monte Carlo method. In
our experiment, M = 220, T = D = 210 and q = 10−3 are chosen, the algorithms
listed below are executed (starting from the main function, Algorithm 7). After
the execution, the main function returns the expected number of rounds required
to form the safety gap.

1. Preparation(α, T) prepares two arrays to provide outcomes of two discrete
cumulative distribution functions. Specifically, aCDF[i] is the probability of
having a hash value no greater than i found by the adversary. hCDF[i] is
similarly the probability of having a hash value no greater than i found by
honest nodes.

2. GetH(CDF) returns a random number according to a distribution of a cumu-
lative distribution function recorded in the array CDF.

3. SimAttack(Δ, aCDF,hCDF) models the behaviour of the adversary attempt
of forming a new chain of blocks with the total weight greater than the honest
one by a certain gap Δ.

4. Test(Δ, q, aCDF,hCDF) performs “SimAttack” for sufficiently enough times,
to show (via Monte Carlo method) whether the probability of adversary in
successfully performing an attack (and overrunning the honest one by a total
weight of Δ) is smaller than q.

5. FindMinGap(q, aCDF,hCDF) utilizes a binary search to find the minimal
gap δ such that the adversary can catch up with the honest chain by a total
weight of δ only with a negligible probability q.

6. Expc(CDF) returns the expected block weight attained by either honest
parties or the adversary by another Monte Carlo experiment.

7. Main(α, T, q) is the main function that returns (the inverse of) the finality
rate Λα of the blockchain with potential function L(·), i.e., the expected
number of rounds required to form the safety gap.

Fast-to-Finalize Nakamoto-Like Consensus 285

In our final experiment, we execute the algorithms with NUM TEST SAMPLE =
100000, NUM TEST BLOCK = 200, and ε = 10−4.

Algorithm 1 Preparation(α, T)
1: aCDF[0] := 0
2: hCDF[0] := 0
3: for i := 1 to M do
4: aCDF[i] := 1 − (1 − i

M
)αT

5: hCDF[i] := 1 − (1 − i
M
)(1−α)T

6: end for
7: return (aCDF, hCDF)

Algorithm 2 GetH(CDF)
1: x := random(0, 1)
2: return binary search(CDF, x)

3mhtiroglA
SimAttack(Δ, aCDF, hCDF)
1: S1, S2 := 0
2: for i := 1 to NUM TEST BLOCK do
3: S1 := S1 + L(GetH(aCDF))
4: S2 := S2 + L(GetH(hCDF))
5: if S1 − S2 > Δ then
6: return true
7: end if
8: end for
9: return false

Algorithm 4 Test(Δ, q, aCDF, hCDF)
1: succ := 0
2: for i := 1 to NUM TEST SAMPLE do
3: if SimAttack(Δ, aCDF, hCDF)

then
4: succ := succ + 1
5: end if
6: end for
7: return (succ < q ∗ NUM TEST SAMPLE)

5mhtiroglA
FindMinGap(q, aCDF, hCDF)
1: left := 0
2: right := SUFFICIENT LARGE

3: while right − left > ε do
4: x := (left + right)/2
5: if Test(Δ, q, aCDF, hCDF) then
6: right := x
7: else
8: left := x
9: end if
10: end while
11: return right

Algorithm 6 Expc(CDF)
1: S := 0
2: for i := 1 to NUM TEST SAMPLE do
3: S := S + L(GetH(CDF))
4: end for
5: return S/NUM TEST SAMPLE

Algorithm 7 Main(α, T, q)
1: (aCDF, hCDF) := Preparation(α, T)
2: Δ0 := (Expc(hCDF) − Expc(aCDF))
3: finality :=

FindMinGap(q, aCDF, hCDF)/Δ0

4: return finality

286 S. Tang et al.

Table 3. Experiments on few establishments of the potential function

Potential
Function

Figure Λ0.1 Λ0.2 Λ0.3 Λ0.4 Communication
Complexity

L(h) =
π
2

− arctanh−D
2D

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

2.5

Minimal Hash

Po
te
nt
ia
lV

al
ue

1.68 4.13 11.01 48.66 O(N logN)

L(h) =
min{M

h
, M

D
}

0 500 1000 1500 2000 2500 3000

400

500

600

700

800

900

1000

Minimal Hash

P
ot
en

tia
lV

al
ue

2.00 4.67 11.60 49.37 O(N logN)

L(h) = 2
√

D−
sgn(h − D)·√|h − D|

0 500 1000 1500 2000 2500 3000

20

40

60

80

100

Minimal Hash

Po
te
nt
ia
lV

al
ue

2.25 5.21 13.66 54.81 O(N logN)

L(h) =⎧⎨
⎩

2, h ≤ D
1, D < h ≤ 2D
0, h > 2D

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

Minimal Hash

Po
te
nt
ia
lV

al
ue

2.63 6.09 14.83 66.17 O(N)

L(h) ={
1, h ≤ D
0, h > D

0 500 1000 1500 2000 2500 3000
0.0

0.2

0.4

0.6

0.8

1.0

Minimal Hash

Po
te
nt
ia
lV

al
ue

4.02 9.22 24.91 97.67 O(N)

L(h) =⎧⎨
⎩

2, h ≤ D
2

1, D
2

< h ≤ D
0, h > D

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

Minimal Hash

Po
te
nt
ia
lV

al
ue

4.89 11.60 26.02 103.18 O(N)

Fast-to-Finalize Nakamoto-Like Consensus 287

References

1. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: Solidus: an incentive-
compatible cryptocurrency based on permissionless byzantine consensus. arXiv
CoRR abs/1612.02916 (2016)

2. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with
no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 19

3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
SP 2014, Berkeley, CA, USA, 18–21 May 2014, pp. 443–458 (2014)

4. Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. arXiv CoRR
abs/1605.04559 (2016)

5. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

6. Bissias, G., Levine, B.N.: Bobtail: a proof-of-work target that minimizes blockchain
mining variance (draft). arXiv CoRR abs/1709.08750 (2017)

7. Boyen, X., Carr, C., Haines, T.: Blockchain-free cryptocurrencies: a framework for
truly decentralised fast transactions. Cryptology ePrint Archive, Report 2016/871
(2016)

8. Bünz, B., Goldfeder, S., Bonneau, J.: Proofs-of-delay and randomness beacons in
ethereum. In: IEEE Security & Privacy on the Blockchain (IEEE S&B) (2017)

9. Chow, S.S.M., Lai, Z., Liu, C., Lo, E., Zhao, Y.: Sharding blockchain (invited
paper). In: The First IEEE International Workshop on Blockchain for the Internet
of Things (BIoT) (2018, To appear)

10. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

11. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

12. Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: 13th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2016, Santa Clara, CA, USA, 16–18 March 2016, pp.
45–59 (2016)

13. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

14. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 24–28 October 2016, pp. 3–16 (2016)

15. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, 28–31 October 2017, pp. 51–68
(2017)

https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10

288 S. Tang et al.

16. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols. In:
Secure Information Networks: Communications and Multimedia Security, IFIP
TC6/TC11 Joint Working Conference on Communications and Multimedia Secu-
rity (CMS 1999), 20–21 September 1999, Leuven, Belgium, pp. 258–272 (1999)

17. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, 24–28 October 2016, pp. 418–429 (2016)

18. Liu, Z., Tang, S., Chow, S.S.M., Liu, Z., Long, Y.: Fork-free hybrid consensus with
flexible proof-of-activity. Future Gener. Comp. Syst. 96, 515–524 (2019)

19. Meng, W., et al.: Position paper on blockchain technology: smart contract and
applications. In: Au, M.H., et al. (eds.) NSS 2018. LNCS, vol. 11058, pp. 474–483.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02744-5 35

20. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). www.bitcoin.
org

21. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, PODC 2017, Washington, DC,
USA, 25–27 July 2017, pp. 315–324 (2017)

22. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.
In: 31st International Symposium on Distributed Computing, DISC 2017, Vienna,
Austria, 16–20 October 2017, pp. 39:1–39:16 (2017)

23. Pass, R., Shi, E.: Rethinking large-scale consensus. In: 30th IEEE Computer Secu-
rity Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, 21–25 August
2017, pp. 115–129 (2017)

24. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016). https://lightning.network/lightning-network-paper.pdf

25. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: Spectre: a fast and scalable cryptocur-
rency protocol. Cryptology ePrint Archive, Report 2016/1159 (2016)

26. Vukolic, M.: The quest for scalable blockchain fabric: Proof-of-work vs. BFT repli-
cation. In: Open Problems in Network Security - IFIP WG 11.4 International
Workshop, iNetSec 2015, Zurich, Switzerland, 29 October 2015, pp. 112–125 (2015).
Revised Selected Papers

https://doi.org/10.1007/978-3-030-02744-5_35
www.bitcoin.org
www.bitcoin.org
https://lightning.network/lightning-network-paper.pdf

A Flexible Instant Payment System
Based on Blockchain

Lin Zhong1,2, Huili Wang3,4(B), Jan Xie5, Bo Qin6, Joseph K. Liu7,
and Qianhong Wu1,8(B)

1 School of Cyber Science and Technology, Beihang University, Beijing, China
{zhonglin,qianhong.wu}@buaa.edu.cn

2 State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China
3 State Key Laboratory of Integrated Services Networks, Xidian University,

Xi’an 710071, China
4 China Electronics Standardization Institute, Beijing 100100, China

wanghuili@cesi.cn
5 Crytape Research, Cryptape Co., Ltd, Hangzhou 31000, China

jan@cryptape.com
6 School of Information, Renmin University of China, Beijing 100872, China

bo.qin@ruc.edu.cn
7 Faculty of Information Technology, Monash University,

Clayton, VIC 3800, Australia
joseph.liu@monash.edu

8 Science and Technology on Information Assurance Laboratory,
Beijing 100000, China

Abstract. Improving the throughput of blockchain systems such as Bit-
coin and Ethereum has been an important research problem. Off-chain
payments are one of the most promising technologies to tackle this chal-
lenge. Once a payment channel, however, is established there exists a
strict one-one correspondence between a payee and prepayments, which
reduces the flexibility of off-chain payments. In this paper, we propose a
flexible instant payment system (FIPS) based on blockchain to improve
the flexibility of off-chain payments. In the FIPS system, there exists a
depositor who locks enough amounts of tokens on the chain, and super-
vises payers to make off-chain payments. Therefore, payers can pay to
multiple payees off-chain without double-spending. Even the depositor
colludes with the payer, and performs double-spending attacks, pay-
ees will not suffer any losses as they can withdraw their tokens from
the locked tokens of the depositor. Besides, payers can allocate flexi-
bly the prepayments off-chain, and all transactions are settled off-chain.
We present a formal generic construction for the FIPS system, prove its
security strictly, analyze its related properties, and compare with related
schemes in detail. Analyses show that our scheme is flexible and practical.

Keywords: Cryptocurrency · Blockchain · Off-chain payment ·
Flexibility · Double-spending

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 289–306, 2019.
https://doi.org/10.1007/978-3-030-21548-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_16

290 L. Zhong et al.

1 Introduction

Bitcoin [1] and Ethereum [2] have become increasingly popular as fully decen-
tralized cryptographic networks, which are widely adopted today as alternative
monetary payment systems. These cryptocurrencies have a genius innovation,
i.e., its consensus mechanism that allows each transaction to be recorded in the
so-called blockchain (or ledger), which is a database maintained by a set of mutu-
ally distrusted peers around the world. Microtransaction [3] is one of the most
interesting applications for blockchain systems, such as fair sharing of WiFi con-
nection. However, the consensus mechanism of blockchain caused serious scaling
issues, e.g., the throughput of the bitcoin blockchain is only 7 transactions per
second as on every 10 min only a 1 MB blocks are added to the system, whereas
the Visa payment networks can support peaks of up to 47,000 transactions per
second [4]. Therefore, it impedes the emerge of many novel business models
that need a high throughput. Fortunately, there are two solutions to solve these
problems, which describe as follows.

One is to introduce new fast consensus mechanisms such as Byzantine agree-
ment protocols. However, alternative consensus mechanisms typically introduce
different trust assumptions [5–8], which completely change the consensus mech-
anisms, and incompatible with the current systems. In other words, it needs to
construct a whole new system. On the other hand, a prominent tool for improv-
ing the scalability of blockchains is a second layer payment channel [9–12], which
is compatible with most of the existing blockchain systems.

Payment channels can only be used for payment applications, which can be
generalized as state channels [13]. State channels radically break through the lim-
its of payment channels, and bring scalability benefits to other smart contract
applications as well, such as auctions and online games [9]. In order to cater to a
growing number of users and payments for state channels, many challenges must
be overcome. Several contributions intend to enhance the performance charac-
teristic of state channels. Especially some related payment schemes, e.g., credit
networks [14,15] that a fully-fledged payment channel network must offer a solu-
tion to several issues, such as liquidity [16,17], network formation [18], routing
scalability [19,20], concurrency [11], and privacy [11,21–23] among others.

As described above, until now there has not been any satisfactory schemes to
improve the flexibility of off-chain state channels. The main contribution of this
work is to address this shortcoming by providing the construction for building
a flexible off-chain state channel with a formal definition and security analysis.
Our construction (i) allows the payers to pay to multiple payees off-chain and
offline without double-spending, and (ii) permits the payers to allocate flexibly
the prepayments off-chain.

In summary, we make the following contributions:
– We propose a new FIPS system to improve the flexibility of off-chain payments

of blockchain systems. The key method of our approach is to add a depositor
who locks enough amounts of tokens on the chain, and supervises payers
to make off-chain payments. As a result, payers can pay to multiple payees
off-chain and offline without double-spending.

A Flexible Instant Payment System Based on Blockchain 291

– We construct the FIPS system in a modular way by using a digital signature
scheme. We prove that if the underlying blockchain system, smart contract,
and digital signature all are secure, then the FIPS system is secure. Analyses
show that the FIPS system has the properties of flexibility, high security,
instant payment, scalability, and high efficiency.

Organization. The remainder of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 presents an overview of the system model. Section 4
gives assumptions, adversary models, and design goals of the system. Section 5
presents a formal generic construction. Section 7 analyzes the related properties,
and compares with related schemes. Section 8 concludes the paper.

2 Related Work

Duplex Micropayment Channels [24]. Decker and Wattenhofer proposed the first
duplex off-chain payment channel networks between payment service providers
(PSPs), which are the equivalent autonomous systems on the Internet. Rely-
ing on the timelock functionality of modern Bitcoin transactions, the PSPs can
route transactions between any two participants, possibly over multiple hops,
guarantee end-to-end security, enable real-time transactions.

Lightning Network [25]. Similar to the duplex micropayment channels, the Light-
ning Network, which is the most prominent proposal for a payment channel net-
work in Bitcoin, allows to perform off-chain payments between Bitcoin partici-
pants. The Lightning Network relies on a punishment mechanism to guarantee
the behavior of users instead of timelocks. Other payment channel networks such
as Thunder [26] and Eclair [27] for Bitcoin are being proposed as slight modi-
fications of the Lightning Network. Flare [28] and SpeedyMurmurs [12] are two
routing algorithms for these transaction networks.

Raiden Network [29]. The Raiden Network is an off-chain scaling solution on
the Ethereum blockchain using smart contracts for performing transactions. It
supports secure transactions between participants without the need for global
consensus, which is achieved using digital signature and hash-locked mechanism,
called balance proofs, fully collateralized by previously setup on-chain deposits.
Besides, it supports the creation of custom exchangeable tokens, as the Raiden
Network enables off-chain transactions with any kinds of tokens that follow the
standard token API [2].

Teechain [10]. Teechain is a layer-two payment network that only requires asyn-
chronous blockchain access by leveraging trusted platform module, which is a
trusted execution environment in modern CPUs. However, it only focuses on a
single payment channel and their extensions to support payment channel net-
works remain an open problem.

Sprites [13]. Sprites designed for Ethereum are a variant of payment channels
that aim to reduce the worst-case collateral costs of indirect off-chain payments.
It supports partial deposits and withdrawals, during which the channel can con-
tinue to operate without interruption. At the same time, Gervais et al. [30]

292 L. Zhong et al.

proposed the Revive protocol for allowing an arbitrary set of users in payment
channel networks to securely rebalance their channels, according to the prefer-
ences of the channel owners.

Malavolta et al. [11] studied on concurrency and privacy in payment chan-
nel networks, and presented a formal definition in the universal composabil-
ity framework as well as practical and provably secure solutions. Dziembowski
et al. [31] further reduces latency and costs in complex channel networks by using
the technology of channel virtualization. It further reduces latency and costs in
complex channel networks by using the technology of channel virtualization.

In all above schemes, however, there exists a strict one-one correspondence
between a payee and prepayments, which reduces the flexibility of off-chain pay-
ments. Therefore, we propose the FIPS system, which allows the payers to pay
to multiple payees off-chain without double-spending, and permits the payers to
allocate flexibly the prepayments off-chain.

3 Overview

In this section, we first present the FIPS system model, which includes an infor-
mal description and a formal definition. Then, we give its adversary models and
design goals.

3.1 System Model

Generally, as shown in Fig. 1, the FIPS system consists of four types of partici-
pants including nodes (or miners), a depositor, a payer, and multiple payees. The
key characteristic of the FIPS system is that it adds a deposit procedure in the
blockchain systems. In the FIPS system, the depositor locks enough amounts of
tokens on the blockchain. Then he can act as a supervisor to supervise the payer
for each transaction. He must guarantee that the payer does not double-spend in
off-chain payments. If the payer double-spends, then payees can withdraw tokens
from the locked tokens of the depositor.

Fig. 1. The FIPS system model

A Flexible Instant Payment System Based on Blockchain 293

Payers can build a new channel, and lock some amounts of tokens, which he
will pay to multiple payees off-chain. But before performing a transaction, the
payer has to make a payment request to the depositor. The payment request
contains the address of the payee and the amount of tokens. If the payer does
not pay more than the prepayments, then the depositor will agree with the
transaction. Payees can verify the validity of the locked tokens and payments,
and accept if valid. There is no need to worry about double-spending attacks
of the payer, as payees can also withdraw tokens from the locked tokens of
the depositor. Finally, nodes (or miners) construct blocks, which contain valid
locked transactions and settlement transactions, and add to the blockchain. After
finishing all settlements, the locked tokens will be unlocked. It is reasonable that
the depositor will charge a few transaction fees for each transaction.

Formally, the FIPS system consists of six procedures, denoted as Channel-
Setup, Deposit, Payment-Request, Pay, Collect, Settlement. The func-
tionality of each procedure is as follows:

– Channel-Setup. This protocol is run between the payer and nodes.
The payer takes as input his private key sk0, an prepayment M , his account
address ID0, n payees ID1, ..., IDn, and some auxiliary information aux0,
returns a channel-setup signature σ0

σ0 ← Channel(sk0, channel).

Let channel = (M, ID0, ID1, ..., IDn, aux0). The auxiliary information aux0

includes the account address IDD of a depositor, timestamps, etc.
Nodes (or miners) of the system verify the validity of the channel-setup sig-
nature, and accept if valid

V alid/Invalid ← ChannelVerify(pk0, channel, σ0).

– Deposit. This protocol is run between the depositor and nodes.
The depositor takes as input his private key skD, enough amounts of prelocked
tokens M̃ , his account IDD, and some auxiliary information auxD, returns a
locked signature σ1

σ1 ← Deposit(skD, lock).

Let lock = (M̃, IDD, auxD). The auxiliary information auxD includes the
channel-setup signature of the payer, timestamps, etc. Note that M̃ ≥ M ∗ n
must be satisfied.
Nodes (or miners) of the system verify the validity of the locked signature,
and accept if valid

V alid/Invalid ← DepositVerify(pkD, lock, σ1).

– Payment-Request. This protocol is run between the payer and depositor.
The payer takes as input his private key sk0, some tokens m, his account
address ID0, the account address of a payee IDi, timestamps T , returns a
payment-request signature σ2,i. Let payi = (m, ID0, IDi, T).

σ2,i ← Request(sk0, payi).

294 L. Zhong et al.

The depositor verifies the validity of the payment-request signature

V alid/Invalid ← RequestVerify(pk0, payi, σ2,i),

and returns a permission signature σ3,i if valid

σ3,i ← Permission(skD, payi).

The payer verifies the validity of the permission signature σ3,i

V alid/Invalid ← PermissionVerify(pkD, payi, σ3,i).

If valid, then accept, else reject.
– Pay. This procedure is run by payers.

The payer takes as input his private key sk0 and the permission signature
(payi, σ3,i), output a payment signature

σ4,i ← Pay(sk0, payi, σ3,i).

He sends the permission signature σ3,i and the payment signature σ4,i to the
payee IDi.

– Collect. This procedure is run by payees.
The payee IDi verifies the validity of the permission signature σ3,i and the
payment signature σ4,i

V alid/Invalid ← PermissionVerify(pkD, payi, σ3,i),
V alid/Invalid ← PayVerify(pk0, payi, σ3,i, σ4,i).

If all valid, m ≤ M and M̃ ≥ M ∗ n hold, then accept, else reject.
– Settlement. This protocol is run between the depositor and the payee.

If the payee wants to settle accounts, then he and the depositor sign a final
balance, which means that all of them accept the settlement

σ5,i ← Settlement(skD, ski, balancei).

Let balancei = (payi, σ3,i, σ4,i, pkD, pk0). The final balance must be impartial,
else the depositor will suffer financial loss as the payees can withdraw deposits
from the locked tokens. Besides, it is reasonable that the depositor will charge
a few transaction fees for each transaction. Finally, the locked tokens will be
unlocked after finishing all settlements.
As the depositor knows exactly the paying ability of the payer, he can sponsor
a settlement on his own if the payer has spent all, and most of the payees
have finished their settlements.

σ′
5,i,...,n ← Settlement(skD, balancei, ..., balancen).

But this unilateral settlement needs some time negotiated previously before
it goes into effect.

A Flexible Instant Payment System Based on Blockchain 295

4 Assumptions, Adversary Models, and Goals

In this section, we give the assumptions, adversary models, and goals of the FIPS
system.

4.1 Assumptions

– The blockchain is secure. As the FIPS system is based on the blockchain
system, we assume that the underlying blockchain system is secure in spite
of its consensus mechanism, e.g., Proof of Work (PoW) [1], Proof of Stake
(PoS) [32], Delegated Proof of Stake (DPoS) [33].

– The smart contract is secure. The FIPS system brings two kinds of special
transactions, i.e., token lock/unlock transactions and channel setup/abolish
transactions, to the blockchain system. Besides, the account bill should be
settled off-chain. Therefore, it should be better to use smart contracts to
achieve these transactions.

– The digital signature is secure. Locking/Unlocking tokens, build-
ing/abolishing channels, and taking transactions need to perform digital sig-
nature algorithms. Thus, the digital signature that the FIPS system used
need to have a high security.

4.2 Adversary Models

As the FIPS system introduces new roles and interactive protocols to the
blockchain system, it may suffer from active attacks and passive attacks. Active
attacks, especially the double-spending attack, are key attacks in blockchain sys-
tems. It is the key problem, which needs to be resolved in the FIPS system.
Active attacks:

– Channel double-building attacks. An adversary builds two channels by
using the same amounts of the prepayments. In other words, he wants to pay
the same amounts of tokens to two different kinds of payees. Therefore, he
can achieve double-spending in subsequent transactions.

– Token double-locking attacks. An adversary locks the same tokens into
two different channels. In other words, the adversary locks the tokens twice.
Thus, he can collude with the payer to double-spend without losing anything.
Besides, the depositor can also lock some amounts of tokens, which are less
than the product of prepayment times the amounts of payees. Therefore, if
the depositor colludes with the payer, then the double-spending attacks will
render payees to suffer financial loss.

– Double-spending attacks. After building a payment channel, the payer can
pay to multiple payees. But the sum of all transactions is greater than his
prepayments. In other extreme cases, the payer as an adversary colludes with
the depositor, and performs transactions such that the product of prepayment
times the amounts of payees is greater than the amounts of locked tokens.

296 L. Zhong et al.

– Malicious settlement attacks. In the settlement stage, the payer or the
depositor or the payee is not online maliciously to postpone settlements. In
other words, malicious participants want to decrease the efficiency of the
settlement. Besides, they can also wind up an account with a wrong balance,
such that some of the honest participants will suffer losses. For instance, the
payer, the depositor, and part of payees collude with each other to achieve
double-spending and malicious settlement, such that the malicious payees can
withdraw all locked tokens.

Passive attacks: Passive attacks, e.g., eavesdropping attacks and traffic analy-
sis, are also confronted by the FIPS system. For instance, adversaries can monitor
the communication between the payer and the depositor. Besides, they can also
analyze the traffic data between the payer and the payees. However, there exist
no complicated Diffie-Hellman key exchange protocols in the FIPS system, which
makes the FIPS system can be able to resist man-in-the-middle attacks. Besides,
pseudonyms used in the FIPS system, make the adversaries can only count some
pseudonymous transactions, which are almost useless. Therefore, passive attacks
are not important problems that the FIPS system should concern.

4.3 Design Goals

The FIPS system is to achieve the following properties: flexibility, security,
instant payment, scalability, and high efficiency.

– Flexibility is the most significant characteristic of the FIPS system, as in
existing off-chain payment systems, there exists a strict one-one correspon-
dence between a payee and prepayments, which reduces the flexibility of off-
chain payments. Therefore, off-chain payments that pay to multiple payees
are a very important means to improve the liquidity of tokens.

– Security is a basic requirement of the FIPS system, as blockchain systems
are vulnerable to attacks such as double-spending, eavesdropping, and traffic
analysis. The FIPS system should be able to defend against the adversary
models described above.

– Instant payment is one of the key goals of the FIPS system, as current
blockchain systems suffer from relatively low throughput. On the other hand,
exist off-chain payments need either a costly on-chain settlement or a compli-
cated off-chain routing algorithm, such as the Lightning Network. However,
A shorter payment route is an advantage for any off-chain payment, as it can
improve transaction speeds, and reduce costs.

– Scalability is an additional goal that the FIPS system should possess. Cur-
rent blockchain systems such as Ethereum have run a few years, which means
they have a high security and practicability. The FIPS system should deploy
on these systems, and inherit their security and practicability. Therefore, the
FIPS system should have a good scalability.

– High efficiency is the last but not least goal of the FIPS system, as the FIPS
system should be used by mobile users, which have relatively low computa-
tional capabilities. Besides, mobile users also cannot use complicated routing

A Flexible Instant Payment System Based on Blockchain 297

algorithms to find online intermediate users to achieve off-chain transactions.
Therefore, the FIPS system should have a high efficiency.

5 Generic Construction

In this section, we demonstrate a formal generic construction.
Formally, in generic construction, we employ a digital signature

(Sign, V erify) to construct the FIPS system. The generic construction of the
FIPS scheme Channel-Setup, Deposit, Payment-Request, Pay, Collect,
Settlement is as follows:
Channel-Setup. The procedure Channel-Setup performs as follows:

i. A payer performs the signature algorithm Sign, takes as input his private key
sk0, an prepayment M , his account address ID0, n payees ID1, ..., IDn, and
some auxiliary information aux0, returns a channel-setup signature σ0

σ0 ← Sign(sk0, channel),

where channel = (M, ID0, ID1, ..., IDn, aux0). The auxiliary information
aux0 includes the account address IDD of a depositor, timestamps, etc. He
broadcasts the channel-setup signature, which will be received and verified
by nodes who maintain the system.

ii. Nodes perform the verification algorithm V erify, takes as input the channel-
setup signature (channel, σ0) as well as the corresponding public key pk0,
and returns a judgment

V alid/Invalid ← V erify(pk0, channel, σ0).

If valid, then add it to the blockchain, else reject.

Deposit. The procedure Deposit performs as follows:

i. A depositor performs the signature algorithm Sign, takes as input his private
key skD, enough amounts of prelocked tokens M̃ , his account IDD, and some
auxiliary information auxD, returns a locked signature

σ1 ← Sign(skD, lock),

where lock = (M̃, IDD, auxD). The auxiliary information auxD includes the
channel-setup signature of the payer, timestamps, etc. Note that M̃ ≥ M ∗n.
He broadcasts the locked signature, which will be received and verified by
nodes.

ii. Nodes perform the verification algorithm V erify, takes as input the locked
signature (lock, σ1) as well as the corresponding public key pkD, and returns
a judgment

V alid/Invalid ← V erify(pkD, lock, σ1).

If valid, then add it to the blockchain, else reject.

298 L. Zhong et al.

Payment-Request. The procedure Payment-Request performs as follows:

i. The payer performs the signature algorithm Sign, takes as input his private
key sk0, some tokens mi, his account address ID0, the account address of a
payee IDi, timestamps T , returns a payment-request signature σ2,i

σ2,i ← Sign(sk0, payi),

where payi = (mi, ID0, IDi, T). He sends the payment-request signature to
the depositor.

ii. The depositor performs the verification algorithm V erify, takes as input the
payment-request signature (payi, σ2,i) as well as the corresponding public
key pk0, and outputs a judgment

V alid/Invalid ← V erify(pk0, payi, σ2,i).

If output valid, then performs the signature algorithm Sign, takes as input
his private key skD, the content of a payment payi, returns a permission
signature σ3,i

σ3,i ← Sign(skD, payi,).

iii. The payer performs the verification algorithm V erify, takes as input the
permission signature (payi, σ3,i) as well as the corresponding public key pkD,
and outputs a judgment

V alid/Invalid ← V erify(pkD, payi, σ3,i).

If valid, then accept, else reject.

Pay. The procedure Pay performs as follows:

i. The payer performs the signature algorithm Sign, takes as input his private
key sk0 and the permission signature (payi, σ3,i), output a payment signature

σ4,i ← Sign(sk0, payi, σ3,i).

He sends the permission signature σ3,i and the payment signature σ4,i to the
payee IDi.

Collect. The procedure Collect performs as follows:

i. The payee performs the verification algorithm V erify, takes as input the
permission signature σ3,i and the payment signature σ4,i as well as the cor-
responding public keys pkD, pk0, and outputs a judgment

V alid/Invalid ← V erify(pkD, payi, σ3,i),
V alid/Invalid ← V erify(pk0, payi, σ3,i, σ4,i).

If all valid, M̃ ≥ M ∗ n and M ≥ mi ∗ n hold, then accept, else reject.

A Flexible Instant Payment System Based on Blockchain 299

Settlement. The procedure Settlement performs as follows:

i. After receiving the settlement request from a payee IDi, the depositor per-
forms the signature algorithm Sign, takes as input his private key skD, a
balance balancei for payee IDi, returns a settlement signature σ5,i

σ5,i ← Sign(skD, balancei).

Let balancei = (ID0, IDi, payi, σ3,i, σ4,i, pkD, pk0). The balance includes the
permission signature and the payment signature. He sends the settlement
signature to the payee IDi.

ii. The payee IDi performs the verification algorithm V erify, takes as input
the settlement signature (balancei, σ5,i, pkD), and outputs a judgment

V alid/Invalid ← V erify(pkD, balancei, σ5,i).

If valid, then he performs the signature algorithm Sign, takes as input his
private key ski, the settlement signature (balancei, σ5,i), returns a signature
σ6,i

σ6,i ← Sign(ski, balancei, σ5,i),

and broadcasts (balancei, σ5,i, σ6,i, pki).
iii. Nodes verify these four signatures, i.e., the permission signature σ3,i, the

payment signature σ4,i, the settlement signature of the depositor σ5,i, and
the settlement signature of the payee σ6,i. And add them to the blockchain
if all valid, M̃ ≥ M ∗ n and M ≥ mi ∗ n hold, else reject. And the locked
tokens will be unlocked after finishing all settlements.

iv. If the payer has spent all, and most of the payees have finished their set-
tlements, then the depositor can sponsor a settlement on his own. But this
unilateral settlement needs some time negotiated previously before it goes
into effect. The depositor performs the signature algorithm Sign, takes as
input his private key skD, the balances balancei, ..., balancen for payees
IDi, ..., IDn, returns a settlement signature σ′

5,i,...,n

σ′
5,i,...,n ← Sign(skD, balancei, ..., balancen).

Let balancei = (ID0, IDi, payi, σ3,i, σ4,i, pkD, pk0). The permission signa-
ture σ3,i, the payment signature σ4,i, and the settlement signature σ′

5,i,...,n

will be verified by nodes.

Theorem 1. The above generic construction of the FIPS system is secure, pro-
vided that (1) the underlying blockchain and smart contracts are secure, (2) the
procedures, i.e., Channel-Setup, Deposit, Payment-Request, Pay, Collect,
and Settlement, all are secure.

300 L. Zhong et al.

6 Formal Security Analysis

Proof of Theorem 1. The Channel-Setup and Deposit procedures in smart
contracts are two transactions of the underlying blockchains. As the blockchain
has the property of strong consistency, the attack that an adversary wants to
build two different channels by using the same amount of token or locks the same
amount of token for different payment channels cannot be achieved. These kinds
of behaviors will be rejected by the underlying blockchain. Therefore, the channel
double-building attack and token double-locking attack will be defended against
by the blockchain. In other words, if the Channel-Setup and Deposit proce-
dures are not secure, then we can build an adversary to break the consistency
of the blockchain, or break the smart contract. Therefore, the Channel-Setup
and Deposit procedures are secure.

Before each transaction going into effect, it needs the permission signature
of the depositor in the first place, and the payment signature of the payer in
the second place, which is a new signing way. We use the following payment
model to formalize its security. The functionality of the payment model is equiv-
alent to the Payment-Request, Pay, and Collect procedures. The payment
model assumes that there exists an adversary who wants to double spend. This
is equivalent to the adversary running the Payment-Request and Pay proce-
dures on his own. Assume that the adversary cannot get the private key from
the depositor.

Formally, the payment model of the FIPS system is defined through a security
game played between an adversary A and a challenger C, both of which take as
input a security parameter λ ∈ N .

Setup. The challenger C obtains a key pair (SKC , PKC), and sends the public
key PKC to the adversary A.

Query. The adversary A adaptively queries the permission signature to the
challenger C. More specifically, the adversary A generates adaptively q trans-
actions

σj ← Sign(SKA, payj),
payj = (mj , IDA, IDC , T), 1 ≤ j ≤ q.

The adversary A sends (payj , σj), 1 ≤ j ≤ q to the challenger C. Without
loss of generality, the adversary A would not query the same payment-request
signature twice.

Challenge. The challenger C generates a permission signature for each submit-
ted payment-request signature by executing the signature algorithm

δj ← Sign(SKC , payj), 1 ≤ j ≤ q.

The challenger C gives to the adversary A each permission signature pair
(payj , δj), 1 ≤ j ≤ q.

Output. The adversary A generates a payment signature for each permission
signature by executing the signature algorithm

Υj ← Sign(SKA, payj , δj), 1 ≤ j ≤ q.

A Flexible Instant Payment System Based on Blockchain 301

The adversary A outputs a payment signature (pay∗, δ∗, Υ ∗) and wins the
game if pay∗ /∈ {payj}, 1 ≤ j ≤ q, and

V alid = V erify(PKC , pay∗, δ∗),
V alid = V erify(PKA, pay∗, δ∗, Υ ∗).

We define AdvA(λ) to be the probability that the adversary A wins in the
above game, taken over the coin tosses made by A and the challenger C. We
say that the FIPS system satisfies payment security provided that AdvA(λ) is
negligible.

Lemma 1. The payment model, i.e., the Payment-Request, Pay, and Col-
lect procedures, is secure, provided that the digital signature algorithm satisfies
unforgeability.

Proof. Suppose that there exists a polynomial-time adversary A that can break
the payment model. We construct a simulator S to break the unforgeability of the
digital signature with a non-negligible probability with the help of the algorithm
A. The simulator S acts as the adversary for the original challenger, and as the
challenger for the payment model. The simulation is run as follows.

Setup. After receiving the public key PKC from the original challenger, the
simulator S gives to the adversary A.

Query. After receiving the payment-request signature (payj , σj), 1 ≤ j ≤ q
from the adversary A, the simulator S performs the verification algorithm
V erify, inputs the payment-request signature (payj , σj), 1 ≤ j ≤ q as well
as the corresponding public key PKA, outputs a judgment V alid/Invalid

V alid/Invalid ← V erify(PKA, payj , σj), 1 ≤ j ≤ q.

If valid, then send (payj , σj), 1 ≤ j ≤ q to the original challenger, else reject.
Challenge. After receiving the permission signatures (payj , δj), 1 ≤ j ≤ q from

the original challenger, the simulator S performs the verification algorithm
V erify, inputs the permission signatures (payj , δj), 1 ≤ j ≤ q as well as the
corresponding public key PKC , outputs a judgment V alid/Invalid

V alid/Invalid ← V erify(PKC , payj , δj), 1 ≤ j ≤ q.

If valid, then send the permission signatures (payj , δj), 1 ≤ j ≤ q to the
adversary A, else reject.

Output. The adversary A outputs a payment permission signature
(pay∗, δ∗, Υ ∗) and wins the game if pay∗ /∈ {payj}, 1 ≤ j ≤ q, and

V alid = V erify(PKC , pay∗, δ∗),
V alid = V erify(PKA, pay∗, δ∗, Υ ∗).

The simulator S also returns the pair (pay∗, δ∗, Υ ∗) as its own signature to
the original challenger.

302 L. Zhong et al.

Therefore, if the adversary A can break the payment model to achieve dou-
ble spend with a non-negligible advantage, then the simulator S can break the
unforgeability of the digital signature with non-negligible probability. However,
the digital signature defined in Sect. 4 satisfies unforgeability. Therefore, double-
spending attacks cannot be achieved in the payment model. In other words, the
Payment-Request and Pay procedures are secure. On the other hand, payees
cannot forge signatures of both the payer and depositor to steal tokens from the
payer or from the depositor. They can only verify correctly the validity of each
payment signature. Therefore, the Collect procedure is secure. This completes
the proof of Lemma 1. �

In the settlement stage, the depositor and the payee are restraint mutually
and mutually beneficial. For one thing, the payee cannot be able to forge signa-
tures of the payer and the depositor to steal tokens from the payer or from the
depositor. The depositor is restricted by the payee as the payee can use double-
spending transactions to withdraw his locked tokens. For another, the payee
needs help from the depositor to withdraw his tokens from the payment chan-
nel. But the depositor can only unlock his locked tokens, and get his transaction
fees after all payees finishing their settlements. Thus, if they do not collaborate
and win together, then all of them will suffer failure.

Furthermore, malicious collusion settlements, i.e., the settlement amount is
greater than the prepayments, and the product of prepayment times the amounts
of payees is greater than the amounts of locked tokens, will be defended against
by the underlying blockchain system.

Finally, in order to defend against the attacks that malicious payees are not
online maliciously to postpone settlements. The FIPS system permits that the
depositor can sponsor a settlement on his own if the payer has spent all, and
most of the payees have finished their settlements. But this unilateral settlement
needs some time negotiated previously before it goes into effect. Therefore, mali-
cious settlement attacks can be defended against, and only perform transactions
honestly can they reap. Therefore, the settlement procedure is secure.

To sum up, the security of the Channel-Setup and Deposit procedures can
be reduced to the security of the underlying blockchain and smart contracts. The
security of the Payment-Request, Pay, Collect, and Settlement procedures
can be reduced to the unforgeability of the digital signature. Thus, the FIPS
system is secure if (1) the underlying blockchain and smart contracts are secure,
(2) the procedures, Channel-Setup, Deposit, Payment-Request, Pay, Col-
lect, and Settlement, all are secure. This completes the proof of Theorem 1.

�

7 Analysis and Comparision

In this section, we first analyze the properties of the FIPS system, including
flexibility, security, instant payment, scalability, and efficiency. Then, we compare
it with the related schemes.

A Flexible Instant Payment System Based on Blockchain 303

– Flexibility. The prepayments locked in the off-chain channel can be paid
to one of the n payees without double-spending attacks, which improves the
flexibility of the FIPS system, as users need not have to decide in advance
whom they will pay to, and how much they will spend, before building a
channel. Besides, the payer can separate their payees into the subway, super-
market, online shopping, restaurant, hotel, and so on. The payer can lock
these common public accounts in a payment channel. When it needs to take
a transaction, the payer can pay to one of these public accounts, and then
the public account pays to the specific address specified by the payer. Thus,
completing a transaction usually requires only one-hop. Therefore, the FIPS
has a high flexibility.

– Security. We demonstrate that the security of the FIPS system can be
reduced to the security of the underlying blockchain, smart contracts, and
digital signatures. Therefore, the FIPS system has a high security.

– Instant payment. After establishing payment channels users in the FIPS
system can perform instant transactions flexibly. Besides, users need not have
to use a complicated routing algorithm to find the shortest transaction route,
as each payer has n payees such that completing a transaction usually requires
only one-hop. As the FIPS system needs only one-hop to complete a transac-
tion such that it has a faster payment speed comparing with existing off-chain
payment systems which often need multiple hops to complete a transaction.

– Scalability. The FIPS system is characterized by high scalability. Firstly,
if the depositor is a centralized trusted third party, then the FIPS system
is a centralized digital currency system. Secondly, the FIPS system can be
compatible with the channel rebalancing algorithm [30] friendly. Besides, it
is easier to find reviving cycles in the FIPS system than the other off-chain
systems, e.g., the Lightning Network and the Raiden Network. Finally, in the
Payment-Request stage, two signatures that the payer sends the payment-
request signature to the depositor, and the depositor sends permission signa-
ture to the payer, can be transmitted in an encrypted manner or in a secure
channel. Besides, it can also use homomorphic encryption schemes or Ped-
ersen commitments to hide the amounts for each transaction. Therefore, the
FIPS system can also be compatible with privacy protection systems.

– Efficiency. Most of the common receivers such as subway, supermarket,
online shopping, restaurant, hotel, and so on, can be locked in only one
transaction when building an off-chain channel, as the FIPS system can lock
n payees. Thus, it reduces the need for payment channels, and saves stor-
age resources of the blockchain. Besides, as a payer has multiple payees such
that an off-chain payment network usually only needs one-hop to complete
a transaction, which reduces the complexity of the off-chain payment net-
works. Finally, the settlement is happening off-chain, which saves resources
of the blockchain further, and has a faster settlement rate comparing with
the existing off-chain payment systems.

In Table 1, we compare the FIPS scheme with the Raiden Network. The
comparison can be classified in the following four aspects, i.e., the amount of

304 L. Zhong et al.

payees, allotment of tokens, hops, and method of settlement. In the Raiden
Network, a payer can only be able to lock only one payee in a payment channel
while in the FIPS system a payer can lock n payees in a payment channel.
Besides, before building a payment channel, the amounts of prepayments that
paid to a payee have to be preallocated in the Raiden Network. However, in
the FIPS system, the prepayments can be allocated allodially off-chain after
building a payment channel. Thus, the FIPS system is more flexible than the
Raiden Network.

Table 1. Comparison with the Raiden Network

Amount-of-payees Allotment-of-tokens Hops Settlement

Raiden One On-chain Multiple On-chain

FIPS Multiple Off-chain One Off-chain

The Raiden Network often needs multiple hops to achieve a transaction,
which is relatively complicated, low-speed, and high-cost. However, the FIPS
system only needs one-hop to complete a transaction, which is simpler, high-
speed, and low-cost. Therefore, the FIPS system is more efficient than the Raiden
Network.

Besides, in the settlement stage, the Raiden Network needs to settle on-chain
while the FIPS system can be settled off-chain, which saves the storage resources
of the blockchain, and leads to a rapid settlement. Furthermore, the FIPS system
supports single payee settlement without double-spending attacks, as the locked
token mechanism will prevent malicious behaviors of the payer and the depositor.
But, the only complicated part of the FIPS system is that it adds a new role,
i.e., the depositor, to the payment channel systems.

Finally, if we deploy the FIPS scheme on Bitcoin-like blockchain systems,
then the underlying blockchain needs to add a lock (or lock) mechanism for
depositors and payers. Therefore, it needs to make some changes in the under-
lying blockchain. However, if we deploy it on Ethereum-like blockchain systems,
then it needs not to make any change, as the lock mechanism can be implemented
in smart contracts. Besides, signatures used in the underlying blockchain sys-
tems are also suitable for the FIPS scheme, as it does not require any special
property.

8 Conclusion

We presented a FIPS scheme to improve the flexibility of off-chain payment of
blockchains. We proposed a generic construction for the FIPS system based on
the digital signature. We manifested that the FIPS system is secure provided
that the underlying blockchain, smart contract, and digital signature all are
secure. In other words, if the basic tools, i.e., the blockchain, smart contracts,

A Flexible Instant Payment System Based on Blockchain 305

and the digital signature, are secure, then the FIPS system can defend against
channel double-building attacks, token double-locking attacks, double-spending
attacks, and malicious settlement attacks. Then, we analyzed its properties, and
compared it with the related schemes. Analyses show that the FIPS system has
the properties of flexibility, high security, instant payment, scalability, and high
efficiency. Finally, comparison results demonstrate that the FIPS system is more
flexible and efficient than the Raiden Network system.

Acknowledgements. This paper is supported by the National Key R&D Program of
China through project 2017YFB0802500, by the National Cryptography Development
Fund through project MMJJ20170106, by the foundation of Science and Technology on
Information Assurance Laboratory through project 61421120305162112006, the Nat-
ural Science Foundation of China through projects 61772538, 61672083, 61532021,
61472429, 91646203 and 61402029. This paper is also partially funded by Cryptape.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system[/OL] (2008). http://
digitalasc.com/download/blockchain whitepaper.pdf

2. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

3. Pass, R., et al.: Micropayments for decentralized currencies. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pp.
207–218 (2015)

4. Trillo, M.: Stress test prepares VisaNet for the most wonderful time of the
year[/OL] (2013). https://www.visa.com/blogarchives/us/2013/10/10/stress-test-
prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html

5. Luu L., Narayanan V., Baweja K, et al.: SCP: a computationally-scalable byzantine
consensus protocol for blockchains, p. 1168 (2015)

6. Kogias, E.K., Jovanovic, P., Gailly, N., et al.: Enhancing bitcoin security and per-
formance with strong consistency via collective signing. In: 25th USENIX Security
Symposium (USENIX Security 16), pp. 279–296 (2016)

7. Eyal, I., Gencer, A.E., Sirer, E.G., et al.: Bitcoin-NG: a scalable blockchain proto-
col. In: NSDI, pp. 45–59 (2016)

8. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.
In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 91 (2017)

9. Bentov, I., Kumaresan, R., Miller, A.: Instantaneous decentralized poker. In: Tak-
agi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 410–440.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 15

10. Lind, J., Eyal, I., Kelbert, F., et al.: Teechain: scalable blockchain payments using
trusted execution environments. arXiv preprint arXiv:1707.05454 (2017)

11. Malavolta, G., Moreno-Sanchez, P., Kate, A., et al.: Concurrency and privacy with
payment-channel networks. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 455–471 (2017)

12. Roos, S., Moreno-Sanchez, P., Kate, A., et al.: Settling payments fast and pri-
vate: efficient decentralized routing for path-based transactions. arXiv preprint
arXiv:1709.05748 (2017)

13. Miller, A., Bentov, I., Kumaresan, R., et al.: Sprites: payment channels that go
faster than lightning. CoRR abs/1702.05812 (2017)

http://digitalasc.com/download/blockchain_whitepaper.pdf
http://digitalasc.com/download/blockchain_whitepaper.pdf
https://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://doi.org/10.1007/978-3-319-70697-9_15
http://arxiv.org/abs/1707.05454
http://arxiv.org/abs/1709.05748

306 L. Zhong et al.

14. Anon: Ripple protocol[/OL]. https://ripple.com/
15. Anon: Stellar protocol[/OL]. https://www.stellar.org/
16. Dandekar, P., Goel, A., Govindan, R., et al.: Liquidity in credit networks: a little

trust goes a long way. In: Proceedings of the 12th ACM Conference on Electronic
Commerce, pp. 147–156 (2011)

17. Moreno-Sanchez, P., Modi, N., Songhela, R., et al.: Mind your credit: assessing the
health of the ripple credit network. arXiv preprint arXiv:1706.02358 (2017)

18. Dandekar, P., Goel, A., Wellman, M.P., et al.: Strategic formation of credit net-
works. ACM Trans. Internet Technol. (TOIT) 15(1), 3 (2015)

19. Post, A., Shah, V., Mislove, A.: Bazaar: strengthening user reputations in online
marketplaces. In: Proceedings of NSDI 2011: 8th USENIX Symposium on Net-
worked Systems Design and Implementation, p. 183 (2011)

20. Viswanath, B., Mondal, M., Gummadi, K.P., et al.: Canal: scaling social network-
based sybil tolerance schemes. In: Proceedings of the 7th ACM European Confer-
ence on Computer Systems, pp. 309–322 (2012)

21. Moreno-Sanchez, P., Kate, A., Maffei, M., et al.: Privacy preserving payments in
credit networks. In: Network and Distributed Security Symposium (2015)

22. Moreno-Sanchez, P., Zafar, M.B., Kate, A.: Listening to whispers of ripple: linking
wallets and deanonymizing transactions in the ripple network. Proc. Priv. Enhanc-
ing Technol. 2016(4), 436–453 (2016)

23. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency monero.
In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol.
10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66399-9 25

24. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Symposium on Self-Stabilizing Systems, pp.
3–18 (2015)

25. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments[/OL] (2016). https://lightning.network/lightning-network-paper.pdf

26. Anon: Thunder network[/OL]. https://github.com/blockchain/thunder
27. Anon: Eclair implementationof the lightning network[/OL]. https://github.com/

ACINQ/eclair
28. Prihodko, P., Zhigulin, S., Sahno, M., et al.: Flare: an approach to routing in light-

ning network[/OL] (2016). https://bitfury.com/content/downloads/whitepaper
flare an approach to routing in lightning network 7 7 2016.pdf

29. Anon: Raiden network[/OL]. https://raiden.network/
30. Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In:

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 439–453 (2017)

31. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 949–966 (2018)

32. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

33. Larimer, D.: Delegated proof-of-stake (DPoS). Bitshare whitepaper (2014)

https://ripple.com/
https://www.stellar.org/
http://arxiv.org/abs/1706.02358
https://doi.org/10.1007/978-3-319-66399-9_25
https://doi.org/10.1007/978-3-319-66399-9_25
https://lightning.network/lightning-network-paper.pdf
https://github.com/blockchain/thunder
https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://raiden.network/
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3

Risk of Asynchronous Protocol Update:
Attacks to Monero Protocols

Dimaz Ankaa Wijaya1(B), Joseph K. Liu1, Ron Steinfeld1, and Dongxi Liu2

1 Monash University, Melbourne, Australia
{dimaz.wijaya,joseph.liu,ron.steinfeld}@monash.edu

2 Data61, CSIRO, Sydney, Australia
dongxi.liu@data61.csiro.au

Abstract. In a cryptocurrency system, the protocol incorporated in the
node application runs without human intervention. Cryptographic tech-
niques are implemented to determine the ownership of the coins; they
enable the owners to transfer the ownership of the coins to other users.
Consensus protocols are employed to determine the source of the truth of
the information contained in the public ledger called blockchain. When
the protocol needs to be updated, all nodes need to replace the applica-
tion with the newest release. We explore an event where an asynchronous
protocol update opens a vulnerability in Monero nodes which have not
yet updated to the newest software version. We show that a Denial of
Service attack can be launched against the nodes running the outdated
protocol, where the attack significantly reduces the system’ performance.
We also show that an attacker, given a sufficient access to cryptocurrency
services, is able to utilise the Denial of Service attack to launch a trace-
ability attack.

Keywords: Monero · Transaction pool · Traceability ·
Denial of Service

1 Introduction

One of the main ideas of applying a permissionless blockchain in cryptocurrencies
is to remove the role of a central authority to control and run the whole system
[16]. To replace the need for a central controller, a set of protocol is used an
run by software systems without any human intervention [16]. Blockchain was
first implemented in Bitcoin. The first block of Bitcoin, called genesis block,
was created on 3 January 2009. Since then, the popularity of Bitcoin and other
cryptocurrencies created after Bitcoin have increased significantly.

Monero is one of the most successful cryptocurrencies based on its market
cap, with a total value of US$720 million1. It was developed based on CryptoNote
protocol created by Nicolas van Saberhagen (pseudonym) [18]. Monero focuses
on preserving the privacy of the transaction data such that the real sender is
1 Based on Coinmarketcap.com as of 4 February 2019.

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 307–321, 2019.
https://doi.org/10.1007/978-3-030-21548-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_17

308 D. A. Wijaya et al.

indistinguishable over a set of senders (untraceability) and the transactions can-
not be linked even if they are sent to the same receiver (unlinkability) [18]. The
untraceability and unlinkability features are achieved by applying Linkable Ring
Signature [11,12,17] and one-time public key [18].

There are usually two main applications in a cryptocurrency system, namely
node application (node) and wallet application (wallet). Monero node stores
and maintains the Monero blockchain. A Monero node is connected to other
nodes through a peer-to-peer network. Monero node also stores unconfirmed
transactions in its temporary database called transaction pool (txpool) located
in the node’s RAM. Monero’s (txpool) is identical to memory pool (mempool)
in other cryptocurrencies such as Bitcoin [1]. The unconfirmed transactions are
stored in the txpool for at most three days, or (86400*3) seconds as defined
in DEFAULT TXPOOL MAX WEIGHT parameter in src/cryptonote config.h [9].

Monero wallet is the application on the client side. It is used to help the
client manage her private keys, track the Monero balance, detect incoming trans-
actions, and create outgoing transactions to spend Monero. Monero wallet is a
thin client; it does not store any information about the blockchain. Therefore,
for any operations on the Monero wallet which require blockchain information,
the Monero wallet will create a network connection to a Monero node.

Monero Classic emerged as the result of Monero hard fork in April 2018.
While the Monero main chain upgraded to Monero protocol version seven, Mon-
ero Classic runs on Monero protocol version six. On 16 October 2018, Monero
Classic announced a protocol upgrade [4]. The upgrade was intended to add more
features in Monero Classic system [4]. Furthermore, at the same time Monero
Classic increased the minimum ring size from five to eight. The change in min-
imum ring size impacted the protocol as it caused a protocol reduction [23],
but due to its circumstances, no hard fork occurred after the event. Protocol
reduction is a type of protocol change where the new protocol reduces the rules
of the old protocol. Protocol reduction is usually followed up by a hard fork if
both protocols are supported by miners with equal computing power.

In this paper, we propose attacks to the transaction pool of Monero nodes
running an old protocol after a protocol reduction event. The transaction pool
size can be inflated by launching a Denial of Service to the nodes which greatly
reduces the quality of service of the attacked nodes. We also expose that the
attack to the transaction pool might be utilised to reveal the users’ traceability
by double-spending the same coins in two different protocols.

2 Background

2.1 Monero Hard Fork

Unlike other cryptocurrencies, which always try to avoid hard fork, Monero has
a scheduled semi-annual hard forks to improve the system. Prior to 2018, there
were already five hard forks in Monero for the purpose of protocol upgrades [14].
The sixth protocol upgrade which occurred on 6 April 2018 split the Monero
blockchain into two branches; the first branch ran Monero version six (the old

Risk of Asynchronous Protocol Update: Attacks to Monero Protocols 309

protocol) and the second branch ran Monero version seven (the new protocol).
While the latter branch became the main Monero branch, the other branch
running Monero protocol version six were renamed into different names: Monero
Original2, Monero Classic3, and Monero04 [13]. Although none of these brands
is less popular compared to the Monero main branch, Monero Classic (XMC)
and Monero Original (XMO) were traded in several cryptocurrency exchanges5.
The April 2018 Monero hard fork is shown in Fig. 1.

Fig. 1. Monero hard fork in April 2018.

2.2 Monero Classic Protocol Upgrade

We define a Monero0 Protocol XM0P as the protocol which accepts transactions
with a minimum ring size r ≥ 5. The protocol XM0P is the same protocol as Mon-
ero Protocol version 6 before Monero Classic upgrade. We also define a Monero
Classic Protocol XMCP as the new protocol which only accepts transactions with
a minimum ring size r ≥ 8. The protocol XM0P allows a new block b’ from the
protocol XMCP to be included in the blockchain C, but the new protocol XMCP
does not allow a new block b from the protocol XM0P to be in the blockchain
C’ such that C ⊃ C ′ [23]. This occurs if the block b contains any transactions
where 5 ≤ r < 8. Figure 2 shows how blocks created by using XMCP protocol is
still compatible with XM0P and it shows that XMCP reduces the rules of XM0P.

Monero Classic claimed to acquire the majority of the miners, therefore the
new protocol XMCP applies to the blockchain branch running Monero protocol

2 https://monero-original.org.
3 http://monero-classic.org.
4 https://monero0.org.
5 As of 12 February 2019, no cryptocurrency exchange trades XMO. However, the

market price history provided by Coinmarketcap.com shows that XMO were traded
until 1 February 2019. Based on Coinmarketcap.com, XMC is currently available in
Gate.io, HitBTC, and TradeOgre.

https://monero-original.org
http://monero-classic.org
https://monero0.org

310 D. A. Wijaya et al.

Fig. 2. Monero protocol version 6 hard fork in October 2018.

version six. The claim was confirmed by the fact that no transaction of protocol
XM0P was included in the blocks since the protocol upgrade. Although the proto-
col upgrade was announced prior to October 2018, the Monero0 nodes running
the protocol XM0P were still operational until the end of January 20196. As the
result of the minimum ring size increase, the transactions which had a ring size
of less than eight could not be confirmed in new blocks and were kept in the
transaction pool of Monero0’s nodes.

From November 2018 until the end of January 2019, we discovered 115 trans-
actions that contain 337 inputs and 1,865 ring members that were created by
using a minimum ring size 5 ≤ r < 8 in Monero0’s temporary storage. As the
result of the incompatibility between Monero0’s protocol XM0P and Monero Clas-
sic’s protocol XMCP, these transactions were not found on Monero Classic node’s
temporary storage. Also, as there was no miner running the protocol XM0P, the
115 transactions were never included in the blocks and the blockchain hard fork
did not happen. We also discovered that identical inputs were found on different
transactions which contain different sets of mixins or decoys and a different ring
size. From this occurrence, we discovered five traceable inputs.

2.3 Denial of Service Attack in Cryptocurrency

In cryptocurrency space, Denial of Service (DoS) attack is one of the challenges
for cryptocurrencies [2]. DoS attacks target several services, such as cryptocur-
rency exchanges, mining pools, gambling services, financial services, wallet ser-
vices, etc [19]. Not only attacking services, DoS attacks can also be launched
on the cryptocurrency to disrupt the system, e.g. by creating a large number of
transactions, each contains dust coins [1,3].

A DoS attack scenario to target Monero’s txpool has been discussed in [5,6].
In the proposed scenario, the author described that transactions with the size of
360 kB could be created by modifying monero-wallet-rpc source codes [5,6].
These transactions were set to have a low priority but enough to be relayed.

6 According to Monero0.org, the Monero0 nodes are: 159.65.227.38, 167.99.96.174,
159.65.113.142. Based on our investigation, all of these nodes were no longer acces-
sible as of early February 2019.

Risk of Asynchronous Protocol Update: Attacks to Monero Protocols 311

However, due to median block size growth protocol, the author stated that the
transactions could never be confirmed in the blocks, hence, it would be on Mon-
ero node’s txpool for a maximum allowed time [5,6].

The problem was reported to Monero developers as a potential vulnerability,
where the developers then responded the problem by providing an optional set-
ting to limit the maximum txpool size7. However, when we further investigated
the matter, we could not find the related codes in the newest Monero software.
In this vulnerability report, the author did not provide further information on
how the attack was done, what modification was conducted, nor whether the
attack was successful.

3 Related Work

3.1 Cryptocurrency Protocol Change Classification

Zamyatin et al. [23] classified four types of protocol changes from the old protocol
P associated with a blockchain C to the new protocol P’ associated with a
blockchain C’. These changes are: protocol expansion, protocol reduction,
protocol confliction, and conditional protocol reduction [23]. The protocol
expansion occurs if the new protocol P’ increases the previous protocol P ’s scope
such that the set of blocks V’ of the new protocol P’ expands the set of blocks
V of the previous protocol P. On the other hand, a protocol reduction occurs
if the new protocol P’ reduces the previous protocol P ’s scope by adding more
rules. Protocol confliction occurs if the new protocol P’ is incompatible with
the previous protocol P, while the conditional protocol reduction (velvet) is a
protocol reduction on specific elements of the protocol, where no changes is
supposedly to happen in the created blocks of both protocols P and P’.

3.2 Zero Mixin Transaction and Cascade Effect Analyses

The original CryptoNote protocol [18] describes that a ring signature can only
be constructed by a set of outputs where all members of the output set contain
the same amount of coins. However, the protocol does not further explain the
method in a practical scenario such that there are many outputs that contain
unique amount of coins. These outputs could not be paired with other outputs,
and therefore the ring signature can only have one key in the set. These problems
lead to zero mixin transaction problem, where the traceability of the inputs can
be disclosed as well as the outputs that were spent in the transactions [10,15].

Cascade effect analysis expands the traceability analysis by exploiting the
zero mixin transaction. In the cascade effect analysis, the spent output informa-
tion were used to deduct the traceability of other inputs that does not have zero
mixin issue. The combination of both analyses can trace 87% of all inputs in
Monero [10]. However, this problem has been mitigated by enforcing a minimum

7 https://github.com/monero-project/monero/pull/3205.

https://github.com/monero-project/monero/pull/3205

312 D. A. Wijaya et al.

ring size r ≥ 2. This protocol change was also strengthened by the implementa-
tion of Ring Confidential Transaction (RingCT), where the amount of coins
in every output is hidden. Additionally, the ring signature creation can be made
easier, because a user can choose mixins/decoys from a larger pool of outputs.

3.3 Monero Traceability Attack

Monero Ring Attack (MRA) is a technique where an attacker create malicious
transactions [20]. The malicious transactions are constructed such that all out-
puts in the attack are proven to be spent. In this case, whenever the attacker’s
outputs are used as mixins or decoys by other transactions, then the transactions
will suffer anonymity reduction, or in a worst case scenario reveal its traceability.

This type of attack can be launched in a brute-force scenario by creating as
many transactions as possible or in a targeted attack where the attacker controls
online services such as cryptocurrency exchange or online wallets. Furthermore,
an attacker can collaborate with other attackers without the need of trust to each
other. Each attacker accumulates all malicious transactions created by other
attackers whenever they find them in the public blockchain. An extension of
this attack called Monero Ring Attack Extended (MRAE) was proposed such
that the attack cannot be easily identified by other users by involving a large
number of outputs and construct combinations of outputs [21]. An algorithm
has been developed to search the occurrence on Monero blockchain, where 5,752
transactions are traceable [22].

3.4 Key Reuse Attack in Monero

The Monero fork which occurred on 6 April 2018 has created a new attack
vector called key reuse [7]. A new traceability analysis called cross-chain anal-
ysis was developed and found that 5.22% of the transaction inputs created
between 1 April 2018 and 31 August 2018 are traceable [8]. Although the result
of the attack is insignificant compared to other attacks such as zero mixin
attack, similar events in the future can occur, whenever certain conditions are
met. The Monero developers have responded the issue by implementing Shared
Ringdb feature in the default Monero wallets, including monero-wallet-cli and
monero-wallet-rpc.

4 Threat Model

It is assumed that there exist two nodes, NodeA and NodeB , running two dif-
ferent protocols, P and P’. The protocol P’ is an upgrade from P, where the
upgrade is a protocol reduction as described in [23]. It is also assumed that
all miners have already updated their protocol from P and P’ and connect to
NodeB .

We propose the threat model as follows. An attacker owns sufficient funds
and has the ability to create valid transactions under P but invalid under P’. The

Risk of Asynchronous Protocol Update: Attacks to Monero Protocols 313

attacker launches Denial of Service attacks by creating a set of transactions T as
many as possible such that the transactions T remain in the NodeA’s txpool.
The attacker has access to two wallets: WalletA and WalletB . WalletA is con-
nected to NodeA and WalletB is connected to NodeB . The attack is successful
if the resource usage of NodeA increases significantly compared to the NodeB
as the control.

It is also assumed that the attacker has a control over a cryptocurrency-
related service such as a coin exchange. In this scenario, the attacker creates
a set of transactions T ′ from the same coins that have been spent in T to be
double-spent in T ′. The purpose of this activity is to let any observers to conduct
traceability analysis as described in [8] by comparing two sets of transactions T
and T ′.

5 Attacks to Monero Protocols

5.1 Overview

The attacks were developed based on the problem discovered in Sect. 2.2. In the
attacks, the scale of the event is increased to creates a bigger damage to the
node as well as to the anonymity of the transactions.

The attacks exploit the late update conducted by node maintainers when
there is a change in the protocol where the software run by every node needs to
be updated to the latest version. If the change is a protocol reduction, the old
version of the protocol accepts new transactions. However, the new version of
the protocol will not be able to confirm transactions that follow the old protocol.
As the result, an old node keeps these incompatible transactions in the txpool
for at least three days.

An attacker floods the txpool with incompatible transactions which will cre-
ate a denial of service (DoS) to the nodes running the old protocol. The massive
number of transaction creation and the large transaction storage requirement
will reduce the performance of the nodes. Knowing that the transactions will
not be confirmed in the blockchain, there will be no transaction fee to be paid
by the attacker. However, the attacker needs to have sufficient funds in as many
public keys as possible.

5.2 Attack Phases

The attack consists of three phases: preparation phase, Denial of Service (DoS)
Attack phase, and traceability reveal attack phase. The last two phases can be
done either separately or subsequently.

Preparation Phase. In the preparation phase, the attacker first prepares
enough funds. Then, the funds will be sent to as many public keys (outputs)
as possible by creating transactions to send the funds to the attacker’s own
address. The transactions need to be compatible with the new protocol; it will
also be confirmed by the nodes running the old protocol.

314 D. A. Wijaya et al.

Denial of Service Attack (DoS) Phase. In the attack phase, the attacker
launches the attack against the old nodes. The attacker creates as many trans-
actions as possible, where these transactions cannot be confirmed by the new
protocol because it follows the old protocol which is not compatible with the
new protocol. The transactions are likely to be discarded by the new nodes, but
stored by the old nodes in the txpool. When the number of transactions is large,
the txpool size will expand significantly and affect the system.

Traceability Reveal Attack Phase. If the attacker has a control over a
cryptocurrency service, the attacker is able to create transactions to spend the
same coins used in the DoS phase. Assuming that the transactions are created
according to the business’ best interest, the attacker would not need to worry
about losing money for the transaction fees, as the fees will be paid by the
customers.

5.3 Simulation

We simulated the protocol reduction event as described in Sect. 2.2 in a pri-
vate testnet environment. The purpose of the simulation was to increase the
scalability of the event such that the impact of a large scale event can be anal-
ysed. Instead of using Monero Classic and Monero0 nodes, we modified Monero
“Beryllium Bullet” software8. The latest upgrade of Monero requires a manda-
tory bulletproofs feature for every transaction to be validated in the node to
reduce the transaction size significantly. We also ran Monero blockchain explor-
ers called Onion Monero blockchain explorer (xmrblocks)9 to simplify the
data extraction process from the nodes. The blockchain explorers were also used
to monitor the size of the txpools of the nodes. The xmrblocks would only be
run during data extraction process at the end of the simulation to reduce the
extra workload that might affect the result.

Our simulations were executed on a Ubuntu 18.04.1 LTS virtual machine
with 8 GB RAM and two processor cores. The virtual machine was hosted on
a physical server equipped with two Intel R© Xeon(R) CPU X5570@2.93GHz
and 72 GB RAM. The virtual machine ran two monerod as the Monero nodes
and two xmrblocks applications, each connected to a different node. A default
RPC-based wallet, monero-wallet-rpc, was also used; it was connected to
the target node. We wrote a Python script to automate the transaction cre-
ation with the help of Shoupn’s moneropy library10 to connect the script to
monero-wallet-rpc.

Simulation Scenario. Two nodes, denoted as NodeA and NodeB , were used
to construct the Monero network where both nodes were synchronised with a
8 The open source software is available in Monero’s Github page https://github.com/

monero-project/monero.
9 https://github.com/moneroexamples/onion-monero-blockchain-explorer.

10 https://github.com/shoupn/moneropy.

https://github.com/monero-project/monero
https://github.com/monero-project/monero
https://github.com/moneroexamples/onion-monero-blockchain-explorer
https://github.com/shoupn/moneropy

Risk of Asynchronous Protocol Update: Attacks to Monero Protocols 315

blockchain C. NodeA’s source code was modified such that the node could vali-
date any transactions with a ring size r ≥ 7, while NodeB ’s protocol mimicked
the latest Monero transaction requirement with the ring size r = 11. These two
nodes imitated a situation of a protocol reduction from protocol PA to pro-
tocol PB , where the new protocol requires a higher ring size such that rA < rB

However, it is assumed that all miners have updated their software to follow
the new protocol PB . In this scenario, protocol PA does not have enough mining
power to compete with the new protocol PB in creating blocks, however the node
NodeA still follows protocol PA while the node NodeB has updated to protocol
PB.

Simulation 1. The first simulation evaluated a key reuse attack which can
potentially happen in the given scenario. Although a key reuse attack normally
happens in two or more different blockchains, the given scenario can also cre-
ate two “temporary” blockchains, where the txpools of the nodes pose as the
temporary blockchains.

We created 9,353 transactions T1 with the ring size r = 8, each contains 10
or 11 outputs (transactions who have 11 outputs contain one change address to
send the change money back to the sender). There were a total of 18,688 inputs
in transactions T1 and the total size is 34.2 MB. The transaction fee required
to create all transactions T1 is 80.46XMR where the average transaction fee is
0.0086 per transaction. As a result, the transactions would be validated only
by the NodeA but not NodeB . The transactions T1 were stored in NodeA’s
txpool. However, none of the transactions T1 were found in NodeB ’s txpool.
Figure 3 shows the linear relationship between txpool size and the number of
transactions. Also, a similar linear relationship is found between transaction fee
and the number of transactions.

A new set of transactions T2 were created by using the protocol PB from the
same pool of coins. In this case, there is a possibility of sending the same coins in
two different transactions t1 and t2 where t1 ∈ T1 and t2 ∈ T2 and T1 �= T2, since
none of the transactions in T1 were confirmed in the blockchain. Transactions
T2 were accepted and confirmed by NodeB as the miner and then NodeA had
the same information after synchronising with NodeB .

Simulation 2. In the second simulation, we flooded the NodeA with trans-
actions. We utilised a monero-wallet-rpc which was connected to NodeA to
programmatically created Monero transactions using a single thread. We ran the
script simultaneously. We then evaluated the performance of NodeA. When the
data was evaluated, there were 64,633 transactions in NodeA’s txpool.

6 Discussion

6.1 Shared Ringdb

During our first trial of Simulation 1, we were unable to recreate key reuse
attack. All transactions T2 which spent the same coins as T1 were using the same

316 D. A. Wijaya et al.

Fig. 3. Figure (A) shows the accumulated transaction size stored in txpool. Figure
(B) shows the transaction fee paid by the attacker to create the transactions.

ring members as t1 in addition to other outputs to satisfy the minimum ring size
of the protocol P2. We evaluated the occurrence and discovered that the newest
version of Monero default desktop wallet took a preventive action by creating
an additional database called Shared Ringdb located in ∼/.shared-ringdb
folder. The wallet can detect the difference between two systems based on the
protocols, where a transaction that tries to spend the coin that has been spent on
another blockchain needs to maintain the anonymity set by using the identical
ring members.

This result shows the effectiveness of Shared Ringdb for general users who
run the Monero default desktop wallet and deserve a better anonymity in their
cross-chain transactions. However, the feature might not be implemented on
other wallets such as web wallet or smartphone wallet. An attacker can also
simply remove the database since it is stored in the attacker’s local storage.

6.2 Traceability Analysis

An input in Monero is traceable if an observer manages to guess the real spent
output over a set of outputs in that input with the probability of one. Based
on the specification given by the Linkable Ring Signature [12], each private
key which can be used to create a ring signature is tagged with a unique value
called key image. If a key image appears in two or more ring signatures, then it
means that the same private key has been used to sign these signatures, and the
associated public key must be a ring member of both ring signatures. Therefore,
the public key has become traceable. This type of analysis has been discussed
by Hinteregger et al. [8].

After the Simulation 1 was completed, a traceability analysis was done by
using the following algorithm.

1. For each input in NodeA’s txpool:
(a) Identify the key image value.
(b) Find the key image in the blockchain.

Risk of Asynchronous Protocol Update: Attacks to Monero Protocols 317

(c) If the key image is found in the blockchain, proceed to the next step.
Otherwise, continue to the next input.

(d) Examine the related sets of outputs. If at most one identical output is
found on multiple sets of outputs, then the input is traceable.

(e) Otherwise, the input is not traceable. However, the effective ring size (the
term coined in [8]) is reduced to exactly the number of outputs found on
both sets.

2. The result is the traceable inputs identified by the algorithm.

By using the above algorithm, we then evaluated the 9,353 transactions we
created and managed to identify 95% of the transactions’ inputs. The other 5%
of the inputs suffer reduced effective ring size to a minimum of two. This shows
the effectiveness of the method in revealing Monero transaction’s traceability.

6.3 Denial of Service Analysis

We define a Quality of Service (QoS) of the cryptocurrency system (the node
and the wallet) as the number of new transactions created by the wallet and
received by the node. The QoS was measured to determine the impact of DoS
attacks. We also measured the resource usage (CPU and RAM) of both NodeA
and NodeB .

NodeA ’s Quality of Service Monitoring. Figure 4 shows the QoS of NodeA,
measured by number of new transactions per hour. It shows that after the txpool
of NodeA exceeds 7,800 transactions, the QoS sharply declines from the peak,
3,000 transactions per hour (tph), to below 500 tph when there are at least
53,000 transactions in the node’s txpool and the total size of these transactions
is 190 MB. These 53,000 transactions requires 375.6XMR as the transaction fees.
However, as these transactions will not be confirmed in the blockchain, the cost
does not really incur.

Resource Usage Monitoring. We also ran a simple script to capture infor-
mation from Ubuntu’s top command every 60 s. Figure 6 shows the comparison
of CPU usage (measured in percentage of usage compared to the system’s CPU)
between NodeA and NodeB , where NodeA was a target to the DoS attack and
NodeB was not. In this scenario, none of these nodes was mining new blocks.
The result demonstrates an insignificant difference between both nodes in terms
of CPU usage (Fig. 6).

Figure 7 shows the comparison of RAM usage between two nodes, where
NodeA’s RAM utilisation was four times more than NodeB ’s RAM utilisation.
The highest RAM size used by NodeA was near to 9% of the system’s RAM, or
roughly about 720 MB.

7 Limitation

In our experiment, we used one virtual machine to run multiple applications, such
as node applications, wallets, blockchain explorers, and the monitoring script.

318 D. A. Wijaya et al.

Fig. 4. The Quality of Service of NodeA during the DoS attack.

Fig. 5. The txpool size increase of NodeA during the DoS attack.

This could have impacted the performance of the evaluated node. The results
might differ if these applications are run on separate machines. Our experiments
did not utilise the Monero version 6 source code (Monero Classic or Monero0), as
we preferred to use the latest Monero applications. This may or may not impact
the result, since the transaction size would be different compared to our result,
including the fee structure.

Risk of Asynchronous Protocol Update: Attacks to Monero Protocols 319

Fig. 6. The CPU usage comparison between NodeA and NodeB .

Fig. 7. The RAM usage comparison between NodeA and NodeB .

320 D. A. Wijaya et al.

8 Conclusion and Future Work

We present attacks to txpool of nodes running an outdated protocol P when
almost all participants in the system have updated to a new protocol P’, where
the protocol P’ reduces the scope of protocol P. Through simulations, we show
that this event can be exploited by an attacker to launch a Denial of Ser-
vice (DoS) attack to the nodes running protocol P. The DoS attack reduces
the Quality of Service (QoS) of the target node, where the number of new
transactions served by the target node is significantly reduced when the txpool
increases.

The attack can be further expanded to reveal users’ traceability if the attacker
controls a cryptocurrency service such as coin exchanger. It is done by double-
spending the coins, where two sets of transactions are created; each set is sent
to different nodes running the protocol P and P’.

For future work, we plan to investigate the other types of protocol changes
and how they impact nodes that do not update their systems to the latest ver-
sions. By identifying problems, we expect to formulate a better protocol update
mechanism to protect the nodes running on old protocols.

References

1. Baqer, K., Huang, D.Y., McCoy, D., Weaver, N.: Stressing out: bitcoin “stress
testing”. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M.,
Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 3–18. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53357-4 1

2. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: Sok:
research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy, pp. 104–121. IEEE (2015)

3. Bradbury, D.: The problem with bitcoin. Comput. Fraud Secur. 11, 5–8 (2013)
4. Monero Classic. Upgrade announcement of xmc (2018). http://monero-classic.org/

open/notice en.html
5. cmaves. 0-conf possible attack using large transactions (2018). https://github.com/

amiuhle/kasisto/issues/33
6. cmaves. Possible mempool spam attack (2018). https://github.com/monero-

project/monero/issues/3189
7. dEBRYUNE. Pow change and key reuse (2018). https://ww.getmonero.org/2018/

02/11/PoW-change-and-key-reuse.html
8. Hinteregger, A., Haslhofer, B.: An empirical analysis of monero cross-chain trace-

ability (2018). arXiv preprint arXiv:1812.02808
9. jtgrassie. Why are there transactions in the mempool that are invalid or over 50

hours old? (2018). https://monero.stackexchange.com/a/8513
10. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s

blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017.
LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66399-9 9

11. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with uncondi-
tional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2014)

https://doi.org/10.1007/978-3-662-53357-4_1
http://monero-classic.org/open/notice_en.html
http://monero-classic.org/open/notice_en.html
https://github.com/amiuhle/kasisto/issues/33
https://github.com/amiuhle/kasisto/issues/33
https://github.com/monero-project/monero/issues/3189
https://github.com/monero-project/monero/issues/3189
https://ww.getmonero.org/2018/02/11/PoW-change-and-key-reuse.html
https://ww.getmonero.org/2018/02/11/PoW-change-and-key-reuse.html
http://arxiv.org/abs/1812.02808
https://monero.stackexchange.com/a/8513
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-319-66399-9_9

Risk of Asynchronous Protocol Update: Attacks to Monero Protocols 321

12. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

13. Monero. Monero XMR forks & hard forks. https://monero.org/forks/. Accessed 4
February 2019

14. Monero. Monero project github page (2018). https://github.com/monero-project/
monero. Accessed 4 February 2019

15. Möser, M., et al.: An empirical analysis of traceability in the monero blockchain.
Proc. Priv. Enhancing Technol. 2018(3), 143–163 (2018)

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

17. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency monero.
In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol.
10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66399-9 25

18. Nicolas van Saberhagen. Cryptonote v 2.0 (2013) (2018). https://cryptonote.org/
whitepaper.pdf

19. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44774-1 5

20. Wijaya, D.A., Liu, J., Steinfeld, R., Liu, D.: Monero ring attack: recreating zero
mixin transaction effect. In: 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/12th IEEE Interna-
tional Conference On Big Data Science And Engineering (TrustCom/BigDataSE),
pp. 1196–1201. IEEE (2018)

21. Wijaya, D.A., Liu, J., Steinfeld, R., Liu, D., Yuen, T.H.: Anonymity reduction
attacks to monero. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS,
vol. 11449, pp. 86–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
14234-6 5

22. Yu, Z., Au, M.H., Yu, J., Yang, R., Xu, Q., Lau, W.F.: New empirical traceability
analysis of cryptonote-style blockchains (2019)

23. Zamyatin, A., Stifter, N., Judmayer, A., Schindler, P., Weippl, E., Knottenbelt,
W.J.: A wild velvet fork appears! inclusive blockchain protocol changes in practice.
In: Zohar, A., Eyal, I., Teague, V., Clark, J., Bracciali, A., Pintore, F., Sala, M.
(eds.) FC 2018. LNCS, vol. 10958, pp. 31–42. Springer, Heidelberg (2019). https://
doi.org/10.1007/978-3-662-58820-8 3

https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://monero.org/forks/
https://github.com/monero-project/monero
https://github.com/monero-project/monero
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-66399-9_25
https://doi.org/10.1007/978-3-319-66399-9_25
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://doi.org/10.1007/978-3-662-44774-1_5
https://doi.org/10.1007/978-3-662-44774-1_5
https://doi.org/10.1007/978-3-030-14234-6_5
https://doi.org/10.1007/978-3-030-14234-6_5
https://doi.org/10.1007/978-3-662-58820-8_3
https://doi.org/10.1007/978-3-662-58820-8_3

A Combined Micro-block Chain
Truncation Attack on Bitcoin-NG

Ziyu Wang1,2, Jianwei Liu1, Zongyang Zhang1(B), Yanting Zhang1,2,
Jiayuan Yin1, Hui Yu1, and Wenmao Liu3

1 School of Cyber Science and Technology, Beihang University, Beijing, China
{wangziyu,liujianwei,zongyangzhang,

yantingzhang,yinjiayuan,yhsteven}@buaa.edu.cn
2 Shenyuan Honors College, Beihang University, Beijing, China

3 NSFOCUS Inc., Beijing, China
liuwenmao@nsfocus.com

Abstract. Bitcoin-NG, introduced by Eyal et al. in NSDI 2016, divides
a blockchain into key-blocks and micro-blocks to improve transaction
process efficiency. In this paper, we propose a novel attack on Bitcoin-
NG, called a micro-block chain truncation attack. Combined with key-
block selfish and stubborn mining, and an eclipse attack, this attack
is able to bring extra reward to attackers in Bitcoin-NG than in Bit-
coin through a colluded strategy or a “destroyed if no stake” strat-
egy. Our evaluation calculates the reward proportion of an attacker by
these attacks on both Bitcoin-NG and Bitcoin, which helps us figure
out whether Bitcoin-NG sacrifices security for efficiency promotion. We
also evaluate 18 strategy combinations by traversing different values of
computation power and practical truncation rate. In a setting with rea-
sonable parameters, the optimal combined micro-block chain truncation
attack obtains at most 5.28% more reward proportion in Bitcoin-NG
than in Bitcoin.

Keywords: Blockchain security · Bitcoin-NG · Micro-block chain

1 Introduction

Since Bitcoin (BTC) is invented in 2008 [8], Bitcoin and other altcoins have been
faced with many research challenges and open questions.

Security. There are continuous concerns about various attacks on Bitcoin system
since its invention. These attacks are not only theoretically analyzed by academic
researchers, but also further launched in practice. Bitcoin could resist no more
than one half of computation power controlled by attackers as Nakamoto origi-
nally analyzed [8]. However, Eyal and Sirer reduce this security threshold to 0.25
by selfish mining (SM) [3]. This is a deviant strategy that an attacker tries to
spend more honest power on an abandoned block. The following work [9] ampli-
fies the reward of a selfish miner by advanced selfish mining strategies, which
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 322–339, 2019.
https://doi.org/10.1007/978-3-030-21548-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_18

A Combined Micro-block Chain Truncation Attack on Bitcoin-NG 323

is named as stubborn mining (SBM). An attacker controlling part of network
connections could eclipse a Bitcoin node. All information passing this node is
blocked by this kind of attack, which is referred to as an eclipse attack (ECA) [4].
The selfish and stubborn mining strategies are combined with an eclipse attack
in [9] by three eclipse strategies, i.e., destroyed strategy, colluded strategy and
“destroyed if no stake” strategy.

Efficiency. Efficiency is another hot topic in Blockchain research. Bitcoin solves
the Byzantine general problem by publishing all transaction details in blockchain.
It encourages all nodes to recognize the longest chain as the valid chain. The
Nakamoto consensus, also named as the proof of work (PoW) mechanism,
depends on brute force searching for a preimage to avoid Sybil attacks. It has
a relatively good scalability supporting ten thousands of nodes [10]. However,
its efficiency is quite limited measured by the number of transaction per second
(TPS). Bitcoin only provides at most 7 TPS in current parameters [1] (before
activating Segwit). Bitcoin efficiency is less competitive compared to a central-
ized system, e.g., 256,000 TPS peak capacity of Alipay1.

On-chain, off-chain and hybrid consensus are three main methods to improve
blockchain efficiency. On-chain proposals usually directly increase the size lim-
itation of each block, or reduce block interval to achieve higher throughput.
However, a bigger block has longer propagation time. The more compact the
block interval is, the more disagreements the system would have. These two con-
sequences increase the risk of natural chain forking. Therefore, on-chain improve-
ments are tradeoffs for security. Off-chain proposals mainly build another high
speed clearing layer on top of an existing cryptocurrency, while a basic blockchain
only focuses on settlement. Hybrid consensus mechanisms try to combine PoW
with a classical Byzantine Fault Tolerance protocol or with proof of stake (PoS)
to achieve the best of both worlds at the same time. Other proposals for an
efficient blockchain refer to a multi-committees design [5,7].

Bitcoin-NG [2] (BNG), raised by Eyal et al. in NSDI 2016, has an overlap
between a hybrid consensus mechanism and an on-chain proposal. On one hand,
it decouples transactions serialization and leader election. It seems that Bitcoin-
NG deploys a consensus committee policy. Every miner tries to become a valid
creator of a key-block by PoW. The winner could be seen as the only one miner
(leader) in an elected committee. On the other hand, Bitcoin-NG allows a valid
leader to rapidly generate and sign micro-blocks in each epoch. This high-speed
micro-block generation design is similar to an on-chain blockchain improvement.

The incentive mechanism of Bitcoin-NG encourages both a current miner to
release signed micro-blocks as many as possible, and the next lucky leader to
admit more valid micro-blocks created by the last leader. It aims to resist micro-
block selfish mining. Bitcoin-NG [2] is claimed to be able to remit the impossible
trinity of decentralization, security and efficiency. To the best of our knowledge,
Bitcoin-NG is an improved cryptocurrency achieving the largest TPS only based
on a single PoW consensus mechanism or Bitcoin parameter reconfiguration.

1 https://www.techinasia.com/china-singles-day-2017-record-spending.

https://www.techinasia.com/china-singles-day-2017-record-spending

324 Z. Wang et al.

However, it is still unclear whether or how much Bitcoin-NG trades security
for its efficiency promotion. The micro-block chain design is the most significant
difference between Bitcoin and Bitcoin-NG. Its incentive mechanism indeed dis-
courages micro-block selfish mining. However, the original paper [2] only dis-
cusses how to set the transaction fee distribution ratio as its secure analysis. For
one thing, the analysis of the ratio ignores some details. This ratio is refined by
Yin et al. [11]. For another thing, Bitcoin-NG partly follows Bitcoin and makes
an innovation that adjusting an original blockchain into a key-block and micro-
block mixed chain. Most of Bitcoin attacks could also be mounted on Bitcoin-NG.
There is limited literature exhibiting whether micro-block chain manipulation
affects the reward of an attacker, which is the main motivation of our work. In
addition, we believe that a secure PoW-based blockchain is the basis of design-
ing a secure and efficient hybrid consensus mechanism or a multi-committee in
a cryptocurrency.

1.1 Our Contributions

We propose a quantitative analysis about Bitcoin-NG micro-block chain manipu-
lation, which is named as a micro-block chain truncation (CT) attack. This novel
attack is launched by a dishonest leader in a Bitcoin-NG epoch. We combine
this attack with key-block selfish and stubborn mining, and an eclipse attack, in
order to evaluate the security sacrifices of Bitcoin-NG compared with Bitcoin.
Our main contributions are as follows.

1. We show that an attacker could earn more by launching a micro-block chain
truncation attack with key-block selfish mining and an eclipse attack in a col-
luded strategy in Bitcoin-NG than the similar attack in Bitcoin. An attacker
steals part of a colluded miner’s reward by refusing some micro-blocks prop-
agation. For a 0.1 truncation rate combined attack, it achieves 22.25% more
reward proportion than she deserves in typical parameters. This attack also
offers 2.87% extra reward proportion to a Bitcoin-NG attacker than the one
in Bitcoin in the same setting. If an attacker truncates all micro-block chains
between an eclipse victim and honest nodes, the increased reward proportion
compared with Bitcoin is 38.62% at the same power distribution.

2. This combined attack also works in a “destroyed if no stake” strategy on
Bitcoin-NG. For the same computation power distribution, a 0.9 truncation
rate micro-block chain truncation attack in this strategy gives an attacker
18.05% extra reward proportion than honest mining by combining Lead stub-
born mining and an eclipse attack. This advantage in Bitcoin-NG is 3.85%
more than the one in Bitcoin.

3. To thoroughly evaluate the effect of these combined attacks, we traverse all
combinations of the eight selfish and stubborn mining strategies and two
eclipse attack strategies. Plus honest mining and a single eclipse attack, we
find out the optimal combination in different values of all parties’ computation
power among these 18 combinations. To make a fair and clear comparison,
practical truncation rate is introduced to calculate the total truncated trans-
actions amount from a global view. In a practical truncation rate of 0.001,

A Combined Micro-block Chain Truncation Attack on Bitcoin-NG 325

a combined micro-block chain truncation attack in Bitcoin-NG adds at most
5.28% more reward proportion than the one in Bitcoin.

1.2 Related Work

The concept of insufficient majority is introduced by Eyal and Sirer [3]. A miner
in a Bitcoin mining game is rational and selfish, which degrades the tolerated
dishonest power threshold from 0.5 to 0.25 (0.33 in the best assumption). Nayak
et al. [9] give a selfish miner more advantage in a computation power competition.
It extends the previous selfish mining strategy to seven advanced strategies,
which is concluded as stubborn mining.

For the basic Peer-to-Peer (P2P) network layer of a cryptocurrency, Croman
et al. [1] measure the best performance by re-parameterizing block size and block
interval. They emphasize that the original Bitcoin PoW-based blockchain has
a natural weakness and blockchain redesigning may be unavoidable. Heilman
et al. [4] provide an attacker with more chances to block or eclipse a Bitcoin
node. By controlling the information propagation, this attack not only leads to
dishonest income but also assists a double spending attack or selfish mining.
Nayak et al. [9] also evaluate the reward of an attacker by combining selfish and
stubborn mining with an abstract eclipse attack in Bitcoin.

Besides Bitcoin-NG [2], there are other blockchain efficiency improvements
like ByzCoin [5], Omniledger [6] and Elastico [7]. The incentive mechanism of
Bitcoin-NG is revisited by Yin et al. [11]. Byzcoin, Omniledger and Elastico all
keep a PoW-based leader election setting, while Byzcoin [5] replaces the directly
leader signature design with a special collective signature scheme. Concurrent
transaction processing or multiple committee researches [6,7] are another kind
of altcoins trying to parallel Bitcoin-NG or Byzcoin. It is noteworthy that the
one-committee performance decides the limitation of a multi-committee scheme.

Organization. The following part of our work is structured as follows. In Sect. 2,
we introduce some related backgrounds of Bitcoin and Bitcoin-NG. Section 3
proposes our attack model and some assumptions. We begin our formal evalu-
ation in Sect. 4 for a colluded strategy and a “destroyed if no stake” strategy.
The compared analysis is described in Sect. 5. We discuss our finding in Sect. 6
and conclude in Sect. 7.

2 Preliminaries

2.1 Notations

We first introduce some basic notations of the following analysis. Some of them
are borrowed from the classical Bitcoin researches [3,9]. A dishonest miner Alice
controls α proportion computation power. The mining power proportion of two
parts of honest miners, named as Bob and Carol, are β and λ respectively. The
total power proportion is α + β + λ = 1. The proportion income of these three

326 Z. Wang et al.

parties are denoted as RAlice, RBob and RCarol, and RAlice + RBob + RCarol = 1. If
someone behaves honestly, the reward proportion of a miner equals to her power
proportion. We use rAlice, rBob and rCarol to denote their absolute rewards.

Notations RAlice,BNG and RAlice,BTC denote the reward proportion of a Bitcoin-
NG or Bitcoin attacker. The increased reward proportion compared with honest
mining δH is δH = RAlice,BNG−α

α . Similarly, δBTC is a notation counting the increased
reward proportion between Bitcoin-NG and Bitcoin as δBTC = RAlice,BNG−RAlice,BTC

RAlice,BTC
.

To avoid confusion, we only express the increased reward proportion (δH , δBTC)
in percentage, and all other variables are in decimals.

In Bitcoin-NG, a key-block leader is able to sign several micro-blocks in one
epoch. We count the number of micro-blocks in an epoch by n, and define k
as the rate of truncated micro-blocks. k = 0 keeps an integrated micro-block
chain, which makes the information propagation similar to Bitcoin. k > 0 is
for various levels of a micro-block CT attack on Bitcoin-NG. We distinguish kC

and kD for a colluded strategy combined attack and a “destroyed if no stake”
strategy respectively. There are three cases where a combined micro-block chain
truncation attack works in a“destroyed if no stake” strategy. We count the total
times of these three cases by T3cs. Additionally, practical truncation rate kP is
also introduced to globally measure the total amount of truncated transactions.

Bitcoin-NG divides one epoch reward to a current leader and the next one
by proportion r and 1 − r respectively. We accept the revisited value r = 3

11
from [11] in our calculations. An attacker could propagate her key-blocks faster
than honest nodes. We follow [3] to describe the proportion of honest miners
mining on a dishonest chain by γ. Note that this proportion does not includes
an eclipsed victim. Main notations are concluded in Table 1.

2.2 Bitcoin and Bitcoin-NG Structure

Bitcoin. Bitcoin transactions are propagated by a gossip protocol. Miners collect
transactions and validate them. They package several transactions and keep
trying random nonces to search a preimage satisfying the system difficulty. When
a lucky miner finds out a right answer, she propagates the valid block to other
miners for agreement and she would be paid for minted reward and transaction
fee. Every block has a number named blockheight to represent its order in history.
If honest miners receive a new block having a larger blockheight, they would
change their views to this new block; otherwise, they reject the new block.

Bitcoin-NG. Compared with Bitcoin, a miner in Bitcoin-NG [2] also follows a
PoW-based hash preimage exhaustive searching method to compete for a key-
block creator. In each round, a winner in a competition is responsible for a
current epoch. Every client still floods transactions through a P2P network. A
leader collects several transactions and packages them as a micro-block. After
signing by her private key, a leader spreads her micro-blocks and repeats this
process until another lucky miner becomes the next leader mining on top of the
latest micro-block. The small size and high frequency of micro-blocks account

A Combined Micro-block Chain Truncation Attack on Bitcoin-NG 327

Table 1. Table of notations

Symbol Description

α, β, λ Power proportion of an attacker, honest nodes or a victim

RAlice, RBob, RCarol

rAlice, rBob, rCarol

Reward proportion or absolute reward of an attacker, honest
nodes or a victim

RAlice,BNG, RAlice,BTC Reward proportion of an attacker in Bitcoin-NG or Bitcoin

δH =
RAlice,BNG−α

α
Increased reward proportion compared with honest mining

δBTC =
RAlice,BNG−RAlice,BTC

RAlice,BTC

Increased reward proportion compared with a similar attack
in Bitcoin

n Number of micro-blocks in a mining epoch

k (kC , kD) Truncation rate of a combined micro-block chain truncation
attack in a colluded strategy or a “destroyed if no stake”
strategy

kP Practical truncation rate from a global view

T3cs Total times of three cases where a combined micro-block CT
attack in a “destroyed if no stake” strategy works

γ Proportion of honest miners mining on a dishonest chain

r = 3/11 Transaction fee distribution ratio to a current leader

for an efficiency improvement in Bitcoin-NG. In order to prevent a leader from
withholding micro-blocks and encourage other miners to mine on top of the
longest micro-block chain, Eyal et al. [2] distribute transaction fees of an epoch
into two parts for a current leader and the next one. The distributed ratio is
originally set as r = 0.4 by the security analysis of [2], and is revisited to r = 3

11
by [11]. Note that Bitcoin-NG only includes transaction fee as miner incentive
without minted reward in the original security analysis [2].

2.3 Selfish/Stubborn Mining and Eclipse Attack

Solo miners reduce their revenue volatility if they aggregate in a pool style.
However, pool miners may deviate from the Bitcoin protocol to earn more dis-
honest mining reward. This dishonest mining strategy is analyzed in the Eyal
and Sirer’s work [3], which is named as selfish mining (SM). In general, a selfish
miner mainly violates the longest-chain rule and secretly maintains a private fork
chain. This strategy includes when and how to release a secret block as shown
in Fig. 1(a).

A following work [9] extends this strategy after considering more compli-
cated conditions. In the equal Fork stubborn (F-s) mining strategy, if an attacker
successfully mines a valid block in a competition with honest nodes, she with-
holds it without declaration by hiding this block as in Fig. 1(b). The Trail stub-
born (T-s) mining strategy helps a dishonest miner refuse to capitulate and
accept the honest chain too earlier as in Fig. 1(c). If an attacker deploys the

328 Z. Wang et al.

Lead stubborn (L-s) mining strategy (Fig. 1(d)), she would always reveal only
one block if she is in a leading position. For example, if an attacker’s private
chain is two-blocks longer than a public chain, she only reveals one block when
honest nodes find out a block instead of revealing all blocks to cover the honest
chain. It makes the system enter a competition more often. These three basic
strategies and four hybrid ones (FT-s, LF-s, LT-s, LFT-s) based on them are
generalized as stubborn mining by the previous work [9].

(a) Selfish mining (b) Equal fork stubborn mining

(c) Trail stubborn mining (d) Lead stubborn mining

Fig. 1. Selfish and stubborn mining strategies [3,9]. α: attacker power proportion. β:
honest power proportion. γ: proportion of honest nodes mining on an attacking chain.

An attacker who has a powerful network strength is also able to increase her
dishonest reward. Typical techniques include manipulating the incoming and
outgoing information of a mining node. This method is named as an eclipse
attack [4], which isolates a node from the public network and all information in
the view of a victim is filtered by an eclipse attacker. The abstract eclipse attack
modeled in [9] only depicts the strength of an eclipse attacker by the power
proportion of a victim λ, while omits elaborate techniques from [4]. We review
the three eclipse strategies from [9]. The reward proportion of an attacker who
deploys a selfish or stubborn mining strategy is denoted as SelfReward(x) for the
power proportion of an attacker x.

– Destroyed (Dol.) strategy: Equipped with this policy, an eclipse attacker
would not propagate any blocks between honest nodes and a victim. The
reward proportion is SelfReward(α

α+β).
– Colluded (Col.) strategy: The practical power proportion of a colluded

mining group is α+β, which belongs to an attacker and a victim. Hence, the

A Combined Micro-block Chain Truncation Attack on Bitcoin-NG 329

attacker’s reward proportion is her share of the total reward of this colluded
group as rAlice

rAlice+rCarol
SMReward(α + λ) = α

α+λSelfReward(α + λ).
– Destroyed if No Stake (DNS) strategy: This strategy is a probabilis-

tic combination of a destroyed strategy and a colluded one [9]. An attacker
only propagates a victim block if this block is included by a colluded chain.
However, the attacker’s reward is relatively complex, which might not be able
to generalized by an equation. The previous work [9] designs four zones for
different DNS view situations as follows.

• Zone 1: An attacker, an eclipse victim and honest nodes mine on top of
the same blockchain.

• Zone 2: An eclipse victim mines on top of an individual chain while others
mine on another chain, which is similar to a destroyed strategy eclipse
attack.

• Zone 3: An attacker shares her view with an eclipse victim while others
mine on another chain, which is similar to a colluded strategy eclipse
attack.

• Zone 4: The three parties mine on top of three individual chains.

3 Attack Model and Assumption

We introduce our model and assumptions for a micro-block chain truncation
attack on Bitcoin-NG in this section.

3.1 Attack Model

The model of a micro-block CT attack partly follows the one in [9]. An attacker
has the ability to block the information propagation of part of honest nodes.
These eclipsed nodes are regarded as a victim. The power proportion of an
attacker, a victim and remained honest nodes α, λ, β are three key parameters
in this model. They also have names as Alice, Carol and Bob, respectively. In
Bitcoin-NG, a micro-block CT attacker truncates a micro-block chain signed by
an honest leader (Bob or Carol).

3.2 Assumptions

In order to reflect a clear and non-trivial evaluation on Bitcoin-NG, we list some
assumptions for simplification as follows.

1. Transaction fees are assumed to be in proportion to the number of transac-
tions and a micro-block has a certain amount of transactions. It means that
transaction fees are in proportion to the number of micro-blocks.

2. We simplify the mining reward by following the assumption in [2], which only
includes transaction fee without minted reward. Therefore, when a micro-
block chain is truncated by a rate, the attacker’s reward is decreased by this
rate. Note that Bitcoin mining reward includes minted reward and transac-
tion fee. If taking the minted reward of Bitcoin-NG into consideration, we

330 Z. Wang et al.

will come to a different result, which is still an open question. However, since
the minted reward keeps decreasing, a single transaction fee driven cryptocur-
rency deserves much more attention.

4 A Combined Micro-block Chain Truncation Attack on
Bitcoin-NG

We next present the formal attack analysis on Bitcoin-NG. An attacker is not
able to increase her absolute reward through launching a single micro-block CT
attack. However, she could add her absolute reward by combining this attack
with selfish or stubborn mining and an eclipse attack. This combined attack
works on two strategies, i.e., a colluded strategy and a “destroyed if no stake”
strategy. Following our notations, the level of a micro-block CT attack is reflected
by truncation rate k (0 ≤ k ≤ 1). We use kC and kD to distinguish these two
eclipse strategies in a combined attack.

4.1 The Colluded Strategy

Without loss of generality, we model a two-key-block scenario. Alice truncates
Bob’s and Carol’s signing micro-blocks at kC rate as in Fig. 2. It is straightfor-
ward to extend this to a multi-key-block scenario from this abstract model.

Fig. 2. A two-block abstract model for a micro-block CT attack on Bitcoin-NG.

For α + β + λ = 1, if Alice mines honestly, the absolute reward (only trans-
action fees without minted reward) of three parties are

rAlice = α2n + rαβn + rαλn + (1 − r)βαn + (1 − r)λαn = α2n + α(β + λ)n,

rBob = β2n + rβαn + rβλn + (1 − r)αβn + (1 − r)λβn = β2n + β(α + λ)n,

rCarol = λ2n + rλαn + rλβn + (1 − r)αλn + (1 − r)βλn = λ2n + λ(α + β)n.

If a dishonest miner launches a single micro-block CT attack, she could not
directly increase her absolute reward. But she could reduce two victims’ absolute
reward as

RBob = β2n + β(α + (1 − kC)λ)n, RCarol = λ2n + λ(α + (1 − kC)β)n.

A Combined Micro-block Chain Truncation Attack on Bitcoin-NG 331

Hence, we turn to analyze a combined micro-block CT attack on Bitcoin-NG.
The original selfish mining result in [3] is

SelfReward(α) =
α(1 − α)2(4α + γ(1 − 2α)) − α3

1 − α(1 + (2 − α)α)
.

The attacker Alice launches an eclipse attack to the honest miner Carol in a
colluded strategy. Alice controls the connections of Carol. It seems that Alice and
Carol run the key-block selfish mining strategy as a whole. They share dishonest
rewards with each other according to their practical rewards. By following the
original colluded strategy result from [9] as described in Sect. 2.3, the reward
proportion of a Bitcoin-NG attacker by mounting a combined micro-block CT
attack in this setting is

RAlice,BNG =
rAlice

rAlice + rCarol
SelfReward(α + λ)

=
−(α(β − 1)(2β − β2γ + 2β3γ + 3β2 − 4β3 − 1))

((−β3 + β2 + 2β − 1)(β2kC − βkC − β + αβkC + 1))
.

We compute this reward proportion of Alice in Fig. 3(a) (the red line) in the
setting where α = 0.20, λ = 0.15. The truncation rate increases from kC = 0
to kC = 1. Note that kC = 0 means selfish mining with an eclipse attack in
a colluded strategy on Bitcoin (without truncation, the black line in Fig. 3(a)).
kC > 0 means Alice launches an extra micro-block CT attack on Bitcoin-NG,
which she steals part of dishonest reward from a colluded miner Carol. γ = 0.5
is a typical setting in Bitcoin-NG and Bitcoin for the random tie breaking rule.
Our result shows that this combined attack offers extra reward proportion to a
combined micro-block CT attacker in Bitcoin-NG, which exposes a Bitcoin-NG
vulnerability in contrast to Bitcoin. In addition, kC also reflects the level of the
stealing. Along with the rising of the truncation rate kC , the reward proportion
of an attacker is increasing.

As is shown in Table 2, in a configuration of typical parameters (α =
0.20, λ = 0.15, γ = 0.5, kC = 0.1), we get the increased reward proportion as
δH = 22.25% compared with honest mining, and δBTC = 2.87% compared with
the one in Bitcoin. Note that a micro-block CT attack for relative small levels,
such as k = 0.1, is not so easy to be detected by a colluded miner. Carol would
believe that the bad network environment causes a relatively shorter micro-block
chain.

Additionally, there is another interesting observation that even Alice steals
some rewards from Carol, a colluded miner Carol still gains more reward pro-
portion, i.e., RCarol = 0.1783 is more than her power proportion λ = 0.15. The
blue line in Fig. 3(a) is over the green line if kC < 0.38. It means that an attacker
gives Carol an incentive to collude with Alice if the truncation rate is below this
threshold in this setting. As for the same distribution of all parities’ computation
power, we get the optimal increased reward proportion for an attacker in kC = 1
as δH = 64.75% and δBTC = 38.62%.

332 Z. Wang et al.

Truncation ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ew

ar
d

pr
op

or
tio

n

0.05

0.1

0.15

0.2

0.25

0.3

0.35
SM + ECA (Col.) + CT, α=0.20, λ=0.15, γ=0.5

Bitcoin-NG (Attacker)
Bitcoin-NG (Victim)

(a) Different eclipse attack levels
Victim power proportion

0 0.05 0.1 0.15

A
tta

ck
er

 r
ew

ar
d

pr
op

or
tio

n

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

SM + ECA (CS) + CT, α=0.20, γ=0.5, k
C

=0.1

Bitcoin
Bitcoin-NG

(b) Different victim computation power

Fig. 3. A micro-block chain truncation attack combined with key-block selfish mining
and a colluded strategy eclipse attack on Bitcoin-NG. SM: key-block selfish mining.
ECA (Col.): a colluded strategy eclipse attack. α, λ: power proportion of an attacker
or a victim. γ: proportion of honest nodes mining on top of an attacking chain. kC :
truncation rate in a colluded strategy. (Color figure online)

Table 2. The reward proportion for three parties in different attacks when α =
0.20, β = 0.65, λ = 0.15. SM: key-block selfish mining. CT: a micro-block chain
truncation attack. ECA (Col.): a colluded strategy eclipse attack. α, β, λ: power pro-
portion of an attacker, honest nodes and a victim. γ: proportion of honest nodes mining
on top of an attacking chain. kC : truncation rate in a colluded strategy.

Party
Name(Power)

ECA (Col.)+SM,
Bitcoin

ECA (Col.)+SM+CT
Bitcoin-NG(kC = 0.1)

ECA (Col.)+SM+CT
Bitcoin-NG(kC = 1)

Alice(0.20) 0.2377 0.2445 0.3295

Bob(0.65) 0.5840 0.5772 0.5840

Carol(0.15) 0.1783 0.1783 0.0865

4.2 Destroyed if No Stake Strategy

The Bitcoin-NG analysis for combining a “destroyed if no stake” strategy eclipse
attack is also followed the similar attack in Bitcoin from [9]. Compared with a
colluded strategy, this one is more complex for different attacking behaviors
in various cases. As the name shows, this strategy means an attacker would
recognize a victim chain only if this chain includes the stake of an attacker. A
victim’s block would be propagated to honest nodes only if the victim mines on
top of an attacker’s block.

We claim that a micro-block CT attack creates extra reward by combining a
selfish or stubborn mining strategy (Fig. 1) and a DNS strategy eclipse attack.
If an attacker truncates a micro-block chain between her and honest nodes, her
interests are damaged, which is conflicted with her incentives. A victim block
would be recognized only if it is behind an attacker’s chain. Any victim’s blocks
which are mined on top of an honest nodes’ block are not going to be concerned.
It means that a micro-block CT attack also does not occur from honest nodes

A Combined Micro-block Chain Truncation Attack on Bitcoin-NG 333

to a victim. Therefore, this combined micro-block CT attack only works from a
victim to honest nodes. The Lead stubborn mining strategy assists an attacker
more situations where this attack works. There are three worked cases as follows.

Case 1: Honest Nodes Mine Behind a Victim Block in Zone 1. This case, as
is shown in Fig. 4(a), is a basic one that all three parties mine on top of the
same chain. If the last block is mined by a victim, the attacker would launch
a micro-block CT attack when the victim is blocked by this eclipse attacker.
The attacker only propagates 1 − kD proportion micro-blocks to honest nodes.
Therefore, when the next valid block is mined by honest nodes, the reward of this
block distributed to the victim and to honest nodes would decrease by r · kDn
and (1 − r) · kDn proportion of transaction fees, respectively.

Case 2: Honest Nodes Win a Tie and Mine Behind a Victim Chain in Zone 3.
In this case, honest nodes and a corrupted group (an attacker Alice and a victim
Carol) are competing for the next block in a tie as shown in Fig. 4(b). Note
that the latest block of a private chain belongs to a victim. The attacker also
truncates the micro-block chain of the victim. Finally, honest nodes win this tie
and mine on the top of the truncated victim’s micro-block chain.

Case 3: Honest Nodes Mine Behind a Corrupt Chain, and the Father Block
Belongs to a Victim in Zone 3. In the Lead stubborn strategy, an attacker always
reveals one block and pushes the system into a competition at any leading time.
Hence, it is rising for the possibility that honest nodes mine on top of a private
chain which is withheld by an attacker and a victim. A micro-block CT attack
works if honest nodes win in a temporary tie when an attacker is leading and
the last block is created by a victim as shown in Fig. 4(c). An attack in this case
has the similar effect to the one in Case 2. However, a Case 3 micro-block CT
attack only works for one time when there are several Case 3 attacks during one
leading chain, which is significant in its frequency calculation.

The reward of a victim and honest nodes also decrease by r ·kn and (1−r)·kn
respectively at one time of one case in Case 2 and 3. To calculate the extra reward
proportion of this combined micro-block CT attack, we conduct an experiment to
simulate 100,000 steps starting from zone 1 in Monte Carlo style. The simulation
is repeated ten times to average the result for the reward proportion of an
attacker.

If an attacker eclipses a λ = 0.15 victim in DNS strategy combining with a
kD = 0.9 micro-block CT attack and Lead stubborn mining, Fig. 5(a) shows the
reward proportion of an attacker with different dishonest computation power.
γ = 0.5 also reflects the random tie breaking rule. Note that kC = 0 means a
similar attack on Bitcoin (without truncation).

Table 3 indicates that the result of a kD = 0.9 DNS strategy combined micro-
block CT attack in the same setting as in Sect. 4.1, i.e., α = 0.2, λ = 0.15, γ =
0.5. A α = 0.20 computation power attacker obtains RAlice = 0.2453 reward
proportion by this combined attack. Her increased reward proportion is δH =
18.05% more than honest mining, or δBTC = 3.85% more than the one in Bitcoin.
In addition, an α = 0.35 attacker could obtain the optimal increased reward

334 Z. Wang et al.

(a) Case 1 (b) Case 2

(c) Case 3

Fig. 4. Case 1, 2 and 3 for a worked combined micro-block chain truncation attack on
Bitcoin-NG. kD: truncation rate in a “destroyed if no stake” strategy.

proportion δH = 95.66% when RAlice = 0.6848. An α = 0.25 attacker have
the reward proportion RAlice = 0.3518, which gets the best increased reward
proportion than Bitcoin as δBTC = 3.90%.

As for the reward proportion of a victim, the situation is different from a
combined micro-block attack in a colluded strategy as in Sect. 4.1. In Fig. 5(b),
the victim’s reward proportion is badly decreased by a DNS strategy eclipse
attacker even in Bitcoin (α = 0.20, λ = 0.15). However, a more powerful attacker
would help a victim to earn more than honest mining.

Readers might wounder that the values of two truncation rates are differ-
ent in Sects. 4.1 and 4.2 (kC = 0.1, kD = 0.9), which may result in an unfair
comparison. However, even kD = 0.9 is relatively large for one time micro-block
CT attack, the times of those three cases where this attack works are quite rare
compared with 100,000 simulation steps as Table 3 shows. We would make a
comparison at the same level in Sect. 5.

5 The Comparison of Different Strategies in Unified
Truncation Rate

In this section, we make a thorough comparison of these two combined attacks
as Sect. 4 describes. Apart from the Lead stubborn strategy, selfish and other
stubborn mining strategies are also introduced in our combined analysis from [3,
9] as described in Sect. 2.3.

A Combined Micro-block Chain Truncation Attack on Bitcoin-NG 335

Attacker power proportion
0.2 0.25 0.3 0.35

A
tta

ck
er

 r
ew

ar
d

pr
op

or
tio

n

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

L-s + ECA (DNS)+CT, λ=0.15, γ=0.5, k
D

=0.9

Honest mining
L-s, Bitcoin
L-s, Bitcoin-NG,

(a) Attacker reward proportion
Attacker power proportion

0.2 0.25 0.3 0.35

V
ic

tim
 r

ew
ar

d
pr

op
or

tio
n

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

L-s + ECA (DNS)+CT, λ=0.15, γ=0.5, k
D

=0.9

Honest mining
L-s, Bitcoin
L-s, Bitcoin-NG

(b) Victim reward proportion

Fig. 5. A micro-block chain truncation attack combined with key-block Lead stubborn
mining and a “destroyed if no stake” strategy eclipse attack on Bitcoin-NG. L-s: key-
block Lead stubborn mining. ECA (DNS): a“destroyed if no stake” strategy eclipse
attack. λ: power proportion of a victim. γ: proportion of honest nodes mining on top
of an attacking chain. kD: truncation rate in a “destroyed if no stake” strategy.

Table 3. The attacker’s reward proportion for λ = 0.15, γ = 0.5, kD = 0.9 in different
power proportions of an attacker. L-s: key-block Lead stubborn mining. CT: a micro-
block chain truncation attack. ECA (DNS): a “destroyed if no stake” strategy eclipse
attack. λ: power proportion of a victim. γ: proportion of honest nodes mining on top
of an attacking chain. RAlice, RCarol: reward proportion of an attacker or a victim. kD:
truncation rate in a“destroyed if no stake” strategy.

Attacker’s power
proportion

ECA (DNS)+L-s,
Bitcoin, RAlice

ECA (DNS)+L-s+CT,
Bitcoin-NG(kD = 0.9)

RAlice 3 cases times RCarol

0.2000 0.2362 0.2453 2150 0.0836

0.2500 0.3386 0.3518 2130 0.1237

0.3000 0.4760 0.4890 1600 0.1864

0.3500 0.6752 0.6848 60 0.2906

5.1 Practical Truncation Rate

To make a fair and clear comparison, we introduce practical truncation rate kP

to model the absolute amount of all transactions truncated by a micro-block CT
attacker. Every comparison in this section is unified for having the same value
of practical truncation rate.

For a colluded strategy, an attacker always truncates the micro-block chains
of a victim. From the two-blocks example in Fig. 2, it is clear that a truncation
occurs in two situations where Bob mines behind Carol and otherwise. The
possibility of these two events is βλ+λβ. For a “destroyed if no stake” strategy,
there are three cases where a combined micro-block CT attack works as we
describe above. The total times of these cases are T3cs. Hence, we have the
relations to map kC or kD to kP as

336 Z. Wang et al.

kP = 2βγ · kC =
T3cs

100, 000
· kD.

Methodology. We firstly set a specific value of kP to limit the practical amount
of truncated transactions as a whole. After that, the corresponding values of
kC and kD are obtained for different computation powers of an attacker and a
victim by the equations as above. Note that a too large value of kP or a too
small value of T3cs may cause kC > 1 or kD > 1. We would assign kC = 1 or
kD = 1 if they surpass the threshold to avoid an error value of truncation rate.

5.2 Simulation Results

We combined the selfish mining strategy and seven stubborn mining strategies
(three basic ones F-s, T-s, L-s, and four hybrid ones FT-s, LF-s, LT-s, LFT-s)
with two eclipse attack strategies (colluded, and “destroyed if no stake”). In addi-
tion to honest mining and an single eclipse attacking, there are 18 combinations
for a micro-block CT attack in total. We traverse every value of computation
power α, λ, in order to find out the best combined strategy in different practical
truncation rate kP .

The results in Fig. 6 shows that the effect of different combined micro-block
attacks. Different colors reflect different optimal strategies for the largest reward
proportion at a certain point. kP = 0 corresponds to the attack in Bitcoin. A
DNS strategy combined attack has a better reward proportion if kP is relatively
small. However, the total times of three working cases could not be increased.
When kP is rising, kD still could not surpass the threshold. Hence, a colluded
combined micro-block attack would take a prominent place eventually.

Table 4 also gives us a clear and overall view of the combinations. The optimal
increased reward proportion than Bitcoin δBTC for a DNS strategy combined
attack decreases if the value of kP is rising. When kP is small, it offers an
attacker reasonable extra reward. At the same time, a colluded combined attack
has a less impact on Bitcoin-NG compared with the DNS one. When we raise kP ,
the optimal values of δBTC for colluded strategies are also rising. If kP = 0.015,
we could find out that collude strategies almost take place a prominent position
from the proportion of their area.

6 Discussion

Plausible Choices for Parameters. α = 0.20, λ = 0.15 is a typical value for a
computation power distribution, which is comparable for current Bitcoin pools2.
α + λ = 0.35 is more than the classical security threshold (0.25) against selfish
mining from [3]. The random tie breaking rule (γ = 0.5) has been deployed in
many altcoins including Bitcoin-NG. Our simulation always keeps a practical
truncation rate kP no larger than 0.02, which may be intuitive for hiding this
attack. However, Bitcoin unconfirmed transactions pool would not be empty if
2 https://www.blockchain.com/en/pools.

https://www.blockchain.com/en/pools

A Combined Micro-block Chain Truncation Attack on Bitcoin-NG 337

Attacker Computation Power
0 0.1 0.2 0.3 0.4 0.5

V
ic

tim
 C

om
pu

ta
tio

n
Po

w
er

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Eclipse
Col+LF-s
Col+LT-s
Col+LFT-s
DNS+LF-s
DNS+LT-s

(a) kP = 0
Attacker Computation Power

0 0.1 0.2 0.3 0.4 0.5

V
ic

tim
 C

om
pu

ta
tio

n
Po

w
er

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Eclipse
Col+LF-s
Col+LT-s
Col+LFT-s
DNS+LF-s
DNS+LT-s

(b) kP = 0.001
Attacker Computation Power

0 0.1 0.2 0.3 0.4 0.5

V
ic

tim
 C

om
pu

ta
tio

n
Po

w
er

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Eclipse
Col+LF-s
Col+LT-s
Col+LFT-s
DNS+LF-s
DNS+LT-s

(c) kP = 0.005

Attacker Computation Power
0 0.1 0.2 0.3 0.4 0.5

V
ic

tim
 C

om
pu

ta
tio

n
Po

w
er

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Eclipse
Col+LF-s
Col+LT-s
Col+LFT-s
DNS+LF-s
DNS+LT-s

(d) kP = 0.010
Attacker Computation Power

0 0.1 0.2 0.3 0.4 0.5

V
ic

tim
 C

om
pu

ta
tio

n
Po

w
er

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Eclipse
Col+LF-s
Col+LT-s
Col+LFT-s
DNS+LF-s
DNS+LT-s

(e) kP = 0.015
Attacker Computation Power

0 0.1 0.2 0.3 0.4 0.5

V
ic

tim
 C

om
pu

ta
tio

n
Po

w
er

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Eclipse
Col+LF-s
Col+LT-s
Col+LFT-s
DNS+LF-s
DNS+LT-s

(f) kP = 0.020

Fig. 6. Strategy combinations for a micro-block chain truncation attack. Eclipse: A sin-
gle eclipse attack. Col./DNS+LT-s/LF-s/LFT-s: a micro-block chain truncation attack
combined with different stubborn mining strategies and eclipse attack strategies. (Color
figure online)

the transaction amount is quite large [12]. So for each node, it is not so surprised
that part of transactions are not included in a micro-block chain.

Impact and Difficulty for Mounting a Combined Micro-Block CT Attack. The
maximum increased reward proportion could even reach δBTC = 426.32% when
α = 0.01, λ = 0.09, kC = 1, which is not a very typical setting. Nevertheless,
the goal of this work is to prove that the Bitcoin-NG indeed sacrifices security
for efficiency instead of exploring a largest δBTC in an ideal setting. Considering
the same distribution that α = 0.20, λ = 0.15, the reward proportion of a
kC = 1 colluded strategy combined micro-block CT attack is RAlice = 0.3295
and δBTC = 38.62%. This result is larger than the reward of a total destroyed
eclipse attack RAlice = 0.2292. However, the difficulty of truncating all micro-
block chains between a victim and honest nodes is much smaller than that of
blocking all information transiting to a node as a destroyed eclipse attack in [9].

Differences Between a Micro-Block CT Attack and Transactions Blocking. Bit-
coin (Bitcoin-NG) nodes are quite concentrated in network topology. If a Bitcoin-
NG node manages to become a valid key-block creator, she is the only miner of
a consensus committee. She signs all valid micro-blocks in an epoch. It seems
that the information stream of micro-block diffuses from a single point, which
assists micro-block CT attacks from the P2P network level. On the contrary, a
transaction is much smaller and is dispersed over the world by a gossip protocol.
It is quite difficult to block a specific transaction in a P2P network.

338 Z. Wang et al.

Table 4. Simulation results for combined micro-block chain truncation attacks.
Col./DNS+LT-s/LF-s/LFT-s: a micro-block chain truncation attack combined with
different key-block stubborn mining strategies and eclipse attack strategies. Ave. k:
average truncation rate. Opt. δBTC (α, λ): the optimal increased reward proportion
than Bitcoin for α and λ computation power.

kP Strategy Area Ave. k Opt. δBTC (α, λ)

0.001 Col.+LF-s 1.11% kC = 0.0177 0.12% (0.1000, 0.3200)

Col.+LT-s 11.84% 0.22% (0.2250, 0.0025)

Col.+LFT-s 5.92% 0.12% (0.1450, 0.2650)

DNS+LF-s 5.58% kD = 0.0906 5.28% (0.1975, 0.2275)

DNS+LT-s 2.98% kD = 0.0217 5.08% (0.1850, 0.2150)

0.010 Col.+LF-s 1.90% kC = 0.1339 1.22% (0.3875, 0.0275)

Col.+LT-s 14.63% 2.30% (0.2150, 0.0075)

Col.+LFT-s 9.69% 1.23% (0.1450, 0.2650)

DNS+LF-s 1.40% kD = 0.4200 5.11% (0.1975, 0.2275)

DNS+LT-s 0.98% kD = 0.2227 4.77% (0.2200, 0.2000)

0.015 Col.+LF-s 2.01% kC = 0.1774 1.84% (0.3875, 0.0275)

Col.+LT-s 15.73% 3.57% (0.2025, 0.0150)

Col.+LFT-s 10.82% 1.86% (0.1450, 0.2650)

DNS+LF-s 0.39% kD = 0.7982 4.62% (0.2325, 0.1900)

DNS+LT-s 0.24% kD = 0.3174 5.00% (0.2200, 0.2000)

The Assumption of None Minted Reward. The original Bitcoin-NG [2] analyses
security in a situation where the reward for mining a block includes only trans-
action fee and ignores minted reward. We follow this assumption in this paper.
However, minted reward indeed has an impact on the analysis when combining
selfish mining and an eclipse attack, so we will extend this work by taking minted
reward into consideration in future.

The Necessity of This Work. In this work, we evaluate the impact of a micro-
block CT attack combined with selfish mining and an eclipse attack on Bitcoin-
NG. Here, the attacking rate is modeled as the computation power of an attacker
α, the level of an eclipse attack λ and truncation rate kC or kD. Nayak et al. [9]
emphasizes the reason why selfish mining or stubborn mining is not observed
in practice as the previous work [3] shows. The widespread awareness of various
attacks improves the security of Bitcoin. Even this work may not be observed in
practice, when designing a scalable and efficient cryptocurrency, our work would
alarm researchers to focus more on security.

7 Conclusion

We analyze the utility of a combined micro-block chain truncation attack on
Bitcoin-NG. This attack combines classical selfish and stubborn mining strate-

A Combined Micro-block Chain Truncation Attack on Bitcoin-NG 339

gies and an eclipse attack in a colluded strategy or a “destroyed if no stake”
strategy. Our results show that Bitcoin-NG indeed sacrifices security for effi-
ciency improvement. We assume that mining reward only includes transaction
fee. We left a more refined model which captures the real world very well and a
game theory analysis in a multi-attackers scenario as future works.

Acknowledgment. This work is partly supported by the National Key R&D
Program of China (2017YFB1400700), National Cryptography Development Fund
(MMJJ20180215), and CCF-NSFOCUS KunPeng Research Fund (2018013).

References

1. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8

2. Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: NSDI 2016, Santa Clara, CA, USA, 16–18 March 2016,
pp. 45–59 (2016)

3. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

4. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: USENIX Security 2015, Washington, D.C., USA, 12–14
August 2015, pp. 129–144 (2015)

5. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.:
Enhancing bitcoin security and performance with strong consistency via collec-
tive signing. In: USENIX Security 2016, Austin, TX, USA, 10–12 August 2016,
pp. 279–296 (2016)

6. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
Omniledger: a secure, scale-out, decentralized ledger via sharding. In: S&P 2018,
San Francisco, California, USA, 21–23 May 2018, pp. 583–598 (2018)

7. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, 24–28
October 2016, pp. 17–30 (2016)

8. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

9. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: EuroS&P 2016, Saarbrücken,
Germany, 21–24 March 2016, pp. 305–320 (2016)

10. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT repli-
cation. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp.
112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4 9

11. Yin, J., Wang, C., Zhang, Z., Liu, J.: Revisiting the incentive mechanism of bitcoin-
NG. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 706–719.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 40

12. Yu, H., Zhang, Z., Liu, J.: Research on scaling technology of bitcoin blockchain. J.
Comput. Res. Dev. 54(10), 2390–2403 (2017)

https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-45472-5_28
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1007/978-3-319-93638-3_40

Foundations

Field Extension in Secret-Shared Form
and Its Applications to Efficient Secure

Computation

Ryo Kikuchi1(B), Nuttapong Attrapadung2, Koki Hamada1, Dai Ikarashi1,
Ai Ishida2, Takahiro Matsuda2, Yusuke Sakai2, and Jacob C. N. Schuldt2

1 NTT, Tokyo, Japan
kikuchi ryo@fw.ipsj.or.jp, {koki.hamada.rb,dai.ikarashi.rd}@hco.ntt.co.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{n.attrapadung,a.ishida,t-matsuda,yusuke.sakai,jacob.schuldt}@aist.go.jp

Abstract. Secure computation enables participating parties to jointly
compute a function over their inputs while keeping them private. Secret
sharing plays an important role for maintaining privacy during the com-
putation. In most schemes, secret sharing over the same finite field is
normally utilized throughout all the steps in the secure computation. A
major drawback of this “uniform” approach is that one has to set the size
of the field to be as large as the maximum of all the lower bounds derived
from all the steps in the protocol. This easily leads to a requirement for
using a large field which, in turn, makes the protocol inefficient. In this
paper, we propose a “non-uniform” approach: dynamically changing the
fields so that they are suitable for each step of computation. At the core
of our approach is a surprisingly simple method to extend the underly-
ing field of a secret sharing scheme, in a non-interactive manner, while
maintaining the secret being shared. Using our approach, default compu-
tations can hence be done in a small field, which allows better efficiency,
while one would extend to a larger field only at the necessary steps. As
the main application of our technique, we show an improvement upon
the recent actively secure protocol proposed by Chida et al. (Crypto’18).
The improved protocol can handle a binary field, which enables XOR-
free computation of a boolean circuit. Other applications include efficient
(batch) equality check and consistency check protocols, which are useful
for, e.g., password-based threshold authentication.

Keywords: Secure computation · Secret sharing · Active security

1 Introduction

Secret-sharing-based secure computation enables parties to compute a function
of a given set of inputs while keeping these secret. The inputs are distributed
to several parties via a secret sharing scheme, and the parties then compute
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 343–361, 2019.
https://doi.org/10.1007/978-3-030-21548-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_19

344 R. Kikuchi et al.

the function by interacting with each other. Throughout the above steps, any
information except the output must be kept secret to the parties.

Secure computation should satisfy the security notions, such as privacy and
correctness, in the presence of an adversary, which might compromise some of
the parties participating in the computation. There are two classical adversary
models capturing different adversarial behaviors: passive (i.e., semi-honest) and
active (i.e., malicious). The latter provides a stronger security guarantee as an
actively secure protocol will remain secure in the presence of an adversary follow-
ing an arbitrary adversarial strategy. Another metric of security is the number
of parties that an adversary can corrupt. The setting in which an adversary is
allowed to corrupt up to half of the parties, is referred to as honest majority.
Unconditionally secure protocols can only be realized in the honest majority
setting [19].

Many secret-sharing-based secure computations are defined over a finite field,
e.g., [4,6,7,10,12]. The choice of the underlying field greatly affects the efficiency
of those protocols since field elements and field operations are the units of any
processing, and the size of the field affects the size and efficiency of field elements
and field operations, respectively. In other words, an unnecessarily large field
incurs a large cost of storage, computation, and communication among parties.
From this, a natural question arises: how small can the field size be?

Intuitively speaking, we can consider two lower bounds regarding the field
size. The first is the range of values used in the computation. The field size
should be large enough to contain any value that appears in all steps in the
computation. For example, if one wants to store values that are less than 10, and
compute the sum of 100 values, the field size should be larger than 10×100 ≈ 210

to accommodate this computation, while if one wants to store binary values and
compute a boolean circuit, a binary field is sufficient.

Another bound is derived from statistical errors which are typically a part of
the computation, and which in turn provides an upper bound for the advantage
of an adversary. These errors are typically dependent on the size of the field used
in the computation. For example, consider a protocol for checking equality of
secret shared values. Specifically, let K be a field, and let [s] and [s′] be shares
of s, s′ ∈ K. There is a straightforward way for the parties holding [s] and [s′]
to verify that s = s′ without revealing s and s′ themselves: generate a random
share [r], securely compute [r(s− s′)], reconstruct this value, and verify whether
the reconstructed value r(s − s′) is 0 or not. If s �= s′, r(s − s′) will be a random
value different from 0, except probability 1/ |K|, where |K| denotes the size of K.
Therefore, if one wants to ensure that a statistical error probability is less than
2−κ, the field size must be larger than 2κ.

The field size should be larger than these two lower bounds even if there is a
gap between those. For example, if the parties securely compute statistics with
a possible range from 0 to 1, 000 (≈ 210) with statistical error 2−40, a field size
larger than 240 must be used (this comes from max(210, 240)).

Our Contribution. We propose a method to dynamically change the fields used
in secure computation to improve efficiency. Note that a large field (e.g. chosen

Field Extension in Secret-Shared Form 345

to lower the statistical error of a protocol) is not necessarily required in all
stages of a secure computation. Often, a significant part of the computation
can be done in a smaller field which is just sufficiently large to accommodate
the values appearing in the computation, and only when verifying correctness, a
much larger field is required to reduce the statistical error inherent in the used
protocol, e.g. like the equality check described above.

Therefore, if we can dynamically change the underlying field, we can improve
the efficiency of secure computation by using a field of an appropriate size for
each stage of the computation. Note that for this approach to work, it is required
that the parties can change the underlying field while a secret is shared over the
field. In this paper, we propose a method that achieves this, which furthermore
does not require the parties holding the shared secret to communicate. Hence,
this allows the parties by default to use a small field over which computation is
efficient, and only switch to a large (extended) field at the time of verification
to achieve the desired statistical error.

Let us briefly recall standard construction of field extension. Let K be a base
field and let F ∈ K[X] be an irreducible polynomial of degree m − 1. Then
̂K := K[X]/F is a field extension of K of size |K|m. An m-tuple of elements in
K, (s1, . . . , sm), can be regarded as a vector representation of a single element
ŝ ∈ ̂K defined as ŝ = s1 + s2X + · · · + smXm−1. Note that a single element
s1 ∈ K can also be regarded as an element in ̂K by setting si = 0 for 2 ≤ i ≤ m.

We show that this kind of extension allows shares from a secret sharing
scheme to be mapped into the extended field, as long as we use a t-out-of-n
linear secret sharing scheme. Let [s] (that is not necessarily in K) be a share of
s ∈ K and [[s′]] be a share of s′ ∈ ̂K. We show that, if the parties have an m-tuple
of shares [s1], . . . , [sm], the parties can regard them as a single share, [[s′]], where
s′ := s1 + s2X + · · · + smXm−1. Similar to the above, this also implies that a
single share [s] can be regarded as a share of [[ŝ]], where ŝ := s+0X+· · ·+0Xm−1.

This technique is simple but useful for improving the efficiency of secure
computation. Let us revisit the example of equality checking highlighted above.
Assume that the parties have computed [s] and [s′], where s, s′ ∈ K and that to
make the computation efficient K was chosen to be a small field, e.g., GF(2). Let
̂K be the extended field of K with size larger than 2κ. To check that s = s′, the
parties extend [s] and [s′] into [[ŝ]] and [[̂s′]] using our technique, and generate a
sharing [[r]] of randomness r ∈ ̂K. The parties then securely compute [[r(s − s′)]],
reconstruct the resulting value, and check whether this is 0 or not. Since the
revealed value belongs to ̂K, the statistical error of the comparison, and thereby
the advantage of an adversary, is bounded by 2−κ. Besides this, the parties can
batch multiple equality checks by “packing” multiple secrets in K into a single
secret in ̂K. If m secrets in a field are packed into a single element in an m-degree
extended field, there is no extra cost with respect to communication compared to
parallel executions of equality checks in K. Similar scenarios appear in password-
based threshold authentication [21] and batch consistency check [14,22], and we
can apply this technique to the protocols for these.

346 R. Kikuchi et al.

As the main application of our technique, we show how to improve a recent
protocol proposed by Chida et al. [10] which achieves fast large-scale honest-
majority secure computation for active adversaries. Although Chida et al. pro-
posed a protocol suitable for small fields, the protocol cannot be applied to
a binary field, since the bound on the advantage of the adversary is given by
(3/ |K|)δ, which is not meaningful for |K| = 2. This, for example, prevents the
use of XOR-free computation of a boolean circuit.1 Informally, their protocol
generates δ shared random values, computes δ “randomized” outputs in addi-
tion to the ordinary one, and verifies correctness of the computation by checking
if the randomized outputs correspond to the ordinary outputs when the latter is
randomized using the same randomnesses. Here, the shared random values and
the randomized outputs are used for verification only. Hence, we can apply our
technique to this protocol as follows. The (shared) random values and random-
ized outputs in K are replaced by a single random value and the randomized
output in ̂K, and then the ordinary output in K is extended to ̂K at the time of
verification. The bound on the adversarial advantage in this modified protocol
is 3/|̂K|. Therefore, we can choose a binary field as K (and an extension field ̂K

of appropriate size) in the protocol.

Related Work. There are several techniques to achieve active security even if the
field size is small. Beaver [3] showed that one can securely compute a multipli-
cation gate in the presence of active adversaries for any field/ring by sacrificing
a multiplication triple. The SPDZ protocol [13] and subsequent studies gener-
ate the triples using cryptographic primitives, such as somewhat homomorphic
encryption and oblivious transfer. Furukawa et al. [14] and subsequent works
[1,22] used another approach to generate the triples using cut-and-choose tech-
nique in honest majority. Genkin et al. [16] introduced an algebraic manipula-
tion detection (AMD) circuit that implies actively secure computation. Although
their construction relies on a tamper-proof primitive if one uses a binary field,
the later result [17] obtained a binary AMD circuit from a boolean one with
polylog overhead with 2−κ statistical error.

Cascudo et al. [9] employed different fields to offer a trade-off with the field
size of the circuit. Their technique makes use of an encode between GF(2k) and
(GF(2))m while maintaining the structure of multiplication of those ring and
field in some sense. Since the motivation is different, our technique does not
maintain the structure of multiplication, while our technique is space-efficient:
we can embed several secrets in K into ̂K without redundancy.

Paper Organization. The rest of the paper is organized as follows. In Sect. 2, we
will recall linear secret sharing. In Sect. 3, we introduce our main technique of
field extension in a secret-sharing form. In Sect. 4, we show several applications
of our technique to secure computation based on threshold linear secret sharing:
consistency check, equality check of multiple shares, and finally and as the main
technical result, an efficient secure computation protocol for arithmetic circuits.
1 Precisely, secure computation in GF(2m) is XOR-free but redundant for a boolean

circuit.

Field Extension in Secret-Shared Form 347

2 Linear Secret Sharing

In this section we give the definition of linear secret sharing [5]. Here, we consider
general linear secret sharing with respect to an access structure.

Definition 2.1 (Secret Sharing). Let S be a finite domain of secrets. Also,
let A be an access structure of parties P1, . . . , Pn. A secret sharing scheme Π =
(Share,Rec) realizing A satisfies the following two requirements:

Reconstruction Requirement. Let Si be a finite domain of the party Pi’s
shares. For any set G ∈ A where G = {i1, . . . , i|G|}, there exists a reconstruction
function RecG : Si1 × · · · × Si|G| → S such that for any secret s ∈ S, it holds that
RecG([s]i1 , . . . , [s]i|G|) = s where Share(s) → 〈[s]1, . . . , [s]n〉.
Security Requirement. For any set B /∈ A, any two secrets α, β ∈ S, and any
elements vali ∈ Si (1 ≤ i ≤ n), it holds that

Pr[
∧

Pi∈B

{[α]i = vali}] = Pr[
∧

Pi∈B

{[β]i = vali}]

where the probabilities are taken over the randomness of the sharing algorithm.

Definition 2.2 (Linear Secret Sharing). Let K be a finite field and Π a secret
sharing scheme with a domain of secrets S ⊆ K realizing an access structure A
of parties P1, . . . , Pn. We say that Π is a linear secret sharing scheme over K if
the following holds:

1. A share of each party consists of a vector over K. More precisely for any index
i, there exists a constant di such that the party Pi’s share is taken from K

di .
We denote by [s]ij the j-th coordinate of the party Pi’s share of a secret s ∈ S.

2. For any set in A, i.e., authorized set, its reconstruction function is linear.
More precisely, for any set G ∈ A, there exist constants {αij}Pi∈G,1≤j≤di

such that for any secret s ∈ S, it holds that

s =
∑

Pi∈G

∑

1≤j≤di

αij · [s]ij

where the addition and multiplication are over the field K.

If all shares consist of only one element in the field K, Definition 2.2 implies
that for any set G ∈ A, there exist constants {αi}Pi∈G such that for any secret
s ∈ S, it holds that s =

∑

Pi∈G αi · [s]i.

3 Field Extension in Secret-Shared Form

In this section we propose a simple but highly useful method to extend a sharing
of a secret over a field to a sharing of the same secret over an extended field,
without requiring any communication between the parties which the secret is

348 R. Kikuchi et al.

shared. This is the main mechanism we will exploit in our hybrid approach
to protocol design, in which evaluation will be done over a smaller field, but
verification is done over a large field to ensure a low statistical error, which in
turn bounds the advantage of an adversary.

Let Π be a linear secret sharing scheme with a domain of secrets S ⊆ K

realizing an access structure A of parties P1, . . . , Pn. In the following, we consider
a scenario in which these parties will be sharing m secrets s1, . . . , sm.

Let ̂K = K[X]/F be the extended field of K where F ∈ K[X] is an irreducible
polynomial of degree m − 1. Let f be the bijective function of natural extension
i.e. f : K

m → ̂K and f(a1, . . . , am) = a1 + a2X + · · · + amXm−1.
The following theorem shows that if secrets in K are shared via a linear secret

sharing scheme as [s1]ij , . . . , [sm]ij with coefficients {αij}Pi∈G,1≤j≤di
for some

G ∈ A, a “packed” share f
(

[s1]ij , . . . , [sm]ij
)

is in fact a share of s1 + s2X +
· · ·+smXm−1 ∈ ̂K with coefficients {f(αij , 0, . . . , 0)}Pi∈G,1≤j≤di

. In other words,
multiple shares can be embedded in the extended field ̂K (which we will refer to
as packing), and jointly reconstructed over ̂K. Since a party can locally compute
f
(

[s1]ij , . . . , [sm]ij
)

, the parties can obtain a share of s1+s2X + · · ·+smXm−1 ∈
̂K from shares of s1, . . . , sm ∈ K without communicating. The theorem also
implies that the parties can obtain a share of s1 + · · · + s�X

�−1 + 0X� + · · · +
0Xm−1 ∈ ̂K from shares of � (< m) secrets by setting [sk]ij = 0 for � < k ≤ m.

Theorem 3.1. Let [sk]ij be the j-th coordinate of Pi’s share of a secret sk ∈ S.
Then for any set G ∈ A, it holds that

f−1
(

∑

Pi∈G

∑

1≤j≤di

f(αij , 0, . . . , 0) · f
(

[s1]ij , . . . , [sm]ij
)

)

= (s1, . . . , sm)

where {αij}Pi∈G,1≤j≤di
are the constants defined in Definition 2.2.

[Proof] We have that
∑

Pi∈G

∑

1≤j≤di

f(αij , 0, . . . , 0) · f
(

[s1]ij , . . . , [sm]ij
)

=
∑

Pi∈G

∑

1≤j≤di

αij ·
(

[s1]ij + [s2]ij · X + · · · + [sm]ij · Xm−1
)

=
∑

Pi∈G

∑

1≤j≤di

αij · [s1]ij +
(

∑

Pi∈G

∑

1≤j≤di

αij · [s2]ij
)

X

+ · · · +
(

∑

Pi∈G

∑

1≤j≤di

αij · [sm]ij
)

Xm−1

= s1 + s2 · X + · · · + sm · Xm−1.

Thus, we see that f−1
(

∑

Pi∈G

∑

1≤j≤di
f(αij , 0, . . . , 0) · f(

[s1]ij , . . . , [sm]ij
)

)

=

f−1(s1 + s2 · X + · · · + sm · Xm−1) = (s1, . . . , sm). �

Field Extension in Secret-Shared Form 349

Induced Secret Sharing Scheme. The above theorem not only shows that
shares from a secret sharing scheme over K can be embedded and reconstructed
in the extension field ̂K, but in fact let us define an “induced” secret sharing
scheme over ̂K based on the secret sharing scheme over K. More specifically,
let Π = (Share,Rec) be a linear secret sharing scheme with a domain of secrets
S ⊆ K realizing an access structure A of parties P1, . . . , Pn. We consider the
induced scheme ̂Π = (Ŝhare, ̂Rec) with a domain of secrets ̂S ⊆ ̂K = K[X]/F
defined as follows.

Ŝhare(s):

1. Compute (s1, . . . , sm) ← f−1(s)
2. For k ∈ [1,m]: compute Share(sk) → 〈{[sk]1j}1≤j≤d1 , . . . , {[sk]nj}1≤j≤dn

〉
3. For i ∈ [1, n] and j ∈ [1, di]: set [[s]]ij ← f([s1]ij , . . . , [sm]ij)
4. Output 〈{[[s]]1j}1≤j≤d1 , . . . , {[[s]]nj}1≤j≤dn

〉
̂RecG({[[s]]ij}Pi∈G,j∈[1,di]):

1. For Pi ∈ G and j ∈ [1, di]: compute α̂ij ← f(αij , 0, . . . , 0).
2. Output s ← ∑

Pi∈G,j∈[1,di]
α̂ij · [[s]]ij .

The linearity of the above secret sharing scheme follows directly from Theo-
rem 3.1, and security likewise follows in a straightforward manner. We write this
as the following corollary.

Corollary 3.2. Assume that Π is a linear secret sharing scheme. Then the
induced secret sharing scheme ̂Π is a linear secret sharing scheme.

The ability of the parties to locally evaluate the embedding function f , means
that the parties can locally construct a sharing [[ŝ]] of the induced scheme ̂Π

from sharings [s1], . . . , [sm] of Π, where ŝ = s1 + s2X + · · · + smXm−1 ∈ ̂K and
s1, . . . , sm ∈ K.

Throughout the paper, we will adopt the notation used above. Specifically,
for a secret sharing scheme Π = (Share,Rec) over K, which we will also refer to
as the base scheme, ̂Π = (Ŝhare, ̂Rec) denotes the induced secret sharing scheme
defined above over the field extension ̂K = K[X]/F . For values s ∈ K and v ∈ ̂K,
we will use [s] and [[v]] to denote sharings of the base and the induced secret
sharing scheme, respectively. We will sometimes abuse this notation, and for a
value s ∈ K use [[s]] to denote [[f(s, 0, . . . , 0)]], and will also refer to this as an
induced sharing.

4 Applications to Secure Computation

In this section, we show several applications for actively secure computation with
abort and an honest majority. As preliminaries to these, in Sect. 4.1, we first give
basic definitions, including threshold secret sharing and several protocols that
are used as building blocks. Then, we present applications of our field extension
technique to consistency check of shares in Sect. 4.2, equality check of multiple
shares in Sect. 4.3, and computation of arithmetic circuits in Sect. 4.4.

350 R. Kikuchi et al.

4.1 Preliminaries

Threshold Linear Secret Sharing. A t-out-of-n secret sharing scheme [5]
enables n parties to share a secret v ∈ K so that no subset of t parties can learn
any information about it, while any subset of t + 1 parties can reconstruct it.
In addition to being a linear secret sharing scheme, we require that the secret
sharing scheme used in our protocol supports the following procedures:

– Share(v): We consider non-interactive secret sharing where there exists a
probabilistic dealer D that receives a value v (and some randomness) and
outputs shares [v]1, . . . , [v]n. We denote the sharing of a value v by [v].
We use the notation [v]J to denote the shares held by a subset of parties
J ⊂ {P1, . . . , Pn}. If the dealer is corrupted, then the shares received by the
parties may not be correct. Nevertheless, we abuse notation and say that the
parties hold shares [v] even if these are not correct. We will define correctness
of a sharing formally below.

– Share(v, [v]J): This non-interactive procedure is similar to the previous one,
except that here the shares of a subset J of parties with |J | ≤ t are fixed
in advance. We assume that there exists a probabilistic algorithm ˜D that
receives a value v and some values [v]J = {˜[v]i}Pi∈J (and some randomness)
and outputs shares [v]1, . . . , [v]n where [v]i = ˜[v]i holds for every Pi ∈ J .
We also assume that if |J | = t, then [v]J together with v fully determine all
shares. This also means that any t+1 shares fully determine all shares. (This
follows since with t+1 shares one can always obtain v. However, for the secret
sharing schemes we use, this holds directly as well.)

– Reconstruct([v], i): Given a sharing of a value v and an index i held by the
parties, this interactive protocol guarantees that if [v] is not correct (see
formal definition below), then Pi will output ⊥ and abort. Otherwise, if [v]
is correct, then Pi will either output v or abort.

– Open([v]): Given a sharing of a value v held by the parties, this procedure
guarantees that at the end of the execution, if [v] is not correct, then all the
honest parties will abort. Otherwise, if [v] is correct, then each party will
either output v or abort. Clearly, Open can be run by any subset of t + 1 or
more parties. We require that if any subset J of t+1 honest parties output a
value v, then any superset of J will output either v or ⊥ (but no other value).

– Local Operations: Given correct sharings [u] and [v], and a scalar α ∈ K,
the parties can generate correct sharings of [u + v], [α · v] and [v + α] using
local operations only (i.e., without any interaction). We denote these local
operations by [u] + [v], α · [v], and [v] + α, respectively.

Standard secret sharing schemes like the Shamir scheme [23] and the replicated
secret sharing scheme [11,20] support all of these procedures (with their required
properties). Furthermore, if a base secret sharing scheme supports the above pro-
cedures, then the induced secret sharing scheme over a field extension likewise
supports the above procedures. This easily follows from the one-to-one corre-
spondence between a set of m shares [s1], . . . , [sm] of the base scheme and a

Field Extension in Secret-Shared Form 351

share [[ŝ]] of the induced scheme, where ŝ = s1 + s2X + · · · + smXm−1. Specifi-
cally, the above procedures for the induced scheme can be implemented by simply
mapping the input shares to shares of the base scheme using f−1, and running
the corresponding procedure of the base scheme.

The following corollary regarding the security of an induced secret sharing
scheme is a simple extension of Corollary 3.2 and follows from the one-to-one
correspondence between a set of m shares in the base scheme and a share in the
induced scheme.

Corollary 4.1. Let Π be a secure threshold linear secret sharing scheme. Then
the induced scheme ̂Π is a secure threshold linear secret sharing scheme.

In the following, we set the threshold for the secret sharing scheme to be
(n − 1)/2�, and we denote by t the number of corrupted parties. Since we assume
an honest majority, it holds that t < n/2, and so the corrupted parties can learn
nothing about a shared secret.

We now define correctness for secret sharing. Do we need to add that correct-
ness can be defined as shares being the output of the share algorithm for some
value and random coins? This is to avoid the cyclic dependency regarding cor-
rectness and the opening algorithm. Let J be a subset of t+1 honest parties, and
denote by val([v])J the value obtained by these parties after running the Open
procedure where no corrupted parties or additional honest parties participate.
We note that val([v])J may equal ⊥ if the shares held by the honest parties are
not valid. Informally, a secret sharing is correct if every subset of t + 1 honest
parties reconstruct the same value (which is not ⊥). Formally:

Definition 4.2. Let H ⊆ {P1, . . . , Pn} denote the set of honest parties. A shar-
ing [v] is correct if there exists a value ṽ ∈ K (ṽ �= ⊥) such that for every J ⊆ H
with |J | = t + 1 it holds that val([v])J = ṽ.

If a sharing [v] is not correct, then either there exists a subset J of t+1 honest
users such that val([v])J = ⊥, or there exists two subsets J1 and J2 such that
val([v])J1 = v1 and val([v])J2 = v2, where v1, v2 ∈ K and v1 �= v2. We will refer
to the former as an invalid sharing, and the latter as a value-inconsistent sharing.
Note that a correct sharing in an induced secret sharing scheme corresponds to a
set of m correct shares of the base scheme (and conversely, if a single sharing in
the base scheme is incorrect, the sharing in the induced scheme will be incorrect).

Definition of Security for Secure Computation. We use the standard
definition of security based on the ideal/real model paradigm [8,18], with security
formalized for non-unanimous abort. This means that the adversary first receives
the output, and then determines for each honest party whether they will receive
abort or receive their correct output.

Definitions for Ideal Functionalities. Here, we recall the definitions of the
ideal functionalities used in the paper, which are based on the ones used in
[10]. These functionalities are associated with a threshold linear secret sharing

352 R. Kikuchi et al.

scheme. Since in this paper we will utilize functionalities for both a secret sharing
scheme for a base field K and those of the induced scheme for an extension field
̂K, we will use the style like Fx for the former, and the style like ̂Fx for the
latter. In the following, we only describe the functionalities for the base field K;
Those for the extension field ̂K are defined in exactly the same way, with the
correspondences that the sharing algorithm is of the induced scheme, and every
value is of ̂K. We note that the protocols realizing these functionalities can be
efficiently instantiated using standard secret sharing schemes [2,11,23]. (These
protocols treat the underlying field and secret sharing scheme in a black-box
manner, and hence can be naturally used for realizing the functionalities for the
induced scheme.)

– Fcoin – Generating Random Coins: When invoked, this functionality picks an
element r ∈ K uniformly at random and sends it to all parties.

– Frand – Generating Random Shares: This functionality generates a sharing of
a random value in K unknown to the parties. The formal description is given
in Functionality 4.3.

– Finput – Secure Sharing of Inputs: This functionality captures a secure sharing
of the parties’ inputs. The formal description is given in Functionality 4.4.

– FcheckZero – Checking Equality to 0: This functionality allows callers to check
whether a given sharing is a sharing of 0 without revealing any further infor-
mation on the shared value. The formal description is given in Functional-
ity 4.5.

– Fmult – Secure Multiplication up to Additive Attacks [15,16]: This function-
ality captures a secure computation of a multiplication gate in an arithmetic
circuit, but allows an adversary to mount the so-called additive attacks. Specif-
ically, this functionality receives input sharings [x] and [y] from the honest
parties and an additive value d from the adversary, and outputs a sharing of
x · y + d. The formal description is given in Functionality 4.6.

– Fproduct – Secure Sum of Products up to Additive Attacks: This functionality
captures a secure computation for the inner product of two vectors of input
sharings. As with Fmult, security up to additive attacks is considered. The
formal description is given in Functionality 4.7.

4.2 Share Consistency Check

In this section, we present a protocol for checking the correctness of a collec-
tion of shares [x1], . . . , [xl]. The protocol outputs reject if there is an invalid or
incorrect share in [x1], . . . , [xl], and outputs accept otherwise. The protocol is
based on Protocol 3.1 from [22], and works by choosing random coefficients from
the extension field, using these to compute a linear combination of the shares
embedded in the extension field, and finally opening the resulting sharing. To
ensure no information regarding the original shares is revealed, a sharing of a
random value of the extension field is added to the linear combination of shares.
The description of the protocol is shown in Protocol 4.10. Note that, unlike [22],

Field Extension in Secret-Shared Form 353

FUNCTIONALITY 4.3 (Frand – Generating Random Shares)

Upon receiving {αi}Pi∈C from the ideal adversary S, Frand chooses a random
r ∈ K, sets [r]C = {αi}Pi∈C , and runs [r] = ([r]1, . . . , [r]n) ← Share(r, [r]C).
Then, Frand hands each honest party Pi (for i ∈ H) its share [r]i.

FUNCTIONALITY 4.4 (Finput- Sharing of Inputs)

1. Finput receives inputs v1, . . . , vM ∈ K from the parties. For each k ∈
{1, . . . , M}, Finput also receives from the ideal adversary S the corrupted
parties’ shares [vk]C for the k-th input.

2. For each k ∈ {1, . . . , M}, Finput runs [vk] = ([vk]1, . . . , [vk]n) ←
Share(vk, [vk]C).

3. For each i ∈ {1, . . . , n}, Finput sends Pi the shares ([v1]i, . . . , [vM]i).

FUNCTIONALITY 4.5 (FcheckZero – Checking Equality to 0)

FcheckZero receives [v]H from the honest parties and uses it to compute v. Then:

– If v = 0, then FcheckZero sends 0 to the ideal adversary S. Then, if S
sends reject (resp. accept), then FcheckZero sends reject (resp. accept) to
the honest parties.

– If v �= 0, then FcheckZero proceeds as follows:
• With probability 1/|K|, it sends accept to the honest parties and S.
• With probability 1 − 1/|K|, it sends reject to the honest parties and S.

the coefficients for the linear combination are chosen from the full extension field,
which allows an analysis with a better probability bound; while the original pro-
tocol from [22] will fail with probability 1

|K|−1 , our protocol fails with probability
1

|̂K| . Hence, our protocol will, in addition to allowing the failure probability to
be freely adjusted via the size of the extension field, also remain meaningful for
binary fields, for which the original protocol cannot be used.

The protocol relies on the base secret sharing scheme to be robustly-linear,
which is defined as follows.

Definition 4.8. A secret sharing scheme is robustly-linear if for every pair of
invalid shares [u] and [v], there exists a unique α ∈ K such that α[u]+[v] is valid
(when computed locally by the parties).

Note that secret sharing schemes for which there are no invalid shares, like the
Shamir secret sharing scheme, will trivially be robustly-linear.

The following lemma plays a central role in the analysis of Protocol 4.10.

Lemma 4.9. Let [u] be an incorrect sharing of a robustly-linear secret shar-
ing scheme over K, and let [[v]] be any sharing of the induced secret shar-
ing scheme over ̂K. Then, for a randomly chosen α ∈ ̂K, the probability that
α · f([u], 0, . . . , 0) + [[v]] is a correct sharing, is at most 1/|̂K|.

[Proof]. The proof proceeds by considering the possible combinations of validity,
invalidity, and value-inconsistency of [u] and [[v]], and for each combination, show

354 R. Kikuchi et al.

FUNCTIONALITY 4.6 (Fmult - Secure Mult. up to Additive Attacks)

1. Upon receiving [x]H and [y]H from the honest parties where x, y ∈ K, Fmult

computes x, y and the corrupted parties’ shares [x]C and [y]C .
2. Fmult hands [x]C and [y]C to the ideal adversary S.
3. Upon receiving d and {αi}Pi∈C from S, Fmult defines z = x · y + d and

[z]C = {αi}Pi∈C . Then, Fmult runs [z] = ([z]1, . . . , [z]n) ← Share(z, [z]C).
4. Fmult hands each honest party Pi its share [z]i.

FUNCTIONALITY 4.7 (Fproduct - Product up to Additive Attacks)

1. Upon receiving {[x�]H}L
�=1 and {[y�]H}L

�=1 from the honest parties where
x�, y� ∈ K, Fproduct computes x� and y� and the corrupted parties’ shares
[x�]C and [y�]C , for each � ∈ {1, . . . , L}.

2. Fproduct hands {[x�]C}L
�=1 and {[y�]C}L

�=1 to the ideal adversary S.
3. Upon receiving d and {αi}Pi∈C from S, Fproduct defines z =

∑L
�=1 x� ·y� +d

and [z]C = {αi}Pi∈C . Then, it runs [z] = ([z]1, . . . , [z]n) ← Share(z, [z]C).
4. Fproduct hands each honest party Pi its share [z]i.

that only a single choice of α ∈ ̂K will make [[w]] = α · f([u], 0, . . . , 0) + [[v]] a
valid sharing.

Firstly, recall that a value w ∈ ̂K can be expressed as w = w1 + w2X + · · · +
wmXm−1, where wi ∈ K, and a sharing [[w]] in the induced sharing scheme over
̂K corresponds to [[w]] = [w1] + [w2]X + · · · + [wm]Xm−1, where [wi] are shares
over K. Note that for a sharing [[w]] to be valid, each sharing [wi] for 1 ≤ i ≤ m
must be valid.

Now consider [[w]] = αf([u], 0, . . . , 0) + [[v]] for a value α ∈ ̂K, and let αi ∈ K

for 1 ≤ i ≤ m be the values defining α. Then, it must hold that [wi] = αi[u] +
[vi]. In the following, we will argue about the validity of [wi]. We consider the
following cases.

– [vi] is valid. In this case, only αi = 0 will make [wi] valid. To see this, assume
for the purpose of a contradiction, that [wi] is valid and αi �= 0. Then [u] =
α−1

i ([wi] − [vi]) will be valid due to the validity of local computations, which
contradicts the assumption in the lemma that [u] is incorrect.

– [vi] is value-inconsistent. That is, there exist sets J1 and J2 of t + 1 users
such that val([vi])J1 = v

(1)
i , val([vi])J2 = v

(2)
i , and v

(1)
i �= v

(2)
i . There are two

sub-cases to consider, [u] being value-inconsistent or invalid (recall that the
assumption in the lemma is that [u] is incorrect).

• [u] is value-inconsistent. Let val([u])J1 = u(1) and val([u]))J2 = u(2). Note
that val([wi])J1 = αiu

(1) + v
(1)
i and val([wi])J1 = αiu

(1) + v
(1)
i due to

the correctness of local operations. Now, if u(1) = u(2), it must hold
that αiu

(1) + v
(1)
i �= αiu

(2) + v
(2)
i , since v

(1)
i �= v

(2)
i . Hence, [wi] is value-

inconsistent. On the other hand, if u(1) �= u(2), only the unique value

αi = v
(2)
i −v

(1)
i

u(1)−u(2) will ensure that αiu
(1) + v

(1)
i = αiu

(2) + v
(2)
i , and thereby

make [wi] valid.

Field Extension in Secret-Shared Form 355

• [u] is invalid. Firstly, observe that αi = 0 implies that [wi] = [vi], and as
[vi] is value-inconsistent, so will be [wi]. Hence, in the following analysis
assumes that αi �= 0. Since [u] is invalid, there is a set J ′ satisfying
val([u])J ′ = ⊥. For this J ′ we claim that val([wi])J ′ = ⊥. To see this
assume that val([wi])J ′ �= ⊥. Since [vi] is value-inconsistent, val([vi])J ′ �=
⊥. Thus we have that val(α−1

i ([wi] − [vi]))J ′ = val([u])J ′ �= ⊥, which
contradicts the definition of J ′.

– [vi] is invalid. There are again two sub-cases to consider.
• [u] is value-inconsistent. This case is symmetric to the case where [vi] is

value-inconsistent and [u] is invalid. A similar analysis to the above yields
that at most a single choice of αi will make [wi] valid.

• [u] is invalid. That is, both [u] and [vi] are invalid. As the secret sharing
scheme over K is assumed to be robustly-linear, there is only a single
value αi that will make [wi] = αi[u] + [vi] valid.

As shown in the above analysis, all possible combinations of validity, value-
inconsistency, and invalidity of [u] and [vi] lead to at most a single possible
value αi that will make [wi] valid. Since α is picked uniformly at random from
̂K, the αi values are independent and uniformly distributed in K. Hence, the
probability that [[w]] is valid, which requires each [wi] to be valid, is bounded by
(1/|K|)m = 1/|̂K|. �

PROTOCOL 4.10 (Share Consistency Check)

Inputs: The parties hold l shares [x1], . . . , [xl].

Auxiliary Input: The parties hold the description of finite fields K and K̂.

The Protocol:

1. For all i ∈ [l], the parties compute [[xi]] = f([xi], 0, . . . , 0).

2. The parties call F̂coin to obtain random elements α1, . . . , αl ∈ K̂.
3. The parties call F̂rand to obtain a sharing [[r]] for a random element r ∈ K̂.
4. The parties locally compute

[[w]] = α1 · [[x1]] + . . . + αl · [[xl]] + [[r]]

5. The parties run Open([[w]]).
6. If any party aborts, the parties output reject. Otherwise, the parties output

accept.

With the above lemma in place, establishing the following result is straight-
forward.

Theorem 4.11. Assume the sharing scheme over K is robustly-linear. Then, in
Protocol 4.10, if one of the input shares [x1], . . . , [xl] is not correct, the honest
parties in the protocol will output accept with probability at most 1/|̂K|.

356 R. Kikuchi et al.

[Proof]. Assume that there is an index i ∈ [l] such that [xi] is not correct, and
note that [[v]] can be expressed as [[w]] = αif([xi], 0, . . . , 0) + [[v]], where [[v]] =
∑

j∈[l]\{i} αjf([xj], 0, . . . , 0) + [[r]]. Then, applying Lemma4.9 yields that, when

αi ∈ ̂K is picked uniformly at random, as done in the protocol, the probability
that [[w]] is correct, is at most 1/|̂K|. As Open guarantees that the honest parties
will output reject on input an incorrect share, the theorem follows. �

Similar to [22], we will not define the ideal functionality and show full security
of Protocol 4.10, as this leads to complications. For example, defining the ideal
functionality would require knowing how to generate the inconsistent messages
caused by inconsistent shares. Instead, the protocol will have to be simulated
directly when showing security of a larger protocol using Protocol 4.10 as a sub-
protocol.

4.3 Equality Check of Multiple Shares

Here, we show a simple application of our field extension technique to a proto-
col for checking that multiple shared secrets [v1], . . . , [vm] of the base field ele-
ments v1, . . . , vm ∈ K are all equal to 0. This functionality, which we denote by
FmcheckZero, is specified in Functionality 4.12. Our protocol uses the ideal func-
tionality ̂FcheckZero (Functionality 4.5) in a straightforward way, and thus the
definition of FmcheckZero incorporates an error probability from the false positive
case, namely, even if some non-zero shared secret is contained in the inputs, the
protocol outputs accept with probability at most 1/|̂K|, where ̂K is the extension
field. The formal description of our protocol appears in Protocol 4.13.

FUNCTIONALITY 4.12 (FmcheckZero — Batch-Checking Equality to 0)

FmcheckZero receives [v1]H , . . . , [vm]H from the honest parties and uses them to
compute v1, . . . , vm. Then,
1. If v1 = · · · = vm = 0, then FmcheckZero sends 0 to the ideal adversary S.

Then, if S sends reject (resp., accept), then FmcheckZero sends reject (resp.,
accept) to the honest parties.

2. If vi �= 0 for some i ∈ {1, . . . , m}, then FmcheckZero proceeds as follows:

(a) With probability 1/|K̂|, it sends accept to the honest parties and S.

(b) With probability 1− 1/|K̂|, it sends reject to the honest parties and S.

PROTOCOL 4.13 (Batch-Checking Equality to 0)

Inputs: The parties hold a sharing [v1], . . . , [vm].

The protocol:

1. The parties locally compute a “packed” share [[v̂]] = f([v1], . . . , [vm]).

2. The parties call F̂checkZero on input [[v̂]], and output whatever F̂checkZero out-
puts.

The security of Protocol 4.13 is guaranteed by the following theorem. (We
omit the proof since it is straightforward.)

Field Extension in Secret-Shared Form 357

Theorem 4.14. Protocol 4.13 securely computes FmcheckZero with abort in the
̂FcheckZero-hybrid model in the presence of active adversaries who control t < n/2
parties.

Since the efficient protocol for checking equality to zero of a finite field K

by Chida et al. [10, Protocol 3.7] in the (Frand,Fmult)-hybrid model uses the
underlying secret sharing scheme and the finite field in a black-box manner, it can
be used for checking equality to zero for an extension field ̂K in the (̂Frand, ̂Fmult)-
hybrid model. Hence, by combining this protocol with Theorem4.14, we also
obtain an efficient protocol for checking equality to zero of multiple shared secrets
in the base field K in the (̂Frand, ̂Fmult)-hybrid model.

An obvious merit of our protocol is that it can be used even if the size of
the base field K is small, i.e, |K| ≤ 2κ for an intended statistical error κ. On
the contrary, Chida et al.’s original protocol [10, Protocol 3.7] cannot be used
for small field elements. Another merit of our protocol is that by adjusting the
size of the extension field ̂K, we can flexibly reduce the error probability (i.e. the
false positive probability) that the protocol outputs accept even though some
input shares contain a non-zero secret.

Application to Password-Based Authentication. We can apply our protocol to
implement a password-based authentication protocol, such as [21]. Let us con-
sider the following scenario. A password is stored among multiple backend servers
in a linear secret sharing form. To log-in to the system the user splits his password
into shares and sends each share to each server. The servers run Protocol 4.13 to
determine whether the password sent from the user is correct (more precisely,
the servers subtract the two shares, the one sent from the user and the one
stored by themselves, and run Protocol 4.13 to determine whether the difference
between two shares is zero).

We claim that the most space-efficient way to store the password is to store
a password in a character-by-character manner. For example, if a password is
encoded by the ASCII code (8-bit represents a single character), shares of a
password is a sequence of GF(28)-shares. By running Protocol 4.13, the servers
combine GF(28)-shares into a single induced share which contains the entire
password, and check that the secret-shared bytes are all zeros. This approach
has advantages over the following alternative choices regarding storage capacity.
The first alternative is (1) to use a field sufficiently large both for storing the
password and for providing statistical security, for example, a 320-bit field. This
alternative is not efficient because we need to allocate 320 bits of storage for every
password, which may include short, say, 8-byte passwords. Another alternative

358 R. Kikuchi et al.

is (2) to use a field sufficiently large for statistical security but not necessarily
large enough for storing the password, for example, a 40-bit field. In this case,
the password will be stored by first dividing the password into a sequence of 40-
bit blocks, and then share these among the servers in a block-by-block manner.
This alternative is again not efficient, particularly in the case that the length of
a password is not a multiple of the size of a block.

4.4 Secure Computation for Arithmetic Circuits

As mentioned earlier, the original highly efficient protocol for computing arith-
metic circuits for a small finite field by Chida et al. [10, Protocol 5.3], in
fact cannot be used for a field K with |K| ≤ 3 (e.g. computation for boolean
circuits).

In this section, we show how to remove this restriction by using our field
extension technique. Namely, we propose a variant of Chida et al.’s protocol
that truly works for any finite field. The formal description of our protocol is
given in Protocol 4.16. The simple idea employed in our protocol is to perform
the computations for the randomized shares [r · x] and the equality check of the
invariant done in the verification stage, over an extension field ̂K. In contrast,
these operations are done over the base field K in Chida et al.’s original protocol.
This allows us to perform the computation of the randomized shares using only
a single element (of the extension field), while still achieving statistical security
3/|̂K|, which is a simplification compared to the protocol by Chida et al. Note
that 3/|̂K| can be chosen according to the desired statistical error by adjusting
the degree m for the field extension.

The following theorem formally guarantees the security of our protocol.

Theorem 4.15. Let κ be a statistical security parameter such that 3/|̂K| ≤ 2−κ.
Let F be an n-party functionality over K. Then, Protocol 4.16 securely computes
F with abort in the (Finput,Fmult, ̂Fmult, ̂Fproduct, ̂Frand, ̂FcheckZero)-hybrid model
with statistical error 2−κ, in the presence of active adversaries who control t <
n/2 parties.

Due to the space limitation, the formal proof of Theorem4.15 is given in the
full version.

Field Extension in Secret-Shared Form 359

PROTOCOL 4.16 (Computing Arithmetic Circuits over Any Finite K)

Inputs: Each party Pi (i ∈ {1, . . . , n}) holds an input xi ∈ K
�.

Auxiliary Input: The parties hold the description of finite fields K and ̂K with 3/|̂K| ≤
2−κ, and an arithmetic circuit C over K that computes F on inputs of length M = � · n.
Let N be the number of multiplication gates in C.

The Protocol:

1. Secret sharing the inputs: For each input vj held by the party Pi, the party Pi sends
vj to Finput. Each party Pi records its vector of shares ([v1]i, . . . , [vM]i) of all inputs,
as received from Finput. If the party received ⊥ from Finput, then it sends abort to
the other parties and halts.

2. Generate a randomizing share: The parties call ̂Frand to receive a sharing [[r̂]].
3. Randomization of inputs: For each input wire sharing [vj] (where j ∈ {1, . . . , M}), the

parties locally compute the induced share [[vj]] = f([vj], 0, . . . , 0). Then, the parties

call ̂Fmult on [[r̂]] and [[vj]] to receive [[r̂ · vj]].
4. Circuit emulation: Let G1, . . . , G|C| be a predetermined topological ordering of the

gates of the circuit C. For j = 1, . . . , |C| the parties proceed as follows:
– If Gj is an addition gate: Given pairs ([x], [[r̂ · x]]) and ([y], [[r̂ · y]]) on the left and

right input wires respectively, each party locally computes ([x + y], [[r̂ · (x + y)]]).
– If Gj is a multiplication-by-a-constant gate: Given a pair ([x], [[r̂ · x]]) on the

input wire and a constant a ∈ K, each party locally computes ([a · x], [[r̂ · (a · x)]]).
– If Gj is a multiplication gate: Given pairs ([x], [[r̂ · x]]) and ([y], [[r̂ · y]]) on the

left and right input wires respectively, the parties compute ([x · y], [[r̂ · x · y]]) as
follows:
(a) The parties call Fmult on [x] and [y] to receive [x · y].
(b) The parties locally compute the induced share [[y]] = f([y], 0, . . . , 0).
(c) The parties call ̂Fmult on [[r̂ · x]] and [[y]] to receive [[r̂ · x · y]].

5. Verification stage: Let {([zk], [[r̂ · zk]])}N
k=1 be the pairs on the output wires of the

mult. gates, and {([vj], [[r̂ · vj]])}M
j=1 be the pairs on the input wires of C.

(a) For k = 1, . . . , N , the parties call ̂Frand to receive [[α̂k]].
(b) For j = 1, . . . , M , the parties call ̂Frand to receive [[̂βj]].
(c) Compute linear combinations:

i. The parties call ̂Fproduct on vectors ([[α̂1]], . . . , [[α̂N]], [[̂β1]], . . . , [[̂βM]]) and
([[r̂ · z1]], . . . , [[r̂ · zN]], [[r̂ · v̂1]], . . . , [[r̂ · vM]]) to receive [[û]].

ii. For each k ∈ {1, . . . , N}, the parties locally compute the induced share
[[zk]] = f([zk], 0, . . . , 0) of the output wire of the k-th mult. gate. Then,
the parties call ̂Fproduct on vectors ([[α̂1]], . . . , [[α̂N]], [[̂β1]], . . . , [[̂βM]]) and
([[z1]], . . . , [[zN]], [[v1]], . . . , [[vM]]) to receive [[ŵ]].

iii. The parties run Open([[r̂]]) to receive r̂.
iv. Each party locally computes [[̂T]] = [[û]] − r̂ · [[ŵ]].
v. The parties call ̂FcheckZero on [[̂T]]. If ̂FcheckZero outputs reject, the parties

output ⊥ and abort. Else, if it outputs accept, they proceed.
6. Output reconstruction: For each output wire of C, the parties run Reconstruct([v], i)

where [v] is the sharing on the output wire, and Pi is the party whose output is on
the wire. If a party received ⊥ in any of the Reconstruct procedures, it sends ⊥ to
the other parties, outputs ⊥, and halts.

Output: If a party has not aborted, it outputs the values received on its output wires.

Acknowledgement. A part of this work was supported by JST CREST grantnumber
JPMJCR19F6.

360 R. Kikuchi et al.

References

1. Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - break-
ing the 1 billion-gate per second barrier. In: IEEE Symposium on Security and
Privacy, SP 2017 (2017)

2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: ACM CCS
2016, pp. 805–817 (2016)

3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13

5. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology (1996)

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC 1988, pp. 1–10 (1988)

7. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145 (2001)

9. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-
theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 395–426. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 14

10. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

11. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

12. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

13. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

14. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

15. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 35

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-662-48000-7_35

Field Extension in Secret-Shared Form 361

16. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure computation. In: STOC 2014, pp.
495–504 (2014)

17. Genkin, D., Ishai, Y., Weiss, M.: Binary AMD circuits from secure multiparty
computation. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 336–
366. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 14

18. Goldreich, O.: The Foundations of Cryptography - Basic Applications, vol. 2. Cam-
bridge University Press, Cambridge (2004)

19. Hirt, M.: Multi-party computation: efficient protocols, general adversaries, and
voting. Ph.D. thesis, ETH Zurich (2001)

20. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. Globecom 1987, 99–102 (1987)

21. Kikuchi, R., Chida, K., Ikarashi, D., Hamada, K.: Password-based authentica-
tion protocol for secret-sharing-based multiparty computation. IEICE Trans. 101–
A(1), 51–63 (2018)

22. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: ACM CCS 2017, pp.
259–276 (2017)

23. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

https://doi.org/10.1007/978-3-662-53641-4_14

Efficient Secure Multi-Party Protocols
for Decision Tree Classification

Atsunori Ichikawa1(B), Wakaha Ogata2 , Koki Hamada1 , and Ryo Kikuchi1

1 NTT Secure Platform Laboratories, Tokyo 180-8585, Japan
{atsunori.ichikawa.nf,koki.hamada.rb}@hco.ntt.co.jp,

kikuchi ryo@fw.ipsj.or.jp
2 Tokyo Institute of Technology, Tokyo 152-8852, Japan

ogata.w.aa@m.titech.ac.jp

Abstract. We propose novel secure multi-party protocols for decision-
tree classification. Our protocols hide not only an input vector and an
output class but also the structure of the tree, which incurs an expo-
nential communication complexity in terms of the maximum depth of
the tree, dmax, for a naive construction. We tackle this problem by
applying Oblivious RAM (ORAM) and obtain two efficient constructions
with polynomial communication complexity (that counts the number of
multiplications). The first protocol simulates ORAM in secure multi-
party computation. The communication complexity of the first protocol
is O(d3

max log dmax) in the online phase and O(d4
max log dmax) in total.

We then improve this protocol by removing the position-map accesses,
which is the most time-consuming parts in the ORAM. In the second
protocol, we reduce the communication complexity to O(d2

max log dmax)
in the online phase and O(d3

max log dmax) in total, and also reduce the
number of rounds from O(d2

max) to O(dmax). We implemented the pro-
posed two constructions and the naive one, and experimentally evaluated
their performance.

Keywords: Multi-party computation · Decision tree · Oblivious RAM

1 Introduction

Machine-learning techniques are widespread, and the need for applying them
to analyze personal information is increasing. Methods of learning a machine-
learning model from personal training data have been developed. On the other
hand, secure usage of the model to classify personal information is also an impor-
tant issue. We focus on the secure usage of a learnt model. A model we deal with
is a decision tree, which is the most common model because of its ease of handling
and readability.

We assume an outsourced service that analyzes personal information, such as
medical conditions and purchasing histories, by using a mathematical model, e.g.,
a decision tree, learnt from training data. Such a service consists of the following

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 362–380, 2019.
https://doi.org/10.1007/978-3-030-21548-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_20&domain=pdf
http://orcid.org/0000-0002-4671-4485
http://orcid.org/0000-0002-8863-6809
https://doi.org/10.1007/978-3-030-21548-4_20

Efficient Secure Multi-Party Protocols for Decision Tree Classification 363

Table 1. Comparison of asymptotic running costs to execute a secure decision tree
of each construction we investigated. On- denotes online phase of whole protocol and
Off- denotes offline phase. dmax is the maximum depth of the decision tree. Complex-
ity denotes the number of invocations of multiplication protocols in each construction.
Rounds denote number of batch invocations of multiplication protocols in each con-
struction when we can simultaneously invoke any number of multiplication protocols.

On- Complexity On- Rounds Off- Complexity Off- Rounds

Naive O(dmax · 2dmax) O(1) — —

Applying ORAM O(d3
max log dmax) O(d2

max) O(d4
max log dmax) O(d3

max)

Daisy chain O(d2
max log dmax) O(dmax) O(d3

max log dmax) O(d2
max)

four steps. (1) The mathematical model owned by a model holder (holder for
short) is passed to another entity called an agent. (2) A client sends its personal
input, which is given as an input vector, to the agent. (3) The agent computes
a class that matches the input vector based on the mathematical model. (4)
Finally, the client receives the result from the agent. For privacy preservation,
the client wishes to hide its input vector from the agent, whereas the holder
wants to hide the model from the client and the agent as it is its intellectual
property.

We approach this problem using secure multi-party computation (MPC).
MPC is a technique introduced by Yao [1] that enables multiple parties to coop-
eratively evaluate any function while keeping input and output values secret
from each party. In the service as mentioned above, the set of parties in MPC
plays the role of the agent.

Ignoring efficiency, we can solve this problem by using the following naive
approach. We store the decision tree to a sufficiently large complete tree by
padding. For evaluation, the parties privately evaluate all nodes regardless of the
evaluation results of their ancestral nodes then privately aggregate all results to
decide the leaf to which the input vector is classified. This naive approach incurs
exponential communication cost in terms of the height dmax of the complete
tree, which is intractable since dmax should be large to store any decision tree.

1.1 Our Contributions

We overcome this intractability using Oblivious RAM (ORAM) data structure.
ORAM allows a user to access (read from or write to) an element in an external
database stored in a server without disclosing the access pattern to the server.
We use MPC protocols simulating ORAM [12] to efficiently and privately read
nodes in the decision tree. As a result, we propose two constructions that run
with polynomial communication cost in terms of dmax.

Our contributions are listed as follows:

– We first propose an efficient construction of secure multi-party protocols for
decision-tree classification, which keeps both queries and decision trees secret

364 A. Ichikawa et al.

from the parties of an MPC. In contrast to the naive construction, in this
construction, the parties only evaluate the nodes located on a path from
the root to a leaf corresponding to the input, yet evaluated nodes are hidden
thanks to ORAM data structures. As a result, the communication complexity
of the classification protocols is O(d4max log dmax), which is an exponential
improvement from that of the naive construction. Communication cost is
determined as the number of invocations of a multiplication protocol, which
is one of the minimal operations in our setting.

– In this construction, the classification procedure is divided into online and
offline parts. The communication complexity of the protocol for the online
phase is O(d3max log dmax).

– We also propose Daisy Chain technique that improves the communication
complexity and rounds for sequential invocations of multi-stage ORAM.
This technique removes the position-map accesses, which are the most time-
consuming parts in the ORAM access, from each ORAM. Applying this tech-
nique to our first construction, the communication complexity is reduced from
O(d3max log dmax) to O(d2max log dmax) for the online phase. The communica-
tion rounds are also reduced from O(d2max) to O(dmax) for the online phase.

– We implement the naive construction and the proposed constructions and
experimentally evaluate their performances.

We give an overview of communication complexity and communication
rounds of these constructions in Table 1.

1.2 Related Work

Recent studies [3,9,10,14] investigated algorithms that can be applied to
decision-tree classification in MPC under a slightly different assumption from
ours. They hide the input vector from the parties in MPC but the information
about the decision tree is assumed to be public to the parties. Bost et al. inves-
tigated methods using homomorphic encryption to classify information securely
by using a decision tree [14], and Wu et al. [3] and Backes et al. [10] each extended
it for a random forest. Hamada et al. [9] converted Fisher’s Exact Test to a form
of a decision tree and proposed a method of computing it by using MPC.

In the context of privacy-preserving data mining, a secure-machine learning
algorithm for a decision tree model was introduced by Lindell and Pinkas [17].
Our work is motivated by this but focused on how to use a constructed classifier
securely, not how to construct a classifier.

2 Preliminary

2.1 Decision Tree

A decision tree is a tree-structured model used to classify a given input vector
X = (X1, . . . , Xn). Classification in this model is based on a tree, which is also

Efficient Secure Multi-Party Protocols for Decision Tree Classification 365

called a decision tree, each internal node of which is assigned a test function,
and each leaf node is assigned a class.

We assume that each test function is a predicate [Xt =? V] or [Xt <? V] for
t ∈ {1, . . . , n}. Each internal node is a tuple of values ((d, i),P,CL,CR, t, V, op):
(d, i) means the node is the ith element at depth d. P, CL, and CR denote indices
of the parent, left child, and right child nodes respectively. t denotes an index
of the input vector to be compared. V denotes the threshold to be compared.
op designates the operator where op = 0 means equality test and op = 1 means
comparison test. When the left (resp. right) child of Nd,i is a leaf Lj , CL (resp.
CR) is set to j. For notational clarity, we often omit (d, i), P, CL, and CR if they
are apparent.

Each leaf is a tuple of values (j,P,Class): j is the index of the leaf Lj , P
denotes the index of the parent, and Class denotes the class corresponding to
the leaf. For the same reason as above, we often omit j and P.

We specify a decision tree Tree by a triple (dmax,N ,L), where dmax is the
maximum depth of internal nodes, N is a set of all internal nodes, and L is a
set of all leaves. The size of a decision tree means the number of nodes |N |.

Tree classifies an input vector X in the following manner. Test X at the root
node N0,0 = ((0, 0),⊥, (1, 0), (1, 1), t0,0, V0,0, op0,0) 1 and obtain the result of a
test function: z0 ← [Xt0,0 =? V0,0] if op0,0 = 0; otherwise, z0 ← [Xt0,0 <? V0,0].
If z0 = 0, proceed to the left child node N1,0; otherwise, proceed to the right
child node N1,1. After that, repeat the same procedures at the child node until
reaching one of the leaf nodes. The output is an assigned Class of the leaf. We
can obtain Class with at most dmax + 1 comparisons. We assume that all Vd,i

are integers, and can be expressed with a fixed length.

2.2 Secret Sharing Scheme

Secret Sharing Scheme (SSS), invented by Shamir [2] and Blakley [6], is a tech-
nique to share a secret and store it securely. In SSS, a dealer of a secret value s
converts it to n fractions by function share (s). Each fraction is called a secret-
shared value, or simply a share, and n shares are sent to n parties one by one.
We use [[s]] to denote a list of n shares of s. When parties want to reconstruct s
together, they can obtain it from (a subset of) n shares by function Reveal([[s]]).
When s is an element of a finite field and [[s]] is obtained from s and random
elements of this field by linear mapping, this is called the Linear Secret Sharing
Scheme (LSSS). Examples of the LSSS are given in previous studies [2,6,11].

2.3 Secure Multi-Party Computation

Secure Multi-Party Computation (MPC) enables us to compute any arithmetic
function while hiding information of inputs. It is known that multi-party addi-
tion/multiplication protocols based on the LSSS can be constructed [15]. I.e.,
[[X]] + [[Y]] → [[X + Y]] and [[X]] · [[Y]] → [[X · Y]].

1 ⊥ means that there is no corresponding node, and the depth d starts from 0.

366 A. Ichikawa et al.

Building blocks. We assume the following secure protocols based on MPC:

– [[x̄]] → [[1 − x]] denotes the inverse for x ∈ {0, 1}.
– [[x]] ∨ [[y]] → [[x ∨ y]] denotes OR operation for x, y ∈ {0, 1}.
– Comp([[X]], [[Y]], [[op]]) → [[b]] compares two secrets X and Y while hiding

operator op. That is, [[b]] = [[X =? Y]] · [[op]] + [[X <? Y]] · [[op]].
– LinearAccess([[T]], [[U]]) → [[Ut]]

gets a secret element [[Ut]] from a secret vector [[U]] = ([[U1]], . . . , [[Um]]). Vector
T = (0, . . . , 0, 1, 0, . . . , 0), called tag vector of t, of length m indicates t, such
that only the tth element is set to be 1.

– IfElse([[c]], [[a]], [[b]]) → [[x]] denotes branching for c ∈ {0, 1}. It outputs a share
[[x]] s.t. x = a if c = 1; otherwise x = b. This protocol is implemented as
[[a]] + [[c]] · ([[b]] − [[a]]) [12].

Comp can be straightforwardly built from a known comparison protocol,
e.g. [16]. If we assume that the sizes of X and Y is fixed, we can evaluate
Comp([[X]], [[Y]], [[op]]) by O(1) multiplications. LinearAccess can be obtained
from a simple inner product of [[T]] and [[U]], that is, parallel m multiplications.

We also assume RandomPos(Oram), Oram.Init,Oram.Read, and Oram.
Write as building blocks. They are predicated in the following section.

2.4 Oblivious RAM

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [13], is a
system that enables us to securely access an external storage. It can hide not
only the data but also the access pattern queried by a user.

Path ORAM. The Path ORAM is an efficient ORAM proposed by Shi et al. [4]
and improved by Stefanov et al. [5]. In the Path ORAM, the storage is assumed
to have a binary tree structure, and some meta-data associated with a leaf of
the tree are attached to data to be stored into the Path ORAM. We call a tuple
composed of data and meta-data an Entry.

Keller et al. [12] proposed MPC protocols for maintaining a distributed stor-
age that operates as the Path ORAM. In the following, we use a term “Path
ORAM” or simply “ORAM” to indicate this MPC -based protocols.

The whole system of the Path ORAM Oram includes distributed mem-
ory structures (B,S,P). Remember that all values in B,S,P are secret-shared
between parties.

– B is storage having a binary tree structure, each node of which holds a certain
number of entries. Each entry includes three types of meta-data: its index u,
position p, and empty flag. The p indicates where the entry should be located
in B, i.e., p corresponds to a random path (or equivalently random leaf).
empty flag indicates whether the entry is a dummy. We omit it since we do
not use it in the summaries of our protocols. Thus, an entry is denoted as
Entry = ([[u]], [[Data]], [[p]]).

Efficient Secure Multi-Party Protocols for Decision Tree Classification 367

– S is an array that holds entries overflowed from B.
– P, called position map, is a structure that holds pairs ([[ui]], [[pi]]) for all i ∈

{1, . . . , N}, where N is the number of entries. This structure is used to obtain
the position pi to access an entry of index ui. There are two cases of setting
up P: non-recursive and recursive [5]. In the non-recursive case, P is an array
of size N . In the recursive case, P is stored into other smaller Path ORAMs
and can be accessed more efficiently. In this paper, we follow Keller et al. [12]
and assume that the recursions occur O(logN) times, i.e., Oram has small
O(logN) Path ORAMs as P.

To handle these data structures, Oram has an initialization protocol and
access protocols.

– Oram.Init(N) initializes Oram. For a given number of entries N , it first builds
B as a complete binary tree of maximum depth �logN� − 2 2 and fills B and
S by dummy entries. Then it constructs P.

For an access procedure to the Path ORAM, Access was prepared [5]. Keller
et al. [12] split it into two protocols ReadAndRemove and Add, that is, corre-
sponding to the former and latter parts of Access. For simplicity, we recompose
these protocols into Read and Write as follows.

– Oram.Read([[u]]) pops Entry of index u and removes it from Oram. This con-
sists of the following two subprotocols: posRead([[u]]) that obtains a position
[[p]] associated with [[u]] from P, and npRead([[u]], [[p]]) that explores the path
indicated by p to obtain Entry.

– Oram.Write(Entry) stores Entry into Oram. This consists of the following
two subprotocols: posRenew(Entry) that replaces the current [[p]] in both
Entry and P with new [[p′]], which is randomly generated using subprotocol
RandomPos(Oram), and npWrite(Entry) that stores Entry into the root of
B and runs an eviction process. RandomPos can be obtained from a secure
random number generator, e.g., described in [7].

3 System Model

There are three types of participants: client that has an input vector X to
be classified, holder that has a decision tree (dmax,N ,L), and agent that is
delegated classification by the holder.

We consider a secure delegation for a decision tree classification. The client
requires a classification result of the decision tree with its input. The holder
provides classification service by using its decision tree, however, must delegate
the service itself to the agent. If there is no privacy/secret information, it is easy
to meet these requirements by sending the client’s input and holder’s tree to the

2 In theory, we need the maximum depth �log N� − 1, but in practice, �log N� − 2 is
sufficient, as in [5].

368 A. Ichikawa et al.

agent. However, both types of information can contain private information of
the client and holder; therefore, they should be kept secret.

We use secret-sharing-based MPC to delegate the classification while both
the input and decision tree are kept secret. We assume the agent consists of n
servers3 in this paper. Our approach to securely delegate the classification is as
follows:

1. The holder secretly shares a decision tree to the (agent) servers.
2. The client secretly shares its input to the servers.
3. The servers securely compute shares of the classification result by using shares

of the decision tree and the input.
4. The servers send the shares of the classification result to the client.
5. The client reconstructs the classification result from the sent shares.

We can easily confirm that privacy of the client’s input is immediately
reduced to the underlying secret sharing and MPC. However, the privacy of
the decision tree is a bit complicated. The decision tree contains information
about not only a test function, e.g., [Xt < 10], but also the structure of the tree,
e.g., the topology of the tree. Such a structure can contain secret information,
for example, how many elements in an input vector are used for classification.
Therefore, we try to hide not only a test function but also the structure of the
tree.

3.1 Hiding Structure of Decision Tree

We try to hide information of a decision tree except the upper bound of the
maximum depth ˜dmax. Recall a decision tree consists of (dmax,N ,L), and each
node Nd,i in N contains ((d, i),Pd,i,CLd,i,CRd,i, td,i, Vd,i, opd,i). The holder can
secretly share each Class in L and (t, V, op) node-by-node to hide the label and
a test function straightforwardly. However, the holder cannot do the same for
((d, i),P,CL,CR) since they are essential for the servers to securely compute
a decision tree; otherwise, the servers cannot specify which node they should
securely compute in the next.

To prevent information leakage from ((d, i),P,CL,CR), a holder uses a
padding algorithm. Let ˜dmax be an upper bound of the tree depth. In the padding
algorithm, the holder generates the complete tree of size 2˜dmax+1 − 1 while
maintaining classification results. Figure 1 shows an example of ˜dmax = 2. The
non-existent nodes ˜N1,1, ˜N2,2, and ˜N2,3 are inserted in the complete tree. The
holder sets ˜N1,1 = ((d, i),P,CL,CR, t, V, op) = ((1, 1), (0, 0), (2, 2), (2, 3), 0, 0, 0),
and sets ˜N2,2 and ˜N2,3 in the same manner. Finally, the holder replicates the
leaf L4 = (4, (0, 0),Class4) to leaves ˜Lj = (j, (2, 	j/2
),Class4) for 4 ≤ j ≤ 7.
Since all ˜Lj have the same Class4, the classification results are maintained.

After generating the complete tree, the holder distributes the tree
(˜dmax,N ,L) to the servers via SSS. All (t, V, op) of nodes and Class of leaves are

3 The holder can be one of the servers.

Efficient Secure Multi-Party Protocols for Decision Tree Classification 369

Fig. 1. An example of padding algorithm.

secret-shared, and ˜dmax, (d, i), j,P,CL and CR are not. Since the tree is complete,
these indices do not leak the tree structure except for an upper bound of depth
˜dmax.

3.2 Security Requirement

We consider security against passive adversaries. An adversary can corrupt up to
k − 1 servers and either the client or holder. There are three cases according
to which participant an adversary corrupts. If an adversary corrupts a client,
information about the tree except for ˜dmax and the classification result should
be kept secret. If an adversary corrupts a holder, an input vector should be kept
secret. If an adversary corrupts only servers, both the model except ˜dmax, and
the input vector should be kept secret.

3.3 Complexity

Computational cost is affected by the number of multiplications because a secure
multiplication protocol based on MPC requires communication. Thus, we indi-
cate the cost of a protocol by (communication) complexity and (communication)
rounds, that is, the number of invocations/batch invocations of multiplication
protocols.

4 Naive Construction for Secure Classification

In this section, we discuss a naive construction for a secure decision tree classi-
fication. This consists of two protocols: a initialization protocol NaiveInit and
a classification protocol NaiveClassify.

NaiveInit described in Protocol 1 shares a padded decision tree of maximum
depth dmax across servers. For all nodes Nd,i, Td,i denotes a tag vector of td,i.
All Share(·) are executed by the holder that has Tree. Note that the holder
is involved in only initialization. For simplicity, we use Share(T) as a vector
T = (t1, t2, . . .) to obtain ([[t1]], [[t2]], . . .). We similarly use Share(a, b, . . .) to
obtain ([[a]], [[b]], . . .), in the following.

370 A. Ichikawa et al.

Protocol 1
NaiveInit(Tree) → [[Tree]]
Input: A padded decision tree Tree = (dmax, N , L).
Output: A naive secure classifier [[Tree]].
1: for all Nd,i ∈ N do
2: [[Nd,i]] ← ((d, i),Pd,i,CLd,i,CRd,i,Share(Td,i),Share(Vd,i),Share(opd,i))
3: end for
4: for all Lj ∈ L do
5: [[Lj]] ← (j,Pj ,Share(Class))
6: end for
7: [[N]] ← ([[N0,0]], . . . , [[Ndmax,2dmax−1]])
8: [[L]] ← ([[L0]], . . . , [[L|L|]])
9: return [[Tree]] ← (dmax, [[N]], [[L]])

Protocol 2
NodeComp([[N]], [[X]]) → [[b]]
Input: A secret node [[N]] and secret vector [[X]].
Output: A secret comparison result [[b]].
1: [[Xt]] ← LinearAccess([[T]], [[X]])
2: [[b]] ← Comp([[Xt]], [[V]], [[op]]) � Note that [[N]] includes [[T]], [[V]], [[op]].

When given a secret-shared input vector [[X]] = ([[X0]], . . . , [[Xm]]), servers
execute Protocol 3 to secretly compute the output. In this protocol, compar-
isons for all nodes of the decision tree are evaluated using subprotocol Node-
Comp in parallel (lines 1–3), and the comparison results are merged along paths
from the root to each leaf (lines 4–15). In line 6 of d = dmax, for all leaves
Lj = (j,Pj , [[Classj]]), we obtain the parent index (dmax, idmax

) = Pj . Next, we
compare index j to CLdmax,idmax

for recognizing whether Lj is the left or right
child of Ndmax,idmax

. If CLdmax,idmax
= j, then we have to hold the inverse of

the comparison result as [[pathj,dmax
]]; otherwise, we hold the comparison result.

We follow the path to N0,0 in the same manner, and finally obtain the merged
comparison result [[pathj]] for Lj , that is, the total product of [[pathj,d]].

We assume that the length of vector X is O(dmax), and thus NodeComp
has O(dmax) complexity and O(1) rounds. Protocol 3 has constant rounds since
the total product can be evaluated in O(1) rounds [8], which is the best in this
sense. However, its complexity is exponential in dmax, i.e., O(dmax ·2dmax), since
the size of a padded decision tree with maximum depth dmax is O(2dmax).

Security. If the adversary corrupts:

the client, then only output Class is revealed.
the holder, then no information leaks because the holder does not observe

anything except the tree.
the servers, it does not leak any information about both the input and tree

because they only execute secure multiplications, Comp, and LinearAccess.

Therefore, this construction satisfies the security requirement.

Efficient Secure Multi-Party Protocols for Decision Tree Classification 371

Protocol 3
NaiveClassify([[Tree]], [[X]]) → [[Class]]
Input: A secure classifier [[Tree]] and a secret input vector [[X]].
Output: A secret class [[Class]].
1: for all [[Nd,i]] ∈ [[N]] do
2: [[bd,i]] ← NodeComp([[Nd,i]], [[X]])
3: end for
4: for all [[Lj]] ∈ [[L]] do
5: for d = dmax to 0 do
6: (d, id) ← Pd+1,id+1 � If d = dmax, use Pj of Lj instead of Pd+1,id+1 .
7: if CLd,id = (d + 1, id+1) then � If d = dmax, use j instead of (d + 1, id+1)
8: [[pathj,d]] ← [[bd,id]]
9: else

10: [[pathj,d]] ← [[bd,id]]
11: end if
12: end for
13: [[pathj]] ← ∏

d[[pathj,d]]
14: [[Outputj]] ← [[Classj]] · [[pathj]]
15: end for
16: return [[Class]] ← ∑

j [[Outputj]]

5 Applying the Path ORAM to Naive Construction

All nodes are compared to hide the actually used path, which makes the naive
construction very inefficient. How can we overcome the exponential computa-
tions?

Our idea is applying ORAM to hide which node is actually evaluated at each
depth. More precisely, we store the data (such as T d,i, Vd,i, opd,i) of all nodes at
the same depth into ORAM. Then, even if only one node is evaluated, servers
have no information about which node is actually evaluated at this depth. We
use the Path ORAM investigated by Keller et al. [12] as an instantiation of
ORAM because of its expandability and efficiency.

We describe our first proposed construction protocols which use the Path
ORAM as follows.

In Protocol 6, we show the initialization procedure that secret-shares Tree
and stores it into dmax − 1 Path ORAMs, Oram3, . . . ,Oramdmax

, and OramL. In
this construction, we make nodes at depth < 3 to be a naive secure classifier
because the Path ORAM is inefficient for a small data set. Note that we can
change this depth arbitrarily.

All leaves Lj are first stored into OramL by using Protocol 4. Different from
the naive construction, the indices j of Lj are secret-shared and assigned to the
indices of Entryj .

372 A. Ichikawa et al.

Next, by using Protocol 5, nodes Ndmax,i at depth dmax are stored in
Oramdmax

. In this process, we need additional information, next indices u0
dmax,i

and u1
dmax,i

. These indices correspond to CLdmax,i and CRdmax,i, but secret-shared
in this construction. Similarly, nodes Nd,i at depth d are stored into Oramd,
depth-by-depth. Each ub

d,i can also be obtained from 2i + b.

Protocol 4
OramInitLeaves(L) → OramL

Input: Leaves L of a decision tree.
Output: The Path ORAM OramL that holds L.
1: OramL.Init(|L|)
2: for all Lj ∈ L do
3: [[Classj]] ← Share(Classj)
4: [[j]] ← Share(j)
5: Entryj ← ([[j]], [[Classj]], [[0]])
6: OramL.Write(Entryj)
7: end for
8: return OramL

Protocol 5
OramInitNodes(Nd) → Oramd

Input: Nodes N of a decision tree.
Output: The Path ORAM Oramd that holds Nd.
1: Oramd.Init(|Nd|)
2: for all Nd,i ∈ Nd do
3: [[Nd,i]] ← Share(Td,i , Vd,i, opd,i, u

0
d,i, u

1
d,i) � ub

d,i = 2i + b
4: [[i]] ← Share(i)
5: Entryd,i ← ([[i]], [[Nd,i]], [[0]])
6: Oramd.Write(Entryd,i)
7: end for
8: return Oramd

We finally construct a naive [[Tree2]] of maximum depth 2 that classifies input
into a class j, that is, the indices of N3,j .

To make a response to clients faster, we split a classification protocol into
two protocols: an online protocol that is run triggered by a client’s input, and
an offline one that runs a clearing up process after each execution of the online
protocol. Remember that one data access in ORAM is divided into Read and
Write. In the online protocol, we can obtain all required data before Write
because each Path ORAM is accessed only once. Therefore, only Read is per-
formed in the online protocol, and all Write is done after the classification result
has been returned to the client.

Efficient Secure Multi-Party Protocols for Decision Tree Classification 373

Protocol 6
OramInit(Tree) → [[Tree]]Oram

Input: A decision tree Tree.
Output: A secure classifier [[Tree]]Oram consisting of dmax − 1 Path ORAMs.
1: OramL ← OramInitLeaves(L)
2: for d = dmax to 3 do
3: Oramd ← OramInitNodes(Nd) � Nd ⊆ N includes all Nd,i at depth d.
4: end for
5: for j = 0 to 7 do � Convert indices of N3,j to leaves of the naive construction.
6: L3,j ← (j, (2, �j/2), j) � Done by the holder.
7: end for
8: [[Tree2]] ← NaiveInit(2, (Nd,i)0≤d≤2, (L3,j)0≤j≤7)
9: return [[Tree]]Oram ← ([[Tree2]], (Oramd)3≤d≤dmax ,OramL)

The online protocol is described in Protocol 7. It enables us to classify an
input with only dmax + 5 comparisons, and dmax − 1 Read accesses of ORAM.
These numbers come from that we can decide the needed one of two chil-
dren from the comparison result bd (line 7). Since Oramd.Read has O(d2 log d)
complexity and O(d2) rounds, we can find the complexity of Protocol 7 to be
O(d3max log dmax), and the rounds to be O(d3max).

Protocol 7
OramClassify-Online([[Tree]]Oram, [[X]]) → [[Classresult]]
Input: A secure classifier [[Tree]]Oram and secret input vector [[X]].
Output: A secret class [[Classresult]].
1: [[u2]] ← NaiveClassify([[Tree2]], [[X]])
2: for d = 3 to dmax do
3: Entryd ← Oramd.Read([[ud−1]]) � Entryd includes [[Nd]]
4: [[bd]] ← NodeComp([[Nd]], [[X]])
5: [[ud]] ← IfElse([[u1

d]], [[u
0
d]], [[bd]])

6: end for
7: Entryresult ← OramL.Read([[udmax]]) � Entryresult includes [[Classresult]]
8: return [[Classresult]]

The offline protocol is described in Protocol 8. In this protocol, all used
data are restored in re-randomized positions of Path ORAMs to prepare for
the next classification. This procedure must be executed after each execution of
OramClassify-Online. The offline protocol has O(d4max log dmax) comprexity
and O(d3max) rounds because Oramd.Write has O(d3 log d) complexity and O(d2)
rounds.

Security. If the adversary corrupts:

the client, then only [[Classresult]] is revealed.

374 A. Ichikawa et al.

Protocol 8
OramClassify-Offline([[Tree]]Oram,Entryresult, (Entryd)3≤d≤dmax

) → [[Tree]]Oram

Input: [[Tree]]Oram and entries of Oram3, . . . ,Oramdmax and OramL.
Output: Refreshed [[Tree]]Oram.
1: OramL.Write(Entryresult)
2: for d = dmax to 3 do
3: Oramd.Write(Entryd)
4: end for
5: return [[Tree]]Oram ← ([[Tree2]], (Oramd)3≤d≤dmax ,OramL)

the holder, then no information leaks because the holder does not observe
anything except the tree.
the servers, it does not leak any information about both the input and tree
because they only execute secure multiplications, Comp, LinearAccess, and
access protocols for Oram.

Therefore, this construction satisfies the security requirement.

6 Efficient Construction for Secure Classification: Daisy
Chain Construction

Though the construction shown in Sect. 5 reduces the exponential complexity
of the naive classification protocol to polynomial, it is still inefficient. In this
section, we discuss our second proposed construction, Daisy Chain Construction
in which ORAMs are chained one after another. It can classify the input more
efficiently than the previous ones.

6.1 Avoidance of Handling Position Maps

MPC simulating ORAM generally incurs massive communication cost, especially
in handling a position map. Note, that the position map is necessary to satisfy
obliviousness if we want to freely access the entire domain of ORAM. In decision
tree classifications, however, we want to access one of two entries of Oramd, that
is, corresponding to the left or right child of the node we obtain from Oramd−1.
Therefore, instead of maintaining a position map as a large data structure, the
position information of Oramd can be distributed to each entry of Oramd−1. This
modification enables us to avoid handling position maps, and reduce complexity
and rounds.

To implement this idea, we use three procedures: npInit, npRead and
npWrite. I.e.,

Oram.npInit(N): construct and initialize the Path ORAM as Oram =
(B,S,NULL).

Efficient Secure Multi-Party Protocols for Decision Tree Classification 375

Oram.npRead([[u]], [[p]]): read and remove an entry whose index is u and
position is p. This is equal to the latter subprotocol of Read, and has
O(logN log logN) complexity and O(1) rounds where N entries stored into
Oram.

Oram.npWrite(Entry): write back Entry into Oram without re-randomizing. This
is equal to the latter subprotocol of Write, and has O(log2 N log logN) com-
plexity and O(logN) rounds.

To maintain the correctness of reading/writing, we have to control positions
adequately by explicitly specifying and re-randomizing them.

6.2 Daisy Chain Construction

Daisy Chain Construction consists of three protocols: DcInit for initialization,
DcClassify-Online for classification, and DcClassify-Offline for refreshing
ORAMs.

Protocol 9
DcInitLeaves(L) → (OramL, ([[pj]])j<|L|)
Input: Leaves L of a decision tree.
Output: The Path ORAM OramL of P = NULL and an array ([[pj]])j<|L| of positions.
1: OramL.npInit(|L|)
2: for all Lj ∈ L do
3: [[Classj]] ← Share(Classj)
4: [[j]] ← Share(j)
5: [[pj]] ← RandomPos(OramL) � Choose a random position of OramL

6: Entryj ← ([[j]], [[Classj]], [[pj]])
7: OramL.npWrite(Entryj)
8: end for
9: return (OramL, ([[pj]])j<|L|)

DcInit, described in Protocol 11, stores a padded decision tree into Path
ORAMs. This is different from OramInit regarding the following points:

– In subprotocols Protocols 9 and 10, the position of each leaf and inner node is
explicitly chosen randomly because npWrite does not set a random position
in each entry.

– The positions of OramL chosen in Protocol 9 are not stored into a position
map but in an entry associated with the parent node. More precisely, each
entry of Oramdmax

includes not only next indices u0, u1 but also additional
information p0, p1 that we call next positions. If we assume the children of
the node associated with this entry are leaves Lu0 and Lu1 , then class Classu0

(resp. Classu1) is in position p0 (resp. p1) of OramL.
– Similarly, in lines 2–4 of Protocol 11, the position information of Oramd+1 is

added to the parent entry stored in Oramd.

376 A. Ichikawa et al.

– The same as with Protocol 6, nodes at depth 2 or lower are shared as [[Tree2]],
but each leaf includes the next position p3,j .

We easily confirm that no position map is used in this procedure.

Protocol 10
DcInitNodes(Nd, ([[pj]])) → (Oramd, ([[pd,i]]))
Input: Nodes Nd of a decision tree and an array ([[pj]]) of positions.
Output: The Path ORAM Oramd and an array ([[pd,i]]) of positions.
1: Oramd.npInit(|Nd|)
2: for all Nd,i ∈ Nd do
3: [[Nd,i]] ← Share(Td,i , Vd,i, opd,i, u

0
d,i, u

1
d,i, p

0
d,i = 0, p1

d,i = 0) � ub
d,i = 2i + b

4: replace [[pb
d,i]] in [[Nd,i]] with [[p2i+b]]. � [[p2i+b]] is an element of input ([[pj]]).

5: [[i]] ← Share(i)
6: [[pd,i]] ← RandomPos(Oramd) � Choose a random position of Oramd.
7: Entryd,i ← ([[i]], [[Nd,i]], [[pd,i]])
8: Oramd.npWrite(Entryd,i)
9: end for

10: return (Oramd, ([[pd,i]]))

Protocol 11
DcInit(Tree) → [[Tree]]DC

Input: A decision tree Tree.
Output: A secure classifier [[Tree]]DC consisting of daisy-chained Path ORAMs.
1: (OramL, ([[pL,j]])j<|L|) ← DcInitLeaves(L)
2: for d = dmax to 3 do � If d = dmax, then use ([[pL,j]]) instead of ([[pd+1,i]]).
3: (Oramd, ([[pd,i]])) ← DcInitNodes(Nd, ([[pd+1,i]]))
4: end for
5: for j = 0 to 7 do � Convert indices and positions of N3,j to leaves.
6: L3,j ← (j, (2, �j/2), (j, pj = 0)) � Done by the holder.
7: end for
8: [[Tree2]] ← NaiveInit(2, (Nd,i)0≤d≤2, (L3,j)0≤j≤7)
9: replace each [[pj]] of [[Tree2]] by [[p3,j]].

10: return [[Tree]]DC ← ([[Tree2]], (Oramd)3≤d≤dmax ,OramL)

The online protocol DcClassify-Online is described in Protocol 12. This is
different from OramClassify-Online regarding the following point:

– In each access to ORAM, instead of searching the position map, we determine
the position of the next (child) node by choosing one of two next positions in
the parent entry (lines 4 and 9 of Protocol 12).

Protocol 12 has O(d2max log dmax) complexity and O(dmax) rounds.
Protocol 13, the re-randomization process, is somewhat complicated.

Efficient Secure Multi-Party Protocols for Decision Tree Classification 377

Protocol 12
DcClassify-Online([[Tree]]DC, [[X]]) → [[Classresult]]
Input: A Daisy-Chained tree [[Tree]]DC and secret input vector [[X]]
Output: A secret class [[Classresult]]
1: ([[u2]], [[p2]]) ← NaiveClassify([[Tree2]], [[X]])

� In this process, servers hold each [[pathj]] (0 ≤ j ≤ 7) in NaiveClassify.
2: for d = 3 to dmax do
3: Entryd ← Oramd.npRead([[ud−1]], [[pd−1]])
4: [[bd]] ← NodeComp([[Nd]], [[X]]) � Servers hold each [[bd]].
5: [[ud]] ← IfElse([[u1

d]], [[u
0
d]], [[bd]])

6: [[pd]] ← IfElse([[p1
d]], [[p

0
d]], [[bd]])

7: end for
8: Entryresult ← OramL.npRead([[udmax]], [[pdmax]])
9: return [[Classresult]]

– Before writing back each entry by using npWrite, a new position is randomly
chosen secretly, and the entry’s position is renewed by the new one (lines 1
and 7).

– One of two next positions in the parent entry is also replaced with the new
position of the child (lines 5–6).

– Finally, we must replace the first next position, that is, a leaf of [[Tree2]] cor-
responding to pathj = 1 (lines 11–13).

Those procedures correspond to re-randomization of a position map on Path
ORAM. Protocol 13 has O(d3max log dmax) complexity and O(d2max) rounds.

6.3 Security

If we assume the existence of Oram, we can straightforwardly obtain secure
npInit, npRead and npWrite. In this construction, if the adversary corrupts

the client, then only [[Classresult]] is revealed.
the holder, then no information leaks because the holder does not observe

anything except the tree.
the servers, it does not leak any information about both the input and tree

because they only execute secure multiplications, Comp, LinearAccess,
RandomPos, npRead, and npWrite.

Therefore, this construction satisfies the security requirement.

7 Evaluation

We compared the efficiency of the naive construction (Sect. 4), one that uses the
Path ORAM (Sect. 5), and Daisy Chain Construction (Sect. 6).

378 A. Ichikawa et al.

0

5

10

15

20

25

30

35

40

45

50

N
ai

ve

Pa
th

 O
R

A
M

D
ai

sy
 C

ha
in

N
ai

ve

Pa
th

 O
R

A
M

D
ai

sy
 C

ha
in

N
ai

ve

Pa
th

 O
R

A
M

D
ai

sy
 C

ha
in

N
ai

ve

Pa
th

 O
R

A
M

D
ai

sy
 C

ha
in

N
ai

ve

Pa
th

 O
R

A
M

D
ai

sy
 C

ha
in

N
ai

ve

Pa
th

 O
R

A
M

D
ai

sy
 C

ha
in

4 5 6 7 8 9

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Daisy Chain Offline

Path ORAM Offline

Daisy Chain Online

Path ORAM Online

Naive

Fig. 2. Running time of three constructions for complete binary decision tree of depth
dmax

Efficient Secure Multi-Party Protocols for Decision Tree Classification 379

Protocol 13
DcClassify-Offline([[Tree]]DC,Entryresult, (Entryd), ([[bd]]), ([[pathj]])) → [[Tree]]DC

Input: [[Tree]]DC, each entries, [[bd]] and [[pathj]] held in Protocol 12.
Output: Refreshed [[Tree]]DC.
1: [[p′

result]] ← RandomPos(OramL) � Re-randomize a position of Entryresult.
2: replace [[presult]] in Entryresult with [[p′

result]].
3: OramL.npWrite(Entryresult)
4: for d = dmax to 3 do � Renew next positions then store Entryd.
5: [[p0

d]] ← IfElse([[p0
d]], [[p

′
d+1]], [[bd]])

6: [[p1
d]] ← IfElse([[p′

d+1]], [[p
1
d]], [[bd]])

� If d = dmax then use [[p′
result]] instead of [[p′

d+1]].
7: [[p′

d]] ← RandomPos(Oramd)
8: replace [[pd]] in Entryd with [[p′

d]].
9: Oramd.npWrite(Entryd)

10: end for
11: for all [[L3,j]] of [[Tree2]] do
12: [[pj]] ← IfElse([[p′]], [[pj]], [[pathj]]) � Replace pj that corresponds to pathj = 1.
13: end for
14: return [[Tree]]DC ← ([[Tree2]], (Oramd)3≤d≤dmax ,OramL)

All codes we implemented were compiled using gcc version 4.8.5 (C++14).
We used three machines (CentOS Linux release 7.2.1511, Intel Core i7 6900K,
32 GB memory) connected to each other by a 1-Gbps LAN. All reported times
of each protocol are the running times to classify one input vector.

We used the parameters of each Path ORAM shown in previous studies [5,
12]: the bucket size was 4, and the stash size was 12, which satisfy a security
parameter 16. If we want to increase the security parameter, we need a larger
stash, but this modification has little effects on running time.

Figure 2 shows the running times of the three constructions for each dmax.
Recall that we focused on a complete binary decision tree. The number of nodes
was 2dmax+1−1 in each dmax. We assume that all elements in the input vector and
values compared in each node are in GF (28). We found that, in any dmax ≥ 4,
Daisy Chain Construction responded faster than the others. Furthermore, the
entire protocol (online + offline) is more efficient than the naive construction in
dmax ≥ 8.

8 Conclusion

We proposed efficient, secure protocols for decision tree classification based on
MPC. They enable a model holder to delegate a classification service to servers
while hiding information about the decision tree and clients to demand classifi-
cation while preserving privacy. They can classify the input in polynomial time,
in contrast to the naive one that costs us exponential time. We evaluated the
running times of the three constructions for secure classification. The simula-
tion results indicate that Daisy Chain Construction is the most efficient for a
complete binary decision tree that is enlarged to hide its topology.

380 A. Ichikawa et al.

References

1. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd FOCS, pp.
160–164 (1982)

2. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
3. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.E.: Privately evaluating decision trees

and random forests. PoPETs 2016(4), 335–355 (2016)
4. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)

worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 11

5. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol.
In: CCS, pp. 299–310 (2013)

6. Blakley, G.R.: Safeguarding cryptographic keys. In: National Computer Confer-
ence, pp. 313–317. American Federation of Information Processing Societies Pro-
ceedings (1979)

7. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

8. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 15

9. Hamada, K., Hasegawa, S., Misawa, K., Chida, K., Ogishima, S., Nagasaki, M.:
Privacy-preserving fisher’s exact test for genome-wide association study. In: Inter-
national Workshop on Genome Privacy and Security (GenoPri) (2017)

10. Backes, M., et al.: Identifying personal DNA methylation profiles by genotype
inference. In: IEEE Symposium on Security and Privacy (2017)

11. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structures. In: Proceedings of the IEEE Global Telecommunication Conference,
Globecom 1987, pp. 99–102 (1987)

12. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 27

13. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

14. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

15. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

16. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71677-8 23

17. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptol. 15, 177–206
(2000)

https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/978-3-662-45608-8_27
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/978-3-540-71677-8_23
https://doi.org/10.1007/978-3-540-71677-8_23

The Wiener Attack on RSA Revisited:
A Quest for the Exact Bound

Willy Susilo, Joseph Tonien(B), and Guomin Yang

Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology,
University of Wollongong, Wollongong, Australia

{willy.susilo,joseph.tonien,guomin.yang}@uow.edu.au

Abstract. Since Wiener pointed out that the RSA can be broken if the
private exponent d is relatively small compared to the modulus N (using
the continued fraction technique), it has been a general belief that the

Wiener attack works for d < N
1
4 . On the contrary, in this work, we

give an example where the Wiener attack fails with d =
⌊

1
2
N

1
4

⌋
+ 1,

thus, showing that the bound d < N
1
4 is not accurate as it has been

thought of. By using the classical Legendre Theorem on continued frac-
tions, in 1999 Boneh provided the first rigorous proof which showed

that the Wiener attack works for d < 1
3
N

1
4 . However, the question

remains whether 1
3
N

1
4 is the best bound for the Wiener attack. Addi-

tionally, the question whether another rigorous proof for a better bound
exists remains an elusive research problem. In this paper, we attempt
to answer the aforementioned problems by improving Boneh’s bound
after the two decades of research. By a new proof, we show that the
Wiener continued fraction technique works for a wider range, namely,

for d ≤ 1
4√18

N
1
4 = 1

2.06...
N

1
4 . Our new analysis is supported by an exper-

imental result where it is shown that the Wiener attack can successfully
perform the factorization on the RSA modulus N and determine a pri-

vate key d where d =
⌊

1
4√18

N
1
4

⌋
.

Keywords: RSA · Continued fractions · Wiener technique ·
Small secret exponent

1 Introduction

The RSA cryptosystem is one of the most popular and de facto public-key sys-
tems used in practice today. It is among the most common ciphers used in the
SSL/TLS protocol which allows sensitive information transmitted securely over
the Internet.

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 381–398, 2019.
https://doi.org/10.1007/978-3-030-21548-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_21

382 W. Susilo et al.

A simplified version of the RSA encryption algorithm works as follows. Two
large primes of the same size p and q are selected to form a product N = pq –
which is called the RSA modulus. Two integers e and d are chosen so that

ed = 1 (mod φ(N)),

where φ(N) = (p−1)(q−1) is the order of the multiplicative group Z
∗
N . The num-

ber e is called the encryption exponent and d is called the decryption exponent.
This is because to encrypt a message m ∈ Z

∗
N , one calculates the exponentiation

c = me (mod N), and to decrypt a ciphertext c ∈ Z
∗
N , one performs the expo-

nentiation m = cd (mod N). The pair (N, e) is called the public key and so that
anyone can encrypt, whereas d is called the private key and only the owner of d
can perform the decryption operation.

Since the modular exponentiation m = cd (mod N) takes O(log d) time,
to reduce decryption time, one may wish to use a relatively small value of d.
However, in 1991, Wiener [20] showed that if the bit-length of d is approximately
one-quarter of that of the modulus N , then it is possible to determine the private
exponent d from the public-key (N, e), hence, a total break of the cryptosystem.
Wiener’s attack is based on continued fractions and the idea is as follows. Since
ed = 1 (mod φ(N)), we have ed − kφ(N) = 1 for some integer k, and thus,

k

d
≈ e

φ(N)
≈ e

N
.

Now one knows that the convergents of the continued fraction expansion of
a number provide rational approximations to the number, so it is natural to
search for the private fraction k

d among the convergents of the public fraction
e
N . Given Wiener’s approximation analysis [20], it has been a general belief that
the Wiener attack works for d < N

1
4 (see [1,4,13,17]). On the converse, in 2005,

Steinfeld-Contini-Wang-Pieprzyk [17] showed that for any positive number ε,
with an overwhelming probability, Wiener’s attack will fail for a random choice
d ≈ N

1
4+ε. Thus, the bound d < N

1
4 has since been believed to be the optimal

bound for the Wiener attack.
There are other variants of Wiener’s attack [8,10,11,18] that allow the RSA

cryptosystem to be broken when d is a few bits longer than N
1
4 . In 1997, Verheul

and van Tilborg [18] proposed a method that works for d < DN
1
4 using an

exhaustive search of about 2 log D + 8 bits. This method was later improved by
Dujella [10,11]. In the Verheul and van Tilborg attack [18], the secret exponent
is of the form d = rbm+1 + sbm, where the bi are the denominators of the
convergents of the continued fraction. Calculation of the convergents needs a
complexity of O(log N), and so searching through all possible pairs (r, s) at each
convergent makes the running time increased by a factor of O(D2A2), where
A is the maximum of the partial quotients xm+1, xm+2, xm+3 of the continued
fraction. The first Dujella method [10] improved this extra running time factor
to O(D2 log A) and O(D2 log D), and the second Dujella method [11] improved it
further to O(D log D) (with the space complexity of O(D)). In 2017, Bunder and
Tonien [8] proposed another variant of Wiener’s attack. Instead of considering the

The Wiener Attack on RSA Revisited: A Quest for the Exact Bound 383

continued fraction of e
N as in the original Wiener’s attack, the Bunder and Tonien

method uses the continued fraction of e
N ′ , where N ′ is a number depending on

N . This new attack works for d < 2(n+3−t)/2N
1
4 where n = log N , t = log e, and

the running time is O(log N).
There are yet other variants of Wiener’s attack that utilise more than just

the public information (N, e). For example, the Weger attack [19] exploited the
small distance between the two RSA’s secret primes: if |p− q| = Nβ and d = N δ

then d can be recovered if 2 − 4β < δ < 1 −
√

2β − 1
2 or δ < 1

6 (4β + 5) −
1
3

√
(4β + 5)(4β − 1). The Blömer and May attack [2] assumed a linear relation

between e and φ(N): ex + y = 0 mod φ(N) with either 0 < x < 1
3N

1
4 and

y = O(N− 3
4 ex) or x < 1

3

√
φ(N)

e
N

3
4

p−q and |y| ≤ p−q

φ(N)N
1
4
ex. The Nassr et al.

attack [15] required an approximation po ≥ √
N of the prime p.

In 1999, Boneh and Durfee [4] showed the first significant improvement over
the Wiener’s result. Based on the Coppersmith technique [9], exploiting a non-
linear equation satisfied by the secret exponent, the Boneh-Durfee method can
break the RSA when d < N0.292. Using a somewhat more optimized lattice,
Herrmann and May [13] also derived the same bound d < N0.292, although their
proof is more elementary. This bound d < N0.292 remains as the best bound to
date.

Our Contributions. In this paper, we revisit Wiener’s original attack based on
continued fraction technique. In research literature, there have been two different
bounds reported for this attack, one is d < N

1
4 (for example, in [1,4,13,17])

and another one is d < 1
3N

1
4 (for example, in [3,5–8]). The second bound is due

to Boneh [3]. Our main contributions in this paper are twofold: on one hand,
we show that the first bound d < N

1
4 is not accurate, and on the other hand,

we can improve the Boneh bound from d < 1
3N

1
4 to d ≤ 1

2.06...N
1
4 . Since many

attacks on RSA based on the original Wiener attack, it is important to revisit
this attack and provide an accurate analysis.

Our First Contribution. Based on the implementation of the Wiener algorithm
and its execution, we have discovered that the Wiener attack fails for many
values of d < N

1
4 . This contradicts to the general belief about the Wiener

attack where it has been reported that the Wiener attack works for all d < N
1
4

(see [1,4,13,17]). Obviously, to disprove this bound d < N
1
4 , one only needs to

show one counterexample, i.e. a value of d < N
1
4 where the Wiener attack fails.

We do that in Sect. 4, where it is shown that the Wiener attack fails for a certain
value of N and d with

d =
⌊

1
2
N

1
4

⌋
+ 1 < N

1
4 .

Therefore, the bound d < N
1
4 for the Wiener attack is not accurate as it has

been believed to date. At least, we can see that it fails at the halfway point of the
range. This raises a natural question: what is the correct bound for the Wiener
attack? And this comes to our second contribution.

384 W. Susilo et al.

Our Second Contribution. Boneh [3] provided the first and only rigorous proof
which showed that the Wiener attack works for

d <
1
3
N

1
4 .

The remaining question is whether this bound is the best bound for the Wiener
attack. Additionally, we are wondering whether there exists another rigorous
proof for a better bound. As the second contribution of this paper, we answer
this question affirmatively by improving Boneh’s bound.

Boneh’s result does not say anything about the case d ≥ 1
3N

1
4 . So the Wiener

attack may work or it may fail for d ≥ 1
3N

1
4 . Our first result already shows an

instance where the Wiener attack fails at d =
⌊
1
2N

1
4

⌋
+ 1 � 1

2N
1
4 . This raises

an open question: does the Wiener attack work or fail in the following interval
1
3
N

1
4 ≤ d <

1
2
N

1
4 ?

As the second contribution of this paper, using exactly the same setting as that
of Boneh [3], we prove that the Wiener attack is always successful for all values
of d in the larger interval

d ≤ 1
4
√

18
N

1
4 =

1
2.06...

N
1
4 .

With this improvement of Boneh’s bound from d < 1
3N

1
4 to d ≤ 1

2.06...N
1
4 ,

we show that the Wiener attack works for all value of d in the interval
1
3
N

1
4 ≤ d ≤ 1

2.06...
N

1
4 .

Thus, the undecided interval has been narrowed down to
1

2.06...
N

1
4 < d <

1
2
N

1
4

and it is unknown if the Wiener attack fails or succeeds in this narrow interval.
Nevertheless, we conjecture that our new bound 1

2.06...N
1
4 is indeed the best

bound for the Wiener attack. We conjecture that, for any 1
2.06... < α ≤ 1

2 , there
is always a value of d in the interval 1

2.06...N
1
4 < d < αN

1
4 that makes the Wiener

attack fail.

Our Experimental Results. In this paper, we show two experimental results.
In Sect. 4, we show an example where the Wiener attack fails with

d =
⌊

1
2
N

1
4

⌋
+ 1 < N

1
4 ,

this is a counterexample to disprove the first bound d < N
1
4 . In Sect. 6, we show

an example that the Wiener attack works with

d =
⌊

1
4
√

18
N

1
4

⌋
=

⌊
1

2.06...
N

1
4

⌋
,

this is an illustration to our new improved bound d ≤ 1
2.06...N

1
4 .

The Wiener Attack on RSA Revisited: A Quest for the Exact Bound 385

Roadmap. The rest of this paper is organized as follows. The next section gives
a brief introduction to the continued fractions. We revisit Boneh’s version of
Wiener’s attack in Sect. 3 for clarity and completeness. In Sect. 4, we demonstrate
our first experimental result showing an example that the Wiener attack fails
at d =

⌊
1
2N

1
4

⌋
+ 1. In Sect. 5, we give a new rigorous proof which shows that

the Wiener continued fraction technique works for d ≤ 1
4√18

N
1
4 = 1

2.06...N
1
4 . Our

new bound is verified experimentally in Sect. 6, where we show an example that
the Wiener attack works with d =

⌊
1

4√18
N

1
4

⌋
. Finally, we conclude our paper

and discuss open problems in Sect. 7.

2 Preliminaries

In this section, we list several well-known results about continued fractions which
can be found in [12,16].

A continued fraction expansion of a rational number u
v is an expression of

the form
u

v
= x0 +

1

x1 +
1

. . . +
1
xn

,

where the coefficient x0 is an integer and all the other coefficients xi for i ≥
1 are positive integers. The coefficients xi are called the partial quotients of
the continued fraction. Continued fraction expansion also exists for irrational
numbers although it runs infinitely. In cryptography, finite continued fraction
for rational numbers suffices our purpose.

There is a standard way to generate a unique continued fraction from any
rational number. By the Euclidean division algorithm, one can efficiently deter-
mine all the coefficients x0, x1, . . . , xn of the continued fraction. For clarity, we
present the following example to show how to construct the continued fraction
for 2000

2019 .
By the Euclidean division algorithm, we have

2000 = 2019 × 0 + 2000
2019 = 2000 × 1 + 19
2000 = 19 × 105 + 5

19 = 5 × 3 + 4
5 = 4 × 1 + 1
4 = 1 × 4

and thus, we can see that the coefficients 0, 1, 105, 3, 1, 4 determined by the above
Euclidean division algorithm become the coefficients for the continued fraction
as follows,

386 W. Susilo et al.

2000
2019

= 0 +
2000
2019

= 0 +
1

2019
2000

= 0 +
1

1 +
19

2000

= 0 +
1

1 +
1

2000
19

= 0 +
1

1 +
1

105 +
5
19

= 0 +
1

1 +
1

105 +
1
19
5

= 0 +
1

1 +
1

105 +
1

3 +
4
5

= 0 +
1

1 +
1

105 +
1

3 +
1
5
4

= 0 +
1

1 +
1

105 +
1

3 +
1

1 +
1
4

.

Given the above continued fraction of u
v , by truncating the coefficients, we

obtain (n + 1) approximations of u
v :

c0 = x0, c1 = x0 +
1
x1

, c2 = x0 +
1

x1 +
1
x2

, . . . , cn = x0 +
1

x1 +
1

. . . +
1
xn

.

The number cj is called the jth convergent of the continued fraction and these
convergents provide good approximations for u

v . To write the continued frac-
tion expansion for a number u

v , we use the Euclidean division algorithm, which
terminates in O(log(max (u, v))) steps. As a result, there are O(log(max (u, v)))
number of convergents of u

v . Thus, the Wiener continued fraction technique runs
very efficiently.

The convergents c0, c1, . . . , cn of the continued fraction of u
v give good approx-

imation to u
v , however, an approximation to u

v is not always a convergent. The
following classical theorem due to Legendre gives a sufficient condition for a
rational number a

b to be a convergent for the continued fraction of u
v .

Theorem 1 (The Legendre Theorem [14]). Let a ∈ Z and b ∈ Z
+ such

that ∣∣∣u
v

− a

b

∣∣∣ <
1

2b2
.

Then a
b is equal to a convergent of the continued fraction of u

v .

The Wiener Attack on RSA Revisited: A Quest for the Exact Bound 387

The following Euler-Wallis Theorem gives us the recursive formulas to cal-
culate the convergent sequence {ci} efficiently based on the coefficients x0,
x1, . . . , xn.

Theorem 2 (The Euler-Wallis Theorem [12]). For any j ≥ 0, the jth con-
vergent can be determined as cj = aj

bj
, where the numerator and the denominator

sequences {ai} and {bi} are calculated as follows:

a−2 = 0, a−1 = 1, ai = xi ai−1 + ai−2, ∀i ≥ 0,

b−2 = 1, b−1 = 0, bi = xi bi−1 + bi−2, ∀i ≥ 0.

Based on the Euler-Wallis Theorem, the following identity involving the
numerator ai and the denominator bi of the convergent ci can be easily obtained
by mathematical induction.

Theorem 3. [12] The numerator ai and the denominator bi of the convergent
ci satisfy the following identity

biai−1 − aibi−1 = (−1)i, ∀i ≥ 0. (1)

3 Boneh’s Version of the Wiener Attack

In this section, for clarity and completeness, we recall here Boneh’s version of
the Wiener attack result [3]. Boneh provided the first and only rigorous proof
which showed that the Wiener attack works for

d <
1
3
N

1
4 .

Theorem 4 (The Wiener-Boneh Theorem [3]). If the following conditions
are satisfied

(i) q < p < 2q
(ii) 0 < e < φ(N)
(iii) ed − kφ(N) = 1
(iv) d < 1

3N
1
4

then k
d is equal to a convergent of the continued fraction of e

N .

Remark. Since ed − kφ(N) = 1, we have gcd(k, d) = 1. By the identity (1) in
Theorem 3, we also have gcd(ai, bi) = 1. Therefore, if k

d is equal to a convergent
of the continued fraction of e

N ,

k

d
= ci =

ai

bi
,

then we must have k = ai and d = bi. In that case, using the equation ed −
kφ(N) = 1, we have ebi − aiφ(N) = 1, and φ(N) = ebi−1

ai
.

388 W. Susilo et al.

From here, we obtain

S = p + q = N − φ(N) + 1,

and with N = pq, we can solve for p and q from the quadratic equation

x2 − Sx + N = 0.

Algorithm 1. Factorisation Algorithm Based on Continued Fraction
Input: e, N
Output: (d, p, q) or ⊥

1: Run the Euclidean division algorithm on input (e, N) to obtain the coefficients
x0, x1, . . . , xn of the continued fraction of e

N
.

2: Use the Euler-Wallis Theorem to calculate the convergents

c0 =
a0

b0
, c1 =

a1

b1
, . . . , cn =

an

bn
.

3: for 0 ≤ i ≤ n do
4: if ai|(ebi − 1) then

5: λi =
ebi − 1

ai
� λi = φ(N) if ai

bi
= k

d

6: S = N − λi + 1 � S = p + q if λi = φ(N)
7: Find the two roots p′ and q′ by solving the quadratic equation

x2 − Sx + N = 0

8: if p′ and q′ are prime numbers then
9: return (d = bi, p = p′, q = q′) � Successfully factorise N

10: end if
11: end if
12: end for
13: return ⊥ � Fail to factorise N

In the Algorithm 1, we can see that if k
d is equal to a convergent of the

continued fraction of e
N as asserted in Theorem 4, then the secret information

p, q, d, k can be recovered from the public information (e,N). By the Euclidean
division algorithm, we obtain O(log(N)) number of convergents of the continued
fraction of e

N , so the Wiener algorithm will succeed to factor N and output
p, q, d, k in O(log(N)) time complexity.

Our experiments confirm that the Wiener algorithm runs very efficiently. In
Sects. 4 and 5, we use 1024-bit primes p and q, and with the Euclidean division
algorithm, the continued fractions of e

N give us less than 2000 convergents ci.

4 An Experimental Result

In this section, we give an example where the Wiener attack fails with

d =
⌊

1
2
N

1
4

⌋
+ 1,

The Wiener Attack on RSA Revisited: A Quest for the Exact Bound 389

thus, showing that the bound d < N
1
4 is not accurate as it has been generally

believed [1,4,13,17].
This result came as a total surprise to us. As we implemented the Wiener

algorithm and run it, we found out that the Wiener attack failed for many values
of d < N

1
4 . The example here clearly shows that it fails at the halfway point

of the range. This raises a natural question: what is the correct bound for the
Wiener attack? Attempting to answer this question has been the motivation of
this work, and hence the quest for the exact bound.

Below, we choose 1024-bit primes p and q which give 2047-bit modulus N .
We set the private key

d =
⌊

1
2
N

1
4

⌋
+ 1

which is a 511-bit number and the corresponding public key e is 2047-bit. Using
the Euclidean division algorithm, we determine the continued fraction expansion
of e

N . This continued fraction has 1179 convergents: c0, c1, . . . , c1178. Using the
Algorithm 1 to search through these 1179 convergents, we found no factorization
of N , so the Wiener algorithm failed in this case.

Here are the experimental values:

p = 1491527899 5477760590 2728010071 6980981660 1258222662
2431819289 1225141694 5753993233 4134597092 2789813803
2123071118 7456841568 6244681095 6494959013 6209617496
4856101327 5715997217 9803365696 1960828527 8759316539
7375676105 8838761560 3738626761 6351893514 2444493175
0194503087 8223260165 3356278700 2338989328 5059210806
959842047 (1024 bits)

q = 9111167064 7390707425 7779057216 8580155934 8047103723
9509013689 9393941503 6663226117 3483046733 6435253791
0245424858 8231334271 0003745035 1560880167 0686028666
9368653851 4065809046 6070550773 1596277357 7225073326
8667388642 6946395521 3055868264 9615090699 8451255847
8563387800 1084724118 4269448761 8873870285 9133249777
21380459 (1024 bits)

390 W. Susilo et al.

N =1358955987 4499142355 7513414060 3539768425 5014057126
0741075421 2867822612 0805968144 4708819214 5518842119
9958881804 7937878622 4112295347 5325559673 5996725202
8633553360 3757756220 1871004594 8076611030 2567765384
0026153784 2770613729 4329327237 0569653405 5424667619
2238028495 4841783632 6958663905 5958512318 1193434612
0315768395 7219446440 1318651117 5563726203 4345904525
9443782456 6436078112 6077167607 7739231458 9205427377
2268437286 4735492393 2750716520 2984412539 2729934943
9305127634 2706564766 5583235029 4396813965 7917910935
3031271720 0339494884 0018966371 3447510835 9275849868
6562766142 9910164397 0677468356 5904851307 0086539066
0235916943 2359573 (2047 bits)

e =1330419030 5540874988 5376069329 7084174518 7260177538
5866925366 2997366672 3493599969 0390276038 0919368940
1864701342 9310242427 8833742509 7494436400 5403659294
0555161192 1972457828 7339053358 7614588496 6324498356
6363071098 8205134167 5000847275 0988164806 4636099774
1181379056 1319572282 3672568352 1298430680 1201814131
9604052114 8335594185 3173571813 7624310228 5349453986
0737412659 9608417423 2546667689 2033178326 5130304082
6314383724 2740893126 4550856662 5119551763 4091295935
2191957179 9876282943 3381372125 9047810743 6224521388
6861509236 7407065451 7584476965 4348997529 8178870165
9669410312 1497394053 8763499800 1901681249 3233425747
4891365832 5046931 (2047 bits)

d =
⌊

1
2
N

1
4

⌋
+ 1 =5398478203 0311651626 6068367829 8945738486 9044874575

7958435010 7981488386 1130096080 6180756651 2262828961
6340636130 6706635548 8922382801 5381181990 9555989039
3235 (511 bits)

k =5285114605 3829091397 9620556948 0145234187 5641719964
7496242061 4986547849 9915220055 9741796430 2523466970
5824394524 5600033207 6486525013 4460390163 5991230680
7438 (511 bits)

The Wiener Attack on RSA Revisited: A Quest for the Exact Bound 391

In the Algorithm 1, the continued fraction of e
N has 1179 convergents ci, so

n = 1178.

In line 4 of the Algorithm1, there are only 2 values of i that ai | (ebi − 1):

i = 1, a1 = 1, b1 = 1,

and
i = 3, a3 = 47, b3 = 48.

With these two cases: i = 1 and i = 3, the quadratic equation in line 7 of
the Algorithm 1 does not produce prime number roots. So the Wiener algorithm
fails in this example.

We can explain the reason for the Wiener algorithm fails in this example.
This is because among 1179 convergents of the continued fraction of e

N , none of
them is equal to k

d as required in Theorem 4.

5 Improving Boneh’s Bound on the Wiener Attack

By using the classical Legendre Theorem on continued fractions, Boneh provided
the first rigorous proof [3] which showed that the Wiener attack works for

d <
1
3
N

1
4 .

In this section, we establish an improved bound on the Wiener’s attack.
We extend the well-known Boneh’s bound and show that the Wiener continued
fraction technique works for a wider range, namely, for

d ≤ 1
4
√

18
N

1
4 =

1
2.06...

N
1
4 .

Below is our new theorem which is an improvement of the Wiener-Boneh
Theorem (i.e., Theorem 4). Additionally, our new proof is also based on the
Legendre Theorem.

Theorem 5. If the following conditions are satisfied

(i) q < p < 2q
(ii) 0 < e < φ(N)
(iii) ed − kφ(N) = 1
(iv) d ≤ 1

4√18
N

1
4 = 1

2.06...N
1
4

then k
d is equal to a convergent of the continued fraction of e

N . Thus, the
secret information p, q, d, k can be recovered from public information (e,N) in
O(log (N)) time complexity.

392 W. Susilo et al.

Proof. As we want to use the Legendre Theorem (Theorem 1) to prove that k
d is

equal to a convergent of the continued fraction of e
N , we consider the following

inequality

∣∣∣∣
e

N
− k

d

∣∣∣∣ =
|kN − ed|

Nd
=

|k(N − φ(N)) − (ed − kφ(N))|
Nd

=
k(p + q − 1) − 1

Nd
<

k(p + q)
Nd

.

Since ed − kφ(N) = 1 and e < φ(N), we have k < d. Therefore,
∣∣∣∣

e

N
− k

d

∣∣∣∣ <
p + q

N
.

It follows from q < p < 2q that 1 <
√

p
q <

√
2, and since the function

f(x) = x + 1
x is increasing on [1,+∞), we have

p + q

N
1
2

=
√

p

q
+

√
q

p
<

√
2 +

1√
2

=
3√
2
.

Thus,

p + q <
3√
2
N

1
2 . (2)

It follows that

∣∣∣∣
e

N
− k

d

∣∣∣∣ <

3√
2
N

1
2

N
=

3√
2N

1
2

Finally, since d ≤ 1
4√18

N
1
4 , we have

∣∣∣∣
e

N
− k

d

∣∣∣∣ <
1

2d2
.

By the Legendre Theorem (Theorem 1), k
d is equal to a convergent of the con-

tinued fraction of e
N and the theorem is proved. �

6 The Second Experimental Result

In Sect. 5, we improve the Boneh bound [3]:

d <
1
3
N

1
4 .

The Wiener Attack on RSA Revisited: A Quest for the Exact Bound 393

We show that the Wiener continued fraction technique works for a wider range,
namely, for

d ≤ 1
4
√

18
N

1
4 =

1
2.06...

N
1
4 .

In this section, we provide an experimental result to support our new bound.
We choose a private key d =

⌊
1

4√18
N

1
4

⌋
and show that the Wiener attack indeed

works, which confirms our new bound.
Here, we select a 2048-bit modulus N . We set the private key d =

⌊
1

4√18
N

1
4

⌋

which is a 511-bit number. The corresponding public key e is 2048-bit.
Using the Euclidean division algorithm, we determine the continued fraction

expansion of e
N . This continued fraction has 1219 convergents: c0, c1, . . . , c1218.

We run the Wiener algorithm through these 1219 convergents. At the 289th

convergent c289 = a289
b289

, we found the correct factorization of the modulus N
into two 1024-bit primes p and q. Hence, the Wiener algorithm is successful in
this case which confirms our new bound in Theorem5.

Here are the experimental values:

p =1753651555 7959285985 8389246962 5666004143 2631322905
3792511376 1823387899 6863875472 8500338195 6106187059
8979790786 3900938931 7295752778 9842328060 3224176903
6697007530 6302349794 5882100113 2594934722 2701276857
3702925327 3032617922 5592387182 1655023312 3781280062
3318071860 0703325676 9316877525 0029640840 1329310468
563365517 (1024 bits)

q =1302246063 5244450969 8486520987 6835312123 3825549540
4590911663 0930183138 4524166515 2217429150 6917508540
1229882549 1643140442 7317286012 5333646913 8593238275
0954632799 2092626902 5564720911 8376898712 1336228332
6412475983 8782926026 4681550732 7524640686 1898664920
0982675880 5711531846 6818868729 5634599558 9465454245
497973799 (1024 bits)

394 W. Susilo et al.

N =2283685835 3287668091 9203688162 8641577810 3964252589
2829513042 0474999022 9966219821 6666459658 1454018899
4842992237 6560732622 7548715380 4387435627 0300826321
1665057256 4937978011 1813943886 7926552494 0467869924
8547365003 8355720409 4262355848 3358418844 9224331698
6356990029 6911605460 6455811765 2232596722 1393273906
6967318845 7131381644 1207877832 1534284874 4792830245
0180559814 0668893320 3072001361 9079413832 5132168722
1421794347 4001731747 8227015966 3404029234 2194986951
9455164666 8806852454 0063123724 1365869202 7515557841
4144066123 2146905186 4313571125 6653677066 9381756925
3817941547 8954522854 7119685992 7901448206 0579354284
5523886372 6089083 (2048 bits)

e =1716081930 8904585327 7890161348 9791423576 2203050367
3463267958 5567058963 9956759654 2803490663 7374660531
6475059968 7461192166 4245059192 9370601129 3378320096
4337238276 6547546926 5356977528 0523991876 7190684796
2650929866 9049485976 1183156661 2687168184 7641670872
5889507391 9139366379 9018676640 7654053176 5577090231
6720982183 2859747419 6583443634 6658489531 6847817524
2470325739 2651850823 5172974203 8213894377 0358904660
5944230019 1228592937 2517345927 3262320732 4742303631
3243627441 4264865868 0285278401 0248376241 4082363751
8720861263 2105886502 3936481567 7633023698 7329249988
1142950825 6124902530 9574993383 3690395192 4035916501
5366161007 0010419 (2048 bits)

d =
⌊

1
4
√

18
N

1
4

⌋
=5968166949 0793605552 2026899285 2191823920 0238114742

8873867437 0592596189 5174438877 8002365303 1793516493
8064621142 4818137141 6016184480 4216409734 3986334607
9123 (511 bits)

In the Algorithm 1, the continued fraction of e
N has 1219 convergents ci, and

the 289th convergent c289 produces the correct factorization of the modulus N .

i = 289,

The Wiener Attack on RSA Revisited: A Quest for the Exact Bound 395

a289 =4484795282 8757963262 4661693174 9335120861 3264690597
1711725983 1381808371 6124351193 7219275062 5936785513
3802411458 7021923657 4897458445 0198267245 3098232091
5377

b289 =5968166949 0793605552 2026899285 2191823920 0238114742
8873867437 0592596189 5174438877 8002365303 1793516493
8064621142 4818137141 6016184480 4216409734 3986334607
9123

λ289 =2283685835 3287668091 9203688162 8641577810 3964252589
2829513042 0474999022 9966219821 6666459658 1454018899
4842992237 6560732622 7548715380 4387435627 0300826321
1665057256 4937978011 1813943886 7926552494 0467869924
8547365003 8355720409 4262355848 3358418844 9224331698
6356990029 6911605460 6455811765 2232596722 1393273906
6967318815 1541619712 0834182263 3957489849 4661203580
4493315230 2326589392 7714897548 0275215025 3355434091
9052234345 3034398192 3819078520 2100150082 4597489533
7713646790 3642819470 0565454009 6683766693 0332214401
0393547122 0606774068 2759176222 9259885575 1415357068
5823443304 8879748790 5633933631 4326822749 4155314376
6047414966 4749768

The quadratic equation in line 7 produces two correct prime roots p and q.
Hence, the Wiener algorithm is successful in this example.

We can see that the Wiener algorithm works because the convergent

c289 =
a289

b289
=

k

d

as confirmed in our Theorem 5.

7 Conclusion

In this paper, we show a certain belief about the Wiener attack on the RSA
is not accurate. It has been a general belief that the Wiener attack works for
d < N

1
4 (see [1,4,13,17]), and on the converse, Steinfeld-Contini-Wang-Pieprzyk

[17] showed that Wiener’s attack fails with an overwhelming probability for a
random choice d ≈ N

1
4+ε for any positive number ε. Thus, as depicted in Fig. 1(i),

396 W. Susilo et al.

Fig. 1. (i) Old belief: Wiener attack works for d < N
1
4 . Boneh’s rigorous proof covers

d < 1
3
N

1
4 . (ii) Our research shows that Wiener attack fails at d = � 1

2
N

1
4 �+1. Our new

rigorous proof covers d ≤ 1
4√18

N
1
4 = 1

2.06...
N

1
4 .

the bound d < N
1
4 has since been believed to be the optimal bound for the

Wiener attack.
On the contrary, in this paper, we show that the bound d < N

1
4 for the

Wiener attack on the RSA is not accurate. We give an example where the Wiener
attack fails with

d =
⌊

1
2
N

1
4

⌋
+ 1.

By using the Legendre Theorem on continued fractions, Boneh provided the
first rigorous proof which showed that the Wiener attack works for

d <
1
3
N

1
4 .

As depicted in Fig. 1(ii), in this paper, we improve Boneh’s bound by showing
that the Wiener continued fraction technique actually works for a wider range,
namely, for

d ≤ 1
4
√

18
N

1
4 =

1
2.06...

N
1
4 .

Our new result is supported by an experimental result where it is shown that
the Wiener attack succeeds with d =

⌊
1

4√18
N

1
4

⌋
.

It is an open problem to determine the exact optimal bound for the Wiener
attack. Suppose that

d < ωN
1
4

The Wiener Attack on RSA Revisited: A Quest for the Exact Bound 397

is this exact optimal bound, then by the two main results of this paper, it follows
that

1
4
√

18
≤ ω ≤ 1

2
,

where 4
√

18 = 2.06... We are yet to find the exact value of ω and we conjecture
that ω = 1

4√18
(Fig. 2).

Fig. 2. Open problem. Undecided interval: it is unknown if the Wiener attack fails or

succeeds in the interval 1
4√18

N
1
4 < d ≤ 1

2
N

1
4 .

References

1. Bleichenbacher, D., May, A.: New attacks on RSA with small secret CRT-
exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006). https://doi.org/10.1007/
11745853 1

2. Blömer, J., May, A.: A generalized wiener attack on RSA. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24632-9 1

3. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Not. Am. Math.
Soc. 46, 203–213 (1999)

4. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Trans. Inf. Theor. 46, 1339–1349 (2000)

5. Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A new attack on three variants
of the RSA cryptosystem. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS,
vol. 9723, pp. 258–268. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40367-0 16

6. Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A generalized attack on RSA type
cryptosystems. Theor. Comput. Sci. 704, 74–81 (2017)

7. Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: Cryptanalysis of RSA-type cryp-
tosystems based on Lucas sequences, Gaussian integers and elliptic curves. J. Inf.
Secur. Appl. 40, 193–198 (2018)

https://doi.org/10.1007/11745853_1
https://doi.org/10.1007/11745853_1
https://doi.org/10.1007/978-3-540-24632-9_1
https://doi.org/10.1007/978-3-319-40367-0_16
https://doi.org/10.1007/978-3-319-40367-0_16

398 W. Susilo et al.

8. Bunder, M., Tonien, J.: A new attack on the RSA cryptosystem based on continued
fractions. Malays. J. Math. Sci. 11, 45–57 (2017)

9. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology 10, 233–260 (1997)

10. Dujella, A.: Continued fractions and RSA with small secret exponent. Tatra Mt.
Math. Publ. 29, 101–112 (2004)

11. Dujella, A.: A variant of wiener’s attack on RSA. Computing 85, 77–83 (2009)
12. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers, 6th edn. Oxford

University Press, Oxford (2008)
13. Herrmann, M., May, A.: Maximizing small root bounds by linearization and appli-

cations to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13013-7 4

14. Legendre, A.M.: Essai sur la théorie des nombres. Duprat, An VI, Paris (1798)
15. Nassr, D.I., Bahig, H.M., Bhery, A., Daoud, S.S.: A new RSA vulnerability using

continued fractions. In: Proceedings of IEEE/ACS International Conference on
Computer Systems and Applications AICCSA, 2008, pp. 694–701 (2008)

16. Olds, C.D.: Continued fractions. New Mathematical Library, vol. 9. Mathematical
Association of America, Washington (1963)

17. Steinfeld, R., Contini, S., Wang, H., Pieprzyk, J.: Converse results to the wiener
attack on RSA. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 184–198.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 13

18. Verheul, E., van Tilborg, H.: Cryptanalysis of ‘less short’ RSA secret exponents.
Appl. Algebra Eng. Commun. Comput. 8, 425–435 (1997)

19. de Weger, B.: Cryptanalysis of RSA with small prime difference. Appl. Algebra
Eng. Commun. Comput. 13, 17–28 (2002)

20. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theor.
36, 553–558 (1990)

https://doi.org/10.1007/978-3-642-13013-7_4
https://doi.org/10.1007/978-3-642-13013-7_4
https://doi.org/10.1007/978-3-540-30580-4_13

Function-Dependent Commitments
from Homomorphic Authenticators

Lucas Schabhüser(B), Denis Butin, and Johannes Buchmann

Technische Universität Darmstadt, Darmstadt, Germany
{lschabhueser,dbutin,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. In cloud computing, delegated computing raises the security
issue of guaranteeing data authenticity during a remote computation. In
this context, the recently introduced function-dependent commitments
(FDCs) are the only approach providing both fast correctness verifi-
cation, information-theoretic input-output privacy, and strong unforge-
ability. Homomorphic authenticators—the established approach to this
problem—do not provide information-theoretic privacy and always reveal
the computation’s result upon verification, thus violating output pri-
vacy. Since many homomorphic authenticator schemes already exist,
we investigate the relation between them and FDCs to clarify how
existing schemes can be supplemented with information-theoretic out-
put privacy. Specifically, we present a generic transformation turning
any structure-preserving homomorphic authenticator scheme into an
FDC scheme. This facilitates the design of multi-party computation
schemes with full information-theoretic privacy. We also introduce a
new structure-preserving, linearly homomorphic authenticator scheme
suitable for our transformation. It is the first both context hiding and
structure-preserving homomorphic authenticator scheme. Our scheme is
also the first structure-preserving homomorphic authenticator scheme to
achieve efficient verification.

1 Introduction

Time-consuming computations are commonly outsourced to the cloud. Such
infrastructures attractively offer cost savings and dynamic computing resource
allocation. In such a situation, it is desirable to be able to verify the outsourced
computation. The verification must be efficient, by which we mean that the ver-
ification procedure is significantly faster than verified computation itself. Oth-
erwise, the verifier could as well carry out the computation by himself, negating
the advantage of outsourcing. Often, not only the data owner is interested in the
correctness of a computation; but also third parties, like insurance companies
in the case of medical data. In addition, there are scenarios in which computa-
tions are performed over sensitive data. For instance, a cloud server may collect
health data of individuals and compute aggregated data. Hence the requirement
for efficient verification procedures for outsourced computing that are privacy-
preserving, both for computation inputs and for computation results.
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 399–418, 2019.
https://doi.org/10.1007/978-3-030-21548-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_22

400 L. Schabhüser et al.

Growing amounts of data are sensitive enough to require long-term pro-
tection. Electronic health records, voting records, or tax data require protec-
tion periods exceeding the lifetime of an individual. Over such a long time,
complexity-based confidentiality protection is unsuitable because algorithmic
progress is unpredictable. In contrast, information-theoretic confidentiality pro-
tection is not threatened by algorithmic progress and supports long-term secu-
rity. Existing approaches address verifiability and confidentiality to various
degrees.

Homomorphic authenticators [4] sometimes allow for efficient verification,
keeping the computational effort of the verifier low. They fail to provide
information-theoretic confidentiality. Some schemes offer so-called context hid-
ing security, a form of input privacy. However, stronger privacy notions are not
achieved.

Homomorphic commitments [6,19,23] can be used in audit schemes. In par-
ticular, Pedersen commitments [19] provide information-theoretic confidentiality.
Homomorphic commitments however, lead to costly verification procedures.

Function-dependent commitments [22] (FDCs) are a generic construction for
authentified delegated computing. Their core idea is as follows. First, commit to
input values and to a function. Then, authenticate all inputs. Next, compute an
authenticated commitment to the computation’s result using homomorphic prop-
erties. FDCs combine the advantages of homomorphic authenticators and homo-
morphic commitments. They allow for information-theoretic input and output
privacy as well as efficient verification. Compared to homomorphic authentica-
tors they achieve a hiding property. The context hiding property of homomorphic
authenticators guarantees that authenticators to the output of a computation do
not leak information about the input of the computation (beyond what can be
inferred from the result). The authenticator to the input, however, leaks infor-
mation about the authenticated data. The hiding property of FDCs ensures that
not even this is possible. In [22] an information-theoretically hiding FDC was
combined with secret sharing for efficiently verifiable multi-party computation.
Combining homomorphic authenticators with secret sharing can be instanti-
ated by a straightforward composition, or by authenticating individual shares.
The former leads to a loss of information-theoretic privacy, the latter requires
all storage servers to perform computations on audit data. By contrast, FDC-
based verifiable multi-party computation can be instantiated so that auditing
only requires a single storage server. FDC-based verifiable multi-party computa-
tion thus provides not only privacy gains, but also efficiency improvements with
respect to the classical variant using homomorphic authenticators.

For a detailed comparison to related work, see Sect. 5. There are vari-
ous homomorphic authenticator schemes fine-tailored to specific scenarios. For
FDCs, so far only one construction is known [22]. Adding the privacy properties
of FDCs to known homomorphic authenticator schemes makes them suitable
even when sensitive data are processed. In this paper, we show how to achieve
this.

Function-Dependent Commitments from Homomorphic Authenticators 401

Contribution Overview. In this paper, we investigate the relation between homo-
morphic authenticators and FDCs. Our contribution is twofold.

First, we show how an FDC can be generically constructed from a structure-
preserving homomorphic authenticator scheme, assuming the additional exis-
tence of a homomorphic commitment scheme and of a separate classical com-
mitment scheme. We require the commitment space of the homomorphic com-
mitment scheme to be a subset of the structure preserved by the homomorphic
authenticator scheme. The message space of the classical commitment scheme
allows labeled programs as admissible inputs, unlike the homomorphic com-
mitment scheme. We show that if the two underlying commitment schemes
are binding, then the resulting FDC inherits this bindingness. Furthermore, we
prove that the output FDC inherits the unconditional hiding from the under-
lying homomorphic commitment scheme. The correctness of the output FDC is
shown to follow from three assumptions on the input homomorphic authenticator
scheme: authentication correctness, evaluation correctness and efficient verifica-
tion. Regarding security, we prove that unforgeability is also inherited. This is
done by showing that a simulator can forward adversary queries in the FDC
security experiment to queries in the homomorphic authenticator experiment.
The resulting forgery can be used to compute a forgery in the other experi-
ment. For performance, we show that if the input scheme is succinct, respec-
tively efficiently verifiable, then the output FDC is also succinct, respectively
has amortized efficiency. Our transformation enables the use of certain existing
homomorphic authenticator schemes in particularly privacy-sensitive settings.
Applying this transformation enables information-theoretic output privacy. This
allows third parties to verify the correct computation of a function without even
needing to learn the result. In the full version [21] we show how every FDC can
be transformed into a homomorphic authenticator scheme, showing that FDCs
are at least as powerful schemes as homomorphic authenticators.

Second, we introduce a structure-preserving, linearly homomorphic authen-
ticator scheme suitable for our transformation. All known structure-preserving
homomorphic authenticator schemes are limited to linear functions. Our scheme
is the first such construction to achieve constant-time verification (after a
one-time pre-processing). It is also the first structure-preserving homomorphic
authenticator scheme to be context hiding. This property ensures that a third-
party verifier does not learn anything about the inputs to a computation beyond
what it knows from the output of the computation. For simplicity, our scheme
is limited to a single dataset. However, it can be extended to a multi-dataset
scheme following a result by Fiore et al. [11]. Furthermore, our scheme is suc-
cinct. Authenticators consist of two elements of a cyclic group of prime order.
The security of our construction relies on the hardness of the Double Pairing
Assumption [1], which implies the Decisional Diffie–Hellman assumption with a
tight security reduction.

The remainder of this paper is organized as follows. We first provide the nec-
essary background on FDCs and homomorphic authenticators (Sect. 2). We then
show how to construct FDCs from homomorphic commitments and structure-

402 L. Schabhüser et al.

preserving homomorphic authenticators (Sect. 3). Next, we present a new instan-
tiation for a context hiding, structure-preserving linearly homomorphic signature
scheme (Sect. 4). Finally, we compare our work to the state of the art (Sect. 5).

2 Preliminaries

We first formalize the notion of homomorphic commitments.
Afterwards, we provide the terminology of labeled programs, on which the

notions of unforgeability in this paper are based. We then describe FDCs and
their properties. These include the classical hiding and binding properties of
commitments, as well as further FDC-specific properties such as correctness,
unforgeability, succinctness and amortized efficiency. Likewise, we recall defini-
tions for homomorphic authenticators and their properties. Finally, we define
structure-preserving signatures.

Commitment Schemes. Commitment schemes, particularly homomorphic com-
mitment schemes, are a basic building block in cryptography. We provide the
formalizations used in this work.

Definition 1 (Commitment Scheme). A commitment scheme Com is a tuple
of the following algorithms (CSetup, Commit, Decommit):

CSetup(1λ) : On input a security parameter λ, this algorithm outputs a commit-
ment key CK. We implicitly assume that every algorithm uses this commit-
ment key, leaving it out of the notation.

Commit(m, r) : On input a message m ∈ M and randomness r ∈ R, it outputs
the commitment C and the decommitment d.

Decommit(m, d,C) : On input a message m ∈ M, decommitment d, and a com-
mitment C, it outputs 1 or 0.

Definition 2 (Homomorphic Commitment Scheme). Let F be a class of
functions. A commitment scheme Com = (CSetup,Commit,Decommit) is F-
homomorphic if there exists an algorithm CEval with the following properties:

CEval(f, C1, . . . , Cn) : On input a function f ∈ F and a tuple of commitments
Ci for i ∈ [n], the algorithm outputs C∗.

Correctness: For every mi ∈ M, ri ∈ R, i ∈ [n] with (Ci, di) ← Commit(mi, ri)
and C∗ ← CEval(f, C1, . . . , Cn), there exists a unique function f̂ ∈ F , such
that Decommit(f(m1, . . . , mn), f̂(m1, . . . ,mn, r1, . . . rn), C∗) = 1.

Labeled Programs. To accurately describe both correct and legitimate opera-
tions for homomorphic authenticators, we use multi-labeled programs similarly
to Backes, Fiore, and Reischuk [5]. The basic idea is to append a function by
several identifiers, in our case input identifiers and dataset identifiers. Input
identifiers label in which order the input values are to be used. Dataset iden-
tifiers determine which authenticators can be homomorphically combined. The

Function-Dependent Commitments from Homomorphic Authenticators 403

idea is that only authenticators created under the same dataset identifier can be
combined. Intuitively, we need input identifiers to distinguish between messages.
This allows restricting homomorphic evaluation to authenticators related to the
same set of messages, leading to a stronger unforgeability notion.

Formally, a labeled program P consists of a tuple (f, τ1, . . . , τn), where f :
Mn → M is a function with n inputs and τi ∈ T with i ∈ [n] is a label for the
ith input of f from some set T . Given a set of labeled programs P1, . . . ,PN and
a function g : MN → M, they can be composed by evaluating g over the labeled
programs, i.e. P∗ = g(P1, . . . ,PN). This is an abuse of notation analogous to
function composition. The identity program with label τ is given by Iτ = (fid, τ),
where fid : M → M is the identity function. The program P = (f, τ1, . . . , τn)
can be expressed as the composition of n identity programs P = f(Iτ1 , . . . , Iτn

).
A multi-labeled program PΔ is a pair (P,Δ) of the labeled program P and a

dataset identifier Δ. Given a set of N multi-labeled programs with same dataset
identifier Δ, i.e. (P1,Δ), . . . , (PN ,Δ), and a function g : MN → M, a composed
multi-labeled program P∗

Δ can be computed, consisting of the pair (P∗,Δ), where
P∗ = g(P1, . . . ,PN). Analogously to the identity program for labeled programs,
we refer to a multi-labeled identity program by I(τ,Δ) = ((fid, τ),Δ).

Definition 3 (Well Defined Program). A labeled program P =
(f, τ1, . . . , τn) is well defined with respect to a list L ⊂ T × M if exactly one
of the two following cases holds: First, there are messages m1, . . . ,mn such that
(τi,mi) ∈ L ∀i ∈ [n]. Second, there is an i ∈ {1, . . . , n} such that (τi, ·) /∈ L and
f({mj}(τj ,mj)∈L ∪{m′

k}(τk,·)/∈L) is constant over all possible choices of m′
k ∈ M.

If f is a linear function, P = (f, τ1, . . . , τn), with f(m1, . . . ,mn) =
∑n

i=1 fimi

fulfills the second condition if and only if fk = 0 for all (τk, ·) /∈ L.

FDCs. Going beyond the basic functionalities of homomorphic commitments,
the idea of FDCs was introduced by Schabhüser et al. [22]. In particular, this
framework allows for a notion of unforgeability.

Definition 4 ([22]). An FDC scheme for a class F of functions is a tuple
of algorithms (Setup, KeyGen, PublicCommit, PrivateCommit, FunctionCommit,
Eval, FunctionVerify, PublicDecommit):

Setup(1λ) takes as input the security parameter λ and outputs public parameters
pp. We implicitly assume that every algorithm uses these public parameters,
leaving them out of the notation (except for KeyGen).

KeyGen(pp) takes the public parameters pp as input and outputs a secret-public
key pair (sk, pk).

PublicCommit(m, r) takes as input a message m and randomness r and outputs
commitment C.

PrivateCommit(sk,m, r,Δ, τ) takes as input the secret key sk, a message m, ran-
domness r, a dataset Δ, and an identifier τ and outputs an authenticator A
for the tuple (m, r,Δ, τ).

404 L. Schabhüser et al.

FunctionCommit(pk,P) takes as input the public key pk and a labeled program P
and outputs a function commitment F to P.

Eval(f,A1, . . . An) takes as input a function f ∈ F and a set of authenticators
A1, . . . , An, where Ai is an authenticator for (mi, ri,Δ, τi), for i = 1, . . . , n.
It computes an authenticator A∗ using the Ai and outputs A∗.

FunctionVerify(pk, A,C, F,Δ) takes as input a public key pk, an authenticator A,
a commitment C, a function commitment F , as well as a dataset identifier
Δ. It outputs either 1 (accept) or 0 (reject).

PublicDecommit(m, r,C) takes as input message m, randomness r, and commit-
ment C. It outputs either 1 (accept) or 0 (reject).

The intuition behind FDC algorithms is as follows. FDCs allow for two dif-
ferent ways of committing to messages. One is just a standard commitment. This
enables output privacy with respect to the verifier. The other way commits to
a message under a secret key to produce an authenticator. These authenticators
allow for homomorphic evaluation. Given authenticators to the input of a func-
tion, one can derive an authenticator to the output of a function. Additionally,
one can commit to a function under a public verification key. This results in a
function commitment. One can then check if a public commitment C matches
an authenticator A (derived from a secret key) and a function commitment F
(derived from a public key). As long as a cryptographic hardness assumption
holds, such a match is only possible if A was obtained by running the evaluation
on the exact function committed to via F .

As for classical commitments, we want our schemes to be binding. That is,
after committing to a message, it should be infeasible to open the commitment
to a different message. We describe the following security experiment between a
challenger C and an adversary A.

Definition 5 (Bindingness experiments EXPBind
A,Com(λ)). Challenger C

runs (sk, pk) ← KeyGen(pp) and gives pk to the adversary A. A outputs the pairs
(m, r) and (m′, r′), with m �= m′. If PublicCommit(m′, r′) = PublicCommit(m, r)
the experiment outputs 1, else it returns 0.

Definition 6 (Binding). Using the formalism of Definition 5, an FDC is
called binding if for any probabilistic polynomial-time (PPT) adversary A,
Pr[EXPBind

A,Com(λ) = 1] = negl(λ), where negl(λ) denotes any function negligible
in the security parameter λ.

The binding property for FunctionCommit is defined analogously.
Another important notion, targeting privacy, is the hiding property. Commit-

ments are intended not to leak information about the messages they commit to.
This is not to be confused with the context hiding property, where homomorphic
authenticators to the output of a computation do not leak information about
the inputs to the computation. Context hiding homomorphic authenticators do
however leak information about the output.

Function-Dependent Commitments from Homomorphic Authenticators 405

Definition 7 (Hiding). An FDC is called computationally hiding if the sets of

commitments {PublicCommit(m, r) | r
$← R} and {PublicCommit(m′, r′) | r′ $←

R} as well as {PrivateCommit(sk,m, r,Δ, τ) | r
$← R} and {PrivateCommit(sk,

m′, r′,Δ, τ) | r′ $← R} have distributions that are indistinguishable for any PPT
adversary A for all m �= m′ ∈ M. An FDC is called unconditionally hiding if
these sets have the same distribution respectively for all m �= m′ ∈ M.

An obvious requirement for an FDC is to be correct, i.e. if messages are
authenticated properly and evaluation is performed honestly, the resulting com-
mitment should be accepted. This is formalized in the following definition.

Definition 8 (Correctness). An FDC achieves correctness if for any security
parameter λ, any public parameters pp ← Setup(1λ), any key pair (sk, pk) ←
KeyGen(pp), and any dataset identifier Δ ∈ {0, 1}∗, the following properties
hold:

For any message m ∈ M, randomness r ∈ R, label τ ∈ T , authenticator
A ← PrivateCommit(sk,m, r,Δ, τ), commitment C ← PublicCommit(m, r),
and function commitment FI ← FunctionCommit(pk, Iτ), where Iτ is the
labeled identity program, we have both PublicDecommit(m, r,C) = 1 and
FunctionVerify(pk, A,C, FI ,Δ) = 1.

For any tuple {(Ai,mi, ri,Pi)}i∈[N] such that for Ci ← PublicCommit(mi, ri),
Fi ← FunctionCommit(pk,Pi), FunctionVerify(pk, Ai, Ci, Fi,Δ) = 1, and any
function g ∈ F the following holds: There exists a function ĝ ∈ F , that
is efficiently computable from g, such that for m∗ = g(m1, . . . ,mN), r∗ =
ĝ(m1, . . . ,mN , r1, . . . rN), C∗ ← PublicCommit(m∗, r∗), P∗ = g(P1, . . . ,PN),
F ∗ ← FunctionCommit(pk,P∗), A∗ ← Eval(g,A1, . . . , AN),

FunctionVerify(pk, A∗, C∗, F ∗,Δ) = 1.

The security notion of FDCs is also based on well defined programs (see Def-
inition 3). We introduce an experiment the attacker can run in order to generate
a successful forgery and present a definition for unforgeability based on it.

Definition 9 (Forgery). A forgery is a tuple (P∗
Δ∗ , A∗, C∗) such that

FunctionVerify(pk, A∗, C∗,FunctionCommit(pk,P∗),Δ∗) = 1

holds and exactly one of the following conditions is met:

Type 1: No message was ever committed under the data set identifier Δ∗, i.e.
the list LΔ∗ of tuples (τ,m, r) was not initialized during the security experi-
ment.

Type 2: P∗
Δ∗ is well defined with respect to list LΔ∗ and

C∗ �= PublicCommit(f({mj}(τj ,mj ,rj)∈LΔ∗), f̂({(mj , rj)}(τj ,mj ,rj)∈LΔ∗)),

where f is taken from P∗, that is, C∗ is not a commitment to the correct
output of the computation.

406 L. Schabhüser et al.

Type 3: P∗
Δ∗ is not well defined with respect to LΔ∗ .

To define unforgeability, we first describe the experiment EXPUF−CMA
A,FDC (λ)

between an adversary A and a challenger C.

Definition 10 (EXPUF−CMA
A,FDC (λ) [22]).

Setup C calls pp
$← Setup(1λ) and gives pp to A.

Key Generation C calls (sk, pk) $← KeyGen(pp) and gives pk to A.
Queries A adaptively submits queries for (Δ, τ,m, r) where Δ is a dataset,

τ is an identifier, m is a message, and r is a random value. C proceeds as
follows:
If (Δ, τ,m, r) is the first query with dataset identifier Δ, it initializes an

empty list LΔ = ∅ for Δ.
If LΔ does not contain a tuple (τ, ·, ·), that is, A never queried (Δ, τ, ·, ·),

C calls A ← PrivateCommit(sk,m, r,Δ, τ), updates the list LΔ = LΔ ∪
(τ,m, r), and gives A to A.

If (τ,m, r) ∈ LΔ, then C returns the same authenticator A as before.
If LΔ∗ already contains a tuple (τ,m′, r′) for (m, r) �= (m′, r′), C returns ⊥.

Forgery A outputs a tuple (P∗
Δ∗ , A∗, C∗).

EXPUF−CMA
A,FDC (λ) outputs 1 if the tuple returned by A is a forgery (Defini-

tion 9).

Definition 11 (Unforgeability). An FDC is unforgeable if for any PPT
adversary A, Pr[EXPUF−CMA

A,FDC (λ) = 1] = negl(λ).

Regarding performance, we consider additional properties. Succinctness spec-
ifies a limit on the size of the FDCs, thus keeping the required bandwidth low
when using FDCs to verify the correctness of an outsourced computation.

Definition 12 (Succinctness). An FDC is succinct if, for fixed λ, the size
of the authenticators depends at most logarithmically on the dataset size n.

Amortized efficiency specifies a bound on the computational effort required
to perform verifications.

Definition 13 (Amortized Efficiency). Let PΔ = (P,Δ) be a multi-labeled
program, m1, . . . ,mn ∈ M a set of messages, r1, . . . rn ∈ R a set of random-
ness, f ∈ F be an arbitrary function, and t(n) be the time required to com-
pute f(m1, . . . ,mn). An FDC achieves amortized efficiency if, for any pub-

lic parameters pp and any (sk, pk) $← KeyGen(pp), any authenticator A, any
commitment C, and function commitment F , the time required to compute
FunctionVerify(pk, A,C, F,Δ) is t′ = o(t(n)). Note that A and F may depend on
f and n.

Function-Dependent Commitments from Homomorphic Authenticators 407

Homomorphic Authenticators. Homomorphic authenticators and their proper-
ties of unforgeability, authentication correctness, evaluation correctness, suc-
cinctness, efficient verification, and context hiding have been formally defined
in various works, e.g. [7] or in the more general setting of multi-key homomor-
phic authenticators in [11].

Pairings and Structure-Preserving Signatures. We formalize the definitions and
assumptions related to pairings. These will be the main building block for our
construction in Sect. 4. Structure-preserving signatures are also defined.

Definition 14 (Double Pairing Assumption in G2 (DBP2, e.g. [1])). Let

bgp = (p,G1,G2,GT , g1, g2, e)
$← G(1λ) and R,Z

$← G2. Any PPT adversary
A can produce (GR, GZ) ∈ G

2
1\{(1, 1)} such that 1 = e (GR, R) · e (GZ , Z) only

with a probability negligible in λ.

DBP2 implies the DDH assumption in G2, and the reduction is tight [3].

Definition 15 (Structure-Preserving Signature [15]). A structure - pre-
serving signature scheme is a triple of PPT algorithms SPS = (Gen,Sign,Verify):

The probabilistic key generation algorithm Gen(1λ) returns the secret/public key
pair (sk, pk), where pk ∈ G

npk for some npk ∈ poly(λ). We assume that pk
implicitly defines a message space M = G

n for some n ∈ poly(λ).
The probabilistic signing algorithm Sign(sk,M) returns a signature σ ∈ G

nσ for
some nσ ∈ poly(λ).

The deterministic verification algorithm Verify(pk,M, σ) only consists of pairing
product equations and returns 1 or 0.

(Perfect Correctness.) for all (sk, pk) $← Gen(1λ) and all messages M ∈ M and

all σ
$← Sign(sk,M), we have Verify(pk,M, σ) = 1.

Libert et al. [16] adapted this to the scenario of homomorphic signatures.
There, a signature scheme is structure-preserving if messages, signature compo-
nents and public keys are elements of the group bgp.

3 FDCs from Homomorphic Authenticators

In this section, we discuss how to construct an FDC from (homomorphic) com-
mitment schemes and structure-preserving homomorphic signatures schemes
over the commitment space. We show how the properties of the resulting FDC
depend on the underlying homomorphic signature scheme and commitment
scheme.

Assume the homomorphic authenticator scheme HAuth = (HSetup, HKeyGen,
Auth, HEval, Ver) is structure-preserving over some structure X . Let Com be a
homomorphic commitment scheme Com = (CSetup,Commit,Decommit,CEval)

408 L. Schabhüser et al.

with message space M and commitment space C ⊂ X . We also assume the exis-
tence of an ordinary commitment scheme Com′ = (CSetup′,Commit′,Decommit′)
with message space F ×T n, so labeled programs are admissible inputs. One can
always split up Ver into (VerPrep, EffVer) as follows.

VerPrep(P, vk) : On input a labeled program P and a verification key vk, the
algorithm sets vkP = (P, vk). It returns vkP .

EffVer(vkP , C, σ,Δ): On input a concise verification key vkP , a message C, an
authenticator σ, and a dataset identifier Δ ∈ {0, 1}∗, the algorithm parses
vkP = (P, vk). It runs b ← Ver(P, vk, C, σ,Δ) and returns b.

We now show how to construct an FDC.

Setup(1λ) takes the security parameter λ as input. It runs CK ← CSetup(1λ),
CK′ ← CSetup′(1λ) as well as pp′ ← HSetup(1λ). It sets pp = (CK,CK′, pp′)
and outputs pp. We implicitly assume that every algorithm uses these public
parameters pp, leaving them out of the notation.

KeyGen(pp) takes the public parameters pp and runs (sk′, ek, vk) ←
HKeyGen(pp). It sets sk = (sk′, ek), pk = (ek, vk) and outputs the key pair
(sk, pk).

PublicCommit(m, r) takes as input a message m and randomness r and runs
(C, d) ← Commit(m, r). It outputs the commitment C.

PrivateCommit(sk,m, r,Δ, τ) takes as input the secret key sk, a message m,
randomness r, an identifier τ and a dataset identifier Δ. It runs (C, d) ←
Commit(m, r), A′ ← Auth(sk, τ,Δ,C) and outputs A = (A′, ek).

FunctionCommit(pk,P) takes as input the public key pk and a labeled program P.
It parses pk = (ek, vk) and runs vkP ← VerPrep(P, vk). It chooses randomness

rP
$← R uniformly at random and runs (CP , dP) ← Commit′(P, rP). It

outputs the function commitment F = (vkP , CP).
Eval(f,A1, . . . An) takes as input a function f and a set of authenticators

A1, . . . , An. It parses Ai = (A′
i, eki) for all i ∈ [n], and runs Â ← HEval(f,

{A′
i}i∈[n], ek1). It outputs A∗ = (Â, ek1).

FunctionVerify(pk, A,C, F,Δ) takes as input a public key pk, an FDC containing
an authenticator A and a commitment C, a function commitment F as well
as a dataset identifier Δ. It parses F = (vkP , CP), and A = (A′, ek). It runs
b ← EffVer(vkP , C,A′,Δ) and outputs b.

PublicDecommit(m, r,C) takes as input message m, randomness r, and commit-
ment C. It runs (C, d) ← Commit(m, r) as well as b ← Decommit(m, d,C)
and outputs b.

We first look at the commitment properties — hiding and binding. In our
transformation, these are inherited from the underlying commitment schemes.

Lemma 1. The construction FDC is binding in the sense of Definition 6 if Com
and Com′ used in the construction are binding commitment schemes.

Function-Dependent Commitments from Homomorphic Authenticators 409

Proof. Obviously, if Com is binding then PublicCommit is binding. We parse
a function commitment as F = (vkP , CP). Note that CP is by assumption a
binding commitment, thus FunctionCommit is also binding.

The hiding property of FDCs (Definition 7) is different from the context
hiding property of homomorphic authenticators [7]. Context hiding guarantees
that authenticators to the output of a computation do not leak information
about the inputs to the computation. By contrast, the hiding property of FDCs
guarantees that even authenticators to the inputs do not leak information about
inputs to the computation. In [22], this property was used to combine an FDC
with secret sharing to construct an efficient verifiable multi-party computation
scheme. This privacy gain is one of the major benefits of FDCs over homomorphic
authenticators when sensitive data are used as computation inputs.

Lemma 2. If Com is (unconditionally) hiding, then FDC is unconditionally hid-
ing in the sense of Definition 7.

Proof. If Com is (unconditionally) hiding, then the probabilistic distributions

over the sets {Commit(m, r) | r
$← R} and {Commit(m′, r′) | r′ $← R} are

perfectly indistinguishable for all m,m′ ∈ M. This is independent of any
τ ∈ T and any Δ ∈ {0, 1}∗. Hence the probabilistic distributions over sets

{Auth(sk,Δ, τ, C) | C ← Commit(m, r), r $← R} and {Auth(sk,Δ, τ, C ′) | C ′ ←
Commit(m′, r′), r′ $← R} are perfectly indistinguishable for all m,m′ ∈ M, τ ∈
T ,Δ ∈ {0, 1}∗. Since {Auth(sk,Δ, τ, C) | C ← Commit(m, r), r $← R} =

{PrivateCommit(sk,m, r,Δ, τ) | r
$← R} for all m ∈ M, τ ∈ T ,Δ ∈ {0, 1}∗

the probabilistic distributions over {PrivateCommit(sk,m, r,Δ, τ) | r
$← R} and

{PrivateCommit(sk,m′, r′,Δ, τ) | r′ $← R} are also (perfectly) indistinguishable.
The PublicCommit case is trivial.

Next, we investigate the homomorphic property of such an FDC. We can show
that if the homomorphic authenticator scheme HAuth satisfies both correctness
properties — authentication and evaluation, and furthermore supports efficient
verification, then the transformed FDC is also correct.

Lemma 3. If HAuth achieves authentication (see [7]), evaluation correctness
(see [7]), and efficient verification (see [7]), then FDC is correct in the sense of
Definition 8 with overwhelming probability.

Proof. Let λ be any security parameter, pp ← Setup(1λ), (sk, pk) ←
KeyGen(pp), and let Δ ∈ {0, 1}∗ be an arbitrary dataset identifier. Let
m ∈ M be an arbitrary message and r ∈ R arbitrary randomness. We
set A ← PrivateCommit(sk,m, r,Δ, τ), C ← PublicCommit(m, r), FI ←
FunctionCommit(pk, Iτ), where Iτ is the labeled identity program. Then we
have A = Auth(sk,Δ, τ, C). By the authentication correctness of HAuth, we
know that Ver(Iτ,Δ, vk, C, σ) = 1. Since HAuth achieves efficient verifica-
tion, EffVer(vkIτ

, C, σ,Δ) = 1 with overwhelming probability. By construction,
FunctionVerify(pk, A,C, FI ,Δ) = 1.

410 L. Schabhüser et al.

Let {mi, σi,Pi)}i∈[N] be any set of tuples (parsed as σi = (ri, Ai)) such that
for Ci ← PublicCommit(mi, ri), Fi ← FunctionCommit(pk,Pi), FunctionVerify(pk,
Ai, Ci, Fi,Δ) = 1. This implies EffVer(vkPi

, Ci, σi,Δ) = 1, thus Ver(Pi,Δ, vk, Ci,
σi) = 1 with overwhelming probability. Then let m∗ = g(m1, . . . ,mN), r∗ =
ĝ(m1, . . . ,mN , r1, . . . rN), C∗ ← PublicCommit(m∗, r∗), P∗ = g(P1, . . . ,PN),
F ∗ ← FunctionCommit(pk,P∗), A∗ ← Eval(f,A1, . . . , AN), and σ∗ = (r∗, A∗).
From the homomorphic property of Com, we have C∗ = CEval(g, C1, . . . , CN).
By the evaluation correctness of HAuth we have Ver(P∗, vk, C∗, σ∗) = 1.
Thus EffVer(vkP∗ , C∗, σ∗,Δ) = 1 with overwhelming probability, due to the
correctness of efficient verification. By construction, FunctionVerify(pk, A∗,
C∗, F ∗, Δ) = 1.

We now look at the essential security property of an FDC — unforgeability.
We show how an adversary that can break the security experiment for FDCs can
be used to break the security experiment for homomorphic authenticators. A
simulator can forward the queries used by the adversary in the FDC experiment
as queries in the homomorphic authenticator experiment, and use the resulting
forgery in the one experiment to compute a forgery in the other.

Lemma 4. If HAuth is secure (see [7]), then FDC is unforgeable (Definition 11).

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during the security experiment EXPUF−CMA

A,FDC , we then show how a simulator S
can use A to win the security experiment HomUF − CMAA,HAuth (see [7]).

Setup. S gets pp′ from the challenger of the experiment HomUF − CMAA,HAuth.
It runs CK ← CSetup(1λ), CK′ ← CSetup′(1λ). It sets pp = (CK,CK′, pp′)
and outputs pp to the adversary A.

Key Generation. S receives (ek, vk) from the challenger of the experiment
HomUF − CMAA,HAuth. It sets pk = (ek, vk) and outputs pk to A.

Queries. When A ask queries (Δ, τ,m, r), S computes (C, d) ← Commit(m, r)
and queries (Δ, τ, C) to receive an authenticator σ. It sets A = σ and replies
to the query with the private commitment A. This is the exact same reply
to a query in experiment EXPUF−CMA

A,FDC .
Forgery. The adversary A returns a forgery (P∗

Δ∗ ,m∗, r∗, A∗). S computes
(C∗, d∗) ← Commit(m∗, r∗) and outputs (P∗

Δ∗ , C∗, A∗).

A type 1, 2, 3 forgery in experiment EXPUF−CMA
A,FDC corresponds to a forgery

in experiment HomUF − CMAA,HAuth. Thus S produces a forgery with the same
probability as A.

We now analyze an FDC obtained by our transformation with respect to
its efficiency properties. On the one hand we have succinctness, which guaran-
tees that authenticators are short, so bandwidth requirements are low. On the
other hand, we show how the FDC inherits amortized efficiency, i.e. efficient
verification after a one-time preprocessing from the efficient verification of the
underlying homomorphic authenticator scheme.

Function-Dependent Commitments from Homomorphic Authenticators 411

Lemma 5. If HAuth is succinct (see [7]), then FDC is succinct (Definition 12).

Proof. By assumption, HAuth produces authenticators whose size depends at
most logarithmically on the data set size n. By construction, the output size of
PrivateCommit and Eval thus depends at most logarithmically on n.

Lemma 6. If HAuth is efficiently verifiable (see [7]), then FDC has amortized
efficiency in the sense of Definition 13.

Proof. Let t(n) be the runtime of f(m1, . . . ,mn). FunctionVerify parses a function
commitment F = (vkP , CP) and runs EffVer(vkP , C,A,Δ). By assumption, the
runtime of EffVer is o(t(n)). Thus the runtime of FunctionVerify is also o(t(n)).

3.1 A New Structure-Preserving Homomorphic Signature Scheme

We now consider the special case of a single-dataset, structure-preserving homo-
morphic signature scheme. Obviously, our transformation also works for such
a scheme. This can easily be seen by interpreting the underlying authenticator
scheme as one where all algorithms are constant over all inputs Δ ∈ {0, 1}∗. This
leads to a single dataset FDC. It is an immediate corollary of [11, Theorem 2]
that a single dataset FDC can be transformed into a multi dataset FDC. On
a high level, this transformation uses a keyed pseudorandom function that on
input a dataset Δ ∈ {0, 1}∗ produces the keys (skΔ, ekΔ, vkΔ) and then uses a
conventional UF-CMA secure signature scheme to bind the dataset to the public
keys by signing Δ | vkΔ. For details, see Fiore et al. [11]. In Sect. 4, we present
such a single dataset structure-preserving homomorphic signature scheme.

4 A New Single-Dataset, Structure-Preserving Linearly
Homomorphic Signature Scheme

We now describe a novel structure-preserving linearly homomorphic signa-
ture scheme SPHAuth for a single dataset. As we discussed in Sect. 3, this
can be extended to a scheme for multiple datasets by standard methods.
Our structure-preserving linearly homomorphic signature scheme is the first
structure-preserving homomorphic signature scheme to achieve efficient verifica-
tion, and the first context hiding. It achieves the latter even in an information-
theoretic sense.

HSetup(1λ) : On input a security parameter λ, this algorithm chooses the

parameter n ∈ Z, a bilinear group bgp = (p,G1,G2,GT , g1, g2, e)
$← G(1λ)

and the tag space T = [n]. Additionally, it fixes a pseudorandom function
F : K × {0, 1}∗ → Zp. It outputs the public parameters pp = (n, F, bgp).

HKeyGen(pp) : On input the public parameters pp, the algorithm chooses chooses
x1, . . . , xn, y, z ∈ Zp uniformly at random. It sets hi = gxi

t for all i ∈ [n], as
well as Y = gy

2 , Z = gz
2 . Additionally the algorithm chooses a random seed

K
$← K for the pseudorandom function F . It sets sk = (K,x1, . . . , xn, y, z),

ek = 0, vk = (h1, . . . , hn, Y, Z) and outputs (sk, ek, vk).

412 L. Schabhüser et al.

Auth(sk, τ,M) : On input a secret key sk, an input identifier τ , and a message
M ∈ G1, the algorithm takes x, y from sk. It computes s = FK(τ) and sets

S = gs
1, Λ =

(
gxτ+s
1 · My

) 1
z . It outputs σ = (Λ, S).

HEval(f, {σi, }i∈[n], 0) : On input an function f : Mn → M and a set {σi}i∈[n]

of authenticators, and an empty evaluation key, the algorithm parses f =
(f1, . . . , fn) as a coefficient vector. It parses each σi as (Λi, Si) and sets
Λ =

∏n
i=1 Λfi

i and S =
∏n

i=1 Sfi

i . It returns σ = (Λ, S).
Ver(P, vk,M, σ) : On input a labeled program P, a verification key vk, a message

M ∈ G1, and an authenticator σ, the algorithm parses σ = (Λ, S). It checks
whether e (Λ, Z) = e (M,Y) ·

∏n
i=1 hfi

τi
· e (S, g2). If the equation holds, it

outputs 1, otherwise it outputs 0.

This scheme SPHAuth is structure-preserving, as messages are taken from G1,
public keys lie in G2 or GT and authenticators lie in G1. An obvious requirement
for this structure-preserving homomorphic signature scheme is to be correct. For
homomorphic authenticators, two different notions of correctness are considered.
One ensures that freshly generated authenticators obtained by running Auth ver-
ify correctly. The other correctness property ensures that any derived signature,
obtained by running HEval verifies correctly w.r.t the correct labeled program P.

Lemma 7. SPHAuth satisfies authentication correctness (see [7]).

Proof. For all public parameters pp ← HSetup(1λ), and key triple (sk, ek, vk) ←
HKeyGen(pp), we have sk = (x1, . . . , xn, y, z), ek = 0, vk = (h1, . . . , hn, Y, Z).
For any input identifier τ ∈ T , and any message M ∈ G1 we have σ = (Λ, S)

with Λ =
(
gxτ+s
1 · My

) 1
z and S = gs

1. We consider P = Iτ the identity
program for label τ . During the computation of Ver(Iτ , vk,M, σ), e (Λ, Z) =

e
((

gxτ+s
1 · My

) 1
z , gz

2

)
= e

(
gxτ+s
1 · My, g2

)
= e (gxτ

1 , g2) · e (gs
1, g2) · e (M, gy

2) =
e (M,Y) · hτ · e (S, g2). Thus SPHAuth satisfies authentication correctness with
probability 1.

Lemma 8. SPHAuth satisfies evaluation correctness (see [7]).

Proof. We fix the public parameters pp ← HSetup(1λ), key triple (sk, ek, vk) ←
HKeyGen(pp), a function g : GN

1 → G1, given by its coefficient vector (g1, . . . , gN)
and any set of program/message/authenticator triples {(Pi,Mi, σi)}i∈[N] such
that Ver(Pi, vk,Mi, σi) = 1 for all i ∈ [N]. So in particular, for σi =
(Λi, Si), e (Λi, Z) = e (Mi, Y) · hPi

· e (Si, g2) For readability, we write hPi
=

∏n
k=1 h

fi,k
τi,k with Pi = (fi,1, . . . , fi,n, τi,1, . . . , τi,n). Let M∗ =

∏N
i=1 Mgi

i ,
P∗ = g(P1, . . . ,PN), and σ∗ = HEval(g, {σi}i∈[N], 0) (we have an empty

evaluation key). We parse σ∗ = (Λ∗, S∗). Then e (Λ∗, Z) = e
(∏N

i=1 Λgi

i , Z
)

=
∏N

i=1 e (Λi, Z)gi =
∏N

i=1(e (Mi, Y) · hPi
· e (Si, g2))gi =

∏N
i=1 e (Mi, Y)gi ·

∏N
i=1 hgi

Pi
·
∏N

i=1 e (Si, g2)
gi = e(

∏N
i=1 Mgi

i , Y)·hP∗ · e
(∏N

i=1 Sgi

i , g2

)
= e (M∗, Y)·

hP∗ ·e (S∗, g2). Thus SPHAuth satisfies evaluation correctness with probability 1.

Function-Dependent Commitments from Homomorphic Authenticators 413

Next, we show that SPHAuth is efficient with respect to both bandwidth
(succinctness) and verification time (efficient verification).

Lemma 9. SPHAuth is succinct (see [7]).

Proof. An authenticator consist of 2 G1 elements and is thus independent of n.

Lemma 10. SPHAuth allows for efficient verification (see [7]).

Proof. We describe the algorithms (VerPrep,EffVer):

VerPrep(P, vk) : On input the labeled program P = (f, τ1, . . . , τn), with f given
by its coefficient vector (f1, . . . , fn), the algorithm takes Y,Z from vk. For
label τi it takes hτi

from vk. It computes hP ←
∏n

i=1 hfi
τi

and outputs vkP ←
(hP , Y, Z). This is independent of the input size n.

EffVer(vkP ,M, σ): On input a concise verification key vkP , a message M , and
an authenticator σ, the algorithm parses σ = (Λ, S). It checks whether the
following equation holds: e (Λ, Z) = hP · e (M,Y) · e (S, g2). If it does, it
outputs 1, otherwise it outputs 0.

This obviously satisfies correctness. We can see that the runtime of EffVer
is O(1), and is independent of the input size n. Thus, for large n, this scheme
allows for efficient verification.

We now prove the unforgeability of our scheme. To this end, we first describe
a sequence of games, allowing us to argue about different variants of forgeries.
We show how any noticeable difference between the first two games leads to a
distinguisher against the pseudorandomness of F . We then show how both a
noticeable difference between the latter two games, as well as a forgery in the
final game lead to a solver of the double pairing assumption.

Theorem 1. If F is a pseudorandom function and the double pairing assump-
tion holds in G2 (see Definition 14), then SPHAuth is unforgeable.

Proof. We now provide the security reduction for the unforgeability of our
scheme in the standard model. We define a series of games with the adver-
sary A and we show that A wins, i.e. any game outputs 1, only with negligible
probability. Following the notation of [7], we write Gi(A) to denote that a run
of game i with A returns 1. We use flag values badi, initially set to false. If, at
the end of each game, any of these previously defined flags is set to true, the
game simply outputs 0. Let Badi denote the event that badi is set to true during
game i.

Game 1 is defined as the security experiment HomUF − CMAA,MKHAuth(λ)
between adversary A and challenger C.

Game 2 is defined as Game 1, except that the keyed pseudorandom function
FK is replaced by a random function R : {0, 1}∗ → Zp.

Game 3 is defined as Game 2, except for the following change. The challenger
runs an additional check. It computes σ̂ ← HEval(f, {σi, }i∈[n], 0) over the σi

414 L. Schabhüser et al.

given to the adversary A in answer to his queries. It parses σ̂ = (Λ̂, Ŝ). It parses
the forgery σ∗ = (Λ∗, S∗). If Ŝ = S∗ it sets bad3 = true.

First, we show that for every PPT adversary A running Game 2, there exists
a PPT distinguisher D such that |Pr[G2(A)] − Pr[G1(A)]| ≤ AdvPRF

F,D (λ).
Assume we have a noticeable difference |Pr[G1(A)] − Pr[G2(A)]| ≥ ε. Since

the only difference between these games is the replacement of the pseudorandom
function F by the random function R, this immediately leads to a distinguisher
D that achieves an advantage of ε against the pseudorandomness of F .

Now, we show that Pr[Bad3] = negl(λ). The simulator S gets as input
bgp, Z ∈ G2. It simulates Game 3.

Setup. Simulator S chooses the parameter n ∈ Z and the tag space T = [n]. It
outputs the public parameters pp = (n, bgp).

KeyGen. Simulator S chooses ai, bi ∈ Zp uniformly at random for all i =
1, . . . , n. It sets hi = gai

t · e (g1, g2)
bi . It chooses y ∈ Zp uniformly at random

and sets Y = gy
2 . It gives the verification key vk = (h1, . . . , hn, Y, Z) to A.

Queries. When queried for (M, τ), simulator S sets Λ = gbτ
1 as well as S =

g−aτ
1 · M−y. Since aτ , bτ were chosen uniformly at random, the signature is

correctly distributed.
Forgery. Let (P∗,M∗, σ∗) with σ∗ = (Λ∗, S∗) be the forgery returned by A.

S follows Game 3 to compute Λ̂, Ŝ, M̂ . Since σ∗ is a successful forgery, we
furthermore know that both e (Λ∗, Z) = e (M∗, Y) ·

∏n
i=1 hfi

τi
· e (S∗, g2) and

e
(
Λ̂, Z

)
= e

(
M̂, Y

)
·
∏n

i=1 hfi
τi

·e
(
Ŝ, g2

)
. Dividing the equations and consid-

ering that Ŝ = S∗ since bad3 = true, e
(

Λ∗

Λ̂
, Z

)
= e

(
M∗

M̂
, Y

)
or alternatively

e
(

Λ∗

Λ̂
, Z

)
· e

((
M̂
M∗

)y

, g2

)
= 1 and we have found a solution to the double

pairing problem. By definition, we have M∗ �= M̂ .

Now we consider the general case. The simulator S gets as input bgp, Z ∈ G2.
It simulates Game 3.

Setup. Simulator S chooses the parameter n ∈ Z and the tag space T = [n]. It
outputs the public parameters pp = (n, bgp).

KeyGen. Simulator S chooses ai, bi ∈ Zp uniformly at random for all i =
1, . . . , n. It sets hi = gai

t · e (g1, G2)
bi . It chooses y ∈ Zp uniformly at random

and sets Y = Zy. It gives the verification key vk = (h1, . . . , hn, Y, Z) to A.
Queries. When queried for (M, τ) simulator S sets Λ = gbτ

1 ·My as well as S =
g−aτ
1 . Note that since aτ , bτ were chosen uniformly at random the signature

is correctly distributed.
Forgery. Let (P∗,M∗, σ∗) with σ∗ = (Λ∗, S∗) be the forgery returned by A.

S follows Game 3 to compute Λ̂, Ŝ, M̂ . Since σ∗ is a successful forgery, we
furthermore know that both e (Λ∗, Z) = e (M∗, Y) ·

∏n
i=1 hfi

τi
· e (S∗, g2) and

e
(
Λ̂, Z

)
= e

(
M̂, Y

)
·
∏n

i=1 hfi
τi

· e
(
Ŝ, g2

)
.

Dividing the equations and using the identity Y = Zy yields e
(

Λ∗

Λ̂
, Z

)
=

e
(

M∗

M̂
, Zy

)
· e

(
S∗

Ŝ
, g2

)
or alternatively e

(
Λ∗

Λ̂
·
(

M̂
M∗

)y

, Z
)

· e
(

Ŝ
S∗ , g2

)
= 1

Function-Dependent Commitments from Homomorphic Authenticators 415

and we have found a solution to the double pairing problem. Since we have
bad3 = false we know that Ŝ �= S∗.

Finally, we argue the privacy of SPHAuth. Intuitively, a homomorphic authen-
ticator scheme is context hiding if it is infeasible to derive information about the
inputs to a computation from an authenticator to the outcome of a computation
(beyond what can be learned from the output itself). We show that for SPHAuth,
this holds even against a computationally unbounded adversary.

Theorem 2. SPHAuth is perfectly context hiding (see [7]).

Proof. We show that SPHAuth is perfectly context hiding by comparing the
distributions of homomorphically derived signatures to that of simulated signa-
tures. First, in our case, the algorithm Hide is just the identity function. More
precisely, we have Hide(vk,M, σ) = σ, for all possible verification keys vk, mes-
sages M ∈ G1 and authenticators σ. Thus we have HideVer = Ver, so correctness
and unforgeability hold by Lemmas 7, and 8, and Theorem 1.

We show how to construct a simulator Sim that outputs signatures perfectly
indistinguishable from the ones obtained by running Eval. Parse the simulator’s
input as sk = (K,x1, . . . , xn, y, z), PΔ = (f, τ1, . . . , τn,Δ). It computes si =

FK(τi). It sets S′ = g
∑n

i=1 si

1 and Λ′ =
(
g

∑n
i=1(xτi

+si)
1 · My

) 1
z

.
Let σi ← Auth(sk, τi,Mi), σ∗ ← HEval(f, {σi, }i∈[n], 0). Parsing σ∗ =

(Λ∗, S∗), we have by construction S∗ = S′ and Λ∗ = Λ′. Since these elements
are identical, they are indistinguishable against a computationally unbounded
distinguisher.

5 Related Work

Transforming Homomorphic Authenticators. Catalano et al. [9] showed a trans-
formation for linearly homomorphic signatures. They introduced a primitive
called linearly homomorphic authenticated encryption with public verifiability
(LAEPuV), and how to obtain LAEPuV schemes from Paillier encryption and
homomorphic signatures. Their work is restricted to the computational secu-
rity of Paillier encryption. Our approach also allows for information-theoretic
privacy.

Commitments. Commitment schemes (e.g. [19]) can add verifiability to secret
sharing [19], multi-party computation [6], or e-voting [18]. In commitment-
based audit schemes, authenticity is typically achieved by using a secure bul-
letin board [10], for which finding secure instantiations has been challenging so
far. In [22], FDC schemes are introduced. Unlike previous commitment schemes,
they allow for succinctness and amortized efficiency. Furthermore, FDCs support
messages stored in datasets and thus enables a much more expressive notion of
public verifiability and more rigorous definition of forgery. Besides, a secure bul-
letin board is not required. In this work, we investigate the relations between

416 L. Schabhüser et al.

homomorphic authenticators and FDCs. In particular, we show how to construct
FDCs from structure-preserving signatures. In [17], the notion of functional com-
mitments is introduced. Their notion of function bindingness, however, is strictly
weaker than our notion of adaptive unforgeability.

Homomorphic Authenticators. Homomorphic authenticators have been proposed
both in the secret-key setting, as homomorphic MACs (e.g. [4,5,24]), and in the
public-key setting as homomorphic signatures (e.g. [7,8,20]). In contrast, FDCs
additionally consider information-theoretic privacy. Libert et al. [16] presented
a structure-preserving, linearly homomorphic signature scheme. For structure-
preserving homomorphic signatures, so far, only schemes limited to linear func-
tions are known. Our construction in Sect. 4 is, however, the first such scheme
to achieve efficient verification as well as the first to be context hiding.

Structure-Preserving Signatures. The notion of signatures to group elements
consisting of group elements were introduced by Groth [13]. This property was
later called structure-preserving [2]. Since then, various constructions have been
proposed (e.g. [1,12,14]).

Acknowledgments. This work has received funding from the DFG as part of project
S6 within the CRC 1119 CROSSING.

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 3

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

3. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for
modular protocol design. IACR ePrint 2010, 133 (2010)

4. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01957-9 18

5. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: ACM CCS, pp. 863–874. ACM (2013)

6. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party com-
putation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 11

7. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private:
constructions and applications to (homomorphic) signatures with shorter public
keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
254–274. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 13

https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1007/978-3-319-10879-7_11
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/978-3-662-48000-7_13

Function-Dependent Commitments from Homomorphic Authenticators 417

8. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44371-2 21

9. Catalano, D., Marcedone, A., Puglisi, O.: Authenticating computation on groups:
new homomorphic primitives and applications. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 193–212. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 11

10. Culnane, C., Schneider, S.A.: A peered bulletin board for robust use in verifiable
voting systems. In: CSF, pp. 169–183. IEEE Computer Society (2014)

11. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic
authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 17

12. Ghadafi, E.: How low can you go? short structure-preserving signatures for Diffie-
Hellman vectors. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 185–204.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7 10

13. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

14. Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilin-
ear assumptions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 183–209.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 7

15. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 14

16. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 17

17. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
ICALP. LIPIcs, vol. 55, pp. 30:1–30:14, Dagstuhl (2016)

18. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 22

19. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

20. Schabhüser, L., Butin, D., Buchmann, J.: CHQS: publicly verifiable homomorphic
signatures beyond the linear case. In: Su, C., Kikuchi, H. (eds.) ISPEC 2018.
LNCS, vol. 11125, pp. 213–228. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99807-7 13

21. Schabhüser, L., Butin, D., Buchmann, J.: Function-dependent commitments from
homomorphic authenticators. IACR ePrint 2019, 250 (2019)

22. Schabhüser, L., Butin, D., Demirel, D., Buchmann, J.: Function-dependent com-
mitments for verifiable multi-party computation. In: Chen, L., Manulis, M., Schnei-
der, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 289–307. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99136-8 16

https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-45608-8_11
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-319-71045-7_10
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-54388-7_7
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-99807-7_13
https://doi.org/10.1007/978-3-319-99807-7_13
https://doi.org/10.1007/978-3-319-99136-8_16

418 L. Schabhüser et al.

23. Schabhüser, L., Demirel, D., Buchmann, J.: An unconditionally hiding auditing
procedure for computations over distributed data. In: CNS, pp. 552–560. IEEE
(2016)

24. Zhang, L.F., Safavi-Naini, R.: Generalized homomorphic MACs with efficient ver-
ification. In: AsiaPKC@AsiaCCS, pp. 3–12. ACM (2014)

Security Against Subversion
in a Multi-surveillant Setting

Geng Li, Jianwei Liu, and Zongyang Zhang(B)

School of Cyber Science and Technology, Beihang University, Beijing, China
{ligeng,liujianwei,zongyangzhang}@buaa.edu.cn

Abstract. Mass surveillance attracts much of attentions nowadays. Evi-
dences showed that some intelligence agencies try to monitor public’s
communication by unconventional methods, for example, providing users
subverted cryptographic algorithms and compelling them to use. To
address this new situation, researchers proposed a series of formal anal-
yses and security definitions. However, current researches are restrictive
as they only considered a single surveillant setting. In reality, there may
exist multiple surveillants for different governments or manufacturers.
This paper initializes the analysis of security against subversion in a
multi-surveillant setting. We consider the case where users could only use
subverted algorithms from different sources to achieve a subliminal com-
munication. We introduce a new security notion that the transmission
of a real message is “undetectable”, which means all surveillants either
think the users execute the subverted algorithms honestly to transmit an
innocuous message, or consider users are using non-subverted algorithms.
We present a concrete design and prove that it satisfies our security def-
inition.

Keywords: Post-Snowden cryptography ·
Algorithm-substitution attack (ASA) · Message-transmission protocol

1 Introduction

The PRISM in 2013 showed that some agencies try to monitor a user’s commu-
nication by providing corrupted algorithms with an underlying “backdoor”. A
typical example is Dual EC DRBG [4]. Designed by National Security Agency,
Dual EC DRBG acts as a pseudorandom generator. After knowing a series of
outputs of Dual EC DRBG, an attacker getting access to its backdoor can pre-
dict the subsequent outputs.

A series of studies considered about this new situation, where the implemen-
tations of cryptographic algorithms may diverge from their original security due
to implanting of backdoors. To address this problem, researchers regarded the
insecure implementations with backdoors as subversion, and proposed several
security models to capture the actual security requirements, such as “kleptog-
raphy” [14], surveillance-detection model [3], cryptography reverse firewall [10],
self-guarding model [8], watchdog-based model [11] et al.
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 419–437, 2019.
https://doi.org/10.1007/978-3-030-21548-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_23

420 G. Li et al.

Current researches are restrictive as they only considered a single surveillant
setting. There is an implicit assumption that the surveillant is a single entity,
despite there may exist several subverted algorithms (such as “decomposition
and amalgamation” model proposed by Russell et al. [12]). However, it is quite
possible for users to run several cryptographic algorithms from different sources
to construct a single system in reality. In this case, perhaps multiple surveillants
exist and all the algorithms are corrupted. This setting is reasonable, since each
government and organization may have its own independent surveillant system
and cryptographic standard, and different manufacturers producing backdoored
devices may have their respective supervisors. We emphasize that different orga-
nizations may be independent, and it is impossible for them to collaborate to
conduct surveillance.

We initialize the security analysis in the multi-surveillant setting and focus
on a message-transmission protocol. We assume that users could run implemen-
tations from different surveillants to construct their system. Normally, we may
just hope the message is private against all surveillants. It may seem not difficult
to achieve this, as in the multi-surveillant setting every surveillant only knows
part of the backdoors, and in previous studies [2,3,6], a subversion is usually
considered to be secure against ones who do not know the backdoor.

However, a powerful surveillant may find that the ciphertexts deviate from
the normal encrypted message traffic and mount an attack. For example, if a
surveillant can decrypt ciphertexts with a backdoor, he may detect the messages
are not sampled from a vaild distribution. So we expect something more. We
want the transmission not only private but also undetectable to all surveillants.
Every surveillant either thinks the users are invoking the normal algorithm with-
out subversion, or consider the users are exactly using the subverted algorithm
it presents but detects nothing about the subliminal communication. We aim to
design a message-transmission protocol which transmits the message privately
and achieves the undetectability above. We call a protocol satisfying such prop-
erty a subliminal communication protocol.

To be more concrete, we follow the work [9] and introduce a next-message
generator M(τ). M(τ) takes a state τ as its input, renews the state τ and
outputs a legal message m, where m has no relationship to real transmitted
message msg. M(τ) is independent of both users and surveillants. Intuitively, a
user transmits msg to the other by embedding msg into its output as in Fig. 1(a),
but for each surveillant, a user’s output in Fig. 1(a) is indistinguishable to either
case in Fig. 1(b), where C is a non-subverted specification, and C0 and C1 are
two implementations of C given by two independent surveillants, respectively.
The formal definition will be presented in Sect. 3.

Our work has a subtle relationship with steganography, which aims to hide
secure communication under innocent-looking messages. The subliminal com-
munication is different to steganography in formal expression, as the actual
cover objects in subliminal communication are ciphertexts of innocuous mes-
sages, whereas in steganography the cover objects are plaintexts. However, in a

Security Against Subversion in a Multi-surveillant Setting 421

Fig. 1. An intuitive description for subliminal communication, b ∈ {0, 1}.

broad perspective, our scheme achieves the effect of steganography in hidding
messages, even when surveillants are able to decrypt the ciphertexts.

This paper presents a concrete design of subliminal communication proto-
col in the multi-surveillant setting. We design a message-transmit protocol as a
combination of a key-exchange protocol and a symmetric encryption scheme. In
our protocol, two surveillants provide their implementations of the key-exchange
and the encryption algorithms, respectively. Using techniques such as random-
ness extracting and messages embedding, two parties achieve a subliminal com-
munication.

1.1 Our Contribution

Security Model in the Multi-surveillant Setting. We initialize the secu-
rity analysis in the multi-surveillant setting. We consider the case where there
are multiple implementations of cryptographic algorithms with backdoors, and
the backdoors are managed by different surveillants. A user is allowed to run
all the implementations to construct its system. Roughly speaking, a message-
transmission protocol is secure if users can transmit their message in a subliminal
method without any detection of abnormality by any surveillant.

A Subliminal Communication Protocol. We design a subliminal commu-
nication Protocol satisfying the above security. In our protocol both parties use
implementations from different surveillants. Our protocol consists of four phases.
In the key-exchange phase, two parties run a key-exchange protocol honestly
and get a shared symmetric key. In the shared seed establishing phase, two par-
ties extract a pseudorandom seed from the ciphertexts. In the subliminal key-
exchange phase, two parties run the same key-exchange protocol subliminally
and embed the transcripts into innocuous messages. In the subliminal commu-
nication phase, the sender embeds the ciphertext of a message into innocuous
messages.

Our design is similar to the protocol in [9], but with two key differences.
Firstly, in our protocol users need not get access to a non-subverted implemen-
tation but use multiple subverted implementations instead; secondly, subverted
implementations are stateful, i.e., they can remember all the previous inputs and
outputs. We mainly solve the following two problems:

422 G. Li et al.

– Establishing a shared pseudorandom seed. In our protocol, parties share no
secret beforehand. We prove that it is necessary to establish a shared pseudo-
random string in the protocol. The protocol in [9] uses a randomness extrac-
tor GT but fails to deal with stateful subverted algorithms. Thus, we pro-
pose another extractor called “different basket (DB)”, which is introduced in
Sect. 5.1.

– Embedding a message. We require the embedding in the third and fourth
phases to be undetectable to all surveillants. Previous solution [9] makes the
embedded message to be pseudorandom, thus, a surveillant cannot distinguish
a ciphertext embedded with a message from a normal one. However, when all
the cryptographic algorithms are subverted, such pseudorandomness is hard
to achieve.
Our protocol runs two kinds of implementations KE0, KE1, E0, E1 of the same
key-exchange protocol KE and encryption scheme E. We use KE1 and E1 to
generate embedded messages and E0 to embed them into ciphertexts. Our
embedding relies on the subverted implementation from one surveillant to
cheat other surveillants. In this way, the embedding is undetectable to all
surveillants.

1.2 Related Work

The security of maliciously subverted cryptographic algorithms is firstly ana-
lyzed by Young and Yung [13–16]. They proposed a new cryptographic model
called “kleptography”. In this model an adversary is permitted to compromise
the security by designing an implementation of algorithms. They also designed
concrete attack methods for common encryption and signature schemes.

In order to characterize a surveillant’s behavior, Bellare, Paterson and Rog-
away [3] presented algorithm substation attacks (ASAs). They summarized the
attacks that maliciously substitutes an algorithm as subversion, and formal-
ized security notions of symmetric encryption scheme against ASAs. Degabriele,
Farshim and Poettering [6] introduced an “input-triggered attack”, pointed out
the weakness of the security model in [3] and proposed a new model to analyze
the security in the subversion settings. With consideration of input-triggered
attack, Bellare, Jaeger and Kane [2] improved the prior security model in [3] and
present a stronger ASA, which can be stateless.

Russell et al. [11] proposed watchdog-based model. A watchdog is a probal-
istic polynomial-time algorithm which judges an algorithm to be correct or sub-
verted by testing it as a blackbox. An attack is considered as successful if an
implementation not only breaks the security but also passes any watchdog’s test.
Russell et al. [12] also proposed a model named “decomposition and amalgama-
tion”, where an algorithm is divided into several sub-algorithms. All the sub-
algorithms together achieve the same functionality and security as the original
algorithm, while they are under subversion risk, except that all sub-algorithms
are working in the trusted amalgamation model.

Mironov and Stephens-Davidowitz [10] introduced the notion of a crypto-
graphic reverse firewall (CRF). A CRF is a machine sitting at the boundary

Security Against Subversion in a Multi-surveillant Setting 423

between a user’s computer and the outside world, intercepting and modifying
all the messages incoming and outcoming. A CRF has a special trust state.
On the one hand, a CRF cannot be subverted. On the other hand, it is not
a trusted module and can only access to public information. Dodis, Mironov
and Stephens-Davidowitz [7] provided concrete designs of CRFs in a message-
transmission protocol. Chen et al. [5] introduced the notion of malleable smooth
projective hash function based on the smooth projective hash function (SPHF),
and show how to generically construct CRFs via malleable SPHFs in a modular
way for some widely used cryptographic protocols.

Fischlin and Mazaheri [8] proposed another defending strategy called self-
guarding. Compared with detection-based solutions [3,11], it proactively thwarts
attacks, and compared with CRFs it does not assume an online external party.
They presented constructions for encryption schemes and signature schemes.

Horel et al. [9] proposed an analytical framework which is rather different
to the previous studies. They considered the case where a surveillant provides a
corrupted algorithm but a user can deal with it more actively. This means, a user
can manage its implementation and query the subverted algorithm. Users try to
cheat a surveillant by convincing it that they honestly execute the subverted
algorithm and all the communicating message is under surveillance. However,
the real message is transmitted in an undetectable way.

Organization. Section 2 introduces the main notations and preliminaries.
Section 3 describes the multi-surveillant setting, and presents a formal defini-
tion of a subliminal communication protocol. Section 4 rebuts several previous
methods in our setting and proposes some impossibility results. Section 5 con-
structs a subliminal communication protocol with a formal security proof.

2 Preliminary

2.1 Notations

When s is chosen uniformly random in a set S, we write s
$← S. Denote by U�

a � bit uniformly random string. We write the set {1, 2, · · · , r} simply by [r].
Let poly(x) represent a polynomial function of x. Let κ be a security parameter.
A function negl(κ) is called negligible in κ if it vanishes faster than the inverse
of any polynomial in κ. An algorithm A(x) is a probabilistic polynomial-time
(PPT) algorithm if for any input, A(x) terminates at most poly(|x|) steps. If the
algorithm A outputs y upon the input x, we write y ← A(x). We use s1||s2 to
denote the concatenation of two bit strings s1 and s2.

For two distributions X = {Xκ} and Y = {Yκ} over set S. We define sta-

tistical distance as ||X − Y||s def
= 1

2

∑
α∈S

∣
∣Pr[α ∈ X] − Pr[α ∈ Y]. We define

DistD(X ,Y)
def
=

∣
∣Pr[D(Xκ) = 1] − Pr[D(Yκ) = 1]

∣
∣. If DistD(X ,Y) ≤ negl(κ) for

all PPT algorithm D, we call X and Y are computational indistinguishable.

424 G. Li et al.

2.2 Ciphertext Pseudorandom Encryption and Key-Exchange
Protocol

We borrow the idea of ciphertext pseudorandom (CPR) secure encryption in [1],
and present our security definition for symmetric encryption as below.

Definition 1. Let E = (Gen,Enc,Dec) be a symmetric encryption scheme, where
Gen : {0, 1}κ → {0, 1}�, Enc : {0, 1}p×{0, 1}� → {0, 1}q, Dec : {0, 1}q×{0, 1}� →
{0, 1}p. We say E satisfies ciphertext pseudorandom (CPR) security if for any
m ∈ {0, 1}p, k ∈ {0, 1}�, and any PPT adversary A,

AdvCPR
E,A (κ)

def
=

∣
∣Pr[A(m,E.Enc(m, k)) = 1] − Pr[A(m,Uq) = 1]

∣
∣ ≤ negl(κ).

A CPR secure symmetric encryption scheme can be built from one-way func-
tions [9].

We take the idea of pseudorandom key-exchange protocol in [9] and present
Definition 2.

Definition 2. Let KE = (Λ0,1,Λ1,1, · · · ,Λ0,r,Λ1,r,Λ0,out,Λ1,out) be a two-party
key-exchange protocol. For i ∈ [r], λ1,0 = ⊥, (λ0,i, s0,i) ← Λ0,i(s0,i−1, λ1,i−1),
(λ1,i, s1,i) ← Λ1,i(s1,i−1, λ0,i), kb ← Λb,out(sb,r), where λb,i is the transcript and
sb,i denotes the state. We say KE is pseudorandom if for any PPT adversary A,

AdvPSE
KE,A(κ)

def
=

∣
∣Pr[A({λb,i}b∈{0,1},i∈[r], k

b) = 1] − Pr[A(U, U|kb|) = 1]
∣
∣ ≤ negl(κ),

where U is a uniform random string with the same length as {λb,i}b∈{0,1},i∈[r].

Most known key agreement protocols are pseudorandom, e.g., the classical
protocol of Diffie and Hellman [9].

2.3 Watchdog-Based Test

We call an ideal algorithm “specification” and an algorithm used in practice
“implementation”. Watchdog-based test, proposed by Russell et al. [11], is used
to recognize the implementation which diverges from its specification distinctly.
A watchdog W is a PPT algorithm with access to the specification of an algo-
rithm Fspec. It takes as input an algorithm implementation Fimpl as a blackbox,
and judges whether it is an honest implementation. If for all the PPT W, an
implementation Fimpl of its specification Fspec satisfies,

Det
Fimpl

W (κ)
def
=

∣
∣Pr[WFimpl(1κ) = 1] − Pr[WFspec(1κ) = 1]

∣
∣ ≤ negl(κ),

then we say that the implementation is algorithm-indistinguishable.

Security Against Subversion in a Multi-surveillant Setting 425

3 Subliminal Communication in the Muti-surveillant
Setting

3.1 Background

Normal Transmission Scheme. We design a normal transmission scheme as
a combination of a key-exchange protocol and a symmetric encryption scheme.
Concretely, let E = (Gen,Enc,Dec) be a symmetric encryption scheme, and KE =
(Λ0,1,Λ1,1, · · · ,Λ0,r′ ,Λ1,r′ ,Λ0,out,Λ1,out) be a r′-round key-exchange protocol. In
a normal session, two parties P0 and P1 run as follows.

1. Both parties invoke KE, get a shared key k and parse k as k0||k1 of equal
length

2. In round i ∈ [1, 2, 3, · · ·]:
– P0 gets a message m0,i and a ciphertext c1,i. It decrypts the received

ciphertext as m′
1,i ← E.Dec(c1,i, k1) and sends c0,i ← E.Enc(m0,i, k0);

– P1 gets a message m1,i and a ciphertext c0,i. It decrypts the received
ciphertext as m′

0,i ← E.Dec(c0,i, k0) and sends c1,i ← E.Enc(m1,i, k1).

Entities. Observe that surveillants may provide their implementations of the
algorithms, respectively. We consider the following entities in our model:

1. B0/B1: surveillants who provide implementations Eb and KEb of the specifi-
cations E and KE, b ∈ {0, 1}. Eb and KEb may have their backdoor B̃KEb

and
B̃KKEb

. B0 and B1 are independent surveillants, having no collaboration.
2. W: a watchdog. It tests Eb and KEb as blackboxes, judging whether they are

correct implementations, with access to the specification E and KE.
3. P0/P1: two participants in protocol using the Eb and KEb.

3.2 Security Model

We then present a formal definition of subliminal communication in the muti-
surveillant setting. Our model borrows the ideas from [11] and [9]. Let msg denote
the message that users intend to transmit. Following from [9], we assume the
existence of a next-message generator M. Based on the current state, it generates
an innocuous message being indistinguishable to the usual transmission traffic.1

For simplicity, we omit the update of the state and denote it by mb,i ← M(τb,i).

Definition 3. A subliminal communication protocol is a two-party protocol with
two phases:

– Key-exchange phase: ΦKE0 = (ΦKE0
0,1 ,ΦKE0

1,1 , · · · ,ΦKE0
0,r′ ,Φ

KE0
1,r′ ,Φ

KE0
0,out,Φ

KE0
1,out);

1 In our model we expect the users to transmit msg under any cover message. M
is independent of all users and surveillants, and generates messages with no extra
requirement except looking innocent.

426 G. Li et al.

– Communication phase: ΠE0,E1,KE1 = (ΠE0,E1,KE1
0,1 ,ΠE0,E1,KE1

1,1 , · · · ,ΠE0,E1,KE1
0,r ,

ΠE0,E1,KE1
1,r ,ΠE0,E1,KE1

1,out),

where r′, r ∈ poly(κ) are the numbers of exchange-rounds. ΦKE0
b,i and ΦKE0

1,output

are PPT algorithms with oracle access only to implementation KE0. They can-
not invoke other key-exchange algorithms. ΠE0,E1,KE1

b,i and ΠE0,E1,KE1
1,out are PPT

algorithms with oracle access only to implementations E0,E1,KE1. They cannot
invoke other encryption or key-exchange algorithms. Party P0 receives as input a
message msg that is to be sent to P1 in an undetectable fashion. The algorithms
ΦKE0

b,i and ΠE0,E1,KE1
b,i are run by Pb. ΦKE0

b,out is run by Pb and outputs a shared key.
ΠE0,E1,KE1

1,out is run by P1 and outputs msg′ at the end of the protocol.

Intuitively, our security goal is to transmit msg only using the cryptographic
algorithms given by surveillants, making the surveillants either think that the
users are transmitting innocuous messages by backdoored implementations or
consider them just using non-subverted implementations. We present the syn-
tax, correctness, and security of a subliminal communication protocol as below.
Syntax.

– The protocol Φ proceeds as follows.
Set λ1,0 ← ⊥. In each exchange-round i ∈ [r′] of Φ,
1. P0 runs (λ0,i, s0,i) ← ΦKE0

0,i (s0,i−1, λ1,i−1), stores s0,i, sends λ0,i to P1.
2. P1 runs (λ1,i, s1,i) ← ΦKE0

1,i (s1,i−1, λ0,i), stores s1,i and sends λ1,i to P0.
When Φ completes, both parties output the shared key k ← ΦKE0

b,out(s0,r′) and
parse k as k0||k1 of equal length.

– The protocol Π proceeds as follows.
Set C1,0 ← ⊥, for i ∈ [r],
1. P0 samples m0,i ← M(τ0,i), invokes (C0,i, ς0,i) ← ΠE0,E1,KE1

0,i (msg,m0,i, k0,
C1,i−1, ς0,i−1), stores ς0,i and sends C0,i to P1.

2. P1 samples m1,i ← M(τ1,i), invokes (C1,i, ς1,i) ← ΠE0,E1,KE1
1,i (m1,i, k1, C0,i,

ς1,i−1), stores ς1,i and sends C1,i to P0.
In the end, P1 computes msg′ = ΠE0,E1,KE1

1,out (ς1,r).

Correctness. For any E0,E1,KE0,KE1 satisfying correctness and any message
msg ∈ {0, 1}p, if P0 and P1 run ΦKE0 and ΠE0,E1,KE1 honestly, then msg′ = msg
with probability 1 − negl(k).

Security.

– Algorithm-indistinguishability. For any PPT algorithm W with oracle access
to E0, E1, KE0 and KE1, for any b ∈ {0, 1}, if the following holds

DetKEb,Eb

W (κ) =
∣
∣Pr[WKEb,Eb(1κ) = 1] − Pr[WKE,E(1κ) = 1]

∣
∣ ≤ negl(κ),

then we say E0, E1, KE0 and KE1 satisfy algorithm-indistinguishability.

Security Against Subversion in a Multi-surveillant Setting 427

– Undetectability I. For any implementations E0, E1, KE0 and KE1 satisfying
algorithm-indistinguishability, and any hidden messages msg, if for b ∈ {0, 1},
the following distributions are computationally indistinguishable:

(Ideal(M); B̃KEb
, B̃KKEb

) and (SubliminalΦ,Π(msg,M); B̃KEb
, B̃KKEb

),

where B̃KE0 ,B̃KE1 ,B̃KKE0 , and B̃KKE1 are backdoors for E0, E1, KE0, KE1,
respectively, and Ideal(M) and SubliminalΦ,Π(msg,M) are shown in Fig. 2,
then we say ΦKE0 and ΠE0,E1,KE1 satisfy undetectability I for Bb.

– Undetectability II. For any implementations E0, E1, KE0 and KE1 satisfying
algorithm-indistinguishability, any hidden messages msg, if for b ∈ {0, 1}, the
following distributions are computationally indistinguishable:

(Subversionb(M); B̃KEb
, B̃KKEb

) and (SubliminalΦ,Π(msg,M); B̃KEb
, B̃KKEb

),

where B̃KE0 ,B̃KE1 ,B̃KKE0 , and B̃KKE1 are backdoors for E0, E1, KE0, KE1,
respectively, and Subversionb(M) and SubliminalΦ,Π(msg,M) are shown in
Fig. 3, then we say ΦKE0 and ΠE0,E1,KE1 satisfy undetectability II for Bb.

Definition 4 (Security of a subliminal communication protocol). A subliminal
communication protocol (Φ,Π) is secure in the two-surveillant setting, if for both
B0 and B1, either undetectability I or undetectability II is satisfied.

Fig. 2. Definition of undetectability I. Ideal(M) denotes a normal communication based
on specifications, and SubliminalΦ,Π(msg, M) denotes the communication that users
attempt to transmit msg based on subverted implementations.

428 G. Li et al.

Fig. 3. Definition of undetectability II. Subversionb(M) denotes a communication based
on subverted implementations KEb and Eb, and SubliminalΦ,Π(msg, M) denotes the com-
munication that users attempt to transmit msg based on subverted implementations.

4 Negative Results

We assume that subverted implementations are stateful, i.e., it remembers all
previous inputs and outputs. In the meantime, we make a limitation that an
implementation cannot collect extra information except its inputs.

Note that our design is based on a restriction that parties have no shared
secret at the very beginning. In this case, we state that it is necessary to establish
a secret seed in the protocol for embedding message.

Theorem 1. For any subliminal communication protocol, if it does not estab-
lish a pseudorandom seed S between two parties, then there exists a subverted
encryption algorithm to violate the correctness property.

Proof. Intuitively, note that parties share no secret against subverted encryption
algorithms. A subverted algorithm can generate ciphertexts which are embedded
with a random string everytime in the same way to users’ embedding. Hence,
the subliminal channel is “blocked”.

Concretely, assume that the parties transmit the message msg in a subliminal
way without a shared pseudorandom seed. Suppose ciphertexts are generated by
an algorithm

∑Eb(msg, k,m), where k is a shared key and m is an innocuous
message. The subverted algorithm Eb can also invoke

∑E. Eb generates U|msg|,
and outputs ciphertext as C ← ∑E(U|msg|, k,m). Hence, all the ciphertexts are
embedded with the message U|msg|.

Horel et al. [9] proposed a method to establish a pseudorandom seed S. In
their design, every bit in S is extracted based on two sequential ciphertexts
generated by a single party. However, we stress that this method does not work

Security Against Subversion in a Multi-surveillant Setting 429

when subverted algorithms are stateful, as a subverted algorithm may recover
the extracted bit in the same way. This is formalized in Theorem 2. Therefore, S
should be generated by both parties together. Whereas, if an implementation is
allowed to collect extra information from other implementations, Theorem2 still
works. This is why we set the limitation that an implementation cannot collect
extra information except its inputs.

Theorem 2. If any bit in the seed S is extracted from outputs which are gener-
ated by a single algorithm F, then there exists a PPT adversary with only oracle
access to F that distinguishes between S and a uniformly random string of the
same length.

Proof. Observe that parties share no secret before establishing S. Denote the
algorithm that extracts any bit in S by EX. Then we design a PPT adversary
A that invokes F and gets the outputs, and extracts the S from the outputs by
running EX. Certainly, S is not random to A.

5 Construction of Subliminal Communication Protocol

To achieve subliminal communication, we assume a pseudorandom key-exchange
protocol KE = (Λ0,1,Λ1,1, · · · ,Λ0,r,Λ1,r,Λ0,out,Λ1,out) as in Definition 2 and a
CPR secure encryption scheme E = (Gen,Enc,Dec) as in Definition 1.

5.1 Establishing a Shared Seed

We define the extractor DB in Definition 5.

Definition 5. Denote the ciphertext space of the encryption scheme E as CS.
We can judge whether C0 > C1 or not for any C0, C1 ∈ CS. Cm is the median
of CS. A two-source extractor DB outputs 1 bit based on two ciphertexts:

DB(C0, C1) =

{
0, if C0, C1 ≤ Cm or C0, C1 > Cm;
1, if C0 ≤ Cm, C1 > Cm or C1 ≤ Cm, C0 > Cm.

We improve the method in [9] by extracting a single random bit from cipher-
texts generated by both communicating parties. In this way, together with the
limitation that the subverted implementations must be approved by a watch-
dog, we can ensure that a seed extracted by DB is pseudorandom in subverted
algorithms’ view even if they are stateful. Next, we present Lemma 1.

Lemma 1. Suppose that KE is a pseudorandom key-exchange protocol, and E is
a CPR encryption scheme. KE′ and E′ are implementations of KE and E. For any
PPT watchdog W, DetE

′,KE′
W (κ) =

∣
∣Pr[WE,KE(1κ) = 1] − Pr[WE′,KE′

(1κ) = 1]
∣
∣ <

negl(κ). Cm is the median of the ciphertext space CS of E. For m ∈ {0, 1}p,
k′
0||k′

1 generated by KE′, C ′ ← E′.Enc(k′
b,m) and any PPT algorithm A, we have

∣
∣Pr[A(k′

1−b,m,R(C ′)) = 1] − Pr[A(k′
1−b,m,U1) = 1]

∣
∣ < negl(κ), (1)

430 G. Li et al.

where R(C ′) is defined as:

R(C ′)
def
=

{
0, if C ′ ≤ Cm;
1, if C ′ > Cm.

(2)

Proof. It is straightforward to see that if k0||k1 is generated by KE and C ←
E.Enc(m, kb), then the Eq. (1) holds. Concretely,

∣
∣Pr[A(k1−b, m,R(C)) = 1] − Pr[A(k1−b, m, U1) = 1]

∣
∣

=
∣
∣Pr[A(k1−b, m,R(C)) = 1] − Pr[A(U|kb|, m,R(C)) = 1] + Pr[A(U|kb|, m,R(C)) = 1]

− Pr[A((U|kb|, m, U1) = 1] + Pr[A(U|kb|, m, U1) = 1] − Pr[A(k1−b, m, U1) = 1]
∣
∣

≤ ∣
∣Pr[A(k1−b, m,R(C)) = 1] − Pr[A(U|kb|, m,R(C)) = 1]

∣
∣ +

∣
∣Pr[A(U|kb|, m,R(C)) = 1]

− Pr[A(U|kb|, m, U1) = 1]
∣
∣ +

∣
∣Pr[A(U|kb|, m, U1) = 1] − Pr[A(k1−b, m, U1) = 1]

∣
∣

= 2AdvPSE
KE,A(κ) +

∣
∣Pr[A(U|kb|, m,R(C)) = 1] − Pr[A(U|kb|, m,R(U|C|)) = 1]

∣
∣

= 2AdvPSE
KE,A(κ) + AdvCPR

E,A(κ).

Assume that there exists such a PPT algorithm A that

∣
∣Pr[A(k′

1−b,m,R(C ′)) = 1] − Pr[A(k′
1−b,m,U1) = 1]

∣
∣ ≥ 1

poly(κ)
.

Then we construct a watchdog W to distinguish {KE∗,E∗} ∈ {{KE,E}, {KE′,E′}}
making use of A by following strategy. (1) Sample a plaintext m ∈ {0, 1}p and

generate keys k∗
0 ||k∗

1 by KE∗; (2) b′ $← {0, 1}, C∗ ← E∗.Enc(m, k∗
b), r0 ← R(C∗)

and r1 ← U1; (3) Send (k1−b,m, rb′) to A, and gets A’s output b′′; (4) If b′′ = b′,
output 1, else output 0. Then, we deduce that

∣
∣Pr[WE′,KE′

(1κ) = 1] − Pr[WE,KE(1κ) = 1]
∣
∣ ≥ 1

2 · poly(κ)
− negl(κ),

which contradicts the algorithm-indistinguishability of {KE′,E′}. It is sufficient
to prove Lemma 1.

Theorem 3. Let d be a polynomial. Suppose that the follows holds:

– KE is a pseudorandom key-exchange protocol and E is a CPR secure sym-
metric encryption scheme. KE0 and E0 are implementations of KE and E,
respectively. For any PPT watchdog W, we have

DetKE0,E0
W (κ) =

∣
∣WKE0,E0(1κ) − WKE,E(1κ)

∣
∣ < negl(κ).

– k0||k1 is generated by KE0. For i ∈ [d], b ∈ {0, 1}, mb,i ← M(τb,i), Cb,i ←
E0.Enc(mb,i, kb).

– Let S = BD(C0,1, C1,1)||BD(C0,2, C1,2)|| · · · ||BD(C0,d, C1,d).

Denote all the innocuous plaintexts {mb′,i}b′∈{0,1},i∈[d] by M , for any b ∈ {0, 1}
and any PPT adversary A, we have

AdvPSE
S,A(κ)

def
=

∣
∣Pr[A(kb,M, S) = 1] − Pr[A(kb,M,Ud) = 1]

∣
∣ < negl(κ).

Security Against Subversion in a Multi-surveillant Setting 431

Proof. Parse S as S1||S2|| · · · ||Sd ← S where Si is a bit. Define R as in Eq. (2).
Following from Lemma 1, for j ∈ [d], we have

∣
∣Pr[A(kb,M, Sj) = 1] − Pr[A(kb,M,U1) = 1]

∣
∣

=
∣
∣Pr[A(kb,M,R(Cb,j)+©R(C1−b,j)) = 1] − Pr[A(kb,M,U1) = 1]

∣
∣

=
∣
∣Pr[A(kb,M,R(E0.Enc(mb,j , kb))+©R(C1−b,j)) = 1] − Pr[A(kb,M,U1) = 1]

∣
∣

≤ ∣
∣Pr[A(kb,M,R(C1−b,j)) = 1] − Pr[A(kb,M,U1) = 1]

∣
∣ < negl(κ),

where the last in equation follows from Lemma 1. Due to the independence of the
ciphertexts, we have AdvPSE

S,A(κ) =
∑d

j=1

∣
∣Pr[A(kb,M, Sj) = 1]−Pr[(kb,M,U1) =

1]
∣
∣ < negl(κ).

5.2 Embedding Random Strings

Next we discuss how to embed messages into ciphertexts based on a shared pseu-
dorandom seed S. Note that S is merely unknown to the subverted algorithms
but not random to an adversary accessing all the transmitted transcripts, so the
thing is still not easy. Our method to embed a string str into a ciphertext is
similar to the biased-ciphertext attack in [3]. Formally, we borrow the notations
from [9] and present the embedding method in Algorithm 1.

Algorithm 1. Rejection sampler
∑E,S(str, m, k)

Public parameter: S (a d-bit seed)
Input: str is a v-bit string to be embedded, m is a plaintext and k is a �-bit key.
1. Generate a q-bit ciphertext C ← E.Enc(m, k).
2. If H(S||C||k) = str, then output C; else go to step 1.

Theorem 4. Let H : {0, 1}d+q+� → {0, 1}v be a hash function modeled as a
random oracle. E is an encryption scheme with ciphertext space {0, 1}q.

∑E,S

is defined as Algorithm 1. For any m ∈ {0, 1}p and S ∈ {0, 1}d, the following
properties hold:

1. Correctness: for any str ∈ {0, 1}v, C =
∑E,S(str,m, k) and str′ = H(S||C||k),

str′ equals str.
2. Security I: for str

$← {0, 1}v, any k ∈ {0, 1}�, C ′ ← ∑E,S(str,m, k) and
C ′′ ← ∑E,Ud(str,m, k), for any adversary A,

AdvSEC−I∑
,A (κ)

def
=

∣
∣Pr[A(k, S,C ′) = 1] − Pr[A(k, S,C ′′) = 1]

∣
∣ < negl(κ).

3. Security II: for str
$← {0, 1}v, any k ∈ {0, 1}�, C ← E.Enc(m, k), and C ′′ ←

∑E,Ud(str,m, k), for any adversary A,

AdvSEC−II∑
,A (κ)

def
=

∣
∣Pr[A(k,C ′′) = 1] − Pr[A(k,C) = 1]

∣
∣ < negl(κ).

4. Security III: for k
$← {0, 1}�, any str ∈ {0, 1}v, C ′ ← ∑E,S(str,m, k) and

C ′′ ← ∑E,Ud(str,m, k), for any adversary A,

AdvSEC−III∑
,A (κ)

def
=

∣
∣Pr[A(str, S, C ′) = 1] − Pr[A(str, S, C ′′) = 1]

∣
∣ < negl(κ).

432 G. Li et al.

5. Security IV: for k
$← {0, 1}�, str ∈ {0, 1}v, C ← E.Enc(m, k) and C ′′ ←

∑E,Ud(str,m, k), for any adversary A,

AdvSEC−IV∑
,A (κ)

def
=

∣
∣Pr[A(str, C ′′) = 1] − Pr[A(str, C) = 1]

∣
∣ < negl(κ).

Proof. The correctness directly follows from the definition of Algorithm 1.
Security I: for randomness of str and randomness of the output of a hash func-

tion, we have ||(k, S, str) − (k, S,H(S||C ′′||k))||s ≤ negl(κ). Apply
∑E,S(·,m, k)

on both str and H(S||C ′′||k), and the statistical distance can only decrease, hence
||(k, S,C ′) − (k, S,C ′′)||s ≤ negl(κ).

Security II: for randomness of str and randomness of the output of a hash
function, we have ||(k,H(Ud||C||k)) − (k, str)||s ≤ negl(κ). Apply

∑E,Ud(·,m, k)
on both H(Ud||C||k) and str, and the statistical distance can only decrease, hence
||(k,C) − (k,C ′′)||s ≤ negl(κ).

Security III and Security IV follow from the security of a hash function. Due
to page limit, readers are refered to the security analysis of biased-ciphertext
attack in [3] for a similar proof.

5.3 Full Protocol

At first sight, our protocol is similar to the design in [9]. However, there are
two significant differences. (1) In our design, parties in the protocol cannot get
access to a non-subverted implementation of cryptographic algorithm, in other
word, they can only make key-exchange by corrupted key-exchange protocols and
encrypt messages using backdoored encryption implementations. (2) We define
the subverted implementations to be stateful and they remember all the previous
inputs. This increases the hardness of pseudorandom seed establishing because a
subverted implementation may choose the current output adaptively according
to the previous outputs. We deal with this problem by using the pseudorandom
seed establishing method discussed in Sect. 5.1, which extracts every bit of the
seed based on outputs of both parties. Therefore, the result still remains random
even knowing all outputs of either side.

Our full protocol consists of four phases. In the key-exchange phase, two
parties run the key-exchange protocol KE0 honestly and get a shared symmetric
key k0||k1. In the shared seed establishing phase, two parties run the encryption
scheme E0 honestly, and extract a pseudorandom seed S from the ciphertexts. In
the subliminal key-exchange phase, two parties run the key-exchange protocol
KE1 subliminally and embed the transcripts into innocuous messages by

∑E0,S .
In the subliminal communication phase, the sender first encrypts the message
msg using E1, and then embeds the ciphertext into innocuous messages by

∑E0,S .

Key-Exchange Phase Φ (Honestly Run KE0)
Set λ1,0 ← ⊥. For i ∈ [r′]

– P0 receives λ1,i−1, runs (λ0,i, s0,i) ← KE0.Λ0,i(s0,i−1, λ1,i−1) and sends λ0,i

to P1.
– P1 receives λ0,i, runs (λ1,i, s1,i) ← KE0.Λ1,i(s1,i−1, λ0,i) and sends λ1,i to P0.

Security Against Subversion in a Multi-surveillant Setting 433

At the end of the protocol, each party invokes k ← KE0.Λb,out(sb,r′), parse k as
k0||k1 of equal length, and adds them into its state.

Communication Phase Π

(a) Shared seed establishing phase

For i ∈ [d], Pb (b ∈ {0, 1}) does:
– Run mb,i ← M(τb,i) and send Cb,i ← E0.Enc(mb,i, kb) to P1−b.
– Add the transcripts of all protocol messages into its updated state.
At the end of the d exchange-rounds, each party updates its state to contain
the seed S = BD(C0,1, C1,1)||BD(C0,2, C1,2)|| · · · ||BD(C0,d, C1,d).

(b) Subliminal key-exchange phase

Let p = u
v , where u is the length of λb,i. This phase takes r′ · p exchange-

rounds. Set λ1,0 ← ⊥.
For j ∈ [r′] and b ∈ {0, 1}
– Pb generates the transcript in this round using KE1.

if b = 0, (λ0,j , ς0,j) ← KE1.Λ0,j(ς0,j−1, λ1,j−1);
else, (λ1,j , ς1,j) ← KE1.Λ1,j(ς1,j , λ0,j).

– Pb parses λb,j into v-bit blocks λb,j → λ1
b,j || · · · ||λp

b,j .
– For q ∈ [p], i = d + (j − 1)p + q, Pb does:

(1) Run mb,i ← M(τb,i) and send Cb,i ← ∑E0,S(λq
b,i,mb,i, kb) to P1−b.

(2) Renew the state to contain all the transcripts of protocol so far.
– At the end of the q exchange-rounds, P1−b recovers λb,j as

λb,j ← H(S||Cb,d+(j−1)p+1||kb)|| · · · ||H(S||Cb,d+(j−1)p+q||kb).
and adds all the transcripts into its updated state.

At the end of the r′ · p exchange-rounds, each party invokes k∗||k′ ←
KE1.Λb,out(ςb,r′) and adds the subliminal secret key k∗ into its state.

(c) Subliminal communication phase

This phase takes t = �
v exchange-rounds.

P0 computes c∗ ← E1.Enc(msg, k∗), and parses c∗ into v-bit blocks
c∗
1|| · · · ||c∗

t .
For j ∈ [t], i = d + r′p + j

– P0 invokes m0,i ← M(τ0,i) and C0,i ← ∑E0,S(c∗
j ,m0,i, k0).

– P1 invokes m1,i ← M(τ1,i) and C1,i ← E0.Enc(m1,i, k1), and adds all the
transcripts into its updated state.

After t exchange-rounds, P1 does:
– c∗∗ ← H(S||C0,d+r′p+1||k0)|| · · · ||H(S||C0,d+r′p+t||k0).
– Output msg′ ← E0.Dec(k∗, c∗∗).

It is straightforward to show the correctness of the above protocol.

434 G. Li et al.

5.4 Security Analysis

Theorem 5. Assume KE0 and KE1 are two implementations of a pseudo-
random key-exchange protocol KE; E0 and E1 are two implementations of a
CPR secure encryption scheme E. All the implementations satisfy algorithm-
indistinguishability defined in Sect. 2.3. Then the subliminal communication pro-
tocol (Φ,Π) in Sect. 5.3 satisfies the security in Definition 4.

Proof (sketch). We use game sequence and define the following hybrids:

– HYBRID 0: Parties execute (Φ,Π) in Sect. 5.3.
– HYBRID 1: Exactly like HYBRID 0 except that the seed S in the shared

seed establishing phase is replaced by a uniformly random string.
– HYBRID 2X: Exactly like HYBRID 1 except that the KE1 in the subliminal

key-exchange phase is replaced by a non-subverted implementation KE.
– HYBRID 3X: Exactly like HYBRID 2X except that the λb,i and k∗||k′ in the

subliminal key-exchange phase are replaced by uniformly random strings.
– HYBRID 4X: Exactly like HYBRID 3X except that the E1 in the subliminal

communication phase is replaced by a non-subverted implementation E.
– HYBRID 5X: Exactly like HYBRID 4X except that the c∗ in the subliminal

communication phase is replaced by a uniformly random string.
– HYBRID 2Y: Exactly like HYBRID 1 except that the implementation KE0 in

the key-exchange phase Φ is replaced by the non-subverted algorithm KE.
– HYBRID 3Y: Exactly like HYBRID 2Y except that the secret keys k0||k1 and

λb,i in the key-exchange phase Φ are replaced by uniformly random strings.
– HYBRID 4Y: Exactly like HYBRID 3Y except that the implementation E0 in

the communication phase Π is replaced by a non-subverted algorithm E.
– HYBRID 5Y: Exactly like Ideal in Fig. 2 except that the k0||k1 is replaced by

U2�.

We define the advantage of B0 and B1 in HYBRID N as

AdvN
B0

(κ)
def
=

∣
∣Pr[B0(Subversion0(M); B̃KE0 , B̃KKE0) = 1]

− Pr[B0(SubliminalΦ,Π(msg,M); B̃KE0 , B̃KKE0) = 1]
∣
∣,

AdvN
B1

(κ)
def
=

∣
∣Pr[B1(Ideal(M); B̃KE1 , B̃KKE1) = 1]

− Pr[B1(SubliminalΦ,Π(msg,M); B̃KE1 , B̃KKE1) = 1]
∣
∣.

HYBRID 0 and HYBRID 1: Due to Security I and Security III in Theo-
rem 4, we can design two PPT adversaries A1 and A2 that satisfy

∣
∣Adv0B0

(κ) −
Adv1B0

(κ)
∣
∣ ≤ AdvSEC−I∑

,A1
(κ)/2 and

∣
∣Adv0B1

(κ) − Adv1B1
(κ)

∣
∣ ≤ AdvSEC−III∑

,A2
(κ)/2.

HYBRID 1 and HYBRID 2X: We design a PPT watchdog W1 that distin-
guishes {KE,KE1} based on B0’s output. W1 receives its input KE∗ ∈ {KE,KE1}
and samples b′ $← {0, 1}. If b′ = 0, W1 generates Subversion0(M), else it gen-
erates SubliminalΦ,Π(msg,M) as HYBRID 1 except using KE∗ in the subliminal
key-exchange phase. W1 sends the transcript to B0 and gets B0’s output b′′.

Security Against Subversion in a Multi-surveillant Setting 435

If b′′ = b′, W1 outputs 1, else W1 outputs 0. Following from the algorithm-
indistinguishability of KE1 we have

∣
∣Adv1B0

(κ) − Adv2X

B0
(κ)

∣
∣ ≤ DetKE1

W1
(κ)/2.

HYBRID 2X and HYBRID 3X: We design a PPT adversary A3 that breaks
the pseudorandomness of the key-exchange protocol KE based on B0’s out-
put. A3 takes as input ({λ∗

b,i}b∈{0,1},i∈[r], k
∗) ∈ {({λb,i}b∈{0,1},i∈[r], k), (U,U|k|)}

and samples b′ $← {0, 1}. If b′ = 0, A3 generates Subversion0(M), else
A3 generates SubliminalΦ,Π(msg,M) as HYBRID 2X except that it embeds
({λ∗

b,i}b∈{0,1},i∈[r], k
∗) as the transcripts and the key in the subliminal key-

exchange phase. A3 sends the transcript to B0 and gets B0’s output b′′. If b′′ = b′,
A3 outputs 1, else A3 outputs 0. Due to the pseudorandomness of KE, we have∣
∣Adv2X

B0
(κ) − Adv3X

B0
(κ)

∣
∣ ≤ AdvPSE

KE,A3
(κ)/2.

HYBRID 3X and HYBRID 4X: Similar to the analysis of HYBRID 1 and
HYBRID 2X, we have

∣
∣Adv3X

B0
(κ) − Adv4X

B0
(κ)

∣
∣ ≤ DetE1

W2
(κ)/2.

HYBRID 4X and HYBRID 5X: Similar to the analysis of HYBRID 2X and
HYBRID 3X, following from the CPR security of E, we have

∣
∣Adv4X

B0
(κ) −

Adv5X

B0
(κ)

∣
∣ ≤ AdvCPR

E,A4
(κ)/2.

HYBRID 5X is only different to the distribution of Subversion0(M) by using
∑E0,Ud(Uv,m, kb) instead of E0.Enc(m, kb) in the communication phase Π. Fol-
lowing from Security II in Theorem4, we have Adv5X

B0
(κ) ≤ AdvSEC−II∑

,A5
(κ).

HYBRID 1 and HYBRID 2Y: Similar to the analysis of HYBRID 1 and
HYBRID 2X, we have

∣
∣Adv1B1

(κ) − Adv2Y

B1
(κ)

∣
∣ ≤ DetKE0

W3
(κ)/2.

HYBRID 2Y and HYBRID 3Y: Similar to the analysis of HYBRID 2X and
HYBRID 3X, we have

∣
∣Adv2Y

B1
(κ) − Adv3Y

B1
(κ)

∣
∣ ≤ AdvPSE

KE,A6
(κ)/2.

HYBRID 3Y and HYBRID 4Y: Similar to the analysis of HYBRID 1 and
HYBRID 2X, we have

∣
∣Adv3Y

B1
(κ) − Adv4Y

B1
(κ)

∣
∣ ≤ DetE0

W4
(κ)/2.

HYBRID 4Y and HYBRID 5Y: The only difference lies in that in the com-
munication phase Π, HYBRID 4Y runs

∑E,Ud(str,m,U�) whereas HYBRID 5Y

runs E.Enc(m,U�). Following from Security IV in Theorem4 we have
∣
∣Adv4Y

B1
(κ)−

Adv5Y

B1
(κ)

∣
∣ ≤ AdvSEC−IV∑

,A7
(κ)/2.

HYBRID 5Y: Following from the pseudorandomness of the key-exchange pro-
tocol KE, we have Adv5Y

B1
(κ) ≤ AdvPSE

KE,A8
(κ). Hence, we have

Adv0B0
(κ) ≤ (

AdvSEC−I∑
,A1

(κ) + DetKE1
W1

(κ) + AdvPSE
KE,A3

(κ) + DetE1
W2

(κ) + AdvCPR
E,A4

(κ)

+ 2 · AdvSEC−II∑
,A5

(κ)
)
/2 < negl(κ),

Adv0B1
(κ) ≤ (

AdvSEC−III∑
,A2

(κ) + DetKE0
W3

(κ) + AdvPSE
KE,A6

(κ) + DetE0
W4

(κ)

+ 2 · AdvPSE
KE,A8

(κ) + AdvSEC−IV∑
,A7

(κ)
)
/2 < negl(κ).

It suffices to prove Theorem 5.

5.5 Further Discussion and Open Problems

For simplicity, in this paper we only consider the case where all surveillants
provide subverted implementations of the same specifications, i.e., subverted

436 G. Li et al.

implementations aim at achieving the same function. However, in reality, users
could adopt implementations of different algorithms to achieve subliminal com-
munication. We leave this as a future work.

In our model all surveillants have no cooperation, as different surveillants
may stay in a hostile relationship. However, we could further consider the case
where surveillants cooperate and communicate without leaking their backdoors.
This will bring great difficulties for subliminal communication.

Acknowledgment. The work is supported partly by Beijing Natural Science Foun-
dation (4182033) and National Cryptography Development Fund (MMJJ20180215).
We sincerely thank anonymous reviewers for valuable comments, especially about the
definition of cover message.

References

1. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 26

2. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: ACM CCS, pp. 1431–1440 (2015)

3. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

4. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: a standardized back door.
In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J. (eds.) The New Codebreakers.
LNCS, vol. 9100, pp. 256–281. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49301-4 17

5. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse
firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 844–876. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 31

6. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 28

7. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 13

8. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks. In: CSF, pp. 76–90 (2018)

9. Horel, T., Park, S., Richelson, S., Vaikuntanathan, V.: How to subvert backdoored
encryption: security against adversaries that decrypt all ciphertexts. In: ITCS
(2019, to appear)

10. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-53887-6_31
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1007/978-3-662-46803-6_22

Security Against Subversion in a Multi-surveillant Setting 437

11. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 2

12. Russell, A., Tang, Q., Yung, M., Zhou, H.: Generic semantic security against a
kleptographic adversary. In: ACM CCS, pp. 907–922 (2017)

13. Young, A., Yung, M.: The dark side of “Black-Box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

14. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

15. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based
cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–
276. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052241

16. Young, A., Yung, M.: Malicious cryptography: kleptographic aspects. In: Menezes,
A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 7–18. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 2

https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/BFb0052241
https://doi.org/10.1007/978-3-540-30574-3_2

System and Network Security

Dimensionality Reduction
and Visualization of Network Intrusion

Detection Data

Wei Zong, Yang-Wai Chow(B), and Willy Susilo

Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, University of Wollongong,

Wollongong, NSW, Australia
wz630@uowmail.edu.au, {caseyc,wsusilo}@uow.edu.au

Abstract. Nowadays, network intrusion detection is researched exten-
sively due to increasing global network threats. Many researchers propose
to incorporate machine learning techniques in network intrusion detec-
tion systems since these techniques allow for automated intrusion detec-
tion with high accuracy. Furthermore, dimensionality reduction tech-
niques can improve the performance of machine learning models, and
as such, are widely used as a pre-processing step. Nevertheless, many
researchers consider machine learning techniques as a black box because
of its complex intrinsic mechanism. Visualization plays an important role
in facilitating the understanding of such sophisticated techniques because
visualization is able to offer intuitive meaning to the machine learning
results. This research investigates the performance of two dimension-
ality reduction techniques on network intrusion detection datasets. In
addition, this work also demonstrates visualizing the resulting data in
3-dimensional space. The purpose of this is to possibly gain insight into
the results, which can potentially aid in the improvement of machine
learning performance.

Keywords: Dimensionality reduction · Machine learning ·
Network intrusion detection · Visualization

1 Introduction

The Internet is essential in daily life for almost everyone in contemporary society.
Meanwhile, there has been extensive research conducted on Network Intrusion
Detection Systems (NIDS) due to the increasing global threat of cyberattacks.
Machine learning techniques have been proposed by cyber security experts as a
promising solution for NIDS to combat cyberattacks. This is because machine
learning can provide an automated approach to detecting intrusions with high
accuracy [13].

To improve the intrusion detection performance of machine learning mod-
els, techniques for dimensionality reduction are widely used as one of the pre-
processing steps [3,11]. Wang et al. [16] investigated different dimensionality
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 441–455, 2019.
https://doi.org/10.1007/978-3-030-21548-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_24

442 W. Zong et al.

reduction techniques and concluded that the autoencoder technique outperforms
other dimensionality reduction techniques in certain situations. This technique
has also been adopted for the purpose of network intrusion detection. As an
example, the autoencoder technique was used in Javaid et al. [4] to learn new
feature representation before using a soft-max regression for classification.

Although some machine learning models can provide adequate intrusion
detection performances, the underlying reasons that affect accuracy are not usu-
ally analyzed. Furthermore, improvement of machine learning models usually
rely on a time-consuming trial-and-error process due of the complex nature of
machine learning mechanisms [7]. The reason for this is because machine learning
is typically treated as a black box, and while the performance might be impres-
sive, researchers may not know the theoretical link between a machine learning
model and its performance [16].

Information visualization techniques can potentially bridge the gap between
the performance of machine learning models and understanding factors that
contribute to its performance. Visualization, whether in 2-dimensions (2D) or
3-dimensions (3D), also plays an important role in the cyber security domain
[14]. In addition, previous work has shown that complex attack patterns in NIDS
can be visualized in various forms [1,9]. Previous research in this area includes
a visual approach to analyzing the characteristics of network intrusion detection
datasets in 3D space [17]. Visualization makes these characteristics more com-
prehendible and intuitive, while they may be difficult to perceive when using
traditional statistical data analysis alone [7].

In this paper, we first investigate the performance of two dimensionality
reduction techniques on the benchmark NSL KDD and UNSW-NB15 network
intrusion datasets. The results show the relationship between the number of
dimensions and the intrusion detection performance. This allows us to identify
the number of dimensions that will give rise to good performance for different
classifiers. We then implement a method to visualize the data in 3D, in order to
observe patterns in the data and to gain a better understanding of the machine
learning results. In this visual form, the data is more intuitive and potential
insight can be gained to improve machine learning performance.

Our Contributions. This paper investigates and compares the performance of
two dimensionality reduction techniques, namely, the principal component anal-
ysis and autoencoder techniques, for network intrusion detection using three dif-
ferent classifiers. The classifiers that were used in this study were the k-nearest
neighbors classifier, the multi-layer perceptron classifier and the decision tree
classifier. Results of our experiments show the relationship between the number
of dimensions and the intrusion detection performance for the respective clas-
sifiers. This paper also demonstrates how visually presenting the results in 3D
space can facilitate the intuitive identifying of patterns in the data. This can
potentially provide useful insight that can be used to understand and improve
machine learning performance, rather than relying on the usual trial-and-error
process.

Dimensionality Reduction and Visualization 443

2 Background

2.1 Dimensionality Reduction

Dimensionality reduction is used in a number of areas, including for machine
learning. The research presented in this paper investigates the use of two of
these techniques for the purpose of network intrusion detection.

Principal Component Analysis (PCA) is a commonly used dimensionality
reduction technique for projecting data onto new axes which are orthogonal to
each other [5]. In PCA, the first principal component captures the largest vari-
ance, while the second principal component capture the largest variance among
the remaining orthogonal directions, etc. Therefore, each principal component
captures the largest variance excluding the preceding principal components. To
project data into 3D space, an approach is to only use data from the first 3
principal components.

Autoencoder is a type of artificial neural network that can be used for dimen-
sionality reduction. This is because it can automatically learn feature represen-
tation of the data. The autoencoder technique consists of an encoder and a
decoder. When the number of nodes in the hidden layer are made smaller than
the input nodes, autoencoder can learn a compressed presentation of the data.
In this manner, autoencoder is capable of reducing the dimensions of the input
data. Compared with other dimensionality reduction techniques, autoencoder
may produce more favorable results in certain situations and can detect repeti-
tive characteristics in datasets [16].

2.2 Network Intrusion Detection Datasets

Network intrusion detection datasets are important when it comes to validating
the performance of NIDS. Benchmark datasets for NIDS, namely, KDD98, KDD
CUP99 and NSL KDD, are widely used in research to compare results of intru-
sion detection methods. These datasets categorize network attacks into different
types, e.g., Denial of Service (DoS) attacks, probe attacks, Remote to Local
(R2L) and User to Root (U2R) attacks. However, it has been contended that
these datasets are outdated since they were proposed more than a decade ago.
In addition, they contain some flaws which negatively affect the performance of
NIDS [8]. To reflect contemporary cyber traffic, the UNSW-NB15 dataset was
proposed [10]. In addition to normal connections, this dataset contains 9 types of
network attacks, including worm and shellcode attacks. Although in this paper,
we utilize NSL KDD and UNSW-NB15 datasets for our experiments, our pro-
posed approach can be applied to other network intrusion detection datasets.

2.3 Related Work

Dimensionality reduction techniques can improve the performance of machine
learning models. Among various techniques, PCA and autoencoder are widely
used to reduce the high number of dataset dimensions before classification.

444 W. Zong et al.

Moustafa et al. [11] used the PCA technique to reduce the high dimension of
the network intrusion datasets before classifying cyberattacks. de la Hoz Correa
et al. [3] also used the PCA technique to select useful features and to remove
noise in network intrusion data. Javaid et al. [4] used the autoencoder technique
to learn a feature representation of the NSL KDD dataset. Then, they used
soft-max regression to do the classification and achieved competitive results.
Wang et al. [16] compared autoencoder with other commonly used dimensionality
reduction techniques, such as PCA and Isomap, on synthesized data and image
datasets. Their study showed that results obtained from the use of autoencoder
differed from other dimensionality reduction techniques, and concluded that the
autoencoder technique is potentially suitable for detecting repetitive structures
in datasets.

In the NIDS domain, machine learning approaches have been extensively
studied as these are seen as promising solutions towards automating the detec-
tion of abnormal network connections with high accuracy [13]. For example,
Lin et al. [6] considered the geometric relationship between data records and
proposed a novel feature representation method. They then used a k-Nearest
Neighbors (kNN) classifier to detect cyberattacks. Wang et al. [15] proposed a
multi-step NIDS. They first divided the training set into subsets by fuzzy clus-
tering. Subsequently, they trained an artificial neural network on each subset.
Finally, the detection results were combined using a fuzzy aggregation module.
Their method was reported to achieve high network intrusion detection perfor-
mance. In addition, a two-stage approach for network intrusion detention has
also been proposed, where different machine learning models can be used in the
different stages [18]. An advantage of this approach is that it can deal with the
extremely imbalanced characteristics of network intrusion datasets.

Although machine learning models can achieved satisfactory results, the
underlying reasons affecting accuracy are still not well understood. As an exam-
ple, Javaid et al. [4] demonstrated the competitive performance of their approach
without analyzing the reasons for misclassification. Moustafa et al. [11] proposed
a novel approach, called geometric area analysis based on trapezoidal area esti-
mation for NIDS. Their approach effectively detected intrusions in the NSL KDD
and UNSW-NB15 datasets. However, they did not analyze misclassification in
detail. It has been argued that without a comprehensive and intuitive under-
standing of the underlying reasons that cause misclassification, the improvement
of machine learning models usually relies on a time-consuming trial-and-error
process due to the complex nature of machine learning mechanisms [7].

Visualization techniques can be used to facilitate the development of machine
learning models since these techniques can show characteristics that humans
can understand intuitively. Rauber et al. [12] proposed to visualize relationships
between learned representations of observations, and relationships between arti-
ficial neurons. They performed this projection using t-distributed Stochastic
Neighbor Embedding (t-SNE), so that they could view the data in 2D space.
In other work, Liu et al. [7] proposed a system for enabling users to perform

Dimensionality Reduction and Visualization 445

visual analysis to help understand, diagnose and refine deep convolution neural
networks.

Visualization approaches have also been proposed in the field of network
intrusion detection. Angelini et al. [1] described a cyber security visualization
system that can facilitate user awareness of cyber security statuses and events.
McKenna et al. [9] showed a cyber security dashboard that can help experts
understand global attack patterns. An approach to visualizing network intrusion
datasets in 3D space was presented in Zong et al. [17]. Results of this approach
demonstrated that it can be used to identify visual characteristics in the datasets,
which can potentially contribute to improving detection performance of machine
learning models in NIDS.

3 Proposed Approach

In this section, we describe the details of our proposed approach. In essence, the
purpose of this work is to examine dimensionality reduction and visualization for
network intrusion detection. For this, we investigated the relationship between
the number of dimensions and intrusion detection performance. This allowed
for the identification of a good value for dimension reduction that will produce
reasonably good performance for different classifiers. We then implemented a
method to visualize the data in 3D, in order to examine the intrusion detection
results from the visual representation. The various stages involved in the overall
process is depicted in Fig. 1.

Fig. 1. Stages in the proposed approach.

The NSL KDD and UNSW-NB15 network intrusion detection datasets were
used in this study. The first step was to extract data from the original datasets.
NSL KDD and UNSW-NB15 are known as imbalanced datasets, because they
contain minor classes that only occupy a relatively small proportion of the
dataset, whereas the remainder of the dataset consists of major classes [18].
For example, worm attacks in the UNSW-NB15 occupy <1% of the dataset,
similarly U2R attacks in the NSL KDD only represents a minor portion of the
dataset.

446 W. Zong et al.

Methods to improve the intrusion detection performance of imbalanced
datasets is to over-sample minor classes, to down-sample major classes, or both
[2]. Therefore, in the data extraction stage, we extracted all minor classes from
the dataset. Then, we randomly extracted other classes until a certain percent-
age, 30% in our experiments, of the dataset was extracted to establish our train-
ing set. Other than our training set, we also extracted data from the original
training set which accounted for 10% of the data to establish a validation set.
Since the training set includes all the minor classes, the minor classes in the
validation set are repeated in the training set. However, other classes in the
validation set are not repeated in the training set. In this way, we could use
less computational power to achieve satisfactory detection results and the visual
quality in 3D space was not adversely affected.

Subsequently, one-hot transform was applied to the categorical features in
the datasets since the dimensionality reduction techniques adopted in our exper-
iments, i.e. PCA and autoencoder, only operate on numeric data and are not
suitable for categorical features. After one-hot transformation, only numeric data
remains. It should be noted that, one-hot transform is applied to the training
and test sets separately. Consequently, the training set may generate some fea-
tures that do not exist in the test set and vice versa. This may happen because
some categorical values may exist in only one set but not in both sets. To handle
this situation, we only used features in the transformed training set. In this way,
whenever the training set contains features that were missing in the test set, a
value of zero would be used. On the other hand, if the test set contains some
features that the training set did not contain, such features were ignored.

The next step was to normalize the data. Normalization was performed
because the numeric range of the different features can vary significantly. For
example, some features range between 0 to 100, while other features range from 0
to several million. Without normalization, this would negatively affect the dimen-
sionality reduction results. The test set was normalized based on the training
data. Specifically, only the maximum and minimum values of each feature in the
training set were used to normalize both the training and test sets.

To examine the number of dimensions that would produce the best detection
performance, we reduced the dimensions to a range of values. In our experiments,
the number of dimensions ranged from 2 to 30. Then, we applied basic classi-
fiers, such as k-nearest neighbors and decision trees to the data. The number of
dimensions that gave rise to reasonably good performance for all classifiers was
identified to be as the best value to use for dimensionality reduction.

Once this value was selected, dimensionality reduction was performed on the
original data to transform the data into the specific number of dimensions. The
PCA technique was then used to transform the data into 3D space in order to
visualize the results. The reason why the PCA algorithm was used is because
PCA transformation can be inversed. In this manner, when performing visual
examination on certain areas of the data in 3D space, the data can be inversed
and examined in higher dimension space. Thus, allowing us to adequately analyze
the detection performance using the visual form.

Dimensionality Reduction and Visualization 447

4 Results and Discussion

In this section, we describe our experiment results. Experiments using the
proposed approach were performed on both the UNSW-NB15 and NSL KDD
datasets. First, we present results of the dimensionality reduction study using
the autoencoder and PCA techniques, respectively. We project the extracted
data to lower dimension spaces, ranging from 2 to 30, to find the number of
dimensions that produced reasonably good performance for all classifiers. The
classifiers that were used in the experiments were the k-Nearest Neighbors (kNN)
classifier, the Multi-Layer Perceptron (MLP) classifier and the Decision Tree
(DT) classifier. Subsequently, we present examples of results that demonstrate
observable visual characteristics, which were obtained by projecting the data
with the best number of dimensions into a 3D visual space.

4.1 Results for the UNSW-NB15 Dataset

Figures 2(a)–(c) and 3(a)–(c), depict results of accuracy trends that were
obtained when the three different classifiers were applied to the validation set
for binary classification and multiclass classification, respectively. The differ-
ence between binary classification and multiclass classification is that in binary
classification, network traffic instances were either classified as normal traffic
or abnormal traffic. Whereas in multiclass classification, the machine learning
model was used to classify all categories of network traffic (e.g., normal traffic,
DoS attacks, worm attacks, U2R attacks, exploits, etc.).

From Figs. 2 and 3, we can see that accuracy trends in the kNN and MLP
results are more stable than accuracy trends in the DT results. In general, accu-
racy increases with the number of dimension. It can also be seen that the perfor-
mance of dimensionality reduction based on autoencoder outperforms PCA for
the kNN and MLP classifiers, since they achieve higher accuracy results when
autoencoder is used. However, for the DT classifier it is less obvious as to which
dimensionality reduction technique is better. Overall, autoencoder performs bet-
ter than PCA in relation to dimensionality reduction and accuracy. From the

Fig. 2. UNSW-NB15 binary classification accuracy trends on the validation set using
the (a) kNN classifier; (b) MLP classifier; (c) DT classifier.

448 W. Zong et al.

Fig. 3. UNSW-NB15 multiclass classification accuracy trends on the validation set
using the (a) kNN classifier; (b) MLP classifier; (c) DT classifier.

figures, one can see that the trend is such that the intrusion detection accuracy
typically increases as the dimensions increase, then remains relatively stable once
the number of dimensions reaches a certain value.

From these results, our purpose is to find the number of dimensions at which
all three classifiers perform reasonably well for both the autoencoder and PCA
techniques. From Figs. 2 and 3, we can see that the value of 20 is a reasonable
choice for the number of dimensions because at this value almost all classifiers are
near their peak accuracy for PCA and autoencoder. To confirm our choice of the
intrinsic number of dimensions, we also present results showing accuracy trends
when experiments were conducted on the test set. This is shown in Figs. 4(a)–(c)
and 5(a)–(c) for binary classification and multiclass classification, respectively.

From Figs. 4(a)–(c) and 5(a)–(c), it can be observed that although there
is a greater degree of fluctuation, accuracy trends in the test set show simi-
lar characteristics to those in the validation set for both binary and multiclass
classification. Overall, autoencoder still performs better than PCA for dimen-
sionality reduction. In Fig. 5(c), there is an abrupt drop in accuracy when the
number of dimensions is 18. This may be due to over-fitting of the DT classifier.
Nevertheless, the other accuracy trends as shown in the figures are reasonable.

The value of 20 is still a reasonably good choice for the best number of dimen-
sions, when considering all the accuracy trends in Figs. 4(a)–(c) and 5(a)–(c).
Since in our experiments autoencoder performs better than PCA for dimension-
ality reduction, we used the autoencoder data that was reduced to 20 dimensions
for 3D visualization. For projecting to 3D space, we used the PCA technique for
the visualization. The reason for this is because unlike the autoencoder tech-
nique, PCA transformation can be inversed. Hence, when examining certain
areas of data in 3D space, this data can be inversed and examined in higher
dimensional space.

From the visualization results, we show that key visual features of the
UNSW-NB15 datasets are comparable with those presented in related work [17].
Zong et al. [17] showed that most generic attacks are visually clustered together
in both the training and test sets. In addition, there are some clusters that con-
tain only normal connections in both the training and test sets. Their results

Dimensionality Reduction and Visualization 449

Fig. 4. UNSW-NB15 binary classification accuracy trends on the test set using the (a)
kNN classifier; (b) MLP classifier; (c) DT classifier.

Fig. 5. UNSW-NB15 multiclass classification accuracy trends in testing set using the
(a) kNN classifier; (b) MLP classifier; (c) DT classifier.

also showed that the main difficulty encountered by machine learning intrusion
detection methods using the UNSW-NB15 dataset, comes from clusters where
different categories of traffic are densely mixed. These three features can also be
observed in our visualization experiment as shown in Fig. 6.

From the visual representations shown in Fig. 6(a) and (b), it can clearly be
seen in the visual representation that most generic attacks are grouped together
in the training and test sets. We can also find homogeneous clusters of normal
connections in the training and test sets as shown in Fig. 6(c) and (d), respec-
tively. In addition, Fig. 6(e) and (f) respectively show sections that contain a
mixture of network traffic in the training and test sets. Despite the visualization
results in our experiment differing from the results in [17], the visual features
are similar. This affirms the validity of our 3D visualization results. An obvious
visual characteristic of UNSW-NB15 is that the training set and the test set
have similar characteristics in 3D space. This implies that the original data in
the training and test sets are similar in nature. This characteristic is the reason
why we can choose the best dimension that can produce relatively good results
in both validation and test sets.

450 W. Zong et al.

4.2 Results for the NSL KDD Dataset

The same experiments that were performed on the UNSW-NB15 dataset were
also done on the NSL KDD dataset. These results are presented here.

From Figs. 7(a)–(c) and 8(a)–(c), it can clearly be seen that results of accu-
racy trends for the NSL KDD dataset, using all three classifiers for binary
and multiclass classification, share similar characteristics with the UNSW-
NB15 dataset. Accuracy initially increases with the number of dimensions, then
remains relatively stable after a certain number of dimensions. In relation to
dimensionality reduction for the NSL KDD dataset, autoencoder is still bet-
ter in terms of performance compared with PCA. The DT classifier again has
more fluctuations than the other two classifiers. Similar to the UNSW-NB15
dataset results, the kNN and MLP classifiers favor autoencoder when it comes
to reducing the dimensionality of data. Considering the results in Figs. 7(a)–(c)
and 8(a)–(c), the value of 25 is a reasonable choice as the best number of dimen-
sions to achieve good performance for the NSL KDD dataset. In an attempt to
verify this, accuracy trends of the test sets are shown in Figs. 9 and 10.

Fig. 6. 3D visualization results from the UNSW-NB15 dataset showing (a) clusters of
generic attacks in the training set; (b) clusters of generic attacks in the test set; (c) homo-
geneous clusters containing only normal connections in the training set; (d) homogeneous
clusters containing only normal connections in the test set; (e) clusters containing mixed
traffic in the training set; (f) clusters containing mixed traffic in the test set.

Dimensionality Reduction and Visualization 451

Fig. 7. NSL KDD binary classification accuracy trends on the validation set using the
(a) KNN classifier; (b) MLP classifier; (c) DT classifier.

Fig. 8. NSL KDD multiclass classification accuracy trends on the validation set using
the (a) KNN classifier; (b) MLP classifier; (c) DT classifier.

Fig. 9. NSL KDD binary classification accuracy trends in the test set using the (a)
kNN classifier; (b) MLP classifier; (c) DT classifier.

452 W. Zong et al.

Fig. 10. NSL KDD multiclass classification accuracy trends in the test set using the
(a) kNN classifier; (b) MLP classifier; (c) DT classifier.

Fig. 11. 3D visualization results from the NSL KDD dataset showing (a) various
attacks in the training set; (b) previously unknown attacks in the test set; (c) homo-
geneous clusters of DoS attacks in the training set; (d) homogeneous clusters of DoS
attacks in the test set; (e) clusters of probe attacks in the training set; (f) clusters of
probe attacks in the test set.

Dimensionality Reduction and Visualization 453

As can be seen from the results in Figs. 9(a)–(c) and 10(a)–(c), the accuracy
obtained from the NSL KDD test data do not show obvious trends, because
the values fluctuate wildly with respect to the number of dimensions. Hence,
the best value for the number of dimensions that was selected in the validation
set cannot be verified from results of the test set. Therefore, for the purpose of
our experiment as long as the dimension was not too small, i.e. larger than 5,
there was no significant difference in choosing the best number of dimensions.
The reason why this situation occurs can be explained from the 3D visualiza-
tion results. In particular, the difficulty in intrusion detection when using the
NSL KDD dataset lies in the fact that the test set contains previously unknown
attacks [17]. In view of the accuracy trends in the validation set, we first reduce
the number of dimensions to 25 using autoencoder and then use PCA to visualize
the data. Examples of visualization results are shown in Fig. 11.

From visual inspection of the 3D visualization results in Fig. 11, we can see
that there are attacks that only exist in the test set but are not in the training
set. This can be seen when comparing the visual results in Fig. 11(a) and (b),
as the attack characteristics in Fig. 11(b) contain previously unknown attacks
when compared with Fig. 11(a). This difference is the main reason why there
are obvious fluctuations in the results presented in Figs. 9 and 10. Consequently,
for the NSL KDD test set, no good value for the number of dimensions to pro-
duce optimal performance could be identified. This situation is different from
the UNSW-NB15 dataset and shows that there are obvious differences in the
datasets, which can easily be seen in the visual representation. From the visu-
alization results, we can also find highly homogeneous clusters that contain the
same type of network traffic in both the training and test sets. For example, it can
be seen that both Fig. 11(c) and (d) contain clusters with only DoS attacks, and
also Fig. 11(e) and (f) which show sections that contain mainly probe attacks.
Similar visual characteristics in the NSL KDD dataset have also been reported
in Zong et al. [17].

5 Conclusion

This paper investigates the effects of two dimensionality reduction techniques
on network intrusion detection datasets. The experiment results show that the
autoencoder technique typically performs better than the PCA technique for
both the UNSW-NB15 and NSL KDD datasets. For UNSW-NB15 dataset, we
were able to identify a specific number of dimensions at which the classifiers
produced relatively good results in both the validation and test sets. This is
likely due to high similarity between data in the training and test sets. On the
other hand, we could not easily identify such a value for the NSL KDD dataset,
despite clear accuracy trends in the validation set. From visual inspection of
the 3D visualization results, the reason for this is likely due to the fact that
data in the training and test sets of the NSL KDD dataset contain significant
differences, e.g., previously unknown attacks which were not in the validation
set are present in the test set. As such, this paper also demonstrates how 3D

454 W. Zong et al.

visualization can facilitate the understanding of intrusion detection results, as
visual patterns in a dataset can be identified through visual inspection of the
data.

References

1. Angelini, M., Prigent, N., Santucci, G.: PERCIVAL: proactive and reactive attack
and response assessment for cyber incidents using visual analytics. In: Harrison, L.,
Prigent, N., Engle, S., Best, D.M. (eds.), 2015 IEEE Symposium on Visualization
for Cyber Security, VizSec 2015, Chicago, IL, USA, 25 October 2015, pp. 1–8.
IEEE Computer Society (2015)

2. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

3. de la Hoz Correa, E., de la Hoz Franco, E., Ortiz, A., Ortega, J., Prieto, B.: PCA
filtering and probabilistic SOM for network intrusion detection. Neurocomputing
164, 71–81 (2015)

4. Javaid, A.Y., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network
intrusion detection system. ICST Trans. Secur. Saf. 3(9), e2 (2016)

5. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies.
In: Yavatkar, R., Zegura, E.W., Rexford, J. (eds.), Proceedings of the ACM SIG-
COMM 2004 Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, Portland, Oregon, USA, 30 August–3 Septem-
ber 2004, pp. 219–230. ACM (2004)

6. Lin, W., Ke, S., Tsai, C.: CANN: an intrusion detection system based on combining
cluster centers and nearest neighbors. Knowl. Based Syst. 78, 13–21 (2015)

7. Liu, S., Wang, X., Liu, M., Zhu, J.: Towards better analysis of machine learning
models: a visual analytics perspective. Vis. Inf. 1(1), 48–56 (2017)

8. McHugh, J.: Testing intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Labora-
tory. ACM Trans. Inf. Syst. Secur. 3(4), 262–294 (2000)

9. McKenna, S., Staheli, D., Fulcher, C., Meyer, M.D.: BubbleNet: a cyber security
dashboard for visualizing patterns. Comput. Graph. Forum 35(3), 281–290 (2016)

10. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: 2015 Military Commu-
nications and Information Systems Conference, MilCIS 2015, Canberra, Australia,
10–12 November 2015, pp. 1–6. IEEE (2015)

11. Moustafa, N., Slay, J., Creech, G.: Novel geometric area analysis technique for
anomaly detection using trapezoidal area estimation on large-scale networks. IEEE
Trans. Big Data 1 (2018). https://doi.org/10.1109/TBDATA.2017.2715166

12. Rauber, P.E., Fadel, S.G., Falcão, A.X., Telea, A.C.: Visualizing the hidden activity
of artificial neural networks. IEEE Trans. Vis. Comput. Graph. 23(1), 101–110
(2017)

13. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for
network intrusion detection. In: 31st IEEE Symposium on Security and Privacy,
S&P 2010, 16–19 May 2010, Berleley/Oakland, California, USA, pp. 305–316. IEEE
Computer Society (2010)

14. Staheli, D., et al.: Visualization evaluation for cyber security: trends and future
directions. In: Whitley, K., Engle, S., Harrison, L., Fischer, F., Prigent, N. (eds.),
Proceedings of the Eleventh Workshop on Visualization for Cyber Security, Paris,
France, 10 November 2014, pp. 49–56. ACM (2014)

https://doi.org/10.1109/TBDATA.2017.2715166

Dimensionality Reduction and Visualization 455

15. Wang, G., Hao, J., Ma, J., Huang, L.: A new approach to intrusion detection using
artificial neural networks and fuzzy clustering. Expert Syst. Appl. 37(9), 6225–6232
(2010)

16. Wang, Y., Yao, H., Zhao, S.: Auto-encoder based dimensionality reduction. Neu-
rocomputing 184, 232–242 (2016)

17. Zong, W., Chow, Y., Susilo, W.: A 3D approach for the visualization of network
intrusion detection data. In: Sourin, A., Sourina, O., Rosenberger, C., Erdt, M.
(eds.), 2018 International Conference on Cyberworlds, CW 2018, Singapore, 3–5
October 2018, pp. 308–315. IEEE (2018)

18. Zong, W., Chow, Y.-W., Susilo, W.: A two-stage classifier approach for network
intrusion detection. In: Su, C., Kikuchi, H. (eds.) ISPEC 2018. LNCS, vol. 11125,
pp. 329–340. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99807-
7 20

https://doi.org/10.1007/978-3-319-99807-7_20
https://doi.org/10.1007/978-3-319-99807-7_20

DOCSDN: Dynamic and Optimal
Configuration of Software-Defined

Networks

Timothy Curry, Devon Callahan(B), Benjamin Fuller, and Laurent Michel

University of Connecticut, Storrs, CT 06268, USA
{timothy.curry,devon.callahan,benjamin.fuller,laurent.michel}@uconn.edu

Abstract. Networks are designed with functionality, security, perfor-
mance, and cost in mind. Tools exist to check or optimize individual
properties of a network. These properties may conflict, so it is not always
possible to run these tools in series to find a configuration that meets all
requirements. This leads to network administrators manually searching
for a configuration.

This need not be the case. In this paper, we introduce a layered frame-
work for optimizing network configuration for functional and security
requirements. Our framework is able to output configurations that meet
reachability, bandwidth, and risk requirements. Each layer of our frame-
work optimizes over a single property. A lower layer can constrain the
search problem of a higher layer allowing the framework to converge on
a joint solution.

Our approach has the most promise for software-defined networks
which can easily reconfigure their logical configuration. Our approach is
validated with experiments over the fat tree topology, which is commonly
used in data center networks. Search terminates in between 1–5 min in
experiments. Thus, our solution can propose new configurations for short
term events such as defending against a focused network attack.

Keywords: Network configuration · Software Defined Networking ·
Reachability · Constraint programming · Optimization

1 Introduction

Network configuration is a crucial task in any enterprise. Administrators balance
functionality, performance, security, cost, and other industry specific require-
ments. The resulting configuration is subject to periodic analysis and redesign
due to red team recommendations, emerging threats, and changing priorities.
Tools assist administrators with this complex task: existing work assesses net-
work reachability [27], wireless conflicts [40], network security risk [46,52], and
load balancing [48,51]. These tools assess the quality of a potential configuration.
Unfortunately, current tools suffer from three limitations:
This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 456–474, 2019.
https://doi.org/10.1007/978-3-030-21548-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_25

DOCSDN: Dynamic and Optimal Configuration 457

1. Tools assess whether a single property is satisfied, making no recommendation
if the property is not satisfied. This leaves IT personnel with the task of
deciding how to change the network.

2. Tools assess networks with respect to an individual goal at a time. This means
a change to satisfy a single property may break another property. There is no
guidance for personnel on how to design a network that meets the complex
and often conflicting network requirements.

3. Tools do not react to changing external information such as the publication
of a new security vulnerability.

Our Contribution. This work introduces a new optimization framework that
finds network configurations that satisfy multiple (conflicting) requirements.
We focus on data center networks (DCN) that use software defined network-
ing (SDN). Background on these settings is in Sect. 2. Our framework is called
DocSDN (Dynamic and Optimal Configuration of Software-Defined Networks).

DocSDN searches for network configurations that simultaneously satisfy
multiple properties. DocSDN is organized into layers that consider different
properties. The core of DocSDN is a multistage optimization that decouples
search on “orthogonal” concerns. The majority of the technical work is to effec-
tively separate concerns so the optimization problems remain tractable. Our
framework is designed to continually produce network configurations based on
changing requirements and threats. It frees IT personnel from the complex ques-
tion of how to satisfy multiple requirements and can quickly incorporate new
threat information.

DocSDN focuses on achieving functional requirements (such as network
reachability and flow satisfaction) and limiting security risk (such as isolating
high risk nodes and nodes under denial of service attack). Naturally, other layers
such as performance or cost can be incorporated. The search for a good config-
uration could be organized in many ways. State-of-the-art approaches assess
different properties in isolation, frustrating search for a solution that satisfies all
requirements. Ideally, a framework should search for a configuration that simul-
taneously satisfies all requirements. This extreme is unlikely to be tractable on
all but the smallest networks. DocSDN mediates between these approaches sep-
arating the functional and security search problems but introducing a feedback
loop between the two search problems based on cuts.

In the proposed organization the functional layer is “above” the security
layer. Through the feedback loop, the security layer describes a problematic
part of the network to the functional layer. The functional layer then refines its
model and searches for a functional configuration that satisfies an additional con-
straint. This has the effect of blocking the problematic part of the configuration.
Currently, the feedback signal is a pair of nodes that should not be proximate in
the network. After multiple iterations the two layers jointly produce a solution
that optimizes the SDN configuration both with respect to functionality and
security risks.

DocSDN provides solutions of improving quality before the final solution.
Thus, the network can be reconfigured once the objective improves on the current

458 T. Curry et al.

Functional Layer Security Layer

Least Cost
Path(s,t)

generation

Functional Solver
(QBP)

Security ModelFunctional Model

Security Solver
(MIP)

Equivalence
classes Result AnalysisBenders Cut

Generation

SDN Device

Risk Calculations

Fig. 1. DocSDN Framework. A layered decomposition that breaks down configuration
synthesis into functional and security layers.

configuration by a large enough amount (to justify the cost/impact of reconfig-
uration).

The underlying optimization problems are NP-hard but optimization technol-
ogy has seen tremendous advances in performance during the past few decades.
Since 1991, mathematical programming solvers have delivered speedups of 11
orders of magnitude [8,17]. Hybrid techniques such as Benders decomposi-
tion [6,12,20,21] and column generation [3,19,31] (aka, Dantzig-Wolfe decompo-
sition [14]) made it possible to solve huge problems thanks to on-demand gener-
ation of macroscopic variables and the dynamic addition of critical constraints.
Large Neighborhood Search [47] further contributed to delivering high-quality
solution within constrained time budgets.

These techniques are beginning to see adoption in network security. Yu et al.
recently applied stochastic optimization with Bender’s decomposition to assess
network risk under uncertainty for IoT devices [52]. They used Bender’s decom-
position on a scenario-based stochastic optimization model to produce a par-
ent problem that chooses a deployment plan while children are concerned with
choosing the optimal nodes to serve the demands in individual scenarios. In
comparison, our approach addresses both functional and security requirements.
It relies on Bender’s cuts from the security layer (child) to rule out vulnerable
functional plans whose routing paths fail to adequately minimize risks and maxi-
mize served clients. We now briefly describe the framework (a formal description
is in Sect. 3) and present an illustrative example.

Overview of DocSDN. Figure 1 presents an overview of the framework. The
functional layer takes as input a Functional Model that describes the network
including the physical topology, capacity, the allowable communication pat-
terns and the demand requirements. Network reachability begins with a prim-
ing procedure that generates the k-least cost paths to the optimizer for each
source/destination pair in the demand requirements. The objective for the func-
tional layer is to find a logical topology (a collection of routed paths) that meets
all demand requirements while favoring shorter length routing paths and load
balancing. The program is formulated as quadratic binary program (QBP). The
solution as determined by the functional layer is passed to the security layer.

DOCSDN: Dynamic and Optimal Configuration 459

Fig. 2. Toy network example with a single gateway device G1, two intermediate
switches S1 and S2 and four hosts. We assume the switches are physically connected
to all hosts.

The output of the functional layer and a security model are the input for
the security layer. The current configuration is fed to a module that uses risk
assessments for the individual network devices (obtained for example using a
vulnerability database) to assess the overall risk of the entire configuration. In
our current implementation this risk calculation is based on a simple risk prop-
agation model where a path’s risk is based on the risk of nodes on the path
and close to the source and sink. The security layer can deploy firewalls and
deep packet inspection as network defenses. Since these mechanisms affect route
capacity, the security layer has a dual objective function: (1) maximizing the
functional objective and (2) minimizing security risk. The security objective is
formulated as a mixed integer program (MIP). When the security search com-
pletes, it proposes nodes to the functional layer that should be separated. As an
example, a high value node with low risk may be placed in a different (virtual)
LAN than a high risk node. These Benders cuts are designed to entice a better
logical topology from a subsequent iteration in the functional layer. This feed-
back loop between the two layers can iterate multiple times. When no further
cuts are available, the overall output is a set of configuration rules.

An Example Configuration. This section describes an application of our frame-
work to automatically respond to a distributed denial of service (DDoS) attack.
Current DDoS attacks demonstrate peak volume of 1 Tbps [29]. Many DDoS
defense techniques require changes to the network behavior by rate limit-
ing, filtering, or reconfiguring the network (see [23,24,37,43,53]). Recent tech-
niques [15] leverage SDNs to react to DDoS attacks in a dynamic and flexible
manner. We show how such a response would work in our framework using a
toy network illustrated in Fig. 2. A more realistic network and the framework’s
response are described in Sect. 5. We stress that DDoS attacks are often short in
timescale making human diagnosis and reaction costly or impractical. Consider
a focused DDoS attack against a number of services in an enterprise but not
the entirety of its publicly accessible address space. (The Great Cannon’s attack
against GreatFire targeted two specific Github repositories [35].) We assume a
service hosted by H1 is targeted, while services on H2,H3 and H4 are not.

460 T. Curry et al.

Recall, the functional layer establishes a logical topology (forwarding rules)
while the security layer adds network defenses (packet inspection modules and
firewall rules). We elide how the attack is detected and assume it increases the
risk score for H1 in the security model.

The First Iteration. The functional layer proposes a candidate configuration
where G1 routes all traffic intended for H1 and H2 to S1 which then forwards the
traffic and G1 routes traffic intended for H3 and H4 to S2 which then forwards
the traffic. This is the first candidate solution presented to the security layer.

Since H1 is high risk the security layer proposes a firewall at S1 to block
all port 80 traffic. This reduces risk at the cost of blocking all traffic to H2.
Of course, in real firewalls more fine-grained rules are possible, this simplified
example is meant to illustrate a case where collateral damage to the functional
objective is necessary to achieve the security objective. Since traffic is being
blocked to a node with low risk, the security layer asks the functional layer to
separate H1 and H2 so H2 does not suffer.

Repeated Iterations. The functional layer now has a constraint that H1 and
H2 should not be collocated in the network. As such, it proposes a new configu-
ration with H1 and H3 under S1 and H2 and H4 under S2. This is then sent to
the security layer. The security layer makes a similar assessment and proposes
a firewall rule at S2, finds this recommendation hurts functionality and requests
separation of H1 and H3.

This process repeats with the functional layer proposing to collocate H1 and
H4. The security layer similarly asks to separate H1 and H4. Finally, H1 is
segregated from all other nodes. This produces a configuration where H1 is the
only child of S1. Note that having H2,H3 and H4 under a single switch may
hurt performance but the effect is less than blocking traffic to one of the nodes
entirely. DocSDN can then output the candidate solution as high level SDN
fragments (using a high-level language like Frenetic [16]).

Recovery. Importantly, when the DDoS abates, DocSDN automatically reruns
with a changed risk for H1, outputting a binary tree.

Organization. The rest of the work is organized as follows: Sect. 2 provides
background on our application and discusses related work, Sect. 3 describes our
framework and accompanying optimization models, Sect. 4 describes our exper-
imental setup, Sect. 5 evaluates the framework and finally Sect. 6 concludes.

2 Background and Related Work

Data Center Networks (DCN) host, process and analyze data in financial, enter-
tainment, medical, government and military sectors. The services provided by
DCNs must be reliable, accurate and timely. Services provided by DCNs (and the
corresponding traffic) are heterogeneous. The network must adapt to changing
priorities and requirements while protecting from emerging threats. They scale
to thousands of servers linked through various interconnects. Protocols used for

DOCSDN: Dynamic and Optimal Configuration 461

these services are split roughly 60% web (HTTP/HTPS) and 40% file storage
(SMB/AFS) [7]. The interdependence of device configurations make modifying
any single configuration difficult and possibly dangerous for network health. A
seemingly simple update can cause significant collateral damage and unintended
consequences.

Simultaneously, the network fabric is changing with the advent of Software
Defined Networking (SDN) [30]. SDNs are flexible and programmable networks
that can adapt to emergent functional or performance requirements. Open-
flow [36] is a common open source software stack. Researchers have proposed
high-level languages and compilers [5,16,28,44] that bridge the semantic gap
between network administrators and the configuration languages used by SDN
devices. These languages focus on compositional and parametric SDN software
modules that execute specific micro-functions (e.g., packet forwarding, dropping,
routing, etc.). The use of a high level language is prompted by a desire to be
able to select, instantiate and compose SDN modules with guarantees.

Our framework is intended to be modular and allow integration of prior work
on evaluating network configurations. As such there is a breadth of relevant work.
Due to space constraints we focus on the most relevant works. In the conclusion
we elaborate on the characteristics needed to integrate a prior assessment tool
into our framework (see Sect. 6).

Measuring Network Risk. Known threats against computer systems are
maintained by governments and industry. Common Vulnerabilities and Expo-
sures (CVE) is a publicly available dictionary including an identifier and descrip-
tion of known vulnerabilities [13], CVE does not provide a severity score or
priority ranking for vulnerabilities. The US National Vulnerability Database
(NVD) [41] is provided by the US National Institute of Standards and Technol-
ogy (NIST). The NVD augments the CVE, adding severity scores and impact
ratings for vulnerabilities in the CVE.

There are many mechanisms for measuring the security risk on a network [10,
25,34,49,50]. Lippmann et al. present a network security model which computes
risk based on a list of the most current threats [33]. This model implements a
cycle of observe network state, compute risk, prioritize risk, and mitigate the
risk.

This loop is often codified into an attack graph [22,26,46]. Attack graphs try
to model the most likely paths that an attacker could use to penetrate a network.
Attack Graphs often leverage one or more of the aforementioned vulnerability
assessment tools as input, combined with a network topology and device software
configurations to generate the graph. Current attack graph technologies provide
recommendations to network administrators that effectively remove edges from
the graph and trigger a re-evaluation of the utility for the attacker. To the best
of our knowledge, current practice does not leverage network risk measurement
into constraints used for the generation of new configurations.

Network Reachability. The expansion of SDN has aided the applicability
of formal verification to computer networks. Prior to SDN, the lack of clear
separation between the data and control plain created an intractable problem

462 T. Curry et al.

when considering a network of any scale. Bounded model checking using SAT
and SMT solvers [4,54] can currently verify reachability properties in networks
with several thousands of nodes.

Configuration Search. Constraint Programming (CP) was introduced in the
late 1980s [45] and is used for scheduling [2], routing, and configuration problems.
Large-scale optimization problems are often decomposed including Benders [12]
and Dantzig-Wolfe [14]. Soft constraints or Lagrangian relaxation are used for
over-constrained problems or when the problem is too computationally expen-
sive. Stochastic optimization techniques have been used for many applications in
resilience [9,39] and the underlying methodologies are a key part of this research.
Prior work in configuration management with constraint programming [11,32]
focused on connectivity or security. We are not aware of any work that balances
these two objectives in a meaningful way.

3 Implementation

Figure 1 outlines the overall structure of the DocSDN framework. layer inter-
connections as well as their internals. The functional layer uses a mathemati-
cal optimization model that is fed to a quadratic mixed boolean programming
(QBP) solver alongside an initial set of least-cost paths to be considered to ser-
vice the required flows. The security layer receives the topology chosen by the
functional layer and a security model to solve, with a mixed-integer program-
ming (MIP) solver, the risk minimization problem. The output can result in
low-risk flows being blocked as a consequence of deploying firewalls to mitigate
high-risk flows. A result analysis module then produces equivalence classes that
are sent back to the functional layer to request the separation of specific flows
that should not share paths, with the goal of minimizing the collateral damage to
low-risk flows. These equivalence classes generate additional constraints, known
as Bender’s cuts, that are added to the functional solver for a new iteration. The
remainder of this section describes the major modules in Fig. 1.

3.1 Functional Layer

The mathematical optimization model in the functional layer is a quadratic
mixed binary programming model. In constraint programming the four main
components are Inputs, Variables, Constraints, and an Objective function.
Inputs are below.

Inputs

N – the set of all network devices
E – the set of edges (pair of vertices) connecting network devices
T – the set of types of traffic to be routed
F – the set of (s, t, T) ∈ N × N × T tuples defining desired traffic flows of type

T from source node s to sink node t.

DOCSDN: Dynamic and Optimal Configuration 463

D(f) : F → R – the actual demand for each flow f ∈ F
C ⊆ 2N – a subset of sets of network devices
R ⊆ C × C – pairs (c1, c2) of equivalence classes that segregate traffic from c1 to

c2.
P – the set of all paths
P (e) : E → P – the set of all paths containing edge e
P (n) : N → P – the set of all paths containing node n
P (c) : C → P – the set of all paths containing a node in c
N(p) : P → C – the set of nodes appearing in path p
P (s, t) : N × N → P – the set of all paths s → t
cap(e) : E → R – gives the capacity of an edge e.

Variables

activep,T ∈ {0, 1}, – for every path p ∈ P and traffic type T ∈ T , indicates
whether path p carries traffic of type T

flowp,T ∈ R≥0 – for every path p ∈ P and traffic type T ∈ T , amount of flow of
type T that is sent along path p

equivc,n ∈ {0, 1} – does node n ∈ N appear in an active path together with a
node in equivalence class c

sharec1,c2,n ∈ {0, 1} – indicates whether node n ∈ N appears on any active path
with nodes in classes c1, c2 ∈ C. Namely,

sharec1,c2,n ⇔ n ∈
((

∪p∈P (c1):activep,∗N(p)
)

∩
(
∪p∈P (c2):activep,∗N(p)

))

activep,∗ = 1 if there is a type T ∈ T where activep,T = 1
loadn ∈ R – the amount of flow that goes through node n
loadObj – the sum of squares of all loadn variables.

Constraints
∑

p∈P (e),T∈T
flowp,T ≤ cap(e), ∀e ∈ E (1)

∑

p∈P (s,t)

flowp,T ≥ D(s, t, T), ∀(s, t, T) ∈ F (2)

activep,T =1 → flowp,T ≥1,∀(s, t, T) ∈ F , p ∈ P (s, t) (3)

∑

p∈P (s,t)

activep,T = 1, ∀(s, t, T) ∈ F (4)

equivc,n=
∨

p∈P (n)∩P (c)

(activep,T),∀T ∈ T , n ∈ N , c ∈ C (5)

sharec1,c2,n=equivc1,n ∧ equivc2,n,∀n ∈ N , (c1, c2)∈R (6)

464 T. Curry et al.

loadn =
∑

p∈P (n),T∈T
flowp,T ,∀n ∈ N (7)

Equation 1 enforces the edge capacity constraint to service the demand of all
paths flowing through it. Equation 2 ensures that enough capacity is available
to meet the demand of an (s, t, T) flow. Equation 3 ensures that some non-zero
capacity is used if a specific path is activated (conversely, an inactive path can
only have a 0 flow). Equation 4 states that a single path should be chosen to
service a given flow f ∈ F . Equations 5 define the auxiliary variables equivc,n as
true if and only if node n ∈ N appears on an active path sharing a node with
the equivalence class c ∈ C. Equation 6 defines an active path that shares at least
one node with two classes. Finally, Eq. 7 defines the load of a node as the sum
of the flows associated to active paths passing through node n.

Objective

min

⎛

⎝
α0

∑
p,T len(p) ∗ flowp,T +

α1

∑
(c1,c2)∈R,n∈N (sharec1,c2,n − 1) +

α2

∑
n∈N (loadn)2

⎞

⎠ (8)

The objective function 8 in this model is a weighted sum of three terms. The
first term captures the total flows which are penalized by the length of the path
used to dispatch those flows (such policies are codified in OSFP [38] and BGP
practice [18]). The second term gives a unit credit each time equivalence classes
on the segregation list R do not share a node. (Due to this term, the objective
value of the final solution may change between iterations of the functional layer.)
The third and final term contribute to a bias towards solutions that achieve load
balancing thanks to the quadratic component which heavily penalizes nodes with
large loads.

Solving the Functional Model. The functional model starts with empty sets
C and R which are augmented with each iteration of the framework. New sets of
nodes are added to C and new segregation rules are added to R (by the security
layer). In the current implementation, least cost paths between pairs of nodes
s, t are not generated “on demand”. Instead, the generation is limited to the
first best k such paths, for increasing values of k. This process will ultimately
be improved to use column generation techniques [14].

3.2 Risk Calculation

After the functional layer finds an optimal solution, it passes this solution to the
risk calculation procedure. This input is the set of active paths. This module
calculates the effective risk to the network for each path and traffic type.

Inputs

risk(n, T) : N × T → R – the risk inherit to network device n for traffic of type
T (risk(n, T) ≥ 1)

DOCSDN: Dynamic and Optimal Configuration 465

dk(n) : N → 2N – the set of nodes at a distance at most k from n in the logical
topology

Calculation
Given an active path p ∈ P with source s and sink t, the calculation proceeds by
partitioning the set of nodes of the path into three segments: the nodes “close”
to the source s,“close” to the sink t and the nodes “in between”. Closeness is
characterized by the function dk and is meant to capture any connected node over
the logical topology which sits no more that k hops away. Given this partition,
flowRisk(p, T) is:

flowRisk(p, T) =
∑

i∈d2(s)∪d2(t)
risk(i, T)2+∑

i∈N(p)\(d2(s)∪d2(t))
risk(i, T)2

We use k = 2 to model nodes on the same LAN. The rationale is to impart to
source s and sink t risk resulting from lateral movement of attacks. All other
nodes contribute to the overall path risk in proportion to the square of their
own risks. We expect in most networks for d2(s) and d2(t) to include nodes
not directly on the path (like nodes on the same LAN). The input path risk
calculation flowRisk(p, T) is modular and can be augmented using other risk
calculation methods.

3.3 Security Layer

The mathematical optimization model in the security layer is a mixed integer
programming model. We similarly present the inputs, variables, constraints, and
objective for the security layer. Its inputs are given below. Also note that all the
variables from the functional model are constants.

Inputs

mem(n) : N → R – the memory resources of SDN device n
fwCost(T) : T → R – the memory footprint for a firewall blocking traffic type

T
piCost – the memory footprint for a packet inspection post
fwComp – the complexity footprint for adding a firewall
piComp – the complexity footprint for adding a packet inspection post to the

network
penalty(p, T) : P × T → R – the penalty for blocking a unit of flow of type T

along path p
rank(n, p) : N × P → Z – the position of node n in path p
flowRisk(p, T) : P × T → R≥0 – above risk calculation

Variables

fwn,T ∈ {0, 1} – does a firewall block traffic type T at n
pin ∈ {0, 1} – is there packet inspection at network device n

466 T. Curry et al.

fwORn,T ∈ {0, 1} – is there a block everything or block traffic of type T firewall
at network device n

fwOPp,T ∈ {0, 1} – is there a firewall on path p
rfp,T ∈ [0, 1] – risk factor for path p ∈ P (s, t) servicing flow (s, t, T) ∈ F
RMfwp,n,T ∈ [0, 1] – used in the riskFactor calculation
RMpip,n,T ∈ [0, 1] – used in the riskFactor calculation

Constraints

fwORn,T = fwn,T ∨ fwn,∗,∀n ∈ N , T ∈ T (9)

∑

T∈T ∪{∗}
fwCostT · fwn,T + piCost · pin ≤ memn,∀n ∈ N (10)

fwOPp,T =
∨

n∈N(p)

(fwORn,T),∀T ∈ T , p ∈ P : activep,T (11)

RMfwp,n,T = 1 − (.5)rank(n,p) · fwORn,T ,

∀p ∈ P (s, t), n ∈ N(p), (s, t, T) ∈ F
(12)

RMpip,n,T = 1 − 0.1 · (.5)rank(n,p) · pin,

∀p ∈ P (s, t), n ∈ N(p), (s, t, T) ∈ F
(13)

rfp,T = min
⋃

n∈N(p)

{RMfwp,n,T , RMpip,n,T },

∀T ∈ T , p ∈ P : activep,T

(14)

Equation 9 is used to define the presence of a firewall that will block traffic of
type T at a node n. Equation 10 ensures that the memory footprint in SDN
node n for the deployment of the firewall and the packet inspection logic does
not exceed the device memory. Equation 11 links the presence of a firewall that
will block traffic of type T on a path with the presence of a firewall that will
block traffic of type T on any node along the active path. Equation 12 defines
the minimum risk factor associated to a firewall. The earlier on the path the
firewall is deployed, the lower the risk. Equation 13 similarly defines the minimal
risk. Equation 14 defines the composite risk factor.

Objective

min

⎛

⎜
⎜
⎜
⎝

β0

(∑
n,T fwComp · fwn,T +

∑
n piComp · pin

)
+

β1

∑
n loadn · pin+

β2

∑
p,T penalty(p, T) · flowp,T · fwOPp,T+

β3

∑
p,T flowRiskp,T · rfp,T

⎞

⎟
⎟
⎟
⎠

(15)

The objective function defined in Eq. 15 is a weighted sum of four distinct terms
that focus on minimizing the network complexity based on security resources
deployed, the load induced by inspection posts, the penalties incurred from drop-
ping desirable flows due to firewall placement and finally the residual risk. This
model is a classic mixed integer programming formulation.

DOCSDN: Dynamic and Optimal Configuration 467

3.4 Result Analysis

The result analysis module tries to generate cuts for the functional layer with
the goal of improving both functionality and security. To generate cuts, this
module will form equivalence classes of network nodes and pass back certain
pairs of these classes, one at a time, to the functional layer. Each pair of classes
describes a segregation rule, or a cut, to which to functional layer will adhere to
as much as possible.

After the functional and security layers are re-optimized using the most recent
cut, the result analysis module determines whether the cut was beneficial or
harmful based on the objectives of each layer. If the cut is deemed to have been
beneficial, we permanently keep it as a constraint, repopulate the cut queue, and
continue the process.

If the cut is deemed to have been harmful, it is removed from the functional
layer’s constraint pool. Then the next cut in the queue will be passed back to the
functional layer. If the cut queue is empty, the feedback mechanism terminates
and we output the best solution found.

We note that since this process only provides pairs of nodes it is a heuristic.
It may be necessary for many nodes to simultaneously be separated to arrive at
a global optimum. This mechanism performed well in our experiments.

3.5 Layer Coordination

It is valuable to review how the layers coordinate. The functional layer sends to
the security layer a set of paths that implements the routing within the network
to serve the specified flows while satisfying a set of segregation requirements.
The security layer first computes risks for these paths based on its knowledge
of the traffic. The paths, their risk and the security model are then tasked with
deploying packet inspection apparatus as well as firewalls within that logical
topology to monitor the traffic and block threats (risky traffic). Once the security
model is solved to optimality, an analysis can determine whether the proposed
logical topology is beneficial or not (w.r.t. its objective) and even suggest further
equivalence classes for network nodes as well as segregation rules to be sent back
to the functional layer for another iteration. Fundamentally, the coordination
signal boils down to additional equivalence classes to group nodes together with
segregation rules to separate paths that include network nodes in “antagonistic”
equivalence classes.

3.6 Outputs

When the set of potential cuts is empty, the proposed configuration can be parsed
and translated into SDN language fragments to be deployed on the network
devices in order to obtain the desired logical network topology put forth by our
framework.

468 T. Curry et al.

Fig. 3. Order 4 Fat-tree with 2 gateway switches at the top and 2 hosts per edge switch.

4 Experimental Setup

A fundamental component of our work is the separation of the physical and logi-
cal networks. Our framework has potential in applications where many different
logical topologies are possible from a single physical topology. Physical topology
is an input to our framework and the empirical evaluation is based on a popular
topology: Fat-Tree [1].

The instance of Fat-Tree we use is shown in Fig. 3. The network design avoids
bottlenecks through multiple equal capacity links between layers. This design
uses four layers of switches: gateway, core, aggregate and edge. The edge switches
serve as top-of-rack switches and are where our hosts connect.

Within our sample network, we consider having two main types of devices:
switches/routers and hosts. In order to model traffic between internal and exter-
nal entities we utilize two gateway switches which represent the boundary of
our network. For generality we consider two traffic types (A and B) which could
represent any type of traffic such as web and storage. We also classify traffic as
internal and external, with external traffic traversing one of the gateways. We
allow only half of our hosts to communicate with external sources by allowing
them to connect to one of the two gateways. Further, all hosts are involved in
internal communications. In this instance we have 16 hosts and we generated 60
flows, 44 of them being internal and 16 being external.

Additionally, our setup simulates an emergent vulnerability/active attack.
We select two hosts that are highly vulnerable to, or being targeted on, a specific
type of traffic, resulting in a significant increase in their risk for the corresponding
type of traffic. In particular, this could represent at DDoS attack on these two
hosts.

We run multiple experiments providing the framework increasing numbers of
starting paths between source and destination (from the priming procedure) to
determine the impact on the solution quality.

Our implementation was built in Python 3.6 using the Gurobi 8.1 optimiza-
tion library [42]. The experiments were run on a machine running Ubuntu 18.04
and equipped with an Intel Core i9-8950HK processor operating at 2.90 GHz
with a 12 MB Cache and 32 GB of physical memory.

DOCSDN: Dynamic and Optimal Configuration 469

Fig. 4. Illustration of the Fat-Tree network after the first pass through both layers of
the framework (left) and the final configuration (right). Note: Firewalls are depicted
with rectangles, red nodes represent high risk nodes, green nodes represent nodes that
are initially blocked and recovered in the final configuration, utilizing the updated
routes shown in dashed lines. The modification of the logical topology allows for more
intelligent firewall placement balancing both functionality and security. (Color figure
online)

5 Evaluation/Results

We begin with the model’s resolution on the above scenario using the 10 shortest
paths per source and destination pair to prime the optimization. We assume
equal demand for each of the 60 flows and two high risk hosts (in red in Fig. 4).
In each iteration the functional layer of the framework generates a candidate
topology and passes this solution to the security layer. The security layer then
calculates the network risk and deploys firewalls (represented with rectangles).

In the initial configuration, the gateway on the right serves both low risk
(shown in green) and high risk hosts (shown in red). Deploying a firewall on this
gateway significantly reduces the network risk and selected as optimal by the
security layer. Importantly, this results in collateral damage as flows to low risk
hosts are blocked. In total, the first iteration through the framework deploys 3
firewalls which block 12 flows, 8 of which are high risk.

Iteratively, the security layer proposes separation of these collateral nodes
from the high-risk nodes. The solution of the last framework iteration (493 can-
didates cuts are proposed, 40 prove beneficial) is shown on the right. This con-
figuration routes all high risk flows through one core switch where a firewall is
now deployed. Meanwhile, all the low risk flows access the gateways through a
separate core switch.

Overall we conducted six experiments with this configuration modifying only
the number of paths ({10, 20, 30, 40, 50, 100}) being used to prime the functional
layer for each source-destination pair. Ultimately, this process will be dynamic
and use column-generation. Complete experimental results are shown in Table 1.
A few observations are in order:

– The overall objective reflects both the functional and security layers. The
other objective rows refer to each layer objective individually. The network
risk rows quantify the risks and their change as the optimization proceeds.

470 T. Curry et al.

Table 1. Experimental results from applying the DocSDN framework to an order 4
Fat-tree. Each column refers to a separate experiment where the number of paths per
source-destination pair given to the framework were varied. Note that the functional
objective values in this table are calculated without the cut reward, the second term
in Eq. 8, in order to facilitate comparisons across columns.

10 paths 20 paths 30 paths 40 paths 50 paths 100 paths

Initial flows blocked 12 12 12 12 12 12

Final flows blocked 8 8 8 8 8 8

Initial functional objective 2012 2012 2012 2012 2012 2012

Final functional objective 2014 2014 2014 2015 2014 2015

Cut reward −8450 −4260 −7210 −4900 −5540 −3840

Initial security objective 13735 13724 13729 13723 13696 13726

Final security objective 13356 13356 13356 13356 13356 13348

Initial network risk 10425 10414 10419 10413 10386 10416

Final network risk 11646 11646 11646 11646 11646 11638

Functional nodes explored 370 55 206 83 510 46

Security nodes explored 1922 1650 152 30 28 19

Beneficial cuts 40 20 34 23 26 18

Harmful cuts 453 70 237 81 68 74

Iterations needed 494 91 272 105 95 93

Time in model (s) 283 40 319 112 76 273

For instance, for the 10 paths benchmark, the risk degrades from 10425 to
11646 or 11.7% as a result of supporting an additional 4 good flows.

– The “nodes explored” rows indicate of the size of the branch and bound tree
and remains quite modest throughout.

– Within each experiment we observe a meaningful search, as seen by numerous
cuts sent back to the functional layer, to segregate high and low risk flows.

– All runs blocked all flows that contain a high risk host while preserving the
low risk flows. All experiments delivered final configurations that preserved
the same low-risk flows. We therefore hypothesize that a column-generation
would quickly settle down and prove that no additional path can improve the
quality of the solution. It is nonetheless interesting that adding more paths
does not negatively impact the overall runtime.

– The objective functions of the functional and security layers use “scores”
meant to ease the interplay between the two. Yet, it is wise to consult the
raw properties of the solutions to appreciate the impact of the optimization.
In particular, the number of flows blocked and the network risks. What is
readily apparent is that improving functionality induces a slight degradation
in the network risks, underlying the conflicting nature of the two objectives.
The individual objective scores while moving in the correct direction are
not to be viewed as stand alone metrics to determine solution quality but

DOCSDN: Dynamic and Optimal Configuration 471

rather inter layer communications indicating improvement or decline from a
functional or security perspective.

– The objective scores vary across our experiments due to the stochasticity
introduced by our heuristic-driven feedback module (see Sect. 3.4 for discus-
sion). For instance, the functional objective in the 30 path experiment is
slightly worse than it is in other runs, but this difference does not impact the
number of serviced flows in the final configuration.

– The variance in time, iterations and number of cuts produced by each exper-
iment is due to symmetries in the formulation. Solutions that are symmetric
in the functional layer may not be symmetric in the security layer and induce
slightly different solutions there. This is especially true for a Fat-tree network
due to its built in redundancy/symmetry.

– Beneficial cuts reflects the number of segregation proposals from the security
layers that are adopted by the functional layer (these cuts remove the current
best feasible solution). harmful cuts are segregation proposals that do not
“cut” the current best feasible solution or worsen the functional solution.

6 Conclusion

Our framework is portable with respect to network risk assessment. Since the
risk calculation/analysis is decoupled from the optimization model, the frame-
work can be combined with any procedure that calculates risk on a per path
basis. Along with this procedure, the other requirements for implementing a dif-
ferent risk mechanism are (1) A way of evaluating how risk changes due to the
deployment of network defenses and (2) The ability to propose candidate cuts
that can be passed to the functional layer.

Our results show it is possible to effectively, automatically, and quickly find a
network configuration that meets multiple conflicting properties. Our framework
is modular, enabling integration of new desired properties. DocSDN will allow
network administrators to effectively prioritize and choose their desired proper-
ties. The efficiency of DocSDN is enabled by the feedback/interplay between
the functional and security optimization layers.

Acknowledgments. The authors thank the anonymous reviewers for their helpful
insights. The authors would also like to thank Pascal Van Hentenryck, Bing Wang,
Sridhar Duggirala and Heytem Zitoun for their helpful feedback and discussions. The
work of T.C., B.F., and L.M. are supported by the Office of Naval Research, Comcast
and Synchrony Financial. The work of D.C. is supported by the U.S. Army. The opin-
ions in this paper are those of the authors and do not necessarily reflect the opinions
of the supporting organizations.

472 T. Curry et al.

References

1. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network
architecture. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication, SIGCOMM 2008, pp. 63–74. ACM, New York (2008)

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling. Kluwer Aca-
demic Publishers (2001)

3. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.:
Branch-and-price: column generation for solving huge integer programs. Oper. Res.
46(3), 316–329 (1998)

4. Beckett, R., Gupta, A., Mahajan, R., Walker, D.: A general approach to network
configuration verification. In: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pp. 155–168. ACM (2017)

5. Beckett, R., Mahajan, R., Millstein, T., Padhye, J., Walker, D.: Network configura-
tion synthesis with abstract topologies. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 437–451.
ACM (2017)

6. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numer. Math. 4(1), 238–252 (1962)

7. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers
in the wild. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, IMC 2010, pp. 267–280. ACM, New York (2010)

8. Bixby, E.R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: theory and
practice — closing the gap. In: Powell, M.J.D., Scholtes, S. (eds.) CSMO 1999.
ITIFIP, vol. 46, pp. 19–49. Springer, Boston, MA (2000). https://doi.org/10.1007/
978-0-387-35514-6 2

9. Byeon, G., Van Hentenryck, P., Bent, R., Nagarajan, H.: Communication-
Constrained Expansion Planning for Resilient Distribution Systems. ArXiv e-
prints, January 2018

10. Cherdantseva, Y., et al.: A review of cyber security risk assessment methods for
scada systems. Comput. Secur. 56, 1–27 (2016)

11. Coatta, T., Neufeld, G.W.: Configuration management via constraint program-
ming. In: CDS, pp. 90–101. IEEE (1992)

12. Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear
programming. Oper. Res. 54(4), 756–766 (2006)

13. MITRE Corporation. Common vulnerabilities and exposures, December 2018
14. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res.

8(1), 101–111 (1960)
15. Fayaz, S.K., Tobioka, Y., Sekar, V., Bailey, M.: Bohatei: flexible and elastic DDoS

defense. In: USENIX Security Symposium, pp. 817–832 (2015)
16. Foster, N., et al.: Frenetic: a network programming language. ACM SIGPLAN Not.

46(9), 279–291 (2011)
17. Fourer, B.: Amazing solver speedups (2015). http://bob4er.blogspot.com/2015/

05/amazing-solver-speedups.html
18. Gill, P., Schapira, M., Goldberg, S.: A survey of interdomain routing policies. ACM

SIGCOMM Comput. Commun. Rev. 44(1), 28–34 (2013)
19. Hijazi, H., Mak, T.W.K., Van Hentenryck, P.: Power system restoration with tran-

sient stability. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, AAAI 2015, pp. 658–664. AAAI Press (2015)

20. Hooker, J.N.: Logic-based Benders decomposition. Math. Program. 96, 2003 (1995)

https://doi.org/10.1007/978-0-387-35514-6_2
https://doi.org/10.1007/978-0-387-35514-6_2
http://bob4er.blogspot.com/2015/05/amazing-solver-speedups.html
http://bob4er.blogspot.com/2015/05/amazing-solver-speedups.html

DOCSDN: Dynamic and Optimal Configuration 473

21. Hooker, J.N.: Logic-Based Methods for Optimization: Combining Optimization
and Constraint Satisfaction. Wiley, Hoboken (2000)

22. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for
network defense. In: Annual Computer Security Applications Conference, pp. 121–
130. IEEE (2006)

23. Ioannidis, J., Bellovin, S.M.: Pushback: router-based defense against DDoS attacks
(2001)

24. Ioannidis, J., Bellovin, S.M.: Implementing pushback: router-based defense against
DDoS attacks. In: NDSS, vol. 2 (2002)

25. Jansen, W.: Directions in Security Metrics Research. Diane Publishing (2010)
26. Kaynar, K.: A taxonomy for attack graph generation and usage in network security.

J. Inf. Secur. Appl. 29, 27–56 (2016)
27. Khurshid, A., Zhou, W., Caesar, M., Godfrey, P.: Veriflow: verifying network-wide

invariants in real time. In: Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, pp. 49–54. ACM (2012)

28. Kim, H., Reich, J., Gupta, A., Shahbaz, M., Feamster, N., Clark, R.J.: Kinetic:
verifiable dynamic network control. In: NSDI, pp. 59–72 (2015)

29. Kottler, S.: February 28th DDoS incident report, March 2018
30. Kreutz, D., Ramos, F.M.V., Verissimo, P.E., Rothenberg, C.E., Azodolmolky,

S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE
103(1), 14–76 (2015)

31. Lam, E., Van Hentenryck, P.: A branch-and-price-and-check model for the vehicle
routing problem with location congestion. Constraints 21(3), 394–412 (2016)

32. Layeghy, S., Pakzad, F., Portmann, M.: SCOR: software-defined constrained opti-
mal routing platform for SDN. CoRR, abs/1607.03243 (2016)

33. Lippmann, R.P., Riordan, J.F.: Threat-based risk assessment for enterprise net-
works. Lincoln Lab. J. 22(1), 33–45 (2016)

34. Lippmann, R.P., Riordan, J.F., Yu, T.H., Watson, K.K.: Continuous security met-
rics for prevalent network threats: introduction and first four metrics. Techni-
cal report, Massachusetts Institute of Technology Lexington Lincoln Laboratory
(2012)

35. Marczak, B., et al.: China’s great cannon. Citizen Lab (2015)
36. McKeown, N., et al.: Openflow: enabling innovation in campus networks. ACM

SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)
37. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mecha-

nisms. ACM SIGCOMM Comput. Commun. Rev. 34(2), 39–53 (2004)
38. Moy, J.T.: OSPF: Anatomy of An Internet Routing Protocol. Addison-Wesley

Professional, Boston (1998)
39. Nagarajan, H., Yamangil, E., Bent, R., Van Hentenryck, P., Backhaus, S.: Optimal

resilient transmission grid design. In: PSCC, pp. 1–7. IEEE (2016)
40. Neves, P., et al.: The SELFNET approach for autonomic management in an

NFV/SDN networking paradigm. Int. J. Distrib. Sensor Netw. 12(2), 2897479
(2016)

41. NIST. National vulnerability database, December 2018
42. Gurobi Optimization Inc.: Gurobi optimizer reference manual (2015). http://www.

gurobi.com (2014)
43. Peng, T., Leckie, C., Ramamohanarao, K.: Survey of network-based defense mech-

anisms countering the DoS and DDoS problems. ACM Comput. Surv. (CSUR)
39(1), 3 (2007)

44. Reich, J., Monsanto, C., Foster, N., Rexford, J., Walker, D.: Modular SDN pro-
gramming with Pyretic. Technical report of USENIX (2013)

http://www.gurobi.com
http://www.gurobi.com

474 T. Curry et al.

45. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York (2006)

46. Schneier, B.: Attack trees. Blog (1999)
47. Shaw, P.: Using constraint programming and local search methods to solve vehicle

routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

48. Skowyra, R., Lapets, A., Bestavros, A., Kfoury, A.: A verification platform for
SDN-enabled applications. In: IEEE International Conference on Cloud Engineer-
ing (IC2E), pp. 337–342. IEEE (2014)

49. Stolfo, S., Bellovin, S.M., Evans, D.: Measuring security. IEEE Secur. Privacy 9(3),
60–65 (2011)

50. Stoneburner, G., Goguen, A.Y., Feringa, A.: SP 800-30. Risk management guide
for information technology systems (2002)

51. Wang, R., Butnariu, D., Rexford, J., et al.: Openflow-based server load balancing
gone wild. Hot-ICE 11, 12 (2011)

52. Yu, R., Xue, G., Kilari, V.T., Zhang, X.: Deploying robust security in internet of
things. In: IEEE Conference on Computer and Network Security (2018)

53. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against dis-
tributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor.
15(4), 2046–2069 (2013)

54. Zhang, S., Malik, S.: SAT based verification of network data planes. In: Van Hung,
D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 496–505. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-02444-8 43

https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1007/978-3-319-02444-8_43

A Low Overhead Error Correction
Algorithm Using Random Permutation

for SRAM PUFs

Liang Zheng1,2,3, Donglei Han1,2,3, Zongbin Liu1,3(B), Cunqing Ma1,3,
Lingchen Zhang1,3, and Churan Tang1,2,3

1 State Key Laboratory of Information Security,
Institute of Information Engineering, CAS, 100093 Beijing, China
{zhengliang,handonglei,liuzongbin,macunqing,zhanglingchen,

tangchuran}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China
3 Data Assurance and Communication Security Research Center, CAS,

Beijing, China

Abstract. Static Random Access Memory-based Physically Unclonable
Function (SRAM PUF) is frequently used in cryptographic applications
such as key generation and IP protection because of its low cost, simple
operation and high security features. The stability of PUF response is
susceptible to environmental noise, so it requires the assistance of error
correction algorithms when used as a key or ID. However, the actual
error correction capability of the theoretically selected Error Correcting
Codes (ECC) is always lower than expected. In this paper, we explore the
specific reasons why SRAM PUF cannot use the theoretically selected
ECC algorithm directly. In addition, an efficient and concise preprocess-
ing method for random permutation is proposed to disturb the original
position of unstable bits in the SRAM PUF response, thus confusing
its instability distribution. Our experimental results show that the pro-
cessed SRAM PUFs can recover the response sequence stably without
increasing ECC’s error correction capability, which effectively saves the
resource consumption of error correction circuit.

Keywords: SRAM PUF · Key generation · Error Correcting Codes ·
Non-uniform · Random permutation · Reed-Muller Codes

1 Introduction

The concept of Physically Unclonable Function (PUF) was first proposed by
Pappu in 2001 [19]. As a kind of physical trust root, PUF provides the underly-
ing physical trust foundation for information security applications [1,14]. PUF’s
departure point is that there are no two identical integrated circuits (ICs) in the
real world. Even if the design is consistent, there will still be inevitable differences
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 475–493, 2019.
https://doi.org/10.1007/978-3-030-21548-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_26&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_26

476 L. Zheng et al.

in the manufactured ICs, which are introduced randomly during the manufactur-
ing process. For example, when the same electrical signal is transmitted on two
completely symmetrical circuits, there are different transmission delays. Also,
SRAM cells have different start-up values because of process variation including
lithographic variations in effective feature size and random threshold voltages
[9]. In general, the goal of PUF is to extract the randomness of these manu-
facturing differences as a unique ‘physical fingerprint’ of cryptographic devices,
thus providing many new high-security solutions for key generation and storage
[15], IP protection [8], entity authentication [2] and other aspects.

The PUF-generated key does not need to be stored digitally on the crypto-
graphic device and is only extracted from the device’s circuit when it is used.
As a result, no secrets are stored on the device when the power is turned off,
which will minimize the time the key appears in the cryptographic device. PUF
also has low resource consumption, as the PUF-generated key can be extracted
from existing circuits, or from some circuits constructed with a few inverters,
combinational logic, etc. In addition, even if a PUF is destroyed by an attacker
in a physical attack, the PUF will no longer be able to obtain the key, and the
attacker naturally has difficulty obtaining it. Common PUFs at present include
Arbiter PUF [24], Ring Oscillator PUF (RO PUF) [17], Glitch PUF [23], SRAM
PUF [8–10,16,21] and Butterfly PUF [13], etc. Among these PUFs, SRAM PUF
is popular for its low cost, simple operation and good stability.

SRAM memory consists of a number of SRAM cells, each of which can be
considered to be made up of two cross-coupled inverters that are nominally
identical, but the strength of its transistors varies in the actual manufacturing
process. If this difference is obvious, the stronger inverter will quickly push the
state of the SRAM cell to a steady state - 0 or 1, which is determined by the
output of the inverter each time the SRAM is powered on. This start-up value is
the embodiment of the inherent characteristics of the SRAM entity. Therefore,
for an SRAM PUF, we challenge the addresses of some cells in SRAM, then the
start-up value of cells corresponding to these addresses is the response of PUF.

When the influence of circuit noise on the SRAM PUF is greater than the
impact of manufacturing differences, the response sequence will have some ran-
dom flipping of unstable bits every time the power is turned on. In order to
obtain a stable key, Error Correcting Codes (ECC) [22] are needed to correct
these unstable bits. In a resource-constrained scenario, if there are too many
unstable bits in SRAM PUF, the general ECC algorithm cannot be directly
applied because the cost is too high. In [6], a preprocessing method for select-
ing SRAM cell addresses with stable bits by multiple power-on operations was
proposed to remove most unstable bit addresses, but this method is not suit-
able for applications that cannot be powered on multiple times. An improved
8T-SRAM PUF with embedded latches was constructed in [11], which maintains
the start-up values of SRAM cell by holding the value in the latches, however,
this approach is highly complex.

Our Contributions. In this paper, we use the SRAM in the self-developed chip
SSX1624 of SMIC 180 nm process to collect its start-up values as a test data set.

A Low Overhead Error Correction Algorithm Using Random Permutation 477

First, we explore the distribution of unstable bits in SRAM PUF response and
find that the unstable bits tend to be clustered together, that is, there is a certain
correlation between them. This phenomenon is inconsistent with the premise of
using ECC algorithm, because if the response is divided into blocks for error cor-
rection, it is often required that the unstable bits are independent and uniformly
distributed. Therefore, we propose a method using random permutation matrix
to transform the SRAM PUF response position in order to confuse the non-
uniformity of unstable bits and break up the correlation between them. Proved
by our experiment with the existing error correction capability unchanged (same
as the theoretically selected ECC algorithm), we can use Reed-Muller (1,5) Code
to correct all the errors that could not be corrected before, greatly improving
the success rate of error correction. This method is simple in operation and
requires only a small consumption, it is suitable for some resource-constrained
application scenarios and does not require multiple power-on operations.

In conclusion, our contributions are summarized as follows:

1. We analyze the reason why the error correction capability of theoretically
selected ECC algorithm can not correct the unstable bits in SRAM PUF as
expected, and prove it with experiments.

2. We propose a position transformation method for random permutation
matrix, which is easy to operate and can greatly improve the success rate
of error correction while the existing error correction capability remains
unchanged.

3. We conduct a large number of data acquisition experiments on SRAM
PUF on both the card reader and tablet collection platforms and obtain
200 × 100 × 768-bit responses respectively. We not only compare the error
correction results of the unstable bits of SRAM PUF before and after using
our preprocessing method, but also evaluate the basic properties such as
uniqueness and reliability of SRAM PUF.

Paper Outline. The rest of this paper is organized as follows. Section 2 intro-
duces some basic concepts of SRAM PUF structure, PUF-based key generation
scheme and Reed-Muller Codes. In Sect. 3, we describe the phenomenon of ‘Non-
Uniform SRAM PUF’ and analyze the reasons for its occurrence. Section 4 pro-
poses a preprocessing method for random permutation regarding ECC algorithm.
We conduct detailed experimental analysis in Sect. 5. Finally, Sect. 6 concludes
this paper and plans our future work.

2 Preliminaries

2.1 The Structure of SRAM PUF

The SRAM cell is composed of six MOSFETs (from M1 to M6) as shown in
Fig. 1(a). Logically, it can also be considered as two cross-coupled inverters and
two read-write control switches in Fig. 1(b), where each inverter consists of one
n-MOS and one p-MOS transistors.

478 L. Zheng et al.

Fig. 1. Basic circuit structure of SRAM cell [14]

When reading and writing SRAM cells, we need to enable WL (WordLine)
to make transistors M5, M6 conductive, at which time, we can read or write
the cell through BL (BitLine). The SRAM cell is volatile, so when the SRAM
power is cut off, the charge of the SRAM cell is lost instantaneously, and AB is
“00”. When the SRAM cell is powered on, because the inverter is in an unstable
state, one of the inverters must be reversed once, that is, AB becomes “01” or
“10”. Ideally, whether AB is “01” or “10” is completely random and unbiased,
but in fact, due to some uncontrollable factors in the manufacturing process,
such as random fluctuations in dopant concentration, the threshold voltage of
the transistor will be different, so that the value stored in a single SRAM cell
tends to be a fixed value - 0 or 1 (we assume that the value of A is the output
of SRAM cell, A = B̄), forming a 0-biased or 1-biased memory cell. In this case,
the tendency of start-up value of SRAM cell is stable. Each SRAM memory
produces a unique and random binary response sequence, also known as the
SRAM’s ‘fingerprint’, which can be used as PUF.

However, if the difference between the two inverters is not obvious, the factor
that determines the start-up value of the SRAM cell becomes circuit noise, that
is, the influence of noise masks the manufacturing difference. When the SRAM
cell is powered up each time, the start-up value is often not the same, and its
tendency is not obvious. This is the noise source for the SRAM PUF’s response.

2.2 The Key Generation Scheme Based on PUF

Since the PUF response is noisy and not completely evenly distributed, the PUF-
based key generator usually needs to use a Fuzzy Extractor [4,12] or Helper Data
Algorithm [3,16] to ensure that a stable secure key can be extracted from PUF.
The Fuzzy Extractor consists of a Security Sketch based on ECC [22] and an
Entropy Accumulator [5] to correct the error bits in PUF response sequence
and compress enough entropy into a fixed-length key. Taking SRAM PUF as an
example, a common PUF-based key generation scheme is shown in Fig. 2, which
is mainly divided into an enrollment phase and a reconstruction phase [14]:

A Low Overhead Error Correction Algorithm Using Random Permutation 479

Fig. 2. PUF-based key enrollment and reconstruction process

(i) Enrollment phase: R → Generate(key, ω). We can obtain the response
sequence R by reading the start-up values of SRAM, and then generate
a fixed-length secure key through an Entropy Accumulator, usually a Hash
function. In addition, we perform ECC encoding on a random number k
generated by Random Number Generator (RNG) to obtain a random code-
word C. Then the helper data ω is calculated by R and C, i.e., ω = R ⊕ C.
The selection of ECC algorithm is determined by the length of the response
R and the number of errors that need to be corrected.

(ii) Reconstruction phase: Recover(R′, ω) → key. The generated response R′ is
noisy when SRAM is powered on again. We first calculate the noisy codeword
C ′ = R′ ⊕ ω = (R′ ⊕ R) ⊕ C, then C ′ is corrected to obtain C ′′ by using
the ECC decoding algorithm which has sufficient error correction ability,
C ′′ = Correct(C ′) = C. Finally, the recovered response is calculated: R′′ =
ω ⊕ C ′′ = R ⊕ (C ⊕ C ′′) = R.

2.3 Reed-Muller Codes

The Reed-Muller (RM) Codes are one of the oldest and simplest known linear
block codes, which have been widely used. They were discovered by Muller in
1954 [18] and decoded by Reed in the same year [20]. Here we will introduce
some basic concepts:

• [n, k, d]-linear q-ary code [8]: Given an error correction code [n, k, d] over
Fq, n is the encoding length, the codeword is n-tuples in Fq elements and its

480 L. Zheng et al.

minimum distance is d. The q-ary code has cardinality qk, which can encode up to
qk possible messages and correct �(d−1)/2�-bit errors at most. The [n, k, d] code
is also often written as [n, k, t] code, where t is the maximum number of errors
that can be corrected. In this paper, q = 2, that is, all discussions are performed
over the finite field F2, the elements of codeword has only 0 and 1.

• RM(r,m) code: For each positive integer m and each integer r with 0 ≤ r ≤
m, there is an rth order Reed-Muller Code RM(r,m). The length of its codeword
is 2m bit and the minimum distance is d = 2m−r bit. RM(r,m) can correct
�(d − 1)/2�-bit errors at most.

Therefore, RM (r,m) code is a binary [n = 2m, k =
∑r

i=0

(
m
i

)
, t = 2m−r−1−1]

linear code over F2. For instance, the 1st-order RM(1,5) code is a binary [32,6,7]
linear code with the codeword length of n = 25 = 32 bit and the dimension of
k =

(
5
0

)
+

(
5
1

)
= 6 bit. The maximum number of error bits that can be corrected

is t = 25−2 − 1 = 7.

3 Analysis of Non-uniform SRAM PUF

As can be seen from Fig. 2, whether the SRAM PUF-based key generation scheme
can stably recover key depends largely on the selection of ECC algorithm.

Assuming that the length of the SRAM PUF response sequence R is L bits
and all bits are mutually independent, taking the original response sequence of
the enrollment phase as a standard, the probability of having at most t unstable
error bits in the response sequence generated during the reconstruction phase
can be defined as Perror [8]:

Perror =
t∑

i=0

(
L

i

)

· ei(1 − e)L−i (1)

where e represents the average bit error rate of the response sequence R.
The acceptable failure rate Pfail when we recover errors in PUF response

can be expressed as:

Pfail = 1 − Perror = 1 −
t∑

i=0

(
L

i

)

· ei(1 − e)L−i (2)

If the unstable error bits are also mutually independent, given the values of e
and Pfail, t can be obtained through Formula (2), and then the appropriate
ECC algorithm can be selected according to the value of t.

Usually, due to the excessive number of response bits required, the resource
consumption will be too large if the error correction operation is directly per-
formed on the entire response sequence. Therefore, we can divide the response
sequence into blocks and then perform error correction separately. Assuming
that the response sequence R can be divided into n blocks for error correction,
each block has b bits, and the probability that unstable error bits in each block
can be corrected is r. If the unstable error bits are mutually independent and

A Low Overhead Error Correction Algorithm Using Random Permutation 481

evenly distributed, then the average bit error rate for each block is the same as
the average bit error rate for the entire response sequence, which is equal to e.
Therefore, the probability that the entire response sequence cannot be corrected
is P

′
fail:

P
′
fail = 1 − rn, n = L/b,

r =
t∑

i=0

(
b

i

)

· ei(1 − e)b−i
(3)

We selected 200 chips with the same SRAM for testing, each chip collected
100 times through the card reader platform. According to statistics (detailed
calculation in Sect. 5.2), the maximum average bit error rate is 2.28%, and the
average Shannon entropy density is 0.998 bit. To ensure the availability of SRAM
PUF and low resource consumption for error correction, we specify e = 3% and
P

′
fail = 10−4. According to the security and correctness constraints of Fuzzy

Extractor mentioned by Roel Maes in [14], we need at least a 704-bit SRAM
PUF response sequence if we want to obtain a 128-bit full entropy stable key,
and we need to use a [32,6,7] linear block code to ensure Pfail ≤ 10−4. Therefore,
we finally decided to read the 32 × 24 = 768-bit response to ensure the security
of the key. The response sequence is divided into n = 24 blocks and each block
is b = 32 bit, the maximum number of error bits that can be corrected back in
each block is 7.

However, according to our experimental results in Sect. 5.2, it is found that
the [32,6,7] linear block code does not completely correct the error bits in all
SRAM PUFs even if their average bit error rate is below 3%. We explored the
causes of this phenomenon, as can be seen from the assumptions of Formula (3),
there is a strong assumption in calculating P

′
fail that the unstable error bits are

mutually independent and evenly distributed, but we suspect that the distribu-
tion of unstable error bits may not be so uniform and have some correlation due
to SRAM manufacturing process or environmental noise.

Fig. 3. Statistics of bit error rate under different circumstances

482 L. Zheng et al.

We selected one of the SRAM PUFs for analysis and found that the average
bit error rate of 24 blocks has a large gap, the smallest is 0 while the largest has
reaches 0.073, this result is shown in Fig. 3(a). Furthermore, we also show the
single bit error rate of 768-bit response of this SRAM PUF in Fig. 3(b). It can be
found that many unstable error bits are clustered together, that is, if a certain
bit of the SRAM PUF response is unstable and error-prone, the surrounding
response bits are also more error-prone.

In addition, according to Pelgrom’s model [7], there are inherent spatial corre-
lation structures in the physical properties of semiconductor devices. Specifically,
devices that are closely placed together have a higher correlation than devices
that are separated by a larger distance. This also confirms the correctness of our
experimental conclusion. This SRAM PUF’s unstable error bits are more likely
to cluster together, so we call it as ‘Non-Uniform SRAM PUF’.

Obviously, it is not feasible to directly use the general theoretical ECC algo-
rithm for such PUFs because its error correction effect is always lower than
expected, so we will explore the solutions from the uniformity of unstable bits.

4 The Proposed Random Permutation Position Scheme

According to the above analysis, when using block error correction, such ‘Non-
Uniform SRAM PUF’ will often result in some blocks having more unstable error
bits than the maximum correctable error number t of ECC algorithm, and some
blocks having fewer unstable error bits, so the phenomenon that the unstable bits
cannot be corrected will occur. We can’t help thinking that if the distribution of
unstable bits can be disturbed so that the unstable bits originally concentrated
together are dispersed between other stable bits, the whole response will become
a sequence with more uniform distribution of unstable bits, that is, the number
of unstable bits in each block will become average at this time.

Based on this idea, we decide to use a unit matrix with a random row trans-
formation to disturb the position of SRAM PUF’s response bits. The size of the
matrix is N × N bits, where N is the number of bits in SRAM PUF response
sequence, and the random permutation is performed between rows. By mul-
tiplying each generated response bits by the random permutation matrix, we
can randomly replace the position of SRAM PUF’s response bits. The specific
process can be expressed as:

R 1×N ·

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 1 0
0 1 · · · 0 0
...

...
. . .

...
...

1 0 · · · 0 0
0 0 · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

N×N

= RR 1×N (4)

RR is the response sequence after randomized position permutation.
The SRAM PUF-based key generation scheme can also be improved as shown

in Fig. 4. Each SRAM PUF has the same random permutation matrix, which

A Low Overhead Error Correction Algorithm Using Random Permutation 483

is generated and stored in advance. In enrollment phase, we perform a random
position permutation matrix on the original response sequence R, then the key
and helper data ω are obtained by using the response sequence RR after the
permutation. In reconstruction phase, we still perform the same permutation
process on the noisy response sequence R

′
. At this time, the concentrated posi-

tion of the unstable error bits in SRAM PUF response has been broken up, so
it is easier to successfully correct these error bits using the theoretically feasible
ECC algorithm.

Fig. 4. Improved PUF-based key enrollment and reconstruction process

However, the above scheme is only applicable to some SRAM PUFs with
low bit error rate. For SRAM PUFs with high error rate, if only one random
permutation matrix is used, the effect of disturbing unstable positions may not
be very good. Therefore, we have upgraded this scheme as shown in Fig. 5. Each
SRAM PUF has n different random permutation matrices (n ≥ 3).

In enrollment phase, the key is generated directly by the original response
sequence R through the Entropy Accumulator. We perform n random position
permutations on the original response R, then the corresponding n helper data
are generated: ω1, ω2, ..., ωn. These helper data are obtained by using different
random numbers k1, k2, ..., kn, so they do not leak entropy to each other. In
reconstruction phase, we also recover n response sequences R1′′, R2′′, ..., Rn′′,
where the bit position of these sequences are still randomly permuted. In order
to successfully recover the key, these response sequences must be restored to the

484 L. Zheng et al.

original bit position distribution. We can use the inverse of n random permuta-
tion matrices to complete, that is:

Ri′′1×N ·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 1 0
0 1 · · · 0 0
...

...
. . .

...
...

1 0 · · · 0 0
0 0 · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−1

N×N

⎞

⎟
⎟
⎟
⎟
⎟
⎠

i

= Mi 1×N (1 ≤ i ≤ n) (5)

where n is the number of random permutation matrices, and Mi is the ith

response sequence after recovering to the original bit position. By taking the
value that occurs most frequently in Mi, namely Mode, as the final recovery
response M = Mode(M1,M2, ..,Mn).

Fig. 5. Further upgrades for the PUF-based key enrollment and reconstruction process

This upgraded scheme effectively increases the success rate of key recovery.
Even if the first random permutation matrix does not disturb the distribution
of unstable bits well, the subsequent random permutation matrices can be reme-
died. Considering the resource and efficiency issues, we generally think that the
value of n does not exceed 5.

A Low Overhead Error Correction Algorithm Using Random Permutation 485

5 Experiments and Results

The SRAM we used in the experiment comes from the self-developed low-power
entity identification chip SSX1624, which adopts the SMIC 180 nm CMOS pro-
cess. We collected the start-up values of the same address of SRAM memory in
200 chips at room temperature, and each chip was powered on 100 times with
768-bit responses collected each time. In addition, we used Near Field Commu-
nication (NFC) function from two different platforms for collection: OMNIKEY
CardMan 5x21-CL Reader and SONY Xperia Z2 Tablet (SGP541).

5.1 Basic Properties of Our SRAM PUF

In general, we mainly evaluate the performance of a PUF from three aspects of
uniqueness, reliability and randomness.

Uniqueness: can be measured by PUF’s inter-distance, which is the average
Hamming distance between responses obtained by applying the same challenge
information to different PUF entities. The calculation of inter-distance is as
follows:

μinter =
Nmeas∑

i=1

Npuf−1∑

j1=1

Npuf∑

j2=j1+1

2 · HD(Ri,j1 , Ri,j2)
N · Npuf · (Npuf − 1) · Nmeas

(6)

Npuf represents the number of PUF entities, Nmeas represents the number of
times each entity is measured, N represents the length of the response sequence.
For the j th

1 and j th
2 PUF entities, Ri,j1 and Ri,j2 represent the response sequence

obtained by the ith measurement respectively.

Reliability: can be measured by PUF’s intra-distance, which is the average
Hamming distance between responses obtained by applying the same challenge
information to the same PUF entity multiple times. The calculation of intra-
distance is as follows:

μintra =
Npuf∑

j=1

Nmeas−1∑

i1=1

Nmeas∑

i2=i1+1

2 · HD(Ri1,j , Ri2,j)
N · Npuf · Nmeas · (Nmeas − 1)

(7)

Where, Ri1,j and Ri2,j represent the response sequences obtained by the i th
1

and i th
2 measurements respectively for the jth PUF entity.

Randomness: can be measured by the Shannon entropy of PUF’s response
sequence, and its calculation formula is:

H(R) =
Npuf∑

j=1

Nmeas∑

i=1

[−P (rk = 0) log2 P (rk = 0) − P (rk = 1) log2 P (rk = 1)]
Npuf · Nmeas

(8)

486 L. Zheng et al.

P (rk = 0) represents the probability that the element in the response sequence
is ‘0’. Similarly, P (rk = 1) represents the probability that the element in the
response sequence is ‘1’.

A good PUF should have an inter-distance close to 50%, an intra-distance
close to 0 and as much entropy as possible. In our experiment, Npuf = 200,
Nmeas = 100, N = 768. The basic properties of our SRAM PUF on both reader
and tablet collection platforms are summarized in Table 1.

Table 1. Statistics on the basic properties of SRAM PUF (room temperature)

Collection platform Inter
distance

Intra
distance

Shannon entropy
density per bit

OMNIKEY
CardMan 5x21-CL Reader

49.99% 1.89% 0.999

SONY
Xperia Z2 Tablet (SGP541)

48.58% 4.63% 0.998

It can be seen that the average inter-distance is close to 50% on two collection
platforms, so our SRAM PUF has good uniqueness. The average intra-distance
of the response collected by the card reader is 1.89%, while that collected by the
tablet has reached 4.63%. This shows that the stability of SRAM PUF response
obtained by different collection platforms is not the same. We speculate that
this is related to the magnitude of the Radio Frequency (RF) current induced
by NFC in different platforms. According to the Shannon entropy density, our
SRAM PUF has very good randomness. In addition, we show the distribution of
inter-distance and intra-distance under the card reader platform in Fig. 6, and
it can be found that they generally follow a normal distribution.

Fig. 6. SRAM PUF’s inter-distance and intra-distance distributions

A Low Overhead Error Correction Algorithm Using Random Permutation 487

5.2 Error Correction Using General ECC Directly

Before error correction, we first describe our calculation method for “unstable
error bits” as shown in Fig. 7. Suppose the length of the response sequence is N ,
Nmeas response sequences are collected for the same SRAM, and Rj

i represents
the ith bit of SRAM PUF response in the jth measurement. For the ith bit, we
set the number of occurrences of ‘1’ in the Nmeas measurement as Numi, and
the ith bit of standard values obtained after judgment is denoted as Si, there is

Numi =
Nmeas∑

j=0

Rj
i ⇒

{
≥ 50, Si = 1
< 50, Si = 0

(9)

We take the standard values as a benchmark response sequence, which can be
considered as the original response sequence during the enrollment phase, and
then compare it with Nmeas response sequences. The different bits are called
unstable error bits E and the same bits are called stable bits, still marked as R.
In Fig. 7, Nmeas = 100, N = 32.

Fig. 7. Schematic diagram of unstable error bits

In addition, the average error rate of response sequence can be calculated
accordingly:

e =
N∑

i=0

Nmeas∑

j=0

Rj
i ⊕ Si

N · Nmeas
(10)

For the SRAM PUF data collected by the card reader with a maximum average
error rate of less than 3%, we can see from the analysis in Sect. 3 that if the failure
rate P

′
fail of error correction is not more than 10−4, a [32,6,7] linear block code

is required. Considering the simple operation of RM Codes, we decided to use
RM(1,5) Code, which has a 32-bit encoding length and can correct up to 7-bit

488 L. Zheng et al.

errors. The 768-bit SRAM PUF response is divided into 24 blocks, each of which
contains 32 bits. In the actual response recovery process, as long as the number
of unstable error bits in each block does not exceed 7 bits, it can be considered
that the original response can be successfully recovered using RM(1,5) Code.

Therefore, in 200 SRAM PUFs, we count that the number of 200 × 100
response sequences that can not be corrected back is 13, then P

′
meas−fail =

13/200 × 100 = 6.5 × 10−4 > 10−4. More specifically, we separately calculate
the number of unstable error bits of 100 × 24 32-bit blocks per SRAM PUF,
and display the maximum distribution of all SRAM PUFs in Fig. 8(a). We can
see that there are already 6 SRAM PUFs with a maximum number of unstable
error bits greater than 7, but the maximum number of most SRAM PUFs is no
more than 5, which also indicates that the SRAM PUF response collected by
the card reader is relatively stable. In addition, we select the worst stability of
200 SRAM PUFs for analysis, as can be seen from Fig. 8(b), there are 5 times
of maximum unstable error bits greater than 7 bits in the 100 measurements of
this SRAM PUF.

Fig. 8. Statistics of the maximum number of unstable error bits in SRAM PUF on
card reader platform under different circumstances

In summary, if we directly use RM(1,5) Code for error correction, we can-
not guarantee that the stable response can be successfully recovered with the
theoretical failure rate p

′
fail.

For the SRAM PUF response collected by the tablet, the maximum average
bit error rate is 4.34% in our statistics. Similarly, we still use RM(1,5) Code for
error correction and count that 200×100 response sequences cannot be corrected
back is 7 times, that is, P

′
meas−fail = 3.5×10−4. From Fig. 9(a), we can see that

the maximum number of unstable bits per SRAM PUF is mostly between 5 and
7 bits, which proves that the stability of the response collected by the tablet is
worse than that of the card reader. The distribution of 100 measurements of one
of SRAM PUF is shown in Fig. 9(b).

A Low Overhead Error Correction Algorithm Using Random Permutation 489

Fig. 9. Statistics of the maximum number of unstable error bits in SRAM PUF on
tablet platform under different circumstances

5.3 Error Correction Using Random Permutation Position Scheme

Since the SRAM PUF response collected by the card reader has a small average
bit error rate, we only need to use a 768 × 768 random permutation matrix for
each SRAM PUF (using the improved method in Fig. 4), and the permutation
process is operated by software. After the permutation is performed, we recount
the maximum number of unstable bits in each SRAM PUF with 32-bit block
units as shown in Fig. 10(a), and we find that it does not exceed 5 bits. Com-
pared with Fig. 8(a), our scheme not only eliminates 8-bit unstable bits, but also
averages 6-bit and 7-bit unstable bits into other blocks with smaller number of
unstable bits. Figure 10(b) shows the unstable bit distribution of SRAM PUF
with the worst stability, most of unstable bits are no more than 3 bits in 100
measurements, the unstable bits are greatly averaged compared with Fig. 8(b). In

Fig. 10. Statistics of the maximum number of unstable error bits in SRAM PUF on
card reader platform under different circumstances after the random permutation

490 L. Zheng et al.

this way, the 200× 100 response sequences can be fully recovered using RM(1,5)
Code, ie, the actual failure rate is much smaller than the theoretical P

′
fail = 10−4.

For the SRAM PUF response collected by the tablet, we adopt the upgrade
scheme in Fig. 5. Each SRAM PUF uses five random permutation matrices. After
our experiment, we find that 200×100 PUF responses can all be recovered back,
that is, this scheme can guarantee that there will be no error at least 20,000
times during the reconstruction phase, which greatly reduces the failure rate of
response recovery.

5.4 RM(1,5) Code Implementation and Error Correction Result

The RM(1,5) Code module contains two functions of encoding and decoding, and
the specific functions of interface signals are listed in Table 2. We implemented
our module on the Xilinx ZedBoard (device type: xc7z020clg484-1) Evaluation
Platform. According to the synthesis report of Xilinx ISE 14.6 software, this
module only uses 191 LUTs (Look Up Tables), 81 IOBs (Input/Output Blocks)
and 1 BUFG (Global Clock Buffer).

Table 2. Descriptions of interface signals

Signal Direction Description

clk Input Clock signal

rstn Input Asynchronously reset signal, active low

Start Input Module operation start signal

FunSel Input Function select signal: 0 is encoding, 1 is decoding

K[5 : 0] Input Message K to be encoded

C′[31, 0] Input Codeword C′ to be decoded (corrected)

Done Output Module operation end signal

C[31 : 0] Output The encoded codeword C

C′′[31 : 0] Output The decoded (corrected) codeword C′′

K′[5 : 0] Output The decoded message K′

Taking the SRAM PUF response collected by the card reader as an exam-
ple, we use the standard value S of each SRAM as the original response R in
the enrollment phase, and the remaining 100 response sequences as the noisy
response R′ respectively in the reconstruction phase. After the random permu-
tation matrix is applied, the comparison before and after the response recovery
is shown in Fig. 11. Figure 11(a) shows the original response’s unstable bit distri-
bution of 200 SRAM PUFs and Fig. 11(b) shows the recovery response’s stable
bit distribution obtained after error correction of RM(1,5) Code. It can be seen
that all the unstable bits (orange dots) have been corrected back. With a stable
SRAM PUF response output, a stable key can be generated through an Entropy
Accumulator.

A Low Overhead Error Correction Algorithm Using Random Permutation 491

Fig. 11. Comparison of the unstable bit distribution of SRAM PUF response on card
reader platform before and after using RM(1,5) Code

6 Conclusion and Future Work

In this paper, we analyze the unstable bit distribution of ‘Non-Uniform PUF’
and the specific reasons why the error correction capability of ECC algorithm is
always lower than expected. Moreover, a random permutation position scheme
is proposed with simple operation and no additional error correction resources,
which effectively saves the consumption of error correction circuit and has a
wide range of application scenarios. Our experiments have proved the effective-
ness and practicability of our scheme. In future work, we will evaluate and test
the effectiveness of our method for SRAM PUF under different environments
(temperature, voltage and aging, etc.).

References

1. Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.X., Wachsmann, C.: A for-
mal foundation for the security features of physical functions. In: 32nd IEEE Sym-
posium on Security and Privacy, S&P 2011, vol. 9, no. 1, pp. 397–412 (2011)

2. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Secure lightweight entity
authentication with strong PUFs: mission impossible? In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 451–475. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3 25

3. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Helper data algorithms for
PUF-based key generation: overview and analysis. IEEE Trans. CAD Integr. Circ.
Syst. 34(6), 889–902 (2015)

4. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

5. Dupuis, F., Fawzi, O., Renner, R.: Entropy accumulation. CoRR abs/1607.01796
(2016)

https://doi.org/10.1007/978-3-662-44709-3_25
https://doi.org/10.1007/978-3-540-24676-3_31

492 L. Zheng et al.

6. Eiroa, S., Castro-Ramirez, J., Mart́ınez-Rodŕıguez, M.C., Tena, E., Brox, P., Batur-
one, I.: Reducing bit flipping problems in SRAM physical unclonable functions for
chip identification. In: ICECS, pp. 392–395. IEEE (2012)

7. Friedberg, P., Cheung, W., Spanos, C.: Spatial variability of critical dimensions
(2005)

8. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74735-2 5

9. Holcomb, D.E., Burleson, W.P., Fu, K., et al.: Initial SRAM state as a finger-
print and source of true random numbers for RFID tags. In: Proceedings of the
Conference on RFID Security, vol. 7, p. 1 (2007)

10. Intrinsic ID: WHITE PAPER-SRAM PUF: The Secure Silicon Fingerprint (2016).
https://www.intrinsic-id.com/resources/white-papers/

11. Jang, J., Ghosh, S.: Design and analysis of novel SRAM PUFs with embedded
latch for robustness. In: ISQED, pp. 298–302. IEEE (2015)

12. Kang, H., Hori, Y., Katashita, T., Hagiwara, M., Iwamura, K.: Performance anal-
ysis for PUF data using fuzzy extractor. In: Jeong, Y.-S., Park, Y.-H., Hsu, C.-
H.R., Park, J.J.J.H. (eds.) Ubiquitous Information Technologies and Applications.
LNEE, vol. 280, pp. 277–284. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-41671-2 36

13. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly PUF:
protecting IP on every FPGA. In: HOST, pp. 67–70. IEEE Computer Society
(2008)

14. Maes, R.: Physically Unclonable Functions - Constructions, Properties and Appli-
cations. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41395-7

15. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure key generation
from biased PUFs. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS,
vol. 9293, pp. 517–534. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48324-4 26

16. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft deci-
sion helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04138-9 24

17. Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characterization
of RO-PUF. In: HOST, pp. 94–99. IEEE Computer Society (2010)

18. Muller, D.E.: Application of boolean algebra to switching circuit design and to
error detection. Trans. I.R.E. Prof. Group Electron. Comput. 3(3), 6–12 (1954)

19. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(5589), 2026–2030 (2002)

20. Reed, I.S.: A class of multiple-error-correcting codes and the decoding scheme.
Trans. IRE Prof. Group Inf. Theory (TIT) 4, 38–49 (1954)

21. Selimis, G.N., et al.: Evaluation of 90nm 6T-SRAM as physical unclonable function
for secure key generation in wireless sensor nodes. In: ISCAS, pp. 567–570. IEEE
(2011)

22. Sun, K., Lao, Y., Liu, W., You, X., Zhang, C.: Application of LDPC codes on
PUF error correction based on code-offset construction. In: ASICON, pp. 867–870.
IEEE (2017)

https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-540-74735-2_5
https://www.intrinsic-id.com/resources/white-papers/
https://doi.org/10.1007/978-3-642-41671-2_36
https://doi.org/10.1007/978-3-642-41671-2_36
https://doi.org/10.1007/978-3-642-41395-7
https://doi.org/10.1007/978-3-662-48324-4_26
https://doi.org/10.1007/978-3-662-48324-4_26
https://doi.org/10.1007/978-3-642-04138-9_24
https://doi.org/10.1007/978-3-642-04138-9_24

A Low Overhead Error Correction Algorithm Using Random Permutation 493

23. Suzuki, D., Shimizu, K.: The glitch PUF: a new delay-PUF architecture exploiting
glitch shapes. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 366–382. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15031-9 25

24. Tajik, S., et al.: Physical characterization of arbiter PUFs. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 493–509. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3 27

https://doi.org/10.1007/978-3-642-15031-9_25
https://doi.org/10.1007/978-3-642-15031-9_25
https://doi.org/10.1007/978-3-662-44709-3_27

Practical Dynamic Taint Tracking
for Exploiting Input Sanitization Error

in Java Applications

Mohammadreza Ashouri(B)

University of Potsdam, August-Bebel-Strasse 89, 14482 Potsdam, Germany
ashouri@uni-potsdam.de

Abstract. Errors in the sanitization of user inputs lead to serious secu-
rity vulnerabilities. Many applications contain such errors, making them
vulnerable to input sanitization exploits. Therefore, internet worms via
exploiting vulnerabilities in applications infect hundreds of thousands
of users in a matter of short time, causing hundreds of millions of dol-
lars in damages. To successfully counter internet worm attacks, we need
automatic detection and defense mechanisms. First, we need automatic
detection mechanisms that can detect runtime attacks for vulnerabilities.
A disclosure mechanism should be simple to deploy, resulting in few false
positives and few false negatives.

In this paper we present Tainer, an automatic dynamic taint analysis
framework to detect and generate exploits for sanitization based vulner-
abilities for Java web applications. Particularly, our method is based on
tracking the flow of taint information from untrusted input the applica-
tion sensitive methods (such as console, file, network, database or another
program). Our proposed framework is portable, quick, accurate, and does
not need the source code of applications. We demonstrate the usefulness
of the framework by detecting several zero-day actual vulnerabilities in
popular Java applications.

1 Introduction

So far many tools have been created to detect security issues and hacking attacks
for networks and software, and they can be divided into two main categories as
follow:

1. Coarse-grained detectors, capable of detecting network anomalies such as the
occurrence of port scanning or unusual activity in a specific IP or port.

2. Fine-grained detectors, capable of detecting the attacks based on suspicious
activities within the application.

Coarse-grained detection mechanisms are prone to reporting many false pos-
itives and lack detailed and precise information about the vulnerabilities, inter-
software activities and methods of intrusion. Therefore, they cannot help much
with finding application vulnerabilities and preventing the spread of malware
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 494–513, 2019.
https://doi.org/10.1007/978-3-030-21548-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_27&domain=pdf
http://orcid.org/0000-0002-5173-3605
https://doi.org/10.1007/978-3-030-21548-4_27

Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error 495

based on such vulnerabilities. For example, a malware that attacks via web-based
vulnerabilities such as SQL injection or Cross Site Scripting (XSS) sends its pay-
load to the victim’s machine through supposedly normal and authorized network
requests. Consequently, it seems better to converge on fine-grained detectors that
record fewer false positives and carry further details about vulnerabilities and
the methods of invasion in hacking attacks [14].

For the implementation of fine-grained detectors several approaches have
been proposed. However, most of them require application source code or special
decompiling of application executable files. These approaches are often accom-
panied by numerous flaws (e.g., high false positives). Also, they are not popu-
lar among software developers due to the requirement for the understanding of
security issues and similar problems. For instance, tools like FindBugs, PDM,
Infer, Soot and Coverity are well-known static analyzers (which are also used
to detect vulnerabilities) need to recompile the libraries or modify the source
code of applications in order to perform the analysis [38]. Thus, it makes the
analyzers impractical in many real work situations, especially for commercial
applications whose merchants are naturally reluctant to publish their source
code. Such limitations narrow down the areas where static analysis tools can
be used and implemented, and this is true especially in the case of industrial
applications.

Consequently, creating fine-grained detectors seems necessary in the imple-
mentation of defensive mechanisms. Such a tool should work with any applica-
tion without requiring the source code; also its configuration and running process
should be fast and straightforward even though we believe reaching this goal is
not an easy job.

Except for some research regarding dynamic taint analysis for vulnerability
detection in Java applications, the majority of near studies used static analysis
which requires the source code of applications [2,32,40,47]. The main drawback
of static analysis is high false positive rates [30]. Moreover, static analysis tools
can only control for the existence of the sanitization functions and not evalu-
ate their effectiveness [4]. Therefore, it confines the capability of static analysis
to address the context-sensitiveness of sanitization errors. On the other hand,
dynamic analysis systems seems to be more powerful and precise to evaluate
applications responses to identify any sanitization errors and concerning secu-
rity issues [20].

Regarding security vulnerabilities in applications, our assumption is there are
security issues where inputs without being adequately sanitized from untrusted
sources (such as keyboard, file, network or another program) go into sensitive
sinks (such as console, file, network, database or another program). Hence, if we
were able to identify such vulnerable data flows in applications, we can intuitively
recognize applications vulnerabilities due to the lack of sanitization.

In this research, our primary objective is to introduce a framework which
identifies untrusted data flows at runtime, reports applications vulnerabilities to
users and generates concise exploits for the detected security issues. Hence, we
introduce Tainer as a straightforward, portable and scalable framework which

496 M. Ashouri

works based on a dynamic taint tracking system to taint such data flows and
enables users to identify vulnerabilities and hacking attacks at runtime. More
precisely, Tainer works based on bytecode instrumentation (BCI) and runs on
all standard operating systems and hardware architectures. It also requires that
the runtime environment including JVM and the binary files of Java applications
be equipped with a taint propagation mechanism. This conservative approach
provides a high precision environment for monitoring the inter-application activ-
ities. Fortunately, Tainer needs no specialized/modified JVMs, and it works with
standard off-the-rack JVMs. Moreover, the framework is built on top of the ASM
framework1 [29] which has a satisfactory performance at runtime.

Briefly, this work achieved the following contributions:

1. Non-reliance on source code. Tainer works based on bytecode instru-
mentation of applications’ binaries, so it does not need the source code of
applications. This feature makes the framework easy-to-use and more prac-
tical so that it can be employed in a wide variety of real-world applications
including commercial software whose source code is not available.

2. Detecting state-of-the-art vulnerabilities. Despite similar works that
often focus on old-fashioned and straightforward vulnerabilities, Tainer not
only detects and exploits the classic techniques, i.e., SQL injection, Remote
Command Execution (RCE) and XSS, but also it covers modern techniques
such as EL injections, OGNL injection, and obfuscation methods in J2EE
applications and MVC frameworks.

3. Experimental validation. During the study of the previous works, we real-
ized that one of the major obstacles for preparing a precise evaluation is find-
ing non-commercial Java datasets. Moreover, almost all of the similar studies
for Java often used student project applications which cannot represent the
complexities of real-world circumstances. However, in this work, we prepare a
fairly extensive dataset of Java applications including Apache Struts, Spring
Boot, Hibernate, Scala as a part of our experimental benchmark.

4. The capability to modernize and upgrade by users. Despite the simi-
lar works in which users only can use the already hard-coded specifications,
Tainer is adjustable. In other words, users can customize and upgrade the
specifications of Tainer based on their requirements, without struggling with
code recompilation. Consequently, in our proposed framework, all of the data
flow specifications and vulnerability patterns in Tainer are stored as separated
plain text files out of the Tainer’s kernel. Hence, users can actively engage in
modernizing and enhancing our framework without getting stuck in low-level
structures and compilation process.

5. Portability. Tainer runs with standard JVMs such as OpenJDK and Ora-
cle’s JDK on all standard operating systems. Hence, users can employ the
framework to instrumented their local runtime environment without strug-
gling with limited pre-instrumented versions of JVM.

6. Automatic exploit generation. We are conscious of the fact that having
proof of concept (PoC) exploits is the best way to prove the presence of a vul-

1 https://asm.ow2.io/.

https://asm.ow2.io/

Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error 497

nerability in an application. It also enables maintenance teams to construct
and test the patches effectively. Once the vulnerability is being detected,
Tainer begins to reproduce exploits based on the characteristics of vulnera-
ble data flow such as vulnerability type, input format and other necessary
information.

We have been evaluated Tainer with 15 popular and well-known Java projects
that incorporated 6.65 million lines of code. We deliberately added some of the
real-world projects such as Apache Struts, Spring framework, Hibernate, Scala
as well as educational projects such as Webgoat to our test unit. The results of
the experiments demonstrate that Tainer reports and generates a total of 155
potential security violations along with their exploits in our benchmarks, out of
which 131 turned out to be actual security vulnerabilities.

2 Background

2.1 Taint Analysis

Taint analysis stays within the domain of information flow analyses. Essentially,
the core idea of this process is tracking variables propagate throughout the appli-
cation of analysis. To detect information flow vulnerabilities, entry points for
external inputs in an application need to be identified. The external inputs
could be data from any source outside an application that is not trusted. In
other words, it must be determined where there is a crossing in the applications
establishing a trust boundary. In a web application context, this is typically user
input fetched from a web page form, but would also include, for example, HTTP
header, URL parameters, data and cookies [43].

In taint analysis, the recognized entry points are called sources. The sources
are marked as tainted, and the analysis tracks how these tainted objects prop-
agate throughout the application. A tainted object rarely exclusively remains
in the initially assigned object, and thus it propagates [7]. This means that it
affects objects other than its original assignment. This can happen directly or
indirectly. Directly in that, for instance, a tainted string object is assigned either
partly or fully to a new object of some sort.

A tainted object in itself is not dangerous to an application. When a tainted
object is used in a critical operation without suitable sanitization, vulnerabilities
could appear. Sanitizing a object indicates to remove data or format it in such
a way that it will not carry any data that could exploit the critical command in
which it will be used [37]. An illustration is when querying a database with a
tainted string, it could open for SQL injection if the string contains characters
that either change the intended query or divided it into additional new queries.
Adequate sanitization would eliminate the unwanted characters, eliminating the
chance of unintended queries and essentially preventing SQL injection. Contrary
to input data being assigned as sources, methods that execute crucial operations
are called sinks in taint analysis. When a tainted object can be used within a sink,
a successful taint analysis implementation will identify this as a vulnerability.

498 M. Ashouri

2.2 Dynamic Taint Analysis vs Static Taint Analysis

Taint analysis can be divided into two approaches, dynamic taint analysis and
static taint analysis [44]. The dynamic taint analysis (DTA) approach analyzes
the different executed paths in an application specific runtime environment,
tracks the information flow between identified source to sink method, and con-
trols how this kind of analysis is carried out. Static taint analysis is a method
that analyses the application source code. This means that, finally, all possible
execution paths can be covered in this type of analysis, whereas in a dynamic
taint analysis context, only those paths included explicitly in the analysis are
covered.

Checking properties for all possible executions paths makes static analysis
time-consuming and likely to generate a large number of false positives and false
negatives. However, static analysis seems to be the more cost-efficient with the
ability to discover bugs at an initial phase of the software development life cycle.
Dynamic analysis, on the other hand, is capable of detecting a indirect bug or
vulnerability too complex for static analysis solely to unveil and can also be the
more convenient method of testing which does not require the source code. A
dynamic test, however, only finds bugs in the piece of the code that is executed.

DTA can be used in test case generation to generate input to test appli-
cations automatically. This is suitable for discovering how the behaviour of an
application changes with various types of input to test applications automati-
cally [3]. Such an analysis could be useful as a step in the development testing
phase of a deployed application since this could also detect vulnerabilities that
are implementation specific. DTA is also efficient because it requires to check
only a single path, and it is accurate because the properties are verified on the
real implementation and not on an abstracted version of the system [26]. DTA
can also be used for malware analysis in revealing how information flows through
a malicious software binary [8].

2.3 Java Bytecode Instrumentation

Compiled Java classes are collected in an intermediary class file format. A class
file carries bytecodes, i.e. instructions that are represented by the Java virtual
machine (JVM) [1]. JVM is a cross-platform execution environment that trans-
forms Java bytecode into machine language and executes it. Even though the
binary class file format is well-defined and programming bytecode methods by
hand is feasible, there are some bytecode generation libraries prepared which
can be used to assist with instrumenting the bytecode of existing classes, e.g.,
Javassist [9], ASM [29] and BCEL [11].

Instrumentation is a technique to modify the execution of an application
at runtime without knowing or changing the application code itself [6]. This
is feasible thanks to the Java Instrumentation API which is implemented by
the JVM. This API is designed to manipulate code before it executes. Genuine
use cases for Java instrumentation are, e.g., taint tracking, monitoring agents
and event loggers. Using this technique makes it possible to introduce almost

Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error 499

any changes to already deployed Java application by operating on its bytecode
level which is interpreted by JVM at runtime, without modifying application’s
source code (since no need to re-compilation, re-assembly and re-deployment of
an application) [21]. It is conducted through implementing an agent that makes
it possible to transform every class loaded by the Class Loader before being used
for the first time [15].

3 Methodology

Tainer operates based on Java application bytecode instrumentation technique.
The instrumentation should be taken for both given Java applications and host
JVM. Once the instrumentation process was done, the instrumented applications
can run normally, without changing behaviour, under the instrumented JVM
(Fig. 1).

Fig. 1. Running an instrumented class inside of an instrumented JVM

For the instrumentation process, the following items should be taken:

– Sources: These methods return data input from untrusted input sources. For
instance, methods that read HTML form input or read cookies stored from
browsers, or parse HTTP parameters. All strings entering from sources must
be marked tainted.

– Propagation: Data from sources usually are manipulated to form other strings
such as queries, scripts, or file-system paths. Data that are acquired from
tainted strings also need to be marked.

– Sinks: These are methods that use input or derivative of user input. They
comprise of methods that execute some form of code, e.g., script or query, or
methods which output data - namely presenting a new HTML page. Tainted
data must be restricted from being used as a malicious input for sink methods.

Source and sink methods necessitate being specified once per libraries which
applications use. In Tainer, we carefully specify and preserve some of the most

500 M. Ashouri

useful source methods of Tomcat web server which enable the framework to
inspect all HTTP(S) requests from client-side (such as POST, GET, and cookie).
Moreover, we construct a precise large set of sensitive sinks (such as database
executions, process management, file system, console, and operating system) for
Java standard libraries and popular frameworks, e.g., Struts, Spring, Hibernate,
which incorporate the most common sensitives methods in enterprise J2EE web
applications. In order to track the taintedness of untrusted data, we associated a
taint flag with every string. This taint flag is set when a data string is returned
by a source method. We propagate this taint flag to strings that are derived
from tainted strings through operations such as case conversion, concatenation.
This method is the same for all standard operating systems which support Java.
Needless to mention that Tainer instruments all standard versions of JVM.

3.1 Untainting

Once we have a mechanism to mark data tainted, we also need a way to untaint
them. This is important because in the absence of a way to untaint data, all
strings that are derived from tainted data will still be marked tainted. This
includes data that have been put through a sanitizing procedure and should
not be marked tainted anymore. The challenge here is to decide which methods
are sanitizing methods. Since our technique applies transparently to existing
Java bytecode, we have no programmer input telling us which methods sanitize
and validate data input. Thus, we have to use a heuristic to determine this.
Choosing this heuristic is one of our primary design decisions which we explain
in the implementation section. Figure 2 presents the general structure of Tainer.

3.2 Dealing with Taint Errors

While instrumented J2EE applications run on an instrumented JVM, if malicious
users or malware attempt to attack the applications, the following actions are
carried out in Tainer (Fig. 3):

1. If data issued from one of the specified sources and reach one of the specified
sink methods, the JVM taints the data flow and raises an exception indicating
a runtime taint violation. Considering this is an exception, the application
is unaware of this particular exception, and the application is not be caught
unless it has a mechanism to deal with unknown runtime exceptions.

2. Tainer as a background process catches the exception, creates a new thread
which we name it Vulnerability Analyzer (VA) and relinquishes the tainted
flow to it.

3. The VA inspects the flow content with matching the tainted data with a set
of regular expressions to find whether the flows contain malicious data. These
regular expressions are collected as a set of plain text files in the Tainer path,
and therefore users can upgrade them quickly. Listing 1.1 shows how the VA
detects the no correctly sanitized data in a given tainted flow.

Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error 501

Fig. 2. Overview of the framework architecture

Listing 1.1. This piece of Java code demonstrates how the VA matches a given
tainted data with XSS pattern. Example shown at the basic level

XSS_pattern=@"|(<(script|iframe|embed|frame|frameset|object|_
img|applet|body|html|style|layer|link|ilayer|meta|bgsound))";
Matcher XSSmatcher = pattern.matcher(XSS_pattern);

boolean XSSfound = false;
while (XSSmatcher.find()) {

XSSfound = true;
...

4. The VA passes the tainted flows to the Exploit Generator (EG) along with
guide information such as the path of the vulnerable file, HTTP method, vul-
nerability type, sink arguments, and then the EG begins to generate exploits.
The EG works with the help of JUnit tests.

5. Ultimately, the Report Generator provides necessary information concerning
the attack to users. The information includes the type vulnerability, data flow
involving sources and sinks, and recommended solutions. These reports enable
users (including software developers) to discern applications’ vulnerabilities
and leads them to patch security issues accurately. Listing 1.2 presents a sam-
ple generated report for SQL injection attack. Also, in Table 4 (appendix) we
state some of the regular expressions which Tainer uses.

Fig. 3. Flowchart outlines the process of exploit generation from an inspected tainted
flow in Tainer. For easier reading, the example is shown at the basic level.

502 M. Ashouri

Listing 1.2. In this example report, users can find the path of the vulnerable JSP file,
the sink method, the taint data (here is labelled as “TaintValue”), suggested solution,
and the vulnerability type.

+ Path: ../testunit/websep/login.jsp
+ Source=org/apache/tomcat/util/net/NloEndpoint$;

Sink=java/sql/Statement.executeQuery(Ljava/lang/String;)Ljava/sql/ResultSet;
TaintValue=" ’admin or ’X’=’X "
+ Vulnerability Type = > Weakness in sanitization against of SQL injection attack via the

HTTP requests
+ Suggested Solution: using escapeSql method :
public static String escapeSql(String str)
Escapes the characters in a String to be suitable to pass to an SQL query.
-- Parameters: str - the string to escape, may be null

-- Returns: a new String, escaped for SQL, null if null string input

+ How to fix: www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet_in_Java

4 Implementation

As we mentioned earlier, Tainer requires that Java applications and their runtime
environment be equipped with taint propagation mechanism. Therefore, Tainer
modifies the application class files through the Bytecode Instrumentation (BCI)
[15], so we no need access to the application’s source code. BCI gives a way to
add code into the Java class file methods, either before the VM loads the class
file or by redefining the class files on the fly [6]. Genuine use cases for BCI are
monitoring agents, event loggers and taint trackers. Our framework instruments
the bytecode instructions before loading by JVM.

For implementing bytecode instrumentation in our method, we used ASM
[29] which is a widely adopted Java bytecode manipulation framework. The
ASM provides methods for reading, write and transform such byte arrays by
using higher level concepts than bytes, that means, through the API in the
ASM library, we can analyze the class without reading the source code [42].

The ASM framework also is the de-facto standard for high-performance byte-
code transformations, and it is used in many Java-based applications and frame-
works including code analyzers (SonarJ, IBM AUS), ORM mappers (includ-
ing Oracle TopLink and Berkley DB, ObjectWeb EasyBeans and Speedo), and
scripting languages (BeanShell, Groovy and JRuby) [29].

Other libraries, such as BCEL [12] and SERP2, are also available for bytecode
instrumentation purposes; however, what sets ASM aside from the others is ASM
has a small memory footprint and is relatively fast in comparison with other
frameworks.

The following listings show a basic illustration of the sort of transformations
that Tainer atop of ASM applies at the byte code level to support taint tracking
– the changes made by the framework during the instrumentation. Please note
that for easier reading the example is shown at the source level.

2 http://serp.sourceforge.net/.

http://serp.sourceforge.net/

Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error 503

Listing 1.3. Sample class before the instrumentation

public class OtherClass{

byte[] Key;

OtherClass(int Len,byte[] Seed){

Key=new byte[Len];
Key=Seed;

}
}

Listing 1.4. Sample class after the instrumentation

public class OtherClass{

byte[] Key;
byte[] Trace_Key;

OtherClass(int Trace_Len,int Len,byte[] Trace_Seed,byte[] Seed){

Key=new byte[Len];
Trace_Key=new byte[Len];
Key=Seed;
Trace_Key=Seed;

}
}

Users via source-sink specification can tell to Tainer which data flows must be
considered for tracking tainting input data at runtime. The way of adding sources
and sinks into the framework is rather straightforward. For instance, we extract
and preserve source and sink methods of Java core libraries with the return
type information in plain text files. As we stated before, these files can also be
updated by users directly. In other words, users can customize the performance
and tainting policy of the framework simply by modifying the source and sink
files. In the following, we elaborate on the source and sink specification.

4.1 Source Methods

In this paper (because we focus on J2EE web applications) we attempt to check
all HTTP(S) methods (e.g., POST, GET, HEAD, DELETE and PUT). Thus, we
notice that if we intercept the Buffer of incoming HTTP requests of a Tomcat
server, we can in fact inspect all client-side traffic coming to the J2EE appli-
cations on the server. Consequently, we define NioBufferHandler method as
an untrusted data source for Tainer (Listing 1.5). Table 3 (appendix) represents
some of the specified source and sink methods in the framework.

504 M. Ashouri

Listing 1.5. NioEndpoint.NioBufferHandler used for socket processing in Apache Tom-
cat web server

import org.apache.tomcat.util.net.NioEndpoint;
public NioEndpoint.NioBufferHandler(int readsize, int writesize, boolean direct)

4.2 Sink Methods

We carefully specify a large set of sink methods which are involved in security
issues. The process of sink methods specification should be taken conservatively.
Otherwise, Tainer has to taint a vast number of data flows which are not nec-
essarily involved in actual attacks. No need to explain that tracking redundant
flows imposes more overheads to the runtime performance. In addition to Java
standard libraries, we consciously extract sink methods from popular frameworks
(e.g., Apache Struts and Spring Boots). In order to extract these methods, we
employ both our experience and the reported vulnerabilities from Common Vul-
nerabilities and Exposures (CVE)3 and ExploitDB4. Table 1 shows the summary
of specified sink methods for each project in our benchmark.

Table 1. Examples sinks in Tainer

Framework Number of sinks

Spring Boots 178

Struts 142

JBoss Seam 12

Apache Turbine 12

Hibernate 5

AWS Java 3

Jenkins 3

JavaBeans 2

4.3 Automatic Exploit Generation

The Exploit Generator (EG) module in Tainer is responsible for performing
security unit testing for the vulnerable data flows (the data flows that are iden-
tified by the Vulnerability Analyzer module.). Unit tests for the data flows are
automatically constructed out of each JSP page and then evaluated by inputs
which are generated via grammar-based attack string generator. The proposed
tests, ensure that payload of a produced exploit works correctly with the target
sink in the way it is intended to.

3 https://cve.mitre.org.
4 https://www.exploit-db.com.

https://cve.mitre.org
https://www.exploit-db.com

Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error 505

Given the target sink method properties, the vulnerability type, the for-
mat and size of the parameters in the method (which is derived from the VA)
are important metrics to set up the attack generator properly. Along with the
grammar-based input generator, we also created a hashtable for the payloads
inside of the EG module. Note that if the grammar-based input generator can-
not provide any proper input to pass the tests, EG starts to pick an input from
the payloads hashtable.

In this work, we have extracted 488 payloads for various web vulnerabili-
ties from Exploit-DB.com. We also assumed that the source code of the input
application is not accessible. Moreover, we implement test units based on BCI
technique, which enables us to handle the bytecode of applications by our Java
agent (which is built on the ASM framework). If a generated input passes the
test unit, EG produces a concrete exploit via using CURL5 (generated exploits
are formed in bash files). Listing 1.6 shows an example exploit that is produced
by Tainer for OGNL injection vulnerability in struts 2.3.12.

Listing 1.6. Exploit is produced for the OGNL injection vulnerability in struts 2.3.12

curl -i -s -k -X $’GET’ \
-H $’User-Agent: Mozilla/5.0’ -H $’Content-Type:

%{(#_=\’multipart/form-data\’).(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS)._
(#_memberAccess?(#_memberAccess=#dm):((#container=#context[\’com.opensymphony_
.xwork2.ActionContext.container\’]).(#ognlUtil=#container.getInstance(@com._
opensymphony.xwork2.ognl.OgnlUtil@class)).(#ognlUtil.getExcludedPackageNames()_
.clear()).(#ognlUtil.getExcludedClasses().clear()).(#context.setMemberAccess(#dm))))_
.(#cmd=\’dir\’).(#iswin....).(#ros.flush())}’ \
$’https://localhost:8080/benchmark/struts2/struts2-showcase-2.3.12/showcase.action’

5 Results and Discussion

In this section, we summarize the experiments we performed and describe the
security violations we found with Tainer. We begin by outlining our benchmark
applications and experimental setup, describe some representative vulnerabilities
found by our analysis and interpret the impact of analysis features on precision.

While there is a decent number of industrial and open-source tools avail-
able for testing web application security, there are no stabilized benchmarks for
comparing tools’ effectiveness in J2EE application. The task of getting suitable
benchmarks for our experiments was especially challenging by the fact that most
J2EE applications are exclusive software, whose merchants are understandably
reluctant to publish their code, not to mention the vulnerabilities found. At the
same time, we did not want to focus on synthetic micro-benchmarks or stu-
dent projects that lack the complexities fixed in real applications. While some
tries have been made at forming synthetic benchmarks, we believe that real-life
programs are much better suited for measuring security tools. Accordingly, we
concentrate on a set of large, illustrative well-known applications, most of which
are available on GitHub.
5 https://curl.haxx.se.

https://curl.haxx.se

506 M. Ashouri

Subject Applications. We assess Tainer with 15 Java projects including 13
J2EE applications as well as Kotlin and Scala that included 6.65 million lines
of code. For instance, we assess Apache Struts which is a popular MVC frame-
work that many web developers used for creating modern Java web applications
[17]. We also consider some of the popular artificial vulnerable projects such as
Webgoat for our benchmark [22].

Setup. We run Tainer along with the benchmark on a MacOSX machine with
32 GB memory and Intel Xeon W CPU with OpenJDK 8 installed. Discern
that the traditional lines-of-code metric is slightly misrepresenting in the case
of applications that use large libraries. Many of these benchmarks depend on
massive libraries, so, while some of the applications code may be short, the full
size of the applications executed at runtime is large.

Evaluation Methodology. In order to evaluate Tainer with our benchmark,
we test the J2EE applications on Apache Tomcat 8. Then, we instrument the
web server folder with the applications in one time and then we start attacking
the benchmark. The attacks carried out accurately - namely through working
with Kali Linux, Burp and Wfuzz6, and in some cases like testing of Struts
framework, we used the Metasploit framework7.

5.1 Vulnerabilities Discovered

Our results in Table 2 reveals that Tainer reports a total of 155 potential security
violations in our benchmarks, out of which 131 turned out to be actual security
vulnerabilities, while 24 are false positives.

In the first view, it seems expanding the number of source and sink methods
may have an actual impact on finding more vulnerable data flows and detect-
ing more security issues. However, our results deny this view. For instance, the
result of OGNL injection (e.g., in Spring project) demonstrates that including
additional sinks to detect more vulnerabilities turns out as raising more false
positive exceptions. In case of RCE attacks, because running operating system
commands in Java is relatively confined to a few straightforward methods, and
we have specified them elaborately; therefore, we have no false positive reports
for RCE in our benchmark. We call this situation “sinks interventions” which
causes performance overhead for Tainer and reduces the accuracy of the gener-
ated reports.

Another illustration is when injecting SQL commands to the database of a
web application with a tainted string. While with the lack of proper input sani-
tization, SQL commands can propagate maliciously to database methods (such
as executeQuery), the application may respond some information (including
sensitive data) to the attacker via the javax.servlet.jsp.print method. In this
case, the data flow from the user input to the javax.servlet.jsp.print method
may be reported as a vulnerable flow, which in fact is false positive, because

6 https://github.com/xmendez/wfuzz.
7 https://github.com/rapid7/metasploit-framework.

https://github.com/xmendez/wfuzz
https://github.com/rapid7/metasploit-framework

Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error 507

Table 2. The number of tainted flows and related vulnerabilities in the benchmark

Project Sinks Tainted flows Reported vulns Exploits False positives KLOC

Spring 178 128 16 11 5 381

Struts 2 142 101 7 7 0 210

Scala 25 21 3 2 1 335

JBoss Seam 12 8 4 2 2 1188

Turbine 12 7 1 0 1 47

Hibernate 5 5 3 3 0 1085

Kotlin 4 4 1 1 0 934

AWS Java 3 2 1 1 0 2013

Jenkins 3 3 2 0 2 253

JavaBeans 2 2 1 1 0 6

Webgoat 0 80 31 28 3 175

Wavsep 0 67 43 37 6 19

Bodgeit 0 39 31 27 4 2

Insecure App 0 8 5 5 0 1

Puzzelmall 0 7 6 6 0 4

Total 386 482 155 131 24 6653

the actual vulnerable data flow ends in executeQuery along with non-sanitized
malicious input. However, the false positive regarding sinks interventions can be
easily eliminated, if users elaborately define sink methods for Tainer (e.g., by
considering the properties of input applications).

5.2 Zero-Day Exploits for Struts

Regarding the zero-day vulnerabilities found by Tainer in the Struct framework,
we first need to give a brief introduction about the OGNL injection vulnera-
bility. Object graph navigation language (OGNL) is an open source language
for Java which is developed presently as a part of the Apache. OGNL provides
the set of object attributes and execution of various methods of Java classes.
The evaluation of unvalidated OGNL expressions can grant an attacker access
to modify system variables to execute command execution attacks on Apache
servers [25]. Using OGNL could make it simplistic for hackers to execute Java
code as Apache Struts uses OGNL for most of its processes [34].

In our benchmark, we evaluate Struts 1.3.x, 2.1.x, 2.3.x and 2.5.x. Tainer pro-
duces 7 zero-day exploits including 3 reflected XSS vulnerabilities and 4 OGNL
injections in Struts 1.3.X and 2.3.X which they have not been reported publicly.
However, it seems the vulnerabilities have been fixed in version 2.3.37 which is
the latest release of Struts 2.3.x that contains the latest security fixes, released
on 30 December 2018. We have informed these vulnerabilities to the Struts devel-
opment team.

508 M. Ashouri

5.3 Validation of the Vulnerabilities

Not all security errors found by Tainer are surely exploitable in practice. The
error may not correspond to a flow that can be taken dynamically, or it may
not be possible to construct significant malicious input. Exploits might also be
ruled out because of the unique configuration of an application. However, the
configurations might change over time, potentially making exploits available.
Moreover, practically all of the security errors we found can be repaired easily
by modifying several lines of Java source code, so there is generally no reason
not to fix them in practice. After we ran our analysis, we manually examined
all the errors reported to ensure they represent security errors. Since our knowl-
edge of the applications was not sufficient to ascertain that the errors we found
were exploitable, to gain additional assurance, we manually grouped and tested
each application’s reported exploits to make sure the security leaks are rightly
reported.

We obtained the exploits by searching the name and version of the applica-
tions on valid vulnerabilities databases such as National Vulnerability Database
(NVD)8, TrendMicro.com, and Metasploit. After ensuring the correctness of the
exploits, we ran the exploits on the instrumented applications on our instru-
mented JVM (OpenJDK). Also, for being sure about the correctness of the
results, we manually compare the affected sink methods pointed in each report
with the corresponding methods in the source code of the exploits. Ultimately,
we compared the exploit payloads with the content of the tainted flows in the
Tainer generated reports.

6 Limitations and Future Works

There are several constraints to our approach that can be solved. For example,
the source and sink specification should perform precisely; otherwise, the sinks
interventions problem may happen. However, we consider adding a future
extension to complete this process automatically, based on the runtime libraries
used in applications.

Also, even though we prepare an extensive benchmark for the evaluation
of Tainer, our benchmark still does not introduce all sorts of vulnerabilities
that would usually are targets for dynamic taint analysis. For instance, certain
features of web applications are not yet supported and consequently limit our
coverage, e.g., unrestricted file upload [13] in which web forms that have inputs
of type file require the user to select and upload an actual file from the local
system. However, this issue can be addressed with further improvements in the
framework.

Lastly, Tainer works within the constraint of the JVM, which means it is not
able to track data flow through native code executing outside of but interacting
with the JVM (e.g., The Java Native Interface (JNI)). JNI is a native program-
ming interface which allows Java code running in a JVM to call and be called by

8 https://nvd.nist.gov.

https://nvd.nist.gov

Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error 509

[31] native applications (e.g., applications which are implemented in separate .c
files). Although using JNI in Java applications is not widely common (especially
for standard J2EE applications), we consider resolving this concern in future
extensions.

7 Related Works

Finding security vulnerabilities via DTA systems have been comprehensively
studied. For instance, there are some system-wide tainting methods which work
based on modifications to the operating system [46], or based on system calls
invoked mostly in C and C++ languages [16,18,19,48]. However, our interception
technique is based on Java bytecode instrumentation and JVM internals.

Vulnerability Analysis. There are plenty of research that analyzed server-
side vulnerability detection. Generally, there are static analysis techniques (e.g.,
[33,35,40]), dynamic analysis methods (e.g., [21,23,28,32,46–48]), and hybrid
techniques (such as [4,36]). Although Tainer uses some of these analysis methods
to find vulnerabilities, the purpose of Tainer is different from these works as it
creates exploits for the identified vulnerabilities.

Taint Tracking. LIFT [41] is designed by Qin et al. based on StarDBT, which
distinctly reduces the taint analysis by eliminating for redundant data flow infor-
mation whereas the problem of memory consumption has not been adequately
addressed. DyTan [10] is a taint tracking system targeting x86 binaries that
uses control flow tainting. However, this tool still presents the limitation of time
overhead. Phosphor [5] is a general purpose taint tracking system for Java bina-
ries that tracks taint object at runtime. However, this tool is not able to detect
security vulnerabilities in data flows and create exploits. Also, due to its heavy
instrumentation process, it suffers from significant time and runtime overhead.
Also, it seems it has several inconsistencies in running with Oracle JDK and
instrumenting of practical Java libraries (such as Apache Derby).

Moreover, Newsome et al. published TaintCheck [39] from Valgrind presents
taint analysis for data flow for the disclosure of buffer overflow vulnerabilities.
However, this tool has significant overhead and ignores the analysis for control
flow. BitBlaze [45], DTA++ [27], and DECAF [24] attempt to implement a com-
bination method of dynamic taint analysis and symbolic execution, so they better
the path coverage of dynamic taint analysis. Although the above techniques have
improved the performance of dynamic taint analysis, several problems are still
not permanently resolved including the high memory and runtime overhead.

The closest work to our technique is Haldar [23]. This paper proposes a DTA
system for identifying vulnerabilities in Java applications. More precisely, Haldar
introduces a pre-made instrumented JVM which tested on WebGoat. However,
this JVM is not capable to be upgraded to the newer versions. Also, users can-
not specify the policies for tainted objects tracking (while Tainer works with
all standard JVMs and allows users to independently specify their own tracking

510 M. Ashouri

policies.). Presently, Haldar ’s work does not include exploit generation for iden-
tified issues. Also, there is no information available concerning the description
and quantity of detected vulnerabilities in their work.

8 Conclusion and Future Works

In this paper, we present Tainer as an accurate, scalable, and portable framework
for Java applications which works based on dynamic taint tracking technique.
Our proposed framework not only automatically identifies hacking attacks and
security issues at runtime but also reproduces concerning reports and exploits
to assist users in resolving vulnerabilities before being maliciously exploited.
Our technique applies to the applications bytecodes and no need to the source
code. Hence, Tainer can be helpful to design secure applications and enhance
user security at the time of attacks. There is also a potential to utilize Tainer
to detect security issues in Android apps with additional modifications. Lastly,
in this work, we show that Tainer significantly exceeds prior work on the preci-
sion, portability, and scalability of vulnerability detection and automatic exploit
generation for Java applications.

Appendix A

Table 3. Some of the specified source and sink methods in Tainer

Method Description SourceSink

tomcat.util.net.NioBufferHandler.getReadBuffer Read the buffer of Apache server � -

org.apache.catalina.connector.Request.getStreamReturn the input stream of a request � -

javax.servlet.http.Part.getHeaderNames Gets the header names � -

org.eclipse.jetty.server.Request.getReader Shows a Post form item � -

java.lang.Runtime.exec Execute the string command in a process - �
java.sql.Statement.executeQuery Execute a given SQL statement with JDBC - �
java.net.URL.openConnection Returns an HttpURLConnection object - �
javax.servlet.jsp.JspWriter Writes characters to stream or console - �
org.apache.struts.action.ActionForward.setPath Sets URI to which control should be forwarded- �
ognl.OgnlReflectionProvider.getValue Evaluate the provided OGNL expression - �
util.TextParseUtil.ParsedValueEvaluator Evaluate the value of OGNL value stack - �
turbine.om.peer.BasePeer.executeQuery Execute a given query in Apache Turbin - �
org.hibernate.Session.createSQLQuery Execute a given SQL statement in Hibernate - �

Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error 511

Table 4. Some of the regular expressions used in the framework

Attack Pattern

SQLi (?i)(.∗)(//b) + SELECT (//b) + //s. ∗ (//b) + FROM(/b) + //s. ∗ (.∗)
(?i)(.∗)(//b) + INSERT (//b) + //s. ∗ (//b) + INTO(//b) + //s. ∗ (.∗)
(?i)(.∗)(//b) + UPDATE(//b) + //s. ∗ (.∗)
(?i)(.∗)(//b) + DELETE(//b) + //s. ∗ (//b) + FROM(//b) + //s. ∗ (.∗)
(?i)(.∗)(//b) + DESC(//b) + (//w) ∗ //s. ∗ (.∗)

XSS (.∗)” + lt + script + gt + ”(.∗)” + lt + bs + script + gt + ”(.∗)
(.∗)(” + javascript + ”|” + vbscript + ”)(.∗)
lt + htmlTags + ”(.∗)(//s + |/)(src|dynsrc|lowsrc|href)//s∗ = ” + quote...

...

References

1. Aarniala, J.: Instrumenting Java bytecode. In: Seminar Work for the Compiler-
scourse, Department of Computer Science, University of Helsinki, Finland (2005)

2. AlBreiki, H.H., Mahmoud, Q.H.: Evaluation of static analysis tools for software
security. In: 2014 10th International Conference on Innovations in Information
Technology (INNOVATIONS), pp. 93–98. IEEE (2014)

3. Arzt, S., et al.: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. ACM SIGPLAN Not. 49(6), 259–269 (2014)

4. Balzarotti, D., et al.: Saner: composing static and dynamic analysis to validate san-
itization in web applications. In: 2008 IEEE Symposium on Security and Privacy
(SP 2008), pp. 387–401 (2008)

5. Bell, J.: Detecting, isolating, and enforcing dependencies among and within test
cases. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 799–802. ACM (2014)

6. Binder, W., Hulaas, J., Moret, P.: Advanced Java bytecode instrumentation. In:
Proceedings of the 5th International Symposium on Principles and Practice of
Programming in Java, pp. 135–144. ACM (2007)

7. Boonstoppel, P., Cadar, C., Engler, D.: RWset: attacking path explosion in
constraint-based test generation. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 351–366. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78800-3 27

8. Brumley, D., Caballero, J., Liang, Z., Newsome, J., Song, D.: Towards automatic
discovery of deviations in binary implementations with applications to error detec-
tion and fingerprint generation. In: USENIX Security Symposium, p. 15 (2007)

9. Chiba, S.: Javassist: Java bytecode engineering made simple. Java Dev. J. 9(1), 30
(2004)

10. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: Proceedings of the 2007 International Symposium on Software Testing and
Analysis, pp. 196–206. ACM (2007)

11. Dahm, M.: Byte code engineering. In: Cap, C.H. (ed.) JIT 1999. INFORMAT, pp.
267–277. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-60247-
4 25

12. Dahm, M., van Zyl, J., Haase, E.: The bytecode engineering library (BCEL) (2003)
13. Dalton, M., Kozyrakis, C., Zeldovich, N.: Nemesis: preventing authentication &

[and] access control vulnerabilities in web applications (2009)

https://doi.org/10.1007/978-3-540-78800-3_27
https://doi.org/10.1007/978-3-540-78800-3_27
https://doi.org/10.1007/978-3-642-60247-4_25
https://doi.org/10.1007/978-3-642-60247-4_25

512 M. Ashouri

14. Enck, W., et al.: TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 32(2), 5
(2014)

15. Fan, N., Winslow, A.B., Wu, T.B., Yu, J.X.: Automatic deployment of Java classes
using byte code instrumentation. US Patent 8,397,227, 12 March 2013

16. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection
using call stack information. In: 2003 Symposium on Security and Privacy, pp.
62–75. IEEE (2003)

17. Spring Framework: Spring framework. https://spring.io/?. Accessed Mar 2018
18. Gao, D., Reiter, M.K., Song, D.: Gray-box extraction of execution graphs for

anomaly detection. In: Proceedings of the 11th ACM Conference on Computer
and Communications Security, pp. 318–329. ACM (2004)

19. Giffin, J.T., Jha, S., Miller, B.P.: Detecting manipulated remote call streams. In:
USENIX Security Symposium, pp. 61–79 (2002)

20. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: whitebox fuzzing for security
testing. ACM Queue 55(3), 40–44 (2012)

21. Goldberg, A., Haveland, K.: Instrumentation of Java bytecode for runtime analysis
(2003)

22. Gupta, S., Gupta, B.B.: Detection, avoidance, and attack pattern mechanisms in
modern web application vulnerabilities: present and future challenges. Int. J. Cloud
Appl. Comput. (IJCAC) 7(3), 1–43 (2017)

23. Haldar, V., Chandra, D., Franz, M.: Dynamic taint propagation for Java. In: 21st
Annual Computer Security Applications Conference, pp. 9–pp. IEEE (2005)

24. Henderson, A.: DECAF: a platform-neutral whole-system dynamic binary analysis
platform. IEEE Trans. Softw. Eng. 43(2), 164–184 (2017)

25. Hu, A., Peng, G., Chen, Z., Zhu, Z.: A struts2 unknown vulnerability attack detec-
tion and backtracking scheme based on multilayer monitoring. In: Xu, M., Qin,
Z., Yan, F., Fu, S. (eds.) CTCIS 2017. CCIS, vol. 704, pp. 383–396. Springer,
Singapore (2017). https://doi.org/10.1007/978-981-10-7080-8 26

26. Ishrat, M., Saxena, M., Alamgir, M.: Comparison of static and dynamic analysis
for runtime monitoring. Int. J. Comput. Sci. Commun. Netw. 2(5), 615–617 (2012)

27. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: dynamic taint
analysis with targeted control-flow propagation. In: NDSS (2011)

28. Kim, H.C., Keromytis, A.: On the deployment of dynamic taint analysis for appli-
cation communities. IEICE Trans. Inf. Syst. 92(3), 548–551 (2009)

29. Kuleshov, E.: Using the ASM framework to implement common Java bytecode
transformation patterns. Aspect-Oriented Software Development (2007)

30. Li, L., Dong, Q., Liu, D., Zhu, L.: The application of fuzzing in web software secu-
rity vulnerabilities test. In: 2013 International Conference on Information Technol-
ogy and Applications, pp. 130–133 (2013)

31. Liang, S.: The Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley Professional, Boston (1999)

32. Livshits, B., Martin, M., Lam, M.S.: SecuriFly: runtime protection and recovery
from web application vulnerabilities. Technical report (2006)

33. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications
with static analysis. In: USENIX Security Symposium, vol. 14, p. 18 (2005)

34. Luszcz, J.: Apache struts 2: how technical and development gaps caused the equifax
breach. Netw. Secur. 2018(1), 5–8 (2018)

35. Medeiros, I., Neves, N., Correia, M.: DEKANT: a static analysis tool that learns
to detect web application vulnerabilities. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis, pp. 1–11. ACM (2016)

https://spring.io/?
https://doi.org/10.1007/978-981-10-7080-8_26

Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error 513

36. Mongiov̀ı, M., Giannone, G., Fornaia, A., Pappalardo, G., Tramontana, E.: Com-
bining static and dynamic data flow analysis: a hybrid approach for detecting data
leaks in Java applications. In: Proceedings of the 30th Annual ACM Symposium
on Applied Computing, pp. 1573–1579. ACM (2015)

37. Naderi-Afooshteh, A., Nguyen-Tuong, A., Bagheri-Marzijarani, M., Hiser, J.D.,
Davidson, J.W.: Joza: hybrid taint inference for defeating web application SQL
injection attacks. In: 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 172–183. IEEE (2015)

38. Newsome, J., Karp, B., Song, D.: Polygraph: automatically generating signatures
for polymorphic worms. In: 2005 IEEE Symposium on Security and Privacy, pp.
226–241. IEEE (2005)

39. Newsome, J., Song, D.X.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: NDSS, vol. 5, pp.
3–4. Citeseer (2005)

40. Pérez, P.M., Filipiak, J., Sierra, J.M.: LAPSE+ static analysis security software:
vulnerabilities detection in Java EE applications. In: Park, J.J., Yang, L.T., Lee, C.
(eds.) FutureTech 2011. CCIS, vol. 184, pp. 148–156. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22333-4 17

41. Qin, F., Wang, C., Li, Z., Kim, H., Zhou, Y., Wu, Y.: LIFT: a low-overhead prac-
tical information flow tracking system for detecting security attacks. In: 2006 39th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-39,
pp. 135–148. IEEE (2006)

42. Royer, M.E., Chawathe, S.S.: Java unit annotations for units-of-measurement error
prevention. In: 2018 IEEE 8th Annual Computing and Communication Workshop
and Conference (CCWC), pp. 816–822. IEEE (2018)

43. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 317–331.
IEEE (2010)

44. Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in
binary analysis. In: 2016 IEEE Symposium on Security and Privacy (SP), pp.
138–157. IEEE (2016)

45. Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89862-7 1

46. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via
dynamic information flow tracking. In: ACM SIGPLAN Notices, vol. 39, pp. 85–96.
ACM (2004)

47. Stenzel, O.: Gradient index films and multilayers. The Physics of Thin Film Optical
Spectra. SSSS, vol. 44, pp. 163–180. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-21602-7 8

48. Xu, W., Bhatkar, S., Sekar, R.: Practical dynamic taint analysis for countering
input validation attacks on web applications. Technical report SECLAB-05-04,
Department of Computer Science, Stony Brook (2005)

https://doi.org/10.1007/978-3-642-22333-4_17
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/978-3-319-21602-7_8
https://doi.org/10.1007/978-3-319-21602-7_8

AMOGAP: Defending Against
Man-in-the-Middle and Offline Guessing

Attacks on Passwords

Jaryn Shen1, Timothy T. Yuen2, Kim-Kwang Raymond Choo3,
and Qingkai Zeng1(B)

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, Jiangsu Province, China
jarynshen@gmail.com, zqk@nju.edu.cn

2 Department of Interdisciplinary Learning and Teaching,
University of Texas at San Antonio, San Antonio, TX 78249, USA

timothy.yuen@utsa.edu
3 Department of Information Systems and Cyber Security,

University of Texas at San Antonio, San Antonio, TX 78249, USA
raymond.choo@fulbrightmail.org

Abstract. Passwords are widely used in online services, such as elec-
tronic and mobile banking services, and may be complemented by other
authentication mechanism(s) for example in two-factor or three-factor
authentication systems. There are, however, a number of known limita-
tions and risks associated with the use of passwords, such as man-in-the-
middle (MitM) and offline guessing attacks. In this paper, we present
AMOGAP, a novel text password-based user authentication mechanism,
to defend against MitM and offline guessing attacks. In our approach,
users can select easy-to-remember passwords, and AMOGAP converts
currently-used salted and hashed password files into user tokens, whose
security relies on the Decisional Diffie-Hellman (DDH) assumption, at
the server end. In other words, we use a difficult problem in number the-
ory (i.e., DDH problem), rather than a one-way hash function, to ensure
security against offline password guessing attackers and MitM attack-
ers. AMOGAP does not require any change in existing authentication
process and infrastructure or incur additional costs at the server.

Keywords: Offline guessing attacks · MitM attacks · Password ·
DDH · Password-based authentication

1 Introduction

Despite their inherent weaknesses, passwords are still widely used as a standalone
authentication mechanism or in combination with other systems (e.g., multi-
factor authentication systems and biometric authentication systems). Passwords
are likely to remain a dominant authentication mechanism in the foreseeable

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 514–532, 2019.
https://doi.org/10.1007/978-3-030-21548-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_28&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_28

AMOGAP: Defending Against Man-in-the-Middle 515

Fig. 1. Proposed AMOGAP

future due to low cost, ease of use, deployment and convenience. There is no
perfect security or authentication mechanism; for example, there are also pri-
vacy concerns with regards to the potential abuse of biometric data in biometric
authentication systems. In recent years, there have been a number of high pro-
file incidents where user passwords were stolen [4,16,20,33], for example due
to weaknesses or vulnerabilities in the systems that were exploited by attackers
conducting man-in-the-middle (MitM) and offline guessing attacks [8,12,13]. In
addition, servers that host salted and hashed password files have also been com-
promised by attackers or malicious insiders. Such files were then subjected to
offline brute-force or statistical guessing attacks [18].

In this paper, we propose AMOGAP, a novel text password-based authenti-
cation scheme that will be able to counter the MitM and offline guessing attacks.
Using AMOGAP (see Fig. 1), users can select easy-to-remember passwords as
complex user tokens are stored at the server. Next, we will describe a scenario
in which AMOGAP can be implemented.

Let Alice be an ordinary user in the system. When Alice logs into a web
service, she inputs her password to the password generator, such as KYO [17]
or Kamouflage [6], on her laptop. Then, the password generator outputs Alice’s
login token of the particular web service and submits this token to the server
of that web service. Thus, there are two of Alice’s tokens in the web server,
namely: one that is transmitted from Alice’s laptop to the server (i.e., Token2),
and the token already stored in the server (i.e., Token1; generated when she
first registered with the service). The authentication system of the web service
authenticates Alice’s login attempt by comparing both Token1 and Token2.

Our proposal comprises two schemes, namely: the basic AMOGAP (Scheme
1 in Fig. 2) and the advanced AMOGAP (Scheme 2 in Fig. 3) based on the
Decisional Diffie-Hellman (DDH) assumption [14]. Both schemes are designed to
achieve offline password guessing attack resilience. Furthermore, Scheme 1 can
defeat an honest-but-curious MitM attacker and Scheme 2 can defeat an active
MitM attacker. In summary, AMOGAP achieves the following properties:

– Offline guessing attack resilience. At the server side, AMOGAP converts
currently-used salted and hashed password files into user tokens, and it does
not require a change in the underpinning infrastructure or incur additional

516 J. Shen et al.

costs. Attackers cannot guess Alice’s login token correctly even with access
to plaintext Token1.

– Passive MitM attack resilience. Existing offline password guessing miti-
gation approaches, such as those of [1,7,23], cannot resist honest-but-curious
MitM attackers in the communication channels. For AMOGAP, even obtain-
ing Alice’s token transmitted in the channels, an honest-but-curious MitM
attacker cannot log into Alice’s web account.

– Active MitM attack resilience. Without changing the existing authenti-
cation process, the advanced AMOGAP scheme (Scheme 2) can defeat active
MitM attackers who interfere with the communication between Alice and the
web server. Such interference (e.g., tampering, forging or replaying Alice’s
tokens transmitted in the channels) does not allow the attacker to imperson-
ate either Alice or the web server to the other party.

Additionally, even if Alice exposes the data of the password generator on her lap-
top, an offline attacker cannot guess Alice’s password or her login token correctly.
Many password generators, such as KYO [17] and Kamouflage [6], achieve this
feature, so we do not list this functionality as one of the advantages of AMOGAP.

Based on the DDH assumption, we formally prove AMOGAP’s security in
defeating offline guessing attacks (Theorems 1 and 2), passive MitM attacks
(Theorem 3), and active MitM attacks (Theorem 4–10).

The remainder of this paper is organized as follows: In the next two sections,
we will respectively introduce the background and related work, and the threat
model. Then, we describe our proposed AMOGAP schemes in Sect. 4 and analyze
its security in Sect. 5. The extended AMOGAP scheme introduced in Sect. 6 is
designed to facilitate a user to use other devices to log in his/her web account.
Finally, the conclusion is presented in Sect. 7.

2 Background and Related Work

The number of incidents relating to password leakage is increasing [11], including
those due to online guessing attacks, MitM attacks, and offline guessing attacks.
It is relatively easy to protect passwords against online guessing attacks through
deploying CAPTCHAs and restricting the number of authentication attempts
before the account is locked [27]. As a result, unsurprisingly, the majority of the
related work focuses on offline guessing attack resilience with less emphasis on
MitM attacks.

2.1 Optimization of Algorithmic Primitives

Some work focuses on the algorithmic primitives, with the aim of increasing the
time complexity or memory complexity required to perform brute-force attacks.
The technique key stretching [22] makes short passwords have the same time
complexity as long passwords. Similar to key stretching, based on the blowfish
block cipher, bcrypt [28] adds the time complexity through increasing the number

AMOGAP: Defending Against Man-in-the-Middle 517

of iterations of the algorithm. Balloon [7] and scrypt [26] focus on increasing the
memory complexity through parameterizing the memory usage of the algorithm
so as to defeat offline attackers’ special hardware such as the ASICs.

These techniques, however, only increase attackers’ computational cost. Pro-
vided that attackers possess enough computing resources (e.g., using graphics
processing units – GPUs, or cloud resources), these techniques will lose efficacy
especially in statistical guessing attacks.

2.2 Decrease of Password Popularity

To resist offline statistical password guessing attacks [34], some approaches [23,
25,30] focus on decreasing the use of popular or frequently-used passwords.
The Count-min Sketch forbids users from selecting popular passwords through
recording the popularity of the passwords in the system [30]. Telepathwords pre-
vents users selecting weak passwords with four fixed constructive patterns of
passwords [23].

All of these approaches, however, need users to change their passwords fre-
quently if they select popular ones. Further, these approaches may recognize
unpopular passwords as popular ones, then ask users to change their passwords
unnecessarily [30]; or recognize weak passwords as unpopular ones, which is a
false negative [23].

2.3 Password Sharing

Approaches such as Shamir’s (k, n) scheme [31], Bounded Retrieval Model [10],
and PolyPasswordHasher [9], think of a password as a secret, and convert the
entire secret into fragmentary shares. Shamir’s (k, n) scheme [31] divides a secret
into n pieces, and reconstructs the secret by at least k pieces where k < n. The
Bounded Retrieval Model [10] maps a password to lots of storage locations,
the sum of these locations represents the hashed value of the password. Poly-
PasswordHasher [9] distributes (k, n) shares to protector accounts and needs
at least k online protector accounts to reconstruct the secret. Others, such as
Honeywords [21] and SAuth [24], rely on a hardened computer system. Hon-
eywords [21] uses a separate honeychecker to judge a password is authentic or
forged. SAuth [24] uses vouching web services: in order to log in a web service,
a user needs not only a password of this service, but also the passwords of those
vouching parties.

All of these methods, however, require a much forced hypothetical condition
that attackers cannot access some computer system(s) or obtain some data.
This hypothesis is impractical since attackers can also be malicious insiders or
colluding with an insider.

2.4 Password Generators

Many password generators employ similar techniques as in Sect. 2.1 to protect
passwords from offline guessing attacks on the client side [19,29]. Kamouflage [6],

518 J. Shen et al.

for example, employs decoy databases to protect user passwords, so that it cannot
be brute-forced on the client side. Similarly, KYO [17] is designed to defeat brute-
forced attacks on the client side.

With a master password of a password generator on the client side, users can
manage many passwords for their web accounts, so the passwords stored on the
server side can be random and complicated. Hence, in a reasonable amount of
time, offline guessing attackers cannot crack the salted and hashed password files
on the server side any more. A password generator on the client side, however,
cannot resist MitM attacks in communication channels.

2.5 Weaknesses Against MitM Attacks

The literature reviewed in the preceding subsections does not fully address
MitM attacks on passwords. Some approaches make no mention of MitM attack
resilience, and others consider MitM attacks out of scope. However, the potential
of MitM attacks on passwords is actually a threat that needs to be addressed
[15,32].

From the MitM attackers’ perspective, the defenses mentioned above on both
client and server sides are meaningless and ineffective. The most common case
of an MitM attack on passwords deals with the evil twin Wi-Fi hotspot where
unsuspecting users connect to what they believe is a legitimate Wi-Fi hotspot.
In actuality, someone else has set this Wi-Fi for the purpose of eavesdropping
on the users’ online activities. Assume that Alice goes to a cafe and connects to
the wireless network with her laptop. The cafe’s official hotspot is named Cof-
feeWIFI, but an MitM attacker has set up a similarly named CoffeeWIFI-Guest.
She inadvertently connects to the CoffeeWIFI-Guest through which the attacker
can eavesdrop on her activities. If the web services do not employ TLS/SSL, the
eavesdropper can obtain Alice’s passwords, among other private information,
for these web services through Wi-Fi signals no matter how complicated these
passwords are.

Attackers do not always think about attacking the place where good defense
is deployed. On the contrary, they prefer to attack those weaknesses. Hence, we
should neither consider MitM attacks out of scope nor should take it for granted
that attackers only occupy a very limited portion of computing resources and
cannot compromise those hardened computer systems. There are many highly
sophisticated MitM attacks in reality yet much of the existing research focuses
only brute-force attacks as shown in the reviewed research. In MitM attacks,
attackers may also circumvent the TLS/SSL validation and intercept transmitted
passwords even though web services employ TLS/SSL [12,13,32,38]. Therefore,
there is an inherent need to develop a stronger defense against MitM attacks.

For all the above reasons, we propose AMOGAP and anchor our hope on
AMOGAP to fully defeat password attacks on Internet. The motivation of AMO-
GAP is to defeat not only offline guessing attacks but also MitM attacks on
passwords.

AMOGAP: Defending Against Man-in-the-Middle 519

3 Threat Model

There are two main kinds of security threats on passwords for web accounts:
offline guessing attacks and MitM attacks; the former takes place in the server
or client side, and the latter takes place in communication channels on Internet.
They are illustrated in Fig. 1. We take no account of online guessing attacks
since we can deploy CAPTCHAs and limit the rate of online password guessing
attempts [27].

On the server side, offline guessing attackers can obtain all the user tokens,
and can launch offline guessing attacks including not only trawling guessing
attacks [35] but also targeted guessing attacks [36]. We assume that offline guess-
ing attackers can only obtain user tokens, but they cannot change these tokens.
Such assumption is reasonable. Otherwise, attackers can always log into Alice’s
web account since they can arbitrarily change her token stored on the web server.

In the communication channels, MitM attackers can obtain all the trans-
mitted messages. There are two types of MitM attackers: passive and active.
Passive MitM attackers are honest but curious: they do not interfere with the
communication. They only eavesdrop or sniff in channels. Meanwhile, active
MitM attackers arbitrarily tamper, forge or replay messages in channels.

On the client side, we believe that the surrounding area is secure when Alice
inputs her password to the password generator on her laptop (i.e., we omit
shoulder snooping, key loggers, or hardware-based side channel attacks).

4 Proposed AMOGAP Secure Under DDH

We start by introducing the basic idea of our proposal, AMOGAP, whose security
depends on the DDH assumption.

We first show the basic AMOGAP secure only against offline guessing attack-
ers and passive MitM attackers, assuming messages cannot be interfered in chan-
nels (Scheme 1 in Fig. 2), and then proceed to explain how we can address tam-
pering, forging or replaying messages in channels and achieve security against
active MitM attackers (the advanced AMOGAP: Scheme 2 in Fig. 3).

In the basic AMOGAP (Scheme 1), we only employ a password generator
KYO [17] on the client side and convert the currently-used salted and hashed
password files into user tokens on the server side. All the tokens that Alice sends
to the web server are plaintext, and the web server just keeps Alice’s plaintext
tokens. Such a scheme is exactly the same as the current password authentication
technique in process and infrastructure, but it provides more security guarantees:
besides defeating offline password guessing attackers, Scheme 1 can also defeat
passive MitM attackers.

In the presence of active MitM attackers, however, we need to address a
number of issues: How to securely transmit Alice’s tokens to the web server?
How to verify Alice’s tokens in the web server? In addition to tampering and
forging, how to prevent active MitM attackers from replaying Alice’s tokens? At
the same time, we cannot employ zero-knowledge proofs protocols [3] to solve

520 J. Shen et al.

Fig. 2. Scheme 1: Basic AMOGAP against passive MitM attacks and offline attacks

these issues because zero-knowledge proofs involve at least 3 messages (i.e., Alice
sends some function(s) to the web server; the server sends the challenge(s) back
to Alice; Alice responds to the server), whereas there can only be 1 message in
the user authentication procedure (i.e., Alice wants to log into her web account
and sends her token to the web server). The advanced AMOGAP (Scheme 2)
solves all the above issues without changing the existing authentication process
and infrastructure or incurring additional costs on the server side.

4.1 Basic AMOGAP: Scheme 1

We introduce Scheme 1 in this subsection. Let g be a generator of a cyclic group
G of prime order q, and xi ∈ Zq, where the integer i ≥ 0.

Registration Procedure. Assume Alice registers a web account on website S,
and her user name is U and her password is ρ on S. The registration procedure
proceeds as follows:

(1) Alice inputs her password ρ to the password generator in her laptop. The
password generator generates Token1 for U .

(2) Token1(u, a, b) = (U , g, gx0), where x0 is uniformly chosen from Zq by the
password generator.

(3) Token1 is sent to website S and stored in the server of S for user authenti-
cation in the future.

(4) The data S and U are important for authentication, so the password gener-
ator stores them in Alice’s laptop.

(5) The data x0 is pivotal for authentication, and the password generator does
not store x0 directly, x0 will be recalled by ρ.

Login Procedure. Assume it is the i-th time (i ≥ 1) that Alice logs into the
web service on website S, and her user name is U and her password is ρ on S.
The login procedure proceeds as follows:

AMOGAP: Defending Against Man-in-the-Middle 521

(6) Alice inputs her password ρ to the password generator in her laptop. The
password generator recalls xi−1 via ρ.

(7) Independent of xi−1, xi is uniformly chosen from Zq. The password gener-
ator generates Token2(u, x, y, z) = (U , xi−1, g, gxi).

(8) Token2 is sent to website S. The authentication system of S authenticates
the login attempt through Token1(u, a, b) and Token2(u, x, y, z).

(9) If ax = b, Alice logs into her account successfully, and goto next step. If
ax �= b, the login attempt fails, and quit the login procedure.

(10) The authentication system of S updates Token1 according to Alice’s Token2
in her i-th successful login. Token1(u, a, b) = (u, y, z).

(11) The password generator updates the data in Alice’s laptop so that ρ can
recall xi rather than xi−1 in the next time.

In Step (7) of the above login procedure, we can also select another generator
g′ and uniformly choose xi from Zq′ , where g′ is a generator of group G

′ of prime
order q′. Thus, Token2(u, x, y, z) = (U , xi−1, g

′, (g′)xi). For simplicity, we fix y
in Token2 and do not change the generator g in this paper.

Abnormal Changing Token1 Procedure. Consider an abnormal situation:
Alice cannot use her password ρ to log into her web account on website S. In
this situation, Alice has to enter her email address associated with her account
into S. Then, S sends an email to Alice. The content in this email is a hyperlink,
which redirects Alice to a webpage on S, for changing Token1. Such a process of
changing Token1 is similar to the registration procedure.

4.2 Recall xi (i ≥ 0) via Password ρ

In Step (5), (6) and (11) of the above registration and login procedure, we do
not directly store xi(i ≥ 0) in the password generator on the client side, but
recall xi with the help of Alice’s password ρ. This functionality is accomplished
by many existing password generators, such as KYO [17] and Kamouflage [6].
In this paper, we think of KYO as an important component of AMOGAP. We
briefly introduce the accomplishment of this functionality in this subsection. See
more details in KYO [17].

KYO selects a seed σS,U to let FσS,U (ρ) = xi where i ≥ 0, and selects a pair
of σ and γ to let Fσ(ρ) = γ. KYO stores (k, σ, γ) into the file PW and stores
(S,U , k, σS,U) into the file T in Alice’s laptop.

When Alice inputs her password ρ to the password generator, KYO verifies
ρ in the file PW. First, KYO finds a tuple in PW, (k, σ, γ), which satisfies
Fσ(ρ) = γ. Then, KYO searches the tuples in the file T according to the index
k in (k, σ, γ). After finding the tuple (S,U , k, σS,U) in T, KYO recalls xi because
FσS,U (ρ) = xi. KYO builds such a function F that we can recall xi via ρ and we
need not store xi in Alice’s laptop.

KYO can freely change xi to xi+1 without changing Alice’s password ρ
because it is easy to find a seed σ′

S,U and a pair of σ′ and γ′ to satisfy
Fσ′

S,U (ρ) = xi+1 and Fσ′(ρ) = γ′. Similarly, Alice can freely change her password
ρ to ρ′ without changing xi.

522 J. Shen et al.

4.3 Advanced AMOGAP: Scheme 2

Scheme 1 can defeat the simplest MitM attack described in Sect. 2.5. It is already
better than related work in which offline guessing attacks are addressed but not
all MitM attacks are addressed. Scheme 1 cannot defeat active MitM attacks
such as forging or replaying messages. Therefore, in this subsection, we describe
Scheme 2 which addresses active MitM attacks (see Scheme 2 in Fig. 3).

We must solve active MitM attackers’ interference in channels. The most
common approach is to employ HTTPS with an authority-signed or self-signed
certificate. An authority-signed certificate requires extra expense for website
S, and Alice must be very careful because web browsers typically come pre-
configured with many authorities’ public keys and some of these authorities are
just new companies whose trustworthiness is not yet established. A self-signed
certificate is free for the owner of a web service, but it is insecure because the
computer systems may be compromised on the server side.

In this paper, without secure channels, in order to resist active MitM attack-
ers’ interference, we introduce a simple approach as follows, which is not only
provably secure, but also costless, applicable and practical.

Using ElGamal encryption scheme [14], Alice’s private key and public key
are K1 and K2, respectively. When registering her web account on website S,
Alice fills in her email address and cellphone number on website S. Then S
randomly generates a pair of asymmetric keys kt

1 and kt
2 of ElGamal, which

are only temporarily effective in this registration session. S secretly sends kt
2

to Alice by out-of-band means such as Alice’s email or short message service
(SMS) of her cellphone. Alice receives kt

2 out of band and uses this temporary
key kt

2 to encrypt her public key K2 and sends Token1(t, u, a, b, EK1(b), Ekt
2
(K2))

to S, where t is a timestamp and u, a, b are the same meaning as in Scheme
1. E(·)(·) denotes encryption, and the subscript is the encryption key. D(·)(·)
denotes decryption, and the subscript is the decryption key. S decrypts Ekt

2
(K2)

with another temporary key kt
1: K2 = Dkt

1
(Ekt

2
(K2)), and simultaneously verifies

both K2 and b through the equation b = DK2(EK1(b)). The rigorous proof is in
Theorem 5 (K2 is unaltered) and Theorem6 (b is not forged) in Sect. 5.

The whole authentication procedure of Scheme 2 is described as below.

Registration Procedure. Alice registers her web account U on website S.

1. Alice fills in her email and cellphone number on S. Then S generates a pair
of temporary asymmetric key kt

1 and kt
2, and sends kt

2 to Alice out of band.
2. Alice receives a temporary key kt

2 from S through email or SMS, and encrypts
her public key K2 with kt

2: Ekt
2
(K2), then discards kt

2.
3. The time when Alice registers her web account U on website S is marked as

a timestamp t: t = τ0.
4. Alice sends Token1(t, u, a, b, EK1(b), Ekt

2
(K2)) = (τ0,U , g, gx0 , EK1(g

x0),
Ekt

2
(K2)) to S.

5. With kt
1, S decrypts Ekt

2
(K2): K2 = Dkt

1
(Ekt

2
(K2)). S verifies Token1: If

b �= DK2(EK1(b)), registration fails, and cancel this registration procedure.

AMOGAP: Defending Against Man-in-the-Middle 523

Fig. 3. Scheme 2: Advanced AMOGAP against active MitM attacks and offline attacks

6. If b = DK2(EK1(b)), then S discards kt
1 and stores Token1(t, u, a, b,K2) =

(τ0,U , g, gx0 ,K2).
7. Fσ1S,U (ρ) = x0, Fσ2S,U (ρ) = K1, and Fσ(ρ) = γ. Store (k, σ, γ) in the file PW

and store (S,U , k, σ1S,U , σ2S,U) in the file T in Alice’s laptop.

Login Procedure. Alice logs into U on S for the i-th time (i ≥ 1).

1. Alice uses her password ρ to recall xi−1 and K1 according to Fσ1S,U (ρ) = xi−1,
Fσ2S,U (ρ) = K1, and Fσ(ρ) = γ.

2. The time when Alice logs into her web account U on website S is marked as
a timestamp r: r = τi.

3. Alice sends Token2(r, u, EK1(x ⊕ r), EK1(y ⊕ r), EK1(z ⊕ r)) = (τi, U ,
EK1(xi−1 ⊕ τi), EK1(g ⊕ τi), EK1(g

xi ⊕ τi)) to website S.
4. S verifies the timestamp in Token2. If r ≤ t (t is in Token1 stored on S), then

login fails, and quit this login attempt.
5. With key K2 and timestamp r, S decrypts EK1(x⊕r), EK1(y⊕r) and EK1(z⊕

r) to x, y and z, respectively.
6. S authenticates Token2 with that previous stored Token1. If ax �= b, login

fails, and quit this login attempt.

524 J. Shen et al.

7. If ax = b, Alice successfully logs into U on S, and S updates
Token1(t, u, a, b,K2) = (r, u, y, z,K2).

8. Fσ1′
S,U (ρ) = xi and Fσ′(ρ) = γ′. Store (k, σ′, γ′) in the file PW and store

(S,U , k, σ1′
S,U , σ2S,U) in the file T in Alice’s laptop.

9. Once Alice cannot log into her account abnormally, she carries out Abnormal
Changing Token1 Procedure at once.

Abnormal Changing Token1 Procedure. It proceeds as follows:

1. The time when Alice carries out the Abnormal Changing Token1 Procedure
is marked as a timestamp t: t = τ0.

2. S sends a hyperlink directing a specific webpage on S and a random number
λ to Alice’s email address or cellphone number associated with U .

3. Alice receives λ and sends (t, u, EK1(t), a, b, EK1(t⊕λ⊕b)) = (τ0,U , EK1(τ0),
g, gx0 , EK1(τ0 ⊕ λ ⊕ gx0)) to S, where a and b are newly generated.

4. S verifies: if DK2(EK1(t)) = t and DK2(EK1(t ⊕ λ ⊕ b)) = t ⊕ λ ⊕ b, update
Token1 as (t, u, a, b, K2); otherwise, fail to change Token1, and quit.

5. Fσ1S,U (ρ) = x0, and Fσ(ρ) = γ. Store (k, σ, γ) in the file PW and store
(S,U , k, σ1S,U , σ2S,U) in the file T in Alice’s laptop.

We list the main difference of Scheme 2 in Fig. 3 from Scheme 1 in Fig. 2:
(1) Scheme 2 uses one out-of-band message in the registration procedure and

Abnormal Changing Token1 Procedure, respectively. We present two means of the
out-of-band communication: email and SMS. The cellphone network is indepen-
dent from Internet, so to some extent SMS is more secure than email. It depends
on Alice and the website to decide to select which out-of-band means. Such out-
of-band communication does not burden the user authentication mechanism any-
thing because the current password authentication technique has widely used the
out-of-band communication to help users with changing their passwords, which
is similar with the Abnormal Changing Token1 Procedure in AMOGAP.

(2) Scheme 2 employs ElGamal encryption in transmitting Alice’s tokens,
and stores Alice’s plaintext Token1 on the web server. K1/K2 and kt

1/kt
2 denote

two pairs of keys of ElGamal encryption that we employ in Scheme 2. For the
sake of brevity and readability, we do not unfold the details of these keys.

(3) In the registration procedure, the main purpose of the out-of-band mes-
sage (i.e., kt

2) is to make Alice’s public key K2 be securely sent to the server side
so that the authentication system on the server side can obtain an unaltered
public key K2. Therefore, once the web server obtains K2, Scheme 2 discards kt

1

and kt
2.

(4) Scheme 2 uses the timestamp to prevent replay attacks by active MitM
attackers, but if Alice resets and calls back the clock time on her laptop (e.g.,
when she travels internationally) and cannot log into her web account caused by
the timestamp, she can carry out the Abnormal Changing Token1 Procedure to
replace her timestamp t in Token1 stored on the web server.

(5) In the Abnormal Changing Token1 Procedure, the out-of-band message
(i.e., λ) prevents active MitM attackers replaying Alice’s previous tokens in the
login procedure and in the Abnormal Changing Token1 Procedure.

AMOGAP: Defending Against Man-in-the-Middle 525

(6) Scheme 2 protects Alice’s password from malicious attacks and stops
attackers logging into Alice’s web account, but it does not protect all the com-
munication between Alice and the web server especially after Alice successfully
logging into her account, which is out of scope.

(7) AMOGAP is a password-based user authentication mechanism, it is not
a Password-based Authenticated Key Exchange (PAKE) protocol although it
employs DDH assumption. Hence, we do not compare AMOGAP with PAKE
protocols in this paper.

5 Security Analysis

In this section, we analyse the security of AMOGAP based on two assumptions.

Assumption 1. Any offline password guessing attacker or MitM attacker A is
equivalent to a probabilistic polynomial-time (PPT) Turing machine [37].

Assumption 2 (DDH Assumption). The DDH problem is hard relative to a
group-generation algorithm G. For all probabilistic polynomial-time algorithms
A there is a negligible function negl such that

|Pr[A(G, q, g, gx, gy, gz) = 1] − Pr[A(G, q, g, gx, gy, gxy) = 1]| ≤ negl(n),

where in each case the probabilities are taken over the experiment in which G(1n)
outputs (G, q, g), and then uniform x, y, z ∈ Zq are chosen. (Note that when z
is uniform in Zq, then gz is uniformly distributed in G.)

Lemma 1 (DL Problem) The discrete-logarithm problem is hard for all prob-
abilistic polynomial-time algorithms.

Proof. If the discrete-logarithm problem is not hard to one PPT algorithm,
according to Assumption 1, given (gx, gy, gz), attackers can efficiently decide
whether gz = gxy by first taking the discrete logg of gx, and then comparing gz

with (gy)x. Thus, we deduce that DDH Assumption is false, which contradicts
with Assumption 2. Therefore, the discrete-logarithm problem is hard. ��
Theorem 1. In Scheme 1, offline password guessing attackers cannot log into
Alice’s account after obtaining Token1 stored on the server side.

Proof. Offline password guessing attackers obtain Token1(u, a, b) in Scheme 1. If
attackers want to log into Alice’s account, they must obtain x s.t. ax = b, where
a = g and b = gxi−1 (i ≥ 1), which is the DL Problem. Therefore, attackers
cannot obtain such x according to Assumption 1 and Lemma 1. ��
Theorem 2. In Scheme 1, given unlimited time, offline password guessing
attackers cannot log into Alice’s account with high probability even after obtain-
ing Token1 stored on the server side.

526 J. Shen et al.

Proof. Because attackers are given unlimited time, they are computationally
unbounded, and they can obtain x s.t. ax = b, where a = g and b = gxi−1 (i ≥ 1)
in Token1.

During the time for attackers computing x = logg gxi−1 , however, Token1
is updated as long as Alice logs into her account, then attackers cannot use
x = xi−1 to log into Alice’s account because axi−1 �= b where a and b are in the
updated Token1. The probability is low that Alice does not log into her account
in a large time span unless she discards her account. ��
Theorem 3. In Scheme 1, passive (honest-but-curious) MitM attackers cannot
log into Alice’s account after obtaining Alice’s tokens transmitted in channels.

Proof. In Scheme 1, passive MitM attackers obtain Token1(u, a, b) or Token2(u,
x, y, z) in channels.

(1) Attackers cannot log into Alice’s account after obtaining Token1 accord-
ing to Theorem 1.

(2) Token2(u, x, y, z) = (U , xi−1, g, gxi). The element x = xi−1 is for Alice’s
i-th login attempt, attackers cannot use it to log into Alice’s account next time.
Next time, attackers must use xi (i.e., Token2 = (U , xi,©,©), where © denotes
an undetermined element) to log into Alice’s account, but they cannot obtain xi

from y = g and z = gxi according to Assumption 1 and Lemma 1. ��
All the theorems in Scheme 1 are also appropriate for Scheme 2 obviously.

Consequently, within AMOGAP, passive MitM and offline guessing attackers
cannot log into Alice’s web account even if they obtain her tokens (Theorem1
and 3). Given unlimited time, offline guessing attackers cannot log into Alice’s
web account with high probability (Theorem2).

In Scheme 2, for conciseness, we use capital letters M and N to denote EK1(b)
and Ekt

2
(K2) in Token1, repectively; then (t, u, a, b,M,N) denotes Token1. Sim-

ilarly, we use A, B and C to denote EK1(x ⊕ r), EK1(y ⊕ r) and EK1(z ⊕ r) in
Token2, respectively; then Token2 is denoted as (r, u,A,B,C) in Scheme 2.

Lemma 2. ElGamal encryption scheme is CPA-secure.

Proof. Define an ElGamal encryption scheme: the public key (G, q, g, h), the
private key (G, q, g, x), where x ∈ Zq, h = gx, and the message space G.

Given mb ∈ G and b ∈ {0, 1}. The ciphertext cb = (ub, vb) = (gy, hy ·
mb) = (gy, gxy · mb), where y ∈ Zq. Let v′

b = vb · m−1
b = gxy. Then we have

(h, ub, v
′
b) = (gx, gy, gxy), which is a DDH triplet. According to Assumption 2,

we cannot distinguish gxy from random elements in G. Therefore, we cannot
distinguish between c0 and c1. ��
Theorem 4. In Scheme 2, in the registration procedure, active MitM attackers
cannot effectively forge Alice’s encrypted messages Ekt

2
(·) from plaintext (·).

Proof. Ekt
2
(·) is the ciphertext of (·). It is the ElGamal encryption with a pair

of secret keys kt
1 and kt

2, therefore, it is CPA-secure according to Lemma 2. ��

AMOGAP: Defending Against Man-in-the-Middle 527

Theorem 5. In Scheme 2, in the registration procedure, website S receives
Alice’s unaltered public key K2.

Proof. In Scheme 2, Alice sends Token1(t, u, a, b,M,N) to S in the registration
procedure. If attackers do not tamper N , then K2 = Dkt

1
(N), completing the

proof. Hence, we assume attackers tamper N .
Let Kta

2 = Dkt
1
(N). On S, the verification for Alice’s public key is b =

DKta
2

(M). In order to circumvent the verification, attackers have to tamper b

and M s.t. M = EKta
1

(b), where Kta
1 and Kta

2 are a pair of keys of ElGamal
forged by attackers. Therefore, Kta

2 is not arbitrary. It is chosen by attackers;
otherwise, it will be rejected by the verification procedure on S.

Since Kta
2 = Dkt

1
(N), then N = Ekt

2
(Kta

2). Therefore, N is the ciphertext
of Kta

2 . According to Theorem4, however, attackers cannot effectively forge the
ciphertext (i.e., N) from the plaintext (i.e., Kta

2), which contradicts with the
initial assumption in the proof. ��
Theorem 6. In Scheme 2, active MitM attackers cannot effectively forge Alice’s
encrypted messages EK1(·) from plaintext (·).
Proof. EK1(·) is the ciphertext of (·). It is the ElGamal encryption scheme with
the private key K1 and the public key K2. K1 is secret. K2 is unaltered according
to Theorem 5. Therefore, it is CPA-secure according to Lemma 2. ��
Theorem 7. In Scheme 2, in the login procedure, active MitM attackers cannot
log into Alice’s account through reconstructing her previous tokens.

Proof. Assume attackers obtain all of Alice’s past tokens, then they can decrypt
all of the Token2(r, u, A, B, C) to the plaintext (r, u, x, y, z) with key K2.
As a consequence, attackers accumulate g, x0, gx0 , x1, gx1 , x2, gx2 , etc. They,
however, cannot reconstruct the plaintext of Token2 in the i-th login attempt to
(r, u, xi−1, g, gxj) and log in with (r, u, xj , g, ©) in the (i+1)-th login attempt,
where 0 ≤ j ≤ i−1. The reason is that attackers cannot use an old timestamp in
a new Token2; if they use a new timestamp r, they cannot construct Token2(r,
u, A, B, C) s.t. A = EK1(x⊕ r), B = EK1(y ⊕ r) and C = EK1(z ⊕ r) according
to Theorem 6. ��
Theorem 8. In Scheme 2, active MitM attackers cannot log into Alice’s account
through reconstructing Alice’s token in the Abnormal Changing Token1 Proce-
dure.

Proof. Alice’s token is (t, u, EK1(t), a, b, EK1(t ⊕ λ ⊕ b)) in the Abnormal
Changing Token1 Procedure.

(1) Attackers cannot effectively forge EK1(t⊕λ⊕ b) according to Theorem 6.
(2) Attackers cannot effectively replace EK1(t ⊕ λ ⊕ b) with C in Token2(r,

u, A, B, C) which is previously sent by Alice in the login procedure, where
C = EK1(r⊕z). The reasons are as follows. Because λ is generated by the server
on S and attackers cannot tamper it, in order to circumvent the verification on

528 J. Shen et al.

S and log into Alice’s account next time, attackers have to reconstruct Alice’s
token to (ta, u, EK1(ta), a, z, EK1(r ⊕ z)) s.t. DK2(EK1(r ⊕ z)) = ta ⊕ λ ⊕ z.
Thus, ta = r ⊕ λ, but attackers cannot effectively forge EK1(ta) according to
Theorem 6.

(3) Attackers cannot effectively replace EK1(t ⊕ λ ⊕ b) with EK1(t
′ ⊕ λ′ ⊕ b′)

sent by Alice in the previous Abnormal Changing Token1 Procedure. The reasons
are as follows. In order to log into Alice’s account next time, attackers have
to reconstruct Alice’s token to (ta, u, EK1(ta), a, b′, EK1(t

′ ⊕ λ′ ⊕ b′)) s.t.
DK2(EK1(t

′ ⊕ λ′ ⊕ b′)) = ta ⊕ λ ⊕ b′. Thus, ta = t′ ⊕ λ ⊕ λ′. Attackers, however,
cannot effectively forge EK1(ta) according to Theorem 6.

From (1)(2)(3) above, attackers cannot effectively reconstruct EK1(t ⊕ λ ⊕
b) to circumvent the verification on S. Consequently, attackers cannot log into
Alice’s account through reconstructing her token in the Abnormal Changing
Token1 Procedure. ��
Theorem 9. In Scheme 2, even though Alice resets and calls back the clock time
on her laptop, active MitM attackers cannot log into Alice’s account through
reconstructing her previous tokens.

Proof. Alice may need to reset and call back the clock time on her laptop when
she travels internationally. As a consequence, she maybe need to carry out the
Abnormal Changing Token1 Procedure due to a change in the timestamp.

According to Theorem8, attackers cannot effectively tamper Alice’s token in
the Abnormal Changing Token1 Procedure. Therefore, in her next login attempt
after the Abnormal Changing Token1 Procedure, attackers cannot effectively
replace A in Token2(r, u, A, B, C) with previous ones whose timestamps are
later than r. Therefore, they cannot effectively replace r in Token2 by later
ones since attackers cannot forge A in effect according to Theorem 6. Conse-
quently, attackers cannot effectively replace B and C in Token2 with previous
ones whose timestamps are later than r. Recursively, attackers cannot effectively
replace Alice’s Token2 in her following login attempts. ��
Theorem 10. In Scheme 2, in the login procedure, Alice can catch active MitM
attackers’ interception at the first moment.

Proof. Assume attackers intercept Alice’s Token2(r, u, A, B, C) in her i-th login
attempt.

(1) If attackers let Alice log in successfully in the i-th login attempt, then they
cannot log into her account next time according to Theorem 6 and 7.

(2) If attackers use Alice’s Token2 to log into her account, then Alice cannot log
in abnormally and carries out the Abnormal Changing Token1 Procedure at
once. As a consequence, she stops attackers’ attempt at the first moment.��
Within the advanced AMOGAP (Scheme 2), active MitM attackers cannot

log into Alice’s account through tampering and forging (Theorems 5 and 6),
replaying (Theorems 7, 8 and 9), or intercepting (Theorem 10) Alice’s tokens.
With respect to offline guessing attacks on the client side, that security is guar-
anteed by KYO [17].

AMOGAP: Defending Against Man-in-the-Middle 529

6 Using Other Devices to Log in

Alice always login in her account on her laptop. It is the limitation of AMOGAP:
we must store the data such as (k, σ, γ) and (S,U , k, σ1S,U , σ2S,U) in Scheme 2
into Alice’s laptop. This leads to the problem of portability. Alice may want to
use other devices such as her work computer to log into her web account. PPSS [2]
may solve this issue. With PPSS, Alice can secret-share the data among n on-
line trustees. When she uses another device (e.g., her work computer) to log into
her web account, she can recall her login token by sending/receiving messages
to/from t (t ≤ n) on-line trustees. In this whole process, Alice just needs to input
her password ρ to her work computer and does not expose her password to these
trustees. The only premise is that Alice’s work computer is secure (i.e., there
is no shoulder snooping, key loggers, or hardware-based side channel attacks to
her work computer).

7 Conclusion

In this paper, we presented a novel text password-based authentication scheme,
AMOGAP. Allowing users to select easy-to-remember passwords, AMOGAP
protects user passwords from MitM and offline guessing attacks; thus, preventing
attackers from logging into users’ web services. AMOGAP converts the widely-
used salted and hashed passwords to user tokens on the server side, and employs a
difficult problem in number theory (i.e., DDH) rather than a one-way hash func-
tion. As a text password-based authentication mechanism, AMOGAP does not
change the existing authentication process. At the same time, it does not change
the infrastructure or increase any burden on the server side though it provides
much more robust security guarantees than existing related approaches. On the
server side, AMOGAP makes the user tokens stored there valueless for offline
guessing attackers. If AMOGAP is adopted, we expect a substantial decrease
in the number of user passwords sold on the dark web [5]. In communication
channels, AMOGAP makes it so that MitM attackers cannot cheat users or web
servers. On the client side, AMOGAP employs a previous work KYO [17]; in
order to eliminate its limitation on portability, AMOGAP also uses another pre-
vious work PPSS [2]. We rigorously proved the security of AMOGAP based on
DDH assumption.

Future research includes extending and building AMOGAP on other hard
problems, including those that are known to be resilience to quantum computing
attacks, as well as implementing a prototype of the proposed scheme in a real-
world setting.

Acknowledgement. This work has been partly supported by National NSF of China
under Grant No. 61772266, 61572248, 61431008.

530 J. Shen et al.

References

1. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maximally
memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 33–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 2

2. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: Proceedings of the 18th ACM Conference on Computer and Communications
Security, pp. 433–444. ACM (2011)

3. Baum, C., Damg̊ard, I., Larsen, K.G., Nielsen, M.: How to prove knowledge of small
secrets. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 478–
498. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 17

4. Bisson, D.: The 10 biggest data breaches of 2018... so far, July 2018. https://blog.
barkly.com/biggest-data-breaches-2018-so-far

5. Blocki, J., Harsha, B., Zhou, S.: On the economics of offline password cracking. In:
2018 IEEE Symposium on Security and Privacy (SP), pp. 35–53 (2018)

6. Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: loss-resistant pass-
word management. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 286–302. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15497-3 18

7. Boneh, D., Corrigan-Gibbs, H., Schechter, S.: Balloon hashing: a memory-hard
function providing provable protection against sequential attacks. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 220–248. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 8

8. Callegati, F., Cerroni, W., Ramilli, M.: Man-in-the-middle attack to the HTTPS
protocol. IEEE Secur. Priv. 7(1), 78–81 (2009)

9. Cappos, J., Torres, S.: PolyPasswordHasher: protecting passwords in the event of
a password file disclosure. Technical report (2014). https://password-hashing.net/
submissions/specs/PolyPassHash-v1.pdf

10. Di Crescenzo, G., Lipton, R., Walfish, S.: Perfectly secure password protocols
in the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 225–244. Springer, Heidelberg (2006). https://doi.org/10.
1007/11681878 12

11. Wang, D., Cheng, H., Wang, P., Yan, J., Huang, X.: A security analysis of hon-
eywords. In: Proceedings of the 25th Annual Network and Distributed System
Security Symposium (2018)

12. D’Orazio, C.J., Choo, K.K.R.: A technique to circumvent SSL/TLS validations on
iOS devices. Future Gener. Comput. Syst. 74, 366–374 (2017)

13. D’Orazio, C.J., Choo, K.K.R.: Circumventing iOS security mechanisms for APT
forensic investigations: a security taxonomy for cloud apps. Future Gener. Comput.
Syst. 79, 247–261 (2018)

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

15. Gelernter, N., Kalma, S., Magnezi, B., Porcilan, H.: The password reset MitM
attack. In: 2017 IEEE Symposium on Security and Privacy, pp. 251–267 (2017)

16. Grosse, E.: Gmail account security in Iran, September 2011. https://security.
googleblog.com/2011/09/gmail-account-security-in-iran.html

17. Güldenring, B., Roth, V., Ries, L.: Knock Yourself Out: secure authentication
with short re-usable passwords. In: Proceedings of the 22nd Annual Network and
Distributed System Security Symposium (2015)

https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-662-53015-3_17
https://blog.barkly.com/biggest-data-breaches-2018-so-far
https://blog.barkly.com/biggest-data-breaches-2018-so-far
https://doi.org/10.1007/978-3-642-15497-3_18
https://doi.org/10.1007/978-3-642-15497-3_18
https://doi.org/10.1007/978-3-662-53887-6_8
https://password-hashing.net/submissions/specs/PolyPassHash-v1.pdf
https://password-hashing.net/submissions/specs/PolyPassHash-v1.pdf
https://doi.org/10.1007/11681878_12
https://doi.org/10.1007/11681878_12
https://security.googleblog.com/2011/09/gmail-account-security-in-iran.html
https://security.googleblog.com/2011/09/gmail-account-security-in-iran.html

AMOGAP: Defending Against Man-in-the-Middle 531

18. Hackett, R.: Yahoo raises breach estimate to full 3 billion accounts, by far biggest
known, October 2017. http://fortune.com/2017/10/03/yahoo-breach-mail/

19. Halderman, J.A., Waters, B., Felten, E.W.: A convenient method for securely man-
aging passwords. In: Proceedings of the 14th International Conference on World
Wide Web, pp. 471–479. ACM (2005)

20. Heim, P.: Resetting passwords to keep your files safe, August 2016.
blogs.dropbox.com/dropbox/2016/08/resetting-passwords-to-keep-your-files-safe/

21. Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable. In: Pro-
ceedings of the 20th ACM Conference on Computer and Communications Security,
pp. 145–160. ACM (2013)

22. Kelsey, J., Schneier, B., Hall, C., Wagner, D.: Secure applications of low-entropy
keys. In: Okamoto, E., Davida, G., Mambo, M. (eds.) ISW 1997. LNCS, vol. 1396,
pp. 121–134. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0030415

23. Komanduri, S., Shay, R., Cranor, L.F., Herley, C., Schechter, S.E.: Telepathwords:
preventing weak passwords by reading users’ minds. In: USENIX Security Sympo-
sium, pp. 591–606 (2014)

24. Kontaxis, G., Athanasopoulos, E., Portokalidis, G., Keromytis, A.D.: SAuth: Pro-
tecting user accounts from password database leaks. In: Proceedings of the 20th
ACM Conference on Computer and Communications Security, pp. 187–198 (2013)

25. Leininger, H.: Libpathwell 0.6.1 released (2015). https://blog.korelogic.com/blog/
2015/07/31/libpathwell-0 6 1

26. Percival, C.: Stronger key derivation via sequential memory-hard functions. In:
BSDCan 2009 (self-published), pp. 1–16 (2009)

27. Pinkas, B., Sander, T.: Securing passwords against dictionary attacks. In: Proceed-
ings of the 9th ACM Conference on Computer and Communications Security, pp.
161–170. ACM (2002)

28. Provos, N., Mazieres, D.: A future-adaptable password scheme. In: USENIX
Annual Technical Conference, FREENIX Track, pp. 81–91 (1999)

29. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C.: Stronger password
authentication using browser extensions. In: USENIX Security, Baltimore, MD,
USA, pp. 17–32 (2005)

30. Schechter, S., Herley, C., Mitzenmacher, M.: Popularity is everything: a new app-
roach to protecting passwords from statistical-guessing attacks. In: USENIX Con-
ference on Hot Topics in Security, pp. 1–8 (2010)

31. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
32. Shetty, R., Grispos, G., Choo, K.K.R.: Are you dating danger? An interdisciplinary

approach to evaluating the (in) security of android dating apps. IEEE Trans. Sus-
tain. Comput. (2017, in press). https://doi.org/10.1109/TSUSC.2017.2783858

33. Bernard, T.S., Hsu, T., Perlroth, N., Lieber, R.: Equifax says cyberattack may
have affected 143 million in the U.S. September 2017. https://www.nytimes.com/
2017/09/07/business/equifax-cyberattack.html

34. Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE
Trans. Inf. Forensics Secur. 12(11), 2776–2791 (2017)

35. Wang, D., Wang, P.: The emperor’s new password creation policies: an evaluation
of leading web services and the effect of role in resisting against online guessing. In:
Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp.
456–477. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24177-7 23

http://fortune.com/2017/10/03/yahoo-breach-mail/
http://blogs.dropbox.com/dropbox/2016/08/resetting-passwords-to-keep-your-files-safe/
https://doi.org/10.1007/BFb0030415
https://blog.korelogic.com/blog/2015/07/31/libpathwell-0_6_1
https://blog.korelogic.com/blog/2015/07/31/libpathwell-0_6_1
https://doi.org/10.1109/TSUSC.2017.2783858
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://doi.org/10.1007/978-3-319-24177-7_23

532 J. Shen et al.

36. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password guess-
ing: an underestimated threat. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 1242–1254. ACM (2016)

37. Wu, L., Wang, J., Choo, K.K.R., He, D.: Secure key agreement and key protection
for mobile device user authentication. IEEE Trans. Inf. Forensics Secur. 14(2),
319–330 (2019)

38. Yoo, C., Kang, B.T., Kim, H.K.: Case study of the vulnerability of OTP imple-
mented in internet banking systems of South Korea. Multimed. Tools Appl. 74(10),
3289–3303 (2015)

MineAuth: Mining Behavioural Habits
for Continuous Authentication

on a Smartphone

Xiaojian Pang1, Li Yang2(B), Maozhen Liu1, and Jianfeng Ma1

1 School of Cyber Engineering, Xidian University, Xi’an 710071, China
Xiaojian Pang@hotmail.com, maozhen840@foxmail.com,

jfma@mail.xidian.edu.cn
2 School of Computer Science and Technology, Xidian University,

Xi’an 710071, China
yangli@xidian.edu.cn

Abstract. The increasing use of smartphones raises many concerns
related to data security, as the loss of a smartphone could compromise
sensitive data. Authentication on smartphones plays an important role in
protecting users’ data from attacks. However, traditional authentication
methods cannot provide continuous protection for a user’s data after the
user has passed the initial authentication. In this paper, we present a
novel continuous authentication approach called MineAuth based on the
user’s daily interactive behaviours with his/her smartphone. We con-
struct interactive behaviours from data captured by the smartphone.
We then propose a weighting-based time period frequent pattern mining
algorithm called WeMine to mine user’s frequent patterns to characterize
the habits of mobile users. We build an authenticator using a one-class
classification technique that only relies on the legitimate user data. We
also develop a decision procedure to perform the task continuously. The
entire process occurs on the smartphone, which provides better privacy
guarantees to users and eliminates dependency on cloud connectivity.
We also integrate our approach into the Android system and evaluate
the performance of our approach. Our approach can achieve good per-
formance. Additionally, it can achieve a high authentication accuracy of
up to 98.3%. Regarding resource consumption, our approach consumes
less than 0.4% of power while running for an entire day.

Keywords: Continuous authentication · Interactive behaviour ·
Frequent pattern · Privacy

1 Introduction

Recent developments in mobile internet have led to an explosion in the use
of smartphones. Smartphones have become a personal computing platform for
accessing and storing sensitive data. Among smartphone users, 92.8% tend to
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 533–551, 2019.
https://doi.org/10.1007/978-3-030-21548-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_29&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_29

534 X. Pang et al.

store their personal information on their mobile phones to facilitate their work
and life [9]. Hence, there are many attacks aimed at smartphones. Securely and
efficiently protecting people’s sensitive data stored on smartphones has been a
major concern for the public [17].

Authentication is a widely adopted mechanism for preventing unauthorized
access to personal information stored on a user’s smartphone. Unfortunately, tra-
ditional methods, such as PINs or pattern passwords, are easy to be guessed by
attackers [21]. There are some other authentication methods, such as fingerprint-
and face-based authentication that can slove the above problems, but these meth-
ods are one-time authentication methods [1,15]. These methods do not reauthen-
ticate the user after the user has passed the initial authentication. They cannot
provide continuous authentication during user operations. Therefore, it is highly
desirable to enhance user’s security with a continuous authentication method to
authenticate the user during the user operations. A promising approach is the
use of behavioural aspects of users’ interactions with their smartphones.

Continuous authentication has been widely explored in recent years [4,5,7,8,
12,13,19,22,23]. These approaches can verify users’ identity continuously based
on behavioural aspects of users’ interactions with their smartphones. However,
such approaches suffer from the following drawbacks: (1) Many previous stud-
ies [1,5] require users to send their behaviour data to a remote server. How-
ever, we cannot guarantee that the data at the remote server will not be used
illegally. (2) Some methods need root access privilege during data collection
[4,5]. Once a smartphone has been rooted, major security risks arise. (3) Some
approaches utilize touchscreen information to verify the user’s identity. However,
these approaches cannot withstand effectively simulated behavioural attacks,
including shoulder peeks and offline training attacks [7,8]. (4) Many approaches
utilize two-class machine learning algorithms to build authentication models,
e.g., LSTM [1] and SVM [4]. These approaches need to collect enough data from
the legitimate user and impostors; however, only data of legitimate users are
usually available in practice.

Based on the above analysis, we propose a secure continuous authentica-
tion approach called MineAuth. We chose the seven representative modalities
of Wi-Fi and Bluetooth connections, activity behaviour, location of the device,
application usage patterns, and call and SMS behaviours to construct interactive
behaviour. The reason for choosing these modalities is that they are common
and can roughly distinguish among different users. In the remainder of the paper,
these seven modalities will be referred to as WiFi, BLUETOOTH, ACTIVITY,
LOCATION, APP, CALL and SMS, respectively. Additionally, we explore the
applicability of interactive behaviour to continuous authentication. The rationale
behind our approach is that the interactive behaviour of different users could
reflect such users’ behavioural habits, which may represent unique behavioural
characteristics of individuals. In the course of the daily usage of a smartphone by
a user, interactive data are collected from the smartphone. We construct inter-
active behaviour from these interactive data. We build an authenticator using
a one-class classification technique that only relies on the legitimate user data.
We then develop a decision procedure to perform the continuous authentication

MineAuth: Mining Behavioural Habits for Continuous Authentication 535

task. We also integrate our approach into the Android platform and evaluate the
performance of our approach.

Our approach has the following 6 advantages compared with previous meth-
ods: (1) Continuous authentication. MineAuth can provide continuous authenti-
cation instead of one-time authentication when a user uses a smartphone. (2) Pri-
vacy protection. A user’s behaviour data used by MineAuth are not shared with
any entity, which reduces the risk of privacy breaches. (3) Generality. MineAuth
does not require the root privilege on the smartphone to access biometric data.
(4) High accuracy. MineAuth has a high accuracy of up to 98.3%. (5) Hard to
forge. MineAuth constructs interactive behaviour using seven modalities, which
increases the difficulty of forgery by an attacker. (6) Applicability. MineAuth
builds an authenticator using a one-class method trained on the data only from
the legitimate user. The key contributions of our work are as follows:

(1) We propose a continuous authentication approach called MineAuth that
considers the user’s daily interactive behaviour with his/her smartphone.
Our approach continuously monitors the user’s behaviour and verifies the
user’s identity accurately and efficiently. Additionally, our approach does not
require users to share private data with any entity and protects the user’s
privacy.

(2) We present a weighting-based time period frequent pattern mining algorithm
called WeMine to mine the user’s habits and build a one-class authenticator
so that the model can be trained solely on the samples from the legitimate
user.

(3) We implement our approach on the Android platform. Additionally, we eval-
uate the performance and resource consumption of our approach. Our app-
roach can achieve a high accuracy of up to 98.5% and less than 0.4% battery
consumption.

2 Related Work

Continuous Authentication
With the enhancement of the computing and sensing capabilities of smart-
phones, researchers have started to exploit effective continuous authentication
approaches. In previous studies, built-in sensors’ data are the most commonly
used modality for continuous authentication. There are several studies using
built-in sensors, such as the touchscreen sensor [15,16], the location sensor [4]
and the motion sensor [1]. In addition, some researchers focused on the interac-
tive behaviours of users and utilized application usage [20] or web browsing [6]
to build continuous authentication models. The above efforts reveal that both
built-in sensor data and interaction data have considerable utility for continuous
authentication.

Multimodal Data for Continuous Authentication
Because single-modality data contain limited identity information, using single-
modality data to build an authenticator always results in low accuracy. Hence,

536 X. Pang et al.

some researchers proposed combining multimodal data to provide higher accu-
racy [4,15]. Fridman et al. [4] evaluated the performance of authentication mod-
els based on stylometry, application usage, web browsing, or GPS and obtained
the best performance of a 0.05 equal error rate. Subsequently, the researchers
tested the fusion of the four modalities, obtaining a 0.01 equal error rate, which
illustrated that the application of multimodal data in an authenticator had an
advantage over that of single-modality data.

Protection of Private Data
Most continuous authentication approaches collect a lot of private data about
users and require users to share their private data with a remote server to verify
users’ identities [1], which results in leakage of private data. There are two ideas
to protect private data used for continuous authentication. The first is to pro-
tect the private data by using cryptography. Safa et al. [14] proposed an implicit
authentication approach with privacy protection, which first encrypts the col-
lected multiple feature values using the homomorphic encryption algorithm and
uploads them to the authentication server. The authentication server uses the
average absolute deviation (AAD) and order preserving symmetric encryption
(OPSE) [2] to calculate the total score of the encrypted feature values and deter-
mine whether the user is considered to be authenticated. Since the homomorphic
encryption algorithm and OPSE can perform algebraic operations and sort oper-
ations in the case of data encryption, the authentication server cannot obtain
the real feature values of the user, thereby implementing privacy protection.
However, the computational complexity of this approach is too high, and the
approach can only support numerical features. The second idea is to authenti-
cate the user on the client side. Murmuria et al. [11] proposed an activity-based
authentication model to authenticate the user. In this scheme, the data and
the authentication model are stored on the smartphone, and the authentication
model does not share any data with remote servers. However, this scheme only
provided a preliminary experimental result, and the authentication accuracy was
unsatisfactory.

One-Class and Two-Class Machine Learning Algorithms
One-class and two-class machine learning algorithms are most commonly used
to build the continuous authentication model. The difference between these two
algorithms is the application scenario. In the model building process, the one-
class machine learning algorithm only uses the data of the legitimate user, while
the two-class machine learning algorithm needs to use the data from both the
legitimate user and illegitimate users. Although most existing schemes apply
the two-class machine learning algorithm to construct an authentication model
[4], this kind of authentication model can only identify the illegitimate users
whose datasets have been collected and cannot identify an illegitimate user whose
dataset has not been collected. In particular, the data collected from illegitimate
users are very limited; thus, the one-class learning algorithm is more suitable for
use in continuous authentication scenarios. Liu et al. [10] presented a smartphone
authentication approach, which used a one-class SVM algorithm to build a con-
tinuous authentication model based on three modalities: user touch dynamics,

MineAuth: Mining Behavioural Habits for Continuous Authentication 537

movements, and power consumption. However, there is a high equal error rate
5% in the model, because the data used to build the model is not denoised.

To develop an efficient continuous authentication approach, we should make
full use of the multimodal data and avoid leaking the privacy of the user. More-
over, an appropriate algorithm for the continuous authentication approach needs
to be considered in practice.

3 Overview

3.1 Definitions

To simplify the presentation of our approach, we first define several related
notions that we have used in our approach.

Interactive Action: This term refers to an action that occurs when the user
uses the smartphone, which includes three modalities: Call, SMS and APP.

Context: This term refers to the relevant environment when an interactive
action occurs, including a Wi-Fi connection, a Bluetooth connection, and loca-
tion and activity statuses of the user. Assume that set F = {f1, f2, ..., fm}
includes all context attributes, and Ci = {x1, x2, ..., xk} denotes the set of con-
text attributes that records the relevant environment on the phone when an
interactive action occurs, where xj ∈ F , j ∈ [1, k], and k > 0.

Interactive Behaviour: A user’s interactive actions with the smartphone
are associated closely with time and a volatile context. Hence, interactive
behaviour is expressed as a tuple Bi = <Ti, Ci, Ai>, where Ti, Ci and Ai

denote the time, context and interactive action, respectively. Behaviour dataset
R = {B1, B2, ..., Bn} denotes the set of interactive behaviours ordered by the
time of occurrence.

Support: This term refers to the support of itemset P in set R, which is defined
formally as Support(P) =

∑n
i=1 count(P⊆Bi)

|R| , with count(P ⊆ Bi) = {1 ifP ⊆
Bi|0 otherwise}, where Bi denotes an element of behaviour set R, and |R|
denotes the number of elements in set R. If the support of one interactive
behaviour P is not less than the minimum support threshold assigned previ-
ously, then P is referred to as a frequent itemset and represents a behavioural
habit of the user.

Behaviour Template: This term refers to the set of behavioural habits, for-
mally expressed as BP = {Pi|Support(Pi) ≥ minisupport}, where Pi denotes an
interactive behaviour with support greater than the minimum support threshold
minisupport.

Imitation Ability: This term refers to the ability of an attacker to imi-
tate the legitimate user to generate similar interactive behaviours during
an attack and is formally expressed as IA(NormalData,AttackData) =
|NormalData∩AttackData|

|AttackData| , where NormalData and AttackData denote the
behaviour datasets of the legitimate user and the attacker, respectively.

538 X. Pang et al.

3.2 Architecture

The architecture of MineAuth is shown in Fig. 1. MineAuth consists of five
models: data collection, behaviour construction, behavioural habit mining,
the authenticator and the decision maker. First, MineAuth collects user’s
behavioural data in using his/her smartphone. Then, We construct the inter-
active behaviour to generate the interactive behaviour dataset. Next, we use
WeMine algorithm to mine the user’s behavioural habits from the interac-
tive behaviour dataset that represents only the legitimate user. We consider
the mined behavioural habits as a behaviour template, as shown in Definition
Sect. 3.1. We calculate the outlier score range between the behaviour template
and the legitimate user behaviours to build a one-class authenticator. Once the
model has been built, any incoming behaviour data are continuously verified.
To make the authentication approach robust, we design a decision procedure
by using an observation window that contains multiple interactive behaviours
to make the authentication decision. The decision maker provides the result of
authentication. If the current user is verified as the legitimate user, the user can
keep accessing the data on the smartphone, and the user behaviour is added to
the interactive behaviour dataset. However, if the current user fails authentica-
tion, MineAuth locks the smartphone and asks the user to authenticate using a
strong authentication method, such as a password.

Fig. 1. Framework of MineAuth.

3.3 Threat Model

MineAuth is responsible for authenticating the current user based on the
habits mined from the legitimate user’s behavioural data. We assume that the
behavioural data used to mine habits is all collected from the legitimate user.
We also assume that the adversary can observe and learn the legitimate user’s
interactive behaviours continuously, and can also use the legitimate user’s smart-
phone furtively. We consider an imitation attack that the adversary may cheat

MineAuth: Mining Behavioural Habits for Continuous Authentication 539

MineAuth to achieve unauthorized access by imitating the legitimate user’s inter-
active behaviours. The ability of each adversary to imitate a legitimate user
varies from person to person. In order to quantify the degree of attack by the
adversary, we mix legitimate user data and illegitimate user data to generate the
adversary data. The percentage of legitimate user data in the adversary data
indicates the imitation ability of the adversary, as shown in Definition Sect. 3.1.

4 Building Blocks

4.1 Data Collection

In our method, we develop a data collection application that can transparently
collect the user’s interactive behaviours. The collected data consist of seven
modalities: WiFi, BLUETOOTH, ACTIVITY, LOCATION, APP, CALL, and
SMS. We use the above seven modalities’ data to construct the user’s interac-
tive behaviours for the following reasons: (1) The resulting description of the
user’s interactive behaviours is more detailed. These seven modalities describe
three dimensions of interactive behaviour: time, context and interactive action.
The APP, CALL and SMS modalities describe the user’s interactive actions,
and the WiFi, BLUETOOTH, ACTIVITY and LOCATION modalities describe
the context of interactive actions. (2) This approach increases the difficulty of
impostors imitating the legitimate user’s behaviour. (3) The seven modalities’
data are easily collected, and no special hardware or root privilege is needed.

4.2 Behaviour Construction

Behaviour construction consists of three models: location extraction, data fuzzi-
fication and the behaviour construction engine. First, we extract locations from
Wi-Fi data using the location extraction approach to solve the problem of sparse
GPS data. Next, we input the data collected into the data fuzzification model to
fuzzy the APP and LOCATION data. Lastly, we use the behaviour construction
engine to construct the user’s interactive behaviour from the above data.

Location Extraction. Due to the small amount of collected GPS data, the
location information of each user is unknown most of the time. In comparison to
GPS data, the amount of Wi-Fi data collected by each user on his/her mobile
phone is much larger and has a long duration. In practice, the coverage of Wi-
Fi signals is very widespread, and Wi-Fi signals in a certain area are relatively
stable, so the list of Wi-Fi signals can be used as the location label for the
covered area. Motivated by this reasoning, we propose a simple algorithm called
WFTL to convert Wi-Fi signals to location labels as shown in Algorithm1.

First, the WFTL algorithm divides Wi-Fi data into several groups such that
the Wi-Fi data in each group have the same timestamp. Next, the unique identi-
fier BSSID of each Wi-Fi signal in a group is extracted to form the set BSSIDSet
to identify the geographical location. All BSSIDSets are added to BSSIDSetList
to record the user’s movement trajectory. Due to limited coverage of a Wi-Fi

540 X. Pang et al.

Algorithm 1. Algorithm for Extracting Location from Wi-Fi Data.
Input: rowWiFiData
Output: locationLabelMap
1: function WFTL(rowWiFiData)
2: locationLabelMap ← NULL
3: WiFiGroups ← rowWiFiData.groupby(rowWiFiData.T ime)
4: bssidSetList ← WiFiGroups.extract(BSSID)
5: for bssidSet in bssidSetListdo do
6: if locationLabelMap.keys()! = NULL then
7: newBssidSet ← bssidSet − locationLabelMap.keys()
8: oldBssidSet ← bssidSet − newBssidSet
9: locationLabel ← locationLabelMap[oldBssidSet]

10: locationLabelMap.add(newBssidSet, locationLabel)
11: else
12: newLocationLabel ← createLocLabel(bssidSet)
13: locationLabelMap.add(bssidSet, newLocationLabel)
14: end if
15: end for
16: return locationLabelMap
17: end function

signal, different Wi-Fi signal lists may be collected in the same area, so BSSID-
Sets with the largest intersections should point to the same area, as shown in the
9th line in Algorithm1. If there is no intersection between the current BSSID-
Set and all of the keys in locationLabelMap, a new geographical location label
newlocationLabel is generated, as shown in the 10th line in Algorithm1. Finally,
(BSSIDSet, newlocationLabel) is added as a mapping pair to locationLabelMap,
and the updated locationLabelMap is returned.

Data Fuzzification. The number of unique items in the original data is too
large to mine effective behavioural habits. Hence, we have to reduce the number
of unique items. According to our observations, some interactive behaviours can
be regarded as the same type of behaviour. For instance, assume that there are
two different interactive behaviours generated by a user, < 9:06 am, Sunday,
(N39.504, E118.586), Glory of the King > and < 9:15 am, Sunday, (N39.505,
E118.587), PUBG Mobile >. Intuitively, these two interactive behaviours are
completely different. However, if these two timestamps are mapped to the cor-
responding time period, i.e., 9 : 00 am-9 : 30 am, these two precise geograph-
ical coordinates are mapped to the corresponding location with an area range,
i.e., some residential area, and these applications are classified as game applica-
tions, then these two different interactive behaviours can be mapped to the same
behaviour after being fuzzified, which effectively helps mine the behaviour habits
of each user. The focus here is on fuzzy processing of GPS data and application
data.

(1) Fuzzy processing of GPS data. The format of the collected GPS data
is the coordinate pair of longitude a and latitude b, i.e., (a, b). To map the

MineAuth: Mining Behavioural Habits for Continuous Authentication 541

Fig. 2. Fuzzy processing of GPS data.

coordinate pair to a location with an area range, we use the intersecting
latitude and longitude lines to form a fine-grained earth grid that divides
the earth into numerous areas, e.g., s labelled in Fig. 2. All of the coordinate
pairs in the range of the same area are marked as the same location. For
example, as shown in Fig. 2, the span of longitude and latitude for each
region s is set to 0.01 degrees, corresponding to 1–1.21 km2. Region s can be
regarded as a square with a side length L =

√
s ranging from 1 to 1.1 km.

Each coordinate pair (a, b) corresponds to a geographical location marked
LID = H(x||y), where x = �100 ∗ a� and y = �100 ∗ b�, H(·) denotes a hash
function, and �·� denotes rounding down the number inside the brackets.

(2) Fuzzy processing of app data. Fuzzy processing of app data maps the
APP name to the APP category using an “APP Name–APP Category” map-
ping table. In this study, we first refer to the Google Play standard to define
17 application categories, as shown in Table 1. Next, according to Table 1,
we classify approximately two thousand applications from the collected app
data of all volunteers and construct an“APP Name–APP Category” map-
ping table.

Table 1. Categories of application software.

Audio Browser Utilities

Games Launcher Email

Photo&Video News&Books Map&Travel

System PlayStore Food&Drink

Health&Medical Social Networking Productivity

Education Entertainment Shopping&Payment

Interactive Behaviour Construction. The interactive behaviour con-
struction process is illustrated in Fig. 4 using a simple example. First,
MineAuth collects context data and interactive action data with a cer-
tain sampling frequency to obtain the original interactive behaviour, such

542 X. Pang et al.

Fig. 3. Interactive behaviour construction process.

as <t1, wifi1, tilting,Headlineapp>. Next, MineAuth preprocesses the orig-
inal interactive behaviours, including performing data fuzzification and
location extraction, to obtain the general interactive behaviours, such as
<T1, wifi1, tilting, school,News>. During preprocessing, the timestamp is
mapped to the time period with a certain granularity, the GPS coordinate pair
is mapped to the location label LID, and the application is mapped to the
corresponding application category. If the GPS data do not exist, the list of col-
lectable Wi-Fi signals is transformed to a location label WFTLID to supplement
the location information. In addition, MineAuth mainly focuses on interactive
behaviours generated when the user uses the phone, so interactive behaviours
without interactive action data are discarded during preprocessing.

Compared to the original interactive behaviours, general interactive
behaviours are generalized and abstract and can express the essential charac-
teristics of users’ behaviour. In fact, it is almost impossible for a user to use
the same application software at the point with the same coordinates at times
with the same timestamp on different days because users do not think about
objective information such as timestamps and coordinates. However, it is quite
possible for a user to use application software belonging to the same category in
the same area for the same time period on different days. Therefore, the general
interactive behaviours are more conducive to mining behavioural habits on the
phone.

Instead of repeating the general interactive behaviours, MineAuth compresses
each general interactive behaviour into a weighted interactive behaviour and
associates a weight with each weighted interactive behaviour, indicating the
number of times it is repeated. In Fig. 3, six original interactive behaviours are
processed to obtain only three weighted interactive behaviours, which not only
reduces the use of the phone’s storage but also improves the efficiency of the
behavioural habit mining algorithm.

4.3 Behavioural Habit Mining

In our method, we partition the interactive behaviour dataset to two subsets: the
training dataset and the validation dataset. We mine frequent patterns in the

MineAuth: Mining Behavioural Habits for Continuous Authentication 543

training dataset to characterize the habits of users, and build a one-class authen-
ticator using validation dataset. The more details on building the authenticator
is in Sect. 4.5. Mining frequent patterns on smartphones cannot be performed
by the traditional frequent pattern mining algorithms because traditional algo-
rithms need to consume significant computing resources on the phone. For exam-
ple, using the Apriori algorithm to process user data collected on a smartphone
takes several hours [23]. In addition, unbalanced occurrences of time, context and
interactions also pose a challenge to traditional algorithms, potentially causing
them to mine many invalid frequent patterns.

To solve the above problems, we propose a weighting-based time period fre-
quent pattern mining algorithm called WeMine. Our algorithm is divided into
two steps. First, the weighted interactive behaviour data are divided into sev-
eral groups according to the time period. In a group, all interactive behaviours
have occurred during the same time period. Therefore, in the subsequent min-
ing algorithm, the interference of time is ignored. Next, we use the WeMiT
algorithm [18] to mine frequent patterns in each group as the time period
behavioural habits. The WeMiT algorithm can significantly reduce the run-
ning time. The WeMiT algorithm considers the number of repetitions of an
interactive behaviour as its weight and compresses the repeated interactive
behaviours into weighted interactive behaviours, as shown in Fig. 4. Since there
are fewer weighted interactive behaviours, the running time of frequent pat-
tern mining is significantly reduced. In particular, we use the weighted inter-
active behaviour dataset R = {Bw1

1 , Bw2
2 , ..., Bwn

n }, where wk is the weight of
interactive behaviour Bk, and the definition of the support of itemset P in the
weighted interactive behaviour dataset R is

∑n
i=1 contain(Bwi

i , P) ∗ wi, where
contain(p, q) = {1 ifq ⊆ p|0 otherwise}. Finally, the behavioural habits for each
time period are combined to form the behavioural temple. It is worth noting that
Bk denotes the interactive behaviour without the attribute of time.

4.4 Authentication

We build a one-class authenticator using the validation dataset from legitimate
user. The steps of building authentictor as follows:

(1) We calculate the frequent pattern outlier score of each interactive behaviour
in the validation dataset for behavioural temple mined from the train-
ing dataset. The definition of the frequent pattern outlier score FPOS is
FPOS(B, T) =

∑
X⊆B,X∈T Support(X)

|T | , where X denotes a frequent itemset
belonging to the set of the corresponding time period behavioural temple T .
X ⊆ B signifies that X is a subset of interactive behaviour B, Support(X)
denotes the support of frequent itemset X, and |T | denotes the number of
frequent itemsets in T .

(2) We analyse the distribution of scores and find the range of scores for normal
interactive behaviour to build the authenticator.

544 X. Pang et al.

4.5 Decision Maker

After building the authenticator of the legitimate user’s interactive behaviours,
we use this model to verify whether the current interactive behaviour is normal.
During the authentication process, we calculate the outlier score between the
legitimate user’s behavioural habits and the current interactive behaviour. If
the outlier score is outside of the range of normal behaviour, then the current
interactive behaviour is considered to be anomalous. Since a single behaviour
is insufficient for determining the current user’s identity, we use an observation
window that contains mutiple interactive behaviours to improve the accuracy
and robustness of authentication. If the number of anomalous behaviours is larger
than the number of normal behaviours, then the current user is considered to be
an impostor.

5 System Implementation and Evaluation

5.1 System Implementation

We integrate our approach into the Android system, and implement an applica-
tion. The application consists of several modules: the data collection module, the
interactive behaviour construction module, the authenticator and the decision-
maker. The data collection module runs as a background thread that continu-
ously records interactive data during routine smartphone usage. The interactive
behaviour construction module aims to construct interactive behaviour from
data collected to be used in the authenticator. The decision maker provides the
authentication result by judging the validity of several consecutive interactive
behaviours.

5.2 Evaluation Indicators

We use three standard metrics to report the performance of MineAuth:

Recall Rate (R): This metric refers to the percentage of true unauthorized
accesses being detected among all the true unauthorized accesses in the dataset.

Precision Rate (P): This metric refers to the percentage of true unauthorized
accesses among all the unauthorized accesses detected.

F1-score (F1): This metric refers to the harmonic mean of the recall rate and
precision rate, defined as F1 = 2∗P∗R

P+R .

5.3 Dataset

We collect interactive data from 33 users for 30 days. Table 2 shows the number
of records in the data collected.

MineAuth: Mining Behavioural Habits for Continuous Authentication 545

Fig. 4. Behaviour data collected from User1 and User2 for two days.

Figure 4 visually shows the differences in the behaviour data between the
two users for two consecutive days. We observe that the distribution of the
behaviour data varies significantly with the user, while the distributions of the
behaviour data for the same user on consecutive days are similar. This finding
also illustrates that the seven modalities we have chosen are reasonable.

Table 2. 33 random users’ records from the collected dataset.

Sensor name Num. of instance

WiFi 8,340,121

Bluetooth 10,234

GPS 72,509

Activity 135,009

APP 145,803

Call 9,234

SMS 7,509

All Data 8,720,419

5.4 Relating Usability to Minisupport and the Observation Window
Size

As shown in Fig. 5, each curve represents the receiver operating characteristic
(ROC) curve of MineAuth for a specific minimum support threshold and a spe-
cific authentication window size. Each point on the curve corresponds to an

546 X. Pang et al.

Fig. 5. ROC curves.

FPT threshold. In Fig. 5(a), with the minimum support threshold of 0.1 and
the authentication window size increasing from 1 to 90, the ROC curve becomes
increasingly more convex near the point with coordinates (0, 1), and the authen-
tication accuracy of MineAuth increases to 98%, which shows the outstanding
authentication performance of MineAuth. In Fig. 5(b), under the condition of
the authentication window size being 90, it is clear that an increase of the mini-
mum support threshold causes the ROC curve to gradually move away from the
point with coordinates (0, 1), which indicates that the authentication accuracy
of MineAuth decreases as the minimum support threshold increases. To ensure
that MineAuth performs authentication well, according to this experiment, we
set the minimum support threshold to 0.1 and the authentication window size
to 90. In the following experiments, these two parameter values are valid, unless
otherwise specified.

5.5 Comparison with Other Approaches

We experiment with three other popular one-class machine learning methods
for authentication to explore our approach’s effectiveness. The three one-class
learning methods used in our experiments are as follows: (1) Isolation Forest
(iForest), (2) Support Vector Machine (1-SVM), and (3) Local Outlier Factor
(LOF). Here, we implement the above three one-class learning methods. We
set the best parameter for iForest, 1-SVM and LOF [3]. For MineAuth, we set
minisupport to 0.1.

Figure 6 shows the performance of the four methods from three aspects: pre-
cision rate, recall rate and F1-score. The best performance corresponds to a
precision rate of 98.2%, a recall rate of 98.5%, and an F1-score of 98.3%, and
was obtained by our MineAuth method. The result indicates that our approach
is more effective for variable behaviour data than iForest,1-SVM and LOF.

Compared with iForest, 1-SVM and LOF, the reason that MineAuth obtains
high accuracy is that can mine the associations between time, contexts and
interactive actions that describe the temporal nature and contextual properties

MineAuth: Mining Behavioural Habits for Continuous Authentication 547

of user’s habits. Conversely, iForest, 1-SVM and LOF algorithms do not consider
the associated relation information and may thus perform poorly.

Fig. 6. Performance of related methods. Fig. 7. Resilience to adversary imitation.

5.6 Resilience to Adversary Imitation

In the threat model, we assume the adversary can observe and learn the legiti-
mate user’s interactive behaviours for a long time. In this section, we design the
following experiments to evaluate MineAuth’s resilience to adversary imitation
attack. In our experiments, we build several adversary samples with different
imitation ability by combining the legitimate user’s data and another user’s
data at various ratios. The imitation ability is selected from {0, 0.05, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. We only estimate the authentication accu-
racy under the condition that the imitation ability is not more than 0.5, because
when the imitation ability exceeds 0.5, the number of legal behaviours is always
larger than that of illegal behaviors, which directly leads to the system failing
to properly authenticate the attacker.

According to Fig. 7, with the increase of the imitation ability, the recall rate
shows a trend of first decreasing and then increasing, while the precision rate and
F1-score decline steadily. We explain this phenomenon as follows: the increase
of the imitation ability will interfere with MineAuth’s authentication ability,
resulting in lower recall rate and precision rate. With the further increase of the
imitation ability, MineAuth chooses a lager outlier score range to identify more
illegitimate behaviours, which causes the recall rate to rebound. Meanwhile, more
legitimate behaviours will be misidentified as illegitimate behaviours, resulting
in a continuous decrease in the precision rate, which causes F1 to exhibit a
downward trend.

As shown in Fig. 7, when the imitation ability increases from 0 to 0.45, the
performance of MineAuth is characterized by a recall rate of 96%, a precision
rate of approximately 90% and an F1-score of 92%, which means that MineAuth
can effectively resist adversary imitation.

548 X. Pang et al.

Fig. 8. Experiment analysing the impact of the time interval between the training data
and the test data on MineAuth’s authentication performance with different levels of
imitation ability.

5.7 Response to User Behaviour Change

As is well known, users’ behaviours are inconsistent and will change over a
period of time. However, the quality of mined habits is affected by behavioural
variability. Correspondingly, the accuracy of authentication will decrease. To
explore the impact of behavioural change, we design the following experiments
by varying the time intervals between training data and test data. For a given
user, we use the user’s 7-day behaviour data as the training data to mine the
user’s habits and use the data of the following 1 to 6 days as test data. The
experimental results are shown in Fig. 8.

As shown in Fig. 8, with increasing time interval, the precision rate, recall
rate and F1-score continue to decline. However, the F1-scores for six days are
greater than 85%. According to the results, we can conclude that the user’s
behavioural habits will change over time, but the user’s behaviour within a week
is relatively stable. Hence, it is reasonable that we use 7-day behaviour data to
mine behavioural habits. To improve performance in the scenario of behavioural
change, one possible approach is to introduce some habit update strategies. We
update the interactive behaviour dataset periodically to mine user’s new habits.

5.8 Resource Consumption

Resource consumption is an important measure that determines whether our
method can run on a smartphone. We evaluated the running time, the usage
of CPU and memory, and the battery power consumption of MineAuth with
tests performed on a Nokia 7 Plus smartphone with a 4 GHz processor and
6 GB of RAM, running Android 8.0.1. Table 3 shows the resource consumption
of MineAuth running for one day.

We observe from Table 3 that the interactive behaviour construction module
is the most time-consuming part; however, it takes only approximately 1.5 min

MineAuth: Mining Behavioural Habits for Continuous Authentication 549

to process the behaviour data generated over an entire day. It takes approxi-
mately 2310 ms to mine behaviour habits and build the authenticator. As the
most active module, the decision maker needs to process interactive behaviour
data in real time; however, doing so takes the least amount of time, and the total
time required to process the behaviour data for the entire day is less than one
second. The interactive behaviour construction module uses the largest amount
of memory of approximately 75.10 Mbytes (an empty app needs approximately
46 Mbytes of memory resources), but this is not a sizeable burden for a typical
mobile phone. The CPU usage of each module is almost the same at approxi-
mately 15.7%. In addition, MineAuth only needs less than 0.40% of power to
operate for one day; such power consumption can be ignored. In summary,
MineAuth can run efficiently on resource-constrained mobile devices without
interfering with user’s behaviour.

Table 3. Resource consumption of MineAuth running for one day.

Resource
consumption

Behaviour
construction

Habits mining
& authenticator

Decision
maker

Running time 87,759 ms 2310ms 532 ms

Memory usage 75.10 MB 60.2 MB 50.99 MB

CPU usage 15.30% 16.10% 15.45%

Power consumption 0.35% <0.01% <0.01%

6 Conclusion

We present a novel continual authentication method called MineAuth. We also
present a novel algorithm called WeMine to mine user’s behavioural habits. We
use a one-class classification technique to build an authenticator only using legit-
imate user’s data. To make MineAuth robust and stable, we introduce an obser-
vation window mechanism. MineAuth runs completely on the smartphone, which
provides better privacy guarantees to users. Regarding MineAuth’s performance,
MineAuth has a F1-score of 98.3%, and its power consumption is less than 0.4%
over an entire day. Moreover, MineAuth can effectively resist attackers with an
imitation ability of not more than 50%.

However, there are still some shortcomings in MineAuth. To improve the
accuracy of MineAuth, we introduce an observation window mechanism. The
larger the observation window is, the higher the accuracy, and the longer the
time of making decision will be. How to chose a suitable size of the observation
window is impotant to keep a balance between accuracy and the time of making
decision. In future work, we will study an adaptive mechanism to select the
observation window size according to different scenarios. In addition, in our
system implementation, we store the user’s data in clear text, and this may lead
to a risk of leaving behavioural template exposed during authentication. A more
secure way is to employ trust zone mechanism to store the user’s data, and this
also will be our future research focus.

550 X. Pang et al.

Acknowledgements. We would like to thank the reviewers for their careful read-
ing and useful comments. This work was supported by the National Natural Sci-
ence Foundation of China (61671360, 61672415), the Key Program of NSFC-Tongyong
Union Foundation under Grant (U1636209), the National Key Basic Research Pro-
gram (2016YFB0801101, 2017YFB0801805), the Key Program of NSFC Grant 1010
(U1405255).

References

1. Amini, S., Noroozi, V., Pande, A., Gupte, S., Yu, P.S., Kanich, C.: DeepAuth:
a framework for continuous user re-authentication in mobile apps. In: Proceed-
ings of the 27th ACM International Conference on Information and Knowledge
Management, pp. 2027–2035. ACM (2018)

2. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 13

3. Chen, Y., Shen, C., Wang, Z., Yu, T.: Modeling interactive sensor-behavior with
smartphones for implicit and active user authentication. In: 2017 IEEE Interna-
tional Conference on Identity, Security and Behavior Analysis (ISBA), pp. 1–6.
IEEE (2017)

4. Fridman, L., Weber, S., Greenstadt, R., Kam, M.: Active authentication on mobile
devices via stylometry, application usage, web browsing, and GPS location. IEEE
Syst. J. 11(2), 513–521 (2017)

5. Gjoreski, H., Lustrek, M., Gams, M.: Accelerometer placement for posture recog-
nition and fall detection. In: 2011 Seventh International Conference on Intelligent
Environments, pp. 47–54. IEEE (2011)

6. Gomi, H., Yamaguchi, S., Tsubouchi, K., Sasaya, N.: Continuous authentica-
tion system using online activities. In: 2018 17th IEEE International Confer-
ence On Trust, Security And Privacy In Computing And Communications/12th
IEEE International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), pp. 522–532. IEEE (2018)

7. Khan, H.: Evaluating the efficacy of implicit authentication under realistic oper-
ating scenarios (2016)

8. Khan, H., Hengartner, U., Vogel, D.: Targeted mimicry attacks on touch input
based implicit authentication schemes. In: Proceedings of the 14th Annual Inter-
national Conference on Mobile Systems, Applications, and Services, pp. 387–398.
ACM (2016)

9. Kim, Y., Oh, T., Kim, J.: Analyzing user awareness of privacy data leak in mobile
applications. Mob. Inf. Syst. 2015 (2015)

10. Liu, X., Shen, C., Chen, Y.: Multi-source interactive behavior analysis for contin-
uous user authentication on smartphones. In: Zhou, J., et al. (eds.) CCBR 2018.
LNCS, vol. 10996, pp. 669–677. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-97909-0 71

11. Murmuria, R., Stavrou, A., Barbara, D., Sritapan, V.: Your data in your hands:
privacy-preserving user behavior models for context computation. In: 2017 IEEE
International Conference on Pervasive Computing and Communications Work-
shops (PerCom Workshops), pp. 170–175. IEEE (2017)

12. Niinuma, K., Park, U., Jain, A.K.: Soft biometric traits for continuous user authen-
tication. IEEE Trans. Inf. Forensics Secur. 5(4), 771–780 (2010)

https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-319-97909-0_71
https://doi.org/10.1007/978-3-319-97909-0_71

MineAuth: Mining Behavioural Habits for Continuous Authentication 551

13. Patel, V.M., Chellappa, R., Chandra, D., Barbello, B.: Continuous user authenti-
cation on mobile devices: recent progress and remaining challenges. IEEE Signal
Process. Mag. 33(4), 49–61 (2016)

14. Safa, N.A., Safavi-Naini, R., Shahandashti, S.F.: Privacy-preserving implicit
authentication. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El
Kalam, A., Sans, T. (eds.) SEC 2014. IAICT, vol. 428, pp. 471–484. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55415-5 40

15. Shen, C., Li, Y., Chen, Y., Guan, X., Maxion, R.A.: Performance analysis of multi-
motion sensor behavior for active smartphone authentication. IEEE Trans. Inf.
Forensics Secur. 13(1), 48–62 (2018)

16. Shen, C., Zhang, Y., Cai, Z., Yu, T., Guan, X.: Touch-interaction behavior for
continuous user authentication on smartphones. In: 2015 International Conference
on Biometrics (ICB). pp. 157–162. IEEE (2015)

17. Singh., R.: Your smart phone might be leaking your business information. https://
www.entrepreneur.com/article/271417. Accessed 26 Feb 2016

18. Srinivasan, V., Moghaddam, S., Mukherji, A., Rachuri, K.K., Xu, C., Tapia, E.M.:
MobileMiner: mining your frequent patterns on your phone. In: Proceedings of the
2014 ACM International Joint Conference on Pervasive and Ubiquitous Comput-
ing, pp. 389–400. ACM (2014)

19. Teh, P.S., Zhang, N., Teoh, A.B.J., Chen, K.: A survey on touch dynamics authen-
tication in mobile devices. Comput. Secur. 59, 210–235 (2016)

20. Voris, J., Song, Y., Ben Salem, M., Stolfo, S.: You are what you use: an initial
study of authenticating mobile users via application usage. In: Proceedings of the
8th EAI International Conference on Mobile Computing, Applications and Ser-
vices, pp. 51–61. ICST(Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering) (2016)

21. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password guess-
ing: an underestimated threat. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 1242–1254. ACM (2016)

22. Xi, K., Hu, J., Han, F.: Mobile device access control: an improved correlation based
face authentication scheme and its Java ME application. Concurr. Comput.: Pract.
Exp. 24(10), 1066–1085 (2012)

23. Zhu, J., Wu, P., Wang, X., Zhang, J.: SenSec: mobile security through passive
sensing. In: 2013 International Conference on Computing, Networking and Com-
munications (ICNC), pp. 1128–1133. IEEE (2013)

https://doi.org/10.1007/978-3-642-55415-5_40
https://www.entrepreneur.com/article/271417
https://www.entrepreneur.com/article/271417

Symmetric Cryptography

Related-Key Boomerang Attacks
on GIFT with Automated Trail Search

Including BCT Effect

Yunwen Liu1,3 and Yu Sasaki2(B)

1 Department of Mathematics, National University of Defence Technology,
Changsha, China

univerlyw@hotmail.com
2 NTT Secure Platform Laboratories, Tokyo, Japan

yu.sasaki.sk@hco.ntt.co.jp
3 imec-COSIC, KU Leuven, Leuven, Belgium

Abstract. In Eurocrypt 2018, Cid et al. proposed a novel notion called
the boomerang connectivity table, which formalised the switch property
in the middle round of boomerang distinguishers in a unified approach.
In this paper, we present a generic model of the boomerang connectivity
table with automatic search technique for the first time, and search for
(related-key) boomerang distinguishers directly by combining with the
search of (related-key) differential characteristics. With the technique,
we are able to find 19-round related-key boomerang distinguishers in the
lightweight block cipher Gift-64 and Gift-128. Interestingly, a tran-
sition that is not predictable by the conventional switches is realised
in a boomerang distinguisher predicted by the boomerang connectiv-
ity table. In addition, we experimentally extend the 19-round distin-
guisher by one more round. A 23-round key-recovery attack is presented
on Gift-64 based on the distinguisher, which covers more rounds than
previous known results in the single-key setting. Although the design-
ers of Gift do not claim related-key security, bit positions of the key
addition and 16-bit rotations were chosen to optimize the related-key
differential bound. Indeed, the designers evaluated related-key differen-
tial attacks. This is the first work to present better related-key attacks
than the simple related-key differential attack.

Keywords: Boomerang connectivity table · Gift · Automatic search

1 Introduction

Boomerang connectivity table (BCT) [7] is a novel technique proposed by Cid et
al. in Eurocrypt 2018 on analysing the middle rounds of boomerang distinguish-
ers. Through the boomerang connectivity table of an S-box, the middle round
of a boomerang distinguisher through the S-box layer is described in a unified
model similar to differential cryptanalysis with the difference distribution table.
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 555–572, 2019.
https://doi.org/10.1007/978-3-030-21548-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_30&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_30

556 Y. Liu and Y. Sasaki

As a result, previous methods [3,4,8] such as ladder switch and S-box switch
are special cases of the boomerang transitions predicted by the BCT. Moreover,
the boomerang connectivity table reveals new properties in the S-boxes such
that new transitions can be derived which are not detectable by any previous
methods.

Currently, automatic search has been widely adopted in finding distinguish-
ers in cryptographic primitives, including differential characteristics, impossible
differentials and many others [10,11]. The technique requires an explicit model
on the propagation of the differences through a number of rounds, and solves the
problem with an MILP (Mixed integer linear programming) or an SMT (Satis-
fiability module theory) solver. In the scenario of the boomerang attack, due to
the lack of unified mathematical model for the middle round of the boomerang
distinguishers before the BCT, one searches for differential characteristics in two
parts of the encryption function separately, and concatenates them together by
analysing the property in the middle round. In ToSC 2017, Cid et al. stud-
ied ladder switch for a boomerang attack of Deoxys, searching with an MILP
model [6]. Whereas a general technique for the automatic search on boomerang
distinguishers is still left unsolved.

In this paper, we propose the first model of the BCT theory with automatic
search techniques, and merge it with the search for the related-key differential
characteristics. By converting the boomerang connectivity table of an S-box into
(vectorial) logical constraints, the propagations of differences through an S-box
is completely modeled for the middle round of a boomerang distinguisher. As a
result, we are able to search for boomerang distinguishers with a direct evaluation
of the middle switches.

As an application, we construct boomerang distinguishers for a recently pro-
posed block cipher Gift. Proposed by Banik at CHES 2017 [1], Gift is an
improved version of the lightweight block cipher PRESENT [5] with a novel
design strategy on the bit-shuffle layer. Gift-64 and Gift-128 support 64-bit
and 128-bit block sizes, respectively, while both members support the 128-bit
key size. With the optimisation on the diffusion of single-bit differences/masks,
the number of rounds for Gift-64 is largely reduced comparing with that of
PRESENT. Shortly after the proposal of Gift, Zhu et al. report a differential
attack on 19-round of Gift-64 based on a 12-round differential distinguisher
under the single-key setting [14]. In addition, the security of the cipher against
MITM attack and integral cryptanalysis has been studied as well [1,9]. As far as
we know, there is few result on evaluating the cipher in the related-key model.
Notice that the key schedule of the Gift cipher is linear, the attacks under the
related-key setting may penetrate more rounds, and reveal a better picture of
its security.

Our second contribution is the first third-party security evaluation of the
Gift block cipher in the related-key setting. Based on the automatic search
model developed for boomerang distinguishers, we obtain boomerang distin-
guishers for Gift-64 (consisting of 28 rounds) and Gift-128 (consisting of 40
rounds), both cover 19 rounds with two parts of 9-round encryptions and one

Related-Key Boomerang Attacks on GIFT with Automated Trail Search 557

middle part of 1 round. In addition, with an experimental approach, we extend
the 19-round boomerang distinguisher of Gift-64 to several 20-round ones, each
with probability 2−62.6. Afterwards, a key-recovery attack is launched for Gift-
64 reduced to 23 rounds, with data complexity 263.3 and time complexity 296.
The attack covers about 82% of the entire construction, which well-illustrates
the security margin of Gift-64 in the related-key setting. In addition, we give
a 21-round attack on Gift-128 based on a 19-round boomerang distinguisher.
The attack only reaches (52.5%) of the entire construction. Our analysis implies
that the security margin of Gift-128 is better than that of the smaller version.
A comparison of our attacks with previous works is summarised in Table 1.

The rest of this paper is organised as follows. In Sect. 2, an overview of
boomerang attacks and the BCT theory is given, as well as an description of the
Gift cipher. The mathematical description of the BCT table is converted into
an automatic search model in Sect. 3, with applications to search for boomerang
distinguishers in Gift-64 and Gift-128 in Sect. 4. We extend the boomerang dis-
tinguisher into a key-recovery attack for Gift-64 in Sect. 5. Section 6 concludes
the paper.

Table 1. A comparison of attacks on Gift-64 and Gift-128. DC stands for differen-
tial cryptanalysis; IC stands for integral cryptanalysis; MITM stands for meet-in-the-
middle attack; RK-B stands for related-key boomerang attack.

Type #rd Prob. Attack #rd Data Time cf.

Gift-64 (28 rounds) DC 13 2−62 - - - [13]

DC 12 2−60 19 263 2112 [14]

IC 10 2−63 14 263 297 [1]

MITM 15 264 2120 [1]

MITM 15 2112 [9]

RK-B 20 2−62.6 23 263.3 2126.6 This paper

Gift-128 (40 rounds) DC 18 - 23 2120 2120 [14]

RK-B 19 2−121.2 21 2126.6 2126.6 This paper

2 Preliminaries

2.1 Boomerang Attacks

Boomerang attack [12] is an effective cryptanalysis tool, especially for ciphers
where the probabilities of the differential characteristics decrease exponentially
with respect to the growth of rounds. As a result, the concatenation of two short
characteristics may possess a better probability. The diagram of a (related-key)
boomerang distinguisher can be illustrated as shown in Fig. 1(1).

The target cipher E is decomposed into two parts E0 and E1. Assume that
a differential characteristic (α, β) with probability p is found for E0, and (γ, δ)

558 Y. Liu and Y. Sasaki

(1) Related-key boomerang

X1 X2

E0 E0

E1 E1

Y1 k Y2 k ⊕ Δk

X3 X4

E0 E0

E1 E1

Y3 k ⊕ Δk′ Y4 k ⊕ Δk ⊕ Δk′

α

α

δ δ

β

β

γ γ

(2) Related-key Sandwich

X1 X2

E0 E0

Em Em

E1 E1

Y1 k Y2 k ⊕ Δk

X3 X4

E0 E0

Em Em

E1 E1

Y3 k ⊕ Δk′ Y4 k ⊕ Δk ⊕ Δk′

α

α

δ δ

β

β

γ γ

Fig. 1. An illustration of a related-key boomerang (1) and a related-key sandwich (2).

with probability q for E1. Then the probability of the boomerang distinguisher
is

Pr[E−1(E(x) ⊕ δ) ⊕ E−1(E(x ⊕ α) ⊕ δ) = α] = p2q2.

The boomerang attack works in a chosen-plaintext and chosen-ciphertext
model. In 2001, Biham et al. showed that it is possible to construct a rectangle
attack [2] based on a boomerang distinguisher where only the chosen-plaintext
setting is required. The technique exploits the fact that a pair of paired values
(x, x ⊕ α) and (x′, x′ ⊕ α), x, x′ ∈ {0, 1}n satisfies the boomerang structure,
i.e. E(x) ⊕ E(x′) = δ and E(x ⊕ α) ⊕ E(x′ ⊕ α) = δ with probability p2q22−n,
thus may be generated after querying p−1q−12n/2 chosen-plaintext pairs.

2.2 Boomerang Connectivity Table

The partition in the boomerang attack can be extended by decomposing the
encryption function into three parts, where the middle round Em contains many
useful transitions. A number of observations and generalisations on boomerang
attack focus on the margin of the decomposition with techniques such as S-box
switch, boomerang switch and sandwich attack [4,8], see Fig. 1(2) for a diagram
of a sandwich. Differential behaviours through the S-box are usually summarised
in the precomputed table called differential distribution table (DDT). Those
research results imply that the transitions of differences in the middle part of a
boomerang distinguisher through the S-boxes differ from the prediction from the
DDT. In Eurocrypt 2018, Cid et al. proposed a novel notion called boomerang
connectivity table (BCT), which systematically characterised the propagation of
differences and the corresponding probabilities.

Related-Key Boomerang Attacks on GIFT with Automated Trail Search 559

Table 2. DDT of the Gift S-box

Δo

0 1 2 3 4 5 6 7 8 9 a b c d e f

Δi 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2

2 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0

3 0 0 0 0 0 2 2 0 2 0 0 2 2 2 2 2

4 0 0 0 2 0 4 0 6 0 2 0 0 0 2 0 0

5 0 0 2 0 0 2 0 0 2 0 0 0 2 2 2 4

6 0 0 4 6 0 0 0 2 0 0 2 0 0 0 2 0

7 0 0 2 0 0 2 0 0 2 2 2 4 2 0 0 0

8 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4

9 0 2 0 2 0 0 2 2 2 0 2 0 2 2 0 0

a 0 4 0 0 0 0 4 0 0 2 2 0 0 2 2 0

b 0 2 0 2 0 0 2 2 2 2 0 0 2 0 2 0

c 0 0 4 0 4 0 0 0 2 0 2 0 2 0 2 0

d 0 2 2 0 4 0 0 0 0 0 2 2 0 2 0 2

e 0 4 0 0 4 0 0 0 2 2 0 0 2 2 0 0

f 0 2 2 0 4 0 0 0 0 2 0 2 0 0 2 2

Table 3. BCT of the Gift S-box

∇o

0 1 2 3 4 5 6 7 8 9 a b c d e f

Δi 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

1 16 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2

2 16 0 4 4 0 8 4 4 0 2 2 0 0 2 2 0

3 16 0 0 0 0 2 2 0 2 0 0 2 2 2 2 2

4 16 4 4 10 4 8 8 6 0 2 0 0 0 2 0 0

5 16 0 2 0 4 2 0 0 2 0 0 4 2 2 2 4

6 16 4 8 6 4 8 4 10 0 0 2 0 0 0 2 0

7 16 0 2 0 4 2 0 0 2 2 2 4 2 0 0 4

8 16 0 0 8 16 0 0 8 0 0 0 8 0 0 0 8

9 16 2 0 2 0 0 2 2 2 0 2 0 2 2 0 0

a 16 8 4 4 0 0 4 4 0 2 2 0 0 2 2 0

b 16 2 0 2 0 0 2 2 2 2 0 0 2 0 2 0

c 16 4 4 8 4 0 0 4 2 0 2 0 2 0 2 0

d 16 2 2 0 4 0 0 0 0 0 2 6 0 2 0 6

e 16 4 0 4 4 0 4 8 2 2 0 0 2 2 0 0

f 16 2 2 0 4 0 0 0 0 2 0 6 0 0 2 6

Definition 1 (BCT [7]). Let S : {0, 1}n → {0, 1}n be an invertible function.
For input difference Δi and output difference ∇o, the entry (Δi,∇o) in the
boomerang connectivity table T (Δi,∇o) of S is given by

T (Δi,∇o) = #{x ∈ {0, 1}n |S−1(S(x) ⊕ ∇o) ⊕ S−1(S(x ⊕ Δi) ⊕ ∇o) = Δi}.

The above definition implies an important feature that the middle round Em

does not require the squared probability p2 or q2 because the generation of a
right quartet is the probabilistic event over 2n possibilities. As an example, the
DDT and BCT of the Gift S-box are given in Tables 2 and 3.

The proposal of boomerang connectivity table enables an unified view on the
behaviour of the boomerang distinguishers in the middle round(s). Apart from
explaining previous results in the literature, the BCT table provides guidance in
new improvements on boomerang attacks for certain ciphers.

2.3 The Specification of GIFT

Proposed by Banik et al. in CHES 2017, Gift [1] is a lightweight block cipher
which is a descendent of PRESENT [5]. The block size n of Gift takes 64 bits
or 128 bits, and the key size is 128 bits. We denote the corresponding ciphers
by Gift-64 and Gift-128. One round of Gift contains only an S-box layer
(SubCells), a bit-shuffle (BitPerm) and a round-key injection (AddKey). The
round function of Gift-64 is depicted in Fig. 2.

Both versions of Gift adopt the same 4-bit S-box that is different from the
S-box in PRESENT.

S[16] = {1, a, 4, c, 6, f, 3, 9, 2, d, b, 7, 5, 0, 8, e}.

The bit permutation used in GIFT follows a new strategy called BOGI (Bad
Output must go to Good Input) to overcome the existence of single active bit

560 Y. Liu and Y. Sasaki

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Fig. 2. Two rounds of the block cipher Gift-64.

path in characteristics. The detail of the permutations can be found in the spec-
ification of the cipher [1].

The round keys are XORed to two bits of the 4-bit cells. An s(= n/2)-bit
round key RK = U ||V = k1||k0 = us−1 · · · u0||vs−1 · · · v0 is obtained from the
key state. For Gift-64, the 128-bit key state is updated as follows,

b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi, i ∈ {0, · · · , 15}.

For Gift-128, RK = U ||V = (k5||k4)||(k1||k0) = us−1 · · · u0||vs−1 · · · v0
b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, i ∈ {0, · · · , 31}.

The 128-bit key state is updated as follows,

k7||k6|| · · · ||k1||k0 ← (k1 ≫ 2)||(k0 ≫ 12)|| · · · ||k3||k2.

The total number of rounds in Gift-64 is 28, while the 128-bit version has
40 rounds.

Differential Property. The notable feature of Gift is that the maximum
differential probability for the S-box is 2−1.4, which is higher than 2−2 ensured
by many other lightweight block ciphers. In fact, in Table 2, two entries have the
value 6, which implies that the transition is satisfied with probability 6/16 ≈
2−1.4. This contributes relatively larger numbers in BCT, in particular it includes
one non-trivial entry that is propagated with probability 1.

3 Automatic Search of (Related-Key) Boomerang Based
on Boomerang Connectivity Table

In this section, we transform the mathematical description of the boomerang
connectivity table into an automatic search model for boomerang distinguishers
in block ciphers.

Related-Key Boomerang Attacks on GIFT with Automated Trail Search 561

The boomerang connectivity table shares some similarity with difference dis-
tribution tables, therefore, it is possible to convert BCT tables into constraints,
similar to several previous techniques for DDT tables when dealing with S-boxes
in automatic search. As a typical technique which is proposed by Sun et al. [11],
legal transitions of the differences are modeled as a convex hull and described by
a set of linear inequalities. To include the probability information to the model,
an additional variable can be allocated to represent the abstract binary logarithm
of the probability. As a result, this will probably lead to an increased number
of linear inequalities in the model of the Sbox. We notice that a BCT table
often encompass more values than the corresponding DDT table, for instance, a
differentially 4-uniform S-box may have entries being 6 in its BCT. As a result,
it takes more conditions to accurately describe the propagation rules and the
corresponding probabilities in a BCT than the corresponding DDT.

In the following, we propose an alternative method to model the BCT table
of an S-box with boolean constraints. Assume that for an input difference Δ,
there exist l possible output differences {∇0, . . . ,∇l−1} = Dt(Δ) where the BCT
entries equal to t. We describe the transition (x → y) with the following logic
expression, which evaluates to 1 when x = Δ and y ∈ Dt(Δ), otherwise 0.

(x = Δ) ∧ ((y = ∇0) ∨ · · · ∨ (y = ∇l−1)) = (x = Δ) ∧ (
∨

∇∈Dt(Δ)

(y = ∇)).

In addition, a binary variable wt is allocated to store the probability infor-
mation for the BCT entry t. To be specific, when the difference transition is
(x → y), we define wt as

wt =
∨

Δ

((x = Δ) ∧ (
∨

∇∈Dt(Δ)

(y = ∇))).

From the expression, wt evaluates to 1 if one of the possible transitions with
BCT value being t is taken.

For instance, in the BCT table of the Gift S-box (Table 3), when the BCT
value t equals 10, there are two possible transitions, namely, (4 → 3) and (6 → 7).
So we have

w10 = ((x = 4) ∧ (y = 3)) ∨ ((x = 6) ∧ (y = 7)).

It means that if any of the two possible transitions is taken, the variable w10

evaluates to 1, which indicates a probability of 10/16 through the S-box.
It is clear that the number of clauses in describing an S-box depends on the

nonzero entries of the BCT, corresponding to the variables wt. In the case of the
Gift Sbox, the number of clauses is 7, where t = 0, 2, 4, 6, 8, 10, 16. Therefore,
the transitions and their probabilities may be modeled with fewer conditions
with our encoding method than before. This is beneficial especially when the
number of rounds and the block size are large enough.

To search for a boomerang distinguisher in a block cipher E which is decom-
posed into three parts E0, Em, E1, one first sets the conditions for valid difference
transitions in E0 and E1 through the round functions. For the middle round Em,

562 Y. Liu and Y. Sasaki

the propagation through the S-box layer can be modelled with the encoding of
BCT discussed above; and we take the linear layer into consideration to connect
the characteristics in E0 and E1. The probability of the difference propagation
through an Sbox can be deduced from the binary variables wt, which is

∑

t

wt ∗ (t/16).

Take the abstract binary logarithm being its weight, and assume that the total
weights of the characteristics in E0, E1 and Em are W0, W1 and Wm, respectively.
The weight of the boomerang is

2 ∗ (W0 + W1) + Wm.

By optimising it, we can directly find a boomerang distinguisher with optimal
probability in E.

Remark 1. With related-key differential characteristics, we are able to find
related-key boomerang distinguishers. The distinguisher involves four different
keys: k and k⊕Δk for a related-key differential characteristic in E0, and k⊕Δk′

and k ⊕ Δk ⊕ Δk′ in E1, as shown in Fig. 1.

4 Automatic Search of Boomerang Distinguishers in
GIFT

In this section, our aim is to apply the automatic search model to search for
related-key boomerang distinguishers in Gift-64 and Gift-128.

Intuition: Why Boomerang Attacks Can Be Strong? We start with find-
ing optimal related-key differential characteristics. Due to the design of the key
schedule in Gift-64, the first four round keys are independent of each other.
Thus the number of active S-boxes can be 0 up to 3 rounds by canceling the
plaintext difference with the first round key. Table 4 shows the minimum num-
ber of active S-boxes in related-key differential characteristics of Gift-64 from
4 rounds.

Table 4. The minimum number of active S-boxes in related-key differential character-
istics of Gift-64.

#rounds 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

#AS 1 1 2 3 4 6 9 11 13 15 17 19 21 23 25 27

We observe that the number of active S-boxes slowly increases when the
number of rounds is small, especially up to 8 rounds. In contrast, the num-
ber of active S-boxes rapidly increases when the number of rounds is large.

Related-Key Boomerang Attacks on GIFT with Automated Trail Search 563

This is a typical case that the related-key boomerang distinguisher may have
a much higher probability than the related-key differential characteristics cov-
ering the same number of rounds, by concatenating two short characteristics
with high probabilities. Let pi be the probability of the differential propagation
in round i. Then the probability of the differential distinguisher for x rounds
is denoted by

∏x
r=0 pi. In contrast, the boomerang distinguisher basically con-

catenates two x/2-round trail by considering the squared probability, namely(∏x/2
r=0 p2i

)2

. From Table 4, when we increase the number of attacked rounds
by 1, the boomerang distinguisher will involve 1 more active S-box with the
squared probability and the differential distinguisher will involve 2 more active
S-boxes with the normal probability. Those would give almost the same impact
to the attack complexity. As a result, the boomerang distinguisher can be more
efficient than the differential distinguisher because the boomerang distinguisher
can include 3 blank rounds twice (in E0 and in E1) and the middle rounds Em

do not require the squared probability.

Finding Boomerang Distinguishers. In this section, we focus on boomerang
distinguishers that divide the entire encryption into three parts E0, Em and E1,
denoted by X + 1 + Y where X and Y stands for the number of round covered
by the differential characteristics in E0 and E1, respectively. For instance, an
optimal 4-round related-key differential characteristic in Gift-64 has a proba-
bility of 2−1.4, and it is possible to find a related-key boomerang distinguisher
covering 9 rounds with the form 4 + 1 + 4, where the total probability of the
boomerang distinguisher is (2−1.4)2 × 1 × (2−1.4)2 = 2−5.6.

The strategy of finding boomerang distinguishers follows the theory of the
boomerang connectivity table and the model of BCT tables in automatic search
techniques. In order to find boomerang distinguishers automatically, our search
techniques are based on the model of searching related-key differential charac-
teristics and the translation of BCT table into a solver-friendly language with
respect to SMT solvers as explained in Sect. 3.

The boomerang connectivity table of Gift S-box is shown in Table 3. For
each value in the table, we describe the constraints for valid difference transitions
in BCT. For instance, for all the entries (a → b) taking the value 6, the constraint
in SMTLIB-2 language is

(= w (bvor (bvand (= a #x2) (= b #x5))

(bvor (bvand (= a #x4) (bvor (= b #x5) (= b #x6)))

(bvor (bvand (= a #x6) (bvor (= b #x2) (= b #x5)))

(bvor (bvand (= a #x8) (bvor (= b #x3) (bvor (= b #x7)

(bvor (= b #xb) (= b #xf)))))

(bvor (bvand (= a #xa) (= b #x1))

(bvor (bvand (= a #xc) (= b #x3))

(bvand (= a #xe) (= b #x7))

))))))),

where one of the transitions is taken if w = 1.

564 Y. Liu and Y. Sasaki

With the transitions of differences in boomerang distinguishers characterised,
we execute the model of Gift-64 for searching boomerang distinguishers with
the form X +1+X, where X = 4, 5, 6, 7, 8, 9, 10. The probability of the optimal
related-key boomerang distinguishers in Gift-64 which takes the form X+1+X
can be found in the following Table 5.

Table 5. The probability of the optimal related-key boomerang distinguishers in Gift-
64 which takes the form X +1+X, with a comparison to the probability of the optimal
related-key differential characteristics.

#rounds 9 11 13 15 17 19 21

Pr. of RK-boomerang 2−5.6 2−5.6 2−13.6 2−21.6 2−32 2−53.6 2−79.2

Pr. of RK-differential 2−13.4 2−28.8 2−39 2−50 2−61 2−78 2−89

It can be seen that the distinguishers cover up to 19 rounds of Gift-64 with
a probability larger than 2−64, whereas the probability of the optimal 19-round
differential characteristic might be much lower, given that 27 S-boxes are active.
We actually searched for the maximum differential characteristic probability
for 19 rounds, which was turned out to be 2−78. In Fig. 3, we illustrate the
comparison between the probabilities of related-key boomerangs and related-
key differential characteristics.

64

8 10 12 14 16 18 20 22
0

20

40

60

80

Number of rounds

−
lo
g 2

p

Fig. 3. The comparison between the probabilities of related-key boomerangs and
related-key differential characteristics in Gift-64. The probabilities are shown as the
abstract binary logarithm − log2(p).

Related-Key Boomerang Attacks on GIFT with Automated Trail Search 565

Fig. 4. A 19-round boomerang distinguisher with the form X + 1 + X in Gift-64,
where X = 9. The probability is 2−58.6.

Note that we confirmed that the distinguisher does not reach 20 rounds even
by relaxing the search space to X + 1 + Y,X �= Y .

Details of the Detected Trail. In Fig. 4, we show the detail of a 19-round
related-key boomerang distinguisher in Gift-64. We concatenate two 9-round
characteristics of probability 2−13.4. The transition in the middle round Em has
a probability of 2−5, due to the propagation of differences in the BCT table. It
is interesting to notice that the transitions (1 → 8) and (4 → 1) take advantage
of the new properties predicted by the BCT than previous techniques of finding
boomerang distinguishers.

Application to GIFT-128. Similarly, we are able to search for boomerang dis-
tinguishers in Gift-128. Usually, the complexity of the problem is proportional
to the size of constraints and variables. It is generally more difficult to find char-
acteristics for ciphers with large block size. Therefore, we terminate the program
and return the best found solution if necessary. Table 6 shows the probability of
the best-found boomerang distinguishers up to 19-rounds for Gift-128.

566 Y. Liu and Y. Sasaki

Table 6. The probability of the related-key boomerang distinguishers in Gift-128
which takes the form X + 1 + X. Only the 19-round one is not optimal.

#rounds 9 11 13 15 17 19

Pr. of RK-boomerang 2−13.6 2−24 2−40 2−59.2 2−83.2 2−121.2

5 Boomerang Attack on GIFT-64 and GIFT-128

5.1 Extension of the Distinguisher

As shown by the automatic search, the optimal boomerang distinguisher that
covers 19-round Gift-64 has the probability 2−53.6, which is obtained by con-
necting two 9-round related-key characteristics of probability 2−13.4. The tran-
sition probability in the middle round is 1, which largely depends on the output
and input differences in E0 and E1. For instance, the probability of the middle
round in the characteristic in Fig. 4 is 2−5.

We extend the 19-round distinguisher for more rounds by using an experimen-
tal approach. We enumerate all 9-round characteristics in Gift-64 with probabil-
ity 2−13.4. There are in total 120 such characteristics Ω0, · · · , Ω119. We consider
using Ωi, i ∈ {0, 1, . . . , 119} for the first 9 rounds of E0 and Ωj , j ∈ {0, 1, . . . , 119}
for the last 9 rounds of E1. We have 14, 400 combinations. For each combination,
the input and output differences for the middle part Em are fixed, thus the con-
necting probability in the middle round(s) can be experimentally found. Notice
that many characteristics share the same input and output differences. After
removing the duplicated patterns, there are 16 distinct output differences from
E0 and 58 distinct input difference to E1 (Table 7). Hence, the total number of
patterns to be checked is reduced to 16 × 58 = 928.

For each of the patterns, we generate 213(= 8, 192) random keys and state
values to experimentally check the probability that the middle round is satisfied.
The number of rounds for Em is a parameter. When we set the number of rounds
for Em is 1, namely when the boomerang characteristic has the form 9 + 1 + 9,
we have 34 combinations such that the probability of the middle round is 1.

The experiment can be extended for boomerang distinguishers with the form
9+Y +9, where the middle part contains Y = 2, 3 rounds. Only 10 combinations
result in a probability larger than 2−10 when Y = 2, while all combinations have
a probability lower than 2−15 for Y = 3. As a consequence, we are able to push
the 19-round boomerang distinguisher for one round more, and obtain 20-round
distinguishers with probability 2−62.6 as shown in Table 8.

5.2 Key Recovery Attacks

The boomerang distinguisher found above can be extended to a 23-round key-
recovery attack against Gift-64 by adding one round in the beginning and two
rounds at the end.

Related-Key Boomerang Attacks on GIFT with Automated Trail Search 567

Table 7. All distinct input and output differences of Ω0, · · · , Ω119

ID Output Diff from E0 ID Output Diff from E0 ID Output Diff from E0 ID Output Diff from E0

01 0100040000000102 05 4000000010000201 09 0040000000120100 13 2010004000200000

02 0100040002000002 06 4000200000000201 10 0040002000020100 14 2010004000000010

03 0004000200002010 07 1000400000001020 11 0201000400020000 15 0400020000201000

04 0004000000012010 08 1000400020000020 12 0201000400000001 16 0400000001201000

ID Input Diff to E1 ID Input Diff to E1 ID Input Diff to E1 ID Input Diff to E1

01 0000600e00000006 16 000c0000d6000000 31 600c0000000c0000 46 000000600000600d

02 0000600f00000006 17 0000000c0000d600 32 600d0000000c0000 47 000000c00000600c

03 0000600e0000000c 18 0000000c0000f600 33 0000e60000006000 48 000000c00000600d

04 0000600f0000000c 19 0000000c0000e600 34 0000f60000006000 49 00c00000600c0000

05 0000600c00000006 20 0000000c0000c600 35 0000e6000000c000 50 00c00000600d0000

06 0000600d00000006 21 000000060000e600 36 0000f6000000c000 51 00c00000600e0000

07 0000600c0000000c 22 000000060000c600 37 0000c6000000c000 52 00c00000600f0000

08 0000600d0000000c 23 000000060000d600 38 0000d6000000c000 53 00600000600c0000

09 00060000e6000000 24 000000060000f600 39 0000c60000006000 54 00600000600d0000

10 00060000f6000000 25 600e000000060000 40 0000d60000006000 55 00600000600e0000

11 000c0000e6000000 26 600f000000060000 41 000000600000600e 56 00600000600f0000

12 000c0000f6000000 27 600e0000000c0000 42 000000600000600f 57 c600000060000000

13 00060000c6000000 28 600f0000000c0000 43 000000c00000600e 58 c6000000c0000000

14 00060000d6000000 29 600c000000060000 44 000000c00000600f 59

15 000c0000c6000000 30 600d000000060000 45 000000600000600c 60

The linear layer in the last round does not impact to our attack. We omit
in order to keep the description of the attack procedure as simple as possible.
Note that the bit positions of the key injection need to change accordingly to the
BitPerm operation. However, BitPerm is designed to be closed in each register
in the bit-slice implementation. Namely, the first and the second bits of each
S-box is XORed by the round key. Indeed, bit-positions 4i for i = 0, 1, ..., 15
move to bit-position 4j for j = 0, 1, ..., 15 and the same applies to bit-positions
from 4i + 1 to 4j + 1.

The distinguisher covers the segment from round 2 to round 21. We prepare
the plaintext quartets with the desired input difference at the first round, and
perform 2-round partial decryptions on the ciphertexts under the guessed key.
To produce the output difference as predicted, we need to make Q = 2np−2

b

quartets, where n is the block size and pb is the probability of the boomerang
distinguisher. By birthday paradox, the quartets can be generated by making
pairs between p1 and p2 as well as p3 and p4, separately. Each case requires Q1/2

queries. After combining them, we get Q quartets with 2× (Q1/2 +Q1/2) queries
in total, where a pair requires 2 queries. Unfortunately, a direct estimation of
the data complexity turns out to exceed the total data available. Therefore, we
need to utilise the input differences of the boomerang distinguishers in Table 8,
and generate the required quartets with fewer queries. In the following, let the
output difference be 0100040000000102.

The detail of the attack procedure is as follows.
Step 1: (Offline) We have SubCells, BitPerm and AddKey before the 20-round
distinguisher. Since the round-key difference can be derived through the linear

568 Y. Liu and Y. Sasaki

Table 8. A 20-round boomerang distinguisher of the form 9 + 2 + 9 by concatenating
two 9-round characteristics with probability 2−13.4. The probability of the middle con-
nection is 2−8.34. The difference nibbles x ∈ {6, c}, y ∈ {c, d, e, f}, (w, z) ∈ (2, 0), (0, 1).
The key differences in the two middle rounds follow those in E1.

Round Characteristic Key difference k7 k6 · · · k1 k0

0 00x00000600y0000 0040 0000 0000 0000 0004 0000 0008 0020

1 0000006000000000 0002 0200 0040 0000 0000 0000 0004 0000

2 0000000000000000 0001 0000 0002 0200 0040 0000 0000 0000

3 0000000000000000 0000 0000 0001 0000 0002 0200 0040 0000

4 0000000002000000 0010 0000 0000 0000 0001 0000 0002 0200

5 0000000000000060 8000 2000 0010 0000 0000 0000 0001 0000

6 0000000000000000 4000 0000 8000 2000 0010 0000 0000 0000

7 0000000000000000 0000 0000 4000 0000 8000 2000 0010 0000

8 0000000000020000 0004 0000 0000 0000 4000 0000 8000 2000

9 2010004000200000 2000 0002 0004 0000 0000 0000 4000 0000

10 2-round BCT 1000 0000 2000 0002 0004 0000 0000 0000

11 0000600d00000006 0400 0000 0000 0000 4000 0000 0010 0040

12 0000060000000000 0004 0400 0400 0000 0000 0000 4000 0000

13 0000000000000000 1000 0000 0004 0400 0400 0000 0000 0000

14 0000000000000000 0000 0000 1000 0000 0004 0400 0400 0000

15 0000020000000000 0100 0000 0000 0000 1000 0000 0004 0400

16 0000000000000600 0001 4000 0100 0000 0000 0000 1000 0000

17 0000000000000000 0400 0000 0001 4000 0100 0000 0000 0000

18 0000000000000000 0000 0000 0400 0000 0001 4000 0100 0000

19 0000000200000000 0040 0000 0000 0000 0400 0000 0001 4000

20 010004000w000z02

key schedule, the difference after SubCells in the first round is known. When we
choose plaintext, we choose the internal state values after SubCells in the first
round to satisfy this difference. We then compute the inverse of SubCells offline
to generate the plaintext.
Step 2: (Online) The goal of this step is to make D = 263.3 queries to generate
Q = 2126.6 quartets. With a probability of 2−64, the encryptions with E0 of
the quartets match the intermediate difference γ, thus we can expect one right
quartet satisfying the boomerang distinguisher. The procedure is shown below.

2.(a): At the beginning of the boomerang distinguisher, fix x to 6. Then the
truncated differences is 00600000600y0000, where y ∈ {c, d, e, f}. Notice that
the difference on the 16-th and 17-th bit can take any value.

2.(b): Fix a plaintext value p1 and take all four cases of the 16-th and 17-th
bits. Query those 4 plaintexts to the oracle with key K.

Related-Key Boomerang Attacks on GIFT with Automated Trail Search 569

2.(c): Compute p2 by p2 = p1 ⊕ α. Then, make 4 queries to the oracle with
K⊕Δk by testing all the four cases for the 16-th and 17-th bits.

2.(d): Generate 4 × 4 = 16 pairs from the above 8 queries.
2.(e): Repeat the process for 259.3 different values of p1 (262.3 queries in total)

to generate 263.3 pairs of p1, p2.
2.(f): Prepare the pairs between p3 and p4 analogously, with 262.3 queries we

generate 263.3 pairs of p3, p4. By birthday paradox, we get Q quartets p1, p2, p3, p4
by combining the pairs p1, p2 and p3, p4.
Step 3: The differential propagation for the extended two rounds after the 20-
round distinguisher is shown in Fig. 5.

Collect right quartet candidates where the outputs after 23-rounds of encryp-
tion have inactive nibbles at the 1st, 5th, 11th and 13th nibbles for both pairs
of c1, c3 and c2, c4.
Step 4: Guess 8 key-bits at round 22 and 24 key-bits at round 23 for the
partial decryption of the ciphertext quartets c1, c2, c3, c4, which leads to the
middle states m1,m2,m3,m4 having the output difference from the 20-round
distinguisher. The positions of the involved key-bits are shown in Fig. 5.
Step 5: Exhaustively search for the remaining 128 − 32 = 96 bits of the key.

From the procedure of Step 2, the data complexity of the attack D is 262.3 +
262.3 = 263.3 queries in total. After the filter by the ciphertext difference at Step
3, we obtain Q × 2−16−16 = 294.6 right quartet candidates. At Step 4, we guess
8 + 24 = 32 key bits and apply partial decryption for all 294.6 candidates, it will
take 294.6 × 232 = 2126.6 2-round decryptions. Step 4 involves 16 S-boxes and
the probability that all the 16 S-boxes will behave as expected is 2−128 for each
wrong guess. Hence, we expect the only 1 key survives after Step 4.

S

P

S

0 1 0 0 0 4 0 0 0 0 0 0 0 1 0 2

Fig. 5. The difference propagation in the final two rounds when the output difference
of the boomerang is 0100040000000102. The blue triangles label the positions of the
guessed key bits. (Color figure online)

5.3 21-Round Key Recovery on GIFT-128

Note that the optimal boomerang distinguisher we obtained in the previous
section for Gift-128 covers the same number of rounds as that of Gift-64 even
though the attacker can make queries up to 2128 plaintexts. Such inefficiency
in Gift-128 comes from the larger round key size. Gift-128 injects 64 key
bits in every round, which is double of the Gift-64. This significantly improves

570 Y. Liu and Y. Sasaki

the speed of differential diffusion, which only allows the attack up to the same
number of rounds as Gift-64.

We present the 21-round attack on Gift-128 based on the 19-round
boomerang distinguisher found in the previous section. Table 9 shows the 9-round
differential characteristic used for the concatenation of the 19-round boomerang.
The probability of the 19-round boomerang distinguisher is 2−121.2, where the
middle round switch takes a probability of 2−2 as predicted by the BCT.

Table 9. A 9-round differential characteristic of probability 2−29.8 which can be
extended into a 19-round boomerang distinguisher with the form 9+1+9. The column
of the key differences shows the values (k5, k4, k1, k0) for generating the differences used
in round keys.

Round Characteristic Key difference (k5 k4 k1 k0)

0 000006000000e0000000000000000060 1000 0000 4000 0001

1 00000000000000000000000000000000 0008 0000 0000 0000

2 00000000000040000000000000000000 0000 1000 0010 4000

3 00000000000000000205000000000000 0000 0008 0000 0000

4 00000000000010000000200000000000 0400 0000 0004 0010

5 000000000000000000000000000a0000 0002 0000 0000 0000

6 00000000000000000000002000000000 0000 0400 0100 0004

7 00000002000000000000000000000000 0000 0002 0000 0000

8 00000000040000000200000000000040 0100 0000 0040 0100

9 00200005021010000000000600404002

The distinguisher can be extended to a 21-round attack (one round before
and one round after the distinguisher, the final round has no permutation layer)
on Gift-128 with the following procedure.
Step 1: (Offline) This stage is similar to the attack on Gift-64, where the
attacker prepares the input quartets offline to extend the distinguisher by one
round at the beginning.
Step 2: (Online) We make 2126.6 queries to generate 2249.2 quartets. With a
probability of 2−128, the encryptions with E0 of the quartets match the inter-
mediate difference γ, and it is sufficient to produce one right quartet satisfying
the boomerang distinguisher.

2.(a): Take the difference 000006000000e0000000000000000060 at the
beginning of the boomerang distinguisher.

2.(b): We need 2125.6 queries to generate 2124.6 pairs between p1 and p2.
Similarly for p3 and p4.

2.(c): By birthday paradox, we get 2249.2 quartets p1, p2, p3, p4 by combining
the pairs p1, p2 and p3, p4.
Step 3: Collect the outputs after 23-rounds of encryption. Guess 18 key-bits at
round 21 for the partial decryption of the ciphertext quartets c1, c2, c3, c4, and

Related-Key Boomerang Attacks on GIFT with Automated Trail Search 571

S

0 0 2 0 0 0 0 5 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 6 0 0 4 0 4 0 0 2

Fig. 6. The difference propagation in the final round when the output difference of
the boomerang is 00200005021010000000000600404002. The blue triangles label the
positions of the guessed key bits in 9 S-boxes with nonzero differences. (Color figure
online)

we obtain the middle states m1,m2,m3,m4. The guessed key bits are located in
those 9 S-boxes with a nonzero difference in the output difference as shown in
Fig. 6. With the ciphertext filtering technique, we have a gain of 292 since there
are 23 nibbles with no difference after the S-box layer.
Step 4: Check the differences among the quartets of the middle states, if the
difference match the boomerang distinguisher, the guessed key bits are the can-
didates for the right keys.
Step 5: The remaining 128 − 18 = 110 bits of the key is recovered by an
exhaustive search.

The data complexity of the attack is 2126.6. And the time complexity is
2126.6 ×218 ×2−92 +2110 ≈ 2110 partial encryptions. Hence the bottleneck of the
complexity is the memory accesses to 2126.6 queried data.

6 Conclusion

In this paper, we study the automatic search model of boomerang connectivity
table and its applications. By converting the boomerang connectivity table into
SMT language, we are able to directly model the propagations in boomerang
distinguishers with an automatic search based on the search of differential char-
acteristics. It enables us to find optimal switches in the middle round(s) which
may not be predictable by previous techniques. As an application, our target
is a recently proposed block ciphers family Gift, and related-key boomerang
distinguishers covering 19 rounds of Gift-64 and Gift-128 are found with the
automatic search model. Moreover, we experimentally extended the 19-round dis-
tinguisher of Gift-64 into a 20-round one, and launched a key-recovery attack
against Gift-64 reduced to 23 rounds. Our analysis shows that Gift-64 seems
to have a smaller security margin than that of Gift-128.

Acknowledgement. The authors would like to thank the reviewers for their valuable
comments. Yunwen Liu is supported by National Natural Science Foundation (No.
61672530, No. 61702537) and Research Fund KU Leuven grant C16/18/004.

572 Y. Liu and Y. Sasaki

References

1. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp.
321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 16

2. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack—rectangling the ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 21

3. Biryukov, A., De Cannière, C., Dellkrantz, G.: Cryptanalysis of Safer++. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 195–211. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 12

4. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 1

5. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

6. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: A security analysis of deoxys
and its internal tweakable block ciphers. IACR Trans. Symmetric Cryptol. 2017(3),
73–107 (2017)

7. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table:
a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 22

8. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the
KASUMI cryptosystem used in GSM and 3G telephony. J. Cryptol. 27(4), 824–849
(2014)

9. Sasaki, Y.: Integer linear programming for three-subset meet-in-the-middle attacks:
application to GIFT. In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol.
11049, pp. 227–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
97916-8 15

10. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 185–215. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 7

11. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

12. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8 12

13. Zhou, C., Zhang, W., Ding, T., Xiang, Z.: Improving the MILP-based security
evaluation algorithms against differential cryptanalysis using divide-and-conquer
approach. https://eprint.iacr.org/2019/019.pdf

14. Zhu, B., Dong, X., Yu, H.: MILP-based differential attack on round-reduced gift.
https://eprint.iacr.org/2018/390.pdf

https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/978-3-540-45146-4_12
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://eprint.iacr.org/2019/019.pdf
https://eprint.iacr.org/2018/390.pdf

Fast Chosen-Key Distinguish Attacks
on Round-Reduced AES-192

Chunbo Zhu1, Gaoli Wang1(B), and Boyu Zhu2

1 School of Computer Science and Software Engineering,
East China Normal University, Shanghai 200062, China
onehundredyear@163.com, glwang@sei.ecnu.edu.cn
2 Department of Computer Science and Technology,

Nanjing University, Nanjing 210023, China
zhuzby@outlook.com

Abstract. The open-key attack is a very popular research topic in the
symmetric-key community recently. In this paper, we focus on the secu-
rity of AES-192 in one of its settings, namely the chosen-key setting.
First, thanks to the linear relations between most of AES-192 subkeys, we
construct an 8-round chosen-key distinguishers for it using the meet-in-
the-middle idea and the SuperSbox technique. Then we turn this distin-
guisher into a key-recovery attack with a time complexity of one 8-round
AES-192 encryption. Using the same approaches and with more efforts
on exploiting the weak key schedule of this variant, 9-round chosen-
key distinguishers is constructed and the master key is recovered after-
wards at the cost of one 9-round AES-192 encryption. These results
have been experimentally confirmed and two examples can be found in
the appendix. While our work may not pose a threat to the security of
AES-192 in a traditional way as those single-key recovery attacks do, we
believe it do prove a non-trivial weakness in its key schedule to some
extent and thus undermines its expectation as an ideal building block
for hash functions.

Keywords: AES · Chosen-key distinguisher · Key recovery ·
Practical attacks

1 Introduction

Block ciphers are one of the most important primitives in Cryptography. They
are not only a good tool for encryption, but also an important building block
for some hash functions. In this context, AES [1] can be viewed as the most
widely-used block cipher and the most popular component which many hash
functions [2–5] are based on or mimic. Traditionally, researchers would investi-
gate the security of AES or other block ciphers in the single secret-key setting
where the randomly-generated key is unknown. However this classical approach
has somehow become not so dominant since the rise of open-key model. Specifi-
cally, there are two kinds of open-key model, namely the known-key model and
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 573–587, 2019.
https://doi.org/10.1007/978-3-030-21548-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_31&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_31

574 C. Zhu et al.

chosen-key model (or related-key model). Both of them focus on the study of
security margin of block cipher applications, e.g, block-cipher based hash func-
tions, where the key is known to the attacker, or at least under his control to
some extent.

Just as its name suggests, the known-key model means the attacker knows
the key. This concept is first introduced by Knudsen and Rijmen [6], based on
which they propose two distinguishers for 7-round AES and a class of Feis-
tel ciphers. Afterwards, [7] constructs an known-key distinguisher for 8-round
AES with truncated differentials and SuperSbox technique, which is improved
by [8] later on. At ASIACRYPT 2014, Gilbert [9] successfully extends an 8-round
known-key distinguisher into a more intricate 10-round distinguisher by using
a novel representation of AES, and hence presented for the first time a known-
key distinguisher for full AES-128. Following this work, [10] further explores
the limits of the known-key model with a focus on the AES. Apart from these
efforts on the known-key attacks of AES, there is also a considerable number of
researches dedicated to other block ciphers, such as Rijndael [11,12], SP-based
Feistel ciphers [13,14] and some other constructions [15–17].

The chosen-key model (or related-key model), on the other hand, is more
relaxed compared to the known-key model. Its main idea is to take advantage
of the weakness in the key schedule by allowing the adversary to choose the
relations of some subkeys (with unknown values) or just their values. The first
scenario is initially considered by Biham [18] who calls these special subkeys
related keys and the corresponding attack related-key attack. Later on, various
researches show that this attack works more efficiently when combined with other
kinds of attacks. These new results include related-key rectangle attacks [19,20],
related-key differential attacks [21–23], and related-key impossible differential
attacks [24,25]. As for the second scenario, there are relatively few results in
the literature. At CRYPTO 2009, Biryukov et al. [22] introduce the first chosen-
key distinguisher for full AES-256. Then, an 8-round chosen-key distinguisher
for AES-128 and a 9-round one for AES-256 with low time complexity are pro-
posed by Derbez et al. [26]. Later, [8] demonstrates that the complexity of this
8-round distinguisher [26] could be further reduced if the adversary considers
several characteristics in parallel. At CRYPTO 2013, Fouque et al. [27] carry
out a chosen-key attack on 9-round AES-128 through the structural evalua-
tion of AES-128 and graph-based ideas, after which [29] introduces Constraint
Programming (CP) models for solving a problem related to the chosen-key dif-
ferential cryptanalysis of AES. Besides, there are also several works examining
the security of Feistel-SP ciphers in this senario, such as [17,28].

Our Contributions. While there are several cryptanalyses proposed against
AES-128 [8,26,27] and AES-256 [26] in the chosen-key setting, few work has
been done on the 192-bit key version. Motivated by the desire to fill this blank,
we construct a chosen-key distinguisher on AES-192 reduced to 8 rounds with
the meet-in-the-middle idea and the SuperSbox technique. This distinguisher is
later translated to a key-recovery attack with a time complexity of one 8-round
AES-192 encryption. Using the same approaches, we manage to distinguish the
9-round AES-192 in the chosen-key setting and recover the master key at the

Fast Chosen-Key Distinguish Attacks on Round-Reduced AES-192 575

Table 1. Our results and best-known chosen-key distinguishers on AES

Algorithm Rounds Data Time∗ Memory Reference

AES-128 7 − 28 28 [26]

8 − 213.4 - [8]

9 − 255 232 [27]

AES-192 8 − 1 216 Section 3

9 − 1 216 Section 4

AES-256 7 − 28 28 [26]

8 − 28 28 [26]

9 − 224 216 [26]
∗ The time complexity is measured by the unit of an
equivalent encryption of a reduced-round of AES that
the adversary can break.

cost of one 9-round AES-192 encryption. Both results have been experimentally
confirmed on a single PC with Intel Core i5-4210M microprocessor and a memory
of 8 GB. Specifically, the experimental result shows that it only takes 1.05 s to
break the 8-round AES-192 and 1.14 s for the 9-round one.

Table 1 summarizes our attacks along with the previous best-known results
on AES in chosen-key setting. The key factor of our success in breaking these
two versions of round-reduced AES-192 with such a low time complexity is, we
believe, the weakness in the key schedule of AES-192. This weakness is that,
as [23] notes, when the expanded keys are viewed as a sequence of words, the
key schedule of AES-192 applies non-linear transformations to every sixth word,
whereas the key schedules of AES-128 and AES-256 apply non-linear trans-
formations to every fourth word. This means the adversary can retrieve more
information on the unknown subkeys from the subkeys he already knows and
thus recovers the master key more quickly in the case of AES-192 than he would
be able to do in the case of the other two AES variants.

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 recalls the description of AES block cipher and the previous known-key
and chosen-key distinguishers on AES, and gives an account of the notations and
definitions used throughout the paper. Afterwards, we show how to construct
chosen-key distinguishers for 8-round and 9-round AES-192 in Sects. 3 and 4,
respectively. Finally, Sect. 5 concludes this paper. As an additional note, we also
refer the readers to Appendices A and B for two instantiated examples of our
attacks.

2 Preliminaries

2.1 A Brief Description of AES

The Advanced Encryption Standard (AES) is a Substitution-Permutation Net-
work [1], which supports three different key sizes, namely 128, 192 and 256.

576 C. Zhu et al.

The 128-bit internal state is treated as a byte matrix of size 4 × 4, each byte
representing a value in GF (28) that is defined via the irreducible polynomial
x8 + x4 + x3 + x + 1 over GF (2). After applying a pre-whitening subkey addi-
tion modulo 2, the encryption procedure of AES runs a round function for Nr

times, which depends on the key size, to update the state. For instance, Nr = 10
for AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256. Each round
consists of the following 4 basic transformations:

– SubBytes(SB) applies an 8-bit SBox to each byte of the state in parallel.
– ShiftRows(SR) rotates the i -th row by i bytes to the left, where i = 0, 1, 2, 3.
– MixColumns(MC) multiplies each column of the state by a constant MDS

matrix over GF (28).
– AddRoundKey(AK) xors the state with the round subkey.

Note that we omit the MixColumns operation in the last round.
As regards the key schedule of AES, it transforms the master key into Nr +1

128-bit subkeys. For the sake of simplicity, we represented this subkey array in
the form of W [0, ..., 4 × Nr + 3] where each word W [·] is composed of 32 bits.
The length of master key is then denoted by Nk 32-bit words, e.g., Nk = 4 for
AES-128, Nk = 6 for AES-192 and Nk = 8 for AES-256. The first Nk 32-bit
words of W [·] is loaded with the master key, while the rest words of W [·] is
generated in the following manner:

– For i = Nk to 4 × Nr + 3, do
• if i ≡ 0 mod Nk, then W [i] = W [i − Nk] ⊕ SB(W [i − 1] ≪ 8)⊕
RCON [i/Nk],

• else if Nk = 8 and i ≡ 4 mod 8, then W [i] = W [i − 8] ⊕ SB(W [i − 1]),
• otherwise W [i] = W [i − 1] ⊕ W [i − Nk],

where RCON [·] is an array of fixed constants and ≪ denotes left rotation. For
complete details of AES, we refer to [1].

2.2 Definitions and Notation

In order to make the demonstration clear and concise, here we give an account
of the definitions and notations utilized in this paper.

1. P and C denote the plaintext and the ciphertext respectively.
2. The numbering of the 16 state bytes starts with 0, from top to bottom and

left to right.
3. [a, b, c, d]T denotes the transpose of the row vector [a, b, c, d].
4. Xi denotes the internal state at the beginning of SB operation in the i -th

round, where 0 ≤ i ≤ Nr − 1.
5. Yi denotes the state before SR transformations in the i -th round, where

0 ≤ i ≤ Nr − 1.
6. Zi denotes the state before MC transformations in the i -th round, where

0 ≤ i ≤ Nr − 1.

Fast Chosen-Key Distinguish Attacks on Round-Reduced AES-192 577

7. Wi denotes the state before AK transformations in the i -th round, where
0 ≤ i ≤ Nr − 1.

8. ki represents the subkey of round i, where 0 ≤ i ≤ Nr − 1.
9. k−1 represents the pre-whitening subkey.

10. ui denotes an equivalent key of MC−1 (ki).
11. wi denotes Zi ⊕ ui.
12. Xi [m] denotes the state byte in position m in round i. Same notations apply

to ki [m], k−1 [m], P j [m] as well.
13. Xi [m−n] represents the state bytes positioned from m to n. Same notations

apply to each ki [m − n] as well.
14. ΔXi denotes the difference in a state Xi.
15. ‖ denotes concatenation.

2.3 Chosen-Key Distinguisher

First, we briefly recall the definition of the chosen-key distinguisher in [26]. In
this setting, the adversary is challenged to find a key and a pair of plaintexts
whose difference is constraint in a predefined input space such that the ciphertext
difference lies in another predefined subspace for the targeted permutation Q.
Once he finds one, he constructs a so-called chosen-key distinguisher. Formally
speaking, a chosen-key distinguisher has the following property:

Property 1. Given any two subspaces IN and OUT , a key k and a pair of
messages (x, x′) can verify a certain property of a permutation Q if x ⊕ x′ ∈ IN
and Q(x) ⊕ Q(x′) ∈ OUT .

Like other distinguishers, the main purpose of the chosen-key distinguisher is
to distinguish the targeted permutation from an ideal one. So what is the general
attack complexity to build a chosen-key distinguisher for an ideal permutation?
Before answering this question, we’d like to introduce another similar distin-
guisher, known as the limited birthday distinguisher. Introduced by Gilbert and
Peyrin [7], the limited birthday distinguisher aims to find a pair of messages
satisfying the subspace constraints of Property 1. In other words, the chosen-key
distinguisher has more freedom in the choice of key bits. However, [26] notes that
this extra freedom does not contribute to the acquirement of the actual message
pair that verifies the required property, which means the birthday paradox in
the chosen-key seeting is as constraint as the one in the knowing-key setting.
Therefore, [26] concludes the limited birthday distinguisher also applies in the
chosen-key setting. Accordingly, the complexity of the chosen-key distinguisher
for an ideal permutation, denoted by C(IN,OUT), can be calculated by the
same formula of the limited birthday distinguisher [7], which is:

C(IN,OUT) = max

{
min

{√
2n/IN,

√
2n/OUT

}
,

2n+1

IN · OUT

}
(1)

Where n represents the size of the input/output.

578 C. Zhu et al.

SuperSBox of AES in the Chosen-Key Setting. In this paper, we also
utilize a popular cryptanalysis technique against AES-like permutations, which
is named SuperSBox. The concept of SuperSBox is first introduced by Rijmen
and Daemen in [30], where they regard the composition of SB ◦ AK(k) ◦ MC ◦
SB as a layer of column-wise applications of four 32-bit SuperSBoxes. It turns out
that this technique is very useful in the known-key attacks when combined with
the meet-in-the-middle technique since it can allow the attackers to break one
more middle round of AES than they do previously without increasing the attack
complexity. Then Derbez et al. [26] apply a twisted version of SuperSBox to the
chosen-key attacks where the key is hidden from the adversary. Consequently,
they denote this kind of SuperSBox, keyed by a 32-bit key k, by SuperSBoxk.
Moreover, for the SuperSBoxk in Fig. 1, they present the following interesting
observation.

Observation 1 [26]. Let a, b be two bytes, and c be an AES-column. Given
any 32-bit input and output differences Δin and Δout of a SuperSBoxk, where
k is unknown, the following equations:

{
SuperSBoxk(c) ⊕ SuperSBoxk(c ⊕ Δin) = Δout

SuperSBoxk(c) = [a, b, ∗, ∗]T (2)

has 216 solutions for (c, k) with 216 basic operations.

Fig. 1. SuperSBox of AES in the chosen-key setting: black bytes have known values
and differences, hatched bytes have known differences and the remaining bytes have
unknown values and differences

Proof. For the first two output bytes at the second SB layer are known, one can
directly compute the corresponding two input bytes as well as their difference.
After guessing the differences of the remaining two input bytes at this layer,
the adversary propagates the differences backward to the output of the first SB

Fast Chosen-Key Distinguish Attacks on Round-Reduced AES-192 579

layer. According to the differential properties of AES S-Box, there is one solution
on average for each of the 6 unset bytes at both SB layers. Once the input and
output of AK operation are known, the four bytes of k are also determined.
Therefore, by iterating over the 216 possible differences for the two unset bytes
at the second SB layer which can be regarded as 216 basic operations, one expects
to find 216 solutions.

3 Chosen-Key Distinguisher for 8-Round AES-192

This section describes a way to launch a chosen-key attack on AES-192 reduced
to 8 rounds with the SuperSbox technique mentioned previously. The basic dif-
ferential characteristic we employ covers the following transition:

4 R0→ 1 R1→ 4 R2→ 16 R3→ 16 R4→ 4 R5→ 1 R6→ 4 R7→ 4

Particularly, we focus on the middle rounds from round 1 to 5 which are
depicted in Fig. 2. For all the intermediate states in Fig. 2, we hypothesize that
the black bytes have known values and differences, the gray bytes have known
values and zero differences, and the hatched bytes have known differences and
unknown values. Besides, the bytes marked by ‘?’ have unknown values and
differences, while the remaining bytes have zero difference and unknown values.
As for the subkeys, the bytes marked by black dots have known values, while
the rest bytes don’t.

Our strategy is to find enough solutions for these rounds and then filter them
out through the outward transitions (namely round 0, round 6 and round 7). Due
to the fact that the forward and backward transitions happen with a probability
of 1, it requires only one solution for the middle rounds. In what follows, we will
show how to find this solution in time 1.

We start by randomizing ΔY1[0], from which ΔX2[0 − 3] is deduced. Then,
ΔX3 can be determined by guessing the values in the first column of X2. From
the backward direction, with the knowledge of ΔW5[0]||W5[0 − 3]||W4[0 − 7],
one is able to obtain ΔY4||Y4[0, 3 − 5, 9, 10, 14, 15] as well as k4[0, 5]. In con-
sequence, the four SuperSBoxes between state X3 and state Y4, keyed by the
four corresponding columns of k3, satisfies the requirements of Observation 1.
For i ∈ {0, 1, 2, 3}, we store all the 216 elements for the i -th SuperSBox associ-
ated the i -th column of X4 in list Li. Then we can retrieve one element for each
SuperSBoxes in time and memory 1 on average. More detailed, the adversary first
randomly picks one element from L1, L2 and L3, respectively. Then, he learns
the value of k3[4−15]. By the key schedule of AES-192, u2[0, 7] can be deduced,
which leads to the determination of w2[0, 7]. With w2[0, 7] and X3[1 − 4, 6, 7],
one obtains X3[0, 5] by the MC operation. Afterwards, only one element in L0 is
expected to share the same value of X3[0, 5]. At this point, we achieve a partial
pair of internal states that conform to the transition from X3 to Y4.

While determining the values and differences of the intermediate states from
round 1 to round 5, we also fix some bytes of k2, k3 and k4 that are marked

580 C. Zhu et al.

Fig. 2. The main part of the 8-round chosen-key distinguisher on AES-192

gray in Fig. 3. However, it is not sufficient to generate a compatible key with
the knowledge of these subkey bytes. To solve this problem, we choose random
values for the 2 bytes tagged by 1, namely k2[9] and k2[10]. As there are four
known bytes among the eight bytes in the third column of k2 and u2, it is not
hard to estimate the bytes tagged by 2 by the MC transformation. Next, the
bytes tagged by 3 and 4 are deduced by the key schedule. Again, the properties
of MC enable us to compute the bytes tagged by 5, after which the byte tagged
by 6 is known. Finally, the master key k can be recovered by inverting the key
schedule.

To conclude, for AES-192 the complexity to find a triplet (m,m′, k) verify-
ing the pre-defined 8-round differential path is just 1. In terms of the freedom
degrees, there are 16 bytes in the first message and 4 more bytes in the second
message. Together with the additional 24 bytes in the key, one has 44 freedom
degrees at the input. Considering the probability of the 8-round differential path
is 2−144, 26 freedom degrees are available for us. By using the method above,
then, it only costs 18 of them to construct the distinguisher, which means a total
of 264 solutions is expected to be found. Indeed, we can get 216×3 solutions when

Fast Chosen-Key Distinguish Attacks on Round-Reduced AES-192 581

Fig. 3. The generation of a compatible key: gray bytes are known and the numbers
indicate the order in which we guess or determine the bytes

connecting the elements from the four lists Li. For each solution, there are 216

compatible keys as we can randomly choose the values of the 2 bytes tagged
by 1. It follows that there are at most 264 triplets (m,m′, k) that satisfies the
8-round path. AppendixA has provided one example and our C implementation
can be found in [31].

4 Chosen-Key Distinguisher for 9-Round AES-192

In the case of the 9-round chosen-key distinguisher for AES-192, we consider the
following differential characteristic:

12 R0→ 3 R1→ 2 R2→ 8 R3→ 16 R4→ 16 R5→ 4 R6→ 1 R7→ 4 R8→ 4.

Again, we split the attack into two parts. The first one, as shown in Fig. 4, is
to collect enough solutions for the middle rounds from round 1 to round 6. The
other one is to work as a filter that discard wrong solutions through the MC
operation in the outward direction. In this attack, since the three transitions in
the backward or forward direction happen with probability 1, only one solution
is required for the middle rounds. Finally, one triplet (m,m

′
, k) fulfilling the 9-

round differential characteristic will be found. The major procedure is as follows.
First of all, we choose a random difference for the byte 4 of Z1 so as to

get ΔZ1[5, 6]||ΔW1[5, 6]||ΔX2[5, 6]. Then, by guessing the values of X2[5, 6] and
X3[0−2, 12−15], we can propagate the difference to state X4. In the meantime,
u2[1, 14] is deduced. Next, we randomize the values of ΔW6[0 − 4]||W6[0 − 4].
Doing so, ΔY5 can be computed.

Now, all the input and out differences of the four SuperSBoxes between X4

and Y5 are set. The next step is to guess two input or output byte values for
each SuperSBox if one wants to utilize Observation 1 in the attack. This time,
however, we make an adjustment. That is, we set the first two input bytes to ran-
dom values, which means the first two columns of X4 are known. Consequently,
u3[0, 4, 6, 7] is determined.

As before, we build 4 lists Li(i ∈ {0, 1, 2, 3}), each storing the 216 values of
the i-th column of k4 and the i-th diagonal of X4. After that, one retrieves 1

582 C. Zhu et al.

Fig. 4. The main part of the 9-round chosen-key distinguisher on AES-192

element from L3. The knowledge of k4[12−15] and u3[6, 7] allows us to compute
u4[10, 11]. This imposes a 16-bit constraint on the elements of L2 such that
only one element will be left. Then, by the key schedule, u4[4, 7] is deduced
from k4[8 − 11] and u3[0, 4]. After filtering the elements of L1, we are expected
to find one k4[4 − 7] which can result in the same value of u4[4, 7] as the one
deduced above. Then, with the knowledge of u2[14] and k4[4 − 7], it is sufficient
to compute u4[2]. We also notice that u2[1] and k3[4 − 7] are already set in
the previous steps. According to Observation 1, we then learn u3[11]. With this
subkey byte and Z3[11], one can be computed. As X4[8], X4[9] and X4[11] are
known, the property of MC operation allows us to deduce X4[10]. Finally, one
looks up L0 to retrieve the element which meets the constraints on u4[2] and
X4[10]. At this point, one solution is found.

The next step is to derive a valid key for this solution. As shown in Fig. 5,
the grey bytes of subkeys are fixed on account of the previous steps. For the
rest unknown bytes, we first set k3[9], tagged by 1, to random values. Using the
properties of MC, the 4 bytes tagged by 2 in the third column of k3 and u3 can
be linearly calculated. Then by the key schedule, one learns the bytes tagged

Fast Chosen-Key Distinguish Attacks on Round-Reduced AES-192 583

by 3 and 4. Since u3[12, 13] is already known, 5 bytes in the last columns of k3
and u3 are determined. In that case, the probability that these 5 bytes verify
the properties of MC is 2−8. Therefore, after iterating the 28 possible values of
k3[9], we expect to find one match and obtain k3[12]||u3[14, 15]. Once k3[12] is
known, the adversary is able to deduce the bytes tagged by 6 and then retrieve
the master key k.

Fig. 5. The generation of a compatible key: gray bytes are known and the numbers
indicate the order in which we guess or determine the bytes

Overall, the 9-round chosen-key distinguisher for AES-192 can be built with
a complexity of one 9-round AES-192 encryption. When it comes to the freedom
degrees, it can be calculated in the following manner. Undoubtedly, there are
16+12+24 = 52 freedom degrees at the input, among which 26 are consumed by
the 9-round pre-described differential path. Then, it calls for 24 freedom degrees
to establish the 9-round distinguisher. As a result, 216 solutions in total are
expected to be found. To testify our result, we provide one triplet (m,m

′
, k) in

AppendixB. Our C implementation can be found in [31].

5 Conclusion

These days, many hash functions utilize part of AES or mimic its behaviors
to construct their internal components under the assumption that the under-
lying block cipher is ideal. But the reality is that the security margin of AES
is undermined when applied to a hash function in which its key is now at the
control of the adversary. That’s why it is important to do a thorough evaluation
of AES in the chosen-key setting. By using the meet-in-the-middle idea, Super-
Sbox technique and the available degrees of freedom in the key, we propose two

584 C. Zhu et al.

chosen-key distinguish attack against 8-round and 9-round AES-192 with prac-
tical time complexities. However, it is far from enough. There are many works
needed to be done in the future, such as extending the distinguishers to more
rounds, or applying the efficient chosen-key attacks into the real world.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their helpful comments and suggestions. This work is supported by the National Natural
Science Foundation of China (No. 61572125), and National Cryptography Development
Fund (No. MMJJ20180201).

A A Solution for the 8-Round Truncated Differential
Characteristic on AES-192

The following is an example of a pair of messages (m,m
′
) that conforms to the

8-rounds truncated differential characteristic for AES-192, where the master key
is: eb7d63b4 e2ee9c50 e39dc9c6 cc9ccea1 98de6570 7bcef0c2. In detail, the lines
in this array contain the values of two internal states as well as their difference
before entering each round, see also in Table 2.

Table 2. Example of the 8-rounds truncated differential characteristic for AES-192

Round m m′ m ⊕ m′

P 3d345b2a 6f5f2afe a4345b2a 6faf2afe 99000000 00f00000

33a4f1f4 14e19f40 33a4fff4 14e19fe2 00000e00 000000a2

R0 d649389e 8db1b6ae 4f49389e 8d41b6ae 99000000 00f00000

d0393832 d87d51e1 d0393632 d87d5143 00000e00 000000a2

R1 d3524655 2dd41bf0 0a524655 2dd41bf0 d9000000 00000000

f205d52e eb755c55 f205d52e eb755c55 00000000 00000000

R2 01010101 86bec013 03000002 86bec013 02010103 00000000

dd86b296 92b092fd dd86b296 92b092fd 00000000 00000000

R3 994b2386 958f86c9 974c248f 9e849bdf 0e070709 0b0b1d16

a20df3cc 1e80a57b bd2ccdd3 3fbeba64 1f213e1f 213e1f1f

R4 ee002b90 216d9fb2 8497bc62 5721beeb 6a9797f2 764c2159

2871a4cb 2c1b6bce 5e8462fe eaee2157 76f5c635 c6f54a99

R5 d77355cc 2f40079b 527355cc 2f52079b 85000000 00120000

fb71f372 695df49e fb715272 695df452 0000a100 000000cc

R6 ea7d6348 c23792c4 eb7d6348 c23792c4 01000000 00000000

c1015534 2a74e9fc c1015534 2a74e9fc 00000000 00000000

R7 9fa433b7 1b8dff1a 43ca5d05 1b8dff1a dc6e6eb2 00000000

5130407f 955a5363 5130407f 955a5363 00000000 00000000

C 31533f91 899615e5 f0533f91 89961527 c1000000 000000c2

848f3dd6 e6588415 848fb2d6 e6658415 00008f00 003d0000

Fast Chosen-Key Distinguish Attacks on Round-Reduced AES-192 585

B A Solution for the 9-Round Truncated Differential
Characteristic on AES-192

The following is an example of a pair of messages (m,m
′
) that conforms to the

9-rounds truncated differential characteristic for AES-192, where the master key
is: 33d481b7 61ba9ffd c8363e8b 4db50f1c 4f5f0d27 25508fcd. In detail, the lines
in this array contain the values of two internal states as well as their difference
before entering each round, see also in Table 3.

Table 3. Example of the 9-rounds truncated differential characteristic for AES-192

Round m m′ m ⊕ m′

P 1ff4a032 34fa0947 15f487e8 bb9d09b3 0a0027da 8f6700f4

83221d49 efdff942 108fb349 efd995b4 93adae00 00066cf6

R0 2c202185 554096ba 2620065f da27964e 0a0027da 8f6700f4

4b1423c2 a26af65e d8b98dc2 a26c9aa8 93adae00 00066cf6

R1 c80ed12b 0612af5f 6a0ed12b 06b7af5f a2000000 00a50000

13f86b4a 03dc7a56 13f8a24a 03dc7a56 0000c900 00000000

R2 8d7a8a12 b3f71b31 a79f8a12 b3f71b31 2ae50000 00000000

5026527f 50fa53e0 5026527f 50fa53e0 00000000 00000000

R3 01010101 1e0db406 03000002 1e0db406 02010103 00000000

4217e2ef 01010101 4217e2ef 02030000 00000000 03020101

R4 1b023bc8 65e4d111 0a1a1dff 71cef218 11182637 142a2309

03471883 00dfd5db 1568219b 37eac1d9 162f3918 37351402

R5 ee7bcb90 216df456 8410ce62 57211006 6a6b05f2 764ce450

e171a4fc c9246bce e784629b 0b562157 06f5c667 c2724a99

R6 d709f932 2f405739 5209f932 2f525739 85000000 00120000

3456f3ad 4d31a59e 345652ad 4d31a552 0000a100 000000cc

R7 4f56f415 cd14153a 4e56f415 cd14153a 01000000 00000000

29478607 fff0e139 29478607 fff0e139 00000000 00000000

R8 948e1a8f 7f5330b3 d925b169 7f5330b3 4dababe6 00000000

eb550e4c 78b94027 eb550e4c 78b94027 00000000 00000000

C 434a9744 d2e1aa06 544a9744 d2e1aa8c 17000000 0000008a

217d3f93 398796cb 217d5593 39a196cb 00006a00 00260000

References

1. Daemen, J., Rijmen, V.: AES proposal: Rijndael. In: First Advanced Encryption
Standard (AES) Conference (1998)

2. Rijmen, V., Barreto, P.S.L.M.: The whirlpool hashing function. Submitted
to NESSIE, September 2000. Accessed May 2003. http://www.larc.usp.br/
∼pbarreto/WhirlpoolPage.html

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

586 C. Zhu et al.

3. Benadjila, R., et al.: SHA proposal: ECHO. Submission to NIST (updated) (2009)
4. Gauravaram, P., et al.: Grφstl - a SHA-3 candidate. Submission to NIST, Round

3 (2011)
5. Information Protection and Special Communications of the Federal Security Ser-

vice of the Russian Federation. Gost r 34.11.2012 information technology cryp-
tographic date security hash-functions (in English) (2012). http://tk26.ru/en/
GOSTR3411-2012/GOST R 34 11-2012 eng.pdf/

6. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 19

7. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4 21

8. Jean, J., Naya-Plasencia, M., Peyrin, T.: Multiple limited-birthday distinguishers
and applications. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 533–550. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43414-7 27

9. Gilbert, H.: A simplified representation of AES. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 200–222. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 11

10. Grassi, L., Rechberger, C.: New and old limits for AES known-key distinguishers.
IACR Cryptology ePrint Archive (2007). https://eprint.iacr.org/2017/255.pdf

11. Minier, M., Phan, R.C.-W., Pousse, B.: Distinguishers for ciphers and known key
attack against Rijndael with large blocks. In: Preneel, B. (ed.) AFRICACRYPT
2009. LNCS, vol. 5580, pp. 60–76. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02384-2 5

12. Sasaki, Y.: Known-key attacks on Rijndael with large blocks and strengthening
ShiftRow parameter. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010.
LNCS, vol. 6434, pp. 301–315. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16825-3 20

13. Sasaki, Y., Emami, S., Hong, D., Kumar, A.: Improved known-key distinguishers
on Feistel-SP ciphers and application to Camellia. In: Susilo, W., Mu, Y., Seberry,
J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 87–100. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31448-3 7

14. Sasaki, Y., Yasuda, K.: Known-key distinguishers on 11-round Feistel and collision
attacks on its hashing modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp.
397–415. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-
9 23

15. Dong, L., Wu, W., Wu, S., Zou, J.: Known-key distinguisher on round-reduced
3D block cipher. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp.
55–69. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27890-7 5

16. NakaharaJr, J.: New impossible differential and known-key distinguishers for the
3D cipher. In: Bao, F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 208–221.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21031-0 16

17. Nikolić, I., Pieprzyk, J., Soko�lowski, P., Steinfeld, R.: Known and chosen key differ-
ential distinguishers for block ciphers. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC
2010. LNCS, vol. 6829, pp. 29–48. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24209-0 3

18. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4),
229–246 (1994)

http://tk26.ru/en/GOSTR3411-2012/GOST_R_34_11-2012_eng.pdf/
http://tk26.ru/en/GOSTR3411-2012/GOST_R_34_11-2012_eng.pdf/
https://doi.org/10.1007/978-3-540-76900-2_19
https://doi.org/10.1007/978-3-642-13858-4_21
https://doi.org/10.1007/978-3-662-43414-7_27
https://doi.org/10.1007/978-3-662-43414-7_27
https://doi.org/10.1007/978-3-662-45611-8_11
https://eprint.iacr.org/2017/255.pdf
https://doi.org/10.1007/978-3-642-02384-2_5
https://doi.org/10.1007/978-3-642-02384-2_5
https://doi.org/10.1007/978-3-642-16825-3_20
https://doi.org/10.1007/978-3-642-16825-3_20
https://doi.org/10.1007/978-3-642-31448-3_7
https://doi.org/10.1007/978-3-642-21702-9_23
https://doi.org/10.1007/978-3-642-21702-9_23
https://doi.org/10.1007/978-3-642-27890-7_5
https://doi.org/10.1007/978-3-642-21031-0_16
https://doi.org/10.1007/978-3-642-24209-0_3
https://doi.org/10.1007/978-3-642-24209-0_3

Fast Chosen-Key Distinguish Attacks on Round-Reduced AES-192 587

19. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle
attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 30

20. Hong, S., Kim, J., Lee, S., Preneel, B.: Related-key rectangle attacks on reduced
versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005). https://doi.org/
10.1007/11502760 25

21. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 1

22. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on
the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 14

23. Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key
AES variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol.
3006, pp. 208–221. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24654-1 15

24. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossi-
ble differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17401-8 20

25. Biham, E., Dunkelman, O., Keller, N.: Related-key impossible differential attacks
on 8-round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp.
21–33. Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 2

26. Derbez, P., Fouque, P.-A., Jean, J.: Faster chosen-key distinguishers on reduced-
round AES. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol.
7668, pp. 225–243. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34931-7 14

27. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40041-4 11

28. Dong, X., Wang, X.: Chosen-key distinguishers on 12-round Feistel-SP and 11-
round collision attacks on its hashing modes. IACR Trans. Symmetric Cryptol.
2016, 13–32 (2016)

29. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen
key differential cryptanalysis. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp.
584–601. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 37

30. Daemen, J., Rijmen, V.: Understanding two-round differentials in AES. In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11832072 6

31. Verification of chosen-key distinguishers on 8-round and 9-round AES-
192 (2016). https://github.com/Crypt-CNS/AES 5-Round Distinguishers/tree/
Crypt-CNS-AES 8-and-9-Round Distinguishers

https://doi.org/10.1007/11426639_30
https://doi.org/10.1007/11502760_25
https://doi.org/10.1007/11502760_25
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-03356-8_14
https://doi.org/10.1007/978-3-540-24654-1_15
https://doi.org/10.1007/978-3-540-24654-1_15
https://doi.org/10.1007/978-3-642-17401-8_20
https://doi.org/10.1007/11605805_2
https://doi.org/10.1007/978-3-642-34931-7_14
https://doi.org/10.1007/978-3-642-34931-7_14
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/978-3-319-44953-1_37
https://doi.org/10.1007/11832072_6
https://github.com/Crypt-CNS/AES_5-Round_Distinguishers/tree/Crypt-CNS-AES_8-and-9-Round_Distinguishers
https://github.com/Crypt-CNS/AES_5-Round_Distinguishers/tree/Crypt-CNS-AES_8-and-9-Round_Distinguishers

A Highly Secure MAC from Tweakable
Blockciphers with Support

for Short Tweaks

Yusuke Naito(B)

Mitsubishi Electric Corporation, Kamakura, Kanagawa, Japan
Naito.Yusuke@ce.MitsubishiElectric.co.jp

Abstract. Existing tweakable blockcipher (TBC)-based message
authentication codes (MACs), in order to achieve full b-bit pseudo-
random function (PRF) security, require a TBC with t-bit tweak and
b-bit input block spaces such that b ≤ t. An open problem from the pre-
vious works is to design a TBC-based MAC achieving the b-bit security
even when b > t. We present PMAC3, a TBC-based MAC achieving the
b-bit security as long as b/2 ≤ t.

Keywords: MAC · PRF · BBB security · Tweakable blockcipher ·
Short tweak

1 Introduction

Message authentication code (MAC) is a fundamental symmetric-key primi-
tive that provides the authenticity of messages. A number of MACs have been
designed by using blockciphers via modes of operation, and most of them,
e.g., [4,6,18], are secure pseudo-random functions (PRFs) up to O(2b/2) block-
cipher calls, using a blockcipher with b-bit blocks, which is so-called birthday-
bound security. However, birthday-bound security becomes unreliable, when the
block size is small, when large amounts of data are processed, or when a large
number of connections need to be kept secure. Indeed, a plaintext of the CBC
encryption using a 64-bit blockcipher is recovered within a few days [3]. For this
reason, beyond-birthday-bound (BBB)-secure MACs have been designed.

BBB-Secure MACs. The first attempt to achieve BBB-security was made
in ISO 9797-1 [10] (without proofs of security), where six CBC-type MACs are
defined. Yasuda [19] proved that Algorithm 6 achieves BBB-security (security
up to O(22b/3) blockcipher calls), and improved the MAC, where the number
of blockcipher keys is reduced from 6 to 4. After that, several BBB-secure
MACs have been proposed, e.g., PMAC Plus [20], 1-k-PMAC Plus [5] (security

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 588–606, 2019.
https://doi.org/10.1007/978-3-030-21548-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_32&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_32

A Highly Secure MAC from Tweakable Blockciphers 589

up to O(22b/3) blockcipher calls), Fr [7] and LightMAC Plus2 [17] (security up to
O(2rb/(r+1)) queries for a parameter r).1

Another approach to achieve BBB-security is to use tweakable blockcipher
(TBC). The advantage of TBC-based design over blockcipher-based one is that
a highly efficient and full-bit (b-bit) secure MACs can be designed. TBC whose
concept was introduced by Liskov et al. [11] is a generalization of classical block-
cipher. A TBC takes a public input called tweak in addition to key and input
block. The role of tweak is that a retweaking (changing a tweak) offers the same
functionality as changing its secret key but should be less costly. A TBC can be
either constructed in a generic way from a blockcipher through a mode of opera-
tion e.g., [18], or as a dedicated design such as Deoxys-BC, Kiasu-BC, Joltik-BC [9]
and SKINNY [1], following the so-called TWEAKEY framework [9].

Rogaway [18] proposed PMAC1, a TBC-based MAC that is a secure PRF
up to O(2b/2) TBC calls when using a TBC with a b-bit input-block space.
Naito [16] proposed PMAC TBC1k, a combination of PMAC1 and PMAC Plus,
and claimed that PMAC TBC1k is a secure PRF up to O(2b) queries, using a
TBC with a t-bit tweak space such that b/2 ≤ t. List and Nandi [12] pointed
out a glitch, and gave a valid proof for b ≤ t. In PMAC TBC1k, for each i-th
message block Mi of b bits, Mi is input to the input block space and the counter
value i is input to the tweak space (counter-based construction from PMAC1),
and then the b-bit outputs are extended to 2b bits (PMAC Plus’s technique). The
counter-based construction avoids a collision in inputs to TBC calls at distinct
positions, and the PMAC Plus’s technique avoids the O(2b/2) birthday attack,
thus full b-bit security can be achieved by these techniques. List and Nandi [12]
also proposed PMAC2x which extends the output length of PMAC TBC1k from b
to 2b bits without harming efficiency nor security, and PMACx which is a modifi-
cation of PMAC TBC1k with b-bit outputs. Minematsu and Iwata [15] reported
a flaw of the security result, and List and Nandi [12] modified their propos-
als so that the flaw is fixed. Iwata et al. [8] proposed ZMAC, a highly efficient
MAC with PRF-security up to O(2b/2+min{t,b}/2) TBC calls. In ZMAC, both the
input-block and (t-bit) tweak spaces are used to take message blocks. Hence,
the number of TBC calls in ZMAC is roughly (b + t)/b times less than previous
TBC-based MACs. Instead of the counter-based construction in PMAC TBC1k,
ZMAC employs the XT(X) tweak extension [14] in order to use the tweak spaces:
two secret maskings defined by the powering-up scheme [18] are applied to the
input-block and tweak spaces for each TBC call. List and Nandi [13] proposed
ZMAC+, a variant of ZMAC that supports variable-length outputs, while retain-
ing the O(2b/2+min{t,b}/2)-security.

Open Problem. Even when using a TBC with a short tweak space, i.e., t < b,
the security proofs of the existing TBC-based MACs with BBB-security ZMAC

1 When security depends on both the numbers of queries and message lengths, the
security level is measured by the number of blockcipher calls performed in a MAC.
When it depends on only the number of queries, the security level is measured by
the number of queries.

590 Y. Naito

and ZMAC+ hold, however, the security levels become less than the full b bit. For
example, using Kiasu-BC (64-bit tweak and 128-bit input-block), these MACs are
secure PRFs up to roughly 296 TBC calls. On the other hand, in general, reducing
a tweak size, a TBC becomes more compact, e.g., Kiasu-BC is more compact
than Deoxys-BC (128 (or more)-bit tweak and 128-bit input-block). Hence, using
a TBC with t < b, these MACs become more compact. This motivates us to
design a TBC-based MAC with full-bit security even when using a TBC with
t < b.

There are two reasons why these MACs do not achieve b-bit security when
t < b. (1) The first reason is the XT(X) tweak extension that introduces the term
O(σ2/2b+min{t,b}) in the security bound where σ is the number of TBC calls.
The term comes from a collision in inputs of b + min{t, b} bits to TBC calls at
distinct positions, which yields an attack on XT(X); (2) The second reason is the
internal state sizes. In the hashing phases of ZMAC and ZMAC+, a 2b-bit value
is defined by the PMAC Plus’s technique, and when t < b, the b− t bits of the 2b-
bit value are truncated in order to obtain an input to a TBC in the finalization
phase. By the truncation, the internal state sizes becomes b + min{t, b} bits,
and by the birthday analysis on the internal state, the term O(q2/2b+min{t,b})
is introduced in the security bound; Note that Iwata et al. [8] gave a comment
that using the counter-based construction instead of the XT(X) tweak extension,
the collision influence of the XT(X) tweak extension can be removed, that is,
O(σ2/2b+min{t,b}) is removed. However, the term O(q2/2b+min{t,b}) remains in
the security bound.

Our Contribution. In this paper, we present PMAC3, a TBC-based MAC with
full b-bit security even when using a TBC with a short tweak space t < b. In
order to achieve the b-bit security, the following two techniques are used. The first
technique is the existing one, and the second technique is new. (1) In order to
avoid the XT(X) tweak extension, the counter-based construction used in PMAC1
and PMAC TBC1k is employed. The counter-based construction avoids an input
collision arising in the XT(X) tweak extension, thus the term O(σ2/2b+min{t,b})
can be avoided; (2) When t < b, in order to avoid the birthday analysis on the
(t + b)-bit internal state, the internal state is extended to (2t + b) bits (hence,
the internal state consists of 3 lines: two t-bit lines and one b-bit line, and the
name PMAC“3” comes from the number of lines), and this technique improves
the birthday probability from O(q2/2b+min{t,b}) to O(q2/2b+min{2t,b}). By these
techniques, PMAC3 is a secure PRF up to O(2(b+min{2t,b})/2) queries, and thus
achieves the b-bit security when b/2 ≤ t. For example, using Kiasu-BC that is
a TBC with 64-bit tweak and 128-bit input-block spaces, PMAC3 is a secure
PRF up to roughly 2128 queries. On the other hand, ZMAC and ZMAC+ are
secure PRFs up to roughly 296 TBC calls. In Table 1, PMAC3 is compared with
existing TBC-based MACs, with respect to security bound and message-block
length in bits for each TBC call. PMAC3 uses partial bits of the tweak space to
take message blocks, and ZMAC and ZMAC+ use full bits of the tweak space,

A Highly Secure MAC from Tweakable Blockciphers 591

Table 1. Comparison of TBC-based MACs. q is the number of queries. σ is the number
of TBC calls defined by all queries. # bits/TBC shows lengths of message blocks for
each TBC call. The parameter c is the counter size in PMAC3, and in PMAC3 the
remaining (b − c)-bit tweak space of each TBC calls is used to take a message block.
(this technique is introduced in ZMAC [8]).

Scheme [Ref.] Security bound # bits/TBC

PMAC1 [18] O
(
σ2/2b

)
b

PMAC TBC1k [16] O
(
q/2b

)
(only when b ≤ t) b

PMAC(2)x [12] O
(
q2/22b

)
(only when b ≤ t) b

ZMAC [8] O
(
σ2/2b+min{t,b} + (q/2b)3/2

)
t + b

ZMAC+ [13] O
(
qσ/2b+min{t,b} + q/2b

)
t + b

PMAC3 [Ours] O
(
q2/2b+min{2t,b})

(t − c) + b

thereby PMAC3 is less efficient than ZMAC and ZMAC+ regarding the number
of TBC calls. However, it achieves a higher level of security when t < b.

2 Preliminaries

Notation. Let λ be an empty string and {0, 1}∗ the set of all bit strings. For
an integer a ≥ 0, let {0, 1}a the set of all a-bit strings, ({0, 1}a)∗ the set of
all bit strings whose lengths are multiples of a, and 0a resp. 1a the bit string
of a-bit zeroes resp. ones. For an integer a ≥ 1, let [a] := {1, 2, . . . , a}. For a

non-empty set X, x
$←− X means that an element is chosen uniformly at random

from X and is assigned to x. The concatenation of two bit strings X and Y is
written as X‖Y or XY when no confusion is possible. For integers 0 ≤ i, a and
X ∈ {0, 1}a, msbi(X) resp. lsbi(X) denotes the most resp. least significant i bits
of X if i ≤ a; msbi(X) = lsbi(X) := 0i−a‖X if i > a. For integers a, i ≥ 0 with
a < 2i, let stri(a) be the i-bit binary representation of a. For integers a, b ≥ 0

and a bit string X ∈ {0, 1}a+b, (L,R)
a,b←−− X denotes the parsing into a-bit and

b-bit strings, where L = msba(X) and R = lsbb(X). For integers a, b ≥ 0 and an
ab-bit string M , (M1,M2, . . . ,Ma) b←− M denotes the parsing into b-bit strings,
where M = M1‖M2‖ · · · ‖Ma.

Let GF (2n) be the field with 2n elements and GF (2n)∗ the multiplication
subgroup of this field which contains 2n − 1 elements. We interchangeably think
of an element a in GF (2n) in any of the following ways: as an n-bit string
an−1 · · · a1a0 ∈ {0, 1}n and as a formal polynomial an−1xn−1 + · · · + a1x+ a0 ∈
GF (2n). Hence we need to fix a primitive polynomial a(x) = xn + an−1xn−1 +
· · · + a1x + a0. This paper uses a primitive polynomial with the property that
the element 2 = x generates the entire multiplication group GF (2n)∗ of order
2n − 1. The primitive polynomials for n = 64 and n = 128 are e.g., a(x) =
x64 + x4 + x3 + x + 1 and a(x) = x128 + x7 + x2 + x + 1.

592 Y. Naito

Tweakable Blockcipher. A tweakable blockcipher (TBC) is a set of permu-
tations indexed by a key and a public input called tweak. Let K be a key space,
T W a tweak space, and b an input/output-block size. Through this paper, for a
non-empty set I and an integer t ≥ 1, T W := I × {0, 1}t, a TBC is denoted by
˜E : K×T W×{0, 1}b → {0, 1}b, and for K ∈ K and (i, tw) ∈ T W, ˜E(K, (i, tw), ·)
is written as ˜Ei

K(tw, ·).
In this paper, a security proof is given in the information theoretic model

where the underlying keyed TBC is replaced with a tweakable random permu-
tation (TRP). A tweakable permutation (TP) ˜P : T W ×{0, 1}b → {0, 1}b is the
set of b-bit permutations indexed by a tweak in T W. Let ˜Perm(T W, {0, 1}b)
be the set of all TPs: T W × {0, 1}b → {0, 1}b. Then a TRP is defined as
˜P

$←− ˜Perm(T W, {0, 1}b). The security goal of the underlying keyed TBC
is tweakable pseudo-random-permutation (TPRP) security. TPRP-security is
defined in terms of indistinguishability between a keyed TBC and a TRP. An
adversary A has access to either the keyed TBC or a TRP, and returns a decision
bit y ∈ {0, 1} after its interaction. An output of A with access to O is denoted
by AO. The TPRP-security advantage function of A is defined as

Advtprp
˜E

(A) := Pr
[

K
$←− K;A ˜EK = 1

]

− Pr
[

˜P
$←− ˜Perm(T W, {0, 1}b);A ˜P = 1

]

,

where the probabilities are taken over K, ˜P and A. Note that using a keyed
TBC ˜EK in a MAC, the TPRP-security advantage function of ˜E is introduced
in addition to the security bound of the MAC in the TRP model.

PRF-Security of MAC Using TRP. Through this paper, an adversary A
is a computationally unbounded algorithm. Its complexity is solely measured by
the number of queries made to its oracles. Let F [˜P] be a MAC function with
τ -bit outputs using a TP ˜P ∈ ˜Perm(T W, {0, 1}b), where τ is a positive integer.

The pseudo-random-function (PRF) security of F [˜P] is defined in terms of
indistinguishability between the real and ideal worlds. In the real world, A has
access to F [˜P], where ˜P

$←− ˜Perm(T W, {0, 1}b). In the ideal world, it has access
to a random function R, where Func({0, 1}τ) is the set of all functions from

{0, 1}∗ to {0, 1}τ , and a random function is defined as R $←− Func({0, 1}τ). After
the interaction, A outputs a decision bit y ∈ {0, 1}. The PRF-security advantage
function of A is defined as Advprf

F [˜P]
(A) :=

Pr
[

˜P
$←− Perm(T W, {0, 1}b);AF [˜P] = 1

]

− Pr
[

R $←− Func({0, 1}τ);AR = 1
]

,

where the probabilities are taken over ˜P ,R and A.

3 PMAC3: Specification and Security Bound

PMAC3 is a single key TBC-based mode of operation. It is designed to be par-
allelizable and a secure PRF up to O(2b/2+min{2t,b}/2) queries, that is, full b-bit
security as long as b/2 ≤ t.

A Highly Secure MAC from Tweakable Blockciphers 593

Parameters. Regarding the underlying TBC ˜E : K × T W × {0, 1}b → {0, 1}b,
the first tweak space is defined as I := {0, 1, 2}, thus T W := {0, 1, 2} × {0, 1}t.
Let the counter size c be an integer with 0 < c ≤ t, and the tag size τ an integer
with 0 < τ ≤ b. Let r := t − c be the size of message blocks that are input to
the second tweak spaces.

High-Level Structure. Firstly, a one-zero padding ozp : {0, 1}∗ →
(

{0, 1}b+r
)∗ is applied to an input message M ∈ {0, 1}∗, where ozp(M) =

M‖1‖0z where z = (b + r) −
(

|M | mod (b + r)
)

− 1. Then, the hash func-
tion PHASH3 :

(

{0, 1}b+r
)∗ → {0, 1}b+2t is performed. Finally, the finalization

function:{0, 1}b+2t → {0, 1}τ is performed. Regarding the underlying TBC hav-
ing a key K ∈ K, ˜EK , the TBC with the first tweak 0, ˜E0

K is used in the hash
function, and the TBCs with the first tweak 1 and with the first tweak 2, ˜E1

K

and ˜E2
K are used in the finalization function.

Design Rationale. In PHASH3, in order to avoid a collision between inputs at
distinct positions, a counter-based construction is employed: for an i-th message
block Mi, the c-bit counter strc(i) is input to the (second) tweak space of the TBC
˜E0

K . If the counter size is less than the tweak size, i.e., c < t, the remaining r-bit
tweak space is used to take a message block Ri. Hence, Mi consists of Li (b bits)
and Ri (r bits), and the i-th TBC output is defined as Ci = ˜E0

K(strc(i)‖Ri, Li).
After processing message blocks M1, . . . ,Mm, m b-bit TBC outputs C1, . . . , Cm

are defined.
In order to avoid a birthday attack with O(2b/2) queries, the PMAC Plus’s

technique [20] is used, thus a 2b-bit value (A,B) is defined from the m b-
bit TBC outputs: the first b-bit value A is defined by XORing these outputs,
A =

⊕m
i=1 Ci, and the remaining b-bit value B is defined by performing XOR

operations and multiplications by 2 over GF (2b)∗, B =
⊕m

i=1 2m−i+1 ·Ci. Then,
in order to achieve O(2b/2+min{2t,b}/2) security, PHASH3 returns a 2t + b-bit
hash value (A1, A2, B) such that all bits of A are used if b/2 ≤ t: A1 =
msbt(A) ⊕

⊕m
i=1(0

c‖Ri); A2 = lsbt(A) ⊕
⊕m

i=1(0
c‖Ri). Note that A1 = A2 if

b ≤ t. The checksum,
⊕m

i=1(0
c‖Ri) is applied to A1 and A2, in order to avoid an

attack using a collision in TBC outputs (the collision is found with O(2b/2) TBC
calls by the birthday analysis). This technique was introduced in ZMAC [8]. If a
collision occurs in the i-th TBC outputs Ci and other input blocks are the same,
then the output collision offers a collision in the (A,B) values. If the checksum
is absent, then a hash collision occurs and offers a distinguishing attack. On the
other hand, using the checksum, since the i-th output collision implies that the
corresponding Ri values are distinct, the corresponding pairs of (A1, A2) become
distinct, thereby the output collision can be avoided (if Ri values are the same,
the i-th outputs are defined by the same permutation, thus no output collision
occurs).

Finally, in the finalization phase, in order to process all 2t + b bits of
(A1, A2, B), a TBC is performed twice, where the input pair at the first resp.

594 Y. Naito

second TBC call is (A1, B) resp. (A2, B). Then, the XOR of the TBC outputs
becomes the tag: T = ˜E1

K(A1, B) ⊕ ˜E2
K(A2, B).

Algorithm 1. PMAC3

� Main Procedure PMAC3[ẼK](M)

1: M∗ ← ozp(M); (A1, A2, B) ← PHASH3[ẼK](M∗)
2: T1 ← Ẽ1

K(A1, B); T2 ← Ẽ2
K(A2, B); T ← T1 ⊕ T2; return msbτ (T)

� Subroutine PHASH3[ẼK](M∗)

1: M1, . . . , Mm
b+r←−− M∗; A ← 0b; B ← 0b

2: for i = 1, . . . , m do

3: (Li, Ri)
b,r←−− (Mi); Ci ← Ẽ0

K(strc(i)‖Ri, Li); A ← A ⊕ Ci; B ← 2 · (B ⊕ Ci)
4: end for
5: A1 ← msbt(A) ⊕ (⊕m

i=1(0
c‖Ri)

)
; A2 ← lsbt(A) ⊕ (⊕m

i=1(0
c‖Ri)

)
; return

(A1, A2, B)

2 2

C1

1

0b

0b

2

2

m

2

t

t

T

L1 R1 L2 R2 Lm Rm
(0c||Ri)

C2 Cm

~
E0
K

~
E0
K

~
E0
K

~
E1
K

~
E2
K

A

B
A1

A2

(0c||Ri)

Fig. 1. PMAC3. M1, . . . , Mm
b+r←−− ozp(M). (Li, Ri)

b,r←−− (Mi). ⊗ is a multiplication
over GF (2b).

Specification. The specification of PMAC3 is given in Algorithm 1 and Fig. 1.

Security Bound. The PRF-security bound of PMAC3 is given below.

Theorem 1. Assume that b ≥ 2 and m ≤ 2b −2. Let A be an adversary making
q queries. Then we have Advprf

PMAC3[˜P]
(A) ≤ 2q2

2b+min{2t,b} + 7q3

22b+min{2t,b} .

4 Proof of Theorem1

Without loss of generality, we assume that an adversary A is deterministic
and makes no repeated query. This proof uses the following notations. For
each α ∈ [q], values and variables defined at the α-th query are denoted by

A Highly Secure MAC from Tweakable Blockciphers 595

Fig. 2. Main game.

using the superscript character of α such as Aα
1 , Aα

2 , Bα, etc, and the message
length m at the α-th query is denoted by mα. Let M := {Mα|α ∈ [q]} be
the set of all queries. For distinct messages Mα,Mβ ∈ M, let I(Mα,Mβ) =
{I ∈ [max{mα,mβ}]|Mα

i 	= Mβ
i } be the set of indexes such that the corre-

sponding message blocks are distinct, where if mα < mβ then Mα
i := λ for

i = mα +1, . . . ,mβ (and if mα > mβ then Mβ
i := λ for i = mβ +1, . . . ,mα). Let

ηm
i := 2m−i+1. For two variables Cα

i , Cβ
j corresponding with distinct messages

Mα, Mβ ∈ M, we use the following three terms, same, distinct and independent,
with respect to the relation between these variables.

– The i-th variable Cα
i and the j-th variable Cβ

j are the same, denoted
by Cα

i
same= Cβ

j if the corresponding tweaks and input-blocks are the
same, i.e., (strc(i)‖Rα

i , Lα
i) = (strc(j)‖Rα

j , Lα
j). In this case, Cα

i = Cβ
j =

˜P 0(strc(i)‖Rα
i , Lα

i).
– The i-th variable Cα

i and the j-th variable Cβ
j are distinct, denoted by

Cα
i

dist

	= Cβ
j , if the corresponding tweaks are the same and the input-blocks

are distinct, i.e., (strc(i)‖Rα
i) = (strc(j)‖Rβ

j) and Lα
i 	= Lβ

j . In this case,
these variables are defined by the same RP ˜P 0(strc(i)‖Rα

i , ·) with distinct
input-blocks, thus become distinct.

– The i-th variable Cα
i and the j-th variable Cβ

j are independent, denoted

by Cα
i

ind

	= Cβ
j , if the corresponding tweaks are distinct. In this case, these

variables are defined by independent RPs, thus chosen independently.

4.1 Proof Strategy and Security Bound

This proof largely depends on the so-called game-playing technique [2]. In this
proof, a TRP with tweak 0 (˜P 0) is defined before starting the game, and TRPs

596 Y. Naito

Fig. 3. Cases A, B and C. The boxed statements are removed in the ideal world.

with tweak 1 or 2 (˜P 1 and ˜P 2) are realized by lazy sampling. Before starting
the main game, for each of i ∈ [2], all responses of ˜P i are not defined, that is,
∀V ∈ {0, 1}t,W ∈ {0, 1}b : ˜P i(V,W) =⊥. When ˜P i(V,W) becomes necessary,

it is defined as ˜P i(V,W) $←− {0, 1}b\ ˜P i(V, ∗) if ˜P i(V,W) =⊥; it is not updated
otherwise. For i = 1, 2 and V ∈ {0, 1}t, let ˜P i(V, ∗) := { ˜P i(V,W)|W ∈ {0, 1}b ∧
˜P i(V,W) 	=⊥} be the set of outputs of ˜P i with the tweak V .

The initialization and the main game are defined in Fig. 2. The initialization
is performed before starting the main game. In the main game, three cases are
considered, and these procedures are defined in Fig. 3. Let bad := badA ∨ badB ∨
badC.

– Case A is performed when inputs to both ˜P 1 and ˜P 2 are not new, i.e., ∃β, γ ∈
[α − 1] s.t. (Aα

1 , Bα) = (Aβ
1 , Bβ) and (Aα

2 , Bα) = (Aγ
2 , Bγ). When including

the boxed statements, TRPs are simulated, and when removing the boxed
statements, Tα is chosen uniformly at random from {0, 1}b.

– Case B is performed when an input to either ˜P 1 or ˜P 2 is not new, i.e., either

A Highly Secure MAC from Tweakable Blockciphers 597

• ∃β ∈ [α − 1] s.t. (Aα
1 , Bα) = (Aβ

1 , Bβ) ∧ ∀γ ∈ [α − 1]\{β} : (Aα
2 , Bα) 	=

(Aγ
2 , Bγ), or

• ∃γ ∈ [α − 1] s.t. (Aα
2 , Bα) 	= (Aβ

2 , Bβ) ∧ ∀β ∈ [α − 1]\{γ} : (Aα
1 , Bα) =

(Aγ
1 , Bγ).

When including the boxed statement, TRPs are simulated: an output of ˜P j2 ,
Tα

j2
is chosen uniformly at random from {0, 1}b\ ˜P j2(Aα

j2
, ∗). When removing

the boxed statement, Tα
j2

is chosen uniformly at random from {0, 1}b, thereby
Tα is chosen uniformly at random from {0, 1}b.

– Case C is performed when inputs to both ˜P 1 and ˜P 2 are new, i.e.,
• ∀β, γ ∈ [α − 1] : (Aα

1 , Bα) 	= (Aβ
1 , Bβ) ∧ (Aα

2 , Bα) 	= (Aγ
2 , Bγ).

When including the boxed statement, the TRPs are simulated: for each i ∈ [2],
Tα

i is chosen uniformly at random from {0, 1}b\ ˜P i(Aα
i , ∗). When removing

the boxed statement, either Tα
1 or Tα

2 is chosen uniformly at random from
{0, 1}b, thereby Tα is chosen uniformly at random from {0, 1}b.

Thus, the procedures with the boxed statements realize the real world, and the
procedure without the boxed statements realize the ideal world.

By the fundamental lemma of game-playing [2], we have Advprf

F [˜P]
(A) ≤

Pr[bad] ≤ Pr[badA] + Pr[badB] + Pr[badC]. In Subsect. 4.2, Pr[badA] is upper-
bounded, in Subsect. 4.3, Pr[badB] is upper-bounded, and in Subsect. 4.4,
Pr[badC] is upper-bounded. Summing these upper-bounds (1) (7) (8) gives the
one in Theorem 1.

4.2 Upper-Bounding Pr[badA]

badA occurs if and only if
Case A1: ∃Mα,Mβ ∈ M s.t. Aα

1 = Aβ
1 ∧ Aα

2 = Aβ
2 ∧ Bα = Bβ , or

Case A2: ∃Mα,Mβ ,Mγ ∈ M s.t. Aα
1 = Aβ

1 ∧ Bα = Bβ ∧ Aα
2 = Aγ

2 ∧ Bα =
Bγ ,

where α, β, γ ∈ [q] are distinct. The following lemmas give the upper-bounds
of the probabilities that Case A1 occurs and that Case A2 occurs.

Lemma 1 (Case A1). For any distinct messages Mα,Mβ ∈ M where α, β ∈
[q], Pr

[

Aα
1 = Aβ

1 ∧ Aα
2 = Aβ

2 ∧ Bα = Bβ
]

≤ 4
2b+min{2t,b} .

Lemma 2 (Case A2). For any distinct messages Mα,Mβ ,Mγ ∈ M where
α, β, γ ∈ [q], Pr[Aα

1 = Aβ
1 ∧ Bα = Bβ ∧ Aα

2 = Aγ
2 ∧ Bα = Bγ] ≤ 16

22b+min{2t,b} .

These upper-bounds give Pr[badA] ≤
(

q

2

)

· 4
2b+min{2t,b} +

(

q

3

)

· 16
22b+min{2t,b} ≤ 2q2

2b+min{2t,b} +
8/3 · q3

22b+min{2t,b} . (1)

Proof of Lemma 1. Let Mα,Mβ ∈ M be distinct messages and mα ≥ mβ . In
this proof, the probability pA1 := Pr[Aα

1 = Aβ
1 ∧ Aα

2 = Aβ
2 ∧ Bα = Bβ] is upper-

bounded, which is the probability that the hash collision PHASH3[˜P](Mα) =

598 Y. Naito

PHASH3[˜P](Mβ) occurs. The collisions Aα
1 = Aβ

1 , Aα
2 = Aβ

2 , Bα = Bβ are of the
forms

mα
⊕

i=1

(

msbt

(

Cα
i

)

⊕
(

0c‖Rα
i

))

=
mβ
⊕

i=1

(

msbt

(

Cβ
i

)

⊕
(

0c‖Rβ
i

))

,

mα
⊕

i=1

(

lsbt

(

Cα
i

)

⊕
(

0c‖Rα
i

))

=
mβ
⊕

i=1

(

lsbt

(

Cβ
i

)

⊕
(

0c‖Rβ
i

))

,

mα
⊕

i=1

ηmα
i · Cα

i =
mβ
⊕

i=1

η
mβ

i · Cβ
i .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2)

Let Cα
j1

, Cα
j2

be two variables that appear in (2). Using these variables, for
some v ∈ {0, 1} and w1, w2 ∈ GF (2b)∗\{1}, the equations in (2) are written as

msbt

(

v ·Cα
j1 ⊕Cα

j2

)

= δ∗
A,1, lsbt

(

v ·Cα
j1 ⊕Cα

j2

)

= δ∗
A,2, w1 ·Cα

j1 ⊕w2 ·Cα
j2 = δ∗

B , (3)

respectively, where δ∗
A,1 := Aα

1 ⊕ Aβ
1 ⊕ msbt(v · Cα

j1
⊕ Cα

j2
), δ∗

A,2 := Aα
2 ⊕ Aβ

2 ⊕
lsbt(v · Cα

j1
⊕ Cα

j2
), and δ∗

B := Bα ⊕ Bβ ⊕ (w1 · Cα
j1

⊕ w2 · Cα
j2

).
Assume that the following conditions are satisfied:

– (A1-1) Fixing the variables in (2) except for (Cα
j1

, Cα
j2

), (δ∗
A,1, δ

∗
A,2, δ

∗
B) in (3)

is defined;

– (A1-2) Cα
j1

ind

	= Cα
j2

;
– (A1-3) Fixing the variables except for (Cα

j1
, Cα

j2
), the system (3) without

msbt and lsbt, i.e., the following one has a unique solution for (Cα
j1

, Cα
j2

):
v ·Cα

j1
⊕Cα

j2
= δ∗

A, w1 ·Cα
j1

⊕w2 ·Cα
j2

= δ∗
B , where δ∗

A = Aα⊕Aβ ⊕(v ·Cα
j1

⊕Cα
j2

).

By the condition (A1-1), we have

pA1 ≤ max
δA,1,δA,2,δB

Pr

⎡

⎣

msbt

(

v · Cα
j1 ⊕ Cα

j2

)

= δA,1, lsbt

(

v · Cα
j1 ⊕ Cα

j2

)

= δA,2,

w1 · Cα
j1 ⊕ w2 · Cα

j2 = δB

⎤

⎦

≤ 2b−min{2t,b} · max
δA,δB

Pr
[

v · Cα
j1 ⊕ Cα

j2 = δA, w1 · Cα
j1 ⊕ w2 · Cα

j2 = δB

]

︸ ︷︷ ︸

SA1

.

By the conditions (A1-2), (A1-3), the system SA1 offers a unique solution for
(Cα

j1
, Cα

j2
). As these variables are chosen uniformly at random from {0, 1}b\{Cβ

j1
}

and {0, 1}b\{Cβ
j2

}, respectively, we have pA1 ≤ 2b−min{2t,b}· 1
(2b−1)2

≤ 4
2b+min{2t,b} .

Hence, the remaining work is to show that the system (3) with the con-
ditions (A1-1), (A1-2) and (A1-3) can be constructed. To show this, messages
Mα,Mβ are categorized into the following three types. We show that for the
type-1, the system (3) cannot be constructed and pA1 = 0, and for each of the
type-2 and type-3, the system can be constructed.

A Highly Secure MAC from Tweakable Blockciphers 599

• Type-1 (mα = mβ ∧ |I(Mα,Mβ)| = 1) Let I(Mα,Mβ) = {I}, i.e.,
(Lα

i , Rα
i) 	= (Lβ

i , Rβ
i). If the output collision, Cα

i = Cβ
i occurs, then the

corresponding tweaks are distinct, i.e., (strc(i)‖Rα
i) 	= (strc(i)‖Rβ

i). Hence,
Aα

1 ⊕ Aβ
1 = (0c‖Rα

i) ⊕ (0c‖Rβ
i) 	= 0b, thus pA1 = 0. If Cα

i 	= Cβ
i , then

Bα ⊕ Bβ = ηmα
i · (Cβ

i ⊕ Cα
i) 	= 0b, thus pA1 = 0.

• Type-2 (mα = mβ ∧ |I(Mα,Mβ)| ≥ 2) Let i1, i2 ∈ I(Mα,Mβ) with i1 	= i2.

In this case, Cα
i1

ind

	= Cα
i2

, thus (A1-2) is satisfied. Using the variables, the
system (2) is written as
– msbt(Cα

i1
⊕ Cα

i2
) = δ∗

A,1, lsbt(Cα
i1

⊕ Cα
i2

) = δ∗
A,2, ηmα

i1
· Cα

i1
⊕ ηmα

i2
· Cα

i2
=

δ∗
B , where δ∗

A,1, δ
∗
A,2, δ

∗
B are defined as (3). Thus (A1-1) is satisfied. Fixing

the variables except for (Cα
i1

, Cα
i2

), the above system without msbt and lsbt

offers a unique solution for (Cα
i1

, Cα
i2

), and thus (A1-3) is satisfied. Hence, the
system (3) with (A1-1), (A1-2), (A1-3) can be constructed.

• Type-3 (mα > mβ) In this case, mα ∈ I(Mα,Mβ) and mα 	= 1, thus

Cα
1

ind

	= Cα
mα

and (A1-2) is satisfied. Using these variables, the system (2) is
written as
– msbt(v·Cα

1 ⊕Cα
mα

) = δ∗
A,1, lsbt(v·Cα

1 ⊕Cα
mα

) = δ∗
A,2, w1·Cα

1 ⊕ηmα
mα

·Cα
mα

= δ∗
B,

where δ∗
A,1, δ

∗
A,2, δ

∗
B are defined as (3), and (v, w1) = (0, ηmα

1 ⊕ η
mβ

1) if
Cα

1
same= Cβ

1 ; (v, w1) = (1, ηmα
1) otherwise. Thus, (A1-1) is satisfied. Fix-

ing the variables except for (Cα
1 , Cα

mα
), the above system without msbt and

lsbt offers a unique solution for (Cα
1 , Cα

mα
), thus (A1-3) is satisfied. Hence,

the system (3) with (A1-1), (A1-2), (A1-3) can be constructed.

��
Proof of Lemma 2. Let Mα,Mβ ,Mγ ∈ M be three distinct messages. In this
proof, the probability pA2 := Pr[Aα

1 = Aβ
1 ∧ Bα = Bβ ∧ Aα

2 = Aγ
2 ∧ Bα = Bγ] is

upper-bounded, where Aα
1 = Aβ

1 and Bα = Bβ are of the forms:

mα
⊕

i=1

(

msbt

(

Cα
i

)

⊕
(

0c‖Rα
i

))

=
mβ
⊕

i=1

(

msbt

(

Cβ
i

)

⊕
(

0c‖Rβ
i

))

mα
⊕

i=1

ηmα
i · Cα

i =
mβ
⊕

i=1

η
mβ

i · Cβ
i ,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(4)

and Aα
2 = Aγ

2 and Bα = Bγ are of the forms:

mα
⊕

i=1

(

lsbt

(

Cα
i

)

⊕
(

0c‖Rα
i

))

=
mγ
⊕

i=1

(

lsbt

(

Cγ
i

)

⊕
(

0c‖Rγ
i

))

mα
⊕

i=1

ηmα
i · Cα

i =
mγ
⊕

i=1

η
mγ

i · Cγ
i .

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(5)

Let Cx1
j1

, Cx2
j2

, Cx3
j3

, Cx4
j4

be such that x1, x2 ∈ {α, β}, x3, x4 ∈ {α, γ}, Cx1
j1

, Cx2
j2

appear in (4), and Cx3
j3

, Cx4
j4

appear in (5). Using these variables, for some v2, v4 ∈

600 Y. Naito

{0, 1} and w1, w2, w3, w4 ∈ GF (2b)∗\{1}, (4), (5) are written as

msbt

(

Cx1
j1

⊕ v2 · Cx2
j2

)

= δ∗
A,1, w1 · Cx1

j1
⊕ w2 · Cx2

j2
= δ∗

B,1,

lsbt

(

Cx3
j3

⊕ v4 · Cx4
j4

)

= δ∗
A,2, w3 · Cx3

j3
⊕ w4 · Cx4

j4
= δ∗

B,2,

⎫

⎪

⎬

⎪

⎭

(6)

where δ∗
A,1 := Aα

1 ⊕Aβ
1⊕msbt(Cx1

j1
⊕v2·Cx2

j2
), δ∗

B,1 := Bα⊕Bβ⊕(w1·Cx1
j1

⊕w2·Cx2
j2

),
δ∗
A,2 := Aα

2 ⊕Aγ
2 ⊕ lsbt(Cx3

j3
⊕v4 ·Cx4

j4
), and δ∗

B,2 := Bα⊕Bγ ⊕(w3 ·Cx3
j3

⊕w4 ·Cx4
j4

).
Assume that the following conditions are satisfied:

– (A2-1) Fixing the variables in (4) except for (Cx1
j1

, Cx2
j2

), (δ∗
A,1, δ

∗
B,1) in (6)

are defined, and fixing the variables in (5) except for (Cx3
j3

, Cx4
j4

), (δ∗
A,2, δ

∗
B,2)

in (6) are defined;
– (A2-2) At least three of (Cx1

j1
, Cx2

j2
, Cx3

j3
, Cx4

j4
) are distinct or independent;

– (A2-3) Fixing (δ∗
A,1, δ

∗
B,1), the top system in (6) without msbt, i.e., the fol-

lowing one offers a unique solution for (Cx1
j1

, Cx2
j2

): Cx1
j1

⊕ v2 · Cx2
j2

= δ∗∗
A,1 and

w1 · Cx1
j1

⊕ w2 · Cx2
j2

= δ∗
B,1, where δ∗∗

A,1 := Aα ⊕ Aβ ⊕ (Cx1
j1

⊕ v2 · Cx2
j2

);
– (A2-4) Fixing δ∗

A,2, δ
∗
B,2, the bottom system in (6) without lsbt, i.e., the

following one offers a unique solution for (Cx3
j3

, Cx4
j4

): Cx3
j3

⊕ v4 · Cx4
j4

= δ∗∗
A,2

and w3 · Cx3
j3

⊕ w4 · Cx4
j4

= δ∗
B,2, where δ∗∗

A,2 := Aα ⊕ Aβ ⊕ (Cx3
j3

⊕ v4 · Cx4
j4

).

By the condition (A2-1), pA2 ≤

max
δA,1,δA,2,
δB,1,δB,2

Pr

⎡

⎢

⎣

msbt

(

Cx1
j1

⊕ v2 · Cx2
j2

)

= δA,1, w1 · Cx1
j1

⊕ w2 · Cx2
j2

= δB,1

lsbt

(

Cx3
j3

⊕ v4 · Cx4
j4

)

= δA,2, w3 · Cx3
j3

⊕ w4 · Cx4
j4

= δB,2

⎤

⎥

⎦

︸ ︷︷ ︸

SA2,1

.

By the condition (A2-2), the following two cases are considered.

– If three of (Cx1
j1

, Cx2
j2

, Cx3
j3

, Cx4
j4

) are distinct or independent (i.e., two of these
variables are the same), then pA2 ≤ 2b−min{2t,b} · X1 where

X1 = max
δ′

A,1,δ′
A,2,

δB,1,δB,2

Pr

[

Cx1
j1

⊕ v2 · Cx2
j2

= δ′
A,1, w1 · Cx1

j1
⊕ w2 · Cx2

j2
= δB,1

Cx3
j3

⊕ v4 · Cx4
j4

= δ′
A,2, w3 · Cx3

j3
⊕ w4 · Cx4

j4
= δB,2

]

︸ ︷︷ ︸

SA2,2

.

By the conditions (A2-3), (A2-4), the top system in SA2,2 offers a unique solu-
tion for (Cx1

j1
, Cx2

j2
), and the bottom one offers a unique solution for (Cx3

j3
, Cx4

j4
).

These variables are chosen uniformly at random from at least 2b − 2 b-bit
strings. We thus have pA2 ≤ 2b−min{2t,b} · 1

(2b−2)3
≤ 8

22b+min{2t,b} , assuming
2 ≤ b.

– If all of (Cx1
j1

, Cx2
j2

, Cx3
j3

, Cx4
j4

) are distinct or independent, then pA2 ≤
22(b−min{t,b}) · X2, where

X2 = max
δ′

A,1,δ′
A,2,

δB,1,δB,2

Pr

[

Cx1
j1

⊕ v2 · Cx2
j2

= δ′
A,1, w1 · Cx1

j1
⊕ w2 · Cx2

j2
= δB,1

Cx3
j3

⊕ v4 · Cx4
j4

= δ′
A,2, w3 · Cx3

j3
⊕ w4 · Cx4

j4
= δB,2

]

︸ ︷︷ ︸

SA2,3

.

A Highly Secure MAC from Tweakable Blockciphers 601

By the conditions (A2-3), (A2-4), the top system in SA2,3 offers a unique solu-
tion for (Cx1

j1
, Cx2

j2
), and the bottom one offers a unique solution for (Cx3

j3
, Cx4

j4
).

These variables are chosen uniformly at random from at least 2b − 2 b-bit
strings. We thus have pA2 ≤ 22(b−min{t,b}) · 1

(2b−2)4
≤ 16

22(b+min{t,b}) , assuming
2 ≤ b.

By the above upper-bounds, we have pA2 ≤ max
{

16
22(b+min{t,b}) ,

8
22b+min{2t,b}

}

≤ 16
22b+min{2t,b} .
Hence, the remaining work is to show that the system (6) with the condi-

tions (A2-1), (A2-2), (A2-3), (A2-4) can be constructed. To show this, messages
Mα,Mβ ,Mγ are categorized into the following 10 types. The types-1–5 are such
that mα is equal to mβ or mγ . The types-6–8 are such that mα 	= mβ = mγ .
The remaining types-9–10 are such that mα,mβ ,mγ are distinct. Hereafter, we
show that for each of the types-1 and -2, the system (6) cannot be constructed
and pA2 = 0, and for each of the types-3–10, the system (6) with the condi-
tions (A2-1), (A2-2), (A2-3), (A2-4) can be constructed.

• Type-1 (mα = mβ ∧ |I(Mα,Mβ)| = 1) Let I(Mα,Mβ) = {I}, i.e.,
(Lα

i , Rα
i) 	= (Lβ

i , Rβ
i). If the output collision, Cα

i = Cβ
i occurs, then the

corresponding tweaks are distinct, i.e.,
(

Rα
i ‖strc(i)

)

	=
(

Rβ
i ‖strc(i)

)

. Hence,

Aα
1 ⊕ Aβ

1 =
(

0c‖Rα
i

)

⊕
(

0c‖Rβ
i

)

	= 0b, and pA2 = 0. If Cα
i 	= Cβ

i , then

Bα ⊕ Bβ = ηmα
i ·

(

Cβ
i ⊕ Cα

i

)

	= 0b, thus pA2 = 0.
• Type-2 (mα = mγ ∧ |I(Mα,Mγ)| = 1) Since the calculations of A1 and A2

are symmetry by msbt and lsbt, this analysis is the same as the type-1, thus
pA2 = 0.

• Type-3 (mα = mβ 	= mγ ∧ |I(Mα,Mβ)| ≥ 2) Let i1, i2 ∈ I(Mα,Mβ) with
i1 < i2. This analysis uses three variables (Cα

i1
, Cβ

i2
, Cx

mx
), where x = α if

mα > mγ ; x = γ if mα < mγ . (Cα
i1

, Cβ
i2

, Cx
mx

) are independent or distinct.
Thus (A2-2) is satisfied. Using the variables,
– (4) is written as msbt(Cα

i1
⊕ Cβ

i2
) = δ∗

A,1, ηmα
i1

· Cα
i1

⊕ η
mβ

i2
· Cβ

i2
= δ∗

B,1, and
– (5) is written as lsbt(v4 · Cα

i1
⊕ Cx

mx
) = δ∗

A,2, w4 · Cα
i1

⊕ ηmx
mx

· Cx
mx

= δ∗
B,2,

where δ∗
A,1, δ

∗
B,1, δ

∗
A,2, δ

∗
B,2 are defined as (6), and (v4, w4) = (0, ηmα

i1
⊕

η
mγ

i1
) if Cα

i1

same= Cγ
i1

; (v4, w4) = (1, ηmα
i1

) otherwise. In this case, fixing the
variables in (4) except for (Cα

i1
, Cβ

i2
), (δ∗

A,1, δ
∗
B,1) can be defined, and fixing

the variables in (5) except for (Cα
i1

, Cx
mx

), (δ∗
A,2, δ

∗
B,2) can be defined. Thus,

(A2-1) is satisfied. Removing msbt, lsbt and fixing the variables except for
(Cα

i1
, Cβ

i2
) and (Cα

i1
, Cx

mx
), the system from (4) offers a unique solution for

(Cα
i1

, Cβ
i2

), and the one from (5) offers a unique solution for (Cα
i1

, Cx
mx

), thus
(A2-3) and (A2-4) are satisfied. Hence, the system (6) with (A2-1), (A2-
2), (A2-3), (A2-4) can be constructed.

• Type-4 (mα = mγ 	= mβ ∧ |I(Mα,Mγ)| ≥ 2) Since the calculations of A1

and A2 are symmetry by msbt and lsbt, this analysis is the same as the type-3,
thus the system (6) with (A2-1), (A2-2), (A2-3), (A2-4) can be constructed.

602 Y. Naito

• Type-5 (mα = mβ = mγ ∧|I(Mα,Mβ)| ≥ 2∧|I(Mα,Mγ)| ≥ 2) In this case,
by I(Mβ ,Mγ) 	= ∅ (since Mβ 	= Mγ), there exist indexes i1, i2 ∈ I(Mα,Mβ)

and i3, i4 ∈ I(Mα,Mγ) such that i1 < i2, i3 < i4 (thus, Cβ
i1

ind

	= Cβ
i2

and

Cγ
i3

ind

	= Cγ
i4

), and at least three of (Cβ
i1

, Cβ
i2

, Cγ
i3

, Cγ
i4

) are distinct or indepen-
dent.2 Thus, (A2-2) is satisfied. Using these variables,
– (4) is written as msbt(C

β
i1

⊕ Cβ
i2

) = δ∗
A,1, ηmα

i1
· Cβ

i1
⊕ ηmα

i2
· Cβ

i2
= δ∗

B,1, and
– (5) is written as lsbt(C

γ
i3

⊕ Cγ
i4

) = δ∗
A,2, η

mγ

i3
· Cγ

i3
⊕ η

mγ

i4
· Cγ

i4
= δ∗

B,2,
where δ∗

A,1, δ
∗
B,1, δ

∗
A,2, δ

∗
B,2 are defined as (6). In this case, fixing the vari-

ables in (4) except for (Cβ
i1

, Cβ
i2

), (δ∗
A,1, δ

∗
B,1) are defined, and fixing the vari-

ables in (5) except for (Cγ
i3

, Cγ
i4

) (δ∗
A,2, δ

∗
B,2) are defined. Thus (A2-1) is sat-

isfied. Removing msbt, lsbt and fixing the variables except for (Cβ
i1

, Cβ
i2

) and
(Cγ

i3
, Cγ

i4
), the top system offers a unique solution for (Cβ

i1
, Cβ

i2
), and the

bottom one offers a unique solution for (Cγ
i3

, Cγ
i4

). Thus (A2-3), (A2-4) are
satisfied. Hence, the system (6) with (A2-1), (A2-2), (A2-3), (A2-4) can be
constructed.

• Type-6 (mα < mβ = mγ ∧ mβ 	∈ I(Mβ ,Mγ)) Let i ∈ I(Mβ ,Mγ) with
i 	= mβ . This analysis uses variables Cβ

i , Cγ
i , Cβ

mβ
(same= Cγ

mβ
) that are inde-

pendent or distinct. Thus, (A2-2) is satisfied. Using these variables,
– (4) is written as msbt(v2 · Cβ

i ⊕ Cβ
mβ

) = δ∗
A,1, w2 · Cβ

i ⊕ η
mβ
mβ · Cβ

mβ
= δ∗

B,1,
– (5) is written as lsbt(v4 · Cγ

i ⊕ Cβ
mβ

) = δ∗
A,2, w4 · Cγ

i ⊕ η
mβ
mβ · Cβ

mβ
= δ∗

B,2,
where (δ∗

A,1, δ
∗
B,1, δ

∗
A,2, δ

∗
B,2) are defined as (6), (v2, w2) = (0, ηmα

i ⊕ η
mβ

i) if
Cα

i
same= Cβ

i ; (v2, w2) = (1, ηmβ

i) otherwise, and (v4, w4) = (0, ηmα
i ⊕ η

mβ

i) if
Cα

i
same= Cγ

i ; (v4, w4) = (1, ηmβ

i) otherwise. In this case, fixing the variables
in (4) except for (Cβ

i , Cβ
mβ

), (δ∗
A,1, δ

∗
B,1) are defined, and fixing the variables

in (5) except for (Cγ
i , Cβ

mβ
), (δ∗

A,2, δ
∗
B,2) are defined. Thus (A2-1) is satis-

fied. Removing msbt, lsbt and fixing the variables except for (Cβ
i , Cβ

mβ
) and

Cγ
i , Cβ

mβ
, the system from (4) offers a unique solution for (Cβ

i , Cβ
mβ

), and the
one from (5) offers a unique solution for (Cγ

i , Cβ
mβ

). Thus (A2-3) and (A2-4)
are satisfied. Hence, the system (6) with (A2-1), (A2-2), (A2-3), (A2-4) can
be constructed.

• Type-7 (mα < mβ = mγ ∧ mβ ∈ I(Mβ ,Mγ)) This analysis uses variables
(Cβ

1 , Cγ
1 , Cβ

mβ
, Cγ

mγ
), where (Cβ

1 or Cγ
1), Cβ

mβ
, and Cγ

mβ
are distinct or inde-

pendent (Cβ
1 and Cγ

1 are any of the same, distinct or independent). Thus,
(A2-2) is satisfied. Using the variables,
– (4) is written as msbt(v2 · Cβ

1 ⊕ Cβ
mβ

) = δ∗
A,1, w2 · Cβ

1 ⊕ η
mβ
mβ · Cβ

mβ
= δ∗

B,1,

2 If I(Mα, Mβ) = {I1, i2}, I(Mα, Mγ) = {I3, i4} and i1 = i3 < i2 = i4, then by Mβ �=
Mγ , i1 ∈ I(Mβ , Mγ) or i2 ∈ I(Mβ , Mγ). Thus, Cβ

I1
, Cβ

i2
and Cγ

i3
are distinct or

independent, or Cβ
i1

, Cβ
i2

and Cγ
i4

are distinct or independent. Otherwise, there exist

i1, i2 ∈ I(Mα, Mβ) and i3, i4 ∈ I(Mα, Mγ) such that at least three of (i1, i2, i3, i4)
are distinct, thus at least three of (Cβ

i1
, Cβ

i2
, Cγ

i3
, Cγ

i4
) are independent.

A Highly Secure MAC from Tweakable Blockciphers 603

– (5) is written as lsbt(v4 · Cγ
1 ⊕ Cγ

mβ
) = δ∗

A,2, w4 · Cγ
1 ⊕ η

mβ
mβ · Cγ

mβ
= δ∗

B,2,
where (δ∗

A,1, δ
∗
B,1, δ

∗
A,2, δ

∗
B,2) are defined as (6), (v2, w2) = (0, ηmα

1 ⊕ η
mβ

1) if
Cα

1
same= Cβ

1 ; (v2, w2) = (1, ηmβ

1) otherwise, and (v4, w4) = (0, ηmα
1 ⊕ η

mβ

1) if
Cα

1
same= Cγ

1 ; (v4, w4) = (1, ηmβ

1) otherwise. In this case, fixing the variables
in (4) except for (Cβ

1 , Cβ
mβ

), (δ∗
A,1, δ

∗
B,1) can be defined, and fixing the vari-

ables in (5) except for (Cγ
1 , Cγ

mβ
), (δ∗

A,2, δ
∗
B,2) can be defined. Thus (A2-1) is

satisfied. Removing msbt, lsbt and fixing the variables except for (Cβ
1 , Cβ

mβ
)

and (Cγ
1 , Cγ

mβ
), the system from (4) offers a unique solution for (Cβ

1 , Cβ
mβ

),
and the one from (5) offers a unique solution for (Cγ

1 , Cγ
mβ

). Thus (A2-3), (A2-
4) are satisfied. Hence, the system (6) with (A2-1), (A2-2), (A2-3), (A2-4) can
be constructed.

• Type-8 (mα > mβ = mγ) Let i ∈ I(Mβ ,Mγ). This analysis uses variables
Cβ

i , Cγ
i and Cα

mα
that are distinct or independent. Thus (A2-2) is satisfied.

Using the variables,
– (4) is written as msbt(v2 · Cβ

i ⊕ Cα
mα

) = δ∗
A,1, w2 · Cβ

i ⊕ ηmα
mα

· Cα
mα

= δ∗
B,1,

– (5) is written as lsbt(v4 · Cγ
i ⊕ Cα

mα
) = δ∗

A,2, w4 · Cγ
i ⊕ ηmα

mα
· Cα

mα
= δ∗

B,2,
where (δ∗

A,1, δ
∗
B,1, δ

∗
A,2, δ

∗
B,2) are defined as (6), (v2, w2) = (0, ηmα

i ⊕ η
mβ

i) if
Cα

i
same= Cβ

i ; (v2, w2) = (1, ηmβ

i) otherwise, and (v4, w4) = (0, ηmα
i ⊕ η

mβ

i) if
Cα

i
same= Cγ

i ; (v4, w4) = (1, ηmβ

i) otherwise. In this case, fixing the variables
in (4) except for (Cβ

i , Cα
mα

), (δ∗
A,1, δ

∗
B,1) are defined, and fixing the variables

in (5) except for (Cγ
i , Cα

mα
), (δ∗

A,2, δ
∗
B,2) are defined. Thus (A2-1) is satis-

fied. Removing (msbt, lsbt) and fixing the variables except for (Cβ
i , Cα

mα
) and

(Cγ
i , Cα

mα
), the system from (4) offers a unique solution for (Cβ

i , Cα
mα

), and
the one from (5) offers a unique solution for (Cγ

i , Cα
mα

). Thus (A2-3), (A2-4)
are satisfied. Hence, the system (6) with (A2-1), (A2-2), (A2-3), (A2-4) can
be constructed.

• Type-9 (mα 	= mγ < mβ) This analysis uses variables Cα
1 , Cx

mx
, Cβ

2 and
Cβ

mβ
, where x = α if mα > mγ ; x = γ if mα < mγ . Cα

1 , (Cx
mx

or Cβ
2) and

Cβ
mβ

are independent, since 2 ≤ mx < mβ (Cx
mx

and Cβ
2 are any of the same,

distinct or independent). Thus (A2-2) is satisfied. Using the variables,
– (4) is written as msbt(v2 · Cβ

2 ⊕ Cβ
mβ

) = δ∗
A,1, w2 · Cβ

2 ⊕ η
mβ
mβ · Cβ

mβ
= δ∗

B,1,
– (5) is written as lsbt(v4 · Cα

1 ⊕ Cx
mx

) = δ∗
A,2, w4 · Cα

1 ⊕ ηmx
mx

· Cx
mx

= δ∗
B,2,

where (δ∗
A,1, δ

∗
B,1, δ

∗
A,2, δ

∗
B,2) are defined as (6), (v2, w2) = (0, ηmα

2 ⊕ η
mβ

2) if
Cα

2
same= Cβ

2 ; (v2, w2) = (1, ηmβ

2) otherwise, and (v4, w4) = (0, ηmα
1 ⊕ η

mγ

1)
if Cα

1
same= Cγ

1 ; (v4, w4) = (1, ηmα
1) otherwise. In this case, fixing the vari-

ables in (4) except for (Cβ
2 , Cβ

mβ
), δ∗

A,1, δ
∗
B,1 are defined, and fixing the vari-

ables in (5) except for (Cα
1 , Cx

mx
), δ∗

A,2, δ
∗
B,2 are defined. Thus (A2-1) is sat-

isfied. Removing msbt, lsbt and fixing the variables except for (Cβ
2 , Cβ

mβ
) and

(Cα
1 , Cx

mx
), the system from (4) offers a unique solution for (Cβ

2 , Cβ
mβ

), and
the one from (5) offers a unique solution for (Cα

1 , Cx
mx

). Thus (A2-3), (A2-4)

604 Y. Naito

are satisfied. Hence, the system (6) with (A2-1), (A2-2), (A2-3), (A2-4) can
be constructed.

• Type-10 (mα 	= mβ < mγ) Since the calculations of A1 and A2 are sym-
metry, this analysis is the same as the type-9, thus the system (6) with (A2-
1), (A2-2), (A2-3), (A2-4) can be constructed.

��

4.3 Upper-Bounding Pr[badB]

First, fix α ∈ [q] and upper-bound the probability that A sets badB at the α-th
query, i.e, for some distinct j1, j2 ∈ [2], ˜P j1(Aα

j1
, Bα) 	=⊥, ˜P j2(Aα

j2
, Bα) =⊥ and

badB ← true.
The case where j1 = 1 and j2 = 2 is considered.

– ˜P 1(Aα
1 , Bα) 	=⊥ implies ∃β ∈ [α − 1] s.t. Aα

1 = Aβ
1 ∧ Bα = Bβ , and

– ˜P 2(Aα
2 , Bα) =⊥ ∧badB ← true implies ∃γ ∈ [α − 1] s.t. Aα

2 = Aγ
2 ∧ Bα 	=

Bγ ∧ Tα
2 = T γ

2 .

Note that by Bα = Bβ and Bα 	= Bγ , β 	= γ is satisfied. Regarding the con-
dition Tα

2 = T γ
2 , since Tα

2 is chosen uniformly at random from {0, 1}b, fixing
γ, the probability that the condition is satisfied is at most 1/2b. The remaining
conditions Aα

1 = Aβ
1 , Bα = Bβ and Aα

2 = Aγ
2 are considered in the following

lemma.

Lemma 3. For any distinct messages Mα,Mβ ,Mγ ∈ M,
Pr[Aα

1 = Aβ
1 ∧ Bα = Bβ ∧ Aα

2 = Aγ
2] ≤ 8

2b+min{2t,b} .

Due to the lack of space, the proof is omitted but is basically the same
as the proof of Lemma 2. The full proof is given in the full version of this
paper. Hence, the probability that at the α-th query, A sets badB is at most
∑

β,γ∈[α−1] s.t. β �=γ
1
2b · 8

2b+min{2t,b} .
Regarding the case where j1 = 2 and j2 = 1, since the calculations of A1 and

A2 are symmetry, this analysis is the same as the above one, thus the probability
that at the α-th query, A sets badB is at most

∑

β,γ∈[α−1] s.t. β �=γ
1
2b · 8

2b+min{2t,b} .
Finally, we have

Pr[badB] ≤ 2 ·
(

q

3

)

· 8
22b+min{2t,b} ≤ 8/3 · q3

22b+min{2t,b} . (7)

4.4 Upper-Bounding Pr[badC]

First, fix α ∈ [q] and upper-bound the probability that A sets badC at the α-th
query, i.e., ˜P 1(Aα

1 , Bα) =⊥, ˜P 2(Aα
2 , Bα) =⊥ and badC ← true.

– ˜P 1(Aα
1 , Bα) =⊥ ∧badC ← true implies ∃β ∈ [α − 1] s.t. Aα

1 = Aβ
1 ∧ Tα

1 = T β
1 ,

– ˜P 2(Aα
2 , Bα) =⊥ ∧badC ← true implies ∃γ ∈ [α − 1] s.t. Aα

2 = Aγ
2 ∧ Tα

2 = T γ
2 .

A Highly Secure MAC from Tweakable Blockciphers 605

Fix β, γ ∈ [α − 1]. Regarding the conditions Tα
1 = T β

1 and Tα
2 = T γ

2 , since
Tα
1 and Tα

2 are chosen uniformly at random from {0, 1}b, the probability that
the conditions are satisfied is 1/22b. In the following lemmas, the remaining
conditions Aα

1 = Aβ
1 and Aα

2 = Aγ
2 are considered.

Lemma 4. (β = γ) For any distinct messages Mα,Mβ ∈ M,
Pr[Aα

1 = Aβ
1 ∧ Aα

2 = Aβ
2] ≤ 2

2min{2t,b} .
(β 	= γ) For any distinct messages Mα,Mβ ,Mγ ∈ M,
Pr[Aα

1 = Aβ
1 ∧ Aα

2 = Aγ
2] ≤ 4

2min{2t,b} .

Due to the lack of space, the proof is omitted but is basically the same as
the proofs of Lemmas 1 and 2. The full proof is given in the full version of this
paper. Hence, the probability that A sets badC at the α-th query is at most

(α − 1) · 1
22b · 2

2min{2t,b} + 1
22b ·

∑

β,γ∈[α−1] s.t. β �=γ
4

2min{2t,b} .
Finally, we have Pr[badC] ≤

(

q

2

)

· 2
22b+min{2t,b} +

(

q

3

)

· 4
22b+min{2t,b} ≤ q2

22b+min{2t,b} +
2/3 · q3

22b+min{2t,b} . (8)

References

1. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

2. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. IACR Cryptology ePrint Archive 2004/331 (2004)

3. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: CCS 2016, pp. 456–467.
ACM (2016)

4. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 25

5. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of
PMAC Plus. IACR Trans. Symmetric Cryptol. 2017(4), 268–305 (2017)

6. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39887-5 11

7. Iwata, T., Minematsu, K.: Stronger security variants of GCM-SIV. IACR Trans.
Symmetric Cryptol. 2016(1), 134–157 (2016)

8. Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: a fast tweakable block
cipher mode for highly secure message authentication. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 34–65. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 2

9. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-319-63697-9_2
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15

606 Y. Naito

10. JTC1: ISO/IEC 9797–1:1999 Information technology—Security techniques—
Message Authentication Codes (MACs)—Part 1: mechanisms using a block cipher
(1999)

11. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

12. List, E., Nandi, M.: Revisiting Full-PRF-Secure PMAC and using it for beyond-
birthday authenticated encryption. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS,
vol. 10159, pp. 258–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-52153-4 15

13. List, E., Nandi, M.: ZMAC+ - an efficient variable-output-length variant of ZMAC.
IACR Trans. Symmetric Cryptol. 2017(4), 306–325 (2017)

14. Minematsu, K., Iwata, T.: Tweak-length extension for tweakable blockciphers. In:
Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 77–93. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-27239-9 5

15. Minematsu, K., Iwata, T.: Cryptanalysis of PMACx, PMAC2x, and SIVx. IACR
Trans. Symmetric Cryptol. 2017(2), 162–176 (2017)

16. Naito, Y.: Full PRF-secure message authentication code based on tweakable block
cipher. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 167–
182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4 9

17. Naito, Y.: Blockcipher-based MACs: beyond the birthday bound without message
length. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
446–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 16

18. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2 2

19. Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J. (ed.) CT-
RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5 25

20. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 34

https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-319-52153-4_15
https://doi.org/10.1007/978-3-319-52153-4_15
https://doi.org/10.1007/978-3-319-27239-9_5
https://doi.org/10.1007/978-3-319-26059-4_9
https://doi.org/10.1007/978-3-319-70700-6_16
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-642-11925-5_25
https://doi.org/10.1007/978-3-642-11925-5_25
https://doi.org/10.1007/978-3-642-22792-9_34

Short Papers

Witness Encryption with (Weak) Unique
Decryption and Message

Indistinguishability: Constructions
and Applications

Dongxue Pan1,2,3, Bei Liang4(B) , Hongda Li1,2,3, and Peifang Ni1,2,3

1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

2 State Key Lab of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

{pandongxue,lihongda,nipeifang}@iie.ac.cn
3 Data Assurance and Communication Security Research Center, CAS,

Beijing, China
4 Chalmers University of Technology, Gothenburg, Sweden

lbei@chalmers.se

Abstract. In this paper, we investigate WE scheme with the unique
decryption and message indistinguishability, as well as its compelling
applications. Our contributions are three-fold: (i) we first propose the
notion of WE with MI and weak unique decryption, and give a construc-
tion based on public-coin differing-inputs obfuscation (diO), pseudoran-
dom generator, and the Goldreich-Levin hard-core predicate; (ii) We
show that our WE with MI and weak unique decryption can be used to
construct a 4-round non-black-box honest-verifier zero-knowledge argu-
ment protocol; and (iii) We present a WE scheme with unique decryp-
tion and MI based on public-coin diO and weak auxiliary input multi-bit
output point obfuscation (AIMPO). Moreover, we show that using our
WE with unique decryption, we can get rid of the limitation of honest-
verifier zero-knowledge property, thus yielding a 4-round non-black-box
zero-knowledge argument.

Keywords: Witness encryption · Differing-inputs obfuscation ·
Unique decryption · Zero-knowledge

1 Introduction

Witness encryption (WE) is introduced by Garg et al. [10] (abbreviated as
GGSW-WE) to define an encryption framework that allows to encrypt a mes-
sage to an instance of an NP language L. The encryption algorithm takes as
input an instance x along with a message m and produces a ciphertext CT . Any
user who has knowledge of a witness w showing that x is in the language L (i.e.,

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 609–619, 2019.
https://doi.org/10.1007/978-3-030-21548-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_33&domain=pdf
http://orcid.org/0000-0002-8622-8596
https://doi.org/10.1007/978-3-030-21548-4_33

610 D. Pan et al.

x ∈ L) according to the relation RL, namely (x,w) ∈ RL, is able to decrypt the
ciphertext CT and recover m. The soundness security requirement of WE states
that, for any ciphertext created for an instance x that is not in the language L
(i.e., x /∈ L), it must be hard for any polynomial-time attacker to distinguish
between the encryptions of two messages with equal length.

Garg et al. [10] also gave a candidate construction of WE for the NP-complete
Exact Cover problem using multilinear encodings system [9]. Afterwards, a
plenty of works have investigated on how to construct WE schemes with various
useful properties under reliable assumptions [1–3,5,7,8,11,14].

Message Indistinguishability. As Garg et al. [10] pointed out, there is a
gap between the soundness security requirement and correctness property for
GGSW-WE definition. Their correctness stipulates that given a ciphertext which
is an encryption of a message m to an instance x (denoted as Encrypt(x,m)),
and a valid witness w of x, the decryption algorithm can recover the message m
correctly. Whereas, the soundness states that if x /∈ L then no polynomial-time
attacker can decrypt. However, GGSW-WE definition is (intentionally) silent
on the case when x ∈ L but the attacker does not know any witness for the
relation RL. Subsequently, Gentry et al. [11] gave a strengthened version of
soundness security for WE, called message indistinguishability, which requires
that the soundness property is entirely independent of whether x ∈ L or not,
namely, the encryptions of two messages with equal length are computation-
ally indistinguishable no matter whether x ∈ L or not. Gentry et al. [11] also
provided two instantiations of WE with message indistinguishability based on
multilinear maps in an asymmetric model of composite-order multilinear groups
and prime-order multilinear groups respectively.

Unique Decryption. The unique decryption property of WE, introduced by Niu et
al., is to guarantee that a (possibly invalid) ciphertext c only can be decrypted
to a unique message even if using different witnesses for x ∈ L. Niu et al.
proposed a generic approach of using a weak auxiliary input multi-bit output
point obfuscation (AIMPO) to convert a WE into one with unique decryption.
Their core idea is to include a weak AIMPO of an specific function as part of the
ciphertext besides the encryption c of message m under the WE scheme, which
provides the certification that only one correct message hardwired in AIMPO
can be recovered. The function is defined to output a string r on input m, where
r is the random coins used to encrypt m to c, while on other inputs, output 0.

Motivation. Even though all of known constructions of WE and its variants are
built upon the heavy tools, such as multilinear maps, iO, NIZK, or lattices,
none of them focuses on constructing WE scheme achieving both the message
indistinguishability property and the unique decryption property. This gives rise
to the following question: Is it possible to construct a WE scheme satisfying
both the message indistinguishability (MI) property and the unique decryption
property?

Our Contributions. We summarize our contributions as follows.

• We first propose a notion of WE with weak unique decryption and MI. We
call it weak in the sense that using different valid witnesses for x ∈ L to

Witness Encryption with (Weak) Unique Decryption 611

decrypt a (possibly invalid) ciphertext c only can yield to an unique message
if no decryption outputs the symbol ⊥. We provide a witness encryption
scheme with weak unique decryption and MI property based on public-coin
diO, pseudorandom generator, and the Goldreich-Levin hard-core predicate.

• We show that our WE with weak unique decryption and MI property can
be used to construct a 4-round non-black-box honest-verifier zero-knowledge
argument protocol.

• Then we show how to build a witness encryption scheme with unique decryp-
tion and MI property based on public-coin diO and weak auxiliary input
multi-bit output point obfuscation (AIMPO). Furthermore, we demonstrate
that using our WE with unique decryption property, our 4-round argument
given in Sect. 4.1 can get rid of the limitation of honest-verifier zero-knowledge
property, thus yielding a 4-round non-black-box zero-knowledge argument.

2 Preliminaries

We use n to denote the security parameter. For a finite set S, we use y ←R S
to denote that y is uniformly selected from S. We use [l] to denote the set
{1, · · · , l}. We write negl(·) to denote an unspecified negligible function, poly(·)
an unspecified polynomial. We denote by |a| the length of string a.

Definition 2.1 Hard-Core Predicate. A polynomial-time-computable predi-
cate written as B : {0, 1}∗ → {0, 1} is called a hard-core of a function f if
for every PPT algorithm A, every positive polynomial p(·), and all sufficiently
large n:

Pr[A(F (Un)) = B(Un)] < 1/2 + 1/p(n),

where Un is uniformly distributed over {0, 1}n. We call it unpredictability.

Theorem 2.1 Goldreich-Levin Hard-Core Predicate. Let f be an arbi-
trary one-way function, and let g be defined by g(x, r) = (f(x), r), where |x| = |r|.
Let b(x, r) = 〈x, r〉 denote the inner product mod 2 of the binary vectors x and
r. Then the predicate b is a hard-core of the function g [12].

Definition 2.2 Hard-Core Function. Let h : {0, 1}∗ → {0, 1}∗ be a
polynomial-time-computable function satisfying |h(x)| = |h(y)| for all |x| = |y|,
and let l(n) = |h(1n)|. The function h is called a hard-core of a function f if
for every PPT algorithm D, every positive polynomial p(·), and all sufficiently
large n:

|Pr[D((F (Xn), h(Xn)) = 1] − Pr[D((F (Xn), Rl(n)) = 1] < 1/p(n),

where Xn and Rl(n) are two independent random variables, the first uniformly
distributed over {0, 1}n and the second uniformly distributed over {0, 1}l(n).

612 D. Pan et al.

We recall the definitions of public-coin differing-inputs obfuscation in [13].
The following is the definition of public-coin differing-inputs obfuscation for cir-
cuits, and the definition of public-coin differing-inputs obfuscation for turing
machines is similar.

Definition 2.3 Public-coin differing-inputs sampler for circuits [13].
An efficient non-uniform sampling algorithm Sam = {Samn} is called a public-
coin differing-inputs sampler for the parameterized collection of circuits C = {Cn}
if the output of Samn is distributed over Cn × Cn and for every efficient non-
uniform algorithm A = {An} there exists a negligible function negl(·) such that
for all n ∈ N :

Prr[C0(x) �= C1(x) : (C0, C1) ← Samn(r), x ← An(r)] ≤ negl(n).

Definition 2.4 Public-coin differing-inputs obfuscator for circuits [13].
An uniform PPT algorithm diO is a public-coin differing-inputs obfuscator for
the parameterized collection of circuits C = {Cn} if the following requirements
hold:

– (functionality) For all security parameters n ∈ N , for all C ∈ Cn, and for all
input x we have that Pr[C ′(x) = C(x) : C ′ ← diO(1n, C)] = 1.

– (security) For every public-coin differing-inputs samplers Sam = {Samn},
for the collection C, every PPT distinguishing algorithm T = {Tn}, there
exists a negligible function negl(·) such that for all security parameters n ∈ N :

∣
∣
∣
∣
Pr

[
Tn(r, C ′) = 1 : (C0, C1) ← Samn(r)

C ′ ← diO(1n, C0)

]

−Pr
[

Tn(r, C ′) = 1 : (C0, C1) ← Samn(r)
C ′ ← diO(1n, C1)

]∣
∣
∣
∣
≤ negl(n),

where the probability is taken over r and the coins of diO and Tn.

3 Witness Encryption with (Weak) Unique Decryption
and Message Indistinguishability: Definitions
and Constructions

Definition 3.1. A witness encryption scheme with (weak) unique decryption
and message indistinguishability for an NP language L with corresponding rela-
tion RL consists of the following two polynomial-time algorithms:

– Encryption. The algorithm Encrypt(1n, x,m) takes as input a security
parameter 1n, an unbounded-length string x, and a message m ∈ M for some
message space M , and outputs a ciphertext CT .

– Decryption. The algorithm Decrypt(CT,w) takes as input a ciphertext CT
and an unbounded-length string w, and outputs a message m or the symbol ⊥.

These algorithms satisfy the following conditions:

Witness Encryption with (Weak) Unique Decryption 613

– Correctness. For any security parameter n, for any m ∈ M , and for any
x ∈ L such that RL(x,w) holds, there exists a negligible function negl(·),
such that:

Pr[Decrypt(Encrypt(1n, x,m), w) = m] ≥ 1 − negl(n).

– Message Indistinguishability. For any x ∈ L or x �∈ L, for any PPT
adversary A and messages m0,m1 ∈ M , there exists a negligible function
negl(·), such that:
∣
∣Pr[A(Encrypt(1n, x,m0)) = 1] − Pr[A(Encrypt(1n, x,m1)) = 1]

∣
∣ < negl(n).

– Weak Unique Decryption. If w1, w2 satisfies (x,w1) ∈ RL, (x,w2) ∈
RL, then for any (possibly invalid) ciphertext CT , if the decryp-
tions Decrypt(CT,w1) �= ⊥ and Decrypt(CT,w2) �= ⊥, it holds:
Decrypt(CT,w1) = Decrypt(CT,w2).

– Unique Decryption. If w1, w2 satisfies (x,w1) ∈ RL, (x,w2) ∈ RL, then for
any (possibly invalid) ciphertext CT , Decrypt(CT,w1) = Decrypt(CT,w2).

3.1 Construction of WE with Weak Unique Decryption and MI

The goal in this subsection is to construct a WE scheme with weak unique
decryption and MI (abbreviated as weak UWE). For MI of the weak UWE
scheme, we use a public-coin diO for a specific function, which outputs the mes-
sage m on input w such that (x,w) ∈ R. To achieve the weak unique decryption
property, we employ the idea of including the “encoded” function that outputs
the random coins used to produce the encryption of a message under general
WE, as part of the new ciphertext, but to achieve it without using weak AIMPO.
First, we define the specific function as follows.

Definition 3.2 Hiding-input point function with multi-bit output. Let
L be a language in NP. RL is the corresponding relation. Let ϕ be an instance
such that for any PPT algorithm A, Pr[RL(x,w) = 1 : w ← A(ϕ)] < negl(n).
Then, we call ϕ a hard problem for L and define hiding-input point function with
multi-bit output as follows:

Iϕ,y(x) =

{

y, if RL(ϕ, x) = 1
0, otherwise

,

where y ∈ {0, 1}poly(n) and poly(n) is a polynomial in n.

Let L be an NP language only consisting of hard problems and then
any instance ϕ (no matter ϕ ∈ L or not) is a hard problem for L. And
let any instance ϕ be efficiently samplable without knowing any witness for
ϕ ∈ L. Then with two public-coin diO algorithms O1,O2 for the function
families {Iϕ,y}y∈{0,1}n , {Iϕ,y}y∈{0,1}n2 respectively, a pseudorandom generator
G : {0, 1}n → {0, 1}poly(n), and the Goldreich-Levin hard-core predicate, we
show our construction of weak unique witness encryption as follows. We remark
that details of the proofs of the theorems are omitted from this version due to
page limit and can be found in the full version.

614 D. Pan et al.

Construction 3.1. Weak unique witness encryption scheme for L.

– Encrypt (1n, ϕ, ·, ·): On input a message m ∈ {0, 1}n, it chooses random
values m1, · · · ,mn, r1, · · · , rn ∈ {0, 1}n and re ∈ {0, 1}∗, and computes

r = 〈m1, r1〉, · · · , 〈mn, rn〉, rd = G(r).

Then it encrypts m as

CT = Encrypt(1n, ϕ,m, (m1, · · · ,mn, r1, · · · , rn, re))
= O1(Iϕ,m; rd),O2(Iϕ,(m1,··· ,mn); re), r1, · · · , rn

= CT0,1, CT0,2, CT1, · · · , CTn.

– Decrypt (1n, ·, (ϕ,w)): On input a ciphertext CT , it parses the ciphertext as

CT = (CT0,1, CT0,2, CT1, · · · , CTn)

and runs CT0 = (CT0,1, CT0,2) on w. If CT0(w) = (CT0,1(w), CT0,2(w)) �= 0,
it parses CT0(w) = m′,m′

1, · · · ,m′
n and computes

r′ = 〈m′
1, CT1〉, · · · , 〈m′

n, CTn〉, r′
d = G(r′), CT ′

0,1 = O1(Iϕ,m′ ; r′
d).

If CT ′
0,1 = CT0,1, it outputs m′, otherwise it outputs the symbol ⊥.

Theorem 3.1. Assuming L only consists of hard problems and any hard
problem for L is efficiently samplable without knowing a witness, and there
are public-coin differing-inputs obfuscation algorithms for the function family
{Iφ,y}y∈{0,1}polyn , where φ is a variable of the uniform distribution of hard prob-
lems for L. Additionally assuming the existence of pseudorandom generator and
the Goldreich-Levin hard-core predicate is secure. Then, the Construction 3.1 is
a weak unique witness encryption.

3.2 Construction of WE with Unique Decryption and MI

We observe that according to our construction in Sect. 3.1, for an invalid cipher-
text C̃T =

(

O1(Iϕ,m),O2(Iϕ̃,m̃), r1, . . . , rn

)

, it might occur that there exists two
witnesses w1, w2 such that w1 is a valid witness for both ϕ and ϕ̃ but w2 is valid
for ϕ and not valid for ϕ̃, then using w1 to decrypt the ciphertext C̃T will get
m while using w2 will fail, which demonstrates the gap between the definition
of weak unique decryption and unique decryption.

Now we will construct a WE scheme with unique decryption and message
indistinguishability (abbreviated as UWE). To achieve the unique decryption
property, we extend the idea of Niu et al. [14] and include a weak AIMPO of
function Im,rd

as part of the ciphertext where rd is the random coin used to
produce O(Iϕ,m). The functionality of Im,rd

is to output the random coin rd on
input point m and output 0 otherwise. Before giving our construction we first
provide some basic definitions.

Witness Encryption with (Weak) Unique Decryption 615

Definition 3.3 Unpredictable distribution [6]. A distribution ensemble D =
{Dn = (Zn,Mn, Rn)}n∈N on triple of strings is unpredictable if no poly-size cir-
cuit family can predict Mn from Zn. That is, for every poly-size circuit sequence
{Cn}n∈N and for all large enough n: Pr(z,m,r)←RDn

[Cn(z) = m] ≤ negl(n).

Definition 3.4 Weak auxiliary input multi-bit output point obfusca-
tion for unpredictable distributions [14]. A PPT algorithm MO is a weak
auxiliary input multi-bit output point obfuscator of the circuit class C = {Cn =
{Im,r|m ∈ {0, 1}n, r ∈ {0, 1}poly(n)}} for unpredictable distributions if it satis-
fies:

– (functionality) For any n ∈ N , any Im,r ∈ Cn, and any input x �= m, it holds
that MO(Im,r)(x) = Im,r(x) and Pr[MO(Im,r)(m) �= r] ≤ negl(n), where
the probability is taken over the randomness of MO.

– (polynomial slowdown) For any n ∈ N , Im,r ∈ Cn, |MO(Im,r)| ≤
poly(|Im,r|).

– (secrecy) For any unpredictable distribution D = {Dn = (Zn,Mn, Rn)}n∈N

over {0, 1}poly(n) × {0, 1}n × {0, 1}poly(n), it holds that for any PPT algo-
rithm A:

Pr(z,m,r)←RDn
[A(1n, z,MO(Im,r)) = m] ≤ negl(n).

Let L be an NP language only consisting of hard problems. And let any
instance ϕ be efficiently samplable without knowing any witness for ϕ ∈ L. Then
with a public-coin diO algorithm O for the function families {Iϕ,y}y∈{0,1}n , and
a weak AIMPO algorithm MO, we show our construction of unique witness
encryption as follows.

Construction 3.2. Unique witness encryption scheme for L.

– Encrypt (1n, ϕ, ·, ·): On input a message m ∈ {0, 1}n, it chooses random
values rd ∈ {0, 1}poly(n) and re ∈ {0, 1}poly(n). Then it encrypts m as

CT = Encrypt(1n, ϕ,m, (rd, re)) = O(Iϕ,m; rd),MO(Im,rd
; re) = CT0, CT1.

– Decrypt (1n, ·, (ϕ,w)): On input a ciphertext CT , it parses CT = CT0, CT1,
and runs CT0 on w. If CT0(w) = m′ �= 0, it runs CT1 on m′ and sets
r′
d = CT1(m′). Then it computes CT ′

0 = O(Iϕ,m′ ; r′
d). If CT ′

0 = CT0, it
outputs m′, otherwise it outputs the symbol ⊥.

Theorem 3.2. Let L be defined as above. Assuming that there are public-coin
diO algorithms for the function family {Iφ,y}y∈{0,1}polyn , where φ is a variable of
the uniform distribution of hard problems for L. Additionally assuming the exis-
tence of weak AIMPO. Then, the Construction 3.2 is a unique witness encryp-
tion.

616 D. Pan et al.

4 Application

We first show how to use our weak UWE to construct a 4-round non-black-box
honest-verifier zero-knowledge argument 〈P, V 〉 for any NP language L. Then
by replacing the weak UWE with UWE, we can get rid of the limitation of
honest-verifier zero-knowledge property, thus yielding a 4-round zero-knowledge
argument.

Definition 4.1 Interactive Proof System. A pair of interactive Turing
machines 〈P, V 〉 is called an interactive proof system for a language L if machine
V is polynomial-time and the following two conditions hold:

– Completeness: There exists a negligible function c such that for every x ∈ L,
Pr[〈P, V 〉(x) = 1] > 1 − c(|x|);

– Soundness: There exists a negligible function s such that for every x /∈ L and
every interactive machine B, it holds that Pr[〈B, V 〉(x) = 1] < s(|x|).

c(·) is called the completeness error, and s(·) the soundness error.

If the soundness condition holds against computationally bounded provers,
〈P, V 〉 is an interactive argument system. Let V iewP

V (z)(x) denote the view of V
with auxiliary input z in the real execution of the protocol with P .

Definition 4.2 Honest-Verifier Zero-Knowledge Argument (HVZKA).
Let 〈P, V 〉 be an interactive argument system for an NP language L. 〈P, V 〉 is
said to be honest-verifier zero-knowledge if there exists a PPT algorithm S such
that {V iewP

V (x)}x∈L and {S(x)}x∈L are computationally indistinguishable.

Definition 4.3 Zero-Knowledge Argument (ZKA). Let 〈P, V 〉 be an inter-
active argument system for an NP language L. 〈P, V 〉 is said to be zero-knowledge
if for every PPT malicious verifier V ∗ there exists a PPT algorithm S such that
the distributions {V iewP

V ∗(z)(x)}x∈L,z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ are com-
putationally indistinguishable.

We use Barak’s non-black-box simulation [4] and use StatGen := 〈P1, V1〉 to
denote the statement generation protocol in [4]. Let Hn be a family of collision-
resistant hash functions h ∈ Hn such that h : {0, 1}∗ → {0, 1}n and let Com be
a non-interactive statistically-binding commitment scheme for {0, 1}n.

Barak’s Statement Generation Protocol in [4] StatGen := 〈P1, V1〉:

1. V1 sends a random h ← H.
2. P1 send a commitment c = Com(0n; rc), where rc is chosen randomly.
3. V1 sends a random string r ∈ {0, 1}n

The transcript of the protocol is τ := (h, c, r). The language is defined as

L1 = {τ := 〈h, c, r〉 : ∃ σ = (Π, rc) such that c = Com(h(Π); rc) ∧ Π(c) = r},

where (h, c, r) is sampled by StatGen.

Witness Encryption with (Weak) Unique Decryption 617

4.1 Zero-Knowledge Protocols

For any NP language L, we first define a subset Lhard ⊆ L as

Lhard = {x : x ∈ L ∧ x is a hard problem for L}.

That is, Lhard consists of all the hard instances in L such that for any x ∈ Lhard

and for any PPT algorithm A, Pr[RL(x,w) = 1 : w ← A(x)] < negl(n).
For a (weak) UWE scheme related to L as constructed in Sect. 3, we can

see that the correctness and (weak) unique decryption properties still hold as
required while the message indistinguishability will hold for instances sampled
from ({0, 1}n ∩ Lhard) ∪ ({0, 1}n\L). Fortunately, this condition is sufficient for
our zero-knowledge protocol.

Let Hn and Com be defined as above. Let Pren(·) be a function that outputs
the first n bits of its input. Then we modify the language L1 as

L2 = {τ := 〈h, c, r〉 : ∃ σ = (Π, rc) s.t. c = Com(h(Π); rc) ∧ Pren(Π(c)) = r},

where (h, c, r) is sampled by the prover and the verifier of our zero-knowledge
protocol. Let l = l(n) = |τ | be the length of instances of L2.

We define another NP language LUWE = {(x, τ) : x ∈ L Or τ ∈ L2} as
follows.

LUWE =

{

(x, (h, c, r)) : ∃ w s.t. RL(x,w) = 1 Or

∃ σ = (Π, rc) s.t. (c = Com(h(Π); rc) ∧ Pren(Π(c)) = r)

}

,

where (h, c, r) is sampled by the prover and the verifier, and the relation is
RLUWE

.

Fig. 1. 4-round HVZKA protocol

Let WUWE = (Enc,Dec) be a weak UWE scheme related to LUWE as con-
structed in Sect. 3, then the message indistinguishability will hold for instances
sampled from ({0, 1}n+l ∩(LUWE)hard)∪({0, 1}n+l\(LUWE)). Now we show our
4-round protocol 〈P, V 〉 for L.

The prover P and verifier V first execute Barak’s generation protocol and
obtain a transcript τ = (h, c, r). After executing the protocol StatGen the prover

618 D. Pan et al.

and the verifier obtain an instance (x, (h, c, r)) of LUWE . Notice that the prover
has an input w such that RL(x,w) = 1, and thus the prover has an witness for
(x, (h, c, r)) ∈ LUWE . On the third round, besides a random string r ∈ {0, 1}n,
the verifier also sends a ciphertext ct = WUWE.Enc(1n, (x, (h, c, r)),m), where
m is chosen randomly in {0, 1}n. In the fourth round, the prover computes
m′ = WUWE.Dec(1n, ct, ((x, (h, c, r)), w)) and sends m′. The verifier checks
m′ = m and accepts x ∈ L if the check succeeds. The detail of our zero-knowledge
argument protocol is shown in Fig. 1.

Theorem 4.1. Assuming the existence of collision-resistant hash function and
the Construction 3.1 is a weak unique witness encryption scheme. Then, the
construction in Fig. 1 is an honest-verifier zero-knowledge argument protocol.

Theorem 4.2. Assuming the existence of collision-resistant hash function and
the Construction 3.2 is a unique witness encryption scheme. Then, by replacing
the weak UWE scheme used in Fig. 1 with a UWE scheme, the construction is
a zero-knowledge argument protocol.

Acknowledgement. This work is supported by National Key R&D Program of China
(No. 2017YFB0802500). This work is also partially supported by the Swedish Research
Council (Vetenskapsr̊adet) through the grant PRECIS (621-2014-4845).

References

1. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Offline witness encryption. In: Manulis,
M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 285–303.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 16

2. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions
and robust combiners for indistinguishability obfuscation and witness encryption.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 491–520.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 17

3. Arita, S., Handa, S.: Two applications of multilinear maps: group key exchange and
witness encryption. In: ACM Workshop on Asia Public-key Cryptography (2014)

4. Barak, B.: How to go beyond the black-box simulation barrier. In: IEEE Sympo-
sium on Foundations of Computer Science (2001)

5. Bellare, M., Hoang, V.T.: Adaptive witness encryption and asymmetric password-
based cryptography. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 308–331.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 14

6. Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28914-9 11

7. Brakerski, Z., Jain, A., Komargodski, I., Passelègue, A., Wichs, D.: Non-trivial
witness encryption and null-iO from standard assumptions. In: Catalano, D., De
Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 425–441. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98113-0 23

8. Derler, D., Slamanig, D.: Practical witness encryption for algebraic languages or
how to encrypt under groth-sahai proofs. Des. Codes Crypt. 2, 1–23 (2018)

https://doi.org/10.1007/978-3-319-39555-5_16
https://doi.org/10.1007/978-3-662-53008-5_17
https://doi.org/10.1007/978-3-662-46447-2_14
https://doi.org/10.1007/978-3-642-28914-9_11
https://doi.org/10.1007/978-3-319-98113-0_23

Witness Encryption with (Weak) Unique Decryption 619

9. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

10. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: ACM Symposium on Theory of Computing (2013)

11. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance indepen-
dent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 24

12. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
ACM Symposium on Theory of Computing (1989)

13. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
668–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-
7 26

14. Niu, Q., Li, H., Huang, G., Liang, B., Tang, F.: One-round witness indistinguisha-
bility from indistinguishability obfuscation. In: Lopez, J., Wu, Y. (eds.) ISPEC
2015. LNCS, vol. 9065, pp. 559–574. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-17533-1 38

https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-319-17533-1_38
https://doi.org/10.1007/978-3-319-17533-1_38

Speeding up Scalar Multiplication
on Koblitz Curves Using μ4 Coordinates

Weixuan Li1,2,3, Wei Yu1,2(B), Bao Li1,2, and Xuejun Fan1,2,3

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

wxli13@is.ac.cn, yuwei 1 yw@163.com
2 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing, China
3 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Koblitz curves are a special family of binary elliptic curves
satisfying equation y2 + xy = x3 + ax2 + 1, a ∈ {0, 1}. Scalar mul-
tiplication on Koblitz curves can be achieved with point addition and
fast Frobenius endomorphism. We show a new point representation sys-
tem μ4 coordinates for Koblitz curves. When a = 0, μ4 coordinates
derive basic group operations—point addition and mixed-addition with
complexities 7M + 2S and 6M + 2S, respectively. Moreover, Frobenius
endomorphism on μ4 coordinates requires 4S. Compared with the state-
of-the-art λ representation system, the timings obtained using μ4 coor-
dinates show speed-ups of 28.6% to 32.2% for NAF algorithms, of 13.7%
to 20.1% for τNAF and of 18.4% to 23.1% for regular τNAF on four
NIST-recommended Koblitz curves K-233, K-283, K-409 and K-571.

1 Introduction

Firstly proposed by Koblitz [5], Koblitz curves are a special family of binary
elliptic curves, defined over binary fields F2m by equation Ka : y2 + xy =
x3 + ax2 + 1, a ∈ {0, 1}. NIST [4] recommended four Koblitz curves, K-233,
K-283, K-409 and K-571, with a = 0, to satisfy different cryptographic security
level requirements. The family of Koblitz curves draws a lot of interests, resulting
from its compatibility with highly efficient computable Frobenius endomorphism
τP (x, y) = (x2, y2), for any point P ∈ Ka. Let μ = (−1)1−a, one can verify that
τ satisfies the quadratic equation τ2P + 2P = μτP . Therefore it is possible
to replace doubling operations by Frobenius maps in scalar multiplication algo-
rithms using Koblitz curves. Solinas [10] developed several radix-τ based scalar
recoding algorithms, including τ non-adjacent form(NAF) and window τNAF
algorithms.

This work is supported by the National Natural Science Foundation of China (No.
61872442, No. 61802401, No. 61502487) and the National Cryptography Development
Fund (No. MMJJ20180216).

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 620–629, 2019.
https://doi.org/10.1007/978-3-030-21548-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_34&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_34

Speeding up Scalar Multiplication on Koblitz Curves Using μ4 Coordinates 621

In 2017, Kohel [6] proposed binary twisted μ4-normal elliptic curves:

X2
0 + bX2

2 = X1X3 + aX0X2,X
2
1 + X2

3 = X0X2, (1)

with a 9M+2S addition and a 2M+5S+2m doubling formulas, where m rep-
resents a multiplication by a fixed constant that is related to curve parameters.
The new form arises from a linear transformation of twisted Edwards curves
in extended Edwards coordinates [2] over prime fields and has good reduction
at characteristic 2. Besides efficient point operations resulted from inherited
symmetries of twisted Edwards curves, another prominent advantage of twisted
μ4-normal curves is that they cover all the NIST-recommended binary ellip-
tic curves. Inspired by his work, we modify the birational equivalence between
binary Weierstrass and twisted μ4-normal elliptic curves [6] to optimize the effi-
ciency of Koblitz curves. In another respect, we may view twisted μ4-normal
form as a new coordinates representation system for Koblitz curves and exploit
its point operations, especially Frobenius endomorphism, to improve the effi-
ciency of protected and unprotected scalar multiplication.

Our Contributions. The purpose of this paper is to utilize μ4 coordinates
system to accelerate the performance of basic group operations on Koblitz curves.
The new projective coordinates system and its group operation significantly
speed up scalar multiplication algorithms.

– The full-addition formulas in μ4 coordinates cost 7M + 2S or 8M + 2S for
parameter a = 0 or a = 1. A mixed-addition R = P + Q with P represented
in affine μ4 coordinates saves 1M, additionally. Besides a faster doubling
formula that costs 2M + 6S, we show that Frobenius endomorphism on μ4

coordinates requires 4M. For completeness, we present a precise verification
that Frobenius endomorphism satisfies the quadratic equation τ2P + 2P =
(−1)1−aτP , for every point P on Koblitz curves.

– We investigate several scalar multiplication algorithms and give a theoretic
analysis of how μ4 coordinates system affects the performance of scalar mul-
tiplication. From the standpoint of efficiency, our work include NAF, τNAF,
and window τNAF with window width 3, 4, 5, 6. In consideration of protected
execution to resist side-channel attacks, we analyze point multiplication based
on regular τNAF expansion of scalars. The results are influenced by squaring
to multiplication ratios(denoted as S/M) on different platforms. We assume
that S/M ratio ranges from 0 to 0.4.

– In the discussion of implementation issues, we test four NIST-recommended
Koblitz curves: K-233, K-283, K-409 and K-571. From an efficiency stand-
point, NAF and τNAF scalar multiplication gain considerably improvements
when μ4 coordinates system is implemented. Regular τNAF is also examined
to take side-channel threats into account. Compared with λ coordinates, the
timings obtained using μ4 coordinates show a speed-up of 28.6% to 32.2% for
NAF, of 13.7% to 20.1% for τNAF and of 18.4% to 23.1% for regular τNAF
algorithms.

622 W. Li et al.

2 New Arithmetic on Koblitz Curves

The focus of this section is on Koblitz curves represented in projective μ4 coor-
dinates, and defined over binary fields F2m by equation

Ea : X2
0 + X2

2 = X1X3 + aX0X2,X
2
1 + X2

3 = X0X2 (2)

with a ∈ F2. It can be derived from Corollary 10 in [6] that any point
P (x0, x1, x3) on affine part of Ea

x2
0 + 1 = x1x3 + ax0, x

2
1 + x2

3 = x0

is isomorphic to Koblitz curves in affine coordinates Ka/F2m : y2 + xy = x3 +
ax2 + 1, by rational polynomial (x0, x1, x3) �→ (x1 + x3, x0 + x1), and its inverse
map (x, y) �→ (x2, x2 + y, x2 + x + y). With the above morphisms between Ea

and Ka, one can derive an addition formula on Ea, as an analog to “chord-
and-tangent” law on Koblitz forms. As a consequence of Theorem 4 in [6], the
addition laws space of bidegree (2, 2) for Ea is a 4-dimensional F2m -linear space.
Any two F2m -linear independent elements in the addition laws space form a
complete addition law system.

Based on Kohel‘s original paper [6] and conference slides (see http://
iml.univ-mrs.fr/kohel/pub/eurocrypt 2017 slides.pdf), we generalize optimized
group arithmetic for Ea.

2.1 Addition and Doubling Algorithms

Depending on different values of a, addition formulas for Ea.

Theorem 1. [6] Let Ea : X2
0 +X2

2 = X1X3 +aX0X2,X
2
1 +X2

3 = X0X2, where
a ∈ {0, 1}, be Koblitz curves in μ4 coordinates. Then there exist 7M + 2S and
8M + 2S addition for E0 and E1 separately.

The mixed-addition follows the same formulas as point addition, by special-
izing Y2 = 1. So we have the following corollary.

Corollary 1. Let Ea : X2
0 + X2

2 = X1X3 + aX0X2,X
2
1 + X2

3 = X0X2, where
a ∈ {0, 1}, be Koblitz curves in μ4 coordinates. Mixed-addition algorithm for Ea

can be done in 6M+ 2S when curve parameter a = 0, in 7M+ 2S when a = 1.

What we show below is doubling formula for Koblitz curves in μ4 coordinates.

Theorem 2. [6] Let Ea : X2
0 +X2

2 = X1X3 +aX0X2,X
2
1 +X2

3 = X0X2, where
a ∈ {0, 1}, be Koblitz curves in μ4 coordinates. Then there exists a 2M + 6S
doubling algorithm for Ea.

http://iml.univ-mrs.fr/kohel/pub/eurocrypt_2017_slides.pdf
http://iml.univ-mrs.fr/kohel/pub/eurocrypt_2017_slides.pdf

Speeding up Scalar Multiplication on Koblitz Curves Using μ4 Coordinates 623

2.2 Frobenius Endomorphism

In cryptographic circles, Koblitz curves draw a lot of interests because point
doublings can be replaced by the efficiently computable Frobenius automorphism
τ : (x, y) �→ (x2, y2), leading to a more efficient scalar multiplication. If elements
in binary fields are represented in normal bases, the cost of Frobenius map is
negligible. What’s more, for any point P on Koblitz curves Ka, the quadratic
equation τ2P + 2P = μτP holds, where μ = (−1)1−a, a ∈ {0, 1} is the curve
parameter. This means that Frobenius map on P can be regarded as multiplying
complex number μ+

√−7
2 .

Similar techniques can be developed for Ea, taking advantages of the fact
that squares are easily implemented by bit shifts if elements in F2m are repre-
sented in terms of a set of normal basis. Under this condition, for any point
P (X0,X1,X2,X3) in μ4 coordinates, we call τP = (X2

0 ,X2
1 ,X2

2 ,X2
3) Frobenius

endomorphism of P on Ea. What’s more, τ satisfies the following theorem.

Theorem 3. Let Ea : X2
0 + X2

2 = X1X3 + aX0X2,X
2
1 + X2

3 = X0X2 be Koblitz
curves in μ4 coordinates, and a ∈ {0, 1}. Then the Frobenius map τ satisfies
τ2P + 2P = (−1)1−aτP for any point P ∈ Ea.

Proof. For a point PE(X0,X1,X2,X3) on Ea, the corresponding point PK on Ka

is φ : (X0,X1,X2,X3) �→ (X1 + X3,X0 + X1,X2). After operation by Frobenius
map on Ka,

τ : Ka → Ka

(X1 + X3,X0 + X1,X2) �→ (X2
1 + X2

3 ,X2
0 + X2

1 ,X2
2)

we have τPK . Then pullback the resulted point on Ka through φ−1 : (X2
1 +

X2
3 ,X2

0 +X2
1 ,X2

2) �→ ((X1+X3)4, (X1+X3)4+(X0+X1)2X2
2 ,X4

2 , (X1+X3)4+
(X0+X3)2X2

2) = (X2
0 ,X2

1 ,X2
2 ,X2

3) = τPE . That is to say, the following diagram
commutes:

Ea
φ ��

τ

��

Ka

τ

��
Ea Ka

φ−1
��

Therefore we can easily get a direct verification of this theorem.

2.3 Arithmetic Comparison

Taking the best known algorithms from [1], we present costs comparison of basic
arithmetic between different representation systems for Koblitz curves to show
the impact of μ4 coordinates. The transformations between affine Koblitz curves
and μ4 coordinates take several field squares and multiplications, and is negligible
compared with costly scalar multiplication process. As to affine form of Ea, we let
the X2-coordinate be 1, as commonly used in mixed-addition formulas. Table 1

624 W. Li et al.

Table 1. Comparison of point operations on koblitz curves with different coordinates

Coordinates Addition Mixed-addition Doubling τ -endomorphism

LD [7] 13M + 4S 8M + 5S 3M + 5S 3S

Lambda, a = 0[9] 11M + 2S 8M + 2S 3M + 4S 3S

Lambda, a = 1 [9] 11M + 2S 8M + 2S 3M + 5S 3S

Twisted μ4, a = 0
(this work)

7M + 2S 6M + 2S 2M + 6S 4S

Twisted μ4, a = 1
(this work)

8M + 2S 7M + 2S 2M + 6S 4S

summarizes the complexity of basic point operations for Koblitz curves using
LD coordinates, λ coordinates and μ4 coordinates.

Although τ endomorphisms on μ4 coordinates cost more 1S than that on
lambda coordinates, they are still superior to the later one. One of the reasons
is that a squaring is nearly free on F2m using normal basis, the other reason is
benefiting from faster addition and doubling operations.

3 Scalar Multiplication

This section describes the most prominent accelerations for scalar multiplication
algorithms on Koblitz curves in combination with τ endomorphisms, from both
efficiency and simple side-channel resistance respect.

3.1 τ -Adic NAF

The existence of complex multiplication τ allows one viewing any integer as an
element in the Euclidean ring Z[τ]. For scalar multiplication on Eq. 2, τ -adic
non-adjacent form (τNAF) algorithm converts a scalar k into a finite sum of
unsigned powers of τ : k =

∑m
i=0 siτ

i, si ∈ {0,±1}.
In [10], Solinas proposed an efficient reduced τNAF expansion for any integers

of which the average Hamming weight is m
3 , where m is the bit length of the

scalar. To derive short representation, this algorithm first find an element ρ of
as small norm as possible, such that ρ ≡ k mod (τm − 1)/(τ − 1). This process
is easily implemented by modular reduction in Z[τ]. Then for a point P of Ea,
kP = ρP and an on-the-fly right-to-left scalar multiplication based on τNAF
expansion is derived. The recoding procedure is analogous to the derivation of k‘s
binary representation, via modifying the process of dividing by 2 into dividing
by τ during main iteration. τNAF computes multiplication by a m-bit scalar
k by total complexity of m τ endomorphisms and m

3 mixed-addition. τ -adic
NAF is particularly suitable for unknown point scalar multiplication, because
it necessitates no precomputation and memory storage space, except intrinsic
mathematical descriptions of curves themselves.

Speeding up Scalar Multiplication on Koblitz Curves Using μ4 Coordinates 625

3.2 Window-ω τ -Adic NAF

In consideration of fixed-point scalar multiplication, with sufficient memory for
storing a few multiples of the known point, a window-ω τNAF [10] is preferred
for it decreases the amount of essential point additions, as shown in Algorithm 1.
Let {Uk} be a Lucas sequence w.r.t Ea that satisfies the following relation:

U0 = 0, U1 = 1, Uk+1 = μUk − 2Uk−1, for k ≥ 1,

and μ = (−1)1−a. Let tω = 2Uω−1U
−1
ω mod 2ω. Deriving from the property of

{Uk}, tω is viewed as the ω-th 2-adic approximation of τ , and satisfies t2ω + 2 −
μ · tω ≡ 0 mod 2ω.

Let φω be the ring homomorphism between Z[τ] and Z/2ω
Z,

φω : Z[τ] → Z/2ω
Z

u0 + u1τ �→ u0 + u1tω.

In light of [10], φω preserves the congruent relationship, that is, each incongruent
class in Z[τ] corresponds to incongruent class under φω in Z/2ω

Z. Theorem 4
permits an easy precomputation of window-ω τNAF.

Theorem 4. {±1,±3, · · · ,±(2ω−1 − 1)} are odd incongruent classes modulo
2ω. Compute αi = i mod τω, i ∈ {±1,±3, · · · ,±(2ω−1 − 1)}, then αi are odd
incongruent classes modulo τω.

Algorithm 1. Window-ω τ Non-adjacent Form
Data: ω; tω; r0 + r1τ ≡ k mod τm−1

τ−1

Result: k =
∑

i=0 uiτ
i, ui ∈ {0, ±1, ±3, · · · , ±(2ω−1 − 1)}

Set i ← 0;
while r0 �= 0 or r1 �= 0 do

if r0 is odd then
ui ← r0 + r1tω mod 2ω;
r0 ← r0 − ui

else
ui ← 0

end

i ← i + 1, r0 ← r1 + μr0
2

, r1 ← −r0
2

end
Return (· · · , u1, u0)

Algorithm 1 achieves further acceleration by representing a scalar k into a
m-bit string k =

∑m
i=0 ui2i, ui ∈ {0,±1,±3, · · · ,±(2ω−1 − 1}), with average

density 1
ω+1 . [12] evaluated the total costs of optimal precomputation schemes

for window-ω τNAF. It requires 2ω−2 − 1 mixed additions and two Frobenius
maps when window width ω ≥ 4. When ω = 3, only one Frobenius map τ is
needed.

626 W. Li et al.

3.3 Regular τ -Adic Expansion Approach

Oliveira, Aranha, López and Henŕıguez [8] designed a regular window-ω τ -adic
non-adjacent expansion, inspired by Joye and Tunstall‘s key idea [3] that any odd
integer i in [0, 2ω+1) can be rewritten as 2ω + (−(2ω − i)). Algorithm 2 achieves
a constant-time regular τ -adic expansion for an integer, that is compatible with
Frobenius endomorphism and provides efficient scalar multiplication algorithm
against simple side-channel attacks.

Algorithm 2. Regular τ -Adic NAF Scalar Multiplication
Data: r0 + r1τ ≡ k mod τm−1

τ−1
with r0 is odd; an elliptic point P

Result: kP =
∑m

i=0 uiτ
iP , ui ∈ {−1, 1}

Set Q ← O, T ← P ;
while r0 �= 0 or r1 �= 0 do

u ← ((r0 − 2r1) mod 4) − 2, r0 ← r0 − u;
if u = 1 then

Q ← Q + T
else

Q ← Q − T
end

T ← τT , r0 ← r1 + μr0
2

, r1 ← −r0
2

end
Return Q

Assume an attacker is able to distinguish the process of τ multiplication and
point addition, by detecting time consumption or other physical information.
Algorithm 2 is simple side-channel attacks resistant. It recodes a scalar into a
regular sequence of digits in {−1, 1}, and eliminates side-channel information
that an attacker could gather. Because in each iteration both a point multipli-
cation and a τ endomorphism are required. In the meanwhile, it is an on-the-fly
algorithm and requires no pre-computation and storage, and particularly suit-
able for variant-scalar multiplication or restricted storage environments. In this
setting, the total cost of the scalar multiplication using Algorithm2 is m Frobe-
nius endomorphisms and m additions on average.

3.4 Costs Comparison

We present theoretic complexity analysis of the above algorithms for Koblitz
curves, based on different S/M ratios, in μ4 coordinates and λ coordinates
respectively. Platform constructions are influential to S/M ratios. Suppose that
S/M= 0 or 0.2, as suggested by Bernstein and Lange [1] in characteristic 2
fields. Moreover, the authors of [11] proposed to employ the carry-less instruc-
tion in Intel processors, significantly accelerates field multiplication on binary
fields. Under this circumstance S/M reaches 0.4 closely.

Speeding up Scalar Multiplication on Koblitz Curves Using μ4 Coordinates 627

τNAF, window-ω τNAF and regular τNAF algorithms recode a m-bit scalar
into a sequence digits of density 1

3 , 1
ω+1 and 1, respectively. Counting point

operations during each scalar multiplication, Table 2 conclude the total costs for
a = 0 Koblitz curves in terms of field multiplications of the above algorithms. It
should be noted that the cost of precomputation scheme for window-ω τNAF is
negligible compared with that of multiplying a large scalar. As a consequence,
the data in Table 2 exclude precomputation costs.

Table 2. Complexity for m-bit scalar multiplications on a = 0 Koblitz curves

Algorithms λ coordinates μ4 coordinates

S = 0M S = 0.2M S = 0.4M S = 0M S = 0.2M S = 0.4M

NAF 5.67mM 6.6mM 7.53mM 4mM 5.33mM 6.66mM

τNAF 2.67mM 3.4mM 4.13mM 2mM 2.93mM 3.86mM

window-ω τNAF(ω = 3) 2mM 2.7mM 3.4mM 1.5mM 2.4mM 3.3mM

window-ω τNAF(ω = 4) 1.6mM 2.28mM 2.96mM 1.2mM 2.08mM 2.96mM

window-ω τNAF(ω = 5) 1.33mM 2mM 2.66mM 1mM 1.87mM 2.73mM

window-ω τNAF(ω = 6) 1.14mM 1.80mM 2.45mM 0.86mM 1.72mM 2.57mM

regular τNAF 8mM 9mM 10mM 6mM 7.2mM 8.4mM

It turns out that when a = 0, NAF algorithm in μ4 coordinates saves 11.5%,
19.2% and 29.4% complexity compared with that in λ coordinates, when the
S/M ratio is 0.4, 0.2 and 0. Similar results for τ -based NAF algorithm in μ4

coordinates saves 6.5%, 13.8% and 25% when a = 0. As to window-ω τNAF,
we select four typical window widths ω = 3, 4, 5 and 6. Window width-3 τNAF
algorithm in μ4 coordinates saves 2.9%, 11.1% and 25% complexity compared
with that in λ coordinates, when the S/M ratios are 0.4, 0.2 and 0. When window
width is 4, if the S/M ratio is 0.4, it shows no efficiency difference between μ4

coordinates and λ coordinates; if S/M ratio is 0.2, μ4 coordinates system saves
8.7% complexity; if the cost of field squaring is neglected, the margin becomes
25%. When window width is larger than 5 and S/M ratio is no less than 0.2,
window τNAF scalar multiplication on Koblitz curves using μ4 coordinates is
not as efficient as that in λ coordinates. From side-channel resistant standpoint,
using μ4 coordinates in regular τNAF algorithm saves 16% to 25% complexity
compared that in λ coordinates, when the S/M ratio ranges from 0.4 to 0.

4 Implementation Results

To evaluate the performance of τ endomorphisms for Koblitz curves in μ4 coor-
dinates, we developed experiments on a 3.20 GHz Intel Core i5 processor in C++
programming language. The tests were compiled with Visual Studio 2013 on a
64-bit Windows 10 OS, using C programming language Miracl library for multi-
precision arithmetic. Particularly, we ignored the scalar recoding procedures that
turned an integer into a reduced τNAF representation chain.

628 W. Li et al.

We considered NIST-recommended Koblitz curves K-233, K-283, K-409 and
K-571[4]. A remarkable common feature of these curves is that parameter a = 0
for all curves, under which condition the addition formula of μ4 coordinates
is considerably faster than that in λ coordinates. In this section, we test the
practical efficiency of several algorithms for unprotected and protected scalar
multiplication for Koblitz curves.

We run each algorithm 100000 times on K-233, K-283, K-409 and K-571 with
a fixed elliptic point P and random scalars k, using μ4 coordinates and λ coor-
dinates separately. Table 3 reports the required average timings for radix-2 NAF
scalar multiplication, in terms of clock cycles. Regardless of SPA-resistance and
precomputation, it’s shown that using μ4 coordinates saves 28.6%, 29.3%, 30.7%
and 32.2% timings compared with that using λ coordinates on K-233, K-283,
K-409 and K-571. Besides, we also notice that using μ4 coordinates when imple-
menting τNAF scalar multiplication provides a speed-up of 13.7% to 20.1% on
different security level Koblitz curves, as shown in Table 3. We report the timings
obtained for regular τNAF using μ4 coordinates and λ coordinates respectively.
Protected algorithms requires considerable overheads. Experiments show that
using μ4 coordinates, when implementing regular τNAF scalar multiplication,
provides a speed-up of 18.4%, 21.3%, 22.1% and 23.1% on K-233, K-283, K-409
and K-571 respectively.

Table 3. Timings of NAF scalar multiplication algorithms (in 103 clock cycles)

K233 K283 K409 K571

NAF μ4 coordinates 1389 1982 5071 10279

λ coordinates 1947 2805 7319 15167

τNAF μ4 coordinates 728 1046 2581 4892

λ coordinates 844 1261 3122 6124

regular τNAF μ4 coordinates 1928 2771 6802 13724

λ coordinates 2363 3523 8735 17849

5 Conclusion

We provide efficient arithmetic for Koblitz curves, by introducing μ4 coordi-
nates system. Particularly, we study its compatibility with Frobenious endo-
morphisms and improvements on unprotected and protected scalar multiplica-
tion algorithms. From both efficiency and security standpoint, we implement τ
morphisms on NAF, τNAF and regular τNAF using μ4 coordinates for NIST-
recommended Koblitz curves K-233, K-283, K-409 and K-571. Compared with
the state-of-the-art λ coordinates, the timings obtained show a speed-up of 28.6%
to 32.2% for NAF algorithms, of 13.7% to 20.1% for τNAF and of 18.4% to 23.1%
for regular τNAF scalar multiplications.

Speeding up Scalar Multiplication on Koblitz Curves Using μ4 Coordinates 629

References

1. Bernstein, D.J.: Explicit-formulas database (2007)
2. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revis-

ited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 20

3. Joye, M., Tunstall, M.: Exponent recoding and regular exponentiation algo-
rithms. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 334–349.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2 21

4. Kerry, C.F., Director, C.R.: FIPS PUB 186–4 federal information processing stan-
dards publication digital signature standard (DSS) (2013)

5. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-46766-1 22

6. Kohel, D.: Twisted μ4-normal form for elliptic curves. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 659–678. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 23

7. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF (2n).
In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8 16

8. Oliveira, T., Aranha, D.F., López, J., Rodŕıguez-Henŕıquez, F.: Fast point multi-
plication algorithms for binary elliptic curves with and without precomputation.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 324–344. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 20

9. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Lambda coordi-
nates for binary elliptic curves. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013.
LNCS, vol. 8086, pp. 311–330. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40349-1 18

10. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes Crypt. 19(2/3),
195–249 (2000)

11. Taverne, J., Faz-Hernndez, A., Aranha, D.F., Rodŕıguez-Henŕıquez, F., Hankerson,
D., López, J.: Speeding scalar multiplication over binary elliptic curves using the
new carry-less multiplication instruction. J. Crypt. Eng. 1(3), 187 (2011)

12. Trost, W.R., Guangwu, X.: On the optimal pre-computation of window τ NAF for
Koblitz curves. IEEE Trans. Comput. 65(9), 2918–2924 (2016)

https://doi.org/10.1007/978-3-540-89255-7_20
https://doi.org/10.1007/978-3-642-02384-2_21
https://doi.org/10.1007/3-540-46766-1_22
https://doi.org/10.1007/978-3-319-56620-7_23
https://doi.org/10.1007/3-540-48892-8_16
https://doi.org/10.1007/978-3-319-13051-4_20
https://doi.org/10.1007/978-3-642-40349-1_18
https://doi.org/10.1007/978-3-642-40349-1_18

Constructing Hyperelliptic Covers
for Elliptic Curves over Quadratic

Extension Fields

Xuejun Fan1,2,3(B), Song Tian1,2,3,4(B), Bao Li1,2,3, and Weixuan Li1,2,3

1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

2 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

{fanxuejun,tiansong}@iie.ac.cn
3 Data Assurances and Communications Security,

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
4 State Key Laboratory of Cryptology, Beijing, China

Abstract. Elliptic curves and hyperelliptic curves over finite fields are
of great interest in public key cryptography. Using much smaller field for
same security makes the genus 2 curves more competitive than elliptic
curves. However, point counting algorithms for the Jacobians of genus 2
curves are not as efficient as what we have for elliptic curves. We give a
method to generate genus 2 curves for which the point counting problems
can be easily solved with efficient algorithms for elliptic curves. As an
application, an example of a hyperelliptic curve whose order is a 256-bit
prime is given. The method relies on the construction of a cover map from
a hyperelliptic curve to an elliptic curve. Another important application
of the construction is to generate the cover for the cover-decomposition
attack on the discrete logarithm problems in elliptic curves.

Keywords: Hyperelliptic curve · Elliptic curve · Cover map ·
Point counting · Discrete logarithm problem

1 Introduction

The security of public-key cryptosystems relies on the hardness of hard problems
such as discrete logarithm problem (DLP) and elliptic curve discrete logarithm
problem (ECDLP). The ECDLP is the fundamental building block for elliptic
curve cryptography and has been discussed for several decades [5].

Jacobians of hyperelliptic curves have been proposed for use in public key
cryptography [6] and it is necessary to count the points on them efficiently. In
ECC and HECC [1], the size of cipher-text space defined by the cardinality of
the Jacobian is significant to measure the security level. Specifically, the cardi-
nality should be a large prime times a small so-called cofactor c to avoid the
Pohlig-Hellman attack [16]. For elliptic curves, there is a practical algorithm
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 630–638, 2019.
https://doi.org/10.1007/978-3-030-21548-4_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_35&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_35

Constructing Hyperelliptic Covers for Elliptic Curves 631

SEA to count the number of the rational points [9]. However, for doing this on
hyperelliptic curves, no sub-exponential general algorithm is currently known
except for some small sets of examples [4], which is an impediment to their use.
An algorithm proposed by Gaudry and Harley [17] to compute the orders of the
Jacobians of random hyperelliptic curves would run for about a week for a genus
2 curve defined over an 80-bit field. In 2003, Scholten [8] has proposed a way
to count the orders of the Jacobians of the hyperelliptic curves of special type
y2 = rx6 + sx4 + σ(s)x2 + σ(r), where σ is the generator of the Galois group of
a quadratic extension. Inspired by Scholten, we consider cover maps can help to
count the orders of the Jacobians of hyperelliptic curves and the crucial point is
to find the cover maps from some specific hyperelliptic curves to elliptic curves.

In this article, we construct cover maps from hyperelliptic curves of genus 2
to elliptic curves with prime orders over quadratic extension fields. The whole
process is based on the results in [7,8,10]. The important fact about the cover
map φ :H/Fq → E/Fq2 is that the Weierstrass points of the hyperelliptic curve
H lie over the 2-torsion points of the elliptic curve E (up to translation). Under
the given restrictions, we can get a system of some equations whose solutions
determine our cover maps. After many experiments over small fields, we give
the special form of f in the equations of hyperelliptic curves y2 = f(x) that
f = (x − α)(x − αq)(x − αq2

)(x − γ)(x − γq)(x − γq2
) with (α + γ)(ωq + ω) =

2(αγ+ωq+1), which offers more specific scope of the hyperelliptic curves suitable
for our algorithms. If the Jacobian JH is simple, then #JH(Fq) = #E(Fq2),
which is useful for calculating #JH(Fq). The experiment can begin with the
hyperelliptic curve and aim at finding the corresponding elliptic curve E. Then
SEA can be used to compute the cardinality of E(Fq2) to evaluate #JH(Fq) in
polynomial running time as long as the cover map exists. At the end of the paper,
we give an example over 128-bit field to show the efficiency of our algorithms.

Inspirited by Satoh [11], we can also use our algorithms to generate the
required hyperelliptic curves. For example, if a hyperelliptic curve of which the
Jacobian has prime order is required, we can randomly select an elliptic curve
of prime order as the input of our algorithms. If we can construct the cover map
successfully, the required hyperelliptic curve along with the order of its Jacobian
can be given. Otherwise, we can select another elliptic curve. The whole process
can be viewed as a probabilistic polynomial-time algorithm.

We can also use the cover maps to generate a cover for cover-decomposition
attack on ECDLP. For many elliptic curves over finite fields, the fastest algo-
rithms to solve the ECDLP are still generic algorithms. But there are also many
families of elliptic curves, in particular those over finite non-prime fields, for
which the ECDLP can be solved faster by other methods, such as summation
polynomials and cover attacks. The cover attacks [3] aim at reducing the DLP in
the group of the rational points of an elliptic curve over Fqn to the DLP in the
Jacobian of a curve C over Fq. The main idea of cover attacks is Weil descent
which was first introduced into cryptography by Frey [12]. The major difficulty of
cover attacks lies in constructing the curve C, which was first solved by Gaudry,
Hess and Smart (GHS) [13] over binary fields and generalized by Diem [2] in odd
characteristic. To find an attack which applies to all composite degree extension

632 X. Fan et al.

fields, Joux and Vitse [15] combined the Weil descent with the decomposition
attack. They used the GHS attack for the part of Weil descent, while the GHS
attack can not produce a cover with small genus to make the whole attack work
well when the elliptic curves have cofactor 2 over cubic extension fields. Tian et
al. [10] used the result in [7] to overcome the limitation of the GHS attack. In
ECC, the elliptic curves of prime orders are of great interest. Our cover maps can
be used to transfer the DLP in the elliptic curve with prime order into the DLPs
in the Jacobians of hyperelliptic curves which can be solved by decomposition
attacks of Nagao [14]. The main difference between GHS and our method is that
our algorithms aim at the elliptic curves of prime orders over quadratic extension
fields and get curves of genus 2 as the resulting curves, while the GHS attacks
can not obtain the curves of genus 2. The isogeny walk can extend the scope
of curves vulnerable to our attack. Finally we count the number of isomorphic
classes of E in specific form over small fields and find that our algorithm can
yield hyperelliptic covers for all of these elliptic curves (Table 1).

Organization. The rest of the paper is organized as follows. In Sect. 2, we
recall some basic results on cover maps and Jacobians. In Sect. 3, we give some
important propositions and explain our algorithms in detail. In Sect. 4, we give
an example over large finite fields. In Sect. 5, we give a conclusion.

2 Preliminaries

2.1 Cover Maps

Let φ : H → E be a map from a curve of genus 2 to a curve of genus 1 and
let ιH be the hyperelliptic involution on H. The hyperelliptic involution ιH can
induce an involution ιE on E such that φ ◦ ιH = ιE ◦ φ. Then the quotient
map πH : H → Hι = H/〈ιH〉 is ramified at 6 points A1, A2, · · · , A6, called the
Weierstrass ramification points of H. And the quotient map πE : E → Eι =
E/〈ιE〉 is ramified at 4 points B1, B2, B3, B4, called ramification points of E
over Eι. There is also a map φι : Hι → Eι such that πE ◦ φ = φι ◦ πH [7].
Lemma 1 determines the ramification pattern of φι over βj . In Sect. 3, we will
give slightly specific information about φι.

Lemma 1. Let Ai, i = 1, 2, 3, 4, 5, 6, be the Weierstrass ramification points of H
and Bj , j = 1, 2, 3, 4, be the ramification points of E over Eι. Let αi ∈ Hι (resp.
βj ∈ Eι) be the image of Ai (resp. Bj) under πH (resp. πE) Then (φι)−1(βj)
contains some of αi with odd multiplicity and any other points of Hι with even
multiplicity for each j.

2.2 The Equation of the Hyperelliptic Curve

Let Fq denote a finite field with q elements and Fq an algebraic closure of Fq.
Then the unique subfield of Fq with qm elements, Fqm , is an extension field of Fq.
Assume that Fq has odd characteristic, then every genus 2 hyperelliptic curve

Constructing Hyperelliptic Covers for Elliptic Curves 633

H over Fq can be represented by y2 = f(x), where f ∈ Fq[x] is a polynomial of
degree 6 without multiple roots. We can have the following propositions.

Proposition 1. If JH is simple but not simple over Fq2 , then JH/Fq2 is isoge-
nous to the product of two copies of elliptic curve E/Fq2 and #JH(Fq) =
#E(Fq2).

Let P1, ..., P6 be the Weierstrass points of H. According to Lemma 2.4 in [18],
the 15 distinct divisor classes e{i,j} = [(Pi)+(Pj)− (∞1)− (∞2)](1 ≤ i < j ≤ 6)
are the 15 points of order 2 on JH . This will be used to prove Proposition 2.

Proposition 2. Let H be a genus 2 hyperelliptic curve given by y2 = f(x) with
f a polynomial of degree 6 in Fq[x]. If the Jacobian JH of H is simple but not
simple over Fq2 and #JH(Fq) is odd, then f is either an irreducible polynomial
or a product of two irreducible polynomials of degree 3.

Proof. The proof is similar to that in [10]. We have already known that χH(T) =
T 4 + σT 2 + q2 with σ = #E(Fq2) − q2 − 1. Because #JH(Fq) = χH(1) is odd,
σ is odd. Then T 6 ≡ 1mod(<2, χH>), which means the 2-torsion points of JH

are all Fq6-rational. Hence f is a product of linear factors over Fq6 , implying the
degrees of the Fq-irreducible factors of f must be factors of 6. So we only need
to prove that the number of Fq-irreducible factors of f is at most 2.

If f = h1 · · · hi(i ≥ 3) had more than two Fq-irreducible factors, then there
would be a factor hi of degree 2 or two factors hj , hk of degree 1. Let D defined
by div(hi) = 2D or div(hjhk) = 2D. Then [D] is an Fq-rational point of order 2
on JH , contradicting the condition that #JH(Fq) is odd.

3 Our Algorithms

We now provide algorithms to find the degree 2 cover map from hyperelliptic
curves of genus 2 to elliptic curves of prime order. Assume that E is defined by
s2 = g(t) with g(t) ∈ Fq2 [t] an irreducible polynomial of degree 3. Since E(Fq2)
has no point of order 2, g(t) = (t − β)(t − βq2

)(t − βq4
), β ∈ Fq6\Fq2 .

Under the existence of the cover map φ(x, y) = (φ1(x), φ2(x, y)), it is easy to
deduce a map φ1 :P1 → P

1. Assume that the preimages of ∞ under φ1 is ε �= ∞,
then the expression of φ1 is φ1(x) = a2x2+a1x+a0

(x−ε)2 , where a0, a1, a2, ε ∈ Fq2 are the
values to be determined. We further assume that ε ∈ Fq2\Fq and use the linear
map τ(x) = ax+b

cx+d where a, b, c, d ∈ Fq with ad− bc �= 0 to fix τ(ε) = ω ∈ Fq2\Fq,

a generator of F∗
q2 . Then φ1 can be written as φ1(x) = a2x2+a1x+a0

(x−ω)2 . We can also

have φ2(x, y) = φ′
1(x)y
ψ(x) where φ′

1(x) is derivative of φ1(x).
Next we will respectively discuss the algorithms according to the different

forms of hyperelliptic curves. All of the computation are done in Magma.

634 X. Fan et al.

3.1 f Is Irreducible

Now, we focus on case that H is defined by y2 = f(x) and f ∈ Fq[x] is an
irreducible polynomial of degree 6, which can be factored over Fq6 into f(x) =
(x − α)(x − αq) · · · (x − αq5

), α ∈ Fq6 . Notice that one can extract a bit of
information from φ1(x) ∈ Fq2 [x]. For example, if α is a root of f , then φ1(αq2

) =
φ1(α)q2

. According to Lemma 1, we can deduce the ramification pattern in the
first box in the following diagram. The ramification index of φ1 at αqi

is 1:

α αq2
αq4 ‖

P
1 αq αq3

αq5
ε ‖

↓ ↓ ↓ ↓ ↓ ‖
P
1 β βq2

βq4 ∞ ‖

α αq2
αq4

P
1 αq3

αq5
αq ε

↓ ↓ ↓ ↓ ↓
P
1 β βq2

βq4 ∞

α αq2
αq

P
1 γ γq2

γq ε

↓ ↓ ↓ ↓ ↓
P
1 β βq2

βq4 ∞

Taking the first one as an example, we explain how to compute the φ1 and
f(x) from a given E : s2 = (t − β)(t − βq2

)(t − βq4
).

First we examine the existence of the hyperelliptic curves, with simple Jaco-
bian over Fq, split Jacobian over Fq2 and #JH(Fq) prime, which can be mapped
into E/Fq2 . And then, we choose the element ε ∈ Fq6 such that the 6 elements
ε, εq, · · · , εq5

form a normal basis for Fq6 over Fq. So

αi = αqi

= x1ε
qi

+ x2ε
qi+1

+ · · · + x6ε
qi+5 ∈ Fq6 i ∈ {0, 1, · · · , 5},

ai = xi+7(ε + εq2
+ εq4

) + xi+10(εq + εq3
+ εq5

) ∈ Fq2 i ∈ {0, 1, 2},

where x1, · · · , x12 ∈ Fq are the unknown values that should be determined to find
out the hyperelliptic curves. The diagram implies the following two equations:

a2α
2
i + a1αi + a0 − β(αi − ω)2 = 0, i = 0, 1. (1)

By using the scalar restriction approach on the equations, we can get a system
of 12 equations of degree 3 whose Groebner basis is easy to compute. We can
then obtain an ideal of dimension 0 generated by the equations and compute the
points on the zero-dimensional scheme. The solutions of the equations are what
we need to get the expressions of the cover maps and hyperelliptic curves.

Finally, we substitute t with t = φ1(x) in the equation of E and get s2 =
y2g(a2)
(x−ω)6 . So g(a2) must be a square in Fq2 to get φ2(x, y).

3.2 f Is Reducible

In this work, we discuss the algorithms with reducible f . Then by Proposition 2,
it can be factored over Fq6 into f(x) = (x−α)(x−αq)(x−αq3

)(x−γ)(x−γq)(x−
γq3

), α, γ ∈ Fq3\Fq. So we can get the corresponding map, the second box in the

Constructing Hyperelliptic Covers for Elliptic Curves 635

above diagram. The whole process is similar to the case that f is irreducible
with a few differences on the expression of αi and the restricted equations

a2α
2
0 + a1α0 + a0 − β(α0 − ω)2 = 0, a2γ

2
0 + a1γ0 + a0 − β(γ0 − ω)2 = 0. (2)

Using the scalar restriction on (2), we can get a system of 12 equations in 12
variables, generating an ideal of dimension 3. More information about the hyper-
elliptic curves should be extracted to reduce the number of the free variables and
thus reduce the dimension of the final ideal. The following proposition serves to
give specific forms of the hyperelliptic curves and reduce the time complexity.

Proposition 3. Let H be a genus 2 hyperelliptic curve which is given by y2 =
f(x) with f a polynomial of degree 6 in Fq[x]. If H has split Jacobian JH/Fq2 ∼
E2/Fq2 with #JH(Fq) a prime and the degree of the cover map φ :H/Fq → E/Fq2

is 2. Then the corresponding cover map can be computed only if f is of the form:

f(x) = (x − α)(x − αq)(x − αq2
)(x − γ)(x − γq)(x − γq2

),

where (α+γ)(ωq+ω) = 2(αγ+ωq+1) and ω is the generator of F∗
q2 , α, γ ∈ Fq3/Fq.

Proof. The ramification index of φ1 at ω is 2. By the Riemann-Hurwitz formula,
there must be another point c0 where the ramification index of φ1 is 2. So we get
an equation φ1(c0) = t0 with a double root c0 = − 2a0+a1ω

2a2ω+a1
. Let τ : P1 → P

1 be an
involution over Fq2 , then τ(x)= x+b

cx−1 or b
x (b, c ∈ Fq2). Since τ(ω) = ω ∈ Fq2\Fq,

we have b, c ∈ Fq such that cω2 − 2ω − b = 0. So c = 2
ω+ωq with ω + ωq �= 0

and b = −cωωq. Combine cω2 − 2ω − b = 0 with φ1(x) = φ1(τ(x)), we have
a0 = 0 and a1 + (2ω − cω2)a2 = 0. Combine them with the original restriction
of φ1 :φ1(α) = φ1(γ), α �=γ, we can obtain α + b = cγα + γ, where we substitute
b, c with c = 2

ω+ωq and b = −cωωq and get (α + γ)(ωq + ω) = 2(αγ + ωq+1).

3.3 Statistical Results

Elliptic curves with same j-invariant are in the same isomorphism class. We count
the number of the isomorphism classes that have hyperelliptic covers by our
algorithms in some small fields. Let Total be the number of j(E) �=0, 1728 when
E/Fq2 is of the form y2 = (x − β)(x − βq2

)(x − βq4
), β ∈ Fq6 . Let Cover1(resp.

Cover2) be the number of j(E) that E has hyperelliptic covers through the
algorithms with irreducible(resp. reducible) f .

Table 1. Number of isomorphism classes that have hyperelliptic covers by algorithms.

q 3 5 7 11 13 17 19 23 29 31 37

Total 3 8 16 40 56 96 121 176 280 320 456

Cover1 1 4 4 7 8 11 12 16 20 20 24

Cover2 3 8 16 40 56 96 121 176 280 320 456

636 X. Fan et al.

From the table, we give a conjecture that all of the isomorphic classes of E
in the form of y2 = (x − β)(x − βq2

)(x − βq4
), β ∈ Fq6 can have hyperelliptic

covers by our algorithms for deg(φ(x)) = 2 and reducible f .

4 Example for deg(φ)= 2 and f is Reducible

Let q be the prime 2128+51. Define the Fq2 = Fq[ω] with ω2+2816727792924429
82022678826339867420145ω+110523335847250297425127553909826919399 = 0.
The elliptic curve

E/Fq2 : y2 = x3 + (172239620323233229419247395322935747591ω + 70947195208414

1740544987103049080544)x2 + (1340031173633824376141694586626415343ω + 31472

2434322820250558954527683265133032)x + 24655036166390622523367731749491238

9706ω + 164982211005580436237787851811362782805,

whose order #E(Fq2) is a 256-bit prime 115792089237316195423570985008687
907888140170196788143794259065994099110169459, can be covered by hyperel-
liptic curve

H/Fp : y2 = x6 + 306311310527212692259946066199443128485x5 + 19394319184883

1265697771169643215300617x4 + 314797135695827441215736098683454708828x3+

127930997360388525283702304567680577582x2 + 33088624320475722625912703713

756545590x + 151542072040419560972364007312137119174

The cover map is given by φ(x, y) = (φ1(x), φ2(x, y)), where

φ1(x) =
x2 + 29567739429855780381390627507299503045x

(x − ω)2
,

φ2(x, y) =
77929664848720938013803267758033739311ω

deno
y +

241747055078217882048817891777938173676
deno

y

with deno = x3 + 340282366920938463463374607431768211504ωx2 + (1758287
62885486444322087343275702374086ω + 871235937918757118799194570228745
3310)x + 158699887406621358130832199000196489929ω + 640075049601737413
11415206434389648547.

According to Proposition 1, we have #JH(Fq) = #E(Fq2). One can check
that the point [D] = (x2+150913657533727611905843392768639859536x+19200
4685511885787947420503238744174403, 1585296135645634581939848110543484
83327x + 89887585956944706258568021473948516109, 2) in JH(Fq) has order
#E(Fq2).

Constructing Hyperelliptic Covers for Elliptic Curves 637

5 Conclusion

In the article, we discuss a new method to compute the cover maps from the
hyperelliptic curves of genus 2 to the elliptic curves with prime orders. To conduct
the experiments successfully, we give some important lemmas and propositions
first. And then we explain different algorithms according to the different forms
of equations of hyperelliptic curves. As an application, we give examples in rel-
atively large fields. Under the existences of the cover maps, we can use them
to generate hyperelliptic covers in cover-decomposition attacks in some specific
cases. We can also use the algorithms to evaluate the orders of the Jacobians
of hyperelliptic curves in polynomial time, which can be generalized to generat-
ing the required hyperelliptic curves. It should be improved that our algorithms
only apply to a particular part of elliptic curves and hyperelliptic curves, but
the method is still very useful in the ECC and HECC.

Acknowledgement. We thank the anonymous reviewers for their helpful comments.
This work was supported by the National Natural Science Foundation of China (No.
61802401, No. 61772515 and No. 61872442).

References

1. Cohen, H., et al.: Handbook of Elliptic and Hyperelliptic Curve Cryptography.
CRC Press, Boca Raton (2005)

2. Diem, C.: The GHS attack in odd characteristic. J. Ramanujan Math. Soc. 18(1),
1–32 (2003)

3. Diem, C., Scholten, J.: Cover Attacks-a Report for the AREHCC Project. Preprint,
October 2003

4. Frey, G., Rück, H.G.: A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves. Math. Comput. 62, 865–874 (1994)

5. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm
problem. Des. Codes Cryptogr. 78(1), 51–72 (2016)

6. Koblitz, N.: Hyperelliptic cryptosystems. J. Cryptol. 1(3), 139–150 (1989)
7. Kuhn, R.M.: Curves of genus 2 with split Jacobian. Trans. Am. Math. Soc. 307(1),

41–49 (1988)
8. Scholten, J.: Weil Restriction of an Elliptic Curve over a Quadratic Extension.

Preprint (2003). http://homes.esat.kuleuven.be/∼jscholte/weilres.pdf
9. Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres

Bordeaux 7(1), 219–254 (1995)
10. Tian, S., Li, B., Wang, K.P., Yu, W.: Cover attacks for elliptic curves with cofactor

two. Des. Codes Cryptogr. 86, 1–18 (2018)
11. Satoh, T.: Generating genus two hyperelliptic curves over large characteristic finite

fields. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 536–553.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 31

12. Frey, G.: How to Disguise an elliptic curve (weil descent). In: Talk at the 2nd
Elliptic Curve Cryptography Workshop (ECC) (1998)

13. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of weil
descent on elliptic curves. J. Cryptol. 15(1), 19–46 (2002)

http://homes.esat.kuleuven.be/~ jscholte/weilres.pdf
https://doi.org/10.1007/978-3-642-01001-9_31

638 X. Fan et al.

14. Nagao, K.: Decomposition attack for the Jacobian of a hyperelliptic curve over an
extension field. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS,
vol. 6197, pp. 285–300. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14518-6 23

15. Joux, A., Vitse, V.: Cover and decomposition index calculus on elliptic curves made
practical. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 9–26. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 3

16. Pohlig, S., Hellman, M.: An improved algorithm for computing discrete logarithms
over GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24, 106–
110 (1978)

17. Gaudry, P., Harley, R.: Counting points on hyperelliptic curves over finite fields. In:
Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 313–332. Springer, Heidelberg
(2000). https://doi.org/10.1007/10722028 18

18. Mumford, D.: Tata lectures on Theta II: Progress in Mathematics. Springer, Berlin
(1984)

https://doi.org/10.1007/978-3-642-14518-6_23
https://doi.org/10.1007/978-3-642-14518-6_23
https://doi.org/10.1007/978-3-642-29011-4_3
https://doi.org/10.1007/978-3-642-29011-4_3
https://doi.org/10.1007/10722028_18

Secure and Compact Elliptic Curve
Cryptosystems

Yaoan Jin and Atsuko Miyaji(B)

Graduate School of Engineering, Osaka University, Suita, Japan
jin@cy2sec.comm.eng.osaka-u.ac.jp, miyaji@comm.eng.osaka-u.ac.jp

Abstract. Elliptic curve cryptosystems (ECCs) are widely used because
of their short key size. They can ensure enough security with shorter keys,
and use less memory space to reduce parameters. Hence, an elliptic curve
is typically used in embedded systems. The dominant computation of an
ECC is scalar multiplication Q = kP, P ∈ E(Fq). Thus, the security
and efficiency of scalar multiplication are paramount. To render secure
ECCs, complete addition formulae can be employed for a secure scalar
multiplication. However, this requires significant memory and is thus not
suitable for compact devices. Several coordinates exist for elliptic curves
such as affine, Jacobian, projective. The complete addition formulae are
not based on affine coordinates and thus require considerable memory.
In this study, we achieved a compact ECC by focusing on affine coor-
dinates. In fact, affine coordinates are highly advantageous in terms of
memory but require many if statements for scalar multiplication owing
to exceptional points. We improve the scalar multiplication and reduce
the limitations for input k. Furthermore, we extend the affine addition
formulae to delete some exceptional inputs for scalar multiplication. Our
compact ECC reduces memory complexity up to 26 % and is much more
efficient compared to Joye’s RL 2-ary algorithm with the complete addi-
tion of formulae when the ratio I/M of computational complexity of
inversion (I) to multiplication (M) is less than 7.2.

Keywords: Elliptic curve scalar multiplication ·
Side channel attack (SCA) · Exception-free addition formulae

1 Introduction

Elliptic curve cryptosystems (ECCs) are widely used because of their short key
size. They can ensure enough security with shorter keys, and use less memory
space to reduce parameters. Hence, an elliptic curve is typically used in embed-
ded systems [1]. The dominant computation of ECCs is scalar multiplication
Q = kP, P ∈ E(Fq). Thus, the security and efficiency of scalar multiplication is
paramount.

Studies regarding secure elliptic curve scalar multiplication algorithms can
be divided into two. One pertains to prior studies regarding efficient secure

c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 639–650, 2019.
https://doi.org/10.1007/978-3-030-21548-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_36&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_36

640 Y. Jin and A. Miyaji

scalar multiplication [6–8,10]. The other pertains to efficient coordinates with
addition formulae. Several coordinates for elliptic curves exist such as affine,
Jacobian, and projective. Although it appears that we need to only combine
efficient secure scalar multiplication with efficient coordinates, it is in fact not
that simple because some scalar multiplications require branches to apply the
addition formulae. For example, in the case of affine or Jacobian coordinates,
both doubling and addition formulae exist for two inputs of P and Q [4]. That
is, when the scalar multiplication algorithm employs addition formulae in affine
or Jacobian coordinates, we need to versify whether the two input points are
equal. In fact, not only the condition P = Q but also other points such as
O + P , P − P , and 2P = O become exceptional inputs. Hence, researchers have
investigated on complete addition formulae [5,11,13], which can compute for
any two input points. Further, new methods have been proposed by combining
a powering ladder with complete addition formulae to protect the elliptic curve
scalar multiplication from side channel attack (SCA) [12].

Complete addition formulae operate well to exclude such branches. However,
complete addition formulae are not efficient from the memory and computational
standpoints. Particularly, complete addition formulae are not based on affine
coordinates and thus require significant memory.

In this study, we achieved a compact ECC by focusing on affine coordi-
nates. In fact, affine coordinates are highly advantageous in terms of memory
but requires many if statements for scalar multiplication owing to exceptional
points. We adopt two approaches. First, we analyze a scalar multiplication with
the input point and scalar k in detail by assigning three notions of generality of
k, secure generality, and executable coordinate. Subsequently, we demonstrate
that the Montgomery ladder [8], Joye’s LR 2-ary algorithm [7], and Joye’s RL
2-ary algorithm [7] satisfy the secure generality but that Joye’s double-add algo-
rithm [6] does not satisfy secure generality. Further, we verify coordinates that
becomes executable. Subsequently, we improve Joye’s RL 2-ary algorithm [7] to
reduce the limitations for input k. Further, we extend the affine addition for-
mulae to delete some exceptional inputs for scalar multiplication. Subsequently,
we propose a new scalar multiplication by combining our improved Joye’s RL
2-ary algorithm to our extended affine addition formulae. We enhance the effi-
ciency of our method by 2-bit scanning using the affine double and quadruple
formulae (DQ) [9], that can compute both 2P and 4P simultaneously with only
one inversion computation. Finally, our compact ECC reduces memory complex-
ity by 36% and is more efficient compared to Joye’s RL 2-ary algorithm with
complete addition formulae when the ratio of inversion to multiplication is less
than 7.2.

This paper is organized as follows. We first introduce the related work in
Sect. 2. In Sect. 3, we analyze a scalar multiplication from the point of input
scalar k in detail assigning three new notions. Subsequently, we propose a variant
of the affine addition formulae in Sect. 4. We improve Joye’s RL 2-ary algorithm
to reduce the limitations for input k and coordinates in Sect. 5. We compare our
scalar multiplication with the affine formulae to previous scalar multiplication

Secure and Compact Elliptic Curve Cryptosystems 641

algorithms with complete addition formulae in Sect. 6. We conclude our work in
Sect. 7.

2 Related Work

The related studies regarding secure elliptic curve scalar multiplication algo-
rithms can be divided into two. One pertains to prior studies regarding efficient
scalar multiplication [6–8,10] and the other pertains to efficient complete addi-
tion formulae [5,11,13]. Some scalar multiplications require branches to apply
the addition formulae. Complete addition formulae operate well to exclude such
branches. However, complete addition formulae are not efficient from the mem-
ory and computational standpoints. We focus on right-to-left (RL) algorithm in
this paper.

2.1 Scalar Multiplication

Montgomery ladder scanning scalar from MSB to LSB without dummy computa-
tions can compute scalar multiplications regularly [8]. Thus, in the Montgomery
ladder, the security issue depends on the addition formulae of the elliptic curve.
If we utilize addition formulae on affine or Jacobian coordinates, branches to
avoid additions on two inputs exist, such as P + P , P − P , and O + P , and the
doubling of P with 2P = O. Branches results in SCA. Hence, upon implementa-
tion, we should use “if statements” carefully. Meanwhile, if we utilize complete
addition formulae [11], then we exclude “if statements” but sacrifice memory
and computational efficiency [12].

As for Joye’s double-add algorithm, Algorithm1, by scanning a scalar from
LSB to MSB [6], the same discussion as the above holds. Furthermore, for reg-
ular right-to-left (RL) m-ary, Algorithm 2 are proposed in [7]. In this m-ary
algorithm, the same discussion as that of the Montgomery ladder holds. It is
noteworthy that both the regular LR m-Ary and RL m-Ary algorithms are suit-
able for scalar multiplications with m-Ary representation. The regular 2-Ary
algorithms are improved from Algorithm2 by assuming that the MSB of the
input scalar is always ‘1’ in [7]. However, they can not compute scalar multipli-
cations correctly when the scalar begins with ‘0’. All of these ladders are regu-
lar and without dummy computations. They perform equally well compared to
Montgomery ladder mentioned before.

2.2 Complete Elliptic Curve Addition Formulae

Izu and Takagi proposed the x-only differential addition and doubling formulae
[5], which proved to be exceptional only if both input coordinates of x and z are
0 [12]. These addition formulae are applied to the Montgomery ladder, in which
after the computation of the x-coordinate, the y-coordinate can be recovered by
the formula of Ebeid and Lambert [3].

642 Y. Jin and A. Miyaji

Renes, Costello, and Batina proposed complete addition formulae for prime
order elliptic curves [11]. Based on the theorems of Bosma and Lenstra [2], the
complete addition formulae for an elliptic curve E(Fp) can be obtained with-
out points of order two. E(Fp) with prime order excludes the points of order
two, thus, we can use the complete addition formulae on E(Fp). The authors
also mentioned that if the complete addition formulae were used in an applica-
tion, their efficiency could be improved based on specific parameters and further
computation. However, they are still costly.

Table 1 summarizes the addition formulae including the complete addition
formulae, where M , S, I, and A are the costs for one field multiplication, square,
inversion and addition, respectively; further, ma and mb are the costs for mul-
tiplication to a and b, respectively,

Assuming that S = 0.8M and ignoring the computational complexity of ma,
mb, and A, the computational complexity of ADD + DBL in complete addition
is 24M . Subsequently, the computational complexity of ADD + DBL in affine
is more efficient than that in complete addition or Jacobian when I < 8.8M
or I < 8.2M . Meanwhile, the computational complexity of ADD + DBL in
Jacobian is always more efficient than that in complete addition by 11.2M .

Table 1. Computational complexity of elliptic curve addition formulae

Method Conditions ADD DBL Memory

x-only

addition [5]

Either x or

z-coordinate is

not 0

8M + 2S 5M + 3S 10

Complete

addition [11]

2 � #E(Fp) 12M + 3ma + 2mb + 23A 12M + 3ma + 2mb + 23A 15

Affine - 2M + S + I 2M + 2S + I 5

Jacobian - 12M + 4S 2M + 7S 8

3 Exceptional Inputs in Scalar Multiplication

This section analyzes two algorithms (Algorithms 1–2) with input scalar k =
∑�−1

i=0 ki2i (in binary) and point P from the following three aspects: generality
of k, secure generality, and executable coordinate.

3.1 Generality of k

We define the generality of k as follows. The scalar multiplication should compute
kP for ∀k ∈ [0, N − 1], where N ∈ {0, 1}� is the order of P . Subsequently, it
includes a case where the MSB of k is zero (k�−1 = 0). We say that a scalar
multiplication satisfies the generality if it can operate for any k ∈ [0, N −1] with
(k�−1 = 0) or (k�−1 = 1). Let us investigate whether Algorithms 1–2 satisfy the
generality of input scalar k. The Joye’s double-add algorithm (Algorithm1) can

Secure and Compact Elliptic Curve Cryptosystems 643

operate for any input scalar k ∈ [0, N − 1]. It is obvious that Algorithm1 can
compute kP correctly when k�−1 = 1. Algorithm 1 scans the scalar from the right
and reads “0”s at the end if k�−1 = 0. The “0”s read at the end does not change
the value saved in R[0] that is the correct computation result. In summary,
Algorithm 1 can compute kP correctly with any input scalar k ∈ [0, N − 1].

Joye’s RL m-ary algorithm satisfies the generality, implying that it can com-
pute kP for any input k ∈ {0, 1}�, k ∈ [0, N − 1]. This proof will be given in
the final version. We herein focus on the case of m = 2, which is shown in
Algorithm 2.

Algorithm 1. Joye’s double-add
algorithm[6]

Input: P ∈ E(Fp), k =
∑�−1

i=0 ki2
i

Output: kP
Uses: R[0], R[1]
1: R[0] ← O
2: R[1] ← P
3: for i = 0 to � − 1 do
4: R[1−ki] ← 2R[1−ki]+R[ki]
5: end for
6: return R[0]

Algorithm 2. Joye’s RL 2-ary algorithm [7]

Input: P ∈ E(Fp), k =
∑�−1

i=0 ki2
i

Output: kP
Uses: A, R[1], R[2]
Initialization
1: R[1] ← O, R[2] ← O, A ← P
Main Loop
2: for i = 0 to � − 2 do
3: R[1 + ki] ← R[1 + ki] + A, A ← 2A
4: end for
Aggregation and Final correction
5: A ← (k�−1 − 1)A + R[1] + 2R[2]
6: A ← A + P
7: return A

3.2 Secure Generality

We define the notion of the secure generality added to the generality as follows:
If a scalar multiplication can compute kP regularly without dummy operations
satisfying generality for k ∈ [0, N − 1], where N ∈ {0, 1}� is the order of P , then
we say that such an algorithm satisfies the secure generality.

Algorithm 2 executes the same computations of addition and doubling with-
out any dummy operations for every bit of scalar yielding a point P and a scalar
k ∈ {0, 1}�. It is regular without dummy operations for any k, and thus satisfies
secure generality. Algorithm 1 also executes the same computations of addition
and doubling without any dummy operations until the final input bit of a scalar
k ∈ {0, 1}�. Its final step in the main loop becomes a dummy operation when
processing k�−1 = 0. In fact, Algorithm 1 reads “0”s at the end if k�−1 = 0. Sub-
sequently, the computation R[1] ← 2R[1] + R[0] becomes a dummy operation,
thus, we can know whether the scalar begins with “0” by changing the value
of R[1]. If the result does not change, then the MSB of the scalar is “0”. Thus,
Algorithm 1 does not satisfy secure generality at the kl−1.

644 Y. Jin and A. Miyaji

3.3 Executable Coordinate

Let us define the notion of a coordinate to a scalar multiplication algorithm. If
the coordinate can be executed for an algorithm for ∀k ∈ {0, 1}�, we say that
a coordinate is executable coordinate for the algorithm. This notion is impor-
tant because even if an algorithm satisfies secure generality, we must choose an
executable coordinate.

Let us investigate the executable coordinates in Algorithm 1. Algorithm 1
requires addition or doubling formulae with O. This is why neither the affine
nor Jacobian coordinate is executable.

Let us investigate Algorithm 2. Algorithm 2 contains exceptional inputs k.
R[1] and R[2] are initialized as O in Step 2 and A is initialized as P in Step
4. In the main loop, O + P appears independent of k in Step 6. It is obvious
that O + P , P + P , and −P + P are computed when k = 1, 2, 0 in the final
correction, respectively. In summary, Algorithm 2 has to compute addition with
O independent to k, P + P if k = 2, P − P if k = 0. Neither the affine
nor Jacobian coordinate can compute all of O + P , O + 2P , 2P + 2P , P + P ,
and −P + P . Meanwhile, the complete addition formulae [11] are executable
coordinates. As shown in Sect. 2, we must sacrifice computational and memory
complexity if we use the complete addition formulae.

We herein focus on Algorithm2 as it satisfies the secure generality of k, and
improve it such that it can be used for the affine coordinate that requires a small
memory. It is noteworthy that our idea can be applied to Algorithm1 easily and
that Jacobian coordinate is also executable for our new Algorithms 7–8.

4 Variants of Affine Addition Formulae

Affine addition formulae are advantageous because of less memory usage. The
computational cost, however, depends on the ratio of inversion to the multi-
plication cost, where t(A + A) = 2M + S + I and t(2A) = 2M + 2S + I.

Algorithm 3. Affine addition formula
Input: P = (x1, y1) and Q = (x2, y2)
Output: P ,P + Q
1: t0 ← (x2 − x1)

−1

2: y2 ← y2 − y1

3: t0 ← t0y2

4: y2 ← t20 − x1 − x2

5: x2 ← (x1 − y2)t0 − y1

6: return (x1, y1),(y2, x2)

Algorithm 4. Affine doubling formula
Input: P = (x1, y1)
Output: P ,2P
1: t0 ← 3x2

1 + a
2: t1 ← (2y1)

−1

3: t0 ← t0t1
4: t1 ← t20 − 2x1

5: t2 ← (x1 − t1)t0 − y1

6: return (x1, y1),(t1, t2)

The detailed algorithms are shown in Algorithms 3 and 4. It is noteworthy
that both Algorithms 3 and 4 can retain the value of the input point of P ,
which can be used continually for the next input. Affine addition formulae have
exceptional points. O can not be represented explicitly, while it is described as
a point at infinity. Thus, affine addition formulae cannot compute O + P = O,

Secure and Compact Elliptic Curve Cryptosystems 645

P −P = O, or 2P = O. The addition formula cannot compute P + P , which can
only be computed by the doubling formula. When implementing affine addition
formulae, branches are required to avoid such exceptional points. We want to
fully utilize affine addition formulae because they reduce memory. Scalar mul-
tiplications should satisfy the generality of k in Sect. 3, and thus suitable for
any k ∈ [0, N − 1], where the order of P is N , which includes a special case
of k = 0. Algorithm 2 satisfies the secure generality but the affine coordinate
is not executable on them. Thus, we extend the affine addition formulae. The
corresponding operations are shown in Algorithms 5 and 6, which can compute
P −P = O and 2P = O when E(Fp) does not include a point (0, 0). For example,
E(Fp) without two-torsion points, including the prime order elliptic curve on the
Weierstrass form satisfy the condition. It is noteworthy that both Algorithms 5
and 6 retain the value of the input point of P similarly as Algorithms 3 and 4.
Let us explain our idea of the extended affine addition formulae. The inversion
of a (mod p) can be computed by the extended Euclidean algorithm, Ecd(a, p),
or Fermat’s little theorem, Fermat(a, p) = ap−2 (mod p). Interestingly, both
algorithms can operate and output 0 even if a = 0; that is, both are executable
for a special input of “0”. Therefore, we compute 1

x2 − x1
and 1

2y1
from Algo-

rithms 3 and 4 in the beginning and execute the remaining parts. Subsequently,
the results for the ordinary inputs of P , Q are the same as those of Algorithms 3
and 4, respectively. Furthermore, the results for the exceptional inputs of P −P
and 2P = O can be given as (0, 0), which is assumed as O = (0, 0).

Algorithm 5. Extended affine addition

Input: P = (x1, y1) and Q = (x2, y2)
Output: P ,P + Q
1: t0 ← (x2 − x1)

−1

2: y2 ← y2 − y1

3: x2 ← x2 − x1

4: t1 ← (x2 + 2x1)x2

5: x2 ← y1x2

6: t2 ← (y2
2t0 − t1)t0

7: t1 ← ((x1 − t2)y2 − x2)t0
8: return (x1, y1), (t2, t1)

Algorithm 6. Extended affine doubling

Input: P = (x1, y1)
Output: P , 2P
1: t0 ← 3x2

1 + a, t1 ← (2y1)
−1

2: t4 ← y2
1 , t2 ← 8x1t4

3: t3 ← t20 − t2, t2 ← t21
4: t3 ← t3t2, x1 ← x1 − t3
5: t0 ← t0x1, t4 ← 2t4
6: t0 ← (t0 − t4)t1
7: x1 ← x1 + t3
8: return (x1, y1),(t3, t0)

Remark 1. Neither Algorithm 3 nor 4 can output P − P = (0, 0) or 2P = (0, 0),
even if an inversion of x2 − x1 or 2y1 is computed by the Euclidean algorithm
or Fermat’s little theorem.

Theorem 1. Let E(Fp) be y2 = x3 + ax + b, b �= 0 (mod p), meaning that
point (0, 0) is not on E(Fp). P,Q are points on E(Fp). By setting (0, 0) as O,
the extended addition formula can compute the addition of P and Q correctly
if P �= Q (P �= O, Q �= O), P − P = O, and O + O. The extended doubling
formula can compute the doubling of P correctly for any point on E(Fp).

646 Y. Jin and A. Miyaji

Proof. We can transform formulae (1) (2) to the extended affine addition for-
mula by extracting the factor of 1

X2 − X1
. When computing P − P , the inversion

of zero must be computed. By the extended Euclidean algorithm, or Fermat’s
little theorem, we obtain zero for the inversion of zero. This demonstrates that
by our affine addition formula, we can compute P − P :

X3 = 0, Y3 = 0 (1)

This implies P − P = (0, 0). Further, we regard (0, 0) as O. Subsequently, our
variant of affine addition formula computes P − P = O correctly. Further, it
is clear that O + O = O can be computed correctly. We should emphasize
that extracting the factor of 1

x2 − x1
does not affect the addition of other points

because the factor 1
x2 − x1

will become zero only when computing P − P and
O + O, and in the other situation, extracting the factor of 1

x2 − x1
is always safe.

The computational cost of Algorithm5 is 6M + S + I and uses the memory of
seven.

We can transform formulae (3) (4) to the extended affine doubling formula
by extracting 1

y1
. When computing 2P = O, where P is of zero y-coordinate,

the inversion of zero will be zero. Subsequently, we can compute 2P = (0, 0) by
our affine doubling formula. Further, we regard (0, 0) as O, implying that our
variant of the affine doubling formula can compute 2P = O correctly when the
point (0, 0) is not on E(Fp). Further, extracting the factor of 1

2y1
does not affect

the doubling of other points. The y-coordinate of P becomes zero only when
2P = O. The variant of the affine doubling formula is exception-free, implying
that it can compute the doubling of all points on E(Fp), where the point (0, 0)
is not on it. The computational cost of Algorithm 6 is 4M + 4S + I and uses the
memory of seven.

It is noteworthy here that the original affine addition formulae cannot com-
pute P − P = O, P + O = P , and 2P = O, while our extended affine addition
formulae can compute P − P and 2P = O correctly. The Jacobian and pro-
jective addition formulae compute P − P = O and 2P = O correctly. Thus,
both coordinates become “executable coordinates” in our Algorithms 7–8. This
implies that if our scheme perform well on the affine addition formulae to com-
pute scalar multiplications, it can be extended to the Jacobian addition formulae
or projective addition formulae easily and will perform better.

5 Secure and Efficient Elliptic Curve Scalar
Multiplication

We propose memory-efficient algorithms that can avoid SCA by combining Algo-
rithm2 with the original and our extended affine addition formulae. It is notewor-
thy that the original affine coordinate is not executable for Algorithm2 because
the addition formula excludes P + P , P + O, and P − P and the doubling for-
mula excludes 2P with a two-torsion point P . We improve Algorithm2 to avoid
these exceptional inputs such that the original and extended affine coordinates
become executable for Algorithm 2.

Secure and Compact Elliptic Curve Cryptosystems 647

We also enhance the efficiency of our method by two-bit scanning using the
affine double and quadruple formulae (DQ-formula) [9], which can compute both
2P and 4P simultaneously with only one inversion computation, denoted by
{2P, 4P} ← DQ(P). Thus, the computational cost of obtaining both 2P and 4P
in the affine coordinate is t({2P, 4P} ← P) = 8M + 8S + I. Our primary idea
to apply the DQ-formulae is by adjusting the length of the scalar by padding
“0” in front of the scalar to guarantee no processing required for the remaining
bits after a two-bit scanning. Using our adjusting idea, the processing of the
remaining bits does not depend on the odd or even length of the input scalar k.

Algorithm 7. New 2-ary RL powering
ladder
Input: P ∈ E(Fp)

k =
∑�−1

i=0 ki2
i, k ∈ [0, N]

Output: kP
Uses: A, A[0], R[0], R[1]
Initialization
1: R[0] = −P
2: R[1] = P
3: A ← 2P
4: R[k0] ← R[k0] + A
Main Loop
5: for i = 1 to � − 1 do
6: R[ki] ← R[ki] + A
7: A ← 2A
8: end for
Final Correction
9: R[k0] ← R[k0] − P

10: A ← −A + R[0] + 2R[1]
11: return A

Algorithm 8. New two-bit 2-ary RL
powering ladder
Input: P ∈ E(Fp)

k =
∑�−1

i=0 ki2
i, k ∈ [0, N]

Output: kP
Uses: A, A[0], R[0], R[1]
Initialization
1: R[0] = −P
2: R[1] = P
3: {A, A[1]} ← DQ(P) = {2P, 4P}
4: R[k0] ← R[k0] + A
Main Loop
5: for i = 1 to � − 1 do
6: R[ki] ← R[ki] + A
7: R[ki+1] ← R[ki+1] + A[1]
8: {A, A[1]} ← DQ(A[1])
9: i = i + 2

10: end for
Final Correction
11: R[k0] ← R[k0] − P
12: A ← −A + R[0] + 2R[1]
13: return A

First, we improve Algorithm 2 to the new 2-ary RL Algorithm 7, and com-
bine with two-bit scanning to obtain the new two-bit 2-ary RL Algorithm8.
Algorithms 7 and 8 consist of three parts: initialization, main loop and final cor-
rection. Compared to Algorithm 2, we change the initialization of R[.] to avoid
the exceptional initialization of O and the exceptional computation O + P in
the main loop. The initialization of R[.] causes R[1] + 2R[2] = O to be added
to the final result in the aggregation of Algorithm 2. The initialization of R[.]
causes R[0] + 2R[1] = P to be added to the final result in the final Step of our
algorithms. Thus, we avoid the exceptional computations in the original final
correction A ← A + P of Algorithm 2. Steps 3 and 4 of Algorithms 7 and 8 help
to avoid the exceptional computations of P + P or P − P if A is initialized
as P . The final correction adjusts the excess computations in Steps 3 and 4 in
Algorithms 7 and 8. We adjust the length of k to be even by padding “0” in

648 Y. Jin and A. Miyaji

front of input scalar k, and thus verify whether two-bit scanning can operate in
Algorithm 8.

Next, we explain the affine coordinates (ordinary and our extended version)
that is used in Algorithms 7 and 8. The original affine coordinate is used in Step1–
9 of Algorithm 7 and Steps 1–11 of Algorithm 8. Our extended affine formulae
are used in Step 10 of Algorithm7 and Step 12 of Algorithm8. Our Algorithms 7
and 8 satisfy generality of k, and execute the same computations of addition and
doubling without any dummy operations.

Theorem 2 proves that Algorithms 7–8 avoid all exceptional computations of
affine addition formulae when k ∈ [0, N − 3].

Theorem 2. Let E/Fp be an elliptic without two-torsion points. Let E(Fp) �
P �= O be an elliptic curve point, whose order is N ∈ {0, 1}�. Then, Algorithms 7
and 8 can compute kP correctly for input k ∈ [0, N − 3].

Proof. We prove that all three parts exclude the exceptional computations of
affine addition formulae, which are additions of P ± P and O + P , and doubling
of 2P = O. The doubling of 2P = O does not appear in the algorithms because
of E(Fp) without two-torsion points. Thus, we only focus on the exceptional
additions.

In the initialization, R[0] and R[1] initialized as (Px, −Py) and (Px, Py) are
“odd” scalar points such as (2t + 1)P, t ∈ Z. A initialized as ((2P)x, (2P)y) is
an “even” scalar point such as 2tP, t ∈ Z. It is obvious that R[0] ← −P + 2P
or R[1] ← P + 2P in Step 4 is computed correctly by the addition formula if
N �= 3.

In the main loop, it is noteworthy that (1) A �= O because of E(Fp) with-
out two-torsion points and A always increases as an “even” scalar point until
2�−lP, 2�−1 < N when loop processing k�−2. A increases to an“odd” scalar point
at the end of loop. (2) Until loop processing k�−2, R[0] �= O is always updated as
an “odd” scalar point and with a smaller scalar than A. (3) Until loop processing
k�−2, R[1] �= O is also always updated as an “odd” scalar point. If k = {1}�, R[1]
is always with a larger scalar than A and becomes (2�−1 + 1)P, (2�−1 + 1) ≤ N .
It also occurs when k = N − 1 or k = N − 2, so we excludes these two cases.
Otherwise, R[1] is with a smaller scalar than A in the main loop. In summary,
R[0], R[1], A[1] �= O are scalar points of P whose scalars are never over N until
loop processing k�−2. Therefore, the “odd” scalar point can never be the same
point as the “even” scalar point. The computations in the main loop exclude the
exceptional computations of affine.

In the final correction, R[k0] �= O is an “odd” scalar point and −P = (N−1)P
is an “even” scalar point. Step 11 computes P − P only when k0 = 0. However
we can always put an ‘0’ in front of k to avoid this. If k = 0, Step 12 computes
the exceptional computation, P − P . Our extended affine addition formula can
be used here because E(Fp) without two-torsion points excludes point (0, 0).

The same proof can be shown in the two-bit scanning version.

Secure and Compact Elliptic Curve Cryptosystems 649

6 Efficiency and Memory Analysis

We analyze the computational and memory complexity of Algorithms 2, 7 and
8, which are shown in Table 2. The memory complexity counts the number of
Fp elements including the memory used in the addition formulae. The total
computational complexity of Algorithm 2 with complete addition is (� + 1)24M ,
if we ignore the computational complexity of ma, mb and A. Assuming the
ratio of S = 0.8M , Algorithms 7 and 8 are more efficient than Algorithm 2 with
complete addition if I

M < 8.8 and I
M < 9.3. Algorithm 8 is more efficient than

Algorithm 7 if I
M > 7.2. In summary, if 9.3 > I

M > 7.2, Algorithm 8 is the most
efficient. If I

M < 7.2, Algorithm 7 is the most efficient.
As for memory complexity, Algorithms 7 and 8 can reduce that of Algorithm 2

with complete addition by 26% and 16%, respectively.

Table 2. Comparison analysis

Computational cost Memory

Algorithm 2 + Complete addition [11] (� + 1)(24M + 6ma + 4mb + 46A) 19

Algorithm 7 + Affine (6.4� + 18.8)M + (2� + 4)I 14

Algorithm 8 + Affine (10� + 33.2)M + 3� + 12
2

I 16

7 Conclusion

We proposed two new secure and compact elliptic curve scalar multiplication
Algorithms 7 and 8 by combining Affine coordinates to Joye’s regular RL 2-ary
algorithm. Our primary ideas were to exclude the exceptional computations of
O + P , P − P = O and P + P in the addition formulae from Joye’s regular
RL 2-ary algorithm and extend the Affine coordinates to compute P − P = O
and 2P = O by introducing a point (0, 0) as O when an elliptic curve E(Fp) ��
(0, 0). Algorithm 8 combined two-bit scanning to further improve the efficiency.
Consequently, Algorithms 7 and 8 were more efficient than Algorithm 2 with
complete addition if I

M < 8.8 and I
M < 9.3. Further, Algorithms 7 and 8 could

reduce the memory of Algorithm 2 with complete addition by 26% and 16%,
respectively.

Acknowledgement. This work is partially supported by Microsoft Research Asia,
CREST (JPMJCR1404) at Japan Science and Technology Agency, Project for Estab-
lishing a Nationwide Practical Education Network for IT Human Resources Devel-
opment, Education Network for Practical Information Technologies, and Innovation
Platform for Society 5.0 at MEXT.

650 Y. Jin and A. Miyaji

References

1. Afreen, R., Mehrotra, S.: A review on elliptic curve cryptography for embedded
systems. arXiv preprint arXiv:1107.3631 (2011)

2. Bosma, W., Lenstra, H.W.: Complete systems of two addition laws for elliptic
curves. J. Number Theory 53(2), 229–240 (1995)

3. Ebeid, N., Lambert, R.: Securing the elliptic curve montgomery ladder against fault
attacks. In: 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 46–50. IEEE (2009)

4. Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication
on Weierstraß elliptic curves from Co-Z arithmetic. J. Cryptogr. Eng. 1(2), 161
(2011)

5. Izu, T., Takagi, T.: A fast parallel elliptic curve multiplication resistant against side
channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274,
pp. 280–296. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45664-
3 20

6. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 10

7. Joye, M.: Highly regular m-Ary powering ladders. In: Jacobson, M.J., Rijmen,
V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 350–363. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7 22

8. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 22

9. Le, D.P., Nguyen, B.P.: Fast point quadrupling on elliptic curves. In: Proceedings
of the Third Symposium on Information and Communication Technology, pp. 218–
222. ACM (2012)

10. Miyaji, A., Mo, Y.: How to enhance the security on the least significant bit. In:
Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp.
263–279. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-
5 20

11. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order
elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 403–428. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 16

12. Susella, R., Montrasio, S.: A compact and exception-free ladder for all short Weier-
strass elliptic curves. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS,
vol. 10146, pp. 156–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-54669-8 10

13. Wroński, M.: Faster point scalar multiplication on short Weierstrass elliptic curves
over Fp using twisted Hessian curves over Fp2. J. Telecommun. Inf. Technol. (2016)

http://arxiv.org/abs/1107.3631
https://doi.org/10.1007/3-540-45664-3_20
https://doi.org/10.1007/3-540-45664-3_20
https://doi.org/10.1007/978-3-540-74735-2_10
https://doi.org/10.1007/978-3-642-05445-7_22
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.1007/978-3-642-35404-5_20
https://doi.org/10.1007/978-3-642-35404-5_20
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-319-54669-8_10
https://doi.org/10.1007/978-3-319-54669-8_10

A Quantitative Study of Attribute Based
Correlation in Micro-databases and Its

Effects on Privacy

Debanjan Sadhya1(B) and Bodhi Chakraborty2

1 ABV-Indian Institute of Information Technology and Management Gwalior,
Gwalior 474015, India
debanjan@iiitm.ac.in

2 Indian Institute of Information Technology Allahabad, Allahabad 211015, India
rs166@iiita.ac.in

Abstract. Preserving the privacy associated with publicly released
micro-databases is an active area of research since an adversary can
mine sensitive information about the database respondents from them.
The work in this paper establishes a working model for quantitatively
estimating the attribute based correlation present among multiple micro-
databases. In this study, we have introduced an information-theoretic
metric termed as Correlation Degree (ρ) which estimates the amount of
correlated information present among two micro-databases and accord-
ingly assigns a cumulative score in the range [0, 1]. The design of our
proposed metric is based on the fact that correlation among multiple
datasets exists due to the presence of both overlapping and implicitly
dependent attributes. We have also established a functional association
between ρ and the general notion of privacy during the execution of
an adversarial linking attack. Finally, we have empirically validated our
work by estimating the value of ρ and the resulting privacy loss for the
Adult micro-database on the backdrop of two well-established privacy
preservation models.

Keywords: Privacy · Micro-database · Attribute based correlation ·
Linking attacks

1 Introduction

Databases which contain specific information about their respondents are termed
as micro-databases. Based upon the nature of the data which they represent,
micro-database attributes can be divided into three categories: Identifiers, Key
attributes (or quasi-identifiers) and Confidential (sensitive) attributes [8]. Identi-
fiers are those attributes which unambiguously identify the respondents. Typical
examples of these in micro-databases include ‘SSN’ and ‘passport number’. These
attributes are either removed or encrypted before distribution due to the high
privacy risks associated with them. Key attributes are those properties which can
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 651–659, 2019.
https://doi.org/10.1007/978-3-030-21548-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_37&domain=pdf
http://orcid.org/0000-0002-9989-3464
http://orcid.org/0000-0001-7953-6753
https://doi.org/10.1007/978-3-030-21548-4_37

652 D. Sadhya and B. Chakraborty

be linked or combined with external sources or databases to re-identify a respon-
dent. Typical examples of such attributes include ‘age’, ‘gender’ and ‘address’.
Sensitive attributes contain the most critical data of the users; maintaining their
confidentiality is the primary objective of any database security scheme. Prime
examples of these attributes include ‘medical diagnosis’ and ‘political affiliation’.

Accumulating personalized information in some central storage facility poses
great risks for the individuals participating in the data collection process.
Although there are well-defined policies and guidelines to restrict the types of
publishable data, they are regularly circumvented in practical data sharing sce-
narios. As a direct consequence, the likelihood of an adversary in retrieving crit-
ical information about any targeted individual from micro-databases remains
alarmingly high. The primary technique that the adversary employs for this
task is related to the usage of the key attributes/quasi-identifiers. Herein, the
adversary tries to correlate between the key attributes of multiple databases
in which an individual had provided his/her data. These type of attacks are
commonly known as linking attacks or statistical de-anonymization attacks [6].
Prominent examples of such attacks include re-identifying the sensitive medical
record of William Weld (governor of Massachusetts) by joining it with public
voter databases [10], de-anonymization of individual DNA sequences [5], pri-
vacy breaches owing to AOL search data [3], and de-anonymization of Netflix
subscribers by correlating it with the Internet Movie Database (IMDb) [6].

The work in this paper is primarily concerned with quantitatively estimating
the amount of attribute based correlated information which is present among
two micro-databases. For achieving such objectives, we initially model a generic
micro-database along with the associated private and public attributes. Sub-
sequently, we introduce a metric termed Correlation Degree (ρ) for capturing
the extent of inter-database correlation. The intuition behind developing ρ is
the fact that correlation among multiple micro-databases exists due to the pres-
ence of overlapping attributes, as well as implicitly dependent attributes. Our
proposed metric incorporates both of these factors, thereby making it a very
practical measure. Moreover, we have established an information theoretic rela-
tionship of ρ with the associated privacy levels of the database respondents
during an adversarial linking attack. This fundamental association formally con-
nects the abstract notions of privacy and attribute based correlation involving
micro-databases. Furthermore, we have estimated the overall privacy loss (due
to linking attacks) by finding the difference between the initial and final levels
of privacy. Importantly, this strategy provides an effective way for estimating
the privacy loss during linking attacks irrespective of the mechanism utilized for
executing any domain-specific attack.

2 Theoretical Model Development

This section describes the theoretical models which characterize a generic micro-
database and the associated privacy criteria. These analytic models would serve
as the basis for developing our proposed metric.

A Quantitative Study of Attribute Based Correlation in Micro-databases 653

2.1 Micro-database Model

We start by defining the notations for two micro-databases DB1 and DB2 con-
sisting of n observations (we will refer to the properties of the first and second
databases with superscripts 1 and 2 respectively). Let K1 and K2 denote the
number of attributes in the two databases; also let K1 and K2 be the sets repre-
senting these attributes. Let XK1 and XK2 denote the random variables repre-
senting the attribute values of the two databases respectively. Furthermore, let
(K1

pub,K1
prv) and (K2

pub,K2
prv) represent public and private attributes in the two

databases respectively. Hence by design, (K1
pub ∪K1

prv) = K1, (K1
pub ∩K1

prv) = ∅,
(K2

pub ∪ K2
prv) = K2 and (K2

pub ∩ K2
prv) = ∅. We denote their corresponding

random variables by XK1
pub

, XK1
prv

, XK2
pub

and XK2
prv

respectively.

2.2 Privacy Model

The privacy of an individual remains intact if the disclosure of the associated
public attributes provides no additional information (in relation to that available
in the initial stage) about the corresponding private attributes. Let’s assume
that some generic private (Kprv) and public (Kpub) attributes are correlated by
a joint probability distribution function p(Kprv,Kpub)(y, x) where ∀(y, x)|y ∈ Kprv

and x ∈ Kpub. Under such conditions, the privacy (P) can be expressed as [8] -

P = H(XKprv
|XKpub

) (1)

In Eq. (1), H(XKprv
|XKpub

) denotes the conditional entropy (equivocation)
of the private data (XKprv

) given some associated public data (XKpub
). Although

there are other well-defined privacy metrics, we would use this information the-
oretic notion in our work since it best suits our holistic model.

3 Correlation Degree (ρ)

This is the main section of our work wherein we define our proposed metric. We
also establish its formal relationship with the notion of privacy.

3.1 Metric Formulation

Correlation between multiple databases can occur via two distinct mechanisms
- the existence of identical attributes and the presence of implicit dependencies
between separate attributes. For modeling the first case, we assume that some
of the attributes from both the databases overlap. This assumption is practical
since real-world micro-databases normally contains interrelated attributes. The
second case concerning the presence of correlation among distinct attributes
is more subtle. A majority of practical micro-databases consisting of disjoint
attribute set are implicitly correlated. For instance, ‘height’ and ‘weight’ of an
individual are directly related to each other via the BMI measure. We denote

654 D. Sadhya and B. Chakraborty

such attributes by the set Kc. Evidently, Kc ⊆ (K1 ∪K2). Conversely, we assume
two attributes to be uncorrelated (i.e., generated from stochastically independent
distributions) if they do not fall into any of the two aforementioned categories.
If the value of n (records) is large enough, the existence of these attributes can
be empirically justified if their mutual information equals zero. Let the number
of correlated attributes be denoted by K◦, and the attributes themselves be
represented by a set K◦. Thus 1 ≤ K◦ ≤ (K1 +K2) and K◦ = {(K1 ∩K2)∪Kc}.
Let the random variable representing K◦ be denoted by XK◦ . Subsequently,
we construct an intermediate database DB◦ by merging only the correlated
attributes of DB1 and DB2.

Now we devise a method for measuring the extent of correlated information
between DB1 and DB2. Let the number of respondents whose records are con-
tained in both DB1 and DB2 be denoted by N . As such, the total correlated
information present in DB◦ is H(XK◦). One important point to note here con-
cerns the dependency of H(XK◦) on the uniqueness of the records in DB◦. The
presence or absence of any particular record is implicitly reflected on the prob-
ability distributions of the associated attributes. Subsequently, the information
contained in the resulting distributions is captured by the entropy of the corre-
lated attributes. Based on these observations, we define a parameter Correlation
Degree (ρ) as the ratio of correlated information present in DB◦ to the overall
information present in the two databases.

Definition 1. The Correlation Degree (ρ) between two micro-databases DB1

and DB2 is defined as:

ρ =
H(XK◦)

H(XK1 ,XK2)
(2)

where H(XK◦) represents the entropy of only the correlated attributes and
H(XK1 ,XK2) denotes the joint entropy between all the attributes of the two
databases.

Since ρ is defined over both the private and public attributes, the applica-
bility of this metric substantially increases for practical micro-databases (where
correlation among both the type of attributes exists). Noticeably, a similar mea-
sure δ in the range [−1, 1] and characterized by a local threshold δ0 has been
previously defined for differential private settings [12]. However in contrast to our
study, that work focused on determining the correlation present between individ-
ual records. Furthermore, our metric is set in the range [0, 1], which can be easily
verified by computing its lower and upper bounds respectively. To summarize,
the value of ρ quantitatively represents the amount by which two databases are
correlated. A higher value of ρ indicates the presence of a significant amount of
correlated information between the two databases, and vice-versa.

3.2 Linking Attacks and Privacy

Now we formally state the association of attribute based correlation with the
obtainable privacy levels during a linking attack. Our general strategy in estab-
lishing this relationship is to initially estimate the individual privacy levels of

A Quantitative Study of Attribute Based Correlation in Micro-databases 655

each micro-database and subsequently evaluate the left-over privacy after an
adversary links the two databases via their correlated attributes. We finally
compute the loss in privacy by finding the difference between the initial and
final privacy levels. Noticeably, the overall privacy corresponding to the two
micro-databases is obtained by aggregating the individual privacy levels.

The initial privacy associated with DB1 and DB2 (in isolation) is directly
related to the entropy of the associated private variables. These fundamental
privacy levels are also the maximum possible since an adversary initially pos-
sesses no public information via which he/she can gain knowledge about any
sensitive information of the database respondents. Let us denote this quantity
by PI . Thus:

PI = H(XK1
prv

) + H(XK2
prv

) (3)

The final privacy after a linking attack depends on the amount of attribute
based correlated information which is present among the two micro-databases.
Hence for estimating this quantity, we initially state the formal association
between privacy and Correlation Degree.

Theorem 1. For two micro databases DB1 and DB2, the overall privacy (P)
is related to the Correlation Degree (ρ) via the following identity -

P = H(XK1
prv

,XK◦) + H(XK2
prv

,XK◦)

− 2 × ρ × H(XK1 ,XK2)
(4)

where, H(XK1
prv

,XK◦) and H(XK2
prv

,XK◦) are the joint entropy between the
correlated attributes and the private attributes of DB1 and DB2 respectively.

Proof. The public source of data which we consider the adversary possesses in
this scenario is the correlated information present between DB1 and DB2. As
discussed previously in Sect. 3.1, the joint correlation between the two micro-
databases is captured by the random variable XK◦ . Based on this premise, the
privacy for DB1 and DB2 can be defined by modifying Eq. (1) as -

P1 = H(XK1
prv

|XK◦) and P2 = H(XK2
prv

|XK◦) (5)

The values of P1 and P2 in Eq. (5) can be further expressed as -

P1 = H(XK1
prv

,XK◦) − H(XK◦) and P2 = H(XK2
prv

,XK◦) − H(XK◦) (6)

Substituting the value of H(XK◦) from Eq. (2) in Eq. (6) we get,

P1 = H(XK1
prv

,XK◦) − ρ × H(XK1 ,XK2)

P2 = H(XK2
prv

,XK◦) − ρ × H(XK1 ,XK2)
(7)

The privacy levels P1 and P2 represent the leftover entropy of the private
attributes of DB1 and DB2 after the adversary observes their joint correlated
information. Thus by adding the values of P1 and P1, we prove Theorem 1. 	

656 D. Sadhya and B. Chakraborty

The quantity P essentially represents the remaining privacy after an adver-
sary executes attribute based linking involving the two micro-databases. Let us
denote this final privacy level by PF . Thus for our case, PF = P. The resulting
loss in privacy (L) can be estimated by computing the difference between the
initial and final privacy levels, viz. L = PI − PF . Hence substituting the values
of PI and PF , we get -

L = H(XK1
prv

)+H(XK2
prv

)−
{
H(XK1

prv
,XK◦)+H(XK2

prv
,XK◦)−2×H(XK◦)

}

(8)
The maximum value of ρ (ρ = 1) corresponds to the fact that all the

attributes between DB1 and DB2 are correlated. For such a case, H(XK◦) =
H(XK1 ,XK2), and accordingly PF = H(XK1 ,XK2) + H(XK1 ,XK2) − 2 ×
H(XK1 ,XK2) = 0. Hence due to the presence of maximum possible correlation,
the final privacy decreases to the lower bound of zero and the corresponding L
attains the maximum value of PI . Alternatively, the minimum value of ρ (ρ = 0)
translates to the presence of no correlated attributes; hence H(XK◦) = 0. Cor-
respondingly, PF = H(XK1

prv
) + H(XK2

prv
), and L = 0. This observation hence

indicates that there is no loss in privacy if correlated information is not present
between the databases. Thus, Eq. (8) quantitatively captures the notion of ‘loss in
privacy’ when an adversary performs an attribute based linking attack between
two micro-databases. This privacy loss can also be understood as a direct con-
sequence of the information amplification attack performed by the adversary
[2]. For our model, the abstract notion of additional information is accurately
captured by conditional entropy (as described by Eq. (1)). Subsequently, L nat-
urally accounts for the loss in privacy due to the amount of sensitive/critical
information gained by the adversary.

4 Experimental Results

We perform various experiments related to our model and subsequently analyze
the associated results. Noticeably, we have utilized the popular privacy mod-
els of k-anonymity [11] and l-diversity [4] for sanitizing the utilized database.
We have implemented these models on the popular ARX tool [7], which is
used for anonymizing sensitive data. The general settings of ARX which we
kept fixed during the entire process were - suppression limit = 0%, aggre-
gate function = geometric mean, utility measure = loss, and individual attribute
weights = 0.5.

4.1 Database

In our empirical study, we have considered the Adult dataset of UCI machine
learning repository [1]. This dataset was extracted from the 1994 US Census
database, and comprises of 15 numeric and categorical attributes corresponding
to 32561 individual records. For our work, we have selected a subset of 30163

A Quantitative Study of Attribute Based Correlation in Micro-databases 657

Table 1. Attribute categorization for the Adult Education and Adult Employment
datasets.

Dataset Type Notation Attribute name

Adult Education Identifier - fnlwgt

Quasi-identifier/public K1
pub age, sex, native-country,

race, education

Sensitive/private K1
prv ∅

Adult Employment Identifier - fnlwgt

Quasi-identifier/public K2
pub age, sex, native-country,

marital-status, workclass,

occupation

Sensitive/private K2
prv salary

records after eliminating rows which contained missing information. Further-
more, we have partitioned all the attributes of the Adult dataset into two overlap-
ping sets for creating two sub-datasets: Adult Education and Adult Employment.

The detailed categorization policy for the attributes of both these datasets
is presented in Table 1. The policy itself is based on the understandings of the
authors and previous related works [9]. In terms of the notations defined in
Sect. 3.1, Kc = {education, salary}, and K◦ = {sex, age, native-country, edu-
cation, salary}. Furthermore, H(XK1

prv
,XK◦) = H(XK◦) since K1

prv = ∅, and
H(XK2

prv
,XK◦) = H(XK◦) since K2

prv ⊂ K◦.

4.2 Correlation Degree and Privacy Loss

Our objective in this simulation is to quantitatively estimate the values of Cor-
relation Degree (ρ) and privacy loss (L) before and after the application of the
sanitization models. For both the micro-datasets, we compute ρ through Eq. (2)
and the corresponding privacy loss via Eq. (8). The values of these two metrics
along with the other associated parameters are presented in Table 2. As notice-
able, the value of ρ among the two original datasets is 0.746, which is relatively
high. This result accordingly signifies that there exists a large amount of corre-
lated information among the two datasets. However, ρ decreases to 0.372 after
the implementation of the sanitization mechanisms on the two datasets. The pri-
vacy loss also correspondingly reduces from 0.8096 to 0.0024, thereby indicating
that the original level of privacy has been approximately preserved. All of these
results empirically corroborate the role of the sanitization models in reducing

Table 2. Values of Correlation Degree and Privacy Loss for the Adult Education and
Adult Employment datasets

Database status H(XK◦) H(XK1 , XK2) Correlation degree (ρ) Privacy loss (L)

Original 10.29 13.78 0.746 0.8096

Sanitized 5.13 5.7 0.372 0.0024

658 D. Sadhya and B. Chakraborty

the amount of correlated information present among multiple micro-databases.
Alternatively, we can infer that the risk of adversarial linking attacks diminishes
after sanitization due to the decreases in the value of ρ.

5 Conclusion

Presence of correlated information among micro-databases is the primary cause
for adversarial linking attacks. In our work, we have introduced an informa-
tion theoretic metric termed as Correlation Degree (ρ) which quantitatively
measures the amount of correlated information that is present among micro-
database attributes. Our proposed parameter is postulated over the fact that
inter-database correlation exists due to the presence of overlapping and implic-
itly dependent attributes. Importantly, the definition of ρ can be utilized for
measuring the correlation extent even after the application of a generic saniti-
zation scheme. Moreover, we have formally quantified the overall privacy loss
(L) after the execution of the (in)famous attribute based linking attacks. Hence
our model would directly facilitate data publishers in analyzing the privacy risks
associated with micro-databases prior to their publication phase.

References

1. Blake, C., Merz, C.: UCI repository of machine learning databases (1998). http://
archive.ics.uci.edu/ml/datasets/Adult

2. Datta, A., Sharma, D., Sinha, A.: Provable de-anonymization of large datasets
with sparse dimensions. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS,
vol. 7215, pp. 229–248. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28641-4 13

3. Hansell, S.: AOL removes search data on vast group of web users. Technical report,
New York Times, August 2006

4. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 1–52 (2007)

5. Malin, B., Sweeney, L.: How (not) to protect genomic data privacy in a distributed
network: using trail re-identification to evaluate and design anonymity protection
systems. J. Biomed. Inform. 37(3), 179–192 (2004)

6. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: Proceedings of the 2008 IEEE Symposium on Security and Privacy, SP 2008,
pp. 111–125. IEEE Computer Society, Washington, DC (2008)

7. Prasser, F., Kohlmayer, F.: Putting statistical disclosure control into practice: the
ARX data anonymization tool. In: Gkoulalas-Divanis, A., Loukides, G. (eds.) Med-
ical Data Privacy Handbook, pp. 111–148. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-23633-9 6

8. Sankar, L., Rajagopalan, S.R., Poor, H.V.: Utility-privacy tradeoffs in databases:
an information-theoretic approach. IEEE Trans. Inf. Forensics Secur. 8(6), 838–852
(2013)

9. Sondeck, L.P., Laurent, M., Frey, V.: Discrimination rate: an attribute-centric met-
ric to measure privacy. Ann. Telecommun. 72, 11–12 (2017)

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult
https://doi.org/10.1007/978-3-642-28641-4_13
https://doi.org/10.1007/978-3-642-28641-4_13
https://doi.org/10.1007/978-3-319-23633-9_6
https://doi.org/10.1007/978-3-319-23633-9_6

A Quantitative Study of Attribute Based Correlation in Micro-databases 659

10. Sweeney, L.: Statement before the privacy and integrity advisory committee of
the department of homeland security. Technical report, Department of Homeland
Security, June 2005

11. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(5), 557–570 (2002)

12. Zhu, T., Xiong, P., Li, G., Zhou, W.: Correlated differential privacy: hiding infor-
mation in non-IID data set. IEEE Trans. Inf. Forensics Secur. 10(2), 229–242
(2015)

Tagging Malware Intentions by Using
Attention-Based Sequence-to-Sequence

Neural Network

Yi-Ting Huang1(&), Yu-Yuan Chen2, Chih-Chun Yang2, Yeali Sun2,
Shun-Wen Hsiao3 , and Meng Chang Chen1,4

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
ythuang@iis.sinica.edu.tw

2 Information Management, National Taiwan University, Taipei, Taiwan
3 Management Information Systems, National Chengchi University,

Taipei, Taiwan
4 Research Center of Information Technology Innovation, Academia Sinica,

Taipei, Taiwan

Abstract. Malware detection has noticeably increased in computer security
community. However, little is known about a malware’s intentions. In this
study, we propose a novel idea to adopt sequence-to-sequence (seq2seq) neural
network architecture to analyze a sequence of Windows API invocation calls
recording a malware at runtime, and generate tags to describe its malicious
behavior. To the best of our knowledge, this is the first research effort which
incorporate a malware’s intentions in malware analysis and in security domain.
It is important to note that we design three embedding modules for transforming
Windows API’s parameter values, registry, a file name and URL, into low-
dimension vectors to preserve the semantics. Also, we apply the attention
mechanism [10] to capture the relationship between a tag and certain API
invocation calls when predicting tags. This will be helpful for security analysts
to understand malicious intentions with easy-to-understand description. Results
demonstrated that seq2seq model could mostly find possible malicious actions.

Keywords: Malware analysis � Dynamic analysis � seq2seq neural network

1 Introduction

A malware, such as virus, Internet worm, trojan horse, and botnet, has been a main
challenge in computer security, because it may disrupt infected network service,
destroy software or data, steal sensitive information, or take control of the host. Thus,
malware detection and malware classification have been widely investigated [1–5, 9].

Anti-virus products have primarily concerned with malware individual signatures to
detect a malware. However, more recently, with the development of obfuscation
techniques and the prevailing access to open source tools, it has been easy to create
variants of a malware so that it has been greatly increase the number of malwares.
Thus, rather than detecting malware individual signatures, we shifted our attention to
analyze malware behavior. If malicious characteristics can be caught, they can be the

© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 660–668, 2019.
https://doi.org/10.1007/978-3-030-21548-4_38

http://orcid.org/0000-0003-0780-8144
http://orcid.org/0000-0002-6815-2436
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_38&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_38

basis of malware detection. This approach will increase the effectiveness of malware
detection and decrease the operating cost of it.

As far as we know, there is no benchmark for malicious characteristics, because it is
a challenge to examine the infected systems, system logs and malware binaries, and
understand any possible intention. Windows APIs, an access to system resources, can
be another resource to reveal malware behavior when a malware is executing. Thus, we
will hook the Windows API functions at the virtualization layer to intercept the targeted
malware at the runtime and record its invoked API calls.

In this paper, we propose a neural sequence-to-sequence (seq2seq) model, which
analyzes a sequence of Windows API invocation calls, and labels subsequences of
Windows API invocation calls with tags. These tags can be used to explain malicious
intentions of a malware. This study will lead to a better understanding of malware
characteristics in malware analysis. This paper makes the following contributions:

• We apply a neural network model, which predicting one or more tags, to describe
malicious intentions of a malware.

• We propose approaches for transforming a Windows API invocation call into a
numeric vector (embedding).

2 System Design

In this paper, our goal is to employ neural network technology to construct an auto-
matic malware tagging system by analyzing a large set of malware samples. When
given a malware sample, the system can output a list of tags which can truly capture the
essence of the series of activities performed by the malicious program.

Figure 1 depicts the overall architecture of the model. The model consists of an
embedding layer and an attention-based seq2seq model. Because the execution traces
generated from the dynamic malware behavior profiling system are text files, we need
to transform the plaintext representations of the API invocation calls into vectorized
representations. Thus, an embedding layer, consisting of API function name embed-
ding, parameter value embedding and return value embedding, takes a variable-length
execution trace x = {x1, …, xm} as the input and outputs a sequence of embedding
vectors x0 ¼ fx01; . . .x0mg. Some parameter types may have numerous categorical values,
such as Registry. It is compute-inefficient to model them all in one-hot encoding
format. Thus, Three embedding modules – registry value embedding, library name
embedding, and URL embedding – are proposed, and will be explained.

A sequence-to-sequence (a.k.a. encoder-decoder) model is a neural network
architecture which consists of an encoder and a decoder. Long Short-Term Memory
(LSTM) [7] is used for sequence processing from a sequential input. A bi-directional
encoder BiLSTMencoder processes a sequence of variable-length embedding vector x0 ¼
fx01; . . .x0mg from forward and backward simultaneously, and outputs a series of vector
representation h = {h1, …, hm}. A decoder LSTMdecoder is conditioned on the output
h from the encoder to generate a hidden state dj. One key component of the model is to
connect subsequences of API invocation calls to an individual tag. For example, a code
subsequence directly reflects the operation of self-propagation, i.e., tag “worm.” Hence,

Tagging Malware Intentions by Using Attention-Based Sequence-to-Sequence 661

we use an attention mechanism to establish such relationships. We would like to pay
special attention to the relevant subsequence as we tag. The decoder at each time step
focuses on a different part of the input trace to gather the semantics information in order
to generate proper tag. This attention weights are computed by the current hidden state
dj from the decoder and all hidden state hi from the encoder. With the attention weights,
we can obtain a weighted summarization aj of the hidden vectors from the encoder.
A new representation d̂j is the concatenation aj and dj for calculate the probability
distribution over tags. Finally, a linear layer projects the new presentation d̂j into a
prediction layer, and a softmax layer computes the tag distribution. The predicated tag
yj is the target class with the highest probability. More details can be found in [10].

2.1 The Embedding Layer

The goal of the embedding layer is to produce a fixed-size vector as the corresponding
embedding x’ when given a Windows API invocation call x. An API invocation call xi
consists of an API function name wi, one or more parameter values vi, none or one
return value reti. Each element, xi, is transformed as an embedding x0i as a concatenation

Fig. 1. When given a profile which contains x1…xm, the proposal system transforms a profile
x = {x1…xm} into embedding vector x01; . . .x

0
m, and predicts a list of tags y = {y1…yn} by

capturing the relations between each tag yj and input sequence x = {x1…xm}.

662 Y.-T. Huang et al.

of a function name embedding w0
i, parameter embeddings v0i and a return embedding

ret0i. Each element learns its identical weighted embedding matrix E.

x0i ¼ concate Ewwi; concate
jprj
k ðEkvikÞ;Eretreti

� �
ð1Þ

where Ew 2 Rew� wj j;Ek 2 Rek� kj j;Eret 2 Reret� retj j are function name, parameter, and
return embedding matrices; ew, ek, and eret are embedding sizes respectively.

We focus on three resources and propose respective approaches to transform a
parameter value into a low-dimension vector while preserving the semantics. The rest
of input values, including API function names, the other parameter values, and the
return value are initialized by drawing samples from a uniform distribution within
Xavier initializer [6] and learn their own embedding matrices as well.

Registry Value Embedding. In Windows system, registry contains important con-
figuration information for the operating system, services, applications and user settings.
Therefore, registry-related operations are important in malicious behavior analysis and
the parameter values are especially critical. The Windows registry is a hierarchical
database which includes keys, subkeys and values. The structure of registry keys is
similar to that of folders in the file system and they are referenced with a syntax similar
to Window’s path, using backslashes to indicate levels of hierarchy. Thus, we construct
a registry value embedding module to tokenize keys with a backslash, ‘\’, and then use
a LSTM unit referred to as the LSTMreg to transform a key denoted by key = {key1, …,
keyn} into hidden vectors hkey1…hkeyn. All hidden vectors are then summed to a registry
representation vreg. For example, key “HKCU\software\microsoft\windows\cur-
rentversion\internet_settings” contains six tokens - “HKCR”, “software”, “microsoft”,
“windows”, “currentversion” and “internet_settings.” Each token is an input to the
LSTM unit. The output hidden vectors constitute the registry key representation, i.e.,
hHKCU\software\microsoft\windows\currentversion\internet_settings= hHKCR + hsoftware + hmicrosoft +
hwindows + h currentversion + hinternet_settings. Therefore, we could preserve the hierarchical
relation between tokens and have a fixed and consistent embedding dimension
regardless of the number of keys.

File Name Embedding. From our analysis of malware operations, malwares often
code file names where the spellings deform some familiar regular names to obfuscate
the intent, e.g., “2dvaai32.dll” vs. “advapi32.dll”. There are also file names which
comprise a file name and a random number, e.g., “tsu08c6ec63.dll” and “tsu0ac63fe4.
dll”. Some file names are generated from a hash value, e.g. “518ca2bf37e13.dll”. In
other words, any possible combinations for a file name are enormous and unpre-
dictable. Here, we separate the file name into a sequence of character strings {c1, …,
cn} and input each character string to a LSTMfn unit one by one and obtain the
corresponding hidden vectors {hc1, …, hcn}. The last hidden state hcn is considered as
file name representation vlib. For example, a file name “wsock32”, can be split into a
series of characters, {w, s, …, 2}. Each letter is an input to the LSTMfn unit. They are
transformed into the associated hidden vectors, i.e., hwsock32 ¼ fhw; hs; . . .; h2g and h2
can be considered as the file name representation for ‘wsock32’. The merit of the
proposed LSTM unit is that it can capture the similarities between purposely

Tagging Malware Intentions by Using Attention-Based Sequence-to-Sequence 663

obfuscated file names or different variations of the same file name while treating each
individually.

URL Embedding. Malware programs often include codes that visit remote malicious
web sites in background and gain control of a computer system without being detected.
However, it is difficult to literally distinguish whether a URL is malicious or not.
Nonetheless, we consider URLs are important part of the information about the pro-
gram’s operations. Specifically, we make use of the URL reports from VirusTotal1

which give the result of the ratio of number of antivirus engines that detected a scanned
URL is malicious or not. This ratio is used as the score for embedding URL. For
instance, a URL, “install.optimum-installer.com”, got six over sixty-six. Since the
score is a real number, the associated embedding EURL is an identity matrix of 1 � 1.

3 Evaluation

3.1 Dataset

To capture the essentials of the execution behavior of a malware program, we used an
automated dynamic malware behavior profiling and analysis system based on Virtual
Machine Introspection (VMI) technique [8]. We carefully-selected 28 Windows API
calls, shown in Table 1. A malware sample may create or fork one or more processes.
An execution trace is generated per process. Some distinct malwares with the same
intent have slightly different parameter values, such as the user-profile folders, “user’s
Desktop” and “user’s Documents”, depending on the version of operating systems or
their executable strategy. To reduce this noise, values relevant to file directory and
registry key are symbolized, details in [2]. Also, a trace is reformatted and present a
Windows API call line by line, as a profile illustrated in Fig. 1.

We collected 19,987 malware profiles from11,939 samples, acquired from NCHC’s
OWL2 project. Since a few profiles contained too many API calls or too few ones, we
excluded the samples whose number of API calls were smaller than 10, or larger than
300. The final dataset includes 14,677 profiles from 9,666 samples.

In order to compile a set of tags which are descriptive terms to help users quickly
grasp the characteristics of a malware program, we crawled labels from VirusTotal in
April, 2018. The labels were changed to lowercase and tokenized by delimiters, “\,|!|\(|
\)|\[|\]|@|:|/|\.|_|\-|.” Only the first and second tokens are considered. We manually
build an alias table for the tokens with same meaning. For example, “troj” and “trj,” are
the abbreviations of “trojan.” Seventy-six tags are compiled, shown in Table 2. We
relabeled the tags for each malware sample. If a sample has any child process file, it is
labeled with the same tags as the main process. We also sorted tags in descending order
by counting occurrences in order to control the variance from the order of tags. We
hope a tag with a highly frequent occurrence could be predicted first.

1 https://www.virustotal.com.
2 https://owl.nchc.org.tw.

664 Y.-T. Huang et al.

https://www.virustotal.com
https://owl.nchc.org.tw

We randomly divide the dataset into a training set (80%), a development set (10%),
and a testing set (10%). Distributions of the three sets are then validated by F-test until
none of them have no significant difference. We report results on the testing set.

Table 1. Summary of Windows API function name and parameter types used in this study.

Category API function name Parameter type

Registry RegCreateKey, RegDeleteKey,
RegSetValue, RegDeleteValue,
RegOpenCurrentUser+,
RegEnumValue, RegQueryValue

hKey, lpSubKey, lpValueName

Process CreateProcess, CreateRemoteThread,
CreateThread, TerminateProcess,
ExitProcess*, OpenProcess+,
WinExec+

lpApplicationName, dwCreationFlags,
uExitCode

Network InternetOpen+, WinHttpConnect,
InternetConnect, WinHttpOpen+,
WinHttpOpenRequest+,
WinHttpReadData+,
WinHttpSendRequest+,
WinHttpWriteData+,
GetUrlCacheEntryInfo+,
HttpSendRequest+

lpszServerName, pswzServerName,
nServerPort

Library LoadLibrary lpFileName
File CopyFile, CreateFile, DeleteFile lpFileName, lpExistingFileName,

lpNewFileName,
dwCreationDisposition,
dwDesiredAccess, dwShareMode

*Only “ExitProcess” has no return value.
+Its associated parameter values are not considered.

Table 2. Seventy-six tags are collected.

Categories Tags

Type or family Adware, backdoor, bot, browsermodifier, bundler, ddos, game, grayware,
networm, PUP*, ransom, riskware, rootkit, spyware, trojan, virus, worm

Behavior Autorun, binder, browserhijacker, clicker, crypt, dialer, dns, downloader,
dropper, fakealert, fakeav, filecryptor, fileinfetor, flooder, fraudtool,
hacktool, infostealer, installer, joke, keylog, lockscreen, memscan, monitor,
packed, prochollow, procinject, virtool, webfilter

Route of
infection

Air, email, im, p2p, patch, pdf, proxy, sms, uds

Programming
lang.

Autoit, bat, html, js, php, vb

Other Android, apt, avt, constructor, exploit, FAT*, fca, hllp, iframe, irc, keygen,
MBR*, MSIL*, password, PE*, rat

*These tags are changed to uppercase in order to be understood easily.

Tagging Malware Intentions by Using Attention-Based Sequence-to-Sequence 665

3.2 Experimental Settings

We set the LSTM hidden unit size to 256 and the number of layers of LSTMs to 2 in
both the encoder and the decoder. Optimization is performed using Adam optimizer,
with an initial learning rate of 0.0002 for the encoder, and 2.5 for the decoder. Training
runs for 600 epochs. We start halving the learning rate at epoch 300, and decay it per
100 epoch. The mini-batch size is set at 16. Dropout with probability is 0.1.

Two baselines and three input variations are examined to answer two questions: (1) is
the seq2seq model suitable for our task? (2) Can the return embedding or the parameter
embedding help models to predict tags? We reproduced Convolutional Neural Network
(CNN) [11] and Multi-label Multi-class Classification (MLC) as baselines. Both models
use the proposed embedding layer. While the CNN has three convolution layers (256,
192, 64) with an average pooling layer, MLC has the same encoder as the proposed
system. Lastly, both connect to a dense layer and a sigmoid layer.

For each model, three input variations – only API function names, add the asso-
ciated return values, and add the corresponding parameter values – were evaluated. To
ensure that performance is not simply due to an increase in the number of model
parameters, we keep the total size of the embedding layer fixed to 256. The size of the
return embedding and the parameter embedding are set to 2 and 50 respectively, and
the size of the function name embedding is set to bring the total size to 256.

Recall are preferably used as our metric because it means malicious patterns could
be mostly found, which could help security analysis. Precision is also reported.

3.3 Results

Table 3 presents the results among different models and input settings. The results
showed an obvious effect of models on recall and precision. With respect to recall, the
predictions from the seq2seq models relatively approximated the ground truth. On the
other hand, regarding to precision, the percentage of tags from the MLC models
correctly predicted was highest, but the average number of predictions was much less
than the number of ground truth (7.41). We compared the predicted tags from the MLC
models against that from the seq2seq models. It showed that 84% of tags from the
MLC models and 52% from the seq2seq models were the same.

Table 3. Experiment result between different models.

Model Input setting Recall Precision |Predicted tags|

CNN API name 42.72% 69.32% 4.47
API name + return 40.35% 72.27% 4.06
API name + parameter + return 40.82% 69.63% 4.30

MLC API name 45.50% 72.39% 4.46
API name + return 44.66% 74.10% 4.34
API name + parameter + return 46.40% 72.10% 4.63

seq2seq API name 57.10% 53.02% 7.92
API name + return 56.25% 52.39% 7.86
API name + parameter + return 57.18% 53.05% 7.88

666 Y.-T. Huang et al.

For each model, three input variants had slightly different and inconsistent results
except for the seq2seq models. For seq2seq, considering all of input settings, including
API function names, parameter values, and return values, had minor better performance
than only considering API function names. It was surprised the performance was worse
when considering API function names and return values. It implies we could analyze
malware without knowing it was successful or not. We anticipate the tagging is related
to attack intention, rather than the successfulness of the API call invocation.

4 Conclusion

In this paper, we present a novel neural seq2seq model to analyze Windows API
invocation calls and predict tags to label a malware’s intentions. Results showed that
the seq2seq model, with all of input values, API function names, the associated return
values, and the corresponding parameters, could find mostly possible malicious char-
acteristics with respect to the number of prediction and the high ratio of correctly
predicted tags to ground truth. This can help security experts to understand any
potential malicious intentions with easy-to-understand description.

Acknowledgements. This work was supported by MOST107-2221-E-004-003-MY2.

References

1. Athiwaratkun, B., Stokes, J.W.: Malware classification with LSTM and GRU language
models and a character-level CNN. In: 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 2482–2486. IEEE, New Orelans (2017)

2. Chiu, W.J.: Automated malware family signature generation based on runtime API call
sequence. Master thesis. National Taiwan University, Taiwan (2018)

3. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random
projections and neural networks. In: Acoustics, Speech and Signal Processing, pp. 3422–
3426. IEEE, Vancouver (2013)

4. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic malware-
analysis techniques and tools. ACM Comput. Surv. 44(2), 6 (2012)

5. Gandotra, E., Bansal, D., Sofat, S.: Malware analysis and classification: a survey. J. Inf.
Secur. 5, 56–64 (2014)

6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural
networks. In: Thirteenth International Conference on Artificial Intelligence and Statistics,
pp. 249–256 (2010)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

8. Hsiao, S.W., Sun, Y.S., Chen, M.C: Virtual machine introspection based malware behavior
profiling and family grouping. arXiv preprint arXiv:1705.01697 (2017)

9. Huang, W., Stokes, J.W.: MtNet: a multi-task neural network for dynamic malware
classification. In: Detection of Intrusions and Malware, and Vulnerability Assessment,
pp. 399–418. Springer, Cham (2016)

Tagging Malware Intentions by Using Attention-Based Sequence-to-Sequence 667

http://arxiv.org/abs/1705.01697

10. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural
machine translation. In: Proceedings of Conference on Empirical Methods in Natural
Language Processing, pp. 1412–1421. Lisbon, Portugal (2015)

11. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for
discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2921–2929. (2016)

668 Y.-T. Huang et al.

A Novel Semi-supervised Adaboost
Technique Based on Improved

Tri-training

Dunming Li(B), Jenwen Mao, and Fuke Shen(B)

East China Normal University, Shanghai, China
18721070085@163.com, 52141201007@stu.ecnu.edu.cn, fkshen@ecnu.edu.cn

Abstract. With the development of the network, network attacks
become more frequent and serious, so network security is becoming more
and more important. Machine learning has been widely used for network
traffic detection, but traditional supervised learning does not perform
good in the case of a small amount of labeled data and a large amount
of unlabeled data. And this situation exists in a large number in practi-
cal applications, so research on semi-supervised algorithms is necessary.
The Tri-training algorithm is a semi-supervised learning algorithm with
strong generalization ability, which can effectively improve the accuracy
of detection. In this paper, we improve the traditional Tri-training algo-
rithm and combine the ensemble learning algorithm to generate the final
hypothesis by estimating the confidence of unlabeled data. Experiments
show that the improvement of the Tri-training is effective, and a better
detection rate is achieved. The proposed system performs well in network
traffic detection. Even in the case where the training data set has only
a small amount of tagged data, the system can achieve a good detection
rate and a low false positive rate. On the NSL-KDD data set, the system
performs best in terms of accuracy and algorithm time consumption. On
the Kyoto data set, the system achieves a good balance between accuracy
and time cost.

Keywords: Tri-training · Semi-supervised · Machine learning ·
Ensemble learning · Network security

1 Introduction

Due to the security risks brought by the rapid development of the network,
intrusion detection systems have attracted much attention. A common method
of intrusion detection is to extract statistical features to represent traffic and
then apply machine learning (ML) techniques for classification. Early uses of ML
algorithms can generally be divided into two categories, namely classification (or
supervised learning) [1] and clustering (or unsupervised learning) [2]. Compared
with obtaining labeled data, obtaining an unlabeled training process is easy, fast
and inexpensive. Traditional supervised learning cannot train classifiers with
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 669–678, 2019.
https://doi.org/10.1007/978-3-030-21548-4_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_39&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_39

670 D. Li et al.

better generalization ability, so more and more researchers are studying semi-
supervised learning [3].

Erman et al. proposed a hybrid method called semi-supervised learning [4],
which mixes a small amount of labeled data into a large amount of unlabeled
data to generate a training set for the clustering algorithm. Wang et al. [5] added
constraints in the clustering process, and used labeled data after clustering. By
combining constraints in the clustering process, the accuracy and purity of clus-
tering can be significantly improved. Li et al. [6] proposed a traffic classification
method based on cooperative training semi-supervised clustering. It is found
that the performance of the Co-training semi-supervised clustering algorithm
is better than K-means clustering, DBSCAN and double-layer semi-supervised
clustering, which has higher overall accuracy, and the accuracy and recall metric
are also better. Co-training is a very classic method in semi-supervised machine
learning, but there are still some important issues that need to be addressed (for
example, two feature subsets are approximate enough and redundant).

Goldman and Zhou proposed an improved collaborative algorithm [11]. The
main disadvantages of collaborative training are the time-consuming cross-
validation and strict rules of classification algorithm and data. After, Zhou and Li
proposed Tri-training algorithm for solving common training problems [12]. The
method avoids the explicit measurement of the label confidence of each learner.
Li et al. [7] proposed a new semi-supervised SVM algorithm (TSVM). It applies
Tri-training to improve the SVM. Semi-supervised SVM uses a large amount of
unlabeled data to iteratively modify the classifier. Tri-training can improve the
classification accuracy of the SVM, increase the difference of the classifier, and
finally the accuracy of the classifier will be higher. Yuan et al. [8] combines Tri-
training methods and Adaboost algorithm. The Tri-training bootstrap sample
was replaced by three different Adaboost algorithms to create diversity. It is a
very good balance between execution time and detection rate and false positive
rate. Xu et al [9] showed that Tri-training has the same performance as super-
vised learning in the absence of sufficient labeled data. Tri-training is a way to
make models more general and versatile, but the noise introduced by the error
labeled may offset the benefits of Tri-training. For this, we have improved Tri-
training. We measured our experimental results in terms of accuracy, precision,
recall, f-measure and detection time.

The contributions of this paper are as follows:

(1) We propose improved Tri-training algorithm. Confidence filtering for unla-
beled data to remove some mislabeled data, and the error estimate takes
into account the confidence of the unlabeled data, and the confidence of the
unlabeled data is assigned as a weight for each unlabeled example, further
reducing the potential negative impact.

(2) We reduce time costs by using decision tree algorithm as weak classifiers,
the time cost of our model is much lower than the previous work.

(3) We proposed a semi-supervised Adaboost model based on improved Tri-
training to solve the problem of poor balance between detection rate and

A Novel Semi-supervised Adaboost Technique 671

false positive rate. The accuracy of our model is higher and the false rate is
lower.

The structure of this paper is organized as follows: Sect. 2 introduces the
improved Tri-training algorithm and the semi-supervised detection model.
Results and performance evaluation are shown in Sect. 3. Finally, conclusions
and future improvements are presented in Sect. 4.

2 Algorithm and Model

2.1 Improved Tri-training

We denote L and U as the set of labeled and the set of unlabeled, and Hi

represents the set of classifier other than the classifier hi. The three classifiers are
first trained from L, during each learning iteration, Hi checks the unlabeled data
set U for each sample xj , comprehensively calculates the probability that the
sample belongs to each traffic class, and then selects the maximum probability
as confidence of the sample. We use the labeled result of the unlabeled data
on the companion set Hi as the confidence of the unlabeled data, then add the
unlabeled data with confidence to the companion set to redefine each classifier,
and iteratively calculate the confidence of each unlabeled data. If the number
of classifications voted for a particular labeled exceeds a preset threshold θ, the
unlabeled example and the newly assigned tag of the unlabeled example are
copied into the new labeled set. Nigam et al. [13] reduced the negative impact
when the underlying distribution was not fully captured by assigning weights to
each unlabeled example. In our method we use the confidence of new labeled data
as the weight of each new labeled data, further reducing the potential negative
impact.

According to Angluin and Laird [14], assuming the size of the training data
is denoted as m, the noise rate is denoted as η, then error rate (e) satisfies the
following relationship in the worst case:

m =
c

e2(1 − 2η)2
(1)

In Eq. 1, c is constant. By modifying Eq. 1, the classifier’s classification ability
is defined as the utility function u is:

u =
c

e2
= m(1 − 2η)2 (2)

On the original labeled set, the size of the training data is m0, the noise rate
is η0, the error rate is e0, m0 can be rewritten as a weighted value W0 =

∑m0
j=0 1.

During the t-th iteration, the labeled error rate of on the new labeled data set is
defined as ei,t, so the weighted error value that is incorrectly labeled is ei,tWi,t.
The weighted Wi,t =

∑mi,t

j=0 wi,t,j ,and wi,t,j is the predictive confidence of Hi on
xj in Li,t, mi,t is the size of Li,t, and Li,t is the labeled training set with weight

672 D. Li et al.

after the t-th iteration. Therefore the noise rate (ηi,t) of the t-th iteration in
L ∪ Li,t can be estimated as:

ηi,t =
η0W0 + ei,tWi,t

W0 + Wi,t
(3)

Replace the η in the Eq. 2, and m is replaced by Wi,t + W0. The utility of
classifier hi in the t-th iterative classifier is:

ui,t = (Wi,t + W0)(1 − 2
η0W0 + ei,tWi,t

W0 + Wi,t
)2 (4)

Similarly, the utility of classifier hi in the (t-1)-th iterative classifier is:

Algorithm 1. Semi-Supervised AdaBoost model based on Improved Tri-training
algorithm
1: for i ∈ (1..3) do
2: Si=BootstrapSample(L); hi=learn(L); ei,0=0.5; wi,0=0; li=0

t=0
3: while hichanges(i ∈ 1..3) do
4: t = t + 1
5: for i ∈ (1..3) do
6: Li,t = φ; update=FALSE; ei,t = MeasureError(Hi, L)
7: if ei,t < ei,t−1 then

8: Ui,t = SubSampled(U,
ei,t−1Wi,t−1

ei,t
)

9: for x ∈ Ui,t do
10: if Confidence(Hi, x) > θ then
11: Li,t = Li,t−1 ∪ (x, Hi); wi,t = wi,t−1 + Confidence(Hi, x)

12: if li = 0 then
13: li = [

ei,t
ei,t−1−ei,t

+ 1)]

14: if li < |Li,t| then
15: if ei,t−1Wi,t−1 > ei,tWi,t then
16: update=TRUE

17: for i ∈ (1..3) do
18: if update=TRUE then
19: hi = learn(L ∪ Li,t); ei,t−1 = ei,t; li = |Li,t|
20: Output: h(x) = arg maxy∈label

∑hi(x)=y
i 1.

ui,t−1 = (Wi,t−1 + W0)(1 − 2
η0W0 + ei,t−1Wi,t−1

W0 + Wi,t−1
)2 (5)

The Eq. 2 shows that the utility u is inversely proportional to error rate e in the
worst case. Therefore, in order to reduce e, the utility of hi should be increased
in the learning iterations (ui,t > ui,t−1), thus the constraint condition can be

A Novel Semi-supervised Adaboost Technique 673

obtained by Eqs. 4 and 5 is that Wi,t > Wi,t−1 and ei,t−1Wi,t−1 > ei,tWi,t.
Which can be summarized by

ei,t
ei,t−1

<
Wi,t

Wi,t−1
< 1 (6)

Algorithm 1 shows the pseudo-code of our improved Tri-training. Tri-training
uses the majority vote of ensemble learning to avoid the complex and time-
consuming process of collaborative training to generate learning hypotheses, but
the introduced noise may cause errors in the unlabeled data, reduce the accuracy
of experiment, and using a large amount of unlabeled data will make the model
worse. We use confidence to filter unlabeled data and add confidence to each
unlabeled data as a weight, which can reduce the impact of mislabeled data on
the model, and improve accuracy. Because some of the unlabeled data is filtered,
iterative data and time loss will be reduced.

2.2 Semi-supervised Model

Mousavi et al. demonstrate that decision trees algorithm can be easily classified
and can handle noise (one of the main problems with network traffic) and has
an advantage in implementation and time complexity. Akhil et al. proposed that
decision trees algorithm is a simple and interpretable framework [15], and is not
very sensitive to dimensions. For our proposed algorithm, we choose the decision
trees as a weak classifier. In this paper, we propose a semi-supervised Adaboost
decision trees model based on the improved Tri-training algorithm. Adaboost is

Fig. 1. Semi-supervised Adaboost model based on improved Tri-training algorithm

674 D. Li et al.

one of the ensemble learning methods [10]. Compared with bagging, Adaboost
focuses on the misclassification training sample of the former classifier. A simple
flow chart of the semi-supervised algorithm is shown in Fig. 1. In detail, three
Adaboost decision trees models are trained from the labeled data sets, and then
the unlabeled data is labeled according to the improved Tri-training algorithm,
and the unlabeled data with a confidence greater than Θ are added to the labeled
data sets to generate the final model.

3 Experiments

We use weka3.8 to perform our experiments. All experiments are carried out on
a sever of Intel(R) Core(TM) i5-6300HQ CPU @2.30 GHZ.

3.1 Evaluation Index and Datasets

There are various ways to determine the performance of the classifier, we use
the following performance indicators: Accuracy, Precision, Recall, F-Measure.

Table 1. NSL-KDD.

Data set Feature no. Normal Dos R2L U2R Probe Total

NSL-KDD 42 9710 7458 2887 67 2421 22543

Table 2. Kyoto2006+.

Data set Feature no. Normal Attack Unknown Total

Kyoto2006+ 24 255850 3451 8 259309

All experiments are carried out on NSL-KDD and Kyoto2006+ data sets. The
NSL-KDD data set [16] is a classic data set for network traffic classification.
Kyoto2006+ [17] data set covers both honeypots and regular servers that are
deployed at Kyoto University. We only use the data of December 10th, 2015.
Tables 1 and 2 indicate the size of characteristics and the traffic type in two data
sets. Because the amount of data in the Kyoto data set is too large to meet the
memory requirement. Therefore, we use cluster sampling. The test set size is
10% of the original size.

A Novel Semi-supervised Adaboost Technique 675

Table 3. Accuracy and time of different algorithm in 20% ratio of labeled and unlabeled
data sets

Data set Algorithm Adaboost

(DT)

SVM NaiveBayes Decision

trees

Random

forest

BP

Accuracy (%) 95.52 99.96 89.88 93.39 97.12 Overrun

Koyto Time (ms) (5247,55) (279359,168713) (3436,1468) (2713,16) (54545,2163) Overrun

Accuracy (%) 96.08 92.03 72.53 92.03 95.14 94.06

NSL-KDD Time (ms) (2860,118) (1658,256) (7221,3949) (1295,24) (8275,3114) (932289,4080)

3.2 Performance Evaluation and Analysis

In experiment, the size of the unlabeled data set is 10% of the test set size, the
size of the labeled data set is 20%, 40%, 60%, 80% of the unlabeled data sets
size.

In our improved Tri-training algorithm, We tested the impact of different
weak classifiers on the model. Table 3 shows the results. The first number of time
results represents training time and the second number represents detection time.
We have bolded the best results. Obviously, the accuracy of Decision trees is close
to the best results, but it is much lower in time cost than other algorithms, and
combined with the ensemble learning algorithm, the accuracy is increased by 4%
and the detection time is only increased by 0.1s. Therefore, we chose Adaboost
(Decision trees) (or Adaboost (DT)) as the weak classification of our model.

Table 4. False rate of different θ with different ratios of labeled

Data set θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NSL-KDD False rate(80%) 2.62 2.62 2.62 2.62 2.77 2.56 2.51 2.57 2.59

False rate (60%) 3.25 3.25 3.31 3.03 3.03 2.99 2.91 2.97 2.97

False rate (40%) 3.94 3.94 3.94 4.02 3.80 3.59 3.48 3.75 3.75

False rate (20%) 5.47 5.47 5.08 5.21 4.93 5.36 3.92 4.05 4.05

False rate (average) 3.82 3.82 3.74 3.72 3.63 3.625 3.2 3.335 3.34

Kyoto False rate(80%) 2.72 2.72 2.72 2.72 2.72 2.74 2.74 3.04 3.04

False rate (60%) 3.99 3.99 3.99 3.99 3.97 2.89 2.94 6.37 5.89

False rate (40%) 6.98 6.98 6.98 6.98 6.98 0.84 0.78 1.93 1.93

False rate (20%) 9.25 9.25 9.25 9.25 9.25 8.01 4.48 7.55 9.57

False rate (average) 5.735 5.735 5.735 5.735 5.73 3.62 2.735 4.723 5.11

In the algorithm we mentioned that the new labeled instance here needs to
satisfy the condition that the confidence is greater than threshold θ. We tested
the effect of different θ values on the improved Tri-training algorithm. The results
is shown as Table 4. False rate equals 1 minus accuracy. We have proved that the
algorithm is not sensitive to θ. Even if θ is small, the false rate of the experiment
is also very low. We also calculated the average of the false rate, Table 4 shows
that the average of false rate is lowest when θ = 0.7. So we use θ = 0.7 as our
final threshold.

676 D. Li et al.

Table 5. Results for 20% ratio of labeled and unlabeled data sets

Data set Model Accuracy Precision Recall F-measure Time (ms)

NSL-KDD Co-training 89.8 89 88 88.9 (4648,742)

TSVM 92.1 93.5 92.9 92.5 (2127,228)

Tri-training (Adaboost) 95.5 95.5 94.9 95.2 (3393,151)

Improved Tri-training (Adaboost) 96.1 96.0 95.7 95.9 (2941,130)

Kyoto Co-training 80 80 79 80 (5755,639)

TSVM 97.6 97.8 97.6 97.7 (485072,46176)

Tri-training (Adaboost) 90.1 91.5 90.9 90.5 (6625,61)

Improved Tri-training (Adaboost) 95.5 96.0 95.7 95.7 (5257,35)

To evaluate our model, We compare our model with Co-training clustering
algorithm, Tri-training SVM algorithm (or TSVM) and Tri-training (Adaboost)
algorithm. Table 5 shows the results. On the NSL-KDD data set, our model
achieved the best results. On the Kyoto data set, TSVM achieved the best results,
but the training time was one hundred times of the training time of our model.
The detection time of TSVM is one thousand times of the detection time of
our model, and the accuracy is only 2% higher than our model. Compared with
Tri-training (Adaboost), we used the same weak classifier, but we improved the
Tri-training algorithm. For our model eliminates the effects of mislabeled data,
it has achieved good results in terms of precision, recall and f-measure. Time
cost has also decreased because of the reduced iterative data size.

Fig. 2. Accuracy of different algorithms in different labeled rates.

We tested all results of the different ratios of labeled and unlabeled data sets
in different data sets. We use the different labeled data sets with ratios of 20%,
40%, 60% and 80%. Figure 2 shows the accuracy of the different algorithms.
And Table 6 shows the detection time of the different algorithms. Our model
has achieved very good or better results in different scales in different data sets.
At the same time, the detection time is also lower, and the attack traffic can be
detected more quickly, which is especially important for attack detection. We also

A Novel Semi-supervised Adaboost Technique 677

find that when the labeled rate is 40%, the error rate of our model is only 0.78.
After removing the data of the error labeled, the trained model is more in line
with the real situation. These results show that our model is very competitive
with other models. Compared with Tri-training (Adaboost), our model improves
accuracy, precision, recall, f-measure, and reduces detection time. These results
also show that our improvement on the Tri-training algorithm is effective.

Table 6. Detection time of different algorithms in different labeled rates.

Data set Model 0.2 0.4 0.6 0.8

NSL-KDD Co-training (ms) 725 1038 934 921

TSVM (ms) 204 218 218 218

Tri-training (Adaboost)(ms) 126 128 143 137

Improved Tri-training (Adaboost)(ms) 130 126 151 132

Kyoto Co-training (ms) 868 584 794 892

TSVM (ms) 46176 50085 48041 54185

Tri-training (Adaboost) (ms) 61 59 61 63

Improved Tri-training (Adaboost) (ms) 35 33 19 29

4 Conclusion

Our paper improved the traditional Tri-training algorithm and proves that we
are effective in improving the Tri-trainings by comparing the results of different
basic classifiers. And proposed a Semi-supervised Adaboost decision trees model
based on improved algorithm. In the experiment, we used different sizes of tag
data sets. Even if the labeled data set is small, our classifier can achieve low false
positive rate and good detection rate. When using only 561 labeled examples
and 2252 unlabeled examples, we can classify test sets of size 22543 with an
accuracy of 96.1% in the NSL-KDD data set and 95.5% in the Kyoto data set.
Theoretical analysis and experiments show that compared with the published
semi-supervised detection algorithm based on sample data sets, our proposed
algorithm is competitive and achieves better results regardless of the number of
labeled data.

Our future work will focus on different data sets to test our algorithm and
improve our algorithm. Improved Tri-training is an algorithm that can make
good use of generalization ability. Currently, there are only three classifiers. So
we will also focus on more classifiers, and the balance of accuracy and time will
be future research goals.

678 D. Li et al.

References

1. Shang-fu, G., Chun-lan, Z.: Intrusion detection system based on classification. In:
2012 IEEE International Conference on Intelligent Control, Automatic Detection
and High-End Equipment, pp. 78–83. IEEE (2012)

2. Mazel, J., Casas, P., Labit, Y., et al.: Sub-space clustering, inter-clustering results
association & anomaly correlation for unsupervised network anomaly detection.
In: International Conference on Network and Service Management. IEEE (2011)

3. Zhu, X.J.: Semi-supervised learning literature survey. Technical report 1530,
Department of Computer Sciences, University of Wisconsin at Madison, Madison,
WI, December 2007

4. Erman, J., Mahanti, A., Arlitt, M., et al.: Semi-supervised network traffic classifi-
cation. In: SIGMETRICS, pp. 369–370 (2007)

5. Wang, Y., Xiang, Y., Zhang, J., et al.: A novel semi-supervised approach for net-
work traffic clustering. In: International Conference on Network and System Secu-
rity. IEEE (2011)

6. Li, X., Qi, F., Kun Yu, L., et al.: High accurate Internet traffic classification
based on co-training semi-supervised clustering. In: International Conference on
Advanced Intelligence and Awarenss Internet. IET (2010)

7. Li, K., et al.: A novel semi-supervised SVM based on tri-training. J. Comput. 5(4),
47–51 (2010)

8. Yuan, Y., Kaklamanos, G., Hogrefe, D.: A novel semi-supervised Adaboost tech-
nique for network anomaly detection. In: ACM International Conference on Mod-
eling, Analysis and Simulation of Wireless and Mobile Systems, pp. 111–114. ACM
(2016)

9. Xu, G., Zhao, J., Huang, D.: An improved social spammer detection based on
tri-training. In: IEEE International Conference on Big Data. IEEE (2017)

10. Liu, X., Dai, Y., Zhang, Y., et al.: A preprocessing method of AdaBoost for mis-
labeled data classification. In: Control and Decision Conference, pp. 2738–2742.
IEEE (2017)

11. Goldman, S., Zhou, Y.: Enhancing supervised learning with unlabeled data. In:
ICML, pp. 327–334 (2000)

12. Zhou, Z.H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers.
IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005)

13. Nigam, K., McCallum, A.K., Thrun, S., et al.: Text classification from labeled and
unlabeled documents using EM. Mach. Learn. 39(2–3), 103–134 (2000)

14. Angluin, D., Laird, P.: Learning from noisy examples. Mach. Learn. 2(4), 343–370
(1988)

15. Jabbar, M.A., Samreen, S.: Intelligent network intrusion detection using alternat-
ing decision trees. In: 2016 International Conference on Circuits, Controls, Com-
munications and Computing (I4C), pp. 1–6. IEEE (2016)

16. Lippmann, R., Haines, J.W., Fried, D.J., et al.: The 1999 DARPA off-line intrusion
detection evaluation. Comput. Netw. 34(4), 579–595 (2000)

17. Sangkatsanee, P., Wattanapongsakorn, N., Charnsripinyo, C.: Practical real-time
intrusion detection using machine learning approaches. Comput. Commun. 34(18),
2227–2235 (2011)

Automated Cash Mining Attacks
on Mobile Advertising Networks

Woojoong Ji1(B), Taeyun Kim1, Kuyju Kim2, and Hyoungshick Kim1

1 Sungkyunkwan University, Suwon, Republic of Korea
{woojoong,taeyun1010,hyoung}@skku.edu
2 AhnLab, Seongnam, Republic of Korea

kuyju.kim@ahnlab.com

Abstract. Rewarded advertisements are popularly used in the mobile
advertising industry. In this paper, we analyze several rewarded adver-
tisement applications to discover security weaknesses, which allow mali-
cious users to automatically generate in-app activities for earning cash
rewards on advertisement networks; we call this attack automated cash
mining. To show the risk of this attack, we implemented automated cash-
ing attacks on four popularly used Android applications (Cash Slide,
Fronto, Honey Screen and Screen Stash) with rewarded advertisements
through reverse engineering and demonstrated that all the tested reward
apps are vulnerable to our attack implementation.

1 Introduction

In rewarded advertisement services, the most important security issue is the
detection of (artificially created) fraudulent user engagement activities that have
no intention of generating value for the advertiser [6]. Recently, there have been
few studies [2,3] that analyze the potential security risks in this domain. Cho et
al. [2] demonstrated that six Android advertising networks were vulnerable to
automated click fraud attacks through the Android Debug Bridge (ADB).

In this paper, we extend Cho et al’s attack model of relying on automated
input sequences at the user interface level into a more sophisticated attack called
automated cash mining, which allows an attacker to automatically generate in-
app activities at the network packet level. This is a significant advancement
from previous studies [2,3] that merely showed potential weaknesses in rewarded
advertisement applications.

To show the feasibility of our attack, we analyzed four popularly used reward
apps (Cash Slide, Fronto, Honey Screen and Screen Stash) by reverse engi-
neering and packet analysis, and we found that all tested reward apps are vul-
nerable to automated cash mining attacks.

2 Mobile Advertising Network

To provide a better understanding of automated cash mining attacks, we first
present the typical model of a mobile advertising network for reward applications.
c© Springer Nature Switzerland AG 2019
J. Jang-Jaccard and F. Guo (Eds.): ACISP 2019, LNCS 11547, pp. 679–686, 2019.
https://doi.org/10.1007/978-3-030-21548-4_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21548-4_40&domain=pdf
https://doi.org/10.1007/978-3-030-21548-4_40

680 W. Ji et al.

In the advertising network model, there are four main entities: (1) publisher, (2)
advertising network, (3) advertiser and (4) reward app.

A publisher (i.e., app developer) develops a reward app with the SDK library
for an advertising network and releases it to users. Advertisers can add new
advertisements to the advertising network when they want. The reward app can
periodically fetch a list of advertisements from the advertising network via its
SDK library incorporated in the app itself. In general, the advertising network
manages publishers and advertisers as a moderator in this model.

Fig. 1. Business model of advertising networks with reward apps.

Whenever a user watches advertisements on the reward app, the app then
reports the user engagement activities referred to as ‘impressions’ to the adver-
tising network. This reporting process is triggered by sending a request message
for a reward from the reward app to the advertising network. Consequently, the
user would be rewarded for performing such activities within the reward app.
For this rewarding process, advertisers pay money to the advertising network
depending on the number of impressions they receive; the advertising network
pays money to the publishers; and a publisher finally pays money to its reward
app users. This process is depicted in Fig. 1.

3 Automated Cash Mining Attack

Our goal is to generate network traffic that emulates a real reward app. To arti-
ficially generate reward request messages for automated cash mining attacks, we
must know how a reward app interacts with its advertising network. Therefore,
we carefully analyzed the network messages exchanged between a target reward
app and its advertising network server by a web debugging proxy.

From our traffic analysis of the four reward apps tested (Cash Slide, Fronto,
Honey Screen and Screen Stash), we found that reward apps’ request messages

Automated Cash Mining Attacks on Mobile Advertising Networks 681

generally include an authentication code to verify the authenticity of reward mes-
sages. The authentication code is newly calculated every time in a secret function
f (e.g., encryption or cryptographic hash function) with a reward app’s internal
parameters such as advertisement identifier, user identifier, timestamp, reward
amount, etc. to prevent replay attacks. Therefore, to implement automated cash
mining attacks, the most challenging task is to analyze how such an authentica-
tion code is computed in a function f , which is internally implemented in each
reward app. To achieve this, we examined the procedure of authentication code
generation in each reward app through reverse engineering.

If we are able to compute authentication codes with the internal parameters
of a reward app, we can systemically generate reward request messages contain-
ing valid authentication codes.

4 Implementation

To perform automated cash mining attacks, we need to intentionally craft reward
request messages to deceive a victim advertising network. Therefore, we first
analyze the structure of network messages used in genuine reward apps and
then generate reward request messages based on our analysis results.

4.1 Analysis of Network Messages

To generate reward request messages, it is necessary to analyze the messages
exchanged between the advertising network and the reward app. To analyze the
HTTPS traffic, we used Fiddler (https://www.telerik.com/fiddler) to mount a
man-in-the-middle attack. In practice, there are several methods (e.g., certificate
pinning [5]) to prevent man-in-the-middle attacks on HTTPS but all the tested
reward apps failed to prevent our traffic analysis.

There are two types of advertisements in reward apps: (1) advertisements
that have a reward and (2) advertisements that do not have a reward. After
receiving a request to deliver the current advertisement list to the reward app,
the advertising network server responds with the requested advertisement list in
JavaScript Object Notation (JSON) format.

We found that the reward amounts can be changed dynamically depending
on the type of advertisement (e.g., some advertisements do not have a reward
at all). Therefore, to maximize their gain, attackers must first obtain the infor-
mation about the reward amount for each advertisement so that they can selec-
tively generate request messages only for advertisements with a (high) reward.
For reward apps, it is essential to maintain up-to-date reward amount infor-
mation for advertisements. In the reward apps on Android, such information is
typically stored on a system cache and/or a database file. We experimentally
observed that a request message for new advertisements would be generated in
most reward apps when they are restarted after erasing the system cache and
database file for advertisements. Therefore, in a reward app, we can try to ana-
lyze the structure of the request message for new advertisements by intentionally

https://www.telerik.com/fiddler

682 W. Ji et al.

erasing the system cache and database file and restarting the app itself. If we
completely analyze the structure of the request message for new advertisements,
we can also generate the request message based on our analysis results and send
the message to obtain the information about advertisements. Thus, we can selec-
tively generate request messages only for advertisements with rewards to boost
the efficiency of automated cash mining attacks.

4.2 Analysis of Authentication Code Computation

As explained in Sect. 3, in reward apps, the authentication code is typically
used to verify the integrity and authenticity of reward messages. For example,
in Cash Slide, key and ts are used to compute the authentication code. Cash
Slide calculates a key value by combining the user’s name (c nickname) and
timestamp for the purpose of preventing replay attacks. The ts field provides
the timestamp that is used when generating the key value. As a result of the
analysis, we discovered that only the key and ts fields are periodically refreshed,
and the rest of the fields are always fixed. Hence, the attacker only needs to
dynamically calculate the key and ts fields to make valid request messages.

Therefore, we need to analyze the reward apps’ codes for computing authen-
tication codes and reimplement them to automatically generate valid reward
request messages. To achieve this, we analyzed the APK files of each reward
app. We note that Android apps are written in Java, and they are compiled to
Java byte code and then translated into the Dalvik executable (DEX) format [4].
Using an APK extractor, we first extracted a target reward app’s APK file from
the app and then converted the extracted APK file into JAR files. Next, we
used a decomplier (e.g., JD-decompiler) to decompile the JAR files and analyze
the decompiled source codes. In the decompiled source codes, we can find a few
candidate functions using text keyword matching (e.g., crypto, key and AES).

public static String a = ”1a2b3c4d5e6f7g8h9i1j2k3l4m5n6o7p”;
public static String b = ”1a2b3c4d5e6f7g8h”;
...
try
{
Object abc = new javax/crypto/spec/SecretKeySpec;
((SecretKeySpec)abc).<init>(a.getBytes(), ”AES”);
Object def = b;
def = Cipher.getInstance(”AES/CBC/PKCS5PADDING”);

...
abc = ((Cipher)def).doFinal(paramString.getBytes());

}
...

Fig. 2. Function for authentication code computation in Cash Slide.

Automated Cash Mining Attacks on Mobile Advertising Networks 683

To identify the candidate functions, we used dynamic analysis tools (Frida,
https://www.frida.re/ and AppMon, https://dpnishant.github.io/appmon/) to
analyze how an authentication code is computed by using a cryptographic algo-
rithm (e.g., AES or MD5) with its parameters. To use Frida and AppMon on
an Android smartphone, the smartphone must be rooted. However, none of the
apps tested had any anti-rooting mechanisms.

Among the apps tested, two apps (Cash Slide and Fronto) only used an
encryption algorithm to compute authentication codes. The remaining apps
(Honey Screen and Screen Stash) only used a cryptographic hash function
(e.g., MD5) instead. Figure 2 shows the decompiled code for computing authen-
tication codes in Cash Slide. From this code, we can see that AES in CBC
mode with PKCS5 padding algorithm with the hard-coded encryption key and
initial vector is used to compute authentication codes.

4.3 Generation of Messages to Mimic Reward Apps

The overall process of our automated cash mining attack is as follows:

1. Send a request message to obtain information about the advertisement (e.g.,
advertisement’s identifier, user identifier, timestamp and reward amount).

2. Send reward request messages periodically for advertisements with a (high)
reward.

The reward request messages that will be sent to the advertising network can
be easily generated using Request to Code [1], which is a Fiddler extension.

After making such a request, we use the advertisement identifier and other
information of advertisements with rewards from the list to automatically cal-
culate authentication codes.

5 Experiments

We analyzed four popularly used reward apps (Cash Slide, Fronto, Honey
Screen and Screen Stash) and implemented automated cash mining attacks
to generate valid reward request messages to mimic the messages generated by
human users using those reward apps. To evaluate the performance of our attack
implementations, we created log files to record the response messages from the
advertising network. We demonstrate that our implementation of automated
cash mining attacks can be used to obtain rewards from reward apps in an auto-
mated manner, and we confirmed that there were only a few defense mechanisms
in the four reward applications that we investigated. We also discovered that it
is possible to implement automated cash mining attacks to financially damage
real-world mobile advertising networks with all four reward apps. The detailed
experiment results are explained in the following sections.

https://www.frida.re/
https://dpnishant.github.io/appmon/

684 W. Ji et al.

5.1 Data Protection

We analyzed the features that the developers used to protect their data, such
as hash and cryptographic functions. As shown in Table 1, two of the four apps
used AES encryption but the encryption keys and IV vector values were stored
in plaintext form in the APK files. As a result, malicious users can easily access
these values. In addition, we found that both the encryption keys and the IV vec-
tor values were fixed, and they were not changed following encryption. Attackers
can decrypt the encrypted messages by obtaining the encryption keys and IV
vector values that the app uses to encrypt messages.

Table 1. Security mechanisms used in reward apps.

As shown in Table 1, the two remaining apps used the MD5 hash function
instead of AES encryption, and the hash function was applied to one of the
fields in the message. Since the hash function is not an encryption method, the
attackers can generate the same output by analyzing the input value through
source code analysis.

5.2 Reward Policy

Many reward applications have mechanisms to protect themselves. The reward
apps have reward policies, such as a time limit to request a reward or verification
of a reward. We analyzed the reward polices of the four reward apps. As shown
in Table 1, in two of the four apps, the users receive a fixed amount of rewards.
For the other two apps, the attackers can change the reward value. In this case,
the attackers can obtain more rewards than the intended amount of rewards
since they can manipulate the reward value.

5.3 Defense Mechanisms

In all the apps we tested, we found that there is no proper defense mechanism
(e.g., anti-debugging) except simple code obfuscation to hide package/class/vari-
able names. Therefore, we can effectively analyze the procedures to compute the
authentication code by tracing crypto APIs with Frida.

Another straightforward defense solution is to limit the number of reward
request messages in a specific time interval. However, Cash Slide did not limit

Automated Cash Mining Attacks on Mobile Advertising Networks 685

the number of request attempts. Another defense mechanism is to limit the
number of request attempts within a fixed time interval, but automated cash
mining attacks can still be financially damaging over long periods of time.

5.4 Attack Results

To show the feasibility of an automated cash mining attack, we performed the
attack for a total of three days using the vulnerabilities discovered against the
four reward apps (see Table 2).

Table 2. Results of performing automated cash mining attacks on reward apps

When normal users use the four reward apps without launching an auto-
mated cash mining attack for three days, they can receive an average of $0.04
(Cash Slide), $0.06 (Fronto), $0.04 (Honey Screen) and $0.02 (Screen Stash)
for each app. Hence, the reward app in which the users can receive the high-
est reward is Fronto with $0.06, and the reward app in which the users can
receive the lowest reward is Screen Stash with $0.02. Additionally, the number
of advertisements with rewards displayed on the lock screen within three days
was 27 (Cash Slide), 21 (Fronto), 23 (Honey Screen) and 16 (Screen Stash)
on average for each reward app. Cash Slide displayed the most number of such
advertisements (27 times), and Screen Stash displayed the least (16 times).

When launching automated cash mining attacks to show the security weak-
ness of reward apps, we were able to earn $127.84 (Cash Slide), $0.56 (Fronto),
$0.6 (Honey Screen) and $0.52 (Screen Stash), respectively, for each of the four
reward apps within one day. For Honey Screen and Screen Stash, the amount
of rewards in reward request messages can be modified even though the maxi-
mum allowable value is $0.03. This is six times higher than the default reward
value ($0.005) while the amount of rewards for Cash Slide and Fronto were
fixed to $0.005 and $0.009, respectively. In the case of Cash Slide, however, the
most serious financial damage occurred because we can generate reward request
messages without any limitation.

To test how effectively the automated cash mining attack obtains rewards,
we compared the case when a normal user uses the app for three days with
the case when the automated cash mining attack is launched. Compared to the

686 W. Ji et al.

case of a normal user, the amount of rewards received for three days increased
by 3,196 times, 9.3 times, 15 times, 26 times when the automated cash mining
attack was launched. Further, compared to the case of a normal user, the number
of advertisements with rewards increased by 1,057 times, 3.3 times, 0.9 times,
1.2 times during the same time period. As a result, we confirmed that we could
obtain rewards with 0.9 times to 1,057 times more efficiency using automated
cash mining attack.

6 Conclusion

In this paper, we analyzed the security flaws present in mobile advertising net-
works. We introduced automated cash mining attacks to automatically generate
in-app activities at the network packet level. While previous studies [2,3] have
only demonstrated the feasibility of automated attacks by emulating human click
behaviors at the UI level, we implemented the first fully automated and working
tool that is capable of generating reward request messages in a massive manner.

In our attack experiments, we found that all tested adverting networks failed
to detect our automated cash mining attacks. This could be explained from the
economic incentives of a security failure in current mobile adverting network
models. We expect that in automated cash mining attacks, the advertisers incur
the financial losses rather than the advertising networks. To make matters worse,
the success of automated cash mining attacks is not a loss in an advertising net-
work but rather a profit. Because of this disincentive, we surmise that adverting
networks might not be sufficiently motivated to detect automated cash mining
attacks. To fix this problem, we suggest that the interaction between adverting
networks and reward applications should be audited and monitored regularly by
an external third party in order to properly regulate adverting networks.

Acknowledgments. This work was supported in part by NRF of Korea (NRF-
2017K1A3A1A17092614) and the ICT Consilience Creative support program (IITP-
2019-2015-0-00742).

References

1. Fiddler Extension (Requset to Code). http://www.chadsowald.com/software/
fiddler-extension-request-to-code. Accessed 28 Feb 2019

2. Cho, G., Cho, J., Song, Y., Choi, D., Kim, H.: Combating online fraud attacks in
mobile-based advertising. EURASIP J. Inf. Secur. 2016(1), 2 (2016)

3. Crussell, J., Stevens, R., Chen, H.: Madfraud: investigating ad fraud in android
applications. In: Proceedings of the 12th Annual International Conference on Mobile
Systems, Applications, and Services (2014)

4. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: Proceedings of the 20th USENIX Security Symposium (2011)

5. Evans, C., Palmer, C.: Certificate pinning extension for HSTS (2011). https://tools.
ietf.org/html/draft-evans-palmer-hsts-pinning-00

6. Immorlica, N., Jain, K., Mahdian, M., Talwar, K.: Click fraud resistant methods
for learning click-through rates. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol.
3828, pp. 34–45. Springer, Heidelberg (2005). https://doi.org/10.1007/11600930 5

http://www.chadsowald.com/software/fiddler-extension-request-to-code
http://www.chadsowald.com/software/fiddler-extension-request-to-code
https://tools.ietf.org/html/draft-evans-palmer-hsts-pinning-00
https://tools.ietf.org/html/draft-evans-palmer-hsts-pinning-00
https://doi.org/10.1007/11600930_5

Author Index

Alberto Torres, Wilson 156
Ashouri, Mohammadreza 494
Attrapadung, Nuttapong 343

Baek, Joonsang 3
Buchmann, Johannes 399
Butin, Denis 399

Callahan, Devon 456
Chakraborty, Bodhi 651
Chen, Meng Chang 660
Chen, Yu-Yuan 660
Cheng, Jacob 156
Choo, Kim-Kwang Raymond 514
Chow, Sherman S. M. 271
Chow, Yang-Wai 441
Cui, Nan 229
Curry, Timothy 456

Davidson, Alex 58
Deo, Amit 58
Duong, Dung Hoang 138
Dutta, Ratna 78

Fan, Xuejun 620, 630
Fukushima, Kazuhide 138
Fuller, Benjamin 456

Gu, Dawu 229

Hamada, Koki 343, 362
Han, Donglei 475
Hsiao, Shun-Wen 660
Hu, Jingwei 176
Huang, Qiong 39
Huang, Yi-Ting 660

Ichikawa, Atsunori 362
Ikarashi, Dai 343
Ishida, Ai 343

Ji, Woojoong 679
Jin, Yaoan 639
Jonker, Willem 97

Kikuchi, Ryo 343, 362
Kim, Hyoungshick 679
Kim, Jongkil 3
Kim, Kuyju 679
Kim, Taeyun 679
Kiyomoto, Shinsaku 138
Kraitsberg, Michael 192
Kuchta, Veronika 156

Lau, Terry Shue Chien 211
Lee, Ela 58
Li, Bao 620, 630
Li, Dunming 669
Li, Geng 419
Li, Hongda 609
Li, Weixuan 620, 630
Li, Ximing 39
Liang, Bei 609
Lindell, Yehuda 192
Ling, Yunhao 39
Liu, Dongxi 3, 21, 307
Liu, Jianwei 322, 419
Liu, Joseph K. 156, 271, 289, 307
Liu, Maozhen 533
Liu, Shengli 229
Liu, Wenmao 322
Liu, Yunwen 555
Liu, Zhiqiang 271
Liu, Zongbin 475

Ma, Cunqing 475
Ma, Jianfeng 533
Ma, Sha 39
Mao, Jenwen 669
Martin, Keith 58
Matsuda, Takahiro 343
Michel, Laurent 456
Miyaji, Atsuko 639
Murphy, Sean 251

Naito, Yusuke 588
Nepal, Surya 3
Ni, Peifang 609

Ogata, Wakaha 362
Osheter, Valery 192

Pal, Tapas 78
Pan, Dongxue 609
Pang, Xiaojian 533
Peter, Andreas 97
Plantard, Thomas 119
Player, Rachel 251

Qin, Bo 289

Roy, Partha Sarathi 138

Sadhya, Debanjan 651
Sakai, Yusuke 343
Sakzad, Amin 156
Sasaki, Yu 555
Schabhüser, Lucas 399
Schuldt, Jacob C. N. 343
Shen, Fuke 669
Shen, Jaryn 514
Sipasseuth, Arnaud 119
Smart, Nigel P. 192
Steinfeld, Ron 156, 307
Stritzl, David 97
Sun, Yeali 660
Susilo, Willy 3, 21, 119, 138, 381, 441

Talibi Alaoui, Younes 192
Tan, Chik How 211
Tang, Churan 475
Tang, Shuyang 271

Tian, Song 630
Tonien, Joseph 381

van de Kamp, Tim 97
Viet Xuan Phuong, Tran 21

Wang, Gaoli 573
Wang, Huili 289
Wang, Li-Ping 176
Wang, Ziyu 322
Wen, Yunhua 229
Wijaya, Dimaz Ankaa 307
Wu, Qianhong 289

Xiang, Ru 39
Xie, Jan 289

Yan, Jun 21
Yang, Chih-Chun 660
Yang, Guomin 21, 381
Yang, Li 533
Yin, Jiayuan 322
Yu, Hui 322
Yu, Wei 620
Yuen, Timothy T. 514

Zeng, Qingkai 514
Zhang, Lingchen 475
Zhang, Yanting 322
Zhang, Zongyang 322, 419
Zheng, Liang 475
Zhong, Lin 289
Zhu, Boyu 573
Zhu, Chunbo 573
Zong, Wei 441

688 Author Index

	Preface
	Organization
	Contents
	Encryption
	Ciphertext-Delegatable CP-ABE for a Dynamic Credential: A Modular Approach
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Bilinear Maps
	2.2 Monotonic and Non-monotonic Access Structure
	2.3 Definition of CD-CP-ABE
	2.4 IND-CPA Security of the CD-CP-ABE

	3 Delegated Access Structures
	3.1 Difficulty
	3.2 Delegated Access Structures

	4 Ciphertext Delegation
	4.1 Properties
	4.2 Generic Delegation Algorithm

	5 Instantiations
	5.1 CD-CP-ABE
	5.2 CD-CP-ABE with Non-monotonic Access Structure

	6 Conclusion
	References

	Location Based Encryption
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Map on Prime Order Groups
	2.2 The Decisional -wBDHI Assumption
	2.3 Location Based Encryption
	2.4 Security Model

	3 2D Location Based Encryption
	4 Security Proof
	5 3D Location Based Encryption
	6 Conclusion
	References

	Group ID-Based Encryption with Equality Test
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Paper Organization

	2 Preliminaries
	3 Definition
	3.1 Group ID-Based Encryption with Equality Test
	3.2 Security Models

	4 Construction
	5 Security Analysis
	6 Conclusion
	References

	Strong Post-Compromise Secure Proxy Re-Encryption
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Re-encryption Graphs
	2.2 Common Oracles

	3 Related Work
	3.1 Confidentiality Definitions
	3.2 Ciphertext Re-randomisation

	4 Strong PCS for PRE
	4.1 Post-Compromise Security
	4.2 Basic Observations
	4.3 Separating Examples
	4.4 PCS via Source-Hiding and IND-HRA

	5 An Efficient Construction from Lattices
	5.1 Lattice Preliminaries
	5.2 Adapting BV-PRE for PCS

	6 Conclusions and Future Work
	References

	Offline Witness Encryption from Witness PRF and Randomized Encoding in CRS Model
	1 Introduction
	2 Preliminaries
	3 Our Witness PRF
	4 Our Offline Witness Encryption
	References

	Two-Client and Multi-client Functional Encryption for Set Intersection
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Multi-client Functional Encryption for Set Operations
	4.1 Schemes Without an Evaluator Key

	5 Security
	5.1 Corruptions in Two-Client Functional Encryption

	6 Two-Client Constructions for Set Intersections
	6.1 Two-Client Set Intersection Cardinality
	6.2 Two-Client Set Intersection
	6.3 Two-Client Set Intersection with Data Transfer or Projection
	6.4 Two-Client Threshold Set Intersection

	7 Multi-client Constructions for Set Intersections
	7.1 Multi-client Set Intersection Cardinality
	7.2 Efficient Multi-client Set Intersection Cardinality
	7.3 Multi-client Set Intersection

	8 Evaluation
	9 Conclusion
	References

	Post-quantum Security
	Improving the Security of the DRS Scheme with Uniformly Chosen Random Noise
	1 Introduction
	2 Background
	2.1 Lattice Theory
	2.2 Lattice Problems

	3 The Initial DRS Scheme and Its Security Pitfall
	3.1 The Original DRS Scheme
	3.2 Li, Liu, Nitaj and Pan's Attack on a Randomized Version of the Initial PKC'08
	3.3 Yu and Ducas's Attack on the DRS Instantiation of the Initial Scheme of PKC'08

	4 New Setup
	4.1 Picking the Random Vectors
	4.2 A Slightly More General Termination Proof
	4.3 Setup Performance

	5 Security Estimates
	5.1 BDD-based attack
	5.2 Expected Security Strength

	6 Conclusion and Open Questions
	References

	A Lattice-Based Public Key Encryption with Equality Test in Standard Model
	1 Introduction
	2 Preliminaries
	2.1 Public Key Encryption with Equality Test (PKEET)
	2.2 Lattices

	3 Our PKEET Construction
	3.1 Construction
	3.2 Parameters
	3.3 Security Analysis

	4 Conclusion
	References

	Lattice RingCT V2.0 with Multiple Input and Multiple Output Wallets
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	3 Ring Confidential Transaction Protocol (RCT)
	3.1 Oracles for Adversaries
	3.2 Threat Model

	4 Building Blocks Construction
	4.1 Lattice-Based Commitment Construction
	4.2 Multiple-input Multiple-output Wallets L2RS (MIMO.L2RS)
	4.3 MIMO.L2RS Security Properties

	5 MIMO Lattice-Based RingCT Construction
	5.1 Range Preservation

	6 Security Analysis
	7 Performance Analysis
	References

	Two New Module-Code-Based KEMs with Rank Metric
	1 Introduction
	1.1 Background
	1.2 Our Contribution and Techniques
	1.3 Road Map

	2 Preliminaries
	2.1 Results on Rank Codes
	2.2 Gabidulin Codes and Their Decoding Technique
	2.3 Low Rank Parity Check Codes and Their Decoding Algorithm

	3 Difficult Problems for Code-Based Cryptography
	4 Piglet-1: A New Module-Code-Based Public-Key Scheme
	4.1 Piglet-1.CPAPKE
	4.2 Proof of Security
	4.3 Piglet-1.CCAKEM: A New IND-CCA-Secure KEM
	4.4 Parameter Sets

	5 Piglet-2: A New Module-Code-Based KEM
	6 Known Attacks
	7 Conclusions
	References

	Adding Distributed Decryption and Key Generation to a Ring-LWE Based CCA Encryption Scheme
	1 Introduction
	2 Preliminaries
	2.1 The LIMA IND-CCA Encryption Scheme
	2.2 Three Party Honest Majority MPC Using Garbled Circuits
	2.3 Three Party Honest Majority MPC Using Shamir Secret Sharing

	3 SHA3 in MPC
	4 Distributed Decryption for CCA-Secure Ring-LWE Encryption
	4.1 Sub-protocol: Round Function
	4.2 Sub-protocol: Secure Evaluation of the Enc-CPA-Sub Function
	4.3 Secure Evaluation of Dec-CCA (c,sk)
	4.4 Secure Evaluation of Decap-CCA (c,sk)
	4.5 Experimental Results

	5 Distributed Key Generation for Ring-LWE Encryption
	5.1 Experimental Results

	References

	Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem
	1 Introduction
	2 Preliminaries
	2.1 Rank Metric Background
	2.2 Hard Problems in Coding Theory
	2.3 LRPC Codes and LRPC-Kronecker Product Codes
	2.4 LRPC-Kronecker Cryptosystem

	3 Errors in LRPC-Kronecker Cryptosystem and Its Reparations
	3.1 Some Errors in LRPC-Kronecker Cryptosystem
	3.2 Reparation for LRPC-Kronecker Cryptosystem

	4 Equivalence of LRPC-Kronecker Cryptosystem and LRPC Cryptosystem
	4.1 General Idea for Equivalence
	4.2 Alternative Encryption and Decryption for KronF Cryptosystem

	5 Cryptanalysis on DC-LRPC-Kronecker Cryptosystem
	5.1 Simplication of DC-LRPC-Kronecker Cryptosystem
	5.2 Recover Support Basis for H2 when k1=n1
	5.3 Recover Alternative Secret Key for DC-LRPC-Kronecker Cryptosystem
	5.4 Cryptanalysis on DC-LRPC-Kronecker Cryptosystem for C1 of Dimension [2,2]
	5.5 Limitations of Our Attack

	6 Conclusion
	References

	Pseudorandom Functions from LWE: RKA Security and Application
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Related Key Attack (RKA) Secure PRFs
	2.3 The Learning with Errors (LWE) Assumption

	3 Unique-Input RKA Secure Pseudorandom Function
	3.1 Construction
	3.2 Unique-Input RKA Security for Key-Shift Function Family
	3.3 Unique-Input RKA Security for Restricted Affine Function Family
	3.4 Comparsion to the PRF in BLMR13

	4 Application to Robustly Reusable Fuzzy Extractor
	4.1 New Construction of rrFE

	References

	-subgaussian Random Variables in Cryptography
	1 Introduction
	1.1 Contributions
	1.2 Structure

	2 Background
	2.1 Algebraic Background
	2.2 The Ring-LWE Problem
	2.3 Moment Generating Functions
	2.4 Subgaussian Random Variables

	3 -subgaussian Random Variables
	3.1 Defining a -subgaussian Random Variable
	3.2 Characterisation of Univariate -subgaussian Random Variables
	3.3 Properties of -subgaussian Random Variables

	4 Noncentral Subgaussian Random Variables
	4.1 A Noncentral Formulation for -subgaussian Random Variables
	4.2 Motivation for the Noncentral Formulation
	4.3 Sums of Univariate Noncentral Subgaussian Random Variables

	5 Discretisation
	5.1 Coordinate-Wise Randomised Rounding Discretisation
	5.2 The CRR-Discretisation of -Subgaussian Random Variables

	References

	Cryptocurrency Related
	Fast-to-Finalize Nakamoto-Like Consensus
	1 Introduction
	1.1 Roadmap
	1.2 Evaluation of the Improvement

	2 AB-Chain: DoW-Based Blockchain with Fast Finality
	2.1 Notations and Assumptions
	2.2 The Incentive Problem
	2.3 Our Demo-of-Work and AB-Chain Framework

	3 Rate of Secure Finality
	3.1 Finality Model
	3.2 Testimony of Our Finality Model

	4 Communication Cost and Fairness
	4.1 Communication Cost
	4.2 Fairness
	4.3 The Choice of Potential Function and the Resulting AB-Chain

	5 Conclusion and Discussion
	A Detailed Protocols of The Simulation Experiment
	References

	A Flexible Instant Payment System Based on Blockchain
	1 Introduction
	2 Related Work
	3 Overview
	3.1 System Model

	4 Assumptions, Adversary Models, and Goals
	4.1 Assumptions
	4.2 Adversary Models
	4.3 Design Goals

	5 Generic Construction
	6 Formal Security Analysis
	7 Analysis and Comparision
	8 Conclusion
	References

	Risk of Asynchronous Protocol Update: Attacks to Monero Protocols
	1 Introduction
	2 Background
	2.1 Monero Hard Fork
	2.2 Monero Classic Protocol Upgrade
	2.3 Denial of Service Attack in Cryptocurrency

	3 Related Work
	3.1 Cryptocurrency Protocol Change Classification
	3.2 Zero Mixin Transaction and Cascade Effect Analyses
	3.3 Monero Traceability Attack
	3.4 Key Reuse Attack in Monero

	4 Threat Model
	5 Attacks to Monero Protocols
	5.1 Overview
	5.2 Attack Phases
	5.3 Simulation

	6 Discussion
	6.1 Shared Ringdb
	6.2 Traceability Analysis
	6.3 Denial of Service Analysis

	7 Limitation
	8 Conclusion and Future Work
	References

	A Combined Micro-block Chain Truncation Attack on Bitcoin-NG
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Bitcoin and Bitcoin-NG Structure
	2.3 Selfish/Stubborn Mining and Eclipse Attack

	3 Attack Model and Assumption
	3.1 Attack Model
	3.2 Assumptions

	4 A Combined Micro-block Chain Truncation Attack on Bitcoin-NG
	4.1 The Colluded Strategy
	4.2 Destroyed if No Stake Strategy

	5 The Comparison of Different Strategies in Unified Truncation Rate
	5.1 Practical Truncation Rate
	5.2 Simulation Results

	6 Discussion
	7 Conclusion
	References

	Foundations
	Field Extension in Secret-Shared Form and Its Applications to Efficient Secure Computation
	1 Introduction
	2 Linear Secret Sharing
	3 Field Extension in Secret-Shared Form
	4 Applications to Secure Computation
	4.1 Preliminaries
	4.2 Share Consistency Check
	4.3 Equality Check of Multiple Shares
	4.4 Secure Computation for Arithmetic Circuits

	References

	Efficient Secure Multi-Party Protocols for Decision Tree Classification
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminary
	2.1 Decision Tree
	2.2 Secret Sharing Scheme
	2.3 Secure Multi-Party Computation
	2.4 Oblivious RAM

	3 System Model
	3.1 Hiding Structure of Decision Tree
	3.2 Security Requirement
	3.3 Complexity

	4 Naive Construction for Secure Classification
	5 Applying the Path ORAM to Naive Construction
	6 Efficient Construction for Secure Classification: Daisy Chain Construction
	6.1 Avoidance of Handling Position Maps
	6.2 Daisy Chain Construction
	6.3 Security

	7 Evaluation
	8 Conclusion
	References

	The Wiener Attack on RSA Revisited: A Quest for the Exact Bound
	1 Introduction
	2 Preliminaries
	3 Boneh's Version of the Wiener Attack
	4 An Experimental Result
	5 Improving Boneh's Bound on the Wiener Attack
	6 The Second Experimental Result
	7 Conclusion
	References

	Function-Dependent Commitments from Homomorphic Authenticators
	1 Introduction
	2 Preliminaries
	3 FDCs from Homomorphic Authenticators
	3.1 A New Structure-Preserving Homomorphic Signature Scheme

	4 A New Single-Dataset, Structure-Preserving Linearly Homomorphic Signature Scheme
	5 Related Work
	References

	Security Against Subversion in a Multi-surveillant Setting
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminary
	2.1 Notations
	2.2 Ciphertext Pseudorandom Encryption and Key-Exchange Protocol
	2.3 Watchdog-Based Test

	3 Subliminal Communication in the Muti-surveillant Setting
	3.1 Background
	3.2 Security Model

	4 Negative Results
	5 Construction of Subliminal Communication Protocol
	5.1 Establishing a Shared Seed
	5.2 Embedding Random Strings
	5.3 Full Protocol
	5.4 Security Analysis
	5.5 Further Discussion and Open Problems

	References

	System and Network Security
	Dimensionality Reduction and Visualization of Network Intrusion Detection Data
	1 Introduction
	2 Background
	2.1 Dimensionality Reduction
	2.2 Network Intrusion Detection Datasets
	2.3 Related Work

	3 Proposed Approach
	4 Results and Discussion
	4.1 Results for the UNSW-NB15 Dataset
	4.2 Results for the NSL_KDD Dataset

	5 Conclusion
	References

	DOCSDN: Dynamic and Optimal Configuration of Software-Defined Networks
	1 Introduction
	2 Background and Related Work
	3 Implementation
	3.1 Functional Layer
	3.2 Risk Calculation
	3.3 Security Layer
	3.4 Result Analysis
	3.5 Layer Coordination
	3.6 Outputs

	4 Experimental Setup
	5 Evaluation/Results
	6 Conclusion
	References

	A Low Overhead Error Correction Algorithm Using Random Permutation for SRAM PUFs
	1 Introduction
	2 Preliminaries
	2.1 The Structure of SRAM PUF
	2.2 The Key Generation Scheme Based on PUF
	2.3 Reed-Muller Codes

	3 Analysis of Non-uniform SRAM PUF
	4 The Proposed Random Permutation Position Scheme
	5 Experiments and Results
	5.1 Basic Properties of Our SRAM PUF
	5.2 Error Correction Using General ECC Directly
	5.3 Error Correction Using Random Permutation Position Scheme
	5.4 RM(1,5) Code Implementation and Error Correction Result

	6 Conclusion and Future Work
	References

	Practical Dynamic Taint Tracking for Exploiting Input Sanitization Error in Java Applications
	1 Introduction
	2 Background
	2.1 Taint Analysis
	2.2 Dynamic Taint Analysis vs Static Taint Analysis
	2.3 Java Bytecode Instrumentation

	3 Methodology
	3.1 Untainting
	3.2 Dealing with Taint Errors

	4 Implementation
	4.1 Source Methods
	4.2 Sink Methods
	4.3 Automatic Exploit Generation

	5 Results and Discussion
	5.1 Vulnerabilities Discovered
	5.2 Zero-Day Exploits for Struts
	5.3 Validation of the Vulnerabilities

	6 Limitations and Future Works
	7 Related Works
	8 Conclusion and Future Works
	References

	AMOGAP: Defending Against Man-in-the-Middle and Offline Guessing Attacks on Passwords
	1 Introduction
	2 Background and Related Work
	2.1 Optimization of Algorithmic Primitives
	2.2 Decrease of Password Popularity
	2.3 Password Sharing
	2.4 Password Generators
	2.5 Weaknesses Against MitM Attacks

	3 Threat Model
	4 Proposed AMOGAP Secure Under DDH
	4.1 Basic AMOGAP: Scheme 1
	4.2 Recall xi (i0) via Password
	4.3 Advanced AMOGAP: Scheme 2

	5 Security Analysis
	6 Using Other Devices to Log in
	7 Conclusion
	References

	MineAuth: Mining Behavioural Habits for Continuous Authentication on a Smartphone
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Definitions
	3.2 Architecture
	3.3 Threat Model

	4 Building Blocks
	4.1 Data Collection
	4.2 Behaviour Construction
	4.3 Behavioural Habit Mining
	4.4 Authentication
	4.5 Decision Maker

	5 System Implementation and Evaluation
	5.1 System Implementation
	5.2 Evaluation Indicators
	5.3 Dataset
	5.4 Relating Usability to Minisupport and the Observation Window Size
	5.5 Comparison with Other Approaches
	5.6 Resilience to Adversary Imitation
	5.7 Response to User Behaviour Change
	5.8 Resource Consumption

	6 Conclusion
	References

	Symmetric Cryptography
	Related-Key Boomerang Attacks on GIFT with Automated Trail Search Including BCT Effect
	1 Introduction
	2 Preliminaries
	2.1 Boomerang Attacks
	2.2 Boomerang Connectivity Table
	2.3 The Specification of GIFT

	3 Automatic Search of (Related-Key) Boomerang Based on Boomerang Connectivity Table
	4 Automatic Search of Boomerang Distinguishers in GIFT
	5 Boomerang Attack on GIFT-64 and GIFT-128
	5.1 Extension of the Distinguisher
	5.2 Key Recovery Attacks
	5.3 21-Round Key Recovery on GIFT-128

	6 Conclusion
	References

	Fast Chosen-Key Distinguish Attacks on Round-Reduced AES-192
	1 Introduction
	2 Preliminaries
	2.1 A Brief Description of AES
	2.2 Definitions and Notation
	2.3 Chosen-Key Distinguisher

	3 Chosen-Key Distinguisher for 8-Round AES-192
	4 Chosen-Key Distinguisher for 9-Round AES-192
	5 Conclusion
	A A Solution for the 8-Round Truncated Differential Characteristic on AES-192
	B A Solution for the 9-Round Truncated Differential Characteristic on AES-192
	References

	A Highly Secure MAC from Tweakable Blockciphers with Support for Short Tweaks
	1 Introduction
	2 Preliminaries
	3 PMAC3: Specification and Security Bound
	4 Proof of Theorem1
	4.1 Proof Strategy and Security Bound
	4.2 Upper-Bounding Pr[badA]
	4.3 Upper-Bounding Pr[badB]
	4.4 Upper-Bounding Pr[badC]

	References

	Short Papers
	Witness Encryption with (Weak) Unique Decryption and Message Indistinguishability: Constructions and Applications
	1 Introduction
	2 Preliminaries
	3 Witness Encryption with (Weak) Unique Decryption and Message Indistinguishability: Definitions and Constructions
	3.1 Construction of WE with Weak Unique Decryption and MI
	3.2 Construction of WE with Unique Decryption and MI

	4 Application
	4.1 Zero-Knowledge Protocols

	References

	Speeding up Scalar Multiplication on Koblitz Curves Using 4 Coordinates
	1 Introduction
	2 New Arithmetic on Koblitz Curves
	2.1 Addition and Doubling Algorithms
	2.2 Frobenius Endomorphism
	2.3 Arithmetic Comparison

	3 Scalar Multiplication
	3.1 -Adic NAF
	3.2 Window- -Adic NAF
	3.3 Regular -Adic Expansion Approach
	3.4 Costs Comparison

	4 Implementation Results
	5 Conclusion
	References

	Constructing Hyperelliptic Covers for Elliptic Curves over Quadratic Extension Fields
	1 Introduction
	2 Preliminaries
	2.1 Cover Maps
	2.2 The Equation of the Hyperelliptic Curve

	3 Our Algorithms
	3.1 f Is Irreducible
	3.2 f Is Reducible
	3.3 Statistical Results

	4 Example for deg()=2 and f is Reducible
	5 Conclusion
	References

	Secure and Compact Elliptic Curve Cryptosystems
	1 Introduction
	2 Related Work
	2.1 Scalar Multiplication
	2.2 Complete Elliptic Curve Addition Formulae

	3 Exceptional Inputs in Scalar Multiplication
	3.1 Generality of k
	3.2 Secure Generality
	3.3 Executable Coordinate

	4 Variants of Affine Addition Formulae
	5 Secure and Efficient Elliptic Curve Scalar Multiplication
	6 Efficiency and Memory Analysis
	7 Conclusion
	References

	A Quantitative Study of Attribute Based Correlation in Micro-databases and Its Effects on Privacy
	1 Introduction
	2 Theoretical Model Development
	2.1 Micro-database Model
	2.2 Privacy Model

	3 Correlation Degree ()
	3.1 Metric Formulation
	3.2 Linking Attacks and Privacy

	4 Experimental Results
	4.1 Database
	4.2 Correlation Degree and Privacy Loss

	5 Conclusion
	References

	Tagging Malware Intentions by Using Attention-Based Sequence-to-Sequence Neural Network
	Abstract
	1 Introduction
	2 System Design
	2.1 The Embedding Layer

	3 Evaluation
	3.1 Dataset
	3.2 Experimental Settings
	3.3 Results

	4 Conclusion
	Acknowledgements
	References

	A Novel Semi-supervised Adaboost Technique Based on Improved Tri-training
	1 Introduction
	2 Algorithm and Model
	2.1 Improved Tri-training
	2.2 Semi-supervised Model

	3 Experiments
	3.1 Evaluation Index and Datasets
	3.2 Performance Evaluation and Analysis

	4 Conclusion
	References

	Automated Cash Mining Attacks on Mobile Advertising Networks
	1 Introduction
	2 Mobile Advertising Network
	3 Automated Cash Mining Attack
	4 Implementation
	4.1 Analysis of Network Messages
	4.2 Analysis of Authentication Code Computation
	4.3 Generation of Messages to Mimic Reward Apps

	5 Experiments
	5.1 Data Protection
	5.2 Reward Policy
	5.3 Defense Mechanisms
	5.4 Attack Results

	6 Conclusion
	References

	Author Index

