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Abstract. Currently there are a number of papers in which certain
types of splines are used to solve the Fredholm equation. Now much
attention is paid to the application of a new type of spline, the so-called
integro-differential spline to the solution of various problems. In this
paper we consider the solution of the Fredholm equation using poly-
nomial integro-differential splines of the third order approximation. To
calculate the integral in the formula of a quadratic integro-differential
spline, we propose the corresponding quadrature formula. The results of
numerical experiments are given.
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1 Introduction

At present, the theory of approximation by local interpolation splines contin-
ues to evolve. Approximation with local splines of the Lagrange or the Hermite
types can be used in many applications. Approximation with the use of these
splines is constructed on each mesh interval separately as a linear combination
of the products of the values of the function and/or its derivatives at the grid
nodes and basic functions. We obtain the basic functions as a solution of a sys-
tem of linear algebraic equations (approximation relations). The approximation
relations are formed from the conditions of accuracy of approximation on the
functions forming the Chebyshev system. The constructed basic splines provide
an approximation of the prescribed order. Using basic splines, one can construct
continuous or continuously differentiable predetermined types of approximation.
There are new types of splines that we call integro-differential splines (see [2–
9]), which compete with existing polynomial and nonpolynomial splines of the
Lagrange type. The main features of integro-differential splines are the following:
the approximation is constructed separately for each grid interval (or elemen-
tary rectangular); the approximation constructed as the sum of products of the
basic splines and the values of function in nodes and/or the values of integrals of
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this function over subintervals. Basic splines are determined by using a solving
system of equations which are provided by the set of functions. It is known that
when integrals of the function over the intervals are equal to the integrals of
the approximation of the function over the intervals then the approximation has
some physical parallel. The splines which are constructed here satisfy the prop-
erty of the third order approximation. Here, the one-dimensional polynomial
basic splines of the third order approximation are constructed when the values
of the function are known in each point of interpolation. For the construction
of the spline, we use quadrature with the appropriate order of approximation.
These basic splines can be used to solve various problems, including the approxi-
mation of a function of one and several variables; the construction of quadrature
and cubature formulas; the solution of boundary value problems; the solution
of the Fredholm equation, and the Cauchy problem. Currently there are papers
in which certain types of splines are used to solve the Fredholm equation (see
[1,10–12,14–16]), boundary value problems (see [13,17–19]).

In this paper we consider the solution of the Fredholm equation using poly-
nomial integro-differential splines of the third order approximation. To calculate
the integral in the formula of a quadratic integro-differential spline, we propose
the corresponding quadrature formula. The results of numerical experiments are
given.

2 Construction of a Solution of the Fredholm Equation
with the Use of Quadratic Polynomial Splines

Suppose that a, b are real numbers. Consider the Fredholm equation

ϕ(x) −
b∫

a

K(x, s)ϕ(s)ds = f(x). (1)

Suppose that n is a natural number. We construct on the interval [a, b] a uniform
grid {xj}nj=0 with step h: h = b−a

n .
We construct an approximate solution of the integral equation by applying

quadratic polynomial splines as follows. First we represent the integral in (1) in
the following form:

b∫

a

K(x, s)ϕ(s)ds =

b−h∫

a

K(x, s)ϕ(s)ds +

b∫

b−h

K(x, s)ϕ(s)ds. (2)

In the first integral of (2) we apply the following transformation using integro-
differential splines. We replace the function ϕ(s), s ∈ [xj , xj+1], by ϕ̃(s):

ϕ̃(s) = ϕ(xj)ωj(s) + ϕ(xj+1)ωj+1(s) +

xj+2∫

xj+1

ϕ(τ)dτ · ω<1>
j (s). (3)
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Here ωj(s), ωj+1(s), ω<1>
j (s) are the continuous integro-differential splines which

will be defined later.

Lemma 1. Let function u(x) be such that u ∈ C3[xj−1, xj+1]. The following
formula is valid:

xj+1∫

xj

u(x)dx ≈ h

12
(5u(xj+1) + 8u(xj) − u(xj−1)). (4)

Proof. We put
xj+1∫
xj

u(x)dx ≈
xj+1∫
xj

ũ(x)dx, where ũ(x) = u(xj−1)wj−1(x) +

u(xj)wj(x) + u(xj+1)wj+1(x), x ∈ [xj , xj+1] ,

wj−1(x) =
(x − xj)(x − xj+1)

(xj−1 − xj)(xj−1 − xj+1)
, wj(x) =

(x − xj−1)(x − xj+1)
(xj − xj−1)(xj − xj+1)

,

wj+1(x) =
(x − xj−1)(x − xj)

(xj+1 − xj−1)(xj+1 − xj)
.

We obtain formula (4) after integration. The proof is complete.

Remark 1. It is not difficult to obtain the following relation:

|u(x) − ũ(x)| ≤ K0h
3‖u′′′‖[xj−1,xj+1], x ∈ [xj , xj+1] ,K0 > 0.

It can be shown that

|
xj+1∫

xj

u(x)dx − h

12
(5u(xj+1) + 8u(xj) − u(xj−1))| ≤ K1h

4‖u′′′‖.

Now (3) for s ∈ [xj , xj+1] has the form:

ϕ̃(s) = ϕ(xj)ωj(s)+ϕ(xj+1)ωj+1(s)+
h

12
(5ϕ(xj+2)+8ϕ(xj+1)−ϕ(xj))ω<1>

j (s).

(5)

Lemma 2. Suppose ϕ be such that ϕ ∈ C3[xj , xj+2] and ϕ̃(s) is given by (3).
The following formula is valid ϕ̃(s) = ϕ(s), ϕ(s) = 1, s, s2 where

ωj(s) = (s − h − jh)(3s − 5h − 3jh)/(5h2), (6)

ωj+1(s) = −(s − jh)(9s − 14h − 9jh)/(5h2), (7)

ω<1>
j (s) = 6(s − h − jh)(s − jh)/(5h3). (8)

Proof. Using (3), (4) and the Taylor expansion, it is not difficult to obtain the
relations (6), (7), (8). The proof is complete.
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Remark 2. If s ∈ [xj , xj+1], t ∈ [0, 1], s = xj + th, then the basic splines can be
written in the form:

ωj(xj + th) = (t − 1)(3t − 5)/5, ωj+1(xj + th) = −t(9t − 14)/5,
ω<1>
j (xj + th) = 6t(t − 1)/(5h).

It is not difficult to obtain the following relation:

|ϕ(x) − ϕ̃(x)| ≤ K2h
3‖u′′′‖[xj ,xj+2], x ∈ [xj , xj+1] ,K2 > 0.

In the second integral of (2) we apply the following transformation using
integro-differential splines. We replace the function ϕ(s), s ∈ [xj , xj+1], by ϕ̃(s):

ϕ̃(s) = ϕ(xj)ω̃j(s) + ϕ(xj+1)ω̃j+1(s) +

xj∫

xj−1

ϕ(τ)dτ · ω̃<−1>
j (s). (9)

Here ω̃j(s), ω̃j+1(s), ω̃<−1>
j (s) are the continuous integro-differential splines

which will be defined later.

Lemma 3. Let function u(x) be such that u ∈ C3[xj , xj+2]. The following for-
mula is valid:

xj+1∫

xj

u(x)dx ≈ h

12
(5u(xj) + 8u(xj+1) − u(xj+2)). (10)

Proof. We put
xj+1∫
xj

u(x)dx ≈
xj+1∫
xj

ũ(x)dx, where

ũ(x) = u(xj)w̃j(x) + u(xj+1)w̃j+1(x) + u(xj+2)w̃j+2(x), x ∈ [xj , xj+1] ,

where

w̃j(x) =
(x − xj+1)(x − xj+2)

(xj − xj+1)(xj − xj+2)
, w̃j+1(x) =

(x − xj)(x − xj+2)
(xj+1 − xj)(xj+1 − xj+2)

,

w̃j+2(x) =
(x − xj)(x − xj+1)

(xj+2 − xj)(xj+2 − xj+1)
,

after integration we obtain formula (10). The proof is complete.

Remark 3. It is not difficult to obtain the following relation

|u(x) − ũ(x)| ≤ K3h
3‖u′′′‖[xj ,xj+2], x ∈ [xj , xj+1] ,K3 > 0.

It can be shown that |
xj+1∫
xj

u(x)dx − h
12 (5u(xj) + 8u(xj+1) − u(xj+2))| ≤

K4h
4‖u′′′‖, K4 > 0.
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Now (9), s ∈ [xj , xj+1], has the form:

ϕ̃(s) = ϕ(xj)ω̃j(s)+ϕ(xj+1)ω̃j+1(s)+
h

12
(5ϕ(xj−1)+8ϕ(xj)−ϕ(xj+1))ω̃<−1>

j (s).

(11)

Lemma 4. Suppose ϕ̃ be such that ϕ̃ ∈ C3[xj , xj+2] and ϕ̃(s) is given by (9).
The following formula is valid: ϕ̃(s) = ϕ(s), ϕ(s) = 1, s, s2 where s ∈ [xj , xj+1]

ω̃j(s) = −(9s + 5h − 9jh)(s − h − jh)/(5h2), (12)

ω̃j+1(s) = (3s + 2h − 3jh)(s − jh)/(5h2), (13)

ω̃<−1>
j (s) = 6(s − h − jh)(s − jh)/(5h3). (14)

Proof. Using (9), (10) and the Taylor expansion, it is not difficult to obtain the
relations (12), (13), (14). The proof is complete.

Remark 4. If s ∈ [xj , xj+1], t ∈ [0, 1], s = xj + th, the basic splines can be
written in the form:

ω̃j(xj + th) = −(9t + 5)(t − 1)/5, ω̃j+1(xj + th) = t(3t + 2)/5,

ω̃<−1>
j (xj + th) = 6t(t − 1)/(5h).

It is not difficult to obtain the following relation:

|ϕ(x) − ϕ̃(x)| ≤ K4h
3‖u′′′‖[xj−1,xj+1], x ∈ [xj , xj+1] ,K4 > 0.

Using (5), (6)–(8), (11), (12)–(14) and the following notations:

A<l>
j (x) =

xj+1∫

xj

K(x, s)(ωj(s) − h

12
ω<1>
j (s))ds,

B<l>
j (x) =

xj+1∫

xj

K(x, s)
(

ωj+1(s) +
2h

3
ω<1>
j (s)

)
ds,

C<l>
j (x) =

5h

12

xj+1∫

xj

K(x, s)ω<1>
j (s)ds,

A<r>
n−1 (x) =

5h

12

xn∫

xn−1

K(x, s)ω̃<−1>
n−1 (s)ds,

B<r>
n−1 (x) =

xn∫

xn−1

K(x, s)
(

ω̃n−1(s) +
2h

3
ω̃<−1>
n−1 (s)

)
ds,
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C<r>
n−1 (x) =

xn∫

xn−1

K(x, s)
(

ω̃n(s) − h

12
ω̃<−1>
n−1 (s)

)
ds

we get the following system of equations for calculating ϕ(xi), i = 0, . . . , n:

ϕ(xi) −
n−2∑
j=0

(
ϕ(xj)A<l>

j (xi) + ϕ(xj+1)B<l>
j (xi) + ϕ(xj+2)C<l>

j (xi)
)

− (
ϕ(xn−2)A<r>

n−1 (xi) + ϕ(xn−1)B<r>
n−1 (xi) + ϕ(xn)C<r>

n−1 (xi)
)

= f(xi).

Table 1. Numerical solutions when n = 10 and n = 100

K(x, s) ϕ(x) n = 10 n = 100

K(x, s) = x2s2 ϕ(x) = x
3
2 sin(x) 0.21 · 10−5 0.24 · 10−7

K(x, s) = ex cos(s) ϕ(x) = x
3
2 sin(x) 0.37 · 10−3 0.44 · 10−6

K(x, s) = xs ϕ(x) = 1
1+25x2 0.60 · 10−4 0.61 · 10−8

3 Numerical Results

Here we present some numerical results. In Table 1 one can see the absolute
values of the difference between the exact solution and solutions, obtained with
suggested method, when a = 0, b = 1, with n = 10 and n = 100, Digits=15.
Here f(x) is obtained using K(x, s) and ϕ(s).

4 Conclusion

The quadratic polynomial integro-differential splines proposed in this paper
showed the possibility of solving the Fredholm integral equation. In the proposed
method, it is necessary to calculate the integrals A<l>

j (x), B<l>
j (x), C<l>

j (x),
A<r>

n−1 (x), B<r>
n−1 (x), C<r>

n−1 (x). In future papers, the application of nonpolynomial
splines to solve the Fredholm equation will be investigated.
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