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Abstract. We present a state-saving approach to reversible execution
of imperative programs containing parallel composition. Given an origi-
nal program, we produce an annotated version of the program that both
performs forwards execution and all necessary state-saving of required
reversal information. We further produce an inverted version of our pro-
gram, capable of using this saved information to reverse the effects of
each step of the forwards execution. We show that this process imple-
ments correct and garbage-free inversion. We give examples of how our
implementation of reversible execution can be used for debugging, and
demonstrate how a simulation tool we have developed for our approach
can be used to examine the program state. Finally, we evaluate the per-
formance and overheads associated with state-saving and inversion.
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1 Introduction

Reversible computation has been an area of increasing interest for many years.
Reversible execution is the ability to undo the effects of running a program,
and requires the majority of information to be preserved throughout the exe-
cution. This offers many benefits, including the suggestion within the Landauer
principle [12] that not losing any information could lead to energy-efficient com-
putation. Throughout this work we will explore the application to debugging.

An introduction into debugging and software bugs is provided by Zeller [28].
One common type of debugging, named cyclic debugging, is to run and re-run a
program experiencing a bug. Each such run is used to observe different parts of
the program state, typically using print operations. Doing so allows the first time
an incorrect state occurs to be found, and can subsequently be repeated to find
the original defect. This works well for deterministic sequential programs (i.e.
no I/O etc.), since there is one possible execution path that must be followed
each time. Parallel programs however do not share this property, as the random
interleaving of two or more programs can produce several distinct execution
paths. Interaction with shared memory by parallel programs may lead to races,
where the components of a parallel compete to update shared memory locations.
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As a result, it becomes much harder to reproduce the original failure, and intro-
duces the potential for software bugs that appear and disappear among different
execution paths (Heisenbugs [28]), deadlocks and atomicity/order violations.

With cyclic debugging not being suitable for parallel programs, other
approaches have been developed. Record replay debuggers serialize a specific
execution, and use this to force future runs to behave identically, meaning bugs
can be reproduced [16]. Reversible debugging is described by Engblom [3], and
is another alternative that has the ability to step backwards over an execution
experiencing an error [1]. This avoids the issue of reproducing an error as no re-
execution is required. Some approaches use forward execution from checkpoints
to simulate moving backwards [4], while others, such as the Reverse C Compiler
(RCC) [17] and our approach presented here, produce an inverted program that
executes forwards but simulates reversal. Such approaches will typically reverse
an execution in backtracking order, where steps of the execution are undone in
exactly the inverted order of the forwards execution. Recently, some proposed
solutions use causal-consistent reversibility [2,6,13], where a step of an execution
can be reversed provided all steps that causally depend on it (consequences) have
already been reversed. A recently proposed implementation of a causal-consistent
reversible debugger is CauDEr [14].

We propose an approach to state-saving reversibility of imperative parallel
programs, similar to RCC [17] and both the Backstroke framework [25] and
works on it by Schordan [21,22]. We build on our previous work [10,11], and here
discuss its application to debugging. We outline this proposal, beginning with the
language that we support. We define the process of generating two versions of our
original program, the annotated version that performs the forwards execution
and the state-saving of all required information, and the inverted version that
uses this saved data to simulate reverse execution. We describe a collection of
environments representing our program state, and refer to three sets of small-
step operational semantics defined previously [11].

Results that prove our approach to be correct are shown. Our first result
shows that the process of state-saving does not alter the behaviour of the original
program, as the final program state is unchanged. The second result states that
given the inverted version starts in the final program state produced via the
annotated execution, execution of this inverted version restores the program
state to exactly as it was initially. This result is extended here to hold for all
programs, including parallel composition and the challenges it introduces. Our
results prove we achieve our aim of implementing correct reversal.

Three examples of common bug types are used to discuss the application of
this state-saving reversibility to debugging. Each type of execution is defined in
terms of small-step operational semantics, allowing us to advance through an
execution one step at a time. This is highly desirable for debugging as interme-
diate program states can be viewed, allowing the initial effects of a bug to be
seen. It also means that bugs leading to crashes can be viewed up to the point
of the fatal error, as all previous small steps will have been performed. Simi-
larly for the inverted version, the small-step semantics allow us to return to any
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intermediate position of our execution. We can also make use of the information
saved during the forwards execution prior to its completion. For example, all
values any variable has held up to this point will be saved.

We also introduce a simulation tool that implements our state-saving
reversibility, specifically the three sets of small-step operational semantics
referred to above. This allows the simulator to read and parse an original pro-
gram, produce the two versions and perform all three types of execution. With
the application to debugging being a consideration from the beginning of the
development, we then discuss some of the key features that aid debugging. Such
features include the ability to force a specific interleaving and the record mode.

Finally, we use this simulator to evaluate the performance of our approach
to reversibility. We compare the execution times of programs with and with-
out state-saving, producing an average overhead incurred. We likewise compare
the execution times of forwards execution with that of the inverse execution,
measuring the performance of reversal. Our main contributions are:

1. An overview of an approach for state-saving reversibility of imperative parallel
programs proposed in [11]. A proof showing this holds for all valid programs
of our language, extended here to include parallel composition.

2. The application of this method to debugging, explained using three examples
of common bugs.

3. A simulator implementing our small-step semantics behind this method and
how this is used for debugging.

4. The evaluation of the performance of our approach. This shows an acceptable
overhead associated with both state-saving and inversion.

2 Our Approach

We begin with a state-saving approach to reversible execution of imperative
parallel programs. A more in depth definition of this approach is available in our
previous works [10,11]. Our discussion of this approach is split into the following
five broad stages, each of which will be described below.

1. Language and State. We extend a typical while language with blocks, local
variables, recursion-supported procedures (with no arguments) and parallel
composition. We use ‘parallel’ in this context, but note that we could have
used ‘concurrent’. We introduce construct identifiers and paths, necessary to
handle local variables and different scopes. The program state is represented
as a collection of environments, each of which will be described later.

2. Annotation. This process introduces identifier stacks into the language syn-
tax, necessary to record a particular run of the program. This produces an
annotated version, that when executed saves reversal information required
for inversion and captures the non-deterministic interleaving order via iden-
tifiers. This records the outcome of all races introduced by parallelism. All
reversal information is stored within the auxiliary data store.
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3. Inversion. This produces the corresponding inverted version of our original
program, which itself is a forwards program capable of simulating the reverse
execution. It is generated from the executed annotated version.

4. Running Inverted Program. Execution of the inverted version will then
use both identifiers and the reversal information to simulate the undoing of
the execution of the original program.

5. Debugging. The ability to execute step-by-step through the inverted version
allows us to view the program state at any point. This can be used to compare
the expected and actual program state, potentially helping us to find bugs.

Stage 1: Language and State. We begin with a typical imperative while
language consisting of assignments, conditional statements and while loops. We
extend this with blocks, local variables, procedures (with no arguments) capable
of recursion, removal statements and the parallel composition operator par. This
operator interleaves the execution of two (or more) programs randomly, while
removal statements remove local variables or procedures at the end of a block.
We refer informally to each argument program of a parallel statement as a thread.

Further to this, we also introduce construct identifiers and paths. Each con-
ditional, loop, block, procedure declaration and procedure call is given a unique
name, termed a construct identifier and represented as In, Wn, Bn, Pn and Cn
respectively. These names are of the form Unique name:Version number. Each
statement that requires evaluation will also contain a path, represented as pa.
This is a sequence of the unique block names in which the specific statement
resides, with λ representing an empty path (global). The syntax of this language
is shown below, with paths and construct identifiers underlined here only to
highlight them, and will be used henceforth without underlining. An example is
shown in Fig. 1a, containing two assignments and a while loop performing six
iterations. All paths are omitted as there are no blocks meaning all would be λ.

P ::= ε | S | P; P | par { P } { P }
S ::= skip | X = E pa | if In B then P else Q end pa |

while Wn B do P end pa | begin Bn DV DP P RP RV end |
call Cn n pa | runc Cn P end

DV ::= ε | var X = v pa; DV DP ::= ε | proc Pn n is P end pa; DP

RV ::= ε | remove X = v pa; RV RP ::= ε | remove Pn n is P end pa; RP

E ::= Var | n | (E) | E Op E B ::= T | F | ¬B | (B) | E == E | E > E | B ∧ B

The program state is represented as a collection of environments. Firstly, the
data store σ maps memory locations (Loc) to the value (Num) they currently
hold (σ : (Loc �→ Num)). Next, the variable environment γ maps variables (V)
to memory locations. Before defining the variable environment, we note that the
use of blocks mean that variables can be either global or local, and that a global
variable can share its name with multiple local versions. Each such local version
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1 X = 5;

2 N = 0;

3 while w1.0 (X >= N) do

4 X = X - 1;

5 Y = Y + 1;

6 end;

(a) Original Loop Program

1 X = 5 [];

2 N = 0 [];

3 while w1.0 (X >= N) do

4 X = X - 1 [];

5 Y = Y + 1 [];

6 end [];

(b) Annotated Loop Program

Fig. 1. Small while loop example: forwards

will have been declared within a different scope, and specifically a different block.
This means the unique block name in which a variable is declared is used within
γ to differentiate multiple versions (γ : (V × Bn) �→ Loc). As a result of this,
paths are used during variable evaluation to determine the block in which the
variable was defined, with this then being used to access the correct memory
location. The introduction of parallel composition and local variables mean that
data races can occur, where the order in which two (or more) steps are performed
directly affects the outcome. For example, two assignments to the same variable
racing means the assignment performed last produces the final value.

Should the same code be executed in parallel, this approach to distinguishing
versions of variables will not be sufficient. For example, consider two procedure
calls to the same function on each side of a parallel that both declare a vari-
able using the shared block name (as the same code is being used). In this case,
both calls would use the same version of the declared variable, violating correct
behaviour. Therefore any reused code, namely procedure and loop bodies, must
be renamed prior to execution. Explained in [11], procedure bodies are renamed
with all construct identifiers updated to begin with the unique call name (that
will be different across a parallel). For example, a while loop w1.0 within a proce-
dure call c1.0 becomes c1.0:w1.0. Loop bodies are renamed with all construct
identifiers updated to their next version number. For example, the conditional
i1.0 used in Fig. 5a will become i1.1 for the first iteration of the while loop.
The renamed copies of procedure and loop bodies are stored within the procedure
environment μ : (Pn ∪ Cn) �→ (n × P) and while environment β : Wn �→ P
respectively. The auxiliary data store is discussed later.

The (forwards-only) execution of programs written in our language is defined
in terms of a small-step operational semantics. We do not include this here as
it is available in [11]. From here, we refer to each small step as a transition (or
step) and consider an execution to be a sequence of transitions (or steps).

Stage 2: Annotation. Similarly to the Reverse C Compiler (RCC) [17], we
produce two versions of an original program. The process of annotation produces
the first of our versions, specifically the annotated version capable of recording
the specific execution. This is implemented via the function ann(), shown in [11].
Recording a run of a program can be split into two main tasks, namely

1. Recording required data lost during forward execution (reversal information)
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2. Capturing the non-deterministic execution order (due to having par).

Firstly, all reversal information is saved during the execution of the annotated
program via the operational semantics [11]. This matches closely with the seman-
tics of forwards-only execution, differing only on the state-saving. Such exam-
ples of this information include old values overwritten (and lost) as a result of
destructive assignments, a boolean value indicating which branch of each con-
ditional was executed, and a sequence of boolean values capturing the number
of iterations of each loop. Further, the final value held by a local variable, and
any identifiers assigned to a loop/procedure copy (annotation information), are
saved prior to their deletion via removal statements.

This information is saved in the auxiliary data store δ, keeping all reversal
information separate to the program state. This is a collection of stacks, with
one for each variable name. All versions of a variable name use a single stack,
storing overwritten or final values they held. Using a single stack helps to deter-
mine the outcome of races. There is a single stack B that holds boolean values
for conditionals, and similarly W for loops. Finally, the stacks WI and Pr hold
annotation information from loop or procedure body copies prior to removal.

Secondly, the non-deterministic execution order is captured via the use of
identifiers. Sequential programs have a single path that can be followed in both
directions. Parallel programs have many possible paths, with correct inversion
dependent on following the correct inverted path of execution. Not doing so can
lead to a state that was not reachable during forwards execution. To avoid this,
as each statement of a program is executed, the next available identifier (used in
ascending order) is assigned to that statement. In doing so, the overall statement
order (interleaving) is recorded as required to ensure correct reversal. The syntax
of each statement that requires identifiers to be saved will therefore have a stack
for these, represented using A. Each identifier is also used to index any reversal
information saved for that statement in δ, with all stacks on δ consisting of
pairs. Within our operational semantics, any transition that uses an identifier is
labelled with it, while those that do not are unlabelled and referred to as skip
steps. The three types of skip steps are the removal of skip statements as a result
of sequential or parallel composition and the closure of a block or loop iteration.
The following is the updated syntax for annotated programs, where P and S are
now used to represent annotated programs and statements respectively, and our
additional stacks are highlighted via underlining. As with paths and construct
identifiers before, these stacks will not be underlined from this point. We omit
program expression definitions as they are unchanged.

S ::= skip I | X = E (pa,A) | if In B then P else Q end (pa,A) |
while Wn B do P end (pa,A) | begin Bn DV DP P RP RV end |
call Cn n (pa,A) | runc Cn P end

DV ::= ε | var X = v (pa,A); DV DP ::= ε | proc Pn n is P end (pa,A); DP

RV ::= ε | remove X = v (pa,A); RV RP ::= ε | remove Pn n is P end (pa,A); RP
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As shown in the syntax above, the only difference between an original pro-
gram and the corresponding annotated version is the presence of identifier stacks
within certain statements. Returning to our while loop example shown in Fig. 1a,
the corresponding annotated version is shown in Fig. 1b. Execution of the anno-
tated program will populate these identifier stacks with identifiers capturing
the execution order. The corresponding executed annotated version containing
populated identifier stacks is shown in Fig. 2a.

1 X = 5 [0];

2 N = 0 [1];

3 while w1.0 (X >= N) do

4 X = X - 1 [3,6,9,12,15,18];

5 Y = Y + 1 [4,7,10,13,16,19];

6 end [2,5,8,11,14,17,20];

(a) Executed Annotated Program

1 while w1.0 (X >= N) do

2 Y = Y + 1 [4,7,10,13,16,19];

3 X = X - 1 [3,6,9,12,15,18];

4 end [2,5,8,11,14,17,20];

5 N = 0 [1];

6 X = 5 [0];

(b) Inverted Loop Program

Fig. 2. Small while loop example: inversion

Stage 3: Inversion. After defining annotated execution, the next step is to
produce the inverted version via the function inv() and execute it via our small-
step operational semantics [11]. This version executes forwards as expected, and
is produced based on the executed version of the annotated program, meaning
all stacks are populated appropriately. The overall statement order is inverted,
as well as each declaration statement becoming an equivalent removal statement
and vice versa. We use the same syntax for both the annotated and inverted
versions, but with P and S for inverted programs and statements respectively.
Returning to our small while loop example discussed throughout previous stages,
the inverted version of this program is shown in Fig. 2b. The difference between
this and the executed annotated version is the statement order is inverted.

Stage 4: Inverse Execution. Starting in the final program state produced
via annotated forwards execution, the inverted version will restore the program
state to as it was prior to forwards execution (see results below). The order
in which the program executes is determined by the identifiers associated with
its inverted statements, with only the statement that has the highest identifier
eligible to be executed next. This means we follow backtracking order, where
statements are undone in exactly the inverted order of the forwards execution.
Backtracking order is necessary to ensure races are reversed correctly. There is
however potential for limited causal consistent reversibility, where skip steps and
block closures can be executed in any order. A small example of how identifiers
capture the execution order and can be used for inversion is shown in [10].

When the choice of the next statement to invert has been made, the reversal
information and identifiers saved via annotation are then used to undo the effects
of that statement. Specifically this includes the old value of a variable to be
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restored during a destructive assignment, and boolean values to govern inverse
control flow of conditionals or loops. The final value held by local variables will
have been saved prior to its removal and so is used to initialise the inverted
version, as well as the annotation information that must be used to repopulate
all stacks within copies of reused code.

Stage 5: Debugging. In Sect. 4, we will discuss using our approach for debug-
ging and present three examples of identifying common bug types. In Sect. 5, we
introduce a simulation tool implementing the process described above, and show
how its abilities further aid debugging.

3 Correctness of Our Approach

One motivation for this work is to have an approach to reversible execution of
imperative parallel programs that is proved to be correct. Therefore we have
proved two properties related to our approach. Prior to discussing these proper-
ties, we first provide several definitions and explain important notation.

We begin with defining equivalence. Firstly, two states � = {σ,γ,μ,β} and �′

= {σ′,γ′,μ′,β′} are equivalent, written � ≈ �′, provided each pair of matching
environments are not necessarily identical, but semantically equivalent. Secondly,
two auxiliary stores δ and δ′ are equivalent, written δ ≈A δ′, provided the two
stores are semantically equivalent. For example, actual memory locations used
within the matching environments may differ, but the ‘meaning’ is the same.
Finally, we define equivalence between a program execution and its correspond-
ing uniform version. A uniform execution is a version of an original execution
where all skip steps are performed as soon as they are available. Performing
skip steps immediately does not alter the behaviour of the program as each such
transition does not alter the program state. Therefore a program and its uniform
version are equivalent as the program states produced are equal, since the order
of transitions using identifiers is unchanged.

We shall use the following notation. A step of forwards only execution is
represented using ↪→, while a step of both annotated and inverted execution are
represented using ◦→ and ◦� respectively, where ◦ represents the possible use of
an identifier. For example, a destructive assignment is performed to skip via a
transition that uses an identifier, while the skip operation is then removed via
a transition without an identifier. Uniform versions of both an annotated and
inverted execution are represented as ◦→∗

U and ◦�
∗
U respectively.

Theorem 1 states an original program and its annotated version behave iden-
tically (under the same interleaving) with respect to all environments, except
the auxiliary store. This shows annotation has no unwanted side effects.

Theorem 1. Let P be an original program, � be the set {σ,γ,μ,β} of all environ-
ments, �1 be the set {σ1,γ1,μ1,β1} of annotated environments such that � ≈ �1

and δ be the auxiliary store. If (P | �,δ) ↪→∗ (skip | �′,δ), for some �′, then
there exists an execution (ann(P) | �1,δ)

◦→∗
(skip I | �′

1,δ
′), for some I, �′

1

and δ′, such that �′ ≈ �′
1.
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(P | �) ◦→∗
(skip I | �′) (P | �) ◦→∗

U (skip I | �′)

?

(P−1 | �′
1)

◦�∗
(skip I′ | �1) (P−1 | �′

1)
◦�∗

U (skip I′ | �1)

Fig. 3. Diagram representation of proof outline

Theorem 2 states that given an original execution and its annotated equiva-
lent, there exists an inverted execution that starts with the final program state,
and restores this to exactly as initially. Shown in [11] to hold for sequential
programs only, we note here that it now also holds for parallel programs. As a
result, our approach is garbage free, as the auxiliary store is also restored.

Theorem 2. Let P be a program and AP be ann(P). Further let � be the set
{σ,γ,μ,β} of all environments, �1 be the set {σ1,γ1,μ1,β1} of annotated envi-
ronments such that � ≈ �1, �′

1 be the set {σ′
1,γ

′
1,μ

′
1,β

′
1} of final annotated

environments, �2 be the set {σ2,γ2,μ2,β2} of inverted environments such that
�2 ≈ �′

1, δ be the auxiliary store, δ′ be the final auxiliary store and δ2 be the
inverted auxiliary store such that δ2 ≈A δ′.

If (P | �,δ) ↪→∗ (skip | �′,δ), for some �′, and there exists an annotated
execution (AP | �1,δ)

◦→∗
(skip I | �′

1,δ
′), for some I, �′

1 and δ′, such that
�′ ≈ �′

1 and that the executed annotated version of AP produced by its execution
is AP′, then there also exists (IP | �2,δ2)

◦�
∗

(skip I′ | �′
2,δ

′
2), for IP = inv(AP′)

and some I′, �′
2 and δ′

2, such that �′
2 ≈ � and δ′

2 ≈A δ.

Proof. The diagram shown in Fig. 3 outlines the proof omitted here due to space
constraints. From this diagram, we aim to prove the correctness of the arrow
labelled with a question mark, and we do so with the three step approach indi-
cated with double arrows. We begin with an arbitrary execution of an annotated
program P (top left of Fig. 3), and transform this into an equivalent uniform
execution (top right of Fig. 3). Recall the definitions of uniform execution and
equivalence above. This transformation consists of moving all skip steps (tran-
sitions that do not use identifiers) as close to the beginning of the execution as
possible, ensuring all dependencies are maintained. An example is a destructive
assignment that executes to skip, before this skip is eventually (with other steps
potentially interleaved) removed. In a uniform execution, these two steps happen
consecutively, with no interleaving of other statements in between.

From this equivalent uniform execution, we then prove two properties by
mutual induction on the length of the execution. The first property is similar to
that of Theorem 2 and concerns entire executions. This shows that if a uniform
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annotated program P executes to skip, then there exists a uniform inverse exe-
cution that, when beginning in the final state equivalent to that produced by
forwards execution, also completes producing a program state equivalent to that
of prior to the forwards execution. The second property is similar, but concerns
only the execution of statements S. Since many statements contain complex sub-
programs, the first property is used by induction here (hence mutual induction).
We consider each base case of both properties, and each (mutual) induction case.
Using these properties, we obtain the corresponding uniform inverse execution
(bottom right of Fig. 3), where �′

1 ≈ �′ and � ≈ �1.
The final step is to relax this uniform inverse execution into a non-uniform

equivalent. This process is the opposite of that described for producing a uniform
execution, and allows skip steps to be moved appropriately within the execution.
Therefore we have shown the arrow from Fig. 3 to be valid, as required.

4 Debugging

This section describes the application of our approach to debugging. Some impor-
tant aspects of this are:

1. Small-step semantics allow the execution to be paused at any point. Interme-
diate program states can be viewed, and compared with the expected state.
This includes current position and current values of variables.

2. All reversal information saved up to a specific point can also be viewed. This
can display the current number of loop iterations, all previous values of a
variable and all results of evaluating conditional statements.

3. Program state is accessible in intermediate states, and can be changed to test
things including temporary bug fixes.

4. Inversion can be started at any point, allowing debugging of fatal errors.

We now discuss three examples of common bug types, and how our approach
to reversibility can be used to aid the process of identifying the underlying cause.
We omit all paths and programs within procedure removal statements from all
examples, all of which can easily be read from the remaining code.

4.1 Incorrect Logic Bug

We first consider a logic error, typically made by inexperienced programmers.
The program in Fig. 2a is intended to have five iterations, however this specific
run performs six (as Y = 6 after execution). The inverted program is shown
in Fig. 2b. Beginning in the final program state, the inverted program can be
executed forwards for four steps. This involves opening the loop (identifier 20),
inverting the final iteration of the loop (identifiers 19 and 18) and finally inverting
the second to last condition evaluation (identifier 17). This state, shown in Fig. 2b
where all underlined identifiers have been removed and the arrow ⇐= indicates
the current position, is now identical to that of the second to last time the
condition was evaluated during forwards execution. Using the current program
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state, we then see that the condition 0 >= 0 holds true, when we expected false.
We can see the logic is incorrect, and that replacing the logic symbol within the
condition with > fixes this bug.

4.2 Parallel - Slow Write

Our second example is of an atomicity violation bug. With a write operation
often being slower than a read, we use the program shown in Fig. 4a to simulate
this. This contains a race between a read and write of the same variable in par-
allel. In order to mimic the write operation being slow but atomic, our write is
implemented via the procedure update that actually performs two assignments,
which we assume are performed one after another (with no statements inter-
leaved). This is like saying the write is both slow and atomic. This means the
execution will produce one of two possible outcomes. Firstly, the read (line 8) is
followed by the write (line 9), meaning result = 10 and X = 12 (Outcome 1).
Secondly, the write (line 9) is followed by the read (line 8), meaning result = 12
and X = 12 (Outcome 2). However, the interleaving shown in Fig. 4a produces
an incorrect third state, where result = 11 and X = 12.

The inverted version of our program is shown in Fig. 4b (recall that this is
a normal, forwards executing program). Beginning in our incorrect final state
described above, the inverse execution first opens the block, re-declares the local
variable X to the value 12 retrieved from the stack (line 4 using identifier 7), and
then re-declares the procedure update (lines 5–8 using identifier 6). Next, the
parallel statement starts by beginning the inverted procedure call (line 11 using
identifier 5). This implies that the write finished last during forwards execution,
meaning we should have expected Outcome 1. Then the inverse execution per-
forms the destructive assignment (line 6 using identifier 4). At this point, the
only available step is to undo the read now (line 10 using identifier 3). This state,
shown in Fig. 4b with all underlined identifiers having been removed, shows that
interleaving has occurred, with the arrows indicating current options (at this
point in the forwards execution). From this, we observe that interleaving has
occurred that directly conflicts our atomicity assumption. Further to this, if we
were to continue the inverse execution we would complete the procedure call last,
implying the write happened first during forwards execution meaning we should
have seen Outcome 2. This inconsistency and the interleaving shown reassures
us that we have found the bug. Such a bug can now be fixed, for example, by
using an atomic construct (which can be easily added to our language).

4.3 Parallel - Race - Airline Example

Our final example is a program implementing a model of an airline that sells
tickets via two agents. Each agent remains open and able to sell tickets until there
are no remaining free seats. This program is shown in Fig. 5a, where the number
of initially free seats is 3, and the number of agents is 2, in order to keep the
execution and accompanying environments concise enough for discussion here.
We return later to this example and increase both of these when evaluating the
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1 begin b1.0

2 var X = 10 [0];

3 proc p1.0 update is

4 X = X + 1 [2];

5 X = X + 1 [4];

6 end [1];

7
8 par { result = X [3]; }
9 { call c1.0 update [5]; }

10 remove proc p1.0 update end [6];

11 remove var X = 10 [7];

12 end

13 //Finishes with result = 11 and

14 //X = 12

(a) Executed Annotated Program

1 //Initial value of result should

2 //be 12 or 10

3 begin b1

4 var X = 10 [7];

5 proc p1.0 update is

6 X = (X + 1) [4];

7 X = (X + 1) [2]; ⇐=
8 end [6];

9
10 par { result = X [3]; ⇐= }
11 { call c1.0 update [5]; }
12 remove proc p1.0 update end [1];

13 remove var X = 10 [0];

14 end

(b) Inverted Program

Fig. 4. Slow write example

performance. The specific execution captured in Fig. 5a incorrectly results in 4
tickets being sold, as the final number of free seats is -1 (seats = -1).

The inverted version of this program is shown in Fig. 5b. Beginning in the
incorrect final state, the inverse execution will begin by opening the block and
re-declaring the local variables and the procedure. Next, the parallel statement
is started, with each while loop executing an entire iteration (to simulate the
inversion of the closure of each agent) using identifiers 33–24. From here, we now
begin the inversion of the penultimate iterations of each while loop. The identi-
fiers 23–14 are used to govern the interleaving across the two threads. The state
reached is shown in Fig. 5b where all underlined identifiers have been removed,
with the arrows indicating the current position. As this shows, the choice of next
step is between the closing of two inverse conditionals. Closing an inverse condi-
tional will reverse the opening of the forwards version, implying that both were
open (during the forwards execution) at the same time (consecutive identifiers).
Considering each conditional statement as the critical section of each thread,
we see the mutual exclusion of these sections has been violated. Crucially, when
there is a single seat left, if each conditional statement is evaluated consecu-
tively, both conditions will be true. From here, the two calls from each of the
true branches will be executed, allocating two seats when only one remains free.
Therefore we see there is a race between the read of (conditional evaluation)
and write (line 6) to the shared variable seats. One solution is to implement
the mutual exclusion of the critical sections of each thread (agent).

5 Evaluation of Our Approach

An important next step of our work is to evaluate the performance of this app-
roach. Prior to evaluation, we note that our focus so far has been on proving
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1 seats = 3 [0];

2 begin b1.0

3 var agent1 = 1 [1];

4 var agent2 = 1 [2];

5 proc p1.0 sell is

6 seats = seats - 1 [6,11,18,19];

7 end [3];

8
9 par {

10 while w1.0 (agent1 == 1) do

11 if i1.0 (seats > 0) then

12 call c1.0 sell [7,20];

13 else

14 agent1 = 0 [27];

15 end [5,8,16,22,26,28];

16 end [4,15,25,29];

17 } {
18 while w2.0 (agent2 == 1) do

19 if i2.0 (seats > 0) then

20 call c2.0 sell [12,21];

21 else

22 agent2 = 0 [31];

23 end [10,13,17,23,30,32];

24 end [9,14,24,33];

25 }
26 remove proc p1.0 sell end [34];

27 remove var agent2 = 1 [35];

28 remove var agent1 = 1 [36];

29 end

30 //Finishes with seats = -1

(a) Executed Annotated Program

1 //Expect seats = 0, not seats = -1

2 begin b1.0

3 var agent1 = 1 [36];

4 var agent2 = 1 [35];

5 proc p1.0 sell is

6 seats = seats - 1 [6,11,18,19];

7 end [34];

8
9 par {

10 while w1.0 (agent1 == 1) do

11 if i1.0 (seats > 0) then

12 call c1.0 sell [7,20];

13 else

14 agent1 = 0 [27];

15 end [5,8,16,22,26,28]; ⇐=
16 end [4,15,25,29];

17 } {
18 while w2.0 (agent2 == 1) do

19 if i2.0 (seats > 0) then

20 call c2.0 sell [12,21];

21 else

22 agent2 = 0 [31];

23 end [10,13,17,23,30,32]; ⇐=
24 end [9,14,24,33];

25 }
26 remove proc p1.0 sell end [3];

27 remove var agent2 = 1 [2];

28 remove var agent1 = 1 [1];

29 end

30 seats = 3 [0];

(b) Inverted Program

Fig. 5. Airline example

this approach to be correct. Identifiers are saved into stacks contained within the
syntax, and all reversal information is contained within the additional stacks.
Multiple stacks are used as this separation aids the proof, while not necessarily
being the most efficient approach. Therefore we remark that all results displayed
within this section are produced without any optimization techniques applied.

To aid evaluation, a simulation tool implementing our approach has been
developed. An overview and description of key features is shown below. This is
used to examine the performance of two keys aspects, namely the overheads or
reductions associated with both annotation and inversion.

5.1 Simulation Tool

We have developed a simulator that implements the small-step semantics of
our approach [11]. It is capable of reading an original program written in our
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language from a text file, and parsing this into a linked list structure. This
structure can be analysed and used to correctly initialise all of the required
environments (including global variables).

The simulator has the ability to simulate all three possible executions, namely
traditional forwards only with no state-saving, annotated forwards with state-
saving, and inverse. All three executions can be either step-by-step or from
start-to-finish. The current program state is viewable at each stage. Annota-
tion and inversion are implemented, transforming an original program into the
corresponding annotated and inverse version respectively. The execution of the
inverse version follows backtracking in the majority of cases (as discussed above),
while also supporting a limited form of causal-consistent reversibility.

The interface of the simulator is currently through the command line. A more
user-friendly, graphical user interface (GUI) is currently under development. The
following are some of the key features of the simulator.

Auto-generation of Modified Syntax. In order to remove the burden on the
programmer, some of the additional parts of the syntax can be automatically
generated. This includes the insertion of all unique construct identifiers, paths
and removal statements at the end of blocks.

Random or User-defined Interleaving. Any interleaving of programs can
either be determined randomly (via random number generation) or by the
user at runtime, allowing testing of unlikely executions. This can be switched
on/off at runtime, allowing a user to only determine the parts they require.

Record Mode. History logs can be recorded. Firstly, the entire sequence of
small-step transitions can be saved. Secondly, for each interleaving decision,
all possible choices and an indication of which was chosen can be saved.

5.2 Evaluation

In this section, we consider the following two aspects of our approach.

1. Costs/overheads associated with annotation and state-saving (Annotation)
2. Costs/benefits associated with inversion (no evaluation etc.) (Inversion)

Evaluation of these aspects consists of timing the executions of three programs
written in our language. An average execution time is computed from 100 runs
for two execution lengths (e.g. more loop iterations). One aim is to show that
any overhead is consistent and does not increase exponentially. All experiments
were ran on an Intel Core i5 quad core 3.2 GHz computer with 7.7 Gb memory,
running Linux Ubuntu 16.04. Table 1 shows our results, with all times in seconds.

Annotation. Firstly, we consider while loops. The programs Loop 1 and
Loop 2 (see Appendix A) each contain a while loop with 100 iterations, and
a nested while loop with 1,000 and 10,000 iterations respectively. Each of these
loops contain a single destructive assignment, meaning 100,000 (Loop 1) and
1,000,000 (Loop 2) of these are performed. Table 1 shows the average overhead
introduced as a result of state-saving is 8.3% (Loop 1) and 7.9% (Loop 2).
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Next we return to our airline example in Fig. 5a, and extend it with multiple
agents (see Appendix B). The programs Airline 1 and Airline 2 each have
1000 initially free seats, and contain three and four agents respectively. Table 1
shows the average overhead is 4.6% (Airline 1) and 4.2% (Airline 2).

Finally, we consider all constructs of our language. The programs General 1
and General 2 (see Appendix C) each contain two while loops in parallel with 25
and 50 iterations respectively. Each loop contains an assignment and a procedure
call, which uses a conditional statement to determine 5 recursive calls. Table 1
shows the average overhead is 13.2% (General 1) and 13.4% (General 2).

Therefore our results show the overhead of annotation for these specific pro-
grams to be within the range of 4.2–13.4%. We believe this is reasonable as it
does not increase exponentially and given no optimization has been performed.
A potential cause of this overhead is the unoptimized process of saving annota-
tion information from copies of loop or procedure bodies prior to the removal
of these. Our airline example results also show that increasing the number of
programs in parallel does not seem to result in an increased overhead.

Table 1. Performance evaluation of our approach

Program Original Annotated Change
from Orig

Inverse Change
from Ann

Change
from Orig

Loop 1 0.346 0.375 1.083 0.321 0.855 0.926

Loop 2 3.446 3.717 1.079 3.172 0.853 0.920

Airline 1 0.098 0.103 1.046 0.104 1.013 1.060

Airline 2 0.138 0.144 1.042 0.147 1.019 1.063

General 1 0.033 0.037 1.132 0.037 1.008 1.141

General 2 0.064 0.072 1.134 0.073 1.012 1.147

Inversion. Firstly, we consider the inverse execution time of programs Loop 1
and Loop 2. Table 1 indicates a 7.4% (Loop 1) and 8% (Loop 2) reduction
compared to the original execution, and a 14.5% (Loop 1) and 14.7% (Loop 2)
reduction compared to the annotated execution.

The inverted executions of the programs Airline 1 and Airline 2 are now
analysed. Table 1 shows a 6.0% (Airline 1) and 6.3% (Airline 2) increase on the
original execution, and a 1.3% (Airline 1) and 1.9% (Airline 2) increase when
compared to the annotated execution.

Finally, the programs General 1 and General 2 are inverted. Table 1 shows
an increase of 14.1% (General 1) and 14.7% (General 2) on the original execution,
and 0.8% (General 1) and 1.2% (General) on the annotated execution.

Therefore our results show that for these specific programs running on our
unoptimized simulator, the inverse execution time ranges from a 14.7% decrease
to a 1.9% increase compared to the annotated execution. A reduction is largely
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a result of the program containing large amounts of condition/expression eval-
uation during forwards execution, which is then not required during reversal as
appropriate values are retrieved from the auxiliary store. Programs that do not
contain large amounts of evaluation may not achieve this reduction, and may be
slightly slower. A possible cause is the currently unoptimized process of checking
the first identifier of each possible statement to determine the next step.

Though not perfect for comparison since it focuses on Parallel Discrete Event
Simulation and distributed systems, the Backstroke framework [25] and work
using it by Schordan [21,22] have also been evaluated. In [21], original execution
of 100,000 events with a varying number of operations per events was compared
to the forwards execution with instrumentation, showing a penalty factor of
between 2 and 3 (Mode B). Both the reverse and commit versions are shown to
typically be slightly faster than the original execution.

5.3 Related Work

Reversible computation can be applied to Parallel Discrete Event Simulation
(PDES) [5], including the Backstroke framework [25] and works by Schordan et
al. [21,22]. Backstroke implements a similar approach to that described here, but
is capable of handling all of C++ efficiently. To the best of our knowledge, there
is no proof of correctness for this framework. Other work focuses on reversible
languages, including the imperative languages Janus [26,27], R-CORE [8] and
R-WHILE [7], and the object-oriented languages Joule [23] and ROOPL [9]. We
employ identifiers very much like in the work by Phillips and Ulidowski [18,20].
Causal consistent reversibility of programming languages have been studied,
including the recent work on reversible Erlang [14,15], and μOz [6].

6 Conclusion

We have shown a state-saving approach to reversibility of imperative programs
containing parallel composition. Our results displayed here prove this method
implements correct and garbage free inversion. We have shown there is the pos-
sibility of using our approach for debugging, overcoming issues introduced by
parallelism, including data races and randomly interleaved execution paths. We
have proposed a simulator implementing our reversibility and used it to eval-
uate the performance. Our experiments show that the overhead incurred as a
result of both state-saving and inversion is reasonable. Future work will focus on
optimising the simulator, and extending our underlying approach with more con-
structs to increase the language complexity. We aim to support all constructs of
an actual programming language, and potentially to apply our framework to an
existing programming language. Extending our limited form of causal-consistent
reversibility to allow undoing of more forms of causally independent steps could
be also interesting, where we could follow approaches to reversing prime event
structures as in [19,24], work on μOz [6], and reversing Erlang as in [14,15].
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A Loop Program

All paths and identifier stacks are omitted as these are automatically inserted
by the simulator.

Loop 1. Program used to test performance of while loops
1: X = 100;
2: while w1.0 (X > 0) do
3: Y = 1000;
4: while w2.0 (Y > 0) do
5: Y = Y - 1;
6: end;
7: X = X - 1;
8: end;

B Extended Airline

All paths, identifier stacks and removal statements are omitted as these are
automatically inserted by the simulator.

Airline 1. Airline model extended with three agents
1: numOfSeats = 1000;
2: begin b1.0
3: var agent1Open = 1;
4: var agent2Open = 1;
5: var agent3Open = 1;
6: proc p1.0 sellTicket is numOfSeats = (numOfSeats - 1); end;
7: par {
8: par {
9: while w1.0 (agent1Open == 1) do
10: if i1.0 (numOfSeats > 0) then
11: call c1.0 sellTicket;
12: else
13: agent1Open = 0;
14: end
15: end;
16: } {
17: while w3.0 (agent3Open == 1) do
18: if i3.0 (numOfSeats > 0) then
19: call c3.0 sellTicket;
20: else
21: agent3Open = 0;
22: end
23: end;
24: }
25: } {
26: while w2.0 (agent2Open == 1) do
27: if i2.0 (numOfSeats > 0) then
28: call c2.0 sellTicket;
29: else
30: agent2Open = 0;
31: end
32: end;
33: }
34: end
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C General Program

All paths, identifier stacks and removal statements are omitted as these are
automatically inserted by the simulator.

General 1. Program used to test overall performance of our approach

1: begin b1.0

2: var left = 25;

3: var right = 25;

4: var loop1Count = 10;

5: var loop2Count = 10;

6: proc p1.0 fun1 is

7: begin b2.0

8: var other = 0;

9: if i3.0 (loop1Count > 5) then

10: loop1Count = (loop1Count - 1);

11: call c1.0 fun1;

12: else

13: loop1Count = (loop1Count - 1);

14: other = other + 1;

15: end

16: end

17: end;

18: proc p2.0 fun2 is

19: begin b3.0

20: var other = 0;

21: if i4.0 (loop3Count > 5) then

22: loop2Count = (loop2Count - 1);

23: call c2.0 fun1;

24: else

25: loop2Count = (loop2Count - 1);

26: other = other + 1;

27: end

28: end

29: end;

30: par {
31: while w2.0 (left > 0) do

32: left = left - 1;

33: call c2.0 fun1;

34: loop1Count = 10;

35: end;

36: } {
37: while w3.0 (right > 0) do

38: right = right - 1;

39: call c3.0 fun2;

40: loop2Count = 10;

41: end;

42: }
43: end
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