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Preface

This volume contains the proceedings of RC 2019, the 11th International Conference
on Reversible Computation, held in Lausanne, Switzerland, during June 24–25, 2019.
RC 2019 was the 11th event in a series of annual meetings designed to gather
researchers from different scientific disciplines for the discussion and dissemination of
recent developments in all aspects of reversible computation. Previous RC events took
place in York, UK (2009), Bremen, Germany (2010), Ghent, Belgium (2011),
Copenhagen, Denmark (2012), Victoria, Canada (2013), Kyoto, Japan (2014),
Grenoble, France (2015), Bologna, Italy (2016), Kolkata, India (2017), and Leicester,
UK (2018). Reversible computation concerns models of computation where programs
or processes are logically reversible (as, for example, in undoing of program execution
for reversible debugging), or physically reversible (as, for example, in quantum circuits
and robotics). The main areas of research presented at the conference were reversible
formal models for computation and physical systems, reversible programming lan-
guages, and reversible circuits.

The conference received 22 submissions, and we would like to thank everyone who
submitted. Each submission was reviewed by at least three reviewers, who provided
detailed evaluations as well as constructive comments and recommendations. After
careful reviewing and extensive discussions, the Program Committee (PC) accepted 13
full papers, and two short papers for presentation at the conference. We would like to
thank the PC members and all the additional reviewers for their truly professional work
and strong commitment to the success of RC 2019. We are also grateful to the authors
for taking into account the comments and suggestions provided by the referees during
the preparation of the final versions of their papers.

This year the conference program included two invited talks: Glynn Winskel spoke
on concurrent strategies and his work relating to quantum computation and Renato
Renner discussed his research on quantum information theory. The papers that
accompany the invited talks are included in these proceedings. Furthermore, the pro-
gram included a tutorial by Ali Javadi-Abhari's groups at IBM research on Qiskit and
IBMQ. Finally, the program also included a poster session, which was the first time for
an RC conference.

We would like to thank everyone who contributed to the organization of RC 2019,
especially Giulia Meuli, Bruno Schmitt, Fereshte Mozafari, Carole Burget, Chantal
Demont, and Giovanni De Micheli. We thank the EPFL, École Polytechnique Fédérale
de Lausanne for their support. Finally, we acknowledge EasyChair for facilitating PC
discussions and the production of the proceedings.

June 2019 Michael Kirkedal Thomsen
Mathias Soeken
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Concurrent Quantum Strategies

Pierre Clairambault1, Marc de Visme1, and Glynn Winskel2(B)

1 Univ Lyon, ENS de Lyon, CNRS, UCB Lyon 1, LIP, Lyon, France
2 Computer Laboratory, University of Cambridge, Cambridge, UK

gw104@cam.ac.uk

Abstract. A game-semantics foundation for quantum computation is
presented. It draws on two lines of work: for its temporal dynamics, on
concurrent games and strategies, based on event structures; for its quan-
tum interactions, on the mathematical foundations of positive operators
and completely positive maps. The two lines are married in the definition
of quantum concurrent strategy, obtained via an operator generalisation
of the conditions on a probabilistic concurrent strategy. The result is a
compact-closed (bi)category of quantum games, whose finite configura-
tions carry finite dimensional Hilbert spaces, and quantum strategies,
whose finite configurations carry operators.

1 Introduction

We describe how concurrent strategies, based on event structures, can be
extended with quantum effects. The motivation is threefold:

(1) Concurrent strategies have been advanced as a possible foundation for a
generalised domain theory, in which concurrent games and strategies take
over the roles of domains and continuous functions [1,2]. A major reason
has been to broaden the applicability of denotational semantics. It became
important to see how concurrent strategies could be adapted to quantita-
tive semantics, to probabilistic and quantum settings. Although a previous
extension of concurrent strategies [3] did generalise quantum game theory as
then developed [4], it did not provide a framework rich enough to represent
quantum computation; it was insufficient to express the mix of classical and
quantum behaviour of quantum lambda-calculi [5]. The extension to truly
quantum strategies, has proved elusive. The pioneering attempt [6] placed
severe restrictions on entanglement and the recent dynamic account of the
execution of a quantum programming language via the geometry of interac-
tion [7] is not compositional.

(2) As quantum information and computation become more sophisticated there
is a need to reconcile quantum theory with causality [8], and put any attempt
through the strictures of computer science, with its emphasis on compo-
sitionality, adequacy and full abstraction. Concurrent quantum strategies
expose the causal nature of a quantum process as an event structure, and
provide a means to compose quantum processes, in the manner of strategies.

c© Springer Nature Switzerland AG 2019
M. K. Thomsen and M. Soeken (Eds.): RC 2019, LNCS 11497, pp. 3–19, 2019.
https://doi.org/10.1007/978-3-030-21500-2_1
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(3) We aim to broaden the semantic basis for quantum programming. The
breakthroughs in the denotational semantics of quantum programming of
the last decade or so, e.g. [5,9], have been based on insightful generalisations
of those categories used in quantum information, specifically by extending
completely positive maps with extra structure to more fully address mixes
of classical and quantum effects. But we are now seeing their limitations.
Because the generalisations do not capture the dynamics of quantum pro-
grams directly it is hard to see whether the models are fully abstract or
how they might be refined to fully abstract models. Concurrent quantum
strategies form a marriage of concurrent strategies with completely positive
maps. They extend to nonlinear features, through symmetry in games, and
support the fine-tuning needed to obtain full-abstraction results, along the
lines of [10,11].

An adequate denotational semantics to the full quantum lambda calculus [12]
in terms of concurrent quantum strategies is given in [13]. This paper is intended
to complement that work by focussing on the fundamental, linear concurrent
quantum strategies and how they generalise concurrent probabilistic strategies.

2 Event Structures

An event structure comprises (E,≤,Con), consisting of a set E of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E. The relation e′ ≤ e
expresses that event e causally depends on the previous occurrence of event e′.
That a finite subset of events is consistent conveys that its events can occur
together. The relations satisfy several axioms:

[e] =def {e′ | e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆ X ∈ Con implies Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X implies X ∪ {e} ∈ Con.

There is an accompanying notion of state, or history, those events that may
occur up to some stage in the behaviour of the process described. A config-
uration is a, possibly infinite, set of events x ⊆ E which is: consistent, X ⊆
x and X is finite implies X ∈ Con; and down-closed, e′ ≤ e ∈ x implies e′ ∈ x.

Two events e, e′ are considered to be causally independent, and called con-
current if the set {e, e′} is in Con and neither event is causally dependent on
the other; then we write e co e′. In games the relation of immediate dependency
e � e′, meaning e and e′ are distinct with e ≤ e′ and no event in between, plays
a very important role. We write [X] for the down-closure of a subset of events X.
Write C∞(E) for the configurations of E and C(E) for its finite configurations.
(Sometimes we shall need to distinguish the precise event structure to which a
relation is associated and write, for instance, ≤E , �E or coE .)
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A map of event structures f : E ⇀ E′ is a partial function f from E to E′

such that the image of a configuration x is a configuration fx and any event
of fx arises as the image of a unique event of x. When f is total, then written
f : E → E′, it induces a bijection x ∼= fx. Maps compose as functions.

A map f : E ⇀ E′ reflects causal dependency locally, in the sense that if e, e′

are events in a configuration x of E for which f(e′) ≤ f(e) in E′, then e′ ≤ e also
in E; the event structure E inherits causal dependencies from the event structure
E′ via the map f . Consequently, a map f : E ⇀ E′ preserves concurrency. In
general a map of event structures need not preserve causal dependency; a total
map which does is called rigid.

Let (E,≤,Con) be an event structure. Let V ⊆ E be a subset of ‘visible’
events. Define the projection of E on V , to be E↓V =def (V,≤V ,ConV ), where
v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V . Projec-
tion hides all events outside V . It is associated with a partial-total factorization
system. Consider a partial map of event structures f : E ⇀ E′. Let

V =def {e ∈ E | f(e) is defined}.

Then f clearly factors into the composition

E
f0 � E↓V

f1 �� E′

of f0, a partial map of event structures taking e ∈ E to itself if e ∈ V and
undefined otherwise, and f1, a total map of event structures acting like f on V .
Note that any x ∈ C∞(E↓V ) is the image under f0 of a minimum configuration,
viz. [x]E ∈ C∞(E). We call f1 the defined part of the partial map f .

It is sometimes useful to build an event structure out of computation paths.
A computation path is described by a partial order (p,≤p) for which the set
{e′ ∈ p | e′ ≤p e} is finite for all e ∈ p. We can identify such a path with an
event structure in which the consistency relation consists of all finite subsets of
events. Between two paths p = (p,≤p) and q = (q,≤q), we write p ↪→ q when
p ⊆ q and the inclusion is a rigid map of event structures.

Proposition 1. A rigid family R comprises a non-empty subset of finite partial
orders which is down-closed w.r.t. rigid inclusion, i.e. p ↪→ q ∈ R implies p ∈
R. A rigid family determines an event structure Pr(R) whose order of finite
configurations is isomorphic to (R, ↪→). The event structure Pr(R) has events
those elements of R with a top event; its causal dependency is given by rigid
inclusion; and its consistency by compatibility w.r.t. rigid inclusion. The order
isomorphism R ∼= C(Pr(R)) takes q ∈ R to {p ∈ Pr(R) | p ↪→ q}.

The pullback of total maps of event structures is essential in composing strate-
gies. We can define it via a rigid family of secured bijections. Let σ : S → B and
τ : T → B be total maps of event structures. There is a composite bijection

θ : x ∼= σx = τy ∼= y,
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between x ∈ C(S) and y ∈ C(T ) such that σx = τy; because σ and τ are total
they induce bijections between configurations and their image. The bijection is
secured when the transitive relation generated on θ by (s, t) ≤ (s′, t′) if s ≤S s′

or t ≤T t′ is a partial order.

Theorem 1. Let σ : S → B and τ : T → B be total maps of event structures.
The family R of secured bijections between x ∈ C(S) and y ∈ C(T ) such that
σx = τy is a rigid family. The functions π1 : Pr(R) → S and π2 : Pr(R) → T ,
taking a secured bijection with top to, respectively, the left and right components
of its top, are maps of event structures. Pr(R) with π1 and π2 is the pullback of
σ and τ in the category of event structures.

Notation 2 From Proposition 1, finite configurations of the pullback of σ : S →
B and τ : T → B are order-isomorphic to the rigid family of secured bijections.
Define x ∧ y to be the configuration of the pullback which corresponds via this
isomorphism to a secured bijection between x ∈ C(S) and y ∈ C(T ), necessarily
with σx = τy; any finite configuration of the pullback takes the form x ∧ y for
unique x and y.

3 Games and Strategies

Both a game and a strategy will be represented by an event structure with
polarity, which comprises (A, polA) where A is an event structure and a polarity
function polA : A → {+,−, 0} ascribing a polarity + (Player), − (Opponent)
or 0 (neutral) to its events. The events correspond to (occurrences of) moves.
It will be technically useful to allow events of neutral polarity; they arise, for
example, in a play between a strategy and a counterstrategy. Maps are those
of event structures which preserve polarity. A game is represented by an event
structure with polarities restricted to + or −, with no neutral events.

Definition 1. In an event structure with polarity, with configurations x and y,
write x ⊆− y to mean inclusion in which all the intervening events are Opponent
moves. Write x ⊆+ y for inclusion in which the intervening events are neutral
or Player moves. The Scott order, between x, y ∈ C∞(A), where A is a game, is
defined by: y 
A x ⇐⇒ y ⊇− x ∩ y ⊆+ x. (The order ⊇− is converse to ⊆−.)

There are two fundamentally important operations on two-party games. One
is that of forming the dual game. On a game A this amounts to reversing the
polarities of events to produce the dual A⊥. The other operation, a simple parallel
composition A‖B, is achieved on games A and B by simply juxtaposing them,
ensuring a finite subset of events is consistent if its overlaps with the two games
are individually consistent; any configuration x of A‖B decomposes into xA‖xB

where xA and xB are configurations of A and B respectively.
A strategy in a game A is a total map σ : S → A of event structures with

polarity such that

(i) if σx ⊆− y, where x ∈ C(S) and y ∈ C(A), there is a unique x′ ∈ C(S) with
x ⊆ x′ and σx′ = y;
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(ii) if s � s′ in S & pol(s) = + or pol(s′) = −, then σ(s) � σ(s′) in A.
The first condition is one of receptivity, ensuring that the strategy is open
to all moves of Opponent permitted by the game. The second condition
ensures that the only additional immediate causal dependencies a strategy
can enforce are those in which a Player move awaits a move of Opponent.

A strategy from a game A to a game B is a strategy in the game A⊥‖B. A
map f : σ ⇒ σ′ of strategies σ : S → A and σ′ : S′ → A is a map f : S → S′

s.t. σ = σ′f ; this determines isomorphism of strategies.
The conditions defining a strategy are precisely those needed to ensure that

the copycat strategy behaves as identity w.r.t. composition.

3.1 Copycat

Let A be a game. The copycat strategy cc A : CCA → A⊥‖A is an instance of a
strategy from A to A. The event structure CCA is based on the idea that Player
moves in one component of the game A⊥‖A always copy previous corresponding
moves of Opponent in the other component. For c ∈ A⊥‖A we use c̄ to mean the
corresponding copy of c, of opposite polarity, in the alternative component. The
event structure CCA comprises A⊥‖A with extra causal dependencies c̄ ≤ c for all
events c with polA⊥‖A(c) = +; together with the additional causal dependency
they generate a partial order; take a finite subset to be consistent in CCA iff its
down-closure w.r.t. the relation ≤ is consistent in A⊥‖A.

Lemma 1. Let A be a game. Let x ∈ C(A⊥) and y ∈ C(A),

x‖y ∈ C(CCA) iff y 
A x.

3.2 Composition

Two strategies σ : S → A⊥‖B and τ : T → B⊥‖C compose via pullback and
hiding summarised below.

T � S

π1

�����
��
��
��

���������

τ�σ

��

�� π2

���
��

��
��

��
T�S

τ�σ

���
�
�
�
�
�
�

S‖C

σ‖C ���
��

��
��

��
A‖T

A‖τ��			
		
		
		

A‖B‖C � A‖C

Ignoring polarities, by forming the pullback of σ‖C and A‖τ we obtain the
synchronisation of complementary moves of S and T over the common game
B; subject to the causal constraints of S and T , the effect is to instantiate the
Opponent moves of T in B⊥ by the corresponding Player moves of S in B, and
vice versa. Reinstating polarities we obtain the interaction of σ and τ

τ � σ : T � S → A⊥‖B0‖C,
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where we assign neutral polarities to all moves in or over B. Moves over the
common game B remain unhidden. The map A‖B‖C ⇀ A‖C is undefined on B
and otherwise mimics the identity. Pre-composing this map with τ �σ we obtain
a partial map T � S ⇀ A⊥‖C; it is undefined on precisely the neutral events of
T � S. The defined parts of its partial-total factorization yields

τ�σ : T�S → A⊥‖C

on reinstating polarities; this is the composition of σ and τ .

Notation 3. For x ∈ C(S) and y ∈ C(T ), let σx = xA‖xB and τy = yB‖yC

where xA ∈C(A), xB , yB ∈C(B), yC ∈C(C). Define y�x = (x‖yC)∧(xA‖y). This
is a partial operation. Any finite configuration of T � S has the form y � x =def

(x‖yC) ∧ (xA‖y) for unique x ∈ C(S) and y ∈ C(T ).

3.3 A Bicategory of Strategies

We obtain a bicategory for which the objects are games, the arrows σ : A + ��B
are strategies σ : S → A⊥‖B; with 2-cells f : σ ⇒ σ′ maps of strategies.
The vertical composition of 2-cells is the usual composition of maps. Horizontal
composition is given by the composition of strategies � (which extends to a
functor on 2-cells via the universality of pullback and partial-total factorisation).

As A⊥‖B ∼= (B⊥)⊥‖A⊥, a strategy σ : A + ��B corresponds to a strategy σ⊥ :
B⊥ + ��A⊥. The bicategory of strategies is compact-closed; the unit ∅ + ��A⊥‖A
and counit A‖A⊥ + ��∅ being the obvious modifications of the copycat strategy.

We can restrict the 2-cells to be rigid maps and still obtain a bicategory. This
is important later, when the 2-cells for probabilistic and quantum strategies will
be rigid.

A strategy σ : S → A is deterministic if S is deterministic, viz.

∀X ⊆fin S. [X]− ∈ ConS =⇒ X ∈ ConS ,

where [X]− =def {s′ ∈ S | ∃s ∈ X. polS(s′) = − & s′ ≤ s}. In other words, a
strategy is deterministic if consistent behaviour of Opponent is answered by
consistent behaviour of Player. Copycat cc A is deterministic iff the game A is
race-free, i.e. if x ⊆− y and x ⊆+ z in C(A) then y ∪ z ∈ C(A).

4 Quantum Foundations

The category FdHilb of finite dimensional Hilbert spaces has as objects finite
dimensional vector spaces, over the complex numbers C, with an inner product
〈φ|ψ〉, which is conjugate-linear in the first argument and linear in the second.
Its arrows are linear maps between the underlying vector spaces. Any map f :
H → K has an adjoint f† : K → H specified by 〈f†(φ)|ψ〉H = 〈φ|f(ψ)〉K .

The category FdHilb is symmetric monoidal w.r.t. the well-known operation
of tensor product of Hilbert spaces, where the tensor unit I is the one-dimensional
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vector space, comprising the complex numbers C with inner product 〈c|d〉 = c∗·d
where c∗ is the complex conjugate of c.

As observed in [9], the category FdHilb is compact-closed w.r.t. the oper-
ation of dual space. A finite dimensional Hilbert space H with inner prod-
uct 〈φ|ψ〉H has a dual space H∗ given concretely as the vector space of lin-
ear maps from H to I; as any linear map from H to I can be represented by
φ∗ = 〈φ| = 〈φ| 〉H , for some φ ∈ H, its inner product is specified by taking
〈φ∗|ψ∗〉H∗ =def 〈ψ|φ〉H . The unit of the compact-closure ηH : I → H∗ ⊗H takes
1 ∈ I to the identity matrix

∑
i 〈i| ⊗ |i〉 w.r.t. an orthonormal basis |1〉, · · · , |n〉,

of size the dimension dim(H). The counit, εH : H ⊗H∗ → I is given by the inner
product and takes φ ⊗ ψ to 〈ψ|φ〉.

As is well-known, via this compact-closed structure, FdHilb admits a partial
trace to form a traced monoidal category [14]. Given a map f : H ⊗ L → K ⊗ L
in FdHilb its partial trace is a map TrL(f) : H → K . When H and K are the
unit space, tr(f) = TrL(I ⊗ f) : I → I, so is a scalar factor, which coincides with
the usual trace of the matrix of the operator f .

We reserve the term operator for a linear map with the same domain and
codomain. An operator preserving the inner product is called unitary; unitaries
are associated with the undisturbed evolution of a quantum system. An operator
f : H → H in FdHilb is positive if 〈φ|f(φ)〉 is a non-negative real for all
φ ∈ H. Write Op(H), and Pos(H), for the set of operators, respectively positive
operators, on a finite dimensional Hilbert space H. Given operators f and g on
a finite dimensional Hilbert space H we can define the Löwner order on Op(H)
by taking f ≤L g iff g − f is positive. Those ρ ∈ Pos(H) for which tr(ρ) ≤ 1
are called subdensity operators. They play the role of “mixed” quantum states
to be thought of as subprobabilistic combinations of pure quantum states.1

In order to represent operations on quantum systems, such as those taking
quantum states to quantum states, one derives a category CPM based on a
rich class of completely positive maps. The objects of CPM are again finite
dimensional Hilbert spaces but now a completely positive map f : H → K
in CPM is a linear map f : H∗ ⊗ H → K∗ ⊗ K in FdHilb such that its
correspondent f̄ : H∗ ⊗ K → H∗ ⊗ K in FdHilb, got via compact-closure, is
a positive operator. We write CJ : f �→ f̄ for the 1-1 correspondence between
completely positive maps f ∈ CPM(H,K) and positive operators f̄ ∈ Pos(H∗⊗
K); it is the well-known Choi-Jamiolkowski isomorphism.

We represent the Hilbert space H∗ ⊗H as that of matrices of the isomorphic
space of operators Op(H); w.r.t. an orthonormal basis of H, an operator on H
can be described as a vector

∑
i,j cij |i〉〈j| or as a matrix with entries cij . It is help-

ful conceptually and technically to regard a map f : H → K in CPM as taking
operators on H to operators on K, so as a map f : Op(H) → Op(K) in FdHilb.
A linear map f : Op(H) → Op(K) is positive if it takes positive operators to
positive operators. Those f : Op(H) → Op(K) arising from completely positive
maps are those for which f ⊗ idL is positive for any idL : Op(L) → Op(L).

1 The use of subdensity rather than density operators, where tr(ρ) = 1, is natural in
quantum systems which may stick with a non-trivial probability.
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If a completely positive map f further satisfies tr(f(A)) ≤ tr(A) it is called a
superoperator. Superoperators represent the physically realisable operations on
quantum states. In strategies, due to the presence of Opponent moves, we shall
have call for completely positive maps which are not superoperators, for maps of
CPM which act on positive operators which are not identifiable with the usual
states of quantum mechanics.

We can describe a map in CPM, regarded as a map between operators, as
function from matrices of the argument to matrices of the result. A qubit is
represented by a vector so a column matrix in C

2, w.r.t. the standard basis,
and an operator on qubits by a 2-by-2 matrix. The measurement of a value
0 or 1 of a qubit in C

2 is described, respectively, by the two superoperators
meas0,meas1 ∈ CPM(C2, I) where

meas0 :
(

a b
c d

)

�→ a and meas1 :
(

a b
c d

)

�→ d.

The two superoperators representing the creation of qubit initially set to 0 or 1,
respectively, are given by new0, new1 ∈ CPM(I,C2) where

new0 : a �→
(

a 0
0 0

)

and new1 : d �→
(

0 0
0 d

)

.

For U a unitary on H, the superoperator Û ∈ CPM(H,H) takes an operator
M ∈ Op(H) to U†MU , which restricts to the usual application of a unitary
operation to a quantum state.

Two maps in CPM play an early role. They derive from the unit and counit
associated with the compact closure of FdHilb. Let H be a finite dimensional
Hilbert. The unit ηHilb

H of FdHilb viewed as completely positive map gives
1H ∈ CPM(I,H) which on argument 1 returns the identity operator idH ; it is
not a superoperator. The counit εHilb

H∗ , makes a completely positive map trH ∈
CPM(H, I) which on an operator on H returns its trace.

The category CPM inherits its symmetric monoidal structure from FdHilb.
Its compact-closed structure, ηcpm

H ∈ CPM(I,H∗ ⊗ H) and εcpm
H ∈ CPM(H ⊗

H∗, I), is also induced by the compact-closed structure of FdHilb once we iden-
tify an object H in CPM with its space of operators Op(H):

ηcpm
H = ηHilb

Op(H) : I → Op(H)∗ ⊗ Op(H);

εcpmH = εHilb
Op(H) : Op(H) ⊗ Op(H)∗ → I.

More explicitly, w.r.t. an orthonormal basis |1〉, · · · |n〉 of H, we have an
orthornormal basis Eij =def |i〉〈j| of Op(H). The unit ηcpm

H takes 1 to the
identity

∑
i,j E∗

ij ⊗ Eij . The counit εcpmH takes v ⊗ f to f(v); explicitly, on the
basis, it takes Eij ⊗ E∗

kl to δikδjl, described using the Kronecker delta.
CPM provides a conveniently rich category, supporting all quantum oper-

ations, and the diagrammatic reasoning which derives from compact-closure.
In fact, CPM inherits a dagger (a.k.a. strong) compact-closed structure from
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FdHilb [9,15]. The mathematics that follows could be explained more axiomat-
ically w.r.t. dagger compact-closed categories enriched over cancellative commu-
tative monoids; the enrichment is needed to support subtraction in the “mono-
tone” condition on quantum strategies.

In what follows, often Hilbert spaces will come presented as explicit tensor
products A =

⊗
a∈x H(a) or B =

⊗
b∈y H(b); in such cases we adopt the con-

vention that A ⊗ B =
⊗

c∈x∪y H(c) when x ∩ y = ∅; the associated structural
maps, symmetry and the left and right unit maps, will become identities.

5 From Probabilistic to Quantum Strategies

Taking guidance from probabilistic strategies we are led to a definition of quan-
tum strategy in a quantum game. Probabilistic strategies are recovered as a
special case, when the quantum game is classical.

5.1 Probabilistic Strategies

A probabilistic strategy in a game A is a strategy σ : S → A together with a
probability valuation which endows S with probability, while taking account
of the fact that in the strategy Player can’t be aware of the probabilities
assigned by Opponent. We should restrict to race-free games, precisely those
for which copycat is deterministic, so that we have probabilistic identity strate-
gies; it follows that S is race-free. Precisely, a probability valuation is a function
v : C(S) → [0,∞) which is

(normalised) v(∅) = 1;
(oblivious) if x ⊆− y then v(x) = v(y), for x, y ∈ C(S); and
(monotone) if y ⊆+ x1, · · · , xn then dv[y;x1, · · · , xn] ≥ 0,

where the drop function,

dv[y;x1, · · · , xn] =def v(y) −
∑

∅�=I⊆{1,··· ,n}
(−1)|I|+1v(xI),

y, x1, · · · , xn ∈ C(S) and we take xI =
⋃

i∈I xi and v(xI) = v(
⋃

i∈I xi) when
the union xI is a configuration and 0 otherwise. Together the three conditions
ensure that the range of a probability valuation stays within the interval [0, 1].

When there are no Opponent moves in S, a probability valuation v makes S
into a probabilistic event structure [16]. Then v extends to a continuous valuation
w on the Scott-open2 sets of C∞(S), one in which w({y ∈ C∞(S) | x ⊆ y}) =
v(x); this yields a 1-1 correspondence between valuations on configurations and

2 A Scott-open subset of configurations is upwards-closed w.r.t. inclusion and such that
if it contains the union of a directed subset S of configurations then it contains an
element of S. A continuous valuation is a function w from the Scott-open subsets of
C∞(E) to [0, 1] which is ((normalised) w(C∞(E)) = 1; (strict) w(∅) = 0; (monotone)
U ⊆ V =⇒ w(U) ≤ w(V ); (modular) w(U ∪ V ) + w(U ∩ V ) = w(U) + w(V ); and
(continuous) w(

⋃
i∈I Ui) = supi∈Iw(Ui), for directed unions.
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continuous valuations on open sets [16]. Hence, by [17], the valuation v deter-
mines a probability distribution on the Borel sets. In this case v(x) reads as
Prob(x), the probability that the result includes the events of the finite config-
uration x. When S has Opponent moves, the reading of v involves conditional
probabilities. When x ⊆+ y in C(S), provided v(x) �= 0, the conditional probabil-
ity of Player making moves y given x, is expressed by Prob(y | x) = v(y)/v(x).
Player is oblivious to Opponent in the sense that if two events, ⊕, �, of oppo-
site polarities can occur at a configuration x, then not only are they causally
independent there (because S is race-free), they are also probabilistically inde-
pendent: Prob(⊕|x) = Prob(⊕|x,�). The monotone condition expresses that we
assign non-negative probabilities to generalised intervals [y;x1, · · · , xn], consist-
ing of those configurations which include the finite configuration y but do not
include any of the finite configurations x1, · · · , xn.

The composition of strategies extends to probabilistic strategies, σ : S →
A⊥‖B with valuation vσ and τ : T → B⊥‖C with vτ . A configuration of their
interaction, of the form y � x ∈ C(T � S) for x ∈ C(S) and y ∈ C(T ), is assigned
valuation vτ�σ(y � x) = vτ (y) · vσ(x). Their composition τ�σ has probability
valuation vτ�σ(z) = vτ�σ([z]T�S) for z a finite configuration of T�S. The proof
that we so obtain probability valuations relies heavily on properties of drop
functions.

We obtain a bicategory of probabilistic strategies on race-free games. Because
copycat is deterministic it can be assigned the constantly 1 valuation and remains
an identity w.r.t. composition. The 2-cells are rigid maps of strategies which
relate probability valuations across 2-cells via a push-forward result:

Lemma 2. Let f : σ ⇒ σ′ be a rigid 2-cell between strategies σ : S → A and
σ′ : S′ → A. Let v be a probability valuation for σ. Taking, for y ∈ C(S′),
(fv)(y) =def

∑
x:fx=y v(x) defines a probability valuation fv for σ′, the push-

forward of v.

A 2-cell between probabilistic strategies σ, v to σ′, v′ is a rigid 2-cell f : σ ⇒ σ′ of
strategies for which (fv)(x′) ≤ v′(x′), for all configurations x′ ∈ C(S′). Vertical
and horizontal composition are inherited from strategies.

5.2 Quantum Strategies

The probabilistic case provides loose guidelines in extending to quantum strate-
gies. As usual probabilities are replaced by operators but there is now the ques-
tion of their type, which we take as given by the game.3

A quantum game (A,H) comprises A, a race-free event structure with polar-
ity, together with H assigning a finite dimensional Hilbert space H(a) to each
event a ∈ A. It is convenient to extend the assignment to any finite y ⊆ A and

3 We eschew the other obvious possibility in which the game also determines the
operators because we want strategies to be quantum, not just probabilistic, in line
with the quantum lambda-calculus [5] and earlier definition [6].
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write H(y) =def

⊗
a∈y H(a); in particular H(∅) = I, the one-dimensional Hilbert

space.
At this point we are guided to a quantum extension of strategies in which

finite configurations of a strategy are positive operators of type given by the
game. (In order to extend the probabilistic case and model the non-local nature
of quantum theory we do not assign operators just to events.) Once here, it
is hard to escape the quantum generalisations of the first two conditions on
quantum strategies. There is though the issue of how to generalise the remaining
monotone condition and the drop function on which it is based. For reasons
explained shortly we adopt a strong condition in which positivity is expressed
by the Löwner order between operators.

A quantum strategy in a quantum game (A,H) is a strategy σ : S → A
together with a quantum valuation for σ, an assignment Q(x) of a positive oper-
ator on H(σx) to each x ∈ C(S), which is

(normalised) Q(∅) = 1, the identity on I;
(oblivious) if x ⊆− y then Q(x) ⊗ idH(σy\σx) = Q(y); and
(monotone) if y ⊆+ x1, · · · , xn then dQ[y;x1, · · · , xn] ≥L 0,

where dQ[y;x1, · · · , xn] =def Q(y) − ∑

∅�=I⊆{1,··· ,n}
(−1)|I|+1TrH(σxI\σy)Q(xI).

Analogously to the probabilistic case, we take xI =
⋃

i∈I xi and Q(xI) =
Q(

⋃
i∈I xi) when the union is a configuration and to be 0, the zero operator,

otherwise. The role of the partial trace in the “monotone” condition is to hide
the effects of operators outside the space H(σy), and reduce an operator on
larger spaces H(σxI) to one on H(σy).

Note a special case, when the quantum game is classical, in the sense that each
H(a) is the one-dimensional Hilbert space. Then, by the “monotone” condition,
every non-zero operator Q(x) is necessarily multiplication by a positive scalar,
less than or equal to 1. Identifying operators on one-dimensional Hilbert space
with scalars, we recover probabilistic strategies.

Another special case is that in which all the moves in the game A are those
of Player. Then, by “monotone”, each Q(x) is a subdensity operator; so in this
case states of an event structure, viz. configurations, are assigned quantum states.
In moving from probabilistic to quantum strategies what were formerly proba-
bilistic states have become quantum states. Without Opponent events we have
uncovered a notion of quantum event structure (in some ways stricter, in others
more general, than those defined previously [16].)

When the games contain Opponent events the operators Q(x) need not have
trace less than or equal to one; consider, for instance, the identity operator
assigned to the singleton configuration of a strategy over a quantum game com-
prising a single Opponent event with a space of dimension 2. The operators Q(x)
will however be 1-bounded—the output’s norm never exceeds that of the input,
see Proposition 3.

There is the issue of the choice of “monotone” condition. Why not weaken
it to one in which the drop is reduced to a real number using the full trace
operation? Because the weaker form is not preserved by composition of strategies.
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Quantum Strategies and Superoperators. We characterise those positive
operators Q(x) on H(σx) which are assigned to x ∈ C(S) in a quantum strategy
σ : S → A w.r.t. a quantum game (A,H). This involves splitting a configuration
x into its Opponent and Player events, x− and x+ respectively.

Lemma 3. Let σ : S → A with Q be a quantum strategy in a quantum game
(A,H). For any x ∈ C(S), Q(x) is a positive operator for which

TrH(σx+)(Q(x)) ≤L idH(σx−) in the Löwner order.

Given a positive operator Q on N ⊗ P , for which TrP (Q) ≤L idN , it is easy
to arrange a quantum strategy in which Q is assigned to a finite configuration.

Example 1. Let A be the quantum game � � ⊕ with � assigned Hilbert space
N and ⊕ the space P . Imagine a quantum strategy σ : S → A where S has the
same shape as A, viz. � � ⊕. It will necessarily assign idN to the configuration
{�} and the operators Q that can be assigned to {�,⊕} are precisely those
positive operators Q on N ⊗ P , for which TrP (Q) ≤L idN .

Lemma 3 informs us how to rescale a quantum valuation to obtain subdensity
operators whose trace is a probability valuation:

Proposition 2. Let Q be a quantum valuation for a strategy σ : S → A. Defin-
ing ρ(x) = Q(x)/dim(H(σx−)) we obtain subdensity operators for all x ∈ C(S).
Their trace v(x) = tr(ρ(x)) = tr(Q(x)/dim(H(σx−)), for x ∈ C(S), yields a
probability valuation v for σ.

Via the Choi-Jamiolkowski isomorphism, the positive operators Q(x)
assigned to a strategy correspond to superoperators. In more detail, a positive
operator Q(x) ∈ Pos(H(σx)) is an operator

Q(x) ∈ Pos((H(σx−)∗)∗ ⊗ H(σx+))

which corresponds under Choi-Jamiolkowski to a completely positive map

−Q+(x) : CPM(H(σx−)∗,H(σx+)).

In quantum strategies, the operators Q(x) are precisely those which correspond
to superoperators −Q+(x) —a corollary of the following refinement of the Choi-
Jamiolkowski isomorphism (read H(σx−) for N and H(σx+) for P ):

Lemma 4. Let N and P be finite dimensional Hilbert spaces. Positive operators
Q ∈ Pos(N ⊗P ), for which TrP (Q) ≤L idN in the Löwner order, correspond via
the Choi-Jamiolkowski isomorphism to trace non-increasing completely positive
maps CJ−1(Q) ∈ CPM(N∗, P ), i.e. superoperators.

The view espoused by Leifer and Spekkens of this refinement of the CJ-
isomorphism is that it establishes a correspondence between conditional quantum
states of P , conditional on N , and superoperators from N to P , understood as
the quantum analogue of stochastic maps [18]. Their view is underscored here in
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strategies where the explicit contingency on the environment through Opponent
moves leads to matching intuitions.

It follows as a corollary of Lemma 4 that any positive operator Q(x), where
x ∈ C(S), is necessarily 1-bounded:

Proposition 3. A positive operator Q on N ⊗ P for which TrP (Q) ≤L idN in
the Löwner order is 1-bounded.

Let σ : S → A be a strategy in a race-free game A, expanded to a quantum
game (A,H). In summary, in moving from a probabilistic valuation v to a quan-
tum valuation Q, w.r.t. x ∈ C(S), we replace: the valuation v(x) ∈ [0,∞), at
x ∈ C(S), by a bounded positive operator Q(x); that the value v(x) is in [0, 1],
by Q(x) being a 1-bounded positive operator; the order ≤ on the reals by the
Löwner order ≤L on operators; that v(x) = Prob(x), when x = x+, by Q(x)
being a sub-density operator, i.e. a quantum state; the conditional probability
v(x) by a conditional state Q(x) ; multiplication in the reals by composition in
CPM. Indeed, in the next section, composition in CPM will play a central role
in the composition of quantum valuations, replacing the role of multiplication
in composing probabilistic valuations.

6 Quantum Strategies Between Games

We extend the operations on games, simple parallel composition and dual, to
quantum games (A,HA) and (B,HB). Any finite subset z of A‖B splits as
z = x‖y for unique finite subsets x of A and y of B; we take HA‖B(z) =
HA(x) ⊗ HB(y). A quantum game (A,HA) has dual (A⊥,HA⊥) where HA⊥(z)
is the dual Hilbert space HA(z)∗, for any finite subset z of A⊥.

6.1 Quantum Valuations as Completely Positive Maps

Before we compose quantum strategies we reformulate quantum valuations as
maps in CPM. Let σ : S → A⊥‖B be a quantum strategy with valuation
QS . For x ∈ C(S) its image in the game A⊥‖B decomposes into xA‖xB =
σx, where xA ∈ C(A) and xB ∈ C(B). Thus QS(x) is a positive operator
on HA⊥‖B(σx) = HA(xA)∗ ⊗ HB(xB). As such, it corresponds via the Choi-
Jamiolkowski isomorphism to a completely positive map

QS(x) ∈ CPM(HA(xA),HB(xB)).

(The map need not be a superoperator, but note, in general, it acts between
conditional quantum states not merely mixed states.)

Via the compact-closure of FdHilb, we can reformulate the conditions
required of a quantum strategy now with the corresponding assignments Q of
completely positive maps. In the reformulation, when x ⊆− y, we shall require
the expansion of a map Q ∈ CPM(HA(xA),HB(xB)) to

⇑y (Q) = Q ⊗ (1HB(yB\xB) ◦ trHA(yA\xA))
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in CPM(HA(yA),HB(yB)). Similarly, in rephrasing the “monotone” condition,
when y ⊆+ x, we need the reduction of a map Q ∈ CPM(HA(xA),HB(xB)) to

⇓y (Q) = (idHB(yB) ⊗ trHB(xB\yB)) ◦ Q ◦ (idHA(yA) ⊗ 1HA(xA\yA))

in CPM(HA(yA),HB(yB)). The expansion and reduction operations on com-
pletely positive maps correspond via the CJ-isomorphism to the earlier opera-
tions (tensoring with an identity and partial trace) we saw earlier on positive
operators. The conditions on a quantum valuation become

(normalised) Q(∅) = 1 ∈ CPM(I, I);
(oblivious) if x ⊆− y then ⇑y (Q(x)) = Q(y); and
(monotone) if y ⊆+ x1, · · · , xn then dQ [y;x1, . . . , xn] is in
CPM(H(xA),H(xB)), where

dQ [y;x1, . . . , xn] = Q(y) −
∑

∅�=I⊆{1,...,n}
(−1)|I|+1 ⇓y (Q(xI)),

again with the understanding that Q(xI) = Q(
⋃

i∈I xi) when the union is a
configuration and the zero map otherwise.

6.2 Quantum Copycat

Let (A,HA) be a race-free quantum game. We can extend a copycat strategy
cc A : CCA → A⊥‖A with a quantum valuation. Recall a finite configuration
of CCA comprises x‖y where x, y ∈ C(A) are in the Scott order y 
 x, so
y ⊇− x ∩ y ⊆+ x. We thus have the inclusion (x ∩ y)‖(x ∩ y) ⊆ x‖y in C(CCA).
Define the quantum valuation of copycat as

Q cc A
(x‖y) =⇑x‖y (idHA(x∩y)) ∈ CPM(HA(x),HA(y)),

the expansion of the identity on HA(x ∩ y) in CPM. Its being a quantum
valuation depends on A being race-free to validate the “monotone” condition.

6.3 Composition of Quantum Strategies

Consider quantum strategies σ : S → A⊥‖B, Qσ and τ : T → B⊥‖C, Qτ . We
assign a quantum valuation, Qτ�σ to their interaction. Recall, the interaction

τ � σ : T � S → A⊥‖B0‖C,

in which the events of B are reset to have neutral polarity, and are now addition-
ally assigned the one-dimensional Hilbert space. Recall a configuration of T � S
has the form y � x, for unique x ∈ C(S) and y ∈ C(T ). We have

Qσ(x) ∈ CPM(HA(xA),HB(xB)),
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where xA‖xB = σx, with xA ∈ C(A) and xB ∈ C(B). Similarly,

Qτ (y) ∈ CPM(HB(yB),HC(yC)),

for a decomposition yB‖yC = τy. Define

Qτ�σ(y � x) =def Qτ (y) ◦ Qσ(x) ∈ CPM(HA(xA),HC(yC)).

The composition is well-defined because for y � x to be defined configurations x
and y must share a common image, xB = yB , in the game B.

The composition τ�σ : T�S → A⊥‖C has quantum valuation Qτ�σ(z) =
Qτ�σ([z]T�S) for z a finite configuration of T�S.

In particular, the interaction τ � σ : T � S → B0, of a strategy σ : S → B
against a counterstrategy τ : T → B⊥, has Qτ�σ assign a non-negative real
to each finite configuration of T � S to form a probability valuation, making
T � S into a probabilistic event structure. We can push forward the probability
valuation of T � S to a probability valuation of B (via the continuous valuation
induced on the Scott open sets of C∞(T �S)) and consequently to a probability
distribution over C∞(B), the possible resulting end positions of the play.

The proof that composition yields a quantum strategy mimics that in the
probabilistic case, but generalising from the reals to quantum operations.

Theorem 4. The composition of two quantum strategies is a quantum strategy
and, up to isomorphism, has quantum copycat is its identity.

6.4 A Bicategory of Quantum Strategies

In analogy with the probabilistic case, 2-cells between quantum strategies are
rigid maps of strategies which relate quantum valuations across 2-cells via a
push-forward result:

Lemma 5. Let f : σ ⇒ σ′ be a rigid 2-cell between strategies σ : S → A and
σ′ : S′ → A. Let Q be a quantum valuation for σ. Taking, for y ∈ C(S′),

(fQ)(y) =def

∑

x:fx=y

Q(x)

defines a quantum valuation fQ for σ′, the quantum push-forward.

A bicategory of quantum strategies on race-free quantum games ensues. Its maps
are quantum strategies. A 2-cell between quantum strategies from σ,Q to σ′,Q′

is a rigid 2-cell f : σ ⇒ σ′ of strategies for which Q′(x′)− (fQ)(x′) is completely
positive for all configurations x′ ∈ C(S′). The bicategory of quantum strategies
inherits compact-closure from that of plain strategies and CPM.

There are notable special cases.

Proposition 4. The sub-bicategory of quantum strategies on games (A,HA), in
which HA is constantly the one-dimensional Hilbert space, is isomorphic to the
bicategory of probabilistic strategies.
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Consider the sub-(bi)categories in which the games consist purely of Player
moves. When there is no additional quantum structure, the strategies in this
case yield a sub-bicategory equivalent to stable spans, a model which underlies
treatments of nondeterministic dataflow [19]; restricting to deterministic strate-
gies on countable games, the sub-bicategory is equivalent to Berry’s dI-domains
and stable functions. Broadened to quantum games and quantum strategies, all
the quantum assignments Q(x) will be a superoperators and we obtain a frame-
work for quantum dataflow and, in particular, for the semantics of quantum
flowcharts [20]. Of more interest though, are interpretations of higher-order lan-
guages such as quantum λ-calculi where interactions are more complicated and
in which polarities play a more intricate role [13].
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Abstract. Birkhoff’s theorem tells how any doubly stochastic matrix
can be decomposed as a weighted sum of permutation matrices. Simi-
lar theorems on unitary matrices reveal a connection between quantum
circuits and linear classical reversible circuits. It triggers the question
whether a quantum computer can be regarded as a superposition of clas-
sical reversible computers.

1 Introduction

Let D be an arbitrary n × n doubly stochastic matrix. This means that all
entries Djk are real and satisfy 0 ≤ Djk ≤ 1 and that all line sums (i.e. the
n row sums and the n column sums) are equal to 1. Let P(n) be the group of
n × n permutation matrices. Birkhoff [1] has demonstrated

Theorem 1. Any n × n doubly stochastic matrix D can be written

D =
∑

j

cjPj

with all Pj ∈ P(n) and the weights cj real, satisfying both 0 ≤ cj ≤ 1 and∑
j cj = 1.

Because unitary matrices describe quantum circuits [2] and permutation matrices
describe classical reversible circuits [3], the question arises whether a similar
theorem holds for matrices from the unitary group U(n). In a sloppy way, one
might reformulate the question as:

Is a quantum computer a quantum superposition of a finite num-
ber of classical (reversible) computers?

It is a surprise that (to our knowledge) this problem has not been discussed in
the literature.
c© Springer Nature Switzerland AG 2019
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It is clear that a simple positive answer to the above question is not possible.
Indeed, any sum

∑
j cjPj is a matrix with identical line sums (equal to

∑
j cj),

whereas an arbitrary unitary matrix usually does not have identical line sums.
Moreover, if all cj are real, then the matrix

∑
j cjPj has exclusively real entries,

again a property not shown by an arbitrary unitary matrix. Nevertheless, below
we will present some Birkhoff-like theorems concerning n × n unitary matrices
in general and 2w × 2w unitary matrices in peculiar.

2 The ZXZ Decomposition of a Unitary Matrix

Each quantum circuit acting on w qubits is represented by a 2w × 2w unitary
matrix. Such matrix thus is a member of the unitary group U(n) with n = 2w.
In light of quantum circuit decomposition, the (sub)group structure of U(n) is
particularly important. We note the following two useful subgroups [4,5]:

– XU(n), i.e. the group of U(n) matrices with all line sums equal to 1 and
– ZU(n), i.e. the group of diagonal U(n) matrices with upper-left entry equal

to 1.

Whereas U(n) is a group of dimension n2, XU(n) is a group of dimension (n−1)2

and ZU(n) is a group of dimension n − 1.
Idel and Wolf [6] proved the following theorem:

Theorem 2. Every n × n unitary matrix U can be decomposed as

U = aZ1XZ2, (1)

where both Z1 and Z2 are ZU(n) matrices, where X is an XU(n) matrix, and
a is a unit-modulus scalar.

Proof of the theorem is based on simplectic topology and, unfortunately, is not
constructive. There exists an iterative method [7] for, given a matrix U , finding
a set (a, Z1,X, Z2) with arbitrary numerical precision. If n equals 2w, then the
matrix decomposition expresses the decomposition of a quantum circuit acting
on w qubits [8]. The 3-qubit case (n = 8) looks like

U Z2 X Z1 a=

.

3 The Birkhoff Decomposition of the XU Matrix

De Baerdemacker et al. [9] proved the following theorem:
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Theorem 3. Every XU(n) matrix X can be decomposed as

X =
n!∑

j=1

cjPj ,

where Pj are the n × n permutation matrices and cj are complex numbers, such
that both

∑
cj = 1 and

∑ |cj |2 = 1.

De Baerdemacker et al. provide an algorithm to find any possible set of appro-
priate weights cj . This set is far from unique (except if n = 2).

De Vos and De Baerdemacker [10,11] demonstrated, in case n equals a power
of 2 (say, n = 2w), the following theorem:

Theorem 4. Every XU( 2w) matrix X can be decomposed as

X =
N(w)∑

j=1

cjEj ,

where j runs over all 2w × 2w epicirculant permutation matrices Ej, where cj
are complex numbers, such that both

∑
cj = 1 and

∑ |cj |2 = 1, and N(w) equals
2w(2w − 1)(2w − 2)(2w − 22)...(2w − 2w−1).

In next section will be explained what is meant with ‘epicirculant matrix’. The-
orem 4 is stronger than Theorem 3, because N(w) scales much better than (2w)!
for large w, as can be seen in the table:

w 2w (2w)! N(w)

1 2 2 2
2 4 24 24
3 8 40,320 1,344
4 16 20,922,789,888,000 322,560

One possible set of weights cj is given by

cj = δ1,j +
2w − 1
N(w)

[
Trace

(
E−1

j X
) − Trace (Ej)

]
,

where the Kronecker delta assumes that the epicirculant matrix E1 is the 2w×2w

unit matrix.

4 Epicirculant Matrices

Before giving the definition of a 2w × 2w epicirculant matrix, it is useful to
introduce some convenient conventions:
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Remark 1. In the present paper, rows and columns of any 2w × 2w matrix are
numbered from 0 to 2w −1 (instead of the conventional numbering from 1 to 2w)
and each such number is represented by the w ×1 matrix consisting of the w bits
of the binary notation of the row-or-column number.

E.g. the upper-left entry of the 8 × 8 matrix A is entry A0,0 = A(0,0,0)T ,(0,0,0)T ,
whereas its lower-right entry is denoted A7,7 = A(1,1,1)T ,(1,1,1)T . Further, we
choose to order bits from least significant to most significant bit. E.g., for w = 3,
the vector (1, 1, 0)T denotes the number 3.

Definition 1. A 2w × 2w epicirculant matrix M is a 2w × 2w matrix, such that
each entry Mj,k equals the entry M0,c with c = k − xj, where the multiplication
xj is a matrix multiplication performed modulo 2, and where x is some invertible
w × w matrix with entries from {0, 1}, called the pitch matrix. The subtraction
k − xj is a vector addition performed modulo 2.

E.g. the following matrix is an 8 × 8 epicirculant matrix with pitch matrix
x =

(
1 0 0
0 0 1
0 1 1

)
:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0 m1 m2 m3 m4 m5 m6 m7

m1 m0 m3 m2 m5 m4 m7 m6

m4 m5 m6 m7 m0 m1 m2 m3

m5 m4 m7 m6 m1 m0 m3 m2

m6 m7 m4 m5 m2 m3 m0 m1

m7 m6 m5 m4 m3 m2 m1 m0

m2 m3 m0 m1 m6 m7 m4 m5

m3 m2 m1 m0 m7 m6 m5 m4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Thanks to the fact that matrix x is invertible, not only each of the eight rows
but also each of the eight columns contains exactly one m0, one m1, ..., and
one m7. If all entries of its upper row (i.e. row 0) are equal to 0, except one
entry equal to 1 (in column s), then an epicirculant matrix is an epicirculant
permutation matrix. The vector representing position s is called the shift vector.
There exist as many different epicirculant permutation matrices as there exist
possible shift vectors (i.e. 2w) times the number of possible pitch matrices (i.e.
(2w − 1)(2w − 2)(2w − 22)...(2w − 2w−1)). Because

– the shift vectors form a group isomorphic to the direct product (C2)w of w
cyclic groups, each of order 2, and therefore of order 2w and

– the pitch matrices form a group isomorphic to the general linear group
GL(w,2) of order (2w − 1)(2w − 2)(2w − 22)...(2w − 2w−1),

the epicirculant permutation matrices form a group [12] isomorphic to the gen-
eral affine group GA(w,2) of order N(w), isomorphic to the semidirect product
(C2)w : GL(w,2). E.g. the following matrix is an 8 × 8 epicirculant permutation
matrix with shift vector s =

(
0
1
0

)
and pitch matrix x =

(
1 0 0
0 0 1
0 1 1

)
:
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

It is obtained from matrix (2) by choosing m2 = 1 and mk = 0 for k �= 2. We
note that, if s is the w × 1 zero matrix and x is the w × w unit matrix, then the
corresponding epicirculant permutation matrix is the 2w × 2w unit matrix E1.

We have [11]:

Lemma 1. Each epicirculant permutation matrix E can be written as the prod-
uct of a zero-shift epicirculant permutation matrix L and a unit-pitch epicirculant
permutation matrix N :

E = LN.

E.g. matrix (3) has the decomposition
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

The left matrix has shift equal to
(

0
0
0

)
and pitch equal to

(
1 0 0
0 0 1
0 1 1

)
, whereas the

right matrix has shift vector
(

0
1
0

)
and pitch matrix

(
1 0 0
0 1 0
0 0 1

)
.

From classical reversible computation [3,13–15], we know the following two
lemmas:
Lemma 2. An arbitrary zero-shift epicirculant permutation matrix L represents
a linear circuit, i.e. a circuit consisting exclusively of singly controlled NOT gates
(a.k.a. FEYNMAN gates).
and
Lemma 3. An arbitrary unit-pitch epicirculant permutation matrix N repre-
sents a circuit consisting merely of a stack of w single-qubit gates, each either
an IDENTITY gate or a NOT gate. We call such stack a NOT stack.
E.g. the product (4) represents the circuit cascade

•
•

.︸ ︷︷ ︸
N

︸ ︷︷ ︸
L
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In general, N consists of 0 to w NOTs and L consists of O(w2) or O( w2

log(w) )
controlled NOTs, depending on the synthesis method applied [13,14].

5 The Birkhoff Decomposition of the Two ZU Matrices

Because a member Z of the group ZU(n) is diagonal, it cannot be decomposed
as a weighted sum

∑
cjPj of permutation matrices Pj , such that the weight

sum
∑

cj equals 1. Indeed, if
∑

cj = 1, then all line sums of the matrix
∑

cjPj

are equal to 1. Except for the n × n unit matrix, no diagonal matrix has this
property. For this reason, we decompose the matrices Z1 and Z2 of (1) according
to

Z1 = GX1G
−1 and Z2 = GX2G

−1, (5)

where G is a constant n × n (dephased) Hadamard matrix [16]. As the unitary
matrices Z1 and Z2 have unit upper-left entry, automatically, X1 and X2 (equal
to G−1Z1G and G−1Z2G, respectively) have all line sums equal to 1.

If n = 2w, we choose the following Hadamard matrix:

G = H ⊗ H ⊗ ... ⊗ H, (6)

i.e. the Kronecker product of w small (i.e. 2 × 2) Hadamard matrices

H =
1√
2

(
1 1
1 −1

)
. (7)

The matrix G has following entries:

Ga,b =
1√
2w

(−1)f(a,b),

where f(x, y) is the sum of the bitwise product of the binary numbers x and y
and hence the matrix product of the row vector xT and the column vector y:

f(x, y) =
∑

j

xjyj mod 2 = xT y.

With this choice of G, the two matrix decompositions (5) represent the following
circuit decomposition:

Z

H

X

H

= H H

H H .

As the unitary matrices Z1 and Z2 are diagonal, automatically, X1 and X2

are epicirculant with unit pitch matrix. Indeed, if a 2w×2w matrix D is diagonal
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and G is given by (6, 7), then an arbitrary entry of the product G−1DG is given
by

(G−1DG)j,k =
∑

r

∑

s

(G−1)j,rDr,sGs,k

=
∑

r

1√
2w

(−1)−rT jDr,r
1√
2w

(−1)r
T k

=
1
2w

∑

r

(−1)r
T (k−j) Dr,r.

We note that (G−1DG)0,k−j = 1
2w

∑
r(−1)r

T (k−j) Dr,r equals (G−1DG)j,k,
which means that G−1DG is epicirculant according to Definition 1 with x equal
to the w × w unit matrix.

Any 2w × 2w epicirculant matrix M satisfies

M =
2w−1∑

m=0

M0,m Fm,

with Fm the epicirculant permutation matrix with shift vector equal to m and
same pitch matrix as M . Hence, X1 and X2 satisfy the (short) Birkhoff sums:

X1 =
2w∑

j=1

ajEj and X2 =
2w∑

j=1

bjEj ,

where the Ej are the epicirculant permutation matrices with unit pitch matrix.
Because X1 and X2 are unitary, we immediately have

∑ |aj |2 =
∑ |(X1)0,j |2 = 1

and
∑ |bj |2 =

∑ |(X2)0,j |2 = 1. Moreover, because both X1 and X2 have row
sums equal to 1, we have

∑
aj =

∑
(X1)0,j = 1 and

∑
bj =

∑
(X2)0,j = 1.

The unit-pitch epicirculant permutation matrices form a group isomorphic to
the direct product (C2)w of order 2w. According to Lemma 3, such permutation
matrix Ej represents a NOT stack.

6 The Birkhoff Decomposition of the Scalar Factor

The unit-modulus scalar a in (1) is to be interpreted as a 2w × 2w unitary
matrix A, i.e. a times the 2w ×2w unit matrix. It thus is also a times the 2w ×2w

identity permutation matrix. Therefore it is a weighted ‘sum’ of permutation
matrices:

A =
∑

j

djPj = aP1.

We have
∑ |dj |2 = |a|2 = 1; however, the sum

∑
j dj = a usually is not equal

to 1.
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The matrix A equals the Kronecker product

I ⊗ I ⊗ I ⊗ ... ⊗ I ⊗
(

a 0
0 a

)
⊗ I ⊗ I ⊗ I ⊗ ... ⊗ I,

with w−1 appearances of the factor I =
(

1 0
0 1

)
and, within the product, arbitrary

position of the factor
(

a 0
0 a

)
. The scalar a thus represents a w-qubit quantum

circuit with merely one single-qubit gate acting on an arbitrary wire.

7 The Birkhoff Decomposition of the U Matrix

From the above discussion, we see that any w-qubit quantum circuit can be
constructed as the following cascade:

U

H

X2

H

X

H

X1

H

= H H H H

H H H H a ,

containing

– 4w + 1 single-qubit gates represented by U(2) matrices:
• 4w HADAMARD gates and
• one PHASE-SHIFT gate

and
– three w-qubit circuits represented by XU(2w) matrices:

• one decomposable as a weighted sum of classical reversible circuits con-
sisting of 2-bit gates (controlled NOT gates) and single-bit gates (NOT gates)
and

• two decomposable as a weighted sum of classical reversible circuits con-
sisting exclusively of single-bit gates (NOT gates).

We have

U = aZ1XZ2

= aGX1G
−1 X GX2G

−1

= aG (
2w∑

j1=1

aj1Ej1)G−1 (
N(w)∑

j=1

cjEj)G (
2w∑

j2=1

bj2Ej2)G−1

= a

2w∑

j1=1

N(w)∑

j=1

2w∑

j2=1

aj1cjbj2 GEj1G
−1EjGEj2G

−1. (8)

We note that the identities

H H =
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and

H H = Z

imply that each of the two compositions GEj1G
−1 and GEj2G

−1 can be replaced
by a stack of w gates, each either an IDENTITY gate, representing the unit matrix(

1 0
0 1

)
, or a Z gate, representing the matrix

Z =
(

1 0
0 −1

)
.

Thus:

Lemma 4. A NOT stack sandwiched between two HADAMARD stacks is a Z stack.

The Z stacks form a group isomorphic to (C2)w and are represented by diagonal
2w×2w matrices with an upper-left entry equal to 1 and all other diagonal entries
equal to ±1. Thus the matrix GEj1G

−1EjGEj2G
−1 within Eq. (8) represents an

epicirculant permutation matrix sandwiched between two Z stacks and hence is
a signed epicirculant permutation matrix. We summarise the present section by
a new theorem:

Theorem 5. Every U( 2w) matrix U can be decomposed as

U = a

M(w)∑

j=1

cjSj ,

where a is a complex (unit-modulus) scalar, where j runs over 2w × 2w signed
epicirculant permutation matrices Sj, where cj are complex numbers, such that
both

∑
cj = 1 and

∑ |cj |2 = 1, and M(w) equals 4w × 2w(2w − 1)(2w − 2)(2w −
22)...(2w − 2w−1).

8 Conclusion

We conclude that an arbitrary quantum computer can be regarded as a weighted
sum of almost-classical reversible computers. Each of these reversible computers
consists of two surprisingly simple classical parts:

– one linear circuit (composed of exclusively controlled NOTs) and
– one NOT stack

and three small quantum parts:

– one complex scalar and
– two Z stacks.
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Whereas a matrix product represents a circuit cascade, a matrix sum does
not represent a simple circuit structure. Recently, there have been some attempts
[17,18] to apply a weighted matrix sum for quantum circuit synthesis. However,
this so-called ‘reuse method’ is only efficient (in terms of gate count and ancilla
count) in very specific cases. Further research may reveal the full impact of the
unitary Birkhoff theorems on quantum computation. Future work may lead to
applications in simulation of quantum systems by means of classical computers.

Acknowledgement. Support by the European Cost Action IC 1405 ‘Reversible com-
putation’ is greatly acknowledged.
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Abstract. The humble † (“dagger”) is used to denote two different oper-
ations in category theory: Taking the adjoint of a morphism (in dagger
categories) and finding the least fixed point of a functional (in categories
enriched in domains). While these two operations are usually considered
separately from one another, the emergence of reversible notions of com-
putation shows the need to consider how the two ought to interact.

In the present paper, we wield both of these daggers at once and con-
sider dagger categories enriched in domains. We develop a notion of a
monotone dagger structure as a dagger structure that is well behaved
with respect to the enrichment, and show that such a structure leads
to pleasant inversion properties of the fixed points that arise as a result.
Notably, such a structure guarantees the existence of fixed point adjoints,
which we show are intimately related to the conjugates arising from a
canonical involutive monoidal structure in the enrichment. Finally, we
relate the results to applications in the design and semantics of reversible
programming languages.

Keywords: Reversible computing · Dagger categories ·
Iteration categories · Domain theory · Enriched categories

1 Introduction

Dagger categories are categories in which each morphism X
f−→ Y can be assigned

an adjoint Y
f†
−→ X subject to certain equations. In recent years, dagger cate-

gories have been used to capture aspects of inversion in both reversible [27,28,30]
and quantum [2,12,35] computing. Likewise, domain theory and categories
enriched in domains (see, e.g., [3,4,6,14,15,38]) have been successful since their
inception in modelling both recursive functions and data types in programming
via fixed points.
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A motivating example of the interaction between adjoints and fixed points
is found in the reversible functional programming language Rfun [40], as the
interaction between program inversion and recursion. In this language, inverses
of recursive functions can be constructed in a particularly straightforward way,
namely as recursive functions with function body the inverse of the function body
of the original function. Previously, the author and others showed that this phe-
nomenon appears in join inverse categories, a particular class of domain-enriched
dagger categories suitable for modelling classical reversible computing, as fixed
point adjoints [30] to the functionals (i.e., second-order continuous functions)
used to model recursive functions.

Several questions remain about these fixed point adjoints, however. Notably:
Are these fixed point adjoints canonical? Why do they arise in classical reversible
computing, and do they arise elsewhere as well? To answer these questions
requires us to develop the art of wielding the two daggers offered by dagger
categories and domain-enriched categories at once. We argue that well-behaved
interaction between the dagger and domain-enrichments occurs when the dag-
ger is locally monotone, i.e., when f � g implies f† � g†. We show that the
functionals on C form an involutive monoidal category, which also proves sur-
prisingly fruitful in unifying seemingly disparate concepts from the literature
under the banner of conjugation of functionals. Notably, we show that the con-
jugate functionals arising from this involutive structure coincide with fixed point
adjoints [30], and that they occur naturally both in proving the ambidexterity of
dagger adjunctions [22] and in natural transformations that preserve the dagger
(including dagger traces [36]).

While these results could be applied to model a reversible functional pro-
gramming language with general recursion and parametrized functions (such as
an extended version of Theseus [28]), they are general enough to account for
even certain probabilistic and nondeterministic models of computation, such as
the category Rel of sets and relations, and the category DStoch≤1 of finite sets
and subnormalized doubly stochastic maps.

Overview: A brief introduction to the relevant background material on dag-
ger categories, (DCPO-)enriched categories, iteration categories, and involutive
monoidal categories is given in Sect. 2. In Sect. 3 the concept of a monotone dag-
ger structure on a DCPO-category is introduced, and it is demonstrated that
such a structure leads to the existence of fixed point adjoints for (ordinary and
externally parametrized) fixed points, given by their conjugates. We also explore
natural transformations in this setting, and develop a notion of self-conjugate
natural transformations, of which †-trace operators are examples. Finally, we
discuss potential applications and avenues for future research in Sect. 4, and end
with a few concluding remarks in Sect. 5.

2 Background

Though familiarity with basic category theory, including monoidal categories,
is assumed, we recall here some basic concepts relating to dagger categories,
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(DCPO)-enriched categories, iteration categories, and involutive monoidal cat-
egories [7,25]. The material is only covered here briefly, but can be found in
much more detail in the numerous texts on dagger category theory (see, e.g.,
[2,20,31,35]), enriched category theory (for which [33] is the standard text), and
domain theory and iteration categories (see, e.g., [3,15]).

2.1 Dagger Categories

A dagger category (or †-category) is a category equipped with a suitable method
for flipping the direction of morphisms, by assigning to each morphism an adjoint
in a manner consistent with composition. They are formally defined as follows.

Definition 1. A dagger category is a category C equipped with an functor (−)† :
C op → C satisfying that id†

X = idX and f†† = f for all identities X
idX−−→ X and

morphisms X
f−→ Y .

Dagger categories, dagger functors (i.e., functors F satisfying F (f†) =
F (f)†), and natural transformations form a 2-category, DagCat.

A given category may have several different daggers which need not agree.
An example of this is the groupoid of finite-dimensional Hilbert spaces and linear
isomorphisms, which has (at least!) two daggers: One maps linear isomorphisms
to their linear inverse, the other maps linear isomorphisms to their hermitian
conjugate. The two only agree on the unitaries, i.e., the linear isomorphisms
which additionally preserve the inner product. For this reason, one would in
principle need to specify which dagger one is talking about on a given category,
though this is often left implicit (as will also be done here).

Let us recall the definition of the some interesting properties of morphisms
in a dagger category: By theft of terminology from linear algebra, say that a
morphism X

f−→ X in a dagger category is hermitian or self-adjoint if f = f†,
and unitary if it is an isomorphism and f−1 = f†. Whereas objects are usually
considered equivalent if they are isomorphic, the “way of the dagger” [22,31]
dictates that all structure in sight must cooperate with the dagger; as such,
objects ought to be considered equivalent in dagger categories only if they are
isomorphic via a unitary map.

We end with a few examples of dagger categories. As discussed above, FHilb
is an example (the motivating one, even [35]) of dagger categories, with the
dagger given by hermitian conjugation. The category PInj of sets and partial
injective functions is a dagger category (indeed, it is an inverse category [11,32])
with f† given by the partial inverse of f . Similarly, the category Rel of sets
and relations has a dagger given by R† = R◦, i.e., the relational converse of R.
Noting that a dagger subcategory is given by the existence of a faithful dagger
functor, it can be shown that PInj is a dagger subcategory of Rel with the given
dagger structures.
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2.2 DCPO-categories and Other Enriched Categories

Enriched categories (see, e.g., [33]) capture the idea that homsets on certain
categories can (indeed, ought to) be understood as something other than sets – or
in other words, as objects of another category than Set. A category C is enriched
in a monoidal category V if all homsets C (X,Y ) of C are objects of V , and for
all objects X,Y,Z of C , V has families of morphisms C (Y,Z) ⊗ C (X,Y ) →
C (X,Z) and I → C (X,X) corresponding to composition and identities in C ,
subject to commutativity of diagrams corresponding to the usual requirements
of associativity of composition, and of left and right identity. As is common, we
will often use the shorthand “C is a V -category” to mean that C is enriched in
the category V .

We focus here on categories enriched in the category of domains (see, e.g.,
[3]), i.e., the category DCPO of pointed directed complete partial orders and
continuous maps. A partially ordered (X,�) is said to be directed complete if
every directed set (i.e., a non-empty A ⊆ X satisfying that any pair of elements
of A has a supremum in A) has a supremum in X. A function f between directed
complete partial orders is monotone if x � y implies f(x) � f(y) for all x, y,
and continuous if f(sup A) = supa∈A{f(a)} for each directed set A (note that
continuity implies monotony). A directed complete partial order is pointed if it
has a least element ⊥ (or, in other words, if also the empty set has a supremum),
and a function f between such is called strict if f(⊥) = ⊥ (i.e., if also the
supremum of the empty set is preserved1). Pointed directed complete partial
orders and continuous maps form a category, DCPO.

As such, a category enriched in DCPO is a category C in which homsets
C (X,Y ) are directed complete partial orders, and composition is continuous.
Additionally, we will require that composition is strict (meaning that ⊥ ◦ f = ⊥
and g ◦ ⊥ = ⊥ for all suitable morphisms f and g), so that the category is
actually enriched in the category DCPO! of directed complete partial orders
and strict continuous functions, though we will not otherwise require functions
to be strict.

Enrichment in DCPO provides a method for constructing morphisms in the
enriched category as least fixed points of continuous functions between hom-
sets: This is commonly used to model recursion. Given a continuous function
C (X,Y )

ϕ−→ C (X,Y ), by Kleene’s fixed point theorem there exists a least fixed

point X
fixϕ−−−→ Y given by supn∈ω{ϕn(⊥)}, where ϕn is the n-fold composition

of ϕ with itself.

2.3 Parametrized Fixed Points and Iteration Categories

Related to the fixed point operator is the parametrized fixed point operator, an
operator pfix assigning morphisms of the form X × Y

ψ−→ X to a morphism

1 This is not the case in general, as continuous functions are only required to preserve
least upper bounds of directed sets, which, by definition, does not include the empty
set.
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Y
pfixψ−−−→ X satisfying equations such as the parametrized fixed point identity

pfixψ = ψ ◦ 〈pfixψ, idY 〉
and others (see, e.g., [14,24]). Parametrized fixed points are used to solve domain
equations of the form x = ψ(x, p) for some given parameter p ∈ Y . Indeed, if

for a continuous function X × Y
ψ−→ X we define ψ0(x, p) = x and ψn+1(x, p) =

ψ(ψn(x, p), p), we can construct its parametrized fixed point in DCPO in a way
reminiscent of the usual fixed point by

(pfixψ)(p) = sup
n∈ω

{ψn(⊥X , p)} .

In fact, a parametrized fixed point operator may be derived from an ordinary
fixed point operator by (pfixψ)(p) = fixψ(−, p). Similarly, we may derive an
ordinary fixed point operator from a parametrized one by considering a mor-
phism X

ϕ−→ X to be parametrized by the terminal object 1, so that the fixed
point of X

ϕ−→ X is given by the parametrized fixed point of X × 1 π1−→ X
ϕ−→ X.

The parametrized fixed point operation is sometimes also called a dagger
operation [14], and denoted by f† rather than pfix f . Though this is indeed the
other dagger that we are wielding, we will use the phrase “parametrized fixed
point” and notation “pfix” to avoid unnecessary confusion.

An iteration category [15] is a cartesian category with a parametrized fixed
point operator that behaves in a canonical way. The definition of an iteration
category came out of the observation that the parametrized fixed point operator
in a host of concrete categories (notably DCPO) satisfy the same identities.
This lead to an elegant semantic characterization of iteration categories, due
to [15].

Definition 2. An iteration category is a cartesian category with a parametrized
fixed point operator satisfying all identities (of the parametrized fixed point oper-
ator) that hold in DCPO.

Note that the original definition defined iteration categories in relation to the
category CPOm of ω-complete partial orders and monotone functions, rather
than to DCPO. However, the motivating theorem [15, Theorem 1] shows that
the parametrized fixed point operator in CPOm satisfies the same identities as
the one found in CPO (i.e., with continuous rather than monotone functions).
Since the parametrized fixed point operator of DCPO is constructed precisely as
it is in CPO (noting that ω-chains are directed sets), this definition is equivalent
to the original.

2.4 Involutive Monoidal Categories

An involutive category [25] is a category in which every object X can be assigned
a conjugate object X in a functorial way such that X ∼= X. A novel idea by
Egger [13] is to consider dagger categories as categories enriched in an involutive
monoidal category. We will return to this idea in Sect. 3.1, and recall the relevant
definitions in the meantime (due to [25], compare also with bar categories [7]).
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Definition 3. A category V is involutive if it is equipped with a functor V
(−)−−→

V (the involution) and a natural isomorphism id ι=⇒ (−) satisfying ιX = ιX .

Borrowing terminology from linear algebra, we call X (respectively f) the
conjugate of an object X (respectively a morphism f), and say that an object X
is self-conjugate if X ∼= X. Note that since conjugation is covariant, any category
C can be made involutive by assigning X = X, f = f , and letting id ι=⇒ (−) be
the identity in each component; as such, an involution is a structure rather than
a property. Non-trivial examples of involutive categories include the category of
complex vector spaces VectC, with the involution given by the usual conjugation
of complex vector spaces; and the category Poset of partially ordered sets and
monotone functions, with the involution given by order reversal.

When a category is both involutive and (symmetric) monoidal, we say that it
is an involutive (symmetric) monoidal category when these two structures play
well together, as in the following definition [25].

Definition 4. An involutive (symmetric) monoidal category is a (symmetric)
monoidal category V which is also involutive, such that the involution is a
monoidal functor, and id ⇒ (−) is a monoidal natural isomorphism.

This specifically gives us a natural family of isomorphisms X ⊗ Y ∼= X ⊗
Y , and when the monoidal product is symmetric, this extends to a natural
isomorphism X ⊗ Y ∼= Y ⊗ X. This fact will turn out to be useful later on
when we consider dagger categories as enriched in certain involutive symmetric
monoidal categories.

3 Domain Enriched Dagger Categories

Given a dagger category that also happens to be enriched in domains, we ask how
these two structures ought to interact with one another. Since domain theory
dictates that the well-behaved functions are precisely the continuous ones, a
natural first answer would be to that the dagger should be locally continuous;
however, it turns out that we can make do with less.

Definition 5. Say that a dagger structure on DCPO-category is monotone if
the dagger is locally monotone, i.e., if f � g implies f† � g† for all f and g.

In the following, we will use the terms “DCPO-category with a monotone
dagger structure” and “DCPO-†-category” interchangably. That this is suffi-
cient to get what we want – in particular to obtain local continuity of the dagger
– is shown in the following lemma.

Lemma 1. In any DCPO-†-category, the dagger is an order isomorphism on
morphisms; in particular it is continuous and strict.
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Proof. For C a dagger category, C ∼= C op so C (X,Y ) ∼= C op(X,Y ) = C (Y,X)
for all objects X,Y ; that this isomorphism of hom-objects is an order isomor-
phism follows directly by local monotony. �

Let us consider a few examples of DCPO-†-categories.

Example 1. The category Rel of sets and relations is a dagger category, with
the dagger given by R† = R◦, the relational converse of R (i.e., defined by
(y, x) ∈ R◦ iff (x, y) ∈ R) for each such relation. It is also enriched in DCPO by
the usual subset ordering: Since a relation X → Y is nothing more than a subset
of X ×Y, equipped with the subset order − ⊆ − we have that sup(Δ) =

⋃
R∈Δ R

for any directed set Δ ⊆ Rel(X ,Y). It is also pointed, with the least element of
each homset given by the empty relation.

To see that this is a monotone dagger structure, let X R,S−−→ Y be relations
and suppose that R ⊆ S. Let (y, x) ∈ R◦. Since (y, x) ∈ R◦ we have (x, y) ∈ R
by definition of the relational converse, and by the assumption that R ⊆ S we
also have (x, y) ∈ S. But then (y, x) ∈ S◦ by definition of the relational converse,
so R† = R◦ ⊆ S◦ = S† follows by extensionality.

Example 2. We noted earlier that the category PInj of sets and partial injective
functions is a dagger subcategory of Rel, with f† given by the partial inverse
(a special case of the relational converse) of a partial injection f . Further, it
is also a DCPO-subcategory of Rel; in PInj, this becomes the relation that
for X

f,g−−→ Y , f � g iff for all x ∈ X, if f is defined at x and f(x) = y, then
g is also defined at x and g(x) = y. Like Rel, it is pointed with the nowhere
defined partial function as the least element of each homset. That sup(Δ) for
some directed Δ ⊆ PInj(X,Y ) is a partial injection follows straightforwardly,
and that this dagger structure is monotone follows by an argument analogous to
the one for Rel.

Example 3. More generally, any join inverse category (see [16]), of which PInj
is one, is a DCPO-†-category. Inverse categories are canonically dagger cate-
gories enriched in partial orders. That this extends to DCPO-enrichment in the
presence of joins is shown in [30]; that the canonical dagger is monotonous with
respect to the partial order is an elementary result (see, e.g., [30, Lemma 2]).

Example 4. The category DStoch≤1 of finite sets and subnormalized doubly
stochastic maps is an example of a probabilistic DCPO-†-category. A subnor-
malized doubly stochastic map X

f−→ Y , where |X| = |Y | = n, is given by an
n × n matrix A = [aij ] with non-negative real entries such that

∑n
i=1 aij ≤ 1

and
∑n

j=1 aij ≤ 1. Composition is given by the usual multiplication of matrices.
This is a dagger category with the dagger given by matrix transposition. It

is also enriched in DCPO by ordering subnormalized doubly stochastic maps
entry-wise (i.e., A ≤ B if aij ≤ bij for all i, j), with the everywhere-zero matrix
as the least element in each homset, and with suprema of directed sets given by
computing suprema entry-wise. That this dagger structure is monotone follows
by the fact that if A ≤ B, so aij ≤ bij for all i, j, then also aji ≤ bji for all j, i,
which is precisely to say that A† = AT ≤ BT = B†.
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As such, in terms of computational content, these are examples of deter-
ministic, nondeterministic, and probabilistic DCPO-†-categories. We will also
discuss the related category CP∗(FHilb), used to model quantum phenomena,
in Sect. 4.

3.1 The Category of Continuous Functionals

We illustrate here the idea of dagger categories as categories enriched in an
involutive monoidal category by an example that will be used throughout the
remainder of this article: Enrichment in a suitable subcategory of DCPO. It is
worth stressing, however, that the construction is not limited to dagger categories
enriched in DCPO; any dagger category will do. As we will see later, however,
this canonical involution turns out to be very useful when DCPO-†-categories
are considered.

Let C be a DCPO-†-category. We define an induced (full monoidal) subcat-
egory of DCPO, call it DcpoOp(C ), which enriches C (by its definition) as
follows:

Definition 6. For a DCPO-†-category C , define DcpoOp(C ) to have as
objects all objects Θ,Λ of DCPO of the form C (X,Y ), C op(X,Y ) (for all objects
X,Y of C ), 1, and Θ×Λ (with 1 initial object of DCPO, and −×− the cartesian
product), and as morphisms all continuous functions between these.

In other words, DcpoOp(C ) is the (full) cartesian subcategory of DCPO
generated by objects used in the enrichment of C , with all continuous maps
between these. That the dagger on C induces an involution on DcpoOp(C ) is
shown in the following theorem.

Theorem 1. DcpoOp(C ) is an involutive symmetric monoidal category.

Proof. On objects, define an involution (−) with respect to the cartesian (specif-
ically symmetric monoidal) product of DCPO as follows, for all objects Θ,Λ,Σ
of DcpoOp(C ): C (X,Y ) = C op(X,Y ), C op(X,Y ) = C (X,Y ), 1 = 1, and
Θ × Λ = Θ × Λ. To see that this is well-defined, recall that C ∼= C op for
any dagger category C , so in particular there is an isomorphism witnessing
C (X,Y ) ∼= C op(X,Y ) given by the mapping f �→ f†. But then C op(X,Y ) =
{f† | f ∈ C (X,Y )}, so if C (X,Y ) = C (X ′, Y ′) then C (X,Y ) = C op(X,Y ) =
{f† | f ∈ C (X,Y )} = {f† | f ∈ C (X ′, Y ′)} = C op(X ′, Y ′) = C (X ′, Y ′). That
C op(X,Y ) = C (X,Y ) is well-defined follows by analogous argument.

On morphisms, we define a family ξ of isomorphisms by ξI = idI , ξC (X,Y ) =
(−)†, ξC op(X,Y ) = (−)†, and ξΘ×Λ = ξΘ × ξΛ, and then define

Θ
ϕ−→ Λ = Θ

ξ−1
Θ−−→ Θ

ϕ−→ Λ
ξΛ−→ Λ.

This is functorial as idΘ = ξΘ ◦ idΘ ◦ξ−1
Θ = ξΘ ◦ξ−1

Θ = idΘ, and for Θ
ϕ−→ Λ

ψ−→ Σ,

ψ ◦ ϕ = ξΣ ◦ ψ ◦ ϕ ◦ ξ−1
Θ = ξΣ ◦ ψ ◦ ξ−1

Λ ◦ ξΛ ◦ ϕ ◦ ξ−1
Θ = ψ ◦ ϕ.
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Finally, since the involution is straightforwardly a monoidal functor, and since
the natural transformation id ⇒ (−) can be chosen to be the identity since
all objects of DcpoOp(C ) satisfy Θ = Θ by definition, this is an involutive
symmetric monoidal category. �

The resulting category DcpoOp(C ) can very naturally be thought of as the
induced category of (continuous) functionals (or second-order functions) of C .

Notice that this is a special case of a more general construction on dagger
categories: For a dagger category C enriched in some category V (which could
simply be Set in the unenriched case), one can construct the category V Op(C ),
given on objects by the image of the hom-functor C (−,−) closed under monoidal
products, and on morphisms by all morphisms of V between objects of this
form. Defining the involution as above, V Op(C ) can be shown to be involutive
monoidal.

Example 5. One may question how natural (in a non-technical sense) the choice
of involution on DcpoOp(C ) is. One instance where it turns out to be useful
is in the context of dagger adjunctions (see [22] for details), that is, adjunctions
between dagger categories where both functors are dagger functors.

Dagger adjunctions have no specified left and right adjoint, as all such adjunc-
tions can be shown to be ambidextrous in the following way: Given F � G

between endofunctors on C , there is a natural isomorphism C (FX, Y )
αX,Y−−−→

C (X,GY ). Since C is a dagger category, we can define a natural isomorphism

C (X,FY )
βX,Y−−−→ C (GX,Y ) by f �→ αY,X(f†)†, i.e., by the composition

C (X,FY )
ξ−→ C (FY,X)

αY,X−−−→ C (Y,GX)
ξ−→ C (GX,Y )

which then witnesses G � F (as it is a composition of natural isomorphisms).
But then βX,Y is defined precisely to be αY,X when F and G are endofunctors.

3.2 Daggers and Fixed Points

In this section we consider the morphisms of DcpoOp(C ) in some detail, for a
DCPO-†-category C . Since least fixed points of morphisms are such a prominent
and useful feature of DCPO-enriched categories, we ask how these behave with
respect to the dagger. To answer this question, we transplant the notion of a
fixed point adjoint from [30] to DCPO-†-categories, where an answer to this
question in relation to the more specific join inverse categories was given:

Definition 7. A functional C (Y,X)
ϕ‡−→ C (Y,X) is fixed point adjoint to a

functional C (X,Y )
ϕ−→ C (X,Y ) iff (fixϕ)† = fixϕ‡.

Note that this is symmetric: If ϕ‡ is fixed point adjoint to ϕ then fix (ϕ‡)† =
(fixϕ)†† = fixϕ, so ϕ is also fixed point adjoint to ϕ‡. As shown in the following
theorem, it turns out that the conjugate ϕ of a functional ϕ is precisely fixed
point adjoint to it. This is a generalization of a theorem from [30], where a
more ad-hoc formulation was shown for join inverse categories, which constitute
a non-trivial subclass of DCPO-†-categories.
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Theorem 2. Every functional is fixed point adjoint to its conjugate.

Proof. The proof applies the exact same construction as in [30], since being a
DCPO-†-category suffices, and the constructed fixed point adjoint turns out
to be the exact same. Let C (X,Y )

ϕ−→ C (X,Y ) be a functional. Since ϕ =
ξC (X,Y ) ◦ ϕ ◦ ξ−1

C (X,Y ),

ϕ̄n =
(
ξC (X,Y ) ◦ ϕ ◦ ξ−1

C (X,Y )

)n

= ξC (X,Y ) ◦ ϕn ◦ ξ−1
C (X,Y )

and so

fix ϕ = sup{ϕ̄n(⊥Y,X)}n∈ω = sup{ϕn(⊥†
Y,X)†} = sup{ϕn(⊥X,Y )†}

= sup{ϕn(⊥X,Y )}† = (fixϕ)†

as desired. �
This theorem is somewhat surprising, as the conjugate came out of the involu-

tive monoidal structure on DcpoOp(C ), which is not specifically related to the
presence of fixed points. As previously noted, had C been enriched in another cat-
egory V , we would still be able to construct a category V Op(C ) of V -functionals
with the exact same involutive structure.

As regards recursion, this theorem underlines the slogan that reversibility is
a local phenomenon: To construct the inverse to a recursively defined morphism
fixϕ, it suffices to invert the local morphism ϕ at each step (which is essentially
what is done by the conjugate ϕ) in order to construct the global inverse (fixϕ)†.

Parametrized functionals and their external fixed points are also interesting
to consider in this setting, as some examples of DCPO-†-categories (e.g., PInj)
fail to have an internal hom. For example, in a dagger category with objects L(X)
corresponding to “lists of X” (usually constructed as the fixed point of a suitable
functor), one could very reasonably construe the usual map-function not as a

higher-order function, but as a family of morphisms LX
map〈f〉−−−−−→ LY indexed

by X
f−→ Y – or, in other words, as a functional C (X,Y )

map−−−→ C (LX,LY ).
Indeed, this is how certain higher-order behaviours are mimicked in the reversible
functional programming language Theseus (see also Sect. 4).

To achieve such parametrized fixed points of functionals, we naturally need
a parametrized fixed point operator on DcpoOp(C ) satisfying the appropriate
equations – or, in other words, we need DcpoOp(C ) to be an iteration category.
That DcpoOp(C ) is such an iteration category follows immediately by its def-
inition (i.e., since DcpoOp(C ) is a full subcategory of DCPO, we can define
a parametrized fixed point operator in DcpoOp(C ) to be precisely the one in
DCPO), noting that parametrized fixed points preserve continuity.

Lemma 2. DcpoOp(C ) is an iteration category.

For functionals of the form C (X,Y ) × C (P,Q)
ψ−→ C (X,Y ), we can make a

similar definition of a parametrized fixed point adjoint :
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Definition 8. A functional C (X,Y ) × C (P,Q)
ψ‡−→ C (X,Y ) is parametrized

fixed point adjoint to a functional C (X,Y ) × C (P,Q)
ψ−→ C (X,Y ) iff

(pfixψ)(p)† = (pfix ψ‡)(p†).

We can now show a similar theorem for parametrized fixed points of func-
tionals and their conjugates:

Theorem 3. Every functional is parametrized fixed point adjoint to its conju-
gate.

Proof. Let C (X,Y )×C (P,Q)
ψ−→ C (X,Y ) be a functional. We start by showing

that ψ̄n(f, p) = ψn(f†, p†)† for all Y
f−→ X, Q

p−→ P , and n ∈ N, by induction on
n. For n = 0 we have

ψ̄0(f, p) = f = f†† = (f†)† = ψ0(f†, p†)†.

Assuming now the induction hypothesis for some n, we have

ψ̄n+1(f, p) = ψ̄(ψ̄n(f, p), p) = ψ̄(ψn(f†, p†)†, p) = ψ(ψn(f†, p†)††, p†)†

= ψ(ψn(f†, p†), p†)† = ψn+1(f†, p†)†

Using this fact, we now get

(pfixψ)(p†) = sup
n∈ω

{ψ̄n(⊥Y,X , p†)} = sup
n∈ω

{ψn(⊥†
Y,X , p††)†}

= sup
n∈ω

{ψn(⊥X,Y , p)}† = (pfixψ)(p)†

which was what we wanted. �
Again, this theorem highlights the local nature of reversibility, here in the

presence of additional parameters. We observe further the following highly useful
property of parametrized fixed points in DcpoOp(C ):

Lemma 3. Parametrized fixed points in DcpoOp(C ) preserve conjugation.

Proof. Let C (X,Y ) × C (P,Q)
ψ−→ C (X,Y ) be continuous, and P

p−→ Q. Then
pfixψ(p) = (ξ ◦ (pfixψ) ◦ ξ−1)(p) = (pfixψ)(p†)† = (pfixψ)(p)†† = (pfixψ)(p),
so pfixψ = pfixψ. �

Note that a lemma of this form only makes sense for parametrized fixed
points, as the usual fixed point of a functional C (X,Y )

ϕ−→ C (X,Y ) results in a

morphism X
fixϕ−−−→ Y in C , not a functional in DcpoOp(C ).
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3.3 Naturality and Self-conjugacy

We now consider the behaviour of functionals and their parametrized fixed
points when they are natural. For example, given a natural family of functionals
C (FX,FY )

αX,Y−−−→ C (GX,GY ) natural in X and Y (for dagger endofunctors
F and G on C ), what does it mean for such a family to be well-behaved with
respect to the dagger on C ? We would certainly want that such a family pre-
serves the dagger, in the sense that αX,Y (f)† = αY,X(f†) in each component
X,Y . It turns out that this, too, can be expressed in terms of conjugation of
functionals.

Lemma 4. Let C (FX,FY )
αX,Y−−−→ C (GX,GY ) be a family of functionals nat-

ural in X and Y . Then αX,Y (f)† = αY,X(f†) for all X
f−→ Y iff αX,Y = αY,X .

Proof. Suppose αX,Y (f)† = αY,X(f†). Then αX,Y (f) = αX,Y (f)†† =
αY,X(f†)† = αY,X(f), so αX,Y = αY,X . Conversely, assuming αX,Y = αY,X

we then have for all X
f−→ Y that αX,Y (f) = αY,X(f†)†, so αX,Y (f)† =

αY,X(f†)†† = αY,X(f†). �
If a natural transformation α satisfies αX,Y = αY,X in all components X,Y ,

we say that it is self-conjugate. An important example of a self-conjugate natural
transformation is the dagger trace operator, as detailed in the following example.

Example 6. A trace operator [29] on a braided monoidal category D is family of
functionals

D(X ⊗ U, Y ⊗ U)
TrU

X,Y−−−−→ D(X,Y )

subject to certain equations (naturality in X and Y , dinaturality in U , etc.).
Traces have been used to model features from partial traces in tensorial vec-
tor spaces [19] to tail recursion in programming languages [1,8,18], and occur
naturally in tortile monoidal categories [29] and unique decomposition cate-
gories [17,23].

A dagger trace operator on a dagger category (see, e.g., [36]) is precisely a
trace operator on a dagger monoidal category (i.e., a monoidal category where
the monoidal functor is a dagger functor) that satisfies TrU

X,Y (f)† = TrU
Y,X(f†)

in all components X,Y . Such traces have been used to model reversible tail
recursion in reversible programming languages [27,28,30], and also occur in the
dagger compact closed categories (see, e.g., [37]) used to model quantum theory.
In light of Lemma 4, dagger traces are important examples of self-conjugate
natural transformations on dagger categories.

Given the connections between (di)naturality and parametric polymor-
phism [5,39], one would wish that parametrized fixed points preserve naturality.
Luckily, this does turn out to be the case:

Theorem 4. If C (FX,FY ) × C (GX,GY )
αX,Y−−−→ C (FX,FY ) is natural in X

and Y , so is its parametrized fixed point.
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This theorem can be read as stating that, just like reversibility, a recursive
polymorphic map can be obtained from one that is only locally polymorphic.
Combining this result with Lemma 4 regarding self-conjugacy, we obtain the
following corollary.

Corollary 1. If C (FX,FY ) × C (GX,GY )
αX,Y−−−→ C (FX,FY ) is a self-

conjugate natural transformation, so is pfixαX,Y .

Proof. If αX,Y = αY,X for all X,Y then also pfixαX,Y = pfixαY,X , which is
further natural in X and Y by Theorem 4. But then pfixαX,Y = pfixαX,Y =
pfixαY,X , as parametrized fixed points preserve conjugation. �

4 Applications and Future Work

Reversible Programming Languages. Theseus [28] is a typed reversible functional
programming language similar in syntax and spirit to Haskell. It has support for
recursive data types, as well as reversible tail recursion using so-called typed iter-
ation labels as syntactic sugar for a dagger trace operator. Theseus is based on
the Π-family of reversible combinator calculi [27], which bases itself on dagger
traced symmetric monoidal categories augmented with a certain class of alge-
braically ω-compact functors.

Theseus also supports parametrized functions, that is, families of reversible
functions indexed by reversible functions of a given type, with the proviso that
parameters must be passed to parametrized maps statically. For example, (if
one extended Theseus with polymorphism) the reversible map function would
have the signature map :: (a ↔ b) → ([a] ↔ [b]), and so map is not in itself
a reversible function, though map 〈f〉 is (for some suitable function f passed
statically). This gives many of the benefits of higher-order programming, but
without the headaches of higher-order reversible programming.

The presented results show very directly that we can extend Theseus with a
fixed point operator for general recursion while maintaining desirable inversion
properties, rather than making do with the simpler tail recursion. Additionally,
the focus on the continuous functionals of C given by the category DcpoOp(C )
also highlights the feature of parametrized functions in Theseus, and our results
go further to show that even parametrized functions that use general recursion
not only have desirable inversion properties, but also preserve naturality, the
latter of which is useful for extending Theseus with parametric polymorphism.

Quantum Programming Languages. An interesting possibility as regards quan-
tum programming languages is the category CP∗(FHilb) (see [12] for details on
the CP∗-construction), which is dagger compact closed and equivalent to the cat-
egory of finite-dimensional C∗-algebras and completely positive maps [12]. Since
finite-dimensional C∗-algebras are specifically von Neumann algebras, it follows
(see [9,34]) that this category is enriched in the category of bounded directed
complete partial orders; and since it inherits the dagger from FHilb (and is
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locally ordered by the pointwise extension of the Löwner order restricted to pos-
itive operators), the dagger structure is monotone, too. As such, the presented
results ought to apply in this case as well – modulo concerns of boundedness –
though this warrants more careful study.

Dagger Traces in DCPO-†-Categories. Given a suitable monoidal tensor (e.g.,
one with the zero object as tensor unit) and a partial additive structure on
morphisms, giving the category the structure of a unique decomposition cat-
egory [17,23], a trace operator can be canonically constructed. In previous
work [30], the author (among others) demonstrated that a certain class of
DCPO-†-categories, namely join inverse categories, had a dagger trace under
suitably mild assumptions. It is conjectured that this theorem may be gener-
alized to other DCPO-†-categories that are not necessarily inverse categories,
again provided that certain assumptions are satisfied.

Involutive Iteration Categories. As it turned out that the category DcpoOp(C )
of continuous functionals on C was both involutive and an iteration category,
an immediate question to ask is how the involution functor ought to interact
with parametrized fixed points in the general case. A remarkable fact of iter-
ation categories is that they are defined to be cartesian categories that satisfy
all equations of parametrized fixed points that hold in the category CPOm of
ω-complete partial orders and monotone functions, yet also have a complete
(though infinite) equational axiomatization [15].

We have provided an example of an interaction between parametrized fixed
points and the involution functor here, namely that DcpoOp(C ) satisfies
pfixψ = pfixψ. It could be interesting to search for examples of involutive iter-
ation categories in the wild (as candidates for a semantic definition), and to
see if Ésik’s axiomatization could be extended to accomodate for the involution
functor in the semantic category.

5 Conclusion and Related Work

We have developed a notion of DCPO-categories with a monotone dagger struc-
ture (of which PInj, Rel, and DStoch≤1 are examples, and CP∗(FHilb) is
closely related), and shown that these categories can be taken to be enriched in
an induced involutive monoidal category of continuous functionals. With this,
we were able to account for (ordinary and parametrized) fixed point adjoints as
arising from conjugation of the functional in the induced involutive monoidal
category, to show that parametrized fixed points preserve conjugation and nat-
urality, and that natural transformations that preserve the dagger are precisely
those that are self-conjugate. We also described a number of potential applica-
tions in connection with reversible and quantum computing.

A great deal of work has been carried out in recent years on the domain theory
of quantum computing, with noteworthy results in categories of von Neumann
algebras (see, e.g., [9,10,26,34]). Though the interaction between dagger struc-
ture and the domain structure on homsets was not the object of study, Heunen
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considers the similarities and differences of FHilb and PInj, also in relation
to domain structure on homsets, in [21], though he also notes that FHilb fails
to enrich in domains as composition is not even monotone (this is not to say
that domain theory and quantum computing do not mix; only that FHilb is the
wrong category to consider for this purpose). Finally, dagger traced symmetric
monoidal categories, with the dagger trace serving as an operator for reversible
tail recursion, have been studied in connection with reversible combinator cal-
culi [27] and functional programming [28].
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Abstract. Consider a network that evolves reversibly, according to
nearest neighbours interactions. Can its dynamics create/destroy nodes?
On the one hand, since the nodes are the principal carriers of infor-
mation, it seems that they cannot be destroyed without jeopardising
bijectivity. On the other hand, there are plenty of global functions from
graphs to graphs that are non-vertex-preserving and bijective. The ques-
tion has been answered negatively—in three different ways. Yet, in this
paper we do obtain reversible local node creation/destruction—in three
relaxed settings, whose equivalence we prove for robustness. We motivate
our work both by theoretical computer science considerations (reversible
computing, cellular automata extensions) and theoretical physics con-
cerns (basic formalisms towards discrete quantum gravity).

1 Introduction

Cellular Automata (CA) consist in a Z
n grid of identical cells, each of which may

take a state in Σ. Thus the configurations are in ΣZ
n

. The next state of a cell is
given by applying a fixed local rule f to the cell and its neighbours, synchronously
and homogeneously across space. CA thus have a number of physics-like symme-
tries: shift-invariance (the dynamics acts everywhere and everywhen the same)
and causality (information has a bounded speed of propagation). They constitute
one of the most established models of computation that accounts for Euclidean
space: they are widely used to model spatially-dependent computational prob-
lems (self-replicating machines, synchronization. . . ), and multi-agents phenom-
ena (traffic jams, demographics. . . ). But their origin lies in Physics, where they
are constantly used to model waves or particles (e.g. as numerical schemes for
Partial Differential Equations).

Since both quantum and classical mechanics are reversible, it was natural
to endow CA with this other, physics-like symmetry. The study of Reversible
CA (RCA) was further motivated by the promise of lower energy consumption
in reversible computation. RCA have turned out to have an elegant mathemat-
ical theory, which relies on a topological characterization in order to prove for
instance that the inverse of a CA is a CA [20]—which clearly is non-trivial due
c© Springer Nature Switzerland AG 2019
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to [21].Another fundamental property of RCA is that they can be expressed as
a finite-depth circuits of local reversible permutations or ‘blocks’ [13,22,23].

Causal Graph Dynamics (CGD) [1,3,6,26,27] are a twofold extension of CA.
First, the underlying grid is extended to arbitrary bounded-degree graphs. Infor-
mally, this means that each vertex of a graph G may take a state among a set
Σ, so that configurations are in ΣV (G), whereas edges dictate the locality of
the evolution: the next state of a vertex v depends only upon the subgraph
Gr

u induced by the vertices lying at graph distance at most r of u. Second, the
graph itself is allowed to evolve over time. Informally, this means that configu-
rations are in the union of ΣV (G) for every possible bounded-degree graph G,
i.e.

⋃
G ΣV (G). This leads to a model where the local rule f is applied syn-

chronously and homogeneously on every possible sub-disk of the input graph,
thereby producing small patches of the output graphs, whose union constitutes
the output graph. Figure 1 illustrates the concept. CGD were motivated by the
countless situations featuring nearest-neighbours interactions with time-varying
neighbourhood (e.g. agents exchange contacts, move around. . . ). Many existing
models (of complex systems, computer processes, biochemical agents, economic
agents, social networks. . . ) fall into this category, thereby generalizing CA for
their specific sake (e.g. self-reproduction as in [32], discrete general relativity à
la Regge calculus [30], etc.). CGD are a theoretical framework, for these mod-
els. Some graph rewriting models, such as Amalgamated Graph Transformations
[10] and Parallel Graph Transformations [14,31], also work out rigorous ways of
applying a local rewriting rule synchronously throughout a graph, albeit with
a different, category-theory-based perspective, of which the latest and closest
instance is [26]. In [7,8] one of the authors studied CGD in the reversible regime,
i.e. Reversible CGD. Specific examples of Reversible CGD had been described
in [19,24].

F

ff f

Fig. 1. Informal illustration of Causal Graph Dynamics.

From a theoretical Computer Science perspective, the point was to general-
ize RCA theory to arbitrary, bounded-degree, time-varying graphs. Indeed the
two main results in [7,8] were the generalizations of the two above-mentioned
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fundamental properties of RCA. However, the results were limited to (almost–)
vertex – preserving CGD. We show that this limitation can be lifted.

From a mathematical perspective, questions related to the bijectivity of
CA over certain classes of graphs (more specifically, whether pre-injectivity
implies surjectivity for Cayley graphs generated by certain groups [9,15,17])
have received quite some attention. The present paper on the other hand pro-
vides a context in which to study “bijectivity of CA over time-varying graphs”.
We answer the question: Is it the case that bijectivity necessarily rigidifies space
(i.e. forces the conservation of each vertex)? Our analysis pinpoints the assump-
tions that lead to this rigidification—and how to circumvent them.

From a theoretical physics perspective, the question whether the reversibility
of small scale physics (quantum mechanics, newtonian mechanics), can be recon-
ciled with the time-varying topology of large scale physics (relativity), is a major
challenge. This paper provides a rigorous discrete, toy model where reversibility
and time-varying topology coexist and interact—in a way which does allow for
space expansion. In fact these results open the way for Quantum Causal Graph
Dynamics [5] allowing for vertex creation/destruction—which could provide a
rigorous basic formalism to use in Quantum Gravity [18,25].

2 The Conflict Between Reversibility and Node
Creation/Destruction

The Question. Consider a network that evolves reversibly, according to nearest
neighbours interactions. Can its dynamics create/destroy nodes?
Issue 1. Because the network evolves according to nearest neighbours interac-
tions only, the same local causes must produce the same local effects. In other
words if the neighbourhood of a node u looks the same as that of a node v,
then the same must happen at u and v. Therefore the names of the nodes must
be irrelevant to the dynamics. Surely the most natural way to formalize this
invariance under isomorphisms is as follows. Let F be the function from graphs
to graphs that captures the time evolution; we require that for any renaming
R, F ◦ R = R ◦ F . But it turns out that this commutation condition forbids
node creation, even in the absence any reversibility condition—as proven in [1].
Intuitively, say that a node u ∈ V (G) creates a node u′ ∈ V (G′) through F , and
consider an R that just interchanges the u′ name for some fresh name v′. Then
F (RG) = F (G), which has no v′, differs from RF (G), which has a v′.

Issue 2. The above issue can be fixed by making it explicit that new names
are constructed from the locally available ones (e.g. u′ from u in the above
example), so that renaming the new names (e.g. u′ into v′ through some R′)
necessarily implies having renamed the available ones (e.g. u into v through
R). Then invariance under isomorphisms is formalized by requiring that for any
renaming R, there exists R′, such that F ◦ R = R′ ◦ F . But it turns out that
this conjugation condition, taken together with reversibility, still forbids node
creation, as proven in [3]. To get a taste of the difficulty, say that a node u
creates two nodes u.l and u.r. Then F−1 should merge these back into a single
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node u. However, we expect F−1 to have the same conjugation property that
for any renaming S, there exists S′, such that F−1 ◦ S = S′ ◦ F−1. Consider
an S that leaves u.l unchanged, but renames u.r into some fresh v′. What will
be the name of the merger between u.l and v′ through F−1, now? What should
S′ do upon u in order to obtain that name? Generally speaking, node creation
between G and F (G) augments the naming space and endangers the bijectivity
that should hold between {RG} the set of renamings of G and {RF (G)} the set
of renamings of F (G).

Issue 3. Both the above no-go theorems rely on naming issues. In order to bypass
them, one may drop names altogether, and work with graphs modulo isomor-
phisms. Doing this, however, is quite inconvenient. Basic statements such as “the
neighbourhood of u determines what will happen at u”—needed to formalize
the fact the network evolves according to nearest-neighbours interactions—are
no longer possible if we cannot speak of u.

Still, having chosen networks that are not mere graphs (edges are between the
ports of the nodes) we can designate a node relative to another by giving a path
from one to the other (the successive ports that lead to it). It then suffices to have
one privileged pointed vertex acting as ‘the origin’, to be able to designate any
vertex relative to it. Then, the invariance under isomorphisms is almost trivial,
as nodes have no name. The one thing that remains to enforce is invariance under
shifting the origin. Namely, if Xu stands for X with its origin shifted along path
u, then there must exist some successor function RX : V (X) −→ V (F (X)) such
that F (Xu) = F (X)RX(u). But it turns out that this seemingly mild condition,
when taken together with reversibility, again forbids node creation but for a
finite number of graphs—as was proven in [8].

Intuitively, node creation between X and F (X) augments the number of
ways in which the graph can be pointed at, i.e. the number or possible origins.
This again endangers the bijectivity that should hold between the sets of shifts
{Xu}u∈V (X) and {F (X)u′}u′∈V (F (X)).

Three Solutions and a Plan. In [19], Hasslacher and Meyer describe a great
example of a nearest-neighbours driven dynamics, which exhibits a rather sur-
prising thermodynamical behaviour in the long-run. The HM example consists
of particles moving around a circle, with collisions causing the circle to shrink
or grow, according to the way in which particles meet. The HM example is
clearly non-vertex-preserving, but it is also reversible, in some sense which was
left informal, and really is not obvious.

We will see that most direct approach to formalizing the HM example and
its properties, is to work with pointed graphs modulo just when they are use-
ful, e.g. for stating causality, and to drop the pointer everywhen else, e.g.
for stating reversibility. This relaxed setting reconciles reversibility and local
creation/destruction—it can be thought of as a direct response to Issue 3.
Section 4 presents this solution.

A second approach is to simulate the HM example with a strictly reversible,
vertex-preserving dynamics, where each ‘visible’ node of the network is equipped
with its own reservoir of ‘invisible’ nodes—in which it can tap in order to create
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an visible node. The obtained relaxed setting thus circumvents the above three
issues. Section 5 presents this solution.

A third approach is to work with standard, named graphs. Remarkably it
turns out that naming our nodes within the algebra of variables over everywhere-
infinite binary trees directly resolves Issue 2. Section 6 presents this solution.

The question of reversibility versus local creation/destruction, is thus, to
some extent, formalism-dependent. Fortunately, we were able to prove that the
three proposed relaxed settings are equivalent, as synthesized in Sect. 7. Thus we
have reached a robust formalism allowing for both the features. Section 3 recalls
the definitions and results that constitute our point of departure. Section 8 sum-
marizes the contributions and perspectives. This paper is an extended abstract
designed to work on its own, but the full-blown details and proofs are made avail-
able in the appendices of the corresponding arXiv preprint [4].

3 In a Nutshell: Reversible Causal Graph Dynamics

The following provides an intuitive introduction to Reversible CGD. A thorough
formalization was given in [6].

Networks. Whether for CA over graphs [28], multi-agent modeling [12] or agent-
based distributed algorithms [11], it is common to work with graphs whose nodes
have numbered neighbours. Thus our ‘graphs’ or networks are the usual, con-
nected, undirected, possibly infinite, bounded-degree graphs, but with a few
additional twists:

• The set π of available ports to each vertex is finite.
• The vertices are connected through their ports: an edge is an unordered pair

{u : a, v : b}, where u, v are vertices and a, b ∈ π are ports. Each port is used
at most once per node: if both {u : a, v : b} and {u : a,w : c} are edges, then
v = w and b = c. As a consequence the degree of the graph is bounded by |π|.

• The vertices and edges can be given labels taken in finite sets Σ and Δ respec-
tively, so that they may carry an internal state.

• These labeling functions are partial, so that we may express our partial knowl-
edge about part of a graph.

The set of all graphs (see Fig. 2(a)) is denoted GΣ,Δ,π.

Compactness. In order to both drop the irrelevant names of nodes and obtain
a compact metric space of graphs, we need ‘pointed graphs modulo’ instead:

• The graphs have a privileged pointed vertex playing the role of an origin.
• The pointed graphs are considered modulo isomorphism, so that only the

relative position of the vertices can matter.

The set of all pointed graphs modulo (see Fig. 2(c)) is denoted XΣ,Δ,π.
If, instead, we drop the pointers but still take equivalence classes modulo

isomorphism, we obtain just graphs modulo, aka ‘anonymous graphs’. The set
of all anonymous graphs (see Fig. 2(d)) is denoted X̃Σ,Δ,π.
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Fig. 2. The different types of graphs. (a) A graph G. (b) A pointed graph (G, 1). (c) A

pointed graph modulo X. (d) An anonymous graph ˜X.
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Fig. 3. Operations over pointed graphs modulo. The pointer of X is shifted along edge
da, yielding Xda, and then the disk of radius 0 around the pointer, yielding X0

da.

Paths and Vertices. Over pointed graphs modulo isomorphism, vertices no
longer have a unique identifier, which may seem impractical when it comes to
designating a vertex. Fortunately, any vertex of the graph can be designated by
a sequence of ports in (π2)∗ that lead from the origin to this vertex. For instance,
say two vertices are designated by paths u and v, respectively. Suppose there is
an edge e = {u : a, v : b}. Then, v can be designated by the path u.ab, where “.”
stands for the word concatenation. The origin is designated by ε.

Operations Over Graphs. Given a pointed graph modulo X, Xr denotes the
sub-disk of radius r around the pointer. The pointer of X can be moved along
a path u, leading to Y = Xu. We use the notation Xr

u for (Xu)r i.e., first the
pointer is moved along u, then the sub-disk of radius r is taken (Fig. 3).

Causal Graph Dynamics. We will now recall their topological definition. It is
important to provide a correspondence between the vertices of the input pointed
graph modulo X, and those of its image F (X), which is the role of RX :

Definition 1 (Dynamics). A dynamics (F,R•) is given by

• a function F : XΣ,Δ,π → XΣ,Δ,π;
• a map R•, with R• : X �→ RX and RX : V (X) → V (F (X)).

Next, continuity is the topological way of expressing causality:
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Definition 2 (Continuity). A dynamics (F,R•) is said to be continuous if
and only if for any X and m, there exists n, such that

• F (X)m = F (Xn)m • domRm
X ⊆ V (Xn) and Rm

X = Rm
Xn

where Rm
X denotes the partial map obtained as the restriction of RX to the co-

domain F (X)m, using the natural inclusion of F (X)m into F (X).

Notice that the second condition states the continuity of R• itself. A key point
is that by compactness, continuity entails uniform continuity, meaning that n
does not depend upon X—so that the above really expresses that information
has a bounded speed of propagation of information.
We now express that the same causes lead to the same effects:

Definition 3 (Shift-invariance). A dynamics (F,R•) is said to be shift-
invariant if for every X, u ∈ V (X), and v ∈ V (Xu),

• F (Xu) = F (X)RX(u) • RX(u.v) = RX(u).RXu
(v)

Finally we demand that graphs do not expand in an unbounded manner:

Definition 4 (Boundedness). A dynamics (F,R•) is said to be bounded if
there exists a bound b such that for any X and any w′ ∈ V (F (X)), there exists
u′ ∈ Im(RX) and v′ ∈ V (F (X)b

u′) such that w′ = u′.v′.

Putting these conditions together yields the topological definition of CGD:

Definition 5 (Causal Graph Dynamics). A CGD is a shift-invariant, con-
tinuous, bounded dynamics.

Reversibility. Invertibility is imposed in the most general and natural fashion.

Definition 6 (Invertible dynamics). A dynamics (F,R•) is said to be invert-
ible if F is a bijection.

Unfortunately, this condition turns out to be very limiting. It is the following
limitation that the present paper seeks to circumvent:

Theorem 1 (Invertible implies almost-vertex-preserving [8]). Let
(F,R•) be an invertible CGD. Then there exists a bound p, such that for any
graph X, if |V (X)| > p then RX is bijective.

On the face of it reversibility is stronger a condition than invertibility:

Definition 7 (Reversible Causal Graph Dynamics). A CGD (F,R•) is
reversible if there exists S• such that (F−1, S•) is a CGD.

Fortunately, invertibility gets you reversibility:

Theorem 2 (Invertible implies reversible [8]). If (F,R•) is an invertible
CGD, then (F,R•) is reversible.
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As a simple example we provide an original, general scheme for propagating
particles on an arbitrary network in a reversible manner:

Example 1 (General reversible advection). Consider π = {a, b, . . .} a finite set of
ports, and let Σ = P(π) be the set of internal states, where: ∅ means ‘no particle
is on that node’; {a} means ‘one particle is set to propagate along port a’; {a, b}
means ‘one particle is set to propagate along port a and another along port b’. . . .
Let s be a bijection over the set of ports, standing for the successor direction.
Figure 4(a) specifies how individual particles propagate. Basically, when reaching
its destination, the particle set to propagate along the successor of the port it
came from. Missing edges behave like self-loops. Applying this to all particles
synchronously specifies the graph dynamic.

4 The Anonymous Solution

Having a pointer is essential in order to express causality, but cumbersome when
it comes to reversibility. Here is the direct way to get the best of both worlds.

Definition 8 (Anonymous Causal Graph Dynamics). Consider F̃ a func-
tion over X̃Σ,Δ,π. We say that F̃ is an ACGD if and only if there exists (F,R•)
a CGD such that F over XΣ,Δ,π naturally induces F̃ over X̃Σ,Δ,π.

Invertibility, then, just means that F̃ is bijective. Fortunately, this time the
condition is not so limiting, and we are able to implement non-vertex-preserving
dynamics, as can be seen from this slight generalization of the HM example:

(a)
a

s(a)

a
:b:a

s(b)
:b:a

(b)
ab

:b :a

b a
:a :b:b :a

b a
:a :b:b :a

Fig. 4. (a) General reversible advection. (b) The Hasslacher-Meyer example’s collision
step. The anonymous dynamics is in plain black, the underlying regular dynamics is in
grey.

Example 2 (Anonymous HM). Consider the state space of Example 1 and alter-
nate: 1. a step of advection as in Fig. 4(a), 2. a step of collision, where the collision
is the specific graph replacement provided in Fig. 4(b). The composition of these
two specifies the ACGD.
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So, ACGD feature local vertex creation/destruction. Yet they are clearly less
constructive than CGD, as R• is no longer explicit. In spite of this lack of
constructiveness, we still have

Theorem 3 (Anonymous invertible implies reversible). If an ACGD in
invertible, then the inverse function is an ACGD.

Proof outline. By Theorem 6 the invertible ACGD F̃ can be directly simulated
by an invertible IMCGD, see next. By Theorem 4 the inverse IMCGD is also an
IMCGD. Dropping the invisible matter of this inverse provides the CGD that
underlines F̃−1. ��

5 The Invisible Matter Solution

Reversible CGD are vertex-preserving. Still, we could think of using them to
simulate a non-vertex-preserving dynamics by distinguishing ‘visible’ and ‘invis-
ible matter’, and making sure that every visible node is equipped with its own
reservoir of ‘invisible’ nodes—in which it can tap. For this scheme to iterate, and
for the created nodes to be able to create nodes themselves, it is convenient to
shape the reservoirs as everywhere infinite binary trees.

Definition 9 (Invisible Matter Graphs).
Consider X = XΣ,Δ,π, T = X{m},∅,{m,l,r} and X ′ = XΣ∪{m},Δ,π∪{m,l,r}, assum-
ing that {m}∩Σ = ∅ and {m, l, r}∩π = ∅. Let T ∈ T be the infinite binary tree
whose origin ε has a copy of T at vertex lm, and another at vertex rm. Every
X ∈ X can be identified to an element of X ′ obtained by attaching an instance
of T at each vertex through path mm. The hereby obtained graphs will be denoted
by Y and referred to as invisible matter graphs.

We will now consider those CGD over X ′ that leave Y stable. In fact we want
them trivial as soon as we dive deep enough into the invisible matter:

Definition 10 (Invisible-matter quiescence). A dynamic (F,R•) over Y is
said invisible matter quiescent if there exists a bound b such that, for all X ∈ Y,
and for all s, t in {lm, rm}∗, we have |s| ≥ b =⇒ RXmms

(t) = t.

Notice that this condition is similar to boundedness, as it prevents nodes from
splitting infinitely.

Definition 11 (Invisible Matter Causal Graph Dynamics). A CGD over
Y is said to be an IMCGD if and only if it is vertex-preserving and invisible
matter quiescent.

Fortunately, we are indeed able to encode non-vertex-preserving dynamics in the
visible sector of an invertible IMCGD:

Example 3 (Invisible Matter HM). Consider X as in Example 1 and extend it
to Y. Alternate: 1. a step of advection as in Examples 1 and 4(a), 2. a step of
collision, where the collision is the specific graph replacement provided in Fig. 5.
The composition of these two specifies the invertible IMCGD.
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Fig. 5. HM example’s collision step with pointers and invisible matter. Black vertices
are ‘invisible’. The dotted lines show where to place the pointer in the image according
to its position in the antecedent.

Notice how the graph replacement of Fig. 4(b)—with the grey color taken into
account—would fail to be invertible, due to the collapsing of two pointer posi-
tions into one.
Fortunately also, invertibility still implies reversibility:

Theorem 4 (Invertible implies reversible). If (F,R•) is an invertible
IMCGD, then (F−1, R−1

F −1(•)) is an IMCGD.

Proof outline. Intuitively this property is inherited from that of CGD over X ′.
Theorem 2, however, relies on the compactness of X ′, and as matter of fact Y
is not compact. Still it admits a compact closure Y, over which IMCGD have a
natural, continuous extension. �

6 The Name Algebra Solution

So far we worked with (pointed) graphs modulo. But named graphs are often
more convenient e.g. for implementation, and sometimes mandatory e.g. for
studying the quantum case [5]. In this context, being able to locally create a
node implies being able to locally make up a new name for it—just from the
locally available ones. For instance if a dynamics F splits a node u into two, a
natural choice is to call these u.l and u.r. Now, apply a renaming R that maps
u.l into v and u.r into w, and apply F−1. This time the nodes v and w get
merged into one; in order not to remain invertible a natural choice is to call the
resultant node (v ∨ w). Yet, if R is chosen trivial, then the resultant node is
(u.l ∨u.r), when F−1 ◦F = Id demands that this to be u instead. This suggests
considering a name algebra where u = (u.l ∨ u.r).

Definition 12 (Name Algebra). Let N be a countable set (eg N = N). Con-
sider the terms produced by the grammar V :: = N |V.{l, r}∗ |V ∨V together with
the equivalence induced by the term rewrite systems

• (u∨v).l −→ u (u∨v).r −→ v (S) and • (u.l∨u.r) −→ u (M)
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i.e. u and v are equivalent if and only if their normal forms u↓S∪M and v↓S∪M

are equal.

Well-foundedness outline. The term rewriting system (TRS) was checked ter-
minating and locally confluent using CiME [16], hence its confluence and the
unicity of normal forms via Church-Rosser. �

This is the algebra of symbolic everywhere infinite binary trees. Indeed, each
element x of N can be thought of as a variable representing an infinite binary
tree. The .l (resp. .r) projection operation recovers the left (resp. right) sub-
tree. The ‘join’ operation ∨ puts a node on top of its left and right trees to form
another—it is therefore neither commutative nor associative. This infinitely split-
table/mergeable tree structure is reminiscent of Sect. 5, later we shall prove that
named graphs arise by abstracting away the invisible matter.

No graph can have two distinct nodes called the same. Nor should it be
allowed to have a node called x and two others called x.r and x.l, because the
latter may merge and collide with the former.

Definition 13 (Intersectant). Two terms v, v′ in V and are said to be inter-
sectant if and only if there exists t, t′ in {l, r}∗ such that v.t = v′.t′. We write
v ∩ v′ as a shorthand notation for {v.t | t ∈ {l, r}∗} ∩ {v′.t | t ∈ {l, r}∗}. We also
write v ∩ V for v ∩

⋂

v′∈V

v′.

Definition 14 (Well-named graphs). We say that a graph G is well-named
if and only if for all v, v′ in V (G) ⊆ V, v ∩ v′ �= ∅ implies v = v′. We denote by
W the subset of well-named graphs.

We now have all the ingredients to define Named Causal Graph Dynamics.
As before, we want our dynamic to be continuous and bounded:

Definition 15 (Continuity). A function F over W is said to be continuous
if and only if for any G and any n ≥ 0, there exists m ≥ 0, such that for all
v, v′ ∈ V , v ∩ v′ = ∅ implies F (G)n

v′ = F (Gm
v )n

v′ .

Definition 16 (Boundedness). A function F over W is said to be bounded
if and only if there exists a bound b such that for all G, for all v ∈ V (G), for all
v′ ∈ V (FG)) such that there exist t, t′ ∈ {l, r}∗ with v.t = v′.t′, then |t| ≤ b and
|t′| ≤ b.

Next, we prevent our dynamics from relying on the names of the nodes:

Definition 17 (Renaming). Consider R an injective function from N to V
such that for any x, y ∈ N , R(x) and R(y) are not intersectant. The natural
extension of R to the whole of V , according to

R(u.l) = R(u).l R(u.r) = R(u).r R(u ∨ v) = R(u) ∨ R(v)

is referred to as a renaming.

Definition 18 (Shift-invariance). A function F over W is said to be shift-
invariant if and only if for any G ∈ W and any renaming R, F (RG) = RF (G).
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Our dynamics may split and merge names, but not drop them:

Definition 19 (Name-preservation). Consider F a function over W. The
function F is said to be name-preserving if and only if for all u in V and G in
W we have that u ∩ V (G) = u ∩ V (F (G)).

Definition 20 (Named Causal Graph Dynamics). A function F over W
is said to be a Named Causal Graph Dynamics (NCGD) if and only if is shift-
invariant, continuous, and name-preserving.

Fortunately, invertible NCGD do allow for local creation/destruction of vertices:

ab
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v

:a :b
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:a
ab

u
:b
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b
u.l

a

u.r

:a :b

:b

:a

Fig. 6. The HM example’s collision step for Named CGD.

Example 4 (Named HM example). Consider W with ports and labels as in Exam-
ple 1. Alternate: 1. a step of advection as in Examples 1 and 4(a), 2. a step of
collision, where the collision is the specific graph replacement provided in Fig. 6.
That the latter is an involution follows from the three equalities holding in V .

Fortunately also, invertibility still implies reversibility.

Theorem 5 (Named invertible implies reversible). If an NCGD in invert-
ible, then the inverse function is an NCGD.

Proof outline. By Theorem 8 the invertible NCGD F can be directly simulated
by an invertible IMCGD (F,R•), whose pointer mimics the behaviour of atomic
names. Its inverse (F−1, R−1

F −1(•)) thus captures the full behaviour of F
−1

over
graphs including vertex names. By Theorem4 (F−1, R−1

F −1(•)) is continuous, and

thus so is F
−1

. ��

7 Robustness

Previous works gave three negative results about the ability to locally cre-
ate/destroy nodes in a reversible setting. But we just described three relaxed
settings in which this is possible. The question is thus formalism-dependent.
How sensitive is it to changes in formalism, exactly? We show that the three
solutions directly simulate each other. They are but three presentations, in dif-
ferent levels of details, of a single robust solution.

In what follows α is the natural, surjective map from Y to X̃ , which (infor-
mally): 1. Drops the pointer and 2. Cuts out the invisible matter. Whatever
an ACGD does to a α(Y ), an IMCGD can do to Y —moreover the notions of
invertibility match:
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Theorem 6 (IMCGD simulate ACGD). Consider F̃ an ACGD. Then there
exists (F,R•) an IMCGD such that for all but a finite number of graphs Y in Y,
F̃ (α(Y )) = α(F (Y )). Moreover if F̃ is invertible, then this (F,R•) is invertible.

Proof outline. Any ACGD F̃ has an underlying CGD (F,R•). We show it can
be extended to invisible matter, an then mended to make R• bijective, thereby
obtaining an IMCGD. The precise way this is mended relies on the fact vertex
creation/destruction cannot happen without the presence of a local asymmetry—
except in a finite number of cases. Next, bijectivity upon anonymous graphs
induces bijectivity upon pointed graphs modulo. ��

Similarly, whatever an IMCGD does to a Y , a ACGD can do to α(Y ):

Theorem 7 (ACGD simulate IMCGD). Consider (F,R•) an IMCGD.
Then there exists an ACGD such that F̃ ◦ α = α ◦ F . Moreover if (F,R•) is
invertible, then this F̃ is invertible.

Proof outline. The ACGD is obtained by dropping the pointer and the invisible
matter. The preservation of the invertibility is due to the shift invariance. ��

In what follows, if G is a graph in W, then G′ is the graph obtained from
G by attaching invisible–matter trees to each vertex, and naming the attached
vertices in V (G).{l, r}∗ according to Fig. 7.
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Fig. 7. Conventions for naming the invisible–matter.

Theorem 8 (IMCGD simulate NCGD). Consider F an NCGD. There
exists R• such that for all G, RG is a bijection from V (G).{l, r}∗ to
V (F (G)).{l, r}∗. This induces an IMCGD (F,R•) via

– F ( ˜(G′, u.t)) = ˜(F (G)′, RG(u.t)).
– R

˜(G′,u.t)
(p) is the path between RG(u.t) and RG(v.s) in F (G)′, where v.s is

obtained by following path p from u.t in G′.

Moreover if F is invertible, then this (F,R•) is invertible.
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Proof outline. The names V (F (G)) can be understood as keeping track of the
splits and mergers that have happened through the application of F to G, as
in Fig. 6. R• uses this to build a bijection from V (G′) to V (F (G)′), following
conventions as in Fig. 5. ��

Theorem 9 (NCGD simulate IMCGD). Consider (F,R•) an IMCGD.

Then there exists F an NCGD such that for all graphs Y = (̃G, u) in Y,

F (Y ) = ˜(F (G), u). Moreover F is invertible if and only if F is invertible.

Proof outline. Each vertex of Y can be named so that the resulting graph G
is well-named. Then R• is used to construct the behaviour of F over names of
vertices. As (F,R•) does not merge nor split vertices, F preserves the name of
each vertex. ��

Thus, NCGD are more detailed than IMCGD, which are more detailed than
ACGD. But, if one is thought of as retaining just the interesting part of the
other, it does just what the other would do to this interesting part—and no
more.

8 Conclusion

Summary of contributions. We have raised the question whether parallel
reversible computation allows for the local creation/destruction of nodes. Dif-
ferent negative answers had been given in [1,3,8] which inspired us with
three relaxed settings: Causal Graph Dynamics over fully-anonymized graphs
(ACGD); over pointer graphs modulo with invisible matter reservoirs (IMCGD);
and finally CGD over graphs whose vertex names are in the algebra of ‘every-
where infinite binary trees’ (NCGD). For each of these formalism, we proved non-
vertex-preservingness by implementing the Hasslacher-Meyer example [19]—see
Examples 2, 3 and 4. We also proved that we still had the classic Cellular
Automata (CA) result that invertibility (i.e. mere bijectivity of the dynam-
ics) implies reversibility (i.e. the inverse is itself a CGD)—via compactness—see
Theorems 3, 4 and 5. The answer to the question of reversibility versus local
creation/destruction is thus formalism-dependent to some extent. We proceeded
to examine the extent in which this is the case, and were able to show that
(Reversible) ACGD, IMCGD and NCGD directly simulate each other—see The-
orems 6, 7, 8 and 9. They are but three presentations, in different levels of details,
of a single robust setting in which reversibility and local creation/destruction are
reconciled.
Perspectives. Just like Reversible CA were precursors to Quantum CA [2,29],
Reversible CGD have paved the way for Quantum CGD [5]. Toy models where
time-varying topologies are reconciled with quantum theory, are of central inter-
est to the foundations of theoretical physics [18,25]—as it struggles to have
general relativity and quantum mechanics coexist and interact. The ‘models of
computation approach’ brings the clarity and rigor of theoretical CS to the table,
whereas the ‘natural and quantum computing approach’ provides promising new
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abstractions based upon ‘information’ rather than ‘matter’. Quantum CGD [5],
however, lacked the ability to locally create/destroy nodes—which is necessary
in order to model physically relevant scenarios. Our next step will be to apply
the lessons hereby learned, to fix this.
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Abstract. Given a function that takes a source data and returns a view,
bidirectionalization aims at producing automatically a new function that
takes a modified view and returns the corresponding, modified source.
In this paper, we consider simple first-order functional programs speci-
fied by (conditional) term rewrite systems. Then, we present a bidirec-
tionalization technique based on the injectivization and inversion trans-
formations from [24]. We also prove a number of relevant properties
which ensure that changes in both the source and the view are correctly
propagated and that no undesirable side-effects are introduced. Further-
more, we introduce the use of narrowing—an extension of rewriting that
replaces matching with unification—to precisely characterize compatible
(also called in-place) view updates so that the resulting bidirectional
transformations are well defined. Finally, we discuss some directions for
dealing with view updates that are not compatible.

Keywords: Bidirectional transformations ·
Functional programming languages · Term rewriting · Narrowing

1 Introduction

The framework of bidirectional transformations (bx) considers two representa-
tions of some data and the functions that convert one representation into the
other and vice versa (see, e.g., [18] for an overview). Typically, we have a func-
tion called “get” that takes a source and returns a view. In turn, the function
“put” takes a possibly updated view and returns the corresponding source. In
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this context, bidirectionalization [22] aims at automatically producing one of the
functions, typically producing a function put from the corresponding function
get (but the opposite approach is also possible, see, e.g., [10]). For this purpose,
a so called complement function is often introduced so that the get function
becomes injective (see, e.g., [12]).

Somewhat independently, reversible computation considers execution princi-
ples that can proceed both forward (i.e., normal computation) and backward.
Moreover, reversibilization aims at transforming an irreversible computation
principle into a reversible one. In particular, Landauer’s seminal work [20] states
how any computation principle can be made reversible by adding the history of
the computation to each state. Although it may seem impractical at first, there
are several useful reversibilization techniques that are roughly based on this idea
(e.g., [8,22,24,27]).

In this work, we consider a simple first-order functional programming lan-
guage for our developments.1 Consider, e.g., the following simple function:2

fn [ ] = [ ]
fn ((Name n l):xs) = n:ys where ys = fn xs
fn ((City c):xs) = ys where ys = fn xs

The function fn takes a list of names of the form (Name first name last name)
and cities of the form (City name), and returns a list of first names. E.g.,

fn [Name John Smith,City London,Name Ada Lovelace]

evaluates to [John,Ada].
Trivially, function fn is not injective and, thus, its inverse is not a function.

The framework of [24] introduces a Landauer embedding to make term rewriting
reversible, which is then mapped to an injectivization transformation on (con-
ditional) term rewrite systems. For the above function fn, it would return the
following injective version:

fni [ ] = 〈[ ], β1〉
fni ((Name n l):xs) = 〈n:ys, β2 l ws〉 where 〈ys, ws〉 = fni xs
fni ((City c):xs) = 〈ys, β3 c ws〉 where 〈ys, ws〉 = fni xs

In contrast to the original function, the inversion of function fni can easily be
obtained by switching the left- and right-hand sides of every equation (see Def-
inition 2). Here, the call fni [Name John Smith,City London,Name Ada Lovelace]
now returns 〈[John,Ada], β2 Smith (β3 London (β2 Lovelace (β1)))〉.

The net effect is essentially equivalent to the introduction of a complement in
the syntactic bidirectionalization approach of Matsuda et al. [22]. There, a com-
plement function is first derived, which is then merged with the original function
using tupling. While [24] considers a slightly more general class of programs (as
1 In this section, we denote programs using a Haskell-like notation, but they will be

specified using conditional term rewrite systems in the remainder of the paper.
2 As it is common practice, we use “:” and [ ] as list constructors.
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we do), [22] defines several optimizations to avoid introducing unnecessary sym-
bols in the computed complements (which might improve the number of updates
their “put” function can deal with).

In this paper, we present a syntactic bidirectionalization technique based on
the injectivization and inversion transformations of [24]. We prove that the so
called GetPut law (using the terminology from the literature on lenses [11])
always holds for our bidirectional transformations, while the PutGet and Put-
Put laws hold for compatible view updates only. Then, we introduce the use of
narrowing to formally characterize the class of view updates that are compat-
ible. Finally, we consider other possible situations—namely, view updates that
are not compatible—and discuss some possible approaches to deal with them.

More details and missing proofs can be found in [26].

2 Term Rewriting

In this paper, we will use (conditional) term rewrite systems to specify first-order
functional programs. Therefore, in this section, we recall some basic concepts of
term rewriting. We refer the reader to, e.g., [2,30] for further details.

Terms and Substitutions. A signature F is a set of ranked function symbols
(i.e., function symbols with an associated arity). Given a set of variables V with
F ∩ V = ∅, we denote the domain of terms by T (F ,V). We use f, g, . . . to
denote function symbols and x, y, . . . to denote variables. Positions are used to
address the nodes of a term viewed as a tree. A position p in a term t, in symbols
p ∈ Pos(t), is represented by a finite sequence of natural numbers, where the
empty sequence ε denotes the root position. We let t|p denote the subterm of t at
position p and t[s]p the result of replacing the subterm t|p by the term s. Var(t)
denotes the set of variables appearing in t. A term t is ground if Var(t) = ∅.

A substitution σ : V �→ T (F ,V) is a mapping from variables to terms such
that Dom(σ) = {x ∈ V | x �= σ(x)} is its domain. A substitution σ is ground
if σ(x) is ground for all x ∈ Dom(σ). Substitutions are extended to morphisms
from T (F ,V) to T (F ,V) in the natural way. We denote the application of a
substitution σ to a term t by tσ (postfix notation). The identity substitution is
denoted by id. We let “◦” denote the composition of substitutions, i.e., σ◦θ(x) =
(xθ)σ = xθσ. The restriction θ |̀V of a substitution θ to a set of variables V is
defined as follows: xθ |̀V = xθ if x ∈ V and xθ |̀V = x otherwise.

A substitution σ is more general than a substitution θ, denoted by σ � θ, if
there is a substitution δ such that δ ◦ σ = θ. A unifier of two terms s and t is a
substitution σ with tσ = sσ; furthermore, σ is the most general unifier of t and
s, denoted by mgu(t, s) if, for every other unifier θ of t and s, we have σ � θ.

Term Rewrite Systems. A set of rewrite rules l → r such that l is a nonvariable
term and r is a term whose variables appear in l is called a term rewrite system
(TRS for short); terms l and r are called the left-hand side and the right-hand
side of the rule, respectively. We restrict ourselves to finite signatures and TRSs.
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Given a TRS R over a signature F , the defined symbols DR are the root symbols
of the left-hand sides of the rules and the constructors are CR = F \ DR.
Constructor terms of R are terms over CR and V, denoted by T (CR,V). We
sometimes omit R from DR and CR if it is clear from the context. A substitution
σ is a constructor substitution (of R) if xσ ∈ T (CR,V) for all variables x.

In the following, we denote by on a sequence of elements o1, . . . , on for some
n. We write o when the number of elements is not relevant.

Given a TRS R, we say that a term t is basic [17] if it has the form f(tn)
with f ∈ DR a defined function symbol and tn ∈ T (CR,V) constructor terms.

For a TRS R, we define the associated rewrite relation →R as the smallest
binary relation on terms satisfying the following: given terms s, t ∈ T (F ,V), we
have s →R t iff there exist a position p in s, a rewrite rule l → r ∈ R, and a
substitution σ such that s|p = lσ and t = s[rσ]p; the rewrite step is sometimes
denoted by s →p,l→r t to make explicit the position and rule used in this step.
The instantiated left-hand side lσ is called a redex. A term s is called irreducible
or in normal form with respect to a TRS R if there is no term t with s →R t.
A derivation is a (possibly empty) sequence of rewrite steps. Given a binary
relation →, we denote by →∗ its reflexive and transitive closure, i.e., s →∗

R t
means that s can be reduced to t in R in zero or more steps.

Programs. In this work, programs are denoted by so called conditional term
rewrite systems (CTRSs) where rules have now the form l → r ⇐ C with C
a condition (i.e., a sequence of equations). In particular, we consider oriented
3-CTRSs where Var(r) ⊆ Var(l) ∪ Var(C) and the equations are oriented, i.e.,
C has the form s1 � t1, . . . , sn � tn with � interpreted as reachability →∗

R.
Also, we focus on a subclass of oriented 3-CTRSs called pcDCTRS [5,23] (“pc”
stands for pure constructor) where, for each conditional rule l → r ⇐ s1 �
t1, . . . , sn � tn, the following conditions hold:

– l and sn are basic terms and r and tn are constructor terms, and
– Var(si) ⊆ Var(l, ti−1) for all i = 1, . . . , n (i.e., it is a deterministic CTRS; see

below).

Finally, we also require the left-hand sides of the rules in a pcDCTRS to
be non-overlapping, i.e., there is no pair of (different) rules l1 → r1 ⇐ C1 and
l2 → r2 ⇐ C2 such that l1σ = l2σ for some substitution σ. This is still quite
a general class of CTRSs and it is particularly appropriate to represent typical
(first-order) functional programs (e.g., so called treeless functional programs
[32] or extended top-down tree transducers [28] can be seen as subclasses of
pcDCTRSs). Intuitively speaking, a rule like l → r ⇐ s1 � t1, . . . , sn � tn
resembles a typical functional definition of the form

l1 = r1 where t1 = s1, . . . , tn = sn

Example 1. Function fn in Sect. 1 can be specified using a pcDCTRS as follows:

fn([ ]) → [ ]
fn(name(n, l):xs) → n:ys ⇐ fn(xs) � ys
fn(city(c):xs) → ys ⇐ fn(xs) � ys
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where the constructor symbols name and city are now denoted using small letters
(in contrast to the Haskell-like notation used in Sect. 1).

Given a pcDCTRS R, the associated (constructor-based) rewrite relation
→R is defined as the smallest binary relation satisfying the following: given
ground terms s, t ∈ T (F), we have s →R t iff there exist a position p in s
with s|p a basic subterm, a rewrite rule l → r ⇐ sn � tn ∈ R, and a ground
constructor substitution σ such that s|p = lσ, siσ →∗

R tiσ for all i = 1, . . . , n,
and t = s[rσ]p. Since the left-hand sides of a pcDCTRS are basic terms and there
are no overlappings, every computation can be made deterministic by fixing a
strategy (e.g., by always selecting the leftmost innermost redex).

Moreover, the fact that pcDCTRSs are deterministic CTRSs [13] (which does
not necessarily imply that computations are deterministic) allows us to compute
the bindings for the variables in the condition in a deterministic way. E.g., given
a ground term s and a rule l → r ⇐ sn � tn with s|p = lθ, we have that s1θ
is ground. Therefore, one can reduce s1θ to some term s′

1 such that s′
1 is an

instance of t1θ with some ground substitution θ1. Now, we have that s2θθ1 is
ground and we can reduce s2θθ1 to some term s′

2 such that s′
2 is an instance

of t2θθ1 with some ground substitution θ2, and so forth. If all equations in the
condition hold using θ1, . . . , θn, we have that s → s[rσ]p with σ = θθ1 . . . θn.

Remark 1. In the remainder of this paper, we assume for simplicity that all
defined symbols of the original pcDCTRS are unary. Note that any n-ary defined
symbol can be trivially transformed into a unary function by putting all argu-
ments into a fresh tuple symbol. Hence, in the following, program rules will have
the following form: f0(s) → r ⇐ f1(s1) � t1, . . . , fn(sn) � tn.

3 Injectivization and Inversion

In this section, we mostly recall the injectivization and inversion transformations
for pcDCTRSs introduced in [24] (with some slight modifications).

Definition 1 (injectivization). Let R be a pcDCTRS. We produce a new
CTRS I(R) by replacing each rule

f0(s) → r ⇐ f1(s1) � t1, . . . , fn(sn) � tn

of R by a new rule of the form

f i0(s) → 〈r, β(y, wn)〉 ⇐ f i1(s1) � 〈t1, w1〉, . . . , f in(sn) � 〈tn, wn〉

in I(R), where

– f i0, . . . , f
i
n ∈ DI(R) are fresh (not necessarily different) defined function symbols

with f ij = f ik iff fj = fk, for all j, k,
– β ∈ CI(R) is a fresh constructor symbol,
– {y} = (Var(s)\Var(r, sn, tn)) ∪

⋃n
i=1 Var(ti)\Var(r, si+1, . . . , sn),
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– and wn are fresh variables.

We assume that the variables of y are in lexicographic order. Clearly, we have
DI(R) = {f i | f ∈ DR} and CI(R) = CR ∪{〈 〉}∪{β | l → 〈 , β(. . .)〉 ⇐ C ∈ I(R)}.

Intuitively speaking, the β symbols are needed to know the applied rule, so
that the backward steps are computationally deterministic. The variables in
{y} are the variables that are erased in the rule (i.e., they are in the left-hand
side but not in the corresponding right-hand side or the condition) as well as
the variables that are needed for the inverse rule to be deterministic (a more
detailed explanation and some examples can be found in [24]).

Now, given a term f(s) that reduces to a normal form v in a pcDCTRS R,
we have that f i(s) reduces to a normal form 〈v, π〉 in I(R), where π is called
the complement of the reduction. Although our development originates from the
introduction of a Landauer embedding [20] to make reductions reversible, com-
plements are similar to the ones obtained by defining a view complement function
as in [22] (and originally introduced in [3]). Indeed, [22] applies a separated stage
of tupling [7] to combine the original function and its complement, while this is
naturally embedded into the definition above.

Example 2. Let R be a pcDCTRS defining the function fn of Example 1. Then,
we have that I(R) is defined by the following rules:

fni([ ]) → 〈[ ], β1〉
fni(name(n, l):xs) → 〈n:ys, β2(l, ws)〉 ⇐ fni(xs) � 〈ys, ws〉
fni(city(c):xs) → 〈ys, β3(c, ws)〉 ⇐ fni(xs) � 〈ys, ws〉

E.g., the normal form of fni([name(john, smith), city(london), name(ada, lovelace)])
is 〈[john, ada], β2(smith, β3(london, β2(lovelace, β1)))〉, as expected.

The inversion of an injectivized system now amounts to switching the left-
and right-hand sides of the rule and of every equation in the condition, as follows:

Definition 2 (inversion). Let R be a pcDCTRS and Rf = I(R) be its injec-
tivization. The inverse system Rb = I−1(Rf ) is obtained from Rf by replacing
each rule

f i0(s) → 〈r, β(y, wn)〉 ⇐ f i1(s1) � 〈t1, w1〉, . . . , f in(sn) � 〈tn, wn〉

of Rf by a new rule of the form

f−1
0 (r, β(y, wn)) → s ⇐ f−1

n (tn, wn) � sn, . . . , f−1
1 (t1, w1) � s1

in Rb, where f−1
0 , . . . , f−1

n ∈ DRb
are fresh (not necessarily different) defined

function symbols with f−1
j = f−1

k iff f ij = f ik, for all j, k. Here, we have DRb
=

{f−1 | f ∈ R} and CRb
= CRf

.

The correctness of both injectivization and inversion, as well as the fact that
I(R) and I−1(I(R)) are also pcDCTRSs, can be found in [24].
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Example 3. Inversion of our running example (function fni in Example 2) is as
follows:

fn−1([ ], β1) → [ ]
fn−1(n:ys, β2(l, ws)) → name(n, l):xs ⇐ fn−1(ys, ws) � xs

fn−1(ys, β3(c, ws)) → city(c):xs ⇐ fn−1(ys, ws) � xs

Remark 2. In the following, we let bx(R) = R ∪ I(R) ∪ I−1(I(R)). Moreover,
given a function f ∈ DR, we let f i ∈ DI(R) denote its injectivization and f−1 ∈
DI−1(I(R)) the inversion of f i.

4 A Framework for Syntactic Bidirectionalization

In this section, we present a framework for bidirectionalization where narrowing
is used to characterize compatible view updates.

4.1 Bidirectionalization

Our bidirectionalization is based on the injectivization and inversion transfor-
mations from Sect. 3. Let R be a pcDCTRS and let f ∈ DR be a function such
that

f(s) →∗
bx(R) v

for some constructor terms s, v ∈ T (CR). By construction, there exists a function
f i in bx(R) such that

f i(s) →∗
bx(R) 〈v, π〉

where π (a constructor term) is called the complement of the derivation. Con-
versely, there is also a function f−1 in bx(R) such that

f−1(v, π) →∗
bx(R) s

Following the terminology in the bx literature, if f is a “get” function that takes
a source and returns a view, we can automatically derive a corresponding “put”
function following the so called constant complement approach [3] (as in [24]):

Definition 3 (put generation). Let R be a pcDCTRS. Given a function f ∈
DR, the corresponding “put” function, in symbols, putf , is defined as follows:

putf(v, s) → s′ ⇐ f i(s) � 〈v′, π〉, f−1(v, π) � s′

where s, s′, v and d′ are variables that range over the constructor terms of the
original pcDCTRS R, i.e., T (CR), while π is a variable that ranges over T (CI(R))
to also account for the β symbols introduced in the injectivization stage.

For instance, the corresponding put function for function fn in Example 1 will be
defined as follows:

putfn(v, s) → s′ ⇐ fni(s) � 〈v′, π〉, fn−1(v, π) � s′

where functions fni and fn−1 are defined in Examples 2 and 3, respectively.
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Remark 3. In the following, we assume that bx(R) also includes putf for all
f ∈ DR, as defined above.

In the following, we prove the usual properties for the bidirectional transfor-
mations obtained by our bidirectionalization technique. Basically, we prove that
each function f and the corresponding putf form a so called (very) well-behaved
lens [11]. Let us start with the following essential property:

Theorem 1 (GetPut). Let R be a pcDCTRS. Then, for all defined function
f ∈ DR in R and for all ground constructor term s ∈ T (CR), if the normal form
of f(s) is a constructor term, then we have putf(f(s), s) →∗

bx(R) s.

Example 4. Consider function fn from our running example and the term
s = [name(john, smith), city(london), name(ada, lovelace)]. Here, the normal form
of fn(s) is [john, ada]. Then, putfn([john, ada], s) reduces to s since

fni([name(john, smith), city(london), name(ada, lovelace)])
→∗ 〈[john, ada], β2(smith, β3(london, β2(lovelace, β1)))〉

and
fn−1([john, ada], β2(smith, β3(london, β2(lovelace, β1)))) →∗ s

Other properties, though, do not always hold, since the generated put functions
are not always defined. For instance, roughly speaking, the PutGet law states
that f(putf(v, s)) →∗

bx(R) v. This law does not hold in general:

Example 5. Consider again function fn from our running example, together with
the derivation fni([name(john, smith)]) →∗ 〈[john], β2(smith, β1)〉. Here, the term
fn−1([ ], β2(smith, β1)) cannot be reduced to a constructor term. Hence, the Put-
Get law does not hold, i.e., f(putfn([ ], [name(john, smith)]) is not reduced to [ ].

In the above example, the problem comes from the fact that the view [ ] and the
source [name(john, smith)] are not compatible.3 In this case, a view with exactly
one name is required. Thus, in the following, we will consider partial versions of
some laws [11] as in, e.g., [3,22].

The notion of compatibility is formalized as follows:

Definition 4 (compatible view). Let R be a pcDCTRS. We say that a term
v (a view) is compatible with a term s (a source) w.r.t. a function f ∈ DR if
putf(v, s) can be reduced to a constructor term in bx(R).

For instance, given s = [name(john, smith), city(london), name(ada, lovelace)], the
view v = [rose, ada] is compatible with s, while [ada] is not; here, only lists with
two elements are compatible with s.

Now, we can prove the PutGet law for compatible view updates:

3 Sometimes, we also say that a view is compatible with a given complement since the
complement is fully determined by the source.
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Theorem 2 (PutGet). Let R be a pcDCTRS, f ∈ DR a defined function and
s ∈ T (CR) a ground constructor term. Then, f(putf(v, s)) →∗

bx(R) v for all con-
structor term v that is compatible with s w.r.t. f.

Example 6. Consider again function fn and the terms

s = [name(john, smith), city(london), name(ada, lovelace)]

and v = [john, ada] from Example 4. Given an updated (compatible) view
v′ = [rose, ada], we have fn(putfn(v′, s)) →∗ v′ since putfn(v′, s) →∗ s′ with
s′ = [name(rose, smith), city(london), name(ada, lovelace)] and fn(s′) →∗ v′, as
expected.

The following result also holds for compatible views. In the following, we say
that two terms are joinable if they can be reduced to the same constructor term.

Theorem 3 (PutPut). Let R be a pcDCTRS, f ∈ DR a defined function and
s ∈ T (CR) a ground constructor term. Then, putf(v1, putf(v2, s)) and putf(v1, s)
are joinable for all constructor terms v1, v2 that are compatible with s w.r.t. f.

Example 7. Consider again function fn and the terms

s = [name(john, smith), city(london), name(ada, lovelace)]

v1 = [rose, ada] and v2 = [john, paul]. Here, we have putfn(v1, s) →∗ s1, with
s1 = [name(rose, smith), city(london), name(ada, lovelace)]. On the other hand, we
have putfn(v2, s) →∗ s2, with s2 = [name(john, smith), city(london), name(paul,
lovelace)] and putfn(v1, s2) →∗ s1.

The above result ensures that our put functions do not have undesirable
side-effects on the source. In other words, the complement associated to the
updated source obtained by a put function will still be the same, no matter the
(compatible) view used. A bidirectional transformation fulfilling the above laws
is called—in the lenses approach [11]—a partial very well-behaved lens. Note that
it is “partial” since it is only very well behaved for compatible view updates.

Moreover, when both PutPut and GetPut laws hold, we have

putf(f(s), putf(v, s)) →∗ s

i.e., the effects of a view update can always be undone (see, e.g., [12]). Intuitively
speaking, the reason for this behaviour in our context is that the computed
complement is the same for s and for putf(v, s) when v is a compatible view
update, as mentioned before.

4.2 Using Narrowing to Characterize Compatible Updates

Let us first briefly introduce the narrowing principle [19,29]. It mainly extends
term rewriting by replacing pattern matching with unification, so that terms
containing logic (i.e., free) variables can be (non-deterministically) reduced.
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(unification)

n > 1 ∧ s1 ∈ T (C, V) ∧ σ = mgu(s1, t1)
(s1 � t1, . . . , sn � tn) �σ (s2 � t2, . . . , sn � tn)σ

(narrowing)

p = inn(s1) ∧ (l → r ⇐ C) << R ∧ σ = mgu(s1|p, l)
(s1 � t1, . . . , sn � tn) �σ (C, s1[r]p � t1, . . . , sn � tn)σ

Fig. 1. Constructor-based conditional narrowing

Example 8. Consider the term fn−1(x, β1) and the rule “fn−1([ ], β1) → [ ]”.
While the term cannot be reduced using rewriting, narrowing performs the fol-
lowing step: fn−1(x, β1) �{x�→[ ]} [ ], where {x �→ [ ]} is a unifier between the
term and the left-hand side of the rule.

Now, we present narrowing for pcDCTRSs. For this class of programs, one
can naturally extend Bockmayr’s conditional rewriting without evaluation of the
premise [6] to narrowing as follows. In the following, a goal is a sequence of
equations of the form s1 � t1, . . . , sn � tn, where each si is either basic or a
constructor term and t1, . . . , tn are constructor terms.

Definition 5 (constructor-based conditional narrowing).
Let R be a pcDCTRS. Constructor-based conditional narrowing is defined as
the smallest relation satisfying the transition rules of Fig. 1, where (l → r ⇐
C) << R denotes that l → r ⇐ C is a copy of a rule in R renamed with fresh
variables, and inn(s) selects the position of a basic subterm (i.e., a term of the
form f(tn) with f a defined function symbol and tn constructor terms).

Intuitively speaking, given a goal s1 � t1, . . . , sn � tn, we proceed either by
unifying the leftmost equation when s1 is a constructor term and mgu(s1, t1)
exists (rule unification) or we apply a narrowing step (rule narrowing). In the
latter case, we select a basic subterm s1|p of s1 that unifies with the left-hand
side of a (renamed) rule, say l → r ⇐ C, using mgu σ, and return a new goal
(C, s1[r]p � t1, . . . , sn � tn)σ.

Let us note that narrowing is often non-deterministic due to the free vari-
ables in goals, since the selected subterm might unify with the left-hand sides
of several rules (so rule narrowing gives rise to some branching). Moreover, nar-
rowing derivations might be infinite even when the rules of a pcDCTRS are
terminating (see, e.g., [25]). Indeed, our constructor-based conditional narrow-
ing over pcDCTRSs is essentially equivalent to SLD resolution over equivalent
logic programs [21].

In order to narrow a given term s, we start with a goal of the form s � x,
where x is a fresh variable. A successful narrowing derivation for s has the form
(s � x) �∗

σ (t � x) with t a constructor term; here, we say that σ |̀Var(s) is the
computed answer substitution of the successful derivation.
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Definition 6 (success set, nwingR). Let R be a pcDCTRS. We denote by
nwingR(s) the success set of a term s in R, where σ ∈ nwingR(s) if there is a
successful narrowing derivation for the goal s � x in R with computed answer
substitution σ, where x is a fresh variable.

The following auxiliary result is useful to define the notion of view skeleton.

Lemma 1. Let R be a pcDCTRS and f ∈ D be a function with f i(s) →∗
bx(R)

〈v, π〉 for some constructor terms s, v, and π. Then, nwingbx(R)(f−1(x, π)) is a
singleton up to variable renaming, where x is a fresh variable.

We observe that the above result does not hold when some β symbols are removed
using an optimization like that in [22] which is based on an injectivity analysis.
In our approach, the β symbols are essential to drive the narrowing steps and
ensure that the derivation is finite and computationally deterministic, no matter
if the original function is injective or not.

Definition 7 (view skeleton). Let R be a pcDCTRS, f ∈ D be a defined
function and s be a constructor term. The view skeleton associated to f and s in
bx(R) is defined as follows:

skelbx(R)(f, s) = xσ where f i(s) →∗ 〈v, π〉 and nwingbx(R)(f
−1(x, π)) = {σ}

with x a fresh variable and v, π constructor terms.

Now, we can precisely characterize the view updates that are compatible with a
given source:

Lemma 2. Let R be a pcDCTRS, f ∈ D be a defined function, and s be a con-
structor term. Let skelbx(R)(f, s) = v′′. Then, a constructor term v′ is compatible
with s w.r.t. f iff there exists a substitution θ such that v′ = v′′θ.

Informally speaking, a view skeleton represents the constructors that depend
on the history of the considered computation, which is represented by a given
complement. Variables in a skeleton represent information that is independent of
the reduction steps and, thus, the same complement can be used by function f−1

in the definition of putf . In some sense, our notion of skeleton is related to the
use of polymorphic functions in the semantic approach to bidirectionalization
[31], though our approach is in principle rather different.

Example 9. Consider again our running example and function fn as well as its
associated functions fni and fn−1. Given the source (constructor) term

s = [name(john, smith), city(london), name(ada, lovelace)]

we have the following reduction:

fni(s) →∗ 〈[john, ada], π〉 with π = β2(smith, β3(london, β2(lovelace, β1)))
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Here, the view skeleton associated to s w.r.t. fn is [n1, n2] since we have the
following narrowing derivation:

f−1(x, π) � y
�∗

{x�→[n1,n2]} [name(n1, smith), city(london), name(n2, lovelace)] � y

Therefore, we have that a view update like [richard, ada] will be compatible with
s (since it is an instance of [n1, n2]), while a view update like [john] will not.

4.3 Dealing with Non-compatible View Updates

So far we have only considered compatible (often called “in-place”) view updates.
A challenging topic for future work involves dealing with view updates which are
not compatible. This problem has been considered in the context of the lenses
approach to bidirectional transformations (see, e.g., [4]), but we are not aware
of any technique that deals with this issue in the context of bidirectionalization.

The problem with non-compatible view updates is that, in general, there
are many non-deterministic possibilities to propagate the changes back to the
source. Consider again our running example with function fn. Given the source
s = [name(john, smith), city(london)], we get the view [john] with complement
β2(smith, β3(london, β1)). Now, given an arbitrary modified view, say [john, rose],
a put function might return any of the following modified sources:

s1 = [name(john, smith), name(rose,⊥), city(london)]
s2 = [name(john, smith), city(london), name(rose,⊥)]
s3 = [name(john, smith), name(rose,⊥)]
s4 = [name(john, smith), city(london), city(⊥), name(rose,⊥)]
. . .

where ⊥ denotes an undefined value. In all cases, fn(si) reduces to [john, rose],
i = 1, . . . , 4, so all these alternatives might—in principle—be considered correct.

Furthermore, aligning the views so that the changes can be identified is
also a difficult problem. Consider, e.g., that we change [john] to [rose]. Here,
one can assume that this is an in-place change and, thus, produce the source
[name(rose, smith), city(london)], but it could also be the result of a deletion
and an insertion, so that the right source would be [name(rose,⊥), city(london)]
instead. The larger the views, the more complex the alignment is. Some heuristics
have been developed (see, e.g., [4]), but the approach has also some drawbacks
(see the discussion in [9]).

Another approach by Diskin, Xiong, and Czarnecki [9] proposes to decompose
the view update propagation into two separate operations: computing deltas (the
differences between two data structures), and propagating deltas. In this context,
the authors consider two operations, dget and dput, which are similar to the usual
get and put operations from the standard approach but deal with deltas instead.

In our setting, we could specify a delta by means of a function (or a sequence
of functions). For instance, the change from [john] to [john, rose] could be specified
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by using a function that appends a new element at the end of a list, which is
defined as follows:

appv([ ], s) → [s]
appv(x : xs, s) → x : appv(xs, s)

so that the change from [john] to [john, rose] is given by the following application:
appv([john], rose). Then, one can apply dput to produce an equivalent function,
apps, on the source:

apps([ ], s) → [name(s,⊥)]
apps(x : xs, s) → x : apps(xs, s)

In general, though, this is not the only possibility; namely, any function that
appends the given name after all existing names in the source would be correct,
no matter the position and number of cities. E.g., if the source is

s = [name(john, smith), city(london)]

we have that apps(s, rose) returns

[name(john, smith), name(rose,⊥), city(london)]

but it could also return

[name(john, smith), city(london), name(rose,⊥)].

Analogously to the case of put, there is some degree of non-determinism that
must be fixed using either some user intervention or some heuristic.

We consider the delta-based framework a promising approach for future work.

5 Related Work

First, as mentioned before, the injectivization and inversion transformations for
pcDCTRSs are taken from [24]. This paper, though, is concerned with reversible
rewriting rather than bidirectional programming. The definition of a put function
is sketched with an example (following the constant complement approach as in
[12]) to show the potential of these transformations, but no law is formalized,
compatibility of view updates is not considered, etc. Other, related approaches
to program inversion in functional programming can be found in [14,15]. See
also [33] for more details on reversible programming languages.

The closest related work is the syntactic approach to the bidirectionalization
of functional programs in [22]. While the basic technique shares some similarities
with our development (both are based on the constant complement approach),
our framework deals with more general programs (e.g., a function producing an
inorder traversal of a binary tree can be represented with a pcDCTRS [32] while
it cannot be represented with a treeless function as required in [22]); moreover,
our notion of compatible view updates based on narrowing seems more useful
than the checker of [22], since we produce a view skeleton which represents
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in a compact way all possible view updates by means of variables that denote
updatable subterms.

Indeed, the use of narrowing to identify the parts of the view that are indepen-
dent of the computed complement (and, thus, of the applied rules) is somehow
similar to the requirement of polymorphic functions in the semantic approach
to bidirectionalization of [31]. In particular, if a function is not polymorphic,
our narrowing based approach will easily determine that no compatible view
updates are possible. Consider, e.g., the following simple function to check if all
the elements of a binary list are zero:

f([ ]) → true
f(0:xs) → true ⇐ f(xs) � true
f(1:xs) → false

Clearly, the type is f :: [Bin] → Bool , where Bin is a type with constructors 0
and 1 and Bool is the usual Boolean type. Since the function is not polymorphic,
one cannot apply the approach in [31]. Let us now consider our approach. First,
injectivization and inversion return the following functions:

f i([ ]) → 〈true, β1〉
f(0:xs) → 〈true, β2(w)〉 ⇐ f i(xs) � 〈true, w〉
f i(1:xs) → 〈false, β3(xs)〉

f−1(true, β1) → [ ]
f−1(true, β2(w)) → 0:xs ⇐ f−1(true, w) � xs
f−1(false, β3(xs)) → 1:xs

Given an arbitrary source, e.g., s = [0, 1, 0], we have f i(s) →∗ 〈false, β2(β3([0]))〉
and, then, skelbx(R)(f, s) returns just false (since nwingbx(R)(f−1(x, β2(β3([0]))))
produces the computed answer {x �→ false}). Therefore, no view different from
false would be compatible.

There are other, related works that use narrowing in the context of bidi-
rectional transformations [10,16]. However, these works consider narrowing (or
the universal resolving algorithm [1], which is essentially similar) as a mecha-
nism for inverse computation. In their approach, no injectivization is performed
and, thus, inverse computation might be non-deterministic. This is rather dif-
ferent to our approach, where inversion is only applied to injective functions
and, moreover, narrowing is only applied to terms of the form f−1(x, π), with π
a ground constructor term, so that narrowing derivations are always finite and
computationally deterministic.

6 Discussion

To summarize, we have presented a (syntactic) bidirectionalization technique
based on some injectivization and inversion transformations, where programs
are specified by means of pcDCTRSs, a general class of conditional term rewrite
systems. We have proved a number of laws for our generated put functions,
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namely that we produce (partial) very well-behaved lenses in the terminology
of [11]. Moreover, we have precisely characterized those view updates that are
compatible with a given source (also called “in-place” updates) using narrowing
[19,29], an extension of rewriting to deal with logic variables. In some way, our
approach combines ideas from three previous approaches: reversible rewriting
[24], syntactic bidirectionalization [22], and semantic bidirectionalization [31],
while it provides new insights by showing that narrowing can easily be used to
identify the parts of a view that are updatable without modifying the comple-
ment.

As future work, we plan to develop a technique to deal with non-compatible
view updates, along the lines presented in Sect. 4.3.

Acknowledgements. We thank the anonymous reviewers for their useful comments
and suggestions to improve this paper.
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Abstract. One of the most fundamental aspects of quantum circuit
design is the concept of families of circuits parametrized by an instance
size. As in classical programming, metaprogramming allows the program-
mer to write entire families of circuits simultaneously, an ability which is
of particular importance in the context of quantum computing as algo-
rithms frequently use arithmetic over non-standard word lengths. In this
work, we introduce metaQASM, a typed extension of the openQASM
language supporting the metaprogramming of circuit families. Our lan-
guage and type system, built around a lightweight implementation of
sized types, supports subtyping over register sizes and is moreover type-
safe. In particular, we prove that our system is strongly normalizing, and
as such any well-typed metaQASM program can be statically unrolled
into a finite circuit.

Keywords: Quantum programming · Circuit description languages ·
Metaprogramming

1 Introduction

Quantum computers have the potential to solve a number of important problems,
including integer factorization [29], quantum simulation [23], approximating the
Jones polynomial [1] and unstructured searching [12] asymptotically faster than
the best known classical algorithms. These algorithms are typically described
abstractly and make heavy use of classical arithmetic such as modular exponen-
tiation. To make such algorithms concrete, efficient, reversible implementations
of large swaths of a classical arithmetic and computation is needed – moreover,
due to the limited space constraints and special-purpose nature of quantum cir-
cuits, these operations are typically needed in a multitude of bit sizes.

In part due to the increasing viability of quantum computing and the scaling
of NISQ [28] devices, there has been a recent explosion in quantum programming
tools. Such tools range from software development kits (e.g., Qiskit [5], ProjectQ
[32], Strawberry Fields [19], Pyquil [30]) to Embedded domain-specific languages
(e.g., Quipper [11], Qwire [27], Q|SI〉 [22]) and standalone languages and com-
pilers (e.g., QCL [26], QML [2], ScaffCC [16], Q# [33]). Going beyond strict
programming tools, software for the synthesis, optimization, and simulation of
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quantum circuits and programs (e.g., Revkit [31], TOpt [15], Feynman [3], PyZX
[20], Quantum++ [9], QX [17]) are becoming more and more abundant.

The proliferation of both hardware and software tools for quantum comput-
ing has in turn spurred a need for standardization and portability [14,24]. One
such standard which has recently grown in popularity is the Quantum Assembly
Language and its many various dialects (e.g., openQASM [6], QASM-HL [16],
cQASM [18]). As a lightweight, modular language for specifying simple quantum
circuits, programs with a well-defined syntax, QASM support – in particular, for
the openQASM dialect – has been built-in to an increasingly large number of
software tools, particularly standalone programs like circuit optimizers, as a way
to support interoperability.

One feature that is noticeably lacking in these dialects is the ability to define
families of quantum circuits parametrized over different register sizes, and by
extension to generate concrete instances. This creates a barrier for the use of
QASM in writing portable libraries of quantum circuit families, particularly
for classical operations such as arithmetic. As a result, software designers typi-
cally end up re-implementing code – typically implemented in the host language
for EDSLs, and hence not easily re-usable – for generating instances of simple
operations such as adders and multipliers. Alternatively, programmers resort to
using other compilers such as Quipper, Q# or ReVerC [4] to generate individ-
ual instances, which complicates the compilation or simulation process. While
recent progress towards the development of portable libraries of circuit families
with high-level non-embedded languages, standardization remains an on-going
process, and moreover a low-level approach is preferable in many situations,
including as compilation targets and middle-ends.

In this paper we make progress towards the design of a low-level language
for quantum programming that supports the metaprogramming of sized circuit
families. In particular, we develop a typed extension of the untyped open quan-
tum assembly language (openQASM) with metaprogramming over lightweight
sized types à la dependent ML [34]. Our language, metaQASM, is further shown
to be type-safe and strongly-normalizing, while the non-meta fragment is both
more expressive than openQASM and admits a simpler syntax, owing to the
type system. For the purposes of this paper, we focus on the type system design
and metatheory of such a language, leaving implementation to future work.

1.1 Quantum Metaprogramming

Most QRAM-based quantum programming languages are metaprogramming lan-
guages – called circuit description languages – in that they typically operate by
building quantum circuits to be sent in a single batch to a quantum processor.
Such quantum circuits can typically be composed, reversed, and depend on the
result of classical computations.

In this paper, we are interested in a particular type of quantum circuit
metaprogramming, wherein circuit families are parametrized over shapes [11,27],
such as the number of input qubits. Existing languages offer varying support for
such metaprogramming, either implicitly (e.g., uniform or transversal families
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of circuits in openQASM, iteration and qubit arrays in Q#), or more explic-
itly (e.g., the generic QData type-class in Quipper, which can be instantiated
via explicit type applications). Our approach differs from previous attempts by
explicitly parametrizing registers and circuit families with size parameters. We
adopt a typed approach for a number of reasons:

– it allows the light-weight verification of libraries of circuit generators,
– it provides a means of self-documentation, and
– it allows explicit generation of sized-specialized instances.

The ability to generate instances of circuit families in various sizes without exe-
cuting them is particularly important for the purposes of resource estimation,
and for benchmarking tools that operate on fixed-size but arbitrary input cir-
cuits, such as circuit optimizers [14].

As an illustration, given an in-place family of adders written in the style of
(imperative) Quipper with the type

inplace add :: [Qubit] -> [Qubit] -> Circ (),

one may wish to generate a static, optimized instance of inplace add operating
on 2-qubit registers, using an external circuit optimizer. Doing so requires the
specialization to (and serialization of) a function

inplace add2 :: (Qubit, Qubit) -> (Qubit, Qubit) -> Circ ().

One possible method of generating such a function is to write the body of
inplace add2 using a call to the generic inplace add applied to the 4 input
qubits. However, this quickly gets unwieldy, both in the boilerplate code defining
a particular instance, and in the large number of parameters.

A more common solution is to use dummy parameters, whereby the generic
function is “applied” to lists of qubits, which are then taken by the serialization
method as meaning arbitrary inputs. For instance, the following Quipper1 code
[10] prints out a PDF representation of inplace add2 using dummy parameters
qubit :: Qubit

print generic PDF inplace add [qubit, qubit] [qubit, qubit].

The use of dummy parameters is partly a question of style, though it can
cause problems when combining optimizations with initialized dummy parame-
ters. In either case, the use explicitly sized circuit families carries further benefits
to both readability and correctness [27].

1 The function inplace add2 could instead be directly generated by writing the adder
as inplace add :: QData qa => qa -> qa -> Circ (), then specializing qa to the
finite type (Qubit, Qubit) using type applications. However, the non-generic serial-
ization functions in Quipper appear to work only for small finite tuple types.
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1.2 Organization

The remainder of this paper is organized as follows. Section 2 gives a brief
overview of quantum computing. Section 3 reviews the openQASM language and
defines a formal semantics for it. Sections 4 and 5 extend openQASM with types
and metaprogramming capabilities, and finally Sect. 6 concludes the paper.

2 Quantum Computing

We give a brief overview of the basics of quantum computing. For a more in-
depth introduction of quantum computation we direct the reader to [25], while
an overview of quantum programming can be found in [8].

In the circuit model, the state of an n-qubit quantum system is described as
a unit vector in a dimension 2n complex vector space. The 2n elementary basis
vectors form the computational basis, and are denoted by |x〉 for bit strings
x ∈ {0, 1}n – these are called the classical states. A general quantum state may
then be written as a superposition of classical states

|ψ〉 =
∑

x∈Fn
2

αx|x〉,

for complex αx and having unit norm. The states of two n and m qubit quantum
systems |ψ〉 and |ψ〉 may be combined into an n + m qubit state by taking their
tensor product |ψ〉 ⊗ |ψ〉. If to the contrary the state of two qubits cannot be
written as a tensor product the two qubits are said to be entangled.

Quantum circuits, in analogy to classical circuits, carry qubits from left to
right along wires through gates which transform the state. In the unitary circuit
model gates are required to implement unitary operators on the state space –
that is, quantum gates are modelled by complex-valued matrices U satisfying
UU† = U†U = I, where U† is the complex conjugate of U . As a result, unitary
quantum computations must be reversible, and in particular the quantum circuits
performing classical computations are precisely the set of reversible circuits.

The standard universal quantum gate set, known as Clifford+T , consists
of the two-qubit controlled-NOT gate (CNOT), and the single-qubit Hadamard
(H) and T gates. As quantum circuits implement linear operators, we may define
the above three gates by their effect on classical states:

CNOT|x〉|y〉 = |x〉|x ⊕ y〉, T |x〉 = e
2πi
8 x|x〉,

H|x〉 =
1√
2

∑

x′∈{0,1}
(−1)x·x′ |x′〉.

Figure 1 gives a pictorial representation of a quantum circuit over CNOT, H,
and T gates. CNOT gates are written as a solid dot on their first argument and
an exclusive-OR symbol (⊕) on their second argument.

More general quantum operations include qubit initialization and measure-
ment, which effectively convert between classical and quantum data. As neither
operation is unitary and hence not (directly) reversible, we regard them as func-
tions of the classical computer rather than gates in a quantum circuit.
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T • • T •
T T † • •

H T T † • T † • H

Fig. 1. An example of a quantum circuit implementing the Toffoli gate.

3 openQASM

The open quantum assembly language (openQASM [6]) is a low-level, untyped
imperative quantum programming language, developed as a dialect of the infor-
mal QASM language. One of the key additions of the openQASM language is
that of modularity, in the form of a simple module and import system. As this
work is largely concerned with the question of making this modularity more pow-
erful – specifically, to support the modular definition of entire circuit families –
we first give a brief overview of the openQASM language.

The official specification of openQASM can be found in [6]. Programs in
openQASM are structured as sequences of declarations and commands. Pro-
grammers can declare statically-sized classical or quantum registers, define uni-
tary circuits (called gates in openQASM), apply gates or circuits, measure or
initialize qubits and condition commands on the value of classical bits. Gate
arguments are restricted to individual qubits, where the application of gates to
one or more register of the same size is syntactic sugar for the application of a
single gate in parallel across the registers. The listing below gives an example of
an openQASM program performing quantum teleportation:

OPENQASM 2.0;
qreg q[3];
creg c0[1];
creg c1[1];

h q[1];
cx q[1],q[2];
cx q[0],q[1];
h q[0];
measure q[0] -> c0[0];
measure q[1] -> c1[0];
if(c0==1) z q[2];
if(c1==1) x q[2];

We give a slightly different syntax from the above, and from the concrete
syntax [6], as it will be more convenient and readable for our purposes. As
is common in imperative languages, we leave some of the concrete syntactic
classes of openQASM [6] separate in our formalization – since all operations
in openQASM nominally have unit type, this allows terms with unitary and
non-unitary effects to be distinguished, without relying on an effect system or
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Identifier x
Index I ::= i ∈ N

Expression E ::= x | x[I]
Unitary Stmt U ::= cx(E1, E2) | h(E) | t(E) | tdg(E) | E(E1, . . . , En) | U1; U2

Command C ::= creg x[I] | qreg x[I] | gate x(x1, . . . , xn) { U }
| measure E1 -> E2 | reset E | U
| if(E==I) { U } | C1; C2

Location l ∈ N

Value V ::= (l0, . . . , lI−1) | λx1, . . . , xn.U

Fig. 2. openQASM (abstract) syntax

monadic types. In particular, terms of the class U of unitary statements represent
computations with purely unitary effects, while commands C may have non-
unitary effects, such as measurement. Statements of the form

E(E1, . . . , En)

represent the application of a unitary gate or named circuit E to the (quantum)
arguments E1 through En. While the openQASM specification includes built-
in cx (controlled-NOT) and parametrized single qubit gates U, we drop the
parametrized U gate in favour of built-in Hadamard and T/T † gates h and t/tdg,
respectively (Fig. 2).

The commands creg, qreg and gate declare classical registers, quantum
registers, and unitary circuits, respectively. The if statement differs from the
formal openQASM definition by testing the value of a single classical bit, rather
than a classical register – this was done to simplify the semantics of the language.
Locations l and values V do not appear directly in openQASM programs, but are
used to define the semantics. In particular, values of the form (l0, . . . , lI−1) denote
registers and λx1, . . . , xn.U denote unitary circuits. We leave out a number of
features of openQASM which are orthogonal to the extensions we describe here,
namely classical arithmetic and the barrier and opaque terms. We also write
parentheses around arguments and parameters.

As no formal semantics of openQASM is given in [6], we define an operational
semantics in Fig. 3. Our semantics is defined with respect to a configuration
〈S, σ, η, |ψ〉〉, which stores a term S taken from some syntactic class (e.g., C, U ,
E), an environment σ which maps variables to values, a classical heap η storing
the value of the classical bits, and a quantum state |ψ〉. Gates applied to qubit l
of a quantum state are written by added a subscript to the intended gate, e.g.,

Hl|ψ〉 = (I⊗l−1 ⊗ H ⊗ I⊗n−l)|ψ〉

σ[x ← v] denotes the environment mapping x to v or σ(x) otherwise, and
S{X/x} denotes the substitution of X for x in S. We assume for convenience
that no valid program will run out of classical memory or quantum bits. We say
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〈S, σ, η, |ψ〉〉 ⇓ v if S reduces to v, where the form of v depends on the syntactic
class of S – for instance, expressions evaluate to locations, arrays or circuits
while commands produce a new environment, heap and quantum state. Note
that we use a call-by-name evaluation strategy, as openQASM has only globally
scoped variables.

Expressions:

x ∈ dom(σ)
〈x, σ, η, |ψ〉〉 ⇓ σ(x)

〈x, σ, η, |ψ〉〉 ⇓ (l0, . . . , lI′) I ≤ I ′

〈x[I], σ, η, |ψ〉〉 ⇓ lI

Unitary statements:

〈E, σ, η, |ψ〉〉 ⇓ l

〈h(E), σ, η, |ψ〉〉 ⇓ Hl|ψ〉
〈E, σ, η, |ψ〉〉 ⇓ l

〈t(E), σ, η, |ψ〉〉 ⇓ Tl|ψ〉
〈E, σ, η, |ψ〉〉 ⇓ l

〈tdg(E), σ, η, |ψ〉〉 ⇓ T †
l |ψ〉

〈E1, σ, η, |ψ〉〉 ⇓ l1 〈E2, σ, η, |ψ〉〉 ⇓ l2

〈cx(E1, E2), σ, η, |ψ〉〉 ⇓ CNOTl1,l2 |ψ〉

〈E, σ, η, |ψ〉〉 ⇓ λx1, . . . , xn.U,
〈U{E1/x1, . . . , En/xn}, σ, η, |ψ〉〉 ⇓ |ψ′〉

〈E(E1, . . . , En), σ, η, |ψ〉〉 ⇓ |ψ′〉
〈U1, σ, η, |ψ〉〉 ⇓ |ψ′〉 〈U2, σ, η, |ψ′〉〉 ⇓ |ψ′′〉

〈U1; U2, σ, η, |ψ〉〉 ⇓ |ψ′′〉
Commands:

l0, . . . , lI−1 are fresh heap indices
〈creg x[I], σ, η, |ψ〉〉 ⇓ 〈σ[x ← (l0, . . . , lI−1)], η, |ψ〉〉

l0, . . . , lI−1 are fresh qubit indices
〈qreg x[I], σ, η, |ψ〉〉 ⇓ 〈σ[x ← (l0, . . . , lI−1)], η, |ψ〉〉

〈gate x(x1, . . . , xn) { U }, σ, η, |ψ〉〉 ⇓ 〈σ[x ← λx1, . . . , xn.U ], η, |ψ〉〉
〈E1, σ, η, |ψ〉〉 ⇓ l1 〈E2, σ, η, |ψ〉〉 ⇓ l2

〈measure E1 -> E2, σ, η, |ψ〉〉 ⇓ 〈σ, η[l2 ← 0], P 0
l1 |ψ〉〉

〈E1, σ, η, |ψ〉〉 ⇓ l1 〈E2, σ, η, |ψ〉〉 ⇓ l2

〈measure E1 -> E2, σ, η, |ψ〉〉 ⇓ 〈σ, η[l2 ← 1], P 1
l1 |ψ〉〉

〈E, σ, η, |ψ〉〉 ⇓ l

〈reset E, σ, η, |ψ〉〉 ⇓ 〈σ, η, P 0
l |ψ〉〉

〈E, σ, η, |ψ〉〉 ⇓ l η(l) �= I

〈if(E==I) { U }, σ, η, |ψ〉〉 ⇓ 〈σ, η, |ψ〉〉
〈E, σ, η, |ψ〉〉 ⇓ l η(l) = I

〈U, σ, η, |ψ〉〉 ⇓ |ψ′〉
〈if(E==I) { U }, σ, η, |ψ〉〉 ⇓ 〈σ, η, |ψ′〉〉

〈C1, σ, η, |ψ〉〉 ⇓ 〈σ′, η′, |ψ′〉〉 〈C2, σ
′, η′, |ψ′〉〉 ⇓ 〈σ′′, η′′, |ψ′′〉〉

〈C1; C2, σ, η, |ψ〉〉 ⇓ 〈σ′′, η′′, |ψ′′〉〉

Fig. 3. openQASM semantics
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Base types β ::= Bit | Qbit
Types τ ::= β | β[I] | Circuit(τ1, . . . , τn)

Command C ::= . . . | creg x[I] in { C } | qreg x[I] in { C }
| gate x(x1 : τ1, . . . , xn : τn) { U } in { C }

Fig. 4. typedQASM specification

Rather than give a full probabilistic reduction system to account for mea-
surement probabilities, it suffices for our purposes to make the semantics non-
deterministic. In particular, rules are given for both of the possible measurement
outcomes in measure E1 -> E2, setting the classical bit to the result c ∈ {0, 1}
and non-destructively applying the projector P c = |c〉〈c| (appropriately normal-
ized) to the measured qubit.

4 Adding Types to QASM

Run-time errors may occur in syntactically valid openQASM programs in a num-
ber of ways – particularly when either an array access is out of bounds and the
program halts, or a classical (resp. quantum) location is used in a context when
a quantum (resp. classical) location is expected. In the official openQASM spec-
ification, the latter error is eliminated by the requirement that only (global)
variables can be declared as quantum registers may be used as arguments to
gates, for instance. In either case however, it is desirable to check that an open-
QASM program will not go wrong, as circuit simulations are frequently run on
large, expensive supercomputers (e.g., [13]).

In this section we developed a typed variant of openQASM, called type-
dQASM, which provably rules out such runtime errors. Moreover, the type system
uses sized types to eliminate out-of-bound accesses, which we later develop into the
core of our metaprogramming type system. The use of a type system in this case
actually allows more valid programs to be written than the standard openQASM
specification, as the type system allows us to remove some syntactic distinctions
and instead make them in the type system. In particular, our type system allows
registers and circuits to be passed as functions to other circuits, whereas the for-
mal specification restricts circuit arguments to only individual qubits.

Figure 4 gives the syntax of typedQASM. We only show the syntactic ele-
ments which are different from openQASM or otherwise new. To simplify our
analysis, declarations are given explicit block scope, though we leave textual
examples in the regular openQASM style of declaration. As the semantics of
typedQASM is effectively identical, modulo the block scoping, to openQASM
we don’t explicitly give the semantics.
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4.1 The Type System

Figure 5 gives the rules of our type system. As is standard, the judgement Γ 

S : τ states that in the context Γ consisting of pairs of identifiers and types,
S can be assigned type τ . We overload 
 to allow environment judgements of
the form 
 σ : Γ stating that the σ maps identifiers x to values of the type τ if
x : τ ∈ Γ .

Environment:

	 · : ·
	 σ : Γ

	 σ[x ← (l0, . . . , lI−1)] : Γ, x : β[I]
	 σ : Γ Γ, x1 : τ1, . . . , xn : τn 	 U : Unit

	 σ[x ← λx1 : τ1, . . . , xn : τn.U ] : Γ, x : Circuit(τ1, . . . , τn)

Expressions:

x : τ ∈ Γ
Γ 	 x : τ

Γ 	 x : β[I ′] I ≤ I ′ − 1
Γ 	 x[I] : β

Γ 	 E : β[I ′] I ≤ I ′

Γ 	 E : β[I]

Unitary statements:

Γ 	 E1 : Qbit Γ 	 E2 : Qbit
Γ 	 cx(E1, E2) : Unit

Γ 	 E : Qbit g ∈ {h, t, tdg}
Γ 	 g(E) : Unit

Γ 	 E : Circuit(τ1, . . . , τn)
Γ 	 E1 : τ1 · · · Γ 	 En : τn

Γ 	 E(E1, . . . , En) : Unit
Γ 	 U1 : Unit Γ 	 U2 : Unit

Γ 	 U1; U2 : Unit

Commands:

Γ, x : Bit[I] 	 C : Unit
Γ 	 creg x[I] in { C } : Unit

Γ, x : Qbit[I] 	 C : Unit
Γ 	 qreg x[I] in { C } : Unit

Γ, x1 : τ1, . . . , xn : τn 	 U : Unit Γ, x : Circuit(τ1, . . . , τn) 	 C : Unit
Γ 	 gate x(x1 : τ1, . . . , xn : τn) { U } in { C } : Unit
Γ 	 E1 : Qbit Γ 	 E2 : Bit
Γ 	 measure E1 -> E2 : Unit

Γ 	 E : Qbit
Γ 	 reset E : Unit

Γ 	 E : Bit Γ 	 U : Unit
Γ 	 if(E==I) { U } : Unit

Γ 	 C1 : Unit Γ 	 C2 : Unit
Γ 	 C1; C2 : Unit

Fig. 5. typedQASM typing rules

The type system of typedQASM is mostly as expected, with the exception of
static-length registers and register bounds checks in the typing rules for deref-
erences. To give the programmer flexibility to apply gates and circuits to just
parts of a larger register – for instance, when performing an n-bit addition into
a length 2n register as in binary multiplication – the type system also implic-
itly supports subtyping of static length registers. Specifically, any length I array
can be used in a context requiring at most I cells. While this adds a great deal
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of flexibility on the side of the programmer, as a downside typedQASM typing
derivations are not unique.

As an example of a well-typed QASM program, we show an implementation
of the Toffoli circuit from Fig. 1 below:

gate toffoli(x:Qbit , y:Qbit , z:Qbit) {
h(z);
t(x); t(y); t(z);
cx(x,y); cx(x,z);
tdg(y); tdg(z);
cx(y,z); cx(z,x);
t(x); tdg(z);
cx(z,x); cx(x,y); cx(y,z);
h(z)

}

4.2 Type Safety

We now briefly sketch a proof of type safety for typedQASM. In particular, we
show that typedQASM is strongly normalizing, as expected.

As is standard, we establish strong normalization by giving type preserva-
tion and progress lemmas. While type preservation is effectively implicit in the
semantics of typedQASM due to the different syntactic classes, expressions may
return different types of values and so we give a form of type preservation for
such terms.

Lemma 1 (Preservation (expressions)). If Γ 
 E : τ , 
 σ : Γ and
〈E, σ, η, |ψ〉〉 ⇓ v, then either

– τ = β and v = l for some base type β & location l,
– τ = β[I] and v = (l0, . . . , lI′) where I ′ ≥ I, or
– τ = Circuit(τ1, . . . , τn) and v = λx1 : τ1, . . . , xn : τn.U .

Proof. If τ = β then we must have E = x[I], hence by the definition of ⇓,
v = l. Likewise if τ = β[I] then we must have E = x where x : β[I ′] ∈ Γ
for some I ′ ≥ I, and since 
 σ : Γ then v = σ(x) = (l0, . . . , lI′). The case for
τ = Circuit(τ1, . . . , τn) is similar.

The following lemmas give progress properties – the fact that for a well-typed
program, evaluation can always continue – for the different syntactic classes of
typedQASM. Together with type preservation, the result is that any well-typed
typedQASM program evaluates to a value, i.e. that typedQASM is strongly
normalizing.
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Lemma 2 (Progress (expressions)). If Γ 
 E : τ and 
 σ : Γ , then for any
η, |ψ〉, 〈E, σ, η, |ψ〉〉 ⇓ v.

Proof. By case analysis on E. If E = x the proof is trivial, as x : τ ∈ Γ by
inversion and 
 σ : Γ implies x ∈ dom(x). If on the other hand E = x[I], we
must have x : β[I ′] ∈ Γ for some I ′ > I. Then by preservation, 〈x, σ, η, |ψ〉〉 ⇓
(l0, . . . , lI′′) for some I ′′ ≥ I ′ − 1, hence 〈x, σ, η, |ψ〉〉 ⇓ lI .

Lemma 3 (Progress (unitary stmts)). If Γ 
 U : Unit and 
 σ : Γ , then
for any η, |ψ〉, 〈U, σ, η, |ψ〉〉 ⇓ |ψ′〉.
Proof. For the case U = E(E1, . . . , En), by the typing derivation we have
Γ 
 E : Circuit(τ1, . . . , τn) so by progress and preservation for expressions,
〈E, σ, η, |ψ〉〉 ⇓ λx1 : τ1, . . . , xn : τn.U . By the substitution lemma below,
Γ 
 U{E1/x1, . . . , En/xn} : Unit and hence we can structural induction to
show that 〈U, σ, η, |ψ〉〉 ⇓ |ψ′〉.
Lemma 4 (Substitution). If Γ, x1 : τ1, . . . , xn : τn 
 U : Unit, and Γ 
 Ei : τi
for each 1 ≤ i ≤ n then Γ 
 U{E1/x1, . . . , En/xn} : Unit.

Lemma 5 (Progress (commands)). If Γ 
 C : Unit and 
 σ : Γ , then for
any η, |ψ〉, 〈C, σ, η, |ψ〉〉 ⇓ 〈σ′, η′, |ψ′〉〉.
Proof. Proof by induction on the structure of C. We show one case:

C = gate x(x1 : τ1, . . . , xn : τn) { U } in { C }

We know that

〈gate x(x1 : τ1, . . . , xn : τn) { U }, σ, η, |ψ〉〉 ⇓ 〈σ[x ← λx1, . . . , xn.U ], η, |ψ〉〉.
By the typing derivation, Γ, x1 : τ1, . . . , xn : τn 
 U : Unit and Γ, x :
Circuit(τ1, . . . , τn) 
 C : Unit. It then follows that


 σ[x ← λx1 : τ1, . . . , xn : τn.U ] : Γ, x : Circuit(τ1, . . . , τn),

and hence we can apply the inductive hypothesis to complete the case.
The remaining cases are similar.

Theorem 1 (Strong normalization). If 
 C : Unit, then

〈C, ∅, λl.0, |00 · · · 〉〉 ⇓ 〈σ, η, |ψ〉〉.

Proof. Direct consequence of Lemma 5.
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5 MetaQASM

Now that we have a safe, array-bounds-checked, typed language, we can add
metaprogramming features. In particular, we wish to support2

– circuit inversion/reversal, and
– circuits parametrized by sizes.

While the latter could be accomplished in an ad-hoc way, allowing type-level
integers allows for more safety in that array bounds can be statically checked,
and increases the readability of programs. Moreover, it enforces a clear separa-
tion between circuits and families of circuits, which naturally support different
operations – for instance, a family of circuits can’t easily be visualized diagram-
matically, while a particular instance can [27].

Types τ ::= . . . | Family(y1, . . . , ym)(τ1, . . . , τn)
Index I ::= . . . | y | ∞ | I1 + I2 | I1 − I2 | I1 · I2
Range ι ::= [I1,I2]

Expression E ::= . . . | instance(I1, . . . , Im) E
Unitary Stmt U ::= . . . | reverse U | for y = I1..I2 do { U }

Command C ::= . . . | family(y1, . . . , ym) x(x1 : τ1, . . . , xn : τn) { U } in { C }
Value V ::= . . . | Πy1, . . . , ym.V

Fig. 6. metaQASM syntax

Figure 6 gives the new syntax for metaQASM. Indices I are extended with
index variables y and integer arithmetic, and a new syntactic form defining a
family of quantum circuits parametrized over index variables is given. The index
∞ only exists in the process of type checking and is not valid syntax in source
code. Intuitively, the declaration

family(y1, . . . , ym) x(x1 : τ1, . . . , xn : τn) { U } in { C }

introduces index variables y1, . . . , ym into the evaluation and type checking con-
texts for τi and U .

Figure 7 gives the semantics of the new syntax. Since index variables cannot
be modified or captured, we use a substitution style of evaluation for circuit
families. The reverse command introduces a new reduction relation 〈U, σ, |ψ〉〉 ⇑
v for which reduction of U is inverted. We give a concrete semantics rather than
an abstract rule such as

2 Controlled circuits are another desirable metaprogramming feature found in many
quantum circuit description languages. While metaQASM gates are in fact closed
over qubit controls, they require ancillae to construct [21]. This complicates the
inclusion of a control instruction in metaQASM, and further abstracts away from
concrete, resource-driven nature of QASM.
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〈U, σ, η, |ψ′〉〉 ⇓ |ψ〉
〈reverse U, σ, η, |ψ〉〉 ⇓ |ψ′〉

so that metaQASM has a concrete execution model. Inversion of circuits is
straightforward in metaQASM, as in any closed context a unitary statement
can be statically unrolled to a finite sequence of gates.

As an illustration of metaprogramming in metaQASM, Fig. 8 gives
metaQASM code for a simple (non-garbage-cleaning) adder. Our syntax (and
type system) also allows an instance of a family of circuits to accept other cir-
cuit families as arguments, a useful feature which allows circuit families to be
parametric in the implementation of a sub-routine as shown below (using a minor
syntax extension to allow array slicing).

family(n) mult(x:Qbit[n], y:Qbit[n], z:Qbit [2*n],
anc:Qbit , ctrlAdd:Family(m)

(x:Qbit , y:Qbit[m], z:Qbit[m], c:Qbit))
{

for i=0..n-1 do {
instance(n) ctrlAdd(x[i], y, z[i..i+n-1], anc)

}
}

By extending our syntax with parametrized gates as in regular openQASM,
we can also define a parametrized family of circuits computing the quantum
Fourier transform as in [27].

include "cphase.qasm";
family(n) qft(x:Qbit[n]) {

for i=0..n-1 do {
h(x[i]);
for j=i+1..n-1 do {

cphase(j -1+1)(x[i], x[j])
}

}
}

5.1 Type System

The type system of metaQASM is inspired by Dependent ML [34]. Figure 9 gives
the rules of our system. Type rules are defined over two contexts Δ;Γ , where Δ
contains interval constraints on index variables.
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Indices:

〈i, σ, η, |ψ〉〉 ⇓ i

〈I1, σ, η, |ψ〉〉 ⇓ i1 〈I2, σ, η, |ψ〉〉 ⇓ i2 � ∈ {+, −, ·}
〈I1 � I2, σ, η, |ψ〉〉 ⇓ i1 � i2

Expressions:

〈E, σ, η, |ψ〉 ⇓ Πy1, . . . , ym.λx1 : τ1, . . . , xn : τn.U

〈instance(I1, . . . , Im) E, σ, η, |ψ〉 ⇓ (λx1 : τ1, . . . , xn : τn.U){I1/y1, . . . , Im/ym}
Unitary statements:

〈U, σ, η, |ψ〉〉 ⇑ |ψ′〉
〈reverse U, σ, η, |ψ〉〉 ⇓ |ψ′〉

〈I1, σ, η, |ψ〉〉 ⇓ i1 〈I2, σ, η, |ψ〉〉 ⇓ i2 i1 > i2

〈for y = I1..I2 do { U }, σ, η, |ψ〉〉 ⇓ |ψ〉
〈I1, σ, η, |ψ〉〉 ⇓ i1 〈I2, σ, η, |ψ〉〉 ⇓ i2 i1 ≤ i2

〈U{i1/y}, σ, η, |ψ〉〉 ⇓ |ψ′〉
〈for y = i1 + 1..i2 do { U }, σ, η, |ψ′〉〉 ⇓ |ψ′′〉

〈for y = I1..I2 do { U }, σ, η, |ψ〉〉 ⇓ |ψ′′〉
Reverse reduction:

〈E, σ, η, |ψ〉〉 ⇓ l

〈h(E), σ, η, |ψ〉〉 ⇑ Hl|ψ〉
〈E, σ, η, |ψ〉〉 ⇓ l

〈t(E), σ, η, |ψ〉〉 ⇑ T †
l |ψ〉

〈E, σ, η, |ψ〉〉 ⇓ l

〈tdg(E), σ, η, |ψ〉〉 ⇑ Tl|ψ〉

〈E1, σ, η, |ψ〉〉 ⇓ l1 〈E2, σ, η, |ψ〉〉 ⇓ l2

〈cx(E1, E2), σ, η, |ψ〉〉 ⇑ CNOTl1,l2 |ψ〉

〈E, σ, η, |ψ〉〉 ⇓ λx1, . . . , xn.U,
〈U{E1/x1, . . . , En/xn}, σ, η, |ψ〉〉 ⇑ |ψ′〉

〈E(E1, . . . , En), σ, η, |ψ〉〉 ⇑ |ψ′〉
〈U2, σ, η, |ψ〉〉 ⇑ |ψ′〉 〈U1, σ, η, |ψ′〉〉 ⇑ |ψ′′〉

〈U1; U2, σ, η, |ψ〉〉 ⇑ |ψ′′〉
〈U, σ, η, |ψ〉〉 ⇓ |ψ′〉

〈reverse U, σ, η, |ψ〉〉 ⇑ |ψ′〉
〈I1, σ, η, |ψ〉〉 ⇓ i1 〈I2, σ, η, |ψ〉〉 ⇓ i2 i2 > i1

〈for y = I1..I2 do { U }, σ, η, |ψ〉〉 ⇑ |ψ〉
〈I1, σ, η, |ψ〉〉 ⇓ i1 〈I2, σ, η, |ψ〉〉 ⇓ i2 i2 ≥ i1

〈U{i2/y}, σ, η, |ψ〉〉 ⇑ |ψ′〉
〈for y = i1..i2 − 1 do { U }, σ, η, |ψ′〉〉 ⇑ |ψ′′〉

〈for y = I1..I2 do { U }, σ, η, |ψ〉〉 ⇑ |ψ′′〉
Commands:

〈C, σ[x ← Πy1, . . . , ym.λx1 : τ1, . . . , xn : τn.U ], η, |ψ〉〉 ⇓ 〈σ′, η′, |ψ′〉〉
〈family(y1, . . . , ym) x(x1 : τ1, . . . , xn : τn) { U } in { C }, σ, η, |ψ〉〉 ⇓ 〈σ, η′, |ψ′〉〉

Fig. 7. metaQASM semantics

As with typedQASM, array bounds are checked and subtyping on array
lengths is allowed. Integer expressions are assigned intervals which may be arbi-
trary (well-formed) integer expressions. The judgement Δ |= P which appears
in the typing rules for integer expressions denotes that under the context Δ,
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include "toffoli.qasm";

gate maj(a:Qbit , b:Qbit , c:Qbit , res:Qbit) {

toffoli(b, c, res);

cx(b, c);

toffoli(a, c, res);

cx(b, c)

}

family(n) add(a:Qbit[n], b:Qbit[n], c:Qbit[n], anc:Qbit[n]) {

cx(a[0], c[0]);

cx(b[0], c[0]);

toffoli(a[0], b[0], anc [0]);

for i=1..n-1 do {

cx(a[i], c[i]);

cx(b[i], c[i]);

cx(anc[i-1], c[i]);

maj(a[i], b[i], anc[i-1], anc[i])

}

}

Fig. 8. metaQASM implementation of a carry-ripple adder.

the (in)equality P holds. We leave a particular constraint solver up to imple-
mentation. It remains an open question whether undecidable constraints can
be generated by our type system, though in practice it appears most common
constraints can be efficiently solved with off-the-shelf constraint solvers [34].

The type system of Fig. 9 also involves kind judgements of the form

Δ 
 τ ::∗
stating that τ is a simple type in the index context Δ. While the rules of our
kind system are not given here, it is straightforward to derive. In particular, τ
has kind ∗ if τ does not reference any free index variables, and does not contain
any registers of negative length.

Remark 1. The fact that metaQASM has no means of specifying and checking
relational properties on indices causes some programs to require counter-intuitive
type schemes. For instance, the following n-bit adder is not well-typed due to the
statement toffoli(x[n-2], ctrl, y[n-1]), though it does not cause run-time
errors when n ≥ 2.
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include "toffoli.qasm";
family(n) ctrlAdd(ctrl:Qbit , x:Qbit[n],

y:Qbit[n], c:Qbit) {
toffoli(x[0], ctrl , y[0]);
cx(x[0], c);
toffoli(c, y[0], x[0]);
for i=1..n-2 do {

toffoli(x[i], ctrl , y[i]);
cx(x[i-1], x[i]);
toffoli(x[i-1], y[i], x[i])

}
toffoli(x[n-1], ctrl , y[n -1]);
toffoli(x[n-2], ctrl , y[n -1]);
for i=2..n-1 do {

toffoli(x[n-i-1], y[n-i], x[n-i]);
cx(x[n-i-1], x[n-i]);
toffoli(x[n-i-1], ctrl , y[n-i])

}
toffoli(c, y[0], x[0]);
cx(x[0], c);
toffoli(c, ctrl , y[0])

}

The above adder can modified [7] to a well-typed program by using m = n − 2
as the parameter, effectively specifying the number of entries greater than 2 that
the input registers contain. The program snippet below gives the declaration
required to make the controlled Adder implementation (with appropriate re-
indexing) well-typed.

family(m) ctrlAdd(ctrl:Qbit , x:Qbit[m+2],
y:Qbit[m+2], c:Qbit)

In most practical cases appropriate parameters can be given so as to allow a
well-typed implementation of a circuit family. However, the family parameters
can be counter-intuitive, and more egregiously it can be unclear as to how to
generate an intended instance. We leave it as an avenue for future work to add
specification and checking of bounds and relational properties to metaQASM.

5.2 Type Safety

As in the case of typedQASM, metaQASM is strongly normalizing, due to the
lack of recursion and unbounded loops. Progress relies on the fact that during
the course of evaluation, no free index variables are encountered – hence any
term encountered by an interpreter is well-typed in the empty index context,
and in particular indices can be evaluated to finite integers, as shown below.

Lemma 6. If · 
 I : [I1, I2], then 〈I, σ, η, |ψ〉〉 ⇓ i.
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Indices:

Δ 	 i : [i, i]
y : [I1, I2] ∈ Δ

Δ 	 y : [I1, I2]
Δ 	 I : [I1, I2] Δ |= I ′

1 ≤ I1 Δ |= I ′
2 ≥ I2

Δ 	 I : [I ′
1, I

′
2]

Δ 	 I : [I1, I2] Δ 	 I ′ : [I ′
1, I

′
2]

Δ 	 I + I ′ : [I1 + I ′
1, I2 + I ′

2]
Δ 	 I : [I1, I2] Δ 	 I ′ : [I ′

1, I
′
2]

Δ 	 I − I ′ : [I1 − I ′
1, I2 − I ′

2]
Δ 	 I : [I1, I2] Δ 	 I ′ : [I ′

1, I
′
2]

Δ |= I ′′
1 = min(I1 · I ′

1, I1 · I ′
2, I2 · I ′

1, I2 · I ′
2)

Δ |= I ′′
2 = max(I1 · I ′

1, I1 · I ′
2, I2 · I ′

1, I2 · I ′
2)

Δ 	 I · I ′ : [I ′′
1 , I ′′

2 ]

Expressions:

Δ;Γ 	 x : β[I ′] Δ |= 0 ≤ I < I ′

Δ;Γ 	 x[I] : β

Δ;Γ 	 E : Family(y1, . . . , ym)(τ1, . . . , τn)
Δ 	 I1 : [0, ∞] · · · Δ 	 Im : [0, ∞]

Δ;Γ 	 instance(I1, . . . , Im) E : Circuit(τ1{I1/y1, . . . , Im/ym}, . . . , τn{I1/y1, . . . , Im/ym})
Unitary statements:

Δ;Γ 	 U : Unit
Δ;Γ 	 reverse U : Unit

Δ 	 I : [I1, I2] Δ 	 I ′ : [I ′
1, I

′
2]

Δ, y : [I1, I ′
2];Γ 	 U : Unit

Δ;Γ 	 for y = I..I ′ do { U } : Unit

Commands:

Δ, y1 : [0, ∞], . . . , ym : [0, ∞] 	 τ1 :: ∗ · · · Δ, y1 : [0, ∞], . . . , ym : [0, ∞] 	 τn :: ∗
Δ, y1 : [0, ∞], . . . , ym : [0, ∞];Γ, x1 : τ1, . . . , xn : τn 	 U : Unit,

Δ;Γ, x : Family(y1, . . . , ym)(τ1, . . . , τn) 	 C : Unit
Δ;Γ 	 family(y1, . . . , ym) x(x1 : τ1, . . . , xn : τn) { U } in { C } : Unit

Fig. 9. metaQASM typing rules

Proof. Trivial since the judgement · 
 I : [I1, I2] requires that I does not contain
any variables. Note also that there is no derivation of a judgement of the form
Δ 
 ∞ : [I1, I2] hence I cannot contain any infinite integers.

The remaining lemmas are extensions of results for typedQASM. Only the
new or different cases are considered.

Lemma 7 (Preservation (expressions)). If ·;Γ 
 E : τ , 
 σ : Γ and
〈E, σ, η, |ψ〉〉 ⇓ v, then either

1. τ = β and v = l,
2. τ = β[I] and v = (l0, . . . , lI′) where I ′ ≥ I, or
3. τ = Circuit(τ1, . . . , τn) and v = λx1 : τ1, . . . , xn : τn.U
4. τ = Family(y1, . . . , ym)(τ1, . . . , τn) and

v = Πy1, . . . , ym.λx1 : τ1, . . . , xn : τn.U.
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Proof. The new Family case is effectively identical to the Circuit case. For the
case where τ = β, it suffices to note that by Lemma 6, the expressions I and I ′

in the typing derivation reduce to integers i, i′ and the proof concludes as in the
typedQASM case.

Finally we have to revise the τ = Circuit(τ1, . . . , τn) case as we now have
two possible derivations. The new case E = instance(I1, . . . , Im) E is also
trivial as the only reduction produces a value of the form λx1 : τ1, . . . , xn : τn.U .
Note that the type τ in the derivation has Ii substituted for index variables yi,
as in the conclusion of the reduction rule.

Lemma 8 (Progress (expressions)). If ·;Γ 
 E : τ and 
 σ : Γ , then for
any η, |ψ〉, 〈E, σ, η, |ψ〉〉 ⇓ v.

Proof. Again, the new case E = instance(I1, . . . , Im) E needs consideration.
By inversion we see that E : Family(y1, . . . , ym)(τ1, . . . , τn). By structural induc-
tion and the preservation lemma, 〈E′, σ, η, |ψ〉〉 ⇓ Πy1, . . . , ym.λx1 : τ1, . . . , xn :
τn.U and so 〈E, σ, η, |ψ〉〉 ⇓ v.

Lemma 9 (Progress (unitary stmts)). If ·;Γ 
 U : Unit and 
 σ : Γ , then
for any η, |ψ〉, 〈U, σ, η, |ψ〉〉 ⇓ |ψ′〉.
Proof. The case U = reverse U requires a separate progress lemma for reverse
reduction, which follows similar to progress for unitary statements.

For the remaining case U = for y = I1..I2 do { U }, it suffices to observe
that by inversion, · 
 Ii : [Ii, I ′

i] and so both bounds reduce to integers. As each
recursive call increases the lower bound I1, and I2 is necessarily finite, there
can be no infinite chains of reductions. The only condition that needs checking
is that 〈U{i1/y}, σ, η, |ψ〉〉 ⇓ |ψ′〉, for which we need the following substitution
lemma.

Lemma 10. If Δ, y : [I1, I ′
2];Γ 
 U : Unit, and Δ 
 i1 : [I1, I ′

2] then Δ;Γ 

U{i1/y} : Unit

To complete the proof, another lemma is needed stating that the result of eval-
uating an integer expression is within the bounds of the expression’s type. We
leave this as an easy exercise.

Lemma 11 (Progress (commands)). If ·;Γ 
 C : Unit and ·; · 
 σ : Γ , then
for any η, |ψ〉, 〈C, σ, η, |ψ〉〉 ⇓ 〈σ′, η′, |ψ′〉〉.
Proof. We have one new command to check,

C = family(y1, . . . , ym) x(x1 : τ1, . . . , xn : τn) { U } in { C }.

The proof in this case is effectively identical to regular gate declaration.

Theorem 2 (Strong normalization). If ·; · 
 C : Unit, then

〈C, ∅, λl.0, |00 · · · 〉〉 ⇓ 〈σ, η, |ψ〉〉.
Proof. Follows directly from Lemma 11.
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6 Conclusion

We have described a typed extension to openQASM that supports static array
bounds checking, higher-order circuits, and lightweight metaprogramming in
the form of size-indexed families of circuits. The resulting language is power-
ful enough to use for writing libraries of general quantum circuit families, such
as for reversible arithmetic, while low-level enough to be used wherever open-
QASM is used.

As this is preliminary work, much remains to be done to make metaQASM
a practical language for quantum library development. In particular, a concrete
implementation needs to be developed, as do more examples of practical circuit
families. A major question which remains is whether a decision procedure for
the simple, non-linear integer constraints generated by our type system exists.

Another interesting question for future work is whether parametrized resource
counts for algorithms can be computed directly from metaQASM programs. In
particular, a desirable feature would be to compute closed-form formulas for
the number of qubits, gates, etc., in an arbitrary instance of a circuit family,
so that different implementations of the same circuit family can be analytically
compared for any instance size. Doing so would help not only with resource
estimation, but also compilation by allowing compilers to automatically select
the best implementation for a particular cost model.

Acknowledgements. The author wishes to thank Gregor Richards for motivating
this project and Frank Fu for pointing out alternative ways of typing several examples
in this manuscript. The author also wishes to thank the anonymous reviewers for their
detailed comments which have vastly improved the presentation of this work.

References

1. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approx-
imating the jones polynomial. In: Proceedings of the Thirty-Eighth Annual ACM
Symposium on Theory of Computing, STOC, pp. 427–436 (2006). https://doi.org/
10.1145/1132516.1132579

2. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:
20th Annual IEEE Symposium on Logic in Computer Science, LICS, pp. 249–258
(2005). https://doi.org/10.1109/LICS.2005.1

3. Amy, M.: Feynman. https://github.com/meamy/feynman
4. Amy, M., Roetteler, M., Svore, K.M.: Verified compilation of space-efficient

reversible circuits. In: Proceedings of the 29th International Conference on Com-
puter Aided Verification, CAV, pp. 3–21 (2017). https://doi.org/10.1007/978-3-
319-63390-9 1

5. Bello, L., et al.: Qiskit. https://github.com/Qiskit/qiskit-terra
6. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly

language. arXiv preprint (2017). http://arxiv.org/abs/1707.03429
7. Fu, P.: Private communication (2018)
8. Gay, S.J.: Quantum programming languages: survey and bibliography.

Math. Struct. Comput. Sci. 16(4), 581–600 (2006). https://doi.org/10.1017/
S0960129506005378

https://doi.org/10.1145/1132516.1132579
https://doi.org/10.1145/1132516.1132579
https://doi.org/10.1109/LICS.2005.1
https://github.com/meamy/feynman
https://doi.org/10.1007/978-3-319-63390-9_1
https://doi.org/10.1007/978-3-319-63390-9_1
https://github.com/Qiskit/qiskit-terra
http://arxiv.org/abs/1707.03429
https://doi.org/10.1017/S0960129506005378
https://doi.org/10.1017/S0960129506005378


106 M. Amy

9. Gheorghiu, V.: Quantum++: a modern C++ quantum computing library. PLoS
ONE 13(12), 1–27 (2018). https://doi.org/10.1371/journal.pone.0208073

10. Green, A.S., Lumsdaine, P.L.F., Ross, N.J., Selinger, P., Valiron, B.: An introduc-
tion to quantum programming in Quipper. In: Dueck, G.W., Miller, D.M. (eds.)
RC 2013. LNCS, vol. 7948, pp. 110–124. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38986-3 10

11. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scal-
able quantum programming language. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2013,
pp. 333–342 (2013). https://doi.org/10.1145/2491956.2462177

12. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC, pp. 212–219 (1996). https://doi.org/10.1145/237814.237866
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Abstract. We present a state-saving approach to reversible execution
of imperative programs containing parallel composition. Given an origi-
nal program, we produce an annotated version of the program that both
performs forwards execution and all necessary state-saving of required
reversal information. We further produce an inverted version of our pro-
gram, capable of using this saved information to reverse the effects of
each step of the forwards execution. We show that this process imple-
ments correct and garbage-free inversion. We give examples of how our
implementation of reversible execution can be used for debugging, and
demonstrate how a simulation tool we have developed for our approach
can be used to examine the program state. Finally, we evaluate the per-
formance and overheads associated with state-saving and inversion.

Keywords: Reversible computation · Debugging ·
Parallel composition · Imperative language · Inversion

1 Introduction

Reversible computation has been an area of increasing interest for many years.
Reversible execution is the ability to undo the effects of running a program,
and requires the majority of information to be preserved throughout the exe-
cution. This offers many benefits, including the suggestion within the Landauer
principle [12] that not losing any information could lead to energy-efficient com-
putation. Throughout this work we will explore the application to debugging.

An introduction into debugging and software bugs is provided by Zeller [28].
One common type of debugging, named cyclic debugging, is to run and re-run a
program experiencing a bug. Each such run is used to observe different parts of
the program state, typically using print operations. Doing so allows the first time
an incorrect state occurs to be found, and can subsequently be repeated to find
the original defect. This works well for deterministic sequential programs (i.e.
no I/O etc.), since there is one possible execution path that must be followed
each time. Parallel programs however do not share this property, as the random
interleaving of two or more programs can produce several distinct execution
paths. Interaction with shared memory by parallel programs may lead to races,
where the components of a parallel compete to update shared memory locations.
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As a result, it becomes much harder to reproduce the original failure, and intro-
duces the potential for software bugs that appear and disappear among different
execution paths (Heisenbugs [28]), deadlocks and atomicity/order violations.

With cyclic debugging not being suitable for parallel programs, other
approaches have been developed. Record replay debuggers serialize a specific
execution, and use this to force future runs to behave identically, meaning bugs
can be reproduced [16]. Reversible debugging is described by Engblom [3], and
is another alternative that has the ability to step backwards over an execution
experiencing an error [1]. This avoids the issue of reproducing an error as no re-
execution is required. Some approaches use forward execution from checkpoints
to simulate moving backwards [4], while others, such as the Reverse C Compiler
(RCC) [17] and our approach presented here, produce an inverted program that
executes forwards but simulates reversal. Such approaches will typically reverse
an execution in backtracking order, where steps of the execution are undone in
exactly the inverted order of the forwards execution. Recently, some proposed
solutions use causal-consistent reversibility [2,6,13], where a step of an execution
can be reversed provided all steps that causally depend on it (consequences) have
already been reversed. A recently proposed implementation of a causal-consistent
reversible debugger is CauDEr [14].

We propose an approach to state-saving reversibility of imperative parallel
programs, similar to RCC [17] and both the Backstroke framework [25] and
works on it by Schordan [21,22]. We build on our previous work [10,11], and here
discuss its application to debugging. We outline this proposal, beginning with the
language that we support. We define the process of generating two versions of our
original program, the annotated version that performs the forwards execution
and the state-saving of all required information, and the inverted version that
uses this saved data to simulate reverse execution. We describe a collection of
environments representing our program state, and refer to three sets of small-
step operational semantics defined previously [11].

Results that prove our approach to be correct are shown. Our first result
shows that the process of state-saving does not alter the behaviour of the original
program, as the final program state is unchanged. The second result states that
given the inverted version starts in the final program state produced via the
annotated execution, execution of this inverted version restores the program
state to exactly as it was initially. This result is extended here to hold for all
programs, including parallel composition and the challenges it introduces. Our
results prove we achieve our aim of implementing correct reversal.

Three examples of common bug types are used to discuss the application of
this state-saving reversibility to debugging. Each type of execution is defined in
terms of small-step operational semantics, allowing us to advance through an
execution one step at a time. This is highly desirable for debugging as interme-
diate program states can be viewed, allowing the initial effects of a bug to be
seen. It also means that bugs leading to crashes can be viewed up to the point
of the fatal error, as all previous small steps will have been performed. Simi-
larly for the inverted version, the small-step semantics allow us to return to any
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intermediate position of our execution. We can also make use of the information
saved during the forwards execution prior to its completion. For example, all
values any variable has held up to this point will be saved.

We also introduce a simulation tool that implements our state-saving
reversibility, specifically the three sets of small-step operational semantics
referred to above. This allows the simulator to read and parse an original pro-
gram, produce the two versions and perform all three types of execution. With
the application to debugging being a consideration from the beginning of the
development, we then discuss some of the key features that aid debugging. Such
features include the ability to force a specific interleaving and the record mode.

Finally, we use this simulator to evaluate the performance of our approach
to reversibility. We compare the execution times of programs with and with-
out state-saving, producing an average overhead incurred. We likewise compare
the execution times of forwards execution with that of the inverse execution,
measuring the performance of reversal. Our main contributions are:

1. An overview of an approach for state-saving reversibility of imperative parallel
programs proposed in [11]. A proof showing this holds for all valid programs
of our language, extended here to include parallel composition.

2. The application of this method to debugging, explained using three examples
of common bugs.

3. A simulator implementing our small-step semantics behind this method and
how this is used for debugging.

4. The evaluation of the performance of our approach. This shows an acceptable
overhead associated with both state-saving and inversion.

2 Our Approach

We begin with a state-saving approach to reversible execution of imperative
parallel programs. A more in depth definition of this approach is available in our
previous works [10,11]. Our discussion of this approach is split into the following
five broad stages, each of which will be described below.

1. Language and State. We extend a typical while language with blocks, local
variables, recursion-supported procedures (with no arguments) and parallel
composition. We use ‘parallel’ in this context, but note that we could have
used ‘concurrent’. We introduce construct identifiers and paths, necessary to
handle local variables and different scopes. The program state is represented
as a collection of environments, each of which will be described later.

2. Annotation. This process introduces identifier stacks into the language syn-
tax, necessary to record a particular run of the program. This produces an
annotated version, that when executed saves reversal information required
for inversion and captures the non-deterministic interleaving order via iden-
tifiers. This records the outcome of all races introduced by parallelism. All
reversal information is stored within the auxiliary data store.
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3. Inversion. This produces the corresponding inverted version of our original
program, which itself is a forwards program capable of simulating the reverse
execution. It is generated from the executed annotated version.

4. Running Inverted Program. Execution of the inverted version will then
use both identifiers and the reversal information to simulate the undoing of
the execution of the original program.

5. Debugging. The ability to execute step-by-step through the inverted version
allows us to view the program state at any point. This can be used to compare
the expected and actual program state, potentially helping us to find bugs.

Stage 1: Language and State. We begin with a typical imperative while
language consisting of assignments, conditional statements and while loops. We
extend this with blocks, local variables, procedures (with no arguments) capable
of recursion, removal statements and the parallel composition operator par. This
operator interleaves the execution of two (or more) programs randomly, while
removal statements remove local variables or procedures at the end of a block.
We refer informally to each argument program of a parallel statement as a thread.

Further to this, we also introduce construct identifiers and paths. Each con-
ditional, loop, block, procedure declaration and procedure call is given a unique
name, termed a construct identifier and represented as In, Wn, Bn, Pn and Cn
respectively. These names are of the form Unique name:Version number. Each
statement that requires evaluation will also contain a path, represented as pa.
This is a sequence of the unique block names in which the specific statement
resides, with λ representing an empty path (global). The syntax of this language
is shown below, with paths and construct identifiers underlined here only to
highlight them, and will be used henceforth without underlining. An example is
shown in Fig. 1a, containing two assignments and a while loop performing six
iterations. All paths are omitted as there are no blocks meaning all would be λ.

P ::= ε | S | P; P | par { P } { P }
S ::= skip | X = E pa | if In B then P else Q end pa |

while Wn B do P end pa | begin Bn DV DP P RP RV end |
call Cn n pa | runc Cn P end

DV ::= ε | var X = v pa; DV DP ::= ε | proc Pn n is P end pa; DP

RV ::= ε | remove X = v pa; RV RP ::= ε | remove Pn n is P end pa; RP

E ::= Var | n | (E) | E Op E B ::= T | F | ¬B | (B) | E == E | E > E | B ∧ B

The program state is represented as a collection of environments. Firstly, the
data store σ maps memory locations (Loc) to the value (Num) they currently
hold (σ : (Loc �→ Num)). Next, the variable environment γ maps variables (V)
to memory locations. Before defining the variable environment, we note that the
use of blocks mean that variables can be either global or local, and that a global
variable can share its name with multiple local versions. Each such local version
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1 X = 5;

2 N = 0;

3 while w1.0 (X >= N) do

4 X = X - 1;

5 Y = Y + 1;

6 end;

(a) Original Loop Program

1 X = 5 [];

2 N = 0 [];

3 while w1.0 (X >= N) do

4 X = X - 1 [];

5 Y = Y + 1 [];

6 end [];

(b) Annotated Loop Program

Fig. 1. Small while loop example: forwards

will have been declared within a different scope, and specifically a different block.
This means the unique block name in which a variable is declared is used within
γ to differentiate multiple versions (γ : (V × Bn) �→ Loc). As a result of this,
paths are used during variable evaluation to determine the block in which the
variable was defined, with this then being used to access the correct memory
location. The introduction of parallel composition and local variables mean that
data races can occur, where the order in which two (or more) steps are performed
directly affects the outcome. For example, two assignments to the same variable
racing means the assignment performed last produces the final value.

Should the same code be executed in parallel, this approach to distinguishing
versions of variables will not be sufficient. For example, consider two procedure
calls to the same function on each side of a parallel that both declare a vari-
able using the shared block name (as the same code is being used). In this case,
both calls would use the same version of the declared variable, violating correct
behaviour. Therefore any reused code, namely procedure and loop bodies, must
be renamed prior to execution. Explained in [11], procedure bodies are renamed
with all construct identifiers updated to begin with the unique call name (that
will be different across a parallel). For example, a while loop w1.0 within a proce-
dure call c1.0 becomes c1.0:w1.0. Loop bodies are renamed with all construct
identifiers updated to their next version number. For example, the conditional
i1.0 used in Fig. 5a will become i1.1 for the first iteration of the while loop.
The renamed copies of procedure and loop bodies are stored within the procedure
environment μ : (Pn ∪ Cn) �→ (n × P) and while environment β : Wn �→ P
respectively. The auxiliary data store is discussed later.

The (forwards-only) execution of programs written in our language is defined
in terms of a small-step operational semantics. We do not include this here as
it is available in [11]. From here, we refer to each small step as a transition (or
step) and consider an execution to be a sequence of transitions (or steps).

Stage 2: Annotation. Similarly to the Reverse C Compiler (RCC) [17], we
produce two versions of an original program. The process of annotation produces
the first of our versions, specifically the annotated version capable of recording
the specific execution. This is implemented via the function ann(), shown in [11].
Recording a run of a program can be split into two main tasks, namely

1. Recording required data lost during forward execution (reversal information)
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2. Capturing the non-deterministic execution order (due to having par).

Firstly, all reversal information is saved during the execution of the annotated
program via the operational semantics [11]. This matches closely with the seman-
tics of forwards-only execution, differing only on the state-saving. Such exam-
ples of this information include old values overwritten (and lost) as a result of
destructive assignments, a boolean value indicating which branch of each con-
ditional was executed, and a sequence of boolean values capturing the number
of iterations of each loop. Further, the final value held by a local variable, and
any identifiers assigned to a loop/procedure copy (annotation information), are
saved prior to their deletion via removal statements.

This information is saved in the auxiliary data store δ, keeping all reversal
information separate to the program state. This is a collection of stacks, with
one for each variable name. All versions of a variable name use a single stack,
storing overwritten or final values they held. Using a single stack helps to deter-
mine the outcome of races. There is a single stack B that holds boolean values
for conditionals, and similarly W for loops. Finally, the stacks WI and Pr hold
annotation information from loop or procedure body copies prior to removal.

Secondly, the non-deterministic execution order is captured via the use of
identifiers. Sequential programs have a single path that can be followed in both
directions. Parallel programs have many possible paths, with correct inversion
dependent on following the correct inverted path of execution. Not doing so can
lead to a state that was not reachable during forwards execution. To avoid this,
as each statement of a program is executed, the next available identifier (used in
ascending order) is assigned to that statement. In doing so, the overall statement
order (interleaving) is recorded as required to ensure correct reversal. The syntax
of each statement that requires identifiers to be saved will therefore have a stack
for these, represented using A. Each identifier is also used to index any reversal
information saved for that statement in δ, with all stacks on δ consisting of
pairs. Within our operational semantics, any transition that uses an identifier is
labelled with it, while those that do not are unlabelled and referred to as skip
steps. The three types of skip steps are the removal of skip statements as a result
of sequential or parallel composition and the closure of a block or loop iteration.
The following is the updated syntax for annotated programs, where P and S are
now used to represent annotated programs and statements respectively, and our
additional stacks are highlighted via underlining. As with paths and construct
identifiers before, these stacks will not be underlined from this point. We omit
program expression definitions as they are unchanged.

S ::= skip I | X = E (pa,A) | if In B then P else Q end (pa,A) |
while Wn B do P end (pa,A) | begin Bn DV DP P RP RV end |
call Cn n (pa,A) | runc Cn P end

DV ::= ε | var X = v (pa,A); DV DP ::= ε | proc Pn n is P end (pa,A); DP

RV ::= ε | remove X = v (pa,A); RV RP ::= ε | remove Pn n is P end (pa,A); RP
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As shown in the syntax above, the only difference between an original pro-
gram and the corresponding annotated version is the presence of identifier stacks
within certain statements. Returning to our while loop example shown in Fig. 1a,
the corresponding annotated version is shown in Fig. 1b. Execution of the anno-
tated program will populate these identifier stacks with identifiers capturing
the execution order. The corresponding executed annotated version containing
populated identifier stacks is shown in Fig. 2a.

1 X = 5 [0];

2 N = 0 [1];

3 while w1.0 (X >= N) do

4 X = X - 1 [3,6,9,12,15,18];

5 Y = Y + 1 [4,7,10,13,16,19];

6 end [2,5,8,11,14,17,20];

(a) Executed Annotated Program

1 while w1.0 (X >= N) do

2 Y = Y + 1 [4,7,10,13,16,19];

3 X = X - 1 [3,6,9,12,15,18];

4 end [2,5,8,11,14,17,20];

5 N = 0 [1];

6 X = 5 [0];

(b) Inverted Loop Program

Fig. 2. Small while loop example: inversion

Stage 3: Inversion. After defining annotated execution, the next step is to
produce the inverted version via the function inv() and execute it via our small-
step operational semantics [11]. This version executes forwards as expected, and
is produced based on the executed version of the annotated program, meaning
all stacks are populated appropriately. The overall statement order is inverted,
as well as each declaration statement becoming an equivalent removal statement
and vice versa. We use the same syntax for both the annotated and inverted
versions, but with P and S for inverted programs and statements respectively.
Returning to our small while loop example discussed throughout previous stages,
the inverted version of this program is shown in Fig. 2b. The difference between
this and the executed annotated version is the statement order is inverted.

Stage 4: Inverse Execution. Starting in the final program state produced
via annotated forwards execution, the inverted version will restore the program
state to as it was prior to forwards execution (see results below). The order
in which the program executes is determined by the identifiers associated with
its inverted statements, with only the statement that has the highest identifier
eligible to be executed next. This means we follow backtracking order, where
statements are undone in exactly the inverted order of the forwards execution.
Backtracking order is necessary to ensure races are reversed correctly. There is
however potential for limited causal consistent reversibility, where skip steps and
block closures can be executed in any order. A small example of how identifiers
capture the execution order and can be used for inversion is shown in [10].

When the choice of the next statement to invert has been made, the reversal
information and identifiers saved via annotation are then used to undo the effects
of that statement. Specifically this includes the old value of a variable to be
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restored during a destructive assignment, and boolean values to govern inverse
control flow of conditionals or loops. The final value held by local variables will
have been saved prior to its removal and so is used to initialise the inverted
version, as well as the annotation information that must be used to repopulate
all stacks within copies of reused code.

Stage 5: Debugging. In Sect. 4, we will discuss using our approach for debug-
ging and present three examples of identifying common bug types. In Sect. 5, we
introduce a simulation tool implementing the process described above, and show
how its abilities further aid debugging.

3 Correctness of Our Approach

One motivation for this work is to have an approach to reversible execution of
imperative parallel programs that is proved to be correct. Therefore we have
proved two properties related to our approach. Prior to discussing these proper-
ties, we first provide several definitions and explain important notation.

We begin with defining equivalence. Firstly, two states � = {σ,γ,μ,β} and �′

= {σ′,γ′,μ′,β′} are equivalent, written � ≈ �′, provided each pair of matching
environments are not necessarily identical, but semantically equivalent. Secondly,
two auxiliary stores δ and δ′ are equivalent, written δ ≈A δ′, provided the two
stores are semantically equivalent. For example, actual memory locations used
within the matching environments may differ, but the ‘meaning’ is the same.
Finally, we define equivalence between a program execution and its correspond-
ing uniform version. A uniform execution is a version of an original execution
where all skip steps are performed as soon as they are available. Performing
skip steps immediately does not alter the behaviour of the program as each such
transition does not alter the program state. Therefore a program and its uniform
version are equivalent as the program states produced are equal, since the order
of transitions using identifiers is unchanged.

We shall use the following notation. A step of forwards only execution is
represented using ↪→, while a step of both annotated and inverted execution are
represented using ◦→ and ◦� respectively, where ◦ represents the possible use of
an identifier. For example, a destructive assignment is performed to skip via a
transition that uses an identifier, while the skip operation is then removed via
a transition without an identifier. Uniform versions of both an annotated and
inverted execution are represented as ◦→∗

U and ◦�
∗
U respectively.

Theorem 1 states an original program and its annotated version behave iden-
tically (under the same interleaving) with respect to all environments, except
the auxiliary store. This shows annotation has no unwanted side effects.

Theorem 1. Let P be an original program, � be the set {σ,γ,μ,β} of all environ-
ments, �1 be the set {σ1,γ1,μ1,β1} of annotated environments such that � ≈ �1

and δ be the auxiliary store. If (P | �,δ) ↪→∗ (skip | �′,δ), for some �′, then
there exists an execution (ann(P) | �1,δ)

◦→∗
(skip I | �′

1,δ
′), for some I, �′

1

and δ′, such that �′ ≈ �′
1.
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(P | �) ◦→∗
(skip I | �′) (P | �) ◦→∗

U (skip I | �′)

?

(P−1 | �′
1)

◦�∗
(skip I′ | �1) (P−1 | �′

1)
◦�∗

U (skip I′ | �1)

Fig. 3. Diagram representation of proof outline

Theorem 2 states that given an original execution and its annotated equiva-
lent, there exists an inverted execution that starts with the final program state,
and restores this to exactly as initially. Shown in [11] to hold for sequential
programs only, we note here that it now also holds for parallel programs. As a
result, our approach is garbage free, as the auxiliary store is also restored.

Theorem 2. Let P be a program and AP be ann(P). Further let � be the set
{σ,γ,μ,β} of all environments, �1 be the set {σ1,γ1,μ1,β1} of annotated envi-
ronments such that � ≈ �1, �′

1 be the set {σ′
1,γ

′
1,μ

′
1,β

′
1} of final annotated

environments, �2 be the set {σ2,γ2,μ2,β2} of inverted environments such that
�2 ≈ �′

1, δ be the auxiliary store, δ′ be the final auxiliary store and δ2 be the
inverted auxiliary store such that δ2 ≈A δ′.

If (P | �,δ) ↪→∗ (skip | �′,δ), for some �′, and there exists an annotated
execution (AP | �1,δ)

◦→∗
(skip I | �′

1,δ
′), for some I, �′

1 and δ′, such that
�′ ≈ �′

1 and that the executed annotated version of AP produced by its execution
is AP′, then there also exists (IP | �2,δ2)

◦�
∗

(skip I′ | �′
2,δ

′
2), for IP = inv(AP′)

and some I′, �′
2 and δ′

2, such that �′
2 ≈ � and δ′

2 ≈A δ.

Proof. The diagram shown in Fig. 3 outlines the proof omitted here due to space
constraints. From this diagram, we aim to prove the correctness of the arrow
labelled with a question mark, and we do so with the three step approach indi-
cated with double arrows. We begin with an arbitrary execution of an annotated
program P (top left of Fig. 3), and transform this into an equivalent uniform
execution (top right of Fig. 3). Recall the definitions of uniform execution and
equivalence above. This transformation consists of moving all skip steps (tran-
sitions that do not use identifiers) as close to the beginning of the execution as
possible, ensuring all dependencies are maintained. An example is a destructive
assignment that executes to skip, before this skip is eventually (with other steps
potentially interleaved) removed. In a uniform execution, these two steps happen
consecutively, with no interleaving of other statements in between.

From this equivalent uniform execution, we then prove two properties by
mutual induction on the length of the execution. The first property is similar to
that of Theorem 2 and concerns entire executions. This shows that if a uniform
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annotated program P executes to skip, then there exists a uniform inverse exe-
cution that, when beginning in the final state equivalent to that produced by
forwards execution, also completes producing a program state equivalent to that
of prior to the forwards execution. The second property is similar, but concerns
only the execution of statements S. Since many statements contain complex sub-
programs, the first property is used by induction here (hence mutual induction).
We consider each base case of both properties, and each (mutual) induction case.
Using these properties, we obtain the corresponding uniform inverse execution
(bottom right of Fig. 3), where �′

1 ≈ �′ and � ≈ �1.
The final step is to relax this uniform inverse execution into a non-uniform

equivalent. This process is the opposite of that described for producing a uniform
execution, and allows skip steps to be moved appropriately within the execution.
Therefore we have shown the arrow from Fig. 3 to be valid, as required.

4 Debugging

This section describes the application of our approach to debugging. Some impor-
tant aspects of this are:

1. Small-step semantics allow the execution to be paused at any point. Interme-
diate program states can be viewed, and compared with the expected state.
This includes current position and current values of variables.

2. All reversal information saved up to a specific point can also be viewed. This
can display the current number of loop iterations, all previous values of a
variable and all results of evaluating conditional statements.

3. Program state is accessible in intermediate states, and can be changed to test
things including temporary bug fixes.

4. Inversion can be started at any point, allowing debugging of fatal errors.

We now discuss three examples of common bug types, and how our approach
to reversibility can be used to aid the process of identifying the underlying cause.
We omit all paths and programs within procedure removal statements from all
examples, all of which can easily be read from the remaining code.

4.1 Incorrect Logic Bug

We first consider a logic error, typically made by inexperienced programmers.
The program in Fig. 2a is intended to have five iterations, however this specific
run performs six (as Y = 6 after execution). The inverted program is shown
in Fig. 2b. Beginning in the final program state, the inverted program can be
executed forwards for four steps. This involves opening the loop (identifier 20),
inverting the final iteration of the loop (identifiers 19 and 18) and finally inverting
the second to last condition evaluation (identifier 17). This state, shown in Fig. 2b
where all underlined identifiers have been removed and the arrow ⇐= indicates
the current position, is now identical to that of the second to last time the
condition was evaluated during forwards execution. Using the current program
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state, we then see that the condition 0 >= 0 holds true, when we expected false.
We can see the logic is incorrect, and that replacing the logic symbol within the
condition with > fixes this bug.

4.2 Parallel - Slow Write

Our second example is of an atomicity violation bug. With a write operation
often being slower than a read, we use the program shown in Fig. 4a to simulate
this. This contains a race between a read and write of the same variable in par-
allel. In order to mimic the write operation being slow but atomic, our write is
implemented via the procedure update that actually performs two assignments,
which we assume are performed one after another (with no statements inter-
leaved). This is like saying the write is both slow and atomic. This means the
execution will produce one of two possible outcomes. Firstly, the read (line 8) is
followed by the write (line 9), meaning result = 10 and X = 12 (Outcome 1).
Secondly, the write (line 9) is followed by the read (line 8), meaning result = 12
and X = 12 (Outcome 2). However, the interleaving shown in Fig. 4a produces
an incorrect third state, where result = 11 and X = 12.

The inverted version of our program is shown in Fig. 4b (recall that this is
a normal, forwards executing program). Beginning in our incorrect final state
described above, the inverse execution first opens the block, re-declares the local
variable X to the value 12 retrieved from the stack (line 4 using identifier 7), and
then re-declares the procedure update (lines 5–8 using identifier 6). Next, the
parallel statement starts by beginning the inverted procedure call (line 11 using
identifier 5). This implies that the write finished last during forwards execution,
meaning we should have expected Outcome 1. Then the inverse execution per-
forms the destructive assignment (line 6 using identifier 4). At this point, the
only available step is to undo the read now (line 10 using identifier 3). This state,
shown in Fig. 4b with all underlined identifiers having been removed, shows that
interleaving has occurred, with the arrows indicating current options (at this
point in the forwards execution). From this, we observe that interleaving has
occurred that directly conflicts our atomicity assumption. Further to this, if we
were to continue the inverse execution we would complete the procedure call last,
implying the write happened first during forwards execution meaning we should
have seen Outcome 2. This inconsistency and the interleaving shown reassures
us that we have found the bug. Such a bug can now be fixed, for example, by
using an atomic construct (which can be easily added to our language).

4.3 Parallel - Race - Airline Example

Our final example is a program implementing a model of an airline that sells
tickets via two agents. Each agent remains open and able to sell tickets until there
are no remaining free seats. This program is shown in Fig. 5a, where the number
of initially free seats is 3, and the number of agents is 2, in order to keep the
execution and accompanying environments concise enough for discussion here.
We return later to this example and increase both of these when evaluating the
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1 begin b1.0

2 var X = 10 [0];

3 proc p1.0 update is

4 X = X + 1 [2];

5 X = X + 1 [4];

6 end [1];

7
8 par { result = X [3]; }
9 { call c1.0 update [5]; }

10 remove proc p1.0 update end [6];

11 remove var X = 10 [7];

12 end

13 //Finishes with result = 11 and

14 //X = 12

(a) Executed Annotated Program

1 //Initial value of result should

2 //be 12 or 10

3 begin b1

4 var X = 10 [7];

5 proc p1.0 update is

6 X = (X + 1) [4];

7 X = (X + 1) [2]; ⇐=
8 end [6];

9
10 par { result = X [3]; ⇐= }
11 { call c1.0 update [5]; }
12 remove proc p1.0 update end [1];

13 remove var X = 10 [0];

14 end

(b) Inverted Program

Fig. 4. Slow write example

performance. The specific execution captured in Fig. 5a incorrectly results in 4
tickets being sold, as the final number of free seats is -1 (seats = -1).

The inverted version of this program is shown in Fig. 5b. Beginning in the
incorrect final state, the inverse execution will begin by opening the block and
re-declaring the local variables and the procedure. Next, the parallel statement
is started, with each while loop executing an entire iteration (to simulate the
inversion of the closure of each agent) using identifiers 33–24. From here, we now
begin the inversion of the penultimate iterations of each while loop. The identi-
fiers 23–14 are used to govern the interleaving across the two threads. The state
reached is shown in Fig. 5b where all underlined identifiers have been removed,
with the arrows indicating the current position. As this shows, the choice of next
step is between the closing of two inverse conditionals. Closing an inverse condi-
tional will reverse the opening of the forwards version, implying that both were
open (during the forwards execution) at the same time (consecutive identifiers).
Considering each conditional statement as the critical section of each thread,
we see the mutual exclusion of these sections has been violated. Crucially, when
there is a single seat left, if each conditional statement is evaluated consecu-
tively, both conditions will be true. From here, the two calls from each of the
true branches will be executed, allocating two seats when only one remains free.
Therefore we see there is a race between the read of (conditional evaluation)
and write (line 6) to the shared variable seats. One solution is to implement
the mutual exclusion of the critical sections of each thread (agent).

5 Evaluation of Our Approach

An important next step of our work is to evaluate the performance of this app-
roach. Prior to evaluation, we note that our focus so far has been on proving
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1 seats = 3 [0];

2 begin b1.0

3 var agent1 = 1 [1];

4 var agent2 = 1 [2];

5 proc p1.0 sell is

6 seats = seats - 1 [6,11,18,19];

7 end [3];

8
9 par {

10 while w1.0 (agent1 == 1) do

11 if i1.0 (seats > 0) then

12 call c1.0 sell [7,20];

13 else

14 agent1 = 0 [27];

15 end [5,8,16,22,26,28];

16 end [4,15,25,29];

17 } {
18 while w2.0 (agent2 == 1) do

19 if i2.0 (seats > 0) then

20 call c2.0 sell [12,21];

21 else

22 agent2 = 0 [31];

23 end [10,13,17,23,30,32];

24 end [9,14,24,33];

25 }
26 remove proc p1.0 sell end [34];

27 remove var agent2 = 1 [35];

28 remove var agent1 = 1 [36];

29 end

30 //Finishes with seats = -1

(a) Executed Annotated Program

1 //Expect seats = 0, not seats = -1

2 begin b1.0

3 var agent1 = 1 [36];

4 var agent2 = 1 [35];

5 proc p1.0 sell is

6 seats = seats - 1 [6,11,18,19];

7 end [34];

8
9 par {

10 while w1.0 (agent1 == 1) do

11 if i1.0 (seats > 0) then

12 call c1.0 sell [7,20];

13 else

14 agent1 = 0 [27];

15 end [5,8,16,22,26,28]; ⇐=
16 end [4,15,25,29];

17 } {
18 while w2.0 (agent2 == 1) do

19 if i2.0 (seats > 0) then

20 call c2.0 sell [12,21];

21 else

22 agent2 = 0 [31];

23 end [10,13,17,23,30,32]; ⇐=
24 end [9,14,24,33];

25 }
26 remove proc p1.0 sell end [3];

27 remove var agent2 = 1 [2];

28 remove var agent1 = 1 [1];

29 end

30 seats = 3 [0];

(b) Inverted Program

Fig. 5. Airline example

this approach to be correct. Identifiers are saved into stacks contained within the
syntax, and all reversal information is contained within the additional stacks.
Multiple stacks are used as this separation aids the proof, while not necessarily
being the most efficient approach. Therefore we remark that all results displayed
within this section are produced without any optimization techniques applied.

To aid evaluation, a simulation tool implementing our approach has been
developed. An overview and description of key features is shown below. This is
used to examine the performance of two keys aspects, namely the overheads or
reductions associated with both annotation and inversion.

5.1 Simulation Tool

We have developed a simulator that implements the small-step semantics of
our approach [11]. It is capable of reading an original program written in our
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language from a text file, and parsing this into a linked list structure. This
structure can be analysed and used to correctly initialise all of the required
environments (including global variables).

The simulator has the ability to simulate all three possible executions, namely
traditional forwards only with no state-saving, annotated forwards with state-
saving, and inverse. All three executions can be either step-by-step or from
start-to-finish. The current program state is viewable at each stage. Annota-
tion and inversion are implemented, transforming an original program into the
corresponding annotated and inverse version respectively. The execution of the
inverse version follows backtracking in the majority of cases (as discussed above),
while also supporting a limited form of causal-consistent reversibility.

The interface of the simulator is currently through the command line. A more
user-friendly, graphical user interface (GUI) is currently under development. The
following are some of the key features of the simulator.

Auto-generation of Modified Syntax. In order to remove the burden on the
programmer, some of the additional parts of the syntax can be automatically
generated. This includes the insertion of all unique construct identifiers, paths
and removal statements at the end of blocks.

Random or User-defined Interleaving. Any interleaving of programs can
either be determined randomly (via random number generation) or by the
user at runtime, allowing testing of unlikely executions. This can be switched
on/off at runtime, allowing a user to only determine the parts they require.

Record Mode. History logs can be recorded. Firstly, the entire sequence of
small-step transitions can be saved. Secondly, for each interleaving decision,
all possible choices and an indication of which was chosen can be saved.

5.2 Evaluation

In this section, we consider the following two aspects of our approach.

1. Costs/overheads associated with annotation and state-saving (Annotation)
2. Costs/benefits associated with inversion (no evaluation etc.) (Inversion)

Evaluation of these aspects consists of timing the executions of three programs
written in our language. An average execution time is computed from 100 runs
for two execution lengths (e.g. more loop iterations). One aim is to show that
any overhead is consistent and does not increase exponentially. All experiments
were ran on an Intel Core i5 quad core 3.2 GHz computer with 7.7 Gb memory,
running Linux Ubuntu 16.04. Table 1 shows our results, with all times in seconds.

Annotation. Firstly, we consider while loops. The programs Loop 1 and
Loop 2 (see Appendix A) each contain a while loop with 100 iterations, and
a nested while loop with 1,000 and 10,000 iterations respectively. Each of these
loops contain a single destructive assignment, meaning 100,000 (Loop 1) and
1,000,000 (Loop 2) of these are performed. Table 1 shows the average overhead
introduced as a result of state-saving is 8.3% (Loop 1) and 7.9% (Loop 2).
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Next we return to our airline example in Fig. 5a, and extend it with multiple
agents (see Appendix B). The programs Airline 1 and Airline 2 each have
1000 initially free seats, and contain three and four agents respectively. Table 1
shows the average overhead is 4.6% (Airline 1) and 4.2% (Airline 2).

Finally, we consider all constructs of our language. The programs General 1
and General 2 (see Appendix C) each contain two while loops in parallel with 25
and 50 iterations respectively. Each loop contains an assignment and a procedure
call, which uses a conditional statement to determine 5 recursive calls. Table 1
shows the average overhead is 13.2% (General 1) and 13.4% (General 2).

Therefore our results show the overhead of annotation for these specific pro-
grams to be within the range of 4.2–13.4%. We believe this is reasonable as it
does not increase exponentially and given no optimization has been performed.
A potential cause of this overhead is the unoptimized process of saving annota-
tion information from copies of loop or procedure bodies prior to the removal
of these. Our airline example results also show that increasing the number of
programs in parallel does not seem to result in an increased overhead.

Table 1. Performance evaluation of our approach

Program Original Annotated Change
from Orig

Inverse Change
from Ann

Change
from Orig

Loop 1 0.346 0.375 1.083 0.321 0.855 0.926

Loop 2 3.446 3.717 1.079 3.172 0.853 0.920

Airline 1 0.098 0.103 1.046 0.104 1.013 1.060

Airline 2 0.138 0.144 1.042 0.147 1.019 1.063

General 1 0.033 0.037 1.132 0.037 1.008 1.141

General 2 0.064 0.072 1.134 0.073 1.012 1.147

Inversion. Firstly, we consider the inverse execution time of programs Loop 1
and Loop 2. Table 1 indicates a 7.4% (Loop 1) and 8% (Loop 2) reduction
compared to the original execution, and a 14.5% (Loop 1) and 14.7% (Loop 2)
reduction compared to the annotated execution.

The inverted executions of the programs Airline 1 and Airline 2 are now
analysed. Table 1 shows a 6.0% (Airline 1) and 6.3% (Airline 2) increase on the
original execution, and a 1.3% (Airline 1) and 1.9% (Airline 2) increase when
compared to the annotated execution.

Finally, the programs General 1 and General 2 are inverted. Table 1 shows
an increase of 14.1% (General 1) and 14.7% (General 2) on the original execution,
and 0.8% (General 1) and 1.2% (General) on the annotated execution.

Therefore our results show that for these specific programs running on our
unoptimized simulator, the inverse execution time ranges from a 14.7% decrease
to a 1.9% increase compared to the annotated execution. A reduction is largely
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a result of the program containing large amounts of condition/expression eval-
uation during forwards execution, which is then not required during reversal as
appropriate values are retrieved from the auxiliary store. Programs that do not
contain large amounts of evaluation may not achieve this reduction, and may be
slightly slower. A possible cause is the currently unoptimized process of checking
the first identifier of each possible statement to determine the next step.

Though not perfect for comparison since it focuses on Parallel Discrete Event
Simulation and distributed systems, the Backstroke framework [25] and work
using it by Schordan [21,22] have also been evaluated. In [21], original execution
of 100,000 events with a varying number of operations per events was compared
to the forwards execution with instrumentation, showing a penalty factor of
between 2 and 3 (Mode B). Both the reverse and commit versions are shown to
typically be slightly faster than the original execution.

5.3 Related Work

Reversible computation can be applied to Parallel Discrete Event Simulation
(PDES) [5], including the Backstroke framework [25] and works by Schordan et
al. [21,22]. Backstroke implements a similar approach to that described here, but
is capable of handling all of C++ efficiently. To the best of our knowledge, there
is no proof of correctness for this framework. Other work focuses on reversible
languages, including the imperative languages Janus [26,27], R-CORE [8] and
R-WHILE [7], and the object-oriented languages Joule [23] and ROOPL [9]. We
employ identifiers very much like in the work by Phillips and Ulidowski [18,20].
Causal consistent reversibility of programming languages have been studied,
including the recent work on reversible Erlang [14,15], and μOz [6].

6 Conclusion

We have shown a state-saving approach to reversibility of imperative programs
containing parallel composition. Our results displayed here prove this method
implements correct and garbage free inversion. We have shown there is the pos-
sibility of using our approach for debugging, overcoming issues introduced by
parallelism, including data races and randomly interleaved execution paths. We
have proposed a simulator implementing our reversibility and used it to eval-
uate the performance. Our experiments show that the overhead incurred as a
result of both state-saving and inversion is reasonable. Future work will focus on
optimising the simulator, and extending our underlying approach with more con-
structs to increase the language complexity. We aim to support all constructs of
an actual programming language, and potentially to apply our framework to an
existing programming language. Extending our limited form of causal-consistent
reversibility to allow undoing of more forms of causally independent steps could
be also interesting, where we could follow approaches to reversing prime event
structures as in [19,24], work on μOz [6], and reversing Erlang as in [14,15].
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A Loop Program

All paths and identifier stacks are omitted as these are automatically inserted
by the simulator.

Loop 1. Program used to test performance of while loops
1: X = 100;
2: while w1.0 (X > 0) do
3: Y = 1000;
4: while w2.0 (Y > 0) do
5: Y = Y - 1;
6: end;
7: X = X - 1;
8: end;

B Extended Airline

All paths, identifier stacks and removal statements are omitted as these are
automatically inserted by the simulator.

Airline 1. Airline model extended with three agents
1: numOfSeats = 1000;
2: begin b1.0
3: var agent1Open = 1;
4: var agent2Open = 1;
5: var agent3Open = 1;
6: proc p1.0 sellTicket is numOfSeats = (numOfSeats - 1); end;
7: par {
8: par {
9: while w1.0 (agent1Open == 1) do
10: if i1.0 (numOfSeats > 0) then
11: call c1.0 sellTicket;
12: else
13: agent1Open = 0;
14: end
15: end;
16: } {
17: while w3.0 (agent3Open == 1) do
18: if i3.0 (numOfSeats > 0) then
19: call c3.0 sellTicket;
20: else
21: agent3Open = 0;
22: end
23: end;
24: }
25: } {
26: while w2.0 (agent2Open == 1) do
27: if i2.0 (numOfSeats > 0) then
28: call c2.0 sellTicket;
29: else
30: agent2Open = 0;
31: end
32: end;
33: }
34: end
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C General Program

All paths, identifier stacks and removal statements are omitted as these are
automatically inserted by the simulator.

General 1. Program used to test overall performance of our approach

1: begin b1.0

2: var left = 25;

3: var right = 25;

4: var loop1Count = 10;

5: var loop2Count = 10;

6: proc p1.0 fun1 is

7: begin b2.0

8: var other = 0;

9: if i3.0 (loop1Count > 5) then

10: loop1Count = (loop1Count - 1);

11: call c1.0 fun1;

12: else

13: loop1Count = (loop1Count - 1);

14: other = other + 1;

15: end

16: end

17: end;

18: proc p2.0 fun2 is

19: begin b3.0

20: var other = 0;

21: if i4.0 (loop3Count > 5) then

22: loop2Count = (loop2Count - 1);

23: call c2.0 fun1;

24: else

25: loop2Count = (loop2Count - 1);

26: other = other + 1;

27: end

28: end

29: end;

30: par {
31: while w2.0 (left > 0) do

32: left = left - 1;

33: call c2.0 fun1;

34: loop1Count = 10;

35: end;

36: } {
37: while w3.0 (right > 0) do

38: right = right - 1;

39: call c3.0 fun2;

40: loop2Count = 10;

41: end;

42: }
43: end
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Abstract. The quantum computers available from IBM’s QX project,
implement circuits with Clifford+T gates. In order to implement Tof-
foli or NCV circuits in such architectures, they need to be mapped to
Clifford+T gates. Another challenge is that some CNOT gates cannot
be directly implemented in the IBM quantum computers and must be
changed to comply with the specific architecture constrains. In this paper
we propose a methodology to map Toffoli and NCV circuits such that
they are compliant with a given IBM architecture. The proposed app-
roach to accomplish this, is to find a set of low cost mappings for NCV
and Toffoli circuits targeting IBM’s architecture constraints. With this
approach, the number of CNOT that need to be changed will be reduced,
resulting in a smaller circuit regarding the number of gates. To evaluate
the proposed approach, Toffoli circuits were mapped to Clifford+T and
then realized on IBM’s QX4 architecture. The benchmarks were com-
pared with Toffoli circuits mapped without the methodology proposed in
this paper and implemented on IBM QX4 using two different approaches.
The results show that the proposed approach resulted in circuits with
up to 67% fewer gates compared with Qiskit and with up to 50% fewer
gates compared to a Clifford+T mapping algorithm.

Keywords: IBM QX architectures · Toffoli circuits · NCV circuits

1 Introduction

The interest in quantum computing has increased, as more quantum devices
become available. It is well know that the quantum computers can perform
some tasks faster than the classical computers [14]. IBM has a project that
offers quantum computers that can be used to perform experiments [18]. Several
different architectures are available. However, all of them implement gates from
the Clifford+T gate library. The only restriction is, that not all CNOT gates are
implemented.
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When designing quantum circuits the gate library of the target computer
must be considered. Mapping Clifford+T circuits into IBM architectures has
been considered in [3,21]. Traditionally, quantum circuits have often been
expressed with Toffoli gates [19]. An approach to map mixed polarity multi-
ple controlled Toffoli gates into Clifford+T quantum circuits has also been pro-
posed [1,5].

In this paper we propose an approach to map Toffoli and NCV circuits into
IBM architectures. This approach aims to find an optimized mapping, since it
has already been shown that the size of the circuit can reduce the fidelity of the
output state [15]. In order to achieve that, NCV and Toffoli circuits are mapped
to Clifford+T targeting IBM architecture restrictions, reducing the cost of the
mapping.

The paper is structured as follows. In the next section the basic background is
presented followed by Sect. 3 describing the IBM architectures. Section 4 explains
the proposed approach to map the NCV and Toffoli circuits into the quantum
computers. The results are shown in Sect. 5 and conclusions are presented in
Sect. 6.

2 Background

2.1 Reversible Circuits

Reversible functions are bijective, i. e. each input results in a unique output pat-
tern. Reversible circuits are composed of cascades of reversible gates. Reversible
gates are described by a target, represented by the symbol ⊕ and controls repre-
sented by the symbols (positive control) or (negative control). Basic reversible
logic gates are NOT, CNOT, and Toffoli. Sample gates are shown in Fig. 1.

Fig. 1. Reversible gates.

The NOT gate is only reversible gate that has no control. The target of
the NOT gate will always be inverted. In the gates with controls, the target
will only invert the logic value if the controls are true. For example, the target
of a Toffoli gate will only invert if the value both controls are true (“1”). For
negative controls, the control will be true with the value “0”. When a set of
reversible gates are used in sequence, it forms a reversible circuit. An example
of a reversible circuit is shown in Fig. 2.
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Fig. 2. Toffoli circuit.

2.2 Quantum Circuits

Quantum computation uses quantum bits (qubit) instead of classical binary bits.
The main difference is that a qubit can represent the superposition of two states
[12]. For quantum computation, different gates libraries exist; such as the NCV
library [13] or the Clifford+T library [1]. The NCV library is composed of the
gates NOT, CNOT, V and V †. The Clifford+T library is composed of the gates
NOT, CNOT, H (Hadamard), S, S†, T , and T †. Table 1 shows the gates of both
libraries and the matrix representation for each gate.

Table 1. Clifford+T and NCV quantum library.

A quantum circuit can be generated with a cascade of quantum gates. An
example of a quantum circuit using the Clifford+T library is shown in Fig. 3.

In the rest of the paper a Clifford+T circuit is a quantum circuit composed of
gates from the Clifford+T library. A NCV circuit is a quantum circuit composed
of gates from the NCV library and a Toffoli circuit is a reversible circuit composed
by the gates NOT, CNOT and Toffoli.
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H T †

T

T H

Fig. 3. Clifford+T circuit.

3 IBM Architectures

IBM’s Q project [7] makes quantum computers available to researchers. The goal
of the project is to facilitate experimentation with quantum circuits. Quantum
computers with 5 [9] and 16 qubits [8] can be accessed to via cloud services.
Along with the difference in the number of qubits, these quantum computers
also differ in their architectures.

The main characteristic of these quantum computers is that only a specific
set of gates can be used. All architectures accept the Pauli X, Y, and Z gates,
along with the quantum gates from the Clifford+T library, which consists of
NOT, CNOT, H, S, S†, T , and T † gates. Besides the specific set of gates that
can be used, IBM quantum computers also have another restriction regarding
the CNOT gates. Each architecture has a specific set of CNOT gates that are
implemented. For example, Fig. 4 shows the 5 qubit IBM QX4 architecture [9].

Fig. 4. IBM QX4 architecture.

The circles in Fig. 4 represent the qubits (Q0, Q1, Q2, Q3, Q4) and each arrow
represents a CNOT that is available. The base of the arrow is the control qubit
of the CNOT and the tip of the arrow is the target qubit. So, in this architecture
with 5 qubits has only 6 (out of 20) CNOT gates. For example, a CNOT that
can be implemented in the IBM QX4 architecture is the CNOT(Q2, Q0), i.e. the
control in the qubit Q2 and the target in the qubit Q0. However, to realize the
CNOT(Q0, Q2) a sequence of gates is needed. One possible way to realize it,
is to invert the direction of the CNOT by adding 4 Hadamard gates. For each
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CNOT that is not provided by the architecture, more gates must be added to
the circuit, increasing its size.

The goal of this work is to find ways to map Toffoli and NCV circuits to a
given IBM QX architecture with the fewest number of added gates. In the next
section different types of mappings will be discussed in order to accomplish this.

4 Mappings

In order to implement a Toffoli or NCV circuit using an IBM architecture, the
circuit must first be transformed to Clifford+T. Additional transformations may
be required to overcome the absence of some CNOT gates. These transformations
can be found in [3]. With these mappings it is possible to obtain a matrix with the
cost of each CNOT gate in the target architecture. This costs are determined by
the number of gates that must be added in the circuit in order to map the desire
CNOT. The matrix with the costs of each CNOT for the IBM QX4 architecture
from Fig. 4 is shown in Fig. 5.

− 4 4 7 7
0 − 4 7 7
0 0 − 4 4
3 3 0 − 0
3 3 0 4 −

Fig. 5. Cost of each CNOT realization for the IBM QX4 architecture.

Each cell in the matrix represents the CNOT cost to be realized in the QX4
architecture. A “−” means that this CNOT does not exist. For example, the
CNOT(Q1, Q0) has 0 cost, since it is available in the QX4 architecture. However,
the CNOT(Q0, Q1) needs to be changed and the number of gates that must be
added to the circuit in order to accomplish that (cost) is 4. The CNOT with cost 7
does not come from [3]. This mapping is a combination of the movement with cost
3 from [6] and 4 Hadamards. Figure 6 shows an example of how the CNOT with
cost 7 is mapped using the CNOT(Q0, Q3) in the IBM QX4. The final mapping of
the CNOT(Q0, Q3) has 8 gates, i.e. the circuit increased by 7 gates.

The matrix with the CNOT costs is used to find a good mapping of NCV
circuits to Clifford+T.

4.1 NCV Circuit to Clifford+T

The NCV gate library is comprised of NOT, CNOT, V , and V † gates. The
NOT gate can be realized on the IBM QX architectures, the V and V † need
to be mapped. Some CNOT gates need to be mapped due to the architecture
constraints. The mappings of the controlled-V and V † [16] gates are shown in
Fig. 7.
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Q0

Q2

Q3

=
H

H

H

H

Fig. 6. CNOT(Q0, Q3) mapped on IBM QX4 with cost 7.

V
=

H T †
T

T H V †
=

H T

T †

T † H

Fig. 7. Controlled-V and V † gate realized with Clifford+T library.

Both mappings require 7 gates and the only difference is that the T and T †

gates are interchanged. As the restriction in the IBM Q architectures are the
CNOT gates, the cost of this mapping is the cost of the CNOTs, e. g., if the V
gate has the control in qubit Q0 and the target in qubit Q2 with a cost of 8.
A property from [10] can be used in order to reduce this cost. This property is
shown in Fig. 8.

T
=

T

T †
= T †

Fig. 8. Property of CNOT with T and T † gates.

With this property the V and V † gates can be mapped with CNOTs in either
directions without added cost, that means that the mapping can be done using
the CNOT with lower cost. For example, consider a V gate with control in qubit
Q0 and the target in Q2 in the architecture QX4. Note that this V gate can be
mapped without additional cost, since the CNOT gates in the mapping can be
swapped using the property presented in Fig. 8. Therefore, a matrix with the
cost of each V and V † gates (both having the same cost, since the CNOT gates
are the same in both mappings), can be generated. This matrix is shown in Fig. 9
and only takes in account the cost of the additional CNOTs. The matrix with
the cost of each V and V † mapping can be used to map a NCV circuit with
lower cost into IBM Q architectures.

− 0 0 6 6
0 − 0 6 6
0 0 − 0 0
6 6 0 − 0
6 6 0 0 −

Fig. 9. Cost of each V and V † mapping for the IBM QX4 architecture.
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4.2 Toffoli to Clifford+T

In order to use Toffoli circuits in the IBM architectures they must be mapped
to Clifford+T circuits. There are different alternatives to map Toffoli to a Clif-
ford+T circuits. A possible mapping with 17 gates [10] is shown in Fig. 10.

=

H T †

T

T

T †

T †
T

T H

Fig. 10. Toffoli implementation with Clifford+T gates using 17 gates.

Since the CNOT gates used in the circuit must comply with the target IBM
architecture, the property from Fig. 8 to swap the control and target qubits of
the CNOT, without additional cost, can be used. Also, the control qubits can
be swapped in order to reduce the need for CNOT transformations. Applying
some optimization rules [17] to this mapping are possible.

=

H T † T T † T

T †

H

T

T

Fig. 11. Toffoli implementation with Clifford+T gates using 15 gates.

Figure 11 shows the optimized mapping presented in [11]. The mapping has
15 gates (six CNOTs), two fewer compared with the previous mapping. That
means that the mapped circuit complying with IBM architectures will be smaller.
However, that is not true due the characteristics of the mapping. Note that
swapping the control qubits of the Toffoli will have the same structure. Thus, it
has less chance for the CNOT gates be placed in the IBM architecture without
additional cost. This has been verified experimentally. To solve this problem,
another possible optimization for the mapping from Fig. 10 can be used. The
optimized mapping was proposed in [4].

=

H

T †
T † T T † T

T T † H

Fig. 12. Toffoli implementation with target qubit swapped.
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This mapping has 15 gates (six CNOTs) with different characteristic from the
previous mapping. In this case, swapping the controls qubits of the Toffoli can
reduce the need of additional gates in the circuit. Therefore, this is the mapping
that will be used to target Toffoli circuits to IBM architectures. The next step is
to find mappings with the same structure for the Toffoli where negative controls
are permitted (Fig. 12).

In order to find the mapping with the same structure for Toffoli gates with
mixed polarities the T and T † gates must be changed. Figure 13 shows the
mapping.

=

H

T

T † T T T †

T † T † H

Fig. 13. Mixed control Toffoli mapped to Clifford+T.

In the mapping of Toffoli with mixed polarities swapping the controls will
result in a different circuit. To solve this problem, the mapping of Toffoli with
mixed polarities swapped must be found. Again, to keep the structure of the
mapping unchanged, the T and T † gates must be changed. Figure 14 shows the
mapping of the Toffoli with mixed polarities swapped.

=

H

T †
T T † T T †

T T † H

Fig. 14. Mixed control Toffoli realized with Clifford+T gates.

With both circuits of the Toffoli with mixed polarities is possible to swap the
controls in order to reduce the need of additional gates. The remaining Toffoli
is the one with both negative controls. As the goal is to keep the same structure
and the number of gates, another combination of the T and T † gates can be
found to realize this Toffoli. This realization is shown in Fig. 15.

=

H

T

T T † T † T

T † T † H

Fig. 15. Negative controls Toffoli mapped to Clifford+T.

With the mapping of each Toffoli and the costs of each CNOT, the next
problem is to find the best permutation of qubits in a way that the lowest
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number of CNOTs must be changed in order to implement the circuit in a IBM
Q architecture. For now, as the IBM QX4 has 5 qubits, it is feasible to find
the best permutation by exhaustive enumeration, i.e. trying all 120 possible
permutations and select the one with lowest cost. To scale this approach, a
different way needs to be developed. After the mapping, some optimizations can
be done to the Clifford+T circuits.

4.3 Optimization

Some equivalences can be used after the mapping to optimize the circuit. Since
the gates T , T †, S, S†, and Z can commute with each other, the goal is to move
these gates together and remove them whenever possible. Figure 16 shows some
identities that can be used to remove two adjacent gates.

= T T † = T † T = S S† = S† S = H H = Z Z

Fig. 16. Some identities used in this work.

Another possible optimization is to replace a set of gates with an equivalent
one with fewer gates. Some of these equivalences used in this work are presented
in Fig. 17.

The tests and benchmarks done to evaluate this methodology are presented
in the next section.

5 Results

In order to evaluate the proposed methods, a series of tests were performed. For
the tests the IBM QX4 architecture with 5 qubits (Fig. 4) was used to implement

S = T T = S† Z = Z S†

S† = T † T † = S Z = Z S

Z = S S = S† S† = H H

H = H Z = Z H

T † = T S† = S† T

T = T † S = S T †

= H Z H

Fig. 17. Equivalences used to optimize the circuits.
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the mapped circuits. The first test was the circuit 3 17 from [10]. This is a NCV
circuit with 10 gates is shown in Fig. 18. The goal of this test is to check if a map-
ping using the approach presented in [10] combined with the CNOT mappings
from [3] will result in a circuit with fewer gates than the approach presented in
this paper. In [10] the authors transformed the circuit of Fig. 18 to Clifford+T
without taking architectural constraints into account. The transformed circuit
with 32 gates is shown in Fig. 19.

Q0

Q1

Q2

V † V

V †

V †

V † V

Q′
0

Q′
1

Q′
2

Fig. 18. Circuit 3 17a from [10].

Q0

Q1

Q2

H T

T †

T

T †

T

T †

H

H

T

T

T †

T

T †

T † H

S†
Q′

0

Q′
1

Q′
2

Fig. 19. Circuit 3 17e from [10].

Some of the CNOTs from Fig. 19 must be changed to comply with the IBM’s
QX4 constraints. Applying the CNOT mappings in the circuit and then opti-
mizing it with the equivalences previously presented, results in a circuit with 40
gates (see Fig. 20).

Q0

Q1

Q2

H H

H

T

T

T † H

H

H

H T †

T

T † H

H T

T

T †
H

H

H

H T

T †

T † H

S† Q′
0

Q′
1

Q′
2

Fig. 20. Transformed 3 17 circuit using mappings from [3].

The circuit from Fig. 18 was mapped using the approach presented in this
paper. For this, all the permutations were considered in order to select the best
permutation for this circuit. After the best permutation was found, the circuit
was optimized. The resulting circuit with 35 gates is shown in Fig. 21. Our app-
roach found a circuit with 12.5% fewer gates. This difference occurs because our
approach transforms the circuit targeting the quantum architecture, generating
fewer CNOT that must be changed.
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Q0

Q1

Q2

H

H H

T

T †
T †

T H

T S†

T †

T T † H T T † T † T

H

Q′
0

Q′
1

Q′
2

Fig. 21. Transformed 3 17 circuit using our approach.

Q0

Q1

Q2

Q3

Q′
0

Q′
1

Q′
2

Q′
3

Fig. 22. Circuit a2x a from [10].

As a second test, a Toffoli circuit was considered. The circuit used for this
test is a2x from [10]. This circuit has 2 Toffoli gates as shown in Fig. 22. Mapping
the circuit using the approach from [10] result in the circuit with 30 gates that
is shown in Fig. 23. Some of the CNOT must be changed to comply with the
IBM QX4 constraints.

Q0

Q1

Q2

Q3

H

H

T

T

T †

T

T †

T

T †

T †
H T †

T

T

T † H

Q′
0

Q′
1

Q′
2

Q′
3

Fig. 23. Circuit a2x e from [10].

To find the best permutation of the circuit from Fig. 23, all possible permu-
tations with the CNOT mappings from [3] were performed and the best one was
selected. The mapping for this circuit has 48 gates. Figure 24 shows the circuit.
Note that the lines Q0 and Q3 were swapped.

Q0

Q1

Q2

Q3

H

H T

T

T

T †
H

H

H

H T †

T †

T

T †

H

H H

H

H T †

T

H

H

T †

H

H T

H Q′
0

Q′
1

Q′
2

Q′
3

Fig. 24. Circuit a2x transformed with [10] and [3].

Applying our approach to the circuit from Fig. 22 result in the circuit pre-
sented in Fig. 25. The circuit has 36 gates, i.e. a reduction of 25% in the number
of gates. The approach used to find this circuit was to map the Toffoli circuit to
Clifford+T using the lower cost mappings for the IBM QX4 architecture. This
was done for each permutation and the best one was selected.
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Q0

Q1

Q2

Q3
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T †

T †

H

T T † T

T

T †
T †

H T †
T T † T

T

T † H

Q′
0

Q′
1

Q′
2

Q′
3

Fig. 25. Circuit a2x transformed with proposed approach.

The third test was to compare our approach with the mapping algorithms
from [21] and Qiskit [2]. For this, a set of reversible circuits were used as
benchmarks [20]. Since both algorithms only work with Clifford+T circuits, the
reversible circuits were transformed using the Toffoli equivalences presented in
Sect. 4.2. Then, the mapped circuits were realized on IBM QX4 using each algo-
rithm. In our approach, this mapping was not necessary. The benchmarks results
are shown in Table 2. The first column, Circuit, is the name of the benchmark.
The column #Rev is the number of gates of the original circuit and the column
#Clif+T is the number of gates of the Clifford+T circuit after the mapping
from the reversible circuit. The column #Std is the number of gates using the
mapping algorithm from [21] and optimized with Qiskit. The fourth column,
#Qiskit, is the number of gates of the mapped circuit using Qiskit. The col-
umn #Our is the number of gates of the mapped circuit using the approach
presented in this paper. The column, %(Qiskit/Our), is the difference in per-
centage comparing the Qiskit with our approach. The las column %(Std/Our)
is the difference in percentage of our approach compared with the Standalone
algorithm optimized.

Due to the efficient Toffoli mappings to Clifford+T, it was possible to find
permutations that resulted in good cost mappings. Our approach was able to find
permutations with lower costs by mapping the Toffoli gates to Clifford+T circuit
targeting the IBM QX4 architecture constraints. Circuits with up to 67% fewer
gates compared to the Qiskit mapping have been obtained and compared with
the Standalone algorithm, circuits with up to 50% fewer gates. For example, the
circuit mod5d2 70 with 8 gates has two Toffoli gates. After mapping this circuit
to Clifford+T it resulted in a circuit with 36 gates (column #Clif+T). The
gate count may increase, since this mapping did not consider any constraints
of the IBM QX4. However, our approach permutes the qubits in order to find
a permutation with a lower number of CNOTs requiring mappings, it was able
find a circuit with 45 gates after optimization.

Our algorithm obtained very good results due the fact that it calculates all
possible permutations of a circuit and selects the best one. For this approach
to work with an architecture with more qubits, an algorithm to find a “good”
permutation must be developed. It is not tractable to find the “best” permu-
tation. So, the next step of this work is to develop algorithms to find a good
permutation in order to obtain low cost mappings for Toffoli and NCV circuits
with more qubits.
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Table 2. Reversible benchmark circuits mapped to IBM QX4.

Circuit #Rev #Clif+T #Std #Qiskit #Our %(Qiskit/Our) %(Std/Our)

mod5d2 70 8 36 90 124 45 63.71 50.00

alu-v0 26 9 79 146 172 76 55.81 47.95

4mod5-v1 22 5 19 44 65 23 64.62 47.73

one-two-three-v2 100 8 64 111 177 63 64.41 43.24

alu-v1 28 7 35 70 100 40 60.00 42.86

alu-v3 35 7 35 66 112 40 64.29 39.39

alu-v4 37 7 35 66 87 40 54.02 39.39

mod5d1 63 7 21 46 52 28 46.15 39.13

alu-v3 34 7 49 79 111 49 55.86 37.97

4mod5-v0 18 9 65 116 174 73 58.05 37.07

mod5mils 65 5 33 64 76 41 46.05 35.94

4mod5-v0 19 5 33 63 52 41 21.15 34.92

alu-v0 27 6 34 66 88 43 51.14 34.85

4mod5-v1 23 8 64 112 155 74 52.26 33.93

alu-v1 29 7 35 66 136 44 67.65 33.33

4mod7-v1 96 13 153 255 384 171 55.47 32.94

4mod7-v0 95 12 152 255 287 171 40.42 32.94

one-two-three-v3 101 8 64 115 122 78 36.07 32.17

rd32 272 6 48 90 112 62 44.64 31.11

mod5mils 71 5 33 59 69 41 40.58 30.51

mini-alu 167 18 270 425 528 296 43.94 30.35

4 49 17 12 82 148 167 104 37.72 29.73

4gt11 82 12 26 70 54 50 7.41 28.57

decod24-v0 38 6 48 72 133 52 60.90 27.78

4gt11 83 8 22 51 51 37 27.45 27.45

4gt11 84 3 17 27 29 20 31.03 25.93

alu-v2 33 7 35 51 85 38 55.29 25.49

rd32 271 9 79 118 181 88 51.38 25.42

4gt13 92 6 62 73 61 55 9.84 24.66

aj-e11 165 16 142 234 376 178 52.66 23.93

one-two-three-v0 98 11 137 215 234 164 29.91 23.72

mod5d2 64 8 50 84 116 65 43.97 22.62

decod24-v2 43 6 48 63 105 49 53.33 22.22

4gt11-v1 85 4 18 24 22 19 13.64 20.83

decod24-v3 45 13 139 197 326 157 51.84 20.30

4gt13-v1 93 7 63 69 170 55 67.65 20.29

4gt5 77 10 122 166 232 133 42.67 19.88

hwb5 55 39 389 544 529 437 17.39 19.67

ham3 103 4 18 21 22 17 22.73 19.05

hwb4 49 23 219 342 371 280 24.53 18.13

mod10 171 19 229 319 441 262 40.59 17.87

sf 275 17 185 269 310 221 28.71 17.84

4gt5 75 8 78 106 176 88 50.00 16.98

alu-v2 31 31 423 585 843 488 42.11 16.58

decod24-v1 41 9 79 109 260 91 65.00 16.51

4mod7-v0 94 12 152 204 233 171 26.61 16.18

hwb4 52 11 53 94 109 79 27.52 15.96

one-two-three-v1 99 11 123 171 215 144 33.02 15.79

mod10 176 13 167 238 359 205 42.90 13.87

3 17 14 6 34 35 40 31 22.50 11.43

rd32-v1 68 5 33 39 67 35 47.76 10.26
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6 Conclusions

To implement Toffoli and NCV circuits in a IBM QX architecture, they need to
be mapped to a Clifford+T circuits. This is due to the fact that quantum com-
puters available from IBM Q project only implement circuits with Clifford+T
gates. Along with that, some CNOTs cannot be directly implemented and must
be changed to comply with the architecture constraints.

Therefore, in this paper we present a methodology to map Toffoli and NCV
circuits to IBM Q architectures. This methodology consists in finding a low cost
mapping of NCV and Toffoli circuits to quantum computers and use it to map
the circuits.

To evaluate the proposed approach we used the IBM QX4 architecture with
five qubits and a set of reversible circuits. The reversible circuits were mapped
to a Clifford+T circuit and then applied in two different mapping strategies in
order to be compared with our approach. Experimental results show that the
proposed approach can find circuits with up to 67% fewer gates than the ones
mapped to Clifford+T and applied in Qiskit. Also, compared with the algorithm
Standalone from [21] then applied into Qiskit for optimizations, our approach
found circuits with up to 49% fewer gates. These results were possible because
the permutation with lower mapping cost were found. The next step is to develop
an algorithm to find a good (not necessarily best) permutation without the need
to inspect all of them. The key is to find good heuristics to guide the search.
With such an algorithm the proposed approach can be used to map Toffoli and
NCV circuits to architectures with more qubits.
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Abstract. Adiabatic computing with two degrees of freedom of 2-local
Hamiltonians has been theoretically shown to be equivalent to the gate
model of universal quantum computing. But today’s quantum annealers,
namely D-Wave’s 2000Q platform, only provide a 2-local Ising Hamilto-
nian abstraction with a single degree of freedom. This raises the ques-
tion what subset of gate programs can be expressed as quadratic uncon-
strained binary problems (QUBOs) on the D-Wave. The problem is of
interest because gate-based quantum platforms are currently limited to
20 qubits while D-Wave provides 2,000 qubits. However, when transform-
ing entire gate circuits into QUBOs, additional qubits will be required.

The objective of this work is to determine a subset of quantum gates
suitable for transformation into single-degree 2-local Ising Hamiltonians
under a common qubit base representation such that they comprise a
compound circuit suitable for pure quantum computation, i.e., without
having to switch between classical and quantum computing for differ-
ent bases. To this end, this work contributes, for the first time, a fully
automated method to translate quantum gate circuits comprised of a
subset of common gates expressed as an IBM Qiskit program to single-
degree 2-local Ising Hamiltonians, which are subsequently embedded in
the D-Wave 2000Q chimera graph. These gate elements are placed in the
chimera graph and augmented by constraints that enforce inter-gate log-
ical relationships, resulting in an annealer embedding that completely
characterizes the overall gate circuit. Annealer embeddings for several
example quantum gate circuits are then evaluated on D-Wave 2000Q
hardware.

Keywords: Quantum computation · Quantum annealing ·
Quantum gate circuits · Adiabatic computation

1 Introduction

Recent advances in quantum hardware have resulted in the first systems becom-
ing publicly available. On one hand, gate-based quantum computers have been
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designed, such as the IBM Q, Rigetti’s Aspen, or IonQ’s systems using using
superconducting transmons or ion tubes [2,11]. On the other hand, quantum
annealing has been promoted by D-Wave’s RF-Squids [6]. Both types of systems
are available in the cloud and can be programmed using Python, e.g., via IBM’s
Qiskit in the IBM Q Experience [1], Rigetti’s Forest DSK in their Quantum
Cloud Services [2], and D-wave’s Ocean Software [9] accessible via the cloud
through D-Wave Leap [8].

It was shown that adiabatic quantum computing can solve the same prob-
lems as gate-based (universal) quantum computing given at least two degrees
of freedom for 2-local Hamiltonian [3,5,10]. D-Wave supports a 2-local Ising
Hamiltonian with a single degree of freedom in their 2000Q system, which is
why it is believed to only solve a subset of the problems that can be expressed
by gate-based (universal) quantum machines. In fact, D-Wave’s programming
abstraction is specifically catering to optimization problems while gate-based
abstractions map to quantum gates, e.g., by expressing programs as circuits of
gates in OpenQASM [7].

In 2014, Warren outlined how a set of universal quantum gates could be
realized in adiabatic form using D-Wave’s annealing abstraction [12]. This is
demonstrated, among others, for C-NOT, Toffoli (CC-NOT), Swap and C-Swap
(Fredkin) gates in a {0, 1} base of qubit states, and for the Hadamard gate in a
two-vector {|0〉 , |1〉} base.

In this paper, we contribute a framework to automatically translate gate-
based circuits into adiabatic single-degree 2-local Hamiltonians expressed as
quadratic unconstrained binary optimization problems (QUBOs). We constrain
ourselves to a subset of quantum gates in the common {0, 1} base so that an
entire circuit can be expressed as a single QUBO. This allows us, given a Qiskit
program suitable for IBM Q execution, to generate an equivalent Ocean program
that can execute on a D-Wave machine. Such a translation is significant since
today’s gate computers are constrained to 20 qubits for IBM Q (or 19 qubits
for Rigetti’s available platform), while D-Wave supports around 2,000 qubits
on their latest publicly available platform, which enables experimentation at a
different scale.

The objectives of this work are (1) to identify a subset of gates suitable
for translation, (2) to demonstrate the feasibility of auto-translating entire cir-
cuits of these quantum gates to adiabatic programs, (3) to assess the cost of
ancilla qubits required to express gates in QUBOs, (4) to find an embedding
into D-Wave’s Chimera graph for a circuit and assess its cost in extra qubits and
circuit lines/wires, and (5) to compare hardware experimentation results with
the expected ground state to determine the annealer’s ability identify coherent
solutions for circuit embedding. We contribute an automated method for encod-
ing quantum gate circuits comprising X, C-NOT, Toffoli, Swap and C-Swap
(Fredkin) gates as single-degree 2-local Ising Hamiltonians (QUBOs) and embed
the resulting representation in the D-Wave 2000Q chimera graph. We provide
the single-degree 2-local Ising QUBOs with K4,4 connectivity, a compete bipar-
tite graph with 8 vertices corresponding to D-Wave’s unit cell, for which ground
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state configurations logically characterize quantum X, C-NOT, Toffoli, and Swap
gates. Notice that we do not provide a translation for the Hadamard gate, H,
as it requires a different base of qubit states than the above, i.e., one cannot
directly embed H in the same circuit. Instead, one would have to transition
between quantum and classical programs, which collapses the quantum state
and thus defeats the purpose of quantum computing in first place. These gates
supported by our translation constitute building blocks that are placed in the
chimera graph and augmented by constraints that enforce inter-gate logical rela-
tionships. The resulting annealer embedding is equivalent to the corresponding
gate circuit in terms of its computational functionality. In experimental results,
we evaluate annealer embeddings for several sample quantum gate circuits on
D-Wave hardware.

2 Design and Implementation

In adiabatic computing, the comprehensive state of qubits is annealed via a com-
bination of tunneling and entanglement toward a ground (energy) state. There
may be more than one such state, and tunneling aids in not getting stuck in local
minima but rather find other ground states, subject to practical considerations
of adiabatic computing, such as experienced by near absolute zero Kelvin opera-
tion and hardware-induced errors in any practical quantum devices. To this end,
D-Wave supports a single-degree 2-local Ising Hamiltonian

H(t) = −
∑N−2

i=0

∑N−1

j=0
Ji,jσiσj −

∑N−1

i=0
Siσi − Γ (t)

∑N−1

i=0
σi

with N qubits σi ∈ {−1, 1} as vertices, coupler strengths Jij ∈ {−2, 2} that
connect σi, σj and biases (weights) Si per qubit such that the amplitude, Γ (t),
of the third term, the traverse field is gradually decreased to drive the aggregate
of the first and second term into a ground state, H0.

A 2-local Hamiltonian is expressed as quadratic unconstrained binary opti-
mization problem (QUBO) that describes a ground state and is subsequently
mapped onto D-Wave’s 2000Q embedding of qubits respecting the connectivity
of qubit pairs. Specifically, D-Wave’s inner cell is a K4,4 bipartite graph to which
we map quantum gates. This embedding of a gate is described in Sect. 2.1.

The K4,4 unit cells are arranged in a 2-dimensional 16×16 grid in a Chimera
graph with sparse horizontal and vertical couplings between equivalent qubits of
neighboring unit cells. The Chimera graph provides the means to connect unit
cells representing a quantum gate with each other to create the desired quantum
circuit of a given gate-based quantum program, which is described in Sect. 2.2.

We then develop an automatic transition from Qiskit programs representing
circuits of quantum gates to an equivalent adiabatic representation in a system-
atic manner in Sect. 2.3. This translator leverages the class and file structure of
IBM’s open-source Qiskit API for definitions of quantum gate circuits due to its
familiarity and ease-of-use. Specifically, a Qiskit translator was created so that
any Qiskit script defining a quantum gate circuit could be used to generate and
run a corresponding annealer embedding.



Automatically Translating Quantum Programs 149

2.1 2-Local Ising Hamiltonians for K4,4 Embeddings of Quantum
Gates

Gate embeddings for a σi ∈ {0, 1} base, depicted in Fig. 4, were designed to have
a ground state characterizing the corresponding quantum gate’s logical function.
The process by which the gate embeddings used in this project were determined
is described below in terms of the C-NOT gate as an example.

The C-NOT gate operates on 2 qubits, a control qubit and a target qubit.
Because the target qubit is potentially altered by the C-NOT operation, its
value after the C-NOT operation must be considered distinctly. Accordingly,
the 8 possible configurations of 3 binary variables—q0, q1, and q2—are shown in
the truth table on the left of Fig. 1. Arbitrarily, these variables are designated
to represent the control qubit value, the value of the target qubit before the
C-NOT operation, and the value of the target qubit after the C-NOT operation,
respectively.

Fig. 1. Truth table showing all possible logical combinations of 3 binary variables and
the corresponding Ising Hamiltonian constraints for a C-NOT operation. Ground state
configurations are highlighted in green. (Color figure online)

Of the 8 possible configurations, only 4 correspond to a qubit transformation
performed by a C-NOT gate. As such, it is these configurations that we require
to correspond to the lowest energy of the Ising Hamiltonian. This results in a
set of constraints—one for each row of the truth table shown in Fig. 1—in terms
of 2-local Ising Hamiltonian variables, Si and Jij , and ground state energy, G.
These constraints are shown on the right of Fig. 1. Si and Jij are referred to as
qubit biases and coupler strengths, respectively.

These inequalities were then solved under the constraint that the solution
comprised only integer values between −10 and 10. (Notice that this range is
later mapped to some Si ∈ {−2, 2} to meet the D-Wave embedding constraints.)
If a given set of constraints had no solution, as in the case of the C-NOT, an
ancilla variable was added as shown in Fig. 2 and a system of constraints was
again generated and a solution was sought.

The graph of the resulting C-NOT Ising Hamiltonian is shown on the left of
Fig. 3. This graph however, is not compatible to D-Wave’s chimera graph. Recall
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Fig. 2. Truth table showing all possible logical combinations of binary variables after
an ancilla variable is added and the corresponding Ising Hamiltonian constraints for a
C-NOT operation. Ground state configurations are highlighted in green. (Color figure
online)

that the chimera graph is a 16 by 16 array of K4,4 unit cells whose right-hand
nodes are connected horizontally and left-hand nodes are connected vertically.
Therefore, the graphs obtained by solving the system of constraints were mod-
ified into logically equivalent graphs conforming to the K4,4 connectivity of a
unit cell. This was done by splitting qubits requiring connections having no cor-
responding coupler in the chimera graph. For example, as shown on the left of
Fig. 3, the vertical connections, J1a and J02, have no physical counterpart in the
chimera graph. To remedy this, one of the logical qubits being coupled through
these connectors can be represented by two physical qubits, one on each side of
the graph, rendering the all the connections physically realizable. On the right
of Fig. 3 is the graph that results from splitting qa into qa and qa′ and q2 into
q2 and q2′ . Qubit biases for these new qubits are increased from their original
value by a positive offset, δ, and the coupling strength between them is set to the
negative of the bias of the original qubit minus 2δ. This ensures that, when both
physical qubits are in sync, the embedding is equivalent to the corresponding
configuration in the unmodified graph. For example, referring to the graph on
the right of Fig. 3, when both qa and qa′ are equal to 1, an energy of

(Sa + δ) + (Sa + δ) + (−Sa − 2δ) = Sa

is contributed to the system. This is the same energy contribution made to the
system represented by the graph on the left of Fig. 3 when qa is equal to 1.
Further, splitting qubits in this way ensures that the energy of any new logical
configurations introduced by the new qubits are above the ground state by at
least δ. In this work, δ was set to 5.
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Fig. 3. (Left) Ising Hamiltonian graph obtained from system of constraints. Sections
highlighted in green and orange are not compatible with D-Wave’s chimera graph.
(Right) Logically equivalent graph modified to conform to chimera graph unit cell
connectivity. Sections highlighted in green and orange indicate the modifications to
the graph. (Color figure online)

Finally, to ease the process of embedding the overall gate circuit (described
in Sect. 2.2), we also required that any qubit representing a gate input be on one
side of the graph and any qubit that could be used as an input to a later gate
be on the opposite side of the graph. For example, the Toffoli gate pictured in
Fig. 4(c) has 3 inputs (Target, Control 1, and Control 2) and 3 outputs (Out,
Control 1, and Control 2). The value of the Control qubits are not transformed by
the gate and as such must be present on both sides of the graph. This ensures
that the most recent state of these qubits are easily accessible to other, later
gates. The value of the Target qubit is transformed by the gate into the value
of the Out qubit. As such, the Target qubit is required to be present on the
input side of the gate embedding and the Out qubit is required to be on the
output side of the gate embedding. In the Toffoli embedding, the Out qubit also
happens to be present on the input side, but this is for the purpose of making
the connections needed to form a valid gate embedding.

The above process was carried out to determine embeddings for X, Toffoli,
and Swap gates. A 2-local Ising Hamiltonian assuming full graph connectivity for
the C-NOT gate was sufficiently determined in a previous work [12]. This Ising
Hamiltonian was used as a starting point and modified to conform to the criteria
described above. A 2-local Ising Hamiltonian assuming full graph connectivity
for the C-Swap function was also determined in this work. However, the graph of
this Hamiltonian could not be modified into a form meeting the criteria described
above. Specifically, configuring the connections comprising the full connectivity
graph to conform to chimera graph connectivity requires at least 2 unit cells.
Also, satisfying our requirement that gate inputs and outputs be present on
certain sides of a cell requires the use of more resources, and further removes
the symmetries that the circuit embedding algorithm relies on. Due to these
problems, the C-Swap gate was implemented with 2 C-NOT embeddings and a
Toffoli embedding, connected as illustrated on the right of Fig. 5.
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Fig. 4. (Left) Embeddings for (a) X, (b) C-NOT, (c) Toffoli, and (d) Swap gates
illustrated to show qubit names, qubit biases, and coupler strengths. (Right) Ground
state configurations of logical variables.

Fig. 5. (Left) C-Swap gate symbol with qubit names indicated (Right) Functionally
equivalent circuit used to implement C-Swap gate.

2.2 Embedding the Problem in the Chimera Graph

Determining an optimal embedding for an arbitrary annealer problem is NP-
complete and the heuristics commonly used to determine working embeddings
can often fail when the problem is complex. We implement a process that exploits
properties of quantum gate circuits and the symmetries of the gate embeddings
determined above to reliably construct working embeddings for gate circuits.
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Fig. 6. Chaining example. (Top) Illustration of gate elements X1 and X2 showing
names of qubit biases and coupler strengths. Qubits whose biases are denoted with the
letter “i” are input qubits and those denoted with the letter “o” are output qubits.
(Bottom) An embedding of the identity function resulting from chaining the output of
X1 to the input of X2.

Chaining. Logical connections between gate embeddings are made via “chains”
of qubits that encode a single logical qubit. A chain is created by assigning the
biases of the qubits that comprise the chain and the strengths of the couplers
between them similarly to how they were assigned when splitting a logical qubit
(Fig. 3). Specifically, each section of the chain is constructed by offsetting the
biases of the qubits being connected by δ and assigning to the corresponding
coupler a strength of −2δ. This is done one section at a time, from the earlier
gate to the later gate. An example of the resulting chain is shown in Fig. 6 for
the case of two X gates connected by an identity function.

Chimera Graph Cell Designations. The “signal flow” of a gate circuit nat-
urally lends itself as an organizing principle for the problem embedding. To best
translate the notion of a signal flow to the Chimera graph, gate embeddings are
placed as shown in Fig. 7. The connectivity between adjacent gate embeddings is
highlighted and cell designations are indicated. Each gate embedding has corre-
sponding sections of the graph designated for delivering chains to non-adjacent
gates (chain output column) and assembling its inputs (input assembly cell)
denoted in Fig. 7 as CO and IA, respectively.

Gate embeddings, designed to have inputs and outputs on either side of a
single bipartite cell, are reflected depending on whether the gate number is even
or odd. Specifically, if the gate number is even, the output column of the gate
embedding is on the left and the input column is on the right. If the gate number
is odd, the input column is on the left and the output column is on the right.

If an input of a given gate is dependent on an output of a previous adjacent
gate, the rows of the new gate embedding are permuted to align its input with
the previous output and a chain is made through its input assembly cell. Rows
of unit cells can be permuted without change to the network topology of the
gate embedding, which makes connections between adjacent gates trivial.

If an input of a gate is dependent on an output of a previous non-adjacent
gate, a chain is routed from the chain output column of the earlier gate through
empty positions on the Chimera graph to the input assembly cell of the new
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Fig. 7. Chimera graph cell designations for gate circuit embeddings. G1, G2, etc. =
Gate 1, Gate 2, etc.; IA = Input assembly cell; CO = Chain out column; I/O =
Input/Output column

gate. The role of chain out column and input assembly cell designations in chain
routing are illustrated in Fig. 8. New gates first align their rows with connec-
tions to adjacent gates, then non-adjacent gates. Rows with no dependencies are
assigned a position in the bipartite cell last.

2.3 Implementing the Qiskit to D-Wave Ocean Translator

Qiskit is an open-source Python API developed for the implementation and exe-
cution (or simulation) of quantum gate circuits on IBM quantum computers [1].
As this API provides a convenient and intuitive framework with which quantum
gate circuits can be defined, this translator project was built within its class
structure. This was achieved with the objective that any Qiskit script defining a
quantum gate circuit could be used to generate and run a corresponding annealer
embedding. Our approach allows a gate circuit in Qiskit to be executed (a) on
IBM Q quantum hardware, (b) in simulation using IBM’s APIs, or, after trans-
lation, (c) on D-Wave’s quantum annealer hardware. Given IBM Q’s constraint
to at most 20 qubits at this time, Qiskit programs requiring more than 20 qubits,



Automatically Translating Quantum Programs 155

Fig. 8. Detail illustrating role of input assembly cells and chain out columns in making
inter-gate connections

which may be very slow in simulation, can be executed on D-Wave hardware in
a fraction of the corresponding simulation time.

Our translator is implemented as new backend to the Qiskit source code
in terms of the AnnealerGraph class, whose methods handle the configura-
tion, placement, and chaining together of gate embeddings. An instance of
AnnealerGraph was added as an attribute to Qiskit’s QuantumCircuit class,
which is a central object in the Qiskit framework, whose attributes are operated
on or used by every Qiskit function relevant to this project.

In a Qiskit script, an instance of QuantumCircuit is initialized as a collection
of QuantumRegister and ClassicalRegister instances. A gate circuit is then
defined via QuantumCircuit methods that operate on QuantumRegister objects.

Our translator thus implements a modified version of Qiskit, where an
AnnealerGraph instance is initialized in the QuantumCircuit initialization func-
tion and builds data structures needed to construct an annealer embedding from
Qiskit instructions. AnnealerGraph has a dictionary attribute, qubits, in which
each qubit in the gate circuit, assigned a name in the initialization function of
QuantumCircuit, has a corresponding entry (with keys corresponding to Qiskit
register names). This dictionary keeps track of which annealer graph nodes are
assigned to a given logical qubit, in what order these nodes were assigned, and
whether or not the final state of this qubit is considered an output (i.e., whether
the measure function was used on this qubit). There is also an entry in qubits
that keeps track of annealer graph nodes that do not correspond to logical qubits.

Annealer graph nodes, identified by D-Wave Ocean as numbers, are added
to the lists comprising the qubits dictionary as gates and chains between
gates are added to the graph. Dictionary objects used as the input argu-
ments to the D-Wave Ocean embedding compilation function, qubitbiases and
couplerstrengths, are also built as gates and chains are assigned to the graph.
The qubitbiases dictionary contains as keys a number identifying a given node
in the chimera graph. The value associated with a given key is the bias itself.
The couplerstrengths dictionary contains as keys a tuple identifying the two
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qubits being coupled (smaller number first). The value associated with a given
key is the coupler strength.

AnnealerGraph contains methods for adding the circuit’s gate elements
(addX, addCNOT, etc.). Therefore, Qiskit functions for adding gates to a quantum
circuit were modified to call the appropriate AnnealerGraph method in lieu of
the original Qiskit code. In general, AnnealerGraph methods for adding gate ele-
ments to the circuit embedding are structured as follows. AnnealerGraph has as
an attribute a counter that indicates how many gates have already been placed
in the circuit embedding. This is used to determine where in the graph the new
gate is placed per the cell designations described in Sect. 2.2. Next, connections
to previously placed gate embeddings are determined. For each input in the gate,
the last element in the qubit dictionary entry for the corresponding gate circuit
qubit indicates the most recent state of that of that qubit and its position. If
its position is in an adjacent gate, the row containing the corresponding input
of the new gate is placed in the unit cell to align it with its connection in the
previous gate. These qubits are then connected with a chain through the new
gate embedding’s input assembly cell. If the new gate requires a connection from
a non-adjacent gate, a chain is made from the last instance of the qubit to the
input assembly cell of the new gate. The input of the new gate is then assigned
a position in the gate cell aligned with the position of its connection. Once gate
qubits with dependencies are placed in the gate cell, qubits with no dependencies
are placed in remaining positions.

The last significant modification to Qiskit was to its execute function, which
was modified to make final adjustments to the circuit embedding, execute the
embedding on D-Wave hardware, and report the results. In our code, when
execute is called, the user is prompted, for each qubit in the gate circuit, to
answer whether the initial state of the qubit should be constrained to a value of
zero. If the user answers that it should be and it was not earlier identified as a
circuit output by the measure command, it is assumed this qubit is an ancilla
and as such is not reported in the results. If the user answers that it should be
constrained to zero and it has been identified as a circuit output by the measure
command, the output values are still reported, but the input values are not. The
initial state of a logical qubit is constrained to a value of zero by adding 5 to
the bias of the first physical qubit associated with it. Results are reported with
input variable values on the left and output variable values on the right.

3 Experimental Results

An upper bound on the resource requirements on both ends can be given as fol-
lows. Given an n-gate quantum circuit (in our case specified as a Qiskit program),
a translation to an adiabatic form is provided in no more than 32n adiabatic
qubits on the D-Wave 2000Q. The factor is comprised of 8 qubits for the K4,4

representation of a gate, the remaining 24 qubits are used as wiring to the left
and below that gate-equivalent K4,4 graph (cf. the example below and Sect. 3.1).
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Notice that an increase by 32X still increases the capabilities by mapping to D-
Wave, if possible, since the IBM/D-Wave gap is 100X now, and problems can
often be mapped more efficiently.

Fig. 9. Embedding of equivalence check circuit for 1-qubit numbers. Colors indicate
logical qubits. (Color figure online)

3.1 Circuit for Comparison of 1-Qubit Numbers

Shown at the top of Fig. 9 is a quantum circuit whose output is |1〉 if its two
input qubits, |a〉 and |b〉, are in the same logical state and |0〉 if they are not.
The temporary qubit is not necessary for a 1-qubit equivalence circuit such as
this but temporary registers are needed for similar circuits when comparing
multi-bit inputs. The temporary register is included here to make this example
more interesting. The main illustration in Fig. 9 shows the embedding automat-
ically generated from a Qiskit program that defines the circuit depicted. This
embedding anneals as expected. If the initial states of the output and temporary
qubits are constrained to be zero there are 4 valid results. All 4 results are reli-
ably obtained within 100 samples. The embedding uses 32 physical qubits and
48 couplers, 12 of which are used for inter-gate connections. This embedding is
clearly not optimal. An optimal graph for a circuit of this size and functionality
is easily obtained using the process by which the gate embeddings were deter-
mined (Sect. 2.1). An optimal graph for this circuit’s function (XNOR) is shown
in Fig. 10. It uses 6 qubits and 8 couplers and is contained within a single K4,4

cell. Therefore, the generated circuit uses about 6 times more resources than is
optimal.
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Fig. 10. An optimal XNOR graph with matching functionally to the generated 1-qubit
equivalence circuit embedding

3.2 Circuit for Comparison of 5-Qubit Numbers

The 1-qubit equivalence circuit was expanded into a circuit for comparison of
5-qubit numbers. The current chain routing algorithm caused the embedding for
this circuit to become congested when routing temporary qubits from earlier in
the circuit to be uncomputed at the end of the circuit, which resulted in a graph
that did not map to the chimera graph. Specifically, the current chain routing
algorithm does not yet implement any precautions against routing chains into
graph positions from which there are no further available connections. When this
occurs, the algorithm is forced to assign a connection via a nonexistent coupler.
Due to this, gates used for uncomputing the temporary qubits were not included
in the circuit, and without them, the resulting embedding conformed to chimera
graph connectivity and was able to be annealed on D-Wave 2000Q hardware.

The embedding generated for the 5-qubit equivalence circuit uses 156 physical
qubits and 240 couplers, 68 of which are used in chains between gates. These
values are also about 5 times larger than those of the 1-qubit equivalence circuit,
as expected. However, this embedding does not anneal as effectively as the 1-
qubit equivalence circuit. Only about 20 of the 1,024 valid results are obtained
within 10,000 samples.

3.3 Adder for 1-Qubit Numbers

The top of Fig. 11 shows a quantum circuit implementing a full adder function.
The main illustration in this figure shows the embedding generated from a Qiskit
script defining this circuit. This embedding is composed of 79 physical qubits and
110 couplers, 47 of which are used for inter-gate connections. Several improve-
ments that could be made to this embedding are apparent. Most obviously, the
chains connecting gates could be routed more efficiently. An optimal full adder
annealer embedding uses 8 qubits and 13 couplers and fits within a single K4,4

cell [4]. So, in terms of bipartite cell embeddings used, the generated full adder
embedding is 6 times larger than the optimal case. Considering resources used
to connect gates, the generated embedding is about 11 times larger.

The generated full adder embedding anneals as expected. There are 8 valid
results if the initial states of sum and carry-out qubits are constrained to be
zero. All 8 results are reliably obtained within 400 samples.
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3.4 Adder for 4-Qubit Numbers

The 1-qubit adder was expanded to implement a 4-qubit adder. The correspond-
ing embedding used 322 physical qubits and 430 couplers, 212 of which were used
for inter-gate connections. Qubits in gate cells G9, G10, and G17 were down on
the D-Wave machine, and as such these cells were not used. Due to having to
route around these cells, extra qubits and couplers were included in the embed-
ding. Nonetheless, the number of qubits and couplers used in the generated
embedding are still approximately 4 times that of the 1-qubit adder embedding.

This embedding does not anneal as effectively as the 1-qubit adder. There are
256 valid ground states when the initial state of the output qubits are constrained
to zero. Only 16 of these are ground states are found within 10,000 samples.

3.5 Multiplication Circuit for 2-Qubit Numbers

The quantum circuit pictured in Fig. 12 takes 2-qubit numbers, a1a0 and b1b0,
as input and computes their product p3p2p1p0. The embedding generated from a
Qiskit script defining this quantum circuit comprises 200 physical qubits and 262
couplers, 142 of which were used for inter-gate connections. In related work, an

Fig. 11. Embedding of adder for 1-qubit numbers. Colors indicate logical qubits. (Color
figure online)
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embedding for a 3-bit multiplication function was implemented by making appro-
priate connections between single cell embeddings for full adder, half adder, and
AND functions [4]. An embedding for a 2-bit multiplication function constructed
in this way would comprise 4 AND embeddings and 2 half adder embeddings,
which require 28 qubits and 32 couplers between them. Assuming a similar chain-
ing scheme, about 16 qubits and 23 couplers would be required to connect the
minor embeddings. Therefore, the embedding would require approximately 44
qubits and 55 couplers. Compared to this embedding, the embedding generated
here uses about 6 times the amount of qubits, and about 3 times the number of
couplers. Note that, as in the case of the 4-qubit adder, qubits in gate cells G9,
G10, and G17 were down on the D-Wave machine, and so these cells were not
used. This resulted in extra qubits and couplers being included in the generated
embedding.

Fig. 12. 2-qubit multiplication circuit

This embedding anneals as expected. If the initial state of output qubits and
temporary qubits, t0 and t1, are constrained to zero there are 16 valid results.
All 16 results have been obtained in 10,000 samples.

4 Conclusion

We contributed an automatic translation scheme from a set of quantum gates,
expressed as a Qiskit circuit suitable for execution on the IBM Q platform, to an
adiabatic circuit with an equivalent single-degree 2-local Ising Hamiltonian that
is embedded on a chimera graph and expressed as an Ocean program suitable
for D-Wave 2000Q execution. Experiments indicated that the generated target
circuits were using six times more qubits and three times more couplers than
the source circuits. In future work, we plan to develop optimization techniques
to reduce the number of resources required by exploiting inter-gate embeddings
within unused couplers of a cell representing a gate and by reducing qubits by
fusing gates together. We also intend to further extend the set of gates suitable
for adiabatic transformation in circuits.
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Abstract. This work-in-progress report proposes an efficient method
to solve “quantum circuit placement problems” which are considered
explicitly or implicitly when we convert an arbitrary quantum circuit into
a nearest neighbor (NN) compliant circuit. A quantum circuit placement
problem is to find as few SWAP gates as possible to convert a given initial
qubit placement into a desired qubit placement. In the existing methods,
the problem is solved by an ILP formulation or an A* search algorithm;
the existing approaches may not be scalable for large quantum circuits.
Thus, we are considering a more efficient method to solve the problem;
our method tries to apply only SWAP gates such that do not have any
bad effect on the desired movement of all the qubits. We also report a
preliminary experimental result to show how our method improve the
A* search algorithm which is used to generate NN compliant circuits.

Keywords: Quantum circuit placement problem · Nearest neighbor ·
SWAP gate

1 Introduction

Recently many companies (e.g., IBM, Intel, Rigetti, and Google) has been com-
peting to develop quantum computers which are called Noisy Intermediate-Scale
Quantum Computers (NISQCs). From these researches, it would be natural to
consider that the future quantum circuits can support only operations between
nearest neighbor two qubits. Therefore, we need to convert a desired quantum
circuit into so called a nearest neighbor (NN) compliant circuit which consists of
only one-qubit operations and two-qubit operations on adjacent pairs of qubits.

Therefore, it has been studied intensively to convert a quantum circuit into
an NN compliant circuit [1–4]. These existing methods convert any circuits into
NN compliant circuits by inserting SWAP gates. They should work well for the
circuits used in the current NISQCs, but they may not be applicable to very
large quantum circuits in the future. In such a case, as the case of classical cir-
cuit design, we can divide a given large circuit into small sub-circuits, convert
each sub-circuits into NN compliant circuits, and then combine them. Also, we
may want to reuse already optimized small NN compliant components (such
c© Springer Nature Switzerland AG 2019
M. K. Thomsen and M. Soeken (Eds.): RC 2019, LNCS 11497, pp. 162–168, 2019.
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as, adders, multipliers, error-correcting circuits, etc.) when we construct a large
quantum circuit. In these design procedures, we need to combine each NN com-
pliant circuit.

When we combine two NN compliant circuits, we may need to change the
qubit placement between the two circuits because each circuit may assume dif-
ferent qubit placements to be NN compliant. More precisely, we need to consider
how to insert SWAP gates between two sub-circuits to change the qubit place-
ment for the first circuit into the one for the second circuit. We call this problem
“quantum circuit placement problems” in this work-in-progress report.

Indeed, the problem is considered in the existing methods to design NN
compliant circuits explicitly [1] or implicitly [2–4]. In the existing methods, the
problem is solved by an ILP formulation [1] or an A* search algorithm [2,3],
which may not be scalable for large quantum circuits. The existing heuristic [4]
is very simple, and seems not to be so efficient. Thus, we are considering a
more scalable and better heuristic to solve the problem on a 2-D grid. Our
method tries to apply only SWAP gates that do not have any bad effect on the
desired movement of all the qubits. To do so, we introduce a notion of “desired
direction,” which is natural and useful for our purpose. We report a preliminary
experimental result to show how our method improve the A* search algorithm
which is used to generate NN compliant circuits.

2 The Proposed Heuristic Method

In this section, we explain the problem definition of quantum circuit placement
problem on a 2-D grid and our proposed heuristic method to solve the problem
efficiently.

2.1 Problem Definition

The problem of converting a given initial qubit placement into a desired qubit
placement is formulated as follows:

Quantum Circuit Placement Problem on a 2-D Grid
Given two qubit placements on a 2D grid, one is an initial qubit placement and
the other one is a desired qubit placement, the problem is to convert the initial
qubit placement into a desired qubit placement with the minimum number of
adjacent transpositions (which can be done by SWAP gates) on a 2D grid.

The input/output of the problem can be stated formally as follows:

Input: an initial qubit placement qi, a desired qubit placement qd, a 2D grid
graph G.

Output: products of adjacent transpositions.

In the following, we denote qubits as q1, q2, · · · and qi1 in Fig. 1(a) means the
initial qubit placement of q1. Similarly, qd2 in Fig. 1(b) means the desired qubit
placement of q2. We assume that qubits are placed in one node which is placed
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Fig. 1. An example of an initial qubit placement and a desired qubit placement

in a 2D grid as shown in Fig. 1(a). We denote the node locations in the grid as
N [i, j] where N [0, 0] means the top-left in Fig. 1. For example, node locations of
qi1 and qi2 in Fig. 1(a) are represented as N [2, 2] and N [0, 1], respectively.

An example of a problem input is as shown in Fig. 1. Figures 1(a) and (b) are
examples of an initial qubit placement and a desired qubit placement, respec-
tively. Note that some qubits are not used in some sub-circuits. We do not care
their node locations while solving a problem. A symbol ∗ (as shown in Fig. 1(b))
indicates such a don’t care node. we can place any qubit on a don’t care node if
the qubit is not specified to be placed in another node.

2.2 The Proposed Heuristic Method

We explain our heuristic method in this section. To begin with, we introduce a
notion of “desired direction,” which is natural and useful. As shown in Fig. 1, q1
in qi needs to move to N [0, 0] from N [2, 2] by using adjacent transpositions on
the 2D grid. A direction from N [2, 2] to N [0, 0] is upper-left. Since using only
adjacent transpositions on the 2D grid, the upper-left direction is decomposed
into left and up directions for implementation. These decomposed directions are
called desired directions of node q1. Each node which is not a don’t care node
has one or two desired directions if the node is not at its desired placement. We
call an out-going edge from a node as a desired direction edge of the node when
the edge goes to the desired direction from the node. For example, if the desired
directions of a node is upper and left, the two edges which goes upper and left
from the node are called desired direction edge of the node. Desired direction
edges of q1 are shown as red arrows in Fig. 2. Desired direction edges of q2, q3,
and q4 are as shown in Fig. 2 as well.

For our purpose, we consider the following three situations for an adjacent
pair of nodes as shown in Fig. 3. When an edge is a desired direction edge for
the both of nodes, we call the edge between the such two nodes as a Type-2
edge. If we swap two qubits that are connected by a Type-2 edge, the both of
qubits moves closer to their desired qubit locations. When an edge is a desired
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Fig. 2. Desired directions
of q1, q2, q3 and q4 in
the problem (Color figure
online)

Fig. 3. Types of edges
with desired directions

Fig. 4. A path with the
highest score (Color figure
online)

direction edge for one of qubits and the other qubit is a don’t care qubit, we
call the edge between such the two nodes as a Type-1 edge. When an edge is a
desired direction edge of one of qubits but not a desired direction edge of the
other node (which is not a don’t care node), we call the edge between the such
two nodes as a Type-0 edge.

Our Observation
Let us consider to swap the locations of an adjacent pair of node by inserting a
SWAP gate. If the edge between the two nodes is Type-2, both the two nodes
move closer to their goals. If the edge is Type-1, only one node moves closer to
its goal because the other node is a don’t care node. If the edge is Type-0, one
node moves closer to its goal, but the other node moves in the opposite direction
to its goal. Our observation is that the conversion should be optimal if we can
choose only Type-2 edges to swap two qubits. Of course, we cannot choose all
Type-2 edges during the conversion generally. Nevertheless we consider that it
is better to choose Type-2 or Type-1 edges as much as possible.

Based on the above observation, we try to swap adjacent pairs of nodes that
are connected by Type-2 edges as many as possible (and then Type-1 edges). To
do so, we consider that Type-2, Type-1 and Type-0 edges have score +1, 0 and
−1, respectively, and we choose a path whose total score becomes the largest in
the following our heuristic.

Now we are ready to explain our heuristic method. In our method, we consider
to move a qubit to its desired location one by one. In our current implementation,
the order of qubits is fixed in advance, but we can consider another way as we
will mention later.

When we move qk from its initial location qik to its desired location qdk, we
consider a possibly best path from qik to qdk, and we swap adjacent pairs of qubits
one by one along the path. To do so, first we calculate the types of all the edges
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Algorithm 1. Our proposed heuristic for qubit placement problems
1: for each qdk ∈ qd according to the converting order do
2: Enumerate desired directions for each qubits in a rectangle that has the node

of qik and the node of qdk as two vertices on a diagonal line of the rectangle.
3: Calculate a type of an edge for each edges in the rectangle.
4: Compute the path with the highest score from qik to qdk.
5: Move qk to qdk in qd on G through the path computed in Step 4.
6: end for

in a rectangle whose diagonal line is qik to qdk. Then, we choose a path from qik
to qdk with the highest score.

In our example, when we move q1 from N [2, 2] (qi1) to N [0, 0] (qd1), we choose
a path from N [2, 2] to N [0, 0] with the highest score in the blue rectangle as
shown in Fig. 2. In this example, we choose the path with the highest score
which is: N [2, 2] → N [1, 2] → N [1, 1] → N [0, 1] → N [0, 0] as shown in Fig. 4.

We repeat the procedure explained in the above for all qubits in qd one by
one. In our current implementation, the order to move qubits is from the most
upper-left node (i.e., N [0, 0]) to the right nodes in qd. If we reach to the most
right node in the row, we choose the most left node in the next row. We can
consider much more efficient order, which we will discuss in the last section.

The formal algorithm description is as shown in Algorithm1.

3 Preliminary Experimental Results

We implemented our proposed heuristic method in Python and an A* search
algorithm in C++ to evaluate the performance of our proposed heuristic method.
To evaluate our heuristic method, we divided a quantum circuit into a series
of NN compliant sub-circuits by the method [2]. Then we used the qubit place-
ments of these NN compliant sub-circuits for initial qubit placements and desired
qubit placements. We solved the qubit placement problem between the two sub-
circuits, and reported the total numbers of SWAP gates with the A* search and
our heuristic in Table 1. Note that “-” in Table 1 means that the execution time
exceeded thousand seconds.

For circuits with 64 or more qubits, the A* search cannot find the answer
within thousand seconds, but our heuristic method can find a solution within
less than one second; As expected, our heuristic seems to be very scalable. The
quality of the solutions seems to be slightly worse than the A* search with our
current naive algorithm. However, we expect the quality would become better
if we implement the dynamic order of qubits to be selected in our algorithm,
which will be mentioned in the next section.
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Table 1. The total number of SWAP gates for quantum circuit placement problems
by an A* search and our proposed method.

Circuits A* search Our heuristic CPU time (ms)

3 × 3 (qft8) 28 26 4.02

3 × 3 (qft9) 40 42 5.92

4 × 5 (adder8) 44 50 7.97

6 × 6 (adder16) 112 124 27.8

8 × 8 (random) – 892 155

8 × 8 (random) – 914 164

9 × 9 (random) – 938 175

9 × 9 (random) – 968 173

10 × 10 (random) – 1350 292

10 × 10 (random) – 1624 347

4 Discussion and Future Work

This work-in-progress report proposed a scalable heuristic to solve so called quan-
tum circuit placement problems, which should be important when we need to
design very large NN compliant quantum circuits in the future. As we mentioned
in the previous section, our current algorithm seems to have room to improve;
we found one of the reasons why our algorithm cannot find a better solution
than the A* search is the order of qubits to move in our algorithm. Indeed, our
current algorithm fixes the order of qubits to move such that the top left qubit
in the desired placement will be moved first. This strategy is obviously naive,
and we should be able to improve in many ways.

As we observed, if we swap two qubits which are connected by a Type-2
edge, the swap operation should be very beneficial. However, if we move qubits
in the fixed order, we may need to choose many Type-1 or Type-0 edges during
the process. So, the following heuristic should work better than our current
algorithm.

Step 1 During the conversion, we swap all the pairs of two qubits which are
connected by a Type-2 edge until there is no Type-2 edge.

Step 2 When there is no Type-2 edge, choose Type-1 edge (if there is no Type-
1, then Type-0) which is connected to the current target qubit to be moved.
The order of target qubits may be similar to our current strategy, but we may
choose the target qubit such that the movement of the target qubit increases
the number of Type-2 edges; after that we can go back to the above Step 1.

By implementing the above algorithm, we expect our approach should improve
the existing result [2] even for the small cases.
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15H01677 and 18K19790, and by the Asahi Glass Foundation.



168 A. Matsuo and S. Yamashita

References

1. Bhattacharjee, D., Chattopadhyay, A.: Depth-optimal quantum circuit placement
for arbitrary topologies. arXiv preprint arXiv:1703.08540 (2017)

2. Hattori, W., Yamashita, S.: Quantum circuit optimization by changing the gate
order for 2D nearest neighbor architectures. Proc. Revers. Comput. 2018, 228–243
(2018)

3. Zulehner, A., Wille, R.: Compiling SU(4) quantum circuits to IBM QX architectures.
Proc. ASPDAC 2019, 185–190 (2019)

4. Shafaei, A., Saeedi, M., Pedram, M.: Qubit placement to minimize communication
overhead in 2D quantum architectures. Proc. ASPDAC 2014, 495–500 (2014)

http://arxiv.org/abs/1703.08540


Evaluation of Circuit Synthesis



Evaluating the Flexibility of A*
for Mapping Quantum Circuits

Alwin Zulehner(B), Hartwig Bauer, and Robert Wille

Johannes Kepler University Linz, Linz, Austria
{alwin.zulehner,hartwig.bauer,robert.wille}@jku.at

Abstract. Mapping quantum circuits to real quantum architectures
(while keeping the respectively considered cost as small as possible) has
become an important research task since it is required to execute algo-
rithms on real devices. Since the underlying problem is NP-complete,
several heuristic approaches have been proposed. Recently, approaches
utilizing A∗ search to map quantum circuits to, e.g., Nearest Neighbor
architectures or IBM QX architectures have gained substantial interest.
However, their performance usually has only been evaluated in a rather
narrow context, i.e., for single architectures and objectives only. In this
work, we evaluate the flexibility of A∗ in the context of mapping quan-
tum circuits to physical devices. To this end, we review the underlying
concepts and show its flexibility with respect to the considered archi-
tecture. Furthermore, we demonstrate how easy such solutions can be
adjusted towards optimizing different design objectives or cost metrics
by providing a generalized and parameterizable cost function for the A∗

search that can also be easily extended to support future cost metrics.

1 Introduction

Quantum computing [1] utilizes quantum mechanical effects like superposition
and entanglement to allow for significant (in many cases exponential) speedups
compared to current devices for applications like integer factorization [2], data-
base search [3], or simulation of physical systems [4]. In the recent years, there
has been a significant progress in the physical realizations of real quantum hard-
ware. Arising from academic proof-of-concept realizations [5,6], nowadays pub-
licly available quantum computers are made accessible, e.g., by IBM through a
cloud interface [7] and a first prototype for commercial use is available as well [8].
Moreover, architectures are envisioned to manage the step from current Noisy
Intermediate Scale Quantum (NISQ [9]) devices to fault-tolerant ones composed
of thousands of qubits [10,11].

However, to run quantum algorithms on such real devices, the respective
high-level operations have to be broken down into elementary operations (acting
on one or two qubits only) supported by the hardware (e.g., using approaches
such as [12–14]) and the logical qubits of the quantum algorithm have to be
mapped to physical ones of the quantum device. Especially the mapping part
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constitutes a tough challenge since further physical constraints have to be consid-
ered. In fact, not all pairs of qubits may interact with each other due to so-called
coupling-constraints. Hence, the mapping usually has to change dynamically
throughout the execution of a quantum computation. This is achieved by adding
so-called SWAP operations that exchange the state of two physical qubits and,
by this, “move around” the logical qubits on the hardware. This overhead shall
obviously be kept as small as possible since each additional operation increases
the execution time and the possibility of an unreliable result (since quantum
computing is error prone yet)—resulting in a task that has recently been proven
to be NP-complete [15,16].

In the last decade, several solutions for this mapping problem have been
proposed. First solutions focused on Nearest Neighbor (NN) architectures where
the qubits are located in a 1- or 2-dimensional grid and only neighboring qubits
may interact with each other [17–20]. With the appearance of publicly available
quantum computers, researchers also started to focus on the mapping problem
for IBM QX architectures—leading to further solutions dedicated for these archi-
tectures [21–26]. Many of the proposed approaches—for NN as well as for IBM
QX architectures—have in common that they utilize the A∗ search algorithm.
However, their performance usually has only been evaluated in a rather narrow
context, i.e., for single architectures and objectives.

In this work, we investigate the flexibility of A∗-based mapping and propose
a generic approach that allows for an efficient mapping to NN as well as to IBM
QX architectures while optimizing different design objectives. This is achieved by
exploiting the fact that the constraints of different architectures can be modeled
by coupling maps and by using a generic and parameterizable cost function.
Given the coupling-constraints of any envisioned new architecture as well as
appropriate parameters for the cost function, the proposed solution inherently
provides a customized mapping algorithm without writing any code. Moreover,
by slightly adjusting the cost function, future design objectives can be easily
incorporated as well.

Our evaluations show that the resulting approach, although being generic and
flexible with respective to different architectures and objectives, remains com-
petitive even against state-of-the-art solutions which have been optimized over
the last ten years and to a single architecture and a single objective. Moreover,
the evaluations demonstrate that simply changing some few parameters (rather
than developing new dedicated algorithms) allows to optimize for various design
objectives like gate count, circuit depth, or an equally distributed workload for
the qubits. Overall, this shows the flexibility of A∗-based mapping of quantum
circuits.

This paper is structured as follows. In Sect. 2, we review quantum circuits
and quantum architectures including a description of the considered mapping
problem. Section 3 discusses the A∗-based mapping in general as well as its flexi-
bility. Eventually, the proposed resulting generic approach is evaluated in Sect. 4,
while Sect. 5 concludes the paper.
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2 Quantum Circuits and Quantum Architectures

To keep the paper self-contained, this section briefly recapitulates quantum cir-
cuits as well as currently considered quantum architectures.

2.1 Quantum Circuits

In contrast to conventional computations, quantum computations [1] operate
on qubits instead of bits. A qubit is a two-state quantum system, with basis
states |0〉 ≡ (

1
0

)
and |1〉 ≡ (

0
1

)
(representing Boolean values 0 and 1, respec-

tively). Furthermore, a qubit can be in a superposition of these basis states, i.e.,
|x〉 = α |0〉+β |1〉, where the complex amplitudes α and β satisfy |α|2 + |β|2 = 1.
The state of a qubit can be modified by applying quantum operations, whose
functionality can be described by 2×2-dimensional unitary matrices. Commonly
used 1-qubit gates are

NOT = X =
[

0 1
1 0

]
, H =

1√
2

[
1 1
1 −1

]
, and T =

[
1 0
0 1+i

2

]
,

which invert the state of a qubit, sets it into a superposition, or conducts a phase
shift by 1+i√

2
, respectively.1 The state of a qubit cannot be directly observed.

Instead, measurement collapses the qubit into one of the two basis states |0〉
or |1〉. More precisely, the qubit collapses to basis state |0〉 with probability |α|2
and to basis state |1〉 with probability |β|2.

The above extends to quantum systems composed of n qubits. Here, due to a
quantum mechanical effect called entanglement, the state of a qubit might addi-
tionally be influenced by other qubits.2 Hence, the qubits can not be considered
individually, rather as complete system with 2n basis states and corresponding
amplitudes. The state of such a system is then accordingly manipulated by a
2n × 2n-dimensional unitary matrix. Since such operations acting on all qubits
can not be realized physically, they are usually decomposed into a sequence of
operations that act on one or two qubits only (other qubits are not affected).
For example, it has been shown that—besides arbitrary single-qubit operations—
having a controlled NOT (i.e., CNOT) operation

CNOT = CX =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦ ,

1 The new state of the qubit is determined by multiplying the corresponding state
vector and the unitary matrix [27].

2 Albert Einstein referred to this effect as spooky action at a distance.
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where the state of the target qubit is inverted if the control qubit is in its basis
state |1〉, is sufficient to allow for universal quantum computing. Hence, any
2n × 2n unitary matrix can be decomposed into a sequence composed of 1-qubit
operations and CNOTs.

A commonly used representation for quantum computations are quantum
circuits. Here, the respective qubits are denoted by horizontal circuit lines.
Operations are represented by quantum gates. Boxes labeled with the respec-
tive functionality denote 1-qubit gates, whereas • and ⊕ denote the control and
target qubit of a CNOT gate, respectively. Overall, this yields a representation
of a quantum circuit as a cascade G = g1g2 . . . g|G| of gates (drawn from left to
right), where |G| denotes the total number of gates. The number of qubits and,
thus, the number of circuit lines is denoted by n.

Example 1. Figure 1 shows a quantum circuit composed of |G| = 22 gates
and n = 5 circuit lines. Each circuit line represents a qubit q0 – q4. The first
(leftmost) gate describes a CNOT operation with control line q1 and target line
q0. The U blocks represent single qubit operations.3

Since there are various ways to realize certain quantum functionality by
means of a quantum circuit, one has to define cost metrics that allow designers
to chose the best realization. Commonly used cost metrics are:

– Gate count gc(G): The gate count of a circuit G is its number of elementary
gates. When using weights for each gate type, this also allows to estimate the
fidelity of the overall circuit.

– Circuit Depth cd(G): The depth of a circuit G describes the minimal number
of time-steps required to execute all gates. In this work, we assume that all
elementary operations require one time-step and that operations acting on
disjoint sets of qubits can be executed in parallel. However, these assumptions
can be easily adjusted if desired.

Besides these established cost metrics, we define another (artificial) cost met-
ric to demonstrate the flexibility of A∗-based mapping of quantum circuits,
e.g., when extending the cost function to take qubit fidelity [28] into account
in the future.

– Workload Distribution wd(G): The workload wd′(qi) of a qubit qi is deter-
mined by the number of gates that act on qi (or use it as a control). Workload
distribution of a circuit G is then defined as standard deviation of the work-
load for each qubit (that is affected by at least one gate), i.e.,

wd(G) =

√√
√
√ 1

n

n∑

i=0

(wd′(qi) − wdavg)2.

3 Note that we do not further specify the functionality of the single qubit gates since
it is irrelevant for the mapping process.
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q0

q1 • • • • • • •
q2 • U U • U U • • U •
q3 • U U U U

q4

Fig. 1. Quantum circuit

Example 1 (continued). As stated above, the gate count of the circuit G
shown in Fig. 1 is gc(G) = 22. The depth of this circuit cd(G) = 15. For exam-
ple, the CNOT with control q1 and target q0 (i.e., CNOT (q1, q0)) can be applied
simultaneously with the gate CNOT (q2, q3). The gate CNOT (q3, q4) has to be
applied later because it operates also on q3. Finally, the workload distribution is

wd(G) =
√

108
5 = 4.65.

2.2 Mapping Quantum Circuits to Quantum Architectures

In the recent years, there has been a significant progress in the physical realiza-
tion of real quantum hardware. Arising from academic proof-of-concept realiza-
tions [5,6], there are already publicly available quantum computers made acces-
sible by IBM through a cloud interface [7] as well as first commercially available
ones [8]. Moreover, architectures are envisioned to manage the step from cur-
rent Noisy Intermediate Scale Quantum (NISQ [9]) devices to fault-tolerant ones
composed of thousands of qubits [10,11]. However, all these architectures come
with certain restrictions regarding (1) the available elementary quantum oper-
ations and (2) the allowed qubit connectivity (i.e., which pairs of qubits may
interact with each other by means of two-qubit gates). These restrictions have
to be considered when executing quantum circuits on them.

Since decomposition into different gate libraries is already well covered by
literature (see, e.g., [12–14]), we focus on the connectivity constraints of the
architectures in the following. Before real quantum computers became available,
researchers considered so-called Nearest Neighbor (NN) architectures, where the
qubits are arranged in a 1- or 2-dimensional grid and interactions are only
possible between neighboring qubits.4 However, IBM’s QX architectures—the
first quantum computers made publicly available—employ slightly different con-
straints. While interactions are also only possible between certain pairs of qubits,
their layout is not necessarily as regular as a 1- or 2-dimensional grid and it is
additionally given which qubit may act as control and which qubit may act as
target (i.e., the direction of the CNOT is fixed). These constraints are defined

4 Note that this constraint is still valid for many recent architectures, e.g., Google’s
Bristlecone relies on such a 2D architecture [29].
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Q15 Q14 Q13 Q12 Q11 Q10Q0

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q9

Fig. 2. Coupling map for IBM QX5 [30]

by so-called coupling maps (i.e., a directed graph), where the m physical qubits
Q0, Q1, . . . Qm−1 are represented by vertices and an arrow from Qi to Qj indi-
cates that a CNOT with control qubit Qi and target qubit Qj can be executed
(these constraints are denoted coupling-constraints in the following). In the fol-
lowing, we consider architectures specified by coupling maps, since this approach
is more general (constraints of NN architectures can be easily modeled by an
according coupling map as well).

Example 2. Figure 2 shows the coupling map of IBM’s QX5 [30] architecture.
As described above, the arrow from Q1 to Q2 represents that CNOTs with control
Q1 and target Q2 can be applied. It also means that a CNOT with control Q2 and
target Q1 is not possible. Since there is also no arrow connecting Q1 and Q3, a
CNOT cannot be applied on these two qubits (independent of its direction).

In order to execute quantum circuits on architectures as described above, two
steps are conducted. First, the quantum gates of the circuit are decomposed into
elementary operations available on the hardware. Since this step is already well
covered in the literature [12–14], we assume that is has already been conducted.
The second step—mapping the n logical qubits q0, q1, . . . qn−1 of a quantum
circuit to the m physical qubits Q0, Q1, . . . Qm−1 of a quantum computer while
satisfying all coupling-constraints—constitutes a tougher challenge. Usually it
is not possible to find a mapping that satisfies the constraints throughout the
whole circuit. This becomes immediately clear by considering a circuit where one
qubit interacts with more other qubits than the maximal degree of a coupling
map. Assuming an initial mapping, the following problems may occur:

– A CNOT shall be applied where the control and the target qubit are mapped
to physical qubits that are not connected in the coupling map.

– A CNOT shall be applied where the control and the target qubit are mapped
to physical qubits that are connected in the coupling map, but there is only
a connection in the “wrong” direction.

To overcome these issues, the mapping procedure has to change the mapping
dynamically by inserting additional operations. The most established technique
is to insert so-called SWAP operations that exchange the state of two physi-
cal qubits and, thus, move around the logical qubits—changing their mapping
dynamically.5

5 Note that there also exist other methods to overcome the problems [25], but they
tend to generate larger overhead for bigger circuits.
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Q0 q0 × q1 • H H

Q1 q1 × q0
≡

• •
≡

• H • H •

Fig. 3. SWAP operation

Example 3. Figure 3 shows a SWAP operation that swaps the state of the phys-
ical qubits Q0 and Q1 of IBM QX5. Since the logical qubits q0 and q1 are mapped
to Q0 and Q1 initially, the SWAP operations changes the mapping such that q0
and q1 are mapped to Q1 and Q0 afterwards. The SWAP operation is decom-
posed into three CNOTs as shown in the middle of Fig. 3. Since only CNOTs
with control Q1 and target Q0 are possible (cf. Fig. 2), the direction of the middle
CNOT has to be switched. This is achieved by inserting Hadamard gates before
and after this CNOT.

While SWAP operations are sufficient to overcome both issues listed above,
the second one can be handled with fewer overhead. Like in the decomposition of
a SWAP operation shown in Example 3, the direction of a CNOT can be switched
by inserting four Hadamard operations. Minimizing the overhead (e.g., regarding
one of the cost metrics defined in Sect. 2.1) caused by satisfying the coupling-
constraints has recently been proven to be an NP-complete problem [15,16].

Since the mapping problem is NP-complete, several heuristic approaches have
been proposed. These include dedicated solutions for NN architectures [17–20]
or for real ones [21–26] (e.g., IBM’s QX architectures) that are specified by
coupling maps and usually focus on optimizing the gate count of the mapped
circuit. Since many of these algorithms are based on an A∗ search, we analyze
and evaluate the flexibility of an A∗-based mapping in this work.

3 Mapping Quantum Circuits Using A∗

This section discusses the flexibility of A∗-based search methods for mapping
quantum circuits to quantum architectures. To this end, we first sketch the gen-
eral idea and, afterwards, provide the details of the A∗-based mapping algorithm.
Based on that, we discuss how easily the approach can be extended for different
architectures and objectives.

3.1 General Idea

This section briefly lines out the general idea of mapping quantum circuits to
real architectures using the A∗ search algorithm. Since solving the problem
in an exact fashion (i.e., with minimal overhead) has been proven to be NP-
complete [15,16], we aim for a heuristic approach to provide a solution within
reasonable time.

The general idea is to partition the circuit to be mapped into k sub-circuits
G0, G1, . . . Gk−1. These sub-circuits are formed in a way, such that there exists
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a mapping from the logical qubits of the sub-circuit to the physical qubits of the
target architecture where all coupling-constraints given by the coupling map are
satisfied (neglecting the direction of the CNOTs since this is easily adjusted by
inserting four Hadamard operations). Having that, no SWAP operations have
to be inserted inside the sub-circuits (only H operations may be required). In
between the sub-circuits, permutation sub-circuits composed of SWAP opera-
tions are inserted that change the mapping of logical qubits to physical ones
dynamically. Determining the cheapest permutation circuit (with respect to a
given cost function) such that all coupling-constraints are satisfied for the next
sub-circuit to be mapped (again, neglecting the direction of the connections
between physical qubits) is conducted using an A∗ search. Hereby it is notable
that the cost function might include a look-ahead for future sub-circuits such
that the overall cost are subject to be optimized rather than utilizing locally-
optimal permutations (which often leads to an increase of the overall cost [22]).

One flexibility of the proposed mapping algorithm is how to form the sub-
circuits. In the literature, there exist approaches using different strategies. The
most straightforward and naive version is to treat each gate as its own sub-circuit.
Then, the A∗ search algorithm is called once for each gate (except for the first
one). To reduce the number of calls to the search algorithm and to optimize
the overall cost by explicitly considering multiple gates, sub-circuit composed of
several gates are usually considered. One commonly used possibility is to group
all gates that act on disjoint qubits into a sub-circuit [21,22].6 Alternatively, it
is also possible to group as many gates into a sub-circuit such that a satisfying
mapping can still be found for the sub-circuit (e.g., using SAT solvers as done
in [20,26]). Finally, it is also possible leave the decision of determining the sub-
circuits open for the A∗ search as done in [23]. Here, a set of possible gates to be
grouped are passed to the search algorithm, which inherently chooses a subset
of these gates to be included in the next sub-circuit according to its objective
function.7

Example 4. Considering the circuit shown in Fig. 1, the partitioning into
sub-circuits based gates acting on disjoint qubits [21,22] is conducted as fol-
lows when ignoring 1-qubit gates. The first sub-circuit G0 contains the CNOT
gate with control q1 and target q0, i.e., CNOT (q1, q0). The second gate of the
circuit CNOT (q1, q2) has to be placed in a new sub-circuit G1, since it also acts
on qubit q1. The third sub-circuit G3 contains two gates, i.e., CNOT (q1, q0) and
CNOT (q2, q3), since they act on disjoint sets of qubits. Continuing this procedure
results in k = 10 sub-circuits. That are indicated by dashed lines in Fig. 1.

In the following, we discuss how the A∗ search algorithm is used to determine
the “best” permutation (with respect to a certain cost metric) in between two
sub-circuits to be mapped. Note that no such call of the algorithm is required for

6 Note that 1-qubit gates can be neglected when forming the sub-circuits.
7 Note that a similar strategy is used in [24] (even though the permutation is not

found using A∗ search).
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the first sub-circuit since the effect of these SWAP gates are directly incorporated
into the initial mapping of the logical qubits.

3.2 A∗ Search

How to conduct mapping of quantum circuits using A∗ search algorithms is
described in two steps. First, we review how A∗ search works in general. After-
wards, its utilization in the considered problem is described.

General Algorithm. The A∗ algorithm is a state-space search algorithm. To
this end, (sub-)solutions of the considered problem are represented by state
nodes. Nodes that represent a solution are called goal nodes (multiple goal nodes
may exist). The main idea is to determine the cheapest path (i.e., the path with
the lowest cost) from the root node to a goal node. Since the search space is typ-
ically exponential, sophisticated mechanisms are employed in order to consider
as few paths as possible.

All state-space search algorithms are similar in the way that they start with
a root node (representing an initial state) which is iteratively expanded towards
a goal node (i.e., one of the desired solutions). How to choose the node that
shall be expanded next depends on the actual search algorithm. For A∗ search,
we determine the cost of each leaf-node of the search tree. Then, the node with
the lowest cost is chosen to be expanded next. The cost of a node x is given by
f(x) = g(x) + h(x). The first part, g(x), describes the path cost of the current
state (i.e., the cost of the path from the root to x). The second part provides
an approximation of the remaining cost (i.e., the path cost from x to a goal
node), which is estimated by a heuristic cost function h(x). Since the node with
the lowest cost is expanded, some parts of the search space (those leading to
expensive solutions) are never expanded.

Example 5. Consider the search tree shown in Fig. 4. This tree represents the
part of the search space that has already been explored for a certain search prob-
lem. The nodes that are candidates to be expanded in the next iteration of the
A∗ algorithm are highlighted in blue. For all these nodes, we determine the cost
f(x) = g(x) + h(x). This sum is composed by the cost of the path cost from the
root to x (i.e., the sum of the cost annotated at the respective edges) and the
estimated path cost from x to a goal node (highlighted in red). Consider the node
labeled E. This node has cost f(E) = (40 + 60) + 200 = 300. The other candi-
dates labeled B, C, and F have cost f(B) = 580, f(C) = 360, and f(F ) = 320,
respectively. Since the node labeled E has the fewest expected cost, it is expanded
next.

Obviously, the heuristic cost should be as accurate as possible, to expand as
few nodes as possible. If h(x) always provides the correct minimal remaining cost,
only the nodes along the cheapest path from the root node to a goal node would
be expanded. But since the minimal costs are usually not known (otherwise, the
search problem would be trivial to solve), estimations are employed. However,
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A
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E F

80 300 40

60 100

80 + 500 = 580 300 + 60 = 360

100 + 200 = 300 140 + 180 = 320

Fig. 4. A∗ search algorithm (Color figure online)

to ensure an optimal solution, h(x) has to be admissible, i.e., h(x) must not
overestimate the cost of the cheapest path from x to a goal node. This ensures
that no goal node is expanded (which terminates the search algorithm) until all
nodes that have the potential to lead to a cheaper solution are expanded.

Example 5 (continued). Consider again the node labeled E. If h(x) is admis-
sible, the true cost of each path from this node to a goal node is greater than or
equal to 200.

Using A∗ for Mapping. To utilize the A∗ algorithm recapitulated above for
searching for the “best” permutation in between two sub-circuits of the circuit
to be mapped, we have to define (1) the semantics of a node, (2) an expan-
sion strategy for the nodes, and (3) a cost function to determine which node is
expanded next.

Semantics of the Nodes: Each node in the A∗ search adaption for the quantum-
circuit mapping problem represents a mapping of the logical qubits of the quan-
tum circuit to the physical ones of the quantum hardware. The root node for
our search represents the mapping found by the last call of the search algo-
rithm (or the initial mapping when searching for the permutation after the first
sub-circuit G0). Each node that represents a mapping that satisfies all coupling-
constraints for the gates in the currently considered sub-circuit is a goal node.

Expansion Strategy: As discussed in Sect. 2.2, the mapping is changed dynami-
cally by inserting SWAP operations. Hence, a node is expanded by adding one
node with a correspondingly modified mapping for each possible SWAP opera-
tion (according to the coupling map). To reduce the search space, we consider
only SWAP operations that affect physical qubits to which a logical qubit is
mapped that also occurs as control or target in a CNOT gate of the currently
considered sub-circuit.



Evaluating the Flexibility of A* for Mapping Quantum Circuits 181

Example 6. Considering again the quantum circuit shown in Fig. 1 and assum-
ing that the logical qubits q0, q1, q2, q3, and q4 are mapped to the physical
qubits Q0, Q1, Q2, Q3, and Q4 (cf. Figure 2), respectively. A permutation has
to be inserted before sub-circuit G8 = {CNOT (q2, q3), CNOT (q1, q4)} since
the coupling-constraints are not satisfied for CNOT (q1, q4)—there is no arrow
between Q1 and Q4 in the coupling map. A∗ search is applied to determine the
best permutation circuit. Expanding the root node of the search tree (i.e., the
node representing the current mapping) causes 8 successors (instead of 22) since
there exist eight connections in the coupling map that affect the physical qubits
Q0, Q1, Q2, Q3, or Q4.

root

c: 3.75

c: 6.5 c: 4 c: 2 c: 5.5 c: 6.5 c: 5.75 c: 5.75 c: 5.75

c: 3.99 c: 4.75 c: 3.75 c: 4.75 c: 4 c: 4 c: 4

Q1 ↔ Q2

Q1 ↔ Q0 Q1 ↔ Q2 Q2 ↔ Q3 Q3 ↔ Q4 Q3 ↔ Q14 Q15 ↔ Q2 Q5 ↔ Q4 Q13 ↔ Q4

Q2 ↔ Q3 Q15 ↔ Q2 Q3 ↔ Q4 Q3 ↔ Q14 Q1 ↔ Q0 Q4 ↔ Q5 Q13 ↔ Q4

Fig. 5. First two expansion steps

Cost Function: Eventually, we need to specify a cost function for the nodes in the
search tree to determine which node has to be expanded next. For demonstration
purposes, we describe the cost function for optimizing with respect to the overall
number of additional gates in this section. In the following section, we show
the flexibility of the A∗-based approach by extending the cost function such
that other objectives are supported. Recall that the cost function f of a node
f(x) = g(x)+h(x) is composed of the path cost as well as the heuristic cost that
estimates the remaining cost for reaching a goal state.

The current cost of a node x is determined by its depth in the search tree
since this describes the number of SWAP gates required to reach the map-
ping described by x. Since a SWAP gate is composed of 7 elementary oper-
ations (3 CNOTs and 4 Hadamard gates), the path cost could be defined by
g(x) = 7 · depth(x). However, in order to make this value better comparable to
the cost functions of other objectives, just the number of SWAPs is used as cost,
i.e., g(x) = depth(x).

Usually, it is harder to find a good heuristic to estimate the remaining path
cost for reaching a goal state since the heuristic shall be as accurate as possible
(to prune large parts of the search space) while being admissible (i.e., not overes-
timating the true remaining cost) if an optimal/minimal solution is desired. To
get an admissible heuristic, one has to determine the distance (i.e., the number
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of edges) of the logical qubits8 in the coupling map for each CNOT gate in the
currently considered sub-circuit, and take the maximum of all these distances.9

However, since we do not aim for a locally optimal solution anyway (since this
often affects the overall solution negatively [22]), we drop the admissibility con-
straint and specify the heuristic cost by accumulating all these distances.

Having g(x) and h(x) allows to utilize the A∗ search algorithm as introduced
above. However, we can exploit the knowledge that it is called once for each
sub-circuit Gi (except for the first one). Since we aim for a globally optimal
solution rather than a local one, we additionally define lookahead cost l(x,Gi)
that estimates how the current mapping affects future sub-circuits. This term is
added to the cost function, i.e., f(x) = g(x) + h(x) + l(x,Gi). The lookahead
cost contains an additive term for each subsequent sub-circuit Gj (i < j < k)
that is computed as sum of the distances of the target and control qubits of
the CNOTs (like the heuristic cost). However, these additive terms are weighted
with factors that decrease exponentially with j − i.

Example 6 (continued). Figure 5 shows the search tree for finding the cheap-
est permutation circuit. The cost for the leftmost node (highlighted in gray) with
depth 1 of the search tree has a path cost of g(x) = 1 since one SWAP operation
(i.e., Q1 ↔ Q2) has been added to reach this mapping. The heuristic cost is
determined as follows: After the SWAP, the distance between the logical qubits
q1 and q4 is 2 (since they are mapped to the physical qubits Q2 and Q4, respec-
tively). Similarly, the distance between the logical qubits q2 and q3 is also 2.
Hence, h(x) = (2 − 1) + (2 − 1) = 2. Since the control and the target qubit of the
CNOT in the next sub-circuit (i.e., G9 = {CNOT (q2, q3)}) have also a distance
of 2, the lookahead cost is l(x,G8) = (2 − 1) · 0.75 = 0.75) when using a weight
of 0.75. Overall, this sums up to cost f(x) = 1 + 2 + 0.75 = 3.75. Similarly,
the cost of the node highlighted in gray with depth 2 is f(x′) = 2. Since this is
a goal node, the new mapping is determined by inserting a permutation circuit
composed of the SWAPS Q1 ↔ Q2 and Q2 ↔ Q3—eventually resulting in the
mapped circuit shown in Fig. 6. This circuit has a gate count of 22 + 2 · 7 = 36,
a depth of 25, as well as a workload distribution of 28.

3.3 Flexibility Regarding Different Objectives

Having the general scheme of A∗-based quantum-circuit mapping as discussed
above, we eventually can discuss the flexibility of this solution with respect to
different architectures and objectives. As already stated in Sect. 2.2, the A∗ based
approach is flexible regarding the architecture since coupling maps allow to spec-
ify not only IBM QX architectures, but also arbitrary ones like NN architectures

8 More precisely, the distance of the physical qubits to which the logical ones are
mapped is taken.

9 Note that the distance might also include 4 Hadamard gates to indicate that the
direction of the CNOT has to be switched.
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Q0 q0

Q1 q1 • • • • • • × • U •
Q2 q2 • U U • U U • ×× U

Q3 q3 • U U U × •
Q4 q4

Fig. 6. Quantum circuit mapped to IBM QX5

(since the distance of two physical qubits in the coupling map can be easily deter-
mined in linear time using Dijkstra’s algorithm). Besides that, the decision how
to group gates also allows for a large flexibility when using A∗-based mapping. In
this section, we demonstrate that the algorithm is also flexible regarding certain
cost metrics by providing a generic and parameterizable cost function that can
be extended to take other cost metrics into account (e.g., qubit fidelity [28]) in
the future.

The path cost g(x) of a node x is generalized in such a way that it does not
only include cost resulting from the gate count of the permutation circuit costg
(i.e., the depth of x in the search tree), but also cost resulting from the circuit
depth costd as well as cost resulting from the workload distribution costw of
part of the circuit that is already mapped (including the permutation circuits
described by x), i.e.,

g(x) = costg/7 · w0 + costd/5 · (1 − w0) + costw · w1. (1)

Here, the additional weights w0 and w1 (with 0 ≤ w0, w1 ≤ 1) allow to specify
how much the algorithm shall focus on a certain cost metric.10 For example,
setting w0 = 1 and w1 = 0 results in the objective function described in the
previous section—optimizing only the number of additional gates.

The heuristic cost (estimating the remaining cost based on the current map-
ping described by x) contains only the number of SWAPs to reach a goal node
costhg (this gives an estimate for gate count as well as for circuit depth):

h(x) = costhg/7 (2)

Like the path cost, also the lookahead cost for a subsequent sub-circuit Gj

(i < j < k) is generalized to a sum of three terms:

– The sum of distances of the qubits occurring in the CNOTs of the sub-circuit
Gj , i.e., costlg,

– the increase of circuit depth based on the distance of the qubits in the occur-
ring CNOTs, i.e., costld, and

– the change in the workload distribution based on the distance of the qubits
in the occurring CNOTs, i.e., costlw.

10 Note that we store the depth and the workload distribution for each physical qubit
(considering the already mapped part of the circuit) to keep track of these values.
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This leads to the generalized lookahead cost

l(x) = (costlg/7 · w0 + costld/5 · (1 − w0) + costlw · w1) · wj−i
2 . (3)

Here, the additional weight w2 allows to exponentially decrease the contribution
of future sub-circuits.

Overall, this leads to the generalized cost function

f(x) = g(x) + h(x) +
k∑

j=i+1

l(x,Gj) (4)

for a node x when currently considering a sub-circuit Gi.

Example 6 (continued). Setting weights of the generalized cost and heuristic
functions to w0 = 0.05, w1 = 0, w2 = 0.75 allows to optimize for circuit depth
at first hand and not for the gate count. Using this cost function in the mapping
algorithm results in the circuit shown in Fig. 7. This circuit has now a depth of 22
(instead of 25) at the cost of increasing the gate count from 36 to 26+4 ·7 = 54.

Q0 q0 × H H

Q1 q1 • • • • • • ×
Q2 q2 • U U • U U • • U •
Q3 q3 • U U U U

Q4 q4 ×
Q13 × ×
Q14 × ×
Q15 × H • H

Fig. 7. Quantum circuit mapped to IBM QX5 using depth optimization

4 Experimental Evaluation

In this section, we experimentally evaluate the flexibility of A∗-based mapping.
To this end, we compare the generic solution proposed in this paper to dedicated
solutions for 1D NN architectures developed over the past 10 years. Moreover, we
evaluate how the parameters of the generalized objective function affect the cost
of the mapped circuits. To this end, we have implemented the proposed general
mapping approach in C++ and conducted several evaluations using benchmarks
from RevLib [31] on a laptop with 2.6 GHz and 4 GB RAM.11

11 Note that we grouped all gates that act on disjoint qubits into a sub-circuit as done
in [21,22] (neglecting 1-qubit gates when forming the sub-circuits).



Evaluating the Flexibility of A* for Mapping Quantum Circuits 185

4.1 Flexibility Regarding the Considered Architecture

In a first series of evaluations, we compare the proposed generic mapping algo-
rithm to dedicated solution for 1D NN architectures. As discussed in Sect. 2.2,
these architectures can be modeled easily by using coupling maps, but are more
restricted which makes it easier to develop dedicated optimizations. We com-
pare the proposed approach to one of the first methods developed for these kind
of architectures [17] as well as to one of the latest and most elaborated solu-
tions [19] (this way, we showcase, how an adapted A∗-based version compares to
the initial NN-methods as well as today’s state-of-the-art methods that emerged
after several years of research on nearest neighbor optimization). Since both
try to minimize the number of additional SWAP operations,12 we also set our
parameters w0 = 1, w1 = 0, and w2 = 0.75 for j − i = 1 and to w2 = 0.5 for
j > i + 1.

Table 1 summarizes the obtained results when using the proposed approach
for mapping all benchmark listed in the respective papers. The first three
columns list the name of the benchmark, the number of qubits n, as well as
the number of gates in the circuit to be mapped |G|. The next three columns list
the obtained number of additional SWAP operations for the dedicated solutions
presented in [17] and [19] as well as for the generic approach presented in this
paper. The last two columns list the respectively achieved improvements. Run-
times are not provided since all mappings have been determined within a couple
of seconds.

As can be seen in Table 1, the proposed generic approach significantly out-
performs the dedicated approach presented in [17]. On average, 35.7% fewer
SWAP operations are inserted. The generic approach even provides similarly
good results compared to one of the most elaborated approaches for these spe-
cific architectures [19]. On average, the number of additionally required SWAP
operations reduces even by 1.4%. These results are rather remarkable, since they
indicate that dedicated solutions for, e.g., 1D NN architectures do not perform
better than generic solutions applicable to any kind of envisioned architecture.

Overall, our evaluation shows that we reach significant and minor improve-
ments compared to [17] and [19], respectively, even though the generality and
flexibility of our approach does not allow to utilize dedicated optimization tech-
niques when mapping to NN architectures. This is a clear testament of the power
of A∗ as it shows that, using the proposed method allows to determine much
better results as initial version and very competitive results compared to recent
dedicated solutions.

4.2 Flexibility Regarding Different Cost Metrics

In a second round of experiments, we analyze the flexibility of the proposed
method with respect to different objectives. In fact, changing a few parame-

12 Note that no Hadamard operations have to be inserted since these architectures
allow CNOTs in any direction between neighboring qubits.
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Table 1. Comparison to dedicated solutions for 1D NN architectures

Benchmark Required SWAP operations Improvements

Name n |G| [17] [19] Proposed w.r.t. [17] w.r.t. [19]

3-17 3 13 5 6 4 −1 −2

4gt10-v1 5 36 29 24 22 −7 −2

aj-e11 5 59 43 33 29 −14 −4

hwb5 5 106 86 66 59 −27 −7

hwb6 6 146 140 111 104 −36 −7

mod5adder 6 81 79 46 54 −25 8

ham7 7 87 86 72 71 −15 −1

QFT7 7 21 29 18 21 −8 3

rd53 7 78 96 66 61 −35 −5

hwb7 8 2659 3480 2067 2015 −1465 −52

QFT8 8 28 41 31 34 −7 3

urf2 8 25150 23608 18428 16597 −7011 −1831

hwb8 9 16608 21767 13176 13546 −8221 370

QFT9 9 36 66 49 47 −19 −2

urf1 9 57770 62019 45730 42219 −19800 −3511

urf5 9 51380 54038 39852 37066 −16972 −2786

hwb9 10 20405 32979 18988 19495 −13484 507

QFT10 10 45 96 64 61 −35 −3

Shor3 10 2076 3353 2112 1982 −1371 −130

sym9 10 4452 5353 3103 4049 −1304 946

urf3 10 132340 140908 108321 100345 −40563 −7976

cycle10 2 12 1212 2193 966 1176 −1017 210

Shor4 12 10004 9510 5616 5410 −4100 −206

plus63mod4096 13 29019 54999 25617 29108 −25891 3491

plus127mod8192 14 65455 136820 63354 69470 −67350 6116

plus63mod8192 14 37101 77753 35472 38713 −39040 3241

Shor5 14 20530 22846 12221 11302 −11544 −919

ham15 15 458 803 531 537 −266 6

urf6 15 53700 91563 54815 51666 −39897 −3149

Shor6 16 37770 41551 22829 21159 −20392 −1670

ters allows to optimize for different cost metrics without changing any code or
developing a new and dedicated solution.

Table 2 summarizes the obtained results. The first three columns list the
name of the benchmark, the number of qubits n, the depth of the gate count of
circuit to be mapped |G|. In the remaining columns, we list the gate count of
the mapped circuit gc, its depth cd, as well as the workload distribution of the
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Table 2. Evaluation of different parameter settings

Benchmark Opt. gate count Opt. depth Opt. workload dist.

Name n |G| gc cd wd gc cd wd gc cd wd

3-17 3 36 105 63 14 112 64 9 138 74 10

rd32-v1 4 36 112 66 51 120 65 32 127 68 34

4 49 5 217 706 408 204 733 376 282 805 471 210

4gt10-v1 5 148 513 294 174 524 253 199 499 293 151

ex3 6 403 1345 762 447 1463 685 408 1338 768 333

hwb5 6 1336 4319 2512 1550 4689 2284 1666 4457 2547 1488

4mod5-bdd 7 70 270 151 116 285 130 87 274 145 98

ham7 7 320 1136 660 464 1287 609 392 1407 811 317

cm82a 8 650 2284 1242 531 2660 1131 697 2618 1454 630

urf5 9 164416 532100 294007 150186 612474 285427 163635 615963 332710 172780

sqn 10 10223 35572 19534 7354 41422 17673 10533 35860 19538 7144

urf3 10 125362 459017 250539 117506 560534 234612 144637 619623 324165 111370

9symml 11 34881 120708 67381 23653 149082 62038 33838 122708 68333 22098

dc1 11 1914 6841 3756 1264 7691 3337 1717 6369 3505 1466

life 11 22445 78395 44236 14841 95975 40431 21876 78548 44172 13975

rd84 12 13658 47471 25604 9203 58654 23878 12679 47833 25737 9101

sqrt8 12 3009 10910 5979 1906 12836 5352 2667 10923 6021 1917

sym10 12 64283 225510 126852 42949 278390 115416 60660 260146 146408 39162

adr4 13 3439 11569 6259 2616 14086 5990 3401 11878 6386 2360

dist 13 38046 133149 70751 22399 163240 64447 33983 133160 70283 22303

squar5 13 1993 6984 3630 1483 8282 3397 1940 7177 3678 1494

0410184 14 211 864 425 156 1147 347 184 891 452 107

pm1 14 1776 5971 3149 1454 6985 3046 1865 6451 3426 1110

sao2 14 38577 136483 71152 21215 169801 65420 35041 137215 71131 20456

co14 15 17936 64910 31600 6403 85351 29466 12829 70202 33803 5381

square root 15 7630 26733 14022 4274 31663 12373 5895 27274 14244 3731

urf6 15 171840 617067 324396 88294 727960 307340 132278 628436 329294 74676

cnt3-5 16 175 555 204 44 674 224 79 579 220 49

inc 16 10619 36524 20579 6551 44182 18813 9890 37521 21126 4859

mlp4 16 18852 67821 37902 10773 83733 33734 15466 68415 37865 8728

qubits wd for the proposed circuit when optimizing for gate count (by setting
w0 = 1, w1 = 0), for circuit depth (by setting w0 = 0.04, w1 = 0), and for the
workload distribution (by setting w0 = 1, w1 = 0.1) when mapping the circuits
to IBM QX5 (w2 was the same for all three mappings and was 0.75 for j − i = 1
and 0.5 for j > i + 1).

Considering the optimization with respect to gate count as baseline, changing
the parameters for optimizing with respect to circuit depth indeed results in a
decrease of depth (on average by 7.7%) at the expense of inserting more SWAP
and Hadamard operations (on average 17.1%). Similarly, the depth of the circuits
optimized for depth is on average 12.3% smaller compared to those optimized for
the workload distribution of the qubits. In contrast, their workload distribution
is 39.3% worse compared to circuits optimized for that cost metric.
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Overall, the experimental evaluation confirms the flexibility of the proposed
approach with respect to different objectives. Moreover, this shows that opti-
mizing for different objectives or architectures does not require to develop new
algorithms, but only to adjust very few parameters in the objective functions.
By this, we provide a mapping solution which is inherently applicable for future
architectures just by employing suitable parameters or by slightly modifying the
cost function.

5 Conclusions

In this work, we evaluated the flexibility of A∗ for mapping quantum circuit to
physical quantum computers. By using coupling maps to model restrictions in
the qubit interactions of these devices, one can specify arbitrary quantum archi-
tectures (e.g., NN architectures or IBM QX architectures). Since we addition-
ally provide a generic and parameterizable cost function, our approach allows
to optimize for different design objectives (like gate count, circuit depth, or
workload distribution) just by changing parameters and without writing any
code—inherently providing a customized mapping algorithm. Our experimen-
tal evaluation shows, that this generic approach is competitive with dedicated
approaches for NN architectures and that changing the parameters indeed sig-
nificantly influence the design objectives as desired.
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through the COST Action IC1405.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Sym-
posium on Theory of Computing, pp. 212–219 (1996)

4. Montanaro, A.: Quantum algorithms: an overview. NPJ Quantum Inf. 2, 15023
(2016)

5. Debnath, S., Linke, N., Figgatt, C., Landsman, K., Wright, K., Monroe, C.: Demon-
stration of a small programmable quantum computer with atomic qubits. Nature
536(7614), 63–66 (2016)

6. Linke, N.M., et al.: Experimental comparison of two quantum computing archi-
tectures. In: Proceedings of the National Academy of Sciences (2017). https://doi.
org/10.1073/pnas.1618020114

7. IBM Q Team: IBM Q. https://www.research.ibm.com/ibm-q/. Accessed 02 May
2019

8. Nay, C.: IBM unveils world’s first integrated quantum computing system for com-
mercial use. https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-
Integrated-Quantum-Computing-System-for-Commercial-Use. Accessed 02 May
2019

https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1073/pnas.1618020114
https://www.research.ibm.com/ibm-q/
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use


Evaluating the Flexibility of A* for Mapping Quantum Circuits 189

9. Preskill, J.: Quantum computing in the NISQ era and beyond. arXiv preprint
arXiv:1801.00862 (2018)

10. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quan-
tum computing. In: International Conference on Rebooting Computing, pp. 1–6
(2016)

11. Neill, C., et al.: A blueprint for demonstrating quantum supremacy with supercon-
ducting qubits. Science 360(6385), 195–199 (2018)

12. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A
52(5), 3457 (1995)

13. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. Trans. Comput. Aided Des.
Integr. Circ. Syst. 32(6), 818–830 (2013)

14. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for
multiple-control Toffoli gates. In: International Symposium on Multi-valued Logic,
pp. 288–293 (2011)

15. Siraichi, M., Dos Santos, V.F., Collange, S., Pereira, F.M.Q.: Qubit allocation. In:
International Symposium on Code Generation and Optimization, pp. 1–12 (2018)

16. Botea, A., Kishimoto, A., Marinescu, R.: On the complexity of quantum circuit
compilation. In: Symposium on Combinatorial Search (2018)

17. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest
neighbor architectures. Quantum Inf. Process. 10(3), 355–377 (2011)

18. Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neigh-
bor quantum architectures. Trans. Comput. Aided Des. Integr. Circ. Syst. 33(12),
1818–1831 (2014)

19. Wille, R., Keszocze, O., Walter, M., Rohrs, P., Chattopadhyay, A., Drechsler, R.:
Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum
circuits. In: Asia and South Pacific Design Automation Conference, pp. 292–297
(2016)

20. Hattori, W., Yamashita, S.: Quantum circuit optimization by changing the gate
order for 2D nearest neighbor architectures. In: Kari, J., Ulidowski, I. (eds.) RC
2018. LNCS, vol. 11106, pp. 228–243. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99498-7 16

21. IBM Q Team: QISKit Python SDK Version 0.4.15. https://github.com/QISKit/
qiskit-sdk-py. Accessed 02 May 2019

22. Zulehner, A., Paler, A., Wille, R.: An efficient methodology for mapping quantum
circuits to the IBM QX architectures. Trans. Comput. Aided Des. Integr. Circ.
Syst. (2018)

23. Zulehner, A., Wille, R.: Compiling SU(4) quantum circuits to IBM QX archi-
tectures. In: Asia and South Pacific Design Automation Conference, pp. 185–190
(2019)

24. Itoko, T., Raymond, R., Imamichi, T., Matsuo, A., Cross, A.W.: Quantum circuit
compilers using gate commutation rules. In: Proceedings of the 24th Asia and
South Pacific Design Automation Conference, pp. 191–196 (2019)

25. Dueck, G.W., Pathak, A., Rahman, M.M., Shukla, A., Banerjee, A.: Optimization
of circuits for IBM’s five-qubit quantum computers. In: Euromicro Conference on
Digital System Design, pp. 680–684 (2018)

26. Wille, R., Burgholzer, L., Zulehner, A.: Mapping quantum circuits to IBM QX
architectures using the minimal number of SWAP and H operations. In: Design
Automation Conference (2019)

27. Zulehner, A., Wille, R.: Advanced simulation of quantum computations. Trans.
Comput. Aided Des. Integr. Circ. Syst. (2018)

http://arxiv.org/abs/1801.00862
https://doi.org/10.1007/978-3-319-99498-7_16
https://doi.org/10.1007/978-3-319-99498-7_16
https://github.com/QISKit/qiskit-sdk-py
https://github.com/QISKit/qiskit-sdk-py


190 A. Zulehner et al.

28. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: a case for variability-
aware policies for NISQ-era quantum computers. In: International Conference on
Architectural Support for Programming Languages and Operating Systems, pp.
987–999 (2019)

29. Kelly, J.: A preview of Bristlecone, Google’s new quantum processor (2018).
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

30. IBM Q Team: IBM Q 16 Rueschlikon backend specification v1.1.0. https://ibm.
biz/qiskit-rueschlikon. Accessed 02 May 2019

31. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online
resource for reversible functions and reversible circuits. In: International Sympo-
sium on Multi-valued Logic, pp. 220–225 (2008). RevLib: http://www.revlib.org

https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ibm.biz/qiskit-rueschlikon
https://ibm.biz/qiskit-rueschlikon
http://www.revlib.org


Evaluating ESOP Optimization Methods
in Quantum Compilation Flows

Giulia Meuli1(B), Bruno Schmitt1, Rüdiger Ehlers2, Heinz Riener1,
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Abstract. Exclusive-or sum-of-products (ESOP) expressions are used
as intermediate representations in quantum circuit synthesis flows, and
their complexity impacts the number of gates of the resulting circuits.
Many state-of-the-art techniques focus on minimizing the number of
product terms in a ESOP expression, either exactly or in a heuristic
fashion.

In this paper, we investigate into ESOP optimization considering two
recent quantum compilation flows with opposite requirements. The first
flow generates Boolean functions with a small number of Boolean vari-
ables, which enables the usage of methods from exact synthesis; the sec-
ond flow generates Boolean functions with many Boolean variables, such
that heuristics are more effective. We focus on the reduction of the num-
ber of T gates, which are expensive in fault-tolerant quantum computing
and integrate ESOP optimization methods into both flows. We show an
average reductions of 36.32% in T -count for the first flow, while in the
second flow an average reduction of 28.23% is achieved.

Keywords: Reversible Logic Synthesis · Logic optimization · ESOP ·
Quantum circuit

1 Introduction

Quantum compilation is the problem of translating a computational description
of a quantum algorithm into basic quantum operations. Two main approaches
are used in practice: (1) manual compilation, where a designer manually syn-
thesizes (and optimizes) each component of the computational description and
generates the final quantum circuit by hand, and (2) automatic compilation,
which supports designers in the synthesis task by offering fast and scalable solu-
tions to systematically explore the design space. On the one hand, automatic
synthesis allows designers to deal with larger problems that are too complex
to be tackled manually; on the other hand, systematic design space exploration
enables designers to identify optimization capabilities otherwise overlooked.
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Recent attempts in the field of automatic quantum compilation include LUT-
based Hierarchical Reversible Logic Synthesis (LHRS ) [25] and Decomposition
Based Synthesis (DBS ) [23]. The former framework, LHRS, uses a hierarchi-
cal method to synthesize quantum circuits from specifications provided in form
of combinational logic designs. The designs are first decomposed into networks
of look-up tables (LUTs). Then, a quantum circuit is assembled by translat-
ing each LUT into quantum gates. The latter framework, DBS, uses Young-
subgroup based reversible synthesis [3] to compile quantum state permutations
into quantum circuit. Both frameworks, LHRS and DBS, use exclusive-or sum-
of-products (ESOPs) as representations of reversible logic gates generated during
the translation process.

ESOPs are a classical two-level logic representation consisting of one level
of AND-gates, followed by one level of XOR-gates. They provide a compact
logic representation of Boolean functions, and are, for some classes of functions,
exponentially more compact when compared to the sum-of-products (SOP) rep-
resentation [21]. This compactness can be particularly recognized when XOR-
intensive circuits, such as the parity function, need to be represented and makes
ESOPs useful to describe arithmetic and cryptographic primitives [15].

Over the years, many advanced synthesis and optimization methods have
been discovered for ESOPs. Exact methods [16,19,20] target the minimization
of the number of product terms in an ESOP, such that the number becomes
provably minimal. Their applicability, however, is limited to Boolean functions
with at most 7 Boolean variables. Moreover, they often require large tables of pre-
computed information and need a substantial amount of runtime to guarantee
minimality.

Heuristic methods [13,20,27] are capable of reducing large-scale ESOPs with
thousands of cubes by repeatedly applying simple cube transformation rules that
first expand and then collapse cubes. Such transformation-based optimization
strategies are fast, lead to significant reductions, and can be applied even if
ESOPs with many Boolean variables are considered. Heuristic methods, however,
cannot guarantee optimality and their progress often strongly degrades over
time—the chances of finding a pair of cubes that can be collapsed decreases and
the improvement saturates.

Overall, in this work, we target fault-tolerant quantum computation and
analyze the impact of ESOP optimization methods on the number of T gates
of the final quantum circuit. The T gates have been recognized as the most
expensive gates in fault-tolerant quantum computing [1].

We integrate advanced ESOP optimization methods, both heuristic and
exact, into recent quantum compilation flows. In particular, we consider LHRS
and DBS as two possible application scenarios with opposite requirements: DBS
uses simple specifications, such that only a few Boolean functions with a rela-
tively small number of Boolean variables have to be synthesized. In this case,
exact synthesis methods are useful and allow us to generate ESOPs of provably
minimal size. In LHRS, however, ESOP optimization has to deal with many and
larger Boolean functions. In this case, we advocate heuristic ESOP optimization
methods to keep the approach scalable.
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In our analysis, we consider two de-facto standard cost functions from logic
synthesis—the number of product terms and the number of literals—and pro-
pose a novel exact synthesis procedure for ESOPs. Our procedure allows users
to specify costs for each cube, considered during the synthesis process. We for-
mulate the synthesis problem by introducing a weighted-version of the Helliwell
equation [17], and solve the problem using partial weighted MAX-SAT.

2 Preliminaries

2.1 ESOP Representation of Boolean Functions

Definition 1. An ESOP over n Boolean variables, x1, . . . , xn ∈ B, is an expres-
sion of form t1 ⊕ · · · ⊕ tk, where each ti = li,1 · · · li,li is a product term (or cube)
of literals li,j ∈ {x1, . . . , xn, x̄1, . . . , x̄n} for 1 ≤ i ≤ k and 1 ≤ j ≤ li. The symbol
⊕ denotes the modulo-2 addition (XOR-operation), and x̄i denotes the negated
Boolean variable xi for 1 ≤ i ≤ n.

An ESOP expression can be interpreted as a two-level logic circuit, which real-
izes a possibly incompletely-specified Boolean function f : {0, 1,−}n → B, i.e.,
f(x1, . . . , xn) = t1 ⊕ · · · ⊕ tk for all possible valuations of the Boolean variables
x1, . . . , xn.

2.2 ESOP-Based Reversible Logic Synthesis

Reversible circuits are logic networks with the same number of inputs and out-
puts, composed of reversible gates. The most commonly used gates are the single-
target gates and the multiple-controlled Toffoli gates.

Definition 2. Let c : Bk → B be a Boolean function, called control function.
Also, let C = {x1, . . . , xk} be the control lines and let xt /∈ C be a target line.
Then the single-target gate Tc(C, t) : Bn → B

n is a reversible Boolean function
which maps:

(x1, . . . , xn) →
{

xi if i �= t
xt ⊕ c(x1, . . . , xk) otherwise

Definition 3. If the control function c can be expressed as a single product term
c =

∧k
i=1(xi ⊕ pi) using a single-target gate Tc(C, t), where pi, 1 ≤ i ≤ k, are

the polarities of the controls, then we call the gate a multiple-controlled Toffoli
gate.

A multiple-controlled Toffoli gate is a reversible gate acting on the bits in
x1, . . . , xk, xt, such that the bits in C remain unchanged and the bit xt flips if
the control function c(x1, . . . , xk) evaluates to true.

ESOP-based reversible synthesis methods are based on the observation that
an ESOP can be directly translated into a reversible circuit, as each term of the
expression corresponds to a multiple-controlled Toffoli gate [5,6]. The method
generates as many Toffoli gates as cubes in the expression, all cascaded and
targeting the same bit.
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Fig. 1. Example of a reversible circuit of mixed-polarity multiple-controlled Toffoli
gates
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Fig. 2. Two different state-of-the-art compilation flows for Boolean functions that use
ESOP-based reversible synthesis

Example 1. The Toffoli network in Fig. 1 corresponds to the ESOP expression:

x4x2 ⊕ x3x2 ⊕ x3x2x1 ⊕ x4x3x2 ⊕ x3x2x1

Some optimization techniques aiming at reducing the cost of the generated
reversible circuits have been proposed in literature [12,28]. The final circuit
reflects the quality of the ESOP expression, so the synthesis process is crucial
for this application.

3 Optimal ESOP for Quantum Compilation

The problem of automatically compiling a Boolean function into a universal
quantum library is largely addressed in literature [7,9,22].

Among the available synthesis methods, hierarchical flows have the capabil-
ity of being scalable, as they are based on a logic network representation [18],
e.g., LHRS [26]. The input to LHRS is a classical logic network, e.g., pro-
vided in a hardware description language; the output is a quantum network
realized in terms of Clifford+T gates. The framework is based on the usage of
k-feasible Boolean logic networks (k-LUT networks), which consist of look-up
tables (LUTs) with at most k inputs. Synthesis proceeds in two steps: (i) each
k-LUT is mapped into a reversible single-target gate with k control lines, (ii)
each reversible single-target gate is mapped into a Clifford+T network. LHRS
provides different methods to perform the second step. One method, the so-called
direct mapping, makes use of the ESOP representation of the control function
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of a reversible single-target gate, which can be directly translated into multiple-
controlled Toffoli gates [6] (see Sect. 2.2) and further translated into quantum
gates [11]. The flow of this method is shown in Fig. 2(a).

A second strategy (Fig. 2(b)) for quantum compilation is based on decom-
posing the initial function, given as a permutation, using the Young-subgroup
method described in [3]. It only differs from the first one for the function’s specifi-
cation and the decomposition strategy employed. Differences that will result in a
less scalable flow. The final steps are shared between the two flows: ESOP-based
reversible synthesis is used to generate a Toffoli network and successively each
Toffoli gate is compiled into quantum operations from the Clifford+T library
using the method described in [11].

In this work, we address the Clifford+T universal quantum library, and try
to optimize the number of T gates by applying ESOP optimization to the compi-
lation flows. Nevertheless, our analysis and methods are applicable to the other
quantum libraries, as far as the implementations of Toffoli gates are known.

4 Motivation

In the following, we introduce the problem of finding the right ESOP synthesis
method to generate reversible circuits, which can be compiled into quantum
circuits with optimal characteristics: minimal number of T gates and reduced
number of Clifford gates.

Example 2. Given the Boolean function f(x) = x1x3x4 ∨ x2x3x4 ∨ x1x2x3x4 ∨
x1x2x3x4 with x = x1, . . . , x4, two possible ESOP expressions for f are:

A(x) = x3x1 ⊕ x4x1 ⊕ x3x2 ⊕ x1 ⊕ x4x2 ⊕ x2 ⊕ x4x3x2x1

B(x) = x4x3x1 ⊕ x4x3x2x1 ⊕ x4x3x2 ⊕ x4x3

The first expression A(x) is composed of 7 product terms while the other expres-
sion, B(x), is smaller and has size 4. We can use these ESOPs to synthesize a
reversible network for f and successively we can compile them into quantum
gates using the algorithm described in [11]. The resulting networks and the
composition of the quantum circuits are reported in Fig. 3: H is the number of
Hadamard gates, NOT and CNOT are respectively the number of X and the
number of controlled-X gates, T is the number of T gates. It is clearly shown
how the second ESOP, independently from the smaller size, generates a quantum
circuit with more gates. Differently, the first ESOP, that has larger size, shows
characteristics allowing the compiler to create a circuit with reduced T gates,
and fewer gates in general. We want to identify which are the characteristics
that lead to a better quantum circuit. With this in mind, we can notice how
the first ESOP has cubes with less literals, with respect to the second ESOP.
Thus A(x) generates a reversible circuit with multiple-controlled Toffoli gates
with less controls and consequently a quantum circuit with less T gates.
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A(x) B(x)
|0〉
|0〉
|0〉
|0〉
|0〉

|0〉
|0〉
|0〉
|0〉
f

|0〉
|0〉
|0〉
|0〉
|0〉

|0〉
|0〉
|0〉
|0〉
f

ESOP Gate types

H NOT CNOT T

A(x) 18 6 46 52
B(x) 24 6 54 63

Fig. 3. Synthesis results of two different ESOPs for the same function f

It is evident how the quantum compilation problem can take advantage of
optimal ESOP synthesis strategies. Consequently, in this work we apply state-
of-the-art ESOP synthesis and optimization methods, e.g., the heuristic EXOR-
CISM [14], into recent quantum compilation flows. In addition, we present a
constraint-based ESOP synthesis method that accepts an arbitrary cost func-
tion, as Example 2 suggests that different cost metrics should be considered for
ESOPs in quantum compilation.

5 Constraint-Based ESOP Synthesis

The problem of finding an ESOP expression that realizes a Boolean function is
known as ESOP synthesis. The seminal work of Perkowski and Chrzanowska-
Jeske [17] introduces the Helliwell decision function to characterize the solution
space of ESOP synthesis for a given Boolean function.

5.1 Helliwell Decision Function

The Helliwell decision function Hf (g1, . . . , gK), K ≤ 3n, for a given Boolean
function f(x1, . . . , xn) describes synthesis as an odd-even covering problem in
terms of the minterms of f . For each possible product term in n Boolean vari-
ables, a decision variable gi, 1 ≤ i ≤ K, is introduced. The Helliwell decision
function is then defined by the logic equation

∧
m∈f

⎛
⎝

⎛
⎝ ⊕

g∈I(m)

g

⎞
⎠ ⊕ f(m) ⊕ 1

⎞
⎠ , (1)

where m ∈ f denotes that m is a minterm of f and I maps each minterm to the
decision variables gi1 , . . . , gil whose product terms are covered by m.

The logic equation (1) is constructed in such a way that every satisfying
assignment ĝ for g = g1, . . . , gK for H(g) directly corresponds to an ESOP
expression functionally equivalent to f .

Example 3. Given the Boolean function f(x1, x2) = x1 ∨ x2 with Boolean
variables x1 and x2, the Helliwell decision function using 9 Boolean variables
g1, . . . , g9, that are,
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Fig. 4. Three possible ESOP covering for the function f = x1 ∨ x2

g1 = x1x2 g2 = x1x2 g3 = x1x2 g4 = x1x2

g5 = x1 g6 = x1 g7 = x2 g8 = x2

g9 = 1.

The SAT solver will find a selection of the cubes such that minterms for which
f evaluates to one are covered an odd number of times, whether minterms for
which f evaluates to false are covered an even number of times. Constraints must
be added to the problem in order for the SAT solver to find a valid solution. The
overall Helliwell decision function for f is:

H(g) = (g1 ⊕ g6 ⊕ g8 ⊕ g9 ⊕ 0 ⊕ 1) ∧ (g2 ⊕ g7 ⊕ g6 ⊕ g9 ⊕ 1 ⊕ 1) ∧
(g3 ⊕ g5 ⊕ g8 ⊕ g9 ⊕ 1 ⊕ 1) ∧ (g4 ⊕ g5 ⊕ g7 ⊕ g9 ⊕ 1 ⊕ 1)

Figure 4 shows three possible ESOP covers on the Karnaugh map: g4, g6, g8 and
g4, g5, g7 and g6, g9.

5.2 Size-Minimal ESOP Synthesis

Size-minimal ESOP synthesis is the problem of finding an ESOP expression for
a given Boolean function f with a minimum number of product terms. Utilizing
logic equation (1), the problem can be solved by computing minimum satisfy-
ing assignments for Hf (g). An assignment ĝ is minimum satisfying if the two
conditions

(a) Hf (ĝ) and (b) ∀g :
(
g �↔ ĝ ∧ Hf (g)

)
=⇒ g �→ ĝ, (2)

hold, i.e., if ĝ satisfies Hf and no other assignment that satisfies Hf implies ĝ.
In the following, the idea of utilizing the Helliwell decision function for syn-

thesizing size-minimum ESOP expression is generalized to synthesizing cost-
minimal ESOP expressions, where the cost function is provided as a part of the
input.
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5.3 Cost-Minimal ESOP Synthesis

Given a Boolean function f over n Boolean variables and a cost function κ :
{0, 1,−}n → N>0, that maps product terms to positive integer values (costs),
cost-minimal ESOP synthesis is the problem of finding an ESOP expression
t1 ⊕ · · · ⊕ tk that realizes f such that

∧k
i=1 κ(ti) is minimal.

We present two different cost function, κ0 and κ1 to illustrate the idea of
cost-minimal ESOP synthesis. In general, the cost function should be picked
keeping the usage of the ESOP expression in mind.

The constant function

κ0(t) = 1 (3)

defines unit costs for all product terms. If used, each ESOP expression obtained
as solution of cost-minimal ESOP synthesis has a minimum number of product
terms. The cost function

κ1(t) = |t| + 1, (4)

where |t| counts the number of literals in t, weights each product term by the
number of appearing literals. The additional 1 ensures that all costs—including
the costs of the empty product term—are greater than 0.

Example 4. Consider the Boolean function f1(x) = x̄1x̄2x3x4 ∨ x̄1x2x̄3x4 ∨
x̄1x2x3x̄4∨x1x̄2x̄3x4∨x1x̄2x3x̄4∨x1x2x̄3x̄4 with x = x1, . . . , x4. A cost-minimal
ESOP expression that realizes f1 with respect to cost function κ0 is

x̄1x2x̄4 ⊕ x2x̄3 ⊕ x̄2x3x̄4 ⊕ x̄1x̄2x3 ⊕ x1x̄3x4,

whereas a cost-minimal ESOP expression for the same Boolean function with
respect to cost functions κ1 is

x1 ⊕ x2 ⊕ x̄3 ⊕ x4 ⊕ x̄1x̄2x̄3x̄4 ⊕ x1x2x3x4.

5.4 Computing Cost-Minimal ESOPs

Next, we present the proposed SAT-based procedure for computing cost-minimal
ESOP expressions using (weighted) maximum satisfiability (MAX-SAT) [10].

MAX-SAT deals with solving over-constrained constraint satisfaction prob-
lems modulo Boolean logic. The problems consist of hard and soft clauses, where
each soft clause is associated with an integer weight greater than 0. The con-
straint satisfaction problem initially is unsatisfiable and the task of a MAX-SAT
oracle is to find a minimal-cost relaxation of the soft clauses, i.e., the oracle has
to remove a subset of the soft clauses, such that the problem becomes satisfiable
while a given cost function is minimized.

Given a Boolean function f over n Boolean variables and a cost function κ :
{0, 1,−}n → N>0, cost-minimal ESOP synthesis is solved in three steps:
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Fig. 5. Histogram showing the improvement over exact methods over PKRM with
respect to two different cost functions: number of terms (EXACT(unit)) and number
of literals (EXACT(lit))

1. Formulate the Helliwell decision function H(g) as described in (1).
2. Invoke a MAX-SAT oracle to find a satisfying assignment ĝ = ĝ1, . . . , ĝK

that minimizes
∑K

i=1 κ(gi) subject to CNF[H(g)] ∧ (
∧n

i=1 ḡi), where CNF
translates the XOR-clauses to conjunctive normal form (CNF).

3. Construct the ESOP from the satisfying assignment ĝ.

The described approach is independent of the choice of the MAX-SAT oracle
and the translation to CNF, but uses them as black-boxes.

6 Results

6.1 NPN4 Equivalence Classes

In this section, we evaluate the effect of different ESOP optimization methods
on simple Boolean functions. As benchmarks, we use the 222 representatives
of the NPN4 equivalence classes. We evaluate the number of product terms in
the ESOP, as well as, the number of T gates in the generated quantum circuits
considering different ESOP synthesis methods and the proposed constraint-based
approach:

1. Positive Polarity Reed Muller (PPRM ) [29],
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Table 1. Comparison of different ESOP synthesis methods

Cost function ESOP synthesis method

PPRM PKRM EXORCISM EXACT(unit) EXACT(lit)

avg. ESOP size 7.77 4.69 3.41 3.41 3.42

avg. num. T gates 87.35 82.32 59.05 67.50 58.19

2. Pseudo-Kronecker Reed Muller (PKRM ) [4],
3. EXORCISM [14] and
4. EXACT(unit) and EXACT(lit) minimizing respectively κ0 and κ1.

We report the average number of product terms (size) and the average num-
ber of T gates for each of the ESOP synthesis methods in Table 1. PPRM and
PKRM are special cases of general ESOP expressions, that can be easily derived
from a given Boolean function but are sub-optimal when considering the number
of product terms. They are often used as starting covers for ESOP optimiza-
tion approaches. We report them to enable better comparability of the achieved
reduction. EXORCISM is a fast cube transformation heuristic, capable of find-
ing close to optimal ESOP expressions, starting from a PKRM cover of the
Boolean function. Nevertheless, EXORCISM is an heuristic method and does
not guarantee the minimality of the solution. In many cases, reducing the size
of an ESOP also leads to a reduction of the number of T gates. Consequently,
EXORCISM, EXACT(unit), and EXACT(lit) improve over PPRM and PRKM.
Reducing the number of literals also has a positive effect on the T gates, i.e.,
EXACT(lit) achieves a better reduction than EXACT(unit). Moreover, EXOR-
CISM also improves over the EXACT(unit) method because its heuristic prefers
don’t cares over concrete values and reduces the overall number of literals in an
ESOP expression.

The histogram in Fig. 5 gives a more detailed overview of the improvement
in T -count of EXACT(lit) and EXACT(unit) over PKRM, respectively, for all
the 222 representatives in NPN4 equivalent classes.

Optimizing size and literals, however, does not minimize the number of
T gates, which we illustrate by example: consider the two equivalent ESOPs

C(x1, x2, x3) = 1 ⊕ x̄1x2 ⊕ x1x2x3 and D(x1, x2, x3) = x1x2x̄3 ⊕ x̄2 ⊕ x̄1.
(5)

Both ESOPs have the same number of product terms and the same number
of literals. To realize C(x1, x2, x3) as quantum circuit, however, 23 T gates are
required, whereas for realizing D(x1, x2, x3) 16 T gates are needed. This results
suggest that in future work it would be valuable to identify more fitting cost func-
tions than the number of literals. In addition, future technology developments
could themselves require different cost functions. Our proposed constraint-based
method could provide the flexibility to enable future research in this direction.
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6.2 Integration into Quantum Compilation Flows

In this section, we show the result of integrating the advanced ESOP optimiza-
tion methods into the quantum compilation flows DBS and LHRS.

To integrate optimized ESOP synthesis methods, we propose a pseudo-
optimal portfolio approach as described in Algorithm1. For each symmetric con-
trol function, the ESOP expression esop is computed using the PKRM method,
that is optimum in this case. If the number of inputs is smaller or equal to 4, we
use the exact methods to minimize the number of literals. For larger functions
the heuristic EXORCISM is used (command & exorcism -q of abc [2]).

First we evaluate the improvement of the proposed method integrated into
DBS (Fig. 2(b)). In Table 2 we show the synthesis results for reversible permu-
tations from Maslov’s reversible benchmark1. In addition we created reversible
functions MODn/g : Bn → B

n, where:

MODn/g =
{0 if x = 0

gxmod(2n − 1) if 1 ≤ x ≤ 2n − 2
2n − 1 otherwise

The data are showing a reduction in the number of T gates, with respect to the
PKRM method, for both the EXACT approaches. Nevertheless, we can see how,
if the synthesis is performed to minimize the number of literals in each cube,
the T -count can be further improved. In fact, the unit approach gets to 22.66%
improvement, while lit gives 28.23% improvement.

Algorithm 1. Pseudo-exact optimal ESOP
input : control function f : Bn → B

output: optimized ESOP expression of f
begin

if f ∈ cache then
return cache[f ]

if f is symmetric then
esop ← PKRM(f)

else if n ≤ 4 then
esop ← EXACTLIT (f)

else
esop ← EXORCISM(f)

cache.insert(f, esop)
return esop

In a second experiment, we evaluate the integration into the LHRS frame-
work. In Table 3 we show results of synthesizing the arithmetic designs of

1 http://webhome.cs.uvic.ca/∼dmaslov.

http://webhome.cs.uvic.ca/~dmaslov
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Table 2. Comparison between exact method and heuristic for small reversible functions

Permutation Q PKRM EXACT(lit) EXACT(unit)

T t[s] T t[s] T t[s]

hwb4 4 123 0.0 109 0.1 116 0.0

hwb5 5 514 0.0 337 59.9 447 0.3

hwb6 6 1361 0.0 993 0.9 993 0.9

hwb7 7 5331 0.0 3066 1.0 3066 1.1

hwb8 8 13562 0.0 7654 1.2 7654 1.2

mod5 11 5 453 0.0 350 36.5 368 0.2

mod5 12 5 453 0.0 361 59.1 400 0.2

mod5 13 5 428 0.0 329 38.2 343 0.1

mod5 17 5 478 0.0 382 64.3 414 0.3

mod5 21 5 433 0.0 352 34.9 482 0.1

mod5 22 5 469 0.0 354 25.0 391 0.1

mod5 24 5 503 0.0 405 61.4 448 0.3

mod5 3 5 494 0.0 386 34.8 411 0.2

mod7 14 7 5201 0.0 2936 1.0 2936 1.0

mod7 3 7 4945 0.0 2957 1.0 2957 1.0

mod7 7 7 4859 0.0 3039 1.0 3039 1.0

prime4 4 102 0.0 95 0.0 106 0.0

prime5 5 367 0.0 271 28.5 289 0.1

prime6 6 1054 0.0 786 0.8 786 0.7

prime7 7 3600 0.0 2283 1.0 2283 0.9

prime8 8 8302 0.0 4420 1.1 4420 1.0

avg. reduction EXACT(lit) = 28.23%
avg. reduction EXACT(unit)= 22.66%

the EPFL benchmark2 into quantum circuits. As explained in the preliminary
section, the first steps of the flow generate a reversible circuit made of single-
target gates, each one with a control function of maximum k inputs, where k is
the LUT size used to build the k-LUT network. An ESOP expression is synthe-
sized for each control function and translated into quantum circuits as described
in [6,11]. We compare a flow integrating our pseudo-exact approach against a
flow using PKRM for the mapping of single-target gates. We report synthesis
results for LUT size (k) from 4 to 10. We obtain a maximum reduction of num-
ber of T gates in the case of k = 10 equal to 36.32% and a minimum reduction
in the case of k = 4 equal to 17.86%.

2 https://github.com/lsils/benchmarks.

https://github.com/lsils/benchmarks


Evaluating ESOP Optimization Methods in Quantum Compilation Flows 203

Table 3. Synthesis of the EPFL arithmetic benchmark

k Q PKRM Opt. Q PKRM Opt.

T t[s] T t[s] T t[s] T t[s]

4 adder 511 5398 0.0 5356 0.4 bar 1415 76816 0.2 56320 1.8

5 448 16061 0.1 15151 0.5 1031 95576 0.3 63694 2.9

6 448 16271 0.1 15279 0.6 647 52750 0.2 50944 1.8

7 427 37259 0.1 36110 0.7 647 52750 0.3 50944 1.9

8 427 37963 0.1 36654 0.7 647 52750 0.3 50944 1.9

9 416 84076 0.2 72338 0.8 647 52750 0.3 50944 1.9

10 416 85509 0.2 72985 0.9 647 52750 0.3 50944 1.9

4 div 26467 757193 5.8 635999 12.4 hyp 64630 2448872 25.3 2208000 37.5

5 24474 851035 6.8 690622 15.1 56568 2647894 26.1 2156087 40.5

6 24083 876636 8.0 709586 19.0 50118 2860466 28.2 2145634 46.6

7 23944 939887 9.6 742327 23.8 48399 3501767 31.0 2817812 51.8

8 23808 1034583 11.2 773058 26.6 47581 4540244 36.9 3546120 66.7

9 23711 1204407 13.0 831482 30.5 46992 5379295 43.0 4158260 79.1

10 23633 1710038 15.4 875766 34.3 46933 6238649 50.0 4596940 94.4

4 log 10420 458335 2.4 380787 12.8 max 1484 54422 0.2 42684 5.4

5 9661 623957 3.2 492501 24.1 1346 76507 0.2 60597 6.4

6 8156 1033225 4.3 768429 49.4 1256 104109 0.3 79853 6.4

7 8141 1507690 5.1 883462 103.7 1149 148355 0.4 102310 6.0

8 4658 2196359 6.2 1228593 48.1 1067 209851 0.6 140106 6.9

9 4456 3393095 8.4 1912337 65.8 977 323027 0.8 200270 5.9

10 3697 5786642 10.8 3268408 74.8 929 355341 1.1 230118 5.6

4 mult 8194 359422 1.8 270268 6.2 sin 1962 71409 0.4 64103 14.5

5 8100 479930 2.2 368062 8.8 1818 82386 0.5 71471 19.4

6 6706 1034190 2.8 579420 11.6 1608 115107 0.7 92659 25.7

7 7050 1448336 3.7 847558 15.2 1553 137989 0.9 104092 27.3

8 5101 1371054 3.7 818914 16.6 1449 249964 1.2 157332 32.5

9 5165 2115333 5.2 1410009 18.3 915 794521 1.5 362082 33.2

10 4006 3657831 8.0 2417393 23.9 878 1241237 2.2 542136 37.2

4 sqrt 8686 317522 1.7 255275 6.4 square 6909 354552 1.5 240636 11.5

5 8351 344049 2.3 265948 6.8 6092 553311 1.9 308262 18.0

6 8332 391900 2.9 285310 7.8 4195 299574 1.8 206683 16.1

7 8152 448518 3.4 301246 8.4 4213 368160 2.0 261272 22.8

8 7986 709282 4.4 358215 9.5 3764 477446 2.3 341092 24.3

9 7976 720144 5.3 359296 10.6 3724 658343 2.9 445505 32.5

10 7966 1413589 7.0 540586 12.4 3792 876884 3.7 532124 41.4

min avg. improvement k=4 : 17.86%
max avg. improvement k=10 : 36.32%
avg. improvement: 26.36%
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7 Open Source Implementation

The proposed SAT-based exact synthesis method is implemented in the open
source C++ library easy3 [19,24] using our own C++ implementation of RC2 [8]
as MAX-SAT oracle. The easy library provides implementations of various ver-
ification and synthesis algorithms for ESOP expressions.

For the quantum compilation results, we interfaced easy with caterpillar4 and
tweedledum5. The first library is dedicated to quantum compilation, hierarchical
methods, and quantum memory management, whereas the second library imple-
ments state-of-the-art synthesis methods, e.g., Young subgroup decomposition
based synthesis.

8 Conclusion

In this work, we integrate ESOP synthesis methods into quantum compilation
flows in order to improve the quality of the produced quantum circuits. We
target fault-tolerant quantum computing and aim at minimizing the number
of expensive T gates. We consider two different compilation flows for Boolean
functions that make use of ESOP-based reversible synthesis.

For both frameworks this integration leads to promising results, which show
maximum T -count reductions of 28.23% in DBS and 36.32% in LHRS with
respect to PKRM. In conclusion, advanced ESOP synthesis methods, both exact
and heuristic, can be applied inside the quantum compilation flows that use
ESOP-based reversible synthesis, to generate better circuits for fault-tolerant
quantum computing.
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Abstract. This work contributes a generalized model for quantum com-
putation called NChooseK. NChooseK is based on a single parametrized
primitive suitable to express a variety of problems that cannot be solved
efficiently using classical computers but may admit an efficient quantum
solution. We implement a code generator that, given arbitrary param-
eters for N and K, generates code suitable for execution on IBM Q
quantum hardware. We assess the performance of the code generator,
limitations in the size of circuit depth and number of gates, and pro-
pose optimizations. We identify future work to improve efficiency and
applicability of the NChooseK model.

Keywords: IBM Q · Quantum computing · NChooseK

1 Introduction

Despite a number of quantum-computing hardware platforms that have recently
become available and their theoretical potential to more efficiently solve prob-
lems that are of high computational complexity [12,23], few computational sci-
entists have embraced these novel platforms other than to demonstrate how very
small problems may be solved. A short-term challenge to adoption is hardware
immaturity (low qubit counts, rapid decoherence, poor gate fidelities, etc. [21]).
However, a longer-term impediment to using quantum computing as a practi-
cal resource for computational scientists is the difficulty of programming such
systems. Several programming paradigms and languages have been proposed in
prior work to address this issue but they are all variants of the same, low level
of abstraction over the underlying hardware [13].

We address the quantum programmability issue by designing a new high-
level quantum programming model that reduces the challenge for programmers
to express their computational problems. We implement the software tools for
generating programs expressed in our model to target contemporary quantum
hardware. More specifically, we develop the NChooseK model that constrains
“N bits such that K of those bits must be True” (where K can be a set of
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possibilities). This is of interest since one can express NP-complete problems
as NChooseK. There are two unique aspects to our approach. First, the pro-
gramming model we propose has a classical semantics, which makes it not only
approachable by computational scientists who are not trained in quantum infor-
mation theory but also easy to integrate into existing classical workflows. Second,
the same program can be compiled unmodified on both gate-model quantum
computers and quantum annealers. The model represents computational prob-
lems as satisfiability problems.

We first discuss our proposed programming model, NChooseK, and how it
can be used to represent computational problems. We then provide an implemen-
tation via a code generator that generates code for IBM Q quantum computer
systems [16] for any arbitrary parameters in the NChooseK programming model.
We present results for the characteristics of the generated IBM Q circuit rep-
resentation in terms of both circuit depth and gate count. Finally, we discuss
the limitations of the code generator and explore future work to optimize and
extend NChooseK to express more complex computation.

2 Background

A quantum Turing machine (or universal quantum computer) [11] is an abstract
machine that models the behavior of a quantum computer. It can be used to
formally express any quantum algorithm. A quantum circuit, which is compu-
tationally equivalent, is more widely used to model quantum algorithms rather
than a quantum Turing machine. In the quantum circuit model, computation
is described as a sequence of quantum gates on quantum registers. The model
necessitates that any computation be reversible as quantum gates are unitary.

The code generator introduced in this work generates code for IBM Q quan-
tum systems, which uses this model for computation. IBM Q systems use super-
conducting Josephson junctions [5] to implement the state of qubits. Other tech-
nologies, such as trapped ions [4] and optical lattices [2], have also been used to
realize quantum computers in hardware. While these technologies realize quan-
tum bits and gates through different substrates (materials) that exhibit quan-
tum effects and operations, they follow a common quantum circuit model for
operation.

Figure 1 depicts a 5 qubit IBM Q processor with the Josephson junctions for
qubits, measuring circuits and interconnection between qubits. The image shows
that there is no all-to-all connection between qubits as only certain qubits are
connected to and may thus directly interact with one another.

3 The NChooseK Programming Model

We first describe the NChooseK programming model and then present our imple-
mentation on IBM Q systems. NChooseK is based on a single parameterized
primitive, which can be used to express a wide variety of problems that quan-
tum computer programmers might be interested in solving. The single NChooseK
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Fig. 1. IBM Q processor. Photo: IBM Research

primitive constrains k of n Boolean variables to True. More precisely, given n
Boolean variables and a set of K integers in the range [0, n], executing the prim-
itive sets exactly k of those Boolean values to True for some k ∈ K.

Executing an entire NChooseK program results in the system assigning
Boolean values that honor all of the program’s constituent primitives. For exam-
ple, using the notation “nck(V, K)” to indicate that of the n variables in the
set V, k ∈ K of them must be set to True, Fig. 2 presents a trivial example
of an NChooseK program. The program expresses the constrains that either 0
or 1 of the set of variables {a, b, c} must be True, either 2 or 3 of the set of
variables {b, c, d} must be True, and exactly 1 of the set of variables {c, d, e}
must be True. Execution of this program amounts to computationally finding
an assignment of variables that satisfies all three constrains. In this case, the
sole solution is {b, d} = True, {a, c, e} = False.

Fig. 2. Trivial example of an NChooseK program

3.1 Implementing the NChooseK Model

The objective of this work is to convert the entire NChooseK program into a
quantum black box (i.e., a unitary operator Uω expressed as a quantum circuit)
suitable for use in Grover’s search algorithm [15]. Given a total of n Boolean vari-
ables in an NChooseK program, an exhaustive (classical) search for a satisfying
assignment takes time O(2n). Grover’s algorithm reduces the time to O(

√
2n).

Consider the example in Fig. 3 depicting a quantum black box that corre-
sponds to nck({b, c, d}, {2, 3}). It maps a quantum state |bcd〉|x〉 to |bcd〉|x ⊕ 1〉



212 H. Khetawat et al.

when exactly 2 or 3 of |b〉, |c〉, and |d〉 are |1〉 and to |bcd〉|x〉 otherwise, as
required by Grover’s algorithm.

Fig. 3. A quantum black box for nck({b, c, d}, {2, 3})

It is always possible to generate a circuit of the form used in Fig. 3 from
an NChooseK expression of a problem by following the approach described
by Younes [24]. Although the gates required by Younes’s approach—CNOT,
CCNOT, CCCNOT, etc.—are not provided natively by modern hardware (with
the occasional exception of CNOT), standard transformations can be applied
to map these gates onto the available gate set. Assuming a typical gate set of
single-qubit gates plus CNOTs, these transformations would normally realize the
circuit shown in Fig. 3 as a large (∼40-qubit) circuit. To keep the depth more
manageable for current hardware, which exhibits relatively short decoherence
times, one could employ the techniques developed by Cincio et al. [3] to find
shorter-depth equivalents. In the case of nck({b, c, d}, {2, 3}), Cincio et al. find
the 17-qubit circuit shown in Fig. 4.

Fig. 4. A short-depth implementation of nck({b, c, d}, {2, 3}) using only single-qubit
gates and CNOTs

3.2 Generality of the NChooseK Model

The NChooseK model is based on the single, easy-to-understand constraint of
“K of N bits must be True” (where K can be a set of possibilities). The key
advantages of this model are that

1. it is sufficiently high-level as to abstract away the underlying hardware archi-
tecture so compilers and optimizers can target gate-model quantum comput-
ers, quantum annealers, and even classical computers and supercomputers;
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2. it enables programs written to that model to be formally specified and exhibit
a unique interpretation, even across disparate architectures; and

3. as a classical programming model, it can integrate easily into existing, clas-
sical, scientific workflows.

Let us next demonstrate that the NChooseK model is useful. Specifically,
we show how one can express NP-complete problems [6]—loosely, problems that
cannot efficiently be solved classically—using NChooseK.

Table 1. Adapting the truth table for or for expression with NchooseK

Circuit Satisfiability. Given a Boolean expression, the goal of the circuit-
satisfiability problem is to find a set of inputs for which the expression evaluates
to True or report that no such set exists. Figure 5 shows how one can construct
the primitive operations needed to express circuit-satisfiability problems in terms
of the NchooseK model.

The figure illustrates various NchooseK primitives as rectangles and the vari-
ables upon which they act as circles. The simplest primitives are shown in Figs. 5a
and b. The former illustrates that variable A can be biased towards True by
expressing, “1 of out 1 input should be True”. Likewise, the latter illustrates
that variable A can be biased towards False by expressing, “0 of out 1 input
should be True”. Figure 5c shows that an inverter can be expressed as “1 out of
2 inputs should be True”, which leads one of variables A and ¬A to be True
and the other False. Expressing or and and requires a modicum of creativity.
For a 2-input or, Table 1a indicates that K = {0, 2, 3} corresponds to valid rows
and K = {1, 2} corresponds to invalid rows.

Because 2 appears in both the valid and invalid sets, one cannot use
nck({A,B,A∨B}, {0, 2, 3}) to express or. However, if one repeats the third col-
umn of the truth table as in Table 1b, then K = {0, 3, 4} corresponds to valid
rows and K = {1, 2} corresponds to invalid rows. Because these are disjoint sets,
or can be expressed as in Fig. 5d. One can employ the same trick to find that
and can be expressed with nck({A,B,A∨B}, {0, 1, 4}) as in Fig. 5e.
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Fig. 5. NchooseK building blocks for circuit satisfiability

A trivial circuit-satisfiability problem, corresponding to the function x6 =
(x1∨x2)∧¬x3, is illustrated in Fig. 6. Figure 6a depicts this function as a digital
circuit, and Fig. 6b demonstrates how to find values of inputs x1, x2, and x3 in the
NChooseK model. x4 is constrained to x1 or x2 using the or primitive defined
in Fig. 5d; x5 is constrained to the negation of x3 using the inverter primitive
defined in Fig. 5c; x6 is constrained to x4 and x5 using the and primitive defined
in Fig. 5e; and x6 is further constrained to True using the True primitive
defined in Fig. 5a.

Because and, or, and not constitute a universal (classical) gate set, the
implication is that any Boolean function can be expressed in the NChooseK
model, demonstrating its universality.

Map Coloring. Map coloring is another NP-complete problem. The goal is to
color a map (a planar graph) using at most c colors, such that no two adjacent
regions share a color, where is c is a constant, e.g., c = 4 to color a map of states
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Fig. 6. Example of expressing a circuit-satisfiability problem with NChooseK

or countries. Here, we show that the map-coloring problem, like the circuit-
satisfiability problem, is easily expressed in the NChooseK model.

An NChooseK version of map coloring relies on only two primitives, which
are illustrated in Fig. 7. Following the approach taken by Dahl [10] we use a
unary encoding of each region of the map: one Boolean for each of red, orange,
green, and blue. In NChooseK, this is expressed as “1 out of 4 inputs should
be True” and is illustrated in Fig. 7a. The other primitive ensures that for two

Fig. 7. NChooseK building blocks for map coloring
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adjacent regions, at most one of them is red—and likewise for each of orange,
green, and blue. As Fig. 7b illustrates, an “either 0 or 1 of 2 inputs must be
True” NChooseK primitive expresses that constraint.

Figure 8 illustrates the construction of a two-region map-coloring problem
using the building blocks from Fig. 7. The two regions are dubbed P and Q, and
each is represented by four variables, one per color, yielding the eight variables
Pr, Po, Pg, Pb, Qr, Qo, Qg, and Qb. The four P variables connect to a block in
Fig. 7a while the four Q variables connect to a block in Fig. 7a. The P and Q
“red” variables connect to a block in Fig. 7b, and likewise for each of “orange”,
“green”, and “blue”.

Fig. 8. Coloring two adjacent regions using NChooseK (Color figure online)

4 Implementation of the Code Generator

We implement a code generator for IBM Q Quantum Systems. It generates
code for the IBM Qiskit API [17] given arbitrary N and K parameters for the
NChooseK model. Our code generator then generates a complete program that
can be executed on the IBM quantum simulator or actual quantum computing
hardware.

To demonstrate how the code generator works, we first implement the basic
logic gates, and and or, in Quirk [14]. Figure 9 depicts the implementation of
the gates using Quirk for all |0〉 inputs (equivalent to False in the following).
Because Quirk allows the use of not gates with multiple controls and anti-
controls, a circuit and its behavior can easily be visualized.

Figure 9a shows 6 conditions that would need to be addressed for the and
circuit. The first condition (all anti-controls) specifies that the output is True
if all inputs are False. The next 4 conditions set the output to True if one and
only one of the inputs is True (while the other 3 inputs are False). The last
condition sets the output to True if all 4 inputs are True. These 6 conditions
correspond to the conditions required for the NChooseK primitive shown in
Fig. 5e. So when the output is True, this circuit represents an and circuit
of NChooseK combinations. Similarly, Fig. 9b uses 6 conditions to represent a
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Fig. 9. Implementation of basic gates on quirk

multi-bit or circuit of NChooseK combinations. In this case, the conditions
represent those for the NChooseK primitive shown in Fig. 5d. For both Figs. 9a
and b we need two qubits to represent A ∧ B and A ∨ B, respectively. The truth
table and intuition for this is described in Table 1.

4.1 Code Generation Example

In this section we present an example code generated by our code generator. We
choose the example of nck({A,B ,C}{0 , 2}), which implements the xor function
C = A⊕B using the NChooseK primitive. The generated code is shown below.
We exclude the initialization and measurement code for brevity.
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The Python code creates a 3-qubit register, q for the inputs, a single qubit
register, qoutput to represent the output. During measurement these registers
map to their classical counterparts, c and coutput. The andInner and and nway
functions create the necessary circuit required to implement an n-input and gate
using CCNOT gates. Finally, we add the gates for the necessary conditions of
each k, where k ∈ {0, 2}, i.e., the first condition for k = 0 and the last three
conditions for k = 2.

4.2 Evaluation

Because contemporary quantum hardware, including the IBM Q, does not sup-
port controlling a single gate by multiple controls, we use CCNOT and X gates
(provided by IBM’s Qiskit API) to create complex, multi-control gates. While
complex logical circuits can be created using these previously described and and
or circuits, our code generator supports more expressive NChooseK circuits
by combining simpler ones. A programmer can thus more effectively describe
their computational problem. The CCNOT operation is an expensive operation
because it is composed of 9 single qubit and 6 two-qubit gates [22]. Because the
cost of the circuit is dominated by CCNOT operations, we focus on the num-
ber of CCNOT gates required for a particular NChooseK computation. We also
assess the depth of the circuit for different values of N and K.

Fig. 10. Number of CCNOT gates required for arbitrary N and k

Figure 10 shows the number of CCNOT gates required for different combi-
nations of N and k. We can see from the plot that the number of gates required
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is maximal when k = N
2 , where k ∈ K. Also, the number of gates required

increases exponentially with N . So while more complex computation can be
expressed with larger values of N , programmers need to establish a trade-off
between the using simpler circuits, such as and and or, and expressing more
complex computation with larger values of N .

Figure 11 indicates the depth of CCNOT gates required for different combi-
nations of N and k. Similar to the previous figure, the depth of the circuit is
maximal when k = N

2 , where k ∈ K. These results further confirm the need
for programmers to establish a trade-off between expressing computation in
high-level NChooseK primitives vs. using several small NChooseK primitives
to express the same computation.

5 Related Work

It is projected that the number of qubits will approach 50 or more in the next
few years, yet we are still addressing the quantum programmability issue to
reduce the challenge for programmers to express quantum computational prob-
lems effectively and effortlessly.

Several attempts were made to address this issue. The first attempt was made
by Deutsch [11] to define notations of quantum Turing machines (QTM). A for-
malized quantum programming language proposal given by Knill [18] defined
pseudo code for implementation on a quantum random access machine (QRAM)
but was not precise enough to be implementable as a quantum programming

Fig. 11. Depth of circuit in CCNOT gates for arbitrary N and k
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language. The first real quantum computing language, QCL [20], was developed
by Omer with syntax similar to C and provides a range of high level quantum
programming features such as memory management and automatic derivation
of conditional versions of operators. Another high-level language based on C++
was developed by Bettelli [1]. A quantum programming language based on prob-
abilistic predictive programming, guarded-command language, quantum lambda
calculus with operational semantics and an equational theory were defined. A
first-order functional programming language, QML in which control as well as
data suitable for quantum was defined. Quantum programming with Haskell by
defining basic elements of quantum mechanics as data types and functions was
also implemented. These solutions still failed to reduce the challenges faced to
solve quantum computational problems efficiently [13].

Recently, many open-source quantum software projects are being developed
and many major companies are trying to develop their own solutions. An open
source framework Qiskit [17] was developed by IBM Research in 2017 for creating
and manipulating quantum programs [7]. Qiskit uses the Python programming
language to eventually translate a quantum programs to the OpenQASM [8]
representation of circuits of quantum gates. Microsoft has defined a new pro-
gramming language, Q#, with simulators working either on local systems or a
cloud platform [19]. D-Wave Systems’s Qbsolv solves QUBO problems on quan-
tum processors as well as classical hardware architecture [9]. Our solution is
different from these solutions as we are providing a way to express a variety of
problems in a generalized model of computation called NChooseK. It makes the
process of describing a problem efficient by requiring users to define problems
in terms of the model so that software can generate the code to execute the
problem.

6 Conclusion and Future Work

In this work we present a novel model, NChooseK, for expressing quantum com-
putation. We show how this model can be used to express computation for a
circuit based universal quantum computer like the IBM Q. We demonstrate the
generality of the programming model using 2 important applications, circuit
satisfiability and map coloring. Finally, we describe the implementation of our
code generator, which can generate Qiskit code for arbitrary inputs of N and
K along with an example of the xor gate. Our evaluation shows how the gate
count and circuit depth is affected by different input parameters. In this context
we discuss the trade-offs involved in using a single NChooseK primitive for more
expressiveness vs. several smaller primitives to keep the gate count and circuit
depth low.

We would like to further extend our code generator to combine multiple
NChooseK primitives to express complex computational problems. The code
generator/compiler can even explore the aforementioned trade-off space to auto-
matically break down large NChooseK primitives into smaller more efficient sub-
primitives allowing the programmer to use larger, more expressive constructs.
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We are also looking at code generation of NChooseK primitives for quantum
annealing systems such as the D-Wave.
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Abstract. We present a reversible, in-place carry-lookahead adder that
uses fewer ancillae than previous designs. Specifically, an N -bit adder
uses only roughly N ancillae, where previous designs have used roughly
2N ancillae. The cost is 20% higher gate count and 50% higher gate
delay.

1 Introduction

Reversible circuits often employ ancilla and garbage bits. An ancilla bit (or just
ancilla) is an output bit that always has the same constant valure, regardless of
which valid input is given, and a garbage bit is a non-constant output bit that
does not contain useful information. Use of ancilla bits can often dramatically
reduce circuit complexity (for example, from exponential to linear size), but
they can be a problem, in particular in quantum circuits, where each ancilla
bit uses a qubit, which is a sparse resource in quantum computers. Even in
classical reversible circuitry, excessive use of ancilla bits should be avoided as
they increase the width of the circuit.

Garbage bits limit the usability of a reversible circuit for calculating the
inverse of the function computed by the applying the circuit in the forwards
direction: You have to guess the value of the garbage bits to do so. Sometimes
non-constant output bits that are not part of the function result are needed
for reversibility: If the function computed by the circuit is not injective, extra
information needs to be output to distinguish the cases where the function result
is the same even though the inputs differ. We will not consider this garbage. But
non-constant outputs are sometimes added even though they are not required for
injectivity, because that may make circuits simpler or faster. This is what we call
garbage. A common example is addition: Addition is not injective, for example
both 3 + 5 and 4 + 4 yield 8 as result. If you, in addition to the sum, output
one of the arguments, you will, however, get an injective function. So instead of
mapping both (3, 5) and (4, 4) to 8, we can map (3, 5) to (3, 8) and (4, 4) to
(4, 8), both of which can, by subtraction, be mapped back to unique inputs. We
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cann such adders in-place adders, as the outputs use at most one more bit (for
the most significant bit of the sum) than the inputs. You often see out-of-place
adders, where all the inputs are repeated in the output alongside the result, so
(3, 5) and (4, 4) are, for example, mapped to (3, 5, 8) and (4, 4, 8), respectively.
This makes the computed function trivially injective, but it means you can no
longer use the circuit in reverse for subtraction – at least not without already
knowing the answer. There is not a total agreement in literature about which of
these outputs should be considered garbage – if you define the functionality of an
adder to retain one or both inputs as outputs, you can argue that they are not
garbage. Since we consider non-constant outputs garbage if they are not needed
for injectivity, we, for adders, will not consider a copy of one of the outputs
garbage, as that is the minimum extra information in addition to the sum that
is needed to make the adder injective. But if copies of both inputs are output in
addition to the sum, one of these must be considered garbage.

Out-of-place adders can be smaller and faster than in-place adders (that only
output one of the arguments in addition to the result), so they do have some
value. In this paper, we study in-place adders, as we want to retain the ability
to use the adders in reverse for subtraction. This means that comparisons to
out-of-place adder designs is largely meaningless, so we will limit comparison to
in-place adders.

While we have identified ancilla bits and garbage bits as output bits, the
number of input bits to a reversible circuit is the same as the number of output
bits. This means that adding an ancilla bit requires addition of an input bit as
well, which is typically a constant input. Similarly, adding garbage bits on top of
the minimum required for reversibility also implies adding extra inputs, which
will typically also be constant inputs.

Any irreversible circuit can be trivially implemented using reversible gates if
there is no limit on ancilla and garbage bits, so a challenge in reversible circuit
design is to limit the number of garbage bits to the minimal needed for inversion,
and to reduce the number ancilla bits to the minimum required for achieving a
given logic depth. There will, however, often be a trade-off between logic depth
and the number of ancillae. If one circuit uses fewer ancillae but has a higher
gate delay, and another uses more ancillae but has a lower gate delay, one is
not obviously better than the other – this depends on the problem to which the
circuit is applied and the technology used to implement the circuit. So it can
be an advantage to have a number of different, logically equivalent, designs that
trade off ancillae and logic depth in various ways, so you can choose the design
that fits the given purpose and technology best.

Reversible ripple-carry adders, such as the Van Rentergem adder [5], typically
reduces garbage bits to the minimum required, i.e., a copy of one of the inputs,
unless there is a non-constant carry-in bit to the addition, in which case this is
typically output as extra garbage. If the carry-in bit is known to be zero, the
corresponding output is also constant, so it is an ancilla output instead of a
garbage output. Additionally, since the result of the addition has one more bit
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than the largest input, there is a constant (zero) input which in the output is
used to hold the most significant bit of the sum.

Ripple-carry adders have a gate delay proportional to the number of bits.
Carry-lookahead adders can reduce the gate delay to O(logN), where N is the
number of bits. In reversible logic, the cost is that O(N) ancilla bits are needed,
typically around 2N when N is a power of 2 [1,4].

The contribution in this paper is to show a way to roughly halve the number
of ancillae compared to previous in-place carry-lookahead adder designs, so the
number of ancilla bits is only around N when N is a power of 2. The cost is a
higher gate delay (by roughly 50%), so there is a definite trade-off.

2 Carry-Lookahead Addition

Carry-Lookahead addition has been known since at least 1957, when Gerald
Rosenberger of IBM filed a patent on the method [3]. The idea is that, even if
you do not know the incoming carry, you can compute which of the following
three cases hold:

0 The outgoing carry will be 0.
1 The outgoing carry will be 1.
P The outgoing carry will be the same as the incoming carry.

where P stands for “pass through”.
If we have two bits ai and bi from the addends, it is easy to see that the

outgoing carry will be 0 if ai = bi = 0, the outgoing carry will be 1 if ai = bi = 1,
and it will be identical to the incoming carry if ai �= bi. Usually, the three cases
are represented by two bits p (pass) and g (generate), where p = 1 if the carry
is passed through and g = 1 if the outgoing carry is 1. They can not both be 1,
so only three of the four combinations are used. For two bits ai and bi, we have
pi = ai ⊕ bi and gi = aibi.

We want to compute p and g not just for individual bits, but for blocks of
bits. If pj−1

i , gj−1
i , pkj , and gkj represent pass and generate for the blocks spanning

from i to j − 1 and j to k, respectively, we can find pass and generate for the
combined block spanning from i to k by

pki = pj−1
i pkj (1)

gki = gj−1
i pkj ∨ gkj (2)

Since pkj and gkj can not both be 1, we can use exclusive-or (⊕) instead of a
normal logical or (∨) in the formula for gki .

So we can recursively combine blocks to find carry-propagation information
for N bits in O(logN) logic depth.

The next step is to generate the actual carries. For this, we use that cj , the
carry-in to bit number j, can be found by

cj = gj−1
i ⊕ pj−1

i ci (3)
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When we have computed gj−1
0 and pj−1

0 for all j that are powers of 2, we can
from c0 (the carry-in to the whole addition) immediately find cj for these j. By
using cj , gkj and pkj , we can find c(k+1). By applying this recursively to blocks
of decreasing size, we can find all the carry bits in O(logN) logic depth. A final
step computes the bits of the sum as si = ai ⊕ bi ⊕ ci.

3 A Reversible Carry-Lookahead Adder

Reversible in-place carry-lookahead adders were first presented by Draper,
Kutin, Rains, and Svore [1]. First, an out-of-place carry-lookahead adder that
takes A and B and produces A+B, A and B as outputs is presented, and then
this is used to make an in-place adder that produces only A + B and A as out-
put. It is the latter in-place adder in which we are primarily interested. We will
only look at adders for N = 2m bits, both for simplicity and because this is the
common case. Both the adder by Draper et al. and the adder we present later
can, however, be modified to work for other values of N .

The in-place adder consists of two parts:

1. An adder ADD that produces S = A + B, A and C, where C is the string of
carry bits.

2. A slightly modified inverse of ADD that has the net effect of preserving A+B
and A while uncomputing C.

ADD consists of six steps:

1. Generating gi = aibi and pi = ai ⊕ bi for all bits i. gi is generated on a new
line, while pi overwrites bi.

2. Recursively generating pki (on new lines) for larger and larger blocks.
3. Recursively generating gki for larger and larger blocks. gki overwrites gkj for

the previous smaller block.
4. Recursively generating ck first using the larger blocks and then smaller blocks.

ck overwrites gkj .
5. Uncomputing pki by running step 2 backwards.
6. Adding (with ⊕) ci to pi (which is equal to ai ⊕ bi) to get si = ai ⊕ bi ⊕ ci,

the i’th bit of the sum.

Figure 1 shows this for an 8-bit adder.
To uncompute the carry bits, Draper et al. make the observation that (in

two’s complement arithmetic modulo 2N ), if S = A + B, then the carry bits
generated by the addition B = A+S are the same as by the addition S = A+B,
where B and S are the bitwise negations of B and S. So if we replace S by
S ⊕ A = S ⊕ A, run steps 1 to 5 of ADD backwards, and negate the b-bits, we
clear the c-bits, and the b bits now hold A + B. To preserve the carry-out bit
that holds the most significant bit of the sum, the part of ADD that computed
this bit should not be uncomputed.
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Fig. 1. The ADD part of Draper et al.’s in-place adder

This non-obvious observation is critical to making the in-place adder work,
and it has been used in later carry-lookahead adder designs, such as [4], which
uses the same number of ancilla bits as Draper et al.’s, but slightly fewer gates
(mostly because it uses a wider selection of different gates).

The complete 8-bit in-place adder is shown in Fig. 2.
Simplifications can be made if we know c0 to be 0: Carry generations of the

form ck+1 = g0k⊕p0kc0 reduce to ck+1 = g0k. This means that we don’t need p0k
for k > 0, so we can omit the gates that compute and uncompute these and the
ancilla lines that hold them. Figure 3 shows the 8-bit in-place adder optimised
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Fig. 2. Draper et al.’s complete in-place adder

this way. We have left gaps where lines are removed to make it clearer where
this happens.

If N is a power of 2, Draper et al.’s in-place adder uses 2N − 2 ancillae.
If c0 = 0, this is reduced by log2 N , as the lines for computing the log2 N
occurrences of p0k are not needed. For eight bits, the non-optimised adder uses
2 × 8 − 2 = 14 ancillae and the optimised adder uses 2 × 8 − 2 − log2 8 = 11
ancillae.

4 Reducing the Number of Ancillae

We note that the adder presented above uses one ancilla for every bit to compute
gi = aibi. We will try to avoid this by relaxing the requirement that pi and gi
can not both be 1 (i.e., that pigi = 0). We can do this by saying that we ignore
the value of gi when pi = 1. If pi = 0, ai = bi, so we can define gi = ai.
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Fig. 3. Draper et al.’s in-place adder optimised for c0 = 0

In general, we use all four combinations of p and g to mean

p g meaning

0 0 cout = 0
0 1 cout = 1
1 0 cout = cin
1 1 cout = cin

It is the last of these four combinations that we must now be able to handle.
In presenting Draper et al.’s adder, we used the property pkj g

k
j = 0 to rewrite

gki = gj−1
i pkj ∨gkj to gki = gj−1

i pkj ⊕gkj . But if pkj g
k
j can be 1, this no longer holds.

Instead we must use
gki = gj−1

i pkj ⊕ gkj p
k
j (4)
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Similarly, we must change the formula for the carry bits:

cj = cip
j−1
i ⊕ gj−1

i pj−1
i (5)

It looks like we now need an ancilla for each new gki as well as two Toffoli gates
to compute it. But we can avoid this by using a Fredkin gate: A Fredkin gate
is a conditional swap gate that takes three inputs x, y, z and swaps the contents
of y and z if and only if x = 1. There are two widely used notations for Fredkin
gates:

z

y

x

����

����

�

z′
y′
x

and

z

y

x

�
��
�

�

z′
y′
x

While the notation on the right may be more intuitive, it breaks down when the
lines that need to be swapped are not adjacent, so we will use the notation on
the left in this paper.

The effect of applying a Fredkin gate can be written as

y′ = yx ⊕ zx (6)
z′ = yx ⊕ zx (7)

where overlines indicate negation.
We note that the formula for z′ has the same “shape” as gki = gj−1

i pkj ⊕gkj p
k
j ,

using pkj for x, gj−1
i for y and gkj for z. So we can compute gki onto the line that

holds gkj using a single Fredkin gate. The cost is that the line that holds gj−1
i is

overwritten with nonsense, but we can uncompute this nonsense later.
We can from gj−1

i , pj−1
i , gkj , and pkj compute gki and k

i using the following
circuit

pj−1
i

gj−1
i

pkj

gkj

0 �

�

�

����

����
�

pj−1
i

ĝki

pkj

gki

pki

where ĝki = gj−1
i pkj ⊕ gkj p

k
j is garbage that later needs to be uncomputed to

restore gj−1
i .

The next step is to compute the carry bits. Draper et al.’s circuit computes
ck = gki ⊕ cip

k
i on top of gki , since this is not needed anymore. We need to

uncompute gki to restore gj−1
i and gkj , which will eventually be needed as ai = gi,

so we will instead compute ck on top of pki as pki ⊕ ci (note that this is the
incoming carry bit and not the outgoing carry bit as in Draper et al.’s circuit)
and from this compute pj−1

i ⊕ ci and pkj ⊕ cj . This has the benefit that we, at
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the end, get pi ⊕ ci = si, so we do not need an extra step to compute the sums.
On the downside, the circuit for propagating the carries becomes a bit more
complex, partly because we need to restore gj−1

i and gkj and partly because we
no longer have pj−1

i gj−1
i = 0, which makes the formula for cj somewhat more

complex than previously cj = cip
j−1
i ⊕ gj−1

i pj−1
i . The circuit for propagating

carries is shown below.

pj−1
i

ĝki

pkj

gki

pki ⊕ci

����

����
�

�

�

� �

�

�

�

�

�

� �

�

pj−1
i ⊕ci

gj−1
i

pkj⊕cj

gkj

ci

Note that ci is not needed afterwards, so it is garbage that must be uncomputed
later if we want an in-place adder.

To get an adder that has these carry bits as garbage (equivalent to the ADD
part of Draper et al.’s adder), we use the following steps:

1. Compute pi = ai ⊕ bi on the bi lines.
2. Recursively apply the circuit that combines p and g until we have pn−1

0 and
gn−1
0 .

3. Compute sn = cn = c0p
n−1
0 ⊕ gn−1

0 pn−1
0 .

4. Overwrite the line pn−1
0 with pn−1

0 ⊕ c0.
5. Recursively apply the carry progagation circuit until we have si = pi ⊕ ci and

ai = gi.

The combined circuit for 8 bits is shown in Fig. 4. Compared to Fig. 1, the
new circuit uses a total of 25 lines compared to 32 for Draper et al.’s design, but
it has a gate delay of 25 compared to 16 for Draper et al.’s design. Also note that
only the even carries are output as garbage, but some of these multiple times.
It is easy to eliminate the copies, so no carry bit occurs twice in the output,
but since we plan to uncompute all carry bits anyway, we do not do this. To
uncompute the carries, we use the same idea as Draper et al. – negating si if
ai = 0, apply the inverse of the ADD circuit except for the parts that add the
carries to the sum and the part that computes the high sum bit. The new in-
place adder for 8 bits is shown in Fig. 5, rotated to fit on a page. Again, this has
25 lines (8 of which are ancillae) compared to 32 lines (15 of which are ancillae)
for Draper et al.’s design. And, again, the gate delay is about 50% higher.

As with Draper et al.’s adder, we can optimise for the case when c0 = 0,
removing the c0 line and all gates and lines that become redundant as a conse-
quence of c0 = 0. Again, pj0 are not needed, as we know that, if a carry is passed
from input to bit j, this will be 0. As in the design of Draper et al., this removes
logN ancillae from the circuit. The optimised circuit is shown in Fig. 6. It uses
only four ancillae compared to 11 for the adder in Fig. 3, but the gate delay is
35 compared to 22, again an increase of roughly 50%.
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5 A Detailed Comparison

For a more detailed comparison of the in-place adder design by Draper et al.
and the one presented in this paper, we assume N is a power of 2.

5.1 Gate Count

For both designs, the gate count is dominated by the ADD part of the adder and
its inverse. The optimisation for when c0 = 0 and not uncomputing the carry-out
both give an O(logN) reduction in gate count, so except for small N , they are
relatively small. The total gate count is, hence, here simplified to twice that of
the ADD part of the in-place adder. While this is a simplification, it affects both
designs equally, so the comparison is still fair.

Draper et al.’s ADD design uses in step 1 N Toffoli gates and N C-not gates.
Step 2 uses N − 1 Toffoli gates, as do step 4 and 5. Step 3 uses N toffoli gates,

Fig. 4. The ADD part of the new adder
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Fig. 5. The new in-place adder
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and step 6 uses N C-not gates. The total is, hence 5N − 3 Toffoli gates and 2N
C-not gates.

Our design uses for the equivalent of step 1 N C-not gates. The equivalents
of steps 2 and 3 combined use N − 1 Fredkin gates and N + 1 Toffoli gates. The
equivalent of step 4, 5 and 6 combined use N − 1 Fredkin gates, 3N − 3 Toffoli
gates and N − 1 C-not gates. The total is, hence, 4N − 2 Toffoli gates, 2N − 2
Fredkin gates and 2N − 1 C-not gates. If the cost of Toffoli and Fredkin gates
are equal (as they are in both quantum cost and pass-gate cost), our design is
roughly 20% more expensive in gates.

5.2 Gate Delay

Again, we use the ADD parts of the adder for our comparison. The total gate
delay is very close to twice that of the ADD part – not uncomputing the carry
out and the optimisation for C0 = 0 reduce the gate delay by little, and the
glue between the ADD part and its inverse is very small. Also, the simplification
affects both designs roughly equally.

Step 1 of Draper et al.’s ADD design gives a gate delay of 1 Toffoli gate and
one C-not gate. Step 2, 4, and 5 each give a delay of logN Toffoli gates, step 3
gives a delay of logN + 1 Toffoli gates, and step6 gives a delay of 1 C-not gate.
The total is 4 logN Toffoli gates and 3 C-not gates.

The equivalent of step 1 in our design gives a delay of 1 C-not gate. The
equivalent of step 2 and 3 combined give a delay of logN Fredkin gates and
logN + 2 Toffoli gates. The equivalents of step 4, 5 and 6 combined give a delay
of logN Fredkin gates, 3 logN Toffoli gates and logN C-not gates. The total
is 2 logN Fredkin gates, 4 logN + 2 Toffoli gates and logN C-not gates. If we,
again, count Fredkin gates and Toffoli gates as equal, our design has slightly
more than 50% higher gate delay.

5.3 Ancillae

Initially, we will look at the case that is not optimised for c0 = 0.
Step 1 of Draper et al.’s ADD design uses N constant inputs. Step 2 uses N−1

constant inputs. The remaining steps do not introduce new constant inputs. The
second part of the adder returns all except one of the constant inputs to 0, as
one is used for the carryout bit, which becomes the most significant bit of the
sum. So the in-place adder uses 2N − 2 ancillae.

Our design uses no constant inputs for the equivalent of step 1 of Draper et
al.’s design, and N constant inputs for the equivalent of steps 2 and 3. All but
the one used for the carry-out bit are uncomputed in the in-place adder, so it
uses N − 1 ancillae.

In both cases, optimising for c0 = 0 removes logN ancillae, so Draper et al.’s
design uses a total of 2N − logN − 2 ancillae while our design uses a total of
N − logN − 1 ancillae, so less than half.
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Fig. 6. The optimised new in-place adder
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5.4 Thapliyal et al.’s Design

This design is very similar to that of Draper et al. The only difference is that
the Toffoli gate and the C-not gate used in step 1 of the ADD part are replaced
by a single gate of the author’s design, called a TR gate. The authors argue that
this is an improvement because the quantum cost of a TR gate is 4 compared
to a total of 6 for a Toffoli gate and a C-not gate. No comparison of gate delay
is made, and the number of ancillae is unchanged.

6 Conclusion

We have presented a design for a reversible carry-lookahead adder that uses less
than half the ancillae of previous designs, at a cost of increasing the gate count
by roughly 20% and the gate delay by roughly 50%. This makes the new design
useful in contexts where low line count is more important than low gate delay
and low gate count.

We have simulated at gate level the presented 8-bit adders on all 256 × 256
inputs and have found the results to be correct.

The observation that makes the reduction in ancillae possible is that if the
“pass” bit is 1, the “generate” bit can be arbitrary, which allows us to use gii = ai,
instead of gii = aibi, so we don’t need an ancilla line on which to calculate gii .
This, however, complicates calculation of carry bits, which causes increased gate
count and (in particular) gate delay.

Future work will look at reducing the gate delay and at using the adder in a
previously proposed multiplier/divisor design [2], which in its current form uses
a variant of Draper et al.’s in-place adder.
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Abstract. Petri nets are a formalism for modelling and reasoning about
the behaviour of distributed systems. Recently, a reversible approach to
Petri nets, Reversing Petri Nets (RPN), has been proposed, allowing
transitions to be reversed spontaneously in or out of causal order. In
this work we propose an approach for controlling the reversal of actions
of an RPN, by associating transitions with conditions whose satisfac-
tion/violation allows the execution of transitions in the forward/reversed
direction, respectively. We illustrate the framework with a model of a
novel, distributed algorithm for antenna selection in distributed antenna
arrays.

1 Introduction

Reversibility is a phenomenon that occurs in a variety of systems, e.g., bio-
chemical systems and quantum computations. At the same time, it is often a
desirable system property. To begin with, technologies based on reversible com-
putation are considered to be the only way to potentially improve the energy
efficiency of computers beyond the fundamental Landauer limit. Further appli-
cations are encountered in programming languages, concurrent transactions, and
fault-tolerant systems, where in case of an error a system should reverse back to
a safe state.

As such, reversible computation has been an active topic of research in recent
years and its interplay with concurrency is being investigated within a variety of
theoretical models of computation. The notion of causally-consistent reversibil-
ity was first introduced in the process calculus RCCS [1], advocating that a
transition can be undone only if all its effects, if any, have been undone before-
hand. Since then the study of reversibility continued in the context of process
calculi [2–6], event structures [7], and Petri nets [8–10].

A distinguishing feature between the cited approaches is that of controlling
reversibility: while various frameworks make no restriction as to when a tran-
sition can be reversed (uncontrolled reversibility), it can be argued that some
c© Springer Nature Switzerland AG 2019
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means of controlling the conditions of transition reversal is often useful in prac-
tice. For instance, when dealing with fault recovery, reversal should only be
triggered when a fault is encountered. Based on this observation, a number
of strategies for controlling reversibility have been proposed: [2] introduces the
concept of irreversible actions, and [11] introduces compensations to deal with
irreversible actions in the context of programming abstractions for distributed
systems. Another approach for controlling reversibility is proposed in [12] where
an external entity is employed for capturing the order in which transitions can be
executed in the forward or the backward direction. In another line of work, [13]
defines a roll-back primitive for reversing computation, and in [4] roll-back is
extended with the possibility of specifying the alternatives to be taken on resum-
ing the forward execution. Finally, in [14] the authors associate the direction of
action reversal with energy parameters capturing environmental conditions of
the modelled systems.

In this work we focus on the framework of reversing Petri nets (RPNs) [9],
which we extend with a mechanism for controlling reversibility. This control
is enforced with the aid of conditions associated with transitions, whose sat-
isfaction/violation acts as a guard for executing the transition in the for-
ward/backward direction, respectively. The conditions are enunciated within a
simple logical language expressing properties relating to available tokens. The
mechanism may capture environmental conditions, e.g., changes in temperature,
or the presence of faults. We present a causal-consistent semantics of the frame-
work. Note that conditional transitions can also be found in existing Petri net
models, e.g., in [15], a Petri-net model that associates transitions and arcs with
expressions.

We conclude with the model of a novel antenna selection (AS) algorithm
which inspired our framework. Centralized AS in DM MIMO (distributed, mas-
sive, multiple input, multiple output) systems [16] is computationally complex,
demands a large information exchange, and the communication channel between
antennas and users changes rapidly. We introduce an RPN-based, distributed,
time-evolving solution with reversibility, asynchronous execution and local con-
dition tracking for reliable performance and fault tolerance.

2 Reversing Petri Nets

In this section we extend the reversing Petri nets of [9] by associating transitions
with conditions that control their execution and reversal, and allow tokens to
carry data values of specific types (clauses (2), (6) and (7) in the following
definition). We introduce a causal-consistent semantics for the framework.

Definition 1. A reversing Petri net (RPN) is a tuple (P, T,Σ,A,B, F,C, I)
where:

1. P is a finite set of places and T is a finite set of transitions.
2. Σ forms a finite set of data types with V the associated set of data values.
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3. A is a finite set of bases or tokens ranged over by a, b, . . .. A = {a | a ∈ A}
contains a “negative” instance for each token and we write A = A ∪ A.

4. B ⊆ A × A is a set of undirected bonds ranged over by β, γ, . . .. We use the
notation a−b for a bond (a, b) ∈ B. B = {β | β ∈ B} contains a “negative”
instance for each bond and we write B = B ∪ B.

5. F : (P × T ∪ T × P ) → 2A∪B is a set of directed labelled arcs.
6. C : T → COND is a function that assigns a condition to each transition t

such that type(C(t)) = Bool.
7. I : A → V is a function that associates a data value from V to each token a

such that type(I(a)) = type(a).

RPNs are built on the basis of a set of tokens or bases which correspond to
the basic entities that occur in a system. Tokens have a type from the set Σ,
and we write type(e) to denote the type of a token or expression in the language.
Values of these types are associated to tokens of an RPN via function I. Tokens
may occur as stand-alone elements but as computation proceeds they may also
merge together to form bonds. Transitions represent events and are associated
with conditions COND defined over the data values associated with the tokens
of the model and functions/predicates over the associated data types. Places
have the standard meaning. Directed arcs connect places to transitions and vice
versa and are labelled by a subset of A ∪ B. Intuitively, these labels express the
requirements for a transition to fire when placed on arcs incoming the transition,
and the effects of the transition when placed on the outgoing arcs. Graphically,
a Petri net is a directed bipartite graph where tokens are indicated by •, places
by circles, transitions by boxes, and bonds by lines between tokens.

The association of tokens to places is called a marking such that M : P →
2A∪B where a−b ∈ M(x), for some x ∈ P , implies a, b ∈ M(x). In addition,
we employ the notion of a history, which assigns a memory to each transition
H : T → 2N. Intuitively, a history of H(t) = ∅ for some t ∈ T captures that
the transition has not taken place, and a history of k ∈ H(t), captures that the
transition was executed as the kth transition occurrence and it has not been
reversed. Note that |H(t)| > 1 may arise due to cycles in a model. A pair of a
marking and a history, 〈M,H〉, describes a state of a RPN with 〈M0,H0〉 the
initial state, where H0(t) = ∅ for all t ∈ T .

We introduce the following notations. We write ◦t = {x ∈ P | F (x, t) 
=
∅} and t◦ = {x ∈ P | F (t, x) 
= ∅} for the incoming and outgoing places
of transition t, respectively. Furthermore, we write pre(t) =

⋃
x∈P F (x, t) and

post(t) =
⋃

x∈P F (t, x). Finally, we define con(a,C), where a is a token and
C ⊆ A ∪ B a set of connections, to be the tokens connected to a via a sequence
of bonds in B, together with the bonds creating these connections.

In what follows we assume that: (1) transitions do not erase tokens (A ∩
pre(t) = A ∩ post(t)), and (2) tokens/bonds cannot be cloned into more than
one outgoing places of a transition (F (t, x) ∩ F (t, y) = ∅ for all x, y ∈ P, x 
= y).
Furthermore, we assume for all a ∈ A, |{|x|a ∈ M0(x)|}| = 1, i.e., there exists
exactly one base of each type in M0. Note that we extend the exposition of [9]
by allowing transitions to break bonds and by permitting cyclic structures.
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2.1 Forward Execution

For a transition to be forward-enabled in an RPN the following must hold:

Definition 2. Consider a RPN (P, T,Σ,A,B, F,C, I), a transition t, and a
state 〈M,H〉. We say that t is forward-enabled in 〈M,H〉 if:

1. If a ∈ F (x, t) (resp. β ∈ F (x, t)) for some x ∈ ◦t, then a ∈ M(x) (resp.
β ∈ M(x)), and if a ∈ F (x, t) (resp. β ∈ F (x, t)) for some x ∈ ◦t, then
a 
∈ M(x) (resp. β 
∈ M(x)),

2. If β ∈ F (t, x) for some x ∈ t◦ and β ∈ M(y) for some y ∈ ◦t then β ∈ F (y, t),
3. E(C(t)) = True.

Thus, t is enabled in state 〈M,H〉 if (1) all tokens and bonds required for
the transition are available in t’s incoming places and none of the tokens/bonds
whose absence is required exists in t’s incoming place, (2) if a pre-existing bond
appears in an outgoing arc of a transition, then it is also a precondition of the
transition to fire, and (3) the transition’s condition C(t) evaluates to true. We
write E(c) for the value of the condition based on the assignment function I.

When a transition t is executed in the forward direction, all tokens and bonds
occurring in its outgoing arcs are relocated from the input to the output places
along with their connected components. The history of t is extended accordingly:

Definition 3. Given a RPN (P, T,Σ,A,B, F,C, I), a state 〈M,H〉, and a tran-
sition t enabled in 〈M,H〉, we write 〈M,H〉 t−→ 〈M ′,H ′〉 where:

M ′(x) = M(x) − ⋃
a∈F (x,t) con(a,M(x))

∪⋃
a∈F (t,x),y∈◦t con(a,M(y) − pre(t) ∪ F (t, x))

and H ′(t′) = H(t′) ∪ {max({0} ∪ ⋃
t′′∈T H(t′′)) + 1}, if t′ = t, and H(t′),

otherwise.

2.2 Causal Order Reversing

We now move on to causal-order reversibility. The following definition enunciates
that a transition t is co-enabled (‘co’ standing for causal-order reversing) if it
has been previously executed and all the tokens on the outgoing arcs of the
transition are available in its outplaces. Furthermore, to handle causality in the
presence of cycles, clause (1) additionally requires that all bonds involved in the
connected components of such tokens have been constructed by transitions t′

that have preceded t. Furthermore, clause (2) of the definition requires that the
condition of the transition is not satisfied.

Definition 4. Consider a RPN (P, T,Σ,A,B, F,C, I), a state 〈M,H〉, and a
transition t ∈ T with k = max(H(t)). Then t is co-enabled in 〈M,H〉 if: (1) for
all a ∈ F (t, y) then a ∈ M(y), and if con(a,M(y)) ∩ post(t′) 
= ∅ for some t′ ∈ T
with k′ ∈ H(t′), then k′ ≤ k, and, (2) E(C(t))= False.
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When a transition t is reversed all tokens and bonds in the pre-conditions of
t, as well as their connected components, are transferred to t’s incoming places.

Definition 5. Given a RPN a state 〈M,H〉, and a transition t co-enabled in
〈M,H〉 with history k ∈ H(t), we write 〈M,H〉 t� 〈M ′,H ′〉 where:

M ′(x) = M(x) − ⋃
a∈F (t,x) con(a,M(x))

∪⋃
y∈t◦,a∈F (x,t) con(a,M(y) − post(t) ∪ F (x, t))

and H ′(t′) = H(t′) − {k} if t′ = t, and H(t′), otherwise.

(a) antennas and users (b) a part of the RPN model

Fig. 1. RPN for antenna selection in DM MIMO (large antenna array).

3 Case Study: Antenna Selection in DM MIMO

The search for a suitable set of antennas is a sum capacity maximization problem:

C = max
P,Hc

log2 det
(

I + ρ
NR

NTS
HcPHc

H

)

(1)

where ρ is the signal to noise ratio, NTS the number of antennas selected from a
total of NT antennas, NR the number of users, I the NTS ×NTS identity matrix,
P a diagonal NR×NR power matrix. Hc is the NTS ×NR submatrix of NT ×NR

channel matrix H [16]. Instead of centralized AS, in our approach (1) is calcu-
lated locally for small sets of antennas (neighborhoods), switching on only anten-
nas which improve the capacity: in Fig. 1(a), antenna Ai−1 will not be selected. In
the RPN interpretation, we present the antennas by places A1, . . . , An, where
n = NT , and the overlapping neighbourhoods by places M1, . . . ,Mh. These
places are connected together via transitions ti,j , connecting Ai, Aj and Mk,
whenever there is a connection link between antennas Ai and Aj . The transition
captures that, based on the neighbourhood knowledge in place Mk, antenna Ai

may be preferred over Aj or vice versa (the transition may be reversed).
To implement the intended mechanism, we employ three types of tokens.

First, we have the power tokens p1, . . . , pl, where l is the number of enabled
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antennas. If token p is located on place Ai, antenna Ai is considered to be on.
Transfer of these tokens results into new antenna selections, ideally converging
to a locally optimal solution. Second, tokens m1, . . . ,mh, each represent one
neighborhood. Finally, a1, . . . , an, represent the antennas. The tokens are used
as follows: Given transition ti,j between antenna places Ai and Aj in neighbour-
hood Mk, transition ti,j is enabled if token p is available on Ai, token aj on
Aj , and bond (ai,mk) on Mk, i.e., F (Ai, ti,j) = {p}, F (Aj , ti,j) = {aj}, and
F (Mk, ti,j) = {(ai,mk)}. This configuration captures that antennas Ai and Aj

are on and off, respectively. (Note that the bonds between token mk and tokens
of type a in Mk capture the active antennas in the neighbourhood.) Then, the
effect of the transition is to break the bond (ai,mk), and release token ai to
place Ai, transferring the power token to Aj , and creating the bond (aj ,mk) on
Mk, i.e., F (ti,j , Ai) = {ai}, F (ti,j , Aj) = {p}, and F (ti,j ,Mk) = {(aj ,mk)}. The
mechanism achieving this for two antennas can be seen in Fig. 1(b).

Finally, to capture the transition’s condition, an antenna token ai is associ-
ated with data vector I(ai) = hi, type(hi) = R

2 (= C), i.e., the corresponding
row of H. The condition constructs the matrix Hc of (1) by collecting the data
vectors hi associated with the antenna tokens ai in place Mk: Hc = (h1, ...,hn)T

where hi = I(ai) if ai ∈ Mk, otherwise hi = (0 . . . 0). The transition ti,j will
occur if the sum capacity calculated for all currently active antennas (including
ai), Cai

, is less than the sum capacity calculated for the same neighbourhood with
the antenna Ai replaced by Aj , Caj

, i.e., Cai
< Caj

. Note that if the condition is
violated, the transition may be executed in the reverse direction.

Results of the RPN-based approach on an array consisting of 64 antennas
serving 16 users, varying the number of selected antennas from 16 to 64 are
shown in Fig. 2 [17]. If we run five RPN models in parallel and select the one
with the best performance for the final selection, the results are consistently
superior to those of a centralised (greedy) algorithm, and if we run just one
(equivalent to the average of the performance of these five models) the results
are on par with those of the centralised algorithm.
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Fig. 2. Results of antenna selection on a distributed 64 antenna array.
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4 Conclusions

We have extended RPNs with conditions that control reversibility by determin-
ing the direction of transition execution, and we have applied our framework
to model an AS algorithm. Preliminary results show superior performance to
centralised approaches. Our experience strongly suggests that resource manage-
ment can be studied and understood in terms of RPNs as, along with their visual
nature, they offer a number of relevant features. In subsequent work, we plan
to extend RPNs for allowing multiple tokens of the same base/type to occur
in a model and for developing out-of-causal-order reversibility semantics in the
presence of conditional transitions as well as the destruction of bonds.
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