
Chapter 4
Engineering Magnetostatics
and Boundary-Value Problems

4.1 Constitutive Law of Magnetic Material

In a domain Ω , having boundary Γ , containing permanent magnets, i.e. aggregates
of magnetic dipoles or, from now on, steady electric current distributed with density
J (A m−2), a magnetostatic field is set up; it is defined by field strength H (A m−1)
as well as flux density B (Wb m−2 = T). In general, the link between H and B, i.e.
the constitutive law of the medium, is complicated. Neglecting hysteresis, the law
is single-valued and can be expressed, for an isotropic medium in the absence of
permanent magnetization, by

B = μH (4.1)

where μ is called permeability (H m−1) and, in the most general case, is a function
of |H |; the inverse of μ is called reluctivity ν. The observer is supposed to be at rest
with respect to the field [4].

4.2 Maxwell’s Equations of Magnetostatic Field

The equations governing the magnetic field are in Ω

∇ · B = 0 (4.2)

∇ × H = J (4.3)

and along Γ

n · B = 0 (4.4)
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Fig. 4.1 Magnetic field domain with field-based boundary conditions

if � is a flux line (flux lines parallel to �), or

n × B = μJ S (4.5)

if current of surface density J S (A m−1) is present, or

n × H = 0 (4.6)

if flux lines are perpendicular to Γ .
For an isotropic and linear medium, in terms of B, the equations become in Ω

∇ · B = 0; ∇ × B = μJ (4.7)

with

n · B = 0 (4.8)

or

n × B = μJ S (4.9)

or

n × H = 0 along Γ (4.10)

The equations written above unambiguously define the magnetostatic field which,
because of (4.5), is solenoidal [4].

A general field domain is shown in Fig. 4.1.
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Fig. 4.2 Line current
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If both J S and J are given, then it must be

∫

Γ

∣∣J s

∣∣dΓ =
∫

Ω

∣∣J ∣∣dΩ (4.11)

i.e. the total current sums up to zero: therefore, densities JS and J cannot be inde-
pendent.

In a non-homogeneous domain at the interface between two materials of perme-
ability μ1 and μ2, from (4.2) it holds

n · (
B2 − B1

) = 0 (4.12)

so that the normal component of B is always continuous (Fig. 4.2).
If there is a current of density J S (A m−1), then from (4.3) it follows

n × (
H 2 − H 1

) = J s (4.13)

If J s = 0 the tangential component of H is continuous. Equations (4.12) and
(4.13) are called transmission conditions.

In the case of a non-homogeneous medium, the following remark can be put
forward. After (4.1) and (4.2), considering vector identity (A.14), one has

∇ · μH = μ∇ · H + ∇μ · H = 0 (4.14)
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In the case of a non-homogeneous medium, fieldH is solenoidal if ∇μ andH are
orthogonal vectors; this means that lines separating layers of different μ are parallel
to field lines of H .

Conversely, after (4.1) and (4.3), considering vector identity (A.16), it turns out
to be

∇ × μ−1B = μ−1∇ × B + ∇μ−1 × B = J (4.15)

It appears that, in a current-free medium (i.e. J= 0), field B is irrotational if∇μ−1

and B are parallel vectors; this means that lines separating layers of different μ are
orthogonal to field lines of B. If ∇μ−1 = 0 and J = 0 (homogeneous current-free
medium), then B is always irrotational.

Finally, an extension of constitutive law (4.1) is considered.
In the presence of a permanent magnetization B0 in the magnetic material (per-

manent magnet) the constitutive law is

B = μH + B0 (4.16)

In this case the field equations are

∇ · B = 0 (4.17)

∇ × B = μJ + ∇ × B0 (4.18)

In particular, the field inside a permanent magnet is described by (4.18) with
J = 0; it follows that the magnet can be modelled by an equivalent distribution of
current given by J eq = μ−1∇ × B0.

4.3 From Field to Potentials

(i) From (4.2), since, for anyvectorA,∇ · (∇ × A
) = 0 holds (seeA.8), it is possible

to define a vector function A (Wb m−1) called vector potential by means of

∇ × A = B (4.19)

and

∇ · A = 0 (gauge condition) (4.20)
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This way (4.2) is fulfilled, while (4.3) becomes

∇ × μ−1
(∇ × A

) = J (4.21)

For a homogeneous domain, after (A.12) and (4.20) it turns out to be

∇2
A = −μJ (4.22)

This is the (Poisson’s) vector equation governing A. In a system of rectangular
coordinates it corresponds to the following three scalar equations

(
∇2

A
)
x
= ∂2Ax

∂x2
+ ∂2Ax

∂y2
+ ∂2Ax

∂z2
= −μJx

(
∇2

A
)
y
= −μJy

(
∇2

A
)
z
= −μJz (4.23)

In general, the gradient of an harmonic function η may be added to A, having all
the equations fulfilled. Suitable boundary conditions on Γ must be added in order to
define the field in a unique way.

In particular, after (4.18) and (4.22), the potential inside a permanent magnet is

given by ∇2
A = −∇ × B0.

(ii) In a two-dimensional domain, vectors J and so A have only one non-zero com-
ponent; hence, vector potential can be treated as a scalar quantity.

Boundary conditions (4.8) and (4.10), in terms ofB = (
Bx,By

)
along the boundary

Γ with normal unit vector n = (
nx, ny

)
and tangential unit vector t = (

tx, ty
) =(

ny,−nx
)
, become, in terms of A,

n̄ · B = nxBx + nyBy = nx
∂A

∂y
− ny

∂A

∂x

= −ty
∂A

∂y
− tx

∂A

∂x
= −t · ∇A = −∂A

∂t
= 0 (4.24)

i.e. A = const along Γ and

n̄ × B = (
nxBy − nyBx

)
īz =

(
−nx

∂A

∂x
− ny

∂A

∂y

)
īz

= −(
n̄ · ∇A

)
īz = −∂A

∂n
iz = 0 (4.25)

i.e. ∂A
∂n = 0 along Γ , respectively.



36 4 Engineering Magnetostatics and Boundary-Value Problems

(iii) If J = 0 in Ω and Ω is simply connected, then, along with A, the field H can
be described by a scalar function ϕ (total scalar potential, A) defined as

H = −∇ϕ (4.26)

In fact, (4.3) is automatically satisfied, while from (4.2) we obtain

∇ · μ∇ϕ = 0 in Ω (4.27)

The latter is the Laplace’s equation governing total scalar potential ϕ with suitable
boundary conditions.

The condition of simply connected domain can be obtained by suitable cuts, if
necessary. If this condition is not fulfilled, nevertheless ϕ can be still defined, apart
from multiples of a constant.

(iv) In a three-dimensional domain, following the T − Ω method, in regions free
of impressed current (J0 = 0) an electric vector potential T (A m−1) can be
defined as

∇ × T = J (4.28)

Comparing (4.28) and (4.3) it turns out that H and T , which have the same curl,
must differ by the gradient of a function Ω (dual scalar potential, A)

H = T − ∇Ω (4.29)

This way, the electric and magnetic vectors, J and H , have been reformulated in
terms of two potentials.

In order to define T uniquely, a gauge must be introduced.
The equations governing electric and magnetic field can be now expressed in

terms of T and Ω . In fact, from (4.3) taking the curl of both members and taking
into account (4.2) and (4.29), one has

∇ × (
σ−1∇ × T

) = ∇ × σ−1J 0 − ∂

∂t
μ

(
T − ∇Ω

)

∇ × (
σ−1∇ × T

) = ∇ × σ−1J 0 (4.30)

and from (4.2)

∇ · μ
(
T − ∇Ω

) = 0 (4.31)

In regions where σ = 0 one has J = 0 and therefore, from (4.2), ∇ × T = 0.
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Moreover, imposing the gauge ∇ · T = μσ ∂Ω
∂t ∇ · T = 0, from (4.30) and (4.31)

one obtains two independent equations for T and Ω , namely

∇2
T − μσ

∂T

∂t
= −∇ × J 0

∇2
T = −∇ × J 0 (4.32)

and

∇2Ω − μσ
∂Ω

∂t
= 0

∇2Ω = 0 (4.33)

subject to appropriate boundary conditions. They are

n × T = 0, Ω = 0 (4.34)

or

n · T = 0,
∂Ω

∂n
= 0 (4.35)

if the boundary is normal to a flux line (i.e. n × B = 0) or it is parallel to a flux line
(i.e. n · B = 0), respectively.

After determining T , Ω is given by

Ω(t) = Ω0 + (μσ)−1

t∫

0

∇ · T (
t′
)
dt′ (4.36)

with Ω0 to be determined.
The following remark can be put forward.
In the two-dimensional case, the magnetic vector potential has only one non-zero

component, and this makes the computational cost low. In contrast, if a formulation
based on magnetic vector potential is used for a three-dimensional problem, all three
vector components are unknown; therefore, the computational cost is high. The T -Ω
formulation is a good compromise: in fact, the use of vector potential T in current-
carrying conductors makes it possible an accurate modeling of current distribution,
while the use of scalar potential
 elsewhere leads to economy in computation. Suit-
able conditions are needed at the boundary between conducting and non-conducting
materials.

(v) When in (4.1) permeabilityμ depends on
∣∣H ∣∣, one has ∣∣B∣∣ = μ

(∣∣H ∣∣)∣∣H ∣∣ and for
the solution of (4.22) one should resort to an iterative procedure. According e.g.
to the Newton-Raphson method, the residual r(A) of the governing Eq. (4.22)
is developed in Taylor’s series, truncating the development at the first order



38 4 Engineering Magnetostatics and Boundary-Value Problems

r(Ak) = r(Ak−1) +
(

dr

dA

∣∣∣∣
A=Ak−1

)
(Ak − Ak−1) + o(Ak) (4.37)

If an estimate of solutionAk−1 at the (k−1)-th iteration is available, the subsequent
prediction Ak at the k-th iteration is given by (4.28) after imposing r(Ak)= 0. It turns
out to be

Ak = Ak−1 −
[
dr

dA

∣∣∣∣
A=Ak−1

]−1

r(Ak−1) (4.38)

Then,μ and so
∣∣H ∣∣ are updated bymeans of the newestimate ofA, and the problem

is solved again. The procedure stopswhen the error between two successive solutions
is less than the prescribed threshold. It is necessary to know an initial prediction A0

and the value of the derivative dr
dA at each iteration.

4.3.1 Field of a Line Current in a Three-Dimensional
Domain: Differential Approach

A current I(A), concentrated at r = 0 and directed along the z axis in a system of
cylindrical coordinates (r, ϕ, z), is considered (Fig. 4.2) [1].

The symmetry implies H = (0,H , 0) and from (4.3) the field equation is

∇ × H = 1

r

∂rH

∂r
= ∂H

∂r
+ 1

r
H = Iδ(r), r > 0 (4.39)

where H vanishes as r approaches infinity. The general solution is

H (r) = 1

r

⎛
⎝I

r∫

0

ρδ(ρ)dρ + k

⎞
⎠ (4.40)

The Dirac’s δ in a cylindrical geometry can be approximated by

δ = lim
α→0

δα, α > 0 (4.41)

with δα = 1
πα2 , r ≤ α and δα = 0 elsewhere. Consequently, the field H can be

approximated as

H = lim
α→0

Hα (4.42)

For r ≤ α it turns out to be
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Hα = 1

r

⎛
⎝I

r∫

0

ρδαdρ + kα

⎞
⎠ = 1

r

(
I

πα2

r2

2
+ kα

)

= Ir

2πα2
+ kα

r
(4.43)

Since δα is a regular function near the origin, also Hn will be regular near zero;
therefore kα= 0.

For r ≥ α it turns out to be

Hα = 1

r

⎛
⎝I

α∫

0

ρδαdρ + kα

⎞
⎠ = 1

r

⎛
⎝ I

πα2

α∫

0

ρdρ

⎞
⎠

= 1

r

(
I

πα2

α2

2

)
= I

2πr
, r > 0 (4.44)

The Biot-Savart’s law follows

H (r) = lim
α→0

Hα(r) = I

2πr
, r > 0 (4.45)

Alternatively, the Stokes’s theorem can be applied to (4.3), giving
∮
l H · td� = I ,

if � is a closed line linking the conductor once. Considering the field geometry, � can
be taken as a circular line centred at r = 0; therefore, (4.41) follows.

From (4.41) and (4.19) the vector potential is

A = I

2πν
ln riz, r > 0 (4.46)

4.4 Magnetostatic Energy

Given a magnetostatic field characterized by strengthH and flux density B in a linear
medium, the specific energy (J m−3) of the field is defined as 1

2H · B; if the medium
is isotropic, the energy W (J) stored in an unbounded region Ω is given by

W = 1

2

∫

Ω

HBdΩ (4.47)

If the constitutive relationship of the magnetic material is non-linear, the specific
energy is

∫ B
0 H dB′ and the total energy is
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W =
∫

Ω

⎛
⎝

B∫

0

H dB′
⎞
⎠dΩ (4.48)

In some cases it is convenient to introduce the specific co-energy
H∫
0
B dH ′ and the

total co-energy is

W ′ =
∫

Ω

⎛
⎝

H∫

0

B dH ′
⎞
⎠dΩ (4.49)

In the case of linear medium W = W ′ holds.
In the linear case, taking into account the following identity (see A.13)

H · B = H · (∇ × A
) = A · (∇ × H

) − ∇ · (
H × A

) = A · J − ∇ · (
H × A

)
(4.50)

and (4.3), the total energy stored in a region Ω of boundary Γ is

W = 1

2

∫

Ω

H · B dΩ = 1

2

∫

Ω

A · J dΩ − 1

2

∫

Γ

(
H × A

) · n dΓ (4.51)

The equation above reduces toW = 1
2

∫
Ω
A · J dΩ if eitherA×n = 0 orH×n = 0

along Γ [3].

4.5 Forces and Torques in the Magnetostatic Field

4.5.1 Principle of Virtual Work

Given a structure in the field region, on which force F is to be computed, a virtual
linear displacement ds in the direction of F , supposing that the magnetic system is
supplied by a constant current I creating a linkage flux Φ, the sum of mechanical
work Fds and variation of magnetic energy dW is equal to the input energy IdΦ so
that the following balance equation

F ds + dW = IdΦ

F ds = d(IΦ − W )

F = d

ds
(IΦ − W ) (4.52)



4.5 Forces and Torques in the Magnetostatic Field 41

In the case of an angular displacement dϑ , the torqueM with respect to the rotation
axis is

M = d

dϑ
(IΦ − W ) (4.53)

The quantity IΦ-W, denoted byW ′, is the complementary energy or co-energy of
the system.

On the other hand, if the magnetic system is isolated, mechanical work Fds and
variation of magnetic energy dW take place so that

F ds + dW = 0 (4.54)

Therefore, the force can be evaluated as

F = −dW

ds
(4.55)

while the torque is

M = −dW

dϑ
(4.56)

If the system is linear, W ′ and W coincide.

4.5.2 Lorentz’s Method

It is based on the definition of flux density; in the empty space, the force F exerted
on current I carried by a linear conductor of length � is F = I� × B where B is the
external field, i.e. the flux density in the absence of current. In general, the force F
exerted on current distributed with density J in the region Ω is

F =
∫

Ω

J × B dΩ (4.57)

Direction of force is orthogonal to the plane defined by flux density and current
density vectors.
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4.5.3 Method of Maxwell’s Stress Tensor

Defined a closed surface Γ enclosing the structure, then force F is evaluated as

F =
∫

Ω

∇ · T dΩ =
∫

Γ

T · n̄ dΓ (4.58)

where n̄ is the outward normal unit vector.
The Maxwell’s magnetic stress tensors T , assuming a system of rectangular coor-

dinates, in a three-dimensional domain can be represented in matrix form as

T =
⎡
⎣

1
2 (HxBx − HyBy − HzBz) HxBy HxBz

HyBx
1
2 (HyBy − HxBx − HzBz) HyBz

HzBx HzBy
1
2 (HzBz − HxBx − HyBy)

⎤
⎦

(4.59)

In order the tensor be uniquely defined, surface Γ should not be coincident with
the interface between materials having different permeability [2].

4.5.4 Link Between Lorentz’s and Maxwell’s Approach

There is a link between Lorentz’s and Maxwell’s approach to force calculation. In
fact, using (4.1), (4.3) and (4.57), the force density f

(
Nm−3

)
is

f = J × B = (∇ × νB
) × B (4.60)

In particular, the x-directed component is

fx = νBz
∂Bx

∂z
− νBz

∂Bz

∂x
− νBy

∂By

∂x
+ νBy

∂Bx

∂y
(4.61)

After adding and subtracting the term ν
2

∂B2
x

∂x it follows

fx = ν

2

∂B2
x

∂x
+ νBz

∂Bx

∂z
+ νBy

∂Bx

∂y
+

− ν

2

∂

∂x

(
B2
x + B2

y + B2
z

)
(4.62)
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It turns out to be

fx = ν

2

∂B2
x

∂x
+ ν

∂(BxBz)

∂z
− νBx

∂Bz

∂z
+ ν

∂
(
BxBy

)
∂y

+

− νBx
∂By

∂y
− νBx

∂Bx

∂x
− ν

2

∂

∂x

(
B2
y + B2

z

)
(4.63)

fx = ν

[
∂

∂x

(
B2
x − 1

2

∣∣B∣∣2
)

+ ∂
(
BxBy

)
∂y

+ ∂(BxBz)

∂z
− Bx∇ · B

]
(4.64)

Due to (4.2) the last term of (4.64) is zero; then, if vector

v1 = ν

(
B2
x − 1

2

∣∣B∣∣2,BxBy,BxBz

)

=
(
1

2

(
HxBx − HyBy − HzBz

)
,HxBy,HxBz

)
(4.65)

is defined, f x can be viewed as its divergence, apart from a constant k which can be
set to zero, namely

fx = ∇ · v1 (4.66)

A similar result holds for force density components f y and f z; it follows

v2 =
(
HyBx,

1

2

(
HyBy − HxBx − HzBz

)
,HyBz

)
(4.67)

such that

fy = ∇ · v2 (4.68)

and

v3 =
(
HzBx,HzBy,

1

2

(
HzBz − HxBx − HyBy

))
(4.69)

such that

fz = ∇ · v3 (4.70)

respectively. Therefore, according to (4.58), the force F(N ) can be computed as the

flux, leaving surface Γ , of tensor T represented by matrix (4.59), in which the row
entries are the components of vectors vk , k = 1, 3.
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Correspondingly, the torque is given byM = ∫
Γ
rPO × T · n̄ dΓ where rPO is the

position vector of point P on Γ with respect to the rotation axis in O.
It can be remarked that a solenoidal vector w may be added to (4.65), (4.67)

and (4.69) leaving force density components (4.66), (4.68) and (4.70) fulfilled. This
means that stress tensor (4.59) is not uniquely defined.

As far as a comparison of methods is concerned, the following remark can be put
forward. In order Lorentz’s method to apply, a current density must be defined in Ω;
in contrast, virtual work principle (VWP) andMaxwell’s stress tensor method (MST)
are more general. VWP is computationally more expensive, because the derivative
of energy or co-energy is approximated by means of a finite difference, involving
two displaced positions of the structure. Therefore, two field analyses are necessary
to compute force or torque at a given position. MST require only one field analysis.

4.6 Worked Example

4.6.1 Force on an Electromagnet

Let an electromagnet with a movable plunger be considered (Fig. 4.3), [1].
The iron core is supposed to have infinite permeability. The air gaps in the x

direction are supposed to be much smaller than the air gap t in the y direction.
The circulation of the magnetic fieldH, along a line linking the excitation current

NI and crossing the air gap t in the normal direction, reduces to

NI = Ht (4.71)

Therefore at the air gap

H = NI

t
(4.72)

IRON

IRON

t

NI 

y

xΓ

Fig. 4.3 Model of the electromagnet
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while in the iron part H = 0. Following (4.49), the co-energy stored in the air gap is
given by

W ′ = 1

2
μ0H

2St = μ0(NI)
2S

2t
(4.73)

where S is the cross-section of the central limb and μ0 is the air permeability.
If NI is constant, according to (4.52), the force acting on the movable part is

Ft = ∂W ′

∂t
= −μ0S

2

(
NI

t

)2

(4.74)

The force is negative, i.e. opposite to the direction of increasing t; therefore, it is
attractive, regardless of the sign of I.

In order to apply the method of Maxwell’s stress tensor, an integration surface Γ

enclosing the movable part is considered having n as its outward normal unit vector.
Taking into account the field distribution, it follows

T =
[− 1

2HyBy 0
0 1

2HyBy

]
(4.75)

F =
∫

Γ

T · n̄dΓ =
(
0,

1

2
HyByS

)
(4.76)

Therefore it turns out to be

Fy = 1

2
μ0H

2
y S = 1

2
μ0S

(
NI

t

)2

(4.77)

The force is attractive, because variables t and y are oriented in opposite directions.
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