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Chapter 1
Introduction

This introductory monograph presents a broad overview of methods of both analysis
and synthesis of Micro Electro Mechanical Systems (MEMS) and devices, mainly
addressed to graduate students and young researchers in the area of electrical and
computer engineering as well as mechatronics. Throughout the book each theoret-
ical concept is illustrated by means of case studies, following a problem-solving
approach and never forgetting that the engineering task is just that of formulating
and solving problems in a computational fashion. Having this in mind, the authors
have collected the experience they have accumulated while teaching electromagnet-
ics and electromechanics at various levels and in different countries, in this book,
which is intended to be valid for an international audience.

In particular, the MEMS devices the various case studies are focused on, are
analyzed by means of distributed models (i.e. field models) which allow to represent
the physical layer i.e. the internal reality which takes place within materials forming
the device. In contrast, the traditional approach to analysis is based on lumped-
parameter models (i.e. circuit models), which rely on the assumption of disregarding
space effects. This twofold approach and its implications at the computing level is
described in Chap. 2.

Following the field-model approach, in Chaps. 3, 4 and 5 an overview of electro-
statics, magnetostatics and steady-state conduction is presented, respectively. Meth-
ods to simulate the mechanical effects which take place in the field, i.e. forces and
torques of electromagnetic origin acting on a structure, are accordingly illustrated.
In turn, an introduction to multiphysics problems is developed in Chap. 9. On the
other hand, the lumped parameter approach is also exploited in the book: the inte-
gral parameters characterizing aMEMS device (e.g. the equivalent capacitance), can
be reliably computed just starting from field analyses; accordingly, in Chap. 6, the
field-circuit approach is proven and discussed.

In order to solve field models in a numerical fashion, many methods can be used;
however, themost popular one nowadays is the Finite ElementMethod (FEM) thanks
to its reliability and effectiveness: because most of the case studies presented in the
book are modelled by means of FEM, basics of FEM are summarized in Chap. 8.

© Springer Nature Switzerland AG 2020
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2 1 Introduction

If simulating a device by solving an analysis problem gives a fundamental infor-
mation about its behavior, the design of MEMS is the main computational challenge
which arises nowadays, in particular, the automated design optimization. In fact, the
industrial designers are more and more involved in solving synthesis problems based
on procedures of automated optimal design which are, in turn, based on analysis
problems. This is the rationale behind Chaps. 10 and 11: in the former, definitions
and properties of synthesis (or inverse) problems are summarized and a few regular-
ization methods are presented, while in the latter methods for the automated optimal
design are presented and discussed.

Because numericalmethods have to follow the ongoing technological trend,which
is more and more oriented towards Nano Electro Mechanical Systems (NEMS), in
Chap. 12 a selection of NEMS devices is presented; accordingly, it is shown how
they can be still modelled by means of numerical methods used for MEMS.

A categorization commonly accepted of MEMS devices is based on the inherent
actuation principle. In fact, there are many principles of actuation, among the others
electrical, magnetic, thermal, fluidic and chemical actuation. Each kind of actuation
presents advantages and drawbacks; in this book, MEMS devices characterized by
electrical, thermal and magnetic actuation are treated.

Electrical actuation is the most common and the oldest one. In fact, capacitive
transduction, coupled with the electrostatic actuation, is used for many applications
like e.g. pressure sensors, micromotors, accelerometers, gyroscopes and energy har-
vesters. In particular, pressure sensors became the first mass-producedMEMSdevice
around 1995. On the other hand, electrostatic micromotors were the first devices to
be designed and prototyped, exploiting the Silicon integrated technology as early as
the late eighties of last century.

In the book the thermal actuation is presented as coupled with the electrical actu-
ation, i.e. the conduction current heats a structural component of the device thanks
to the Joule effect; then, the gradient of temperature gives rise to a strain and, finally,
to a displacement. This kind of electro-thermo-elastic device is significant from the
point of view of complex models, because of the three coupled fields.

Finally, magnetic actuation is considered due to its many advantages. Among the
others, low voltages are needed for power supply and, hence, the power consumption
is low; moreover, they are simple to control because of their linear response to the
input signal. Even if they appear not to be used very extensively, they fill some impor-
tant niches in mechatronics e.g. for those applications that need large force densities
and broad strokes. A more physical insight on electric and magnetic actuations is
presented in Chap. 7.

Following the three actuation types, in Chap. 13, examples of MEMS devices like
micromotors, accelerometers, micromirrors and actuators of various shapes are ana-
lyzed by means of field models. In turn, in Chap. 14 the same devices are considered
from the viewpoint of automated optimal design and solved bymeans of recently pro-
posed optimization algorithms. This part of the book delves into emerging research
topics.

Because of themultidisciplinary nature of the covered topics, the skills of different
authors were exploited in preparing the book; in this respect, the two main authors
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gratefully acknowledge the contributions of Dr. Maria Evelina Mognaschi with the
University of Pavia in preparing Chaps. 11, 13 and 14 and Prof. Teodor Gotszalk
with the Wrocław University of Science and Technology in preparing Chap. 12.

The book is mainly recommended and addressed to senior undergraduate and
graduate students of departments of electrical and computer engineering; however,
it could also be helpful for students preparing their Ph.D. projects, as well as for
researchers and engineers working in the broad area of mechatronics.

Pavia, Łódź Paolo Di Barba, Sławomir Wiak

March 2019



Chapter 2
MEMS Modelling: Distributed
versus Lumped Parameter Models

The miniaturisation of electromechanical systems is impacting our society as deeply
as did the mass production of electronic systems in the last few decades. However,
only in more recent times the design of MEMS has been approached in a systematic
way, by employing methods and algorithms of automated optimal design (AOD).

Accordingly, the design problem is set up as a problem of non-linear optimization
of a design criterion (objective function) simultaneously dependent on a vector of
design variables and subject to a set of constraints. A generalized formulation of
the objective function is in terms of the norm of the discrepancy between prescribed
and actual behaviour of the device; this might give rise to a non-trivial mathematical
problem to solve at least in an approximate way. The approach implies suitable
computational environments made available by the progress in artificial intelligence,
where modelling tools are integrated with soft computing tools.

In Fig. 2.1 a principle flow-chart, showing a general procedure ofAODof aMEMS
device, is proposed: its core is the interaction between a routine for simulating the
device, which is integrated in a loopwith a routineminimizing the objective function.

For the sake of generality, in the flow-chart constraints have been categorized
as linear ones, which depend on geometrical parameters (for instance admissible
ranges of values) and non-linear ones, which depend on physical parameters like e.g.
behavioural limits of the device.

The interaction between simulation routine and optimization routine is a rule
for any numerical procedure of AOD to work, while the choice of the two relevant
algorithms makes the implementation peculiar.

More specifically, the computation of objectives and constraints depends on the
model simulating the MEMS device. Here, two main streamlines can be followed,
namely distributed parameters or lumped parameters.

Distributed-parameter models—or field models—are:

• one-, two- or three-dimensional, i.e. they take into account geometrical shapes
with different degree of accuracy;

• not easy to code because the knowledge of field theory is very specialistic;

© Springer Nature Switzerland AG 2020
P. Di Barba and S. Wiak, MEMS: Field Models and Optimal Design, Lecture Notes
in Electrical Engineering 573, https://doi.org/10.1007/978-3-030-21496-8_2
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Fig. 2.1 Principle
flow-chart of AOD (x, design
vector; f(x), objective
function)
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• not very adequate for fast computing, especially when time-consuming computa-
tions in 3D domains take place;

• extremely good for optimal shape design;
• very good for estimating integral parameters (like e.g. capacitance and inductance)
of circuit models (field-circuit approach).

The relevantmathematical model is based on partial differential equations belong-
ing either to the parabolic class, if the device behaves in dynamic conditions, or to
the elliptic class, if steady-state conditions apply. In electromagnetics, Maxwell’s
equations equipped with constitutive relationships of materials are the reference; the
numerical counterpart is e.g. the finite-element method.

In turn, lumped-parameter models—or circuit models—are:

• zero-dimensional, i.e. space effects are disregarded;
• relatively easy to code because the knowledge of circuit theory is widespread;
• adequate for fast computing;
• unadequate for optimal shape design;
• very good for a preliminary sizing of the device, the design of which could even-
tually be optimized based on a field model.

The relevant mathematical model is based on ordinary differential equations, if
the device behaves in dynamic conditions, or algebraic equations, if steady-state
conditions apply. In electrical systems, Kirchhoff’s equations equipped with Ohm’s
equations are the reference; the numerical counterpart are e.g. tableau analysis meth-
ods.

Analysis by means of field models is somehow opposed to the traditional analysis
based on lumped parameters (i.e. circuit models); in fact, several papers and books
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based on circuit models can be found in the literature [1]. Put simply, circuit models
describe the device behavior as a black box; in turn, fieldmodels simulate the internal
scenario, more often than not a multiphysics one, which characterizes most of the
MEMS devices commonly used.

All in one, the choice between the two categories of models depend on a cost-
accuracy trade off. In the following, models stemming from both categories will be
used; major emphasis will be devoted to field models whenever space-dependent
effects have to be considered.

Reference

1. Jones TB, Nenadic NG (2013) Electromechanics and MEMS. Cambridge University Press



Chapter 3
Engineering Electrostatics
and Boundary-Value Problems

3.1 Constitutive Law of Dielectric Material

In a domain Ω with boundary Γ , filled in by a dielectric material, in the presence of
free electric charges distributed with density ρ (C m−3) in Ω and/or electric charges
distributed with density σ (C m−2) along Γ , the electrostatic field is defined by
field strength E(V m−1) as well as by flux density D(C m−2). The two vectors are
linked by the constitutive law, which, if the material is isotropic and linear, and in
the absence of permanent polarization, is

D = εE (3.1)

The parameter ε is called permittivity (F m−1) and can be factorized as ε = ε0εr
where ε0 = (36π)−110−9 F m−1 is the permittivity of the empty space, while εr is
the relative permittivity. The observer is supposed to be at rest with respect to the
field [4].

3.2 Maxwell’s Equations of Electrostatic Field

The electrostatic field is governed by the following equations in Ω

∇ × E = 0 (3.2)

∇ · D = ρ (3.3)

and along Γ

n̄ × E = 0 (3.4)

if Γ is a perfect conductor (flux lines perpendicular to Γ ), or

© Springer Nature Switzerland AG 2020
P. Di Barba and S. Wiak, MEMS: Field Models and Optimal Design, Lecture Notes
in Electrical Engineering 573, https://doi.org/10.1007/978-3-030-21496-8_3
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ρ 

n

0Dn =⋅
0n E =×

σ=⋅Dn

Fig. 3.1 Electric field domain with boundary conditions

n̄ · D = σ (3.5)

if Γ carries charge density σ (C m−2), or

n̄ · D = 0 (3.6)

if Γ is a perfect insulator (flux lines parallel to Γ ). A general field domain is shown
in Fig. 3.1.

In terms of just vector E , the equations governing the electrostatic field for a
homogeneous, isotropic and linear material become in Ω

∇ × E = 0 (3.7)

∇ · E = ρ

ε
(3.8)

and along Γ

n̄ × E = 0 (3.9)

or

n̄ · E = σ

ε
(for� conducting) (3.10)

and

n̄ · E = 0 (for� insulating) (3.11)

respectively.
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According to the Helmholtz’s theorem (see Appendix), E is uniquely defined and,
because of (3.2), it is irrotational.

Moreover, if both σ and ρ are given, then according to (3.3), (3.5) and Gauss’s
theorem (see A.10) it must be

∫

Γ

|σ |dΓ =
∫

Ω

|ρ|dΩ (3.12)

i.e. the total charge sums up to zero; in other words, surface and volume charge
densities are not independent.

In a two-dimensional domain, at the interface between two different materials
of permittivity ε1 and ε2, respectively (Fig. 3.2), in the presence of free charge of
density σ (C m−2) at the interface, from (A.10), integrating D along a closed surface
including point P, the following transmission conditions holds

n̄1 · D2 + n̄2 · D1 = n̄1 · D2 − n̄1 · D1 = n̄1 · (
D2 − D1

) = σ (3.13)

If σ = 0, the normal component of D is continuous.
Then, from (A.11), integrating E along a closed rectangular line surrounding point

P, it turns out to be

t̄1 · E1 + t̄2 · E2 = t̄1 · E1 − t̄1 · E2 = t̄1 · (
E1 − E2

) = 0 (3.14)

i.e. the tangential component of E is continuous. The integration line is supposed to
have the two smaller sides of vanishing length, and the two larger sides parallel to
the tangential unit vectors in P.

In the case of a non-homogeneous material, the following remark can be put
forward. After (3.1) and (3.2), considering vector identity (A.16), it turns out to be

Fig. 3.2 Interface between
two field regions �1 and �2

Ω1

Ω2

P
1n1t

2n

2t



12 3 Engineering Electrostatics and Boundary-Value Problems

∇ × ε−1D = ε−1∇ × D + ∇ε−1 × D = 0 (3.15)

Apparently, field D is irrotational if ∇ε−1 and D are parallel vectors; this means
that lines separating layers of different ε are orthogonal tofield lines of D. If∇ε−1 = 0
(homogeneous material), then D is always irrotational.

Conversely, in a charge-free domain, after (3.1) and (3.3), considering vector
identity (A.14), it follows

∇ · εE = ε∇ · E + ∇ε · E = 0 (3.16)

In the case of a non-homogeneous medium, field E is solenoidal if ∇ε and E are
orthogonal vectors; this means that lines separating layers of different ε are parallel
to field lines of E . If ∇ε = 0 (homogeneous material), then E is always solenoidal
[4].

Finally, an extension of constitutive law (3.1) is considered.
When a permanent polarization D0 is present in the dielectric material (electret),

the constitutive law becomes

D = εE + D0 (3.17)

Then, the field equations are

∇ × E = 0 (3.18)

and

∇ · (
εE

) = ρ − ∇ · D0 (3.19)

in terms of E .

3.3 From Field to Potentials

(i) If Ω is simply-connected, because of (3.2) it is always possible to introduce a
scalar function U (potential (V)) defined as

E = −∇U (3.20)

This way, the field is oriented from higher to lower values of potential. Therefore,
(3.3) becomes

∇ · (
ε∇U

) = −ρ (3.21)
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This is the Poisson’s equation governing potential U, which reduces to

∇2U = −ρ

ε
(3.22)

for a homogeneous, isotropic and linear domain �.
In the case of ρ = 0 in Ω , (3.22) is called Laplace’s equation and the potential

function U fulfilling it is said to be harmonic.
It can be remarked that, adding any constant k to U, all the equations defined

above are fulfilled as well; in order to haveU uniquely defined, boundary conditions
must be added.

In a two-dimensional domain, along the boundary Γ with normal unit vector
n̄ = (nx , ny) and tangential unit vector t̄ = (tx , ty) = (−ny, nx ), the condition
(3.11) in terms of field E = (Ex , Ey) becomes, in terms of potential U,

n̄ · E = nx Ex + ny Ey = −nx
∂U

∂x
− ny

∂U

∂y
= −n̄ · ∇U = −∂U

∂n
= 0 (3.23)

(homogeneous Neumann’s condition).
Similarly, condition (3.9) becomes

n̄ × E = īz
(
nx Ey − ny Ex

) = īz

(
ty

∂U

∂y
+ tx

∂U

∂x

)

= īz
(
t̄ · ∇U

) = īz
∂U

∂t
= 0 (3.24)

In the latter case U is constant along Γ (Dirichlet’s condition). Lines of equal U
are called equipotential lines.

A boundary-value problem is one in which (3.21) is the governing equation,
subject to known boundary conditions which may be (3.23) (Neumann’s problem)
or (3.24) (Dirichlet’s problem) or, more generally, (3.23) and (3.24) along Γ 1 and
Γ 2, respectively, with Γ = Γ1 ∪ Γ2 and 0 = Γ1 ∩ Γ2.

(ii) If ρ = 0 in Ω , then, along with scalar potential U, a vector potential A (flux,
stream (C m−1)) can be uniquely defined, specifying its curl

D = ∇ × A (3.25)

and its divergence (gauge condition)

∇ · A = 0 (3.26)

In fact, since∇ ·(∇ × A
) = 0 holds, (3.3) is always fulfilled, while (3.2) becomes

∇ × ε−1
(∇ × A

) = 0 (3.27)
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The latter is Laplace’s vector equation governing flux A. It can be remarked that
the gradient of an harmonic function η may be added to A, having all the above
equations fulfilled. In fact, if ∇ × A = 0 holds, then

A = −∇η (3.28)

and, due to (3.26), it results

−∇ · A = ∇ · ∇η = ∇2η = 0 (3.29)

In view to have A defined uniquely, suitable boundary conditions along Γ and, if
necessary, cuts in Ω must be introduced, transforming a multiply-connected domain
into a simply-connected one (Fig. 3.3).

For a homogeneous domain, Laplace’s equation (3.27) becomes

∇ × (∇ × A
) = 0 (3.30)

and therefore

∇(∇ · A) − ∇2
A = 0 (3.31)

or, because of (3.26)

−∇2
A = 0 (3.32)

Ω

Γ1
Γ2

Ω=Γ∪Γ
21

Ω

Γ

Ω=Γ

Fig. 3.3 Transforming a doubly-connected domain into a simply-connected one
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(iii) When a permanent polarization D0 is present (electret), from (3.19) and (3.20)
the field equation in terms of scalar potential U is

∇ · (
ε∇U

) = −ρ + ∇ · D0 (3.33)

3.3.1 Field of a Point Charge in a Spherical Domain

A point charge q (C), located at the origin of a system of spherical coordinates (r, θ ,
ϕ), is considered [1].

The symmetry implies D = (D, 0, 0); after (A.19), the field equation is

∇ · D = r−2 ∂
(
r2D

)
∂r

= ∂D

∂r
+ 2

r
D = qδ(r), r > 0 (3.34)

whereD vanishes as r approaches infinity. Treating (3.34) as a first-order differential
equation in terms of r2D, one has

r2D(r) =
r∫

0

qδ(ρ)ρ2dρ + k (3.35)

where k is the integration constant; then, the general solution is:

D(r) = r−2

⎛
⎝q

r∫

0

ρ2δ(ρ)dρ + k

⎞
⎠ (3.36)

The Dirac’s δ in a spherical geometry can be approximated by

δ = lim
α→0

δα α > 0 (3.37)

with δα = 3
4πα3 if ρ ≤ α and δα = 0 elsewhere. Consequently, field D can be

approximated as

D = lim
α→0

Dα (3.38)

For r ≤ α one has

Dα = 1

r2

⎛
⎝q

r∫

0

ρ2δαdρ + kα

⎞
⎠ = 1

r2

(
3q

4πα3

r3

3
+ kα

)
(3.39)
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namely

Dα = qr

4πα3
+ kα

r2
(3.40)

Since δα is a regular function near the origin, also Dα will be regular near zero;
therefore kα = 0.

For r ≥ α one has

Dα = 1

r2

⎛
⎝q

α∫

0

ρ2δαdρ + kα

⎞
⎠ = 1

r2
3q

4πα3

α∫

0

ρ2dρ

= 1

r2
3q

4πα3

α3

3
= q

4πr2
(3.41)

hence

Dα(r) = qr

4πα3
, r ≤ α (3.42)

and

Dα(r) = q

4πr2
, α < r (3.43)

Coulomb’s law follows

D(r) = lim
α→0

Dα(r) = q

4πr2
, r > 0 (3.44)

Finally, the potential results

U (r) = −
r∫

∞

q

4περ2
dρ = q

4πεr
, r > 0 (3.45)

3.3.2 Field of a Point Charge Surrounded by a Spherical
Surface at Known Potential

The source charge +q gives rise to an induced charge −q on the sphere; in addition
to it, the free charge on the sphere, originating the potential u = k, is q′ = 4πεRk
(see 3.45). The total charge on the sphere is qt = 4πεRk−q.

From Gauss’s theorem the field turns out to be
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E(r) = q

4πεr2
, 0 < r < R; E(r) = Rk

r2
, r > R (3.46)

The potential is given by

U (r) = q

(
1

4πr
− 1

4πR

)
+ k, 0 < r < R (3.47)

U (r) = q ′

4πr
= k

R

r
, r > R (3.48)

It can be assessed that U(r) solves the particular case of q = 0, for which, after
(3.21) in spherical coordinates

∇2U (r) = U ′′(r) + 2

r
U ′(r) = 0, U (R) = k, U (∞) = 0 (3.49)

holds.
Potential and field strength are shown in Figs. 3.4 and 3.5, respectively.
At r = R, u is continuous for any k, while E is not if k 
= q

4πεR . The particular
cases of a grounded sphere and a supplied sphere follow, when k = 0 with q 
= 0,
and k 
= 0 with q = 0, respectively.

Fig. 3.4 Potential versus
position

r

U

k

R
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Fig. 3.5 Field versus
position (q > 4πεRk)

R r

E

R
k
24 R

q
π

3.3.3 Field of a Charged Plane in a Rectangular Domain

A conducting plane (y, z) of infinite extension with a uniform distribution σ (C m−2)
of charge is considered [1]. Due to the field symmetry one has D = (D, 0, 0) so that
the problem can be formulated as:

∇ · D = σδ(x) = ∂(εE)

∂x
(3.50)

where δ(x) is the delta function (or Dirac’s delta) at x = 0. By integrating the latter
equation along x ∈ (−∞,∞), it follows

σ

ε
= E(∞) − E(−∞) (3.51)

Taking into account the field orientation with respect to the plane, the boundary
condition

E(∞) = −E(−∞) (3.52)

can be set up. Therefore, it turns out to be

E(x) = σ

2ε
sgn(x) (3.53)

The potential is

U (x) = σ

2ε
|x | (3.54)
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3.4 Electrostatic Energy

Given an electrostatic field characterized by strength E and flux density D in a linear
dielectric material, the specific energy (J m−3) stored in the field is defined as 1

2 E ·D.
Taking into account (A.14), one has

E · D = −∇U · D = U∇ · D − ∇ · (
UD

)
(3.55)

Then, the total energy W (J) stored in a region Ω of boundary Γ , is

W = 1

2

∫

Ω

E · DdΩ = 1

2

∫

Ω

UρdΩ − 1

2

∫

Ω

∇ · (
UD

)
dΩ

= 1

2

∫

Ω

UρdΩ − 1

2

∫

Γ

UD · n̄dΓ (3.56)

The equation abovegives an expressionof the total energy as a functionof potential
U in terms of source ρ in the region Ω and source σ = D · n̄ on the boundary Γ .

If the material is isotropic, the energy W (J) stored in region Ω is given by:

W = 1

2

∫

Ω

EDdΩ (3.57)

Under the same assumptions, if the constitutive relationship of the dielectricmate-
rial is non-linear, the specific energy is

∫ D
0 EdD′ and the total energy W is

W =
∫

Ω

⎛
⎝

D∫

0

EdD′
⎞
⎠dΩ (3.58)

In some cases it is convenient to introduce the specific co-energy
∫ E
0 DdE ′ so

that the total co-energy W ′ is

W ′ =
∫

Ω

⎛
⎝

E∫

0

DdE ′
⎞
⎠dΩ (3.59)

In the case of a linear medium W = W ′ results.
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3.5 Forces and Torques in the Electrostatic Field

In order to evaluate the mechanical effect on structures located in the field region,
three methods can be applied [2].

3.5.1 Principle of Virtual Work

Given the structure, on the gravity centre of which force F is to be calculated, a
virtual linear displacement ds in the direction of F , supposing that the field source
q = ∫

Ω
ρdΩ is constant, mechanical work Fds and variation of internal energy dW

take place so that the energy balance

Fds + dW = 0 (3.60)

holds.
Therefore, the force experienced can be evaluated as

F = −dW

ds
(3.61)

withW given by (3.58).
Similarly, in the case of a virtual angular displacement dϑ , the torque M with

respect to the rotation axis is

M = −dW

dϑ
(3.62)

The system spontaneously tends to assume the configuration corresponding to the
minimum energy stored.

On the other hand, if the structure has constant voltage U, the energy balance is

Fds + dW = Udq (3.63)

Fds = d(qU − W ) (3.64)

F = d

ds
(qU − W ) (3.65)

where Udq is the electric work done to keep U constant.
Correspondingly, the torque is

M = d

dϑ
(qU − W ) (3.66)
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Fig. 3.6 Electrostatic
energy W and co-energy W′
in the charge-potential plane
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The quantity qU − W, denoted by W ′, is called complementary energy or co-
energy, given by (3.59), of the system; if the system is linear, W ′ and W coincide.

If U is kept constant, the system evolution is towards the geometry of maximum
co-energy.

The geometric interpretation of energy and co-energy in the charge-potential plane
is straightforward (Fig. 3.6).

There are two possible ways, in fact, to move the system from the initial point (0,
0) to the final point (U, q), namely:

(i) from 0 to q by means of increments of free charge on the electrodes; in this
case, the system is electrically insulated and the total work done isW (energy);

(ii) from 0 to U by, by means of increments of voltage between the electrodes; in
this case, the system is electrically connected to a voltage source and the total
work done isW ′ (co-energy).

It is alwaysW + W ′ = qU, while, if the system is linear, W = W ′ = 1
2qU holds.

3.5.2 Coulomb’s Method

It is based on the definition of electric field; the force F exerted on a point charge
q in the empty space is F = qE where E is the external field, i.e. the field in the
absence of charge q.

If free charge q, distributed with density ρ in a region Ω exhibiting permittivity
ε, is considered, the force turns out to be

F =
∫

Ω

ρEdΩ =
∫

Ω

(∇ · D)
EdΩ (3.67)
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Directions of force and electric field are coincident.

3.5.3 Method of Maxwell’s Stress Tensor

Having defined a closed surface � enclosing the structure, then force F is evaluated
as

F =
∫

Ω

∇ · TdΩ =
∫

Γ

T · n̄dΓ (3.68)

where n̄ is the outward normal unit vector and T is defined as the Maxwell’s elec-
tric stress tensor. It can be represented as a matrix whose elements are specific
energies related to the field; assuming a system of rectangular coordinates, in a

three-dimensional domain, tensor T is

T =
⎡
⎣

1
2 (Ex Dx − EyDy − EzDz) Ex Dy Ex Dz

Ey Dx
1
2 (EyDy − Ex Dx − EzDz) EyDz

Ez Dx Ez Dy
1
2 (EzDz − Ex Dx − EyDy)

⎤
⎦

(3.69)

For the tensor to be properly defined, the integration surfacemust not be coincident
with the boundary between materials with different values of permittivity.

Let the problem of deriving theMaxwell’s stress tensor (3.69) from theCoulomb’s
law (3.67) be considered; the volume force density is given by:

f = ρE = (∇ · D)
E (3.70)

In a system of rectangular coordinates, the x-directed component of force density
is

fx = ε−1Dx
∂Dx

∂x
+ ε−1Dy

∂Dy

∂y
+ ε−1Dz

∂Dz

∂z
(3.71)

The latter can be rewritten as

fx = 1

2
ε−1 ∂D2

x

∂x
+ ε−1 ∂

(
Dx Dy

)
∂y

− ε−1Dy
∂Dx

∂y

+ ε−1 ∂(Dx Dz)

∂z
− ε−1Dz

∂Dx

∂z
(3.72)

and also as
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fx = 1

2
ε−1

∂
(
D2

x − D2
y − D2

z

)
∂x

+ ε−1 ∂
(
Dx Dy

)
∂y

+ ε−1 ∂(Dx Dz)

∂z

+ 1

2
ε−1

∂D2
y

∂x
+ 1

2
ε−1 ∂D2

z

∂x
− ε−1Dy

∂Dx

∂y
− ε−1Dz

∂Dx

∂z
(3.73)

It follows

fx = 1

2

∂
(
Ex Dx − EyDy − EzDz

)
∂x

+ ∂
(
Ex Dy

)
∂y

+ ∂(Ex Dz)

∂z

+ ε−1Dy

(
∂Dy

∂x
− ∂Dx

∂y

)
+ ε−1Dz

(
∂Dz

∂x
− ∂Dx

∂z

)
(3.74)

Due to the assumption of irrotational field (3.2), the fourth and the fifth terms of the
right-hand side of (3.74) are zero. Therefore, f x can be expressed as the divergence
of a primitive vector v̄1

fx = ∇ · v̄1 (3.75)

with

v̄1 =
(
1

2

(
Ex Dx − EyDy − EzDz

)
, Ex Dy, Ex Dz

)
(3.76)

apart from a constant that can be set to zero.
In a similar way, it can be proven that

fy = ∇ · v̄2 (3.77)

with

v̄2 =
(
EyDx ,

1

2

(
EyDy − Ex Dx − EzDz

)
, EyDz

)
(3.78)

and

fz = ∇ · v̄3 (3.79)

with

v̄3 =
(
EzDx , EzDz,

1

2

(
EzDz − Ex Dx − EyDy

))
(3.80)

The components of vectors (3.75), (3.77) and (3.79) are just the row entries
of matrix (3.69) representing the electric stress tensor. Therefore, according to
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(3.68), the force F (N) can be computed as the flux, leaving surface Γ , of ten-

sor T represented by matrix (3.69). Correspondingly, the torque is given by M =∫
Γ
r̄PO × T · n̄dΓ where r̄PO is the position vector of point P on Γ with respect to

the rotation axis in O.
It can be remarked that a solenoidal vector w̄ may be added to (3.76), (3.78)

and (3.80) leaving force density components (3.75), (3.77) and (3.79) fulfilled. This
means that stress tensor (3.69) is not uniquely defined.

As far as a comparison of methods is concerned, the following remark can be put
forward. In order Coulomb’s method to apply, a charge density must be defined inΩ;
in contrast, virtual work principle (VWP) andMaxwell’s stress tensor method (MST)
are more general. VWP is computationally more expensive, because the derivative
of energy or co-energy is approximated by means of a finite difference, involving
two displaced positions of the structure. Therefore, two field analyses are necessary
to compute force or torque at a given position. MST require only one field analysis.

3.6 Worked Examples

3.6.1 Force Between the Plates of a Plane Capacitor

Let a capacitor exhibiting a pair of parallel plates (electrodes) of infinite extension
be considered [3]; the plates are assumed to carry a surface charge density equal to
σ and −σ , respectively (Fig. 3.7).

Knowing the field of a single charged plate, after the principle of superposition it
turns out to be from (3.53):

Fig. 3.7 Single-layer plane
capacitor

0
x

+σ −σ

-d/2 d/2
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x < −d

2
, E = − σ

2ε
+ σ

2ε
= 0, U = 0 (3.81)

−d

2
< x <

d

2
, E = 2

σ

2ε
= σ

ε
, U = −σ

ε

(
x + d

2

)
(3.82)

x >
d

2
, E = σ

2ε
− σ

2ε
= 0, U = −σ

ε
d (3.83)

If a subsection of finite area S is considered, the relevant capacitance C is defined
as:

C = q

U
= ε

S

d
(3.84)

Because of Gauss’s theorem, q = σS is the charge on each plate of the capacitor.
If the capacitor is subject to a constant voltage U, the co-energy is W ′ = 1

2CU
2

and the force acting on a plate is from (3.66)

F = ∂W ′

∂d
= 1

2
U 2 ∂C

∂d
= −1

2
U 2 εS

d2
(3.85)

If, in turn, the charge is constant, the energy is W = q2

2C and the force is from
(3.61):

F = −∂W

∂d
= 1

2
q2 1

C2

∂C

∂d
= −1

2

q2

C2

εS

d2

= −σ 2S

2ε
= −1

2
U 2 εS

d2
(3.86)

In both cases, the negative sign denotes an attractive force.
Resorting to the Coulomb’s method, supposing the charge to be constant and

uniformly distributed, the field external to the plate located at x = d
2 is equal to

σ
2ε while the charge carried by the plate itself is equal to −σ S. Therefore, the force

acting on the plate of surface S results − σ 2S
2ε = − 1

2U
2 εS
d2 ; the force is attractive.

Finally, on the basis of the Maxwell’s stress tensor, considering a parallelepiped
surface, with an axis orthogonal to a plate and enclosing a portion S of it, one can
easily obtain:

T =
⎡
⎣

1
2 Ex Dx 0 0

0 − 1
2 Ex Dx 0

0 0 − 1
2 Ex Dx

⎤
⎦ (3.87)

with n̄ = (−1, 0, 0) and then

T · n̄ = −1

2
εE2

x (3.88)
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F = −1

2
εE2

x S = −1

2
U 2 εS

d2
(3.89)

The force is attractive.

3.6.2 Force at the Interface Between Two Dielectric Materials

Let two layers of dielectricmaterials characterized by permittivities ε1 and ε2, respec-
tively, and subject to an applied voltage V as shown in Fig. 3.8, be considered [1].

Using obvious notations, voltages and field strengths in each layer are such that

E1x + E2(h − x) = V1 + V2 = V (3.90)

and

ε1E1 = ε2E2 (3.91)

following (3.20) in its integral form and (3.13) with σ = 0, respectively.
Therefore, one has

E1 = ε2V

ε1(h − x) + ε2x
, E2 = ε1V

ε1(h − x) + ε2x
(3.92)

According to (3.59), the co-energy of the system is

W ′(x) = 1

2
ε1E

2
1 Sx + 1

2
ε2E

2
2 S(h − x) = 1

2
ε1ε2

V 2S

ε1(h − x) + ε2x
(3.93)

(1,0)

(-1,0)

2



S
x

h

0

V1

V2

U=V

U=0

ξ 

Fig. 3.8 Two-layer plane capacitor
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By means of the principle of virtual work (3.65), the force acting at the interface
between the two layers turns out to be

F = ∂W ′

∂x
= 1

2
(ε1 − ε2)

ε1ε2V 2S

[ε1(h − x) + ε2x]
2 (3.94)

If ε1 
= ε2 the dielectric with higher permittivity tends to penetrate into the other
one; if ε1 = ε2 the force is zero.

By means of Maxwell’s stress tensor, a parallelepiped surface, incorporating the
inner boundary between the two dielectric materials and parallel to it, is considered
as the integration surface. It results:
inside layer 1

T · n̄ = −1

2
ε1E

2
1 (3.95)

F1 = −1

2
ε1E

2
1 S = − ε1ε

2
2V

2S

2[ε1(h − x) + ε2x]
2 (3.96)

inside layer 2

T · n̄ = 1

2
ε2E

2
2 (3.97)

F2 = 1

2
ε2E

2
2 S = ε21ε2V

2S

2[ε1(h − x) + ε2x]
2 (3.98)

Therefore, the total force at the interface between layer 1 and layer 2 is

F = F1 + F2 = 1

2
(ε1 − ε2)

ε1ε2V 2S

[ε1(h − x) + ε2x]
2 (3.99)

Resorting to the Coulomb’s method, supposing the charge to be constant and
uniformly distributed, the field Ẽ(h) external to the plate located at ξ = h is equal
to

Ẽ(h) = 1

2
E2 = ε1V

2[ε1(h − x) + ε2x]
(3.100)

while the charge carried by the plate itself is equal to

q2 = D2S = ε2E2S = ε1ε2V S

ε1(h − x) + ε2x
(3.101)

Then, the force acting on the plate of surface S at ξ = h is
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F2 = q2 Ẽ(h) = ε21ε2V
2S

2[ε1(h − x) + ε2x]
2 (3.102)

Conversely, the field Ẽ(0) external to the plate located at ξ = 0 is equal to

Ẽ(0) = 1

2
E1 = ε2V

2[ε1(h − x) + ε2x]
(3.103)

while the charge carried by the plate itself is equal to

q1 = −D1S = −ε1E1S = − ε1ε2V S

ε1(h − x) + ε2x
(3.104)

Then, the force acting on the plate of surface S at ξ = 0 is

F1 = q1 Ẽ(0) = − ε1ε
2
2V

2S

2[ε1(h − x) + ε2x]
2 (3.105)

Finally, the total force acting on the surface at ξ = x between the two dielectric
layers is

F = 1

2
(ε1 − ε2)

ε1ε2V 2S

[ε1(h − x) + ε2x]
2 (3.106)

3.6.3 Torque on the Rotating Electrodes of a Capacitor

Let a capacitor exhibiting a pair ofmovable electrodes be considered. Both electrodes
are shaped as circular sectors of radius R and angular width α0. The electrodes are
parallel and can rotate around an axis orthogonal to them.

Neglecting the fringing field, the field between the electrodes is supposed to be
uniform; the surface area of the overlapped electrodes is equal to

A′ = A
α

α0
(3.107)

with 0 < α < α0 overlapping angle and A = α0R2 total area of the electrodes. After
(3.84), the capacitance is:

C = εA′

d
= εA

d

α

α0
(3.108)

with d distance between electrodes.
Let the operation at constant charge q be considered first. After (3.82), the field

strength is E = q(ε0A′)−1 and the corresponding energy is
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W = q2

2C
= q2d

2εA

α0

α
(3.109)

By means of the virtual work principle, after (3.62) the torque turns out to be

M = − dW

dα

∣∣∣∣
q=const

= q2d

2εA

α0

α2
(3.110)

It can be noted that the torque is inversely proportional to α2.
Now, let the operation at constant voltage V be considered. The field strength is

E = Vd−1 and the corresponding co-energy is

W ′ = 1

2
CV 2 = V 2εA

2d

α

α0
(3.111)

By means of the virtual work principle, after (3.66) the torque turns out to be

M = dW ′

dα

∣∣∣∣
V=const

= V 2εA

2dα0
(3.112)

It can be noted that the torque is independent of α.
Due to linearity of the dielectric material, torques are numerically equal; the

electrodes spontaneously tend to fully overlap.
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Chapter 4
Engineering Magnetostatics
and Boundary-Value Problems

4.1 Constitutive Law of Magnetic Material

In a domain Ω , having boundary Γ , containing permanent magnets, i.e. aggregates
of magnetic dipoles or, from now on, steady electric current distributed with density
J (A m−2), a magnetostatic field is set up; it is defined by field strength H (A m−1)
as well as flux density B (Wb m−2 = T). In general, the link between H and B, i.e.
the constitutive law of the medium, is complicated. Neglecting hysteresis, the law
is single-valued and can be expressed, for an isotropic medium in the absence of
permanent magnetization, by

B = μH (4.1)

where μ is called permeability (H m−1) and, in the most general case, is a function
of |H |; the inverse of μ is called reluctivity ν. The observer is supposed to be at rest
with respect to the field [4].

4.2 Maxwell’s Equations of Magnetostatic Field

The equations governing the magnetic field are in Ω

∇ · B = 0 (4.2)

∇ × H = J (4.3)

and along Γ

n · B = 0 (4.4)
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μ 

n

sJHn =×

0Bn =⋅
J

0Hn =×

Fig. 4.1 Magnetic field domain with field-based boundary conditions

if � is a flux line (flux lines parallel to �), or

n × B = μJ S (4.5)

if current of surface density J S (A m−1) is present, or

n × H = 0 (4.6)

if flux lines are perpendicular to Γ .
For an isotropic and linear medium, in terms of B, the equations become in Ω

∇ · B = 0; ∇ × B = μJ (4.7)

with

n · B = 0 (4.8)

or

n × B = μJ S (4.9)

or

n × H = 0 along Γ (4.10)

The equations written above unambiguously define the magnetostatic field which,
because of (4.5), is solenoidal [4].

A general field domain is shown in Fig. 4.1.
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Fig. 4.2 Line current

r

P

I

If both J S and J are given, then it must be

∫

Γ

∣∣J s

∣∣dΓ =
∫

Ω

∣∣J ∣∣dΩ (4.11)

i.e. the total current sums up to zero: therefore, densities JS and J cannot be inde-
pendent.

In a non-homogeneous domain at the interface between two materials of perme-
ability μ1 and μ2, from (4.2) it holds

n · (
B2 − B1

) = 0 (4.12)

so that the normal component of B is always continuous (Fig. 4.2).
If there is a current of density J S (A m−1), then from (4.3) it follows

n × (
H 2 − H 1

) = J s (4.13)

If J s = 0 the tangential component of H is continuous. Equations (4.12) and
(4.13) are called transmission conditions.

In the case of a non-homogeneous medium, the following remark can be put
forward. After (4.1) and (4.2), considering vector identity (A.14), one has

∇ · μH = μ∇ · H + ∇μ · H = 0 (4.14)
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In the case of a non-homogeneous medium, fieldH is solenoidal if ∇μ andH are
orthogonal vectors; this means that lines separating layers of different μ are parallel
to field lines of H .

Conversely, after (4.1) and (4.3), considering vector identity (A.16), it turns out
to be

∇ × μ−1B = μ−1∇ × B + ∇μ−1 × B = J (4.15)

It appears that, in a current-free medium (i.e. J= 0), field B is irrotational if∇μ−1

and B are parallel vectors; this means that lines separating layers of different μ are
orthogonal to field lines of B. If ∇μ−1 = 0 and J = 0 (homogeneous current-free
medium), then B is always irrotational.

Finally, an extension of constitutive law (4.1) is considered.
In the presence of a permanent magnetization B0 in the magnetic material (per-

manent magnet) the constitutive law is

B = μH + B0 (4.16)

In this case the field equations are

∇ · B = 0 (4.17)

∇ × B = μJ + ∇ × B0 (4.18)

In particular, the field inside a permanent magnet is described by (4.18) with
J = 0; it follows that the magnet can be modelled by an equivalent distribution of
current given by J eq = μ−1∇ × B0.

4.3 From Field to Potentials

(i) From (4.2), since, for anyvectorA,∇ · (∇ × A
) = 0 holds (seeA.8), it is possible

to define a vector function A (Wb m−1) called vector potential by means of

∇ × A = B (4.19)

and

∇ · A = 0 (gauge condition) (4.20)
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This way (4.2) is fulfilled, while (4.3) becomes

∇ × μ−1
(∇ × A

) = J (4.21)

For a homogeneous domain, after (A.12) and (4.20) it turns out to be

∇2
A = −μJ (4.22)

This is the (Poisson’s) vector equation governing A. In a system of rectangular
coordinates it corresponds to the following three scalar equations

(
∇2

A
)
x
= ∂2Ax

∂x2
+ ∂2Ax

∂y2
+ ∂2Ax

∂z2
= −μJx

(
∇2

A
)
y
= −μJy

(
∇2

A
)
z
= −μJz (4.23)

In general, the gradient of an harmonic function η may be added to A, having all
the equations fulfilled. Suitable boundary conditions on Γ must be added in order to
define the field in a unique way.

In particular, after (4.18) and (4.22), the potential inside a permanent magnet is

given by ∇2
A = −∇ × B0.

(ii) In a two-dimensional domain, vectors J and so A have only one non-zero com-
ponent; hence, vector potential can be treated as a scalar quantity.

Boundary conditions (4.8) and (4.10), in terms ofB = (
Bx,By

)
along the boundary

Γ with normal unit vector n = (
nx, ny

)
and tangential unit vector t = (

tx, ty
) =(

ny,−nx
)
, become, in terms of A,

n̄ · B = nxBx + nyBy = nx
∂A

∂y
− ny

∂A

∂x

= −ty
∂A

∂y
− tx

∂A

∂x
= −t · ∇A = −∂A

∂t
= 0 (4.24)

i.e. A = const along Γ and

n̄ × B = (
nxBy − nyBx

)
īz =

(
−nx

∂A

∂x
− ny

∂A

∂y

)
īz

= −(
n̄ · ∇A

)
īz = −∂A

∂n
iz = 0 (4.25)

i.e. ∂A
∂n = 0 along Γ , respectively.
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(iii) If J = 0 in Ω and Ω is simply connected, then, along with A, the field H can
be described by a scalar function ϕ (total scalar potential, A) defined as

H = −∇ϕ (4.26)

In fact, (4.3) is automatically satisfied, while from (4.2) we obtain

∇ · μ∇ϕ = 0 in Ω (4.27)

The latter is the Laplace’s equation governing total scalar potential ϕ with suitable
boundary conditions.

The condition of simply connected domain can be obtained by suitable cuts, if
necessary. If this condition is not fulfilled, nevertheless ϕ can be still defined, apart
from multiples of a constant.

(iv) In a three-dimensional domain, following the T − Ω method, in regions free
of impressed current (J0 = 0) an electric vector potential T (A m−1) can be
defined as

∇ × T = J (4.28)

Comparing (4.28) and (4.3) it turns out that H and T , which have the same curl,
must differ by the gradient of a function Ω (dual scalar potential, A)

H = T − ∇Ω (4.29)

This way, the electric and magnetic vectors, J and H , have been reformulated in
terms of two potentials.

In order to define T uniquely, a gauge must be introduced.
The equations governing electric and magnetic field can be now expressed in

terms of T and Ω . In fact, from (4.3) taking the curl of both members and taking
into account (4.2) and (4.29), one has

∇ × (
σ−1∇ × T

) = ∇ × σ−1J 0 − ∂

∂t
μ

(
T − ∇Ω

)

∇ × (
σ−1∇ × T

) = ∇ × σ−1J 0 (4.30)

and from (4.2)

∇ · μ
(
T − ∇Ω

) = 0 (4.31)

In regions where σ = 0 one has J = 0 and therefore, from (4.2), ∇ × T = 0.



4.3 From Field to Potentials 37

Moreover, imposing the gauge ∇ · T = μσ ∂Ω
∂t ∇ · T = 0, from (4.30) and (4.31)

one obtains two independent equations for T and Ω , namely

∇2
T − μσ

∂T

∂t
= −∇ × J 0

∇2
T = −∇ × J 0 (4.32)

and

∇2Ω − μσ
∂Ω

∂t
= 0

∇2Ω = 0 (4.33)

subject to appropriate boundary conditions. They are

n × T = 0, Ω = 0 (4.34)

or

n · T = 0,
∂Ω

∂n
= 0 (4.35)

if the boundary is normal to a flux line (i.e. n × B = 0) or it is parallel to a flux line
(i.e. n · B = 0), respectively.

After determining T , Ω is given by

Ω(t) = Ω0 + (μσ)−1

t∫

0

∇ · T (
t′
)
dt′ (4.36)

with Ω0 to be determined.
The following remark can be put forward.
In the two-dimensional case, the magnetic vector potential has only one non-zero

component, and this makes the computational cost low. In contrast, if a formulation
based on magnetic vector potential is used for a three-dimensional problem, all three
vector components are unknown; therefore, the computational cost is high. The T -Ω
formulation is a good compromise: in fact, the use of vector potential T in current-
carrying conductors makes it possible an accurate modeling of current distribution,
while the use of scalar potential
 elsewhere leads to economy in computation. Suit-
able conditions are needed at the boundary between conducting and non-conducting
materials.

(v) When in (4.1) permeabilityμ depends on
∣∣H ∣∣, one has ∣∣B∣∣ = μ

(∣∣H ∣∣)∣∣H ∣∣ and for
the solution of (4.22) one should resort to an iterative procedure. According e.g.
to the Newton-Raphson method, the residual r(A) of the governing Eq. (4.22)
is developed in Taylor’s series, truncating the development at the first order
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r(Ak) = r(Ak−1) +
(

dr

dA

∣∣∣∣
A=Ak−1

)
(Ak − Ak−1) + o(Ak) (4.37)

If an estimate of solutionAk−1 at the (k−1)-th iteration is available, the subsequent
prediction Ak at the k-th iteration is given by (4.28) after imposing r(Ak)= 0. It turns
out to be

Ak = Ak−1 −
[
dr

dA

∣∣∣∣
A=Ak−1

]−1

r(Ak−1) (4.38)

Then,μ and so
∣∣H ∣∣ are updated bymeans of the newestimate ofA, and the problem

is solved again. The procedure stopswhen the error between two successive solutions
is less than the prescribed threshold. It is necessary to know an initial prediction A0

and the value of the derivative dr
dA at each iteration.

4.3.1 Field of a Line Current in a Three-Dimensional
Domain: Differential Approach

A current I(A), concentrated at r = 0 and directed along the z axis in a system of
cylindrical coordinates (r, ϕ, z), is considered (Fig. 4.2) [1].

The symmetry implies H = (0,H , 0) and from (4.3) the field equation is

∇ × H = 1

r

∂rH

∂r
= ∂H

∂r
+ 1

r
H = Iδ(r), r > 0 (4.39)

where H vanishes as r approaches infinity. The general solution is

H (r) = 1

r

⎛
⎝I

r∫

0

ρδ(ρ)dρ + k

⎞
⎠ (4.40)

The Dirac’s δ in a cylindrical geometry can be approximated by

δ = lim
α→0

δα, α > 0 (4.41)

with δα = 1
πα2 , r ≤ α and δα = 0 elsewhere. Consequently, the field H can be

approximated as

H = lim
α→0

Hα (4.42)

For r ≤ α it turns out to be
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Hα = 1

r

⎛
⎝I

r∫

0

ρδαdρ + kα

⎞
⎠ = 1

r

(
I

πα2

r2

2
+ kα

)

= Ir

2πα2
+ kα

r
(4.43)

Since δα is a regular function near the origin, also Hn will be regular near zero;
therefore kα= 0.

For r ≥ α it turns out to be

Hα = 1

r

⎛
⎝I

α∫

0

ρδαdρ + kα

⎞
⎠ = 1

r

⎛
⎝ I

πα2

α∫

0

ρdρ

⎞
⎠

= 1

r

(
I

πα2

α2

2

)
= I

2πr
, r > 0 (4.44)

The Biot-Savart’s law follows

H (r) = lim
α→0

Hα(r) = I

2πr
, r > 0 (4.45)

Alternatively, the Stokes’s theorem can be applied to (4.3), giving
∮
l H · td� = I ,

if � is a closed line linking the conductor once. Considering the field geometry, � can
be taken as a circular line centred at r = 0; therefore, (4.41) follows.

From (4.41) and (4.19) the vector potential is

A = I

2πν
ln riz, r > 0 (4.46)

4.4 Magnetostatic Energy

Given a magnetostatic field characterized by strengthH and flux density B in a linear
medium, the specific energy (J m−3) of the field is defined as 1

2H · B; if the medium
is isotropic, the energy W (J) stored in an unbounded region Ω is given by

W = 1

2

∫

Ω

HBdΩ (4.47)

If the constitutive relationship of the magnetic material is non-linear, the specific
energy is

∫ B
0 H dB′ and the total energy is
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W =
∫

Ω

⎛
⎝

B∫

0

H dB′
⎞
⎠dΩ (4.48)

In some cases it is convenient to introduce the specific co-energy
H∫
0
B dH ′ and the

total co-energy is

W ′ =
∫

Ω

⎛
⎝

H∫

0

B dH ′
⎞
⎠dΩ (4.49)

In the case of linear medium W = W ′ holds.
In the linear case, taking into account the following identity (see A.13)

H · B = H · (∇ × A
) = A · (∇ × H

) − ∇ · (
H × A

) = A · J − ∇ · (
H × A

)
(4.50)

and (4.3), the total energy stored in a region Ω of boundary Γ is

W = 1

2

∫

Ω

H · B dΩ = 1

2

∫

Ω

A · J dΩ − 1

2

∫

Γ

(
H × A

) · n dΓ (4.51)

The equation above reduces toW = 1
2

∫
Ω
A · J dΩ if eitherA×n = 0 orH×n = 0

along Γ [3].

4.5 Forces and Torques in the Magnetostatic Field

4.5.1 Principle of Virtual Work

Given a structure in the field region, on which force F is to be computed, a virtual
linear displacement ds in the direction of F , supposing that the magnetic system is
supplied by a constant current I creating a linkage flux Φ, the sum of mechanical
work Fds and variation of magnetic energy dW is equal to the input energy IdΦ so
that the following balance equation

F ds + dW = IdΦ

F ds = d(IΦ − W )

F = d

ds
(IΦ − W ) (4.52)
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In the case of an angular displacement dϑ , the torqueM with respect to the rotation
axis is

M = d

dϑ
(IΦ − W ) (4.53)

The quantity IΦ-W, denoted byW ′, is the complementary energy or co-energy of
the system.

On the other hand, if the magnetic system is isolated, mechanical work Fds and
variation of magnetic energy dW take place so that

F ds + dW = 0 (4.54)

Therefore, the force can be evaluated as

F = −dW

ds
(4.55)

while the torque is

M = −dW

dϑ
(4.56)

If the system is linear, W ′ and W coincide.

4.5.2 Lorentz’s Method

It is based on the definition of flux density; in the empty space, the force F exerted
on current I carried by a linear conductor of length � is F = I� × B where B is the
external field, i.e. the flux density in the absence of current. In general, the force F
exerted on current distributed with density J in the region Ω is

F =
∫

Ω

J × B dΩ (4.57)

Direction of force is orthogonal to the plane defined by flux density and current
density vectors.
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4.5.3 Method of Maxwell’s Stress Tensor

Defined a closed surface Γ enclosing the structure, then force F is evaluated as

F =
∫

Ω

∇ · T dΩ =
∫

Γ

T · n̄ dΓ (4.58)

where n̄ is the outward normal unit vector.
The Maxwell’s magnetic stress tensors T , assuming a system of rectangular coor-

dinates, in a three-dimensional domain can be represented in matrix form as

T =
⎡
⎣

1
2 (HxBx − HyBy − HzBz) HxBy HxBz

HyBx
1
2 (HyBy − HxBx − HzBz) HyBz

HzBx HzBy
1
2 (HzBz − HxBx − HyBy)

⎤
⎦

(4.59)

In order the tensor be uniquely defined, surface Γ should not be coincident with
the interface between materials having different permeability [2].

4.5.4 Link Between Lorentz’s and Maxwell’s Approach

There is a link between Lorentz’s and Maxwell’s approach to force calculation. In
fact, using (4.1), (4.3) and (4.57), the force density f

(
Nm−3

)
is

f = J × B = (∇ × νB
) × B (4.60)

In particular, the x-directed component is

fx = νBz
∂Bx

∂z
− νBz

∂Bz

∂x
− νBy

∂By

∂x
+ νBy

∂Bx

∂y
(4.61)

After adding and subtracting the term ν
2

∂B2
x

∂x it follows

fx = ν

2

∂B2
x

∂x
+ νBz

∂Bx

∂z
+ νBy

∂Bx

∂y
+

− ν

2

∂

∂x

(
B2
x + B2

y + B2
z

)
(4.62)
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It turns out to be

fx = ν

2

∂B2
x

∂x
+ ν

∂(BxBz)

∂z
− νBx

∂Bz

∂z
+ ν

∂
(
BxBy

)
∂y

+

− νBx
∂By

∂y
− νBx

∂Bx

∂x
− ν

2

∂

∂x

(
B2
y + B2

z

)
(4.63)

fx = ν

[
∂

∂x

(
B2
x − 1

2

∣∣B∣∣2
)

+ ∂
(
BxBy

)
∂y

+ ∂(BxBz)

∂z
− Bx∇ · B

]
(4.64)

Due to (4.2) the last term of (4.64) is zero; then, if vector

v1 = ν

(
B2
x − 1

2

∣∣B∣∣2,BxBy,BxBz

)

=
(
1

2

(
HxBx − HyBy − HzBz

)
,HxBy,HxBz

)
(4.65)

is defined, f x can be viewed as its divergence, apart from a constant k which can be
set to zero, namely

fx = ∇ · v1 (4.66)

A similar result holds for force density components f y and f z; it follows

v2 =
(
HyBx,

1

2

(
HyBy − HxBx − HzBz

)
,HyBz

)
(4.67)

such that

fy = ∇ · v2 (4.68)

and

v3 =
(
HzBx,HzBy,

1

2

(
HzBz − HxBx − HyBy

))
(4.69)

such that

fz = ∇ · v3 (4.70)

respectively. Therefore, according to (4.58), the force F(N ) can be computed as the

flux, leaving surface Γ , of tensor T represented by matrix (4.59), in which the row
entries are the components of vectors vk , k = 1, 3.
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Correspondingly, the torque is given byM = ∫
Γ
rPO × T · n̄ dΓ where rPO is the

position vector of point P on Γ with respect to the rotation axis in O.
It can be remarked that a solenoidal vector w may be added to (4.65), (4.67)

and (4.69) leaving force density components (4.66), (4.68) and (4.70) fulfilled. This
means that stress tensor (4.59) is not uniquely defined.

As far as a comparison of methods is concerned, the following remark can be put
forward. In order Lorentz’s method to apply, a current density must be defined in Ω;
in contrast, virtual work principle (VWP) andMaxwell’s stress tensor method (MST)
are more general. VWP is computationally more expensive, because the derivative
of energy or co-energy is approximated by means of a finite difference, involving
two displaced positions of the structure. Therefore, two field analyses are necessary
to compute force or torque at a given position. MST require only one field analysis.

4.6 Worked Example

4.6.1 Force on an Electromagnet

Let an electromagnet with a movable plunger be considered (Fig. 4.3), [1].
The iron core is supposed to have infinite permeability. The air gaps in the x

direction are supposed to be much smaller than the air gap t in the y direction.
The circulation of the magnetic fieldH, along a line linking the excitation current

NI and crossing the air gap t in the normal direction, reduces to

NI = Ht (4.71)

Therefore at the air gap

H = NI

t
(4.72)

IRON

IRON

t

NI 

y

xΓ

Fig. 4.3 Model of the electromagnet
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while in the iron part H = 0. Following (4.49), the co-energy stored in the air gap is
given by

W ′ = 1

2
μ0H

2St = μ0(NI)
2S

2t
(4.73)

where S is the cross-section of the central limb and μ0 is the air permeability.
If NI is constant, according to (4.52), the force acting on the movable part is

Ft = ∂W ′

∂t
= −μ0S

2

(
NI

t

)2

(4.74)

The force is negative, i.e. opposite to the direction of increasing t; therefore, it is
attractive, regardless of the sign of I.

In order to apply the method of Maxwell’s stress tensor, an integration surface Γ

enclosing the movable part is considered having n as its outward normal unit vector.
Taking into account the field distribution, it follows

T =
[− 1

2HyBy 0
0 1

2HyBy

]
(4.75)

F =
∫

Γ

T · n̄dΓ =
(
0,

1

2
HyByS

)
(4.76)

Therefore it turns out to be

Fy = 1

2
μ0H

2
y S = 1

2
μ0S

(
NI

t

)2

(4.77)

The force is attractive, because variables t and y are oriented in opposite directions.
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Chapter 5
Steady Conduction Field
and Boundary-Value Problems

5.1 Constitutive Law of Conducting Material

In a domain Ω , having boundary Γ , filled in by a conducting material, when a
voltage—constantwith time—is set up acrossΓ , a steady conduction field originates;
it is defined by field strength E (V m−1) and current density J (A m−2). These two
vectors are linked by the constitutive relation which, if the medium is linear and
isotropic, is

J = σ E (5.1)

The parameter σ qualifying the material is called conductivity (�−1 m−1) [4].

5.2 Maxwell’s Equations of Conduction Field

The field is governed by the following Maxwell’s equations in Ω

∇ × E = 0 (5.2)

∇ · J = 0 (5.3)

and along Γ

n · J = J0, n × J = 0 (5.4)

if Γ is a perfectly conducting boundary and J0 is the current density impressed along
it, or

n · J = 0 (5.5)
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if Γ is a perfectly insulating boundary.
In terms of E the above equations for a homogeneous medium become in Ω

∇ × E = 0 (5.6)

∇ · E = 0 (5.7)

and along Γ

n · E = E0, n × E = 0 (5.8)

if E0 is the conduction field impressed along the boundary, or

n · E = 0 (5.9)

if Γ is a perfectly insulating boundary.
In the case of a non-homogeneous medium, the following remark can be put

forward.
After (5.1) and (5.2), considering vector identity (A.16), it turns out to be

∇ × σ−1 J = σ−1∇ × J + ∇σ−1 × J = 0 (5.10)

If ∇σ−1 = 0 (homogeneous medium), then J is always irrotational. More gen-
erally, for J to be irrotational, ∇σ−1 and J should be parallel vectors; this means
that lines separating layers of different σ are orthogonal to field lines of J . If this
condition applies, J is both irrotational and solenoidal.

Conversely, after (5.1) and (A.14), it follows

∇ · E = ∇ · σ−1 J = σ−1∇ · J + ∇σ−1 · J = 0 (5.11)

Due to (5.3), it follows

∇ · E = ∇σ−1 · J = 0 (5.12)

i.e. field E is solenoidal if ∇σ−1 and J are orthogonal vectors; this means that lines
separating layers of different σ are parallel to field lines of J . If this condition applies,
E is both irrotational and solenoidal [4].
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5.3 From Field to Potentials

If Ω is simply connected, starting from (5.2) the field can be defined by a scalar
function U [potential (V )] as

E = −∇U (5.13)

Starting from (5.3), substitution of (5.13) in it, taking into account (5.1), gives

∇ · (
σ∇U

) = 0 (5.14)

In rectangular coordinates, (5.14) becomes

∂

∂x

(
σ

∂U

∂x

)
+ ∂

∂y

(
σ

∂U

∂y

)
+ ∂

∂z

(
σ

∂U

∂z

)
= 0 (5.15)

In the case of a homogeneous domain (5.14) becomes

∇2U = 0 (5.16)

which is Laplace’s equation governing potential U.
Any constant may be added to U, keeping all the equations valid.
In particular, in a two-dimensional domain, using rectangular coordinates, the

field strength E = (
Ex , Ey

)
defined by (5.13) has components

Ex = −∂U

∂x
, Ey = −∂U

∂y
(5.17)

Conversely, starting from (5.3), according to (A.8), it is possible to introduce a
vector function A [flux (A m−1)] defined as

J = ∇ × A (5.18)

In a two-dimensional domain, considering the definition of curl as well of that of
current density J = (Jx , Jy), A turns out to be a single-component vector orthogonal
to the domain, namely A = (0, 0, A). Therefore, the components of J turn out to be

Jx = ∂A

∂y
, Jy = −∂A

∂x
(5.19)

Substituting (5.18) into (5.2), after multiplication by σ and taking into account
(5.1), one obtains

∇ × σ−1∇ × A = 0 (5.20)
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In a two-dimensional domain this, in turn, becomes

∂

∂x

(
σ−1 ∂A

∂x

)
+ ∂

∂y

(
σ−1 ∂A

∂y

)
= 0 (5.21)

In the case of homogeneous domain (5.21) reduces to

∇2A = 0 (5.22)

which is Laplace’s equation governing flux A.
The gradient of an harmonic function η, having all the equations fulfilled as well,

may be added to A; in fact, by imposing

∇ · A = 0 (gauge condition) (5.23)

A is unambiguously defined. In a two-dimensional domain the latter condition is
automatically fulfilled.

Comparing (5.17) and (5.19) it turns out to be

∂A

∂y
= −σ

∂U

∂x
; ∂A

∂x
= σ

∂U

∂y
(5.24)

The latter represent relationships of orthogonality between contour lines of the
two potentials.

Boundary conditions (5.8) and (5.9) become in terms of potential U = const. and
∂U
∂n = 0 respectively; in turn, (5.8) and (5.9) become in terms of flux ∂A

∂n = 0 and A
= const., respectively [3].

5.4 Power Loss

Given a conduction field characterized by strength E and current density J , the
specific power (W m−3) transferred from the field to movables charges is defined as
E · J = σ E2 and, therefore, the power loss (W) in domain Ω is given by:

P =
∫

Ω

σ E2dΩ (5.25)

Equation (5.25) models the Joule’s law [2].
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5.4.1 Field of a Cylindrical Conductor

Let a cylindrical homogenous conductor of radii R1 and R2, carrying current I per
unit length in the radial direction, be considered (Fig. 5.1) [1].

From (5.16), according to (A.18), it follows

∇2U = d2U

dr2
+ r−1 dU

dr
= 0, r > 0 (5.27)

and therefore

U = k ln r + h (5.28)

The application of boundary conditions

r = R1, U = 0; r = R2, U = V (5.29)

gives

U = V
ln r − ln R1

ln R2 − ln R1
, R1 ≤ r ≤ R2 (5.30)

and

E = − V

r(ln R2 − ln R1)
i r , R1 ≤ r ≤ R2 (5.31)

Fig. 5.1 Cross-section of a
cylindrical conductor

rO R1 R2

U=0

U=V

σ 
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In the formulation in terms of flux A, after making a radial cut at ϑ = 0 in order
to have a simply connected domain, the boundary conditions are

ϑ = 0, A = 0; ϑ = 2π, A = I (5.32)

r = R1,
∂A

∂n
= 0; r = R2,

∂A

∂n
= 0 (5.33)

From (5.22), it follows

r−2 d
2A

dϑ2
= 0, r > 0 (5.34)

and therefore

A = kϑ + h (5.35)

By the application of boundary conditions, it turns out to be

A = I

2π
ϑ, 0 ≤ ϑ ≤ 2π (5.36)

and

J = − I

2πr
ir , R1 ≤ r ≤ R2 (5.37)

After (5.1) it turns out to be

I

2πr
= σV

r(ln R2 − ln R1)
, R1 ≤ r ≤ R2 (5.38)

Let the equivalent resistance Req of the conductor be defined as the voltage-to-
current ratio; then, from (5.38) it follows

Req = V

I
= ln R2 − ln R1

2πσ
= 1

2πσ
ln

(
R2

R1

)
(5.39)

Finally, after (5.25), the power loss is given by

P =
R2∫

R1

E J2πrdr = V I

ln R2 − ln R1

R2∫

R1

dr

r
= V I (5.40)
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Chapter 6
From Fields to Circuits

6.1 Maxwell’s Equations of Electromagnetic Field

In general, the twofold presence of a movable charge distributed with density ρ

(C m−3) and an impressed current density J 0 (Am−2) variable with time gives origin
to the electromagnetic field described by the following time-dependent vectors:

D electric flux density (C m−2)
E electric field strength (V m−1)
B magnetic flux density (T)
H magnetic field strength (A m−1)
J current density (A m−2)

As far as the origin of current density is concerned, the following remark can be
put forward. In a solid or liquid medium the conduction current density is a function
of E field

J = J (E) (6.1)

For a linear material the above function becomes

J = σ E (6.2)

Another kind of current is originated by the movement of free ions and electrons
(e.g. in gases or vacuum). This convection current density is expressed by the formula

J = ρ+u+ + ρ−u− (6.3)

where ρ+ and ρ− are positive and negative charge densities, respectively, while u+
and u− are the relevant velocities of positive and negative free charges.
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Finally, the displacement current density is defined as

J = ∂D

∂t
(6.4)

Considering the principle of charge conservation, in any point of the domain the
following equation holds (charge continuity equation)

∇ · J + ∂ρ

∂t
= 0 (6.5)

The coupled electric and magnetic fields influence a charge q(C) by exerting a
mechanical force F (N) on it (Lorentz’s equation)

F = q
(
E + ū × B

)
(6.6)

where u is the velocity of the charge with respect to the magnetic field. In particular,
the term qE modifies the value of velocity, while the term qu × B̄ modifies also the
direction of velocity. In (6.6) E is the field in the absence of charge q: the latter can
be considered as a probe testing the presence of E and B fields [1].

In a domain Ω with boundary Γ filled in by a linear medium characterized by
permittivity ε, permeability μ and conductivity σ , the time-varying electromagnetic
field is described by the following equations:

Faraday’s equation

∇ × E = −∂B

∂t
(6.7)

Gauss’ electric equation

∇ · D = ρ (6.8)

Ampère’s equation

∇ × H = J + ∂D

∂t
(6.9)

Gauss’ magnetic equation

∇ · B = 0 (6.10)

In a three-dimensional domain, the above equations represent a set of eight scalar
equations to which constitutive relations (3.1), (4.1), (5.1) must be added.

In total, fifteen scalar unknowns (i.e. field components) have to be determined,
subject to suitable boundary conditions.
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The system of eight plus nine equations can be solved since there are two relations
among the unknowns which are automatically satisfied. One is (6.5) and the other
comes from (6.7) to (6.8). In fact, taking the divergence of (6.9) and the timederivative
of (6.8), continuity equation (6.5) follows. Similarly, taking the divergence of (6.7)
and the time derivative of (6.10), one obtains an identity.

It should be remarked that in (6.9), in general, the current density reads

J = J̄0 + σ E + μσu × H (6.11)

where J 0 is the term impressed by an external source, while the last term of the
right-hand side takes into account the current density due to motional effect, if any.

In steady conditions all vectors are independent of time. Therefore, the two equa-
tions governing the electric field, namely (6.7) and (6.8), are decoupled with respect
to the two equations governing the magnetic field, namely (6.9) and (6.10) (see
Chaps. 3 and 4, respectively).

6.2 Poynting’s Theorem

Let Maxwell’s Eqs. (6.7) and (6.9) be considered. From vector identity (A.13) it
follows

∇ · (
E × H

) = H · (∇ × E
) − E · (∇ × H

) = −H · ∂B

∂t
− E · ∂D

∂t
− E · J

(6.12)

Referring to the specific energy in the electric and magnetic case, and under the
assumption of linear constitutive relationship, it follows

1

2

∂

∂t

(
H · B + E · D) = 1

2

(

H · ∂B

∂t
+ B · ∂H

∂t

)

+ 1

2

(

E · ∂D

∂t
+ D · ∂E

∂t

)

= H · ∂B

∂t
+ E · ∂D

∂t
(6.13)

Integrating (6.12) over Ω and using Gauss’s theorem (A.10), it turns out to be

∫

Γ =∂Ω

(
E × H

) · n dΓ = − ∂

∂t

∫

Ω

(
H · B
2

+ E · D
2

)

dΩ −
∫

Ω

E · J dΩ

= −dWm

dt
− dWe

dt
− pd (6.14)
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Vector

S = E × H (6.15)

is calledPoynting’s vector (Wm−2).According to (6.14), thefluxof S leaving a closed
surfaceΓ is equal to the decrease of both the power associated to the electromagnetic
field and the power transferred to the current inside domain Ω bounded by Γ . This
is the statement of Poynting’s theorem.

If impressed current distributed with density J 0 is present within volume Ω then
(6.14) becomes

∫

Γ

(
E × H

) · n dΓ = − ∂

∂t

∫

Ω

(
H · B
2

+ E · D
2

)

dΩ

−
∫

Ω

E · J dΩ +
∫

Ω

E · J 0 dΩ (6.16)

where pg = − ∫
Ω
E · J 0 dΩ is the power delivered by impressed current density.

6.3 From Distributed to Lumped-Parameter Models

Maxwell’s equations (6.7)–(6.10) can hardly be solved in an accurate way in most
practical cases of real-life engineering, due to complicated geometries of devices and
non-linearity of materials. However, if an electromagnetic device is characterized by
slowly-varying fields, it can be modeled as a multi-terminal element, and this makes
it possible to consider lumped-parameter models, i.e. circuits, which are fairly less
costly to solve. On the other hand, however, circuits are zero-dimensional models
and, therefore, the space dependence of electric and magnetic quantities is missing.

In fact, it is possible to move from field-based models—i.e. those governed by
Maxwell’s equations—to lumped-parameter models—i.e. those governed by Kirch-
hoff’s equations—by exploiting Poynting’s theorem. In particular, two-terminal ele-
ments, which are the basic components of any circuit, can be defined and classified
according to (6.14).

In general, an electromagnetic device can be modelled as a lumped-parameter
multi-terminal element if it can be embedded within a volume Ω bounded by a
closed surface Γ , along which the normal components of time derivatives of fields
can be neglected, namely

∂D

∂t
· n = 0,

∂B

∂t
· n = 0 (6.17)

along Γ .
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Fig. 6.1 From distributed to lumped parameter model: electromagnetic device embedded in a
closed surface along which (6.17) holds

The simplest lumped-parameter model of an electromagnetic device is the two-
terminal element (Fig. 6.1).

By means of the Poynting’s theorem, the power entering a two-terminal element
will be computed in the next section.

6.4 Power of a Two-Terminal Element

Let an element exhibiting terminals A and B be considered (Fig. 6.2).
Power p(t) entering boundary surface Sc at time t is given by the flux of Poynting’s

vector (6.14)

p(t) =
∫

Sc

[
E(t) × H(t)

] · n dS (6.18)

Since, by assumption, Ω is a simply-connected domain and (6.17) holds, the
electric voltage across two points on surface Sc is independent of any integration
line joining them and belonging to Sc; therefore, a scalar function ψ (electric scalar
potential) can be defined, such that the voltage across terminals A and B is given by

vAB = ψA − ψB (6.19)
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Fig. 6.2 Two-terminal
element

vAB

ip

B A

Due to (6.7) and (6.17), the electric field is

E(t) = −∇ψ(t) (6.20)

Then, the power is

p(t) = −
∫

Sc

[∇ψ(t) × H(t)
] · n dS (6.21)

From vector identity (A.16) with φ = ψ and V = H it follows

p(t) = −
∫

Sc

(∇ × ψH
) · n dS +

∫

Sc

ψ J · n dS (6.22)

Due to theorem (A.10) and identity (A.8) it turns out to be

p(t) = −
∫

Ω

∇ · (∇ × ψH
)
dΩ +

∫

Sc=∂Ω

ψ J · n dS =
∫

Sc=∂Ω

ψ J · n dS (6.23)

The only non-zero contributions to the right-hand side of (6.23) come from the
points of Sc where current-carrying conductors pass through, i.e. just terminals A
and B. The potential of each conductor is constant and therefore it follows
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p(t) = ψA

∫

Sc

J · n dS + ψB

∫

Sc

J · n dS (6.24)

If current entering surface Sc is defined as i = ∫
Sc
J · n dS, it turns out to be

p(t) = (ψA − ψB)i = vAB(t)i(t) (6.25)

i.e. the power entering the element is equal to the product of terminal voltage times
current.

Therefore, under the assumption of slowly varying field, Poynting’s theorem can
be simplified as follows

vAB i = dWm

dt
+ dWe

dt
+ pd (6.26)

In general, in a two-terminal element all the three terms at right-hand side are
present at a time; in the next section, basic two-terminal elements are defined con-
sidering each term as the paramount one.

6.4.1 Resistor Equation

The power entering a resistor is equal to the power loss in the conducting material,
i.e. (6.26) becomes

vAB i = pd (6.27)

From (6.14) and (6.27) it follows

vABi =
∫




σE2d
 (6.28)

According to Joule’s law [2], the resistance R such that

pd = Ri2 (6.29)

can be defined; it follows

R =
∫
Ω

σ E2dΩ

i2
=

∫
Ω

σ E2dΩ
[∫

Γc
J · n dΓ

]2 (6.30)

whereΓ c is the resistor cross-section and n is the relevant unit vector. The constitutive
relation of the resistor
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vAB = Ri (6.31)

follows.
The following remark can be put forward.
Equation (6.30) shows that small errors in computing field strength will not deter-

mine a large error in computing resistance: in fact, the averaging effect of volume
integral will compensate small errors. In particular, let domain Ω be divided in two
complementary sub-domains Ω ′ and Ω ′′, respectively; moreover, let the volume of
Ω ′ be much smaller than the volume of Ω ′′: if the computation of specific power
σE2 is inaccurate in Ω ′ but accurate in Ω ′′, the computation of resistance R will be
still reliable.

6.4.2 Inductor Equation

The power entering an inductor is equal to the increase in time of the energy stored
in the magnetic material, i.e. (6.26) becomes

vAB i = dWm

dt
(6.32)

From (6.14) and (6.32) it follows

vABi = 1

2

∂

∂t

∫

Ω

H · B dΩ (6.33)

Considering the definition of magnetic vector potential (4.19), it turns out to be

Wm = 1

2

∫

Ω

H · B dΩ = 1

2

∫

Ω

H · (∇ × A
)
dΩ

= 1

2

∫

Ω

∇ · (
A × H

)
dΩ + 1

2

∫

Ω

(∇ × H
) · A dΩ

= 1

2

∫

Γ

(
A × H

) · n dΩ + 1

2

∫

Ω

J · A dΩ (6.34)

With a suitable choice of integration surface Γ , either A × n = 0 or H × n = 0
holds along Γ . Moreover, in a linear material, both current density and magnetic
potential are proportional to current i; it follows

Wm = 1

2

∫

Ω

J · A dΩ = 1

2
Li2 (6.35)
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where L is the inductance of the inductor [2], defined as

L = 2Wm

i2
=

∫
Ω
J · A dΩ

[∫
Γc

J · n dΓ
]2 =

∫
Ω
H · B dΩ

[∫
Γc

J · n dΓ
]2 (6.36)

whereΓ c is the cross-section of the inductor winding and n is the relevant unit vector.
The constitutive relation of the inductor

vAB = L
di

dt
(6.37)

follows.
The following remark can be put forward.
Equation (6.36) shows that small errors in computing field strength or magnetic

inductionwill not determine a large error in computing inductance: in fact, the average
effect of volume integral will compensate small errors. In particular, let domain Ω

be divided in two complementary sub-domains Ω ′ and Ω ′′, respectively; moreover,
let the volume of Ω ′ be much smaller than the volume of Ω ′′: if the computation
of specific energy H · B is inaccurate in Ω ′ but accurate in Ω ′′, the computation of
inductance L will be still reliable.

6.4.3 Capacitor Equation

The power entering a capacitor is equal to the increase in time of the energy stored
in the dielectric material, i.e. (6.26) becomes

vAB i = dWe

dt
(6.38)

vABi = 1

2

∂

∂t

∫

Ω

E · D dΩ (6.39)

Due to (6.7), (6.17) and (6.8), the following chain of equalities holds

We = 1

2

∫

Ω

E · D dΩ = −1

2

∫

Ω

∇φ · D dΩ

= −1

2

∫

Ω

∇ · φD dΩ + 1

2

∫

Ω

φ∇ · D dΩ

= 1

2

∫

ΓA

φD · n dΩ − 1

2

∫

ΓB

φD · n dΩ + 1

2

∫

Ω

φρ dΩ (6.39)
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Considering that the surface charge density on the electrodes is ρs = D · n, and
ρ = 0 holds because there is no free charge in the region between the electrodes, it
follows

We = 1

2
φA

∫

ΓA

ρs dΩ − 1

2
φB

∫

ΓB

ρs dΩ + 1

2

∫

Ω

φρ dΩ

= 1

2
φA

∫

ΓA

ρs dΩ − 1

2
φB

∫

ΓB

ρs dΩ = 1

2
(φA − φB)q = 1

2
vABq (6.40)

In a linear material, charge q is proportional to voltage vAB; therefore, it turns out
to be

We = 1

2

∫

Ω

E · D dΩ = 1

2
Cv2AB (6.41)

where C is the capacitance of the capacitor [2], defined as

C = 2We

v2AB
=

∫
Ω
E · D dΩ

[∫
γAB

E · t dγ
]2 (6.42)

In (6.42) the integration line can be any open line joining electrode A to electrode
B. The constitutive relation of the capacitor

i = C
dvAB
dt

(6.43)

follows.
The following remarks can be put forward.
Equation (6.42) shows that small errors in computing field strength or flux density

will not determine a large error in computing inductance: in fact, the average effect
of volume integral will compensate small errors. In particular, let domain Ω be
divided in two complementary sub-domains Ω ′ and Ω ′′, respectively; moreover, let
the volume of Ω ′ be much smaller than the volume of Ω ′′: if the computation of
specific energy E · D is inaccurate in Ω ′ but accurate in Ω ′′, the computation of
capacitance C will be still reliable.
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Chapter 7
Device Miniaturization Principles

7.1 From the Macro- to the Micro-domain

If the size of a mechanical device is reduced by a factor 10, its mass—and, con-
sequently, inertial and gravitational forces—decrease by a factor 103; on the other
side, forces depending on the device surface like the electrostatic interaction due to
surface charge density, decrease by a factor 102. Therefore, the ratio of the electro-
static forces to the inertial ones increase by a factor 10; this remark stands as one of
the main reasons behind the exploitation of electric field for generating motion in a
device exhibiting sub-millimetric size.

7.2 Electric or Magnetic Way to MEMS

It is worth also comparing the electric andmagnetic interaction laws.When consider-
ing two straight and parallel conductors of infinite length,with current flowing across,
according to (4.57) the force exerted by conductor a on an element of conductor b is
given by the following expression:

dFb = Ibd�b × Ba (7.1)

where Ib is the current carried by conductor b while Ba is the magnetic induction
originated by current Ia carried by conductor a. In turn, according to (4.44) the
induction magnitude is

Ba = μ0 Ia
2πd

(7.2)

where d is the distance between the two conductors; the force acts in the direction
normal to both conductors [1].
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In particular, if the two currents are equal Ia = Ib = I and are equally distributed
on the conductor cross-section, the force acting on a section of finite length is

F = μ0 I 2�

2π d
= πμ0 J 2�

2d
x4 (7.3)

where J is the current density while x is the radius of the cylindrical conductor.
Now, let a parallel-plate capacitor of infinite length be considered; referring to a

square section of side length x, the force acting in the direction normal to the two
electrodes is:

F = σ 2

2ε0
x2 (7.4)

where σ is the surface charge density on the electrodes.
After comparing (7.3) and (7.4), it can be noted that themagnetic interaction scales

down as the fourth power of the geometrical size, while the electric interaction scales
as the second power. Therefore, the latter is more convenient in view of the device
miniaturization.

Moreover, the absence of current-carrying multi-turn windings, which are space-
consuming components, is another convenient feature of electrostatic devices [2].

7.3 Field Strength and Power Density Limits

An obstacle limiting the device operation is the maximum level of voltage that can
be applied between two electrodes without causing corona discharge or breakdown
effect in the air gap. In this respect, reference is made to the Paschen’s law, i.e. the
curve that models the breakdown voltage VBD in an ideal gas filling a parallel plate
capacitor as a function of the product pd, where p is the gas pressure at constant
temperature and d is the gap length. Paschen’s curve is shown in Fig. 7.1 for dry air
at T = 20 °C.

The curve is characterized by aminimumvalue corresponding to a critical distance
dcrit ; when 0 < d < dcrit the slope of the curve is negative and steep. It can be assumed
that in this region the distance between the capacitor plates is shorter than the mean
free-path of the gas ion and, therefore, the probability of avalanche discharge is very
small. Actually, to give origin to the avalanche discharge, a finite path length must
be available and a number of subsequent collisions between ions and atoms of the
gas must take place before the degenerative phenomenon takes place. If d is very
short, the ion is captured by the oppositely-charged capacitor plate without colliding
against the neighbouring atoms of gas. As a consequence, it happens that voltages of
hundreds of volts can be safely applied tomicrometric air gaps at ambient temperature
and pressure, largely overcoming the voltage limitation valid in the macroscopic size
scale (typically, kilovolts per millimeter).
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Fig. 7.1 Paschen curve for air at T = 20 °C (parallel-plate capacitor)

In a real-life capacitor, the field in the gas is no longer uniform, due e.g. to the finite
size of electrodes and their non-planarity, depending in turn on material properties
as well as technological processes. Moreover, impurities entering the air gap can
short-circuit energized electrodes and cause breakdown discharge at voltages lower
with respect to the theoretical prediction. Nevertheless, the breakdown voltage is
still higher than in the macro-domain; simply, the electrode shape might so complex
that the basic model in terms of parallel-plate capacitor fails and two- or three-
dimensional effects should be taken into account by means of distributed-parameter
models.

When a device of rated power is miniaturized, one has an increase in power
density which might be substantial. Cooling a miniaturized MEMS in an efficient
way can be difficult and therefore the thermal limit is always a severe obstacle to
the miniaturization of integrated devices and systems. In this respect, a case study
dealing with the power loss minimization is presented in Sects. 14.4.1 and 14.4.2.
On the other hand, a high power density with the relevant overheating in a device
can be the source of actuation: this is the case of the electro-thermo-elastic actuator
in Sects. 13.6 and 13.7.
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Chapter 8
Numerical Methods for Field Analysis
of MEMS

8.1 Energy Approach to Finite-Element Analysis

The finite element method has, in recent decades, become by far the most popular
technique in computational electromagnetism. Many general purpose computer
codes have been developed which provide toolboxes for computer-aided-design
(CAD) of devices and systems. The technique is not suitable for hand calculations,
and the algorithm is somewhat complicated; nevertheless, the formulation of the
simplest two-dimensional case shall be followed to demonstrate the principle and
to clarify some aspects of the applications. There are many monographic books on
the subject [1, 2, 5, 6].

Consider Laplace’s equation in two dimensions for an electrostatic system (see
Sect. 3.3)

∇2
u = ∂2u

∂x2
+ ∂2u

∂y2
= 0 (8.1)

where the electric field, E, is given by

E = −∇u = −
(

∂u

∂x
ῑx + ∂u

∂y
ῑy

)
(8.2)

A variational principle to the defining equation can be applied by stating that the
potential distribution must be such as to minimize the stored field energy. The energy
can be expressed as

1

2

∫
Ω

D · E dΩ = 1

2

∫
Ω

εE
2
dΩ = 1

2

∫
Ω

ε
∣∣∇u

∣∣2dΩ (8.3)

where integration is carried out over the two-dimensional problem region, and is
thus taken per unit length [3, 4]. This minimum-energy principle is mathematically
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equivalent to the original differential Eq. (8.1) in the sense that a potential distribution
which satisfies Laplace’s equation will also minimize the energy, and vice versa.
An alternative formulation is possible which avoids using energy functionals. It is
based on the so-called Galerkin procedure and the method of weighted residuals.
The Galerkin procedure is generally easier to apply and leads to a wider class of
applications. However, its mathematical formulation is more advanced and it will
not be pursued here. For Laplace’s equation both formulations give identical results.

8.2 Discretizing the Continuum: Elements and Nodes

Consider a single element in a 2D domain, and assume that the distribution of poten-
tial u within the element is adequately approximated by the polynomial expression

u = a + bx + cy + dxy + ex2 + fy2 + gx3 + hy3 + ix2y + lxy2 + · · · (8.4)

We choose asmany terms in the above equation as there are ‘nodes’ in the element.
In particular, for a rectangle we choose

u = a + bx + cy + dxy (8.5)

and for a triangle

u = a + bx + cy (8.6)

In the last case the representation is said to be complete because Eq. (8.6) contains
all the terms necessary for a linear variation in two dimensions.

It is easily seen that finite elements offer an immediate extension to higher-order
modeling, which makes it possible to increase the accuracy of analysis. For instance,
in the case of second-order model the potential distribution within the element is
given by the expression

u = a + bx + cy + dxy + ex2 + fy2 (8.7)

Six points (nodes) are needed to find the unknowns: for the purpose the vertices of
a triangle as well as its midpoints, which gives rise to a quadratic triangular element,
can be chosen. In general, the higher the order the better the accuracy in spite of a
higher number of unknowns.

For the sake of simplicity, let the basic case of a linear triangular element be con-
sidered. For the three vertices (nodes) of the triangle the potential has the following
values

u1 = a + bx1 + cy1 (8.8)
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u2 = a + bx2 + cy3 (8.9)

u3 = a + bx3 + cy3 (8.10)

or

⎡
⎣ u1
u2
u3

⎤
⎦ =

⎡
⎣1 x1 y1
1 x2 y2
1 x3 y3

⎤
⎦

⎡
⎣a
b
c

⎤
⎦ (8.11)

where (x1, y1), (x2, y2), and (x3, y3) are the coordinates of the vertices; and the
determinant of the coefficient matrix in Eq. (8.11) may be recognized as being equal
to twice the area of the triangle, A. Rearranging Eq. (8.11) gives

⎡
⎣a
b
c

⎤
⎦ =

⎡
⎣1 x1 y1
1 x2 y2
1 x3 y3

⎤
⎦

−1⎡
⎣ u1
u2
u3

⎤
⎦ (8.12)

and substitution back to Eq. (8.6) yields

u = [
1 x y

]
⎡
⎣1 x1 y1
1 x2 y2
1 x3 y3

⎤
⎦

−1⎡
⎣ u1
u2
u3

⎤
⎦ (8.13)

This last equation may be written as

u(x, y) =
3∑

i=1

uiαi(x, y) (8.14)

where

α1(x, y) = 1

2A

[
(x2y3 − x3y2) + (y2 − y3)x + (x3 − x2)y

]
(8.15)

α2(x, y) = 1

2A

[
(x3y1 − x1y3) + (y3 − y1)x + (x1 − x3)y

]
(8.16)

α3(x, y) = 1

2A

[
(x1y2 − x2y1) + (y1 − y2)x + (x2 − x1)y

]
(8.17)

At the vertices,

α1(x1, y1) = 1

2A

[
(x2y3 − x3y2) + (y2 − y3)x1 + (x3 − x2)y1

] = 2A

2A
= 1 (8.18)
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α1(x2, y2) = 1

2A

[
(x2y3 − x3y2) + (y2 − y3)x2 + (x3 − x2)y2

] = 0 (8.19)

α1(x3, y3) = 1

2A

[
(x2y3 − x3y2) + (y2 − y3)x3 + (x3 − x2)y3

] = 0 (8.20)

and similarly for α2 and α3. In general

αi
(
xj, yj

) = 0, i �= j (8.21)

αi
(
xj, yj

) = 1, i = j (8.22)

that is, each function vanishes at all vertices but one, where its value is one. Now
the energy can be associated with each element, and remembering that in the two-
dimensional field the energy will be taken per unit length it may be written

W (e) = 1

2

∫
Ω

ε|∇u|2dΩ (8.23)

where the integration is performed over the element area. The potential gradient
within the element is found from Eq. (8.14) as

∇u(x, y) =
3∑

i=1

ui∇αi(x, y) (8.24)

so that the element energy becomes

W (e) = 1

2
ε

3∑
j=1

3∑
i=1

ui

⎛
⎝∫

e

∇αi · ∇αjdΩ

⎞
⎠uj (8.25)

Equation (8.25) may be written in the following compact form

W (e) = 1

2
ε[U ]T [N ](e)[U ] (8.26)

where [U] is the column-wise vector or the vertex values of the potential, the super-
script T denotes transposition, and the 3 × 3 square element matrix [N] is defined
by

N (e)
i,j =

∫
e

∇αi · ∇αj dΩ (8.27)
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For any given triangle, the matrix [N] is readily evaluated. First, the gradients of
the α-functions are computed. From Eqs. (8.15), (8.16), and (8.17)

∇α1 = 1

2A

[
(y2 − y3)ix + (x3 − x2)iy

]
(8.28)

∇α2 = 1

2A

[
(y3 − y1)ix + (x1 − x3)iy

]
(8.29)

∇α3 = 1

2A

[
(y1 − y2)ix + (x2 − x1)iy

]
(8.30)

It is interesting to note that for the first-order approximation, given by Eq. (8.6),
the gradients of α-functions are constant within an element.

As a consequence, the scalar products of the gradients of α-functions can be easily
found. As these gradients are constant within an element, their scalar products will
also be constant. Hence integration over the element area will introduce the triangle
area, A, as a constant multiplier. The elements of the matrix [N] can now be found,
with a typical expression in the form

N (e)
11 = 1

4A

[
(y2 − y3)

2 + (x3 − x2)
2
]

(8.31)

N (e)
12 = 1

4A

[
(y2 − y3)(y3 − y1) + (x3 − x2)(x1 − x3)

]
(8.32)

Other entries can be obtained by cyclic permutation of subscripts. This completes
the specification for an arbitrary element in the finite element mesh.

The total energy associated with the whole region will be found as the sum of
individual element energies

W =
∑
e

W (e) (8.33)

1

2 3
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6

7

1

2
3

Fig. 8.1 Global (1, 7) and local (circled 1, 2, 3) numbering of nodes
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for all elements.When assembling such elements, some nodeswill be shared between
more than one element as shown in Fig. 8.1, and thus the topology of the actual mesh
will directly affect the way in which the global matrix is formulated.

In other words, the global node numberingmust be related to the local numbering,
and the global matrix must reflect the way in which individual elements are linked
to global nodes. This process is discussed in the next section.

8.3 Matrix Assembly

In order to clarify the procedure, a simple example will be used to illustrate the
process of assembling the matrix and then solving the system of equations. Consider
the region depicted in Fig. 8.2a which models a parallel electrode capacitor. The
solution here is trivial: by inspection one has u1 = u2 = 0.5, and the distribution of
the field is uniform.

The general method of solution shall now be applied. The unconstrained nodes
are numbered first, and the constrained nodes are numbered last. A particular com-
bination of local and global node numbering schemes is demonstrated in Fig. 8.2b.
The data are summarized in Tables 8.1 and 8.2.

(a) (b)

y

x6 1

u=0 u=1

5

4 2 3

u=0 u=1

y

x0

1

u=0 u

2
=0

Fig. 8.2 Field region of an ideal parallel-electrode capacitor: a boundary conditions, b discretizing
mesh

Table 8.1 Coordinates and
potentials of nodes

Node number x-coordinate y-coordinate Potential

1 1 0 Unknown

2 1 1 Unknown

3 2 1 1

4 0 1 0

5 2 0 1

6 0 0 0
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Table 8.2 Elements and
node numbers

Element Vertex 1 Vertex 2 Vertex 3

A 6 1 2

B 6 4 2

C 1 2 3

D 1 5 3

The element matrices may be determined using Eqs. (8.31–8.32). For example,
for element A it turns out to be

x3 − x2 = 0, y2 − y3 = −1 (8.34)

x1 − x3 = −1, y3 − y1 = 1 (8.35)

x2 − x1 = 1, y1 − y2 = 0 (8.36)

and the element area A = 0.5. Therefore

N (A)
11 = 1

4A

[
(y2 − y3)

2 + (x3 − x2)
2] = 1

2
(8.37)

N (A)
12 = 1

4A

[
(y2 − y3)(y3 − y1) + (x3 − x2)(x1 − x3)

] = −1

2
(8.38)

and similarly for the other entries of [N (e)]. Inspection of elements B,C, andD shows
that, in our example, all the element matrices are the same, that is,

[N ](A) = [N ](B) = [N ](C) = [N ](D) =
⎡
⎣+ 1

2 − 1
2 0

− 1
2 +1 − 1

2
0 − 1

2 + 1
2

⎤
⎦ (8.39)

There are six nodes in our mesh, so the global matrix will have dimension of
6 × 6. Each element matrix will be embedded into the global matrix in a way which
depends on the relation between the local vertex numbering and the global node
numbering. For example, the elements of the matrix [N (A)] will take the following
positions in the global matrix

[N ](A) =
⎡
⎣N66 N61 N62

N16 N11 N12

N26 N21 N22

⎤
⎦ (8.40)



76 8 Numerical Methods for Field Analysis of MEMS

The subscripts identify where the contribution should be placed in the global
matrix. For example,N66 is placed in row six, column six of thematrix. Repeating this
process for all four elements, and adding appropriate terms, results in the following
global matrix

[N ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −0.5 −0.5
−1 2 −0.5 −0.5 0 0
0 −0.5 1 0 −0.5 0
0 −0.5 0 1 0 −0.5

−0.5 0 −0.5 0 1 0
−0.5 0 0 −0.5 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.41)

Therefore, for any particular topology and node numbering, the global matrixmay
be found. This process would be too tedious for hand calculations, but it is easily
performed by a computer code.

In order to minimize the total-energy expression, Eq. (8.33) must be differentiated
with respect to a typical value of uk and then equated to zero. Therefore

∂W

∂uk
= 0 (8.42)

where the index k refers to node numbers in the global numbering scheme. In a
boundary-value problem, like the problem in the example, some boundary segments
have specified potential values. Therefore a subset of the node potentials contained
in the vector [V ] will assume exactly those prescribed values. To this purpose,
the nodes which are free to vary have been numbered first, so leaving all nodes
with a prescribed potential to the last. This allows Eq. (8.42) to be rewritten with the
matrices in partitioned form,

∂W

∂uk
= ∂W

∂
[
uf

]
k

[[
uf

]T [
up

]T][ [
Nff

] [
Nfp

]
[
Npf

] [
Npp

]
][ [

uf
]

[
up

]
]

= 0 (8.43)

where the subscripts f and p refer to nodes with ‘free’ and ‘prescribed’ potentials,
respectively. Note that the prescribed potentials cannot vary, and thus differentiation
with respect to them is not possible. Accordingly, it turns out to be

∂W

∂uk
= ∂W

∂
[
uf

]
k

[[
uf

]T [
up

]T][ [
Nff

]
uf + [

Nfp
]
up[

Npf
]
uf + [

Npp
]
up

]
= 0 (8.44)

∂W

∂uk
= ∂W

∂
[
uf

]
k

[[
uf

]T ([
Nff

]
uf + [

Nfp
]
up

) + [
up

]T ([
Npf

]
uf + [

Npp
]
up

)] = 0

(8.45)
∂W

∂uk
= 2

[
Nff

]
uf + [

Nfp
]
up + [

Npf
]
up = 2

[
Nff

]
uf + 2

[
Nfp

]
up = 0 (8.46)
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All in one, differentiation of energy with respect to the free potentials gives rise
to the following matrix equation

[[
Nff

][
Nfp

]][ [
uf

]
[
up

]
]

= 0 (8.47)

and eventually leads to a system of algebraic equations of the form Ax = b; namely

[
Nff

][
uf

] = −[
Nfp

][
up

]
(8.48)

which has a formal solution

[
uf

] = −[
Nff

]−1[
Nfp

][
up

]
(8.49)

In the example

[
Nff

] =
[

2 −1
−1 2

]
(8.50)

and

[
Nfp

] =
[

0 0
− 1

2 − 1
2

− 1
2 − 1

2
0 0

]
(8.51)

so that the final system of equations is given by

[
2 −1

−1 2

][
u1
u2

]
=

[
0 0

− 1
2 − 1

2

− 1
2 − 1

2
0 0

]⎡
⎢⎢⎣

u3
u4
u5
u6

⎤
⎥⎥⎦ (8.52)

This is of course a simple system of two equations with two unknowns

2u1 − u2 = 0.5, −u1 + 2u2 = 0.5 (8.53)

which yields

u1 = u2 = 0.5 (8.54)

on solution, as expected.
A simple notation for the system of equations was used and the nodes had to be

numbered in a particular sequence; that is, all potentials free to vary were numbered
first, and all potentials with prescribed values were numbered last. In practice, this
numbering scheme may not be convenient, and in fact it will not be necessary.
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lt is also important to note that the finite-element solution is uniquely defined
everywhere, not just at the nodes. It is convenient to store the results as a set of nodal
potential values, but this is merely a compact representation for the piecewise-planar
solution surface which minimizes the system energy.

In conclusion, the finite-element method overcomes the main difficulties of e.g.
the finite-difference technique, in particular, accurate matching of irregular boundary
shapes and higher-order approximation, and offers more flexibility.

8.4 Solving the System of Equations

The finite-element method transforms the appropriate partial differential equation to
a discretized set of algebraic equations Ax = b. Boundary conditions and interface
conditions between different materials will also be embedded in this equation. Many
approaches exist for obtaining the solutions of such equations. They will often be
based on a direct method, such as Gaussian elimination, or on an iterative approach,
for example, successive over-relaxation (SOR) or conjugate gradients (CGs). The
choice of method is important from the practical point of view, as the time and
storage requirements of different schemesmay be significantly different. The various
techniques for solving systems of simultaneous equations are well documented in
books on numerical methods. One important property of the equations obtained from
finite-element methods is that these equations tend to be very sparse and so does the
correspondingmatrix of coefficients. Therefore, it is not necessary to store the entries
which are zero. Moreover, the matrix is symmetrical about the main diagonal; then,
it is sufficient to store the lower (or upper) triangular submatrix.

Most practical codes based on finite elements exploit matrix sparsity in order to
keep both computing time andmemory requirements within reasonable limits. There
aremany clever techniques and programming ‘tricks’ employed to achievemaximum
savings. Typically, the nodes are assumed to be randomly numbered initially, and
some systematic renumbering scheme is then applied to produce an improved sparsity
pattern.
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Chapter 9
Coupled Fields: Multi-physics Analysis
of MEMS

9.1 Multi-physics Analysis of MEMS

When investigating the behaviour of aMEMS device, it might be necessary to model
different physical domains which co-exist and interact in the samematerials. The rel-
evant analysis implies to solve a system of partial derivative equations, the unknowns
ofwhich are time-varyingfields acting in the region under study. This is a general con-
cept of coupled-field problem, sometimes referred to as amultiphysics field problem.

Often, analysis and design of MEMS devices ask for solving coupled fields; in
this respect, the following remarks can be put forward:

– the dielectric design focuses on electrostatic field analysis, with the final aim of
avoiding breakdown appearance in all operational conditions;

– the electro-mechanical design merges electrostatics, magnetostatics, current flow
analysis and elastodynamics to control mechanical deformations caused by elec-
tromagnetic forces and torques;

– the thermal design joins heat transfer analysis and elastodynamics with the aim of
avoiding material degradation caused by thermal overheating.

9.2 Electromagnetism and Coupled Fields

In static conditions, i.e. when fields do not depend on time, single-fields problems
have to be modelled: the electrostatic field and the magnetic field co-exist in the
same region without interacting if a static distribution of charges and currents is
given, respectively. At the model level, the relevant equations can be independently
solved [1]. However, if charge and current distributions vary in time, then the electro-
magnetic field takes place and mutual interactions have to be considered. The time-
varying electromagnetic field is governed by the following equations (see Sect. 6.1):
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Faraday’s equation

∇ × E = −∂B

∂t
(9.1)

Gauss’ electric equation

∇ · D = ρ (9.2)

Ampère’s equation

∇ × H = J + ∂D

∂t
(9.3)

Gauss’ magnetic equation

∇ · B = 0 (9.4)

where scalar function ρ is the charge density [cm−3] and vectors are defined as
follows:

D electric flux density [cm−2]
E electric field strength [V m−1]
B magnetic flux density [T]
H magnetic field strength [A m−1]
J current density [A m−2].

In a three-dimensional domain, Eqs. (9.1)–(9.4) are a set of eight scalar equations
which the following constitutive laws

D = εE (9.5)

B = μH + B0 (9.6)

J = σ E + J 0 (9.7)

must be added to. In (9.5)–(9.7) a linear material characterized by permittivity ε,
permeability μ and conductivity σ, is considered; moreover, in (9.6) the term B0

accounts for the permanentmagnetization of themagneticmaterial, if any. In (9.7) the
terms σ E and J 0 account for eddy current and driving current density, respectively,
while in (9.3) the term ∂D

∂t is the displacement current density.
In total, considering both Maxwell equations and constitutive laws, fifteen scalar

unknowns (i.e. field components) have to be determined subject to suitable boundary
and initial conditions. The system of eight plus nine equations can be solved, because
there are two relations among the unknowns which are automatically satisfied. In
fact, taking the divergence of (9.1) and the time derivative of (9.4), one obtains an
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identity. Analogously, taking the divergence of (9.3) and the time derivative of (9.2),
the charge continuity equation

∇ · J + ∂ρ

∂t
= 0 (9.8)

follows. In other words, the source terms ρ and J are not independent; this makes
the coupled-field analysis problem a well-posed one.

9.3 The Electromagnetic Coupled Problem in Terms
of Potentials

Despite the field is the quantity of main physical interest, suitable potentials can be
introduced to transform vector equations into scalar ones, so reducing the problem
complexity [7].

In a simply-connected domain Ω filled in by a linear, homogeneous and isotropic
material, after (9.4) the magnetic vector potential A [Wb m−1] is defined by the
equation

B = ∇ × A (9.9)

associated to a suitable gauge condition on ∇ · A to be specified later on. By means
of (9.1) one has

∇ ×
(
E + ∂A

∂t

)
= 0 (9.10)

This means that the vector in brackets can be expressed as the gradient of a scalar
potential ϕ [V] such that

E + ∂A

∂t
= −∇ϕ (9.11)

or

E = −∇ϕ − ∂A

∂t
(9.12)

Substituting (9.12) into (9.3), one obtains

∇ × H = J 0 − σ∇ϕ − σ
∂A

∂t
− ε

∂

∂t
∇ϕ − ε

∂2A

∂t2
(9.13)
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Taking (9.9) into account, one has

∇ × H = ∇ × μ−1∇ × A (9.14)

Therefore, it turns out to be

∇ × ∇ × A + με∇ ∂ϕ

∂t
+ με

∂2A

∂t2
= μ

(
J 0 − σ∇ϕ − σ

∂A

∂t

)
(9.15)

In the case of a current-free and charge-free ideal dielectric region (i.e. J 0 = 0,
ρ = 0 and σ = 0), (9.15) becomes

∇ × ∇ × A + με∇ ∂ϕ

∂t
+ με

∂2A

∂t2
= 0 (9.16)

On the other hand, substituting (9.12) into (9.2) and considering (9.5) gives

−∇2ϕ − ∂

∂t

(∇ · A) = 0 (9.17)

Equations (9.15) and (9.17) are the link between the two potentials.
Taking into account the vector identity

∇ × ∇ × A = ∇(∇ · A) − ∇2
A (9.18)

and by substituting this expression into (9.15) one has

−∇2
A + ∇(∇ · A) + με∇ ∂ϕ

∂t
+ με

∂2A

∂t2
= 0 (9.19)

or

−∇2
A + ∇

(
∇ · A + με

∂ϕ

∂t

)
+ με

∂2A

∂t2
= 0 (9.20)

The problem of separating (9.29) in two equations, in terms of A and ϕ, respec-
tively, arises.

To this end, if the Lorentz gauge

∇ · A + με
∂ϕ

∂t
= 0 (9.21)

is forced, then from (9.20) one obtains
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με
∂2A

∂t2
− ∇2

A = 0 (9.22)

which is the wave equation for the magnetic vector potential, subject to appropriate
boundary and initial conditions. After determining A, following (9.21), ϕ is given
by

ϕ(x, t) = ϕ0(x) − 1

με

t∫
0

∇ · A(
x, t ′

)
dt ′ = 0 (9.23)

with ϕ0(x) to be determined.
Alternatively, forcing gauge (9.21) to Eq. (9.17), the wave equation for the electric

scalar potential is obtained

με
∂2ϕ

∂t2
− ∇2ϕ = 0 (9.24)

After determining ϕ, A can be recovered by means of (9.21).
In the case current with density J 0 and charge with density ρ are present, the two

above equations become

με
∂2A

∂t2
− ∇2

A = μJ 0 (9.25)

and

με
∂2ϕ

∂t2
− ∇2ϕ = ρ

ε
(9.26)

respectively.
It can be remarked that, thanks to the Lorentz gauge (9.21), A depends only on

J 0 while ϕ depends only on ρ.
In the case of a conductor (ρ = 0, σ �= 0), by forcing the following gauge

∇ · A + με
∂ϕ

∂t
+ μσϕ = 0 (9.27)

from (9.15) and (9.18) it follows

−∇2
A + ∇

(
∇ · A + με

∂ϕ

∂t
+ μσϕ

)
+ με

∂2A

∂t2
+ μσ

∂A

∂t
= μJ 0 (9.28)

or
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με
∂2A

∂t2
+ μσ

∂A

∂t
− ∇2

A = μJ o (9.29)

After determining A and so ∇ · A, ϕ can be recovered solving (9.27) with initial
condition ϕ0(x).

The special case of the electromagnetic field in a conductor is particularly impor-
tant in low-frequency applications (eddy current problem). In fact, following the
A − ϕ formulation, a magnetic vector potential A [Wb m−1] is introduced by (9.9);
moreover, an electric scalar potential ϕ [V] is defined according to (9.11): this way,
fields E and H are expressed by means of two potentials, namely A and ϕ.

At this point in time, the approximation of quasi-static condition is necessary: if
the term J 0 in (9.7) exhibits time-harmonic variations, their period is supposed to be
much higher than the time constant σ−1ε of the material. Then, displacement current
density ∂D

∂t in (9.3) may be neglected with respect to driving J 0 and induced σ E
current densities; (9.3) is simplified as

∇ × H = σ E + J 0 (9.30)

Now, to determine potentials, from (9.30), taking into account (9.9) and (9.12), it
turns out to be

∇ × ∇ × A = μJ 0 − μσ
∂A

∂t
− μσ∇ϕ (9.31)

In order to specify A uniquely, a further condition must be introduced. This may
be the following gauge

∇ · A + μσϕ = 0 (9.32)

which corresponds to (9.27) if the time derivative of ϕ is disregarded.
Taking (9.18) into account, from (9.31) and (9.32) one obtains

μσ
∂A

∂t
− ∇2

A + ∇(∇ · A + μσϕ
) = μσ

∂A

∂t
− ∇2

A = μJ 0 (9.33)

The latter is the diffusion equation in terms of vector potential, subject to appro-
priate boundary and initial conditions; it is an approximation of Eq. (9.29) in the
quasi-static state. After determining A, scalar potential ϕ = −(μσ)−1 ∇ · A is recov-
ered.

Finally, in the static case, (9.29) and (9.33) reduce to

−∇2
A = μJ 0 (9.34)

i.e. the Poisson equation of magnetostatics (single-field magnetic problem).
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In turn, (9.26) reduces to

−∇2ϕ = ρ

ε
(9.35)

i.e. the Poisson equation of electrostatics (single-field electric problem).

9.4 The Electro-Thermal Coupled Field

The electro-thermal case is a typical coupled-field problem: a relevant case study is
here referred to.

Let a cylindrical workpiece, coaxially located inside amulti-turn cylindrical wind-
ing with rectangular cross section, be considered; an axial-symmetry problem is so
originated. In the winding an AC current uniformly distributed with density Jo takes
place: due to electromagnetic induction principle (Faraday law, (9.1)), a current is
induced in the workpiece. Finally, based on the Joule effect, the associated power
loss gives rise to a temperature increase of the workpiece [2, 4, 5].

In general, however, both electrical and thermal properties of the workpiece vary
with temperature: thismeans that the induced currentmakes the temperature increase,
which in turn modifies the values of electrical conductivity and magnetic permeabil-
ity, eventually changing the current distribution. As a consequence, the magnetic
problem and the thermal one cannot be independently studied [3].

Under quasi-static conditions, the magnetic problem is ruled by the diffusion
equation of magnetic vector potential (9.33) subject to suitable boundary and initial
conditions; (9.33) can be rewritten as

−∇2A = μJ 0 − μσ
∂A

∂t
(9.36)

where, at the right-hand side, the eddy current σ ∂A
∂t , opposing the driving current

J 0, appears. In particular, the induced electric field, responsible of the eddy current
circulation, is

E = ∂A

∂t
(9.37)

Due to the AC regime of current and so magnetic field, (9.36) can be transformed
in the frequency domain; it turns out to be

−∇2 Ȧ + jωμσ Ȧ = μ J̇ 0 (9.38)
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where Ȧ and J̇0 are the complex vectors corresponding to A and J0, respectively,
subject to suitable boundary conditions. The induced electric field (9.37) transforms
as

Ė = jω Ȧ (9.39)

In turn, the thermal problem is a transient one, ruled by the Fourier’s equation of
temperature T

−∇ · k∇T + cρ
∂T

∂t
= p (9.40)

with

k thermal conductivity [W m−1 K−1]
c specific heat [J kg−1 K−1]
ρ mass density [kg m−3]
p power density [W m−3]

subject to boundary conditions

−k
∂T

∂n
= h(T − Te) + εσ

(
T 4 − T 4

e

)
(9.41)

with n external normal to the boundary, h convection coefficient, Te environmental
temperature, ε surface emissivity, and σ = 506,704 × 10−8 [W m−2 K−4] the Stefan
constant, as well as to initial conditions T (x, t0) = T0(x), respectively.

The power density due to induced current in the workpiece is

p1 = σ
∥∥E∥∥2

(9.42)

while the one in the winding is

p2 = σ−1
∥∥J 0 + σ E

∥∥2
(9.43)

In the winding, in fact, both driving current and induced current take place. It can
be remarked that the total instantaneous loss in the winding is given by

P2 =
∫
Ω

(
σ−1

∥∥J 0

∥∥2 + σ
∥∥E∥∥2 + 2

∥∥J 0

∥∥∥∥E∥∥)
dΩ (9.44)

Now, ∫
Ω

∥∥J 0

∥∥∥∥E∥∥dΩ = 0 (9.45)
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because J0 is uniform and σE is an eddy current and therefore has no net flow across
the section Ω . As a consequence, the active specific loss is given by

p′
2 = σ−1

∥∥J 0

∥∥2 + σ
∥∥E∥∥2

(9.46)

As far as the time advance of (9.40), the following remark can be put forward: in
materials thermal time constants are much longer the electrical ones; consequently,
the magnetic problem governed by (9.38) is a steady-state one, while the thermal
problem governed by (9.40) is actually a transient one.

Actually, (9.38) and (9.40) model the coupled field problem here considered.
If material properties like e.g. magnetic permeability or electric conductivity are
considered to be constant, then (9.38) can be solved independently from (9.40) and
the problem is said to be weakly coupled: solve magnetic equation, first, and thermal
equation, next. This gives rise to a cascade scheme of solution, because the right-
hand side of (9.40) is sufficiently computed through (9.39) and (9.42) knowing the
solution of (9.38).

In contrast, when e.g. the temperature dependence of magnetic permeability μ =
μ(T ) or electric conductivity σ = σ (T ) is taken into account, then the problem is said
to be strongly coupled, because the coefficients of (9.38) depend on the unknown of
(9.40) [4, 6]. This is the case, for instance, when material temperature exceeds its
Curie temperature and the material losses its ferromagnetic property behaving as a
paramagnetic one; likewise, conductor conductivity decreases with temperature.

For the sake of simplicity, let time-derivative of temperature be zero i.e. thermal
regime is assumed; therefore, the thermal equations becomes

−∇ · k∇T = σ−1
∥∥∥ J̇ 0

∥∥∥2 + σω2
∥∥∥ Ȧ∥∥∥2

(9.47)

It can be noted that the first term at the right-hand sidemodels Joule’s losses, while
the second term models eddy current losses. Moreover, the quadratic dependence
on vector potential can be linearized based on truncated Taylor’s expansion. The
following formulation follows:

−∇2 Ȧ + jωμσ Ȧ = μ J̇ 0 (9.48)

−∇ · k∇T −
(
2σω2

∥∥∥ Ȧ∥∥∥)∥∥∥ Ȧ∥∥∥ = σ−1
∥∥∥ J̇ 0

∥∥∥2
(9.49)

The system can be solved by means of finite-element analysis: each node of the
discretization grid is attributed four unknowns: one for temperature and three for
magnetic potential. In the two-dimensional case or axial-symmetric case, the mag-
netic vector potential is a scalar quantity; so, only two unknowns, i.e. temperature
and potential, are defined per each node. In general, however, magnetic domain and
thermal domain are different: for instance, in the case study the magnetic domain
incorporates workpiece, winding and surrounding dielectric material, while the ther-
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mal domain is just the workpiece. Consequently, the relevant grids are also different;
for the sake of generality, nm magnetic nodes and nt thermal nodes can be assumed.

Then, (9.48)–(9.49) can be cast in matrix form

[
KA 0
C KT

][
A
T

]
=

[
FA

FT

]
(9.50)

whereA andT are the unknown column vectors of size (nm, 1) and (nt , 1) respectively.
The block matrix at the left-hand side is composed of the following terms:

KA = [−∇2 + jωμσ
]

(9.51)

i.e. the (nm, nm) magnetic operator matrix stemming from finite-element
approximation,

KT = [−k∇2
]

(9.52)

i.e. the (nt , nt) thermal operator matrix stemming from finite-element approximation,
and the (nt , nm) coupling matrix C, which in the special case of a triangular element
of the first order is

C (e) = 2σ (e)ω2

⎡
⎣ A(e)

1 0 0
0 A(e)

2 0
0 0 A(e)

3

⎤
⎦ (9.53)

with e element index and Ak , k = 1, 3 nodal potentials.
It can be noted that entry (1, 2) in block matrix (9.50) is a null (nm, nt) matrix,

because in the first equation the unknown temperature does not appear.Moreover, the
entries of C matrix depend on the magnetic unknown, and this makes the system of
coupled equations a non-linear one; they depend also on the driving term J0 through
angle frequency ω.

In turn, data column vectors are

FA = μJ0 (9.54)

i.e. the (nm, 1) magnetic driving term, and

FT = σ−1 J 2
0 (9.55)

i.e. the (nt , 1) thermal driving term.
The following remarks can be put forward.
In DC conditions, ω = 0 holds and the coupling matrix C is null. In this case, the

system matrix is a block-diagonal one and the two equations can be independently
solved (weakly coupled problem).
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In AC conditions, ω �= 0 holds and the coupling matrix C is not null. In this case,
the two equations cannot be independently solved (strongly coupled problem).

9.5 Subsequent Substitution Algorithm

To this end, the Banach-Picard algorithm of subsequent substitutions can be used.
Assuming that magnetic grid and thermal grid are the same (nm = nt), indicating k as
the iteration index and i as the node index, a possible pseudo-code is the following:

(i) the magnetic equation is solved A(k+1)
i =

[
K (k)

A

]−1
F (k)
A ;

(ii) the magnetic contribution to thermal source is updated C (k)A(k+1)
i ;

(iii) the thermal equation is solved T (k+1)
i =

[
K (k)

T

]−1[
F (k)
T − C (k)A(k+1)

i

]
;

(iv) the twofold convergence test∥∥∥A(k+1)
i − A(k)

i

∥∥∥∥∥∥A(k)
i

∥∥∥ < εA

and ∥∥∥T (k+1)
i − T (k)

i

∥∥∥∥∥∥T (k)
i

∥∥∥ < εT

is performed, with εA and εT prescribed thresholds of accuracy for magnetic
potential and temperature, respectively.
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Chapter 10
Numerical Methods for MEMS Design:
Inverse Problems

10.1 Direct and Inverse Problems

In engineering science, direct problems are defined as those where, given the input or
the cause of a phenomenon or of a process in a device, the purpose is that of finding
the output or the effect.

Inverse problems, conversely, are those where, given the measured or expected
output or effect, one wants to determine the input or the cause; moreover, inverse
problems are also those where, given the input and the corresponding output, one
tries to understand their interconnection.

The two types of problems, when applied to the same phenomenon or process,
represent the two logical ways of conceiving it: from input to output or the other way
round. The latter viewpoint is central for design.

In electromagnetics, inverse problems may appear in either of two forms:

• given measured data, which may be affected by noise or error, in a field region,
to identify or recover the relevant field sources or material properties or boundary
conditions of the region (identification or parameter-estimation problems);

• given desired fields in a device, or given the device performance based on them,
to determine, or design, sources or materials or shape of the device, producing the
specified performance (synthesis or optimal design problems).

In particular, optimal shape design problems, which are very popular in all
branches of engineering, belong to a group of inverse problems where the purpose
is to find the geometry of a device which can provide a prescribed behaviour or an
optimal performance [2].

If optimal design problems should be solved only by means of a trial-and-error
approach, it would not be possible to know something a priori about their solution,
which in turnwould rely just on the designer experience and intuition.On the contrary,
the study of inverse problems puts the ground for a systematic approach to the design.
This line will be developed throughout the book.
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Inverse problems have enormously influenced the development of the natural
sciences, a fact not generally appreciated. Often, such problems involve determining
physical laws e.g. through indirect observations. A famous example is the Newton
derivation of the inverse-square law for planet motions: given the form of the orbit,
derive the form of the force law that would generate the given orbit.

Only the inverse-square law can explain the motion along elliptically shaped
orbits: so doing, he solved the inverse Kepler problem. Newton organised his results
in the Principia Mathematica Philosophiae Naturalis (1687), where he presents the
solution just to many direct and inverse problems for planet orbits.

Two centuries later, Maxwell, in A treatise of Electricity and Magnetism (1892),
for the first time put forward a problem of optimal shape design of an air-cored
inductor: given a finite piece of wire, wind it in such a way to realize an inductor of
rectangular cross-section having maximum inductance.

The solution, found byMaxwell himself, is particularly simple: the optimal wind-
ing exhibits a squared cross-section such that 2r = 3l, where r and l are mean radius
of the winding and side length of the square, respectively.

10.2 Insidiousness of Inverse Problems

Despite the conceptual importance of inverse problems, the greater part of engineer-
ing science is dominated by direct problems, i.e. problems that can be characterized
as those in which exactly enough information is provided to carry out a unique
solution. A general description of direct problems may be given as follows:

let x, y and A symbolise the input, the output and the operator modelling the input-
to-output transformation, respectively. Then, the direct problem is to find Ax, i.e. the
value of the given operator at a point in its domain.

Conversely, assuming that the operator A is invertible, the inverse problem for
A is the direct problem for A−1; therefore, if A is not invertible, the solution to the
inverse problem does not exist.

On the other hand, if operator A represents a function, then for any given input
x in its domain, a unique output y is determined: in other words, the direct problem
has a unique solution. There is no guarantee, however, that the inverse problem A−1y
has a unique solution: in fact, for the same given y, x1 = A−1y might be different
from x2 = A−1y.

Moreover, if the operator A is continuous in some sense, then the solution to the
direct problem is stable with respect to small changes in the input, i.e. dy

y is small

if dx
x is small. Even when the operator has a well-defined inverse A−1, so that the

inverse problem is uniquely solvable, there is no guarantee that its solution is stable
against small changes dy; the inverse operator might, in fact, be discontinuous [4].

From themathematical viewpoint, following the Hadamard definition [5, 7], well-
posed problems (or properly, correctly posed problems) are those for which:
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(i) a solution always exists;
(ii) there is only one solution;
(iii) a small change of data leads to a small change in the solution.

The last property implies that the solution depends continuously upon the data,
which often are measured quantities and therefore are affected by noise or error.

Ill-posed problems, instead, are those for which:

(i) a solution may not exist;
(ii) there may be more than one solution;
(iii) a small change of data may lead to a big change in the solution.

For the sake of an example, to focus just on the dependence of the solution on data,
let the differentiation of a function g(x), known approximately, be considered. For-
mally, the superposition g(x) = g̃(x)+λ sin

(
x
λ

)
, where g̃(x) is the exact information

to recover and λ sin
(
x
λ

)
is an error term with zero mean on a period λ > 0, holds. It

is straightforward to see that g(x) → g̃(x) if λ → 0; however, after differentiation,
one has dg

dx = dg̃
dx + cos

(
x
λ

)
. Apparently, the condition λ → 0 does not imply the

condition dg
dx → dg̃

dx . This shows that arbitrarily small errors in data—i.e. function
g(x)—can determine uncontrolled errors in results, i.e. the derivative of g(x); in fact,
one has: inf x

dg̃
dx − 1 ≤ dg

dx ≤ supx
dg̃
dx + 1.

About ill-posed problems, the following remark can be put forward.
Identification problems have always a solution at least, while a solution may not

exist for optimal design problems; this happens when e.g. the prescribed quantity
does not fit with data. On the contrary, if multiple solutions exist to a given problem,
they might be similar, differing by e.g. a degree of smoothness or exactness.

All these reasonsmake inverse problems insidious; therefore, breaking the cultural
‘tyranny’ of direct problems in science is hardly difficult.

10.3 Classification of Inverse Problems

There are many ways to classify inverse problems. The formulation of inverse prob-
lems in electricity and magnetism implies to associate a procedure for field com-
putation (direct problem) and a procedure for the solution of the inverse problem.
Therefore, a classification can be based on the approach for field computation (e.g.
integral or differential, analytical or numerical). A more satisfactory classification
can be made, according to the formulation of the inverse problem and the relevant
mathematical method employed for its solution; this viewpoint will be developed
later.

When the given data come frommeasurements and the parameters governing field
equations, including material properties, are to be found, one speaks of identification
problems.

Otherwise, when the given data are arbitrarily taken and the field source or spec-
ifications of the field region (e.g. boundary conditions) are required, the problem is
called a synthesis problem.
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In engineering applications, often, the goal is to design the geometry of a device
so that a prescribed performance of the device, depending on the field, is obtained.
This kind of problem is commonly defined as optimal shape design problem.

The ultimate goal of the problem is to perform an automated optimal design
(AOD), when the solution is obtained automatically in terms of the required or best
performance.

In Chap. 14, some examples of optimal shape design problems solved by means
of automated procedures are presented and discussed.

10.4 Solving Inverse Problems by Means of Rectangular
Systems of Equations

In general, the numerical solution of field problems leads to a system of algebraic
equations of the type:

Ax = b (10.1)

where A is a full-rank rectangular m × n matrix, x is the unknown n-vector and b the
known m-vector.

If m < n, the system is called under-determined. If, on the contrary, m > n, the
system is called over-determined; the latter case is the most frequent when dealing
with inverse problems, because one normally has more conditions to fulfil than
degrees of freedom available.

Finally, if m = n, the matrix A is square. In this case, if det(A) �= 0, then A is
non-singular; therefore A−1 exists and the corresponding system of equations has a
unique solution for any b. This is the typical case when dealing with direct problems.

As far as the effect of a small perturbation of b on x is concerned, the following
remark can be put forward. Supposing m = n, let the condition number of A be
defined as follows:

cond(A) ≡ ‖A‖∥∥A−1
∥∥ = λmax

λmin
≥ 1 (10.2)

where λmax and λmin �= 0 are maximum and minimum eigenvalue of matrix A,
respectively. If cond(A) is large, then the matrix is said to be ill-conditioned and the
solution might be perturbed substantially by even a small change of b.

If A is rectangular, theoretically the inverse of A does not exist and the system
of equations has no or infinite solutions. However, if m > n and the rank of A is
equal to n (i.e. the n columns of A are linearly independent), a pseudo-inverse of A
can be looked for, by means of suitable numerical techniques like least-squares or
singular-value decomposition.
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10.5 Least Squares

If A is a m × n matrix (m > n) of rank n and b is a given m-vector, then a solution to
(10.1) can be found by minimising a norm, for instance the Euclidean or two-norm,
of the residual Ax-b. The latter is defined as

r(x) = ‖Ax − b‖22 = xT AT Ax − 2xT AT b + bT b (10.3)

The gradient of the residual is

∇r(x) = 2AT Ax − 2AT b (10.4)

Apparently, the residual has a unique minimum point x̃ such that∇r(x̃) = 0. The
so-called normal equations associated to (10.1) are obtained forcing just the latter
condition, giving

2AT Ax − 2AT b = 0 (10.5)

and, therefore,

AT Ax = AT b (10.6)

where ATA is a square n × n matrix. It can be proven that the vector

x̃ = (AT A)−1AT b (10.7)

fulfils the condition

‖Ax̃ − b‖2 ≤ ‖Ax − b‖2 (10.8)

for each n-dimensional vector x and so x̃ is the least-square solution to (10.1); matrix
(AT A)−1AT is called pseudo-inverse of A.

In principle, if A has full-column rank, ATA is positive definite; however, from
the numerical viewpoint, solving (10.6) might fail for a twofold reason:

• the magnification of ill-conditioning when passing from A to ATA, resulting in
cond(ATA) 	 1;

• the round-off errors after calculating the entries of ATA.

Therefore, the use of normal equations is not recommended because it might lead
to instability and inaccuracy.
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10.6 Singular-Value Decomposition

Amore effective approach is given e.g. by the Singular Value Decomposition (SVD)
method; basically, it consists of decomposing the matrix A, which is assumed to be
full-column rank (m > n), into the product of three matrices, i.e. a m ×m orthogonal
matrix U, a m × n block diagonal matrix S, a n × n orthogonal matrix V, such that
A = USVT .

In particular, it results

S =
[

Σ 0
0 0

]
(10.9)

with Σ = diag(σ1, . . . , σn). The diagonal entries of � are the singular values of A.
The solution to the least-square problem is then given by

x∗ = V S−1UTb (10.10)

with

S−1 =
[

Σ−1 0
0 0

]
(10.11)

and Σ−1 = diag
(
σ−1
1 , . . . , σ−1

n

)
. Also matrix VS−1UT is a pseudo-inverse of A.

10.7 Regularization

In field theory, using an integral approach, equations of the type:

g(x) =
∫

Ω1

K (x, y) f (y)dy, x ∈ Ω0 ⊆ 3, y ∈ Ω1 ⊆ 3 (10.12)

whereΩ0 is the field domain andΩ1 is the source domain, are frequently dealt with.
When f is given, g is the unknown and K is the known kernel; the problem of finding
g is a direct problem. In electricity and magnetism, (10.12) is nothing but the Green
formula relating potential g to source density f in an unbounded domain [3].

In turn, when g is given, f is the unknown and K is the known kernel; the problem
of finding f is an inverse problem. In this case, (10.12) is called Fredholm equation
of first kind [7].

The regularization method was proposed as a way to stabilize the solution of the
Fredholm equation of the first kind.
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For this class of integral equations, the solution f(y) does not depend continuously
on the given function g(x). Since the output is not stable against small perturbation
of the input, problem (10.12) violates the Hadamard conditions of well-posedness
(see Sect. 10.2).

In (10.12) the integral operator
∫
K (x, y) · dy can be discretized by means of

a finite-difference grid composed of n nodes, while the known term g(x) can be
discretized on another grid of m > n nodes. This gives rise to matrix A and vector b,
approximating the integral operator and the known term, respectively.

Due to the ill-posedness of the continuous problem (10.12), also the discretized
problem, i.e. the resulting set of linear algebraic Eq. (10.1), where vector x approx-
imates function f(y), is ill-posed. Nonetheless, taking into account some a priori
information about the solution, it is possible to convert (10.12) into a well-posed
problem: for instance, if the norm of the solution x should be bounded, it makes
sense to incorporate a penalty term into the problem formulation.

To this end, let the Tikhonov functional be considered [8]; it is defined as

T (xα) ≡ ‖Axα − b‖22 + α‖xα‖22
= xTα AT Axα − 2xTα AT b + bT b + αxTα xα (10.13)

where regularized solution xα depends on parameter α ∈ (0, 1).
Then, the regularization problem reads

find inf
xα∈X T (xα) (10.14)

By forcing the equilibrium condition ∇T (xα) = 0, one finds a unique minimum
point; in fact, one has

∇[‖Axα − b‖22 + α‖xα‖22
] = 2AT Axα − 2AT b + 2αxα = 0 (10.15)

The solution x̃α to (10.15) is the so-called quasi-solution to problem (10.12).
Therefore, x̃α solves the system of linear equations αxα + AT Axα = AT b, or,
equivalently,

(
AT A + α I

)
xα = AT b (10.16)

The latter is theEuler equation associated toTikhonov functional. If columnsof the
augmented matrix AT A+α I are linearly independent, then the solution x̃α is unique
and it can be proven that it depends continuously on ATb. If an a priori estimate x0 of
the quasi-solution x̃α is known, then the second contribution to Tikhonov functional
is updated as α‖xα − x0‖22 and (10.15) becomes

(
AT A + α I

)
xα = AT b + αx0 (10.17)
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In other words, x̃α keeps the residual ‖Axα − b‖22 small in a stable way, which is
controlled by the penalty term α‖xα‖22. As far as numerical aspects are concerned, the
optimal value of the regularization parameter α is critical: if too small, the solution xα

will be oscillatory; if, on the contrary, too large, the solution will be over-smoothed.
There is another viewpoint to consider problem (10.14), i.e. in terms of a two-

objective minimisation. In fact, the norm ‖Axα − b‖22 in the Tikhonov functional
(10.13) accounts for the agreement of the field model to the supplied data. When the
norm itself is minimised, the agreement becomes very good, but the solution is likely
to be unstable. That is where the second norm ‖xα‖22 appearing in (10.13) comes in,
in order to control the smoothness of the solution, i.e. its stability with respect to
perturbations in the data. In turn, minimising the second norm by itself gives a very
smooth solution that might have nothing in common with the given data. Therefore,
the trade-off curve of the best compromises between agreement and smoothness is
to be sought for, by varying the regularization parameter α in a suitable way and then
selecting an equilibrium point along the curve. As a results, a typically L-shaped
curve is obtained: various techniques of regularization are based just on the use of
the L-curve [6].

10.8 Optimal Synthesis of Current Distribution in a Small
Solenoid

Suitably arranged current-carrying coils can be used to synthesize a magnetic field
with the required distribution. In biomedical engineering there are several appli-
cations: for instance, a homogenous magnetic field is the background of nuclear
magnetic-resonance spectroscopy. Moreover, in magneto-fluid hyperthermia (MFH)
the field homogeneity helps the uniform distribution of heat generated in the nano-
particle fluid previously injected in the target region, like e.g. a tumor mass under
treatment [1]. A case study of current synthesis in a small solenoid by means of
Tikhonov regularization is here presented.

Let a single-layer solenoid of finite length be considered. A non-trivial inverse
problem is the synthesis of the magnetic field along the solenoid axis. This problem
can be formulated as follows: find the current density J(y),−d ≤ y≤ d that originates
the prescribed distribution B0(y) of the induction field in a one-dimensional sub-
region –c ≤ y ≤ c on the solenoid axis. It is assumed that the solenoid is supplied by
a winding, sectioned in a number of equal coils along the y axis, in such a way as to
allow different currents in different coils. After integrating the equation which gives
the induction field due to an elementary ring with internal radius ri, external radius
rs, and carrying current J(ξ )dξ , the following expression for the induction field at
point y due to the multi-coil winding holds

B(y) = μ0

2

d∫

−d

rs∫

ri

J (ξ)r2drdξ
√[

r2 + (y − ξ)2
]3

(10.18)
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If B(y) = B0(y),−c ≤ y ≤ c is the prescribed function and J(ξ ),−d ≤ ξ ≤ d is the
unknown function, then (10.18) proves that the field distribution which is required
on the solenoid axis can be synthesized by means of a suitable current distribution in
the winding coils. Specifically, a small-size solenoid, useful for in vitro experiments
of MFH, is here considered: d = 15 mm, ri = 9 mm, rs = 10 mm, c = 5 mm. The
winding is composed of 20 coils: therefore, 20 unknown currents (design variables)
are to be identified. In turn, the induction field is prescribed in 41 evenly spaced points
along the solenoid axis. Due to the linear relationship between current distribution J
and induction field B in (10.18), the synthesis problem can be cast as the solution of
a rectangular system of equations

Ax = b (10.19)

where A is the (41,20) matrix linking the field at the probe points with the current
in the turns, x the vector of unknown currents, while b is the vector of prescribed
induction values at the probe points: put simply, (10.19) is the discretized version of
(10.18). In particular, a uniform field distribution B0 = 0.84 mT is prescribed. The
problem is an ill-posed one because the rank of (20,20) normal matrix AtA is equal
to 11 < 20.

In Fig. 10.1 the curve relating the residual norm with the quasi-solution norm as a
function of regularizing parameter α is shown: the marked point corresponds to the
optimal value of α, i.e. the lowest value of α such that augmented matrix AtA + αI is
a full-rank one. It could be interpreted as the best trade-off between two conflicting
criteria, namely: the residual norm, which controls accuracy, and the quasi-solution
norm, which controls instability against small perturbation of data.

In Fig. 10.2 the corresponding distribution of current per turn is shown.

Fig. 10.1 Curve relating the
residual norm with the
quasi-solution norm as a
function of regularizing
parameter α: the marked
point corresponds to the
optimal value αopt = 7.8 ×
10−33
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Fig. 10.2 Current
distribution originating
uniform field distribution B0
along the solenoid axis when
the regularizing parameter
value is α = αopt
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Chapter 11
Numerical Methods for MEMS Design:
Automated Optimization

Paolo Di Barba and Maria Evelina Mognaschi

11.1 Solving Inverse Problems by Means of Numerical
Optimization: Single-objective Formulation

As stated in Sect. 10.3, the problem of identifying or reconstructing a given quan-
tity, based on known data e.g. measurements, is called an inverse problem. Loosely
speaking, an inverse problem is one in which an effect is measured and the cause of
it is to be determined. Inverse problems for which data come frommeasurements are
known as identification problems.

Another group of inverse problems refers to synthesis problems in which data
are assumed arbitrarily. Optimal design problems, where the purpose is to design
a device which can provide a defined behaviour or optimal performance, belong to
this group. In particular, when the geometry of a device has to be optimized, a shape
design problem, also called “shape synthesis”, occurs. In Chap. 14 shape design
problems for MEMS devices are solved by means of methods shown and discussed
in this Chapter.

The n unknowns x of an inverse problem are normally called design variables.
They are real values, although in some cases they are integer, belonging to a feasible
region Ω . In multivariate problems, n > 1.

The design variables may be geometric coordinates of the field region for shape
design problems, because the design variables parametrize the geometry [7]; in turn
they could be values of sources [11] or parameters characterizing the region (for
identification problems) or whatever.

The solution of the inverse problem is generally performed by means of the opti-
mization (minimization) of a suitable function f(x) called objective function or cost
function or design criterion:

given x0 ∈ Ω find inf
x
f (x), x ∈ Ω (11.1)

where x0 is the initial guess; properly speaking, (11.1) is a problem of unconstrained
optimization. Normally, it is assumed that f is bounded in Ω .
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Function f may represent some performance depending on the field or simply the
discrepancy between computed and known field values (error functional), that is the
residual ‖Ax − b‖ in Sect. 10.5.

When it is required to maximize an objective function, it must be considered that

supx f (x) = inf
x

[−f (x)] (11.2)

In general, the objective function f, which depends on the field, is not known ana-
lytically. Consequently, the classical conditions of optimality (i.e. null gradient and
positive-definite Hessian matrix) cannot be applied a priori, because the objective
function is known only numerically as a set of values at sample points. Moreover, in
general, f is neither convex nor differentiable or smooth. Therefore, it is not guaran-
teed to get solutions; in particular, f might exhibit some local minima in addition to
the global one. Any way, a solution to (11.1) can be obtained just numerically and
the procedure may be troublesome and time-consuming.

As said before, the numerical solution of inverse problems in electricity and
magnetism require, as a rule, a routine for calculating the field, which is integrated
with a routine minimizing the objective function [15, 17].

Usually, the device or system to be optimized is represented by a finite-element
model in two or three dimensions. The main flow of the computation is driven by the
minimization routine, which in the simplest way is carried out step by step. Starting
from x0, an iterative procedure updates the current design point xk as

xk+1 = xk + λsk (11.3)

where λ is a scalar and sk is the current search direction within the feasible region.
Given xk+1, the routine of field analysis generates a new finite-element grid, the field
simulation is restarted and the evaluation of f(x) is so updated.

At the end of computation, the result could represent either a local minimum or
simply a point which is better than the initial one because f has decreased; in the
latter case, a mere improvement (and not the optimization) of f has been achieved. In
general, the optimization trajectory may converge to different local minima, depend-
ing on the initial point, and the global optimum cannot be deduced from the local
behaviour of the objective function.

In a more advanced formulation, the objective function should fulfill constraints,
which may be expressed as inequalities, equalities and bilateral bounds. Formally,
the problem can be stated as follows:

given x0 ∈ Ω find inf
x
f (x), x ∈ Ω (11.4)

subject to

gj(x) ≤ 0 j = 1, . . . , ni
hj(x) = 0 j = ni + 1, . . . , nc
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�k ≤ x ≤ uk k = 1, . . . , nb (11.5)

Constraints and bounds set the limits of the feasible regionΩ . A simple technique
to handle constraints is to transform the constrained problem into an unconstrained
one, by adding a penalty term to the objective function, when the design variables
violate the constraints. This way, a sequence of unconstrained problems is solved,
which is assumed to converge to the solution of the constrained problem.

A cost-effective and accurate solution to the optimization problem depends on the
number of design variables and constraints, as well as on the properties of objective
function and constraints.

11.2 Multi-objective Formulation: Pareto Optimality

In some cases multiple objective functions are prescribed simultaneously. Problems
of this kind belong to the category of multi-objective or multi-criteria optimization.
Several design problems in electricity and magnetism are characterized by a vector
of nf objective functions in mutual conflict, for which the most general solution is
represented by the Pareto front of non-dominated solutions, i.e. those for which the
decrease of a function is not possible without the simultaneous increase of at least
one of the other functions. Non-dominated solutions are called also non-inferior or
efficient solutions.

Formally, considering nv variables, a multiobjective optimization problem can be
cast as follows:

given x0 ∈ Ω find inf
x
F(x), x ∈ Ω (11.6)

subject to (11.5).
In (11.6), F(x) = {

f1(x), . . . , fnf (x)
} ⊂ Rnf is the objective vector, assuming

nf ≥ 2. Therefore, F defines a transformation from the design space Rnv to the
corresponding objective space Rnf . It is assumed that the objectives are bounded and
conflicting, namely

∃x∗
i such that fi

(
x∗
i

) = inf fi(x), i = 1, . . . , nf (11.7)

and x∗
i 	= x∗

j , i 	= j, j = 1, . . . , nf .
In general, the utopia solution

U = {Ui} = {inf fi(x)}, i = 1, . . . , nf (11.8)

minimizing all f i does not exist and non-dominated solutions x̃ ∈ Ω are accepted. It
can be noted that theUtopia point U is out of the feasible design regionY (Fig. 11.1a).
In a symmetrical way, the Anti-Utopia point A (see Fig. 11.1a) can be defined as the
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Fig. 11.1 Objective space (a) and Pareto dominance criterion (b)

solution which maximizes all f i, while the Nadir point R is the mirror image of the
Utopia point [3].

In this respect, given two feasible solutions xa ∈ Ω and xb ∈ Ω , xa is said to
dominate xb if fi(xa) ≤ fi(xb), i = 1, . . . , nf and fi(xa) < fi(xb) for at least a value
of index i = 1, …, nf. Now, let P ⊂ Ω be a set of non-dominated solutions x̃a; if,
for any x̃a ∈ P, there is no xb ∈ Ω dominating x̃a, then P represents the Pareto set
and the corresponding image Φ = F(P) is the Pareto front; the latter is called also
trade-off curve.

For the sake of an example, in Fig. 11.1b six solution points and the dominance
dihedral related to solution y1 are shown in a two-dimensional space: y3, which
belongs to the dominance dihedral, dominates y1, while y2, y4 and y6 are indifferent
with respect to y1 and, finally, y5 is dominated by y1.

Traditionally, the multiobjective problem is reduced to a single-objective one by
introducing a preference function ψ(x), e.g. the weighted sum of f i(x):

ψ(x) =
nf∑

i=1

cifi(x), 0 < ci < 1,
nf∑

i=1

ci = 1 (11.9)

However, in the last decades, attention is paid to methods able to solve a multi-
objective optimization problem considering separately the two objective functions
and, recently, new methods for solving the so-called many-objective optimization
problems (more than two or three objective functions) are under study [10, 15].

Accordingly, in this book, all the proposed multi-objective problems are solved
in terms of identifying the relevant Pareto front.

11.3 Gradient-Free and Gradient-Based Methods

Several algorithms for both unconstrained and constrained optimization are available;
basically, they can be sorted into two broad classes, i.e. gradient-free and gradient-
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based methods; in the former case, the information about the derivative is not used
while in the latter case it is used.

Methods that use only function evaluations (zero-order methods) fall under the
first class; they are suitable for problems characterized by non-linearity and disconti-
nuities of the objective function. The computational efficiency is low, due to repeated
calls to the objective function.

In turn, first-order gradient-based methods basically follow the direction of the
steepest descent; they are more efficient than the zero-order ones. when regular
objective functions are dealt with. The simplest way to approximate the gradient
of the objective function relies on finite differences; e.g. if gi(xi) ≡ ∂f

∂xi
is the i-th

component of the gradient, a forward difference gives

gi(xi) ∼= f (xi + h) − f (xi)

h
, i = 1, . . . , n (11.10)

where h is the incremental step. However, it should be noted that the approximation
of the gradient is expensive and represents also an additional source of numerical
ill conditioning (round-off errors in the computation of both objective functions and
finite differences).

Higher-order methods, like Newton’s method, are rarely used because they are
suitable only when the Hessian matrix can be easily computed.

Regardless of the order, all the aforementioned methods are local in a sense,
because they are able to identify the closest minimum to the starting point, which is a
local one, unless f is convex. For this reason they are said to perform a deterministic
search.

To cope with these difficulties, non-deterministic minimization algorithms, which
are derivative-free and perform a stochastic search, have been developed.

Non-deterministic methods offer remarkable advantages over methods that use
only local information to improve the current solution. In fact, they are robust, reli-
able and suitable for non-convex, non-smooth and discontinuous functions, also
with discrete-valued variables. In particular, they give a chance to approximate the
global minimum of the objective function, regardless of the starting point. Another
advantage is that they exhibit an inherent parallelism. The drawbacks are the huge
computational effort and the slow convergence.

Since they have an heuristic background, it has to be pointed out that for non-
deterministic methods convergence is proven just in numerical terms and not on
theoretical basis, contrary to what happens for their deterministic counterpart.

In the non-deterministic category, themost popularmethods are: simulated anneal-
ing, evolution strategies, genetic algorithms.More recently, a class of nature-inspired
methods has been developed, among which: ant colony, particle swarm, artificial
immune systems.

An example of gradient-free method is the simplex method. It is based on the
comparison among the cost function values at the n + 1 vertices of a polytope
(simplex), where n is equal to the dimension of the search space. In the case of n =
2 (n = 3), the polytope is a triangle (a tetrahedron).
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The algorithm begins with n + 1 points, which form the starting polytope, and
the calculation of the associated objective function values. At each iteration a new
polytope is set up by generating a new point to replace the worst vertex of the
old polytope, i.e. the vertex corresponding to the highest value of objective function.
Specifically, theworst vertex is replaced by its reflectionwith respect to the remaining
n vertices. If the objective function evaluated at the new point is higher than at the
worst vertex, then the new point is rejected and the vertex with the second worst
value is reflected.

When it happens that a vertex belongs to the polytope for a number of iterations
which exceeds the given one, then the polytope is updated by contraction. The whole
procedure is iterated until the diameter of the simplex is less than the specified
tolerance.

11.4 Evolutionary Computing: The Genetic Paradigm

Evolution strategy mimics the survival of the fittest individual that is observed in
nature. An algorithm of the lowest order (i.e. a single parent generates a single
offspring) is here shortly presented. The search in the design space begins in a region
of radius d0 (standard deviation) centered at the initial point m0 (mean value); m0

is externally provided, while d0 is internally calculated on the basis of the bounds
boxing the variation of the design variables.

Setting m = m0 and d = d0 at the initial iteration, the generation of the design
vector x = m + ud then proceeds, resorting to a stochastic sample u ∈ (0, 1);
generally, u is a normally distributed sample. It is verified that x fulfils bounds and
constraints (i.e. that x is feasible), otherwise a new design vector is generated until
it falls inside the feasible region.

The associated objective function f(x) is then evaluated and the test f(x) < f(m)
is performed; if the test is successful, m is replaced by x (the so-called mutation or
selection process), otherwise m is retained.

The next step is concerned with the size of the search region that will be used
for the successive iteration. The underlying rationale is that when a point better than
the current one is found, the radius of the search region is increased around the new
point to search for further improvements; if no improvement is found, the radius of
the search region is gradually decreased up to convergence (annealing process).

In this respect, the evolutionary algorithm substantially differs from a determin-
istic one, in which the search region would be narrowed around the better point in
order to converge towards the corresponding, nearest minimum. The drawback, in
the latter case, is that this minimum might be a local one. On the contrary, the evo-
lutionary algorithm, if successful in finding a better point, covers a larger region of
search in order to see if there might be another good candidate in the neighborhood,
and then does the opposite when this is not possible. This way, there is a non-zero
probability of finding the region where the global optimum of the objective function
is located.
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The annealing process is ruled by the history of the k previous iterations, used to
establish a trend: if at least a fraction p of the last k iterations were successful (an
iteration is successful if x is feasible and improves the objective function), then the
trend is said to be positive, while it is negative otherwise. If the trend is positive, the
radius d of the search region is set to q−1d; otherwise, it is set to qd. In particular,
during the first k iterations, d remains unchanged.

The procedure stops when the prescribed accuracy
∣∣∣ d
d0

∣∣∣ is achieved. Quantities
p and q are named probability of success and rate of annealing, respectively and
represent the “tuning knobs” of the algorithm; heuristic values for k, p and q are 50,
0.2 and 0.8–0.9, respectively.

11.4.1 Multi Objective and Pareto-like Evolution Strategy

It is based on an extension of the zero-order evolution strategy, where the mutation
operator is modified according to the concept Paretian optimality. Specifically, an
offspring solution is accepted if and only if it strongly dominates the parent solution
for all the objectives, provided problem constraints are fulfilled. As a consequence,
the algorithm finds a trajectory connecting the start solution to a non-dominated
solution, which is assumed to approximate a Pareto-optimal solution in the nf -
dimensional objective space (nf = 2 for MOESTRA [8] and nf ≥ 2 for P-Estra), [14].
The algorithm stops when the search radius in the design space is smaller than the
prescribed tolerance.

11.5 Nature-Inspired Computing: Wind-Driven
Optimization

Wind Driven Optimization (WDO) is inspired by the atmospheric motion of air
parcels [1]. In fact, wind blows in a way to equalise imbalances in the air pres-
sure; likewise, in optimisation the design points are moved from high-gradient to
low-gradient positions. Accordingly, a swarm of p > 1 artificial air parcels, which
are randomly distributed over the n-dimensional design space and assigned random
velocities, is considered. TheWDO algorithm is governed by the following equation:

ui(tk+1) = (1 − α)ui(tk) − gxi + β
∣∣1 − i−1

∣∣(xopt − xi
) + 2u⊥ (11.11)

where the left-hand side gives the velocity of the i-th out of p air parcels at time
tk+1. The right-hand side is characterised by the following four terms: the inertial
term, depending on velocity at time tk and frictional coefficient α (conservative
operator); the gravitational-like term gx, which biases the current position xi towards
the gravity centre of the design space (pull-in operator); the pressure-gradient term
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(themain operator), where index i≥ 1 is proportional to the pressure value at position
xi while xopt is the position of the lowest pressure found in the previous k − 1
iterations; the Coriolis-like acceleration term, due to which the velocity of the i-th
parcel is influenced by the orthogonal velocity of another, randomly selected parcel
(information-exchange operator). Positive-valued constants (α, β, g) are algorithm-
dependent parameters. The position of the ith air parcel at iteration k + 1 is then
updated as

xi(tk+1) = xi(tk) + ui(tk+1) (11.12)

and the boundaries are checked to prevent any air parcel from exiting the design
space. The procedure continues until the maximum number of iterations is reached.
Finally, the best pressure location at the end of the last iteration is recorded as the opti-
misation result. The WDO is able to approximate the solution to a single-objective
optimisation problem, provided pressure value and air parcel position correspond to
objective function and design variable vector, respectively. To generalise the algo-
rithm, and make it able to solve a multi-objective optimisation problem exhibiting
m > 1 objective functions in conflict (M-WDO), the following modifications are
needed. The most general solution is given by the Pareto front of non-dominated
solutions, i.e. the set of solutions such that no decrease of a function is possible
without the simultaneous increase of at least one of the other m − 1 function. To this
end, in M-WDO a generalised pressure, which takes into account simultaneously
m objective functions, is defined [4, 9]. At the current iteration, air parcels in the
swarm are mapped from the n-dimensional design space X to the m-dimensional
objective space F, where coordinates are just the objective function values (f 1(x), …,
f m(x)) of design vector (x1, …, xn). In F space, air parcels are sorted according to the
following criterion. The air parcels in the swarm corresponding to non-dominated
solutions are assumed to identify the first sub-front, which is assigned rank index
equal to one. Then non-dominated solutions are temporarily ignored to process the
rest of air parcels in the swarm. The procedure is continued until all air parcels are
sorted in sub-fronts. By definition, all solutions within a sub-front are equivalent and,
therefore, they are assigned the same generalised-pressure value, equal just to the
rank index of the sub-front they belong to. This way, in the subsequent iteration the
algorithm will both improve the solutions of the first sub-front and move dominated
solutions towards the first sub-front, in the attempt to minimise the generalised pres-
sure of each air parcel in the swarm. So, the governing equation is basically (11.11);
however, factor |1 − i −1| must be updated as |1 − j −1|, where j ≥ 1 is the rank index
of the sub-front the ith solution belongs to. A simplified pseudo-code follows:

(0) start;
(1) initialise p > 1 air parcels and define m > 1 objective functions;
(2) set design space boundaries and max number of iterations;
(3) assign random position and velocity;
(4) compute objective functions and map air parcels in F space;
(5) sort air parcels in non-dominated sub-fronts;
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(6) evaluate generalised pressure for each air parcel;
(7) update velocity;
(8) update position and check design space boundaries;
(9) save the non-dominated solutions; If the max number of iterations is reached,

then go to step 10; else go to step 4 and continue;
(10) end.

The whole procedure gives rise to a quick convergence towards the nondomi-
nated region of the objective space. Moreover, the computational cost of M-WDO
algorithm is the same as WDO, i.e. proportional to the number of air particles times
the maximum number of iterations. Most of runtime is due to the computations of
objective functions, which generally require to solve a field analysis problem.

11.6 Biogeography-Based Optimization

Computational biogeographymodels the process of natural immigration and emigra-
tion (or extinction) of species between small islands in the search for more friendly
habitats,which is observed in nature [18]. The assumption of small island is important
in order to exclude surface-related local perturbations, like e.g. climate variations,
that might make a subregion most preferred to other subregions of the same island.

Each solution considered in a biogeography-inspired optimization algorithm
(BBO) is treated as a habitat (design vector) composed of suitability index vari-
ables (SIV, design variables), and each habitat exhibits a quality given by the habitat
suitability index (HSI, objective function) [21]. Remarkably, in contrast to GA based
algorithms, the original population is not discarded after each generation, but it
is progressively modified by means of two stochastic operators, i.e. migration and
mutation: migration improves the HSI of poor habitats by sharing features from good
habitats; in turn, mutation modifies some randomly selected SIV of a few habitats in
view of a better exploration of the ecosystem (design space). At each generation BBO
exploits the HSI of each habitat based on its migration rate, while the emigration
rate is set to be complementary to immigration. This way, the HSI of each habitat is
improved (see Fig. 11.2).

In particular, at each iteration, habitats are sorted from the best ones to the worst
ones according to the relevant value of the fitness. For each SIV of each habitat a
random event rj, such that 0 < rj < sup(I,E) with I maximum immigration rate and
E maximum emigration rate, is generated. Then value ri is compared with the cor-
responding immigration rate λi of the considered habitat. If rj > λi then immigration
occurs: the SIV considered in the current ecosystem migrates to the next ecosystem,
keeping the same location (Fig. 11.3a).

In contrast, if rj < λi emigration occurs (Fig. 11.3b): the current SIV in the con-
sidered habitat (say the ith habitat) goes extinct and the SIV of another habitat (say
the kth habitat) takes the same SIV position in the ith habitat of the next ecosystem.
The kth habitat is selected depending on the emigration rate and the SIV.
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Fig. 11.2 Flow chart of the proposed BiMO algorithm

Fig. 11.3 Schemes of immigration and emigration events
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In computational electromagnetics, applications and also modifications of BBO
are an emerging new field of research: various single-objective problems of optimal
design have been successfully solved; moreover, attempts to transform BBO in a
multi-objective optimization algorithm have been considered [20, 22, 23]. In par-
ticular, the concept of predator-prey has been implemented for hunting the worst
individuals per objective function and making the surviving individuals spread in the
objective space in order to escape from the predator [2]. Though being interesting
and effective, similar approaches might suffer from some limitations, like e.g. the
possible loss of some non-dominated solutions (the worst individual per objective
functionmight well be the end of the current set of non-dominated solutions), and the
lack of an explicit criterion ruling the spread or crowd of the surviving individuals
in the objective space.

As an alternative, in this Chapter, a modification of the definition of HSI bymeans
of a generalized fitness is shown [5, 6, 12, 13, 16]. It takes into account simultaneously
two or more objective functions by exploiting the concept of non-dominated ranking
of solutions in the objective space. At the current iteration, habitats are ordered
according to two criteria: first, they are subdivided in locally non-dominated sub-
fronts which in turn are ranked from the first to the last. Next, habitats are ranked
within the sub-front they belong to, taking into account their crowding distance; in
fact, crowded habitats are less preferred than habitats which are regularly spaced.

In general, let a population of np > 1 individuals, each individual provided with
nf > 1 objective function values, be considered; a non-dominated set of solutions is
found based on the following algorithm:

0)  initialize k=1;
i) begin with i=1;
ii) for j=1,np and i≠j, compare individuals xi and xj according to the definition of 

dominance for all nf objectives;
iii)  if, for any j, xi is dominated by xj , consider xi as “dominated”;
iv) if all individuals have been considered, go to step v;

else set i as i+1 and go to step ii;
v)   all individuals that are not marked as “dominated” are non-dominated solu-

tions belonging to front k; 
vi)   remove non-dominated solutions, set k=k+1 and go to i);

else end .

All the individuals found at step v are assumed to identify the k-th non-dominated
front in the population and are assigned a generalized fitness value (e.g. equal to k,
the index of the current front). At a first glance, the same fitness value is assigned
to all non-dominated individuals in the k-th front, to give them an equal reproduc-
tive potential. In order to maintain diversity in the population, the non-dominated
solutions are then shared with their fitness values. Basically, sharing is achieved by
dividing the fitness values by a quantity (called niche radius) inversely proportional
to the number of individuals around it. This procedure causes multiple optimal points
to co-exist in the population. Once they have been identified, a fitness value, which
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is higher than k and smaller than k + 1, is assigned to each individual. Then, shared
fitness values are updated as before.

After sharing, non-dominated individuals are temporarily ignored to process the
rest of population. This step-by-step procedure is iterated to find the (k + 1)th front
of non-dominated individuals in the population. The process is continued until all
population individuals are assigned a shared fitness value.

Finally, elitism is exploited by preserving a part of the non-dominated habitats at
the current generation.

The µBiMO method, an extension of the biogeography-inspired multi-objective
optimisation (BiMO) algorithm, was proposed recently [19]. It is suitable for solving
multi-objective optimisations in the field of industrial design, where the objective
functions are evaluated by means of numerical methods as the FEM. In fact, it is
based on a small number of islands (hence the name µBiMO), i.e. few objective
function calls are required. The algorithm so modified leads to a strong reduction of
computational time, and, at the same time, improves the quality of results.
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Chapter 12
From MEMS to NEMS

Teodor Gotszalk

12.1 Introduction

Nanotechnology, as the scientific and technological discipline dealing with the
design, fabrication and application of systems whose dimensions or tolerances are
in the domain of nanometers, is becoming increasingly important in many industrial
and scientific areas.Nanotechnologies and nanoscience are triggered by diverse fields
and applications but on the other hand, they trigger by themselves future industrial
and practical solutions. One of the most important challenges observed nowadays in
nanotechnology is driving the manufacturing processes to sub-nm accuracy level for
critical features and positioning tasks.

The progress in nanotechnology is directly connected with the progress in the
Micro-Electro-Mechanical Systems (MEMS) technology, which in many countries
is also called as the Microsystems technology. In general it can be described as
the technology of miniaturized electro-mechanical devices and structures that are
fabricated using technologies used for fabrication of semiconductor integrated cir-
cuits (ICs). To the MEMS belong simple devices like supported beams (cantilevers),
double-clampedmicrobridges andmembranes as well as complicated structures with
moving mechanical components, whose deflection is precisely detected and con-
trolled. In the most mature form the electromechanical components are integrated
with microcontrollers, which perform not only simple operations but enable imple-
mentation of artificial intelligence (AI) algorithms.

The critical physical dimensions of the MEMS can vary from several microns
to several millimeters. The attractiveness of the MEMS technology is intuitive—the
small dimensions of theMEMS device make theMEMS device sensitive to phenom-
ena occurring atmicro- andnanoscale. In otherwords the smaller structure onewishes
to observe the smaller tool must be used. Moreover, as the MEMS are fabricated in
the so called batch processes, their cost can be reduced and the scale of integration
increased, leading to the increase of the observation throughput. It should be noted
however, that the MEMS are distinct from the idea of the molecular electronics and
molecular nanotechnology. In principle, the MEMS are fabricated in the so called
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top-down processes, in which a device is assembled by various processes shaping
the final mechanical and electrical device form. In contrast, bottom-up processes, are
based on the chemical properties of individual species, which cause single-molecule
components to self-organize and/or self-assemble into some useful conformation. It
should be noted however, that the MEMS make it possible to manipulate with single
molecules and from that point of view the MEMS are of huge importance for the
bottom-up technology.

In the natural way the MEMS technology merges at the nanoscale into Nano-
Electro-Mechanical-Systems (NEMS). The experimental possibilities are in this case
even bigger as the tool dimension size is reduced [15]. Challenge of the today’s
MEMS/NEMS technology is that it does not only involve application of modern
microfabrication techniques but also require thorough analysis of the system oper-
ation. The analysis based on classical physics cannot often be used to describe and
interpret the phenomena defining the functionality of a MEMS/NEMS device. At
these scales of dimensions the large surface area to volume ratio of the MEMS
devices, surface effects such as electrostatics, wetting, molecular adhesion, which
includes chemical interactions, dominate volume effects such as inertia or thermal
mass. Due to very small device dimensions and tiny distances between the device
components,which are beingmoved, quantumphenomenamust be taken into account
in order to describe the recorded phenomena. This in turn makes the interpretation of
the observed MEMS/NEMS behavior distinct from the interpretation the engineers
are today accustomed to. In Table 12.1 a group ofMEMS/NEMS devices is presented
illustrating the described tendency. The list begins with a MEMS cantilever whose
actuation is driven electromagnetically [26]. The spring beam is formed out of crys-
talline silicon, a metal thin film loop is used to actuate the structure deflection. The
simplest way to fabricate the structures whose thickness is of hundreds of nanome-
ters is to form them out of a thin film. In this way the mass of the structure can be
reduced as in case of the silicon nitride microbridges [23]. Silicon nanowires are one
the next NEMS device examples [38]. When released out of the substrate they can
act as nanoresonators. Themost important feature of the proposed architecture is that
each of the wires integrated in an array can be addressed separately, which increases
the operation throughput, as the response of every wire can be sensed separately.

Besides classical materials utilized and applied in micro- and nanoelectronics,
there are also attempts to apply the 2 dimensional (2D) crystals as the materials for
theMEMS andNEMSdevices. In such a setup, the atomically thickmembranes form
the NEMSmechanical part. Excellent material properties of 2D structures make such
systems very attractive [4, 5, 8].

As the MEMS/NEMS devices have been developed and applied, more and more
frequently progress in their metrology has been also observed. Metrology is defined
as the science of measurement including all practical and theoretical aspects. It is
essential for scientific research and development (R&D) as well as for technological
innovation. High quality metrology is critical to the major advances in all scientific
fields. Moreover, metrology supports modern industrial competitiveness and devel-
opment of new and improved products and processes.



12.1 Introduction 117

Table 12.1 MEMS and NEMS devices-dimensions and mass

MEMS
electromagnetically
actuated cantilever

MEMS
Silicon nitride
microbeam

NEMS
Silicon nanowires

Graphene based
NEMS membranes
(GNEMS)

Length
(μm)

600 600 5 10

Thickness 10 μm 100 nm 50 nm Non-defined

Mass 50 ng 50 pg 50 fg Non-defined

LordKelvin quoted in 19th century: “If you cannotmeasure it, you cannot improve
it”, which means that without reliable measurements, we do not understand properly
and cannot control, manufacturing process in the reliable manner. Thus, advances in
metrology and theirs effective use have a profound impact on our understanding of
and ability to shape the world around us.

Moreover, itmust be said that: not only is progress in nanotechnology, nanoscience
and microsystem technology enabled due to the headway made in nanometrology
but it also stimulates the development of measurement methods and techniques. This
bidirectional relation makes the metrology research unique and of very high interest
for almost all scientific fields.

Limitation of the today metrology is that the procedures, applied by National
Metrological Institutes (NMIs) and introduced in the everyday practice, are mostly
based on classical theorems (including classical elasticity theory, classical electrody-
namics, thermodynamics etc.). It is clear, that because of the progress in miniaturiza-
tion the role of the so called Quantummetrologywill be increasing continuously. The
first symptoms of this tendency, involving the introduction of the Josephson voltage,
Hall quantum resistance reference standards, have been already indicated but it is
evident to us that the more basic orientated research on this field will be necessary
so that to make the mentioned theories accessible for wider group of scientist and
technicians.

12.2 NEMS Sensitivity and Resolution

The vibrating MEMS/NEMS can be described basing on the simple harmonic oscil-
lator (SHO) equation:
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m
∂2x(t)

∂t2
+ γ

∂x(t)

∂t
+ kx(t) = 0 (12.1)

wherem is theMEMS/NEMSmass, γ is the damping ratio and k is theMEMS/NEMS
stiffness, x is the structure deflection. The above equation can be rewritten as:

∂2x(t)

∂t2
+ ω0

Q

∂x(t)

∂t
+ ω2

0x(t) = 0. (12.2)

where Q =
√
km
γ

is the quality factor and ω0 is the angular frequency of the free

structure vibration: ω0 =
√

k
m .

In many investigations MEMS/NEMS are used as resonators, which means that
the deflection is excited by the external force, in this case:

∂2x(t)

∂t2
+ ω0

Q

∂x(t)

∂t
+ ω2

0x(t) = f (t)

m
. (12.3)

where f (t) is the force applied to aMEMS/NEMS to excite its vibration. The displace-
ment x(t) can be derived in frequency domain by Fourier transforming of Eq. (12.3):

X (jω) = F(jω)

m

1(
ω2
0 − ω2

) + j ωω0
Q

, (12.4)

where F(jω) and X(jω) are Fourier transforms of the force and MEMS/NEMS dis-
placement respectively.

As investigations are usually performed using a network/spectrum analyzer in
frequency space, the presented analysis inwhichMEMS/NEMS response is analyzed
in frequency domain is very useful. Moreover, the recorded response signal can be
split into real and imaginary or amplitude and phase components, which opens a
field for a variety of detection techniques.

When Lorentz fitting is applied, the radial resonance frequency (ωo), can be accu-
rately determined. The full width at half maximum (Δω) is related to the damping
coefficient γ. In all the mentioned above experiments the force F is related to the
actuation technology, responsible for excitation of MEMS/NEMS movement. It’s
worth noticing, that the resonance frequency can be calculated as:

ωr = ω0

√
1 − 1

2Q2
. (12.5)

However, it should be also noticed that for high quality factors the angular fre-
quency of free vibration is almost equal to the structure resonance frequency. Quality
factor, which is the measure of the energy dissipation, influences the dynamics of
the signal phase as well:
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ϕ = tan−1

(
ωω0

Q
(
ω2
0 − ω2

)
)

. (12.6)

12.2.1 Resolution and Sensitivity of MEMS/NEMS Devices

Two parameters of a MEMS/NEMS device are important to describe its properties:
the sensitivity and the resolution. The sensitivity of ameasuring system is the quotient
of the change in an indication of a measuring system and the corresponding change
in a value of a quantity being measured [29].

If a MEMS/NEMS device is applied as a mass change sensor the most efficient
way to observe its sensitivity is to observe device resonance frequency, which is

described by equation: ω0 =
√

k
m . Moreover, from technical point of view detection

of small frequency changes can be performed with the highest precision, stability
and accuracy using a modern phase locked loop (PLL) circuitry. If we differentiate
the above formula the following formula describing mass change sensitivity can be
obtained:

∂ω0

∂m
= −1

2

ω0

m
, (12.7)

which clearly shows that a higher mass change sensitivity is obtained when a
MEMS/NEMS device of small mass exhibits high resonance frequency.

For the doubly clamped bridge, taking into account that its resonance radial fre-
quency ω0b and the effective mass mb can be calculated basing on the following

formulas: ω0b = 2π · 1.05 t
l2

√
E
ρ
and mb = 2 · 0.73wtlρ, the mass change sensitivity

can be written as:

∂ω0b

∂mb
= 2.25

1

wl3

√
E

ρ3
. (12.8)

with E, Young’s modulus, ρ, mass density, w, bridge width and l, bridge length.
According to this formula the mass change detection sensitivity increases

when factors
√

E
ρ3 and 1

wl3 are maximized. In consequence materials forming a

MEMS/NEMS device of high elasticity and low mass density are of big interest.
In this case that the silicon carbide structures should exhibit 1.5 better sensitivity
than the silicon devices. Moreover, devices of small length and width are preferable.

Similar analysis of the mass change detection sensitivity can be done for the sup-
ported beam-cantilevers, which leads to analogous conclusions. In general structures
of low stiffness and high resonance frequencies are the most sensitive.

The performed above analysis indicates that the 2D NEMS structures are of big
importance for the modern sensor technology. A NEMS device formed out of 2D
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material exhibits extremely high Young modulus, which results from the atomic
structure of the vibrating components. In this case, if the structure does not contain
any defects the 2D NEMS elasticity is the results of atomic bonds between atoms
forming the movable NEMS part [2, 21].

The density of such a mechanical part is very low, as in the ideal case the movable
components are built only out of atoms. Although, at this place difficulties in the
interpretation of the observed phenomena, especially taking into account classical
theories of the mechanical and electrical engineering, must be noticed.

In general, if an elastic structure is being deformed by an external force, it experi-
ences internal resistance to the being induceddeformation and restores it to its original
state if the external force is no longer applied. There are various material parameters:
the so-called elastic moduli, such as Young’s modulus, the shear modulus, and the
bulk modulus, which describe the inherent elastic behavior of a structure as a resis-
tance to deformation under an applied load. The mentioned moduli apply to different
kinds of deformation, e.g. Young’s modulus applies to extension/compression of the
body, whereas the shear modulus applies to its shear.

The elasticity of a structure is exactly described by a stress-strain characteristic,
which is the relation between the so-called stress (which is the ratio of average
restorative internal force over unit area) and strain (which is the relative structure
deformation). In general, the characteristics is nonlinear, but by use of a Taylor series
it can be approximated as linear for sufficiently small deformations (which means,
that the higher-order terms can be neglected).

The linearized stress-strain relationship is described by the Hooke’s law, which
is usually applied to the elastic limit for most metals or crystalline materials. It
must be noted additionally, that because in general stresses and strains can have
various independent components the proportionality factor can no longer be just a
single number but rather a tensor containing real numbers (e.g. defined for various
crystallographic directions). Moreover, Young’s modulus is the technical parameter
resulting from interaction in continuum structure: it is therefore an average of various
atomic and molecular interaction which internally occur in the being deformed body.

This classical approach can and is very often applied in theMEMSanalysis, which
are big enough to be described with global parameters like e.g. Young’s modulus.
However if the analysis ofNEMS is considered, the fundamental questions arise if this
approach can be applied for structures, whose thickness corresponds to the atoms or
molecules which can be sometimes even counted. The most exact approach is in this
case to calculate elastic properties in ab initio, in other words from the first principles,
manner. An ab initio calculation starts in this case with the properties of constituent
atoms forming e.g. graphene flake and the laws of quantum mechanics. In general
the characteristics of isolated individual molecules can be derived and consequently
followed by computations of the interactions of larger and larger groups of molecules
and as a result the properties of the entire NEMS structure can be calculated. When
real structures are taken into consideration, e.g. polycrystals, containing defects,
supported or suspended on bulk holders, the ab initio calculations are extremely
difficult, time and labor consuming. The obtained results are quite often not the
intuitive ones and from theNEMSdesign and interpretation point of view not helpful.



12.2 NEMS Sensitivity and Resolution 121

Moreover, in MEMS and NEMS analysis it is essential that the terms stress and
strain must be defined without ambiguity. If NEMS are considered, the structure
deflection is usually of fractions of nanometers and is observed quite often in the
frequency bandwidth of up to 100 MHz. This creates a lot of technical problems in
the deflection detection and if the metrology is considered the procedures are even
more difficult.

The second parameter describing metrology using a MEMS/NEMS device is its
resolution described as the smallest change in a quantity being measured which
causes a perceptible change in the corresponding indication [29].

The analysis of the MEMS force measurement resolution illustrates the general
rules governing theway how to improve the system parameters. In theMEMS/NEMS
technology the static force is observed by the detection of the spring beam static
deflection. In general stochastic vibration of the MEMS/NEMS molecules and the
vibration of the molecules around a system form background of the force interaction
observations. In analogy with electrical engineering, when one assumes that the
force is the analogy to the electrical voltage and MEMS/NEMS speed corresponds
with the electrical current the minimum detectable force Fmin can be calculated like
Johnson-Nyquist noise:

Fmin = √
4kBTγB, (12.9)

where kB is the Boltzman constant, T is the MEMS/NEMS temperature, B is the
measurement bandwidth. Ifwe notice thatγ = k

ω0Q
and assume thatQ is high enough,

which makes that ωr and ω0 are equal, the formula for the minimum detectable force
is:

Fmin =
√
4kBkTB

Qω0
=

√
2kBkTB

πQf0
, (12.10)

where f 0 is the free vibration frequency. It can be clearly seen, that the cantilevers of
small stiffness and high free vibration frequency exhibit higher resolution of force
detection. For the MEMS cantilever presented in Table 12.1 with the stiffness of
15 N/m, resonance frequency of 50 kHz, the smallest detectable force is 42 fN/Hz0.5

in the bandwidth of 1 Hz but for the silicon NEMS cantilever with 20 μm length,
0.3 μm thickness and 10 μm width, corresponding with stiffness of 1.7 N/m and
resonance frequency of 320 kHz, the minimum detectable force can be reduced to
7 fN/Hz0.5 (both parameters were calculated for quality factors of 300 and ambient
temperatures).When themeasurements are done in liquid nitrogen (LN) and vacuum,
which usually leads to quality factor increase to 10,000, theminimumdetectable force
is reduced to 60 aN/Hz0.5.

Another very important issue, illustrating the capabilities of the NEMS devices
is the small operating power Pmin needed for their activation. For a resonant
MEMS/NEMS power Pmin can be calculated by noticing that the device is a lossy
energy storage. Energy injected into the device is dissipated in a time:
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τ ≈ Q

ω0
(12.11)

which is often named as the ring-down time of the resonator. Theminimum operation
energy for the system is the energy, which will drive the NEMS at amplitude cor-
responding with the thermal fluctuation. Given the energy kBT of the mode thermal
fluctuation the minimum power Pmin can be estimated in this case as:

Pmin ≈ kBT

τ
= kBTω0

Q
. (12.12)

For a NEMS device which can be fabricated using today’s technologies the mini-
mum power Pmin is on the order of tens of aW (10−17 W). One can estimate that even
for the systems operating with arrays containing thousands of NEMS resonators,
the minimum power needed for the operation is far smaller than for the electronic
devices, in which power of several microwatts is usually dissipated.

12.2.2 NEMS Fabrication Technology

The vast majority of technologies applied in fabrication of NEMS devices is based on
microfabrication procedures applied in the manufacturing of microelectronic inte-
grated circuits (ICs). A lot of various techniques including etching, lithography, thin
film deposition, resist processing are available in the research laboratories. How-
ever complexity and difficulties, connected mostly with the fabrication of structures
whose dimensions are in the range of tens of nanometers, must be mentioned. To the
most time consuming, cost and equipment involving processes belong electron beam
(E-beam) lithography, deep silicon etching and integration with application specific
integrated circuits (ASICS). The described above methodology can be applied in
single wafer or batch processing and the latter one is the cost-effective method of
dealing with volume manufacturing. One of the ways enabling manufacturing of the
prototype NEMS is to fabricate the device out of thin film deposited on solid sub-
strate e.g. silicon wafer. In this way application of costly silicon on insulator (SOI) or
silicon carbide (SiC) substrates as well as expensive deep silicon etching processes
will be avoided [18].

In the proposed technology silicon nitride NEMS bridges were fabricated [25]. In
order to enable detection and actuation of NEMS vibration metallization paths were
integrated with moveable components. In general fabrication of silicon nitride films
of thickness less than 200 nm is difficult due to high tensile stress occurring while
thin film deposition. As the result the adhesion between silicon nitride and silicon
is small, leading to the structure instability. However, by the process parameters
optimization (changing of the substrate temperature, gas flow, gas ratio, pressure and
time) it was possible to produce thick silicon nitride and deposit a layer resist for wet
etching in KOH solution.
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The entire fabrication process of the NEMS bridge consists of three steps. In
the first fabrication step a stoichiometric silicon nitride Si3N4 layer (200 nm in
thickness) is deposited in LPCVD method with (SiH2Cl2/NH3) gas ratio of 1:4.
The stoichiometric LPCVD nitride shows a very large tensile stress (∼1.7 GPa)
and is compensated by a subsequent non-stoichiometric silicon nitride deposition.
The non-stoichiometric silicon nitride SixNy (200 nm in thickness) was deposited
with SiH2Cl2/NH3 gas ratio of 8:1. The conducted process results in the reduction
of the stress in the deposited layer forming a NEMS bridge to ca. 0.2 GPa. In the
second fabrication step chromium (as an adhesion layer) and platinum layers were
sputtered. In a dry plasma etching process of the platinum and the silicon nitride the
metallization paths and shapes of the NEMS bridge are defined. Finally the structures
are released by wet etch silicon in KOH solution. A variety of NEMS bridges with
thickness of up to 500 nm, width of 50 μm and length of 420 μm were fabricated in
this scenario. All the structures were wire-bonded to the printed circuit boards (PCB)
which made it possible to detect and actuate structure vibrations. The silicon nitride
bridge, fabricated in the above described technology, of dimensions: length 280 μm,
width 40 μm and for the Young modulus of 160 GPa, and silicon nitride density
of 2700 kg/m3 exhibits mass change density calculated according to Eq. (12.8) of
1.24 MHz/ag.

It must be noted however, that even if the NEMS fabrication process is simplified
it is still challenging. According to the state of the art, NEMS solutions are based on
electron beam (E-beam) lithography and following quite complicated etching steps
associated with depositions and photolithography procedures. Such an approach is
extremely expensive in terms of process complexity, characterization, instrumenta-
tion and very time-consuming. Moreover, in this way fast prototyping needed, when
the possibilities of the NEMS tool should be assessed are very limited, as in the stan-
dard process only the wafer scale manufacturing is possible. One of the solutions to
these problems is the application of focused ion beam (FIB) and scanning electron
microscopy (SEM) based techniques. In the standard approach, the FIB and SEM
technologies, forming the so called dual platform systems (integrating both ion and
electron beam columns), have been widely used for microfabrication, nanofabrica-
tion and testing of the IC’s. The focused gallium ions and electrons are directed onto
the samples and applied to modify or image the investigated sample. In this way FIB
and SEM tools can sputter and implant lines as narrow as 20 nm and deposit metals
and insulators in lines as narrow as 20 nm in user-defined patterns.

The focused electron beam and scanning electron microscopes have been exten-
sively used for the fabrication of the transmission electronmicroscopy (TEM) sample
preparation. In this case the beam of gallium ions carry enough energy to make the
sample so thin that it will be transparent for the electrons in a transmission elec-
tron microscope. What must be underlined is that the process can be controlled with
precision and resolution of fractions of nanometers. That is the reason why both tech-
nologies have attracted much interest in the fabrication of NEMS devices. The most
straightforward procedure is to use highly energetic gallium ions for modification
(milling down) MEMS devices. In this way sensors for scanning near field optical
microscopy (SNOM) were successfully fabricated by opening an aperture of tens of
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Fig. 12.1 NEMS silicon
nanobridge fabricated using
FIB technology; silicon
bridges were patterned with
gallium ion beam and wet
etched; bridge thickness ca.
30 nm; estimated device
mass 10 fg

nanometers opening in themicrotip [10]. The FIBmilled SNOMnanoprobes are only
an example of the application of the described technology in the nanotools experi-
ments. There are other examples, in which MEMS as basic structures were applied
and by the milling done at the defined positions nanotip cantilevers for advanced
scanning probe microscopy (SPM) or tiny calibration references were fabricated.

Besides ion milling there is another nanofabrication technology which relies on
galium ion FIB implantation. In this case when on a silicon crystal sample a beam
of galium ions is directed the implanted areas form a structure which is resistant to
subsequent etching in KOH solution (in other words the implanted areas are an etch
stop structures in wet etching procedure). The etch stop technology has been known
in microelectronics for almost 2 decades but it was applied in the FIB technology by
Murano group for the first time [20]. In this way 3 dimensional (3D) structures can
be created, whose dimensions are of tens of nanometers. In Fig. 12.1 a set of galium
implanted silicon nanobridges is presented. As it can be seen, the silicon crystal
walls are clearly visible which is typical for the wet etching process. The nanobridge
structures are of 30 nm thickness, which makes the structure almost transparent for
the electrons used for SEM imaging. The estimated nanobridge mass is of 10 fg,
which is almost three orders of magnitude smaller mass then the mass of silicon
nitride nanobridges presented in Table 12.1.

The described technology makes it possible to fabricate a variety of NEMS and is
very attractive for the single devices or prototype investigations. It was also utilized
in the fabrication of the array NEMS [19].

The FIB/SEM technology enables also fabrication of 3D nanostructures in the so
called focused electron beam induced deposition (FEBID) process. In this scheme the
investigated structure is immersed in environment of metal organic (MeO) precursor.
On the areas exposed to the electron beam, metal (Me) containing structures can be
deposited. In contrast to FIB milling, which is the top-down procedure (a manufac-
tured structure is fabricated out of the larger part) FEBID process is the bottom-up



12.2 NEMS Sensitivity and Resolution 125

procedure (which means that the particular components are being integrated to give
rise to more complex systems).

The FEBID technology is a mask-less deposition technique suitable for NEMS
rapid prototyping. The deposition process can be performed faster and in the more
flexible way than in conventional microelectronics fabrication processes. As the
dimensions of the fabricate devices correspond to the resolution of a scanning elec-
tron microscope the metal containing structures can be placed with resolution of tens
of nanometers. There is a variety of metal containing precursors which are used in
FEBID technology. The conductive wires are fabricated basing on platinum, gold,
cobalt or silver [3, 11, 16, 30]. FEBID technology makes it not only possible to
fabricate high frequency (HF) resonators but also devices or components for NEMS
deflection detection. In this case solutions based on field emission (FE) and piezore-
sistivity can be basically distinguished (further details can be found in the chapter
on NEMS deflection detection methodology).

An important concept of the metrology is the traceability, which means that the
result of a measurement must be related to stated references through an unbro-
ken chain of comparisons with stated uncertainties. In case of the above-described
NEMS-deflections investigations, there is lack of reliable and easily accessible cal-
ibration routines which leads to discrepancies in the assessment of various experi-
ments. In this way FEBID technology was applied to verify the NEMS mass change
detection resolution, which can be estimated using Eq. (12.8). To perform such an
experiment NEMS device must be loaded with the mass which is known and the
resonance frequencies before and after mass loading must be measured. In Fig. 12.2
platinum/carbon FEBID lines deposited on a silicon nitride bridge (Table 12.1) are
visible. As it can be estimated from atomic force microscopy (AFM) image the
line height and line width is of 50 and 20 nm respectively (see Fig. 12.3). In this
way the mass of ca. 7 pg can be calculated which leads to the resonance frequency
shift of 1324 Hz. The experimentally verified mass change detection resolution is of
0.18 Hz/fg. The differences between theoretically calculated and verified parameters
stem from many reasons and illustrate very well the problems of nanometrology
performed with NEMS tools. It should be noted that, Young’s modulus of the sili-
con nitride and thin film metallization films cannot be described precisely and are
technology and process dependent. Moreover, shape of the bridge anchoring points,
due to the crystal structure of the silicon substrates, make elasticity calculations very
difficult or almost completely impossible. The density of platinum/carbonFEBID ref-
erence structures depends on the way how the FEBID process is performed. Despite
all these difficulties, the proposed routine makes it possible to confirm the sensitivity
of the mass change detectors based on silicon nitride bridges.

As itwasmentioned previously besides the sensor sensitivity the second parameter
describing a NEMS device is its resolution. In the simplest approach, the resolution
of the resonance frequency corresponds with the resolution of the system using
which the vibration amplitude or phase are observed. The higher resolution of the
mass change detection can be achieved when a NEMS resonator vibrates with high
quality factor Q. In this case the bandwidth of the resonance frequency Δf can
be estimated using equation 
f = f0/Q, and for typical silicon nitride bridges
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Fig. 12.2 NEMS silicon nitride bridge with FEBID deposited structure for mass-change detection-
sensitivity calibration

Fig. 12.3 AFM image of the
FEBID calibration structures
used to calibrate the mass
change sensitivity

presented in Table 12.1 it is of hundreds of hertz for measurements performed in
ambient conditions. The higher quality factors can be achieved when the dissipation
in the entire NEMS structure is reduced, which involves careful engineering of the
bridge, its anchoring areas andmetallization lines.Application of the so called quality
factor enhanced technology,which in fact is the setupwith the positive feedback loop,
makes it possibly to decrease the bandwidth of the resonance frequency even further
[36]. In this case however, an integration of a deflection actuator with the mechanical
beam is required so that to control the structure deflection. In order to observe the
resonance frequency various frequency detector can be used. The most efficient way
to observe the resonance frequency change is the application of the so called phase
locked loops (PLLs) systems. In the PLL systems the signal corresponding with the
bridge vibration is compared with the reference signal of a digital quartz generator.
The output frequency is controlled in a feedback loop so that both frequencies are
equal. The resolution of the PLL detector, limited by the stability of the reference
signal generator, is usually around tens of millihertzs.
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Fig. 12.4 Optical detection of NEMS deflection: aMichelson interferometer, b Fabry-Perot inter-
ferometers;M interferometer mirror, OL objective lens, BS beam splitter, PD photodetector

12.3 NEMS Detection and Actuation

12.3.1 Optical Methods

There are many approaches, making it possible to observe the NEMS displacement
using optical technology. In the laboratory experiments setups basing on interfero-
metric bulk design are often applied. In particular path stabilized Michelson inter-
ferometry and Fabry–Pérot interferometry, have been used in such measurements. In
Michelson interferometers, a focused laser beam reflects from the surface of a NEMS
device and interferes with a stable reference beam. In turn, in Fabry-Perot interfer-
ometers the optical cavity formed between the vibrating NEMS and its substrate
modulates the optical signal on a photodetector when the nanoresonator deflects in
the out-of-plane direction. In this way shot noise limited displacement sensitivities
of ca. 10−6 nm/Hz0.5 Hz are routinely attainable on objects with cross sections larger
than the diffraction limited optical spot in the bandwidth up to 50 MHz.

In Figs. 12.4 and 12.5 a measurement setup comprising a Michelson interferome-
ter and the holder with a mounted silicon nitride NEMS bridge is shown. In Fig. 12.6
the resonance curve of NEMS structure is presented. A piezoelectrical actuator
was used for excitation of resonance vibration of 1.5 nm amplitude. Basing on the
performed experiments resonance f 0 frequency of ca. 690 kHz can be identified.
The quality factor Q of the vibrations in air can be estimated of ca. 170 (Fig. 12.6).

The results obtained in thisway are the quantitative ones,which is, besides the high
resolution, the second advantage of the interferometrical technology. Thus, not only
device diagnostics but also characterization and study of the NEMS properties can
be done with high precision. The most important drawback of the described solution
is related to the fact that the bulk optics, due to big mass and dimensions, cannot
be integrated with the fabricated NEMS devices. From that point of view optical
fibre setups are of much interest for NEMS technology. The small diameter of the
optical fibre makes it possible to integrate the probing sensor i.e. optical fibre directly
with a NEMS device. Such displacement sensors are often built in fibre Fabry-Perot
interferometer (F-FPI) configuration in Fig. 12.7. In this setup an optical fibre is the
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Fig. 12.5 Measurement
setup using a bulk
interferometer for silicon
nitride NEMS bridge
metrology

Fig. 12.6 Resonance curve
of silicon nitride NEMS
bridge

central part of the sensing system. A laser light source is connected to the arm A of
the fibre coupler. The NEMS device is illuminated with the beam coming out from
the arm B in Fig. 12.7. Part of this beam is reflected from the NEMS object and is
coupled back to the fibre. Due to the difference between the refraction indexes of the
air and optical fibre part of the beam emitted by the laser source is reflected from
the arm B open end. The light beams, which are reflected from the measurement
object and from the fibre open end interferes together and the interference fringes
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Fig. 12.7 Fibre Fabry-Perot
interferometer for NEMS
deflection investigations

are observed with a photodetector connected to the arm C of the fibre coupler. As
it can be seen the system is very compact and enables observation of the deflection
of many NEMS devices in parallel. The proposed technology makes it possible to
observe NEMS deflection with the resolution of 30 fm/Hz0.5 [34].

If instead of a laser diode a noncoherent light source is used, the photodetector
connected to the arm C detects the intensity of the beam reflected from the moving
object in Fig. 12.7. In this case the photodetector signal corresponds with the distance
between the optical fibre and the NEMS device. The resolution of the so called
light intensity fibre optic sensor (I-FODS) is 120 pm/Hz0.5. In comparison with the
F-FPI the I-FODSs exhibits smaller resolution but can operate in the wide frequency
bandwidth of up to 1 MHz. Moreover the output signal of a I-FODS is continuous
which simplifies signal acquisition and data analysis, as the F-FPI requires quite
cumbersome signal processing [27].

Besides optical technologies electronic systems for thedetection andmeasurement
of NEMSdeflection play a very important role. Integration of aNEMSdevicewith an
electronic measurement and control environment makes it possible to develop solu-
tions for not only laboratory but more practical applications as well [28]. Moreover,
integration of the measurement and control functions in application specific inte-
grated circuits (ASICs) enables fabrication and usage of the NEMS based devices in
portable systemswhose characteristics is precisely and repeatable described. The full
strength of the NEMS technology can only be utilized, when it is possible not only
to sense but to control the structure vibration. To control the NEMS vibration means
in this case to actuate static and/or resonance structure deflection and to maintain it
at the defined level with a defined speed and frequency range.

As the size of a NEMS device is being reduced and as a consequence of this
operation, frequency increases the modulation of the impedance of the deflection
sensing and actuation components is getting smaller. Simultaneously, the influence
of stray or parasitic impedances increases which makes detection of the tiny effects
very difficult. NEMS detection and actuation electronics quite often operates on its
limits, which means that the electrical signals connected with the NEMS deflection
are comparable with the input thermal noise of an applied amplifier and/or its bias
current. Below a summary of various methods applied for the sensing and actuation
of NEMS devices is presented.
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12.3.2 Piezoelectric Technology

In piezoelectric materials, a mechanical stress induces electrical charge on the device
electrodes. Alternatively, an applied voltage (in other words charge deposition)
induces a mechanical stress in the biased crystal, which leads, depending on the
elastic structure properties, to the strain of the piezoelectric system. The described
technology can be used to detect and drive mechanical motion in the frequency band-
width of up to 1 GHz. The transduction efficiency is very high and this technology
is often used in MEMS devices. However, in NEMS technology the main difficulty
relies in the fact that the crystal integrity must be maintained even for the structure of
nanometer thickness. From that point of view, having in mind that the piezoelectric
actuator must be resistant to the electrical breakdown, integration of the piezoelectric
technology with NEMS devices of thickness smaller than 100 nm is quite difficult
[1]. In the laboratory experiments piezoelectric actuators are very often applied to
test the structure resonance properties, however in this case control of the structure
vibration is difficult and cannot be done in the repeatable manner.

12.3.3 Capacitive Technology

The capacitive technology has been carried over fromMEMS technology. An attrac-
tive force occurs between the plates of a capacitor when its electrodes (plates) are
charged. In order to induce electrostatic force, one usually fabricates a gate elec-
trode around the NEMS device. The most convenient and the most efficient way to
excite the electrostatic force is to bias the substrate under the NEMS resonator. Many
MEMS technologies can be introduced on this field, however it must be noted that
stray capacitances around the NEMS device are much bigger than the capacitance
between the substrate and the NEMS resonator. As the consequence the capacitive
technology is less effective for higher frequencies, however solutions making it pos-
sible to control the structure deflection at frequencies of 700MHzwere reported [33].
In capacitive displacement technology, the motion of the mechanical element of a
NEMS device modulates the electrical capacitance between the moving NEMS part
and a fixed electrode. To detect this capacitance modulation, the NEMS capacitor is
usually biased with a voltage and the current is detected using a current to voltage
(I/U) converter. The biggest problem in this case is that the stray capacitances around
NEMS resonator and in the I/U converter are even one order of magnitude bigger
than the capacitance which is being detected. One solution to the problem is the
application of a transformer ratio bridge, whose inductive arms negate the capacitive
background [12, 35]. Another technology relies on implementation of the switched
amplifiers using which it is possible to take into account the stray capacitances and
detect very feeble signal corresponding with NEMS capacitance.
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Fig. 12.8 Experimental setup of a silicon nitride bridge-electromagnetic actuation and detection.
a Side view, b top view. 1 Silicon nitride bridge mounted on a printed circuit board (PCB), 2
neodymium magnets, 3 measurement and control electronic, 4 sensor for magnetic field measure-
ments

12.3.4 Electromagnetic Technology

In the presence of a magnetic field a NEMS device deflection can be both detected
and actuated by coupling of the magnetic field with a current carrying loop integrated
with the NEMS device. This method is known as the electromagnetic or magneto-
motive actuation and detection and can be used to drive vibration at even microwave
frequencies. The drive force of a current I carrying conductor in magnetic field B is
called Lorentz force FL and can be calculated using the following formula:

−→
FL = LL

−→
I × −→

B . (12.13)

where LL is the length of the conductor. Early experiments were carried out in strong
magnetic fields of few teslas generated in superconducting magnets, which made
the measurement setup expensive and very large [6, 13]. Progress in fabrication of
permanent magnets has made it possible to design setups of relatively small dimen-
sions in which magnetic field of fractions of tesla are generated. In Fig. 12.8 a silicon
nitride bridge with a metallization line of resistance of 120 � placed between two
neodymium magnets generating field of 0.5 T is presented. In the presented config-
uration Lorentz force of 140 nN can be estimated for the silicon nitride bridge of
280 μm length, drive current of 1 mA and magnetic field of 0.5 T. The estimated
Lorentz force is big enough to induceNEMSstructure vibration of tens of nanometers
vibration amplitude. In Fig. 12.9 resonance curve of a silicon nitride film measured
in vacuum of 10−4 Pa is presented. As it can be seen the vibration amplitude of tens
of nanometers can be relatively easily measured using aMichelson interferometer. In
this way static bridge deflection, which means deflection of frequency much smaller
than the resonance bridge frequency, in the range of fractions of nanometers can be
induced and precisely controlled.
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Fig. 12.9 Electromagnetically actuated resonance silicon nitride bridge vibrations

Electromagnetic technology was applied to detect the NEMS vibration for the
first time in 1999 [7]. The technique is based upon the presence of a uniform static
magnetic field, in which a NEMS containing a conductive wire vibrates. The time
varying magnetic flux generates an induced electromotive force (EMF). For a doubly
clamped bridge an EMF is given by:

EMF = ξBLL
∂x(t)

∂t
. (12.14)

where ξ is a geometric factor (0.885 for a doubly clampedbeam). For the beam,whose
measurements were presented in Fig. 12.10 one can calculate, that the vibration
period is ca. 3.5μs. If one assumes that the vibration amplitude is 40 nm at frequency
of 280 kHz, the average speed of the bridge is 44 nm/μs. For the structure length
280μm and magnetic field 0.5 T EMF is ca. 5.5 μV. The measurement of such a low
voltage is quite difficult, but having in mind that the thermal voltage noise of modern
instrumental amplifiers is of few nV/Hz0.5 a careful engineering makes it possible to
record a signal corresponding with the resonance NEMS vibration.

The electromagnetic actuation and detection of NEMS vibration can be com-
bined, which makes the described technology extremely interesting. When a Lorentz
loop is biased the structure can be excited to vibration. When it starts to oscillate in
resonance a EMF voltage can be identified across the conductor. The results of the
simultaneous vibration and bridge detection are presented in Fig. 12.10a, where a
family of resonances was recorded for various bridge bias currents. In Fig. 12.10b
the resonance curve and the relevant phase change curve are illustrated [22].
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Fig. 12.10 Electromagnetic actuation and detection of electromagnetically driven and detected
NEMS vibration, a resonance curves recorded for various drive currents, b resonance curve with
phase shift changes

12.3.5 Piezoresistive Technology

In general piezoresistors are the sensing structures whose resistance is the function
of strain. Changes of the resistance R can be described as:


R

R
=

[
(1 + 2ϑ) + 
ρ

ρ

]
ε = GFε. (12.15)

where ΔR and R are the change in resistance and total resistance respectively, ε is
the applied stress, ν is the Poisson’s ratio, Δρ and ρ is the piezoresistor resistivity
respectively. The coefficient GF is the so called gauge factor, which describes the
sensitivity of the strain sensing structure.When the piezoresistor is made out of metal
its response is the function of the geometry changes and the term 
ρ

ρ
can be neglected.

For metal piezoresistors GF ranges from 1.5 to 3.5 depending on material alloy. In
the semiconductor piezoresistor the resistivity change 
ρ

ρ
becomes dominant and the

geometry related term (1 + 2ϑ) is usually not taken into account. In this case strain
induces changes in the conduction band Fermi level and as the consequence the gap
size is modulated.

The piezoresistive detection scheme can be also implemented in NEMS tech-
nology. The resonator itself may be manufactured from a piezoresistive material or
alternatively a piezoresistive material can be integrated with the resonator. Typically
this is done at the clamping points of the resonator, where the strain is the highest. As
the piezoresistive technology is the electrical one it can be easily implemented into a
heterodyne down-mixing circuit where the resonant response frequency is multiplied
with a bias frequency to obtain a low frequency detection signal, whose acquisition
is not sensitive to parasitic capacitances. This method has been successfully applied
for mass sensors and demonstrated high resolution in scanning probe microscopy
(SPM) investigations [9, 31, 37]. As NEMS dimensions shrink, integration of a
deflection sensing device with the nanomechanical structure is becoming challeng-
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ing. Besides, solutions based on nanoelectronics FEBID techniques can be of a real
support. The FEBID nanostructures are often described as composites consisting
of metal nanograins embedded in non-conductive matrix whereas electron trans-
port has been defined as inelastic tunneling process occurring among nanograins
[14, 24]. This phenomenon makes it possible to apply these structures as sensors of
strain, which is induced by deflection of the device integrating FEBID nanogranular
piezoresistors (NGRs). The induced strain results in the modulation of the distance
between embedded in an amorphous matrix metal nanograins. In this way the prob-
ability of electron tunneling among the nanograins is modulated, which in turn is
observed by the changes in the resistance of the FEBID structure. As the tunneling
phenomena are the quantummechanical ones, it is expected that the deflection detec-
tion sensitivities should be very high. However, several measures must be undertaken
in order to ensure stability and response repeatability of the FEBID piezoreistors.
If an organometallic platinum precursor is used the fabricated FEBID piezoresis-
tor consists of conductive platinum nanocrystallites immersed in carbon containing
matrix which results in high resistivity of the depositedmaterial andmaking high fre-
quency (HF) measurements difficult. Moreover, carbon can easily oxidize in ambient
conditions, which strongly influences carrier transport stability. Another important
problem is that of process repeatability as the beam parameters, chemical composi-
tion and stability of the chemical precursors used for the deposition may differ from
experiment to experiment [17].

The FEBID NGR structures were applied as sensors to detect the micromechan-
ical cantilever deflection [32]. Basing on the microcantilever vibration analysis it is
possible to use such structures as a mass change sensing platform. When the mass
change sensitivity is concerned it is well known that the smaller platform mass cor-
responds with the increased mass change sensitivity. Therefore, the proper way to
detect smaller mass change is to fabricate structures of smaller mass like e.g. silicon
nitride bridges. However, it has to be noticed, that the smaller structures vibrate at
higher frequencies and their oscillation amplitude is much smaller than that of the
MEMSmicrocantilevers. The described features define requirements for the compo-
nents detecting mechanical structure vibration, which have to exhibit high sensitivity
and have to operate in wide frequency bandwidth. To the possible solutions to the
presented problems belong again the FEBID technology, which ensures the high
sensitivity and makes it possible to fabricate small vibration detectors.

Mechanical structure of a silicon nitride bridge is shown in Fig. 12.11. Accord-
ingly, the following formulas describe its elasticity:

RA = RB = F

2
, (12.16)

MA = MB = −1

8
FL, (12.17)

fmax = FL3

192EIz
= FL3

16Ewt3
, (12.18)
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Fig. 12.11 Mechanical
structure of a silicon nitride
NEMS bridge

where L, w, t are the length, width and thickness of the bridge, F is the force acting
in the middle of the structure, E is the Young modulus.

Stress at the bridge supporting points can be calculated using equation:

σmax = Mt

2Iz
= 3

4

FL

wt2
, (12.19)

where Iz is the inertia modules of the beam: Iz = wt3

12 . Strain of the microbridge at
the beam supporting points can be calculated basing on the Hooke’s law:

εmax = 1

E
σmax = 3

4

FL

Ewt2
. (12.20)

By combining the above equations, it is possible to calculate the strain of the
microbridge, when the maximal deflection is known:

εmax = 12fmaxt

L2
. (12.21)

Therefore, relative change of the piezoresistor resistance deposited in FEBID
technology at the beam supporting points is:


R

R
= GFεmax = GF

3

4

FL

Ewt2
. (12.22)

Application of the above equation is limited as Young’s modulus of the entire
bridge structure is unknown and difficult to be determined. This results from the
fact that the properties of silicon nitride substrate depend on the deposition process.
Moreover, the silicon nitride substrate is covered with a platinum thin film, which
makes determination of the effective Young’s modulus more cumbersome.

Usually, in order to obtain better sensitivity of the structure bending and to con-
centrate the stress in the area of the NGR piezoresistors the FIB milling will be
conducted. The FIB milling is performed in close vicinity of the clamping of the
microbridge in order to decrease the width of the bridge exactly in the area, where
the NGR piezoresistor should be located. Shape of the FIB modified area is designed
in theway to ensure the homogenous distribution of the stress along theNGRpiezore-
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Fig. 12.12 FIB processing
of the bridges prior to the
FEBID piezoresistors
deposition

Fig. 12.13 NEMS bridge
after the FIB modification
with deposited FEBID
resistors

sistor. As the deflection sensors receive the entire stress associated with the structure
movement, their response should be the highest.

In Fig. 12.12 NEMS bridge structure with the FIB fabricated openings is shown.
The FIB processed structures at the bridge supporting points and in the middle of the
structure, where the FEBID piezoresistors are deposited. The FIB milling procedure
was conducted in the selective way, so that to modify only the silicon nitride layer-in
Fig. 12.13 the silicon substrate is clearly visible. In Fig. 12.14 the NEMS bridge after
the FIB modification with the FEBID deposited piezoresistors is shown.

In order to measure the influence of the performed modifications the bridge res-
onance frequency were measured using a Michelson interferometer. The resonance
frequency of theNEMSbridges prior to themodificationswas 791 kHz.After the FIB
processing the resonance frequency is decreased by around 80 kHz, which indicates
decrease in the structure stiffness of ca. 20%. After the deposition of the FEBID
piezoresistors the structure resonance frequencies decreases again by ca. 15 kHz.
As the frequency decrease is much smaller than after the FIB processing, it can be
assumed that the frequency change correlates with the structure mass loading caused
by the FEBID resistors. All the resonance curves presented in Fig. 12.14 were nor-
malized in order to present a family of resonance characteristics of the same height.
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Fig. 12.14 Resonance curves of the silicon nitride bridge before and after FIB processing and after
FEBID deposition of FEBID piezoresistors

The resonance properties were measured using an auxiliary piezoelectrical actua-
tor biased with an high-resolution signal generator which excited vibration of the
investigated structure.

The reference AFM silicon probes are used in the static deflection measurements
of the silicon nitride bridges and the FEBID piezoresistors. In contrast to the stan-
dard AFM cantilevers, in the AdvancedTEC™ sensors the probe protrudes outside
the spring beam. In this way the microprobe can be placed on the investigated bridge
with highprecision enabledby the optics integratedwith the atomic forcemicroscope.
Moreover, in order to establish the relationship between photodiode and piezoelec-
tric actuator displacement signals the cantilever deflection detector sensitivity was
determined, when the cantilever was pushed against hard surface as it was described
in [36]. In this way the so called load force (LF) curves can be recorded in the contact
mode (CM) atomic force microscopy (AFM) technology and used for the precise and
quantitative structure characterization. The AFM machine was integrated with the
measurement equipment (current to voltage (I/U) converter Keithley 428, multimeter
Agilent 2001) making it possible to record the changes of the FEBID piezoresistors
resistance change under the load of the reference cantilever.

InFig. 12.15 themeasurement architecture is presented. TheFEBIDpiezoresistors
are biased using an integrated voltage source, the voltage response of the I/Vconverter
is measured by the multimeter and recorded by the host PC computer. The proposed
measurement architecture offers the highest possible resolution of the resistance
change detection. In Fig. 12.16 the result of the performed investigation is shown.
The microbridge was loaded with the reference cantilever [36]. The microstructure
was deflected by 1 μm in every step. The resistance changes were approximated
in order to calculate GF, which is the measure of the sensitivity of the deflection
detection.
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Fig. 12.15 Measurement setup for the characterization of the FEBID piezoresistors

Fig. 12.16 Measurement of
the FEBID resistance under
microstructure loading/test
deflection

The elongation of the bridge can be estimated according to the scheme:

(a) longitudinal elongation of the bridge under the load force:

Lend = 2 ×
√(

1

2
L0

)2

+ d2, (12.23)

Lend—is the length of the microbridge after structure loading, L0—the length
before loading, d-the test loading

(b) gauge factor GF:

GF =

R
R


L
L0

, (12.24)


L = Lend − L0, (12.25)


R = Rend − R0, (12.26)

where Rend—is the resistance after loading, R0—is the resistance before loading.
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Basing on the above described calculations theGF of the platinum/carbon FEBID
piezoresistors varies in the range from 4 to 6. The obtained result indicates that the
measurement sensitivity is bigger than in the case of the bulk metal piezoresistors,
when the GF varies in the range from 2 to 4. In addition, the performed experiments
clearly show, that the proposed technology makes it possibly to fabricate and deposit
strain sensors on the NEMS devices, at the positions where the highest stress occurs.
The resolution, with which such a deposition can be done is of tens of nanometers
indicating, that the described process is very attractive for the nanotechnological
applications. Usage of the AFM based techniques makes it possible to determine the
basic parameter of the developed devices.

12.4 Summary

NEMS technology opens new fields in nanotechnology. The extremely small dimen-
sions of the fabricated devicesmake it possible to define the place of the investigations
and measurement with the highest possible resolution. In this way investigations of
the quantum phenomena will be enabled in many research laboratories active on
this area. The growing range of NEMS applications is correlated with the need for
device characterization and measurements. This symmetrical relation stimulates the
progress in the nanotechnology and micro- and nanofabrication.
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35. Swiatkowski M, Wojtuś A, Wielgoszewski G, Rudek M, Piasecki T, Jozwiak G, Gotszalk T
(2019)A low-noisemeasurement system for scanning thermalmicroscopy resistive nanoprobes
based on a transformer ratio-arm bridge. Meas Sci Technol 29:045901

36. Tamayo J (2005) Study of the noise of micromechanical oscillators under quality factor
enhancement via driving force control. J Appl Phys 97(4):1–10

37. Tortonese M, Barrett R, Quate C (1993) Atomic resolution with an atomic force microscope
using piezoresistive detection. Appl Phys Lett 62(8):834–836

38. Zaborowski M, Dumania P, Tomaszewski D, Czupryniak J, Ossowski T (2012) Development
of Si nanowire chemical sensors. Proc Eng 47(1000):1053–1056. https://doi.org/10.1016/j.
proeng.2012.09.331

https://doi.org/10.1016/j.proeng.2012.09.331


Chapter 13
Numerical Case Studies: Forward
Problems

Paolo Di Barba and Maria Evelina Mognaschi

13.1 Introduction

Electrostatic micromotors were the first MEMS which had been designed and pro-
totyped exploiting Silicon integrated technology. This achievement took place at
the Berkeley university laboratories first [14, pp. 41–47, 15, pp. 49–55], and at
the MIT laboratories next [1, 23] in the period from late eighties through early
nineties of last century. The cultural impact was great, because the miniaturization
of a motor—well-known at the macro-scale—was implemented as a manufacturable
process at the micro-scale. However, the technological success of micromotors was
modest, because static friction soon turned out to be the major obstacle against the
rotor movement. Nevertheless, from the modeling viewpoint, the rotating micromo-
tor is a good example of a simple device exhibiting the main features of MEMS, like
e.g. mechanical and electrical properties of poly-silicon, size scale of components,
and values of field strength. Therefore, it could be considered as a kind of computa-
tional benchmark useful to assess a numerical method for automated optimal design:
some electrostatic micromotors are analyzed in Sects. 13.2 and 13.3.

Over the last decade, extensive efforts have been devoted to the development of
micro-accelerometers for different applications such as automotive safety, naviga-
tion, audio-video and health monitoring. MEMS accelerometers have an excellent
sensitivity and a wide dynamic range and at the same time they are low cost and
can be mass produced. There are many different physical mechanisms whichMEMS
accelerometers can be based on e.g. piezoresistive, electromagnetic, piezoelectric,
ferroelectric, capacitive and so on. The example proposed in Sect. 13.4, the comb
drive micro-actuator, is focused on the capacitive effect. The comb drive device has
the advantage of small size, weight, and excellent sensitivity [21].

Among different ways of exciting MEMS, the magnetic actuation is one way
which exhibits many advantages. In fact, it allows to have a good linearity of move-
ment versus the excitation signal, low voltages needed for power supply and hence
low power consumption and finally they are simple to control [16, 17]. An example
of magnetic MEMS is the magnetic micromirror actuator, shown in Sect. 13.5.
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However, one of the most used applications in the field of MEMS is the electro-
thermo-elastic actuator. It can show different shapes (e.g. two-arms or three-arms
device) [9] but common characteristics are repeatable behaviour, long life-time [20],
easy to produce because of its simple design and monolithic single-material struc-
ture [19]. The most appreciated characteristics of these MEMS are the large force
densities and large displacements, with comparison to other MEMS actuated by e.g.
electrostatic field. Two examples of electro-thermo-elastic actuators are shown in
Sects. 13.6 and 13.7.

Another popular MEMS device is a singly clamped beam (known commonly as
cantilever). Its most important applications involve atomic force microscopy tech-
nologies, in which a cantilever with an integrated tip scans a sample and the beam
deflection corresponds with the interactions between the tip and the surface [22]. The
cantilever-based sensing systems have become very attractive in microbiology and
biotechnology: an example of electromagnetically actuated cantilever is described
in Sect. 13.8.

To summarize, different numerical examples are shown in this Chapter, the most
of which are analyzed by means of finite element models. In fact, due to MEMS
nonlinearity and the presence of couplings of energy domains like electromagnetics
and mechanics, multiphysics models, suitable to be solved by means of numerical
method e.g. FEM, are needed [11].

13.2 Axial-Field Electrostatic Micromotor

A rotating micromotor with axial field has been considered (Neuchâtel prototype)
[24]; it realizes the so-called top-drive device. Due to reduced stray field, the latter
offers stronger variations of capacitance and so higher drive torque; on the other
hand, applied voltage cannot be very high in order to avoid the bending effect of the
rotor tooth towards the substrate. In Fig. 13.1 longitudinal and cross-sectional views
of the micromotor are represented, respectively.

The device is characterized byNs = 12 stator electrodes that are placed underneath
Nr = 8 rotor teeth (3/2 machine). The rotor is supported by four hemispherical
bushings and has a diameter equal to 200 μm, while the air-gap width is equal to
1.5μm; electrodes and teeth have the same angular width equal to 20°; moreover, Rir

= 30 μm, Ra = 50 μm, Ri = 60 μm. Rotor and stator regions can be assimilated to
ideal conducting media since they are realized in phosphorus-doped polycrystalline
silicon. The device, acting as a position actuator, is supplied by a three-phase system
of rectangular voltages V = 50 V.

In order to develop the circuit model of the device, a circuit approach has been
adopted. The main assumptions made can be summarized in this way:
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Fig. 13.1 Geometrical model of the top-drive micromotor

• the electric field takes place only in the axial air-gap, so that any fringing field
effect is neglected;

• the variation of the electrostatic energy stored in the air-gap is a piecewise linear
function of the rotor position;

• the device is in no-load condition.

Since the device operates at a constant voltage V, co-energy W (φ) is easily esti-
mated by the parallel-plate capacitance as:

W = ε0

4d

(
R2
c − R2

i

)
V 2(ϑr − |ϕ|) (13.1)

Applying the principle of virtual work, the maximum drive torque Md corre-
sponding to the aligned position between rotor tooth and energized stator electrode
is:

Md = ε0

4d

(
R2
c − R2

i

)
V 2 (13.2)

Following the same way, the maximum axial force Fa clamping the rotor on the
stator plane is:

Fa = − ε0

4d2

(
R2
c − R2

i

)
V 2ϑr (13.3)
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Since it acts on the rotor bushings, the associated static friction torque is:

Mf = μRaFa (13.4)

where μ = 0.2 has been assumed as the coefficient of dry friction of poly-Si.
The model provides the maximum effective torque (i.e. the net torque) of the

micromotor as:

Me = |Md | − ∣∣Mf

∣∣ = ε0

4d

(
R2
c − R2

i

)
V 2

(
1 − μRaϑr

d

)
Ns

3
(13.5)

It is assumed that only one phase is supplied at a time; therefore, Ns/3 capacitors
are energized. In Fig. 13.2 the contributions of drive and friction to static torque are
represented as functions of the air gap width d.

It can be noted that the amount of friction for the prototype (d = 1.5μm) is higher
than the drive term so that the motor cannot start. In Fig. 13.3 the behaviour of net
torque versus air gap is represented.

When the air gap width is around 3.5 μm friction and drive terms are equal,
so that net torque is zero. The optimal value of air gap width is d = 6.98 μm;
correspondingly, net torque is maximum and equal to 10.132 pNm.

Fig. 13.2 Dependence of drive and friction torques on air gap width
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Fig. 13.3 Net torque as a function of air gap width

13.3 Radial-Field Electrostatic Micromotor

The device considered is a side-drive synchronous micromotor; it is characterized by
a salient pole geometry exhibiting stator poles and rotor teeth. The rotor—supported
by hemispherical bushings—is free to rotate around a bearing; in Fig. 13.4 the device
is shown: the salient-pole geometry is evident.

The electrical supply provides a three-phase system of rectangular voltages of
hundred volts: every third stator pole is electrically connected to the same phase.

13.3.1 Zero-Dimensional Model

The motor under study is a 12/8 motor and it has the following characteristics [10]:
each stator and rotor poles of the motor has an angular width equal to 18°; the space
between stator poles is 12° wide, while the angle between rotor teeth is equal to 27°
(see Fig. 13.5). The rotor has radius equal to 50 μm; the gap between a rotor tooth
and an aligned stator pole is 1.5 μm wide, the inner diameter of the rotor is equal to
21 μm, while the axial thickness of rotor and stator is of 2.2 μm.

For an approximate evaluation of the torques acting upon the micromotor, the use
of a simple equivalent capacitive circuit is possible. There are two major issues in
defining a lumped-parameter model: how to subdivide the continuum device into a
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Fig. 13.4 Photo of the micromotor

Fig. 13.5 Geometry of the electrostatic micromotor (measurement unit in μm)
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Fig. 13.6 1D equivalent
circuit
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Cr1

Cr2
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network of capacitors and how to determine the capacitance values for each element.
The problem of subdivision is particularly troublesome because, due to electric prop-
erties of materials involved, there is no univocal correspondence between geometry
and network topology.

Moving from this background, the electric field is supposed to be concentrated
within stator and rotor and so be radial (side-drive micromotor); furthermore, it is
assumed that rotor and stator are made up of conducting material, so to consider the
respective surfaces equipotential. By properly subdividing the air gap in cylindrical
sectors, analytical expressions are obtained for the global capacitance at a position
ϕ; the axial dimension of the equivalent capacitor is assigned the rotor thickness.

In Fig. 13.6, a simple equivalent circuit is sketched, suitable for the class of
studied devices. Capacitor Ct has got constant capacitance, and represents the global
effect of the tangential capacitances between the power supplied electrode and the
nearby grounded ones. Capacitors Cr1 and Cr2 model the capacitive coupling of the
electrode with the rotor and of the rotor with the ground, respectively; hence, their
capacitance is variable with the angular position. Potential Vr, which varies with the
angular position, is the rotor potential.

Given a circuit model, a preliminary and fast estimation of torques can be carried
out. In particular, the static torque M is a quantity of primary concern for the device
designer. The basic formula for computing it is

M (ϕ) = 1

2
V 2 ∂Ceq

∂ϕ
(13.6)

where Ceq is the equivalent capacitance, ϕ is the rotation angle and V is the voltage
supply.

By applying the circuit model, four equivalent capacitors are simultaneously ener-
gized by a voltage, equal e.g. to 100V,while the other ones are grounded.As concerns
the rotor movement, an angular step of 3° has been considered; in Fig. 13.7 the detail
of two different stator-rotor positions is shown.

Six different relative positions, covering a pole pitch, have been considered to
evaluate electrostatic energy; by applying formula (13.6), the results reported in
Table 13.1 have been obtained. The static torque has been scaled by the actual thick-
ness (2.2 pm) of the micromotor.
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Fig. 13.7 Developed view of circuit model (linear dimensions in μm): a aligned pole-tooth posi-
tion; b position displaced by 3°

Table 13.1 Results of circuit
analysis (the position 0° is the
aligned position, see
Fig. 13.7a)

Displacement (°) Total capacitance (pF) Torque (pNm)

0 96.540 –

3 83.740 10.76

6 68.360 12.92

9 52.980 12.92

12 37.604 12.92

15 22.820 11.97

13.3.2 Two-Dimensional Model

The motor under study is a 18/6 one and it has been prototyped with the following
data: inner and outer rotor radii 40 and 60 μm, stator radius 63 μm, angular width
of rotor slot 40° [6, 8]. Accordingly, the width of the stator-to-rotor air-gap varies
between 3 and 23 μm. The stator electrodes are supplied by a three-phase system of
square voltages, equal to 100 V, while the rotor potential is floating.

In order to evaluate quantitatively the system, the field model of the device has
to be adopted. After introducing a system of cylindrical coordinates (ρ, ϕ, z), in
terms of scalar potential V the Laplace equation governing the electric field E can
be expressed as:

∇ · (ε∇V ) = 0 in Ω (13.7)
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Fig. 13.8 Electrostatic micromotor: left—Finite-element mesh right—mesh detail

V = 0 on Γ1 (13.8)

V = V0 on Γ2 (13.9)

∂V

∂n
= 0 on Γ3 (13.10)

where ε is the permittivity andV 0 is the applied voltage. Knowing the scalar potential
V, the electric field strength E can be evaluated as:

−∇V = E (13.11)

It can be noticed that only one phase is considered, so that the poles adjacent to
the supplied one are grounded.

In order to solve the boundary value problem (13.7)–(13.11) numerically, the
finite element method was used. A dense 2-D mesh was created, composed by about
9,000 elements with linear variation; it is shown in Fig. 13.8.

A typical solution of the field problem in shown in Fig. 13.9.
In order to evaluate the torque of the motor versus the angular position, different

relative positions between stator and rotor are obtained by rotating the rotor subregion
by one step
ϕ. For calculating the force at each position, it is possible to apply either
the virtual work principle or the Maxwell’s stress tensor.

The first method implies to evaluate the co-energy W’ of the system as:

W ′ = 1

2

∫

Ω

εE2dΩ (13.12)

assembling all the elementary contributions over the physical domain Ω .
Following the procedure described, a set of energy-angle points is obtained and,

after numerical interpolation, a continuous energy-angle curve is then carried out.
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Fig. 13.9 Potential contour
lines

Since the device considered operates at a rated value of supply voltage V 0, the
torqueM can be given, as the derivative of the co-energyW ′ stored in the field region
with respect to the angular displacement ϕ of the rotor:

M (ϕ) = ∂W ′

∂ϕ
(13.13)

Applying the Maxwell’s stress tensor means calculating the force F acting on
each point P of the closed surface Γ , surrounding the volume Ω , as

F =
∫

Ω

∇ · T dΩ =
∫

Γ

T · n̄ dΓ (13.14)

where n̄ is the outward normal unit vector and T is the Maxwell’s electric stress
tensor, defined in Eq. (3.69).

Correspondingly, the torque is given by

M =
∫

Γ

r̄PO × T · n̄dΓ (13.15)

where r̄PO is the position vector of point P on Γ with respect to the rotation axis in
O.

In this 2D example, Γ is a closed line, in particular it is the circumference laying
in the middle of the airgap, which encloses the region of the rotor.
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Fig. 13.10 Electrostatic micromotor: torque-angle curve on a pole pitch

The closed line over which the integral (13.15) is calculated must enclose entirely
the part of device which torque or force has to be calculated and, at the same time,
must not intersect it.

Moreover, it can be demonstrated that, if the abovementioned conditions are ful-
filled, the length or the shape of the closed line has no influence on the final result.

The static torque calculated for the prototype, considering an axial length of 1 m
i.e. the torque per meter length (N) is shown in Fig. 13.10.

For both methods, the refinement of the airgap is the most critical; in order to have
the fewest modifications to the mesh while rotating the rotor from one position to
the next, it is recommended that the mesh nodes along the so-called “slipping line”
i.e. a circle line passing through the middle of the air-gap, are set regularly spaced
by the angular distance 
ϕ.

Moreover, in order to extract a smooth electric field at the airgap and a precise
evaluation of the electricMaxwell’s stress tensor, it is mandatory that the airgapmesh
is fine enough.

13.4 Comb Drive Accelerometer

The comb drive accelerometer consists of two finger structures, called fixed finger
and movable finger. The fixed fingers are fixed to the frame. The movable fingers
are attached to a proof-mass and suspended by flexible elements, e.g. springs, to
the frame. The device senses any external acceleration which is transferred to the
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proof-mass through the flexible elements. The movement of the movable structure
changes the capacitance between the fixed finger and the movable finger [25].

A prototype model of the comb drive device [27], which cross-section is shown in
Fig. 13.11, where s.a. means the symmetry axis, is here analyzed. It is characterized
by the following parameters: wm = 4 μm, wf = 4 μm, hm = 2 μm and hf = 2 μm;
hence w and h are width and height of the movable (m) and the fixed (f) electrodes,
respectively.

The device exhibits 10 + 9 electrodes. The geometry of the device is amenable to
the lumped-parameter model proposed in Tang et al. [26]. Moreover, the fixed and
movable electrodes of the comb drive are 2 μm thick and 4 μm wide, respectively;
the air-gap distance g between them is 2 μm wide, the same as their distance z1 =
z2 from the grounded substrate.

The equation governing the analysis problem of the modeled device is the
Laplace’s equation of the electric scalar potential V in the computational domain
(Eq. 13.7). Second-order Lagrangian shape functions were considered in the finite-
element model: a typical mesh is composed of 170,000 elements with 240,000
unknowns [2, 3, 13], approximately, and it is shown in Fig. 13.12.

The device is considered electrically isolated: the boundary condition of the air
subdomain is set to zero charge density; moreover, the fixed electrodes are at the

Fig. 13.11 Cross-section of the comb drive
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Fig. 13.12 Comb drive mesh

Fig. 13.13 Potential contour lines

same potential as the grounded substrate, while the movable electrodes are subject to
voltage V 0 = 1 V. The device components are made of polycrystalline Si exhibiting
a relative permittivity εr = 4.5.

The distribution of electric potential V is shown in Fig. 13.13.
In addition to the drive force in the direction of electrodes (shortly, x-directed

drive force), the force due to electric field in the orthogonal direction (shortly, z-
directed levitation force) takes place. The two force–displacement curves (drive and
levitation, respectively) have been computed bymeans of theMaxwell’s stress tensor
method, taking the surface of the grounded electrodes as the integration surface. The
elementary displacement was equal to 1 μm in the x-direction (14 steps) and 0.3 μm
in the z-direction (7 steps): results are shown in Figs. 13.14 and 13.15, respectively.

The calculated force values are in agreement with reference values [26]; in par-
ticular, the approximated model Fz = k(z − z0) holds for the levitation term: k is
named “electrostatic spring” constant, i.e., the z-directed force density per unit volt-
age (N V−2 m−1), while z0 is the equilibrium height of the movable electrode in the
absence of a return spring force, i.e., the height toward which the electrodes sponta-
neously tend to move. It can be remarked that the drive force abruptly decreases for
small displacements between fixed and movable electrodes (see Fig. 13.14), while
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Fig. 13.14 Drive force Fx (x) versus x-displacement

Fig. 13.15 Levitation force Fz (z) versus z-displacement

for larger displacements it tends to be constant. Moreover, according to the levitation
force versus angle curve, the equilibrium point z0 is located at 1.2 μm with respect
to the substrate (see Fig. 13.15).

13.5 Magnetic MEMS: Micromirror Actuator

A micromagnetic device used as an optical switch [4] is considered. It is based on
the rocking actuation of a ferromagnetic plate under the influence of a magnetic field
variation. It consists of an NdFeB magnet, two conductors carrying like currents,
and a ferromagnetic plate free to rotate around its axis, as shown in Fig. 13.16.
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Fig. 13.16 Geometry of the
micromirror

The residual induction of magnet is 1.2 T, while values of relative magnetic
permeability equal to 103 and 1.05 are assumed for plate and magnet, respectively;
moreover, the depth of the model is w = 500 μm. Referring to Fig. 13.9, the device
has: x1 = 100 μm, x2 = 1.2 mm, x3 = 50 μm, x4 = 50 μm, x5 = 200 μm, x6 =
600 μm, x7 = 10 A, plate length = 1 mm, and plate height = 25 μm [12, 13].

The torque holding the plate at the prescribed angle is due to the field of the
permanent magnet in the absence of current, while the actuation torque necessary
to switch the plate angle is due to the field variation caused by a current pulse in
the conductors. The field analysis problem consists of finding the magnetic field
distribution for a given plate angle. The problem to be solved, in terms of magnetic
vector potential A (see Sect. 4.3), is:

∇2A = −μJ − ∇ × B0 (13.16)

where J is the coil current, μ is the magnetic permeability and B0 is the magnetic
remanence of the permanent magnet. The magnetic induction field B is then calcu-
lated as

B = ∇ × A. (13.17)

In this respect, a typical finite-element mesh is composed of 2,300 triangles;
second-order polynomial Lagrangian elements are considered, originating approx-
imately 75,000 unknowns. The corresponding torque–angle curve (see Fig. 13.17)
has been computed based on the virtual work principle.
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Fig. 13.17 Torque versus rotation angle

Fig. 13.18 Geometry of the two-arms microactuator

13.6 Two-Arms Electro-Thermo-Elastic Microactuator

The laterally-driven polysilicon microactuator considered as a case study [9] is the
one studied in [18], where an analytical model of displacement and temperature is
calculated. The microactuator is composed of two arms exhibiting different length
(see Fig. 13.18); due to an applied voltage, current flows in the series-connected
arms. The current heats the device and, because of the difference in length, the two
heated arms elongate differently.



13.6 Two-Arms Electro-Thermo-Elastic Microactuator 159

The beam is composed of two polysilicon layers: the top layer (thickness hc) is
conductive and the bottom layer (thickness hu) is nonconductive. Under steady-state
conditions, the top and bottom layers are assumed to have the same temperature.

The deflection u of the actuator depends on the following geometrical parameters:
the length of the arms L1 and L2, the length Lg of the gap between long and short
arm, the height hh of the device and the width d of the arms. In particular, one has:

u = L22
6EI

(3X3 − X1L2) (13.18)

where X1 and X3 come from the solution of the following system of equations (force
method):

⎡

⎣
f11 f12 f13
f21 f22 f23
f31 f32 f33

⎤

⎦

⎡

⎣
X1

X2

X3

⎤

⎦ =
⎡

⎣

Lg


L2 − 
L1
0

⎤

⎦. (13.19)

where X1, X2 and X3 are the three redundants and, in particular, X1 stands for a unit
horizontal force, X2 a unit vertical force and X3 a unit couple force [18]. The terms
f ij represent the flexibility coefficients, given by:

f11 = L22
EI

(
L2
3

+ Lg + L1
3

)
(13.20)

f12 = f21 = −LgL2
2EI

(
Lg + L1

)
(13.21)

f13 = f31 = −L2
EI

(
L2
2

+ Lg + L1
2

)
(13.22)

f22 = L2g
EI

(
Lg
3

+ L1

)
(13.23)

f23 = f32 = Lg
EI

(
Lg
2

+ L1

)
(13.24)

f33 = L

EI
(13.25)

where E is the Young’s modulus of polysilicon and I = hhd3/12 is the momentum of
inertia.

In turn, the maximum temperature depends, from the geometrical viewpoint, on
height hh, being hu = hh−hc:

T = V 2
0

8kρ

(
1

1 + ξhu
/
hc

)

+ Ts (13.26)
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Table 13.2 Material properties of the microactuator

Parameter Value Parameter Value

Thickness of conducting layer hc
(μm)

0.5 Thermal expansion
coefficient α (°C−1)

2.7 × 10−6

Thickness of top layer hu (μm) hh−hc Young modulus E (Pa) 150 × 109

Parameter ξ 1/9 Substrate temperature Ts
(°C)

20

Thermal conductivity k (W m−1

K−1)
41 Electrical resistivity ρ

( m)
5 × 10−4

The parameter values used in this example are shown in Table 13.2.
The parameter ξ is used to take into account the difference of thermal conductivity

and non-uniform heat generation between the top and the bottom layer [18]. The
applied voltage is 5 V.

13.7 Three-Arms Electro-Thermo-Elastic Microactuator

An electro-thermo-elastic microactuator, characterized by 3D geometric model and
coupled field analysis, is considered. The device, shown in Fig. 13.19, has length L
in the range of hundreds of microns and width hh in the range of tens of microns.
An electric voltage is applied between two electrodes A and B; therefore, an electric
current I flows in two out of three arms of the device (hot arms), while the third arm
is current free (cold arm).

The actuator is fixed to a substrate at the three arm ends, while three cylindrical
bushings act on the cold arm, in order to make it rotate in the xy-plane (Fig. 13.19).
The deformation due to the overheating of the hot arms with respect the cold one is
responsible for the rotation of the actuator.

Fig. 13.19 Geometry of the microactuator (electrical and mechanical boundary conditions are also
shown)
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Table 13.3 Material properties of the microactuator

Material property Value Material property Value

Electric conductivity σ

(S m−1)
5 × 104 Young modulus (Pa) 210 × 109

Thermal conductivity k
(W m−1 K−1)

34 Fracture toughness (Pa) 1.44–2.51 × 109

Thermal expansion
coefficient α (K−1)

2.6 × 10−6 Poisson coefficient 0.22

A 3D finite-element model of the device has been developed [5, 9]; a typical
finite-element mesh is composed of about 8,000 tetrahedra. The material properties
used in the model are listed in Table 13.3.

The following multiphysics equations, which are coupled at the right-hand side
level, are subsequently solved.

13.7.1 Electric Problem

The governing equations are

∇ · σ∇V = 0 (13.27)

and

J = σE = −σ∇V (13.28)

subject to boundary conditions

VA = const, VB = 0, n · J = 0 elsewhere (13.29)

where J is the current density,E the electric field andV the unknown electric voltage.

13.7.2 Thermal Problem

The governing equation is

−∇ · (k∇T ) = J · E (13.30)
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subject to boundary conditions

T = 293.15 K at the bushings and at the hinges (13.31)

−n̄ · (k∇T ) = h(Text − T ) elsewhere (13.32)

with J · E the specific power due to the Joule effect, T the unknown temperature
and h the convection coefficient; the latter has different values on the upper and the
lower surface. In particular, the value of h is equal to 400 W m−2 K−1 for the upper
surface and 2 × 104 W m−2 K−1 for the lower surface. These values are obtained
by dividing the thermal conductivity of air (0.04 W m−1 K−1) by the distance to the
surrounding surfaces for the system.

13.7.3 Structural Problem

In order to solve the structural problem, the total strain ε is additively decomposed
into its elastic εe and thermal εT components

ε = εe + εT (13.33)

The thermal component, which reads

ε̄T = α(T − Tref ) (13.34)

is known after the cascade solution of (13.27) and (13.32).
This way, the classical continuum-mechanics problem, that incorporates compat-

ibility, equilibrium and elastic equations, can be cast; they read

ε = 1

2

(∇u + ∇uT + ∇u∇uT
)

(13.35)

∇ · S = 0 (13.36)

εe = C
−1
S (13.37)

respectively, where u is the unknown displacement subject to

uz = 0 at the bushings, u = 0 at the hinges (13.38)

while S is the second Piola-Kirchhoff stress tensor, and C is the elastic constitutive
tensor.
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Fig. 13.20 Temperature (a) and stress (b) field maps

From the numerical viewpoint, the structural problem (13.33)–(13.38) is solved in
the large displacement regime using the second Piola-Kirchhoff tensor as the stress
measure, then the finite-element mesh is updated to simulate the deformed structure.

In Fig. 13.20 a solution of the multiphysics direct problem is shown; in particular,
the field maps of temperature and stress are shown, respectively.

13.8 Electromagnetically Actuated Cantilever

The cantilever under study is a silicon cantilever in which a copper path is embedded.
Its dimensions are length = 500 μm, width = 100 μm, height = 10 μm, conductor
width = 10 μm.

Electromagnetic actuation of the cantilevers is amethod for themovement control.
The current loop, being a part of the beam itself, is immersed in a magnetic field,
thus a Lorentz force F arises, acting and causing (or compensating) its bending
(Fig. 13.21).

Fig. 13.21 Cantilever immersed in the magnetic field generated by the magnet
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Fig. 13.22 Induction field
[T] map in z-direction

The idea of the electromagnetic actuation has been described in the literature,
presenting its various application [7, 22].

In this example, the impressed current is equal to 1 A and the magnetic field is
generated by means of a NdFeB magnet.

The magnet is 8.36 mm long and has a radius of 4 mm. Its relative magnetic
permeability is μr = 1.1 and its coercitivity is Hc = −1185 kA/m.

In order to evaluate the magnetic field of the NdFeB magnet, a 3D finite element
model is built and amagnetostatic problem is solved (Sect. 13.8.1), while for evaluat-
ing the current field distribution, a 2D finite elementmodel can be used (Sect. 13.8.2).
Finally, analytical formulas are given for the electro-mechanical properties of the
cantilever (Sect. 13.8.3).

13.8.1 Magnetostatic Problem

A magnetostatic field problem has been solved, with Dirichlet boundary conditions
applied on the boundaries of the domain.

The results are shown in Fig. 13.22, where the field map of the magnetic induction
Bz along z-direction is shown (Fig. 13.22) and in Fig. 13.23 the field Bz is evaluated
along a line (line A in Fig. 13.22) passing through the center of the magnet, axially
located.

The magnetic field inside the cantilever tip varies between 0.46 and 0.49 T. The
center of the cantilever tip (triangular shaped tip) is placed at a distance of 0.8 mm
from the magnet surface: the magnetic induction field at that point is about 0.475 T.

13.8.2 Conduction Current Problem

In order to evaluate the current distribution in the cantilever, a 2D finite element
model is built. The conductive path of the cantilever is simulated as copper and it is
fed by a 1mA current; a steady-state conduction field problem is solved. In Fig. 13.24
the current density distribution Jx in x-direction is shown.
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Fig. 13.23 Induction field in z-direction along line A (Fig. 13.22)

Fig. 13.24 Current density
field map in x-direction. The
measurement unit of current
density Jx is (A m−2)

Under the hypothesis of induction field constant and equal to 0.475 T, it is possible
to calculate the Lorentz force in y-direction (perpendicular to the plane x-z, where
the cantilever lays) as follows:

Fy = Bz

∫

S

JxdS = 0.475
∫

S

JxdS = 42.7 nN (13.39)

The integral in (13.39) can be computed numerically by finite element analysis.
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13.8.3 Electro-Mechanical Properties

Given the shape g of the cantilever end, the current I, and the magnetic induction B, it
is possible to analytically calculate the stiffness k of the cantilever, the resonance fre-
quency f of the cantilever, the force Fz acting on the end region and its displacement
Δz and the electric resistance R (power-loss related) of the Lorentz loop.

The stiffness k of the cantilever can be calculated as follows [22]:

k = Ebwt3

2b
(
L31 − L32

) + 4wL32
(Nm−1) (13.40)

where E is the Young’s modulus, b is the cantilever width, w the arm width, t is
the thickness equal to 1.5 μm, L1 is the cantilever length and L2 is the tip length
(Fig. 13.25).

The resonance frequency f can be evaluated with the following approximated
formula:

f ∼= 0.161
t

L21

√
E

ρ
(rad s−1) (13.41)

where ρ is the mass density equal to 2330 kg m−3.
The force Fz and its displacement Δz can be calculated as follows:

Fz = IbB (13.42)


z = Fz

k
(13.43)

Equation (13.42), which is derived form the Lorentz’s equation, is under the
assumption that the cantilever, i.e. the plane in which the current flows, is perpen-
dicular to the magnetic induction field.

Finally, the electric resistance R can be calculated as the series of three electric
resistances of the three path components (two arms, with the same resistance value
R1 and the tip, with resistance R2):

R = 2R1 + R2
∼= 2

σ−1(L1 − L2)

wt
+ σ−1b

L2t
(13.44)

where σ is the electric conductivity of the boron-doped silicon (without metal layer)
equal to 6.67 × 104 S m−1.

Fig. 13.25 Geometry of the
cantilever
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Chapter 14
Numerical Case Studies: Inverse Problems

Maria Evelina Mognaschi

14.1 Introduction

Optimization plays a key role in the design of any device or system, and this is
especially true for MEMSs. The issue is to find a design space for a device which
will satisfy the performance specifications. Often, they include several design criteria
which cannot all be met at the same time. This leads to the concept of multi-objective
optimization, i.e., a search which attempts to satisfy several goals simultaneously.
The theoretical background is based on the Pareto optimality theory [4] which was
presented in Sect. 11.2.

While the basic concept of optimization, discussed in Sect. 11.1, —i.e., find the
minimum or maximum value of an objective function dependent on a set of vari-
ables—is fairly obvious, in this Chapter, examples of multi-objective optimization
of MEMS devices are shown.

In particular, a shape design problem is solved for all the examples presented and,
depending on the complexity of the shape to improve, the number of design variables
can vary, as shown in the examples in Sect. 14.2.

Moreover, solving an optimization problem for the design of a MEMS device is
critical in terms of objective functions because, in order to evaluate them, electro-
magnetic analysis, based on two—(see devices in Sects. 14.2 and 14.4) or three-
dimensional (see devices in Sects. 14.3 and 14.6) finite-element models, is needed.

This task can be computationally expensive, in particular when the field analysis
implies the numerical solution to costly problems, e.g., multiphysics problems, like
the one solved in Sect. 14.6. When a simplified analytical model can be used, like in
the examples in Sects. 14.5 and 14.7, the problems turn out to be far less expensive.

In all the cited examples, the multi-objective problems take into account two
objective functions. In the last years, attention is paid to multi-objective optimiza-
tion with more than two objectives, also called many-objective optimization [10].
This happens because automated-optimal design problems are characterized by an
increasing dimensionality of the objective space, as the complexity of simulation
models increases. An example ofmany-objective optimization is shown in Sect. 14.7.

© Springer Nature Switzerland AG 2020
P. Di Barba and S. Wiak, MEMS: Field Models and Optimal Design, Lecture Notes
in Electrical Engineering 573, https://doi.org/10.1007/978-3-030-21496-8_14
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Fig. 14.1 Design variables
for the optimization problem

14.2 Shape Optimization of the Electrostatic Micromotor

Because one of the main drawbacks of electrostatic micromotors is the static friction,
an inverse problemwhich takes into account the side-pull effect has been considered.
The latter is caused by the radial displacement of the rotor during itsmotion.Actually,
the eccentricmotion determines an unbalanced electric pull, which appears as a radial
force acting in the direction of the shortest air-gap.

Based on Maxwell’s stress tensor method, the radial force Fr(ϕ) acting on the
rotor can be evaluated as a function of its angular position ϕ, in addition to the
driving torque Td(ϕ).

In the inverse problem here considered, the shape of the electrostatic micromotor
described in Sect. 13.3.2 is optimized; to simulate the radial displacement, a clearance
between rotor and shaft equal to 1 µmwas considered; the direction of displacement
was assumed to be fixed and independent of ϕ (static eccentricity).

14.2.1 Three Design Variables Optimization

The shape design of the rotor has been considered, taking radius R1 and angles (α,
β) as the design variables, as shown in Fig. 14.1 [9].

Significantly, two objective functions can be defined in terms of design vector
g = (R1, α, β) namely:

• the highest value of driving torque on a pole pitch f 1(g) at no load under single-
phase supply;

• the value of radial force on the rotor f 2(g) in the direction of the shortest air-gap.

The inverse problem reads: given stator supply and rotor misalignment, find the
family of rotor geometries g such that f 1(g) is maximum and f 2(g) is minimum
according to the Pareto definition of non-dominated solution.

TheBiMomethodpresented inSect. 11.6 is used. It has been appliedwithmutation
probability set to 0.04; the run was stopped after 5 generations, each based on 14



14.2 Shape Optimization of the Electrostatic Micromotor 171

0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
-6

0

0.01

0.02

0.03

0.04

0.05

Torque [N]

Ra
di
al
fo
rc
e
[N
m

-1
]

B

C

A

U

N

Fig. 14.2 Objective space and non-dominated solutions: cross—NSGA-II results, dia-
mond—BiMO multi-objective results

Fig. 14.3 Geometry of solution a (left), b (middle) and c (right) of Fig. 14.2

Table 14.1 Results of A, B and C solutions in Fig. 14.2

R1 (µm) α (°) β (°) Torque
(µN)

Radial force (mN m−1)

Sol. A 18.6 83.4 10.0 0.80 9.30

Sol. B 39.8 11.6 23.1 1.34 19.4

Sol. C 41.2 11.6 40.8 1.74 41.1

habitats. For the sake of a comparison, the front was also approximated by means of
NSGA-II. This last was stopped after 5 generations, each based on 14 individuals.

The approximated Pareto fronts are shown in Fig. 14.2, where also the Utopia U
and Nadir N points are highlighted.

In Fig. 14.3 geometry and potential lines of non-dominated solutions A, B and C
of Fig. 14.2 are shown.

These solutions are characterized by design variable values and objective function
values shown in Table 14.1.

https://doi.org/10.1007/978-3-030-21496-8_14
https://doi.org/10.1007/978-3-030-21496-8_14
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Fig. 14.4 Control points and design variables of the optimization problem

Table 14.2 Bounds of the
design variables

x1 (µm) x2 (µm) x3 (°) x4 (°) x5

min 15 15 10 10 0.01

max 55 60 55 55 10

14.2.2 Five Design Variables Optimization

In this optimization, a device with the shape of tooth corner (Fig. 14.4) rounded by
means of a second-order Bézier curve is considered [11]. The control points of the
Bézier curve exhibit polar coordinates P1(Rb, −α/2), P2(R2, −α/2) and P3(R2, −
β/2). A weight k > 0 makes the tooth corner filled in.

In the inverse problem, variables (R1, Rb, α, β, k) have been selected as the entries
of the five-dimensional design vector g. The variation range for the design variables
are shown in Table 14.2.

The outer radius of the rotor R2 is constant and equal to 60 µm.
Accordingly, two objective functions have been defined, namely:

• the highest value of driving torque f 1(g) under single-phase supply at no load;
• the value of radial force on the rotor f 2(g) in the direction of the shortest air-gap.
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Fig. 14.5 Objective space
and non-dominated
solutions: circle—NSGA-II,
cross—non-linear BBO,
diamond—non-linear BBO
with storage of habitats

The optimal design problem reads: given stator supply and rotor misalignment,
find the family of rotor geometriesg such that f 1(g) ismaximumand f 2(g) isminimum
according to the Pareto definition of non-dominated solution.

The BiMO algorithm (see Sect. 11.6) is applied with a non-linear model of the
immigration curve [11].

The emigration rate μ is calculated as μ = 1 − λ.
In Fig. 14.5 a comparison between non-linear BBO and NSGA-II [3] methods

(converged after ng= 10 generations, based on Np= 14 solutions each) is shown.
Moreover, at each generation of the BBO optimization, the habitats were stored: at
the end, the Pareto front numerically resulting from all the habitats stored by BBO
was considered. Storing the solutions found at each iteration is costless and allows to
consider good solutions which have been lost in the procedure. This way, the social
behavior of BBO is fully exploited.

14.3 Shape Optimization of a Comb-Drive Accelerometer

The comb-drive accelerometer described in Sect. 13.4 is here considered for an
optimal shape design [1, 15].

A comb-drive actuator needs to be as coplanar as possible with respect to its
sets of movable and fixed electrodes. To this end, various solutions have already
been considered [16]. In the case study, a grounded substrate is laid under the set of
electrodes as an attempt to cancel the vertical force. This way, however, the electric
field distribution is no longer symmetric and the movable electrodes tend to levitate
when the comb drive is energized. This vertical perturbation must be kept as low
as possible while simultaneously the drive force should be increased. Therefore, the
ultimate goal of the optimal shape design problem is to find the family of geometries
that maximize the x-directed drive force between movable and fixed electrodes, and
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Table 14.3 Details of two non-dominated solutions

wm (µm) wf (µm) hm (µm) hf (µm) Fx (N) Slope of Fz versus z
(N/µm)

6 6 6.2 6.1 3.88 × 10−10 2.79 × 10−10

7.7 7.8 7.7 7.8 5.86 × 10−10 4.03 × 10−10

simultaneously minimize the z-directed levitation force: a bi-objective optimization
problem is so originated. To this end, the four-dimensional vector g = (wm, wf , hm,
hf ) of design variables has been defined; they are discrete valued (step 0.1 µm) and
can range from 2 to 8 µm. Moreover, a two-dimensional vector F = (f 1, f 2) of
objective functions has been defined, such that:

• drive f 1(g) = Fx(x, g) for z = 0 and 0 ≤ x ≤ 14 µm, to be maximized with respect
to vector g;

• levitation f 2(g) = Fz(z, g) for x = −13 µm and 0 ≤ z ≤ 1.8 µm, to be minimized
with respect to vector g.

In practice, the average value of the Fx versus x curve is maximized, and simulta-
neously the slope of the Fz versus z-displacement curve is minimized against vector
g.

The automated optimal design is based on a surrogate model: connecting the
MATLAB surrogate modeling (SUMO) toolbox with COMSOL Multiphysics finite
element analysis tool, the surrogate model is derived. Then, the NSGA-II algorithm
[3], a well known optimization algorithm, is used for solving this optimization prob-
lem, based on the surrogate model.

A set of sixty-one non-dominated solutions approximate the Pareto front [2]; for
the sake of an example, the detail of two non-dominated solutions is reported in
Table 14.3.

14.4 Shape Optimization of a Micro-Mirror Actuator

ThemagneticMEMS shown in Sect. 13.5 is here optimized. In the following Sections
a bi-objective formulation [15] as well as a tri-objective formulation [14] of the
optimization problem are proposed and solved.

14.4.1 Bi-Objective Optimization Results

The design problem is set up as follows: having prescribed lower thresholds for
holding and actuation torque, given the plate angle ϕ = 10°, find the geometry of
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Fig. 14.6 Optimization results. Constraints: holding torque >1 nNm, actuation torque >0.25 nNm

magnet and conductors, as well as the amplitude of the current pulse, such that the
power loss in the conductors and the magnet volume are both minimized.

From the viewpoint of the computational cost, it can be remarked that the evalua-
tion of magnet volume x1x2 and power loss ωx27 (σ x4x5)

−1 with σ = 6 × 107 S m−1

is straightforward, while the evaluation of both holding and actuation torque at ϕ =
10° is field dependent. In order to deal with feasible design configurations, suitable
geometric constraints have been considered; moreover, the upper bound x7(x4x5)−1

< 5×109 A m−2 have been fulfilled for the pulsed current density.
Moreover, the lower threshold for the holding torque is set to 1 nN m, while for

the actuation torque it is set to 0.25 nN m.
The NSGA-II method [3] is run with 20 individuals and 40 generations.
An approximation of the Pareto front in the power-loss versus magnet-volume

space is shown in Fig. 14.6.

14.4.2 Tri-Objective Optimization Results

While in Sect. 14.4.1 an optimization problem with two design criteria was investi-
gated, here a 3D objective space is considered.

The optimal design problem reads: having prescribed lower thresholds for holding
torque (10−8 Nm) and actuation torque (10−9 Nm), given mirror position ϕ = 10°,
find the geometry of magnet and conductors, as well as the current pulse amplitude,
such that: power loss in conductors (f 1), weighted material cost (f 2), and excitation
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Fig. 14.7 Paretian evolution strategy (P-EStra): optimization trajectory in the objective space

Table 14.4 P-EStra: Objective improvement f (stop)/f (start) and design variable movement
x(stop)/x(start) for the optimal point in Fig. 14.7

f 1 f 2 f 3 x1 x2 x3 x4 x5 x6 x7

0.218 0.444 0.507 1.098 0.841 0.159 1.066 0.902 0.388 0.298

system volume (i.e. conductors and magnet, f 3) are simultaneously minimized in the
Pareto sense. In a way, objectives f 1 and f 3 are the main conflict pair because in the
MEMS domain miniaturisation is limited by the thermal behaviour of components.

The P-EStra algorithm described in Sect. 11.4.1 is used for solving this problem.
The results are shown in Fig. 14.7 and Table 14.4: it can be remarked that objective

functions and design variables change substantially moving from the initial solution
to the final one.

14.5 Shape Optimization of a Two-Arms
Electro-Thermo-Elastic Microactuator

The geometry of the two-arms microactuator described in Sect. 13.6 is here opti-
mized: the design variables are L1, L2, Lg, hh and d [12].

The objective functions are the maximum temperature Tm to be minimized, and
the displacement U, which is the deflection in the free end of the actuator, to be
maximized.



14.5 Shape Optimization of a Two-Arms Electro-Thermo-Elastic Microactuator 177

Fig. 14.8 Optimisation
results: star—starting points
BiMO, square—arrival
points BiMO,
circle—starting point goal
attainment, cross—arrival
point goal attainment,
dot—random sampling
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Two different algorithms have been applied: goal attainment method [4] and the
biogeography-based method (see Sect. 11.6).

Goal attainment is a well-known deterministic method, which allows to solve a
multi-objective problem by reformulating it in terms of a minimax problem, subject
to suitable weights expressing the user preferences. The minimax problem is subse-
quently solved by means of a deterministic algorithm, i.e. the sequential quadratic
programming [18].

The BiMO algorithm has been applied with the following stopping criterion: the
computation stops when mean mf, mean and maximum mf, max values of mf over the
last five iterations fulfill the following condition: mf, mean < 1% and mf, max < 2%.

The starting points are randomly generated.
Goal attainment method has been used with the default settings for the routine

fgoalattain ofMatLab [18]. The point [−10−6, 369] is taken as the goal vector, while
the weights are the absolute value of the two components of the goal vector.

The optimisation results are shown in Fig. 14.8, where also a random sampling
of the search space is shown (dots).

The starting point for the goal attainment algorithm is the star while the arrival
point is the cross. Goal attainment is able to find a solution belonging to the Pareto
front. The run lasted 75 iterations (533 objective function calls).

BiMO algorithm is able to find a good approximation of the whole front. In fact,
13 points out of 14 converged to the approximated front. The run lasted 806 iterations
(11284 objective function calls).

In order to approximate the whole front with the goal attainment algorithm, it
would be necessary to run many times the algorithm, each time varying its weights.

It is possible to say that both methods find Pareto-optimal solutions with hundreds
of objective function calls per individual.

Moreover, the computational cost is comparable, if one considers that BiMO takes
more timebut finds 14 solutions,while goal attainment finds out just one solution. The
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computation time could be substantially high when considering numerical models
for solving the forward problem.

Also the displacements found for both devices exhibit the same order of magni-
tude.

14.6 Shape Optimization of a Three-Arms
Electro-Thermo-Elastic Microactuator

A shape optimization of the device analyzed in Sect. 13.7 is here optimized [5]. The
problem reads as follows: acting on the following design variables

L length of the actuator,
hh thickness of the actuator,
dw width of the cold arm,
d width of the hot arms,

two objective functions are defined:

f1 = u|V=V min + u|V=V max (14.1)

f2 = Tmax |V=V min + Tmax |V=V max (14.2)

where f 1 is to be maximized and f 2 to be minimized, with Vmin= 1 V, Vmax= 5 V,
subject to the constraints:

Tmax < 1500 K (14.3)

‖S‖ < 1.44 GPa. (14.4)

The meaning of the (14.4) is that the norm of the stress at the most solicited point
of the actuator should not exceed the silicon breaking stress.

The design variable ranges are L [56–300] µm, hh [2–5] µm, dw [7–30] µm, d
[1–7] µm, respectively.

The BiMO algorithm (see Sect. 11.6) is applied for solving this optimization
problem. Considering the good performance of the elitism technique applied in the
study of the method [11], half of the Pareto front is considered for elitism. In fact,
using half of the Pareto front for elitism is suitable when a time-consuming forward
problem (like (13.27)–(13.38) is in 3D) has to be solved at each iteration.

An ecosystem composed of ni = 14 islands is considered.
In order to rule the convergence of the proposed method, the following index is

considered:
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m f (k) =
∣
∣d f (k) − d f (k − 1)

∣
∣

d f (k − 1)
(14.5)

with

d f = 1

Np

√
√
√
√
√

Np
∑

i=1

N f
∑

j=1

(
fi, j − u j

L j

)2

, (14.6)

where Np is the number of habitats, Nf is the number of objective functions, Lj is
the distance between Utopia and Nadir points while f i, j and uj are the current values
of the objective functions and the utopia point, respectively. Put simply, index df is
related to the mean distance of the current habitats to the Utopia point while index
mf is calculated at the k-th iteration and gives information about how much the mean
distance df to Utopia changed at the k-th iteration with respect to the previous one.

The stopping criterion is based on a twofold condition as follows: the optimisation
stops when the mean value of mf considering the last 5 iterations, mf, mean, is smaller
than a prescribed threshold, e.g. 0.01 and the maximum value of mf considering the
last 5 iterations, mf, max, is smaller than a prescribed threshold, e.g. 0.02.

The optimisation lasted ng= 35 iterations. At each iteration the Pareto front is
calculated and archived, considering also the history of the optimisation results: the
Pareto front so found is shown in Fig. 14.9. For each method the overall cost is
proportional to ni× ng calls to the FEA. Each call to FEA lasts, depending on the
mesh discretizing the geometry, from 5 through 20 min on a computer equipped with
a processor Intel i7, 3.6 GHz and 16 GB of RAM.

In order tomake a comparisonbetween the results found for the two-armsmicroac-
tuator (Sect. 14.5) and the three-arms microactuator, it can be stated that the maxi-
mum value of temperatures for the two Pareto fronts are comparable. It can be noted

Fig. 14.9 Objective space
(dot) and non-dominated
solutions (circle); A and B
points (square) are the ends
of the approximated Pareto
front
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from (14.2) that the objective function f2 is the sum of two temperatures; hence,
the temperature values in Fig. 14.8 have to be approximately doubled in order to
be compared with results in Fig. 14.9. The temperature maps of solutions A and B
(Fig. 14.9) are shown in Fig. 14.10.

Two solutions, located at the end points of the Pareto front, are considered. Results
in terms of design variable, objective function and constraint values are shown in
Table 14.5.

Taking into account the results in Table 14.5, it can be stated that, from the designer
point of view, a long actuator should be preferred. Moreover, considering the bounds
of the height hh, it can be observed that the value of hh is the smallest one for device
A and the highest one for device B. A further role is played by the ratio dw to d, which
should be high. Therefore, according to extra preferences of the device designer, a
final choice can be made a posteriori among Pareto-optimal solutions.

Fig. 14.10 Temperature [°C] maps of solutions A (a) and B (b)

Table 14.5 Results of the two end-points of the Pareto front in Fig. 14.9

Design variables (µm) A B Objective
function/constraint

A B

L 293.75 286.9 f 1 (µm) 1.68 2.14

hh 2.03 4.97 f 2 (K) 672.2 746.3

dw 15.76 29.13 Tmax (K) 375.6 446.6

d 1.00 1.72 S (GPa) 0.19 0.44
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Table 14.6 Variation range
for the design variables (units
in µm)

w L1 L2 b

Lower bound 20 100 50 100

Upper bound – 600 100 150

In order to compare this method with a well-known classical method, the goal
attainment algorithm (the same used for the two-arms microactuator, Sect. 14.6) has
been resorted to. However, after many numerical experiments, it was not able to find
any non-dominated solution on the Pareto front. This is probably due to the non-
smoothness of objective functions (14.1–14.2), which makes the problem stiff for a
deterministic method like goal attainment.

14.7 Shape Optimization of the Electromagnetically
Actuated Cantilever

A shape optimization of the device shown in Sect. 13.8 is here optimized [17].
If the shape of the cantilever end is defined bymeans of a n-dimensional vector g=

(g1, … , gk, … , gn) of geometric variables (e.g. for a polygonally-shaped end region,
the coordinates of the relevant vertices), the inverse (or design) problem reads: given
current I and magnetic induction B, find the shape g = (g1, … , gk, … , gn) of the
cantilever end region such that:

the stiffness k(g) of the cantilever is minimized;
the resonance frequency f (g) is maximized;
the displacement Δz(g) of the end region is maximized;
the electric resistance R(g) of the Lorentz loop is minimized.

A multi-objective optimisation problem characterized by four objective functions
[k(g), f (g),Δz(g),R(g)] is originated.Whenmany objective functions (saymore than
two) are considered, it is very common to find solutions of the optimization problem
which are equivalent in the Pareto sense to the starting point. However, these solutions
are nevertheless interesting because they improve at least one objective function.

The shape of the cantilever is defined by four design variables, as shown in
Fig. 13.24: w, arm width, L1, cantilever length, L2, tip length, b, cantilever width
[7].

The variation range for each design variable is shown in Table 14.6.
In order to guarantee a geometrical consistency, the following constraint (units in

µm) is set:

b ≥ 2w + 10 (14.7)

Subsequent optimization runs are considered, with one (Opt1), two (Opt2) or
more (Opt3) objective functions at a time:
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Opt1—each objective function i.e. k, f, Δz and R, is optimized in four different
single-objective optimizations (Opt1k, Opt1f, Opt1z, Opt1R);
Opt2—the following pairs of functions are considered: k and R are optimized
(Opt2kR), f and z are optimized (Opt2fz), f and R are optimized (Opt2fR), z and R
are optimized (Opt2zR);
Opt3—k, z and R are simultaneously optimized (Opt3).

In order to solve these optimization problems, the evolutionary algorithmof lowest
order described in Sect. 11.4 is applied [4]. This algorithm is able to solve single-
objective problems (in this case it is called “EStra method” (Di Barba, Savini and
Wiak, [8, 13], multi-objective problems (“MOESTRAmethod” [6], see Sect. 11.4.1)
and many-objective problems (“P-EStra method”, see Sect. 11.4.1).

14.7.1 Single-Objective Optimization Results

The results of the single-objective optimizations are shown in Table 14.7. In each
table the values of the design variables and of the functions (k, f, Δz, R) are shown.
In particular, the minimized objective function is highlighted in bold.

From Table 14.7—Opt1k, it can be noted that the non-controlled objective func-
tions f decreases, which is unwanted, Δz increases (desiderable) and R increases
(unwanted).

From Table 14.7—Opt1f, it can be noted that the non-controlled objective func-
tions k increases, which is unwanted, Δz decreases (unwanted) and R decreases
(desiderable).

From Table 14.7—Opt1z, it can be noted that the non-controlled objective func-
tions k decreases (desiderable), f decreases (unwanted) and R increases (unwanted).

From Table 14.7—Opt1R, it can be noted that the non-controlled objective func-
tions k increases (unwanted), f increases (desiderable) andΔz decreases (unwanted).

Table 14.7 Single-objective optimization Opt1k results

w (µm) L1 (µm) L2 (µm) b (µm) k
(Nm−1)

f (kHz) Δz (nm) R (	)

Initial 20 500 50 100 4.32 ×
10−2

8 925.37 470

Opt1k 21.05 568.92 53 114.39 3.09 ×
10−2

6.18 1481.94 511.84

Opt1f 24.55 210.26 64.57 122.56 0.726 45.26 67.56 137.67

Opt1z 22 567.57 63.93 127.90 3.25 ×
10−2

6.21 1573.71 478

Opt1R 47.59 210.51 80.73 119.47 1.39 45.16 34.29 69.34
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14.7.2 Bi-Objective Optimization Results

The results of the bi-objective optimizations are shown in Table 14.8. In each table
the values of the design variables and of the functions (k, f, Δz, R) are shown. In
particular, the minimized objective functions are highlighted in bold.

From Table 14.8—Opt2kR, it can be noted that the non-controlled objective func-
tion f decreases, which is unwanted, but Δz increases (desiderable).

From Table 14.8—Opt2fz, it can be noted that the non-controlled objective func-
tion k increases, which is unwanted, but R decreases (desiderable).

From Table 14.8—Opt2fR, it can be noted that the non-controlled objective func-
tion k increases (unwanted) and Δz decreases (unwanted).

From Table 14.8—Opt2zR, it can be noted that the non-controlled objective func-
tion k decreases (desirable) and f decreases (unwanted).

14.7.3 Tri-Objective Optimization Results

The results of the tri-objective optimization are shown in Table 14.9. The values of
the design variables and of the functions (k, f, Δz, R) are shown. In particular, the
minimized objective functions are highlighted in bold.

Table 14.8 Bi-objective optimization results

w (µm) L1 (µm) L2 (µm) b (µm) k
(Nm−1)

f (kHz) Δz (nm) R (	)

Initial 20 500 50 100 4.32 ×
10−2

8 925.37 470

Opt1 k 24.05 557.13 62.33 110 3.76 ×
10−2

6.45 1170.59 429.13

Opt1f 21 490.14 55.40 136.12 4.82 ×
10−2

8.33 1129.24 438.48

Opt1z 60.92 210.04 86.10 135.02 1.79 45.36 30.29 56.37

Opt1R 27.17 568.93 57.71 110.96 3.99 ×
10−2

6.18 1113.33 395.46

Table 14.9 Tri-objective optimization Opt3 results

w (µm) L1 (µm) L2 (µm) b (µm) k
(Nm−1)

f (kHz) Δz (nm) R (	)

Initial 20 500 50 100 4.32 ×
10−2

8 925.37 470

Final 23.97 562.15 68.13 111.78 3.65 ×
10−2

6.33 1226.19 428.66
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From Table 14.9, it can be noted that the non-controlled objective function f
decreases, which is unwanted.

Provided that all the optimization runs start from the same initial point, the fol-
lowing remarks can be put forward.

The solutions obtained in Opt1k, Opt1f, Opt1z and Opt1R differ in both design
vector (w, L1, L2, b) and objective vector (k, f, Δz, R). This proves that a single
solution simultaneously satisfying all the design criteria does not exist. From the
optimisation theory viewpoint, it is a design conflict problem that can be studied via
Pareto optimality.

Solutions obtained in Opt2 and Opt3 can be considered Pareto-equivalent to the
initial one, because three objectives improve, while one objective deteriorates (e.g.
solution of Opt3 where k,Δz and R improve, while f deteriorates). From the applica-
tion viewpoint, provided the amount of deterioration in one objective is acceptable,
Pareto-equivalent solutions may represent a good alternative to the initial solution.
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Appendix

Elementary Vector Analysis

In a three-dimensional domain, using rectangular coordinates, special vectors are
the space vectors �rP ¼ xP; yP; zPð Þ and �rQ ¼ xQ; yQ; zQð Þ, defining field point P and
source point Q, respectively (see Fig. A.1).

The Euclidean distance between P and Q is

r ¼ rj j ¼ xP � xQð Þ2 þ yP � yQð Þ2 þ zP � zQð Þ2
h i1

2¼ rP � rQ
�� �� ðA:1Þ

A special function is 1
r ; r 6¼ 0; it results:

rPr ¼ �r
r
; �rQr ¼ � r

r
ðA:2Þ

rP
1
r
¼ � �r

r3
; rQ

1
r
¼ �r

r3
ðA:3Þ

rP � �r ¼ rQ � �r ¼ �3 ðA:4Þ

r2
P
1
r
¼ �4pdðrÞ where d denotes the Dirac's distribution ðA:5Þ

r � � �r
r3

� �
¼ r� �r 1

r
¼ 0 ðA:6Þ

Z

X

dðrQÞ
r

dX ¼ 1
r

ðA:7Þ

© Springer Nature Switzerland AG 2020
P. Di Barba and S. Wiak, MEMS: Field Models and Optimal Design, Lecture Notes
in Electrical Engineering 573, https://doi.org/10.1007/978-3-030-21496-8

187

https://doi.org/10.1007/978-3-030-21496-8


The following formulae hold:

r � r � V
� � ¼ 0 ðA:8Þ

r �r/ ¼ 0 ðA:9Þ

Gauss’s or divergence theorem

Z

X

r � BdX ¼
Z

C

B � �ndC ðA:10Þ

with C ¼ @X closed surface enclosing X and �n outward normal versor.
Stokes’s or circulation theorem

I

‘

A ��t d‘ ¼
Z

C

r� A
� � � �n dC ðA:11Þ

with ‘ ¼ @C closed line representing the border of C and �t anticlockwise tangential
versor.

Vector identities

r� r� A
� � ¼ r r � A� ��r2

A ðA:12Þ

P

Q

x 

y

z

r

Pr

Qr

O

Fig. A.1 Field point P and
source point Q
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r � V1 � V2
� � ¼ V2 � r � V1

� �� V1 � r � V2
� � ðA:13Þ

r � uV
� � ¼ V � ruþur � V ðA:14Þ

r � V1 � V2
� � ¼ V1r � V2 � V2r � V1 þ V2 � r

� �
V1 � V1 � r

� �
V2 ðA:15Þ

r � uV ¼ ur� V þru� V ðA:16Þ

In cylindrical coordinates

r � V ¼ r�1 @ rVrð Þ
@r

þ r�1 @V#

@#
þ @Vz

@z
ðA:17Þ

r2U ¼ @2U
@r2

þ r�1 @U
@r

þ r�2
@2U
@#2 þ @2U

@z2
ðA:18Þ

In spherical coordinates

r � V ¼ r�2 @ r2Vrð Þ
@r

þ r sin#ð Þ�1@ V# sin#ð Þ
@#

þ r sin#ð Þ�1@Vu

@u
ðA:19Þ

r2U ¼ r�2 @

@r
r2
@U
@r

� �
þ r�2 sin#ð Þ�1 @

@#
sin#

@U
@#

� �
þ r sin#ð Þ�2@

2U
@u2 ðA:20Þ

r � V
� �

r¼ r sin#ð Þ�1 @ Vu sin#
� �

@#
� @V#

@u

� �
ðA:21Þ

r � V
� �

#
¼ r sin#ð Þ�1 @Vr

@u
� @ r sin#Vu

� �
@r

� �
ðA:22Þ

r � V
� �

u¼ r�1 @ rV#ð Þ
@r

� @ Vr
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� �
ðA:23Þ

rU ¼ @U
@r

;
1
r
@U
@#

;
1

r sin#
@U
@u

� �
ðA:24Þ

Helmholtz’s Theorem

A vector field �V is defined in a simply-connected domain X, giving its divergence
and curl in X as well as the normal component on the boundary C.

In a domain X bounded by C, given
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r � V ¼ s inX
r� V ¼ �c
V � �n ¼ h alongC

the vector field �V is defined in a unique way.
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