
Testing Equivalence vs. Runtime
Monitoring

Luca Aceto1,2(B) , Antonis Achilleos2 , Adrian Francalanza3 ,
Anna Ingólfsdóttir2 , and Karoliina Lehtinen4

1 Gran Sasso Science Institute, L’Aquila, Italy
luca.aceto@gssi.it

2 School of Computer Science, Reykjavik University, Reykjavik, Iceland
{luca,antonios,annai}@ru.is

3 Department of Computer Science, ICT, University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

4 Department of Computer Science, University of Liverpool, Liverpool, UK
karoliina.lehtinen@liverpool.ac.uk

Abstract. Rocco De Nicola’s most cited paper, which was coauthored
with his PhD supervisor Matthew Hennessy, introduced three seminal
testing equivalences over processes represented as states in labelled tran-
sition systems. This article relates those classic process semantics with
the framework for runtime monitoring developed by the authors in the
context of the project ‘TheoFoMon: Theoretical Foundations for Moni-
torability’. It shows that may-testing semantics is closely related to the
basic monitoring set-up within that framework, whereas, over strongly-
convergent processes, must-testing semantics is induced by a collection
of monitors that can detect when processes are unable to perform certain
actions.

Keywords: Testing equivalence · Runtime monitoring ·
Trace equivalence · Failure equivalence ·
Hennessy-Milner logic with recursion

1 Introduction

Rocco De Nicola is probably best known for the introduction of the notions of
testing equivalence over concurrent processes, in joint work with his PhD super-
visor Matthew Hennessy that was reported in the conference paper [14] and the
subsequent journal paper [15]. These testing equivalences embody in a natural

This research was partially supported by the projects ‘TheoFoMon: Theoretical Foun-
dations for Monitorability’ (grant number: 163406-051; http://icetcs.ru.is/theofomon/)
and ‘Epistemic Logic for Distributed Runtime Monitoring’ (grant number: 184940-051)
of the Icelandic Research Fund, by the BMBF project ‘Aramis II’ (project number:
01IS160253) and the EPSRC project ‘Solving parity games in theory and practice’
(project number: EP/P020909/1).

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 28–44, 2019.
https://doi.org/10.1007/978-3-030-21485-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_4&domain=pdf
http://orcid.org/0000-0002-2197-3018
http://orcid.org/0000-0002-1314-333X
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0001-8362-3075
http://orcid.org/0000-0003-1171-8790
http://icetcs.ru.is/theofomon/
https://doi.org/10.1007/978-3-030-21485-2_4

Testing Equivalence vs. Runtime Monitoring 29

and mathematically elegant way the intuitive idea that two processes should
be equated unless they behave differently when subjected to some ‘experiment’
or ‘test’. The origin of this notion of equivalence can be traced back to Got-
tfried Wilhelm Leibniz (1646–1716), whose Identity of Indiscernibles principle
states that two (mathematical) objects are equal if there is no property that
distinguishes them [24, ‘Discourse on Metaphysics’, Section 9]. In the semantics
of programming languages, its earliest precursor is, to the best of our knowl-
edge, the notion of contextual equivalence proposed by Morris in his doctoral
dissertation [26].

In general, given a set of processes, a set of tests and a relation between
processes and tests that describes when a process passes a test, one can apply
Leibniz’s motto and declare two processes to be equivalent if they pass exactly
the same set of tests. In the work of De Nicola and Hennessy, processes are states
in some labelled transition system [22]. A test is itself a process, which inter-
acts with a concurrent system under observation by hand-shake synchronisation
and uses a distinguished action to report success in its observation. Since both
processes and tests may be nondeterministic, the interaction between a process
and a test may lead to different outcomes depending on how the two systems
resolve their nondeterministic choices in the course of a computation. This led
De Nicola and Hennessy to define three notions of testing semantics, which are
naturally expressed in terms of preorders over processes. In the so-called may
semantics, a process q is at least as good as some process p if the set of tests that
p may pass is included in the set of tests that q may pass. In may semantics, pos-
sible failure under a test is immaterial and therefore nondeterminism is angelic.
On the other hand, one may take the view that failure in the testing effort is
catastrophic, in the sense that a process that may fail some test is just as bad
as one that always fails it. The notion of testing semantics that captures this
viewpoint is the so-called must semantics, according to which a process q is at
least as good as some process p if the set of tests that p must pass is included in
the set of tests that q must pass. Finally, a third testing preorder over processes
is obtained as the intersection of the may and must preorders described above.
According to this more refined view of process behaviour, a process that always
fails a test is worse than one that may pass that test, which in turn is worse
than one that always passes it.

De Nicola and Hennessy explored the rich theory of the testing semantics
in [15] (see [19] for a book-length treatment), where each of these semantics is
given operational, denotational and axiomatic accounts that are in agreement
one with the other. Their ideas and the accompanying technical results have had
an enormous impact on further research, as witnessed, among other things, by
the over 1, 650 citations to [15]1.

Our goal in this article is to provide some evidence supporting our view
that De Nicola and Hennessy’s work may also be seen as providing the theoret-
ical foundations for runtime verification [9], a line of research that is becoming

1 Source: https://scholar.google.com/citations?user=Meb6JFkAAAAJ&hl=en, last
accessed on the 24th of March 2019.

https://scholar.google.com/citations?user=Meb6JFkAAAAJ&hl=en

30 L. Aceto et al.

increasingly important in the field of computer-aided verification. Runtime ver-
ification is a lightweight verification technique that checks whether the system
under scrutiny satisfies a correctness property by analysing its current execution.
In this approach, a computational entity called a monitor, which is synthesised
from a given correctness property, is used to observe the current system execution
and to report whether the observed computation satisfies the given property.

The high-level description of runtime verification given above hints at con-
ceptual similarities between that approach to computer-aided verification and
testing equivalences à la De Nicola and Hennessy. Indeed, the monitors used in
runtime verification seem to play a role akin to that of the tests in the work of
De Nicola and Hennessy. In this paper, we will see that the connection between
runtime verification and testing semantics can be made precise within the oper-
ational framework for runtime monitoring developed in [1,3,16,17]. More pre-
cisely, we will show that may-testing semantics is closely related to the basic
monitoring set-up presented in [16,17] (Sect. 3), whereas must-testing seman-
tics over strongly-convergent, finitely-branching processes is induced by a col-
lection of monitors that can detect refusals and that stem from the framework
for parameterised monitorability developed in [1] (Sect. 4). Together with the
results presented in [7,12], we feel that Theorems 2 and 7 in this study substan-
tiate our tenet that runtime verification owes much to the work of De Nicola and
Hennessy on testing equivalences for processes.

2 Preliminaries

We begin by briefly reviewing the model of labelled transition systems used
in this study (Sect. 2.1) and by presenting an informal account of De Nicola-
Hennessy testing equivalences (Sect. 2.2).

2.1 Labelled Transition Systems

We assume a finite set of external actions Act and, following Milner [25], a
distinguished silent action τ . We let α, a, b, c range over Act and μ over Act∪
{τ}. A labelled transition system (LTS) over Act is a triple

L = 〈P,Act,→L〉,
where P is a nonempty set of system states referred to as processes (p, q, . . . ∈ P),
and →L ⊆ P ×(Act∪{τ})×P is a transition relation. We write p

μ−→L q instead
of (p, μ, q) ∈ →L. We use p

α=⇒L q to mean that, in L, p can reach q using a
single α action and any number of silent actions, i.e., p(τ−→L)∗ α−→L (τ−→L)∗q. By
p

μ−→L (respectively, p
α=⇒L) we mean that there is some q such that p

μ−→L q

(respectively, p
α=⇒L q) and p 	 μ−→L (respectively, p 	 α=⇒L) means that no such q

exists. For a trace s = α1α2 . . . α� ∈ Act∗, p
s=⇒L q means p

α1=⇒L
α2=⇒L . . .

α�=⇒L q
when � ≥ 1 and p(τ−→)∗q when s = ε is the empty trace. We say that s is a trace
of p when p

s=⇒L q for some q, and write traces(p) for the set of all the traces of p.

Testing Equivalence vs. Runtime Monitoring 31

From now on we will omit the subscript L as the LTS will be always clear from
the context.

In the rest of the paper, processes will be specified using expressions in the
fragment of Milner’s CCS [25] containing the operators for describing finite syn-
chronisation trees over Act ∪ {τ} [29].

2.2 Testing Equivalences à la De Nicola and Hennessy

We will now informally recall the testing semantics from [15,19]. We will not
present the full details of the formal definitions of the testing semantics, since
our technical results will rely on the alternative, test-free characterisations of
the may- and must-testing preorders, which we will state in Sects. 3.3 and 4.2
where they are used.

The testing equivalences over processes introduced in [15] embody in a natu-
ral and mathematically elegant way the intuitive idea that two programs should
be equated unless they behave differently when subjected to some ‘experiment’.
In the setting of the above-mentioned paper, an experiment is itself a process,
called test, that interacts with the observed system by communicating with it
and that uses a distinguished action ω to report a successful outcome resulting
from its observations.

We say that

– process p may pass a test t if there is some maximal computation resulting
from the interaction between p and t in which t reports success;

– process p must pass a test t if t reports success in every maximal computation
resulting from the interaction between p and t.

The classification of the possible outcomes resulting from process-test interac-
tions leads to three different notions of semantic equivalence over processes: one
in which nondeterminism is angelic (the may-testing preorder), another in which
the possibility of failure is catastrophic (the must-testing preorder) and a third
in which a process that may both fail and pass a test is distinguished from one
that always fails it or always passes it (the intersection of the may- and must-
testing preorders). Each of these semantics is given operational, denotational
and axiomatic accounts that are in agreement one with the other in [15,19].

Definition 1 (Testing preorders). For all p, q ∈ P ,

– p �may q iff, for each test t, p may pass t implies q may pass t;
– p �must q iff, for each test t, p must pass t implies q must pass t;
– p �T q iff p �may q and p �must q.

Example 1. It is well known that nil �may a.nil and that a.(b.nil + c.nil) �may

a.b.nil + a.c.nil. On the other hand, nil 	�must a.nil and a.(b.nil + c.nil) 	�must

a.b.nil+a.c.nil. Indeed, unlike nil, the process a.nil may fail the test a.nil+ τ.ω.nil
(read ‘ask the process under observation to do a and terminate unsuccessfully,
or internally decide to succeed’) and, unlike a.(b.nil+ c.nil), the process a.b.nil+
a.c.nil may fail the test a.b.ω.nil (read ‘ask the process under observation to do
a followed by b and then succeed’).

32 L. Aceto et al.

3 Monitoring May Testing

We now characterise the may-testing preorder in terms of the basic framework
for runtime monitoring presented in [16,17]. We first recall the needed definitions
and results from those references in Sects. 3.1–3.2 and then we use them to give
a monitor-based version of the may-testing preorder in Sect. 3.3.

3.1 A Framework for Runtime Monitoring

We now review the operational framework proposed in [16,17] for runtime mon-
itoring of properties expressed in Hennessy-Milner Logic with recursion [8,23].
In this framework, a monitor is a computational entity that observes the cur-
rent system execution and uses the information so acquired to try to ascertain
whether the system satisfies a given property.

Monitors. We first define the notion of a monitor given in [16,17]. Monitors
are states of an LTS, much like processes and tests. Syntactically, monitors are
specified using expressions in a variation on the regular fragment of CCS, where
the nil process is replaced by verdicts. A verdict can be one of yes, no and end,
which represent acceptance, rejection and inconclusive termination, respectively.

Definition 1. The set Mon of monitors is defined by the following grammar:

m,n ∈ Mon:: = v | α.m | m + n | rec x.m | x

v:: = end | no | yes

where x ranges over a countably infinite set of monitor variables.
An acceptance monitor is one without occurrences of the verdict no and a

rejection monitor is one that does not contain occurrences of the verdict yes.

The behaviour of a monitor is defined by the derivation rules of Table 1, so
monitors are states of an LTS whose transitions are those that are provable using
those rules. Intuitively, a transition m

α−→ m′ indicates that a monitor in state
m can analyse action α and become the monitor described by m′ in doing so.
We highlight the transition rule for verdicts in Table 1, describing the fact that,
from a verdict state, any action can be analysed by transitioning to the same
state; verdicts are thus irrevocable.

Monitored System. Monitors are intended to run in conjunction with the sys-
tem (process) they are analysing. While monitoring a process p ∈ P , a monitor
m ∈ Mon tries to mirror every visible action p performs. If m cannot match
an action performed by p and it cannot perform an internal action, then p per-
forms that action and continues executing, while m becomes the inconclusive
end verdict. We are only looking at the visible actions and so we allow m and p
to perform silent τ actions independently of each other.

Testing Equivalence vs. Runtime Monitoring 33

Table 1. Monitor dynamics

mAct
α.m

α
m

mRec
recx.m

τ
m[recx.m/x]

mSelL
m

μ
m′

m + n
μ

m′
mSelR

n
μ

n′

m + n
μ

n′

mVerd
v

α
v

where α ∈ Act and μ ∈ Act ∪ {τ}.

Definition 2. A monitored system consists of a monitor m ∈ Mon and a pro-
cess p ∈ P that run side-by-side, denoted m � p. The behaviour of a monitored
system is defined by the derivation rules in Table 2.

The following lemmata describe how the monitor and system LTSs can be com-
posed and decomposed according to instrumentation [17].

Table 2. Monitored systems

iMon
p

α
p′ m

α
m′

m � p
α

m′ � p′
iTer

p
α

p′ m � α m � τ
m � p

α end � p′

iAsyP
p

τ
p′

m � p
τ

m � p′
iAsyM

m
τ

m′

m � p
τ

m′ � p

Lemma 1 (General Unzipping). m � p
s=⇒ n � q implies

– p
s=⇒ q and

– m
s=⇒ n or (∃s1, s2, α ∃m′. s = s1αs2, m

s1=⇒ m′ 	 τ−→, m′ 	 α−→ and n = end).

Lemma 2 (Zipping). (p s=⇒ q and m
s=⇒ n) implies m � p

s=⇒ n � q.

If a monitored system m � p can reach a configuration where the monitor com-
ponent is the yes verdict, we say that m accepts p, and similarly m rejects p if
the monitored system can reach a configuration where the monitor component
is no.

Definition 3 (Acceptance/Rejection). We define

acc(m, p)
def
= ∃s, p′. m � p

s=⇒ yes � p′ and

rej(m, p)
def
= ∃s, p′. m � p

s=⇒ no � p′.

34 L. Aceto et al.

The Logic. We use μHML, the Hennessy-Milner logic with recursion, to
describe properties of processes.

Definition 4. The formulae of μHML are constructed using the following gram-
mar:

ϕ,ψ ∈ μHML:: = tt | ff

| ϕ ∧ ψ | ϕ ∨ ψ

| 〈α〉ϕ | [α]ϕ
| min X.ϕ | max X.ϕ

| X

where X ranges over a countably infinite set of logical variables LVar.

Formulae are evaluated in the context of a labelled transition system and an
environment, ρ : LVar → 2P , which gives values to the logical variables in the
formula. For an environment ρ, variable X, and set S ⊆ P , we write ρ[X �→ S] for
the environment which maps X to S and all Y 	= X to ρ(Y). The semantics for
μHML formulae is given through a function �·�, which, given an environment ρ,
maps each formula to a set of processes — namely the processes that satisfy the
formula under the assumption that each X ∈ LVar is satisfied by the processes
in ρ(X). The function �·� is defined as follows:

�tt, ρ�
def
= P and �ff, ρ�

def
= ∅

�ϕ1 ∧ ϕ2, ρ�
def
= �ϕ1, ρ� ∩ �ϕ2, ρ�

�ϕ1 ∨ ϕ2, ρ�
def
= �ϕ1, ρ� ∪ �ϕ2, ρ�

�[α]ϕ, ρ�
def
=

{
p

∣∣ ∀q. p
α=⇒ q implies q ∈ �ϕ, ρ�

}

�〈α〉ϕ, ρ�
def
=

{
p

∣∣ ∃q. p
α=⇒ q and q ∈ �ϕ, ρ�

}

�max X.ϕ, ρ�
def
=

⋃ {
S

∣∣ S ⊆ �ϕ, ρ[X �→ S]�
}

�min X.ϕ, ρ�
def
=

⋂ {
S

∣∣ S ⊇ �ϕ, ρ[X �→ S]�
}

�X, ρ�
def
= ρ(X).

A formula is closed when every occurrence of a variable X is in the scope of
recursive operator max X or min X. Note that the environment ρ has no effect
on the semantics of a closed formula. Thus, for a closed formula ϕ, we often drop
the environment from the notation for �·� and write �ϕ� instead of �ϕ, ρ�.

The safety fragment of μHML, denoted by sHML, and its dual co-safety
fragment, cHML, are defined by the grammar:

ϕ,ψ ∈ sHML ::=tt | ff | [α]ϕ | ϕ ∧ ψ | max X.ϕ | X

ϕ,ψ ∈ cHML ::=tt | ff | 〈α〉ϕ | ϕ ∨ ψ | min X.ϕ | X.

Testing Equivalence vs. Runtime Monitoring 35

Definition 5 (Monitorable Formulae). We say that a rejection monitor m
monitors a formula ϕ ∈ μHML for violation when, for each process p, rej(m, p)
if and only if p /∈ �ϕ�. Similarly, an acceptance monitor m monitors a formula
ϕ ∈ μHML for satisfaction when, for each process p, acc(m, p) if and only
if p ∈ �ϕ�. A formula ϕ ∈ μHML is monitorable if there is a monitor that
monitors it for satisfaction or violation.

3.2 Previous Results

The main result from [16,17] is to define a monitorable subset of μHML and show
that it is maximally expressive. This subset is called mHML and consists of the
safety and co-safety syntactic fragments of μHML: mHML

def
= sHML∪cHML.

From now on, we focus on sHML, but the case of cHML is dual. The interested
reader can see [16,17] for more details.

In order to prove that sHML is monitorable, in [16,17] Francalanza, Aceto,
and Ingólfsdóttir define a monitor synthesis function, �·�, which maps formulae
to monitors, and show that for each ϕ ∈ sHML, �ϕ� monitors ϕ for violation,
in that rej(�ϕ�, p) holds exactly for those processes p for which p /∈ �ϕ�.

Definition 6 (Monitor Synthesis).

�tt�
def
= yes �ff�

def
= no �X�

def
= x

�[α]ψ�
def
=

{
α.�ψ� if �ψ� 	= yes

yes otherwise

�ψ1 ∧ ψ2�
def
=

⎧
⎪⎨
⎪⎩

�ψ1� if �ψ2� = yes

�ψ2� if �ψ1� = yes

�ψ1� + �ψ2� otherwise

�max X.ψ�
def
=

{
recx.�ψ� if �ψ� 	= yes

yes otherwise

Lemma 3. For every formula ϕ ∈ sHML, �ϕ� monitors ϕ for violation.

Definition 7 (Formula Synthesis). We define a formula synthesis function
‖·‖ from rejection monitors to sHML.

‖end‖ = tt ‖no‖ = ff ‖x‖ = X

‖α.m‖ = [α]‖m‖ ‖m + n‖ = ‖m‖ ∧ ‖n‖ ‖rec x.m‖ = max X.‖m‖.

Lemma 4. Every monitor m monitors ‖m‖ for violation.

As previously mentioned, dual results hold for cHML, whose formulae can be
monitored for satisfaction using acceptance monitors.

36 L. Aceto et al.

3.3 May Testing via Monitors

The goal of this section is to show how the monitoring framework we just
reviewed can be used to give an alternative characterisation of classic may-
testing semantics à la De Nicola and Hennessy. As a first step, we define three
natural preorders over states of LTSs that are induced by monitors. We will then
show that these three preorders coincide with the may-testing preorder. In what
follows, we assume a fixed LTS L = 〈P,Act,→〉. All the results we present in
this section hold for arbitrary LTSs.

Definition 2 (Monitoring preorders). For all p, q ∈ P ,

– p �A
M q iff, for each acceptance monitor m, acc(m, p) implies acc(m, q);

– p �R
M q iff, for each rejection monitor m, rej(m, p) implies rej(m, q);

– p � q iff p �A
M q and p �R

M q.

The following alternative characterization of the may testing preorder is well
known—see [15,19].

Theorem 1. For all p, q ∈ P , p �may q iff traces(p) ⊆ traces(q).

One of the consequences of the above result is that tests of the form

a1.an.ω.nil,

with n ≥ 0 and a1, . . . , an ∈ Act, suffice to characterize the may-testing pre-
order. Another one is that deciding the may-testing preorder and its induced
equivalence over states in finite LTSs is PSPACE-complete [28].

Theorem 2. For all p, q ∈ P , the following are equivalent:

1. p �may q,
2. p �A

M q,
3. p �R

M q and
4. p � q.

To show the above result, we first prove that the preorder over processes induced
by trace inclusion, which coincides with the may-testing preorder by Theorem1,
is included in both �A

M and �R
M .

Lemma 3. For all p, q ∈ P , if traces(p) ⊆ traces(q) then p �A
M q and p �R

M q.

Proof. Assume that traces(p) ⊆ traces(q). We first show that p �A
M q holds.

To this end, let m be an acceptance monitor such that acc(m, p). By defini-
tion, this means that m � p

s=⇒ yes � p′ for some s ∈ Act∗ and process p′. Using
the ‘unzipping lemma’ (Lemma 1), this yields that m

s=⇒ yes and p
s=⇒ p′. So s

is a trace of p and, by the proviso of the lemma, also of q. Thus, q
s=⇒ q′ for

some q′. Using the ‘zipping lemma’ (Lemma 2), we obtain that m � q
s=⇒ yes � q′,

which means that acc(m, q). Since m was an arbitrary acceptance monitor, we
conclude that p �A

M q, and we are done.
The argument proving p �R

M q is similar. Simply replace acceptance monitors
with rejection monitors, acc with rej and yes with no in the above proof. ��

Testing Equivalence vs. Runtime Monitoring 37

Next, we establish that the converse inclusions also hold.

Lemma 4. For all p, q ∈ P , if p �A
M q or p �R

M q then traces(p) ⊆ traces(q).

Proof. We limit ourselves to proving that if p �A
M q then traces(p) ⊆ traces(q),

as the proof of the other implication is similar. To this end, assume that p �A
M q

and that p
s=⇒ p′ for some p′. We will show that s ∈ traces(q).

First of all, observe that, for each t ∈ Act∗, we can construct an acceptance
monitor m(t) thus:

m(ε) = yes

m(at′) = a.m(t′).

Note that, for each t ∈ Act∗, by construction,

m(t) t′
=⇒ yes iff t = t′.

Since p
s=⇒ p′, the ‘zipping lemma’ (Lemma 2) yields that m(s) � p

s=⇒ yes � p′.
Thus acc(m(s), p) and, from the assumption that p �A

M q, we may infer that
acc(m(s), q). By definition and the observation above, this means that m(s)�q

s=⇒
yes � q′ for some q′. The ‘unzipping lemma’ (Lemma 1) now yields that q

s=⇒ q′,
which was to be shown. ��
Theorem 2 and the monitorability results presented in [1,17] can now be com-
bined to obtain logical characterization results for the may-testing preorder.
Even though these results are folklore, we believe that recasting them in terms
of monitorability builds a pleasing connection between a classic testing preorder
and runtime monitoring for μHML.

In the statement of the following result, for each process p, we define

cHML(p) = {ϕ | ϕ ∈ cHML and p |= ϕ} and
sHML(p) = {ϕ | ϕ ∈ sHML and p |= ϕ}.

Theorem 5. For all p, q ∈ P , the following statements hold:

1. p �may q iff cHML(p) ⊆ cHML(q).
2. p �may q iff sHML(q) ⊆ sHML(p).

Proof. We limit ourselves to presenting the proof of the second statement. The
proof of the first statement is similar.

In order to establish the ‘only if’ implication, assume that p �may q and
p 	|= ϕ, for some ϕ ∈ sHML. We claim that q 	|= ϕ. To this end, observe that,
as p 	|= ϕ by assumption, Lemma 3 yields that rej(�ϕ�, p). By Theorem 2 and
p �may q, we have that p �R

M q. Hence, rej(�ϕ�, q) and, using Lemma 3 again,
we may conclude that q 	|= ϕ, as claimed.

To prove the ‘if’ implication, we assume that sHML(q) ⊆ sHML(p) and
show that p �may q. By Theorem 2, this suffices to establish that claim. Suppose
that rej(m, p) for some rejection monitor m. By Lemma 4, we have that p 	|=
‖m‖ ∈ sHML. By assumption, this means that q 	|= ‖m‖ either. Hence, again
using Lemma 4, we conclude that rej(m, q), and we are done. ��

38 L. Aceto et al.

4 Monitoring Must Testing

As Theorem 2 indicates, the monitoring framework presented in [16,17] is not
expressive enough to characterise the must-testing preorder, as monitor accep-
tance and rejection are only determined by the traces processes can perform.
This means that monitors from the basic framework reviewed in Sect. 3.1 can-
not distinguish, for instance, the processes described by the CCS expressions
a.(b.nil+c.nil) and a.b.nil+a.c.nil, which are not must-testing equivalent because
a.(b.nil + c.nil) 	�must a.b.nil + a.c.nil.

The first four authors presented a framework for parameterised monitorabil-
ity in [1] and studied several of its instantiations. In what follows, we will first
present one such instantiation (Sect. 4.1) and then show how a natural restriction
of that specific monitoring framework offers a characterisation of must-testing
semantics in terms of monitors (Sect. 4.2).

4.1 A Framework for Runtime Monitoring with Refusals

The instance of the monitoring framework from [1] we consider here is the one
obtained by extending the syntax for rejection monitors given in Definition 1
with ‘conditions’ of the form ref(a), where a ∈ Act. (In the terminology of [1],
‘conditions’ are predicates over processes.)

Formally, following [1, Sections 4.1 and 5.2], we extend the formation rules for
monitors given in Definition 1 with those of the form ref(a).m, for each a ∈ Act.
In the rest of this paper, we use the term refusal monitors for the monitors
generated by that augmented grammar. In the behaviour of monitors, ref(a) is
treated as an ordinary action prefixing operator and thus the rules in Table 1
are extended with the following ones:

ref(a).m
ref(a)−−−→ m

, a ∈ Act.

Intuitively, in the spirit of Phillips’ refusal testing [27], a monitor of the form
ref(a).m checks whether the system it observes can refuse action a and, if so,
continues monitoring as m. This is expressed by the following instrumentation
rules for such conditions, which are added to the rules in Table 2:

m
ref(a)−−−→ m′ p 	 τ−→ p 	 a−→

m � p
τ−→ m′ � p

a ∈ Act. (1)

In what follows, we say that p refuses a when p 	 τ−→ and p 	 a−→.
The syntax for refusal monitors allows one to write monitors such as

a.ref(b).c.ref(d).no.

Since our goal is to define a monitor-based characterisation of must-testing
semantics, monitors that alternate the observation of action occurrences with

Testing Equivalence vs. Runtime Monitoring 39

that of refusals arbitrarily are too powerful. Indeed, they would characterise
failure-trace semantics, which coincides with Phillips’ refusal testing over image-
finite processes [18]. Therefore, in what follows, we only consider the sub-
language MonF of refusal monitors that consists of the monitors m that are
generated by the following grammar:

m,n ∈ MonF :: = v | α.m | ref(a).r | m + n | recx.m | x

r:: = no | ref(a).r
v:: = end | no,

where x comes from a countably infinite set of monitor variables.We refer to those
monitors as failure monitors and use them to define a preorder over processes
as follows.

Definition 3 (Failure monitoring preorder). For all p, q ∈ P ,

p �Ref
M q iff, for each failure monitorm ∈ MonF , rej(m, q) implies rej(m, p).

Intuitively, as in must-testing semantics, p �Ref
M q means that q is ‘at least as

well behaved as’ p when its executions are observed by a failure monitor, in the
sense that each failure monitor that rejects q will also reject p, and being rejected
by a monitor is considered harmful. However, there might be some monitor that
rejects p, but not q. For example, it is not too hard to see that a.b.nil+ a.c.nil �Ref

M

a.(b.nil + c.nil), as each failure monitor that rejects a.(b.nil + c.nil) will also reject
a.b.nil + a.c.nil. On the other hand, the monitor a.ref(b).no rejects a.b.nil + a.c.nil,
but not a.(b.nil + c.nil).

The following lemma describes how failure-monitor and system LTSs can be
composed and decomposed according to instrumentation (cf. Lemmas 1 and 2).

Lemma 5 (Unzipping and zipping for failure monitors). Let m be a
failure monitor and let p ∈ P .

1. Assume that m � p
s=⇒ no � q. Then

– p
s=⇒ q and

– m
sref(a1)···ref(a�)==========⇒ no for some � ≥ 0 and a1 . . . a� ∈ Act∗ such that q

refuses ai for each i ∈ {1, . . . , �}.
2. Assume that p

s=⇒ q and m
sref(a1)···ref(a�)==========⇒ no, for some � ≥ 0 and a1 . . . a� ∈

Act∗ such that q refuses ai for each i ∈ {1, . . . , �}. Then m � p
s=⇒ no � q.

4.2 Must Testing via Monitors

The goal of this section is to show how the monitoring framework we just
reviewed can be used to give an alternative characterisation of classic must-
testing semantics à la De Nicola and Hennessy over strongly-convergent, finitely-
branching processes, which we now proceed to define.

40 L. Aceto et al.

Definition 4 (Strongly convergent and stable processes). A process p ∈
P is convergent iff it cannot perform an infinite sequence of τ transitions, that
is, there is no infinite sequence p0, p1, p2, . . . of processes in P such that p0 = p
and pi

τ−→ pi+1 for each i ≥ 0. We say that p ∈ P is strongly convergent iff
each of the processes that can be reached from it via a sequence of transitions is
convergent.

A process p ∈ P is stable iff it cannot perform a τ transition, that is, p 	 τ−→.

Definition 5 (Finitely branching processes). A process p ∈ P is finitely
branching iff each of the processes that can be reached from it via a sequence of
transitions has only finitely many outgoing transitions, that is, the set

{(μ, q′) | q
μ−→ q′}

is finite for each q such that p
s=⇒ q for some s ∈ Act∗.

The alternative characterisation of the must-testing preorder in terms of fail-
ures, which we will present in Theorem 6 to follow, is by now folklore in con-
currency theory. To the best of our knowledge, it was first proved by Rocco De
Nicola in [13] and offers a connection between must-testing semantics and failures
semantics [11] that, at the time, was considered rather unexpected. As a corol-
lary of that result and a classic one by Kanellakis and Smolka [21, Theorem 5.1],
deciding the must-testing preorder and equivalence is PSPACE-complete.

Definition 6 (Initials and failures of a process). Let p ∈ P .

– The set I(p) of initials of p is {a | p
a=⇒}.

– A pair (s,A) is a failure of a process p ∈ P iff s ∈ Act∗, A ⊆ Act and
I(p′) ∩ A = ∅ for some stable p′ such that p

s=⇒ p′. We write failures(p) for
the set of failures of process p.

Theorem 6 (De Nicola [13]). For all strongly convergent, finitely branching
p, q ∈ P , p �must q iff failures(q) ⊆ failures(p).

Remark 1. In the classic treatment of must-testing semantics over CCS and
other process description languages, strongly convergent processes are guaran-
teed to be finitely branching. In this paper, for the sake of clarity, we have chosen
to make the requirement that processes be finitely branching explicit.

Using the above theorem, we will now show the following result, to the effect
that the must testing preorder coincides with the failure monitoring preorder
from Definition 3.

Theorem 7. For all strongly convergent, finitely branching p, q ∈ P , p �must q
iff p �Ref

M q.

Testing Equivalence vs. Runtime Monitoring 41

Proof. Let p, q ∈ P be strongly convergent and finitely branching. By Theorem6,
it suffices only to prove that

failures(q) ⊆ failures(p) iff p �Ref
M q.

We show the two implication separately.
To prove the ‘only if’ implication, assume that failures(q) ⊆ failures(p) and

that rej(m, q) for some failure monitor m. We claim that rej(m, p) also holds.
To see this, observe that, since rej(m, q), there are some s ∈ Act∗ and some
q′ ∈ P such that m � q

s=⇒ no � q′. By the unzipping lemma for failure monitors
(Lemma 5(1), we have that

– q
s=⇒ q′ and

– m
sref(a1)···ref(a�)==========⇒ no for some � ≥ 0 and a1 . . . a� ∈ Act∗ such that q′ refuses

ai for each i ∈ {1, . . . , �}.

It follows that (s, {a1, . . . , a�}) is a failure of q and, by our assumption, also of
p. This means that p

s=⇒ p′ for some p′ that refuses ai for each i ∈ {1, . . . , �}.
Using the zipping lemma for failure monitors (Lemma5(2), we conclude that
m � p

s=⇒ no � p′ and thus rej(m, p), as claimed.
To prove the ‘if’ implication, assume that p �Ref

M q. We claim that failures(q)
is included in failures(p). This follows from the observation that rejection moni-
tors can be used to encode the failures of a process. More precisely, consider
a failure pair (s, {a1, . . . , a�}). We can associate with it a rejection monitor
m(s, {a1, . . . , a�}) by induction on s thus:

m(ε, {a1, . . . , a�}) = ref(a1).ref(a�).no and
m(as′, {a1, . . . , a�}) = a.m(s′, {a1, . . . , a�}).

By induction on s, it is easy to prove that (s, {a1, . . . , a�}) is a failure of some
process p iff rej(m(s, {a1, . . . , a�}), p). We can now complete the proof of the
claim thus:

(s, {a1, . . . , a�}) ∈ failures(q) ⇔ rej(m(s, {a1, . . . , a�}), q)
⇒ rej(m(s, {a1, . . . , a�}), p) (as p �Ref

M q)
⇔ (s, {a1, . . . , a�}) ∈ failures(p),

and we are done. ��

5 Conclusions

In this celebratory article, we have provided a formal connection between the
theory of testing equivalence, developed by De Nicola and Hennessy during De
Nicola’s PhD studies in Edinburgh, and the increasingly important field of run-
time verification. The results in this study are not deep, but we hope that they
highlight the pervasive nature of the ideas that underlie the definition of the

42 L. Aceto et al.

testing equivalences from [15] and will convince our readers that the field of
runtime monitoring owes much to the seminal work by De Nicola and Hennessy.
Some of us were influenced by that work at the start of their careers [5,6,20]
and are still working on testing-based approaches to the analysis of concurrent
processes after about thirty years.

An interesting avenue for future research is to investigate whether the must-
testing-like preorders over clients studied by Bernardi and Francalanza in [10]
capture some interesting properties of monitors. So far, our work on monitorabil-
ity has used the trace-based notions of verdict equivalence and ω-verdict equiv-
alence over monitors—see, for instance, the papers [2–4].

Acknowledgments. We are grateful to the anonymous reviewers for their sugges-
tions, which helped us to improve the paper. Luca Aceto thanks Ugo Montanari, who
asked him a question that led to the work presented in this article during a talk he
gave at IMT Lucca in July 2018. Luca Aceto and Anna Ingólfsdóttir have been lucky
to count Rocco De Nicola as one of their friends and mentors for many years. Luca
Aceto’s ‘tesi di laurea’ was jointly supervised by Rocco De Nicola and Alessandro Fan-
techi, and he was one of the first two students to graduate under Rocco De Nicola’s
supervision in 1986.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for param-
eterized monitorability. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS,
vol. 10803, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89366-2 11

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: On
the complexity of determinizing monitors. In: Carayol, A., Nicaud, C. (eds.) CIAA
2017. LNCS, vol. 10329, pp. 1–13. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60134-2 1

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. In: Pro-
ceedings of the ACM on Programming Languages (POPL), vol. 3, pp. 52:1–52:29
(2019). https://dl.acm.org/citation.cfm?id=3290365

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: The cost of
monitoring alone. CoRR abs/1902.05152 (2019). http://arxiv.org/abs/1902.05152

5. Aceto, L., De Nicola, R., Fantechi, A.: Testing equivalences for event structures. In:
Zilli, M.V. (ed.) Mathematical Models for the Semantics of Parallelism. LNCS, vol.
280, pp. 1–20. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-18419-
8 9

6. Aceto, L., Ingólfsdóttir, A.: A theory of testing for ACP. In: Baeten, J.C.M.,
Groote, J.F. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 78–95. Springer, Hei-
delberg (1991). https://doi.org/10.1007/3-540-54430-5 82

7. Aceto, L., Ingólfsdóttir, A.: Testing Hennessy-Milner logic with recursion. In:
Thomas, W. (ed.) FoSSaCS 1999. LNCS, vol. 1578, pp. 41–55. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49019-1 4

8. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, New York (2007).
https://doi.org/10.1017/cbo9780511814105

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-60134-2_1
https://doi.org/10.1007/978-3-319-60134-2_1
https://dl.acm.org/citation.cfm?id=3290365
http://arxiv.org/abs/1902.05152
https://doi.org/10.1007/3-540-18419-8_9
https://doi.org/10.1007/3-540-18419-8_9
https://doi.org/10.1007/3-540-54430-5_82
https://doi.org/10.1007/3-540-49019-1_4
https://doi.org/10.1017/cbo9780511814105

Testing Equivalence vs. Runtime Monitoring 43

9. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory
and Advanced Topics. LNCS, vol. 10457. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75632-5

10. Bernardi, G.T., Francalanza, A.: Full-abstraction for client testing preorders. Sci.
Comput. Program. 168, 94–117 (2018). https://doi.org/10.1016/j.scico.2018.08.
004

11. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984). https://doi.org/10.1145/828.833

12. Cerone, A., Hennessy, M.: Process behaviour: formulae vs. tests (extended
abstract). In: Fröschle, S.B., Valencia, F.D. (eds.) Proceedings 17th International
Workshop on Expressiveness in Concurrency, EXPRESS 2010. Electronic Proceed-
ings in Theoretical Computer Science, vol. 41, pp. 31–45 (2010). https://doi.org/
10.4204/EPTCS.41.3

13. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica
24(2), 211–237 (1987). https://doi.org/10.1007/BF00264365

14. de Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. In: Diaz, Josep
(ed.) ICALP 1983. LNCS, vol. 154, pp. 548–560. Springer, Heidelberg (1983).
https://doi.org/10.1007/BFb0036936

15. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984). https://doi.org/10.1016/0304-3975(84)90113-0

16. Francalanza, A., Aceto, L., Ingolfsdottir, A.: On verifying Hennessy-Milner logic
with recursion at runtime. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 71–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23820-3 5

17. Francalanza, A., Aceto, L., Ingolfsdottir, A.: Monitorability for the Hennessy-
Milner logic with recursion. Form. Methods Syst. Des. 51(1), 87–116 (2017).
https://doi.org/10.1007/s10703-017-0273-z

18. van Glabbeek, R.J.: The linear time - branching time spectrum I: the semantics
of concrete, sequential processes (Chap. 1). In: Bergstra, J.A., Ponse, A., Smolka,
S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)

19. Hennessy, M.: Algebraic Theory of Processes. Foundations of Computing, MIT
Press, Cambridge (1988)

20. Hennessy, M., Ingolfsdottir, A.: A theory of communicating processes with value
passing. Inf. Comput. 107(2), 202–236 (1993). https://doi.org/10.1006/inco.1993.
1067

21. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43–68 (1990). https://doi.org/10.
1016/0890-5401(90)90025-D

22. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976). https://doi.org/10.1145/360248.360251

23. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with
recursion. Theor. Comput. Sci. 72(2), 265–288 (1990). https://doi.org/10.
1016/0304-3975(90)90038-J. http://www.sciencedirect.com/science/article/pii/
030439759090038J

24. Loemker, L.E. (ed.): G. W. Leibniz: Philosophical Papers and Letters, 2nd edn. D.
Reidel, Dordrecht (1969)

25. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980).
https://doi.org/10.1007/3-540-10235-3

26. Morris, J.H.: Lambda-calculus models of programming languages. Ph.D. thesis,
Massachusetts Institute of Technology (1968)

https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1016/j.scico.2018.08.004
https://doi.org/10.1016/j.scico.2018.08.004
https://doi.org/10.1145/828.833
https://doi.org/10.4204/EPTCS.41.3
https://doi.org/10.4204/EPTCS.41.3
https://doi.org/10.1007/BF00264365
https://doi.org/10.1007/BFb0036936
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1006/inco.1993.1067
https://doi.org/10.1006/inco.1993.1067
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1145/360248.360251
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1016/0304-3975(90)90038-J
http://www.sciencedirect.com/science/article/pii/030439759090038J
http://www.sciencedirect.com/science/article/pii/030439759090038J
https://doi.org/10.1007/3-540-10235-3

44 L. Aceto et al.

27. Phillips, I.: Refusal testing. Theor. Comput. Sci. 50(3),241–284 (1987). https://
doi.org/10.1016/0304-3975(87)90117-4. http://www.sciencedirect.com/science/
article/pii/0304397587901174

28. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: pre-
liminary report. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, pp. 1–9. ACM (1973). https://doi.org/10.
1145/800125.804029

29. Winskel, G.: Synchronization trees. Theor. Comput. Sci. 34, 33–82 (1984). https://
doi.org/10.1016/0304-3975(84)90112-9

https://doi.org/10.1016/0304-3975(87)90117-4
https://doi.org/10.1016/0304-3975(87)90117-4
http://www.sciencedirect.com/science/article/pii/0304397587901174
http://www.sciencedirect.com/science/article/pii/0304397587901174
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
https://doi.org/10.1016/0304-3975(84)90112-9
https://doi.org/10.1016/0304-3975(84)90112-9

	Testing Equivalence vs. Runtime Monitoring
	1 Introduction
	2 Preliminaries
	2.1 Labelled Transition Systems
	2.2 Testing Equivalences à la De Nicola and Hennessy

	3 Monitoring May Testing
	3.1 A Framework for Runtime Monitoring
	3.2 Previous Results
	3.3 May Testing via Monitors

	4 Monitoring Must Testing
	4.1 A Framework for Runtime Monitoring with Refusals
	4.2 Must Testing via Monitors

	5 Conclusions
	References

