
Lightweight Information Flow

Flemming Nielson(B) and Hanne Riis Nielson

Department of Mathematics and Computer Science,
Technical University of Denmark, 2800 Kgs., Lyngby, Denmark

fnie@dtu.dk, hrni@dtu.dk

Abstract. We develop a type system for identifying the information
flow between variables in a program in the Guarded Commands lan-
guage. First we characterise the types of information flow that may
arise between variables in a non-deterministic program: explicit, implicit,
bypassing, correlated or sanitised. Next we allow to specify security poli-
cies in a number of traditional ways based on mandatory access con-
trol: defining a security lattice, working with components or decentralised
labels, both as pertains to confidentiality and integrity. Offending infor-
mation flows are those identified by the type system and that violate
the security policy; a program is sufficiently secure if it contains only
acceptable information flows.

1 Introduction

Motivation. Much of the work of Rocco De Nicola has been within the general
area of process algebras [5]. This is a fascinating area containing a wide range
of fundamental ideas and many deep developments on topics such as semantics,
equivalences (including testing equivalences [3,10] and bisimulations [1,12]) and
model checking [11] to name just some of the key ones.

Some of the work of Rocco De Nicola has been on type systems ensuring
various desirable properties of systems, including security properties [7,8]. In
order to make these developments accessible to the wider computer science and
computer engineering communities it is essential to choose the primitives of the
process algebras at an appropriate level of abstraction. The work on Klaim (a
Kernel Language for Agents Interaction and Mobility) [2,6,9] incorporates a
choice that is sufficiently abstract to allow a rich theory and prototype systems
to be developed, while at the same time being sufficiently concrete to appeal to
a wide variety of researchers, engineers, programmers and students.

Contribution. In this paper we define a type system for identifying the security
vulnerabilities that may arise in non-deterministic programs.

The traditional approach is to define a type system that intends to ensure
that there are absolutely no security violations in well-typed programs. Non-
interference results, or generalisations of these, then provide guarantees about
the soundness of the type system. However, this does not close the loophole
that security vulnerabilities may exist below the level of formalisation, as when
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 455–470, 2019.
https://doi.org/10.1007/978-3-030-21485-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_25

456 F. Nielson and H. R. Nielson

timing attacks can still be performed on systems only achieving non-termination-
sensitive security, nor that minor amounts of quantitative leakage might be
acceptable in practice.

Our approach is to define a type system that intends merely to identify the
security vulnerabilities that may still be present in well-typed programs. The aim
is to do so in a manner that appeals to a wide variety of researchers, engineers,
programmers and students, also outside the area of language based security. The
acceptability of the security vulnerabilities should then be assessed as part of a
code review.

The first step is to characterise the types of information flow that may arise
between variables in non-deterministic programs: they may be explicit (as in
assignments), implicit (as in conditional choices), bypassing (when one condi-
tional choice may bypass another), correlated (when variables are modified in
the same conditional branches that could have been bypassed) or sanitised (when
the flow is regarded as permissible regardless of the security policy).

The next step is to admit security policies in a number of traditional ways
based on mandatory access control: explicitly defining a security lattice, working
with components or decentralised labels, both as pertains to permissions (often
used for confidentiality) and restrictions (often used for integrity). This step is
fairly standard.

The final step is to develop a type system for identifying the information flow
between variables in a program in the Guarded Commands language. Offending
information flows are those identified by the type system and that violate the
security policy. A program is secure if it contains no information flows or only
acceptable ones (like the sanitised ones); in the absence of any information flow
we may establish a non-interference result but we would be more interested
in being able to quantify the amount of leakage so as to provide guidance to
engineers and programmers as part of a code review. The type system has been
implemented and is available for experimentation at http://FormalMethods.dk/
if4fun and makes use of heuristics for satisfiability of boolean expressions in
Guarded Commands.

2 Guarded Commands for Security

We shall base our development on Dijkstra’s language of Guarded Commands
[15] extended with arrays and a security primitive (san, to be explained shortly).
The conditional takes the form if b1 → C1 [] ... [] bk → Ck fi; as an example,
to express that C1 should be executed when b holds and that otherwise C2 should
be executed, we shall write if b → C1 []¬b → C2 fi. The iteration construct
takes the form do b1 → C1 [] ... [] bk → Ck od; as an example, to express that
C should be executed as long as b holds, we shall write do b → C od.

An example program is shown in the righthand half of Fig. 1; it non-
deterministically updates the entries of arrays A and E, of lengths A# and E#,
respectively. (It can be seen as an interleaved version of the parallel composition
of two programs handling each of the arrays, as shown in the lefthand half of
Fig. 1, but this is not part of the Guarded Commands language.)

http://FormalMethods.dk/if4fun
http://FormalMethods.dk/if4fun

Lightweight Information Flow 457

par

a:=0;

do san(a)<san(A#) →
A[a]:=A[a]+27;

a:=a+1

od

[]

e:=0;

do san(e)<san(E#) →
E[e]:=E[e]+12;

e:=e+1

od

rap

a:=0;

e:=0;

do san(a)<san(A#) →
A[a]:=A[a]+27;

a:=a+1

[] san(e)<san(E#) →
E[e]:=E[e]+12;

e:=e+1

od

Fig. 1. Two arrays being simultaneously updated. On the left we pretend it happens
in parallel, on the right we pretend it happens interleaved. Only the program on the
right is within Guarded Commands for Security as studied here.

Syntax. The syntax of the commands C and guarded commands GC of the
Guarded Commands for Security language are mutually recursively defined using
the following BNF notation:

C :: = x := a | A[a1] := a2 | skip | C1 ; C2 | if GC fi | do GC od
GC :: = b → C | GC1 []GC2

We make use of arithmetic expressions a (used in x := a and A[a1] := a2) and
boolean expressions b (used as a guard for when to execute a command C as in
b → C) given by

a :: = n | s | x | A[a1] | A# | a1 + a2 | a1 − a2 | a1 ∗ a2 | san a1

b :: = true | a1 = a2 | a1 >a2 | a1 ≥ a2 | b1 ∧ b2 | b2 | ¬ b1

where numbers n, strings s, variables x and arrays A are left unspecified. The
san construct will be used to bypass the security policy and will be explained in
Sect. 3.

Semantics. We shall present the key ideas behind giving an operational seman-
tics for Guarded Commands.

A command will be interpreted relative to a memory σ that assigns values
(say integers) to all variables and array entries in the command of interest. More
precisely, for each array A of length A# the memory will provide values for
A[0] · · · A[A#] as well as for A#.

An arithmetic expression a is then evaluated with respect to a memory σ
and we obtain a value A[[a]]σ as result. Evaluation is undefined if the arithmetic
expression accesses a variable or array entry for which the memory does not
assign a value. Also, the value of san a1 is the same as the value of a1.

A boolean expression b is also evaluated with respect to a memory σ and
we obtain a truth value B[[b]]σ as result. Evaluation is undefined if one of the
constituent arithmetic expressions is undefined.

458 F. Nielson and H. R. Nielson

We then define an operational semantics for interpreting commands (and
guarded commands) and list some of the key axioms and rules:

σ(x) and A[[a]]σ are defined

(x := a, σ) → σ[x �→ A[[a]]σ]

(C1, σ) → (C ′
1, σ

′)

(C1 ; C2, σ) → (C ′
1 ; C2, σ

′)

(C1, σ) → σ′

(C1 ; C2, σ) → (C2, σ
′)

B[[bi]]σ is true

(if b1 → C1 [] · · · [] bn → Cn fi, σ) → (Ci, σ)

B[[bi]]σ is true

(do · · · [] bi → Ci [] · · · od, σ) → (Ci ; do · · · [] bi → Ci [] · · · od, σ)

all of B[[bi]]σ are false

(do b1 → C1 [] · · · [] bn → Cn od, σ) → σ

In particular, this semantics is purely non-deterministic and does not make use
of a scheduler. (If needed, we would model a scheduler by explicitly modifying
the guards in guarded commands. Doing so would influence the results of the
information flow type system. This would be our way of modelling an attacker
that might collude with a scheduler.)

3 Types of Information Flow

We now introduce the types of information flow in non-deterministic programs.
These are not only between variables as we also have array entries and array
lengths. We therefore use the term data container to stand for any one of vari-
able, array entry or length. The notions of explicit, implicit and sanitised flows
are standard [13,14] whereas our treatment of bypassing flows grew out of [21]
and our focus on correlation flows is more novel.

Explicit Flows. In the command y := x there is a direct and explicit flow from
x to y. We write this as x →E y to indicate that it is an explicit flow.

In general, explicit flows arise whenever a data container is used to compute
the value of a data container.

A slightly more complex example is the command y := x ; z := y where there
are direct explicit flows from x to y and from y to z. The flow from x to z is
an indirect flow, and in general we use indirect to indicate that we exploit the
transitive nature of the flow relation. As for the type of flow we shall say that
the indirect flow is also explicit.

Lightweight Information Flow 459

Implicit Flows. In the guarded command x = 0 → y := 0 there is a direct and
implicit flow from x to y. We write this as x →I y to indicate that it is an implicit
flow.

In general, implicit flows arise whenever a data container is modified inside
the body of a command governed by a boolean condition containing some data
container.

The command if x = 0 → y := 0 [] ¬ (x = 0) → y := 1 fi ; z := y has a
direct implicit flow from x to y and a direct explicit flow from y to z. The flow
from x to z is an indirect flow and as for the type of flow we shall say that the
indirect flow is implicit (since x is not directly copied into z).

Bypassing Flows. In y := 0 ; if x = 0 → skip [] true → y := 1 fi there are
no explicit flows from x to y and also no implicit flows. However, it is still the
case that the final value of y might reveal something about x if one is able to run
the program many times and observe the different non-deterministic outcomes.
We write this as x →B y to indicate that it is a bypassing flow.

In general, bypassing flows arise whenever two conditions can be simulta-
neously true and more than one branch can be taken; in this case there is a
bypassing flow from the data containers in the condition of one branch to the
data containers modified in the command of the other.

In the command x := z ; y := 0 ; if x = 0 → skip [] true → y := 1 fi
there is a direct explicit flow from z to x and a direct bypassing flow from x to
y. The flow from z to y is an indirect flow and as for the type of flow we shall
say that the indirect flow is a bypassing one.

Correlation Flows. Bypassing flows capture some of the power of non-determinism
but not all of it. In if true → y := 0 ; x := 0 [] true → y := 1 ; x := 1 fi there are
no explicit, implicit or bypassing flows. Yet, if y was intended to be a private key
(albeit a short one) and x is a public variable, then clearly we can learn something
about y from knowing x. We write this as x →C y and y →C x to indicate that it
is a possible correlation flow between x and y.

In general, correlation flows arise whenever two conditions can be simultane-
ously true and the choice of branch is resolved non-deterministically; in this case
there is a correlation flow between the data containers modified in each branch.

In if true → y := 0 ; x := 0 [] true → y := 1 ; x := 1 fi ; z := x there is a
direct explicit flow from x to z and a correlation flow from y to x. The flow from
y to z is an indirect flow and as for the type of flow we shall say that the indirect
flow is a correlation one.

Sanitised Flows. Returning to the non-deterministic program in Fig. 1 there
would seem to be bypassing flows from A# to E[] and similarly from E# to A[].
We might consider these flows to be absolutely unproblematic and a traditional
approach is to use sanitisation for this; in our case this means using the san
construct of Guarded Commands for Security as illustrated in Fig. 1.

460 F. Nielson and H. R. Nielson

Rather than neglecting the direct bypassing flows from A# to E[] and from
E# to A[] we shall mark these as sanitised flows (that can be disregarded later
as part of a code review) and we write A# →S B[] and B# →S A[].

In general, sanitised flows arise whenever at least one sanitisation step is
involved in the flow. In line with previous decisions, if a sequence of flows involve
a sanitised flow we shall regard the overall flow as a sanitised one.

Representation of Flows. We shall take the point of view that some types of
flows are more worrying than others and that we only need to record the most
worrying one. We order the explicit (E), implicit (I), bypassing (B), correlation
(C) and sanitised (S) flows linearly by S < C < B < I < E. We then use max
and min for the corresponding least upper bound and greatest lower bound
operations.

A flow relation is a partial map from pairs of data containers to {E, I,B,C,S},
and we use F to range over flow relations and τ to range over types of flows. (This
is isomorphic to a total map from pairs of data containers to {⊥,E, I,B,C,S}
where ⊥ < S < C < B < I < E and thus gives rise to a pointwise definition of a
partial order ≤ between flow relations.)

We write δ1 →τ δ2 for the flow relation that is undefined everywhere, except
that the pair (δ1, δ2) is mapped to τ .

Extending this notation to sets of data containers we write Δ1 ⇒τ Δ2 for the
flow relation that is undefined everywhere, except that a pair (δ1, δ2) ∈ Δ1 ×Δ2

is mapped to τ .
As a special case, { } ⇒τ { } denotes the flow relation that is undefined

everywhere (regardless of the choice of τ).

4 Security Policies

The key motivation behind our development is to classify data containers accord-
ing to a security domain, and to consider it secure to transfer data as expressed
by an ordering on the elements of the security domain (see [17] for a general
introduction).

A security domain L is a finite and non-empty set equipped with a preorder

; this is a relation over L that is reflexive and transitive. The preorder indicates
the direction in which it is secure to move data along; we shall use this approach
regardless of whether we deal with confidentiality or integrity or mixtures or
modifications of these. In the literature, the security domain is often required to
be a (complete) lattice and hence is called a security lattice, but we do not need
this assumption for our approach.

A security association L is a mapping from the set of data containers of
interest into the security domain. Clearly security policies can be combined using
cartesian products and hence be built in a compositional manner.

A security policy consists of a security domain and a security association.
An information flow δ1 →τ δ2 is secure with respect to the security policy

whenever L(δ1)
 L(δ2). An information flow δ1 →τ δ2 with L(δ1) �
 L(δ2)
constitutes a security violation at level τ .

Lightweight Information Flow 461

{∗}

{ }

{ }

{∗}

Fig. 2. Illustrating restriction ordering (⊆) versus the permission ordering (⊇).

Components. Describing the security domain explicitly becomes cumbersome
once the security domain grows in size. We therefore consider ways of express-
ing the intended security lattice in more succinct ways following the approach
standard in Mandatory Access Control [17].

Define a finite and nonempty set C of security categories. A security compo-
nent then is a set of security categories and the security domain L = PowerSet(C)
is the set of all such security components. This security domain is indeed a (com-
plete) lattice.

Whenever the security categories are considered to be restrictions that can
be gained but cannot be lost, the security domain will be ordered by the subset
ordering (taking
 to be ⊆). This is often the case for integrity policies.

Whenever the security categories are considered to be permissions that can
be lost but cannot be gained, the security domain will be ordered by the superset
ordering (taking
 to be ⊇). This is often the case for confidentiality policies.

The security domain is then specified by listing the finite and nonempty set
of security categories and indicating whether to use the ordering for restrictions
or for permissions.

In both cases we retain the important principle that data may flow along the
preorder of the security domain. Determining which choice of ordering to go for
depends on determining whether or not it is considered to be secure to gain or
lose security categories along flows.

We shall write {∗} for the security component consisting of all security cat-
egories. In case of the restriction ordering, the least element then is { } and the
greatest element is {∗}, whereas in the case of the permission ordering, the least
element is {∗} and the greatest element is { }. This is illustrated in Fig. 2.

Decentralised Labels. The security perspective of components was of a rather
global nature. To accommodate that different security principals might have
different views on information flow, that all should be respected, we develop a
notion of decentralised labels – motivated by the Decentralised Label Model of
Myers and Liskov [18] and some of its adaptations [19,22] – while staying fully
within the lattice-based approach.

Define a finite and nonempty set P of security principals. A decentralised
label then is a total mapping from P to PowerSet(P) and the security domain
L = (P → PowerSet(P)) is the set of all such mappings. This security domain is
indeed a (complete) lattice.

462 F. Nielson and H. R. Nielson

As in the previous section there are two ways of considering the labels: as
restrictions that can be gained but cannot be lost, or as permissions that can be
lost but cannot be gained.

Whenever the labels are considered to be restrictions that can be gained but
cannot be lost, the security domain will be ordered as �1
 �2 if and only if
∀R ∈ R : �1(R) ⊆ �2(R). This is often the case for integrity policies.

Whenever the security categories are considered to be permissions that can
be lost but cannot be gained, the security domain will be ordered as �1
 �2 if
and only if ∀R ∈ R : �1(R) ⊇ �2(R). This is often the case for confidentiality
policies.

The security domain is then specified by listing the finite and nonempty set
of security categories and indicating whether to use the ordering for restrictions
or for permissions.

In both cases we retain the important principle that data may flow along the
preorder of the security domain. Determining which choice of ordering to go for
depends on determining whether or not it is considered to be secure to gain or
lose security categories along flows.

We shall allow to write ∗ for the list of all the security principals in P. In case
of the restriction ordering, the least element then is [∗ �→ { }] and the greatest
element is [∗ �→ {∗}], whereas in the case of the permission ordering, the least
element is [∗ �→ {∗}] and the greatest element is [∗ �→ { }].

5 Information Flow Type System

We are now ready to develop the analysis for over-approximating the set of
flows that may occur in a program. This takes the form of an inference system
for defining a judgement � C : F associating the command C with the flow F
and similarly for guarded commands. It may be seen as a generalisation of the
approach of [24] to a non-deterministic language.

We shall use fv(a) to denote those data containers that occur in a outside
any san construct and use sv(a) to denote those data containers that occur in a
inside one or more san constructs. Similarly for fv(b) and sv(b). Finally, we shall
use mv(C) to denote those data containers that may be modified within the
command C; this generally represents an over-approximation of those modified
in any execution.

Simple Assignments. For a simple assignment to a variable we need to record a
flow from the data containers in the arithmetic expression to the variable being
modified. These flows will be explicit unless the data container in question occurs
inside at least one san construct. This motivates the following axiom scheme.

� x := a :
(fv(a) ⇒E {x})⊕
(sv(a) ⇒S {x})

Lightweight Information Flow 463

The operation ⊕ is defined by

(F1 ⊕ F2)(δ1, δ2) = max{F1(δ1, δ2), F2(δ1, δ2)}
and incorporates the idea that whenever we have a choice between two different
types of flow between two data containers we should always choose the most
worrying one. (In case any of the Fi(δ1, δ2) being undefined we revert to the
isomorphic representation using total maps explained earlier and this amounts
to disregarding such cases.)

This definition can also be seen as a pointwise addition of matrices where
max plays the role of addition. It is immediate that both F ⊕ ({ } ⇒τ { }) and
({ } ⇒τ { }) ⊕ F equal F .

Assignments to Arrays. For assignment to arrays we take the point of view that
the data containers inside the index give rise to implicit rather than explicit
flows. This is based on the consideration that for an array A having 5 elements the
command if a1= 1 → A[1] := a2 [] · · · [] a1= 5 → A[5] := a2 fi is equivalent
to the program A[a1] := a2. This motivates the following axiom scheme.

� A[a1] := a2 :
(fv(a2) ⇒E {A[]})⊕
(fv(a1) ⇒I {A[]})⊕
(sv(a1) ∪ sv(a2) ⇒S {A[]})

Skip. The axiom for skip is immediate: � skip : ({ } ⇒E { }).

Sequencing. For sequential composition C1 ; C2 we need to compose the flows
arising from C1 and C2. However, as our designation of the set of data con-
tainers modified represents an over-approximation, and as we have not required
information flows to contain explicit flows from a data container to itself, we
need to take care to also include the flows from each of the components.

� C1 : F1 � C2 : F2

� C1 ; C2 : (F1 ⊗ F2) ⊕ F1 ⊕ F2

The operation ⊗ is defined by

(F1 ⊗ F2)(δ1, δ2) = max
{

min
{

F1(δ1, δ),
F2(δ, δ2)

}
| δ is a data container

}

and incorporates the following two ideas: (1) If we have flows δ1 →τ1 δ2 and
δ2 →τ2 δ3 then we also have a flow δ1 →τ δ3 where τ is the least worry-
ing of the two flows, i.e. τ = min{τ1, τ2}. (2) If additionally there is another
scenario where we have flows δ1 →τ ′

1 δ′
2 and δ′

2 →τ ′
2 δ3 then we want τ

to be the most worrying of the two candidates min{τ1, τ2} and min{τ ′
1, τ

′
2},

i.e. τ = max{min{τ1, τ2},min{τ ′
1, τ

′
2}}.

This definition can also be seen as a matrix multiplication where max plays
the role of addition and min plays the role of multiplication. It is immediate that
both F ⊗ ({ } ⇒τ { }) and ({ } ⇒τ { }) ⊗ F equal { } ⇒τ { }.

464 F. Nielson and H. R. Nielson

Conditional. For conditional most of the work is left to the analysis of the
guarded command inside.

� GC : F

� if GC fi : F

Iteration. In the case of iteration we need to take the transitive closure to reflect
the iterative nature.

� GC : F

� do GC od : F�

The operation � is defined by

F�(δ�, δ�) = max

⎧⎨
⎩min

⎧⎨
⎩

F (δ0, δ1),
· · · ,

F (δn−1, δn)

⎫⎬
⎭ | δ0, · · · , δn are data containers,

n > 0, δ0 = δ�, δn = δ�

⎫⎬
⎭

and incorporates the idea that the iteration can be performed any number of
times. The definition can also be seen as a form of transitive closure of a matrix.

Guarded Commands. For a guarded command bi → Ci we need to record the
implicit flow from the condition bi to the command Ci as well as incorporate the
flows arising from Ci. Some of the implicit flows will actually be sanitised flows
in case the data container inside bi occurs within at least one san construct. In
the context of a guarded command b1 → C1 [] · · · [] bn → Cn with multiple
choices these considerations account for the first line of the flow constructed in
the rule below.

� C1 : F1 · · · � Cn : Fn

�
b1 → C1

[] · · · []
bn → Cn

:
⊕

i≤n

⎛
⎝

(
fv(bi) ⇒I mv(Ci)

)
⊕

(
sv(bi) ⇒S mv(Ci)

)
⊕ Fi ⊕⊕

j∈cosat(i) (fv(bj) ⇒B mv(Ci)) ⊕ (sv(bj) ⇒S mv(Ci))
⊕ (mv(Ci) ⇒C mv(Ci))

⎞
⎠

The remaining two lines take care of the additional complications arising in a
non-deterministic language where more than one choice is possible. To express
this we shall assume that ‘j ∈ cosat(i)’ over-approximates when bj ∧ bi might
be satisfiable for different choices of j and i, i.e. if bj ∧ bi is satisfiable and
j �= i then ‘j ∈ cosat(i)’ must be true. Whenever ‘j ∈ cosat(i)’ we create the
bypassing flows possible, taking care of those that will actually be sanitised flows
instead, and we create the correlation flows between all data containers modified
in either body.

Offending Flows. Given a security policy (L,L) we can now obtain those flows
that violate the security policy by means of the following rule.

� C : F

(L,L) � C : F ′
where F ′(δ1, δ2) =

{
F (δ1, δ2) if L(δ1) �
 L(δ2)
undefined otherwise

Lightweight Information Flow 465

A command C is said to be offending at level τ with respect to a security policy
(L,L) whenever (L,L) � C : F and F (δ1, δ2) ≥ τ for some (δ1, δ2). In practice,
commands offending only at level S should be considered sufficiently secure if
the code review reveals that the san construct has been used with due care.

Example 1. Consider again the program shown in the righthand half of Fig. 1
and suppose that the security domain L = {cc, aa, ee} is ordered by cc � aa and
cc � ee. (You may read cc as clean, aa as Amazon and ee as eBay.)

If the security association has L(a) = aa, L(e) = ee, L(A[]) = aa, L(E[]) = ee,
L(A#) = aa and L(E#) = ee then the only offending flows are sanitised. So the
program is only offending at level S and should be considered sufficiently secure.

If the security association has L(a) = cc, L(e) = cc, L(A[]) = aa, L(E[]) = ee,
L(A#) = cc and L(E#) = cc then we get the offending correlation flows A[] →C a
and E[] →C e as well as offending sanitised flows. So the program is offending at
level C which upon closer inspections might be considered not to be problematic.

Discussion of Soundness. There are other and more subtle ways in which infor-
mation may flow than has been covered by our security analysis. The word covert
channel is used to describe such phenomena. As an example, the program

y := 0 ; x′ := x ; do x′ > 0 → x′ := x′ − 1 [] x′ < 0 → x′ := x′ + 1 od

always terminates. It has no flows of any kind from x to y but if we can observe
the execution time it reveals some information about the absolute value of x.
Similar examples can be constructed where the computation on x will only ter-
minate successfully for some values of x and otherwise enter a loop or a stuck
configuration. If we can observe the non-termination it also reveals some infor-
mation about the value of x.

The above discussion may be construed to say that our type system is not
sound. (But this holds for most published type systems for security: it is usually
not too hard to find a finer semantics that allows observations disregarded when
the type system was constructed.) This means that an engineer and programmer
taking part in a code review must maintain a perspective on whether the covert
channels not covered by the type system provide grounds for rejecting code
exhibiting no offending flows.

Nonetheless it would be desirable to ensure the robustness of the type system
against shortcomings other than the deliberate decision to ignore the covert
channels mentioned above.

For this we would like to explore a quantitative approach based on entropy.
The basic assumption is that we have joint probability distributions available
to characterise how sets of data containers take their values. Shannon’s entropy
is then the expected value of information contained in each observation. An
important derived concept is that of conditional entropy : the portion of the
entropy of a data container that is independent from another data container.

There are two extreme cases of the conditional entropy. One extreme case
is where the data containers are aliases for the same entity or are modified in
exactly the same way. The other extreme case is where the data containers are

466 F. Nielson and H. R. Nielson

truly independent. The consideration of correlation flows were intended as an
indicator of the first extreme case mentioned – but we are not close to be able
to establish a result along these lines.

We find the quantitative approach more appealing than merely establishing
a non-interference result [16,23,24] that guarantees how data containers of cer-
tain security classifications cannot influence data containers of another security
classification. Using the developments in [20, Section 5.5] we may establish the
following result. Suppose that (L,L) � C : { } ⇒S { } and (C, σ1) →∗ σ′

1 and
(C, σ2) →∗ σ′

2; if ∀y : L(y)
 L(x) ⇒ σ1(y) = σ2(y) we have σ′
1(x) = σ′

2(x).
However, (L,L) � C : { } ⇒S { } is likely to fail for non-deterministic programs
since the nature of non-determinism is to open up for bypassing and correlation
flows.

6 Algorithmic Issues

The type system is syntax-directed and easy to implement except for finding
efficient ways to deal with transitive closure and satisfiability.

Transitive Closure. For an efficient construction of F� using dynamic program-
ming let us define

F [0] = F F [n+1] = F ⊕ (F [n] ⊗ F [n])

This is intended to ensure that F [m] correctly summarises the effect of all paths
of length between 1 and 2m.

Proposition 1. If there are at most N data containers in the program consid-
ered then F� = F [M] where M = �log2N�.
Proof. We may prove by induction that

F [m](δ◦, δ•) = max

⎧⎨
⎩min

⎧⎨
⎩

F (δ0, δ1),
· · · ,

F (δn−1, δn)

⎫⎬
⎭ | δ0, · · · , δn are data containers,

1 ≤ n ≤ 2m, δ0 = δ◦, δn = δ•

⎫⎬
⎭

and it then suffices to realise that we only need to consider paths of length
between 1 and N ≤ 2M .

It is immediate that F�(δ◦, δ•) is greater than or equal to F [M](δ◦, δ•). If they
are not equal there must be a sequence of data containers δ◦ = δ0 = · · · = δn = δ•
with n > N such that min{F (δ0, δ1), · · · , F (δn−1, δn)} is not less than or equal
to F [M](δ◦, δ•). We proceed by contradiction and without loss of generality we
may assume that n is as small as possible.

There must be a data container that occurs more than once in δ◦ = δ0 = · · · =
δn = δ• so consider the reduced sequence obtained by omitting all data containers
between the first and the last occurrence and retaining just one occurrence of
the data container in question. The reduced sequence will provide a value τ of
the min{· · · } formula such that min{F (δ0, δ1), · · · , F (δn−1, δn)} is less than or
equal to τ , that is again less than or equal to F [M](δ◦, δ•). This provides the
desired contradiction.

Lightweight Information Flow 467

Over-Approximating Satisfiability Using a DAG Construction. We next develop
a heuristics for over-approximating whether or not two boolean expressions
might be jointly satisfiable. Since the system at http://FormalMethods.dk/if4fun
may be downloaded to personal devices and run locally we prefer this approach
rather than recasting the problem as an SMT problem (Satisfaction Modulo
Theories) that requires access to a solver such as Z3 [4].

Recall that we considered a construct b1 → C1 [] · · · [] bn → Cn and used
the notation ‘j ∈ cosat(i)’ to over-approximate whether or not bi and bj can be
jointly satisfied (for different choices of i and j). We shall define

(j ∈ cosat(i)) =
(
sat(bi ∧ bj) ∧ j �= i

)
and now explain our heuristics sat(·) in Fig. 3 for over-approximating satisfiabil-
ity.

function sat(b)
convert b to disjunctive normal form i bi1∧ · · · ∧bini

;

global := false;

iterating through all i do

local := true;

build the ordered DAG for bi1∧ · · · ∧bini
;

if the DAG contains a marked node ¬ t where also t is marked

then local := false;

if the DAG contains marked nodes t1 o1 t2 and t1 o2 t2
with (o1, o2) ∈ E then local := false;

global := global ∨ local;

return global

Fig. 3. Algorithm for sat(b).

As a preparation we need to extend the syntax to use < and ≤ (on top of =,
> and ≥) and to use ∨ (on top of ∧ and ¬). Recall that a boolean expression is
a literal when it has no occurrences of ∧ or ∨ and at most one occurrence of ¬.

The first step in Fig. 3 is to translate b into disjunctive normal form; this is
where ∨ may get introduced. The result is an equivalent formula∨

i
bi
1∧ · · · ∧ bi

ni

where each bi
j is a literal.

Iterating through each conjunction of literals bi
1∧ · · · ∧ bi

ni
the algorithm of

Fig. 3 first constructs an ordered DAG (directed acyclic graph), and next inspects
the ordered DAG to over-approximate satisfiability, as detailed below.

Constructing the Ordered DAG. To increase the amount of sharing in the ordered
DAG we need to keep track of the ‘transposed variants’ of the arithmetic and
relational operators:

T = {(+,+), (∗, ∗), (<,>), (≤,≥), (=,=), (≥,≤), (<,>)}

http://FormalMethods.dk/if4fun

468 F. Nielson and H. R. Nielson

This takes care of characterising both those operators that are commutative
(like +) and those that can be ‘transposed’ (like a1 < a2 may be transposed to
a2 > a1). In general, whenever (o1, o2) ∈ T it must be the case that t1 o1 t2 is
equivalent to t2 o2 t1.

Given a conjunction of literals we construct an ordered DAG by a bottom-up
traversal over the parse tree. Leaves will be numbers n, strings s, variables x,
arrays A, and true; internal nodes will be [],#, + , − , ∗ , san, < , ≤ , = , > , ≥
and ¬ . Some of the nodes will be marked, and internal nodes will retain the
order of their subgraphs.

When we encounter a potential new leaf in the bottom-up traversal over the
parse tree of bi

1∧ · · · ∧ bi
ni

, we reuse the node in the DAG if it is already there,
otherwise we construct a new leaf.

When we encounter a potential new internal node t1 o1 t2, we reuse the node
in the DAG if it is already there, otherwise we proceed as follows. If (o1, o2) ∈ T
and there already is a node in the DAG for t2 o2 t1, we use that node in the
DAG, otherwise we construct the node t1 o1 t2.

Once we encounter the root of one of the bi
j we mark the node.

Inspecting the Ordered DAG. To detect cases where satisfiability fails we need
to keep track of pairs of relational operators that exclude each other:

E = {(<,=), (<,≥), (<,>), (≤, >), (=, <), (=, >), (≥, <), (>,<), (>,≤), (>,=)}

In general, whenever (o1, o2) ∈ E it must be the case that a1 o1 a2 and a1 o2 a2

are not jointly satisfiable for any choices of a1 and a2.
We can then establish the over-approximating nature of our heuristics.

Proposition 2. If the boolean formula b is satisfiable then the algorithm sat(b)
returns true.

Proof. If the ordered DAG for a conjunction of literals contains a marked node
t that has an ancestor ¬ t that is also marked, then clearly the conjunction
of literals is not satisfiable. Similarly, if the ordered DAG for a conjunction of
literals contains nodes t1 and t2 that have marked ancestors t1 o1 t2 and t1 o2 t2
with (o1, o2) ∈ E , then the conjunction of literals is not satisfiable.

This shows that the resulting value of local for each iteration only reports
false when the conjunction of literals is not satisfiable. It follows that the overall
algorithm only reports false if none of the conjuncts of the disjunctive normal
form are satisfiable.

We may conclude that ‘j ∈ cosat(i)’ is a correct over-approximation of joint
satisfiability of bi and bj (for distinct i and j) from b1 → C1 [] · · · [] bn → Cn.

7 Conclusion

We developed a type system for identifying the offending information flow
between data containers in a program in the Guarded Commands language. It

Lightweight Information Flow 469

was based on classifying flows as being explicit, implicit, bypassing, correlated or
sanitised and on having general security policies incorporating multi-level secu-
rity, components and decentralised labels; the bypassing and correlation flows
were motivated by the need to deal with non-determinism. These developments
are incorporated in the demonstration tool at http://FormalMethods.dk/if4fun;
to allow it to be run on personal devices we make use of a heuristics for satisfi-
ability of boolean expressions in Guarded Commands.

The approach taken in this paper has been inspired by working with engi-
neers from safety critical software and observing how they react to incorporating
security into their workflow. Ultimately this means leaving the decision of the
acceptability of offending flows to the engineers and programmers taking part
in a code review. The type support is intended to provide support for these
decisions based on its classification of flows into the categories considered here.

References

1. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting bisimilarity and its modal logic
for nondeterministic and probabilistic processes. Acta Inf. 52(1), 61–106 (2015)

2. Bettini, L., De Nicola, R., Pugliese, R.: XKlaim and Klava: programming mobile
code. Electr. Notes Theor. Comput. Sci. 62, 24–37 (2001)

3. Boreale, M., De Nicola, R.: Testing equivalence for mobile processes. Inf. Comput.
120(2), 279–303 (1995)

4. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

5. De Nicola, R.: Testing equivalences and fully abstract models for communicating
systems. Ph.D. thesis, University of Edinburgh, UK (1986)

6. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng 24(5), 315–330 (1998)

7. De Nicola, R., Ferrari, G.L., Pugliese, R., Venneri, B.: Types for access control.
Theor. Comput. Sci. 240(1), 215–254 (2000)

8. De Nicola, R., et al.: From flow logic to static type systems for coordination lan-
guages. Sci. Comput. Program. 75(6), 376–397 (2010)

9. De Nicola, R., Gorla, D., Pugliese, R.: On the expressive power of Klaim-based
calculi. Theor. Comput. Sci. 356(3), 387–421 (2006)

10. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

11. De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: Model checking
mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)

12. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

13. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

14. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

15. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

http://FormalMethods.dk/if4fun
https://doi.org/10.1007/978-3-540-78800-3_24

470 F. Nielson and H. R. Nielson

16. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982, pp.
11–20. IEEE Computer Society (1982)

17. Gollmann, D.: Computer Security, 3rd edn. Wiley, Hoboken (2011)
18. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.

ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (2000)
19. Flemming Nielson and Hanne Riis Nielson: Atomistic Galois insertions for flow

sensitive integrity. Comput. Lang. Syst. Struct. 50, 82–107 (2017)
20. Nielson, F., Nielson, H.R.: Formal Methods: An Appetizer. Springer, Cham (2019)
21. Nielson, F., Nielson, H.R., Vasilikos, P.: Information flow for timed automata.

In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.)
Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 3–21. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63121-9 1

22. Nielson, H.R., Nielson, F.: Content dependent information flow control. J. Log.
Algebr. Meth. Program. 87, 6–32 (2017)

23. Volpano, D.M., Irvine, C.E.: Secure flow typing. Comput. Secur. 16(2), 137–144
(1997)

24. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. J. Comput. Secur. 4(2/3), 167–188 (1996)

https://doi.org/10.1007/978-3-319-63121-9_1

	Lightweight Information Flow
	1 Introduction
	2 Guarded Commands for Security
	3 Types of Information Flow
	4 Security Policies
	5 Information Flow Type System
	6 Algorithmic Issues
	7 Conclusion
	References

