
Revealing the Trajectories of KLAIM
Tuples, Statically

Chiara Bodei1 , Pierpaolo Degano1 , Gian-Luigi Ferrari1 ,
and Letterio Galletta2(B)

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
2 IMT Institute for Advanced Studies Lucca, Lucca, Italy

letterio.galletta@imtlucca.it

Abstract. Klaim (Kernel Language for Agents Interaction and Mobil-
ity) has been devised to design distributed applications composed by
many components deployed over the nodes of a distributed infrastruc-
ture and to offer programmers primitive constructs for communicating,
distributing and retrieving data. Data could be sensitive and some nodes
could not be secure. As a consequence it is important to track data in
their traversal of the network. To this aim, we propose a Control Flow
Analysis that over-approximates the behaviour of Klaim processes and
tracks how tuple data can move in the network.

1 Introduction

Premise. About twenty years ago Rocco De Nicola contributed to the introduc-
tion of KLAIM, a Kernel Language for Agents Interaction and Mobility – as
the name suggests – designed for specifying the behaviour of distributed and
coordinated processes at a suitable level of abstraction. As it is often the case,
this line of work changed with the times, by always evolving to deal with the
challenges posed by the new programming paradigms. Starting by our common
interest in languages and process algebras, we decided to honour Rocco on his
65th birthday and our long friendship, by working on KLAIM and exploiting
our previous experience with static analysis techniques.

Contribution. Modern distributed systems are extremely difficult to model, spec-
ify and verify because they are inherently concurrent, asynchronous, and non
deterministic. Furthermore, computing nodes in a distributed system are loosely
coupled and exhibit a high level of autonomy. These features provide several ben-
efits. For instance, scaling is simplified since each computing node can be scaled
independently from the other nodes. Moreover, decoupling enables the design of
new mechanisms for orchestrating the overall behaviour. Designing secure and

The first three authors have been partially supported by Università di Pisa
PRA_2018_66 DECLWARE: Metodologie dichiarative per la progettazione e il deploy-
ment di applicazioni ; the last author by IMT project PAI VeriOSS.
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 437–454, 2019.
https://doi.org/10.1007/978-3-030-21485-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_24&domain=pdf
http://orcid.org/0000-0002-0586-9333
http://orcid.org/0000-0002-8070-4838
http://orcid.org/0000-0003-3548-5514
http://orcid.org/0000-0003-0351-9169
https://doi.org/10.1007/978-3-030-21485-2_24

438 C. Bodei et al.

safe distributed systems is of paramount importance given the vast attack sur-
face presented by them. We cannot address these issues without a solid formal
model of system security offering advantages of two different kinds. On the one
hand such a model permits to evaluate a priori how to prevent security breaches
and, on the other hand, it provides the machinery for identifying the techniques
one might adopt to achieve the goal of securing distributed systems.

In previous works [3–5], we proposed a Security by Design development
methodology, consisting of a kernel programming language to describe both the
structure of the system and its interactive capabilities. The kernel language is
equipped with a suitable static analysis that approximates the evolution of the
system by providing an abstract model of behaviour. These abstractions allow
predicting how (abstract) data may flow inside the system. Hence, designers
can detect a priori the occurrence of unsafe data and possible security breaches,
inspecting the “abstract simulation” and intervene as early as possible during the
design phase. This methodology has been extended in [6] by introducing a data
path analysis that supports tracking of the propagation of data, thus identifying
their possible trajectories among the computing nodes.

In this paper we apply our methodology to support the design of distributed
systems modelled using Klaim, Kernel Language for Agents Interaction and
Mobility [11]. This language has been specifically devised to design distributed
applications made up of several loosely coupled components deployed over the
nodes of a distributed infrastructure. The Klaim programming model relies
on tuples and tuple spaces to coordinate component communications and data
management. The language builds on Linda’s notion of generative communica-
tion through a single shared tuple space [17] and generalises it with multiple
tuple spaces.

A distinguishing feature of the Klaim model is the so-called network aware-
ness. It indicates the ability of the software components of a distributed appli-
cation to directly manage a sufficient amount of knowledge about the network
environment where they are currently deployed. This capability allows compo-
nents to have a highly dynamic behaviour and manage unpredictable changes of
the network environment over time. Crucial to network awareness are localities
associated with the network nodes, which are a first order feature of Klaim.

In this paper we introduce a control flow analysis that extends the one pro-
posed in [5,6], and that handles network awareness and coordination via multiple
tuple spaces. Our static analysis can be used to detect where and how data are
manipulated and how messages flow among the nodes of a Klaim network. More
in detail, the results of the analysis enable us to reason about

– the path in the Klaim network through which (a value in) a tuple of a specific
node reaches another one; and about

– which transformations are applied to a selected datum along those paths.

The proposed analysis permits to identify possible security breaches in the data
workflow of a distributed application. For instance, it may keep the safe paths
that data inside a tuple can traverse apart from those that pass through a pos-
sible untrusted node.

Revealing the Trajectories of KLAIM Tuples, Statically 439

Plan of the Paper. The next section briefly recalls the main aspects of Klaim.
Section 3 illustrates a simple example that is used along the paper. Section 4
defines the static analysis and shows how to inspect its results for checking
specific properties. The last section concludes.

2 Klaim: A Kernel Language for Agents Interaction
and Mobility

Klaim [11] has been specifically devised to design distributed applications con-
sisting of several components (both stationary and mobile) deployed over the
nodes of a distributed infrastructure. Its programming model relies on a unique
interface (i.e. set of operations) supporting component communications and data
management.

The basic building blocks of Klaim for guaranteeing network awareness are
the locations. They are the linguistic abstraction to manage addresses (i.e. net-
work references) of nodes and are referred to through identifiers. Locations can
be exchanged among the computational components and obey to sophisticated
scoping rules. They provide the naming mechanism to identify network resources
and to represent the notion of administrative domain: computations at a given
location are under the control of a specific authority. In this way, locations pro-
vide a natural abstraction to structure and support programming of spatially
distributed applications.

Klaim has multiple distributed tuple spaces. A tuple space is a multiset of
tuples. Tuples are anonymous sequences of data items and are retrieved from
tuple spaces by means of an associative selection. Interprocess communication
occurs through asynchronous exchange of tuples via tuple spaces: there is no
need for producers (i.e. senders) and consumers (i.e. receivers) of a tuple to
synchronise.

The obtained communication model has a number of properties that make it
appealing for distributed computing in general (see, e.g., [7,9,15,18]). It supports
time uncoupling (data life time is independent of the producer process life time),
destination uncoupling (the producer of a datum needs not to know the future
use or the final destination of that datum) and space uncoupling (programmers
need to know a single interface only to operate over the tuple spaces, regardless
of the node where the action will take place).

2.1 Syntax and Semantics

In this section, we introduce a dialect of Klaim in the style of a process calculus
whose syntax is presented in Table 1. The set of locations Loc consists of three
disjoint entities:

– the absolute locations � ∈ L ;
– the symbolic locations p ∈ LSym;
– the location variables u ∈ LV ars.

440 C. Bodei et al.

Table 1. Klaim syntax

Absolute locations are used to denote network addresses, through names already
assigned to absolute addresses of network components. Symbolic locations,
instead, provide the mechanism to support symbolic addressing. They are key-
words that refer to specific entities of which the currently running code is a part.
The entity referred to by these keywords thus depends on the execution context.
For instance, the symbolic location self will always refers to the current abso-
lute address of the current execution environment. Since locations are denotable
entities we also need location variables.

Nets are finite collections of nodes where processes and data can be placed.
A computational node takes the form � ::ρ P , where ρ is an allocation environment
and P is a process. Since processes may refer to location variables or symbolic
locations, the allocation environment acts as a name solver that binds locations
variables and symbolic locations to absolute locations. Tuples are sequences of
fields, i.e. of expressions and of locations. The precise syntax of expressions
is deliberately not specified; it is just assumed that they contain, at least, basic
values V , and value variables, ranged over by x. The tuple space of a node
consists of all the tuples that do not contain variables and that are located there
(we will sometimes refer to them as evaluated tuples). We will use [[t]] to denote
the result of evaluating the expression t, possibly applying also the allocation
environment ρ.

Processes are the active computational units of Klaim. Their syntax is
standard. Recursive behaviours are modelled via process definitions. For that we
assume a set of process identifiers, ranged over by A. A process definition has
the standard form A � P , but we additionally assume each identifier A has a
single defining equation. The actions processes perform provide the programming
abstractions that support data management. Three primitive behaviours are
provided: adding (out), withdrawing (in) and reading (read) a tuple to/from a
tuple space. Input and output actions are mutators: their execution modifies the

Revealing the Trajectories of KLAIM Tuples, Statically 441

Table 2. Structural congruence

tuple space. The read action is an observer : it checks the availability and takes
note of the content of a certain tuple without removing it from the tuple space.
Actions are tagged with the (possibly remote) location where they will take place.
Note that, in principle, each network node can provide its own implementation
of the action interface. This feature can be suitably exploited to sustain different
policies for data handling as done, e.g. in MetaKlaim [16].

Names occurring in processes and nets can be bound. For example, the action
prefix in(u)@l.P binds u in P , which is the scope of the bindings made by the
action. A name that is not bound is free. The sets of free and bound names of
a process/net term are defined in the standard way. As usual, we say that two
terms are α-equivalent, written ≡α, if one can be obtained from the other by
renaming bound names. Hereafter, we shall work with terms whose bound names
are all distinct and different from the free ones.

A pattern-matching mechanism is used for associatively selecting (evaluated)
tuples from tuple spaces. Intuitively, a tuple matches against an evaluated one
if both have the same number of fields and corresponding fields do match; two
values (locations) match only if they are identical, while variables match any
value of the same type. A successful matching returns a substitution associating
the variables contained in the fields of the tuples with the values contained in
the corresponding fields of the evaluated tuple. We will use σ to range over
substitutions. As usual, substitution application may require α-conversion to
avoid capturing of free names.

We will use the notation match([[t]], et) = σ to indicate that σ is the substi-
tution resulting from the pattern matching of tuple t with the evaluated tuple et.

The operational semantics is given in terms of a structural congruence ≡
and of a reduction relation �−→ over nets. The structural congruence is defined
as the smallest congruence relation over nets that satisfies the laws in Table 2.
These relate nets that intuitively behave the same, stating that ‖ is commutative
and associative, that the null process can always be safely removed/added, that
a process identifier can be replaced with the body of its definition, and that it
is always possible to transform a parallel of co-located processes into a parallel
over nodes. Indeed, rule (Struct) says that all structural congruent nets can
make the same reduction steps.

The reduction relation is the least relation induced by the rules in Table 3.
All the rules for (possibly remote) process actions require the target node to
exist. In addition, the rule (In) requires the chosen datum to occur in the target
node. Moreover, the rule says that action in(u)@l′ looks for any name �′′ at �′

442 C. Bodei et al.

Table 3. Operational semantics of Klaim

that is then used to replace the free occurrences of u in the continuation of the
process performing the input, while action in(�′′)@�′ looks exactly for the name
�′′ at �′; in both cases, the matched datum is consumed. With abuse of notation,
we use nil to replace the consumed data.

Rule (Par) says that if part of a net makes a reduction step, the whole
net reduces accordingly. Process interaction is asynchronous: no synchronisation
takes place between sender and receiver processes (only existence of target nodes
is checked). Moreover, communication is anonymous, because data do not include
the name of the sender, and associative, because data are accessed via pattern
matching.

3 Example: A Microservice Architecture

Microservices have been recently introduced as a software architecture pattern
used to build distributed applications composed of small, independent and highly
decoupled services. A microservice is equipped with a dedicated data storage
support (e.g. a data base) and provides basic (simple) services by computing
certain functionalities (e.g. querying a database). A microservice-based applica-
tion usually takes the form of a structured protocol composed by multiple phases.
Each phase is implemented by a specific microservice. Microservices interact by
exchanging messages. Since all the components of the software architecture are
microservices, the overall behaviour is derived by the coordination of its compo-
nents via message exchange. As an example, the Netflix service uses around 700
microservices to control each of its many parts.

Microservice software architectures present many security challenges, not
new, since they apply to the Service-Oriented paradigm. However, they become

Revealing the Trajectories of KLAIM Tuples, Statically 443

Auth

�1

Profile

�3

Select

�5

Delivery

�7

Auth

�2

Profile

�4

Select

�6

Delivery

�8
Pay

�9

• •

• •

•

� � � �

�

Fig. 1. A network of microservices. The same datum following the trajectory with
bullets • is at risk, while it is safe along the trajectory with boxes �.

even more challenging in this context since service requests are routed among
the multiple independent services. For instance, it may happen that a single
microservice controlled by a malicious entity may corrupt the coordination of
the service requests and therefore the overall behaviour of the application is
compromised.

We outline the main features of the design of a (simplified) Microservice
Application for delivering digital artefacts or contents (e.g. movies) to registered
users. The underlying structured protocol basically consists of several stages.
The first provides an authentication/authorisation facility. Registered users may
select one or more products to buy. In the second phase, the selected item is sent
to the users. Finally, the user pays, which requires the execution of an entire sub-
protocol, involving also a digital bank. In a monolithic architecture this will be
implemented as a stateful application. This is not the case with microservices
since one has to route the requests to multiple independent services. Figure 1
illustrates the structure of the application together with the underlying workflow
of messages. We comment on the architecture:

– The auth microservice provides facilities for authenticating registered user;
it also grants her/him some specific interactions;

– The profile microservice determines user’s profile taking into account all
what was stored by the application about the registered users;

– The select microservice supports the user in making the choice, possibly
suggesting the user the items she/he will like;

– The deliver microservice sends the required digital artefact to the user;
– The pay microservice deduces the monthly fee from the user’s account.

We assume that each stage of the application is split over and implemented
by groups of microservices. For instance, the auth service is distributed over
a pair of microservices independent from each other. This also implies that the
application has multiple entry points to control users’ access. Similarly multiple
profile microservices will be dedicated to manage user requests by providing
the suitable context of user preferences. Note that each profile micro service
may be built over different database schemata storing different data. This sort of

444 C. Bodei et al.

decentralised governance is applied to all the stages of the application. Figure 1
also illustrates a possible workflow of service requests with indicators of risk
level.

The software architecture briefly discussed above is rendered here by making
each microservice a Klaim node. For simplicity, we will focus on the coordination
among the microservices via tuple-based messaging. With an abuse of notation
we will freely exploit certain suitable processes without showing their detailed
implementation. The main processes of the auth microservice level are given
below:

H � in(usr, psw, req)@self.out(usr, psw)@self.in(usr, token)@self.
{for l ∈ Policy(usr, token)
out(usr, req, token)@l}.H

C � in(usr, psw)@self.I.out(usr, Check(usr, psw))@selfC

The handler process H receives the authentication request, obtained by sens-
ing in the tuple space the tuple (usr, psw, req), activates one of the processes
checking user credentials by emitting in the tuple space the tuple (usr, psw) and
finally generates the authentication token by inspecting the tuple space. The
authorisation token is made available by the checking user credential process.
We abstract from the detailed description of checking user credential process
C. We simply assume that the process is activated by the presence of the tuple
(usr, psw) in the tuple space and yields as result the tuple (usr, token), where
the value token is the authorisation information associated to the specific user
usr. The authorisation token is computed, after having executed some internal
activities I, by applying the function Check, which takes as input the values
usr, psw, making clear that the authorisation token strictly depends on the user
information. The result of the authentication is then forwarded to the profile
microservices hosted in the locations l, depending on a certain Policy function
that implements the workflow of messages in accordance with the multistage
pattern of the application.

To conclude the description of the authorisation stage, we present the Klaim
nodes that realise the auth microservices.

AUTH � (l1 ::ρ1 H | C | T1) ‖ (l2 ::ρ2 H | C | T2)

The authorisation microservices consist of two Klaim nodes located at l1 and l2
respectively. Intuitively, registered users can open more than one session of the
application at the same time and, therefore, using more than one microservice of
the application at the same time. Each node hosts the handler processes H and
the process C checking user credentials as discussed above together with the local
tuple spaces, represented by the suitable process T1 and T2. Each microservice
stores and manages its own data within the local tuple space. It is worth noting
the exploitation of tuple spaces to coordinate the behaviour of the processes
deployed in the nodes.

We now move our attention to the profile stage that computes the per-
sonal data associated to the specific registered user. Note that the user’s pro-
file depends on the location where the microservice is located, because, in a

Revealing the Trajectories of KLAIM Tuples, Statically 445

microservice-based architecture, each microservice owns and controls its own
database that is not shared with others to avoid conflicts. The main processes
of the profile stage are given below

D � in(usr, req, token)@self.out(usr, self, token)@self.
in(usr, profile)@self.out(usr, token, req, profile)@next .D

P � in(usr, u, token).@self.I.out(usr,UserProfile(usr, u))@self.P

The driver process D receives the user request, obtained by sensing in the
tuple space the tuple (usr, req, token). Note that each user request is tagged with
the authorisation token to identify the specific user’s session. The driver acti-
vates the process that has the task of calculating the user’s profile by emitting
in the tuple space the tuple (usr, profile). Finally, the next step in the workflow
begins with the generation of the tuple (usr, token, req, profile) and its trans-
mission to the remote node identified by the symbolic location next (that will be
instantiated by the allocation environment of the nodes where processes will be
deployed). The behaviour of the process P is straightforward. We only empha-
sise the role of the function UsrProfile. This function abstracts the activity of
computing user’s profile taking into account the information available locally.
This feature also implies a certain amount of autonomy of the microservice. The
awareness of the locality where information is taken transforms the tuple space
into a bounded context: each local tuple space may have its own understanding
of what a “user” is (e.g. maybe in a certain tuple space the “user” is characterised
by several tuples while in a different tuple space a single tuple is enough).

The Klaim nodes that implement the profile stage are the following

PROFILE � (l3 ::ρ3 D | P | T3) ‖ (l4 ::ρ4 D | P | T4)

Each node hosts the drive processes D and the process P computing user’s
profile as discussed above, together with the local tuple spaces, represented by
the suitable processes T3 and T4.

This third stage of the application is characterised by the select microser-
vice. Two processes drive the behaviour of the microservice. Both processes are
activated by sensing in the tuple space the tuple (usr, token, req, profile). The
first process S1 prompts a list of suggestions based on the user’s profile tak-
ing advantage of the information made available by the auxiliary process CS ,
with the obvious meaning. We only comment on the function CheckProfile that
abstracts the activities for computing the list of suggestions, according to the
user’s request and profile. The second process S2 simply shows to the user her/his
requests of the session at hand.

S1 � in(usr, token, req, profile)@self.out(usr, req, profile)@self.
in(usr, suggestion)@self.out(usr, token, req, suggestion)@self.S1

CS � in(usr, req, profile)@self.out(usr,CheckProfile(req, profile))
S2 � in(usr, token, req, profile)@self.out(usr, token, req)@self.S2

The Klaim nodes that implement the select stage are the followings

SELECT � (l5 ::ρ5 S1 | S2 | CS | F | T5) ‖ (l6 ::ρ6 S1 | S2 | CS | F | T6)

446 C. Bodei et al.

Each node hosts the drive processes S1, S2, the auxiliary process CS discussed
above, and the process F , the detailed description of which omitted here. This
process takes the user’s confirmation, sends the user digital rights for the pur-
chase (via the delivery microservice) and activates the payment microservice.

4 Control Flow Analysis

Below, we first introduce regular tree grammars that will be used to abstractly
represent Klaim data; then we present our control flow analysis; and finally
we show that the results of the analysis can be used to check how data are
manipulated and how they traverse the network of processes.

4.1 Abstract Representation of Data

In the following we represent the data populating and traversing a net of Klaim
processes in an abstract form. Since a system is designed to be continuously
active and may contain feedback loops, data can grow unboundedly, while we
insist on having finite representation. We resort then to set of regular trees and
we associate with data regular tree grammars [8] as finite abstractions. The
leaves of a tree in the language of a regular grammar represent basic values v
and locations �. Instead, its nodes represent functions applied to data, tuple
constructions and transfer from the tuple space of a specific computational node
to another one. A brief survey on regular tree grammars follows.

A regular tree grammar is a quadruple ̂G = (N,T, Z,R) where

– N is a set of non-terminals (with rank 0),
– T is a ranked alphabet, whose symbols have an associated arity,
– Z ∈ N is the starting non-terminal,
– R is a set of productions of the form A → t, where t is a tree composed from

symbols in N ∪ T according to their arities.

In the following we denote the language generated by a given grammar ̂G with
Lang(̂G).

Given a net of processes, the grammars we use will have the alphabet T

consisting of the following set of ranked symbols

– � (with arity 0) for each � ∈ L
– v� (with arity 0) for each value v ∈ Value and � ∈ L
– t� (with arity r) to represent a tuple with arity r in � ∈ L
– f � (with arity r) for each function f in � ∈ L with arity r
– s� (with arity 1) to represent an output from � ∈ L

The non-terminals N of our grammars include a symbol for each terminal, and
carry the label of the relevant computational node. Just for readability we shall
capitalize the ranked symbols above and use them as non-terminals, i.e. L�, V �,
T �, F �, and S�. When irrelevant, we shall omit the labels �, and we shall use
a capital letter for a generic non-terminal. For example, a r-tuple is abstractly

Revealing the Trajectories of KLAIM Tuples, Statically 447

t�0

f�0

0
g�1

1
f�0

0
g�1

Fig. 2. An infinite abstract tree

represented by a grammar with the production T � → t�(A1, ..., Ar) and the
productions for Ai, that generates the tree rooted in t� and children generated
by A1, ..., Ar.

It is convenient introducing some notation. For brevity and when not ambigu-
ous, we will simply write v̂ = (Z,R) for the grammar ̂G = (N,T, Z,R) with
starting non-terminal Z and regular productions in R, without explicitly list-
ing the terminals and the non-terminals. Then, we denote with R the set of all
possible productions over N and T.

As an example of a possible infinite abstract tree, consider two computational
nodes P�0 and P�1 and two binary functions f and h. Suppose that P�0 applies
f to 0 and to a value taken in the tuple space of P�1 . Similarly, P�1 applies h to
1 and the value taken in the tuple space of P�0 . The resulting value in the tuple
space of P�0 is abstracted as the set of binary trees of unbounded depth. The
following grammar represents them all (an element of its language is in Fig. 2):

(T �0 , {T �0 → t�0(F �0), F �0 → f �0(I�0
0 , G�1), I�0

0 → 0, G�1 → g�1(I�1
1 , F �0), I�1

1 → 1})

Now we are ready to introduce the abstract terms that belong to the set

̂V = 2N×R

4.2 Specification of the Analysis

The result or estimate of our CFA is a pair (Σ�, Θ�) for tuple fields tf , a triple
(Σ�, Θ�, κ) for processes P , and a triple (Σ,Θ, κ) for nets of processes. The
components of an estimate are the following abstract domains (we omit labels �
for brevity):

– abstract enviroment Σ : (LV ar∪V ars) → ̂V is an abstract environment that
associates symbolic locations and variables with a set of abstract values;

448 C. Bodei et al.

– abstract data collection Θ : L → ̂V approximates the values that a node
hosted at � can manipulate;

– abstract tuple space κ : L → ̂V approximates the tuple space of a node.

The syntax directed rules of Tables 4 and 5 specify when an analysis esti-
mate is valid and they are almost in the format of AFPL, which is a logic used
to specify static analyses and which allows systematically deriving analysis algo-
rithms [20]. For each tuple t (and its fields tf), the judgement (Σ�, Θ�) |=ρ

�
t : ϑ

(and (Σ�, Θ�) |=ρ
�
tf : ϑ) expresses that ϑ ∈ 2 ̂V approximates the set of tuples

that t (tf) may evaluate to, given the abstract environment Σ�. An actual loca-
tion and a value evaluate to the set ϑ, provided that their abstract represen-
tations belong to ϑ (rules (Loc) and (Val)). This abstract representation is a
grammar made of a non-terminal symbol whose production generates a tree
with a single node. For example, the abstract value for an actual location �′ is
(L�, {L� → �′}) that represents a grammar with the initial symbol is L� that
only generates the tree �′. The rule (L-sym) takes care of symbolic locations and
resolves them through ρ. The rules (L-var) and (E-var) for variables require the
binding for them to be included in ϑ. The rule (E-fun) analyses the application
of an r-ary function f to produce the set ϑ. To do that (i) for each term Ei, it
finds the sets ϑi, and (ii) for all sequences of r values (Zi, Ri) in ϑi, it checks
if ϑ includes the grammars with distinct symbol F � generating the trees rooted
in f � with subtrees generated by Zi. The rule (Tuple) is similar. Note that in
all the rules above, we require that the abstract data collection Θ(�) includes all
the abstract values in ϑ.

Table 4. Analysis of tuples (Σ�, Θ�) |=ρ
�
t : ϑ and of tuple fields (Σ�, Θ�) |=ρ

�
tf : ϑ.

Revealing the Trajectories of KLAIM Tuples, Statically 449

Some further auxiliary definitions may help keeping the logical specification
of the analysis of nets and processes less intricate. In particular, they simplify
handling the grammars and extracting the needed information from them. The
function put constructs a grammar that records that a tuple, approximated by
(Z,R), may be inserted in the tuple space of the computational node at �. The
function @ takes a set of grammars ϑ and returns the set of actual locations in
those grammars with starting symbol L. The function get recursively visits a
grammar to find a tuple that has been acquired by a process at �; its base cases
exhibit, if any, the tuple built by a process at �′ approximated by the grammar
with starting symbol T �′

.

Definition 1 (Auxiliary definitions for the analysis).
Let P be a process, � be an absolute location, and (Z,R) be an abstract value in
the following three auxiliary functions.

– put(�, (Z,R)) = (S�, {S� → s�(Z)} ∪ R)

– ̂@ϑ = {� | (L�, {L� → �}) ∈ ϑ}

–

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

get((S�, {S� → s�(T �′
), T �′ → t�

′
(Z1, . . . , Zr)} ∪ R)) =

〈(S�, {S� → s�(Z1)} ∪ R1), . . . , (S�, {S� → s�(Zr)} ∪ Rr)〉
where Ri are the productions concerning Zi

get((S�, {S� → s�(S�′
0)} ∪ R)) = get((S�′

0 , R))
get((A,R)) = 〈〉 if A
= S�

The specification of the analysis of nets (Σ,Θ, κ) |= N , and of processes
(Σ�, Θ�, κ) |=ρ

�
P is in Table 5. The rules (N-node) and (N-tuple) lift a process

and a tuple in a specific location where they have been analysed; note that the
approximation of the tuple is included in the abstract tuple space of the node �.
The rule (N-par) says that the estimate of the parallel composition is also valid
for the components.

The remaining rules are for processes. The rules for the inactive node (N-nil)
and for parallel composition (N-par) are standard, as well as those for process
definition and invocation, where to save notation, we assumed that each variable
X is uniquely bound to the body P . The rule (P-out) (i) approximates the tuple
t with ϑ and the symbolic location l with ϑ′; and (ii) for all grammar v̂ in ϑ and
for all locations �′ extracted from ϑ′, it checks if the tuple space approximation
κ(�′) contains a grammar that records that the (approximation v̂ of the) tuple t
has been inserted by the node �; and finally that P has a valid approximation.

The rule (P-in) for input and read is the most complex, with a premise made
of two conjuncts that imply three. The first conjunct of the condition finds the
approximation ϑ of the symbolic location l. The second one extracts the actual
locations �′ possibly bound to l and looks for the grammars approximating the
tuples in the space of those locations. If there are any (non-empty) such tuples
v̂1, · · · , v̂r and if a component tf i of the input/read tuple is an actual location �′′,
then �′′ must also occur in the same position in the approximation, i.e. in v̂i. This
statically implements pattern matching on tuple, but on locations only. The first

450 C. Bodei et al.

Table 5. Analysis of nets (Σ, Θ, κ) |= N , and of processes (Σ�, Θ�, κ) |=ρ
�

P .

conjunct of the conclusion of the implication requires that abstract environment
includes the abstract values for each identifier and location variables occurring
in the read tuple. The second and the third conjuncts require that the analysis
validates the other elements of the tuple and the continuation P .

4.3 Checking Data Manipulation and Trajectories

We now illustrate how the outcome of the analysis can be used to detect where
and how data are manipulated and how messages flow in a system. More pre-
cisely, the results of the analysis enable us to reason about (i) the path in the
network through which (a value in) a tuple of a specific node reaches another
one, and about (ii) which transformations are applied to a selected datum along
those paths.

In our example of Sect. 3 a designer could be interested in imposing a policy
that forbids serving a request coming from a certain geographic area while the
user is associated with a different area by the profile. This situation occurs,
e.g. when the user is travelling, the microservices reside in different areas and
the user connects to the closest such microservice. Suppose that the two auth
microservices serve each a different region. In our terms, one has to check whether
a certain request authorised in �2 does not reach the select microservice in �5.
For brevity, we consider below only the parts of the analysis that check this
property, while we do not consider data manipulations.

From now onwards, assume that all the symbolic names l have been bound
to the corresponding absolute locations by the environments. The analysis of
auth requires that the following holds

(Σ�, Θ�, κ) |=ρ2
�2

H

Revealing the Trajectories of KLAIM Tuples, Statically 451

One has to analyse first in(usr, psw, req)@�2. We skip this step and for simplicity
assume that the following holds, where (Zi, Ri) are suitable tree grammars

(Σ�2 , Θ�2) |=ρ2
�2

req : ϑ = {(Z1, R1) . . . (Zn, Rn)}
The process H terminates by sending the relevant tuple to �4 and its analysis

(Σ�, Θ�, κ) |=ρ2
�2

out(usr, req, token)@�4.H

enriches the grammars {(Z ′
1, R

′
1) . . . (Z ′

k, R′
k)} of the tuple with the informa-

tion about this transit, performed by the function put, yielding {(S�2 , {S�2 →
s�2(Z ′

1)} ∪ R′
1) . . . (S�2 , {S�2 → s�2(Z ′

k)} ∪ R′
k)}.

Now the analysis of select requires that of its actions, but we only concen-
trate on

(Σ�, Θ�, κ) |=ρ4
�4

out(usr, token, req, suggestion)@�5.S2

Again, the output tuple is enriched with the information represented by s�4 .
Before discussing how to use the analysis results of this example, we define

the following notions, formalising the inspection of results. We start by defining
a function that, given an abstract value v̂ (i.e. a tree grammar) returns a finite
set of finite sequences of labels, ending with either a value in Value or a location
in L . Below we assume as given a network N and the result of its analysis.

Definition 2 (Extracting trajectories). Let v̂ be a tree grammar, the set of
trajectories of the values and locations represented by v̂ is

TRJ(v̂) = ∅trj∅(v̂)

where ItrjJ is inductively defined on the shape of v̂ as follows

– ItrjJ (A�, {A� → c�(Z1, . . . , Zr)} ∪ R) =
⋃r

i=1,Zi /∈I{� · I′
trjJ∪A((Zi, Ri))}

– ItrjJ (L�, {L� → �′}) = � · �′

– ItrjJ (V �, {V � → v�}) = � · v

and

– � · X = {� · x | x ∈ X}
– I ′ =

{

I ∪ A if A /∈ J

I otherwise

As expected, the auxiliary function ItrjJ extracts a trajectory from an abstract
value, by accumulating on each sequence the location of a traversed node. The
trajectories are kept finite because the sets I and J keep track of the visited
nodes, which are not visited more than twice.

Now we define when a value or a label does not traverse a node that the
designer considers malicious, and thus that trajectory violates the policy.

452 C. Bodei et al.

Definition 3 (Datum reaches). A datum d ∈ Value ∪ L reaches a node �k

without passing through a node � if and only if

∀v̂ ∈ Θ�k
. �0 · · · �k · d ∈ TRJ(v̂) ⇒ ∀j. �
= �j

We turn our attention to data manipulations. In particular, we describe how
a designer can check where data originates and which functions transform them.

Definition 4 (Data manipulation). A datum d ∈ Value∪L , originated from
the node with label �0, is an ingredient of a node �k if and only if

∃v̂ ∈ Θ�k
. �0 · · · �k · d ∈ TRJ(v̂)

Furthermore, a function f may manipulate a value v reaching a node �k if and
only if there exists an abstract value (A,R) ∈ Θ�k

such that R contains a pro-
duction F �′ → f �′

(R1, . . . , Rn), for some �′.

The first part of the above definition is straightforward since inspecting the Θ�k

suffices to understand if a value may be stored in the tuple space of the node �k.
The second part checks if the function f may be applied in any node along the
path traversed by the value v. Again, this information can be extracted from the
grammars inside Θ�k

.
Back to our example, applying the function TRJ to an element v̂ of Θ�5 gives

the trajectory �2 · �4 · �5 ·v. The requirement that a user can only access a service
within his geographic area is therefore detected.

5 Conclusions

We have introduced a static analysis, technically a contol flow analysis, for a
variant of Klaim that provides an abstract simulation model that tracks the
propagation of tuples and identifies their possible trajectories within a Klaim
net. We have illustrated our approach on a microservice-based software architec-
ture, showing that one can detect when a datum can safely traverse a path in the
network, and when passing through a specific node may be dangerous. Our vari-
ant of Klaim includes no primitive mechanism for code mobility, e.g. the eval
action, which however can be managed with some additional technicalities. As
future work, we intend to study when nodes continue to behave in a reasonable
way even in the presence of not completely reliable data, by linking our approach
to that in [21]. There, the authors use the Quality Calculus to program software
components with a sort of backup plan in case of partly unreliable communica-
tion or data. Finally, we plan to consider one of the available implementations
of the Klaim model, e.g. [1,2], to instrument them with our static analysis and
to perform experimental evaluation on some case studies.

Revealing the Trajectories of KLAIM Tuples, Statically 453

Related Work. Several verification techniques have been defined for Klaim and
its variants. An important effort has been devoted to exploit behavioural type
systems for security [12,14,19]. By exploiting static and dynamic checks, type
checking guarantees that only those processes are allowed to proceed, the inten-
tions of which match the rights granted to them. An expressive language exten-
sion, MetaKlaim [16] integrates MetaML (an extension of SML for multi-
stage programming) and Klaim, to permit interleaving of meta-programming
activities (such as assembly and linking of code fragments), dynamic checking
of security policies at administrative boundaries, and traditional computational
activities. MetaKlaim exploits a powerful type system (including polymorphic
types á la system F) to deal with highly parameterised mobile components and to
enforce security policies dynamically: types are metadata that are extracted from
code at run-time and are used to express trustiness guarantees. The dynamic type
checking ensures that the trustiness guarantees of wide area network applications
are maintained also when computations interoperate with potentially untrusted
components.

A framework based on temporal logic [10] has been developed for specify-
ing and verifying dynamic properties of mobile processes specified in Klaim.
This framework provides support for establishing deadlock freedom and liveness
properties as well as security properties such as resource access and information
disclosure. A different approach to control accesses to tuple spaces and mobility
of processes is introduced in [13]. Like ours, this approach is based on Flow Logic
(so also enabling to design a fully static type system) and considers a version of
Klaim slightly different from ours. The abstract domains differ, because theirs
contain tuples only made by localities, while ours also have values. Since access
control is of interest, their domains also record possible policies and violations.

References

1. Bettini, L., De Nicola, R., Pugliese, R.: KLAVA: a Java package for distributed
and mobile applications. Softw. Pract. Exper. 32(14), 1365–1394 (2002)

2. Bettini, L., De Nicola, R., Pugliese, R., Ferrari, G.L.: Interactive mobile agents in
X-Klaim. In: Proceedings of 7th Workshop on Enabling Technologies (WETICE
1998), Infrastructure for Collaborative Enterprises, pp. 110–117. IEEE Computer
Society (1998)

3. Bodei, C., Degano, P., Ferrari, G.L., Galletta, L.: A step towards checking security
in IoT. In: Proceedings of ICE 2016, EPTCS, vol. 223, pp. 128–142 (2016)

4. Bodei, C., Degano, P., Ferrari, G.-L., Galletta, L.: Where do your IoT ingredients
come from? In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016.
LNCS, vol. 9686, pp. 35–50. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39519-7_3

5. Bodei, C., Degano, P., Ferrari, G.L., Galletta, L.: Tracing where IoT data are
collected and aggregated. Log. Methods Comput. Sci. 13(3), 1–38 (2017)

6. Bodei, C., Galletta, L.: Tracking data trajectories in IoT. In: Mori, P., Furnell, S.,
Camp, O. (eds.) Proceedings of the 5th International Conference on Information
Systems Security and Privacy, ICISSP, vol. 1, pp. 572–579. SCITEPRESS (2019).
https://doi.org/10.5220/0007578305720579, ISBN 978-989-758-359-9

https://doi.org/10.1007/978-3-319-39519-7_3
https://doi.org/10.1007/978-3-319-39519-7_3
https://doi.org/10.5220/0007578305720579

454 C. Bodei et al.

7. Castellani, S., Ciancarini, P., Rossi, D.: The ShaPE of ShaDE: a coordination
system. Technical report UBLCS 96-5, Dip. di Scienze dell’Informazione, Univ.
Bologna (1996)

8. Comon, H., et al.: Tree automata techniques and applications. http://www.grappa.
univ-lille3.fr/tata (2007). Released 12 Oct 2007

9. Davies, N., Wade, S., Friday, A., Blair, G.: L2imbo: a tuple space based plat-
form for adaptive mobile applications. In: Rolia, J., Slonim, J., Botsford, J. (eds.)
ICODP/ICDP. IFIPAICT, pp. 291–302. Springer, Boston (1997). https://doi.org/
10.1007/978-0-387-35188-9_22

10. De Nicola, R., Loreti, M.: A modal logic for mobile agents. ACM Trans. Comput.
Log. 5(1), 79–128 (2004)

11. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

12. De Nicola, R., Ferrari, G.L., Pugliese, R., Venneri, B.: Types for access control.
Theor. Comput. Sci. 240(1), 215–254 (2000)

13. De Nicola, R., et al.: From flow logic to static type systems for coordination lan-
guages. Sci. Comput. Program. 75(6), 376–397 (2010)

14. De Nicola, R., Gorla, D., Pugliese, R.: Confining data and processes in global
computing applications. Sci. Comput. Program. 63(1), 57–87 (2006)

15. Deugo, D.: Choosing a mobile agent messaging model. In: ISADS, pp. 278–286.
IEEE (2001)

16. Ferrari, G.L., Moggi, E., Pugliese, R.: MetaKlaim: a type safe multi-stage language
for global computing. Math. Struct. Comput. Sci. 14(3), 367–395 (2004)

17. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

18. Gelernter, D.: Multiple tuple spaces in Linda. In: Odijk, E., Rem, M., Syre, J.-
C. (eds.) PARLE 1989. LNCS, vol. 366, pp. 20–27. Springer, Heidelberg (1989).
https://doi.org/10.1007/3-540-51285-3_30

19. Gorla, D., Pugliese, R.: Dynamic management of capabilities in a network aware
coordination language. J. Log. Algebraic Program. 78(8), 665–689 (2009)

20. Nielson, F., Nielson, H.R., Seidl, H.: A succinct solver for ALFP. Nordic J. Comput.
9(4), 335–372 (2002)

21. Nielson, H.R., Nielson, F., Vigo, R.: A calculus of quality for robustness against
unreliable communication. J. Log. Algebraic Meth. Program. 84(5), 611–639 (2015)

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/978-0-387-35188-9_22
https://doi.org/10.1007/978-0-387-35188-9_22
https://doi.org/10.1007/3-540-51285-3_30

	Revealing the Trajectories of KLAIM Tuples, Statically
	1 Introduction
	2 Klaim: A Kernel Language for Agents Interaction and Mobility
	2.1 Syntax and Semantics

	3 Example: A Microservice Architecture
	4 Control Flow Analysis
	4.1 Abstract Representation of Data
	4.2 Specification of the Analysis
	4.3 Checking Data Manipulation and Trajectories

	5 Conclusions
	References

