
HEADREST: A Specification Language
for RESTful APIs

Vasco T. Vasconcelos1 , Francisco Martins2(B) , Antónia Lopes1 ,
and Nuno Burnay1

1 LASIGE and Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
2 LASIGE and Universidade dos Açores, Ponta Delgada, Portugal

fmartins@acm.org

Abstract. Representational State Transfer (REST), an architectural
style providing an abstract model of the web, is by far the most pop-
ular platform to build web applications. Developing such applications
require well-documented interfaces. However, and despite important ini-
tiatives such as the Open API Specification, the support for interface
description is currently quite limited, focusing essentially on simple syn-
tactic aspects. In this paper we present HeadREST, a dependently-typed
language that allows describing semantic aspects of interfaces in a style
reminiscent of Hoare triples.

Keywords: REST · Web services · Description language

1 Introduction

Software services are not just a mechanism to compose software functionalities,
but, in the present case, it was also the motto to bring together once again two
groups of researchers, notably De Nicolas’s and Vasconcelos’ teams.

It all restarted in 2005, under the auspices of Sensoria, Software Engineer-
ing for Service-oriented Overlay Computers [15], a project revolving around the
idea of service as a basis for service-oriented computing. In 2006 we authored
together “SCC: A Service Centered Calculus” [3], a paper that laid down the
foundations for describing the dynamic behaviour of services in terms of a pro-
cess calculus. SCC introduces the notions of service definition, which provides for
service behaviours, and of service invocation, which consumes instances of ser-
vices. The communication between both ends of a service interaction happens in
the context of a session. Inside this, processes send and receive messages isolated
from other ongoing service interactions. A system is the parallel composition of
service definitions, invocations, and ongoing sessions.

Following to this work, we concentrated on the problems of composing and
orchestrating services, introducing SSCC [11]. This new calculus puts forward

An early version of this paper was presented at the 24th International Conference on
Types for Proofs and Programs, in June 2018.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 428–434, 2019.
https://doi.org/10.1007/978-3-030-21485-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_23&domain=pdf
http://orcid.org/0000-0002-9539-8861
http://orcid.org/0000-0002-2379-7257
http://orcid.org/0000-0003-0688-3521
http://orcid.org/0000-0001-6613-5192
https://doi.org/10.1007/978-3-030-21485-2_23


HEADREST: A Specification Language for RESTful APIs 429

a stream construct to play the role of a service orchestrator. In the following
year, De Nicola and his team proposed CaSPiS that also features intra- and
inter-session communication by using streams and pipelines [4]. CaSPiS further
allows for reasoning about session cancellation and termination, scenarios in
which processes may abandon or terminate their current sessions.

The explosive growth of the Web, and the adoption of services as one of the
pillars for building distributed applications over the Web, continued to draw
our attention to service-oriented computing. This time we decided to focus on
RESTful web services. Confident is a research project on the formal description
of RESTful web services using type technology [5].

Following the original spirit of REST [7], and in stark contrast to the philos-
ophy of SOAP [9], state of the art service description systems use mainly natural
language. While these descriptions may occasionally suit programmers, they are
not adequate for machine consumption. Machine checkable service descriptions
lie at the basis of static verification of RESTful-based applications, help in enforc-
ing service fidelity, and in the construction and evolution of complex distributed
applications.

2 Context and Related Work

Representation State Transfer (REST) is an architectural style proposed as an
abstract model of the web architecture. At its core lies the concept of resource [7].
According to Fielding and Taylor, a resource is a temporally varying membership
function MR(t), mapping time t to a set of entities which are deemed equiva-
lent [8]. The entities in the set MR(t) are resource representations and resource
identifiers. REST uses a resource identifier to identify the particular resource
involved in an interaction between components. Representations of resources
are transferred between components in REST interactions; components perform
actions on a resource by using a representation to capture the current or intended
state of that resource.

In our running example—a simple contact management system—contacts
are resources that admit (among others) a representation defined in terms of
a nickname, a name, an email address, and a postal address. Figure 1 shows
an example of two contacts. One of the contacts bears two different identifiers:
me and owner (the owner of all contacts). Both contacts have JSON and XML
representations that also differ in the amount of information included.

Systems that conform to the constraints of the REST architecture are called
RESTful. A RESTful system can be seen as a set of resources together with the
actions that can be performed on these. A RESTful API can be abstracted as
a set of resource identifiers together with the actions that can be performed on
each resource via that identifier.

REST systems typically communicate over HTTP and interface with exter-
nal systems as web resources identified by URIs. The actions in this case include
GET, POST, PUT, DELETE. In systems that communicate over HTTP, addi-
tional information can be sent in the request for the execution of the action.



430 V. T. Vasconcelos et al.

Key

resourceid of

representation of

type of

resource

resource type

Fig. 1. Two resources in a contact management REST service.

This comes in the form of parameters embedded in the URL, headers, and body.
Results always include a response. The table below shows four actions in the
contact management system, together with their URIs and a textual descrip-
tion.

Different interface description languages (IDLs) have been purposely
designed to support the formal description of REST APIs. The most representa-
tive ones are probably Open API Specification [12] (originally called Swagger),
the RESTful API Modeling Language [13] (RAML), and API Blueprint [1].
These IDLs allow a detailed description of the syntactic aspects of the data
transferred in REST interactions and are associated to a large number of tools,
in particular for documentation generation, client code generation in different
programming languages, and for test generation. Focused on the structure of the
data exchanged, they ignore important semantic aspects, such as the ability to
relate different parts of the same data, to relate the input against the state of



HEADREST: A Specification Language for RESTful APIs 431

the service, and to relate the output against the input. For instance, in the case
of the contact management system, none of IDLs discussed here allow express-
ing facts such as that, in the creation of a new contact, the nickname must be
shorter than the full name or that the name should be unique across all names
known to the system. Similarly, these languages do not allow expressing that the
type of representation transmitted in the response to a GET action depends on
the value of a given query parameter.

3 HEADREST

Our approach to the description of RESTful APIs relies on two key ideas:

– Types to express properties of server states and of data exchanged in client-
server interactions and

– Pre- and post-conditions to express the relationship between data sent in
requests and that obtained in responses, as well as the resulting state changes
in servers.

These ideas are embodied in HeadREST, a language built on the two fun-
damental concepts of DMinor [2]:

– Refinement types, x:T where e, consisting of values x of type T that satisfy
property e and

– A predicate, e in T, which returns true or false depending on whether the
value of expression e is or is not of type T.

HeadREST allows to describe properties of data and to observe state
changes in server through a collection of assertions. Assertions take the form
of Hoare triples [10] and are of the form

{φ} (a t) {ψ}
where a is an action (GET, POST, PUT, or DELETE), t is an URI template (e.g.,
/contacts/{i}), and φ and ψ are boolean expressions. Formula φ, called the
precondition, addresses the state in which the action is performed as well as the
data transmitted in the request, whereas ψ, the postcondition, addresses the state
resulting from the execution of the action together with the values transmitted
in the response. The assertion reads

If a request for the execution of action a over an expansion of URI tem-
plate t carries data satisfying formula φ and the action is performed in
a state satisfying φ, then the data transmitted in the response satisfies
formula ψ and so does the state resulting from the execution of the action.

A simple contact management system includes different (abstract) resources,
which HeadREST captures as new types. Resources are introduced as follows.

resource Contact



432 V. T. Vasconcelos et al.

Each resource may be associated to zero or more representations, each of
which is given a particular type. The type system of HeadREST is struc-
tural, yet the language provides for type abbreviations in order to ease the
writing of complex API descriptions. The syntax below introduces an identi-
fier (NameAndEmail) for an object type, intended to represent resource Contact.
NameAndEmail is an object composed of a name (a string of 3–15 lower and upper-
case letter) and an email (a string containing the symbol @).

type NameAndEmail = {

name: (x: string where matches(x, ^[a-zA-Z]{3 ,15}$)),

email: (x: string where contains(x, "@"))

}

Equipped with the declaration of a new resource (Contact) and a name for
one of the representations of the resource (NameAndEmail), one can write a few
assertions describing the behaviour of the API. One that describes a successful
contact creation could be written as

{request in {body: NameAndEmail} &&

∀c:Contact. ∀r:NameAndEmail.
r repof c ⇒ request.body.name �= r.name

}

POST /contacts

{response.code == 200 &&

response in {body: NameAndEmail , header: {Location: URI}} &&

request.body == response.body &&

∃c:Contact. response.body repof c &&

response.header.Location uriof c

}

where request and response are builtin identifiers, and predicates repof and
uriof describe values associated to resources as described in Sect. 2 (cf., Fig. 1).

The precondition first establishes that request contains a field named body of
type NameAndEmail, and then asks the new contact name (provided in the body of
the request) to be unique across all contacts and their representations, hence the
double quantification (first on resources and then on their representations). In
such a case, the postcondition signals success (code 200) and states that response

includes a representation (in field body) that is exactly what was sent in the
request. Furthermore, the response includes an URI (in field header.Location)
of the newly created Contact resource c.

A different assertion for the same pair action-URI describes the conflict story:
if the name of the new contact is known to the server, then this signals conflict
(code 409).

{request in {body: NameAndEmail} &&

∃c:Contact. ∃r:NameAndEmail.
r repof c ⇒ request.body.name == r.name

}

POST /contacts

{response.code == 409}



HEADREST: A Specification Language for RESTful APIs 433

We have used HeadREST to describe different APIs, including a part of
GitLab (800 lines of spec code). We have developed an Eclipse plugin to validate
the good formation of HeadREST specifications [5], a tool to automatically test
REST APIs against specifications [6], and a tool to generate server stubs and
client SDKs from HeadREST specifications [14].

4 Conclusion

In this short abstract we informally present HeadREST, a language designed
to support the entire application lifecycle based on REST APIs. We briefly dis-
cuss the language via a very simple example that illustrates the challenges of
describing REST APIs and the expressiveness of our specification language.

Equipped with such an API description, we build tools that (a) validate
the good formation of HeadREST specifications, (b) generate server stubs and
client SDKs from HeadREST specifications, and (c) that automatically test
REST APIs against specifications.

We intend to explore the specification of security issues in REST context,
in particular, how to use the HeadREST language to ensure compliance with
authentication and confidentiality requirements.

Acknowledgments. This work was supported by the Foundation for Science and
Technology (FCT) through project CONFIDENT (PTDC/EEI-CTP/4503/2014) and
the LASIGE research unit (UID/CEC/00408/2019).

References

1. API blueprint. https://apiblueprint.org/. Retrieved 7 Jan 2019
2. Bierman, G.M., Gordon, A.D., Hritcu, C., Langworthy, D.E.: Semantic subtyping

with an SMT solver. J. Funct. Program. 22(1), 31–105 (2012)
3. Boreale, M., et al.: SCC: a service centered calculus. In: Bravetti, M., Núñez, M.,

Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11841197 3

4. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: CaSPiS: a calculus of sessions,
pipelines and services. Math. Struct. Comput. Sci. 25(3), 666–709 (2015)

5. Confident, a toolchain for the construction and evolution of REST APIs. http://
rss.di.fc.ul.pt/tools/confident. Retrieved 7 Jan 2019

6. Ferreira, F.: Automatic test generation for RESTful APIs. Master’s thesis, Faculty
of Sciences, University of Lisbon (2017)

7. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California, Irvine (2000)

8. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2(2), 115–150 (2002)

9. HTTP Working Group: SOAP: Simple object access protocol. https://tools.ietf.
org/html/draft-box-http-soap-00. Retrieved 31 Jan 2019

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

https://apiblueprint.org/
https://doi.org/10.1007/11841197_3
http://rss.di.fc.ul.pt/tools/confident
http://rss.di.fc.ul.pt/tools/confident
https://tools.ietf.org/html/draft-box-http-soap-00
https://tools.ietf.org/html/draft-box-http-soap-00


434 V. T. Vasconcelos et al.

11. Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining orchestration
and conversation in service-oriented computing. In: Proceeedings of the Fifth IEEE
International Conference on Software Engineering and Formal Methods (SEFM
2007), pp. 305–314 (2007)

12. Open API Initiative. https://www.openapis.org. Retrieved 7 Jan 2019
13. RESTful API Modeling Language. https://raml.org. Retrieved 7 Jan 2019
14. Santos, T.: Code generation for RESTful APIs in headREST. Master’s thesis,

Faculty of Sciences, University of Lisbon (2018)
15. Sensoria: Software Engineering for Service-Oriented Overlay Computers. http://

sensoria.fast.de/. Retrieved 31 Jan 2019

https://www.openapis.org
https://raml.org
http://sensoria.fast.de/
http://sensoria.fast.de/

	HEADREST: A Specification Language for RESTful APIs
	1 Introduction
	2 Context and Related Work
	3 HEADREST
	4 Conclusion
	References




