
Different Glasses to Look into the Three
Cs: Component, Connector, Coordination

Farhad Arbab1, Marco Autili2, Paola Inverardi2, and Massimo Tivoli2(B)

1 Centrum Wiskunde & Informatica,
Science Park 123, 1098 XG Amsterdam, The Netherlands

Farhad.Arbab@cwi.nl
2 Department of Information Engineering, Computer Science and Mathematics,

University of L’Aquila, L’Aquila, Italy
{marco.autili,paola.inverardi,massimo.tivoli}@univaq.it

Abstract. Component, connector, and coordination have been key con-
cepts exploited in different communities to manage the complexity of
concurrent and distributed system development. In this paper, we dis-
cuss three approaches within three different classes: composition in soft-
ware architectures, coordination models, and programming abstractions
for concurrency. These classes encompass different perspectives and solu-
tions to face crucial challenges in developing concurrent and distributed
systems. The approaches are discussed with respect to some character-
istics of interest for the above classes: compositionality, incrementality,
scalability, compositional reasoning, reusability, and evolution.

Keywords: Software components · Connectors ·
Software architectures · Coordination models ·
Programming abstractions

1 Introduction

Since late 70’s, the development of concurrent and distributed systems has been
receiving much attention from the research community [72,77]. Later, since 90’s,
component, connector, and coordination have been key concepts exploited in dif-
ferent communities to manage the complexity of concurrent and distributed sys-
tems development [2,4,9,17,18,24,32,37,43,47,49,52,75,78,79,83,84,87]. Pro-
cess calculi and algebras laid the theoretical foundation for concurrency. The
concept of coordination was introduced to offer software developers program-
ming language constructs and models at a level of abstraction higher than the
primitives offered by the parsimony of process algebras [3,39]. The concept of
connectors emerged in software architectures as a useful construct to facilitate
communication among independently developed components.

In this paper, we discuss three different approaches within three different
classes: composition in software architectures, coordination models, and pro-
gramming abstractions for concurrency. These classes encompass different per-
spectives and solutions to face crucial challenges in developing concurrent and
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 191–216, 2019.
https://doi.org/10.1007/978-3-030-21485-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_12


192 F. Arbab et al.

distributed systems. Strictly concerning the purpose of this festschrift paper, we
limit our discussion to previous work by De Nicola et al. and previous work by
the authors. Specifically, we focus on programming abstractions for concurrent
and autonomic systems [84]; exogenous coordination [5]; and the architectural
synthesis of software coordinators for the distributed composition of heteroge-
neous components [18].

Since these approaches are radically different in nature, it is not possible,
neither would it make sense, to make a point-to-point comparison or to force a
description of them by adopting a uniform writing strategy at the same level of
detail. However, this paper makes an effort to discuss the three approaches with
respect to the same set of characteristics of interest for the above classes: compo-
sitionality, incrementality, scalability, compositional reasoning, reusability, and
evolution.

This paper is organized as follows. Section 2 preludes our discussion by col-
locating the three works above within the state of the art. Section 3 provides
a concise, yet complete, description of the three works, which are then charac-
terized in Sect. 5 with respect to the six dimensions defined in Sect. 4. Section 6
concludes the paper.

2 Praeludium

In this section, we give a brief account of the three approaches that we consider
followed by a brief discussion on related approaches.

The first approach by De Nicola et al. [84] is based on the definition of
programming abstractions for concurrent and autonomic systems. The start-
ing point of the work is represented by the notions of autonomic components
(ACs) and autonomic-component ensembles (ACEs). The defined programming
abstractions permit to model their evolution and their interactions. The authors
define SCEL (Software Component Ensemble Language), a kernel language for
programming the behavior of ACs and the formation of ACEs, and for control-
ling the interaction among different ACs. These abstractions permit describing
autonomic systems in terms of behaviors, knowledge, and aggregations by com-
plying with specific policies.

The second approach essentially concerns the work conducted by Arbab as
described in [5], among other references. The author emphasizes the separation
between computation and coordination defining a data-flow paradigm. Arbab
defines the notion of Abstract Behavior Types (ABTs) as a higher-level alterna-
tive to ADT (Abstract Data Type) and proposes it as a proper foundation model
for both components and their composition. An ABT defines an abstract behav-
ior as a relation among a set of timed-data-streams, without specifying any detail
about the operations that may be used to implement such behavior or the data
types it may manipulate for its realization. ABTs allows for loosely coupling
and exogenous coordination that are considered as two essential properties for
components and their composition. ABTs serve as the primary formal semantic
model for the coordination language Reo.



Different Glasses to Look into the Three Cs 193

The third approach that we consider is described in the work conducted by
Inverardi et al. [18]. The authors provide a complete formalization of an auto-
mated synthesis method for the distributed composition and coordination of
software services. The method takes as input a specification of the global collab-
oration that the involved services must realize. This specification is given in the
form of a state machine. The methods automatically generates a set of Coor-
dination Delegates (CDs). CDs are additional software entities with respect to
the participant services, and are synthesized in order to proxify and control their
interaction. When interposed among the services, the synthesized entities enforce
the collaboration prescribed by the specification. The synthesized CDs are proved
to be correct by construction, meaning that the resulting distributed system real-
izes the specification. The synthesis method is able to deal with heterogeneous
services that communicate synchronously and/or asynchronously. CDs are able
to handle asynchrony through 1-bounded FIFO queues.

As already introduced, beyond the above mentioned approaches, there are
many other approaches in the literature that should be considered (see [85]
for an early comprehensive survey). For instance, in [2], the authors define a
control-flow event-based paradigm for both computation and coordination. The
WRIGHT architecture description language [1] is used as a specialized nota-
tion for architectural specification. As underlining formalism, the authors embed
in WRIGHT an approach based on process algebra. In fact, in [2], CSP [86]
(Communicating Sequential Processes) is used by the authors in order to pro-
vide an operational formalization of the separation between computation and
coordination.

A family of process calculi called “Kell calculus” is presented in [33,34,87,
90]. It has been intended as a basis for studying distributed (and ubiquitous)
component-based programming. Essentially, the Kell calculus is an high-order
extension of π-Calculus. Its aim is to support the modeling of different forms of
process mobility (e.g., logical and physical mobility). This is done by considering
the possibility to directly transmit processes as messages and not only channels
(used by processes in order to communicate) as it is in π-Calculus.

A further approach concerns the work described in [36]. The authors propose
an algebraic formalization of the structure of the interactions enabled by con-
nectors in component-based system implemented in the BIP framework [26,89].
It is a control-flow paradigm based on active/inactive communication ports of
components.

The work described in [79] presents a modeling approach based upon the
Bigraphical Reactive Systems framework developed by Milner, which consists of
a bigraph together with a collection of bigraphical rewrite rules. Analogously to
Kell calculus, this approach introduces mobility, locality and dynamism.

Further approaches are described in [37,47,75] and, as pure algebraic model-
ing approaches, they are theoretically very powerful although, they result to be
hard to be used by practitioners.

Beyond the notational/algebraic/mathematical class of works on connec-
tor/component modeling, another interesting class of works that should be



194 F. Arbab et al.

considered concerns quantitative approaches, e.g., [9,24]. These approaches are
quantitative in the sense that they are able to express, and reason about, char-
acteristics such as the probability of an event occurring, the elapse of time, per-
formance, QoS, etc. In particular, in [9], the work described in [5] is extended in
order to take into account QoS attributes of both computation and coordination,
e.g., shortest time for data transmission, allocated memory cost for data trans-
mission, and reliability represented by the probability of successful transmission.
Furthermore, this work defines a semantic model for connectors different from
ABTs, i.e., it is an operational model based on a QoS extension of constraint
automata [24] called Quantitative Constraint Automata. In spirit, this model is
a variant of a labelled transition-system model. Other extensions of Reo are also
based on the constraint-automata semantics, and allow two forms of probabil-
ity distributions, continuous-time (with no nondeterminism) and discrete-time
(with nondeterminism) [25].

3 Looking into the Three Cs

Within the “three Cs sphere”, the three approaches considered in this paper
represent three possible ways of dealing with component-based system devel-
opment, component connection and coordination. For different purposes and at
different levels, these approaches target the complexity of concurrent and dis-
tributed system development, and address crucial challenges to be faced when
developing component-based systems, possibly reusing existing third-party com-
ponents, connecting them and coordinating their interaction.

This section provides a concise, yet complete, description of the three
approaches. For each of them, we first provide an overview by summarizing
notions and aspects borrowed from the corresponding original work; then, we
discuss the approach with respect to the best-fitting “C”.

3.1 Software Component Ensemble Language

The aims of the work in [84] is to provide language designers with appropriate
programming abstractions and constructs to deal with the development of con-
current and autonomic systems, adaptation with respect to possibly unforeseen
changes of the working environment, evolving requirements, emergent behaviors
resulting from complex interactions. The work in [84] is based on the two fun-
damentals notions of Autonomic Components (ACs) and Autonomic-Component
Ensembles (ACEs), and defines programming abstractions to model their evolu-
tions and their interactions. The authors define the Software Component Ensem-
ble Language (SCEL) that is a programming language for programming the
behavior of ACs and the formation of ACEs, and for controlling the interaction
among different ACs. These abstractions permit describing autonomic systems
in terms of Behaviors, Knowledge, and Aggregations by complying with specific
Policies.



Different Glasses to Look into the Three Cs 195

Overview of the SCEL’s Design Principles – ACs and ACEs serve to
structure systems into independent and distributed building blocks that interact
and adapt.

ACs are entities with dedicated knowledge units and resources; awareness is
guaranteed by providing them with information about their state and behavior
via their knowledge repositories. These repositories also can be used to store
and retrieve information about ACs’ working environments, and thus can be
exploited to adapt their behavior to the perceived changes. Each AC is equipped
with an interface, consisting of a collection of attributes, describing the compo-
nent’s features such as identity, functionalities, spatial coordinates, group mem-
berships, trust level, response time, and so on.

Attributes are used by the ACs to dynamically organize themselves into
ACEs. Indeed, one of the main novelties of SCEL is the way groups of partners
are selected for interaction and thus how ensembles are formed. Individual ACs
can single out communication partners by using their identities, but partners can
also be selected by taking advantage of the attributes exposed in the interfaces.
Predicates over such attributes are used to specify the targets of communication
actions, thus permitting a sort of attribute-based communication. In this way,
the formation rule of ACEs is endogenous to ACs: members of an ensemble are
connected by the interdependency relations defined through predicates. An ACE
is therefore not a rigid fixed network but rather a highly flexible structure where
ACs’ linkages are dynamically established.

Fig. 1. Autonomic component ensembles

A typical scenario that gives rise to ACEs is reported in Fig. 1. It suggests
that ACEs can be thought of as logical layers (built on top of the physical
ACs’ network) that identify dynamic ubnetworks of ACs by exploiting specific



196 F. Arbab et al.

attributes; in the picture, these are the different colours associated to individual
ACs.

The main linguistic abstractions that SCEL provides developer with for pro-
gramming the evolution and the interactions of ACs and the architecture of
ACEs are listed as follows.

– Behaviors describe how computations may progress and are modeled as pro-
cesses executing actions, in the style of process calculi.

– Knowledge repositories provide the high-level primitives to manage pieces
of information coming from different sources. Each knowledge repository is
equipped with operations for adding, retrieving, and withdrawing knowledge
items.

– Aggregations describe how different entities are brought together to form ACs
and to construct the software architecture of ACEs. Composition and interac-
tion are implemented by exploiting the attributes exposed in ACs’ interfaces.

– Policies control and adapt the actions of the different ACs for guaranteeing
accomplishment of specific tasks or satisfaction of specific properties.

By accessing and manipulating their own knowledge repository or the repos-
itories of other ACs, components acquire information about their status (self-
awareness) and their environment (context awareness) and can perform self-
adaptation, initiate self- healing actions to deal with system malfunctions, or
install self-optimizing behaviors. All these self-* properties, as well as self-
configuration, can be naturally expressed by exploiting SCEL’s higher-order fea-
tures, namely, the capability to store/retrieve (the code of) processes in/from the
knowledge repositories and to dynamically trigger execution of new processes.
Moreover, by implementing appropriate security policies (e.g., limiting informa-
tion flow or external actions), components can set up self-protection mechanisms
against different threats, such as unauthorised access or denial-of-service attacks.

Discussion – More on the Component side, the work by De Nicola et al.
addresses the challenges to develop large systems composed of a massive num-
bers of components, featuring complex interactions among components, as well
as with humans and other systems. These complex systems are often referred to
as ensembles. The complexity of the ensembles is due to their large dimension
and their need to adapt to the changes of the working environment and to the
evolving requirements. Self-* abilities are thus desirable to make this kind of
systems autonomic, hence capable to self-manage by continuously monitoring
their behavior and context, and by selecting corrective actions if needed.

Due to such an inherent complexity, today’s engineering methods and tools
do not scale well, and new engineering techniques are needed to address the
challenges of developing, integrating, and deploying them. As the blending of
different concepts that have emerged in different fields of computer science and
engineering, the work by De Nicola et al. proposes programming abstractions
specific to autonomic system development, and reconcile them under a single
and uniform formal semantics. Main advances brought by De Nicola et al. are
(i) ability to deal with heterogenous systems and different application domains;



Different Glasses to Look into the Three Cs 197

(ii) flexibility and suitability to support adaptive context-aware activities in
pervasive and mobile computing scenarios together with transparent monitoring;
(iii) strict relation with component-based design, which has been indicated as a
key approach for adaptive software design; (iv) flexible and expressive forms of
communication and adaptation that are adequate to deal with highly dynamic
ensembles; (v) strict relation with context-oriented programming, which has been
advocated to program autonomic systems.

3.2 Reo Connectors

Reo [4,6,7] is a dataflow-inspired language for incremental construction of com-
plex connectors by composing simpler ones, with a graphical as well as a textual
syntax [45]. Every Reo connector encapsulates a concrete interaction protocol. In
contrast to traditional models of concurrency, where actions or processes consti-
tute the basic building blocks, Reo espouses and advocates an interaction-centric
model of concurrency, where the only first class primitive is interaction.

Reo views components in a concurrent system as black boxes, each of which
has an interface consisting of a set of ports. A port is a uni-directional means
of communication through which a component exchanges with its environment
by performing blocking I/O operations get and put. Because a component has
access to only its own ports and Reo offers no other means of inter-process com-
munication, components cannot communicate with each other directly. Instead, a
separate construct, a connector, connects to the ports of various components and
mediates the flow of data amongst them. Every connector imposes the interac-
tion protocols that it encapsulates upon the communication of the components,
exogenously (from the outside of the components, which remain oblivious to the
interaction protocol that engages them).

Fig. 2. A typical set of Reo channels

Overview of Reo – A complex connector in Reo is constructed as a graph
whose edges comprise of primitive binary connectors, called channels, and whose
vertices consist of particular synchronous dataflow components, called nodes.

A channel is a medium of communication that consists of two ends and
a constraint on the dataflows observed at those ends. There are two types of
channel ends: source and sink. A source channel end accepts data into its channel,
and a sink channel end dispenses data out of its channel. Every channel (type)
specifies its own particular behavior as constraints on the flow of data through
its ends.

Although all channels used in Reo are user-defined and users can indeed
define channels with any complex behavior (expressible in the semantic model)



198 F. Arbab et al.

that they wish, a very small set of channels, each with very simple behavior,
suffices to construct useful Reo connectors with significantly complex behavior.
Figure 2 shows a common set of primitive channels often used to build Reo
connectors.

A Sync channel has a source and a sink end and no buffer. It accepts a data
item through its source end iff it can simultaneously (i.e., atomically) dispense
it through its sink.

A LossySync channel is similar to a synchronous channel except that it
always accepts all data items through its source end. This channel transfers a
data item if it is possible for the channel to dispense the data item through
its sink end; otherwise the channel loses the data item. Thus, the context of
(un)availability of a ready consumer at its sink end determines the (context-
sensitive) behavior a LossySync channel.

A FIFO1 channel represents an asynchronous channel with a buffer of capacity
1: it can contain at most one data item. When its buffer is empty, a FIFO1
channel blocks I/O operations on its sink, because it has no data to dispense. It
dispenses a data item and allows an I/O operation at its sink to succeed, only
when its buffer is full, after which its buffer becomes empty. When its buffer is
full, a FIFO1 channel blocks I/O operations on its source, because it has no more
capacity to accept the incoming data. It accepts a data item and allows an I/O
operation at its source to succeed, only when its buffer is empty, after which its
buffer becomes full.

More exotic channels are also permitted in Reo, for instance, synchronous
and asynchronous drains. Each of these channels has two source ends and no
sink end. No data value can be obtained from a drain channel because it has no
sink end. Consequently, all data accepted by a drain channel are lost. SyncDrain
is a synchronous drain that can accept a data item through one of its ends iff a
data item is also available for it to simultaneously accept through its other end as
well. AsyncDrain is an asynchronous drain that accepts data items through its
source ends and loses them exclusively one at a time, but never simultaneously.

For a filter channel, or Filter(P), its pattern P ⊆ Data specifies the type of
data items that can be transmitted through the channel. This channel accepts a
value d ∈ P through its source end iff it can simultaneously dispense d through
its sink end, exactly as if it were a Sync channel; it always accepts all data items
d �∈ P through its source end and loses them immediately.

Fig. 3. Reo nodes

A Reo node is a logical place
where channel ends coincide and
coordinate their dataflows as pre-
scribed by its node type. Figure 3
shows the three possible node
types in Reo. A node is either
source, sink, or mixed, depending
on whether all channel ends that coincide on that node are source ends, sink
ends, or a combination of the two. Reo fixes the semantics of (i.e., the con-
straints on the dataflow through) Reo nodes, as described below.



Different Glasses to Look into the Three Cs 199

The source and sink nodes of a connector are collectively called its boundary
nodes. Boundary nodes define the interface of a connector. Components attach
their ports to the boundary nodes of a connector and interact anonymously
with each other through the interface of the connector. Attaching a component
to a (source or sink) node of a connector consists of the identification of one
of the (respectively, output or input) ports of the component with that node.
The blocking I/O operations performed by components on their own local ports,
triggers dataflow through their attached connector nodes.

A component can write data items to a source node that it is attached to.
The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A source node, thus, acts
as a synchronous replicator. A component can obtain data items, by an input
operation, from a sink node that it is attached to. A take operation succeeds only
if at least one of the (sink) channel ends coincident on the node offers a suitable
data item; if more than one coincident channel end offers suitable data items, one
is selected nondeterministically. A sink node, thus, acts as a nondeterministic
merger. A mixed node nondeterministically selects and takes a suitable data
item offered by one of its coincident sink channel ends and replicates it into all
of its coincident source channel ends. Note that a component cannot attach to,
take from, or write to mixed nodes.

A

B

CA

B

C

(b)

CC

(d)

(c)

A3

A2

A1 A1

A2

A3

A4

(a)

Fig. 4. Reo circuits for alternators

The connector shown in
Fig. 4(a) is an alternator
that imposes an ordering
on the flow of the data
from its input nodes A
and B to its output node
C. The SyncDrain enforces
that data flow through A
and B only synchronously
(i.e., atomically). The empty
buffer of the the FIFO1
channel together with the

SyncDrain guarantee that the data item obtained from A is delivered to C
while the data item obtained from B is stored in the FIFO1 buffer. After this,
the buffer of the FIFO1 is full and data cannot flow in through either A or B,
but C can dispense the data stored in the FIFO1 buffer, which makes it empty
again. Thus, subsequent take operations at C obtain the data items written to
A,B,A,B, ..., etc.

The connector in Fig. 4(b) has an extra Sync channel between node B and
the FIFO1 channel, compared to the one in Fig. 4(a). It is trivial to see that
these two connectors have the exact same behavior. However, the structure of
the connector in Fig. 4(b) allows us to generalize its alternating behavior to any
number of producers, simply by replicating it and “juxtaposing” the top and the
bottom Sync channels of the resulting copies, as seen in Fig. 4(c) and Fig. 4(d).



200 F. Arbab et al.

The connector in Fig. 4(d) is obtained by replicating the one in Fig. 4(b) 3
times. Following the reasoning for the connector in Fig. 4(c), it is easy to see
that the connector in Fig. 4(d) delivers the data items obtained from A1, A2,
A3,and A4 through C, in that order.

Semantics. Reo allows arbitrary user-defined channels as primitives; arbitrary
mix of synchrony and asynchrony; and relational constraints between input and
output. This makes Reo more expressive than, e.g., dataflow models, Kahn net-
works, synchronous languages, stream processing languages, workflow models,
and Petri nets. On the other hand, it makes the semantics of Reo quite non-
trivial. Various models have been developed to capture (various aspects of) the
semantics of Reo, each to serve some specific purposes [55]. In this paper, we
briefly describe only the ABTs [5], which constitute the primary formal seman-
tics of Reo.

Formally, an ABT is a relation on a set of time-data-streams. ABTs yield
an expressive compositional semantics for Reo where coinduction is the main
definition and proof principle to reason about properties involving both data
and time streams [14].

Discussion – Building upon earlier work on classical dataflow [15,44,56,57],
synchronous languages [30,31,40,48], and Ptolemy [38,74], interaction-centric
concurrency allows treatment of protocols as concrete objects of discourse.
Besides Reo, more recent work, such as BIP [16,27], multiparty session types [51],
Scribble [50,91], and Pabble [81,82] represent other examples of interaction-
centric models that to various degrees of expressiveness and generality. Allowing
arbitrary user-defined primitive building blocks and arbitrary mix of synchronous
and asynchronous communication in its compositions, Reo relaxes restrictions
and limitations implicit in most other above-mentioned models. See, for instance,
[46] for an in-depth comparison of BIP and Reo.

The examples in Fig. 4 demonstrate how more complex connectors can be
constructed by incremental composition of simpler ones. They also show how
(1) arbitrary mix of synchrony and asynchrony, (2) preservation of synchrony
through composition, which results in (3) propagation synchrony and exclusion
though composition make Reo an expressive language. Several model checking
tools are available for verification of Reo connectors [20–23,35,58–61,67–69].

A high-level language like Reo that supports this form of protocol spec-
ification offers clear software engineering advantages (e.g., programmability,
maintainability, verbatim-reusability, verifiability, scalability, etc.). The results
of on-going work on compiling Reo connectors suggest that smart optimizing
compilers for high-level protocol languages can generate executable code with
better performance than hand-crafted code produced by programmers written in
contemporary general-purpose languages with constructs of traditional models
of concurrency [54]. For some protocols, existing Reo compilers already generate
code that can compete with code written by a competent programmer [53].

Reo has been used for composition of Web services [12,64,73], model-
ing and analysis of long-running transactions in service-oriented systems [66],



Different Glasses to Look into the Three Cs 201

coordination of multi-agent systems [8], performance analysis of coordinated
compositions [9,10,13,80], modeling of business processes and verification of
their compliance [11,65,88], and modeling of coordination in biological sys-
tems [42].

3.3 Coordination Delegates

The work in [18] is based on the notion of Coordination Delegate and aims to
formalize an automated synthesis method for the distributed composition and
coordination of software services or, more in general, of software components.
Following a modular and reuse-based approach, the business functionality of the
system is assumed to be implemented by a set of software services, possibly
black-box since provided by third parties. The system to be realized – out of the
set of considered services – is specified as a global collaboration that the involved
services have to realize by interacting via either synchronous or asynchronous
message passing. This specification is given in the form of a state machine. Start-
ing from this specification, and accounting for the specification of the interaction
protocol performed by the involved services, the synthesis method is able to auto-
matically generates a set of Coordination Delegates (CDs). CDs are additional
software entities with respect to the participant services, and are synthesized
in order to proxify and control their interaction. When interposed among the
services by following the rules of a well-defined architectural style, the synthe-
sized entities enforce the collaboration prescribed by the system specification.
The synthesized CDs are correct by construction, meaning that the resulting
distributed system realizes the specification. CDs are able to handle asynchrony
through 1-bounded FIFO queues.

Overview of the Synthesis Method – Figure 5 shows an overview of the
method for the automatic synthesis of CDs that, when interposed among the
participant services, control those interactions that need coordination in order
to enforce the realizability [28,29] of the specified global collaboration.

The method is organized into four steps that are performed in the following
order: Projection, Selection, Synthesis, and Concretization.

1: Projection – It takes as input the system specification given in terms of a
state machine where transitions model possibly simultaneous message exchanges
among participants. As such, the system specification describes the way partic-
ipants perform their interactions from a global perspective defining the (par-
tial) order in which the message exchanges occur. Each single message exchange
involves two participants: the sender and the receiver of the message. The speci-
fication abstracts from the way participants communicate to exchange messages,
e.g., synchronous communication versus asynchronous one.

Out of the specification, Projection generates a behavioral model for each
participant. This model is a state machine where transitions model (sets of pos-
sibly simultaneous) actions sending or receiving message, or actions internal to
the participant that are not observable from outside. Message send and receive
are, instead, observable actions. Simultaneous actions serve to deal with parallel



202 F. Arbab et al.

Fig. 5. Synthesis method overview

flows specified in the global collaboration and, hence, simultaneous executions.
A projection represents the participant expected behavior according to the flows
of message exchanges specified by the collaboration. Being derived from the sys-
tem specification, also this model abstracts from the type of the send and receive
actions (synchronous or asynchronous). We call this model Abstract Participant
Behavior.

2: Selection – We recall that our approach is reuse-oriented, meaning that it
allows to enforce system realizability in contexts in which the system is not
implemented from scratch but it is realized by reusing, as much as possible, third-
party services published in a Service Inventory. Services are selected from the
inventory to play the roles of the abstract participants in the system specification.
This calls for exogenous coordination of the selected concrete participants since,
in general, we cannot access the participant code or change it.

A concrete service in the inventory comes with a behavioral specification of
its interaction protocol. We call this model Concrete Participant Behavior. It is
a state machine where transitions model (sets of possibly simultaneous) actions
sending or receiving message, or internal actions. Similarly to the choreography
specification, it can also specifies parallel flows that are joined afterwards. Dif-
ferently from the Abstract Participant Behavior, for each transition, its type is
specified: synchronous, asynchronous, or internal. That is, our approach does
not impose constraints on the way concrete participants communicate, hence
dealing with hybrid participants that can support both synchrony and asyn-
chrony. For instance, a concrete participant could be a SOAP Web Service whose



Different Glasses to Look into the Three Cs 203

WSDL1 interface defines both Request/Response (synchronous interaction) and
One-way operations (asynchronous interaction). In order to exchange messages
asynchronously, concrete participants make use of bounded message queues. Our
approach does not impose constraints on the size of the participants queues.

In order to select concrete participants that can suitably play the roles of
abstract participants, our approach exploits a notion of behavioral refinement
in order to automatically check whether the behavior of a concrete participant
PiC is a refinement (�� in the figure) of the behavior of an abstract participant
Pi. In the best case, for each abstract participant, a suitable concrete partici-
pant is found in the inventory. Otherwise, it might be the case that the set of
selected participants covers a subset of the abstract participants in the speci-
fication. In this case, the abstract behavior of the remaining participants can
support code generation activities to implement the missing concrete partici-
pants from scratch. Furthermore, the newly implemented concrete participant
can be published in the inventory for possible future reuse.

An important consideration here is that, even in the case of limited reuse
of third-party participants, our approach realizes separation of concern between
the pure business logic implemented locally to each participant and the coordi-
nation logic needed for the realization of the global collaboration specified for the
system. This logic is automatically generated as a set of CDs (Synthesis step).
Keeping the needed coordination logic separated from the business one saves
developers from writing code that goes beyond the development of the pure
business logic internal to single participants. This allows developers to realize
the specified system, without requiring any specific attention to what concerns
coordination aspects. This aspect permits practitioners to develop the specified
distributed system according to their daily development practices.

3 and 4: Synthesis and Concretization – The Synthesis step takes as input the
system specification and automatically generates a set of CD Abstract Behavior
models. Similarly to the Abstract Participant Behavior, each of them is a state
machine where transitions model (sets of possibly simultaneous) actions send-
ing or receiving message, or internal actions. These actions are related to the
standard communication performed to achieve the choreography business logic.
Differently from the Abstract Participant Behavior, there are also transitions
modeling the synchronous exchange of coordination/synchronization messages.
These actions model additional communication required to realize the coordina-
tion logic that is needed to enforce the realizability of the specified global collab-
oration. Standard communication takes place between a CD and the participant
it controls and supervises, or directly among participants in case coordination is
not required. When needed, additional communication messages are exchanged
among the involved CD.

The Synthesis step is performed after a set of suitable concrete participants
is obtained. Since the CD Abstract Behavior is generated out of the system
specification, it abstracts from the way the supervised participants communi-
cate (synchronously or asynchronously). This information will be added by the
1 www.w3.org/TR/wsdl.

www.w3.org/TR/wsdl


204 F. Arbab et al.

Concretization step that enriches the CD Abstract Behavior to achieve the so
called CD Concrete Behavior.

Fig. 6. Collaboration-based architectural style (a sample instance of)

For the set of synthesized CDs, correctness by construction means that when
they are composed with the selected participants, the behavior of the resulting
system realizes the specified global collaboration. That is, the generated CDs
enforce by construction the realizability of the specified collaboration. Lever-
aging results on choreography realizability and its decidability from the work
in [28,29], to correctly deal with asynchrony, the concrete CDs (Concretization
step) in the controlled system make use of 1-bounded message queues. According
to a predefined architectural style, CDs are interposed only among the partici-
pants needing coordination. Figure 6 shows an instance of the architectural style
underlying our synthesis method.

CDs perform coordination (i.e., additional communication in the figure) of
the participants interaction (i.e., standard communication in the figure) in a way
that the resulting collaboration realizes the specified system. According to the
type of actions performed by the concrete participants, standard communica-
tion can be synchronous or asynchronous. Additional communication is always
synchronous. It is worth to note that CDs coordinate the interaction among the
participants only when it is strictly needed for realizability enforcement purposes.
That is, some participants are left free to communicate directly on those inter-
actions that do not prevent the realizability of the specified global collaboration.
Furthermore, depending on the specified collaboration, CDs do not necessarily
require to be connected one to each other.

Discussion – Last but not least, on the Coordination side, the work by Inverardi
et al. targets the development of reuse-based concurrent and distributed systems,
from specification to composition and coordination code synthesis. The approach
finds its most effective application in the distributed computing environment
offered by the current Internet, which is increasingly populated by a virtually



Different Glasses to Look into the Three Cs 205

infinite number of software services that can be opportunistically composed to
realize more complex and powerful distributed applications.

According to John Musser, founder of the ProgrammableWeb2, the produc-
tion of application programming interfaces (APIs) growths exponentially and
some companies are accounting for billions of dollars in revenue per year via API
links to their services. The evolution of today Internet is expected to lead to an
ultra large number of available services, hence increasing their number from 104
services on 2007 to billions of services in the near future. This situation radically
changes the way software will be produced. Modern service-oriented systems
will be more and more often built by reusing and assembling existing pieces of
software, exposed through their APIs. Thus, the ability to automatically com-
pose and coordinate these pieces of software enables the productive construction
of innovative and revolutionary everyday-life scenarios within smart cities and
related software ecosystems [76].

Most of the existing approaches to software composition are heavily based
on central coordination. A centralized approach composes multiple components
into a larger application, in which one component centrally coordinates the whole
system interaction. The approach by Inverardi et al. permits to describe the inter-
actions among the different system parties from a global perspective. It permits
to model a peer-to-peer communication by defining a multiparty protocol that,
when put in place by the cooperating parties, allows reaching the overall goal
in a fully distributed way. In this sense, it differs significantly from a central-
ized approach, where all participants (but one) play the passive role of serving
requests. Future software systems will be increasingly composed of active entities
that, communicating peer-to-peer, proactively make decisions and autonomously
perform tasks according to their own imminent needs and the emergent global
collaboration. Each involved party knows exactly when to execute its operations
and with whom to interact. The system execution becomes a collaborative effort
focusing on the exchange of messages among several business participants to
reach a common global goal. Thus, (i) the ability to reuse, compose and coordi-
nate existing pieces of software are all basic ingredients to achieve this vision; (ii)
automated supported is needed to realize correct-by-construction coordination
logic.

4 Characteristics of Interest

The approaches presented in previous sections will be characterized in next
section by using the six characteristics of interest defined in the following.

– Compositionality: this characteristic concerns the ability to compose a
system in a hierarchical way out of simpler components/sub-systems and,
roughly speaking, it does not matter the way we conduct this hierarchical
construction, the result is always equivalent. This means that the system

2 https://www.programmableweb.com.

https://www.programmableweb.com


206 F. Arbab et al.

construction process is based on a composition operator ‘∗’ that is associa-
tive, i.e., for all x, y, z then x∗(y∗z) ≡ (x∗y)∗z. Compositionality is crucial for
system analysis purposes since it may improve the efficiency of the analysis.

– Incrementality: incrementality is implied by compositionality but the for-
mer does not imply the latter. This characteristic concerns hierarchical sys-
tem construction. However, differently from compositionality, the associativ-
ity property is not required. Icrementality is another crucial aspect for system
design purposes since it promotes reuse. It is implied by the existence of a
composition operator that hides the internal details of the composition and
exposes its observational (external) behavior.

– Scalability: also scalability is implied by compositionality and it refers to
the ability for a composition to scale to systems with an increasing number
of components (i.e., systems of systems).

– Compositional reasoning: this characteristic is related to compositionality
but not necessarily. It refers to the ability to infer properties held by the whole
by locally checking properties held by its constituents. This characteristic
promotes efficient system analysis by performing local checks instead of a
global one, hence facing complexity issues in some cases.

– Reusability: this characteristic concerns the reuse degree of components/
sub-systems. A sub-system can be: (i) reusable in any context (i.e., it is
context-free), (ii) parameterized with respect to an abstract characteriza-
tion of a set of contexts and, hence, reusable only in some contexts (i.e., it is
partially context-free), or (iii) not reusable at all (i.e., it is not context-free)
since it is tailored to a specific context.

– Evolution: this characteristic refers to the ability to express and deal with
dynamicity and reconfiguration, two aspects that promote system evolution.
It is related to programming constructs useful to model specific forms of
system evolution.

Note that the characteristics of interest above must be considered to be
general in nature and, as such, in the following are inflected in different ways
and interpreted according to the purposes of the three approaches.

5 Matching the Characteristics of Interest

In this section, we characterize the approaches described in Sect. 3 with respect
to the characteristics of interest introduced in Sect. 4. The results of the char-
acterization are summarized in the tables below, and discussed just after in the
following subsections.

We make use of “Yes”, “No”, and “Limited” to rank at a glance how the
considered approaches match the characteristics of interest. Obviously, “Yes”
and “No” are used to indicate that an approach enjoys or does not enjoy at
all, respectively, the ability/property associated to the indicated characteristic.
“Limited” is used to indicate either limited or constrained (i.e., if some assump-
tions hold) support for the indicated characteristic (Tables 1 and 2).



Different Glasses to Look into the Three Cs 207

Table 1. Matching the characteristics of interest (Part 1)

Approach Compositionality Incrementality Scalability

SCEL Yes Yes Yes

Reo connectors Yes Yes Yes

Coordination delegates Yes Yes Yes

Table 2. Matching the characteristics of interest (Part 2)

Approach Compositional
reasoning

Reusability Evolution

SCEL Either Yes or Limited
(to reachability
properties)

Yes Yes

Reo connectors Yes Yes Yes

Coordination delegates Yes Limited
(under
refinement)

Limited (under
variation points
specification)

5.1 Software Component Ensemble Language Characterization

The main benefits of SCEL can be summarized as follows with respect to the
characteristics of interest introduced in Sect. 4.

– Compositionality: as formalized in [84], SCEL builds systems by composing
in parallel subsystems/components in a process algebra style. The parallel
composition operator is both commutative and associative, hence directly
achieving incrementality and compositionality.

– Incrementality: it is directly implied by compositionality.
– Scalability: systems programmed in SCEL are able to self-manage by con-

tinuously monitoring their behavior and their working environment and by
selecting the actions to perform for best dealing with the current status of
affairs. The self-* properties supported by SCEL allows developer to over-
come typical scalability issues of ensembles, by improving their development,
integration and deployment.

– Compositional reasoning: compositional reasoning is not explicitly dis-
cussed in [84]. However, it is shown that SCEL supports the verification of
reachability properties such as checking the probability of reaching a config-
uration where a given predicate on collected data is satisfied within a given
deadline. The fact that a SCEL system is built by means of an associative
composition operator and its constituents are well-understood, independent
and distributed suggests that compositional reasoning might be supported at
least for such reachability properties.



208 F. Arbab et al.

– Reusability: SCEL supports different forms of reusability. It defines abstrac-
tions to program behaviors (ACs) and aggregations (ACEs) and its syntax is
parametric with respect to knowledge and policies. Thus, reusability of ACs
and ACEs with respect to different approaches to knowledge handling and
policies specification is supported. Similarly to what is done by the object-
oriented paradigm, SCEL components are exposed through their interface
that allows developers to control the access to their internal knowledge, poli-
cies and processes. Thus, another form of reusability that is directly supported
concerns the one achievable through subtyping. Furthermore, SCEL provides
high-order features to store/retrieve the code of processes in/from the knowl-
edge repositories and to dynamically trigger the execution of new processes.

– Evolution: as briefly discussed above, SCEL components are self-aware and
context-aware and enjoy a number of self-* properties, e.g., they are capable
to perform self-adaptation and self-reconfiguration. Thus, dynamic evolution
is completely supported by the programming abstractions provided by the
language.

5.2 Reo Connectors Characterization

For what concerns Reo, main benefits are as follows:

– Compositionality: Reo connectors are fully compositional. Starting with a
set of (user-defined) primitive binary connectors—i.e., channels—Reo’s com-
position rules, manifested as nodes, hierarchically construct more complex
connectors. Examples in Figs. 3 and 4 demonstrate this property. Composi-
tion in Reo is associative.

– Incrementality: This property is impled by Reo’s compositionality.
– Scalability: This property is impled by Reo’s compositionality. Figure 4

serves as an example that demonstrates scalability.
– Compositional reasoning: Hiding the internal nodes of a connector, e.g.,

the exclusive router in Fig. 4(a), simplifies its semantics to the behavior of
the connectors that is externally observable through its boundary nodes
which comprise its interface, e.g., XRout(〈α, a〉; 〈β, b〉, 〈γ, c〉), above. Once
this behavior is verified, using this simplified semantcs avoids the need to
repeat in-situ re-verification of its internal details whenever the connector is
used as a sub-connector in a construction.

– Reusability: Figures 3 to 4 demonstrate verbatim reusability of Reo connec-
tors.

– Evolution: Reo offers operations to dynamically reconfigure the topology
of its connectors, thereby changing the interaction protocol of a running
application. A semantic model for Reo cognizant of its reconfiguration capa-
bility, a logic for reasoning about reconfigurations, together with its model
checking algorithm, are presented in [41]. Graph transformation techniques
have been used in combination with the connector coloring model to for-
malize the dynamic reconfiguration semantics of Reo circuits triggered by
dataflow [62,63,70,71].



Different Glasses to Look into the Three Cs 209

5.3 Coordination Delegates Characterization

The main benefits of the synthesis method, and of using the notion of Coordi-
nation Delegate for distributed coordination, can be summarized as follows.

– Compositionality: the composition operator that is used to model the coor-
dination logic of the controlled system, i.e., the parallel composition of the
synthesized CDs, is based on a enhanced version of the synchronous product
of LTSs that is able to deal with aptly defined synchronization messages (addi-
tional communication in Fig. 6) that are exchanged synchronously among the
CDs in different ways (one-to-one, one-to-many, many-to-one, or many-to-
many interactions). Compositionality can be straightforwardly achieved by
making the non-synchronized communication observable from outside. This
means that the coordination logic can be modeled by composing in parallel
the CDs in an incremental way and it does not matter the order in which the
composition is performed.

– Incrementality: it is directly implied by compositionality.
– Scalability: concerning the CDs synthesis method, the experimental example

discussed in [18] show that: (i) the “performance” of the CDs scale, meaning
that they are not affected when the number of system consumers increases;
(ii) the time required for executing the needed distributed coordination logic
is neglectable with respect to the overall collaboration execution time, hence
confirming that the CDs enforces the specified global collaboration effectively
and efficiently.

– Compositional reasoning: the coordination logic synthesized by the
method supports compositional reasoning for verifying a global property of
the controlled system by just performing local checks. Each check considers:
(i) a projection (similarly to what is done in step 1) of the property with
respect to a set of participants; and (ii) a projection of the coordination logic
with respect to the same set of participants. Both (i) and (ii) provide local
(to each participant) models of the property and local models of the coor-
dination logic, respectively. Standard model-checking techniques can be then
used to singularly check each projection of the property against the related
projection of the coordination logic.

– Reusability: the abstract CDs as synthesized after step 3 (Synthesis) of the
method are concrete services independent since they are generated by only
looking at the global collaboration specification. This means that, as long as
the interaction protocol of the selected concrete participants refines the one
of the corresponding abstract participants in the specification, the generated
abstract CDs can be reused and only their Concretization (step 4) need to be
performed again. Thus, we can conclude that reusability is achieved, although
in a limited form.

– Evolution: in another recent work [19] from the authors of [18], which is
based on a slightly revised version of the summarized synthesis method, a
novel global collaboration specification is presented where the designer can
specify the so called variation points. They are points in the specification that



210 F. Arbab et al.

can be realized by alternative collaborations. Each alternative can be dynam-
ically enabled/disabled during system execution depending on the “sensed”
context. The CDs that are automatically synthesized out of this new speci-
fication are thus able to deal with this (limited) form of dynamic evolution
by performing not only exogeneous distributed coordination, as already dis-
cussed above, but by also handling the enabling/disabling of the different
specified alternatives.

6 Conclusions

Component, connector, and coordination have been key concepts exploited in
different communities to manage the complexity of concurrent and distributed
system development.

In this paper we discussed three approaches within three different classes:
composition in distributed software architectures, exogenous coordination mod-
els, and programming abstractions for concurrent and autonomic systems. These
classes encompass different perspectives and solutions to face crucial challenges
in developing concurrent and distributed systems.

Our discussion considered previous work by De Nicola et al. about the
SCEL language [84] for developing autonomic systems, and previous work by
the authors about Reo connectors [5] for achieving exogenous coordination and
distributed Coordination Delegates [18] for the distributed composition of het-
erogeneous components.

The approaches have been discussed with respect to some characteristics
of interest for the above classes: compositionality, incrementality, scalability,
compositional reasoning, reusability, and evolution.

All the three discussed approaches have been found to be representative for
the three classes above since they support to some extent all the six dimension
of interests for the engineering and development of concurrent and distributed
systems.

References

1. Allen, R.: A formal approach to software architecture. Ph.D. thesis, Carnegie Mel-
lon, School of Computer Science, January 1997. Issued as CMU Technical Report
CMU-CS-97-144

2. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3), 213–249 (1997)

3. Arbab, F.: What do you mean, coordination? Bulletin of the Dutch Association
for Theoretical Computer Science (NVTI), 19 March 1998

4. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

5. Arbab, F.: Abstract behavior types: a foundation model for components and their
composition. Sci. Comput. Program. 55(1–3), 3–52 (2005)



Different Glasses to Look into the Three Cs 211

6. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp.
169–206. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24933-
4 9

7. Arbab, F.: Proper protocol. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.)
Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 65–87. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30734-3 7

8. Arbab, F., Aştefănoaei, L., de Boer, F.S., Dastani, M., Meyer, J.-J., Tinnermeier,
N.: Reo connectors as coordination artifacts in 2APL systems. In: Bui, T.D., Ho,
T.V., Ha, Q.-T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 42–53. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89674-6 8

9. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS
guarantees. In: Murphy and Vitek [84], pp. 286–304

10. Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.-J., Verhoef, C.: From
coordination to stochastic models of QoS. In: Field and Vasconcelos [49], pp. 268–
287

11. Arbab, F., Kokash, N., Meng, S.: Towards using Reo for compliance-aware business
process modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp.
108–123. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-
8 9

12. Arbab, F., Meng, S.: Synthesis of connectors from scenario-based interaction spec-
ifications. In: Chaudron, M.R.V., Szyperski, C., Reussner, R. (eds.) CBSE 2008.
LNCS, vol. 5282, pp. 114–129. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87891-9 8

13. Arbab, F., Meng, S., Moon, Y.-J., Kwiatkowska, M.Z., Qu, H.: Reo2MC: a tool
chain for performance analysis of coordination models. In: van Vliet, H., Issarny,
V. (eds.) ESEC/SIGSOFT FSE, pp. 287–288. ACM (2009)

14. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-
2 2

15. Arvind, A., Gostelow, K.P., Plouffe, W.: Indeterminancy, monitors, and dataflow.
In: Rosen, S., Denning, P.J. (eds.) Proceedings of the Sixth Symposium on Oper-
ating System Principles, SOSP 1977, Purdue University, West Lafayette, Indiana,
USA, 16–18 November 1977, pp. 159–169. ACM (1977)

16. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework for
architecture composability. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014.
LNCS, vol. 8702, pp. 128–143. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10431-7 10

17. Autili, M., Chilton, C., Inverardi, P., Kwiatkowska, M., Tivoli, M.: Towards a
connector algebra. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol.
6416, pp. 278–292. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16561-0 28

18. Autili, M., Inverardi, P., Tivoli, M.: Choreography realizability enforcement
through the automatic synthesis of distributed coordination delegates. Sci. Com-
put. Program. 160, 3–29 (2018)

19. Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: On the model-driven
synthesis of evolvable service choreographies. In: Proceedings of the 12th Euro-
pean Conference on Software Architecture: Companion Proceedings, ECSA 2018,
Madrid, Spain, 24–28 September 2018, pp. 20:1–20:6 (2018)

https://doi.org/10.1007/978-3-642-24933-4_9
https://doi.org/10.1007/978-3-642-24933-4_9
https://doi.org/10.1007/978-3-319-30734-3_7
https://doi.org/10.1007/978-3-540-89674-6_8
https://doi.org/10.1007/978-3-540-88479-8_9
https://doi.org/10.1007/978-3-540-88479-8_9
https://doi.org/10.1007/978-3-540-87891-9_8
https://doi.org/10.1007/978-3-540-87891-9_8
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-319-10431-7_10
https://doi.org/10.1007/978-3-319-10431-7_10
https://doi.org/10.1007/978-3-642-16561-0_28
https://doi.org/10.1007/978-3-642-16561-0_28


212 F. Arbab et al.

20. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal verification for com-
ponents and connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04167-9 5

21. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for
modeling and verifying components and connectors. In: Field and Vasconcelos [49],
pp. 247–267

22. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and ver-
ification of systems with exogenous coordination using Vereofy. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 97–111. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16561-0 15

23. Baier, C., Klein, J., Klüppelholz, S.: Modeling and verification of components and
connectors. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp.
114–147. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-
4 4

24. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

25. Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connec-
tors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol.
4038, pp. 1–15. Springer, Heidelberg (2006). https://doi.org/10.1007/11767954 1

26. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM 2006: Proceedings of the Fourth IEEE International Conference
on Software Engineering and Formal Methods, Washington, DC, USA, pp. 3–12.
IEEE Computer Society (2006)

27. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Proceedings of SEFM 2006, pp. 3–12. IEEE (2006)

28. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7 2

29. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL.
ACM (2012)

30. Benveniste, A., Caspi, P., Le Guernic, P., Halbwachs, N.: Data-flow synchronous
languages. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803, pp. 1–45. Springer, Heidelberg (1994). https://doi.org/10.1007/3-
540-58043-3 16

31. Berry, G.: Esterel and Jazz: two synchronous languages for circuit design
(abstract). In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, p.
1. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2 1

32. Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion. Form. Asp.
Comput. 20(2), 205–224 (2008)

33. Bidinger, P., Schmitt, A., Stefani, J.-B.: An abstract machine for the Kell calculus.
In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 31–46.
Springer, Heidelberg (2005). https://doi.org/10.1007/11494881 3

34. Bidinger, P., Stefani, J.-B.: The Kell calculus: operational semantics and type
system. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS,
vol. 2884, pp. 109–123. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39958-2 8

35. Blechmann, T., Baier, C.: Checking equivalence for Reo networks. Electr. Notes
Theor. Comput. Sci 215, 209–226 (2008)

36. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP.
IEEE Trans. Comput. 57(10), 1315–1330 (2008)

https://doi.org/10.1007/978-3-642-04167-9_5
https://doi.org/10.1007/978-3-642-04167-9_5
https://doi.org/10.1007/978-3-642-16561-0_15
https://doi.org/10.1007/978-3-642-21455-4_4
https://doi.org/10.1007/978-3-642-21455-4_4
https://doi.org/10.1007/11767954_1
https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1007/3-540-58043-3_16
https://doi.org/10.1007/3-540-58043-3_16
https://doi.org/10.1007/3-540-48153-2_1
https://doi.org/10.1007/11494881_3
https://doi.org/10.1007/978-3-540-39958-2_8
https://doi.org/10.1007/978-3-540-39958-2_8


Different Glasses to Look into the Three Cs 213

37. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1), 98–120 (2006)

38. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a framework for
simulating and prototyping heterogenous systems. Int. J. Comput. Simul. 4(2),
155–182 (1994)

39. Carriero, N., Gelernter, D.: A computational model of everything. Commun. ACM
44(11), 77–81 (2001)

40. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: LUSTRE: a declarative language
for programming synchronous systems. In: Conference Record of the Fourteenth
Annual ACM Symposium on Principles of Programming Languages, Munich, Ger-
many, 21–23 January 1987, pp. 178–188. ACM Press (1987)

41. Clarke, D.: A basic logic for reasoning about connector reconfiguration. Fundam.
Inform. 82(4), 361–390 (2008)

42. Clarke, D., Costa, D., Arbab, F.: Modelling coordination in biological systems. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 9–25. Springer,
Heidelberg (2006). https://doi.org/10.1007/11925040 2

43. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26(5), 109–120 (2001)

44. Dennis, J.B., Gao, G.R.: An efficient pipelined dataflow processor architecture. In:
Michael, G.A. (ed.) Proceedings Supercomputing 1988, Orlando, FL, USA, 12–17
November 1988, pp. 368–373. IEEE Computer Society (1988)

45. Dokter, K., Arbab. F.: Treo: textual syntax for Reo connectors. In: Bliudze, S.,
Bensalem, S. (eds.) Proceedings of the 1st International Workshop on Methods and
Tools for Rigorous System Design, MeTRiD@ETAPS 2018. EPTCS, Thessaloniki,
Greece, 15th April 2018, vol. 272, pp. 121–135 (2018)

46. Dokter, K., Jongmans, S., Arbab, F., Bliudze, S.: Combine and conquer: relating
BIP and Reo. J. Log. Algebr. Meth. Program. 86(1), 134–156 (2017)

47. Fiadeiro, J.L., Lopes, A., Wermelinger, M.: A mathematical semantics for archi-
tectural connectors. In: Generic Programming, pp. 178–221 (2003)

48. Gautier, T., Le Guernic, P., Besnard, L.: SIGNAL: a declarative language for
synchronous programming of real-time systems. In: Kahn, G. (ed.) FPCA 1987.
LNCS, vol. 274, pp. 257–277. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-18317-5 15

49. Hirsch, D., Uchitel, S., Yankelevich, D.: Towards a periodic table of connectors.
In: Ciancarini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS, vol. 1594, p.
418. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48919-3 32

50. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19056-8 4

51. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, 7–12 January 2008, pp. 273–284. ACM (2008)

52. Inverardi, P., Tivoli, M.: Automatic synthesis of modular connectors via composi-
tion of protocol mediation patterns. In: 35th International Conference on Software
Engineering, ICSE 2013, San Francisco, CA, USA, 18–26 May 2013, pp. 3–12 (2013)

53. Jongmans, S.-S., Halle, S., Arbab, F.: Reo: a dataflow inspired language for mul-
ticore. In: Proceedings of DFM 2013, pp. 42–50. IEEE (2014)

https://doi.org/10.1007/11925040_2
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1007/3-540-48919-3_32
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4


214 F. Arbab et al.

54. Jongmans, S.-S.T.: Automata-theoretic protocol programming: parallel compu-
tation, threads and their interaction, optimized compilation, [at a] high level of
abstraction. Ph.D. thesis, Leiden University (2015, submitted)

55. Jongmans, S.-S.T., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2013)

56. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information Processing, Stockholm, Sweden, pp. 471–475. North
Holland, Amsterdam, August 1974

57. Kahn, G., MacQueen, D.B.: Coroutines and networks of parallel processes. In: IFIP
Congress, pp. 993–998 (1977)

58. Kemper, S.: SAT-based verification for timed component connectors. Electr. Notes
Theor. Comput. Sci. 255, 103–118 (2009)

59. Kemper, S.: Compositional construction of real-time dataflow networks. In: Clarke,
D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 92–106. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13414-2 7

60. Klein, J., Klüppelholz, S., Stam, A., Baier, C.: Hierarchical modeling and formal
verification. An industrial case study using Reo and Vereofy. In: Salaün, G., Schätz,
B. (eds.) FMICS 2011. LNCS, vol. 6959, pp. 228–243. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24431-5 17

61. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. Electr. Notes Theor. Comput. Sci 175(2), 19–37 (2007)

62. Koehler, C., Arbab, F., de Vink, E.: Reconfiguring distributed Reo connectors. In:
Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 221–235.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03429-9 15

63. Koehler, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of Reo connectors
triggered by dataflow. In: Ermel, C., Heckel, R., de Lara, J. (eds.) Proceedings
of the 7th International Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT 2008), vol. 10, pp. 1–13 (2008). ECEASST. ISSN 1863-2122.
http://www.easst.org/eceasst/

64. Koehler, C., Lazovik, A., Arbab, F.: ReoService: coordination modeling tool. In:
Krämer et al. [72], pp. 625–626

65. Kokash, N., Arbab, F.: Formal behavioral modeling and compliance analysis for
service-oriented systems. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 21–41. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04167-9 2

66. Kokash, N., Arbab, F.: Formal design and verification of long-running transac-
tions with extensible coordination tools. IEEE Trans. Serv. Comput. 6(2), 186–200
(2013)

67. Kokash, N., Krause, C., de Vink, E.: Data-aware design and verification of service
compositions with Reo and mCRL2. In: SAC 2010: Proceedings of the 2010 ACM
Symposium on Applied Computing, pp. 2406–2413. ACM, New York (2010)

68. Kokash, N., Krause, C., de Vink, E.P.: Verification of context-dependent channel-
based service models. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel,
M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 21–40. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17071-3 2

69. Kokash, N., Krause, C., de Vink, E.P.: Time and data-aware analysis of graphical
service models in Reo. In: Fiadeiro, J.L., Gnesi, S., Maggiolo-Schettini, A. (eds.)
SEFM, pp. 125–134. IEEE Computer Society (2010)

70. Krause, C.: Reconfigurable component connectors. Ph.D. thesis, Leiden University
(2011). https://openaccess.leidenuniv.nl/handle/1887/17718

https://doi.org/10.1007/978-3-642-13414-2_7
https://doi.org/10.1007/978-3-642-24431-5_17
https://doi.org/10.1007/978-3-642-03429-9_15
http://www.easst.org/eceasst/
https://doi.org/10.1007/978-3-642-04167-9_2
https://doi.org/10.1007/978-3-642-04167-9_2
https://doi.org/10.1007/978-3-642-17071-3_2
https://openaccess.leidenuniv.nl/handle/1887/17718


Different Glasses to Look into the Three Cs 215

71. Krause, C., Maraikar, Z., Lazovik, A., Arbab, F.: Modeling dynamic reconfigura-
tions in Reo using high-level replacement systems. Sci. Comput. Program. 76(1),
23–36 (2011)

72. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

73. Lazovik, A., Arbab, F.: Using Reo for service coordination. In: Krämer et al. [72],
pp. 398–403

74. Liu, X., Xiong, Y., Lee, E.A.: The Ptolemy II framework for visual languages. In:
2002 IEEE CS International Symposium on Human-Centric Computing Languages
and Environments (HCC 2001), Stresa, Italy, 5–7 September 2001, p. 50. IEEE
Computer Society (2001)

75. Lopes, A., Wermelinger, M., Fiadeiro, J.L.: Higher-order architectural connectors.
ACM Trans. Softw. Eng. Methodol. 12(1), 64–104 (2003)

76. Manikas, K., Hansen, K.M.: Software ecosystems - a systematic literature review.
J. Syst. Softw. 86(5), 1294–1306 (2013)

77. Milner, R.: A Calculus of Communicating Systems. Springer, New York (1982)
78. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge Uni-

versity Press, Cambridge (1999)
79. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-

sity Press, New York (2009)
80. Moon, Y.-J., Silva, A., Krause, C., Arbab, F.: A compositional semantics for

stochastic Reo connectors. In: Mousavi, M.R., Salaün, G. (eds.) FOCLASA.
EPTCS, vol. 30, pp. 93–107 (2010)

81. Ng, N., de Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default - safe
MPI code generation based on session types. In: Franke, B. (ed.) CC 2015. LNCS,
vol. 9031, pp. 212–232. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46663-6 11

82. Ng, N., Yoshida, N.: Pabble: parameterised scribble for parallel programming. In:
22nd Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, PDP 2014, Torino, Italy, 2–14 February 2014, pp. 707–714. IEEE
Computer Society (2014)

83. Nicola, R.D., Duong, T., Inverso, O., Trubiani, C.: AErlang: empowering Erlang
with attribute-based communication. Sci. Comput. Program. 168, 71–93 (2018)

84. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2),
7:1–7:29 (2014)

85. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Adv. Com-
put. 46, 329–400 (1998)

86. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall Inc., New
York (1998)

87. Schmitt, A., Stefani, J.-B.: The Kell calculus: a family of higher-order distributed
process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp.
146–178. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31794-
4 9

88. Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F., van den
Heuvel, W.-J.: Business process compliance through reusable units of compliant
processes. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp.
325–337. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16985-
4 29

https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/978-3-540-31794-4_9
https://doi.org/10.1007/978-3-540-31794-4_9
https://doi.org/10.1007/978-3-642-16985-4_29
https://doi.org/10.1007/978-3-642-16985-4_29


216 F. Arbab et al.

89. Sifakis, J.: A framework for component-based construction extended abstract. In:
SEFM 2005: Proceedings of the Third IEEE International Conference on Software
Engineering and Formal Methods, Washington, DC, USA, pp. 293–300. IEEE Com-
puter Society (2005)

90. Stefani, J.-B.: A calculus of Kells. Electr. Notes Theor. Comput. Sci. 85(1), 40–60
(2003)

91. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 3

https://doi.org/10.1007/978-3-319-05119-2_3

	Different Glasses to Look into the Three Cs: Component, Connector, Coordination
	1 Introduction
	2 Praeludium
	3 Looking into the Three Cs
	3.1 Software Component Ensemble Language
	3.2 Reo Connectors
	3.3 Coordination Delegates

	4 Characteristics of Interest
	5 Matching the Characteristics of Interest
	5.1 Software Component Ensemble Language Characterization
	5.2 Reo Connectors Characterization
	5.3 Coordination Delegates Characterization

	6 Conclusions
	References




