
Michele Boreale
Flavio Corradini
Michele Loreti
Rosario Pugliese (Eds.)

Models, Languages, and Tools
for Concurrent and
Distributed Programming

Fe
st

sc
hr

ift
LN

CS
 1

16
65

Essays Dedicated to Rocco De Nicola
on the Occasion of His 65th Birthday

 123

Lecture Notes in Computer Science 11665

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Michele Boreale • Flavio Corradini •

Michele Loreti • Rosario Pugliese (Eds.)

Models, Languages, and Tools
for Concurrent and
Distributed Programming
Essays Dedicated to Rocco De Nicola
on the Occasion of His 65th Birthday

123

Editors
Michele Boreale
Department of Statistics, Computer Science,
Applications
University of Florence
Florence, Italy

Flavio Corradini
School of Science and Technology
University of Camerino
Camerino, Italy

Michele Loreti
School of Science and Technology
University of Camerino
Camerino, Italy

Rosario Pugliese
Department of Statistics, Computer Science,
Applications
University of Florence
Florence, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-21484-5 ISBN 978-3-030-21485-2 (eBook)
https://doi.org/10.1007/978-3-030-21485-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: The Sower (Sower at Sunset), painted by Vincent van Gogh 1888.
Wikimedia Commons, licensed under CreativeCommons-Lizenz by-sa-2.0-de, URL: https://commons.
wikimedia.org/wiki/File:The_Sower.jpg

Photograph on page V: The photograph of the honoree is published with the permission of IMT, Lucca,
Italy.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1972-7491
https://orcid.org/0000-0003-3061-863X
https://orcid.org/0000-0002-1419-1405
https://doi.org/10.1007/978-3-030-21485-2
https://commons.wikimedia.org/wiki/File:The_Sower.jpg
https://commons.wikimedia.org/wiki/File:The_Sower.jpg

Rocco De Nicola

Preface

This Festschrift volume contains the 27 papers written by close collaborators and
friends of Rocco De Nicola to celebrate him on the occasion of his 65th birthday.

Rocco De Nicola has made seminal contributions to concurrency theory, semantics
of programming languages, distributed systems, and logic in computer science. He is
also contributing to a wide variety of other emerging topics in which theoretical
foundations can have a tremendous effect on the practice of computing. His many
scientific achievements are documented by more than 180 papers he published in
international journals, proceedings of high-quality conferences and workshops, and
refereed chapters in books with international editors.

The papers gathered in this book present many research ideas that have been
influenced by Rocco’s work. They testify to his intellectual curiosity, versatility, and
tireless research activity, and provide an overview of further developments to come.

The volume consists of six sections. The first one contains a laudatio illustrating the
distinguished career and the main scientific contributions by Rocco and a witness of
working experiences with Rocco. The remaining five sections comprise scientific
papers related to specific research interests of Rocco:

– Observational Semantics
– Coordination Models and Languages
– Logics and Types
– Distributed Systems Modelling
– Security

Each scientific contribution has undergone the scrutiny of two anonymous
reviewers. We would like to thank all of them for their assistance.

This volume was presented to Rocco on July 1, 2019, during a two-day symposium
held in Lucca at the IMT School for Advanced Studies. During the symposium all
papers were presented by one of the authors. The symposium was attended by many
other colleagues and friends of Rocco. We thank all of them for having accepted our
invitation.

We are grateful to Mirco Tribastone and the System Modelling and Analysis group
at IMT for the local organization of the symposium and to the IMT School for
Advanced Studies for financial support. We would also like to thank Alfred Hofmann
and the Springer LNCS team for their support during the publication of this volume,
and the providers of the conference management system EasyChair, which was used to
run the submission and review process and to facilitate the preparation of the
proceedings.

People who have contributed to the present volume in honour of Rocco have had the
opportunity to know him professionally over the years. Many have collaborated with
him and in doing so have been fortunate to spend time with him. Each of us has taken
something significant from this personal contact. Rocco was, and is, a true “scientific

dad” for several of us and a loyal scientific collaborator for all of us. Passionate about
research, curious about the new, never stinting with his knowledge or with his contacts,
he has always stimulated new collaborations, both within and without his group. He has
always encouraged the dignity and self confidence that any collaborator must have to
work well. He made you feel you were a researcher ‘at the same level’ — part of a
team, a real ‘school for researchers’ for younger colleagues. He could joke when he had
to control excessive enthusiasm, be serious and rigorous when he had to arrive at the
‘qed’. We have always appreciated his ability to transform competition within the
group into a stimulus to do better, to grow faster. Thanks for everything, Rocco!

July 2019 Michele Boreale
Flavio Corradini
Michele Loreti

Rosario Pugliese

viii Preface

Organization

Reviewers

Abd Alrahman, Yehia
Aceto, Luca
Bernardi, Giovanni
Bettini, Lorenzo
Bodei, Chiara
Bruni, Roberto
Cacciagrano, Diletta Romana
Ciancia, Vincenzo
Corradini, Andrea
De Liguoro, Ugo
Dezani, Mariangiola
Fantechi, Alessandro
Ferrari, Gian-Luigi
Gadducci, Fabio
Galletta, Letterio
Giannini, Paola
Gorla, Daniele
Hennessy, Matthew
Inverso, Omar
Labella, Anna
Lanese, Ivan
Lluch Lafuente, Alberto

Massink, Mieke
Melgratti, Hernan
Mezzina, Claudio Antares
Miculan, Marino
Montanari, Ugo
Najm, Elie
Nenzi, Laura
Neykova, Rumyana
Palamidessi, Catuscia
Pérez, Jorge A.
Re, Barbara
Sangiorgi, Davide
Tesei, Luca
Tiezzi, Francesco
Torres Vieira, Hugo
Tribastone, Mirco
Trubiani, Catia
Tuosto, Emilio
Venneri, Betti
Viroli, Mirko
Zavattaro, Gianluigi

Contents

Homage from Friends

From Tuscany to Scotland and Back: A Homage to Rocco de Nicola
for His 65th Birthday . 3

Ugo Montanari

Building International Doctoral Schools in Computer Science in Italy,
De Nicola’s Way . 7

Luca Aceto, Gianlorenzo D’Angelo, Michele Flammini, Omar Inverso,
Ludovico Iovino, and Catia Trubiani

Observational Semantics

An Equational Characterisation of the Must Testing Pre-order
for Regular Processes . 15

Matthew Hennessy

Testing Equivalence vs. Runtime Monitoring . 28
Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir,
and Karoliina Lehtinen

Reward Testing Equivalences for Processes . 45
Rob van Glabbeek

Playing with Bisimulation in Erlang . 71
Ivan Lanese, Davide Sangiorgi, and Gianluigi Zavattaro

Genesis and Evolution of ULTRAS: Metamodel,
Metaequivalences, Metaresults . 92

Marco Bernardo

Coordination Models and Languages

X-KLAIM Is Back. 115
Lorenzo Bettini, Emanuela Merelli, and Francesco Tiezzi

A Distributed Ledger Technology Based on Shared Write-Once Objects 136
Eva Maria Kuehn

Testing for Coordination Fidelity . 152
Yehia Abd Alrahman, Claudio Antares Mezzina, and Hugo Torres Vieira

Data-Driven Choreographies à la Klaim . 170
Roberto Bruni, Andrea Corradini, Fabio Gadducci, Hernán Melgratti,
Ugo Montanari, and Emilio Tuosto

Different Glasses to Look into the Three Cs: Component,
Connector, Coordination . 191

Farhad Arbab, Marco Autili, Paola Inverardi, and Massimo Tivoli

Logics and Types

From the Archives of the Formal Methods and Tools Lab:
Axiomatising and Contextualising ACTL . 219

Stefania Gnesi and Maurice H. ter Beek

Featherweight Scribble. 236
Rumyana Neykova and Nobuko Yoshida

Embedding RCC8D in the Collective Spatial Logic CSLCS 260
Vincenzo Ciancia, Diego Latella, and Mieke Massink

From Behavioural Contracts to Session Types . 278
Alessandro Fantechi, Elie Najm, and Jean-Bernard Stefani

Modal Epistemic Logic on Contracts: A Doctrinal Approach 298
Paolo Bottoni, Daniele Gorla, Stefano Kasangian, and Anna Labella

Types for Progress in Actor Programs . 315
Minas Charalambides, Karl Palmskog, and Gul Agha

Event Structure Semantics for Multiparty Sessions 340
Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini

Distributed Systems Modelling

Process Calculi for Modelling Mobile, Service-Oriented, and Collective
Autonomic Systems. 367

Martin Wirsing and Rolf Hennicker

Autonomous Systems – An Architectural Characterization 388
Joseph Sifakis

Fluidware: An Approach Towards Adaptive and Scalable
Programming of the IoT. 411

Giancarlo Fortino, Barbara Re, Mirko Viroli, and Franco Zambonelli

HEADREST: A Specification Language for RESTful APIs 428
Vasco T. Vasconcelos, Francisco Martins, Antónia Lopes,
and Nuno Burnay

xii Contents

Security

Revealing the Trajectories of KLAIM Tuples, Statically. 437
Chiara Bodei, Pierpaolo Degano, Gian-Luigi Ferrari,
and Letterio Galletta

Lightweight Information Flow . 455
Flemming Nielson and Hanne Riis Nielson

A Framework for Provenance-Preserving History Distribution
and Incremental Reduction . 471

Alberto Lluch Lafuente

Utility-Preserving Privacy Mechanisms for Counting Queries 487
Natasha Fernandes, Kacem Lefki, and Catuscia Palamidessi

Author Index . 497

Contents xiii

Homage from Friends

From Tuscany to Scotland and Back

A Homage to Rocco de Nicola for His 65th Birthday

Ugo Montanari(B)

Dipartimento di Informatica, University of Pisa, Pisa, Italy
ugo@di.unipi.it

1 Pisa and Milan

Rocco De Nicola graduated at the University of Pisa in Scienze dell’Informazione
on December 1978 summa cum laude.

At the time there were few curricula in Italy with a substantial content of
computer science, and Pisa 4-year Scienze dell’Informazione bachelor of sci-
ence/master of science was among the first available ones (curricula in computer
engineering started later). It was an exciting period: a special effort was going
on about structuring the syllabi of the courses with respect: to foundational con-
tent; to rapidly growing research in proper computer science; and to professional
abilities required for the degree holders.

PhD courses did not exist yet in Italy, in any discipline: they started for
math, physics etc. and computer science ten years later.

The theoretical material about models of computation, including computabil-
ity, automata and formal languages, program and programming language seman-
tics, was taught in Metodi per il Trattamento dell’Informazione, a course with a
peculiar name due to historical reasons. The organisation of the course was due
mainly to Giuseppe Longo and myself.

Rocco was theoretically minded, and thus it was natural for him to ask me
for a thesis. The results were eventually published in the paper Communication
Through Message Passing or Shared Memory: A Formal Comparison presented
at the International Conference on Distributed Computing Systems (ICDCS),
Paris, 1981. The paper already discusses, quite informally, relevant issues about
communicating processes, namely the subject of most of Rocco future work.
Among the authors of the conference, there were names well known in a broad
computer science context, like Manfred Broy, Michael J. Fischer, Matthew Hen-
nessy, Tony Hoare, Leonard Kleinrock, Jeff Kramer, Nancy Lynch, Jeff Magee,
Gordon Plotkin.

After a period spent in Pisa at IEI, the main CNR institute in computer
science, where I also worked until 1976, Rocco was hired by ITALTEL, the main
Italian company for telephones and telephone exchanges. He worked in Milan
in a special group applying formal methods to telecommunication applications.
While very appealing from a research point of view in an industrial context, the
work he was carrying on in Milan was not matching Rocco’s ambitions. Thus I
encouraged him to apply for a PhD program abroad (remember that there were
no PhD programs in Italy). Edinburgh proved actually to be a very good choice.
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 3–6, 2019.
https://doi.org/10.1007/978-3-030-21485-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_1

4 U. Montanari

2 Edinburgh

At the time, the University of Edinburgh was a leading research center in com-
puter science and related areas. The worldwide IFIP Congress 1968, which took
place at Edinburgh, was a showcase of already well developed Mathematics and
Software research areas. In particular Edinburgh activity was especially strong
in Artificial Intelligence: I had visited there for a period in 1974, for a collab-
oration with Bob Kowalski, Robert Boyer and J. Strother Moore about logic
programming (Algorithm = Logic + Control).

When Rocco was there, the center of gravity of research had moved to the
semantic aspects of theoretical computer science. In particular, Robin Milner
and Gordon Plotkin had introduced in Edinburgh a Calculus for Communicating
Systems (CCS) defined by a style called Structural Operational Semantics (SOS)
and equipped with a congruence relation called bisimilarity.

More or less at the same time, also Tony Hoare had introduced at Oxford
a specification language called Communicating Sequential Processes (CSP)
equipped with a denotational semantics, and Jan Bergstra and Willem Klop
had developed at Amsterdam a theory of processes (a process algebra) equipped
with an equational theory of process cooperation. This line of development was
very promising, and in fact a variety of process description languages with differ-
ent definition styles were developed in the following decades, with an important
impact on the design of specification and programming languages for concurrent
distributed systems, of program verification via model checking and theorem
proving, and of metamodels able to capture the essential semantic structure of
process behavior, e.g. coalgebras and bialgebras.

Rocco studied the various proposals and eventually developed, with the col-
laboration of his PhD thesis advisor Matthew Hennessy, a different approach to
process equivalence based on testing: given a set of processes and a set of tests,
two processes are equivalent if they pass exactly the same set of tests. Nonde-
terminism and nontermination actually require two distinct notions of may and
must test passing. For CCS, it is convenient to define a test on a process just
as its parallel composition with a given process. These notions are very general
and flexible, they have good properties as they originate fully abstract models
and they were applied in the following years to a variety of process description
languages.

3 True Concurrency

When back from Edinburgh, Rocco worked again at IEI and then in 1990 he
obtained a full professor position in Rome. In this period I had the strongest
collaboration with him. The subject was again about process description lan-
guages, but now the issue was true concurrency. Ordinary CCS does not distin-
guish between concurrency and nondeterminism, e.g. anil | b nil is equivalent to
ab nil+ba nil. The issue was to equip languages with a more expressive semantics,
assigning to events notions of causal dependency or mutual concurrency: in the

From Tuscany to Scotland and Back 5

latter case they can be executed in any order. Adequate notions of concurrency
had been developed in the literature in the context of Petri nets, with prime
algebraic semantic domains and prime event structures. Rocco, in collaboration
with Pierpaolo Degano and myself (DDM!), defined a translation decomposing
a CCS term p into a net marking dec(p) and equipping it with firing sequences
corresponding to transitions of p. Thus the final result was to obtain a concurrent
semantics of CCS in terms of a prime algebraic domain. A further contribution
of DDM was to equip CCS with an abstract, concurrent semantics, via bisimula-
tion. The idea was to extend observations to partial ordering of events. However
the resulting construction was not fully satisfactory in the presence of isomor-
phisms of the partial orderings. These can be avoided by adding a total ordering
observation, obtaining a mixed ordering version. Equivalent constructions were
proposed by Pierpaolo Degano and Philippe Darondeau (causal trees), and by
Boris Trakhtenbrot and Alexander Rabinovich (history preserving bisimilarity).

The research on concurrency was supported by European Union with several
ESPRIT projects. The project Compositional DIStributed SYStems (CEDISYS),
1988-91 was dedicated to true concurrency. It included four sites: Aarhus, INRIA
Sophia Antipolis, Pisa, and Sussex. I was the project leader. Rocco contributed
remarkably to project organization: for instance he took care of the 2nd Work-
shop on Concurrency and Compositionality in San Miniato, where the results of
the project were presented and evaluated by the ESPRIT-appointed reviewers.

In 1995 Rocco was offered a chair in Florence, where he started to build
up his research group. Thus he was able to carry on more ambitious projects,
which included the definition of original models of computation together with
their type systems, their implementation, logics for proving their properties and
model checking tools. I will mention only a few of them, those more relevant in
my view, and closer to the main themes of his work.

4 KLAIM, CASPIS and AbC

One of Rocco’s main achievements was the Kernel Language for Agents Inter-
action and Mobility, KLAIM. It consists of a core Linda with multiple tuple
spaces and operators for building processes. Linda is a very simple coordination
language developed at Yale by David Gelernter and colleagues, where processes
cannot interact between them, but they can only read and write on an associa-
tive memory of tuples. In KLAIM, tuples and operations over them are located
at specific sites of a net. Processes have higher-order capabilities, in that tuples
may contain processes. KLAIM was supported by many projects, in particular
by European project Architectures for Mobility (AGILE, 2002–2004), which also
Pisa collaborated to.

Another important European project with contribution by Firenze and Pisa
(actually the site leaders were Rocco and myself) was Software ENgineering for
Service-ORIented overlay computers, SENSORIA, 2006–2010, which provided
a novel software engineering approach to service-oriented computing. Again
Rocco contribution, together with colleagues in Florence and Pisa, was to define

6 U. Montanari

a specialized language for services. It was called Service Centered Calculus,
SCC, later renamed CAlculus of Services with PIpelines and Sessions, CASPIS.
It is dataflow oriented and makes use of a pipelining operator to model the
exchange of information between sessions (sequences of structured communica-
tions between two peers). Services are seen as passive objects that can be invoked
by clients, and service definitions can be seen as specific instances of input pre-
fixed processes. Pipelining permits orchestrating the flow of data produced by
different sessions.

A more recent project was Autonomic Service-Component ENSembles.
ASCENS, 2010–2014. Here service oriented programming has to cope with Col-
lective Adaptive Systems, CAS. They consist of a large number of heterogeneous
entities, with no centralized control and with the ability to adapt to changes in
their coordination structure and in the environment. The main contribution has
been to define the software life cycle of these mutable systems. As in the previ-
ous projects, Rocco contributed defining a calculus for attribute-based commu-
nication: Attribute-based Communication, AbC. It is a communication paradigm
that permits a group of partners to communicate by considering the predicates
over the attributes they expose. Communication takes place anonymously in an
implicit multicast fashion, without a prior agreement between the communicat-
ing partners. A number of case studies show the generality and the flexibility of
such an approach.

5 IMT, Lucca

Rocco contributed to several other research areas, both theoretical and practical.
His scientific production is impressive in its quality and considering the number
of citations: he is member of Gruppo 2003, which includes the Italian scientists
appearing in the lists of the most cited scientific authors according to the Insti-
tute for Scientific Information (ISI). But what I want to emphasize the most,
looking at his activity, is the rigorous methodology he adopted in his approach
to distributed systems: (i) focus on a few key features of the class of applications
of interest; (ii) define a process description language embedding basic primitives
for programming such features; (iii) program by hand a few case studies; (iv)
implement a prototypical version; (v) define a logic for expressing the interest-
ing properties of the applications under scrutiny. As shown by the results, this
approach is very effective.

Starting from 2011, Rocco moved to IMT School for Advanced Studies,
Lucca, a recently established public research institution and a selective grad-
uate school, where, starting from 2005, I had helped to organize the PhD school
in computer science. IMT and University of Pisa are now collaborating in a
number of initiatives, with Rocco playing often a leading role.

My last remark is about Rocco’s activity as a nurturer: from the beginning of
his career he taught a number of young students and associates how to progress
in research. Several of them have now important responsabilities in the Italian
and European teaching and research community, e.g. Director of the Executive
Board of a professional institution or even University Rector.

Building International Doctoral Schools
in Computer Science in Italy, De Nicola’s

Way

Luca Aceto1,2 , Gianlorenzo D’Angelo1 , Michele Flammini1 ,
Omar Inverso1 , Ludovico Iovino1 , and Catia Trubiani2(B)

1 Gran Sasso Science Institute, L’Aquila, Italy
{gianlorenzo.dangelo,michele.flammini,
omar.inverso,ludovico.iovino}@gssi.it

2 School of Computer Science, Reykjavik University, Reykjavik, Iceland
luca@ru.is, catia.trubiani@gssi.it

Abstract. Rocco De Nicola has played a key role in establishing two
international PhD schools in computer science in Italy, one at IMT Lucca
and the other at the GSSI in L’Aquila. This short article describes some
of the principles that have guided the establishment of the doctoral pro-
grammes at those institutions and the lessons the authors have learnt by
working with Rocco De Nicola at the GSSI.

Keywords: Research education · PhD in computer science ·
Mentoring

1 Introduction

The work of an academic has many facets and involves an increasing number of
tasks. However, most academics would agree that the ‘core business’ in academia
is centred on research, teaching and service. Rocco De Nicola’s research impact
is covered abundantly in the other articles in this celebrative volume and his
research is well known to everyone working on topics related to concurrency the-
ory, programming-language semantics and distributed computing. His teaching
impact, broadly construed, is witnessed amongst other things by the courses
at Italian universities, covering the denotational and operational semantics of
programming languages, that are based on, or use, the textbook he co-authored
with Adolfo Piperno [2], and by the number of his master and doctoral students
who have had successful careers in academia and industry.

Rocco De Nicola has also served his research community in many ways over
the years, both nationally and internationally, and has received many recogni-
tions for his tireless service. To wit, we limit ourselves to mentioning that he has
been one of the prime movers in raising public awareness of the importance of
cybersecurity in Italy—see, for instance, the book [1].

In this short article, we will describe Rocco De Nicola’s key role in the estab-
lishment of two international doctoral programmes in computer science in Italy
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 7–12, 2019.
https://doi.org/10.1007/978-3-030-21485-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_2&domain=pdf
http://orcid.org/0000-0002-2197-3018
http://orcid.org/0000-0003-0377-7037
http://orcid.org/0000-0003-0327-3728
http://orcid.org/0000-0002-9348-1979
http://orcid.org/0000-0001-6552-2609
http://orcid.org/0000-0002-7675-6942
https://doi.org/10.1007/978-3-030-21485-2_2

8 L. Aceto et al.

at two separate centres for advanced studies, discuss the importance of those
enterprises for Italian computer science, and academia in general, and reflect on
the main principles underlying the design of those PhD programmes and on the
lessons we think we have learnt by working with Rocco De Nicola on laying their
foundations and on developing them.

Our tenet is that the establishment of international doctoral schools in com-
puter science is one of the most important contributions by Rocco De Nicola to
Italian academia and we hope that this article will convince our readers of that
claim.

1.1 The Cultural Context

Before discussing Rocco De Nicola’s contributions to the GSSI and IMT Lucca,
we find it appropriate to provide a brief description of the context within which
those two international doctoral schools operate.

Italy is home to six centres for advanced studies and international PhD
schools, namely the Gran Sasso Science Institute (GSSI) in L’Aquila1, IMT
Lucca2, IUSS in Pavia3, Sant’Anna4 and the Scuola Normale Superiore5 in Pisa,
and SISSA in Trieste6. One of the roles of those centres for graduate education is
to entice talented students from all over the world to carry out their research in
Italy, a country that, for many reasons, has found it difficult to attract and retain
foreign academics and students. To our mind, this is one of the main reasons why
graduate schools that must admit a good number of non-Italian students and
that have English as their working language have an important role to play in
the Italian academic ecosystem. By attracting talented students and researchers
from outside Italy, as well as Italian academics whose career has been largely
spent abroad, these schools contribute to bringing fresh ideas and approaches
into a research community that has often been perceived as inward-looking, and
are a first step towards a brain-gain strategy for a country that has so far mostly
been known for exporting well-educated workforce without a matching incoming
flow of talent.

Amongst the aforementioned schools, the GSSI and IMT Lucca are the only
ones that offer PhD programmes in computer science (in the case of IMT Lucca
in computer science and system engineering), whereas the Sant’Anna and the
Scuola Normale Superiore in Pisa have specific PhD lines in data science. Both
the computer science PhD programmes at the GSSI and at IMT have been
shaped by Rocco De Nicola and bear witness to his far-sighted approach and
his international experience. In what follows, we will focus on describing Rocco
De Nicola’s vision for the PhD programme in computer science at the GSSI,

1 http://www.gssi.it/.
2 https://www.imtlucca.it/.
3 http://www.iusspavia.it/home.
4 https://www.santannapisa.it/en.
5 https://en.sns.it/.
6 https://www.sissa.it/.

http://www.gssi.it/
https://www.imtlucca.it/
http://www.iusspavia.it/home
https://www.santannapisa.it/en
https://en.sns.it/
https://www.sissa.it/

International PhD Schools, De Nicolas Way 9

which is the one we know best, and how his style of leadership has influenced
the development of that programme and the academic growth of the faculty at
the institute.

2 Structuring an International PhD Programme in
Computer Science at the GSSI

The Gran Sasso Science Institute (GSSI) is an international research centre and
PhD school, which was founded in 2013 with the objective of revitalising the city
of L’Aquila after the strong earthquake it experienced in 2009. The GSSI was
initially established on a trial basis as an international postgraduate teaching and
research institute with a special statute, and became a permanent university in
2016 after receiving a positive assessment by the Italian National Agency of the
University System Evaluation and Research (ANVUR).

Rocco De Nicola was appointed as coordinator of the International PhD
Programme in Computer Science at the GSSI for the first three years and, in
this role, he paved the way for the current research and teaching activities. The
PhD programme offers courses that, on the one hand, provide incoming stu-
dents with the necessary formal background and, on the other, offer specialised
courses to introduce students to the newest developments in the areas of reac-
tive systems, software systems and complex networks. During the first year,
students are exposed to courses that are organised around three main pillars: (i)
Foundations of (Modern) Networks; (ii) Specification and Analysis of Concur-
rent Reactive Systems; (iii) Software Systems and Services. Apart from internal
GSSI courses, students are encouraged to take classes also at summer schools or
at other institutions in Italy or abroad. Each student has to prepare, together
with the coordinator of the PhD programme, a study plan to be approved by the
Scientific Board. Performance in the course exams and the quality of the thesis
proposal (submitted at the end of the first year) are the main criteria for decid-
ing admission to the second year. The remaining years of the PhD programme
are mainly dedicated to research. Students are assisted by a supervisor and their
progress is assessed by an advisory board consisting of experts in the relevant
area of their scientific interests. Students are also strongly encouraged to spend
part of their research studies at external research laboratories in Italy or abroad.

The GSSI offers three types of courses. First, so-called immigration courses
aim at providing basic knowledge on each of the three pillars mentioned above.
Such courses target the acquisition of fundamental techniques, methods and
skills needed to conduct research in computer science in later years. Second, the
core courses offer in-depth accounts of topics that are of central interest to the
PhD programme at the GSSI, and expose doctoral students to the main research
areas within the specific pillars. Third, the advanced courses focus on specific,
cutting-edge research topics and are of shorter duration than the core courses.
Immigration and core courses are mainly delivered by GSSI faculty members,
while advanced courses are typically given by top-notch external researchers
coming from well-respected universities or research institutes. Guest lecturers

10 L. Aceto et al.

and seminar speakers from outside the GSSI and the many foreign visitors allow
students enrolled in the PhD programme in computer science at the GSSI to
network with, and to learn from, high-class academics; these frequent guests
help to create a vibrant research environment at the institute that benefits both
its students and faculty members.

3 The De Nicola Lessons on Establishing a Graduate
School and a Centre for Advanced Studies

We are now at a stage in our article at which we are ready to step back and
reflect on the underlying principles on which the design of the PhD programme
in computer science at the GSSI is based. (To our mind, the one at IMT Lucca
follows similar principles.) We will try to distill them in the form of ‘lessons’ we
have learnt from Rocco De Nicola, hoping he will not strongly disagree with any
of them.

Lesson 1: It is All About the Students. This might seem a platitude, but the
success of a PhD school is measured by the achievements of its students during
their PhD programme and, most importantly, after they graduate. Attending
a PhD school like the GSSI should turn students into independent researchers,
providing a solid foundation that will allow them to achieve their goals for the
future and to pursue the challenging careers for which they trained. To our
mind, this means that a PhD school should offer each committed student the
chance to carry out the best research work of which they are capable on some
topic that has a reasonable connection with both the interests of some faculty
member and those of the student. There is very little point in considering a
student as a resource to carry out some research task within one’s own project if
he/she is not interested in that specific research topic. We all know by experience
that doing research is hard work, which requires motivation, dedication and
stamina amongst many other things. Those are difficult to muster if one’s heart
is somewhere else, research-wise at least.

In the daily practice of supervising students, one should try to understand
what makes them tick, getting them interested in one’s own research topics,
providing them with the ‘big picture view’ of the field they lack as budding aca-
demics and finding a suitable middle ground when possible. Rocco De Nicola has
been an example for us in the difficult art of student supervision. His broad array
of interests has allowed him to supervise successful theses in a variety of topics
in computer science. To wit, the list of his published papers in 2018 includes
work related to evaluating the efficiency of Linda implementations, blockchain,
models and languages for verified multi-robot systems, attribute-based commu-
nication in a variety of languages, scheduling in edge computing, formal methods
for engineering domain-specific distributed systems, models and analysis tech-
niques for collective adaptive systems, and the analysis of social networks such
as Twitter, amongst others. He has often gone out of his way to find suitable
external supervisors when he did not think he was sufficiently qualified to follow
the work of some student on a specific topic of great interest to her/him.

International PhD Schools, De Nicolas Way 11

Lesson 2: Level the Playing Field. An international PhD school, such as the
one at the GSSI, admits students from all over the world. These students are
all talented and motivated. However, one cannot assume that their computer
science background is uniform and covers the basic material that is needed to
undertake research work in the areas covered by the faculty at the GSSI. To
create a shared computer science culture, Rocco De Nicola decided to devote
roughly the first two months of the PhD programme in computer science at the
GSSI to three so-called immigration courses. The goal of those courses is ‘to
level the playing field’ by introducing fundamental topics in algorithmics, formal
methods and software engineering that provide the foundations for the material
covered in core and advanced courses.

Lesson 3: Give Early Independence to Young Researchers. A centre for advanced
studies and international PhD school like the GSSI should be a training ground
for future generations of research leaders. As an experienced academic with an
international outlook, Rocco De Nicola realised early on that junior academics at
the GSSI need to become independent in their research, set themselves research
goals that are both ambitious and reachable, and basically act as principal inves-
tigators. He has involved them in joint supervision of doctoral theses, encouraged
them to build an international network of collaborators, taking advantage of the
freedom to invite potential collaborators they have at the GSSI, and given them
the responsibility of the day-to-day management of the PhD programme. He
provided advice and guidance as needed, and was always ready to take action
at short notice, but the junior researchers in L’Aquila were empowered by the
responsibility they were given and grew into mature academics in the process.

Lesson 4: Build a Cooperative Research Environment. Rocco De Nicola firmly
believes that research advances through cooperation, not through competition.
His pragmatism, open-mindedness and unique ability to connect with people
has enabled a large number of scientific collaborations. According to his DBLP
page7, Rocco De Nicola has had over 135 co-authors, but he has collaborated
with many more researchers both through funded joint research projects and in
the course of informal research interactions. As mentioned above, his mentoring
and collaboration style is characterised by entrusting and empowerment.

Lesson 5: The Human Side Matters. One of the things that stands out the most
when interacting with Rocco De Nicola is his care for human relationships in
the management of a research group. He works very hard at building a collegial
spirit and at human resource management. He is always ready to crack a joke to
put the ups and downs of research life into perspective, and treats everyone on
an equal footing, be they first-year students or Turing Award recipients. He gives
young researchers the feeling that their opinions matter when discussing research
and invites them to present their work to distinguished guests and to participate
in social activities. To our mind, this is an important skill for a research leader

7 https://dblp.uni-trier.de/pers/hd/n/Nicola:Rocco De.

https://dblp.uni-trier.de/pers/hd/n/Nicola:Rocco_De

12 L. Aceto et al.

and we hope that we have learnt to practise it a little by watching a master like
Rocco De Nicola at work.

4 Conclusions

Rocco De Nicola’s impact on the career development of many researchers in com-
puter science has been huge, both in Italy and elsewhere. However, as described
in this short essay, we believe that the establishment of the international PhD
schools in computer science at the GSSI and at IMT Lucca will be one of his
lasting legacies to Italian academia. The success of those postgraduate schools
has been possible because of Rocco De Nicola’s human, leadership and scientific
qualities, some of which we have highlighted here. There is, of course, much more
that we have learnt from him; we have no doubt that he will continue to lead
the community by example and to inspire future generations of researchers.

Acknowledgments. We have all worked with Rocco De Nicola in the establishment
of the PhD school in computer science at the GSSI and thank him for his guidance,
and inspirational and friendly leadership. Luca Aceto was one of the first two students
who graduated under Rocco De Nicola’s supervision and still greatly appreciates his
advice on all matters. Omar Inverso and Catia Trubiani thank Rocco De Nicola for
joint research work and joint supervision of doctoral students.

References

1. Baldoni, R., De Nicola, R., Prinetto, P.: The Future of Cybersecurity in Italy:
strategic focus areas. CINI Cybersecurity National Lab, May 2018. https://www.
consorzio-cini.it/images/Libro-Bianco-2018-en.pdf

2. De Nicola, R., Piperno, A.: Semantica Operazionale e Denotazione dei Linguaggi di
Programmazione. CittàStudi (1999). (in Italian)

https://www.consorzio-cini.it/images/Libro-Bianco-2018-en.pdf
https://www.consorzio-cini.it/images/Libro-Bianco-2018-en.pdf

Observational Semantics

An Equational Characterisation
of the Must Testing Pre-order

for Regular Processes

Matthew Hennessy(B)

Trinity College Dublin, Dublin, Ireland
matthew.hennessy@cs.tcd.ie

Abstract. In his PhD thesis of 1985 Rocco De Nicola showed how the
must testing pre-order over the process calculus CCS can be captured
using a set of in-equations and an infinitary proof rule. We show how, at
least for regular processes, this infinitary rule is unnecessary. We present
a standard proof system, which uses a simple co-inductive rule, which is
both sound and complete for regular processes.

1 Introduction

In his PhD thesis, Testing Equivalences and Fully Abstract Models for Commu-
nicating Processes [4], Rocco gave a systematic account of certain behavioural
pre-orders over processes. I am quite familiar with the contents of this thesis,
as I had the great pleasure of being Rocco’s PhD supervisor. The main focus
there, and in some joint papers we wrote around the same time, was judgements
of the form

p �∼must
q (1)

where p, q are recursive process descriptions from a Turing-complete abstract
process language CCS. This pre-order is meant to capture the idea that any
external test guaranteed by p is also guaranteed by q; intuitively q is at least as
reliable as p. In his thesis Rocco gave three characterisations of this pre-order1:
(i) behavioural: using intensional behavioural properties of the processes; (ii)
denotational: using fully-abstract mathematical models; and (iii) in-equational:
using a collection of in-equational axioms satisfied by the pre-order (1) above.
In this short note we reconsider this last characterisation.

For convenience and simplicity we use a variation on CCS which contains an
explicit operator for internal choice ⊕ and one for external choice +, [3,5,8]. Thus
for example recx.a.x + b.(c.x ⊕ d.x) is a recursive process which continually
offers an (external) choice between the two actions a and b. If the latter is chosen
1 and some variations.

This work was supported with the financial support of the Science Foundation Ireland
grant 13/RC/2094, funding Lero – the Irish Software Research Centre.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 15–27, 2019.
https://doi.org/10.1007/978-3-030-21485-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_3

16 M. Hennessy

then it chooses internally whether to subsequently offer a c or a d. There is a
well-known collection of in-equations which capture precisely the pre-order (1)
for recursion-free processes; Rocco’s thesis contains a corresponding collection
for recursion-free CCS. The core collection for our language is reproduced in
Fig. 3, with typical examples including

X ⊕ Y ≤ X X ⊕ Y ≤ X + Y a.X ⊕ a.Y ≤ a.(X + Y)

The question we address here is how this in-equational characterisation can be
extended to recursive processes.

In Rocco’s thesis [4], and in [2,5], in-equational reasoning has been augmented
with rules for unwinding recursive processes, and an infinitary proof rule to
obtain a sound and (ground) complete system for arbitrary recursive processes.
This latter takes the form

d ≤ q, ∀d ∈ Fin(p)
p ≤ q

(General Recursion)

where Fin(p) is the set, usually infinite, of finite approximations to p.2 Intuitively
these finite approximations are recursion-free processes obtained by unwinding
all occurrences of recursive definitions in p; see page 82 of [4]. Thus to prove
p ≤ q in this proof system, it is necessary to prove an infinite set of judgements,
d ≤ q for each d in Fin(p), using in-equational reasoning; q may have occurrences
of recursion, which can be handled by suitable unwinding rules.

For CCS, the process language used in [4], a non-effective proof rule such
as (General Recusion) is necessary to obtain completeness, since CCS is Turing-
complete. However suppose we consider the more restrictive sub-language, of
regular processes; this corresponds essentially to a language for describing finite
automata. For such a language we should be able to forgo such non-effective
rules.

Effective characterisations for various behavioural equivalences have long
been known, using sets of equations augmented by a rule called Unique fixpoint
induction:3

t{x �→ q} = q

recx.t = q
(Ufi)

For classical examples see [9–12]. However the corresponding rule for pre-
orders, Fixpoint induction,

t{x �→ q} ≤ q

recx.t ≤ q
(Fi)

appears to be substantially weaker; see [6] for a discussion.
Instead in this paper we show that it is sufficient to augment standard in-

equational reasoning with a single proof rule, co-inductive in nature, to obtain a
2 Because of space considerations we omit the formal definition.
3 For soundness the variable x in body t should be guarded.

An Equational Characterisation of the Must Testing Pre-order 17

a.p
a−→ p

(a-Pre)
recx.t τ−→ t{x �→ recx.t}

(Rec)

p
μ−→ p′

p + q
μ−→ p′ (Ext-l)

q
μ−→ q′

p + q
μ−→ q′ (Ext-r)

p ⊕ q
τ−→ p

(Int-l)
p ⊕ q

τ−→ q
(Int-r)

Fig. 1. Operational semantics

sound and complete proof system for the pre-order judgements p �∼must
q over

regular processes. The rule was originally introduced in [6], which in turn was
heavily influenced by [1].

In the next section we define our language for regular processes, rCCS; we
recall its semantics, review the notion of testing pre-orders, and give the well-
known alternative characterisation of �∼must

. In Sect. 3 we explain our proof sys-
tem, and give two examples of it’s use. This is followed by two sections, one
devoted to soundness of the system and the other to completeness.

2 Regular Processes and Testing

2.1 The Language

The language of recursive terms we use is a cut down version of TCCS from [3],
and is given by the following grammar:

rCCS : t ::= 0 | a.t, a ∈ Act | t1 + t2 | t1 ⊕ t2

| x ∈ Var | recx.t

where Act is a pre-defined set of actions. Thus rCCS essentially consists of recur-
sive definitions over the alphabet Σ = { 0, a.−, − + −, − ⊕ −}. We assume all
occurrences of the variable x in t are bound in the term recx.t, and this leads to
the standard notion of free and bound variables. We are only interested in closed
terms, those not containing any free variables, which we refer to as processes.
For the sake of simplicity we will also assume that all terms of the form recx.t
are guarded ; that is every occurence of x in the body of the recursion t appears
underneath an external prefix a.−.

The (standard) operational semantics of processes is given in Fig. 1, with
judgements for transitions of the form p

μ−→ q, where μ ranges over Actτ =
Act 	 { τ }. The rule (Rec) uses the standard notion of substitution: in general
t{x �→ p} represents the result of substituting all free occurrences of the variable
x in the term t by the closed term p. This may be defined by structural induction
on t.

18 M. Hennessy

p
τ−→ p′

p || q −→ p′ || q (L-tau)
q

τ−→ q′

p || q −→ p || q′ (R-tau)

p
a−→ p′, q

a−→ q′

p || q −→ p′ || q′ (com)

Fig. 2. Interaction

2.2 Testing

To facilitate the definition of testing we assume that the set of actions Act
has an idempotent operation, mapping the action a to it’s complement a. Then
communication is the simultaneous occurrence of an action and it’s complement.

Interaction between processes p and q is defined as a transition of the form
p || q −→ p′ || q′, with the rules given in Fig. 2. A test is a process which in
addition to the standard actions Actτ is allowed to perform the special action
�, signifying that the application of the test has succeeded.

Definition 1 (Passing tests). We write p must t whenever, for every maximal
sequence of transitions

p || t (= p0 || t0) −→ p1 || t1 −→ . . . −→ pk || tk −→ . . .

there exists some n ≥ 0 such that tn
�−→4. Then we write p �∼must

p′ if p must t
implies p′ must t, for every test t.

2.3 Characterisation

This requires some notation. The transitions in Fig. 1 are generalised to weak
transitions of the form p

s=⇒ q, where s ranges over Act� as follows:

– p
ε=⇒ p

– p
a−→ p′, p′ s=⇒ q imply p

as=⇒ q
– p

τ−→ p′, p′ s=⇒ q imply p
s=⇒ q

Definition 2 (Acceptance sets). First for any process p let S(p) = { a ∈
Act | p

a−→}. Then we define A(p, s), the acceptance sets of p after s ∈ Act�,
by

A(p, s) = {S(p′) | p
s=⇒ p′ � τ−→}

Because p is a process from the regular language rCCS we are assured that A(p, s)
is a finite set of finite sets of actions.

Then we write p q if, for every s ∈ Act�, for every A ∈ A(q, s), there
exists some B ∈ A(p, s) such that B ⊆ A. ��
4 A maximal sequence may be finite or infinite.

An Equational Characterisation of the Must Testing Pre-order 19

X + X = X X + Y = Y + X X + (Y + Z) = (X + Y) + Z
X ⊕ X = X X ⊕ Y = Y ⊕ X X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z

a.(X + Y) = a.X ⊕ a.Y X + (Y ⊕ Z) = (X + Y) ⊕ (X + Z)
a.(X ⊕ Y) = a.X ⊕ a.Y X ⊕ (Y + Z) = (X ⊕ Y) + (X ⊕ Z)

X + 0 = X X ⊕ Y ≤ X

Fig. 3. Axioms for must testing, MA

Theorem 1. For all p, q ∈ rCCS, p �∼must
q if and only if p q.

Proof. A slight simplification of the corresponding standard results in papers
such as [2,3,5].

3 The Proof System for the Testing Prorder

Consider the well-known set of in-equations in Fig. 3; formally the equations,
such as X +X = X, are abbreviations for two in-equations, such as X +X ≤ X
and X ≤ X + X. These, or slight variations due to difference in syntax, have
been used in publications such as [2–5,7]; it is well-known that they provide a
sound and (ground) complete set of in-equations for finite rCCS, that is processes
which do not use recursion; see for example [3,5].

Our proof system uses in-equational reasoning with this set of in-equations.
It has judgements of the form

A � p ≤ p′

where p, p′ are processes and A is a finite set of assumptions, each of which
takes the form a.p1 ≤ a.p2, for some a ∈ Act. The rules for forming proof
trees are given in Fig. 4. We have (inEq) for instantiating in-equations, (Sub)
for substitution into contexts, together with (Id), (Tr); in short standard in-
equational reasoning over processes. We also have two standard rules (Ufd) and
(Fld) for unfolding and folding recursive definitions, and two obvious rules for
managing assumptions, (Hyp) and (W). The novel rule is (coRec); We call this
a coinductive rule because the conclusion of the rule is one of assumptions in the
hypothesis. This of course makes it’s soundness problematic; see the discussion
in the next section.

Let us write �mst A � p ≤ p′ to mean that there is a valid proof tree with
conclusion A � p ≤ p′; that is a proof tree constructed using the rules in Fig. 4,
using the set of in-equations just outlined. We abbreviate �mst ∅ � p ≤ p′ to
�mst p ≤ p′. We also use p ≤ineq p′ to mean that p may be rewritten to p′ using
this set of in-equations. More specifically, in the rewriting all the rules in Fig. 4
may be used, except (Hyp),(W) and (coREC).

Example 1. Let r1, r2 denote recx.a.x ⊕ b.x, recx.a.x + b.x respectively. Our
aim is to prove �mst r1 ≤ r2 by showing how to construct a valid proof tree for the
judgement � r1 ≤ r2. First note that X ⊕ Y ≤ X + Y is a derived axiom from

20 M. Hennessy

� p ≤ p
(Id)

A � p1 ≤ p2, A � p2 ≤ p3

A � p1 ≤ p3
(Tr)

A � pi ≤ p′
i, 0 ≤ i ≤ n

A � f(p0, . . . , pn)
(Sub)

〈p, p′〉 ∈ Ins(InEq)

A � p ≤ p′ (inEq)

� recx.t ≤ t{x �→ recx.t} (Ufd)
� t{x �→ recx.t} ≤ recx.t

(Fld)

p ≤ p′ � p ≤ p′ (Hyp)
B � p ≤ p′, A ⊇ B

A � p ≤ p′ (W)

A, a.p ≤ a.p′ � p ≤ p′

A � a.p ≤ a.p′ (coRec)

Fig. 4. The proof system

those in Fig. 3. So if we were allowed to apply axioms to open terms, and had
substitutivity under recx.−, then the derivation would be trivial. Unfortunately
the proof system in Fig. 4 only manipulates processes, that is closed terms.

As a first step let us show how the judgement

a.r1 ≤ a.r2 � b.r1 ≤ b.r2 (2)

can be derived. Using the new rule (coRec) this will follow from the judgement
a.r1 ≤ a.r2, b.r1 ≤ b.r2 � r1 ≤ r2. By unwinding the recursive definitions this
amounts to deriving a.r1 ≤ a.r2, b.r1 ≤ b.r2 � a.r1 ⊕ b.r1 ≤ a.r2 + b.r2. However
this is straightforward, using two instances of (HYP), substitutivity and the
derived axiom mentioned above.

Armed with a derivation of (2) above we can now construct, using (HYP),
substitutivity and the derived axiom, a derivation for a.r1 ≤ a.r2 � a.r1 ⊕ b.r1 ≤
a.r2 + b.r2; then, using (Ufd), (Fld), this gives a derivation of a.r1 ≤ a.r2 �
r1 ≤ r2. By (CoRec) this leads to a derivation of

� a.r1 ≤ a.r2

Similar reasoning can be used to show that the judgement � b.r1 ≤ b.r2 can
be derived. From these two derivations we can now easily constuct a derivation
of � r1 ≤ r2, using (Ufd), (Fld), the derived axiom and substitutivity. In other
words �mst r1 ≤ r2. ��
Example 2. Let r3, r4 denote recx.a.x + b.(c.x ⊕ d.x), recx.a.(a.x + b.d.x) +
b.c.x respectively. The process r3 repeatedly offers the actions a and b, and after
the latter internally decides whether to offer c or d. On the other hand r4 also
repeatedly offers a and b, but after the latter alternatively offers either c or d.

We prove �mst r3 ≤ r4 by showing how to construct a valid proof tree for
the judgement � r3 ≤ r4. For convenience we use B3, B4 denote the initial

An Equational Characterisation of the Must Testing Pre-order 21

unwindings a.r3 + b.(c.r3 ⊕ d.r3), a.(a.r4 + b.d.r4) + b.c.r4 respectively. It will
be sufficient to show how to construct a valid proof tree for

� B3 ≤ B4 (3)

First let us consider the hypothesis a.r3 ≤ a.(a.r4 + b.d.r4), which for conve-
nience we denote by H. This turns out to be quite strong. For example,

H � c.r3 ≤ c.r4 (4)

because by an application of (coRec) this reduces to H, c.r3 ≤ c.r4 � r3 ≤ r4.
This in turn follows from an application of (Hyp), the unwinding of recursive
definitions, together with some elementary in-equational reasoning; an applica-
tion here of the in-equation X ⊕ Y ≤ X is essential.

With an application of (4) we can now derive H � r3 ≤ r4 as can be seen
by again unwinding the recursive definitions. Applying substitutivity, and the
in-equation X ⊕ Y ≤ X, this leads to (a derivation of) H � r3 ≤ a.r4 + b.d.r4,
again by unwinding r3. Finally an application of (coRec) gives

� a.r3 ≤ a.(a.r4 + b.d.r4) (5)

Now let us turn our attention to constructing a valid proof tree for (3) above,
as required. By substitutivity, and an application of (5) this is reduced to finding
a valid proof tree for � b.(c.r3 ⊕ d.r3) ≤ b.c.r4. In turn, using substitutivity and
elementary in-equational reasoning this amounts to considering � c.r3 ≤ c.r4.

Because of (CoRec) we need to derive c.r3 ≤ c.r4 � r3 ≤ r4, which by
unwinding reduces to c.r3 ≤ c.r4 � a.r3 + b.(c.r3 ⊕ d.r4) ≤ a.(a.r4 + b.d.r4) +
b.c.r4. However this will follow because of (5), using (Hyp) and substitutivity.

��

4 Soundness

To prove soundness of the proof system we need a semantic interpretation of the
judgements A � p ≤ p′ which is preserved by all instances of the proof rules. As
explained in [6] the obvious choice is unsound. For completeness we re-iterate
the counter-example.

Example 3. Let us write

p1 ≤ p′
1, . . . pk ≤ p′

k �w p ≤ p′, fork ≥ 0,

if p1 �∼must
p′
1, . . . , pk

�∼must
p′

k implies p �∼must
p′.

Unfortunately this is not preserved by the rule (coRec). An instance of this
rule is

a.b. 0 ≤ a. 0 � b. 0 ≤ 0

� a.b. 0 ≤ a. 0

22 M. Hennessy

Note that the premise is (vacuously) semantically valid, a.b. 0 ≤ a. 0 �w b. 0 ≤
0, because a.b. 0 � �∼must

a. 0. However the conclusion is not semantically valid,
��wa.b. 0 ≤ a. 0, because a.b. 0 must t while a. 0 �must t, where t is the test a.b.�

��
Instead, as in [1,6], we base our semantic interpretation on a stratified char-

acterisation of testing pre-order, using Theorem1.

Definition 3 (Semantic interpretation). For k ≥ 0 let p n q if for every
s ∈ Act� of length at most n, for every A ∈ A(q, s) there exists some B ∈ A(p, s)
such that B ⊆ A.

Then, for n ≥ 0, write

p1 ≤ p′
1, . . . , pk ≤ p′

k �n p ≤ p′

if p1 n p′
1 pk n p′

k implies p n p′.
We use A � p ≤ p′ to mean that A �n p ≤ p′ for every n ≥ 0. ��

The counterexample given above no longer works for this stratified semantic
interpretation. This is because

a.b. 0 ≤ a. 0 � � b. 0 ≤ 0

In particular a.b. 0 ≤ a. 0 � �1 b. 0 ≤ 0. To see this first note that

– A(a.b. 0, ε) = A(a. 0, ε) = { { a } }
– A(a.b. 0, a) = { { b } },A(a. 0, a) = { { } }
– A(a.b. 0, s) = A(a. 0, s) = { } whenever s is different from ε, a.

Therefore a.b. 0 1 a. 0. However A(b. 0, b) = { { } } and A(0, b) = { }, and
therefore b. 0 � 1 0.

A very useful property of these stratified behavioural relations is given in the
following lemma.

Lemma 1. For m ≥ 0, p m q implies a.p (m+1) a.q

Proof. For a given m suppose p m q. To establish a.p (m+1) a.q, suppose
A ∈ A(a.p, s) where the length of s is at most m + 1. We have to find some
B ∈ A(a.q, s) such that B ⊆ A. There are two cases. If s is the empty sequence
ε then A is { a } and the required B is the same set { a }. Otherwise s has the
form a.t and the required B can be found using p m q, since A ∈ A(p, t). ��
Theorem 2 (Soundness). �mst A � p ≤ p′ implies A � p ≤ p′.

Proof. It suffices to show that each of the proof rules in Fig. 4 preserves the
semantics, and the only non-trivial case is the rule (coRec). Here the proof
is very similar in style and structure to the corresponding proof in [6], that of
Theorem 2.

An Equational Characterisation of the Must Testing Pre-order 23

So suppose A, a.p ≤ a.p′ � p ≤ p′; that is

A, a.p ≤ a.p′ �k p ≤ p′ for all k ≥ 0 (6)

We have to show that from this hypothesis, which we refer to as the outer
hypothesis, the conclusion A � a.p ≤ a.p′ follows. In particular we show that
A �n a.p ≤ a.p′, for every n ≥ 0, by induction on n.

The base case, when n = 0, is straightforward, as A(a.p, ε) = A(a.p′, ε) =
{ { a } }.

In the inductive case we let n = (m + 1), and we can assume

A �m a.p ≤ a.p′ (7)

which we refer to as the inner hypothesis. We have to deduce A �(m+1) a.p ≤ a.p′.
To this end suppose q (m+1) q′ for every q ≤ q′ ∈ A. We have to show

a.p (m+1) a.p′.
First we apply the inner hypothesis (7): this is possible since q (m+1) q′

implies q m q′ So we obtain a.p m a.p′.
With this we can apply the outer hypothesis (6) with k = m. We obtain

p m p′, from which the required a.p (m+1) a.p′ now follows using Lemma 1.
��

In particular this soundness result means that if we can construct a valid proof
tree for the judgement � p ≤ q then p �∼must

q:

Corollary 1 (Soundness). �mst p ≤ q implies p �∼must
q.

Proof. Suppose �mst p ≤ q, that is ∅ � p ≤ q. By Theorem 2 we have that p m q
for every m ≥ 0, that is p q. So by Theorem 1 it follows that p �∼must

q. ��

5 Completeness

The proof of completeness has the same structure as the corresponding result in
[6], with some variations in some definitions and proofs. It relies on the concept
of head normal forms.

First some notation. A non-empty finite collection of finite sets of actions A
is said to be saturated if

– A, B ∈ A implies A ∪ B ∈ A
– A, B ∈ A, A ⊆ C ⊆ B, implies C ∈ A
∑

i∈I pi is a standard abbreviation for p1 + + pn, where I is the finite
index set { 1, . . . n }; when I is empty this is taken to represent 0. In a similar
manner we use

∑◦ i∈I pi as an abbreviation for p1 ⊕ ⊕ pn, but here the
index set I must be non-empty.

Definition 4 (Head normal forms). A process of the form
∑◦ A∈A

(
∑

a∈A a.pa), where A is saturated, is said to be a head normal form, abbre-
viated to hnf. ��

24 M. Hennessy

1 C(p , q) Input : p , q
2 Output : (YES) , i f p �∼must q
3 (NO) , otherwise
4

5 Let
∑◦ A∈A(

∑
a∈A a.pa) = hnf (p)

6 Let
∑◦ B∈B(

∑
b∈B b.qb) = hnf (q)

7 I f A⊆B return (NO)
8 otherwise
9 f o r each b ∈ ∪{B ∈ B }

10 i f C(p b , q b) r e tu rn s (NO)
11 then return (NO)
12 otherwise return (YES)

Fig. 5. An informal procedure

Note that 0 is a hnf since it can be written as
∑◦ A∈{ ∅ }(

∑
a∈A a.pa), and { ∅ }

is saturated.

Proposition 1. For every process p there exists some head normal form,
hnf(p), such that p =ineq hnf(p).

Proof. The proof relies on the fact that all proceses are guarded. First consider
all processes r given by the grammar

r ::= 0 | a.p, a ∈ Act | r1 + r2 | r1 ⊕ r2

where p ranges over arbitrary regular processes. Using the standard techniques
from [5] one can construct a process hnf(r) such that p =ineq hnf(p).

The only other possible structure for a regular process is recx.t. But

recx.t =ineq t{x �→ recx.t}

and since we only allow guarded processes t{x �→ recx.t} is included in the
grammar above. So it already has a head normal form, and therefore so does
recx.t. ��
The attraction of hnfs is that using the alternative characterisation in Theorem 1
it is in principle straightforward to check whether

∑
◦

A∈A(
∑

a∈A

a.pa) �∼must

∑
◦

B∈B(
∑

b∈B

b.pb)

If B �⊆ A then they are not related; otherwise it is sufficient to check whether
pb

�∼must
qb for each b ∈ ∪{B ∈ B }. An informal recursive procedure C(p, q)

based on these ideas is given in Fig. 5.
As currently constituted calls to C(p, q) may never terminate; the recursive

calls on line 10 may go on forever. To remedy this the procedure could have
an extra parameter, a set of pairs of processes which have already been tested,

An Equational Characterisation of the Must Testing Pre-order 25

1 M(A, p , q) => i f (p or q not in hnf)
2 then
3 let T = M(A, hnf (p) , hnf (q))
4 in return (T; (HNF))
5

6 M(A,
∑◦ A∈A(

∑
a∈A a.pa),

∑◦ B∈B(
∑

b∈B b.pb)) =>
7 i f A⊆B return (FAIL)
8 else
9 let Ti = Mp(A, b.pbi , b.qbi) , for each bi ∈ ∪{B | B ∈ B }

10 in (T1; ;Tn);TA(A,B)
11

12 Mp(A, a . p , a . q) => i f a . p ≤a . q in A then return (HYP)
13 else let B = {A, a . p<a . q}
14 let T = M(B, p , q)
15 in
16 T; (coRec)

Fig. 6. The algorithm

similar to the set A used in our proof system in Fig. 4. As a further enhancement,
instead of simply returning (YES) it could return an actual valid proof tree for
the judgement p ≤ q.

Such a procedure is outlined in Fig. 6 where, as with the proof system, the
extra parameter A is a finite set of hypotheses each of the form a.p ≤ a.q;
intuitively these are pairs of processes which have already been visited. On line
4 we use (HNF) to refer to a tactical which transforms the two processes under
consideration into hnfs; this is possible within the proof systems because of
Proposition 1. On line 12 we use TA(A,B) to refer to a slightly more complicated
tactical which takes a set of valid proof trees Ti for the judgements A � bi.pbi ≤
bi.qbi , one for each bi ∈ ∪{B | B ∈ B }, and constructs a valid proof tree for
the judgement

A �
∑
◦

A∈A(
∑

a∈A

a.pa), ≤
∑
◦

B∈B(
∑

b∈B

b.pb)

assuming that B ⊆ A; this tactical can easily be constructed using in-equational
reasoning, and the substitution rules.

On line 12–14 we have recursive calls for derivative processes. But these calls
only take place if the derivatives are not already in the already visited set A,
which is then increased appropriately.

Proposition 2.

(a) [Algorithmic correctness] Suppose M(A, p, q) terminates.
(i) If it returns FAIL then p � �∼must

q.
(ii) If it returns a proof tree, then this is a valid proof tree for the judgement

A � p ≤ q.

26 M. Hennessy

(b) [Termination] The recursive procedure M(A, p, q) terminates for all
parameters A, p, q.

Proof. (Outline)

(a) In each case the proof is by induction on the number of recursive calls to
M(−,−,−).

(b) By examining the code, particularly line 12, one can see that in any sequence
of calls to Mp(Ai, ai.pi, ai.qi) an arbitrary pair of processes (ai.p, ai.qi) can
appear at most once. Moreover each action name ai must appear textually
in one of the original processes p, q; there are thus a finite number of possible
action names ai which can appear in the sequence. Finally it can also be
shown that the set of possible pi, qi is also finite. Technically, for example,
each pi is reachable from the initial process p. In [6] this set of reachable
terms is called Reach(p) and can be shown to be finite.5

Termination now follows because now any sequence of calls
Mp(Ai, ai.pi, ai.qi) must be finite.

The finiteness result used here (that Reach(p) is finite) is non-trivial to prove.
But a detailed account for a language very similar to rCCS may be found in
Sect. 7 of [6]. ��
Corollary 2 (Completeness). p �∼must

q implies �mst p ≤ q.

Proof. Suppose p �∼must
q. We know from Proposition 2(b) that M(∅, p, q) termi-

nates. By design this algorithm either returns FAIL or a valid proof tree. The
former is not possible since p �∼must

q. The same proposition ensures that the
returned proof tree is a valid proof tree for ∅ � p ≤ q. That is �mst p ≤ q. ��

Acknowledgements. The author would like to thank the referees for their careful
reading of the first version of this paper.

References

1. Brandt, M., Henglein, F.: Coinductive axiomatization of recursive type equality
and subtyping. Fundam. Inform. 33(4), 309–338 (1998)

2. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

3. De Nicola, R., Hennessy, M.: CCS without τ’s. In: Ehrig, H., Kowalski, R., Levi,
G., Montanari, U. (eds.) CAAP 1987. LNCS, vol. 249, pp. 138–152. Springer,
Heidelberg (1987). https://doi.org/10.1007/3-540-17660-8 53

4. De Nicola, R.: Testing equivalences and fully abstract models for communicating
processes. Ph.D. thesis, University of Edinburgh (1985)

5. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)

5 Technically here we need to work up to the idempotency of both binary operators
(− + −) and (− ⊕ −).

https://doi.org/10.1007/3-540-17660-8_53

An Equational Characterisation of the Must Testing Pre-order 27

6. Hennessy, M.: A coinductive equational characterisation of trace inclusion for reg-
ular processes. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A.,
Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp.
449–465. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 22

7. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 26(1), 100–
106 (1983). (reprint)

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper
Saddle River (1985)

9. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994)

10. Milner, R.: A complete inference system for a class of regular behaviours. J. Com-
put. Syst. Sci. 28(3), 439–466 (1984)

11. Rabinovich, A.: A complete axiomatisation for trace congruence of finite state
behaviors. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.)
MFPS 1993. LNCS, vol. 802, pp. 530–543. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58027-1 25

12. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J.
ACM 13(1), 158–169 (1966)

https://doi.org/10.1007/978-3-319-63121-9_22
https://doi.org/10.1007/3-540-58027-1_25
https://doi.org/10.1007/3-540-58027-1_25

Testing Equivalence vs. Runtime
Monitoring

Luca Aceto1,2(B) , Antonis Achilleos2 , Adrian Francalanza3 ,
Anna Ingólfsdóttir2 , and Karoliina Lehtinen4

1 Gran Sasso Science Institute, L’Aquila, Italy
luca.aceto@gssi.it

2 School of Computer Science, Reykjavik University, Reykjavik, Iceland
{luca,antonios,annai}@ru.is

3 Department of Computer Science, ICT, University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

4 Department of Computer Science, University of Liverpool, Liverpool, UK
karoliina.lehtinen@liverpool.ac.uk

Abstract. Rocco De Nicola’s most cited paper, which was coauthored
with his PhD supervisor Matthew Hennessy, introduced three seminal
testing equivalences over processes represented as states in labelled tran-
sition systems. This article relates those classic process semantics with
the framework for runtime monitoring developed by the authors in the
context of the project ‘TheoFoMon: Theoretical Foundations for Moni-
torability’. It shows that may-testing semantics is closely related to the
basic monitoring set-up within that framework, whereas, over strongly-
convergent processes, must-testing semantics is induced by a collection
of monitors that can detect when processes are unable to perform certain
actions.

Keywords: Testing equivalence · Runtime monitoring ·
Trace equivalence · Failure equivalence ·
Hennessy-Milner logic with recursion

1 Introduction

Rocco De Nicola is probably best known for the introduction of the notions of
testing equivalence over concurrent processes, in joint work with his PhD super-
visor Matthew Hennessy that was reported in the conference paper [14] and the
subsequent journal paper [15]. These testing equivalences embody in a natural

This research was partially supported by the projects ‘TheoFoMon: Theoretical Foun-
dations for Monitorability’ (grant number: 163406-051; http://icetcs.ru.is/theofomon/)
and ‘Epistemic Logic for Distributed Runtime Monitoring’ (grant number: 184940-051)
of the Icelandic Research Fund, by the BMBF project ‘Aramis II’ (project number:
01IS160253) and the EPSRC project ‘Solving parity games in theory and practice’
(project number: EP/P020909/1).

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 28–44, 2019.
https://doi.org/10.1007/978-3-030-21485-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_4&domain=pdf
http://orcid.org/0000-0002-2197-3018
http://orcid.org/0000-0002-1314-333X
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0001-8362-3075
http://orcid.org/0000-0003-1171-8790
http://icetcs.ru.is/theofomon/
https://doi.org/10.1007/978-3-030-21485-2_4

Testing Equivalence vs. Runtime Monitoring 29

and mathematically elegant way the intuitive idea that two processes should
be equated unless they behave differently when subjected to some ‘experiment’
or ‘test’. The origin of this notion of equivalence can be traced back to Got-
tfried Wilhelm Leibniz (1646–1716), whose Identity of Indiscernibles principle
states that two (mathematical) objects are equal if there is no property that
distinguishes them [24, ‘Discourse on Metaphysics’, Section 9]. In the semantics
of programming languages, its earliest precursor is, to the best of our knowl-
edge, the notion of contextual equivalence proposed by Morris in his doctoral
dissertation [26].

In general, given a set of processes, a set of tests and a relation between
processes and tests that describes when a process passes a test, one can apply
Leibniz’s motto and declare two processes to be equivalent if they pass exactly
the same set of tests. In the work of De Nicola and Hennessy, processes are states
in some labelled transition system [22]. A test is itself a process, which inter-
acts with a concurrent system under observation by hand-shake synchronisation
and uses a distinguished action to report success in its observation. Since both
processes and tests may be nondeterministic, the interaction between a process
and a test may lead to different outcomes depending on how the two systems
resolve their nondeterministic choices in the course of a computation. This led
De Nicola and Hennessy to define three notions of testing semantics, which are
naturally expressed in terms of preorders over processes. In the so-called may
semantics, a process q is at least as good as some process p if the set of tests that
p may pass is included in the set of tests that q may pass. In may semantics, pos-
sible failure under a test is immaterial and therefore nondeterminism is angelic.
On the other hand, one may take the view that failure in the testing effort is
catastrophic, in the sense that a process that may fail some test is just as bad
as one that always fails it. The notion of testing semantics that captures this
viewpoint is the so-called must semantics, according to which a process q is at
least as good as some process p if the set of tests that p must pass is included in
the set of tests that q must pass. Finally, a third testing preorder over processes
is obtained as the intersection of the may and must preorders described above.
According to this more refined view of process behaviour, a process that always
fails a test is worse than one that may pass that test, which in turn is worse
than one that always passes it.

De Nicola and Hennessy explored the rich theory of the testing semantics
in [15] (see [19] for a book-length treatment), where each of these semantics is
given operational, denotational and axiomatic accounts that are in agreement
one with the other. Their ideas and the accompanying technical results have had
an enormous impact on further research, as witnessed, among other things, by
the over 1, 650 citations to [15]1.

Our goal in this article is to provide some evidence supporting our view
that De Nicola and Hennessy’s work may also be seen as providing the theoret-
ical foundations for runtime verification [9], a line of research that is becoming

1 Source: https://scholar.google.com/citations?user=Meb6JFkAAAAJ&hl=en, last
accessed on the 24th of March 2019.

https://scholar.google.com/citations?user=Meb6JFkAAAAJ&hl=en

30 L. Aceto et al.

increasingly important in the field of computer-aided verification. Runtime ver-
ification is a lightweight verification technique that checks whether the system
under scrutiny satisfies a correctness property by analysing its current execution.
In this approach, a computational entity called a monitor, which is synthesised
from a given correctness property, is used to observe the current system execution
and to report whether the observed computation satisfies the given property.

The high-level description of runtime verification given above hints at con-
ceptual similarities between that approach to computer-aided verification and
testing equivalences à la De Nicola and Hennessy. Indeed, the monitors used in
runtime verification seem to play a role akin to that of the tests in the work of
De Nicola and Hennessy. In this paper, we will see that the connection between
runtime verification and testing semantics can be made precise within the oper-
ational framework for runtime monitoring developed in [1,3,16,17]. More pre-
cisely, we will show that may-testing semantics is closely related to the basic
monitoring set-up presented in [16,17] (Sect. 3), whereas must-testing seman-
tics over strongly-convergent, finitely-branching processes is induced by a col-
lection of monitors that can detect refusals and that stem from the framework
for parameterised monitorability developed in [1] (Sect. 4). Together with the
results presented in [7,12], we feel that Theorems 2 and 7 in this study substan-
tiate our tenet that runtime verification owes much to the work of De Nicola and
Hennessy on testing equivalences for processes.

2 Preliminaries

We begin by briefly reviewing the model of labelled transition systems used
in this study (Sect. 2.1) and by presenting an informal account of De Nicola-
Hennessy testing equivalences (Sect. 2.2).

2.1 Labelled Transition Systems

We assume a finite set of external actions Act and, following Milner [25], a
distinguished silent action τ . We let α, a, b, c range over Act and μ over Act∪
{τ}. A labelled transition system (LTS) over Act is a triple

L = 〈P,Act,→L〉,
where P is a nonempty set of system states referred to as processes (p, q, . . . ∈ P),
and →L ⊆ P ×(Act∪{τ})×P is a transition relation. We write p

μ−→L q instead
of (p, μ, q) ∈ →L. We use p

α=⇒L q to mean that, in L, p can reach q using a
single α action and any number of silent actions, i.e., p(τ−→L)∗ α−→L (τ−→L)∗q. By
p

μ−→L (respectively, p
α=⇒L) we mean that there is some q such that p

μ−→L q

(respectively, p
α=⇒L q) and p 	 μ−→L (respectively, p 	 α=⇒L) means that no such q

exists. For a trace s = α1α2 . . . α� ∈ Act∗, p
s=⇒L q means p

α1=⇒L
α2=⇒L . . .

α�=⇒L q
when � ≥ 1 and p(τ−→)∗q when s = ε is the empty trace. We say that s is a trace
of p when p

s=⇒L q for some q, and write traces(p) for the set of all the traces of p.

Testing Equivalence vs. Runtime Monitoring 31

From now on we will omit the subscript L as the LTS will be always clear from
the context.

In the rest of the paper, processes will be specified using expressions in the
fragment of Milner’s CCS [25] containing the operators for describing finite syn-
chronisation trees over Act ∪ {τ} [29].

2.2 Testing Equivalences à la De Nicola and Hennessy

We will now informally recall the testing semantics from [15,19]. We will not
present the full details of the formal definitions of the testing semantics, since
our technical results will rely on the alternative, test-free characterisations of
the may- and must-testing preorders, which we will state in Sects. 3.3 and 4.2
where they are used.

The testing equivalences over processes introduced in [15] embody in a natu-
ral and mathematically elegant way the intuitive idea that two programs should
be equated unless they behave differently when subjected to some ‘experiment’.
In the setting of the above-mentioned paper, an experiment is itself a process,
called test, that interacts with the observed system by communicating with it
and that uses a distinguished action ω to report a successful outcome resulting
from its observations.

We say that

– process p may pass a test t if there is some maximal computation resulting
from the interaction between p and t in which t reports success;

– process p must pass a test t if t reports success in every maximal computation
resulting from the interaction between p and t.

The classification of the possible outcomes resulting from process-test interac-
tions leads to three different notions of semantic equivalence over processes: one
in which nondeterminism is angelic (the may-testing preorder), another in which
the possibility of failure is catastrophic (the must-testing preorder) and a third
in which a process that may both fail and pass a test is distinguished from one
that always fails it or always passes it (the intersection of the may- and must-
testing preorders). Each of these semantics is given operational, denotational
and axiomatic accounts that are in agreement one with the other in [15,19].

Definition 1 (Testing preorders). For all p, q ∈ P ,

– p �may q iff, for each test t, p may pass t implies q may pass t;
– p �must q iff, for each test t, p must pass t implies q must pass t;
– p �T q iff p �may q and p �must q.

Example 1. It is well known that nil �may a.nil and that a.(b.nil + c.nil) �may

a.b.nil + a.c.nil. On the other hand, nil 	�must a.nil and a.(b.nil + c.nil) 	�must

a.b.nil+a.c.nil. Indeed, unlike nil, the process a.nil may fail the test a.nil+ τ.ω.nil
(read ‘ask the process under observation to do a and terminate unsuccessfully,
or internally decide to succeed’) and, unlike a.(b.nil+ c.nil), the process a.b.nil+
a.c.nil may fail the test a.b.ω.nil (read ‘ask the process under observation to do
a followed by b and then succeed’).

32 L. Aceto et al.

3 Monitoring May Testing

We now characterise the may-testing preorder in terms of the basic framework
for runtime monitoring presented in [16,17]. We first recall the needed definitions
and results from those references in Sects. 3.1–3.2 and then we use them to give
a monitor-based version of the may-testing preorder in Sect. 3.3.

3.1 A Framework for Runtime Monitoring

We now review the operational framework proposed in [16,17] for runtime mon-
itoring of properties expressed in Hennessy-Milner Logic with recursion [8,23].
In this framework, a monitor is a computational entity that observes the cur-
rent system execution and uses the information so acquired to try to ascertain
whether the system satisfies a given property.

Monitors. We first define the notion of a monitor given in [16,17]. Monitors
are states of an LTS, much like processes and tests. Syntactically, monitors are
specified using expressions in a variation on the regular fragment of CCS, where
the nil process is replaced by verdicts. A verdict can be one of yes, no and end,
which represent acceptance, rejection and inconclusive termination, respectively.

Definition 1. The set Mon of monitors is defined by the following grammar:

m,n ∈ Mon:: = v | α.m | m + n | rec x.m | x

v:: = end | no | yes

where x ranges over a countably infinite set of monitor variables.
An acceptance monitor is one without occurrences of the verdict no and a

rejection monitor is one that does not contain occurrences of the verdict yes.

The behaviour of a monitor is defined by the derivation rules of Table 1, so
monitors are states of an LTS whose transitions are those that are provable using
those rules. Intuitively, a transition m

α−→ m′ indicates that a monitor in state
m can analyse action α and become the monitor described by m′ in doing so.
We highlight the transition rule for verdicts in Table 1, describing the fact that,
from a verdict state, any action can be analysed by transitioning to the same
state; verdicts are thus irrevocable.

Monitored System. Monitors are intended to run in conjunction with the sys-
tem (process) they are analysing. While monitoring a process p ∈ P , a monitor
m ∈ Mon tries to mirror every visible action p performs. If m cannot match
an action performed by p and it cannot perform an internal action, then p per-
forms that action and continues executing, while m becomes the inconclusive
end verdict. We are only looking at the visible actions and so we allow m and p
to perform silent τ actions independently of each other.

Testing Equivalence vs. Runtime Monitoring 33

Table 1. Monitor dynamics

mAct
α.m

α
m

mRec
recx.m

τ
m[recx.m/x]

mSelL
m

μ
m′

m + n
μ

m′
mSelR

n
μ

n′

m + n
μ

n′

mVerd
v

α
v

where α ∈ Act and μ ∈ Act ∪ {τ}.

Definition 2. A monitored system consists of a monitor m ∈ Mon and a pro-
cess p ∈ P that run side-by-side, denoted m � p. The behaviour of a monitored
system is defined by the derivation rules in Table 2.

The following lemmata describe how the monitor and system LTSs can be com-
posed and decomposed according to instrumentation [17].

Table 2. Monitored systems

iMon
p

α
p′ m

α
m′

m � p
α

m′ � p′
iTer

p
α

p′ m � α m � τ
m � p

α end � p′

iAsyP
p

τ
p′

m � p
τ

m � p′
iAsyM

m
τ

m′

m � p
τ

m′ � p

Lemma 1 (General Unzipping). m � p
s=⇒ n � q implies

– p
s=⇒ q and

– m
s=⇒ n or (∃s1, s2, α ∃m′. s = s1αs2, m

s1=⇒ m′ 	 τ−→, m′ 	 α−→ and n = end).

Lemma 2 (Zipping). (p s=⇒ q and m
s=⇒ n) implies m � p

s=⇒ n � q.

If a monitored system m � p can reach a configuration where the monitor com-
ponent is the yes verdict, we say that m accepts p, and similarly m rejects p if
the monitored system can reach a configuration where the monitor component
is no.

Definition 3 (Acceptance/Rejection). We define

acc(m, p)
def
= ∃s, p′. m � p

s=⇒ yes � p′ and

rej(m, p)
def
= ∃s, p′. m � p

s=⇒ no � p′.

34 L. Aceto et al.

The Logic. We use μHML, the Hennessy-Milner logic with recursion, to
describe properties of processes.

Definition 4. The formulae of μHML are constructed using the following gram-
mar:

ϕ,ψ ∈ μHML:: = tt | ff

| ϕ ∧ ψ | ϕ ∨ ψ

| 〈α〉ϕ | [α]ϕ
| min X.ϕ | max X.ϕ

| X

where X ranges over a countably infinite set of logical variables LVar.

Formulae are evaluated in the context of a labelled transition system and an
environment, ρ : LVar → 2P , which gives values to the logical variables in the
formula. For an environment ρ, variable X, and set S ⊆ P , we write ρ[X �→ S] for
the environment which maps X to S and all Y 	= X to ρ(Y). The semantics for
μHML formulae is given through a function �·�, which, given an environment ρ,
maps each formula to a set of processes — namely the processes that satisfy the
formula under the assumption that each X ∈ LVar is satisfied by the processes
in ρ(X). The function �·� is defined as follows:

�tt, ρ�
def
= P and �ff, ρ�

def
= ∅

�ϕ1 ∧ ϕ2, ρ�
def
= �ϕ1, ρ� ∩ �ϕ2, ρ�

�ϕ1 ∨ ϕ2, ρ�
def
= �ϕ1, ρ� ∪ �ϕ2, ρ�

�[α]ϕ, ρ�
def
=

{
p

∣∣ ∀q. p
α=⇒ q implies q ∈ �ϕ, ρ�

}

�〈α〉ϕ, ρ�
def
=

{
p

∣∣ ∃q. p
α=⇒ q and q ∈ �ϕ, ρ�

}

�max X.ϕ, ρ�
def
=

⋃ {
S

∣∣ S ⊆ �ϕ, ρ[X �→ S]�
}

�min X.ϕ, ρ�
def
=

⋂ {
S

∣∣ S ⊇ �ϕ, ρ[X �→ S]�
}

�X, ρ�
def
= ρ(X).

A formula is closed when every occurrence of a variable X is in the scope of
recursive operator max X or min X. Note that the environment ρ has no effect
on the semantics of a closed formula. Thus, for a closed formula ϕ, we often drop
the environment from the notation for �·� and write �ϕ� instead of �ϕ, ρ�.

The safety fragment of μHML, denoted by sHML, and its dual co-safety
fragment, cHML, are defined by the grammar:

ϕ,ψ ∈ sHML ::=tt | ff | [α]ϕ | ϕ ∧ ψ | max X.ϕ | X

ϕ,ψ ∈ cHML ::=tt | ff | 〈α〉ϕ | ϕ ∨ ψ | min X.ϕ | X.

Testing Equivalence vs. Runtime Monitoring 35

Definition 5 (Monitorable Formulae). We say that a rejection monitor m
monitors a formula ϕ ∈ μHML for violation when, for each process p, rej(m, p)
if and only if p /∈ �ϕ�. Similarly, an acceptance monitor m monitors a formula
ϕ ∈ μHML for satisfaction when, for each process p, acc(m, p) if and only
if p ∈ �ϕ�. A formula ϕ ∈ μHML is monitorable if there is a monitor that
monitors it for satisfaction or violation.

3.2 Previous Results

The main result from [16,17] is to define a monitorable subset of μHML and show
that it is maximally expressive. This subset is called mHML and consists of the
safety and co-safety syntactic fragments of μHML: mHML

def
= sHML∪cHML.

From now on, we focus on sHML, but the case of cHML is dual. The interested
reader can see [16,17] for more details.

In order to prove that sHML is monitorable, in [16,17] Francalanza, Aceto,
and Ingólfsdóttir define a monitor synthesis function, �·�, which maps formulae
to monitors, and show that for each ϕ ∈ sHML, �ϕ� monitors ϕ for violation,
in that rej(�ϕ�, p) holds exactly for those processes p for which p /∈ �ϕ�.

Definition 6 (Monitor Synthesis).

�tt�
def
= yes �ff�

def
= no �X�

def
= x

�[α]ψ�
def
=

{
α.�ψ� if �ψ� 	= yes

yes otherwise

�ψ1 ∧ ψ2�
def
=

⎧
⎪⎨
⎪⎩

�ψ1� if �ψ2� = yes

�ψ2� if �ψ1� = yes

�ψ1� + �ψ2� otherwise

�max X.ψ�
def
=

{
recx.�ψ� if �ψ� 	= yes

yes otherwise

Lemma 3. For every formula ϕ ∈ sHML, �ϕ� monitors ϕ for violation.

Definition 7 (Formula Synthesis). We define a formula synthesis function
‖·‖ from rejection monitors to sHML.

‖end‖ = tt ‖no‖ = ff ‖x‖ = X

‖α.m‖ = [α]‖m‖ ‖m + n‖ = ‖m‖ ∧ ‖n‖ ‖rec x.m‖ = max X.‖m‖.

Lemma 4. Every monitor m monitors ‖m‖ for violation.

As previously mentioned, dual results hold for cHML, whose formulae can be
monitored for satisfaction using acceptance monitors.

36 L. Aceto et al.

3.3 May Testing via Monitors

The goal of this section is to show how the monitoring framework we just
reviewed can be used to give an alternative characterisation of classic may-
testing semantics à la De Nicola and Hennessy. As a first step, we define three
natural preorders over states of LTSs that are induced by monitors. We will then
show that these three preorders coincide with the may-testing preorder. In what
follows, we assume a fixed LTS L = 〈P,Act,→〉. All the results we present in
this section hold for arbitrary LTSs.

Definition 2 (Monitoring preorders). For all p, q ∈ P ,

– p �A
M q iff, for each acceptance monitor m, acc(m, p) implies acc(m, q);

– p �R
M q iff, for each rejection monitor m, rej(m, p) implies rej(m, q);

– p � q iff p �A
M q and p �R

M q.

The following alternative characterization of the may testing preorder is well
known—see [15,19].

Theorem 1. For all p, q ∈ P , p �may q iff traces(p) ⊆ traces(q).

One of the consequences of the above result is that tests of the form

a1.an.ω.nil,

with n ≥ 0 and a1, . . . , an ∈ Act, suffice to characterize the may-testing pre-
order. Another one is that deciding the may-testing preorder and its induced
equivalence over states in finite LTSs is PSPACE-complete [28].

Theorem 2. For all p, q ∈ P , the following are equivalent:

1. p �may q,
2. p �A

M q,
3. p �R

M q and
4. p � q.

To show the above result, we first prove that the preorder over processes induced
by trace inclusion, which coincides with the may-testing preorder by Theorem1,
is included in both �A

M and �R
M .

Lemma 3. For all p, q ∈ P , if traces(p) ⊆ traces(q) then p �A
M q and p �R

M q.

Proof. Assume that traces(p) ⊆ traces(q). We first show that p �A
M q holds.

To this end, let m be an acceptance monitor such that acc(m, p). By defini-
tion, this means that m � p

s=⇒ yes � p′ for some s ∈ Act∗ and process p′. Using
the ‘unzipping lemma’ (Lemma 1), this yields that m

s=⇒ yes and p
s=⇒ p′. So s

is a trace of p and, by the proviso of the lemma, also of q. Thus, q
s=⇒ q′ for

some q′. Using the ‘zipping lemma’ (Lemma 2), we obtain that m � q
s=⇒ yes � q′,

which means that acc(m, q). Since m was an arbitrary acceptance monitor, we
conclude that p �A

M q, and we are done.
The argument proving p �R

M q is similar. Simply replace acceptance monitors
with rejection monitors, acc with rej and yes with no in the above proof. ��

Testing Equivalence vs. Runtime Monitoring 37

Next, we establish that the converse inclusions also hold.

Lemma 4. For all p, q ∈ P , if p �A
M q or p �R

M q then traces(p) ⊆ traces(q).

Proof. We limit ourselves to proving that if p �A
M q then traces(p) ⊆ traces(q),

as the proof of the other implication is similar. To this end, assume that p �A
M q

and that p
s=⇒ p′ for some p′. We will show that s ∈ traces(q).

First of all, observe that, for each t ∈ Act∗, we can construct an acceptance
monitor m(t) thus:

m(ε) = yes

m(at′) = a.m(t′).

Note that, for each t ∈ Act∗, by construction,

m(t) t′
=⇒ yes iff t = t′.

Since p
s=⇒ p′, the ‘zipping lemma’ (Lemma 2) yields that m(s) � p

s=⇒ yes � p′.
Thus acc(m(s), p) and, from the assumption that p �A

M q, we may infer that
acc(m(s), q). By definition and the observation above, this means that m(s)�q

s=⇒
yes � q′ for some q′. The ‘unzipping lemma’ (Lemma 1) now yields that q

s=⇒ q′,
which was to be shown. ��
Theorem 2 and the monitorability results presented in [1,17] can now be com-
bined to obtain logical characterization results for the may-testing preorder.
Even though these results are folklore, we believe that recasting them in terms
of monitorability builds a pleasing connection between a classic testing preorder
and runtime monitoring for μHML.

In the statement of the following result, for each process p, we define

cHML(p) = {ϕ | ϕ ∈ cHML and p |= ϕ} and
sHML(p) = {ϕ | ϕ ∈ sHML and p |= ϕ}.

Theorem 5. For all p, q ∈ P , the following statements hold:

1. p �may q iff cHML(p) ⊆ cHML(q).
2. p �may q iff sHML(q) ⊆ sHML(p).

Proof. We limit ourselves to presenting the proof of the second statement. The
proof of the first statement is similar.

In order to establish the ‘only if’ implication, assume that p �may q and
p 	|= ϕ, for some ϕ ∈ sHML. We claim that q 	|= ϕ. To this end, observe that,
as p 	|= ϕ by assumption, Lemma 3 yields that rej(�ϕ�, p). By Theorem 2 and
p �may q, we have that p �R

M q. Hence, rej(�ϕ�, q) and, using Lemma 3 again,
we may conclude that q 	|= ϕ, as claimed.

To prove the ‘if’ implication, we assume that sHML(q) ⊆ sHML(p) and
show that p �may q. By Theorem 2, this suffices to establish that claim. Suppose
that rej(m, p) for some rejection monitor m. By Lemma 4, we have that p 	|=
‖m‖ ∈ sHML. By assumption, this means that q 	|= ‖m‖ either. Hence, again
using Lemma 4, we conclude that rej(m, q), and we are done. ��

38 L. Aceto et al.

4 Monitoring Must Testing

As Theorem 2 indicates, the monitoring framework presented in [16,17] is not
expressive enough to characterise the must-testing preorder, as monitor accep-
tance and rejection are only determined by the traces processes can perform.
This means that monitors from the basic framework reviewed in Sect. 3.1 can-
not distinguish, for instance, the processes described by the CCS expressions
a.(b.nil+c.nil) and a.b.nil+a.c.nil, which are not must-testing equivalent because
a.(b.nil + c.nil) 	�must a.b.nil + a.c.nil.

The first four authors presented a framework for parameterised monitorabil-
ity in [1] and studied several of its instantiations. In what follows, we will first
present one such instantiation (Sect. 4.1) and then show how a natural restriction
of that specific monitoring framework offers a characterisation of must-testing
semantics in terms of monitors (Sect. 4.2).

4.1 A Framework for Runtime Monitoring with Refusals

The instance of the monitoring framework from [1] we consider here is the one
obtained by extending the syntax for rejection monitors given in Definition 1
with ‘conditions’ of the form ref(a), where a ∈ Act. (In the terminology of [1],
‘conditions’ are predicates over processes.)

Formally, following [1, Sections 4.1 and 5.2], we extend the formation rules for
monitors given in Definition 1 with those of the form ref(a).m, for each a ∈ Act.
In the rest of this paper, we use the term refusal monitors for the monitors
generated by that augmented grammar. In the behaviour of monitors, ref(a) is
treated as an ordinary action prefixing operator and thus the rules in Table 1
are extended with the following ones:

ref(a).m
ref(a)−−−→ m

, a ∈ Act.

Intuitively, in the spirit of Phillips’ refusal testing [27], a monitor of the form
ref(a).m checks whether the system it observes can refuse action a and, if so,
continues monitoring as m. This is expressed by the following instrumentation
rules for such conditions, which are added to the rules in Table 2:

m
ref(a)−−−→ m′ p 	 τ−→ p 	 a−→

m � p
τ−→ m′ � p

a ∈ Act. (1)

In what follows, we say that p refuses a when p 	 τ−→ and p 	 a−→.
The syntax for refusal monitors allows one to write monitors such as

a.ref(b).c.ref(d).no.

Since our goal is to define a monitor-based characterisation of must-testing
semantics, monitors that alternate the observation of action occurrences with

Testing Equivalence vs. Runtime Monitoring 39

that of refusals arbitrarily are too powerful. Indeed, they would characterise
failure-trace semantics, which coincides with Phillips’ refusal testing over image-
finite processes [18]. Therefore, in what follows, we only consider the sub-
language MonF of refusal monitors that consists of the monitors m that are
generated by the following grammar:

m,n ∈ MonF :: = v | α.m | ref(a).r | m + n | recx.m | x

r:: = no | ref(a).r
v:: = end | no,

where x comes from a countably infinite set of monitor variables.We refer to those
monitors as failure monitors and use them to define a preorder over processes
as follows.

Definition 3 (Failure monitoring preorder). For all p, q ∈ P ,

p �Ref
M q iff, for each failure monitorm ∈ MonF , rej(m, q) implies rej(m, p).

Intuitively, as in must-testing semantics, p �Ref
M q means that q is ‘at least as

well behaved as’ p when its executions are observed by a failure monitor, in the
sense that each failure monitor that rejects q will also reject p, and being rejected
by a monitor is considered harmful. However, there might be some monitor that
rejects p, but not q. For example, it is not too hard to see that a.b.nil+ a.c.nil �Ref

M

a.(b.nil + c.nil), as each failure monitor that rejects a.(b.nil + c.nil) will also reject
a.b.nil + a.c.nil. On the other hand, the monitor a.ref(b).no rejects a.b.nil + a.c.nil,
but not a.(b.nil + c.nil).

The following lemma describes how failure-monitor and system LTSs can be
composed and decomposed according to instrumentation (cf. Lemmas 1 and 2).

Lemma 5 (Unzipping and zipping for failure monitors). Let m be a
failure monitor and let p ∈ P .

1. Assume that m � p
s=⇒ no � q. Then

– p
s=⇒ q and

– m
sref(a1)···ref(a�)==========⇒ no for some � ≥ 0 and a1 . . . a� ∈ Act∗ such that q

refuses ai for each i ∈ {1, . . . , �}.
2. Assume that p

s=⇒ q and m
sref(a1)···ref(a�)==========⇒ no, for some � ≥ 0 and a1 . . . a� ∈

Act∗ such that q refuses ai for each i ∈ {1, . . . , �}. Then m � p
s=⇒ no � q.

4.2 Must Testing via Monitors

The goal of this section is to show how the monitoring framework we just
reviewed can be used to give an alternative characterisation of classic must-
testing semantics à la De Nicola and Hennessy over strongly-convergent, finitely-
branching processes, which we now proceed to define.

40 L. Aceto et al.

Definition 4 (Strongly convergent and stable processes). A process p ∈
P is convergent iff it cannot perform an infinite sequence of τ transitions, that
is, there is no infinite sequence p0, p1, p2, . . . of processes in P such that p0 = p
and pi

τ−→ pi+1 for each i ≥ 0. We say that p ∈ P is strongly convergent iff
each of the processes that can be reached from it via a sequence of transitions is
convergent.

A process p ∈ P is stable iff it cannot perform a τ transition, that is, p 	 τ−→.

Definition 5 (Finitely branching processes). A process p ∈ P is finitely
branching iff each of the processes that can be reached from it via a sequence of
transitions has only finitely many outgoing transitions, that is, the set

{(μ, q′) | q
μ−→ q′}

is finite for each q such that p
s=⇒ q for some s ∈ Act∗.

The alternative characterisation of the must-testing preorder in terms of fail-
ures, which we will present in Theorem 6 to follow, is by now folklore in con-
currency theory. To the best of our knowledge, it was first proved by Rocco De
Nicola in [13] and offers a connection between must-testing semantics and failures
semantics [11] that, at the time, was considered rather unexpected. As a corol-
lary of that result and a classic one by Kanellakis and Smolka [21, Theorem 5.1],
deciding the must-testing preorder and equivalence is PSPACE-complete.

Definition 6 (Initials and failures of a process). Let p ∈ P .

– The set I(p) of initials of p is {a | p
a=⇒}.

– A pair (s,A) is a failure of a process p ∈ P iff s ∈ Act∗, A ⊆ Act and
I(p′) ∩ A = ∅ for some stable p′ such that p

s=⇒ p′. We write failures(p) for
the set of failures of process p.

Theorem 6 (De Nicola [13]). For all strongly convergent, finitely branching
p, q ∈ P , p �must q iff failures(q) ⊆ failures(p).

Remark 1. In the classic treatment of must-testing semantics over CCS and
other process description languages, strongly convergent processes are guaran-
teed to be finitely branching. In this paper, for the sake of clarity, we have chosen
to make the requirement that processes be finitely branching explicit.

Using the above theorem, we will now show the following result, to the effect
that the must testing preorder coincides with the failure monitoring preorder
from Definition 3.

Theorem 7. For all strongly convergent, finitely branching p, q ∈ P , p �must q
iff p �Ref

M q.

Testing Equivalence vs. Runtime Monitoring 41

Proof. Let p, q ∈ P be strongly convergent and finitely branching. By Theorem6,
it suffices only to prove that

failures(q) ⊆ failures(p) iff p �Ref
M q.

We show the two implication separately.
To prove the ‘only if’ implication, assume that failures(q) ⊆ failures(p) and

that rej(m, q) for some failure monitor m. We claim that rej(m, p) also holds.
To see this, observe that, since rej(m, q), there are some s ∈ Act∗ and some
q′ ∈ P such that m � q

s=⇒ no � q′. By the unzipping lemma for failure monitors
(Lemma 5(1), we have that

– q
s=⇒ q′ and

– m
sref(a1)···ref(a�)==========⇒ no for some � ≥ 0 and a1 . . . a� ∈ Act∗ such that q′ refuses

ai for each i ∈ {1, . . . , �}.

It follows that (s, {a1, . . . , a�}) is a failure of q and, by our assumption, also of
p. This means that p

s=⇒ p′ for some p′ that refuses ai for each i ∈ {1, . . . , �}.
Using the zipping lemma for failure monitors (Lemma5(2), we conclude that
m � p

s=⇒ no � p′ and thus rej(m, p), as claimed.
To prove the ‘if’ implication, assume that p �Ref

M q. We claim that failures(q)
is included in failures(p). This follows from the observation that rejection moni-
tors can be used to encode the failures of a process. More precisely, consider
a failure pair (s, {a1, . . . , a�}). We can associate with it a rejection monitor
m(s, {a1, . . . , a�}) by induction on s thus:

m(ε, {a1, . . . , a�}) = ref(a1).ref(a�).no and
m(as′, {a1, . . . , a�}) = a.m(s′, {a1, . . . , a�}).

By induction on s, it is easy to prove that (s, {a1, . . . , a�}) is a failure of some
process p iff rej(m(s, {a1, . . . , a�}), p). We can now complete the proof of the
claim thus:

(s, {a1, . . . , a�}) ∈ failures(q) ⇔ rej(m(s, {a1, . . . , a�}), q)
⇒ rej(m(s, {a1, . . . , a�}), p) (as p �Ref

M q)
⇔ (s, {a1, . . . , a�}) ∈ failures(p),

and we are done. ��

5 Conclusions

In this celebratory article, we have provided a formal connection between the
theory of testing equivalence, developed by De Nicola and Hennessy during De
Nicola’s PhD studies in Edinburgh, and the increasingly important field of run-
time verification. The results in this study are not deep, but we hope that they
highlight the pervasive nature of the ideas that underlie the definition of the

42 L. Aceto et al.

testing equivalences from [15] and will convince our readers that the field of
runtime monitoring owes much to the seminal work by De Nicola and Hennessy.
Some of us were influenced by that work at the start of their careers [5,6,20]
and are still working on testing-based approaches to the analysis of concurrent
processes after about thirty years.

An interesting avenue for future research is to investigate whether the must-
testing-like preorders over clients studied by Bernardi and Francalanza in [10]
capture some interesting properties of monitors. So far, our work on monitorabil-
ity has used the trace-based notions of verdict equivalence and ω-verdict equiv-
alence over monitors—see, for instance, the papers [2–4].

Acknowledgments. We are grateful to the anonymous reviewers for their sugges-
tions, which helped us to improve the paper. Luca Aceto thanks Ugo Montanari, who
asked him a question that led to the work presented in this article during a talk he
gave at IMT Lucca in July 2018. Luca Aceto and Anna Ingólfsdóttir have been lucky
to count Rocco De Nicola as one of their friends and mentors for many years. Luca
Aceto’s ‘tesi di laurea’ was jointly supervised by Rocco De Nicola and Alessandro Fan-
techi, and he was one of the first two students to graduate under Rocco De Nicola’s
supervision in 1986.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for param-
eterized monitorability. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS,
vol. 10803, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89366-2 11

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: On
the complexity of determinizing monitors. In: Carayol, A., Nicaud, C. (eds.) CIAA
2017. LNCS, vol. 10329, pp. 1–13. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60134-2 1

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. In: Pro-
ceedings of the ACM on Programming Languages (POPL), vol. 3, pp. 52:1–52:29
(2019). https://dl.acm.org/citation.cfm?id=3290365

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: The cost of
monitoring alone. CoRR abs/1902.05152 (2019). http://arxiv.org/abs/1902.05152

5. Aceto, L., De Nicola, R., Fantechi, A.: Testing equivalences for event structures. In:
Zilli, M.V. (ed.) Mathematical Models for the Semantics of Parallelism. LNCS, vol.
280, pp. 1–20. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-18419-
8 9

6. Aceto, L., Ingólfsdóttir, A.: A theory of testing for ACP. In: Baeten, J.C.M.,
Groote, J.F. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 78–95. Springer, Hei-
delberg (1991). https://doi.org/10.1007/3-540-54430-5 82

7. Aceto, L., Ingólfsdóttir, A.: Testing Hennessy-Milner logic with recursion. In:
Thomas, W. (ed.) FoSSaCS 1999. LNCS, vol. 1578, pp. 41–55. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49019-1 4

8. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, New York (2007).
https://doi.org/10.1017/cbo9780511814105

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-60134-2_1
https://doi.org/10.1007/978-3-319-60134-2_1
https://dl.acm.org/citation.cfm?id=3290365
http://arxiv.org/abs/1902.05152
https://doi.org/10.1007/3-540-18419-8_9
https://doi.org/10.1007/3-540-18419-8_9
https://doi.org/10.1007/3-540-54430-5_82
https://doi.org/10.1007/3-540-49019-1_4
https://doi.org/10.1017/cbo9780511814105

Testing Equivalence vs. Runtime Monitoring 43

9. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory
and Advanced Topics. LNCS, vol. 10457. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75632-5

10. Bernardi, G.T., Francalanza, A.: Full-abstraction for client testing preorders. Sci.
Comput. Program. 168, 94–117 (2018). https://doi.org/10.1016/j.scico.2018.08.
004

11. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984). https://doi.org/10.1145/828.833

12. Cerone, A., Hennessy, M.: Process behaviour: formulae vs. tests (extended
abstract). In: Fröschle, S.B., Valencia, F.D. (eds.) Proceedings 17th International
Workshop on Expressiveness in Concurrency, EXPRESS 2010. Electronic Proceed-
ings in Theoretical Computer Science, vol. 41, pp. 31–45 (2010). https://doi.org/
10.4204/EPTCS.41.3

13. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica
24(2), 211–237 (1987). https://doi.org/10.1007/BF00264365

14. de Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. In: Diaz, Josep
(ed.) ICALP 1983. LNCS, vol. 154, pp. 548–560. Springer, Heidelberg (1983).
https://doi.org/10.1007/BFb0036936

15. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984). https://doi.org/10.1016/0304-3975(84)90113-0

16. Francalanza, A., Aceto, L., Ingolfsdottir, A.: On verifying Hennessy-Milner logic
with recursion at runtime. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 71–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23820-3 5

17. Francalanza, A., Aceto, L., Ingolfsdottir, A.: Monitorability for the Hennessy-
Milner logic with recursion. Form. Methods Syst. Des. 51(1), 87–116 (2017).
https://doi.org/10.1007/s10703-017-0273-z

18. van Glabbeek, R.J.: The linear time - branching time spectrum I: the semantics
of concrete, sequential processes (Chap. 1). In: Bergstra, J.A., Ponse, A., Smolka,
S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)

19. Hennessy, M.: Algebraic Theory of Processes. Foundations of Computing, MIT
Press, Cambridge (1988)

20. Hennessy, M., Ingolfsdottir, A.: A theory of communicating processes with value
passing. Inf. Comput. 107(2), 202–236 (1993). https://doi.org/10.1006/inco.1993.
1067

21. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43–68 (1990). https://doi.org/10.
1016/0890-5401(90)90025-D

22. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976). https://doi.org/10.1145/360248.360251

23. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with
recursion. Theor. Comput. Sci. 72(2), 265–288 (1990). https://doi.org/10.
1016/0304-3975(90)90038-J. http://www.sciencedirect.com/science/article/pii/
030439759090038J

24. Loemker, L.E. (ed.): G. W. Leibniz: Philosophical Papers and Letters, 2nd edn. D.
Reidel, Dordrecht (1969)

25. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980).
https://doi.org/10.1007/3-540-10235-3

26. Morris, J.H.: Lambda-calculus models of programming languages. Ph.D. thesis,
Massachusetts Institute of Technology (1968)

https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1016/j.scico.2018.08.004
https://doi.org/10.1016/j.scico.2018.08.004
https://doi.org/10.1145/828.833
https://doi.org/10.4204/EPTCS.41.3
https://doi.org/10.4204/EPTCS.41.3
https://doi.org/10.1007/BF00264365
https://doi.org/10.1007/BFb0036936
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1006/inco.1993.1067
https://doi.org/10.1006/inco.1993.1067
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1145/360248.360251
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1016/0304-3975(90)90038-J
http://www.sciencedirect.com/science/article/pii/030439759090038J
http://www.sciencedirect.com/science/article/pii/030439759090038J
https://doi.org/10.1007/3-540-10235-3

44 L. Aceto et al.

27. Phillips, I.: Refusal testing. Theor. Comput. Sci. 50(3),241–284 (1987). https://
doi.org/10.1016/0304-3975(87)90117-4. http://www.sciencedirect.com/science/
article/pii/0304397587901174

28. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: pre-
liminary report. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, pp. 1–9. ACM (1973). https://doi.org/10.
1145/800125.804029

29. Winskel, G.: Synchronization trees. Theor. Comput. Sci. 34, 33–82 (1984). https://
doi.org/10.1016/0304-3975(84)90112-9

https://doi.org/10.1016/0304-3975(87)90117-4
https://doi.org/10.1016/0304-3975(87)90117-4
http://www.sciencedirect.com/science/article/pii/0304397587901174
http://www.sciencedirect.com/science/article/pii/0304397587901174
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
https://doi.org/10.1016/0304-3975(84)90112-9
https://doi.org/10.1016/0304-3975(84)90112-9

Reward Testing Equivalences
for Processes

Rob van Glabbeek1,2(B)

1 Data61, CSIRO, Sydney, Australia
2 Computer Science and Engineering, University of New South Wales,

Sydney, Australia
rvg@cs.stanford.edu

Abstract. May and must testing were introduced by De Nicola and
Hennessy to define semantic equivalences on processes. May-testing
equivalence exactly captures safety properties, and must-testing equiva-
lence liveness properties. This paper proposes reward testing and shows
that the resulting semantic equivalence also captures conditional live-
ness properties. It is strictly finer than both the may- and must-testing
equivalence.

Keywords: Reward testing · Semantic equivalences ·
Conditional liveness properties · Labelled transition systems ·
Process algebra · CCS · Axiomatisations · Recursion · Congruence ·
Divergence

1 Introduction

The idea behind semantic equivalences ≡ and refinement preorders � on pro-
cesses is that P ≡ Q says, essentially, that for practical purposes processes P
and Q are equally suitable, i.e. one can be replaced for by the other without
untoward side effects. Likewise, P � Q says that for all practical purposes under
consideration, Q is at least as suitable as P , i.e. it will never harm to replace P by
Q. To this end, Q must have all relevant good properties that P enjoys. Among
the properties that ought to be so preserved, are safety properties, saying that
nothing bad will even happen, and liveness properties, saying that something
good will happen eventually.

In the setting of the process algebra CCS, refinement preorders �may and
�must, and associated semantic equivalences ≡may and ≡must, were proposed
by De Nicola & Hennessy in [6]. In [12] I argue that ≡may and ≡must are the

This paper is dedicated to Rocco De Nicola, on the occasion of his 60th birthday.
Rocco’s work has been a source of inspiration to my own.
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 45–70, 2019.
https://doi.org/10.1007/978-3-030-21485-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_5

46 R. van Glabbeek

•

τ

c g
≡may

≡must •

τ

c g
c

Fig. 1. Processes identified by may and must testing, but with different conditional
liveness properties

coarsest equivalences that enjoy some basic compositionality requirements1 and
preserve safety and liveness properties, respectively. Yet neither preserves so-
called conditional liveness properties. This is illustrated in Fig. 1, showing two
processes that are identified under both may and must testing. From a practical
point of view, the difference between these two processes may be enormous. It
could be that the action c comes with a huge cost, that is only worth making when
the good action g happens afterwards. Only the right-hand side process is able
to incur the cost without any benefits, and for this reason it lacks an important
property that the left-hand process has. I call such properties conditional liveness
properties. A conditional liveness property says that

under certain conditions something good will eventually happen.

This paper introduces a stronger form of testing that preserves conditional live-
ness properties.

2 General Setting

It is natural to view the semantics of processes as being determined by their
ability to pass tests [6,17]; processes P1 and P2 are deemed to be semantically
equivalent unless there is a test which can distinguish them. The actual tests
used typically represent the ways in which users, or indeed other processes, can
interact with Pi. This idea can be formulated in the following general testing
scenario [9], of which the testing scenarios of [6,17] are instances. It assumes

– a set of processes P,
– a set of tests T, which can be applied to processes,
– a set of outcomes O, the possible results from applying a test to a process,
– and a function Apply : T×P → P+(O), representing the possible results of

applying a specific test to a specific process.

Here P+(O) denotes the collection of non-empty subsets of O; so the result of
applying a test T to a process P , Apply(T ,P), is in general a set of outcomes,
representing the fact that the behaviour of processes, and indeed tests, may be
nondeterministic.
1 Namely being congruences for injective renaming and partially synchronous inter-

leaving operators, or equivalently all operators of CSP, or equivalently the CCS
operators parallel composition, restriction and relabelling.

Reward Testing Equivalences for Processes 47

Moreover, some outcomes are considered better then others; for example the
application of a test may simply succeed, or it may fail, with success being better
than failure. So one can assume that O is endowed with a partial order, in which
o1 ≤ o2 means that o2 is a better outcome than o1.

When comparing the result of applying tests to processes one needs to com-
pare subsets of O. There are two standard approaches to make this comparison,
based on viewing these sets as elements of either the Hoare or Smyth powerdo-
main [1,16] of O. For O1, O2 ∈ P+(O) let

(i) O1 �Ho O2 if for every o1 ∈ O1 there exists some o2 ∈ O2 such that o1 ≤ o2
(ii) O1 �Sm O2 if for every o2 ∈ O2 there exists some o1 ∈ O1 such that o1 ≤ o2.

Using these two comparison methods one obtains two different semantic pre-
orders for processes:

(i) For P,Q ∈ P let P �may Q if Apply(T ,P) �Ho Apply(T ,Q) for each test T
(ii) Similarly, let P �must Q if Apply(T ,P) �Sm Apply(T ,Q) for each test T .

Note that �may and �must are reflexive and transitive, and hence preorders. I
use P ≡may Q and P ≡must Q to denote the associated equivalences.

The terminology may and must refers to the following reformulation of the
same idea. Let Pass ⊆ O be an upwards-closed subset of O, i.e. satisfying
o′ ≥ o ∈ Pass ⇒ o′ ∈ Pass, thought of as the set of outcomes that can be
regarded as passing a test. Then one says that a process P may pass a test
T with an outcome in Pass, notation “P may Pass T ”, if there is an outcome
o ∈ Apply(P ,T) with o ∈ Pass, and likewise P must pass a test T with an
outcome in Pass, notation “P must Pass T ”, if for all o ∈ Apply(P ,T) one has
o ∈ Pass. Now

P �may Q iff ∀T ∈ T ∀Pass ∈ P↑(O) (P may Pass T ⇒ Q may Pass T)

P �must Q iff ∀T ∈ T ∀Pass ∈ P↑(O) (P must Pass T ⇒ Q must Pass T)

where P↑(O) is the set of upwards-closed subsets of O.
The original theory of testing [6,17] is obtained by using as the set of out-

comes O the two-point lattice

⊥

�

with � representing the success of a test application, and ⊥ failure.

3 CCS: The Calculus of Communicating Systems

CCS [24] is parametrised with a set C of names; Act := C
.∪ C̄
.∪ {τ} is the set

of actions, where τ is a special internal action and C̄ := {c̄ | c ∈ C } is the

48 R. van Glabbeek

Table 1. Structural operational semantics of CCS

set of co-names. Complementation is extended to C̄ by setting ¯̄c = c. Below, a
ranges over A := C ∪ C̄ and α over Act. A relabelling is a function f : C →C ; it
extends to Act by f(c̄)=f(c) and f(τ) := τ . Let X be a set X, Y , . . . of process
variables. The set ECCS of CCS expressions is the smallest set including:

α.E for α ∈ Act and E ∈ ECCS action prefixing
∑

i∈I Ei for I an index set and Ei ∈ ECCS choice
E|F for E, F ∈ ECCS parallel composition
E\L for L ⊆ C and E ∈ ECCS restriction
E[f] for f a relabelling and E ∈ ECCS relabelling
X for X ∈ X process variable
fix�X:S� for S : X ⇀ECCS and X ∈ dom(S) recursion

The expression
∑

i∈{1,2}αi.Ei is often written as α1.E1+α2.E2,
∑

i∈{1}αi.Ei as
α1.E1, and

∑
i∈∅αi.Ei as 0. Moreover, one abbreviates α.0 by α, and P\{c}

by P\c. A partial function S : X ⇀ ECCS is called a recursive specification,
and traditionally written as {Y

def
= S(Y) | Y ∈ dom(S)}. A CCS expression E is

closed if each occurrence of a process variable Y in E lays within a subexpression
fix�X:S� of E with Y ∈dom(S); PCCS, ranged over by P,Q, . . . , denotes the set
of closed CCS expressions, or processes.

The semantics of CCS is given by the labelled transition relation → ⊆ PCCS×
Act×PCCS, where transitions P

α−→ Q are derived from the rules of Table 1. Here
fix�SX :S� denotes the expression S(X) (written SX) with fix�Y :S� substituted
for each free occurrence of Y, for all Y ∈ dom(S), while renaming bound variables
in SX as necessary to avoid name-clashes.

The process α.P performs the action α first and subsequently acts as P . The
choice operator

∑
i∈I Pi may act as any of its arguments Pi, depending on which

of these processes is able to act at all. The parallel composition P |Q executes
an action from P , an action from Q, or in the case where P and Q can perform
complementary actions a and ā, the process can perform a synchronisation,

Reward Testing Equivalences for Processes 49

resulting in an internal action τ . The restriction operator P\L inhibits execution
of the actions from L and their complements. The relabelling P [f] acts like
process P with all labels α replaced by f(α). Finally, the rule for recursion says
that a recursively defined process fix�X:S� behaves exactly as the body SX of
the recursive equation X

def
= SX , but with recursive calls fix�Y :S� substituted

for the variables Y ∈ dom(S).

4 Classical May and Must Testing for CCS

Let Actω := Act ∪ {ω}, where ω /∈ Act is a special action reporting success. A
CCS test T ∈ TCCS is defined just like a CCS process, but with α ranging over
Actω. So a CCS process is a special kind of CCS test, namely one that never
performs the action ω. To apply the test T to the process P one runs them in
parallel; that is, one runs the combined process T |P—which is itself a CCS test.

Definition 1. A computation π is a finite or infinite sequence T0, T1, T2, . . . of
tests, such that (i) if Tn is the final element in the sequence, then Tn

τ−→ T for
no T , and (ii) otherwise Tn

τ−→ Tn+1.
A computation is successful if it has a state T with T

ω−→ T ′ for some T ′.
For T ∈ TCCS, P ∈ PCCS, let Comp(T, P) be the set of computations whose

initial element is T |P .
Let Apply(T ,P) := {� | ∃ successful π ∈ Comp(T, P)} ∪

{⊥ | ∃ unsuccessful π ∈ Comp(T, P)}.

Using this definition of Apply it follows that P �may Q holds unless there is a
test T such that T |P has (that is, is the initial state of) a successful computation
but Q has not. Likewise P �must Q holds unless there is a test T such that T |P
has only successful computations but Q has not.

5 Dual May and Must Testing

A liveness property [20] is a property that says that something good will even-
tually happen. In the context of CCS, any test T can be regarded to specify a
liveness property; a process P is defined to have this property iff all computations
of T |P are successful. Now P �must Q holds iff all liveness properties T ∈ TCCS

that are enjoyed by P also hold for Q.
A safety property [20] is a property that says that something bad will never

happen. When thinking of the special action ω as reporting that something bad
has occurred, rather than something good, any test T can also be regarded to
specify a safety property; a process P is defined to have this property iff none of
the computations of T |P are catastrophic; here catastrophic is simply another
word for “successful”, when reversing the connotation of ω. Now Q �may P holds
iff all safety properties T ∈ TCCS that are enjoyed by P also hold for Q.

A labelled transition system (LTS) over a set Act is a pair (P,→) where P
is a set of processes or states and → ⊆ P × Act × P a set of transitions. In

50 R. van Glabbeek

[12] preorders �liveness and �safety are defined on LTSs. Specialised to the LTS
(PCCS,→) induced by CCS, �liveness coincides with �must, and �safety is exactly
the reverse of �may, in accordance with the reasoning above.

To explain the reversal of �may when dealing with safety properties, I propose
a variant of CCS testing where in Definition 1 the word “catastrophic” is used
for “successful” and Apply is redefined by

Apply(T ,P) := {⊥ | ∃ catastrophic π ∈ Comp(T, P)} ∪
{� | ∃ uncatastrophic π ∈ Comp(T, P)}.

An equivalent alternative to redefining Apply is to simply invert the order
between ⊥ and �. Let �dual

may and �dual
must be the versions of the may- and must-

testing preorders obtained from this alternative definition. It follows immedi-
ately from the definitions that P �dual

may Q iff Q �must P and that P �dual
must Q iff

Q �may P . Based on this, it may be more accurate to say that �safety coincides
with �dual

must.
A possibility property [21] is a property that says that something good might

eventually happen. A test T can be regarded to specify a possibility property;
a process P is defined to have this property iff some computation of T |P is
successful. Now P �may Q holds iff all possibility properties T ∈ TCCS that
are enjoyed by P also hold for Q. Lamport argues that “verifying possibility
properties tells you nothing interesting about a system” [21]. As an example,
consider the following models of coffee machines:

C1 := τ C2 := τ.c + τ C3 := τ.c

where c is the act of dispensing coffee. The machine C1 surely will not make
coffee, C2 makes a nondeterministic choice between making coffee or not, and
C3 surely makes coffee. Under may testing, systems C2 and C3 are equivalent—
both have the possibility of making coffee—and each of them is better than C1:
C1 �may C2 ≡may C3. The relevance of this indeed is questionable. It takes must
testing to formalise that C3 is better than C2: only C3 guarantees that coffee
will eventually be dispensed.

When employing dual testing, the same example applies, but with c denoting
a catastrophe. Now C1 is safe, whereas C2 and C3 are not: C1 �dual

must C2 ≡dual
must C3.

Dual may testing would argue that C2 is better than C3 because a catastrophe
might be avoided. This however, can be deemed a weak argument.

In view of these considerations, I will focus on the preorders �must and �dual
must

(or �safety). The (dual) may preorders simply arise as their inverses, and hence
do not require explicit treatment.

6 Reward Testing for CCS

A CCS reward test is defined just like a CCS process, but with α ranging over
Act × R, the valued actions. A valued action is an action tagged with a real
number, the reward for executing this action. A negative reward can be seen as
a penalty. Let TR

CCS be the set of CCS reward tests. The structural operational
semantics for CCS reward tests has the following modified rules:

Reward Testing Equivalences for Processes 51

P
a,r−→ P ′, Q

ā,r′
−→ Q′

P |Q τ,r+r′−→ P ′|Q′
P

α,r−→ P ′

P\L
α,r−→ P ′\L

(α, ᾱ �∈ L)
P

α,r−→ P ′

P [f]
f(α),r−→ P ′[f]

Thus, in synchronising two actions one reaps the rewards of both. In all other
rules of Table 1, α is simply replaced by α, r, with r ∈ R. A valued action α, 0 is
simply denoted α, so that a CCS process can be seen as a special CCS reward
test, namely one in which all rewards are 0. To apply a reward test T to a process
P one again runs them in parallel.

Definition 2. A reward computation π is a finite or infinite sequence
T0, r1, T1, r2, T2 . . . of reward tests, such that (i) if Tn is the final element in
π, then Tn

τ,r−→ T for no r and T , and (ii) otherwise Tn
τ,rn+1−→ Tn+1.

The reward of a finite computation π ending in Tn is
∑n

i=1 ri. The reward of
an infinite computation T0, r1, T1, r2, T2 . . . is

inf
n→∞

n∑

i=1

ri ∈ R ∪ {−∞,∞}.

For T ∈ TR
CCS, P ∈ PCCS, let CompR(T, P) be the set of reward computations

with initial element T |P .
Let Apply(T ,P) := {reward(π) | π ∈ CompR(T ,P)}.

This defines reward preorders �may
reward and �must

reward on PCCS. It will turn out
that P �may

reward Q iff Q �must
reward P . As a consequence I will focus on �must

reward, and
simply call it �reward.

7 Characterising Reward Testing

Assuming a fixed LTS (P,→), labelled over a set Act = A
.∪ {τ}, the ternary

relation
_
=⇒ ⊆ P × A ∗ × P is the least relation satisfying

P
ε=⇒ P ,

P
τ−→ Q

P
ε=⇒ Q

,
P

a−→ Q, a �= τ

P
a=⇒ Q

and
P

σ=⇒ Q
ρ
=⇒ r

P
σρ
=⇒ r

.

For σ ∈ A ∗ and ν ∈ A ∗ ∪ A ∞ write σ ≤ ν for “σ is a prefix of ρ”, i.e.
“∃ρ .σρ = ν”.

Definition 3. Let P ∈ P.

– a1a2a3 · · · ∈ A ∞ is an infinite trace of P if ∃Pi such that P
a1=⇒ P1

a2=⇒ · · · .
– inf (P) denotes the set of infinite traces of P .
– P diverges, notation P⇑, if ∃Pi ∈ P such that P

τ−→ P1
τ−→ P2

τ−→ · · · .
– divergences(P) := {σ ∈ A ∗ | ∃Q.P

σ=⇒ Q⇑}, the divergence traces of P .
– initials(P) := {α ∈ A | ∃Q. P

α−→ Q}.
– deadlocks(P) := {σ ∈ A ∗ | ∃Q. P

σ=⇒ Q ∧ initials(Q) = ∅}.
– CT (P) := inf (P)∪ divergences(P)∪ deadlocks(P), the complete traces of P .

52 R. van Glabbeek

– ptraces(P) := {σ ∈ A ∗ | ∃Q. P
σ=⇒ Q}, the set of partial traces of P .

– failures(P) :=
{

〈σ,X〉 ∈ A ∗ × P(A)
∣
∣
∣
∣
∃Q. P

σ=⇒ Q ∧
initials(Q) ∩ (X ∪ {τ}) = ∅

}

.

– failuresd(P) := failures(P) ∪ {〈σ,X〉 | σ ∈ divergences(P) ∧ X ⊆ A }.
– infd(P) := inf (P) ∪ {ν ∈ A ∞ | ∀σ<ν ∃ρ ∈ divergences(P). σ ≤ ρ < ν}.
– divergences⊥(P) := {σρ | σ ∈ divergences(P) ∧ ρ ∈ A ∗}.
– inf⊥(P) := inf (P) ∪ {σν | σ ∈ divergences(P) ∧ ν ∈ A ∞}.
– failures⊥(P) := failures(P)∪{〈σρ,X〉 | σ∈divergences(P)∧ρ∈A ∗ ∧X ⊆A }.

Note that ptraces(R) = {σ | 〈σ, ∅〉 ∈ failuresd(R)} for any R ∈ P. (*)
A path of a process P ∈ P is an alternating sequence P0 α1 P1 α2 P2 · · · of pro-
cesses/states and actions, starting with a state and either being infinite or end-
ing with a state, such that Pi

αi+1−→ Pi+1 for all relevant i. Let l(π) := α1α2 · · ·
be the sequence of actions in π, and
(π) the same sequence after all τs are
removed. Now σ ∈ inf (P) ∪ divergences(P) iff P has an infinite path π with

(π) = σ. Likewise, σ ∈ ptraces(P) iff P has a finite path π with
(π) = σ.
Finally, σ ∈ inf (P) ∪ ptraces(P) iff P has an path π with
(π) = σ.

Any transition P |Q α−→ R derives, through the rules of Table 1, from

– a transition P
α−→ P ′ and a state Q, where R = P ′|Q,

– two transitions P
a1−→ P ′ and Q

ā2−→ Q′, where R = P ′|Q′,
– or from a state P and a transition Q

α−→ Q′, where R = P |Q′.

This transition/state, transition/transition or state/transition pair is called a
decomposition of P |Q α−→ R; it need not be unique. Now a decomposition of a
path π of P |Q into paths π1 and π2 of P and Q, respectively, is obtained by
decomposing each transition in the path, and concatenating all left-projections
into a path of P and all right-projections into a path of Q—notation π ∈ π1|π2

[15]. Here it could be that π is infinite, yet either π1 or π2 (but not both) are
finite. Again, decomposition of paths need not be unique.

Theorem 1. Let P,Q ∈ PCCS.
Then P �reward Q ⇔ divergences(P) ⊇ divergences(Q) ∧

inf (P) ⊇ inf (Q) ∧
failuresd(P) ⊇ failuresd(Q).

Proof: Let �NDFD be the preorder defined by: P �NDFD Q iff the right-hand
side of Theorem 1 holds.

For σ = a1a2 · · · an ∈ A ∗, let σ̄.T with T ∈ TR
CCS be the CCS reward test

ā1.ā2. · · · ā1.T . It starts with performing the complements of the actions in σ,
where each of these actions is given a reward 0.

Write αr for (α, r) ∈ Act × R. For ν = a1a2a3 · · · ∈ A ∞, let ν̄r be the CCS
reward test fix�X0:S� where S = {Xi

def
= ār

i+1.Xi+1 | i ≥ 0}. This test simply
performs the infinite sequence of complements of the actions in ν, where each of
these actions is given a reward r.

“⇒”: Suppose P ��NDFD Q.

Reward Testing Equivalences for Processes 53

Case 1: Let σ ∈ divergences(Q)\divergences(P). Take T := σ̄.τ−1.τ1 ∈ TR
CCS.

Then T |Q has a computation π with reward(π) < 0, whereas T |P has no such
computation. Hence P ��reward Q.

Case 2: Let ν ∈ inf (Q) \ inf (P). Take T := ν̄−1 ∈ TR
CCS. Then T |Q has a

computation π with reward(π) = −∞, whereas T |P has no such computation.
Hence P ��reward Q.

Case 3: Let 〈σ,X〉 ∈ failuresd(Q)\ failuresd(P). Take T := σ̄.τ−1.
∑

a∈X a1 ∈
TR

CCS. Then T |Q has a computation π with reward(π) < 0, whereas T |P has no
such computation. Hence P ��reward Q.

“⇐”: Suppose P �NDFD Q. Let T ∈ TR
CCS and r ∈ R be such that ∃π ∈

Comp(T |Q) with reward(π) = r. It suffices to find a π′ ∈ Comp(T |P) with
reward(π′) ≤ r. The computation π can be seen as a path of T |Q in which all
actions are τ . Decompose this path into paths π1 of T and π2 of Q. Note that
reward(π) = reward(π1).

Case 1: Let π2 be infinite. Then
(π2) ∈ inf (Q)∪ divergences(Q) ⊆ inf (P)∪
divergences(P). Thus P has an infinite path π′

2 with
(π′
2) =
(π2). Consequently,

T |P has an infinite path π′ ∈ π1|π′
2 that is a computation with reward(π′) = r.

Case 2: Let π2 be finite and π1 be infinite. Then
(π1) ∈ divergences(T) and

(π2) ∈ ptraces(Q) ⊆ ptraces(P). The latter inclusion follows by (*). Thus P
has a finite path π′

2 with
(π′
2) =
(π2). Consequently, T |P has an infinite path

π′ ∈ π1|π′
2 that is a computation with reward(π′) = r.

Case 3: Let π1 and π2 be finite. Let T ′ and Q′ be the last states of π1

and π2, respectively. Let X := {a ∈ Act | ar ∈ initials(T ′)}. Then τ /∈ X,
τ /∈ initials(Q′) and initials(Q′) ∩ X = ∅. So 〈
(π2),X〉 ∈ failures(Q) ⊆
failuresd(Q) ⊆ failuresd(P). Thus P has either an infinite path π′

2 with
(π′
2) =

(π2) or a finite path π′
2 with
(π′

2) =
(π2) and whose last state P ′ satisfies
initials(P ′) ∩ (X ∪ {τ}) = ∅. Consequently, T |P has a finite or infinite path
π′ ∈ π1|π′

2 that is a computation with reward(π′) = r. ��

8 Weaker Notions of Reward Testing

Finite-penalty reward testing doesn’t allow computations that incur infinitely
many penalties. A test T ∈ TR

CCS has finite penalties if each infinite path
Tαr1

1 T1α
r2
2 T2 · · · has only finitely many transitions i with ri < 0. Let P �fp-reward

Q iff Apply(T ,P) �Sm Apply(T ,Q) for every finite-penalty reward test T.

Theorem 2. Let P,Q ∈ PCCS.
Then P �fp-reward Q ⇔ divergences(P) ⊇ divergences(Q) ∧

infd(P) ⊇ infd(Q) ∧
failuresd(P) ⊇ failuresd(Q).

Proof: Let �d
FDI be the preorder defined by: P �d

FDI Q iff the right-hand side
of Theorem 2 holds.

“⇒”: Suppose P ��d
FDI Q. Case 1 and 3 proceed exactly as in the proof of

Theorem 1, but the proof of Case 2 needs to be revised, as its proof uses a test

54 R. van Glabbeek

with infinitely many penalties. So assume

divergences(P) ⊇ divergences(Q) ∧ failuresd(P) ⊇ failuresd(Q)

and let ν ∈ infd(Q) \ infd(P). I can rule out the case ∀σ<ν ∃ρ ∈
divergences(q).σ ≤ ρ < ν because then ν ∈ infd(P), using that divergences(Q) ⊆
divergences(P). So ν ∈ inf (Q). Let ν := ν1ν2, where each ρ ∈ divergences(Q)
with ρ < ν satisfies ρ < ν1. Let ν2 = b1b2 · · · ∈ A ∞. Take T := ν̄1.τ

−1.fix�Y0:S�,
where S = {Yi

def
= τ1 + b̄i+1.Yi+1 | i ≥ 0}. Then T |Q has a computation π with

reward(π) < 0, whereas T |P has no such computation. Hence P ��fp-reward Q.

“⇐”: Suppose P �d
FDI Q. The proof proceeds just as the one of Theorem 1,

except for Case 1.
Case 1: Let π2 be infinite. Then
(π2) ∈ inf (Q) ∪ divergences(Q) ⊆

infd(P) ∪ divergences(P). In case
(π2) ∈ inf (P) ∪ divergences(P) the proof
concludes as for Theorem 1. So assume that
(π2) ∈ A ∞ and ∀σ<
(π2) ∃ρ ∈
divergences(P).σ ≤ ρ <
(π2). Then there are prefixes π†, π†

1 and π†
2 of π, π1

and π2 such that (i) π† ∈ π†
1|π†

2, (ii) there are no negative rewards allocated in
the suffix of π1 past π†

1, and (iii)
(π†
2) ∈ divergences(P). Let π′

2 be an infinite
path of P with
(π′

2) =
(π†
2). Then there is a computation π′ ∈ π†

1|π′
2 of T |P

with reward(π′) = reward(π†
1) ≤ reward(π1) = r. ��

Single penalty reward testing doesn’t allow computations that incur multi-
ple penalties. A test T ∈ TR

CCS has the single penalty property if each path
Tαr1

1 T1α
r2
2 T2 · · · has at most one transition i with ri < 0. Let P �sp-reward Q

iff Apply(T ,P) �Sm Apply(T ,Q) for every single penalty reward test T. Obvi-
ously, �sp-reward coincides with �fp-reward. This follows because all test used in
the proof of Theorem 2 have the single penalty property.

Analogously one might weaken reward testing and/or single penalty reward
testing by requiring that in each computation only finitely many, or at most one,
positive reward can be reaped. This does not constitute a real weakening, as the
tests used in Theorems 1 and 2 already allot at most a single positive reward per
computation only.

Nonnegative reward testing requires all rewards to be nonnegative. Let
P �+reward Q iff Apply(T ,P) �Sm Apply(T ,Q) for every nonnegative reward
test T. Likewise �−reward requires all rewards to be 0 or negative.

Theorem 3. P �+reward Q ⇔ divergences⊥(P) ⊇ divergences⊥(Q) ∧
inf⊥(P) ⊇ inf⊥(Q) ∧

failures⊥(P) ⊇ failures⊥(Q).

Proof: Let �⊥
FDI be the preorder defined by: P �⊥

FDI Q iff the right-hand side
of Theorem 3 holds.

“⇒”: Suppose P ��⊥
FDI Q.

Case 1: Let σ = a1a2 · · · an ∈ divergences⊥(Q) \ divergences⊥(P). Take T :=
fix�X0:S� in which

S = {Xi
def
= τ1 + ai+1.Xi+1 | 0≤ i < n} ∪ {Xn

def
= τ1}.

Reward Testing Equivalences for Processes 55

Then T |Q has a computation π with reward(π) < 1, which T |P has not. Hence
P ��+reward Q.

Case 2: Let ν = a1a2 · · · ∈ inf⊥(Q) \ inf⊥(P). Let T := fix�X0:S� with
S = {Xi−1

def
= τ1+ ai.Xi | i≥ 1}. Then T |Q has a computation π such that

reward(π) < 1, which T |P has not. Hence P ��+reward Q.
Case 3: Let 〈a1a2 · · · an,X〉∈ failures⊥(Q)\ failures⊥(P). Take T :=fix�X0:S�

in which

S = {Xi
def
= τ1 + ai+1.Xi+1 | 0≤ i < n} ∪ {Xn

def
=

∑

a∈X

a1}.

Then T |Q has a computation π with reward(π) < 1, which T |P has not. Hence
P ��+reward Q.

“⇐”: Suppose P �⊥
FDI Q. Let T ∈ TR

CCS be a nonnegative rewards test and
r ∈ R be such that there is a π ∈ Comp(T |Q) with reward(π) = r. It suffices to
find a π′ ∈ Comp(T |P) with reward(π′) ≤ r. The computation π can be seen as
a path of T |Q in which all actions are τ . Decompose this path into paths π1 of
T and π2 of Q. Note that reward(π) = reward(π1).

Case 1: Let π2 be infinite. Then
(π2) ∈ inf (Q)∪divergences(Q) ⊆ inf⊥(P)∪
divergences⊥(P). If
(π2) ∈ inf (P)∪ divergences(P) then P has an infinite path
π′
2 with
(π′

2) =
(π2). Consequently, T |P has an infinite path π′ ∈ π1|π′
2 that

is a computation with reward(π′) = r. The alternative is that
(π2) has a prefix
in divergences(P). In that case there are prefixes π†, π†

1 and π†
2 of π, π1 and

π2 such that π† ∈ π†
1|π†

2 and
(π†
2) ∈ divergences(P). Let π′

2 be an infinite path
of P with
(π′

2) =
(π†
2). Then there is a computation π′ ∈ π†

1|π′
2 of T |P with

reward(π′) = reward(π†
1) ≤ reward(π1) = r.

Case 2: Let π2 be finite and π1 be infinite. Then
(π1) ∈ divergences(T) and

(π2) ∈ ptraces(Q) ⊆ ptraces(P) ∪ divergences⊥(P). The latter inclusion follows
since

ptraces(R) ∪ divergences⊥(R) = {σ | 〈σ, ∅〉 ∈ failures⊥(R)}
for any R ∈ P. If
(π2) ∈ ptraces(P) then P has a finite path π′

2 with
(π′
2) =

(π2). Consequently, T |P has an infinite path π′ ∈ π1|π′
2 that is a computation

with reward(π′) = r. The alternative is handled just as for Case 1 above.
Case 3: Let π1 and π2 be finite. Let T ′ and Q′ be the last states of π1

and π2, respectively. Let X := {a ∈ Act | ar ∈ initials(T ′)}. Then τ /∈ X,
τ /∈ initials(Q′) and initials(Q′) ∩ X = ∅. So 〈
(π2),X〉 ∈ failures(Q) ⊆
failures⊥(Q) ⊆ failures⊥(P). If 〈
(π2) ∈ failures(P) then P has a finite path π′

2

with
(π′
2) =
(π2) and whose last state P ′ satisfies initials(P ′)∩ (X ∪{τ}) = ∅.

Consequently, T |P has a finite or infinite path π′ ∈ π1|π′
2 that is a computation

with reward(π′) = r. The alternative is handled just as for Case 1 above. ��
One might weaken nonnegative reward testing by requiring that in each compu-
tation only finitely many, or at most one, reward can be reaped. This does not
constitute a real weakening, as the tests used in Theorem 3 already allot at most
a single reward per computation only.

56 R. van Glabbeek

Theorem 4. P �−reward Q ⇔ ptraces(P) ⊇ ptraces(Q) ∧
inf (P) ⊇ inf (Q)

Proof: Let �∞
T be the preorder defined by: P �∞

T Q iff the right-hand side of
Theorem 4 holds.
“⇒”: Suppose P ��∞

T Q.
Case 1: Let σ ∈ ptraces(Q) \ ptraces(P). Take T := σ̄.τ−1. Then T |Q has a

computation π with reward(π) < 1, which T |P has not. Hence P ��−reward Q.
Case 2 proceeds exactly as in the proof of Theorem 1.

“⇐”: Suppose P �∞
T Q. Let T ∈ TR

CCS be a nonpositive rewards test and r ∈ R
be such that there is a π ∈ Comp(T |Q) with reward(π) = r. It suffices to find a
π′ ∈ Comp(T |P) with reward(π′) ≤ r. The computation π can be seen as a path
of T |Q in which all actions are τ . Decompose this path into paths π1 of T and
π2 of Q. Note that reward(π) = reward(π1).

Moreover,
(π2) ∈ inf (Q) ∪ ptraces(Q) ⊆ inf (P) ∪ ptraces(P). So P has a
path π′

2 with
(π′
2) =
(π2). Consequently, T |P has an path π′ ∈ π1|π′

2 that is
either a computation, or a prefix of a computation, with reward(π′) = r. In case
it is a prefix of a computation π′′ then reward(π′′) ≤ reward(π′) = r. ��
Finite-penalty nonpositive reward testing only allows computations that incur
no positive rewards and merely finitely many penalties. Let P �fp-−reward Q iff
Apply(T ,P) �Sm Apply(T ,Q) for each finite-penalty nonpositive reward test T.

Theorem 5. P �fp-−reward Q ⇔ ptraces(P) ⊇ ptraces(Q)

Proof: Let �T be the preorder defined by: P �T Q iff the right-hand side of
Theorem 5 holds.

“⇒”: Suppose P ��T Q. Let σ ∈ ptraces(Q) \ ptraces(P). Take T := σ̄.τ−1.
Then T |Q has a computation π with reward(π) < 1, which T |P has not. Hence
P ��−reward Q.

“⇐”: Suppose P �T Q. Let T ∈ TR
CCS be a finite-penalty nonpositive rewards

test and r ∈ R be such that there is a π ∈ Comp(T |Q) with reward(π) = r. Then
π has a finite prefix π† (not necessarily a computation) with reward(π) = r. It
suffices to find a prefix π′ of a computation of T |P with reward(π′) = r. The finite
prefix π† can be seen as a path of T |Q in which all actions are τ . Decompose this
path into finite paths π1 of T and π2 of Q. Now
(π2) ∈ ptraces(Q) ⊆ ptraces(P).
So P has a path π′

2 with
(π′
2) =
(π2). Consequently, T |P has a path π′ ∈ π1|π′

2

that is a prefix of a computation, with reward(π′) = r. ��
Single penalty nonpositive reward testing only allows computations that incur
no positive rewards and at most one penalty. Let P �sp-−reward Q iff
Apply(T ,P) �Sm Apply(T ,Q) for every single penalty nonpositive reward test
T. Obviously, �sp-−reward coincides with �fp-−reward. This follows because all test
used in the proof of Theorem 5 have the single penalty property.

Reward Testing Equivalences for Processes 57

9 Reward May Testing

Call a test T ∈ TR
CCS well-behaved if for each infinite path Tαr1

1 T1α
r2
2 T2 · · · the

limit limn→∞
∑n

i=1 ri ∈ R ∪ {−∞,∞} exists. If the sequence (ri)∞i=1 alternates
between 1 and −1 for instance, the test is not well-behaved. Since all tests used
in the proof of Theorem 1 are well-behaved, the reward testing preorder �reward
would not change if one restricts the collection of available test to the well-
behaved ones only. When restricting to well-behaved tests, the infimum infn→∞
in Definition 2 may be read as limn→∞.

Theorem 6. P �may
reward Q iff Q �must

reward P .

Proof: For any well-behaved test T , let −T be obtained by changing all occur-
rences of actions (α, r) into (α,−r). Now Apply(−T,P) = {−r |r∈Apply(T,P)}.
This immediately yields the claimed result. ��
All weaker notions of testing contemplated in Sect. 8 employ well-behaved tests
only. The same reasoning as above yields (besides �may

reward = �−1
reward)

�may
fp-reward = �−1

reward , �may
+reward = �−1

−reward ,
�may

−reward = �−1
+reward and �may

fp-−reward = �−1
−reward .

10 A Hierarchy of Testing Preorders

Theorem 7. P �must Q iff P �+reward Q. Likewise, P �dual
must Q iff

P �fp-−reward Q.

Proof: “If”: Without affecting �must one may restrict attention to tests T ∈
TCCS with the property that each path of T contains at most one success state—
one with an outgoing transition labelled ω. Namely, any outgoing transition of
a success state may safely be omitted. Now each such test T can be converted
into a nonnegative reward test T ′, namely by assigning a reward 1 to any action
leading into a success state, keeping the rewards of all other actions 0. The
success action itself may then be renamed into τ , or omitted. Now trivially, a
computation of T |P is successful iff the matching computation of T ′ yields a
reward 1; a computation of T |P is unsuccessful iff the matching computation of
T ′ yields a reward 0. It follows that must-testing can be emulated by nonnegative
reward testing.

“Only if”: As remarked in Sect. 8, nonnegative reward testing looses no power
when allowing only one reward per computation. For the same reasons it looses
no power if each positive reward is 1. Now any reward test T ′ ∈ TR

CCS with these
restrictions can be converted to a test T ∈ TCCS by making any target state
of a reward-1 transition into a success state. It follows that nonnegative reward
testing can be emulated by must-testing.

The second statement follows in the same way, but using a reward −1. ��

58 R. van Glabbeek

−1
may = dual

must = fp-−reward = T = safety

−reward = ∞
T

reward = NDFD = lt-properties

must = +reward = ⊥
FDI = liveness

fp-reward = d
FDI = cond. liveness

Fig. 2. A spectrum of testing preorders

A preorder �X is said to be finer than or equal to a preorder �Y iff P �X Q ⇒
P �Y Q for all P and Q; in that case �Y is coarser than or equal to �X .

Theorem 8. The preorders occurring in this paper are related as indicated in
Fig. 2, where the arrows point in the coarser direction.

Proof: The relations between �reward, �fp-reward, �+reward, �−reward and
�fp-−reward follow immediately from the definitions, as the coarser variant uses
only a subset of the tests available to the finer variant. The strictness of all these
relations is obtained by the examples below.

The connections with �must, �dual
must and the inverse of �may are provided by

Theorem 7 and Sect. 5. The characterisations in terms of �NDFD , �d
FDI , �⊥

FDI ,
�∞

F and �T are provided by Theorems 1–5. The connections with �lt-properties,
�cond. liveness , �liveness and �safety will be established in Sect. 11. ��
Let an.P be defined by a0.P := P and ai+1.P = a.ai.P . Furthermore, let
a∞ := fix�X:X

def
= a.X� be a process that performs infinitely many as. Let Δ

be the unary operator given by ΔP := fix�X:X
def
= τ.X + P �. It first performs

0 or more τ -actions, and if this number is finite subsequently behaves as its
argument P . So Δ0 = τ∞ just performs an infinite sequence of τ -moves.

Example 1.
∑

n≥1

an.Δ0 ≡fp-reward a∞ +
∑

n≥1

an.Δ0, but

∑

n≥1

an.Δ0 ��−reward a∞ +
∑

n≥1

an.Δ0 (and thus ��reward).

Example 2. Δ(c.g) ≡must Δ(c + c.g) and Δ(c.g) ≡−reward Δ(c + c.g), yet
Δ(c.g) ��fp-reward Δ(c + c.g). These are the processes displayed in Fig. 1. A test
showing the latter is c−1.g1.

Example 3. c.g ≡fp-−reward c+ c.g, yet c.g ��+reward c+ c.g. A test showing the
latter is c.g1.

Example 4. Δa ≡+reward Δ0, yet Δa ��fp-−reward Δ0. A test showing the latter
is a−1.

Reward Testing Equivalences for Processes 59

A process P is divergence-free if divergences(P) = ∅. It is regular, or finite-
state, if there only finitely many processes Q such that ∃σ ∈ A ∗. P

σ=⇒ Q. It
is =⇒-image-finite if for each σ ∈ A∗ there are only finitely many Q such that
P

σ=⇒ Q. Note that the class of =⇒-image-finite processes is not closed under
parallel composition, or under renaming transition labels a ∈ A into τ . Regular
processes are =⇒-image-finite. Any P ∈ PCCS without parallel composition,
relabelling or restriction is regular. Any P ∈ PCCS without recursion is both
divergence-free and regular.

Proposition 1. If P ∈ PCCS is divergence-free, then P �+reward Q iff P �reward
Q.

Proof: This follows from Theorems 1 and 3, using that divergences(P) = ∅,
inf⊥(P) = infd(P) = inf (P) and failures⊥(P) = failuresd(P) = failures(P). (In
case Q is not divergence-free one has neither P �+reward Q nor P �reward Q.)��
Proposition 2. If P is =⇒-image-finite then (a) P �fp-−reward Q iff P �−reward
Q and (b) P �fp-reward Q iff P �reward Q.

Proof: By Königs lemma ν ∈ A ∞ is an infinite trace of P iff only if each finite
prefix of ν is a partial trace of P . Now (a) follows immediately from Theorems 4
and 5: Suppose P �−reward Q and ν ∈ inf (Q). Then each finite prefix of ν is in
ptraces(Q) and thus in ptraces(P). Thus ν ∈ inf (P).

(b) follows in the same way from Theorems 1 and 2, using (*). ��

11 Conditional Liveness Properties

To obtain a general liveness property for labelled transition systems, assume
that some notion of good is defined. Now, to judge whether a process P satisfies
this liveness property, one should judge whether P can reach a state in which
one would say that something good had happened. But all observable behaviour
of P that is recorded in a labelled transition system until one comes to such a
verdict, is the sequence of visible actions performed until that point. Thus the
liveness property is completely determined by the set sequences of visible actions
that, when performed by P , lead to such a judgement. Therefore one can just
as well define a liveness property in terms of such a set.

Definition 4. A liveness property of processes in an LTS is given by a set
G ⊆ A ∗. A process P satisfies this liveness property, notation P |= liveness(G),
when each complete trace of P has a prefix in G.

This formalisation of liveness properties stems from [12] and is essentially dif-
ferent from the one in [2] and most subsequent work on liveness properties; this
point is discussed in [12, Sect. 6].

A preorder � preserves liveness properties if P � Q implies that Q enjoys
any liveness property that P has. It is a precongruence for an n-ary operator
op if Pi � Qi for i = 1, . . . , n implies op(P1, . . . , Pn) � op(Q1, . . . , Qn). Now

60 R. van Glabbeek

let �liveness be the coarsest preorder that is a precongruence for the operators
of CSP and preserves liveness properties. In [12] it is shown that this preorder
exists, and equals �⊥

FDI , as defined in the proof of Theorem 3. The proof of this
result does not require that �liveness be a preorder for all operators of CSP; it
goes through already when merely requiring it to be precongruence for injec-
tive renaming and partially synchronous interleaving operators. Looking at this
proof, the same can also be obtained requiring �liveness to be a precongruence
for the CCS operators |, \L and injective relabelling.

It follows that �liveness coincides with �+reward (cf. Theorem 8). This con-
nection can be illustrated by a translation from liveness properties G ⊆ A ∗

(w.l.o.g. assumed to have the property that if σ ∈ G then σρ /∈ G for any ρ �= ε)
to nonnegative reward tests TG. Here TG can be rendered as a deterministic tree
in which all transitions completing a trace from Ḡ yield a reward 1, so that all
computations of T |P earn a positive reward iff P |= liveness(G).

One obtains a general concept of safety property by means of the same argu-
ment as for liveness properties above, but using “bad” instead of“good”.

Definition 5. A safety property of processes in an LTS is given by a set B ⊆
A ∗. A process P satisfies this safety property, notation P |= safety(B), when
ptraces(p) ∩ B = ∅.

This formalisation of safety properties stems from [12] and is in line with the
one in [2]. Now let �safety be the coarsest precongruence (for the same choice of
operators as above) that preserves safety properties. In [12] it is shown that this
preorder exists, and equals �T , as defined in the proof of Theorem 5.

It follows that �safety coincides with �fp-−reward (cf. Theorem 8). This connec-
tion can be illustrated by a translation from safety properties B ⊆ A ∗ (w.l.o.g.
assumed to have the property that if σ ∈ B then σρ /∈ B for any ρ �= ε) to
nonnegative reward tests TB. Here TB can be rendered as a deterministic tree
in which all transitions completing a trace from B̄ yield a reward −1, so that all
computations of T |P earn a nonnegative reward iff P |= safety(B).

A conditional liveness property says that under certain conditions something
good will eventually happen. To obtain a general conditional liveness property
for LTSs, assume that some condition, and some notion of good is defined. Now,
to judge whether a process P satisfies this conditional liveness property, one
should judge first of all in which states the condition is fulfilled. All observable
behaviour of P that is recorded in an LTS until one comes to such a verdict, is
the sequence of visible actions performed until that point. Thus the condition
is completely determined by the set of sequences of visible actions that, when
performed by P , lead to such a judgement. Next one should judge whether P can
reach a state in which one would say that something good had happened. Again,
this judgement can be expressed in terms of the sequences of visible actions that
lead to such a state.

Definition 6. ([12]) A conditional liveness property of processes in an LTS is
given by two sets C,G ⊆ A ∗. A process P satisfies this conditional liveness

Reward Testing Equivalences for Processes 61

property, notation P |= livenessC(G), when each complete trace of P that has a
prefix in C, also has a prefix in G.

Now let �cond. liveness be the coarsest precongruence (for the same choice of
operators as above) that preserves conditional liveness properties. In [12] it is
shown that this preorder exists, and equals �d

FDI , as defined in the proof of
Theorem 2. So �safety coincides with �fp-reward (cf. Theorem 8). Similar to the
above cases, this connection can be illustrated by a translation from conditional
liveness properties C,G ⊆ A ∗ to reward tests in which each computation has at
most one negative and one positive reward, which are always −1 and +1.

Definition 7. A linear time property of processes in an LTS is given by a set
Φ ⊆ A ∗ ∪ A ∞ of finite and infinite sequences of actions. A process P satisfies
this property, notation P |= Φ, when CT (P) ⊆ Φ.

A liveness property is a special kind of linear time property:
liveness(G) = {σ ∈ A ∗ ∪ A ∞ | ∃ρ ∈ G. ρ ≤ σ}.

Likewise, safety(B) = {σ ∈ A ∗ ∪ A ∞ | ¬∃ρ ∈ B. ρ ≤ σ}, and
livenessC(G) = {σ ∈ A ∗ ∪ A ∞ | (∃ρ ∈ C. ρ ≤ σ) ⇒ (∃ν ∈ G. ν ≤ σ)}.

Now let �lt. properties be the coarsest precongruence (for the same choice of
operators as above) that preserves linear time properties. In [12,19] it is shown
that this preorder exists, and equals �NDFD, as defined in the proof of Theo-
rem 1. It follows that �lt. properties coincides with �reward (cf. Theorem 8).

12 Congruence Properties

Theorem 9. The preorders of this paper are precongruences for |, \L and [f].

Proof: Note that Apply(T ,R|P) = Apply(T |R,P), using the associativity
(up to strong bisimilarity) of |. Therefore P �reward Q implies R|P �reward R|Q,
showing that �reward is a precongruence for parallel composition. The same holds
for �fp-reward, �+reward, �−reward and �fp-−reward.

Likewise Apply(T ,P\L) = Apply(T\L,P). This yields precongruence results
for restriction.

Finally, Apply(T ,P [f]) = Apply(T [f −1],P), yielding precongruence results
for relabelling. Here [f−1] is an operator with rule

E
α,r−→ E′

E[f−1]
β,r−→ E′[f−1]

(f(β) = α).

Although this is not a CCS operator, for any test T the test T [f−1] is expressible
in CCS, on grounds that each process in an LTS is expressible in CCS. ��
Theorem 10. The preorders of this paper are precongruences for action prefix.

Proof: This follows from the characterisations of the preorders in Sects. 7 and 8.
For instance, failuresd(a.P) = {〈aσ,X〉 | 〈σ,X〉 ∈ failuresd(a.P)}. ��

62 R. van Glabbeek

In the same way it follows that �fp-−reward and �−reward are precongruences for
the CCS operator +. However, the preorders �reward, �fp-reward and �+reward
fail to be congruences for choice:

Example 5. One has 0 ≡reward τ , yet 0+ a ��+reward τ + a, using that 〈ε,A 〉 ∈
failures⊥(τ + a) \ failures⊥(0+ a).

This issue occurs for almost all semantic equivalences and preorders that abstract
from internal actions. The standard solution is to replace each such preorder �X

by the coarsest precongruence for the operators of CCS that is finer than �X .
Let stable be the predicate that holds for a process P iff there is no P ′ with
P

τ−→ P ′. Write P �τ
X Q iff P �X Q ∧ (stable(P) ⇒ stable(Q)).

Theorem 11. Let X ∈ {reward, fp-reward, +reward}. Then �τ
X is the coarsest pre-

congruence for the operators of CCS that is contained in �X .

Proof: That �τ
+reward is a precongruence for + follows with Theorem 3 since

stable(P + Q) ⇔ stable(P) ∧ stable(Q)

failures⊥(P + Q) = {〈σ,X〉 ∈ failures⊥(P) | σ �= ε ∨ ¬stable(P)} ∪
{〈σ,X〉 ∈ failures⊥(Q) | σ �= ε ∨ ¬stable(Q)} ∪
{〈ε,X〉 | 〈ε,X〉 ∈ failures⊥(P) ∩ failures⊥(Q)},

inf⊥(P + Q) = inf⊥(P) ∪ inf⊥(Q)
divergences⊥(P + Q) = divergences⊥(P) ∪ divergences⊥(Q) .

That it is a congruence for action prefixing, |, \L and [f] follows since

stable(α.P) iff α �= τ
stable(P |Q) iff stable(P) ∧ stable(Q) ∧

¬∃a ∈ A. (〈a, ∅〉 ∈ failures⊥(P) ∧ 〈ā, ∅〉 ∈ failures⊥(P))
stable(P\L) iff stable(P) and stable(P [f]) iff stable(P).

By definition, �τ
+reward is contained in �+reward. To see that it is the coarsest

precongruence contained in �+reward, suppose P ��τ
+reward Q. It suffices to build

a context C[__] from CCS operators such that C[P] ��+reward C[Q]. The case
P ��+reward Q is immediate—take the trivial context with C[P] := P . So assume
P �+reward Q. Then stable(P) and ¬stable(Q). Hence ε /∈ divergences⊥(P) ⊇
divergences⊥(Q). Choose a /∈ ptraces(Q)—in case no such a exists, one first
applies an injective relabelling to P and Q such that a �∈ range(f).

Now 〈ε, {a}〉 ∈ failures(Q) ⊆ failures⊥(Q) ⊆ failures⊥(P). However, whereas
〈ε, {a}〉 ∈ failures⊥(Q + a) one has 〈ε, {a}〉 /∈ failures⊥(P + a). It follows that
P + a ��+reward Q + a.

The arguments for X ∈ {reward, fp-reward} are very similar. ��

13 Axiomatisations

The following axioms are easily seen to be sound for �τ
reward. Here an equality

P ≡ Q can be seen as a shorthand for the two axioms P � Q and Q � P . Action

Reward Testing Equivalences for Processes 63

prefixing and Δ bind stronger than +.
⎧
⎨

⎩

(R1) τ.X + Y ≡ τ.X + τ.(X + Y)
(R2) α.X + τ.(α.Y + Z) ≡ τ(α.X + α.Y + Z)
(R3) α.(τ.X + τ.Y) ≡ α.X + α.Y

⎫
⎬

⎭
(RP1) τ.X + Y � τ.(X + Y)
(RP2) τ.X + Y � X
(R4) τ.ΔX + Y ≡ Δ(X + Y)

For recursion-free processes, and dropping the infinite choice operator in favour
of + and 0, �τ

must coincides with �τ
reward and �τ

fp-reward. Together with the stan-
dard axioms for strong bisimilarity [24], the three axioms (R1)–(R3) constitute
a sound and complete axiomatisation of ≡τ

must [5, Theorem 4.2], and thus for
≡τ

reward. Likewise, axioms (RP1), (RP2) and (R3) constitute a sound and complete
axiomatisation of �τ

must [5, Theorem 4.1], and thus for �τ
reward; the axioms (R1)

and (R2) are derivable from them. The first sound and complete axiomatisation
of �τ

must appears in [6]; their axioms are derivable from the ones above (and vise
versa).

A sound and complete axiomatisation of ≡may (and hence of ≡−reward) is
obtained by adding the axioms τ.X ≡ X and α(X + Y) ≡ α.X + α.Y to the
standard axioms for strong bisimilarity [5, Theorem 4.5]. The axioms (R1)–(R3)

are derivable from them. Adding the axiom X + Y � X yields a sound and
complete axiomatisation of �−1

may (and hence of �−reward) [5, Theorem 4.6]. The
axioms (RP1) and (RP2) are then also derivable. The first sound and complete
axiomatisation of �may appears in [6]; their axioms are derivable from the ones
above (and vise versa).

To illustrate the difference between ≡τ
must and ≡τ

reward, without having to
deal with recursion, I consider recursion-free CCS with finite choice (as done
above), but upgraded with the delay operator Δ introduced in [3] and in Sect. 10.
Clearly all preorders of this paper are precongruences for Δ. With (R4), sound
for ≡τ

reward, one can derive τ.ΔX ≡ ΔX and ΔX + Y ≡ Δ(X + Y). Writing Ω
for Δ0, the latter implies ΔY ≡ Ω + Y so one can equally well take Ω as Δ as
primitive. It also follows that ΔΔX ≡ ΔX.

The above sound and complete axiomatisations of ≡may and �−1
may (and hence

of ≡−reward and �−reward) are extended with Δ by adding the trivial axiom
ΔX = X; (R4) is then derivable. This illustrates that these preorders abstract
from divergence. The axiom

(R5) ΔX ≡ ΔY

is sound for ≡τ
must. It expresses that must testing does not record any information

past a divergence. Axioms (RP2), (R4) and (R5) imply Ω � X, an axiom featured
in [6]. Neither ΔX = X nor (R5) is sound for ≡τ

reward.

64 R. van Glabbeek

14 Failure of Congruence Property for Recursion

Each preorder � on CCS processes (= closed CCS expressions) can be extended
to one on all CCS expressions by defining E � F iff all closed substitution
instances of this inequality hold.

Definition 8. A preorder � on ECCS is a (full) precongruence for recursion if
SY � TY for each Y ∈ dom(S) = dom(T) implies fix�X:S� ⊆ fix�X:T �.

The following counterexample shows that the must-testing preorder �τ
must fails

to be a precongruence for recursion, implying that the must-testing equivalence
≡τ

must fails to be a congruence for recursion.

Example 6. Let P∈TCCS be such that ε /∈ divergences(P)—for instance P = 0.
Then by (R1) one has τ.P + X ≡τ

must τ.P + τ.(X + P). Yet

fix�X:X
def
= τ.P + X� ��τ

must fix�X:X
def
= τ.P + τ.(X + P)�,

because only the latter process has a divergence ε.

The same example shows that also �τ
reward, �τ

fp-reward, �reward, �fp-reward and
�must fail to be precongruences for recursion. However, I conjecture that all these
preorders are lean precongruences for recursion as defined in [14].

15 Unguarded Recursion

The must-testing preorder �must on CCS presented in this paper is not quite
the same as the original one �org

must from [6]. The following example shows the
difference.

Example 7. 0
≡must

��org
must

fix�X:X
def
= X�

��must

≡org
must

fix�X:X
def
= τ.X�.

The ≡must-statement follows since neither process has a single outgoing tran-
sition; the processes are even strongly bisimilar [24]. The ��must-statement follows
since ε ∈ divergences(fix�X:X

def
= τ.X�), yet ε /∈ divergences(fix�X:X

def
= X�).

A test showing the difference is τ.ω.

The reason that in the original must-testing approach fix�X:X
def
= X� sides

with fix�X:X
def
= τ.X� rather than with 0, is that [6] treats a process featur-

ing unguarded recursion (cf. [24]), such as fix�X:X
def
= X�, as if it diverges,

regardless whether it can do any internal actions τ . This leads to a must-testing
equivalence that is incomparable with strong bisimilarity.

In my view, the decision whether fix�X:X
def
= X� diverges or not is part

of the definition of the process algebra CCS, and entirely orthogonal to the
development of testing equivalences. Below I define a process algebra CCS⊥ that
resembles CCS in all aspects, expect that any process with unguarded recursion
is declared to diverge. I see the work of [6] not so much as defining a must-testing

Reward Testing Equivalences for Processes 65

equivalence on CCS that is incomparable with strong bisimilarity, but rather as
defining a must-testing equivalence on CCS⊥, a languages that is almost, but
not quite, the same as CCS.2 This is a matter of opinion, as there is no technical
difference between these approaches.

I now proceed to define CCS⊥, and apply the reward testing preorders of this
paper to that language.

Definition 9. Let ↓ be the least predicate on PCCS which satisfies

– α.P ↓ for any α ∈ Act,
– if Pi ↓ for all i ∈ I then

∑
i∈I Pi ↓,

– if P ↓ and Q ↓ then P |Q ↓, P\L ↓ and P [f] ↓,
– if fix�SX :S� ↓ then fix�X:S� ↓.

Let P ↑ if not P ↓. If P ↑ then P features strongly unguarded recursion.3

Note that 0 ↓, fix�X:X
def
= X� ↑ and fix�X:X

def
= τ.X� ↓, the latter because in

Definition 9 τ is allowed as a guard. The definitions of this paper are adapted
to CCS⊥ by redefining P diverges, notation P⇑, if either there is a P ′ with
P =⇒ P ′ ↑ or there are Pi ∈ P for all i > 0 such that P

τ−→ P1
τ−→ P2

τ−→ · · · .
In Definition 2, and similarly for Definition 1, clause (i) is replaced by (i′) “if Tn

is the final element in π, then either Tn ↑ or Tn
τ,r−→ T for no r and T ”. Now all

results for CCS from Sects. 4–13 remain valid for CCS⊥ as well. The only change
in the proofs of Theorems 1–3, direction “⇐”, is that finite paths ending in ↓ are
treated like infinite paths.

My definition of �must on CCS⊥ differs on two points from the definition of
�must on CCS⊥ from [6]. But both differences are inessential, and the result-
ing notion of �must is the same. The first difference is that in [6] the notion of
computation is exactly as in Definition 1, rather than the amended form above.
However, in [6] a computation π = T0, T1, T2, · · · ∈ Comp(T |P) counts as suc-
cessful only if (a) it contains a state T with T

ω−→ T ′ for some T ′, and (b)
if Tk ↑ then Tk′

ω−→ T ′ for some T ′ and some k′ ≤ k. It is straightforward to
check that Apply(T |P) remains the same upon dropping (b) and changing (i)
into (i′). The other difference is that in [6] τ does not count as a guard—their
version of Definition 9 requires α ∈ A . So in [6] one has fix�X:X

def
= τ.X� ↑.

The notion of ↓ from [6] is therefore closer to unguarded recursion rather than
strongly unguarded recursion. However, in the treatment of [6] one would have
fix�X:X

def
= a.X|ā � ↓, showing that the resulting notion of guardedness is not

very robust. Since the essential difference between CCS and CCS⊥ is that in
CCS⊥ a strongly unguarded recursion is treated as a divergence, it does not
matter whether ↓ also includes all or some not-strongly unguarded recursions,

2 All processes of Example 7 are weakly bisimilar [24]. In my view this does not mean
that weak bisimulation semantics uses a variant of CCS in which none of these
processes diverges. Instead it tells that weak bisimilarity abstracts from divergence.

3 Un(strongly unguarded) recursion should not be called “strongly guarded” recursion;
it is weaker than guarded recursion.

66 R. van Glabbeek

such as fix�X:X
def
= τ.X�. For any such not-strongly unguarded recursion is

already divergent, and hence it does not make difference whether it is declared
syntactically divergent as well.

An alternative to moving from CCS to CCS⊥ is to restrict either language to
processes P satisfying P ↓. This restriction rules out the process fix�X:X

def
= X�,

but includes fix�X:X
def
= τ.X�. On this restricted set of processes their is no

difference between CCS and CCS⊥.
Another approach to making unguarded recursions divergent is to change the

rule for recursion from Table 1 into fix�X:S�
τ−→ fix�SX :S�; this is done in the

setting of CSP [26]. This would not have the same result, however, as here and
in [6] one has a + fix�X:X

def
= b� ≡must a + b.

The great advantage of moving from CCS to CCS⊥ is that Counterexample 6,
against testing preorders being congruences for recursion, disappears.

Question: Are �τ
reward, �τ

fp-reward and �τ
must precongruences for recursion on

CCS⊥?

In [6] it is shown that, in the absence of infinite choice, �τ
must is a precongruences

for recursion. Central in the proof is that on CCS⊥ with finite choice, the clause
on infinite traces (inf⊥(P) ⊇ inf⊥(Q)) may be dropped from Theorem 3, since
the infinite traces inf⊥(P) of a CCS⊥ process P with finite choice are completely
determined by divergences⊥(P) and failures⊥(P). This proof does not generalise
to �τ

reward or �τ
fp-reward, since here, on CCS⊥ with finite choice, the infinite

traces are not redundant. The proof also does not generalise to �τ
must on CCS

with infinite choice.
In [28] it is shown that �⊥

FDI (cf. Theorem 3), which coincides with �must, is
a congruence for recursion on the language CSP. I expect that similar reasoning
can show that �τ

reward is a congruence for recursion on CCS⊥. In [29] it is shown
that �d

FDI (cf. Theorem 2), which coincides with �fp-reward, is a congruence for
recursion on CSP. I expect that similar reasoning can show that �τ

fp-reward is
a congruence for recursion on CCS⊥. Roscoe [29] also presents an example,
independently discovered by Levy [23], showing that ≡NDFD (cf. Theorem 1),
which coincides with �reward, fails to be a congruence for recursion:4 Let FA be
a process that has all conceivable failures, divergences and infinite traces, except
for the infinite trace a∞. Then FA+τ.X ≡NDFD FA+a.X, for both sides have all
conceivable failures, divergences and infinite traces, with the possible exception
of a∞, and both side have the infinite trace a∞ iff X has it. However,

fix�X:FA + τ.X� �≡NDFD fix�X:FA + a.X�

since only the latter process has the infinite trace a∞.
It could be argued that this example shows that the definition of being a

congruence for recursion ought to be sharpened, for instance by requiring that
E � F holds only if all closed substitutions of E � F employing an extended

4 The example was formulated for another equivalence, but actually applies to a range
of equivalences, including ≡NDFD .

Reward Testing Equivalences for Processes 67

alphabet of actions hold. This would invalidate FA + τ.X ≡NDFD FA + a.X,
namely by substituting b for X, with b a fresh action, not alluded to in FA. With
such a sharpening, the question whether �τ

reward is a congruence for recursion
on CCS⊥ is open.

16 Related Work

The concept of reward testing stems from [18], in the setting of nondeterministic
probabilistic processes. In the terminology of Sect. 8, they employ single reward
nonnegative reward testing. In [10] it was shown, again in a probabilistic set-
ting, that nonnegative reward testing is no more powerful then classical testing.
This result is a probabilistic analogue of Theorem 7. Negative rewards were first
proposed in [11], a predecessor of the present paper. In [8], reward testing with
also negative rewards, called real-reward testing, was applied to nondeterministic
probabilistic processes. Although technically no rewards can be gathered after a
first reward has been encountered, thanks to probabilistic branching rewards can
be distributed over multiple actions in a computation. This makes the approach
a probabilistic generalisation of the reward testing proposed here. The main
result of [8] is that for finitary (= finite-state and finitely many transitions)
nondeterministic probabilistic processes without divergence, real-reward testing
coincides with nonnegative reward testing. This is a generalisation (to proba-
bilistic processes) of a specialisation (to finitary processes) of Proposition 1. An
explicit characterisation (as in Theorem 1) of real-reward testing for processes
with divergence was not attempted in [8].

The nondivergent failures divergences equivalence, ≡NDFD , defined in the
proof of Theorem 1, stems from [19]. There it was shown to be the coarsest
congruence (for a collection of operators equivalent to the ones used in Sect. 11)
that preserves those linear-time properties (cf. Definition 7) that can be expressed
in linear-time temporal logic without the nexttime operator. If follows directly
from their proof that it is also the coarsest congruence that preserves all linear-
time properties as defined in Definition 7; so ≡NDFD coincides with ≡lt. properties ,
as remarked at the end of Sect. 11. It is this result that inspired Theorem 1 in
the current paper.

The paper [22] argues that ≡NDFD can be seen as a testing equivalence, but
does not offer a testing scenario in the same style as [6] or the current paper.

The semantic equivalence ≡d
FDI , whose associated preorder occurs in the

proof of Theorem 2, stems from [27]. There it was shown to be the coarsest con-
gruence (for the same operators) that preserves deadlocks(P) ∪ divergences(P),
the combined deadlock and divergence traces of a process (cf. Definition 3). It is
this result that directly led (via [12, Theorem 9]) to Theorem2 in the current
paper.

In [6] the action ω is used merely to mark certain states as success states,
namely the states were an ω-transition is enabled; a computation is successful
iff it passes through such a success state. In [30], on the other hand, it is the

68 R. van Glabbeek

actual execution of ω that constitutes success. In [7,10], this is called action-
based testing ; [7, Proposition 5.1 and Example 5.3] shows that action-based must
testing is strictly less discriminating than state-based must-besting:

τ.a.Ω ≡action-based
must τ.a.Ω + τ.0, whereas τ.a.Ω ��must τ.a.Ω + τ.0.

The preorders in the current paper are generalisations of state-based testing;
an action-based form of reward testing could be obtained by only allowing τ -
actions to carry non-0 rewards. The same counterexample as above would show
the difference between state- and action-based reward testing.

The reward testing contributed here constitutes a strengthening of the test-
ing machinery of De Nicola & Hennessy. As such it differs from testing-based
approaches that lead to incomparable preorders, such as the efficiency testing of
[31], or the fair testing independently proposed in [4] and [25].

In [13] I advocate an overhaul of concurrency theory to ensure liveness prop-
erties when making the reasonable assumption of justness. The current work
is prior to any such overhaul. It is consistent with the principles of [13] when
pretending that the parallel composition | of CCS is in fact not a parallel com-
position of independent processes, but an interleaving operator, scheduling two
parallel treads by means of arbitrary interleaving.

17 Conclusion

In this paper I contributed a concept of reward testing, strengthening the may
and must testing of De Nicola & Hennessy. Inspired by [19,27], I provided an
explicit characterisation of the reward-testing preorder, as well as of a slight
weakening, called finite-penalty reward testing. Must testing can be recovered
by only considering positive rewards, and may testing by only considering nega-
tive rewards. While the must-testing preorder preserves liveness properties, and
the inverse of the may-testing preorder (which can also be seen as a must-testing
preorder dealing with catastrophes rather than successes) preserves safety prop-
erties, the (finite-penalty) reward testing preorder, which is finer than both,
additionally preserves conditional liveness properties. I illustrated the difference
between may testing, must testing and (finite-penalty) reward testing in terms
of their equational axiomatisations. When applied to CCS as intended by Mil-
ner, must-testing equivalence fails to be a congruence for recursion, and the same
problem exists for reward testing. The counterexample is eliminated by applying
it to a small variant of CCS that, following [6], treats a process with unguarded
recursion as if it is diverging, even if it cannot make any internal moves. In this
setting, by analogy with Roscoe’s work on CSP [28,29], I expect must-testing
and finite-penalty reward testing to be congruences for recursion; for reward
testing this question remains open.

Reward Testing Equivalences for Processes 69

References

1. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic and Computer
Science, vol. 3, pp. 1–168. Clarendon Press (1994)

2. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985). https://doi.org/10.1016/0020-0190(85)90056-0

3. Bergstra, J.A., Klop, J.W., Olderog, E.-R.: Failures without chaos: a new pro-
cess semantics for fair abstraction. In: Wirsing, M. (ed.) Formal Description of
Programming Concepts - III, Proceedings of the 3th IFIP WG 2.2 Working Con-
ference, Ebberup 1986, North-Holland, Amsterdam, pp. 77–103 (1987)

4. Brinksma, E., Rensink, A., Vogler, W.: Fair testing. In: Lee, I., Smolka, S. (eds.)
CONCUR 1995. LNCS, vol. 962, pp. 313–327. Springer, Berlin (1995). https://doi.
org/10.1007/3-540-60218-6_23

5. Chen, T., Fokkink, W.J., van Glabbeek, R.J.: On the axiomatizability of impossible
futures. Logical Methods Comput. Sci. 11(3), 17 (2015). https://doi.org/10.2168/
LMCS-11(3:17)2015

6. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984). https://doi.org/10.1016/0304-3975(84)90113-0

7. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Characterising testing
preorders for finite probabilistic processes. Logical Methods Comput. Sci. 4(4), 4
(2008). https://doi.org/10.2168/LMCS-4(4:4)2008

8. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Real-reward testing
for probabilistic processes. Theor. Comput. Sci. 538, 16–36 (2014). https://doi.
org/10.1016/j.tcs.2013.07.016

9. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C., Zhang, C.: Remarks
on testing probabilistic processes. In: Cardelli, L., Fiore, M., Winskel, G. (eds.)
Computation, Meaning, and Logic: Articles Dedicated to Gordon Plotkin, ENTCS,
vol. 172, pp. 359–397. Elsevier (2007). https://doi.org/10.1016/j.entcs.2007.02.013

10. Deng, Y., van Glabbeek, R., Morgan, C., Zhang, C.: Scalar outcomes suffice for fini-
tary probabilistic testing. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
363–378. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-71316-6_25

11. van Glabbeek, R.J.: The Linear Time – Branching time spectrum after 20 years, or
full abstraction for safety and liveness properties. Copies of slides. Invited talk for
IFIP WG 1.8 at CONCUR 2009 in Bologna (2009). http://theory.stanford.edu/
~rvg/abstracts.html#20years

12. van Glabbeek, R.J.: The coarsest precongruences respecting safety and liveness
properties. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIPAICT, vol. 323, pp.
32–52. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-15240-5_3

13. van Glabbeek, R.J.: Ensuring liveness properties of distributed systems (a research
agenda). Position paper (2016). https://arxiv.org/abs/1711.04240

14. van Glabbeek, R.J.: Lean and full congruence formats for recursion. In: Proceedings
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 2017. IEEE Computer Society Press (2017). https://doi.
org/10.1109/LICS.2017.8005142

15. van Glabbeek, R.J., Höfner, P.: Progress, fairness and justness in process algebra.
Technical Report 8501, NICTA, Sydney, Australia (2015). http://arxiv.org/abs/
1501.03268

16. Hennessy, M.C.B.: Powerdomains and nondeterministic recursive definitions. In:
Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137,
pp. 178–193. Springer, Heidelberg (1982). https://doi.org/10.1007/3-540-11494-
7_13

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.2168/LMCS-11(3:17)2015
https://doi.org/10.2168/LMCS-11(3:17)2015
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.2168/LMCS-4(4:4)2008
https://doi.org/10.1016/j.tcs.2013.07.016
https://doi.org/10.1016/j.tcs.2013.07.016
https://doi.org/10.1016/j.entcs.2007.02.013
https://doi.org/10.1007/978-3-540-71316-6_25
http://theory.stanford.edu/~rvg/abstracts.html#20years
http://theory.stanford.edu/~rvg/abstracts.html#20years
https://doi.org/10.1007/978-3-642-15240-5_3
https://arxiv.org/abs/1711.04240
https://doi.org/10.1109/LICS.2017.8005142
https://doi.org/10.1109/LICS.2017.8005142
http://arxiv.org/abs/1501.03268
http://arxiv.org/abs/1501.03268
https://doi.org/10.1007/3-540-11494-7_13
https://doi.org/10.1007/3-540-11494-7_13

70 R. van Glabbeek

17. Hennessy, M.: An Algebraic Theory of Processes. MIT Press, Cambridge (1988)
18. Jonsson, B., Ho-Stuart, C., Yi, W.: Testing and refinement for nondeterministic

and probabilistic processes. In: Langmaack, H., de Roever, W.P., Vytopil, J. (eds.)
FTRTFT 1994, ProCoS 1994. Lecture Notes in Computer Science, vol. 863, pp.
418–430. Springer, Berlin (1994). https://doi.org/10.1007/3-540-58468-4_176

19. Kaivola, R., Valmari, A.: The weakest compositional semantic equivalence pre-
serving nexttime-less linear temporal logic. In: Cleaveland, W.R. (ed.) CONCUR
1992. LNCS, vol. 630, pp. 207–221. Springer, Heidelberg (1992). https://doi.org/
10.1007/BFb0084793

20. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. 3(2), 125–143 (1977). https://doi.org/10.1109/TSE.1977.229904

21. Lamport, L.: Proving possibility properties. Theor. Comput. Sci. 206(1–2),
341–352 (1998). https://doi.org/10.1016/S0304-3975(98)00129-7. http://research.
microsoft.com/en-us/um/people/lamport/pubs/pubs.html#lamport-possibility

22. Leduc, G.: Failure-based congruences, unfair divergences and new testing theory.
In: Vuong, S.T., Chanson, S.T. (eds.) 1994 Proceedings Fourteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification, Van-
couver, BC, Canada, IFIP Conference Proceedings, vol. 1, pp. 252–267. Chapman
& Hall (1994)

23. Levy, P.B.: Infinite trace equivalence. Ann. Pure Appl. Logic 151(2–3), 170–198
(2008). https://doi.org/10.1016/j.apal.2007.10.007

24. Milner, R.: Operational and algebraic semantics of concurrent processes. In: van
Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Elsevier Science
Publishers B.V. (North-Holland), pp. 1201–1242 (1990). (Chap. 19) Communica-
tion and Concurrency, Prentice-Hall, Englewood Cliffs, 1989

25. Natarajan, V., Cleaveland, R.: Divergence and fair testing. In: Fülöp, Z., Gécseg,
F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 648–659. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60084-1_112

26. Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicating
processes. Acta Informatica 23, 9–66 (1986). https://doi.org/10.1007/BF00268075

27. Puhakka, A.: Weakest congruence results concerning “any-lock”. In: Kobayashi, N.,
Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 400–419. Springer, Berlin
(2001). https://doi.org/10.1007/3-540-45500-0_20

28. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Upper Sad-
dle River (1997). http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf

29. Roscoe, A.W.: Seeing beyond divergence. In: Abdallah, A.E., Jones, C.B., Sanders,
J.W. (eds.) Communicating Sequential Processes. The First 25 Years. Lecture
Notes in Computer Science, vol. 3525, pp. 15–35. Springer, Berlin (2005). https://
doi.org/10.1007/11423348_2

30. Segala, R.: Testing probabilistic automata. In: Montanari, U., Sassone, V. (eds.)
CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7_62

31. Vogler, W.: Efficiency of asynchronous systems, read arcs, and the MUTEX-
problem. Theor. Comput. Sci. 275(1–2), 589–631 (2002). https://doi.org/10.1016/
S0304-3975(01)00300-0

https://doi.org/10.1007/3-540-58468-4_176
https://doi.org/10.1007/BFb0084793
https://doi.org/10.1007/BFb0084793
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1016/S0304-3975(98)00129-7
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#lamport-possibility
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#lamport-possibility
https://doi.org/10.1016/j.apal.2007.10.007
https://doi.org/10.1007/3-540-60084-1_112
https://doi.org/10.1007/BF00268075
https://doi.org/10.1007/3-540-45500-0_20
http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf
https://doi.org/10.1007/11423348_2
https://doi.org/10.1007/11423348_2
https://doi.org/10.1007/3-540-61604-7_62
https://doi.org/10.1016/S0304-3975(01)00300-0
https://doi.org/10.1016/S0304-3975(01)00300-0

Playing with Bisimulation in Erlang

Ivan Lanese, Davide Sangiorgi, and Gianluigi Zavattaro(B)

Focus Team, University of Bologna/Inria, Bologna, Italy
ivan.lanese@gmail.com, davide.sangiorgi@gmail.com,

gianluigi.zavattaro@unibo.it

Abstract. Erlang is a functional and concurrent programming lan-
guage. The aim of this paper is to investigate basic properties of the
Erlang concurrency model, which is based on asynchronous communica-
tion through mailboxes accessed via pattern matching. To achieve this
goal, we consider Core Erlang (which is an intermediate step in Erlang
compilation) and we define, on top of its operational semantics, an obser-
vational semantics following the approach used to define asynchronous
bisimulation for the π-calculus. Our work allows us to shed some light on
the management of process identifiers in Erlang, different from the vari-
ous forms of name mobility already studied in the literature. In fact, we
need to modify standard definitions to cope with such specific features
of Erlang.

1 Introduction

Erlang is a message passing concurrent and functional programming language [3].
Erlang was originally a proprietary language within Ericsson, developed in 1986
to ensure high availability and fault-tolerance in distributed and massively con-
current telephony applications, but was released as open source in 1998 [2].
Along the years, it has been used not only in telephony, but also in many other
high-visibility concurrent and distributed projects such as some versions of the
Facebook chat [22].

Formal methods research on Erlang concentrated on defining its semantics,
e.g., to precisely formalise the behaviour of Erlang implementations [15,29] and
to drive future development [30]. Erlang semantics has been used also as a basis
to develop tools, such as model checkers [16], static analysers [31], theorem
provers for modal logics [17], declarative debuggers [9] and reversible debug-
gers [20,21].

Despite the remarkable interest in Erlang and its concurrency model, to the
best of our knowledge, there is no research dealing with observational semantics
for such language. Observational semantics represents one of the main fields of
interest of Rocco De Nicola, with several pioneering contributions to which this
paper (as well as many others from the authors) is strongly indebted.

This work has been partially supported by the French National Research Agency
(ANR), project DCore n. ANR-18-CE25-0007.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 71–91, 2019.
https://doi.org/10.1007/978-3-030-21485-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_6

72 I. Lanese et al.

The aim of this paper is to initiate the investigation of the applicability to
Erlang of observational semantics already available in the literature. Instead
of considering full Erlang that, e.g., includes rather expressive mechanisms for
fault handling, in this work we focus on a simpler language corresponding to the
functional and concurrent fragment of Core Erlang [10], which is an intermediate
step in the compilation of Erlang.

Erlang is based on asynchronous communication, hence we have started by
considering observational theories tailored to asynchrony. One of the first papers
dealing with asynchronous communication in process algebra is by de Boer et
al. [5], where different observation criteria are studied (bisimulation, traces and
abstract traces) following the axiomatic approach typical of the process algebra
ACP [4]. An alternative approach has been followed by Amadio et al. [1] who
defined asynchronous bisimulation for the π-calculus [26]. They started from
operational semantics (expressed as a standard labelled transition system), and
then considered the largest bisimulation defined on internal steps that equates
processes only when they have the same observables, and which is closed under
contexts. The equivalence obtained in this way is called barbed congruence [24].
Notably, when asynchronous communication is considered, barbed congruence
is defined assuming as observables the messages that are ready to be delivered
to a potential external observer.

Merro and Sangiorgi [23] have subsequently studied barbed congruence in
the context of the Asynchronous Localised π-calculus (ALπ), which is a frag-
ment of the asynchronous π-calculus in which only output capabilities can be
transmitted, i.e., when a process receives the name of a channel, it can only send
messages along this channel (and not receive on it). Another line of research
deals with the application of the testing approach to asynchronous communica-
tion; this has been investigated by Castellani and Hennessy [11] and by Boreale
et al. [7,8]. These papers consider an asynchronous variant of CCS [25], and the
proposed semantics turns out to be incomparable with barbed congruence for
two main reasons. As usual, testing discriminates less as far as non deterministic
choices are concerned, while it is able to observe divergent behaviours (while
barbed congruence is not).

In Erlang, process identifiers can be passed around; this mechanism is similar
to name passing in the π-calculus. Moreover, when a process receives a process
identifier, it receives the capability to send messages to that process; this corre-
sponds to the specific form of name mobility (transmission of output capability)
of ALπ. For these reasons, we have adopted the approach by Merro and San-
giorgi defined for ALπ as our starting point. Differently from ALπ, in Erlang
there is a unique receiver for each name, namely the process with that name.

Technically speaking, we consider the syntax of Core Erlang, and we inves-
tigate the applicability of the usual definition of barbed congruence. The direct
application of standard definitions does not equate Erlang systems that are intu-
itively equivalent. Namely, consider an Erlang system A composed of a process
that sends messages to a. Such system is expected to be equivalent to a system
B in which the same process sends its messages to b instead of a, composed

Playing with Bisimulation in Erlang 73

in parallel with a wire from b to a, i.e. a process with identifier b that simply
forwards to a the messages that it receives.

If we apply to Erlang standard barbed congruence (denoted, as usual, with
≈) we have that A �≈ B. The expected equivalence fails for two main reasons.
First, if we put A and B in a context in which there is a process with identifier b,
in the first case the obtained system is correct while in the second one it is not,
because there are two distinct processes having the same identifier. The second
problem is that if we put A and B in a context in which there is a message to
b ready to be delivered, in the first case such message is observable while in the
second one it is not because the unique receiver for such message (i.e., the wire)
is already in the observed system.

We discuss a new definition of barbed congruence that solves the two above
problems; we denote this new equivalence by ≈U

V , where U and V are two sets
of process identifiers. Both sets are used to impose limitations to the possible
contexts considered in the barbed congruence definition. The set U contains
names that cannot be used as identifiers for processes in the context; this can
be used to solve the first of the two problems above by assuming b ∈ U , hence
disallowing contexts that contain a process with identifier b. The set V contains
identifiers that cannot be present in the context; this can be used to solve the
second of the two problems above by assuming b ∈ V , hence disallowing contexts
that contain messages to be delivered to b. Our novel bisimulation ≈U

V allows us
to prove that the two above systems are equivalent.

Besides presenting the definition of this novel barbed congruence for Erlang,
we use it to investigate basic properties of the concurrency model underlying such
language. More precisely, we discuss the conditions under which we can rephrase
in Core Erlang some typical equivalences of asynchronous name passing calculi.
We also point out that some specific features of the Erlang language, like casting
process identifiers to other data types or pattern matching operations on process
identifiers, can break most of such equivalences.

The paper is structured as follows. In Sects. 2 and 3 we present the syntax
and semantics of Core Erlang. In Sect. 4 we present the definition of our novel
barbed congruence and discuss some of its basic features, while in Sect. 5 we
apply it to formalise some properties of Erlang. Finally, in Sect. 6 we discuss
some possible extensions for our work, and we conclude in Sect. 7.

2 Erlang Syntax

In this section, we present the syntax of a first-order concurrent functional lan-
guage that follows the actor model. Our language is essentially a subset of Core
Erlang [10]. This material is mostly taken from [21].

The syntax of the language can be found in Fig. 1. Here, a module is a
sequence of function definitions, where each function name f /n (atom/arity)
has an associated definition fun (X1, . . . , Xn) → e. We consider that a pro-
gram consists of a single module for simplicity. The body of a function is an
expression, which can include variables, literals, function names, lists, tuples,

74 I. Lanese et al.

Fig. 1. Language syntax rules

calls to built-in functions—mainly arithmetic and relational operators—, func-
tion applications, case expressions, let bindings, and receive expressions; fur-
thermore, we also include the functions spawn, “!” (for sending a message), and
self() that are usually considered built-ins in the Erlang language. As is com-
mon practice, we assume that X is a fresh variable in a let binding of the form
let X = expr1 in expr2.

As shown by the syntax in Fig. 1, we only consider first-order expressions.
Therefore, the first argument in applications and spawns is a function name.
Analogously, the first argument in calls is a built-in operation Op.

In this language, we distinguish expressions, patterns, and values. Here,
patterns are built from variables, literals, lists, and tuples, while values are
built from literals, lists, and tuples, i.e., they are ground—without variables—
patterns. Expressions are denoted by e, e′, e1, e2, . . ., patterns by pat, pat′,
pat1, pat2, . . . and values by v, v′, v1, v2, . . . Atoms are typically denoted with
roman letters, while variables start with an uppercase letter. As it is com-
mon practice, a substitution θ is a mapping from variables to expressions, and
Dom(θ) = {X ∈ Var | X �= θ(X)} is its domain. Substitutions are usually
denoted by sets of bindings like, e.g., {X1 �→ v1, . . . , Xn �→ vn}. Substitutions are
extended to morphisms from expressions to expressions in the natural way. The
identity substitution is denoted by id. Composition of substitutions is denoted
by juxtaposition. Also, we denote by θ[X1 �→ v1, . . . , Xn �→ vn] the update of θ
with the mapping {X1 �→ v1, . . . , Xn �→ vn}.

In a case expression “case e of pat1 when e1 → e′
1; . . . ; patn when en →

e′
n end”, we first evaluate e to a value, say v; then, we should find (if any) the first

clause pati when ei → e′
i such that v matches pati (i.e., there exists a substitution

σ for the variables of pati such that v = patiσ) and eiσ—the guard—reduces to
true; then, the case expression reduces to e′

iσ.
As for the concurrent features of the language, we consider that a system is a

pool of processes that can only interact through message passing. Each process
has an associated pid (process identifier). We consider a specific domain Pid for
pids. Furthermore, in this work, we assume that pids can only be introduced in
a computation from the evaluation of functions spawn and self (see below), and

Playing with Bisimulation in Erlang 75

Fig. 2. A simple concurrent program

that there is no pid literal and no built-in function taking pids as arguments,
apart for message sending. Pids however are valid values at runtime. The previous
assumption forbids, e.g., casting from pids to strings and testing pids for equality.
We further discuss this assumption in Sect. 6. By abuse of notation, when no
confusion can arise, we refer to a process with its pid.

An expression of the form spawn(f/n, [e1, . . . , en]) has, as a side effect, the
creation of a new process, with a fresh pid a, initialised with the expression
apply f/n (v1, . . . , vn), where v1, . . . , vn are the evaluations of e1, . . . , en, respec-
tively; the expression spawn(f/n, [e1, . . . , en]) itself evaluates to the new pid a.
The function self() just returns the pid of the current process. An expression of
the form e1 ! e2, where e1 evaluates to a pid a and e2 to a value v, also evaluates
to the value v and, as a side effect, the value v—the message—will be stored in
the queue or mailbox of process a at some point in the future.

Finally, an expression “receive pat1 when e1 → e′
1; . . . ; patn when en →

e′
n end” traverses the messages in the process’ queue until one of them matches a

branch in the receive statement; i.e., it should find the first message v in the pro-
cess’ queue (if any) such that case v of pat1 when e1 → e′

1; . . . ; patn when en →
e′
n end can be reduced to some expression e; then, the receive expression eval-

uates to the expression e, with the side effect of deleting the message v from
the process’ queue. If there is no matching message in the queue, the process
suspends its execution until a matching message arrives.

Example 1. Consider the program shown in Fig. 2, where the symbol “ ” is used
to denote an anonymous variable, i.e., a variable whose name is not relevant.
The computation starts with “apply main/0 ()”. This creates a process, say a1.
Then, a1 spawns two new processes, say a2 and a3, and then sends the message
hello to process a2 and the message world to process a3, which then resends
world to a2. Note that we consider that variables Pid2 and Pid3 are bound to
pids a2 and a3, respectively.

Given that there is no guarantee regarding which message arrives first to
a3, function target/0 may return either {hello,world} or {world,hello}. This

76 I. Lanese et al.

is coherent with the semantics of Erlang, where it is not possible to make any
assumption on the order in which two messages, sent by two distinct senders, will
be delivered to the same target process. In Erlang, the only expected assumption
on message ordering is that if two messages are sent from a process to the
same target, and both are delivered, then the order of these messages is kept.
Nevertheless, current implementations only guarantee this property within the
same node.

3 Erlang Semantics

In this section we formalise the semantics of the considered language. The seman-
tics we present is equivalent to the one in [21], but allows for a simpler technical
treatment.

Definition 1 (Process). A process is denoted by a tuple 〈a, (θ, e), q〉 where a is
the pid of the process, (θ, e) is the control—which consists of an environment (a
substitution) and an expression to be evaluated—and q is the process’ mailbox,
a queue with the sequence of messages that have reached the process.

Given a message v and a mailbox q, we let v : q denote a new mailbox with
message v on top of it (i.e., v is the newer message). We also denote with q\\v
a new queue that results from q by removing the oldest occurrence of message v.

A running system is a pool of processes and floating messages, which we define
as follows:

Definition 2 (System). Systems, ranged over by A,B, . . . , are generated by
the following grammar:

A := 〈a, (θ, e), q〉 | (a, v) | A1 | A2

that is, they are parallel compositions of processes and floating messages, where
(a, v) is a floating message with content v targeting process a.

We only allow well-formed systems, in that the pids of the processes in a
system are pairwise distinct. Moreover, we consider systems up-to associativity
and commutativity of the parallel composition operator | . We therefore write
A = B to mean that the systems A and B are the same up-to associativity and
commutativity of | .
In the definition above, floating messages represent messages in the system after
they are sent, and before they are inserted in the target mailbox, in other terms,
when they are in the network. Floating messages correspond to messages in the
global mailbox of [21] or in the ether of [30].

The system representation above abstracts away from the distribution of
processes over computing nodes. As a result, the only guarantee on message
ordering offered by current Erlang implementations (i.e., order preserved among
messages exchanged between the same pair of processes only if hosted in the same

Playing with Bisimulation in Erlang 77

Fig. 3. Standard semantics: evaluation of sequential expressions

node) does not apply. Thus, we drop any assumption on the order of delivery of
messages.

We write ppid(P) (for process’ pid) for the pid of the process P , and ppid(A)
for the set of the pids of the processes in A. A pid a is fresh for B, if a does not
appear in B.

In the following, we denote by on a sequence of syntactic objects o1, . . . , on
for some n. We also write oi,j for the sequence oi, . . . , oj when i ≤ j (and the
empty sequence otherwise, i.e., when i > j). We write o when the number of
elements is not relevant.

The semantics is defined by means of two relations: ↪−→ for expressions and
−→ for systems. We start by considering the relation ↪−→ for expressions, which
is a labelled transition relation

↪−→ : (Env,Exp) × Label × (Env,Exp)

78 I. Lanese et al.

Fig. 4. Standard semantics: evaluation of concurrent expressions

where Env and Exp are the domains of environments (i.e., substitutions) and
expressions, respectively, and Label denotes an element of the set

{τ, send(v1, v2), rec(κ, cln), spawn(κ, a/n, [vn]), self(κ)}

whose meaning will be explained below. We use � to range over labels. For clarity,
we divide the transition rules of the semantics for expressions in two sets: rules for
sequential expressions are depicted in Fig. 3, while rules for concurrent ones are
in Fig. 4. Note, however, that concurrent expressions can occur inside sequential
expressions.

Most of the rules are self-explanatory. In the following, we only discuss some
subtle or complex issues. In principle, the transitions are labelled either with τ
(a reduction without side effects) or with a label that identifies the reduction of
an action with some side-effects. Labels are used in the system rules (Fig. 5) to
determine the associated side effects and/or the information to be retrieved.

We consider that the order of evaluation of the arguments in a tuple, list,
etc., is fixed from left to right.

For case evaluation, we assume an auxiliary function match which selects
the first clause, cli = (pati when e′

i → ei), such that v matches pati, i.e., v =
θi(pati), and the guard holds, i.e., θθi, e

′
i ↪−→∗ θ′, true (here ↪−→∗ is the reflexive

and transitive closure of ↪−→). We assume that the patterns can only contain
fresh variables. For simplicity, we assume here that if the argument v matches
no clause then the evaluation is blocked.

Functions can either be defined in the program (in this case they are invoked
by apply) or be a built-in (invoked by call). In the latter case, they are evaluated
using the auxiliary function eval. In rule Apply2 , we consider that the mapping
μ stores all function definitions in the program, i.e., it maps every function
name f /n to a copy of its definition fun (X1, . . . , Xn) → e, where X1, . . . , Xn

are (distinct) fresh variables and are the only variables that may occur free in

Playing with Bisimulation in Erlang 79

Fig. 5. Standard semantics: system rules

e. Note that we only consider first-order functions. In order to also consider
higher-order functions, one should reduce the function name to a closure of the
form (θ′, fun (X1, . . . , Xn) → e). We leave this extension for future work.

Let us now consider the evaluation of expressions with side effects (Fig. 4).
Here, we can distinguish two kinds of rules. On the one hand, we have rules
Send1 , Send2 and Send3 for “!”. In this case, we know locally what the expres-
sion should be reduced to (i.e., v2 in rule Send3). For the remaining rules, this
is not known locally and, thus, we return a fresh distinguished symbol, κ—by
abuse, κ is dealt with as a variable—so that the system rules of Fig. 5 will even-
tually bind κ to its correct value: the selected expression in rule Recv and a pid
in rules Spawn and Slf . In these cases, the label of the transition contains all
the information needed by system rules to perform the evaluation at the system
level, including the symbol κ. This trick allows us to keep the rules for expres-
sions and systems separated (i.e., the semantics shown in Figs. 3 and 4 is mostly
independent from the rules in Fig. 5).

Finally, we consider the system rules, depicted in Fig. 5. Reductions are of
the form A

U−→ A′ where U is the set of pids of processes spawned by the
reduction. Also, A

U=⇒ A′ means that A evolves into A′ via a finite number of
reductions in which the processes with pids in U have been spawned.

Rule Seq just updates the control (θ, e) of the considered process when a
sequential expression is reduced using the expression rules.

Rule Send adds a new floating message (a′, v) to the system. Adding it
directly to the mailbox of the target process would not allow one to model
all possible message interleavings (as discussed in Example 1). Observe that e′

is usually different from v since e may have nested operators.

80 I. Lanese et al.

In rule Receive, we use the auxiliary function matchrec to evaluate a receive
expression. The main difference w.r.t. match is that matchrec also takes a queue
q and returns the selected message v. More precisely, function matchrec scans
the queue q looking for the first message v matching a pattern of the receive
statement. Then, κ is bound to the expression in the selected clause, ei, and
the environment is extended with the matching substitution. If no message in
the queue q matches any clause, then the rule is not applicable and the selected
process cannot be reduced (i.e., it suspends). As in case expressions, we assume
that the patterns can only contain fresh variables.

Rule Spawn creates a new process with a fresh pid a′, initialized with the
application of function f /n. Its environment and queue are initially empty. The
pid a′ replaces κ in the process performing the spawn.

Rule Self simply replaces κ with the pid of the process.
Rule Sched delivers the message v in a pair (a, v) to the target process a.

As discussed above, here we deliberately ignore the restriction mentioned in
Example 1 that the messages sent –directly– between two given processes arrive
in the same order they were sent, since current implementations only guarantee
it within the same node. In practice, this amounts to consider that each process
is potentially run in a different node. An alternative definition ensuring this
restriction can be found in [27].

Rule Par allows one to lift a reduction to a larger system.

4 Behavioural Equivalence

In this section we initiate the study of behavioural equivalence for Erlang. Obser-
vational equivalences have been studied in the context of process calculi following
the intuition that two systems should be considered equivalent only when they
cannot be distinguished by any external observer. In our case—as in concurrent
process calculi—an external observer is an additional pool of processes composed
in parallel with the system to be observed. As discussed in the Introduction, to
the best of our knowledge, the process calculus (equipped with an appropri-
ate observational equivalence) which is closest to Erlang is the Asynchronous
Localised π-calculus (ALπ) [23].

4.1 Barbed Congruence

We now start the investigation of barbed congruence for the Erlang language.
In ALπ, communication is based on channels identified by names: a process
sends messages on a channel by indicating its name, and consumes messages by
specifying the channel from which they are expected to be consumed. In Erlang,
on the other hand, messages are sent to processes, and pids take the role of
names. We introduce some terminology on pids.

Definition 3. The pid a is taken by A if a ∈ ppid(A). The pid a occurs untaken
in A if a appears in A (i.e., it is used in A) but is not taken by A.

Playing with Bisimulation in Erlang 81

In the equivalence that we are going to define, we will equate only systems
that are pid-compatible. The intuition is that two pid-compatible systems have
the same expectations on the pids that should be taken by the environment,
i.e. the context in which they will be observed. Thus a name that is taken by a
system cannot occur untaken in the other one (as the latter is expecting the pid
to be taken by the environment).

Definition 4. A pair A,B of systems is pid-compatible if any pid that occurs
untaken in A may not be taken by B, and conversely. Similarly, a relation R on
systems is pid-compatible if all pairs of systems in R are pid-compatible.

Only pid-compatible systems should be related. Below we implicitly assume
that relations are pid-compatible. The notion of pid-compatibility is extended
to reductions.

Definition 5. Two reductions A
U=⇒ A′ and B

V=⇒ B′ are pid-compatible if
A and B are pid-compatible and moreover the pids in U do not occur untaken
in B, and conversely.

As U−→ implies U=⇒ , the above terminology extends to one-step reductions.

Lemma 1. If reductions A
U=⇒ A′ and B

V=⇒ B′ are pid-compatible, then also
the derivatives A′, B′ are pid-compatible.

Sometimes we write A −→ A′ and A =⇒ A′ omitting the set of pids above
the arrow if not important.

We are now ready to define barbed congruence. Such an equivalence can be
defined in any calculus possessing: (i) a reduction relation (i.e., the ‘internal steps’
of process calculi), modelling the evolution of a system; and (ii) an observability
predicate ↓a for each name a (pid in Erlang), which detects the possibility of a
system of being observed from the outside by means of communication on a.

In Erlang, as in other calculi with asynchronous communication [1], only
output messages are considered observable; this because an observer has no
direct way of knowing when a message is actually received by the observed
system. More precisely, we write A ↓a if A contains a floating message targeting
a process with pid a expected to be in the context (i.e. not taken in A). Formally,
A ↓a iff A = A′ | (a, v) with a �∈ ppid(A′), for some v. Also, A ⇓a iff there exists
B and U such that A

U=⇒ B and B ↓a .
We first introduce the barbed bisimulation equivalence, and then we close

it by parallel contexts. The main novelty is that we need definitions that are
compliant with the notion of pid-compatibility introduced above.

Definition 6 (Barbed bisimulation and congruence). A relation S on
systems is a U -barbed bisimulation if A S B implies:

1. if A
V−→ A′ then there exists a pid-compatible reduction B

W=⇒ B′ with A′ S
B′;

82 I. Lanese et al.

2. the converse of the above clause, on the reductions from B;
3. if A ↓a with a �∈ U , then B ⇓a;
4. the converse of the above clause, on the observables from B.

Two systems A and B are U -barbed bisimilar, written A ∼· U B, if A S B for
some U -barbed bisimulation S.

Let A and B be systems with ppid(A) ∪ ppid(B) ⊆ U , and V ⊆ U . We
say that A and B are barbed congruent at U ;V , written A ≈U

V B, if, for each
system C without occurrences of the pids in V and with ppid(C) ∩ U = ∅, we
have A | C ∼· U B | C.

In barbed bisimulation, the parameter U contains pids that cannot be taken
by the context, hence the pids in U are considered not observable. Barbed con-
gruence has an additional parameter V ; this is a set of special pids that the
environment is not even allowed to know. This additional parameter compen-
sates the absence, in Erlang, of explicit restriction operators denoting pid scopes;
the scope of the pids in V is expected to be within the observed system. We pre-
ferred this approach instead of adding a restriction operator to stay closer to the
semantics in [21] that we used as starting point for our development. Intuitively,
it is reasonable to assume to have in V the pids of those processes that have
been created within the observed system, whose name is never communicated
outside.

We omit V when empty simply writing A ≈U B. We also omit U both in
barbed bisimulation and in barbed congruence, when not important.

4.2 A Proof Technique

We introduce a useful proof technique for barbed bisimilarity, based on the notion
of expansion [28]. Intuitively expansion expresses the possibility for a system
to match the reduction of another system using fewer reductions, i.e., more
efficiently. Expansion is often used as an auxiliary relation in proof techniques
for bisimulation.

We write: A −→? A′ if A −→ A′ or A = A′ (that is, A evolves into A′

by means of one or zero reductions); and A =⇒1 A′ to mean that A evolves
into A′ by means of at least one reduction. As announced, we omit below the
requirements on compatibility between matching reductions, and therefore also
the pid-labels decorating the reductions.

Definition 7 (barbed expansion). A relation S on systems is a U -barbed
expansion if A S B implies:

1. if A −→ A′ then B −→? B′ with A′ S B′;
2. if B −→ B′ then A =⇒1 A′ with A′ S B′;
3. if A ↓a with a �∈ U , then B ↓a;
4. if B ↓a with a �∈ U , then A ⇓a.

Two systems A and B are in the U -barbed expansion, written A �U B, if A S B
for some U -barbed expansion S.

Playing with Bisimulation in Erlang 83

As usual, we often omit the index U when empty (or not important) and
simply write A � B.

Definition 8. A relation S on systems is a U -barbed bisimulation up-to expan-
sion if A S B implies:

1. if A −→ A′ then there are B′, A′′, B′′ such that B =⇒ B′, A′ �U A′′, B′′ �U

B′ and A′′ S B′′;
2. the converse of the above clause, on the reductions from B;
3. if A ↓a with a �∈ U , then B ⇓a;
4. the converse of the above clause, on the observables from B.

Lemma 2. If S is a U -barbed bisimulation up-to expansion then S ⊆ ∼· U .

Proof. A standard diagram-chasing argument [28]. ��
The lemma above would become unsound if, in Definition 8, expansion were

replaced by barbed bisimulation [28].
We conclude this section by showing a monotonicity property.

Lemma 3. If U ⊆ U ′ then ∼· U ⊆ ∼· U ′
and �U ⊆ �U ′

.

5 Properties

We now exploit the barbed congruence relation defined in the previous section
to prove some properties of Erlang terms. The first property will be discussed
in Theorem 1, where we prove that renaming a local pid a into b, is the same as
adding in parallel a wire process that receives the messages on a and forwards
them to b. In order to prove this first property, we need several preliminary results
on pid renaming and system normalisation. The latter (which relies as usual
on our restrictions on pid management) means that while proving two systems
barbed equivalent, it is possible to focus only on those states of the system in
which processes have completed their internal steps, where we assume internal all
process transitions excluding the arrival of a new message in the process queue.
Intuitively, normalisation holds because processes have a deterministic internal
behaviour; the unique source of nondeterminism is in the order of arrival of
messages.

5.1 Renaming

The first preliminary results deal with the correspondence between the transi-
tions of the system A and that of A{a/b}. In the formalisation of these results,
we use A[a 	 v] to mean the system obtained from A by adding the message v as
the newer message in the queue of the process a of A.

Lemma 4. Suppose b �∈ ppid(A). We have:

1. if A
U−→ A′ and a �∈ U , then A{a/b} U−→ A′{a/b};

84 I. Lanese et al.

2. if A{a/b} U−→ A′′, with b �∈ U , is a reduction derived without applying rule
Sched to process a, then there is A′ such that A

U−→ A′ and A′′ = A′{a/b};
3. if A{a/b} −→ A′′ is a reduction derived by applying rule Sched to process a

and floating message (a, v), then either
(a) there is A′ such that A −→ A′ and A′′ = A′{a/b}; or
(b) A = (b, v′) | B, with (b, v′){a/b} = (a, v) and A′′ = B{a/b}[a 	 v].

Lemma 4(1) can be refined if a is fresh. We write A[a ↔ b] for the system
obtained from A by exchanging a and b (i.e., a simultaneous substitution).

Lemma 5. Suppose b �∈ ppid(A) and a is fresh for A. We have:

1. if A
U−→ A′ and a �∈ U , then A{a/b} U−→ A′{a/b};

2. if A
{a}−→ A′ then A{a/b} {b}−→ A′[a ↔ b].

Concerning the simultaneous renaming [a ↔ b], we have a stronger corre-
spondence between the transitions of A and A[a ↔ b], when names a and b are
already taken in A.

Lemma 6. Suppose {a, b} ⊆ ppid(A). If A
U−→ A′ then A[a ↔ b] U−→

A′[a ↔ b].

Corollary 1. Suppose {a, b} ⊆ ppid(A). Then A � A[a ↔ b].

We now move towards a result (Lemma 8) which is the Erlang analogous of
the α-conversion renaming of name-passing calculi such as the π-calculus. We
first need to introduce a new notation (Definition 9) and a preliminary lemma
(Lemma 7).

Definition 9. Two systems A and B are a/b-convertible, for pids a, b with a
fresh for B, if A = B{a/b}.
Lemma 7. Suppose A and B are a/b-convertible, then A �{a,b} B. Moreover if
{a, b} ⊆ (ppid(A) ∪ ppid(B)) then also A � B.

Proof. If S is the set of all pairs (A,B) as in the assertion of the lemma, then
S ∪ � is an expansion. This holds because: the reductions from two systems
(A,B) as in the lemma are the same, either (Lemma 5(1)) modulo a renaming
between a and b, or (Lemma 5(2)) producing derivatives that, by Corollary 1,
are in the expansion relation; their observables different from a, b are the same
too. ��

When a, b are pids in A,B then they are not in the observables and therefore
the assertion can be strengthened.

Lemma 8 (Erlang analogous of α-conversion). Suppose A and B are a/b-
convertible and {a, b} ⊆ U . Then A ≈U

{a,b} B.

Proof. Let C be a system in which a, b do not occur, and with U ∩ppid(C) = ∅.
We have to show that A | C ∼· U B{a/b} | C. This follows from Lemma 7 and the
inclusion �U ⊆ ∼· U . ��

Playing with Bisimulation in Erlang 85

5.2 Normalisation

In conjunction with the proof technique above, a crucial result that will be used
afterwards is Lemma 10 below. For its proof we need Lemma 9 stating that the
addition of a new message at the end of a process queue does not forbid the
process from executing previously executable reductions.

Lemma 9. Suppose P
∅−→ A; then, for any a, v, also P [a 	 v] ∅−→ A[a 	 v].

Proof. A case analysis on the possible rules that caused the reduction P −→ A.
��

Essentially Lemma 10 below says that we can normalise any system, by
letting the processes composing it evolve as long as there are messages in their
queues that can be consumed (the only reduction of the system that we cannot
perform in the normalisation are those that move a floating message into a
queue). This includes the fetching of a message from its queue and the spawn
of a new process. In Lemma 10, the reduction P

U−→ A has not been derived
using rule Sched as it emanates from a process.

Lemma 10. For any reduction P
U−→ A and system C, it holds that P | C �

A | C.

Proof. We show that

R def= {(P | C,A | C) s.t. P −→ A} ∪ �
is a barbed expansion. The interesting case is that of a challenge from P | C in
which P is involved (the case when only C is involved is trivial).

– If the reduction involving P is precisely P
U−→ A then A | C need not move,

as � includes the identity relation.
If however the reduction is a spawn with, say U = {b}, then in its challenge
P could choose to make a spawn on a different pid, say a. Thus the reduction

is P |C {a}−→ A{a/b}|C. In this case we exploit Lemma 7, to derive A{a/b}|C �
A|C.

– Suppose the reduction involving P is a Sched , and let P [a	v] be the derivative
of P , and C ′ the derivative of C. That is, the challenge is P |C −→ P [a	v]|C ′.
We have A | C −→ A[a 	 v] | C ′. Moreover, by Lemma 9, P [a 	 v] −→ A[a 	 v]
(the reduction is not a Sched since P [a	v] is a process, hence does not contain
floating messages). Hence P [a 	 v] | C ′ R A[a 	 v] | C ′. ��

5.3 Wires

We prove a number of results concerning wires, which bring out fundamental
properties of asynchrony for Erlang systems.

A wire from a to b is a process with pid a that sends at b all messages received
at a, without modifying their content. We write (q, a � b) for a wire from a to b
whose queue is q.

86 I. Lanese et al.

Definition 10 (Wire). We define (q, a � b) as follows:

(q, a � b)
def
= 〈a, (θ, apply wire (b)), q〉

for any θ. Furthermore, we assume to have the definition:

wire/1 = fun (Y) → receive X → let = Y ! X in apply wire (Y) end

The first result that we prove on wires is that adding a wire from a into b
is barbed bisimilar to renaming a into b, under the assumption that a is not
already taken (hence it can be safely taken by the wire itself).

Lemma 11. For all C with a �∈ ppid(C), we have

C | (∅, a � b) ∼· C{b/a}

Proof. We show that the set of all such pairs is a barbed bisimulation up to
expansion. The observables in the two related systems are the same: the only
non-trivial case is an observable at b in C{b/a}, which corresponds to a floating
message targeting a in C; this becomes an observable at b via the wire. Hence
we only have to look at reductions. There are a few cases to consider. We exploit
Lemma 4.

1. A reduction within C, say C −→ C ′. By Lemma 4, we also have C{b/a} −→
C ′{b/a}.

2. A floating message is moved into the queue of the wire, thus the reduction
is C | (∅, a � b) −→ C ′ | (v : ∅, a � b), and C = C ′ | (a, v). By Lemma 10,
C ′ | (v : ∅, a � b) � C ′ | (b, v) | (∅, a � b). Thus C{b/a} need not move (up-to
expansion), since (C ′ | (b, v)){b/a} = C{b/a}.

3. The case of reductions within C{b/a} in which Lemma 4(2) or Lemma 4(3.a)
can be applied is handled in a way similar to case (1) above.
We consider the case in which Lemma 4(3.b) applies. Thus there is a float-
ing message (b, v) in C{b/a} that is moved into the queue of process b, with
derivative C ′′. Let (a, v′) be the corresponding floating message in C. Thus
C = C ′ | (a, v′), and C ′′ = C ′{b/a}[b 	 v]. We also have the reductions

C | (∅, a � b) −→ C ′ | (v′ :∅, a � b)
=⇒ C ′ | (b, v′) | (∅, a � b)
−→ C ′′′ | (∅, a � b)

where C ′′′ = C ′[b 	 v′]. This is sufficient, since C ′′′{b/a} = C ′′. ��

We are now ready to prove our first example of barbed congruent systems, by
extending to barbed congruence the previous result about barbed bisimilarity.

Theorem 1. Suppose a ⊆ U . We have:

A | (∅, a � b) ≈U
{a} A{b/a}

Playing with Bisimulation in Erlang 87

Proof. We have to show that for all B that does not contain a, we have

A | (∅, a � b) | B ∼· A{b/a} | B

We have A | (∅, a � b) |B = (A |B) | (∅, a � b), and (A |B){b/a} = A{b/a} |B, hence
we can apply Lemma 11. ��

The above theorem indicates under which conditions adding a wire from a to
b is barbed congruent w.r.t. applying directly a renaming of a into b: this holds
only under the assumption that pid a is a restricted name that is not known by
the environment. Nevertheless, under the assumption that a is known (but not
taken) by the environment, we have the following result.

Theorem 2. Suppose a ⊆ U . We have:

A | (∅, a � b) ≈U
∅ A{b/a} | (∅, a � b)

Proof. We have to show that for any C with a �∈ ppid(C), we have

A | C | (∅, a � b) ∼· A{b/a} | C | (∅, a � b)

Using Lemma 11, we have A |C |(∅, a�b) ∼· (A |C){b/a}|(∅, a�b) def= B1. Similarly,
A{b/a} | C | (∅, a � b) ∼· (A{b/a} | C){b/a} | (∅, a � b) def= B2. This completes the
proof, since B1 = B2. ��

As a corollary of Theorem 1 we have an additional equivalence result: a wire
from a to b in parallel with a wire from b to c is equivalent to a unique wire from
a to c (under the assumption that pid b is not known from the environment).

Corollary 2. We have

(∅, a � b) | (∅, b � c) ≈{b}
{b} (∅, a � c)

Proof. Follows from Theorem 1. ��
As a corollary of Theorem 2, on the other hand, we can prove that in the

presence of a wire from a to b, a floating message targeting a is equivalent to a
floating message, with the same content, directly targeting b.

Corollary 3. We have

(∅, a � b) | (a, v) ≈{a} (∅, a � b) | (b, v)

Proof. Follows from Theorem 2. ��
The last equivalence that we prove still deals with wires, but used in a differ-

ent way. If a process sends a pid c to the outside environment, this is equivalent
to sending a pid d (unknown by the environment) under the assumption that
there is a wire from d to c.

88 I. Lanese et al.

Theorem 3. Suppose a, d ⊆ U and d is fresh for 〈a, (θ, b ! c), q〉. We have:

〈a, (θ, b ! c), q〉 ≈U
{d} 〈a, (θ, b ! d), q〉 | (∅, d � c)

Proof. We have to show that for any C, with a �∈ ppid(C) and without occur-
rences of pid d, we have

〈a, (θ, b ! c), q〉 | C ∼· 〈a, (θ, b ! d), q〉 | (∅, d � c) | C

Starting from the r.h.s., by using Lemma 11, we have 〈a, (θ, b ! d), q〉 | (∅, d �

c) | C = (〈a, (θ, b ! d), q〉 | C) | (∅, d � c) ∼· (〈a, (θ, b ! d), q〉 | C){c/d} def= B. By
applying the substitution to B, we obtain B = 〈a, (θ{c/d}, b !c), q{c/d}〉 |C{c/d} =
〈a, (θ, b ! c), q〉 | C since pid d does not occur in θ, q and C. ��

6 Alternative Approaches

In this section we discuss some possible alternatives to the choices made in the
main development described in previous sections. As stated in Sect. 2 we pose
various restrictions on the use of pids. Essentially, pids can only be generated
by functions spawn and self, passed around, and used to send messages.

Erlang also allows, e.g., equality test on pids. This is forbidden in our context
since equality would be a built-in function taking pids as arguments, which
we disallow. It is not possible to have such test via pattern matching, since
variables in patterns are always fresh, we forbid pid literals, and patterns cannot
contain functions. Equality test would break some of ours results. For instance,
in Theorem 1, we have:

A | (∅, a � b) ≈U
{a} A{b/a}

If we take A = 〈c, (θ, a!a), q〉, then on the l.h.s. after a few steps b would get
a message with value a, while on the r.h.s. it would get a message with value
b. Comparing the two values with b would distinguish the two processes. In
contrast, if b could only use the received name to send messages, no distinction
would be possible, since in both cases messages would reach b, either directly or
through the wire.

Even worst, built-in functions taking pids in input, such as the function
pid_to_list(Pid), which converts a pid to a string, would break most of our
results. In the case above, just converting pids to strings and comparing the
strings would break the bisimilarity. However these functions are mainly intended
for debugging.

Another assumption we made is that order of messages is not preserved.
Erlang specification states that if two messages are sent from a same process a
to a same process b, and both are received, then the order is preserved. However,
current implementations only guarantee this inside the same node, thus our
approach would correspond to running each process on its own node. Adding this
constraint would require changing the semantics at the system level, replacing

Playing with Bisimulation in Erlang 89

floating messages with explicit queues. This would impact on the theory we
present. For instance, in Theorem 1, on the l.h.s. A could send a message directly
to b, and another one via the wire. They could reach b in any order. On the r.h.s.,
both messages would go directly to b, hence the order would be preserved. We
could recover the result by requiring A not to contain b.

7 Conclusion

We have investigated the definition of observational semantics for Erlang. This
work has been initially conceived with the aim to honor the career of Rocco De
Nicola. According to the citations received by his papers, the two main contri-
butions of Rocco are about testing equivalences [13] and KLAIM [12]. Testing
equivalences are an example of observational semantics, while KLAIM is a con-
current and distributed language that, similarly to Erlang, is based on message
exchange through local repositories accessed via pattern-matching. In order to
do some original work, i.e. avoid to simply replicate work already done by Rocco
and his co-authors, we have followed a slightly different approach for defining
observational semantics (i.e. barbed bisimulation) on a language having some
differences w.r.t. KLAIM. There are two main differences between the concur-
rent model of Erlang and that of KLAIM: locality (when a message is created,
only its expected receiver has the capability to read it) and mailbox ordering
(pattern matching is applied to messages according to their order of reception).

Despite the initial celebrating objective, we think the paper contains interest-
ing original contribution towards the development of observational theories for
Erlang. As a future work, we would like to continue the study of the introduced
equivalence by investigating a labelled characterisation of barbed congruence
and algebraic characterisations, or transferring type-based techniques from the
π-calculus (e.g. to control termination, lock-freedom and deadlock [14,18,19,32]).
Moreover, we would like to investigate other approaches to observational seman-
tics such as may and must testing. Concerning this last point, we could apply
our approach to define observational equivalences following [6], where different
congruences are studied simply by considering a unique definition parametric in
the notion of observable. The main novelties in our proposal concern the man-
agement of Erlang pids, whereas the notion of observable (i.e. output messages)
is standard. Being pid management and the observability criteria two orthog-
onal concepts, we are confident that our techniques could be applied also to
alternative notions of observables like those studied by Boreale et al. [6].

References

1. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
π-calculus. Theor. Comput. Sci. 195(2), 291–324 (1998)

2. Armstrong, J.: A history of Erlang. In: Third ACM SIGPLAN Conference on
History of Programming Languages, pp. 6-1–6-26. ACM (2007)

90 I. Lanese et al.

3. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang, 2nd edn. Prentice Hall, Upper Saddle River (1996)

4. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Control 60(1–3), 109–137 (1984)

5. de Boer, F.S., Klop, J.W., Palamidessi, C.: Asynchronous communication in pro-
cess algebra. In: LICS, pp. 137–147. IEEE Computer Society (1992)

6. Boreale, M., De Nicola, R., Pugliese, R.: Basic observables for processes. Inf. Com-
put. 149(1), 77–98 (1999)

7. Boreale, M., De Nicola, R., Pugliese, R.: A theory of “may” testing for asyn-
chronous languages. In: Thomas, W. (ed.) FoSSaCS 1999. LNCS, vol. 1578, pp.
165–179. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49019-1 12

8. Boreale, M., De Nicola, R., Pugliese, R.: Trace and testing equivalence on asyn-
chronous processes. Inf. Comput. 172(2), 139–164 (2002)

9. Caballero, R., Martin-Martin, E., Riesco, A., Tamarit, S.: Declarative debugging
of concurrent Erlang programs. J. Log. Algebr. Meth. Program. 101, 22–41 (2018)

10. Carlsson, R., et al.: Core Erlang 1.0.3. language specification (2004). https://www.
it.uu.se/research/group/hipe/cerl/doc/core erlang-1.0.3.pdf

11. Castellani, I., Hennessy, M.: Testing theories for asynchronous languages. In:
Arvind, V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 90–101.
Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-540-49382-2 9

12. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

13. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

14. Demangeon, R., Hirschkoff, D., Sangiorgi, D.: Termination in impure concur-
rent languages. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol.
6269, pp. 328–342. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15375-4 23

15. Fredlund, L.A.: A framework for reasoning about Erlang code. Ph.D. thesis, Royal
Institute of Technology, Stockholm, Sweden (2001)

16. Fredlund, L., Earle, C.B.: Model checking Erlang programs: the functional app-
roach. In: ACM SIGPLAN Workshop on Erlang, pp. 11–19. ACM (2006)

17. Fredlund, L., Gurov, D., Noll, T., Dam, M., Arts, T., Chugunov, G.: A verification
tool for Erlang. STTT 4(4), 405–420 (2003)

18. Kobayashi, N.: A partially deadlock-free typed process calculus. Trans. Program.
Lang. Syst. 20(2), 436–482 (1998)

19. Kobayashi, N., Sangiorgi, D.: A hybrid type system for lock-freedom of mobile
processes. ACM Trans. Program. Lang. Syst. 32(5), 16 (2010)

20. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent
reversible debugger for Erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS
2018. LNCS, vol. 10818, pp. 247–263. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90686-7 16

21. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.
J. Log. Algebr. Meth. Program. 100, 71–97 (2018)

22. Letuchy, E.: Erlang at Facebook (2009). http://www.erlang-factory.com/
conference/SFBayAreaErlangFactory2009/speakers/EugeneLetuchy

23. Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. Math. Struct.
Comput. Sci. 14(5), 715–767 (2004)

24. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-55719-9 114

https://doi.org/10.1007/3-540-49019-1_12
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://doi.org/10.1007/978-3-540-49382-2_9
https://doi.org/10.1007/978-3-642-15375-4_23
https://doi.org/10.1007/978-3-642-15375-4_23
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
http://www.erlang-factory.com/conference/SFBayAreaErlangFactory2009/speakers/EugeneLetuchy
http://www.erlang-factory.com/conference/SFBayAreaErlangFactory2009/speakers/EugeneLetuchy
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-55719-9_114

Playing with Bisimulation in Erlang 91

25. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

26. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I. Inf. Comput.
100(1), 1–40 (1992)

27. Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In:
Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp.
259–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 15

28. Sangiorgi, D., Milner, R.: The problem of “weak bisimulation up to”. In: Cleave-
land, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg
(1992). https://doi.org/10.1007/BFb0084781

29. Svensson, H., Fredlund, L.A.: A more accurate semantics for distributed Erlang.
In: SIGPLAN Workshop on Erlang, pp. 43–54. ACM (2007)

30. Svensson, H., Fredlund, L.A., Benac Earle, C.: A unified semantics for future
Erlang. In: ACM SIGPLAN Workshop on Erlang, pp. 23–32. ACM (2010)

31. Tóth, M., Bozó, I.: Static analysis of complex software systems implemented in
Erlang. In: Zsók, V., Horváth, Z., Plasmeijer, R. (eds.) CEFP 2011. LNCS, vol.
7241, pp. 440–498. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32096-5 9

32. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the π-calculus. Inf.
Comput. 191(2), 145–202 (2004)

https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/BFb0084781
https://doi.org/10.1007/978-3-642-32096-5_9
https://doi.org/10.1007/978-3-642-32096-5_9

Genesis and Evolution of ULTraS:
Metamodel, Metaequivalences, Metaresults

Marco Bernardo(B)

Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy

Abstract. We discuss the genesis of the ULTraS metamodel and sum-
marize its evolution arising from the introduction of coherent resolutions
of nondeterminism and reachability-consistent semirings.

1 The ULTraS Metamodel

In 2009, within the Italian project PaCo – Performability-Aware Computing:
Logics, Models, and Languages, I started working with Rocco De Nicola and
Michele Loreti on the definition of a general, state-transition behavioral model,
hopefully paving the way to the development of a unifying theory as well as reuse
facilities in the field of concurrency, without resorting to abstract representations
such as the categorical ones based on coalgebras and bialgebras.

Together with Diego Latella and Mieke Massink, Rocco and Michele had
already done much work in that framework, aiming at providing a uniform defini-
tion of the structural operational semantics for various stochastic process calculi.
To this purpose, they developed rate-based transition systems [14], which then
evolved into the semiring-based metamodel known as FuTS – state-to-function
labeled transition system [15,35].

Rocco, Michele, and I wanted to explore a different direction, not related
to languages and their semantics. Our first objective was to define a meta-
model general enough to encompass specific behavioral models widely used in
the concurrency literature, featuring nondeterminism, probabilities, determinis-
tic/stochastic time, or a combination of them. We thus came up in [4] with a
metamodel that we called ULTraS – uniform labeled transition system (then
exemplified in [5] as an extension of rate-based transition systems to formalize
process semantics), which was fully elaborated in [6] and further fine-tuned in [3].

ULTraS is a discrete-state metamodel parameterized with respect to a set D,
where D-values are interpreted as different degrees of one-step reachability. These
values are assumed to be ordered according to a reflexive and transitive relation
�D, which is equipped with minimum ⊥D expressing unreachability. Let us denote
by (S → D) the set of functions from a set S to D. When S is a set of states,
every element Δ of (S → D) can be interpreted as a function that distributes
reachability over all possible next states. The set of states supp(Δ) = {s ∈ S |
Δ(s) �= ⊥D} that are reachable according to Δ is called the support of Δ.

The set (S → D)nefs of D-distributions Δ over S is considered, which satisfies
the constraint 0 < |supp(Δ)| < ω. The first part of the constraint establishes that
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 92–111, 2019.
https://doi.org/10.1007/978-3-030-21485-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_7

Genesis and Evolution of ULTraS 93

the target distribution of each transition has a nonempty support, so to avoid
distributions always returning ⊥D and hence transitions leading to nowhere. The
second part of the constraint ensures that the same distribution has a finite sup-
port, a fact that will enable a correct definition of behavioral metaequivalences.

Definition 1. Let (D,�D,⊥D) be a preordered set equipped with minimum. A
uniform labeled transition system on it, or D-ULTraS for short, is a triple
U = (S,A,−→) where:
– S �= ∅ is an at most countable set of states.
– A �= ∅ is a countable set of transition-labeling actions.
– −→ ⊆ S × A × (S → D)nefs is a transition relation.

Every transition (s, a,Δ) of U is written s
a−→ Δ, where Δ(s′) is a D-value

quantifying the degree of reachability of s′ from s via that a-transition, with
Δ(s′) = ⊥D meaning that s′ is not reachable with that transition. In the directed
graph description of U (see the forthcoming Figs. 1, 2, 3, 4, 5 and 6), vertices
represent states and action-labeled edges represent action-labeled transitions.
Given a transition s

a−→ Δ, the corresponding a-labeled edge goes from the vertex
representing state s to a set of vertices linked by a dashed line, each of which
represents a state s′ ∈ supp(Δ) and is labeled with Δ(s′).

In [6,9] we showed what follows about the choice of D:

– B = {⊥,	}, with ⊥ �B 	, captures nondeterministic models such as:
• labeled transition systems (LTS) [30], i.e., fully nondeterministic pro-

cesses;
• timed automata (TA) [1] – provided that S and A are allowed to be

uncountable – where time is deterministic.
– R[0,1], with the usual ≤, captures probabilistic models such as:

• action-labeled discrete-time Markov chains (ADTMC) [48], i.e., fully
probabilistic processes;

• Markov decision processes (MDP) [17]/Rabin probabilistic automata [41],
i.e., reactive probabilistic processes according to the terminology of [21];

• Segala probabilistic automata (PA) [42], i.e., nondeterministic and prob-
abilistic processes;

• probabilistic timed automata (PTA) [33] – provided that S and A are
allowed to be uncountable – where time is deterministic.

• Markov automata (MA) [18], where time is stochastic.
– R≥0, with the usual ≤, captures stochastic models such as:

• action-labeled continuous-time Markov chains (ACTMC) [48], i.e., fully
stochastic processes;

• continuous-time Markov decision processes (CTMDP) [40]/Knast proba-
bilistic automata [31], i.e., reactive stochastic processes;

• nondeterministic and stochastic processes intended as extensions of PA.

The definition of the ULTraS metamodel is extremely parsimonious, in the
sense that it does not require any algebraic structure, really necessary only for
behavioral relations and language semantics. It simply relies on a preordered set
equipped with minimum, because this is sufficient to express reachability degrees
for the various states when performing a transition, as well as unreachability.

94 M. Bernardo

2 Behavioral Metaequivalences on ULTraS

The second objective of Rocco, Michele, and myself was to define, on ULTraS,
behavioral metaequivalences general enough to encompass equivalences for spe-
cific classes of processes appeared in the literature. In [6] we focused on three
approaches – bisimulation [36,38], testing [13], and trace [26] – so to cover to
some extent the linear-time/branching-time spectrum [20]. We showed that:

– Bisimulation metaequivalence can be instantiated to bisimilarities for:
• fully nondeterministic processes [23];
• fully probabilistic processes [19];
• reactive probabilistic processes [34];
• fully stochastic processes [24,25];
• reactive stochastic processes [37].

– Trace metaequivalence can be instantiated to trace equivalences for:
• fully nondeterministic processes [10];
• fully probabilistic processes [29];
• reactive probabilistic processes [46];
• fully stochastic processes [2,50].

– Testing metaequivalence can be instantiated to testing equivalences for:
• fully nondeterministic processes [13];
• fully probabilistic processes [11,12];
• reactive probabilistic processes [32];
• fully stochastic processes [2].

Surprisingly enough, it turned out that our behavioral metaequivalences, as
defined in [6], were not able to capture the following well known equivalences
for nondeterministic and probabilistic processes:

– The bisimulation equivalences of [22,45] are finer than the one derivable from
our bisimulation metaequivalence. The latter, studied in [8] and akin to the
ones in [47,49], contains the former as coarsest congruence with respect to
parallel composition, and has the nice property of being characterized by (a
minor variant of) the probabilistic modal logic PML [34] like in the case of
fully/reactive probabilistic processes [34] and alternating PA [39].

– The trace equivalence of [43] is finer than the one derivable from our trace
metaequivalence. The latter, studied in [7], has the nice property of being a
congruence with respect to parallel composition.

– The testing equivalences of [16,28,44,51] are finer than the one derivable from
our testing metaequivalence. The latter, studied in [7], has the nice property of
being backward compatible with testing equivalences for fully nondeterminis-
tic, fully probabilistic, and reactive probabilistic processes without imposing
any restriction on the set of tests.

In order to retrieve also the aforementioned equivalences, in [3] I introduced
the notion of resolution of nondeterminism in the ULTraS framework – with a
formalization inspired by testing theories for nondeterministic and probabilistic
processes – and, similar to what we did with Rocco and Michele in [7,8], I
played with the order of certain universal quantifiers in the definition of the
metaequivalences thereby obtaining pre- and post-metaequivalences.

Genesis and Evolution of ULTraS 95

2.1 Resolutions of Nondeterminism

When several transitions depart from the same state, they describe a choice
among different behaviors, but the presence of these choices may hamper the
calculations that will be required by behavioral metaequivalences. A resolution
of a state s of a D-ULTraS U is the result of a possible way of resolving choices
starting from s, as if a scheduler were applied that, at the current state, selects
one of its outgoing transitions or no transitions at all.

Following [27], in [3] I formalized a resolution as a D-ULTraS Z with a
tree-like structure – whose branching points correspond to target distributions
of transitions – obtained by unfolding from s the graph structure of U and by
selecting at each reached state at most one of its outgoing transitions. Since U
can be cyclic, I made use of a correspondence function from the acyclic state
space of Z to the original state space of U . This function must be bijective1
between the support of the target distribution of each transition in Z and the
support of the target distribution of the corresponding transition in U .

Definition 2. Let U = (S,A,−→) be a D-ULTraS and s ∈ S. A D-ULTraS
Z = (Z,A, −→Z), with no cycles and Z disjoint from S, is a resolution of s,
written Z ∈ Res(s), iff there exists a correspondence function corrZ : Z → S
such that s = corrZ(zs), for some zs ∈ Z, and for all z ∈ Z it holds that:

– If z
a−→Z Δ then corrZ(z)

a−→ Δ′, with corrZ being bijective between supp(Δ)
and supp(Δ′) and Δ(z′) = Δ′(corrZ(z′)) for all z′ ∈ supp(Δ).

– At most one transition departs from z.

For bisimulation semantics, choices need to be resolved only at the first step
or, more generally, only at each of the first k steps in case of a multistep definition
of bisimilarity. A notion of partial resolution is thus introduced. It has the same
characteristics as a resolution in its initial part – i.e., states not in S for ensuring
the absence of cycles and choices – but, after the first k steps, its states and
transitions are identical to the original ones.

Definition 3. Let U = (S,A,−→) be a D-ULTraS, s ∈ S, and k ∈ N≥1. A
D-ULTraS Z = (Z,A, −→Z) is a k-resolution of s, written Z ∈ k-Res(s), iff
there exists a correspondence function corrZ : Z → S such that s = corrZ(zs),
for some zs ∈ Z, and for all z ∈ Z it holds that:

– If z
a−→Z Δ then corrZ(z)

a−→ Δ′, with corrZ being bijective between supp(Δ)
and supp(Δ′) and Δ(z′) = Δ′(corrZ(z′)) for all z′ ∈ supp(Δ).

– If z is reachable from zs with a sequence of less than k transitions, then:
• z /∈ S;
• z cannot be part of a cycle;
• z has at most one outgoing transition;

otherwise z is equal to corrZ(z) ∈ S and has the same outgoing transitions
that it has in U .

1 Requiring only injectivity as in [3] is not enough because it does not ensure that the
former distribution preserves the overall reachability mass of the latter distribution
(unlike the probabilistic case, in general there is no predefined reachability mass).

96 M. Bernardo

2.2 Reachability-Consistent Semirings

To express the calculations needed by behavioral metaequivalences, in [3] I fur-
ther assumed that D has a commutative semiring structure – thereby reconciling
ULTraS with FuTS to a large extent – i.e., that D is equipped with two binary
operations denoted by ⊕ and ⊗, with the latter distributing over the former,
which satisfy the following properties:

– ⊗ is associative and commutative and admits neutral element 1D and absorb-
ing element 0D. This multiplicative operation enables the calculation of mul-
tistep reachability from values of consecutive single-step reachability along
the same trajectory.

– ⊕ is associative and commutative and admits neutral element 0D. This addi-
tive operation is useful for aggregating values of multistep reachability along
different trajectories starting from the same state, as well as for shorthands
of the form Δ(S′) =

⊕
s′∈S′ Δ(s′) given a transition s

a−→ Δ.

In [3] I also assumed that these two binary operations are reachability consis-
tent, in the sense that they satisfy the following additional properties in accor-
dance with the intuition behind the concept of reachability:

– 0D = ⊥D (i.e., the zero of the semiring denotes unreachability).
– d1 ⊗ d2 �= 0D whenever d1 �= 0D �= d2 (hence two consecutive steps cannot

result in unreachability).
– The sum via ⊕ of finitely many values 1D is always different from 0D (known

as characteristic zero; it ensures that two nonzero values sum up to zero only
if they are one the inverse of the other w.r.t. ⊕, thus avoiding inappropriate
zero results when aggregating values of trajectories from the same state).

For example, the following reachability-consistent semirings can be used:

– (B,∨,∧,⊥,) for nondeterministic models;
– (R≥0,+,×, 0, 1) for probabilistic and stochastic models;

while characteristic zero rules out all semirings (Zn,+n,×n, 0, 1) of the classes
of integer numbers that are congruent modulo n ∈ N≥2.

2.3 Measure Schemata for Multistep Reachability

The definition of behavioral metaequivalences requires the capability of measur-
ing the degree of reachability of a given set of states from a given state when
executing a sequence of transitions labeled with a certain sequence of actions. On
the basis of [6], in [3] I provided a notion of measure schema for a D-ULTraS
U as a set of homogeneously defined measure functions, one for each resolution
Z of U . In the following, A∗ denotes the set of traces over an action set A, ε the
empty trace, and |α| the length of a trace α ∈ A∗.

Definition 4. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring and
U = (S,A,−→) be a D-ULTraS. A D-measure schema M for U is a set of
measure functions of the form MZ : Z × A∗ × 2Z → D, one for each Z =

Genesis and Evolution of ULTraS 97

(Z,A,−→Z) ∈ Res(s) and s ∈ S, which are inductively defined on the length of
their second argument by letting MZ(z, α, Z ′) be equal to:
⎧
⎪⎨

⎪⎩

fZ(
⊕

z′∈supp(Δ)

(Δ(z′) ⊗ MZ(z′, α′, Z ′)), z, a,Δ) if α = aα′ and z
a−→Z Δ

1D if α = ε and z ∈ Z ′

0D otherwise

where fZ : D × Z × A × (Z → D)nefs → D.

In the first clause, the value of MZ(z, α, Z ′) is built around a sum of products
of D-values, with the summation being well defined because supp(Δ) is finite as
established in Definition 1. The definition above applies to Z ∈ k-Res(s) by
restricting to traces α ∈ A∗ such that |α| ≤ k (note that Z ′ ⊆ S when |α| = k).
For simplicity, M will often indicate both the measure schema and any of its
measure functions MZ , with Mnd being used when the semiring is (B,∨,∧,⊥,)
and Mpb when it is (R≥0,+,×, 0, 1).

To provide some degree of flexibility, further parameters, internal or external
to U , may be taken into account. On the one hand, the auxiliary function fZ
returns its first argument unless otherwise stated, but can also exploit informa-
tion related to the source state z, the action label a, or the target distribution Δ
of the transition elicited in the first clause. On the other hand, when necessary
MZ is allowed to depend on arguments external to U , such as time [3], which
are consistently inherited by fZ (the codomain of both functions remains D).

2.4 Bisimulation and Trace Pre-/Post-metaequivalences: Coherency

In [3] I focused on the two endpoints of the linear-time/branching-time spectrum
and redefined bisimulation and trace semantics for ULTraS with respect to [6]
on the basis of the newly introduced concepts: resolutions of nondeterminism,
reachability-consistent semirings, measure schemata. This allowed me to capture
also the equivalences for nondeterministic and probabilistic processes.

For bisimulation semantics there are two different metaequivalences, ∼pre
B

and ∼post
B . Both are defined in the style of [34], which requires bisimulations to

be equivalence relations, but deal with sets of equivalence classes, rather than
only with individual equivalence classes, to avoid an undesirable decrease of the
discriminating power in certain circumstances. The difference between the two
metaequivalences lies in the position – underlined in the definition below – of
the universal quantification over sets of equivalence classes.

In the first case, inspired by [8,47,49] and referred to as pre-bisimulation, the
quantification occurs before the transition of the challenger and the transition of
the defender. In the second case, which is the widely accepted approach of [45]
referred to as post-bisimulation, the quantification occurs after those two tran-
sitions. Given an equivalence relation B over a state space S together with a set
of equivalence classes G ∈ 2S/B,

⋃ G ⊆ S denotes the union of all the equivalence
classes in G. The two considered transitions are represented via 1-resolutions.

98 M. Bernardo

2d

r2

1d

r1

1s

2d

r1

1d

r3

1d

r2

2d

r3

2d

r1

1d

r2

2s

1d

r1

2d

r3

2d

r2

1d

r3

a a a a a a

Fig. 1. Difference between bisimulation metaequivalences: s1 �∼post
B,M s2, s1 ∼pre

B,M s2

Definition 5. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring, U =
(S,A,−→) be a D-ULTraS, M be a D-measure schema for U , and s1, s2 ∈ S:

– s1 ∼pre
B,M s2 iff there exists an M-pre-bisimulation B over S such that

(s1, s2) ∈ B. An equivalence relation B over S is an M-pre-bisimulation iff,
whenever (s1, s2) ∈ B, then for all a ∈ A and for all G ∈ 2S/B it holds that
for each Z1 ∈ 1-Res(s1) there exists Z2 ∈ 1-Res(s2) such that:

M(zs1 , a,
⋃

G) = M(zs2 , a,
⋃

G)

– s1 ∼post
B,M s2 iff there exists an M-post-bisimulation B over S such that

(s1, s2) ∈ B. An equivalence relation B over S is an M-post-bisimulation iff,
whenever (s1, s2) ∈ B, then for all a ∈ A it holds that for each Z1 ∈ 1-Res(s1)
there exists Z2 ∈ 1-Res(s2) such that for all G ∈ 2S/B:

M(zs1 , a,
⋃

G) = M(zs2 , a,
⋃

G)
To understand the difference between the two bisimulation metaequivalences,

consider the two D-ULTraS models in Fig. 1. Both models feature internal
nondeterminism (due to the three a-transitions departing from s1 and s2), the
same distinct D-values d1 and d2, and the same inequivalent continuations given
by the D-ULTraS submodels with initial states r1, r2, r3. Notice that both
the D-values and the continuations are shuffled within each model, while only
the D-values are shuffled across the two models too. It holds that s1 �∼post

B,M s2

because, e.g., the leftmost a-transition of s1 is not matched by any of the three a-
transitions of s2. In contrast, s1 ∼pre

B,M s2. For instance, the leftmost a-transition
of s1 is matched by the central (resp. rightmost) a-transition of s2 with respect
to the equivalence class of r1 (resp. r2) and by the leftmost a-transition of s2

with respect to the union of the equivalence classes of r1 and r2 (see the dashed
arrow-headed lines in Fig. 1).

Also for trace semantics there are two different metaequivalences, ∼pre
T and

∼post
T , which differ for the position of the universal quantification over traces. In

the first case, inspired by [7], the quantification occurs before the computation
of the challenger and the computation of the defender, so that superscript pre

Genesis and Evolution of ULTraS 99

is used. In the second case, which is the widely accepted approach of [43], the
quantification occurs after those two computations, hence superscript post.

In the definition of trace semantics, the considered computations are rep-
resented through resolutions. The ULTraS submodels rooted in the support
of the target distribution of a transition are not necessarily distinct and can
have several outgoing transitions. Therefore, on the resolution side, the sched-
uler has the freedom of making different decisions in different occurrences of
the same submodel within a target distribution. Unfortunately, this results in
overdiscriminating trace metaequivalences.

Unlike [3], in this paper I limit the excessive power of schedulers by restricting
myself to coherent resolutions, i.e., resolutions in which the decisions made in
different occurrences of the same submodel are coherent with each other. This
can be expressed by reasoning on suitable sets of traces, each extended with its
degree of executability in a given resolution.

Given a ∈ A, d ∈ D \ {0D}, and T, T1, T2 ⊆ A∗ × (D \ {0D}), let:

a . T = {(aα, d′) | (α, d′) ∈ T}
d ⊗ T = {(α, d ⊗ d′) | (α, d′) ∈ T}
tr(T) = {α ∈ A∗ | (α, d′) ∈ T for some d′ ∈ D \ {0D}}

T1 ⊕ T2 = {(α, d1 ⊕ d2) | (α, d1) ∈ T1 ∧ (α, d2) ∈ T2}
∪ {(α, d1) ∈ T1 | there exists no (α, d2) ∈ T2 or there exists

α′ �= α in either tr(T1) or tr(T2) such that |α′| ≤ |α|}
∪ {(α, d2) ∈ T2 | there exists no (α, d1) ∈ T1 or there exists

α′ �= α in either tr(T1) or tr(T2) such that |α′| ≤ |α|}
The set of coherent D-traces of a state s of a D-ULTraS is defined as follows:

T c
D(s) =

⋃

n∈N

T c
D,n(s)

where T c
D,n(s) is the set of coherent D-traces of s having length at most n:

T c
D,0(s) = {(ε, 1D)}

T c
D,n+1(s) = {(ε, 1D)} ∪ ⋃

s
a−→ Δ

a .

(
⊕

Θ⊆A∗

tr(T c
D,n(s′))=Θ⊕

s′∈supp(Δ)

(Δ(s′) ⊗ T c
D,n(s

′))

)

Definition 6. Let U =(S,A,−→) be a D-ULTraS, s ∈ S, Z = (Z,A, −→Z) ∈
Res(s) with correspondence function corrZ : Z → S. Z is said to be a coherent
resolution of s, written Z ∈ Resc(s), iff for all z ∈ Z, whenever z

a−→Z Δ, then
for all z′, z′′ ∈ supp(Δ) and n ∈ N:

tr(T c
D,n(corrZ(z′))) = tr(T c

D,n(corrZ(z′′))) =⇒ tr(T c
D,n(z

′)) = tr(T c
D,n(z

′′))

100 M. Bernardo

s1 2s 2z

1d + 2d

1D

1d 2d
2s’ 2s"

1D1D

1d 2d
2z’ 2z"

coherent
not

1D

b b b b

a a a

Fig. 2. Validity of Prop. 1(3) thanks to resolution coherency: s1 ∼post
B,M s2, s1 ∼post

T,M s2

Definition 7. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring, U =
(S,A,−→) be a D-ULTraS, M be a D-measure schema for U , and s1, s2 ∈ S:

– s1 ∼pre
T,M s2 iff for all α ∈ A∗ it holds that for each Z1 = (Z1, A,−→Z1) ∈

Resc(s1) there exists Z2 = (Z2, A,−→Z2) ∈ Resc(s2) such that:
M(zs1 , α, Z1) = M(zs2 , α, Z2)

and also the condition obtained by exchanging Z1 with Z2 is satisfied.
– s1 ∼post

T,M s2 iff it holds that for each Z1 = (Z1, A,−→Z1) ∈ Resc(s1) there
exists Z2 = (Z2, A,−→Z2) ∈ Resc(s2) such that for all α ∈ A∗:

M(zs1 , α, Z1) = M(zs2 , α, Z2)
and also the condition obtained by exchanging Z1 with Z2 is satisfied.

2.5 Comparing Bisimulation and Trace Metaequivalences

The outcome of the comparison of the discriminating power of the four behavioral
metaequivalences is recalled below from [3].

Proposition 1. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring, U =
(S,A,−→) be a D-ULTraS, and M be a D-measure schema for U . Then:

1. ∼post
B,M ⊆ ∼pre

B,M, with ∼post
B,M = ∼pre

B,M if U has no internal nondeterminism.
2. ∼post

T,M ⊆ ∼pre
T,M.

3. ∼post
B,M ⊆ ∼post

T,M.

The validity of the third property2 above is ensured by the coherency of
the resolutions used in the definition of the trace metaequivalences. Consider
for instance the two D-ULTraS models in the leftmost part of Fig. 2, where
s1 ∼post

B,M s2 and s1 ∼post
T,M s2. The latter identification is made possible by

resolution coherency in ∼post
T,M. Indeed, T c

D(s′
2) = {(ε, 1D), (b, 1D)} = T c

D(s′′
2).

Therefore, the resolution of s2 coinciding with the entire second model is coher-
ent, while the one in the rightmost part of Fig. 2 is not, because T c

D(z′
2) =

{(ε, 1D), (b, 1D)} �= {(ε, 1D)} = T c
D(z′′

2), and would lead to s1 �∼post
T,M s2 if it were

admitted.
2 The proof is the same as the third property of Proposition 3.5 of [3], which is now

correct in its inductive part (|α| = n + 1, a′ = a, “either α′ . . . ”) due to resolution
coherency.

Genesis and Evolution of ULTraS 101

s1 2s 3s

b1 b2 b1 b2 b1 b2

1z 2z’ z’3

b1 b2 b1 b2 b1 b2

2z" 3z"

a a a a

a a a a a

Fig. 3. Strictness of inclusions in Proposition 1 and incomparability of metaequiva-
lences

As far as the strictness of the inclusions in Proposition 1 and the incompara-
bility of certain metaequivalences are concerned, consider the three B-ULTraS
models in the upper part of Fig. 3 – where only the second one features internal
nondeterminism and b1 �= b2 – together with their maximal resolutions in the
lower part of Fig. 3 (is omitted in the case of target distributions with singleton
support). It turns out what follows:

– s1 ∼pre
B,Mnd

s2 but s1 �∼post
B,Mnd

s2 because the only a-transition of s1 cannot be
matched, in the Mnd-post-bisimulation game, by any of the two a-transitions
of s2, as the transition of s1 can reach two different equivalence classes, while
each transition of s2 can reach only one class.

– s1 �∼pre
B,Mnd

s3, and hence s1 �∼post
B,Mnd

s3, because the state reached by the a-
transition of s3 enables two actions and, as a consequence, cannot be equiva-
lent to any of the two states reached by the a-transition of s1. Indeed, although
s2 and s3 have the same resolutions, their maximal 1-resolutions are different;
for s2 they coincide with the two maximal resolutions, while for s3 the only
maximal 1-resolution coincides with the original model.

– s1 ∼pre
T,Mnd

s2 but s1 �∼post
T,Mnd

s2 because the only maximal resolution of s1

cannot be matched, in the case of ∼post
T,Mnd

, by any of the two maximal resolu-
tions of s2, as the maximal resolution of s1 has two different maximal traces,
while each maximal resolution of s2 has only one maximal trace.

– s1 ∼pre
T,Mnd

s3 but s1 �∼post
T,Mnd

s3 because s3 has the same resolutions as
s2. This shows that, unlike bisimulation semantics, ∼pre

T,M and ∼post
T,M do not

coincide even in the absence of internal nondeterminism, unless excluding B-
ULTraS models such as the first one that cannot be considered the canonical
representation of any labeled transition system and, more generally, all semir-
ings with a set D �= B containing a value d �= 0D such that d⊕ d = d (so that
trace a would distinguish s1 from s3 – and also s2 – w.r.t. ∼pre

T,M).
– s2 ∼post

T,Mnd
s3 as they have the same resolutions, but s2 �∼post

B,Mnd
s3.

– ∼pre
B,M is generally incomparable with ∼post

T,M and ∼pre
T,M. On the one hand,

s2 �∼pre
B,Mnd

s3 while s2 ∼post
T,Mnd

s3 and s2 ∼pre
T,Mnd

s3. On the other hand, in

102 M. Bernardo

Fig. 1 it holds that s1 ∼pre
B,M s2 while s1 �∼post

T,M s2; moreover s1 �∼pre
T,M s2 if r1

(resp. r2) has a b-transition that reaches with degree d′
b (resp. d′′

b) a terminal
state, whenever degrees (d1⊗d′

b)⊕(d2⊗d′′
b) and (d2⊗d′

b)⊕(d1⊗d′′
b) associated

with trace a b – which is assumed not to be executable via r3 – are different
from each other and from d1 ⊗ d′

b and d2 ⊗ d′′
b .

2.6 Alternative Characterizations of Trace Metaequivalences

On the basis of [7], in [3] I provided an alternative characterization of ∼pre
T,M,

which is slightly revised here. Since this metaequivalence treats traces individu-
ally regardless of the resolutions in which they can be executed, two states turn
out to be equivalent according to ∼pre

T,M iff they have the same set of D-traces.
The validity of the lemma below relies on the use of coherent resolutions,

together with the fact that the definition of T1 ⊕ T2 before Definition 6 also
includes (α, d1) taken from T1 and (α, d2) taken from T2 without summing up
their degrees, provided that there exists another trace α′ not longer than α in
only one of T1 and T2 – meaning that T1 and T2 stem from two inequivalent
states.3

Lemma 1. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring, U =
(S,A,−→) be a D-ULTraS, M be a D-measure schema for U . Let (α, d) ∈
A∗ × (D \ {0D}) and s ∈ S. Then (α, d) ∈ T c

D(s) iff there exists (Z,A,−→Z) ∈
Resc(s) such that M(zs, α, Z) = d.

Theorem 1. Let s1, s2 ∈ S. Then s1 ∼pre
T,M s2 iff T c

D(s1) = T c
D(s2).

An analogous characterization can be provided for ∼post
T,M by reasoning in

terms of coherent D-trace distributions, so to bind extended D-traces to the
resolutions in which they can be executed. For a state s, what is obtained is a
family of sets of extended D-traces instead of a flat set:

TDc(s) = {T c(zs) | there exists Z ∈ Resc(s) whose initial state is zs}

from which the result below immediately follows.

Theorem 2. Let s1, s2 ∈ S. Then s1 ∼post
T,M s2 iff TDc

D(s1) = TDc
D(s2).

3 Metaresults for Behavioral Metaequivalences

After the identification of models and equivalences captured or generated by the
ULTraS framework, the ongoing research is aimed at investigating the proper-
ties of behavioral metaequivalences. The objective of this activity is to produce
metaresults, in the sense that the obtained results should be valid regardless of
specific classes of processes, thereby leading to a unifying process theory.
3 The definition of T1 ⊕ T2 before Lemma 4.11 of [3] should be rectified by removing

the two instances of “α occurring only in . . . ” as resolutions are not coherent there
(otherwise the if part of Lemma 4.11(2) would not hold).

Genesis and Evolution of ULTraS 103

Table 1. Structural operational semantic rules for UProC

The compositionality metaresults established in [3] for bisimulation and trace
pre-/post-metaequivalences are now discussed, by rephrasing them in the setting
of a general process calculus relying on the same underpinnings as ULTraS.
The definition of the semantics for this language makes use of the two binary
operations provided by the underlying reachability-consistent semiring.

3.1 A Process Algebraic View of ULTraS

Given a preordered set D equipped with minimum that yields a reachability-
consistent semiring (D,⊕,⊗, 0D, 1D), together with a countable set A of actions,
the syntax for UProC – uniform process calculus features two levels, one for
the set P of processes and one for the set D of reachability distributions:

P :: = 0 | a .D | P + P | P ‖L P

D :: = d � P | D+◦ D

where a ∈ A, L ⊆ A, d ∈ D \ {0D}.
The structural operational semantic rules in Table 1 generate a D-ULTraS

(P, A,−→) by exploiting the semiring operations. The primary transition relation
−→ is defined as the smallest subset of P×A× (P → D)nefs satisfying the rules
in the upper part, where ⊗ is lifted to reachability distributions over the parallel
composition of processes by letting (Δ1 ⊗ Δ2)(P1 ‖L P2) = Δ1(P1) ⊗ Δ2(P2),
while δP is the reachability distribution identically equal to 0D except in P
where its value is 1D. The secondary transition relation �−→ is the smallest
subset of D × (P → D)nefs satisfying the rules in the lower part, with {(P, d)}
being a shorthand for the reachability distribution identically equal to 0D except
in P where its value is d; furthermore, ⊕ is lifted to reachability distributions
by letting (Δ1 ⊕ Δ2)(P) = Δ1(P)⊕ Δ2(P). Let supp(D) = supp(Δ) if D �−→ Δ.

104 M. Bernardo

As far as the process operator + is concerned, it expresses a generic choice to
be interpreted on the basis of D. For example, if D = B then the choice is nonde-
terministic. If instead D = R≥0, in the presence of alternative identical actions
– corresponding to identically labeled transitions departing from the same state
– the choice is nondeterministic and a (variant of) probabilistic automata can
be derived; otherwise, the choice may be regarded as probabilistic, in the sense
that a Markov chain or a Markov decision process may be obtained. Moreover,
note that a probabilistic process term like P1 p+P2, where p ∈ R]0,1[, can be
rendered as τ . (p � P1 +◦ (1 − p) � P2) in UProC, where τ is the invisible action.

3.2 Congruence with Respect to Distribution/Dynamic Operators

Let us investigate the compositionality properties of the four behavioral metae-
quivalences with respect to the operators of UProC. Due to the two-level format
of the syntax, as a preliminary step the metaequivalences are lifted from pro-
cesses to reachability distributions over processes. Extending [34], this can be
done by considering D1,D2 ∈ D related by an equivalence relation ∼ over P

when D1 and D2 assign the same reachability degree to the same equivalence
class, i.e., Δ1(C) = Δ2(C) for all C ∈ P/ ∼ with D1 �−→ Δ1 and D2 �−→ Δ2.
Note that, given D �−→ Δ, it holds that Δ ∈ (P → D)nefs and hence Δ(C), i.e.,⊕

P∈C Δ(P), can only have finitely many summands different from 0D.
Compositionality with respect to the distribution operators � and +◦ can be

established in a way that abstracts from the specific behavioral metaequivalence.

Theorem 3. Let ∼M ∈ {∼pre
B,M,∼post

B,M,∼pre
T,M,∼post

T,M} for a measure schema M
over the D-ULTraS semantics of UProC. Let P1, P2 ∈ P and D1,D2 ∈ D. If
P1 ∼M P2 and D1 ∼M D2, then:

1. d � P1 ∼M d � P2 for all d ∈ D \ {0D}.
2. D1 +◦ D ∼M D2 +◦ D and D+◦ D1 ∼M D+◦ D2 for all D ∈ D.

As far as the two dynamic process operators are concerned, there are different
proofs for bisimulation and trace semantics, which are reworkings of those in [3].

Theorem 4. Let ∼M ∈ {∼pre
B,M,∼post

B,M,∼pre
T,M,∼post

T,M} for a measure schema M
over the D-ULTraS semantics of UProC. Let P1, P2 ∈ P and D1,D2 ∈ D. If
P1 ∼M P2 and D1 ∼M D2, then:

1. a .D1 ∼M a .D2 for all a ∈ A.
2. P1 + P ∼M P2 + P and P + P1 ∼M P + P2 for all P ∈ P.

Unlike Theorem4.2 of [3], trace metaequivalences are full congruences with
respect to action prefix. If ordinary resolutions were considered instead of coher-
ent ones, a lack of compositionality would arise in the general setting of ULTraS
because the continuation after an action is not a single process, but a reachability
distribution over processes.

Genesis and Evolution of ULTraS 105

Fig. 4. Full compositionality w.r.t. action prefix thanks to resolution coherency

This can be illustrated through the following UProC terms P1 and P2:

P1 = a . (d1 � Q1 +◦ d2 � Q2)
P2 = a . (d1 � Q2 +◦ d2 � Q2)
Q1 = a′. b . 0 + a′. c . 0
Q2 = a′. (b . 0 + c . 0)

where a sequence of action prefixes like a′. b . 0 is a shorthand for a′. (d�b . (d�0))
for some d ∈ D \ {0D}. Their underlying D-ULTraS models are shown in the
leftmost part of Fig. 4. It is easy to see Q1 and Q2 are trace equivalent, hence the
two distributions describing the a-continuations of P1 and P2 are trace equivalent
too. However, if one considers the trace α = a a′b and the resolution of P1 shown
in the rightmost part of Fig. 4 – in which α is executable with degree d1 ⊗ d ⊗ d
– then no resolution of P2 is capable of matching it – as the executability degree
would be (d1 ⊕ d2)⊗ d ⊗ d or 0D – unless D = B in which case d1 = d2 = 	 and
d1 ⊕ d2 = 	 ∨ 	 = 	. As can be noted, that resolution of P1 is not coherent,
as the scheduler makes different decisions in the two trace equivalent submodels
respectively rooted at Q1 and Q2, thereby producing two resolutions of those
two submodels that are no longer trace equivalent.

3.3 Congruence with Respect to Parallel Composition

Addressing parallel composition is much more involved. Following [3], the first
metaresult states that ∼post

B,M is a congruence with respect to parallel composition
always, i.e., for every possible ULTraS. As a consequence of Proposition 1, this
is the case also for ∼pre

B,M in the absence of internal nondeterminism.

Theorem 5. Let M be a measure schema for the D-ULTraS semantics of
UProC. Let P1, P2 ∈ P. If P1 ∼post

B,M P2, then P1 ‖L P ∼post
B,M P2 ‖L P and

P ‖L P1 ∼post
B,M P ‖L P2 for all L ⊆ A and P ∈ P.

Corollary 1. Let M be a measure schema for the D-ULTraS semantics of
UProC. Let P1, P2 ∈ P have no internal nondeterminism. If P1 ∼pre

B,M P2, then
P1 ‖L P ∼pre

B,M P2 ‖L P and P ‖L P1 ∼pre
B,M P ‖L P2 for all L ⊆ A and P ∈ P.

106 M. Bernardo

Fig. 5. ∼pre
B,M is not compositional when |D| ≥ 3 and there is internal nondeterminism

As for the compositionality of ∼pre
B,M in the presence of internal nondetermin-

ism, let us consider the case |D| = 2, i.e., the simplest reachability-consistent
semiring (B,∨,∧,⊥,) together with the corresponding measure schema Mnd.
In this specific case, ∼pre

B,M turns out to be a congruence with respect to parallel
composition. Intuitively, in addition to the coinductive nature of bisimulation,
the reason is that, starting from transitions whose target distributions can only
contain 	 and ⊥ as values, their parallel composition cannot generate, for the
target distributions of the resulting transitions, values different from 	 and ⊥.

Theorem 6. Let Mnd be the measure schema for the B-ULTraS semantics of
UProC. Let P1, P2 ∈ P. If P1 ∼pre

B,Mnd
P2, then P1 ‖L P ∼pre

B,Mnd
P2 ‖L P and

P ‖L P1 ∼pre
B,Mnd

P ‖L P2 for all L ⊆ A and P ∈ P.

In all the other cases, i.e., when |D| ≥ 3 and internal nondeterminism is
present, the relation ∼pre

B,M is no longer guaranteed to be a congruence with
respect to parallel composition.

Consider for instance the first two D-ULTraS models in the upper part of
Fig. 5 (D-values of terminal states are omitted), where d′, d′′ ∈ D satisfy d′ �= d′′

and d′ �= 0D �= d′′ (these values exist because |D| ≥ 3). Given a D-measure
schema M, it holds that P1 ∼pre

B,M P2. However, if the last D-ULTraS in the
upper part is taken into account, the two D-ULTraS models in the lower part
of Fig. 5 are obtained, which satisfy P1 ‖A P �∼pre

B,M P2 ‖A P . The reason is that,
when examining the set of equivalence classes whose states can perform b1 or
b2, the leftmost a-transition of P1 ‖A P is not matched by any a-transition of
P2 ‖A P whenever (d′ ⊗d′)⊕ (d′′ ⊗d′′) /∈ {(d′′ ⊗d′)⊕ (d′ ⊗d′′), d′ ⊗d′, d′′ ⊗d′′}.

A coarsest congruence metaresult relating ∼post
B,M and ∼pre

B,M for |D| ≥ 3 can
be established whenever the reachability-consistent semiring (D,⊕,⊗, 0D, 1D) is
a field – like, e.g., (Q,+,×, 0, 1), (R,+,×, 0, 1), and (C,+,×, 0, 1) – which means
that the inverse operations with respect to ⊕ and ⊗ exist:

– d � d = d ⊕ inv⊕(d) = inv⊕(d) ⊕ d = 0D for all d ∈ D.
– d � d = d ⊗ inv⊗(d) = inv⊗(d) ⊗ d = 1D for all d ∈ D \ {0D}.

Genesis and Evolution of ULTraS 107

Fig. 6. ∼post
T,M is not compositional

Such a metaresult holds under image finiteness – i.e., when the number of identi-
cally labeled transitions departing from any state is finite – and relies on the fact
that transitions have target distributions with finite support. The proof exploits
the algebraic and topological properties of the vector spaces that can be built
on top of the field, as well as characteristic zero, which guarantees that the field
and hence the vector spaces on it are infinite.

Theorem 7. Let (D,⊕,�,⊗,�, 0D, 1D) be a reachability-consistent field and
M be a measure schema for the D-ULTraS semantics of UProC. Let P1, P2 ∈
P be image finite. Then P1 ∼post

B,M P2 iff P1 ‖L P ∼pre
B,M P2 ‖L P for all L ⊆ A

and P ∈ P.

In the case of trace semantics, it is ∼pre
T,M that, for every possible ULTraS,

is a congruence with respect to parallel composition, hence no compositionality
connection can be established with ∼post

T,M as the latter is finer than the for-
mer. The proof of this congruence metaresult for ∼pre

T,M exploits the alternative
characterization of Theorem 1.

Theorem 8. Let M be a measure schema for the D-ULTraS semantics of
UProC. Let P1, P2 ∈ P. If P1 ∼pre

T,M P2, then P1 ‖L P ∼pre
T,M P2 ‖L P and

P ‖L P1 ∼pre
T,M P ‖L P2 for all L ⊆ A and P ∈ P.

108 M. Bernardo

As for the compositionality of ∼post
T,M, even under the simplest reachability-

consistent semiring (B,∨,∧,⊥,) and the corresponding measure schema Mnd

the relation is not a congruence with respect to parallel composition, unless
excluding B-ULTraS models that cannot be regarded as the canonical repre-
sentation of any labeled transition system (for a congruence counterexample
based on Mpb, see Fig. 3 of [43]).

Consider for instance the first two B-ULTraS models in the upper part
of Fig. 6 (is omitted in the case of target distributions with singleton sup-
port), which satisfy P1 ∼post

T,Mnd
P2. If the last B-ULTraS in the upper part

is taken into account, the two B-ULTraS models in the lower part of Fig. 6
are obtained (dots stands for transitions that are not shown), which satisfy
P1 ‖∅ P �∼post

T,Mnd
P2 ‖∅ P . This is witnessed by the maximal resolutions of P1 ‖∅ P

and P2 ‖∅ P that start with trace a a′ and continue with one of the traces in
{b b1 c1, b b1 c2, b b2 c1, b b2 c2}. As an example, the maximal resolution of P2 ‖∅ P
whose associated set of maximal traces is {a a′ b b1 c1, a a′ b b2 c2} is not matched
under ∼post

T,Mnd
by any maximal resolution of P1 ‖∅ P .

3.4 Final Remarks

In conclusion, the metaresults of [3] – which have been reformulated here in a
process algebraic setting – confirm a foundational difference between bisimula-
tion and trace semantics. This difference refers to compositionality with respect
to parallel combinators and shows up under internal nondeterminism, as had
emerged in the specific case of nondeterministic and probabilistic processes [7,8].

A question naturally arises: is there a semantics for which both pre- and post-
metaequivalences are always congruences with respect to parallel composition?

4 Future Directions

I plan to keep putting ULTraS at work on behavioral metaequivalences to
further extend the resulting unifying process theory. In particular, I would like
to investigate:

– Equational characterization metaresults.
– Logical characterization metaresults.
– Metaresults for other bisimulation-/trace-based metaequivalences.
– Metaresults for testing metaequivalences.
– The spectrum of metaequivalences on ULTraS.

As far as behavioral metarelations are concerned, it is also worth studying:

– Behavioral metapreorders.
– Weak variants of behavioral metarelations.
– Approximate variants of behavioral metarelations.

Finally, on the metamodel side, it would be interesting to capture also:

– Interleaving models with continuous state spaces.
– Truly concurrent models such as Petri nets and event structures.

Genesis and Evolution of ULTraS 109

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994)

2. Bernardo, M.: Non-bisimulation-based Markovian behavioral equivalences. J. Logic
Algebraic Program. 72, 3–49 (2007)

3. Bernardo, M.: ULTraS at work: compositionality metaresults for bisimulation and-
trace semantics. J. Logical Algebraic Methods Program. 94, 150–182 (2018)

4. Bernardo, M., De Nicola, R., Loreti, M.: Uniform labeled transition systems for
nondeterministic, probabilistic, and stochastic processes. In: Wirsing, M., Hof-
mann, M., Rauschmayer, A. (eds.) TGC 2010. LNCS, vol. 6084, pp. 35–56.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15640-3_3

5. Bernardo, M., De Nicola, R., Loreti, M.: Uniform labeled transition systems for
nondeterministic, probabilistic, and stochastic process calculi. In: Proceedings of
the 1st International Workshop on Process Algebra and Coordination, PACO 2011,
EPTCS, vol. 60, pp. 66–75 (2011)

6. Bernardo, M., De Nicola, R., Loreti, M.: A uniform framework for modeling non-
deterministic, probabilistic, stochastic, or mixed processes and their behavioral
equivalences. Inf. Comput. 225, 29–82 (2013)

7. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting trace and testing equivalences
for nondeterministic and probabilistic processes. Logical Methods Comput. Sci.
10(1:16), 1–42 (2014)

8. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting bisimilarity and its modal
logic for nondeterministic and probabilistic processes. Acta Informatica 52, 61–
106 (2015)

9. Bernardo, M., Tesei, L.: Encoding timed models as uniform labeled transition
systems. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013.
LNCS, vol. 8168, pp. 104–118. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40725-3_9

10. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31, 560–599 (1984)

11. Christoff, I.: Testing equivalences and fully abstract models for probabilistic pro-
cesses. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp.
126–138. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039056

12. Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilis-
tic processes. Inf. Comput. 154, 93–148 (1999)

13. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

14. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based transition systems
for stochastic process calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 435–446.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1_36

15. De Nicola, R., Latella, D., Loreti, M., Massink, M.: A uniform definition of stochas-
tic process calculi. ACM Comput. Surv. 46(1:5), 1–35 (2013)

16. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Characterising testing
preorders for finite probabilistic processes. Logical Methods Comput. Sci. 4(4:4),
1–33 (2008)

17. Derman, C.: Finite State Markovian Decision Processes. Academic Press, Cam-
bridge (1970)

https://doi.org/10.1007/978-3-642-15640-3_3
https://doi.org/10.1007/978-3-642-40725-3_9
https://doi.org/10.1007/978-3-642-40725-3_9
https://doi.org/10.1007/BFb0039056
https://doi.org/10.1007/978-3-642-02930-1_36

110 M. Bernardo

18. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proceedings of the 25th IEEE Symposium on Logic in Computer Science
(LICS 2010), pp. 342–351. IEEE-CS Press (2010)

19. Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilistic con-
current systems. In: Proceedings of the 1st IFIP Working Conference on Program-
ming Concepts and Methods (PROCOMET 1990), North-Holland, pp. 443–458
(1990)

20. van Glabbeek, R.J.: The linear time - branching time spectrum I. In: Handbook
of Process Algebra, pp. 3–99. Elsevier (2001)

21. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified
models of probabilistic processes. Inf. Comput. 121, 59–80 (1995)

22. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and
probabilities. In: Proceedings of the 11th IEEE Real-Time Systems Symposium
(RTSS 1990), pp. 278–287. IEEE-CS Press (1990)

23. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32, 137–162 (1985)

24. Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences, and axioms for
MTIPP. In: Proceedings of the 2nd International Workshop on Process Algebra and
Performance Modelling (PAPM 1994), pp. 71–87. University of Erlangen, Technical
Report 27–4 (1994)

25. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

26. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (1985)

27. Jonsson, B., Ho-Stuart, C., Yi, W.: Testing and refinement for nondeterministic
and probabilistic processes. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.)
FTRTFT 1994. LNCS, vol. 863, pp. 418–430. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58468-4_176

28. Jonsson, B., Yi, W.: Compositional testing preorders for probabilistic processes.
In: Proceedings of the 10th IEEE Symposium on Logic in Computer Science (LICS
1995), pp. 431–441. IEEE-CS Press (1995)

29. Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations
for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990.
LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0039071

30. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19, 371–384
(1976)

31. Knast, R.: Continuous-time probabilistic automata. Inf. Control 15, 335–352
(1969)

32. Kwiatkowska, M., Norman, G.: A testing equivalence for reactive probabilistic
processes. In: Proceedings of the 5th International Workshop on Expressiveness
in Concurrency (EXPRESS 1998), ENTCS, vol. 16, no. 2, pp. 114–132. Elsevier
(1998)

33. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of
real-time systems with discrete probability distributions. Theor. Comput. Sci. 282,
101–150 (2002)

34. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94, 1–28 (1991)

35. Latella, D., Massink, M., de Vink, E.P.: Bisimulation of labelled state-to-function
transition systems coalgebraically. Logical Methods Comput. Sci. 11(4:16), 1–40
(2015)

https://doi.org/10.1007/3-540-58468-4_176
https://doi.org/10.1007/3-540-58468-4_176
https://doi.org/10.1007/BFb0039071
https://doi.org/10.1007/BFb0039071

Genesis and Evolution of ULTraS 111

36. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

37. Neuhäußer, M.R., Katoen, J.-P.: Bisimulation and logical preservation for
continuous-time markov decision processes. In: Caires, L., Vasconcelos, V.T. (eds.)
CONCUR 2007. LNCS, vol. 4703, pp. 412–427. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74407-8_28

38. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

39. Parma, A., Segala, R.: Logical characterizations of bisimulations for discrete prob-
abilistic systems. In: Seidl, H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 287–301.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71389-0_21

40. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (1994)

41. Rabin, M.O.: Probabilistic automata. Inf. Control 6, 230–245 (1963)
42. Segala, R.: Modeling and verification of randomized distributed real-time systems.

PhD thesis (1995)
43. Segala, R.: A compositional trace-based semantics for probabilistic automata. In:

Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60218-6_17

44. Segala, R.: Testing probabilistic automata. In: Montanari, U., Sassone, V. (eds.)
CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7_62

45. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jon-
sson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer,
Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_35

46. Seidel, K.: Probabilistic communicating processes. Theor. Comput. Sci. 152, 219–
249 (1995)

47. Song, L., Zhang, L., Godskesen, J.C., Nielson, F.: Bisimulations meet PCTL equiv-
alences for probabilistic automata. Logical Methods Comput. Sci. 9(2:7), 1–34
(2013)

48. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, Princeton (1994)

49. Tracol, M., Desharnais, J., Zhioua, A.: Computing distances between probabilis-
tic automata. In: Proceedings of the 9th International Workshop on Quantitative
Aspects of Programming Languages (QAPL 2011), EPTCS, vol. 57, pp. 148–162
(2011)

50. Wolf, V., Baier, C., Majster-Cederbaum, M.: Trace machines for observing
continuous-time Markov chains. In: Proceedings of the 3rd International Work-
shop on Quantitative Aspects of Programming Languages (QAPL 2005), ENTCS,
vol. 153, no. 2, pp. 259–277. Elsevier (2005)

51. Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Pro-
ceedings of the 12th International Symposium on Protocol Specification, Testing
and Verification (PSTV 1992), North-Holland, pp. 47–61 (1992)

https://doi.org/10.1007/978-3-540-74407-8_28
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/978-3-540-71389-0_21
https://doi.org/10.1007/3-540-60218-6_17
https://doi.org/10.1007/3-540-61604-7_62
https://doi.org/10.1007/978-3-540-48654-1_35

Coordination Models and Languages

X-Klaim Is Back

Lorenzo Bettini1(B) , Emanuela Merelli2 , and Francesco Tiezzi2

1 Dipartimento di Statistica, Informatica, Applicazioni,
Università di Firenze, Firenze, Italy

lorenzo.bettini@unifi.it
2 School of Science and Technology, Computer Science Division,

Università di Camerino, Camerino, Italy
{emanuela.merelli,francesco.tiezzi}@unicam.it

Abstract. Klaim is a coordination language specifically designed to
model and program distributed systems consisting of mobile components
interacting through multiple distributed tuple spaces. The Klaim’s the-
oretical foundations provided a solid ground for the implementation of
the Klaim’s programming model. To practically program Klaim-based
applications, the X-Klaim programming language has been proposed. It
extends Klaim with enriched primitives and standard control flow con-
structs, and is compiled in Java to be executed. However, due to the limits
of X-Klaim in terms of usability and the aging of the technology at the
basis of its compiler, X-Klaim has been progressively neglected. Moti-
vated by the success that Klaim has gained, the popularity that still has
in teaching distributed computing, and its possible future exploitations
in the development of modern ICT systems, in this paper we propose a
renewed and enhanced version of X-Klaim. The new implementation,
coming together with an Eclipse-based IDE tooling, relies on recent pow-
erful frameworks for the development of programming languages.

Keywords: Network-aware programming · Coordination language ·
Klaim · X-Klaim · Eclipse IDE

1 Introduction

In the mid-90s Rocco De Nicola, to whom this LNCS volume is dedicated, came
up with the idea of combining the work on process algebras, to which he had
turned his research interest so far, with Linda’s notion of asynchronous gen-
erative communication. Linda is a coordination paradigm providing a set of
primitives for decoupling communicating processes both in space and time [41].
Communication is achieved via a shared data repository, called tuple space, where
processes insert, read and withdraw tuples (i.e., sequences of data items). The
data retrieving mechanism uses pattern-matching to find the required data in
the tuple space.

The first attempt is PAL (Process Algebra based on Linda, [35]), a process
algebra obtained by embedding the Linda primitives for interprocess commu-
nication in a CSP-like process description language. Then, this language was
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 115–135, 2019.
https://doi.org/10.1007/978-3-030-21485-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_8&domain=pdf
http://orcid.org/0000-0002-4481-8096
http://orcid.org/0000-0002-1321-4134
http://orcid.org/0000-0003-4740-7521
https://doi.org/10.1007/978-3-030-21485-2_8

116 L. Bettini et al.

Fig. 1. The Klaim family.

extended with localities (i.e., network addresses) as first-class citizens, which can
be dynamically created and communicated. This capability is essential for achiev-
ing the so-called network-aware programming, where processes of a distributed
application can explicitly refer and control the spatial structure of the network
where they are currently deployed. The resulting formalism, LLinda (Locality
Linda, [22]), considers multiple tuple spaces that are distributed over a collec-
tion of network nodes, and uses localities to distribute/retrieve data over/from
these nodes. As the code of processes is itself data, higher-order communication
is enabled in order to support the definition of applications with mobile compo-
nents. Syntax and semantics of LLinda were later revised and cleaned up, thus
obtaining the coordination language Klaim (Kernel Language for Agents Inter-
action and Mobility, [23]). It allows one to design distributed systems consisting
of stationary and mobile components interacting through multiple distributed
tuple spaces.

Since then, a lot of effort has been made on Klaim. On the one hand, several
variants of Klaim have been proposed to face the new challenges posed by the
continuously evolving scenario of network-based technology. We show in Fig. 1 a
timeline reporting the significant results on this research line. On the other hand,
the theoretical foundations of Klaim enabled the definition of several verifica-
tion techniques (e.g., type systems [21,24–26,29,42,43], behavioral equivalences
[27], flow logic [37], model checking [30,33,38]), as well as they provided a solid
ground for the implementation of the Klaim’s programming model. As a further
evidence of the success and influence that Klaim has gained, we report here the
number of citations that the seminal paper [23] has received at the time of writ-
ing: in Scopus it is cited by 362 documents, in Web of Science by 225, and in
Google Scholar by 666.

In this paper, we focus on Klaim’s implementation. In order to program
applications according to the Klaim’s paradigm, the toolchain depicted in
Fig. 2 was initially developed. Since Klaim was originally conceived as a formal-
ism rather than as a full-fledged programming language, it had been extended
with high-level process constructs to make the programming task more friendly.

X-Klaim Is Back 117

Fig. 2. X-Klaim toolchain.

The resulting programming language, called X-Klaim (eXtended Klaim, [11]),
provides variable declarations, enriched communication primitives, assignments,
conditionals, sequential and iterative process composition. The X-Klaim com-
piler translates X-Klaim programs into Java programs that exploit the Java
package Klava (Klaim in Java, [8]), which provides the runtime environment
for X-Klaim operations. The produced Java code can be then compiled and
executed in the standard way.

Klava has evolved over the years and is still a maintained framework used
for directly programming in Java according to the Klaim paradigm. Instead,
the X-Klaim compiler has been progressively neglected, due to the aging of its
underlying technologies, the lack of an IDE supporting the programming and
debugging activity, and the limitations of X-Klaim on exchangeable data and
supported expressions. These deficiencies undermined the usability of the lan-
guage and, hence, its usage by the coordination community. To fill this gap, in
this paper we propose a renewed and enhanced version of X-Klaim, by relying
on powerful modern frameworks for the development of domain-specific program-
ming languages. This is not only motivated by the success of Klaim, as shown
above, but also by the fact that Klaim is still a popular language for teach-
ing distributed computing in academia1. Moreover, we also envisage possible
exploitations of the renewed X-Klaim as coordination language for developing
modern ICT systems, in such domains as IoT, Smart Cities, e-Health, etc.

The new version of X-Klaim is available as an open source project. Sources
and links to Eclipse update site and to complete Eclipse distributions are avail-
able from: https://github.com/LorenzoBettini/xklaim.

The rest of the paper is organized as follows. Section 2 provides an informal
overview of Klaim, and introduces a simple running example concerning a leader
election algorithm. Section 3 describes the renewed version of X-Klaim we pro-
pose, together with details on the implementation and the related Eclipse-based
1 Klaim has been and is still taught on courses about coordination and distributed

computing at, e.g., Università di Firenze, Università di Camerino, Università di Pisa,
IMT Scuola Alti Studi Lucca, and Danmarks Tekniske Universitet.

https://github.com/LorenzoBettini/xklaim

118 L. Bettini et al.

Fig. 3. Tuple space and Linda primitives.

IDE tooling. Finally, Sect. 4 concludes the paper by touching upon directions for
future works.

2 Klaim

In this section, we summarize the key features of Klaim. It is a formal lan-
guage specially devised to design distributed applications consisting of several
(possibly mobile) components deployed over the nodes of network infrastruc-
ture. Although Klaim is based on process algebras, it makes use of Linda-like
asynchronous communication and supports distributed data management via
multiple shared tuple spaces. A tuple space is a multiset of tuples, the latter
consisting of sequences of data items. Processes interact by inserting, reading
and withdrawing tuples to/from tuple spaces. The tuple retrieving mechanism
relies on pattern-matching to find the required data in the tuple space. Klaim
enriches Linda primitives (see Fig. 3) with information about the network locali-
ties where processes and tuples are allocated. Localities can be explicitly referred
and exchanged, thus supporting network-aware programming.

Klaim syntax is shown in Table 1. We use the following disjoint sets: the set
of physical localities (ranged over by l), the set of logical localities (ranged over
by u), the set of locality variables (ranged over by r), the set of value variables
(ranged over by x), the set of process variables (ranged over by X), and the
set of process identifiers (ranged over by A). We also use a set of expressions
(ranged over by e), whose exact syntax is omitted; we assume that expressions
contain, at least, values (ranged over by V) and value variables. We shall use �
to denote a locality, either physical or logical, or a locality variable.

Nets N are finite collections of nodes where processes and data can be located
(see Fig. 4). Nets are formed by composing nodes by means of the parallel oper-
ator N1 ‖ N2.

A computational node l::ρ P is characterized by its physical locality l, a run-
ning process P and an allocation environment ρ. The latter acts as a name solver

X-Klaim Is Back 119

Table 1. Klaim syntax.

(Nets)

N ::= l :: P
∣
∣ l :: 〈et〉 ∣

∣ N1 ‖ N2

(Processes)

P ::= nil
∣
∣ a.P

∣
∣ P1 | P2

∣
∣ X

∣
∣ A(p̄)

(Actions)

a ::= out(t)@�
∣
∣ in(T)@�

∣
∣ read(T)@�

∣
∣ eval(P)@�

∣
∣ newloc(r)

(Tuples)

t ::= e
∣
∣ �

∣
∣ P

∣
∣ t1, t2

(Evaluated tuples)

et ::= V
∣
∣ l

∣
∣ P

∣
∣ et1,et2

(Templates)

T ::= e
∣
∣ �

∣
∣ P

∣
∣ !x

∣
∣ !r

∣
∣ !X

∣
∣ T1,T2

binding logical localities, occurring in the processes hosted in the corresponding
node, into specific physical localities. The distinguished logical locality self is
used by processes to refer to the physical locality of their current hosting node.
The term l::〈et〉 indicates that the evaluated tuple et is located to the physical
locality l. The tuple space for a given locality consists of all the evaluated tuples
located there.

Processes P are the active computational units of Klaim. They can be exe-
cuted concurrently, either at the same physical locality or at different localities.
Processes are built up from the empty process nil (which does nothing), basic
actions a, process variables X, and process calls A(p̄), by means of the action
prefixing operator a.P and the parallel composition P1 | P2. Recursive behaviors
are modeled via process definitions; it is assumed that each process identifier A
has a single defining equation A(f̄) � P , where f̄ and p̄ denote lists of formal
and actual parameters, respectively. Hereafter, we do not explicitly represent
process definitions (and their migration to make migrating processes complete),
and assume that they are available at any node of a net. Process variables sup-
port higher-order communication, namely the capability to exchange (the code
of) a process and possibly execute it. It is realized by first adding a tuple con-
taining the process to a tuple space and then retrieving/withdrawing this tuple
while binding the process to a process variable.

During their execution, processes perform some basic actions (see Fig. 5).
Action out(t)@� adds the tuple resulting from the evaluation of t to the tuple

120 L. Bettini et al.

Fig. 4. The Klaim net.

space of the target node identified by �. A tuple is a sequence of the actual
field, i.e., expressions, localities, locality variables, or processes. The evaluation
of a tuple amounts to computing the values of its expressions. Action in(T)@�
(resp. read(T)@�) permits to withdraw (resp. read) tuples from the tuple space
hosted at the (possibly remote) locality �. If matching tuples are found, one is
non-deterministically chosen, otherwise, the process is blocked. These retrieval
actions exploit templates as patterns to select tuples in a tuple space. Tem-
plates are sequences of actual and formal fields, where the latter are written
!x, ! r or !X and are used to bind variables to values, physical localities, or
processes, respectively. Templates must be evaluated before they can be used
for retrieving tuples; their evaluation is like that of tuples, where formal fields
are left unchanged by the evaluation. Intuitively, an evaluated template matches
against an evaluated tuple if both have the same number of fields and corre-
sponding fields do match; two values/localities match only if they are identical,
while formal fields match any value of the same type. A successful matching
returns a substitution associating the variables contained in the formal fields
of the template with the values contained in the corresponding actual fields of
the accessed tuple; such substitution is applied to the continuation process of
the executed action. Action eval(P)@� sends the process P for execution to the
(possibly remote) node identified by �. Finally, action newloc(r) creates a new
network node with physical locality bound to the locality variable r. Differently,
from all the other actions, this latter action is not indexed with a target locality
because it always acts locally.

We conclude the section with a simple example (inspired by those in [16])
aiming at showing Klaim at work on the specification of a leader election algo-
rithm.

X-Klaim Is Back 121

Fig. 5. The Klaim node.

Example 1 (Running example in Klaim). We consider a system where n partic-
ipants distributed on the nodes of a network have to elect a leader. The system
is rendered in Klaim as the following net:

l0::[self �→l0,unext �→l1]P ‖ l1::[self �→l1,unext �→l2]P ‖ . . . ‖ ln−1 ::[self �→ln−1 ,unext �→l0]P
‖
lrg ::[self �→lrg]〈“ID”, 0〉 ‖ lrg ::[self �→lrg]〈“ID”, 1〉 ‖ . . . ‖ lrg ::[self �→lrg]〈“ID”, n−1〉

The topology of the network is a ring, which is a common assumption for leader
election algorithms. Thus, the allocation environment of node li, in addition to
the standard mapping self �→ li, maps the logical locality unext to the physical
locality li+1 mod n of the next node in the ring. The node identified by lrg acts as a
random generator: it provides different identifiers, retrieved by the participants
at the outset. In this way, each participant will be uniquely identified by an
identifier selected randomly. The leader will be the participant with the smallest
identifier.

The process P deployed in each participant node is defined as follows:

in(“ID”, !xid)@lrg .
out(“ID”, xid)@self .
eval(Achecker (xid))@unext.nil

Once a participant has retrieved an identifier, it spawns a mobile checker process
to the next node. This process will travel along the ring to determine if the source
node has to be the leader.

The checker process is defined as follows:

Achecker (myId) � read(“ID”, !x)@self .
if myId < x then
eval(Achecker (myId))@unext.nil

else if myId > x then
eval(Anotifier (myId))@unext.nil

else
out(“LEADER”)@self .nil

122 L. Bettini et al.

The process carries the identifier of the source node (parameter myId) and
compares it with the identifier of the node where it is running (retrieved via a
read action and stored in the variable x). If the source identifier is smaller than
the current one, the currently hosting node is not the leader: the process moves
to the next node and restarts. Instead, if the source identifier is greater than the
current one, the source node is not the leader: the process activates the notifier
process that crosses the rest of the ring to come back to the source node and
insert this information in the local tuple space. If the two identifiers are identical,
the process is back on the source node (thus no node with a smaller identifier
has been found in the ring) and inserts the information that this is the leader in
the local tuple space.

The notifier process is defined as follows:

Anotifier (myId) � read(“ID”, !x)@self .
if x = myId then

out(“FOLLOWER”)@self .nil
else
eval(Anotifier (myId))@unext.nil

It simply looks for the node with identifier myId; when it finds this node, it
inserts in the local tuple space the information that this node is a follower.

Notably, for the sake of simplicity, we resort in this example of the conditional
construct if ebcond then P else Q. This is a macro that can be expressed here
by exploiting pattern-matching and parallel composition as follows:

out(“ITE”, ebcond)@self .
(in(“ITE”, true)@self .P

| in(“ITE”, false)@self .Q)

3 X-Klaim 2.0

In this section we present the new version of X-Klaim. In particular, we first
briefly recap the limitations of the old implementation of X-Klaim. Then, we
illustrate the main features of the new version of X-Klaim by showing the
implementation of the leader election example, which has been presented in
Klaim in Example 1, Sect. 2. Finally, we present a few interesting additional
features of the new version of X-Klaim, including its debugging mechanism
integrated in the Eclipse IDE.

3.1 The Old Implementation

As mentioned in the Introduction, X-Klaim programs are compiled into Java
programs that make use of the Java library Klava, which provides the runtime
environment for X-Klaim operations. Klava is a Java library with some classes
and methods to develop Java programs according to the Klaim programming
model.

X-Klaim Is Back 123

Klava is also meant to be used directly for programming in Java according to
the Klaim primitives and mechanisms. It allows the programmer to fully exploit
Java mechanisms and the libraries of its huge ecosystem, while using the Klaim
programming model. While using Klava in Java, the programmer can benefit
from IDE tooling, such as content assist, code navigation and debugging. How-
ever, this also implies that the programmer will have to deal with the verbosity
of Java, which also makes it hard to directly use Klaim primitives. For exam-
ple, using Klaim tuple space operations with Klava requires some additional
Java instructions to set up the tuple (in particular, its formal fields if any) and
to update possible variables representing formal fields with the values retrieved
from pattern-matching. Klava strives for making Java programmers life easy
but it can only do that by obeying the rules of Java. Originally, X-Klaim
was designed to give the programmers a language as close as possible to the
Klaim programming model, while still providing typical programming features
such as variable declarations, control structures, etc. Thus, with X-Klaim, the
programmer could easily write Klaim tuple space operations without additional
boilerplate code. However, X-Klaim programs could not rely on the Java ecosys-
tem and making X-Klaim program and Java program communicate with each
other required too much programming effort. Moreover, no IDE mechanisms for
the X-Klaim compiler were implemented, forcing the X-Klaim programmer
to write an X-Klaim program with a text editor, without any assistance from
any IDE, explicitly call the X-Klaim command line compiler waiting for pos-
sible compilation errors, and finally manually compile the generated Java code.
Finally, debugging X-Klaim programs was not possible: the programmer had
to debug the generated Java code, and debugging automatically generated code
is known to be quite hard. Summarizing, the benefits of the X-Klaim program-
ming language were evident only for very small prototype programs.

On the other hand, Klava kept on evolving during the years. For example,
starting from our experience in implementing Klava network and code mobility
mechanisms, we proposed a general framework for implementing Java network
applications with code mobility, called IMC (Implementing Mobile Code) [7].
Then, we refactored Klava completely, implementing it in terms of IMC. Due
to the limitations of X-Klaim, though, we decided it was not worthwhile to
port its compiler to the new version of Klava. This decision was also due to the
limitations of the compilation technologies at that time and to the programming
effort required to implement IDE mechanisms for the compiler, e.g., on top of
Eclipse.

3.2 The New Implementation

Compiler and IDE technologies have evolved since then. In particular, the frame-
work Xtext quickly gained popularity. Xtext [9] is an Eclipse framework
for the development of programming languages and domain-specific languages
(DSLs). Starting from a grammar definition, Xtext generates a parser, an
abstract syntax tree, and a complete IDE support based on Eclipse (e.g., edi-
tor with syntax highlighting, code completion, error reporting and incremental

124 L. Bettini et al.

Fig. 6. X-Klaim 2.0 toolchain (green color highlights the new elements, dashed arrows
represent ‘use’ relationships and solid arrows represent ‘input-output’ relationships).
(Color figure online)

building). Xtext comes with good defaults for all the above mechanisms and
the language developer can easily customize all such mechanisms.

Thus, we decided to re-implement X-Klaim, targeting the new version of
Klava. Since we implemented this new version of X-Klaim from scratch, we
also took the chance to make its syntax similar to mainstream languages, in par-
ticular, we gave it a Java-like shape. This means that programs written in the
previous version of X-Klaim are not compliant with this new version (however,
we do not think that it is a considerable problem). Concerning the integration
into Eclipse, we used Xtext with all its powerful and useful mechanisms, men-
tioned above, which help the programmer. Furthermore, we also rely on another
mechanism provided by Xtext, that is, Xbase. Xbase is an extensible and
reusable expression language, which provides a Java-like syntax and which is
meant to be embedded in your own Xtext DSL. By using Xbase in X-Klaim,
besides inheriting Xbase rich Java-like syntax, we also inherit its interoper-
ability with Java and its type system. This means that an X-Klaim program
can seamlessly access any Java type available in the classpath of the project.
This allows us to get rid of one of the worst drawbacks mentioned above of
the previous implementation: Java and X-Klaim programs can now interoper-
ate automatically, and X-Klaim programs can reuse the whole Java ecosystem.
This also implies that one can write a Java application where some parts are
written directly in Java using Klava, and other parts are written in X-Klaim
(using the parts written in Java).

The syntax of Xbase is similar to Java, but it removes much “syntactic noise”
from Java (for example, terminating semicolons are optional, as well as other
syntax elements like parenthesis when invoking a method without arguments).
Xbase should be easily understood by Java programmers. Moreover, Xbase
comes with a powerful type inference mechanism, compliant with the Java type

X-Klaim Is Back 125

Fig. 7. The process P of Example 1 deployed in each participant node implemented in
X-Klaim.

Fig. 8. The processes Achecker and Anotifier of Example 1 implemented in X-Klaim.

system, that allows the programmer to avoid specifying types in declarations
when they can be inferred from the context.

The X-Klaim compiler implemented with Xtext/Xbase is now completely
integrated into Eclipse. Thus, IDE mechanisms like content assist and code nav-
igation are available in the X-Klaim editor. Moreover, the compiler is now
integrated in the automatic building mechanism of Eclipse: saving an X-Klaim
file automatically triggers the Java code generation, which in turns triggers the
generation of Java byte-code. This avoids the manual compilation tasks of the
previous implementation. Finally, it is now possible to debug an X-Klaim pro-
gram while the generated Java code is executed (as shown in Sect. 3.5). We show
the renewed X-Klaim toolchain in Fig. 6.

3.3 The Leader Election Example in X-Klaim

We will now describe the main features of the new version of X-Klaim by show-
ing the implementation of the leader election example, which has been presented
in Klaim in Example 1, Sect. 2.

First of all, the process P deployed in each participant node is defined in
X-Klaim as shown in Fig. 7. Note that the types such as String and Integer
are actually Java types, since, as mentioned above, X-Klaim programs can refer

126 L. Bettini et al.

Fig. 9. The net of Example 1 implemented in X-Klaim.

directly to Java types. Expressions and statements in X-Klaim are based on the
Xbase syntax. Variable declarations in Xbase start with val or var, for final
and non-final variables, respectively. The type of the variable can be omitted
if it can be inferred from the initialization expression. Xbase syntax has been
extended with Klaim operations. Formal fields in a tuple are specified as variable
declarations, since, just like in Klaim, formal fields implicitly declare variables
that are available in the code after in and read operations. Boolean non-blocking
versions of in and read are also available: in_nb and read_nb, respectively.
logloc (and phyloc, not shown in the example) are syntactic sugar for creat-
ing instances of localities. Finally, getPhysical and println are Java methods
available in the runtime library of X-Klaim, which, of course, includes Klava.
Notably, since X-Klaim aims at being a programming language, localities, which
in Klaim can be used without explicit declarations, must be explicitly declared
and initialized in X-Klaim. The only exception is self, which is a predefined
locality also in X-Klaim. Since we are in a Java-like context, process invocation
corresponds to the creation of an instance of the process (using the new oper-
ator); we did not use the same “invocation” syntax of Klaim since that would
conflict with the standard Java-like syntax for method invocation.

The processes Achecker and Anotifier of Example 1 are defined in X-Klaim
as shown in Fig. 8.

Finally, the net of Example 1 is defined in X-Klaim as shown in Fig. 9 (here
we fix the number of the nodes to 3). Note that the mapping for self is implicit
in every node, so it does not have to be defined. Explicit locality mappings
(corresponding to Klaim allocation environments, Sect. 2) are specified for each
node with the syntax [l1 -> l2]. For example, the node L1 maps next to
L2. A node can specify the logical locality with which it will be known in the
containing net, with the logical clause, as in the node RG. If this clause is

X-Klaim Is Back 127

not specified, a node is automatically known to the net with a logical locality
corresponding to its name (like L1, L2 and L3).

3.4 Additional Features

The syntax of net and nodes shown above allows the programmer to quickly
specify a “flat” net, where all nodes are at the same level. However, X-Klaim
implements the hierarchical version of the Klaim model as presented in [12,13].
This implies that, if a node is not able to resolve a logical locality into a phys-
ical locality then it delegates it to the “parent” node, that is, to the containing
net. However, the programmer can also define a node outside a net element and
explicitly use the operations of login and accept (or the versions dealing explic-
itly with logical localities, subscribe and register). This will allow X-Klaim
programs to define a custom hierarchical net. For example, this is an X-Klaim
program defining a node accepting remote connections from other nodes, which
will then be part of its network (note how physical localities are expressed in
terms of the standard TCP syntax host:port):

node Receiver physical "localhost:9999" {
while (true) {

val remote = new PhysicalLocality
accept(remote)

}
}

and this is a possible client node connecting to this network and evaluating a
process remotely:

node Sender [server −> phyloc("localhost:9999")] {
login(server)
val myLoc = getPhysical(self)
eval({

println(String.format("Hello %s...", server))
println("...from a process coming from " + myLoc)
out("DONE")@myLoc

})@server
in("DONE")@self
logout(server)
System.exit(0)

}

The above example also shows how X-Klaim code can access Java code, like
the static methods String.format and System.exit. Moreover, it also shows
how X-Klaim allows the programmer to specify anonymous processes, e.g., for
remote evaluation with eval (just like Klaim):

in(var String s)@self
eval(in(s)@self)@l

128 L. Bettini et al.

In the code snippet above, the process in(s)@self will be evaluated at the
remote locality l. Note that when a process migrates, it is closed with respect to
the variables of the original enclosing scope, like the s in the example. Anony-
mous processes with several statements must be enclosed in a code block {...},
like in the previous Sender example. In order to insert an anonymous process,
with code p_code, into a tuple space, the syntax proc { p_code } must be used.
This is required to disambiguate with a code block that would be evaluated to
produce a value to be part of the tuple:

in(var String s)@self
out(proc { in(s)@self })@l

A process can be retrieved from a tuple space with a formal field of type
KlavaProcess (defined in the Klava library), e.g.,

in(var KlavaProcess X)@self
eval(X)@self

The above X-Klaim code corresponds to the Klaim process

in(!X)@self . eval(X)@self .nil

Code mobility is completely delegated to Klava and IMC, which automati-
cally collect the Java classes of the migrating process so that they can be loaded
at the remote destination (as described in details in [5]). However, in this new
version of X-Klaim, strong mobility is not supported yet. We will implement
this feature in the compiler according to the transformation described in [6].

As a further improvement, the new version of X-Klaim allows the program-
mer to fully exploit the recursive nature of processes in a way that was not
possible in the previous version nor in Klaim itself. In fact, a process can refer
to itself with the Java keyword this, which has the same semantics as in Java.
It allows a process to spawn itself to a remote site. This can also be used in
anonymous processes. This mechanism allows one to write complex (possibly
anonymous) recursive processes. For example, the process in Fig. 10 implements
the leader election example without additional process definitions, showing how
this correctly refers to the current anonymous process, even in the presence of
nesting. This also shows how X-Klaim automatically deals with the closure of
the enclosing scope (e.g., the myId and next used by the anonymous migrating
processes).

3.5 Debugging X-Klaim Programs

As already anticipated, thanks to Xtext/Xbase, the new version of X-Klaim,
and in particular its integration in Eclipse, allows the programmer to debug an
X-Klaim program, as shown in Fig. 11. In this example, based on the X-Klaim
code of Fig. 10, we set a breakpoint in the X-Klaim program, and during the
execution, we can see the current values of variables, either in the “Variables”
Eclipse view or by hovering over a variable in the program (like myId).

X-Klaim Is Back 129

Fig. 10. The recursive process in X-Klaim with migrating operations, implementing
altogether the processes of Figs. 7 and 8.

We believe that being able to debug an X-Klaim program directly is a cru-
cial feature when programming distributed applications accessing remote tuple
spaces and dealing with code mobility. The debugging mechanisms of X-Klaim
are as powerful as the standard Java debugging mechanism of Eclipse. For
example, during an X-Klaim debugging session, we can evaluate expressions
on the fly. For example, as shown in Fig. 12, we can retrieve the current physical
locality where the debugged process is executing, by calling the Klava method
getPhysical.

Of course, the current debugging mechanism allows the developer to debug
only a local running process. Currently, it is not possible to debug a process that
runs on a remote node. In order to achieve also this mechanism, a dedicated
debugging protocol should be implemented in the Klava runtime library. It will
be interesting to investigate this feature as a future work.

Note that the X-Klaim Eclipse support also includes the ability to directly
run or debug an X-Klaim file, with dedicated context menus: there’s no need
to run the generated Java code manually.

130 L. Bettini et al.

Fig. 11. Debugging an X-Klaim program.

Fig. 12. Evaluating expressions while debugging an X-Klaim program.

4 Concluding Remarks

Motivated by the success that the Klaim language gained over the last years,
and believing that still nowadays it can provide further contributions to the
coordination research field and application area, we have brought X-Klaim back
to life. In doing that, by resorting to modern compiler and IDE technologies, we
have enhanced X-Klaim making it a usable and effective coordination language.

The fundamental novelties of this renewed version of X-Klaim are:

– Java-like syntax, which should be easily understood by programmers;
– full interoperability with Java, so that X-Klaim code can access the whole

Java ecosystem;
– type inference mechanism, allowing programmers to avoid specifying types

that can be inferred from the context;
– IDE support and debugging facilities;
– recursive definition of processes.

X-Klaim Is Back 131

The support of these features clarifies how the contribution of this work repre-
sents a significant advancement with respect to the previous version of X-Klaim
introduced in [11]. Comparisons with other implementations of Linda-like lan-
guages and code mobility frameworks are provided in [8,11], such as Jada [17],
MARS [15], Jini [3], JavaSpaces [48], IBM T Spaces [53], IBM Aglets [46],
μCODE [49], Lime [50], Sumatra [2]. More recently, other implementations of
the Linda paradigm have been proposed. GigaSpaces [1] is a commercial imple-
mentation of tuple spaces mainly used for big data analytics. Differently, from
X-Klaim, GigaSpaces supports database-like features, such as complex queries,
transactions, and replication. This could be obtained in X-Klaim by using its
interoperability mechanisms to access Java code. Tupleware [4] is a framework
providing a scalable (both distributed and centralized) tuple space. It is based
on distributed hash tables, similar to other distributed implementations of tuple
space like Blossom [51] and DTuples [45]. The focus of these frameworks is on
the performance of the search in the distributed tuple space, rather than on the
programming facilities to support the development of tuple-space-based appli-
cations. Differently from X-Klaim, they do not consider code mobility features.
Instead, LuaTS [47] provides a reactive event-driven tuple space system that
also supports code mobility. While X-Klaim is based on the mainstream Java
technology, LuaTS relies on Lua. Finally, we refer to [18] for a recent survey of
coordination tools, including both those based on Linda and the ones relying on
different coordination models.

As future work, we plan to assess the effectiveness of X-Klaim in program-
ming distributed, possibly mobile, applications in different domains, such as IoT
and Bioinformatics. To this aim, we will use X-Klaim to implement different
case studies from academia and industry. We also intend to appropriately val-
idate the usability of the language, by involving students of BSc and MSc in
Computer Science, as well as developers from different industrial settings.

Acknowledgements. The authors would like to take the opportunity to thank Rocco
in this Festschrift contribution.

Lorenzo Bettini : Rocco was one of my professors at the University and the super-
visor of my Master Thesis and of my PhD. He’s the main person who introduced me
to the charming world of research. He drove me, helped me and supported me for most
of my academic career. He taught me so many things that I could hardly list them
here. X-Klaim was the main subject of my Master and PhD thesis and the starting
point of my research cooperation with Rocco, thus I’m very happy to take this oppor-
tunity to “remove the dust” from X-Klaim and to revive it in a modern shape. For
all these reasons, it is an extreme pleasure (and honor) to take part to this Festschrift
contribution.

Emanuela Merelli : While I was doing my Master’s thesis at CNR in Pisa, in Via
Santa Maria, Rocco De Nicola worked in a nearby building. From there I heard about
his fame as a brilliant researcher. At that time, I never imagined that I could be
adopted by one of his doctoral students. When Flavio arrived in Camerino he changed
my scientific life and the evolution of the local Computer Science group. He generously
introduced me to Rocco and to the whole scientific family of Italian researchers working
on formal methods. I am very grateful to Rocco for having understood what it meant

132 L. Bettini et al.

for me to be alone in Camerino coping with the difficulties that arose at that time. I
am very grateful to him also for having supported my scientific growth, my career and
having listened to my odd scientific thoughts, even if they were often not so rigorous as
the community usually expects. He always encouraged me to go ahead without limits
to creativity. Many important events happened since our first meeting, some beautiful
and some painful. I thank Rocco for having contributed to the growth of part of the
scientific family also in this side of Italy that sometimes quakes. I’m very proud to be
part of Rocco’s scientific family!

Francesco Tiezzi : I first met Rocco when I was a student at the University of
Florence, where he introduced me to the realm of formal methods. He then gave me
the opportunity of working with his research group, at Florence during my PhD and at
IMT Lucca later. During these years, his guidance was fundamental for my professional
and personal growth. Apart from what he taught me of a technical nature, for which I
will always be grateful, the most important lesson that I have learnt from Rocco his the
attitude he always had in his job. Everyday he shows the curiosity and the interest of
a young researcher for the continuously evolving scenarios of computer science. What
I appreciate most about Rocco is that he does with levity a ‘serious’ job like that of an
academician. All this allows Rocco to be able to have a direct dialogue with everybody,
from a student to a Turing-awarded researcher or a minister. For all of this, and for
having supported me in all occasions, I would sincerely say “Grazie Rocco!”.

References

1. GigaSpaces XAP v14.0 Documentation. https://docs.gigaspaces.com/xap/14.0/
2. Acharya, A., Ranganathan, M., Saltz, J.H.: Sumatra: a language for resource-aware

mobile programs. In: Vitek, J., Tschudin, C. (eds.) MOS 1996. LNCS, vol. 1222, pp.
111–130. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62852-5_10

3. Arnold, K., Scheifler, R., Waldo, J., O’Sullivan, B., Wollrath, A.: Jini Specification.
Addison-Wesley, Boston (1999)

4. Atkinson, A.: Tupleware: A Distributed Tuple Space for the Development and Exe-
cution of Array-Based Applications in a Cluster Computing Environment. Univer-
sity of Tasmania, School of Computing and Information Systems thesis (2010)

5. Bettini, L.: A Java package for transparent code mobility. In: Guelfi, N., Reggio,
G., Romanovsky, A. (eds.) FIDJI 2004. LNCS, vol. 3409, pp. 112–122. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31869-9_11

6. Bettini, L., De Nicola, R.: Translating strong mobility into weak mobility. In: Picco,
G.P. (ed.) MA 2001. LNCS, vol. 2240, pp. 182–197. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45647-3_13

7. Bettini, L., De Nicola, R., Falassi, D., Lacoste, M., Loreti, M.: A flexible and mod-
ular framework for implementing infrastructures for global computing. In: Kutvo-
nen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 181–193. Springer,
Heidelberg (2005). https://doi.org/10.1007/11498094_17

8. Bettini, L., De Nicola, R., Pugliese, R.: Klava: a Java package for distributed and
mobile applications. Softw. Pract. Exp. 32(14), 1365–1394 (2002)

9. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, 2nd
edn. Packt Publishing, Birmingham (2016)

10. Bettini, L., Bono, V., Venneri, B.: O’Klaim: a coordination language with mobile
mixins. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COORDINATION
2004. LNCS, vol. 2949, pp. 20–37. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24634-3_5

https://docs.gigaspaces.com/xap/14.0/
https://doi.org/10.1007/3-540-62852-5_10
https://doi.org/10.1007/978-3-540-31869-9_11
https://doi.org/10.1007/3-540-45647-3_13
https://doi.org/10.1007/11498094_17
https://doi.org/10.1007/978-3-540-24634-3_5
https://doi.org/10.1007/978-3-540-24634-3_5

X-Klaim Is Back 133

11. Bettini, L., De Nicola, R., Pugliese, R., Ferrari, G.L.: Interactive mobile agents in
X-Klaim. In: WETICE, pp. 110–117. IEEE Computer Society (1998)

12. Bettini, L., Loreti, M., Pugliese, R.: Structured nets in KLAIM. In: SAC, pp.
174–180. ACM (2000)

13. Bettini, L., Loreti, M., Pugliese, R.: An infrastructure language for open nets. In:
SAC, pp. 373–377. ACM (2002)

14. Bettini, L., et al.: The klaim project: theory and practice. In: Priami, C. (ed.) GC
2003. LNCS, vol. 2874, pp. 88–150. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-40042-4_4

15. Cabri, G., Leonardi, L., Zambonelli, F.: Reactive tuple spaces for mobile agent
coordination. In: Rothermel, K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp.
237–248. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0057663

16. Calzolai, F., Loreti, M.: Simulation and analysis of distributed systems in Klaim.
In: Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 122–
136. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13414-2_9

17. Ciancarini, P., Rossi, D.: Jada: coordination and communication for Java agents.
In: Vitek, J., Tschudin, C. (eds.) MOS 1996. LNCS, vol. 1222, pp. 213–226.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62852-5_16

18. Ciatto, G., Mariani, S., Louvel, M., Omicini, A., Zambonelli, F.: Twenty years of
coordination technologies: state-of-the-art and perspectives. In: Di Marzo Seru-
gendo, G., Loreti, M. (eds.) COORDINATION 2018. LNCS, vol. 10852, pp. 51–80.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92408-3_3

19. De Nicola, R., Ferrari, G., Montanari, U., Pugliese, R., Tuosto, E.: A formal basis
for reasoning on programmable QoS. In: Dershowitz, N. (ed.) Verification: Theory
and Practice. LNCS, vol. 2772, pp. 436–479. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-39910-0_21

20. De Nicola, R., Ferrari, G., Montanari, U., Pugliese, R., Tuosto, E.: A process cal-
culus for QoS-aware applications. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDI-
NATION 2005. LNCS, vol. 3454, pp. 33–48. Springer, Heidelberg (2005). https://
doi.org/10.1007/11417019_3

21. De Nicola, R., Ferrari, G.L., Pugliese, R.: Coordinating mobile agents via black-
boards and access rights. In: Garlan, D., Le Métayer, D. (eds.) COORDINATION
1997. LNCS, vol. 1282, pp. 220–237. Springer, Heidelberg (1997). https://doi.org/
10.1007/3-540-63383-9_83

22. De Nicola, R., Ferrari, G.L., Pugliese, R.: Locality based Linda: programming with
explicit localities. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997. LNCS, vol. 1214,
pp. 712–726. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0030636

23. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

24. De Nicola, R., Ferrari, G.L., Pugliese, R.: Types as specifications of access policies.
In: Vitek, J., Jensen, C.D. (eds.) Secure Internet Programming. LNCS, vol. 1603,
pp. 117–146. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48749-
2_6

25. De Nicola, R., Ferrari, G.L., Pugliese, R.: Programming access control: the Klaim
experience. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 48–65.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_5

26. De Nicola, R., Ferrari, G.L., Pugliese, R., Venneri, B.: Types for access control.
Theor. Comput. Sci. 240(1), 215–254 (2000)

https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1007/BFb0057663
https://doi.org/10.1007/978-3-642-13414-2_9
https://doi.org/10.1007/3-540-62852-5_16
https://doi.org/10.1007/978-3-319-92408-3_3
https://doi.org/10.1007/978-3-540-39910-0_21
https://doi.org/10.1007/978-3-540-39910-0_21
https://doi.org/10.1007/11417019_3
https://doi.org/10.1007/11417019_3
https://doi.org/10.1007/3-540-63383-9_83
https://doi.org/10.1007/3-540-63383-9_83
https://doi.org/10.1007/BFb0030636
https://doi.org/10.1007/3-540-48749-2_6
https://doi.org/10.1007/3-540-48749-2_6
https://doi.org/10.1007/3-540-44618-4_5

134 L. Bettini et al.

27. De Nicola, R., Gorla, D., Pugliese, R.: Basic observables for a calculus for global
computing. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 1226–1238. Springer, Heidelberg (2005).
https://doi.org/10.1007/11523468_99

28. De Nicola, R., Gorla, D., Pugliese, R.: On the expressive power of klaim-based
calculi. Electr. Notes Theor. Comput. Sci. 128(2), 117–130 (2005)

29. De Nicola, R., Gorla, D., Pugliese, R.: Confining data and processes in global
computing applications. Sci. Comput. Program. 63(1), 57–87 (2006)

30. De Nicola, R., Katoen, J., Latella, D., Loreti, M., Massink, M.: Model checking
mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)

31. De Nicola, R., Latella, D., Massink, M.: Formal modeling and quantitative analysis
of KLAIM-based mobile systems. In: SAC, pp. 428–435. ACM (2005)

32. De Nicola, R., et al.: Programming and verifying component ensembles. In: Ben-
salem, S., Lakhneck, Y., Legay, A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp. 69–83.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54848-2_5

33. De Nicola, R., Loreti, M.: A modal logic for mobile agents. ACM Trans. Comput.
Log. 5(1), 79–128 (2004)

34. De Nicola, R., Margheri, A., Tiezzi, F.: Orchestrating tuple-based languages. In:
Bruni, R., Sassone, V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 160–178. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30065-3_10

35. De Nicola, R., Pugliese, R.: A process algebra based on Linda. In: Ciancarini, P.,
Hankin, C. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 160–178. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61052-9_45

36. De Nicola, R., Pugliese, R.: Testing semantics of asynchronous distributed pro-
grams. In: Dam, M. (ed.) LOMAPS 1996. LNCS, vol. 1192, pp. 320–344. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-62503-8_15

37. De Nicola, R., et al.: From flow logic to static type systems for coordination lan-
guages. Sci. Comput. Program. 75(6), 376–397 (2010)

38. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Semantics, distributed
implementation, and formal analysis of KLAIM models in maude. Sci. Comput.
Program. 99, 24–74 (2015)

39. Ferrari, G.L., Moggi, E., Pugliese, R.: Global types and network services. Electr.
Notes Theor. Comput. Sci. 54, 35–48 (2001)

40. Ferrari, G., Moggi, E., Pugliese, R.: MetaKlaim: meta-programming for global
computing. In: Taha, W. (ed.) SAIG 2001. LNCS, vol. 2196, pp. 183–198. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44806-3_11

41. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

42. Gorla, D., Pugliese, R.: Enforcing security policies via types. In: Hutter, D., Müller,
G., Stephan, W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol.
2802, pp. 86–100. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
39881-3_10

43. Gorla, D., Pugliese, R.: Resource access and mobility control with dynamic priv-
ileges acquisition. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) ICALP 2003. LNCS, vol. 2719, pp. 119–132. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45061-0_11

44. Hansen, R.R., Probst, C.W., Nielson, F.: Sandboxing in myKlaim. In: ARES, pp.
174–181. IEEE (2006)

45. Jiang, Y., Xue, G., Jia, Z., You, J.: DTuples: a distributed hash table based Tuple
space service for distributed coordination. In: GCC, pp. 101–106. IEEE (2006)

https://doi.org/10.1007/11523468_99
https://doi.org/10.1007/978-3-642-54848-2_5
https://doi.org/10.1007/978-3-642-30065-3_10
https://doi.org/10.1007/3-540-61052-9_45
https://doi.org/10.1007/3-540-62503-8_15
https://doi.org/10.1007/3-540-44806-3_11
https://doi.org/10.1007/978-3-540-39881-3_10
https://doi.org/10.1007/978-3-540-39881-3_10
https://doi.org/10.1007/3-540-45061-0_11

X-Klaim Is Back 135

46. Lange, D.B., Mitsuru, O.: Programming and Deploying Java Mobile Agents Aglets.
Addison-Wesley, Boston (1998)

47. Leal, M.A., de La Rocque Rodriguez, N., Ierusalimschy, R.: LuaTS - a reactive
event-driven tuple space. J. UCS 9(8), 730–744 (2003)

48. Mamoud, Q.H.: Getting Started With JavaSpaces Technology: Beyond Con-
ventional Distributed Programming Paradigms (2005). https://www.oracle.com/
technetwork/articles/java/javaspaces-140665.html

49. Picco, G.P.: µCODE: a lightweight and flexible mobile code toolkit. In: Rothermel,
K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp. 160–171. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0057656

50. Picco, G.P., Murphy, A.L., Roman, G.: LIME: Linda meets mobility. In: ICSE, pp.
368–377. ACM (1999)

51. van der Goot, R.: High performance Linda using a class library. Ph.D. thesis,
Erasmus University Rotterdam (2001)

52. Wu, X., Li, X., Lafuente, A.L., Nielson, F., Nielson, H.R.: Klaim-DB: a modeling
language for distributed database applications. In: Holvoet, T., Viroli, M. (eds.)
COORDINATION 2015. LNCS, vol. 9037, pp. 197–212. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19282-6_13

53. Wyckoff, P., McLaughry, S.W., Lehman, T.J., Ford, D.A.: T spaces. IBM Syst. J.
37(3), 454–474 (1998)

https://www.oracle.com/technetwork/articles/java/javaspaces-140665.html
https://www.oracle.com/technetwork/articles/java/javaspaces-140665.html
https://doi.org/10.1007/BFb0057656
https://doi.org/10.1007/978-3-319-19282-6_13

A Distributed Ledger Technology Based
on Shared Write-Once Objects

Eva Maria Kuehn(B)

Faculty of Informatics, Compilers and Languages Group,
Institute of Information Systems Engineering, TU Wien,

Argentinierstr. 8, 1040 Wien, Austria
eva.kuehn@tuwien.ac.at

Abstract. Research on blockchain technologies and applications has
exploded since Satoshi Nakamoto’s seminal paper on Bitcoin. Everybody
agrees that blockchain is a foundational technology, but neither has a
unified definition of blockchain been established yet, nor does a com-
monly agreed upon standard exist. The basic principle of a blockchain
is to maintain transactions on digital assets, without utilizing a central
coordinator. Despite the assumed trustless environment, high security is
promised.

The core technologies behind blockchain are well known in distributed
computing. They comprise peer-to-peer replication and peer-to-peer con-
sensus. In addition, cryptography is used to sign transactions and to
achieve a timely order between them.

In this paper we show how a coordination middleware that relies on
the virtual shared memory (VSM) paradigm can contribute to realizing
a flexible and generally distributed ledger technology (DLT) that can
serve as the basis for many different kinds of blockchain applications. As
a proof-of-concept, the realization of different blockchain types, such as
public and permissioned, and different consensus protocols are sketched
on top of this VSM-based DLT.

Keywords: Virtual shared memory · Shared objects ·
Coordination system · Distributed ledger technology · Blockchain

1 Introduction

“Blockchain” is one of the most innovative and much-discussed future topics
in computer science. In 2008, a decentralized method for transmitting electronic
means of payment was published under the pseudonym Nakamoto [32]. It made it
possible for the first time to securely exchange the electronic transfer of Bitcoins
between two unknown parties without the need for a third trustworthy entity,
such as a financial institution. This was possible by solving the double-spending
problem.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 136–151, 2019.
https://doi.org/10.1007/978-3-030-21485-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_9

A Distributed Ledger Technology Based on Shared Write-Once Objects 137

The underlying technology is called “distributed ledger technology” (DLT)
and describes a sequence of data blocks, which is stored decentral in a peer-to-
peer network.

Blockchain pursues a radically new philosophy over current IT approaches:
There is no single central coordinator, but self-organizing, distributed “peers”.
The rules for their cooperation are agreed upon consensually. Data and transac-
tions are replicated to all peers that independently verify their accuracy. Business
processes become automated and thus faster, tamper-proof and transparent. The
peers do not have to trust each other, but can still enter into secure business
relationships.

Several transactions are collected in a so-called “block”. It is not pre-
determined how many transactions a block shall comprise. Rather, this grouping
is an optimization, as a consensus must be found on transaction execution, which
requires a certain amount of effort. Therefore, the rationale for arranging trans-
actions into groups (i.e., the block) is efficiency.

The participants in the network (“peers”) agree on the content of the data
blocks in a consensus process (for example, proof of work [1], proof of stake [2]).
Cryptographic methods (public/private-key encryption) are used to ensure the
immutability and verification of the data. Distributed data management allows
a peer in the network to check the correctness of the data at any time.

The number of participating peers can be unlimited (public) or restricted
(permissioned) [35]. Public blockchains are mainly found in the area of cryp-
tocurrencies. Known representatives of these are Bitcoin [1], Litecoin [7], Rip-
ple [9], and Ethereum1 [3]. However, public blockchains are not suitable for use
in companies. Business systems typically have a small number of authorized
users sharing confidential information with each other. Therefore, permissioned
blockchains such as Hydrachain [4], Quorum [6] or Hyperledger Fabric [5] are
used.

Blockchains are characterized by the following advantages, which can be
derived from the basic technologies used (peer-to-peer networks, cryptographic
methods, etc.):

– Immutability of the data: Data blocks are verified and permanently stored
in the blockchain after the consensus procedure. They cannot be subsequently
changed by any of the participating peers. To ensure this property, a hash is
created over the contents of the previous block and included in the current
block. This creates the chaining of blocks, hence the name blockchain.

– Distributed data management: The blockchain is replicated to all peers
in the network. Each peer keeps a copy of the entire “ledger”, i.e., the entire
blockchain.

– Transparency: Each peer sees all data at any time and can verify it. Data
access can be limited by encryption for permissioned blockchains.

1 Although the Ethereum protocol is not intended for permissioned blockchains, there
exist permissioned Ethereum based variants like Quorum or Hydrachain.

138 E. M. Kuehn

There are numerous blockchain implementations (Ethereum [3], Hyperledger
Fabric [5], Corda R3 [2], NEM [8], Stellar [10], etc.) that support the development
of applications for different application areas. While Corda R3 is more specialized
in the financial sector, Hyperledger Fabric offers a modular architecture that
also enables blockchain applications in healthcare and supply chain management
(SCM). Ethereum relies on a generic platform that is equally suitable for a
variety of different applications.

With the popularization of blockchains, more and more businesses are look-
ing for applications that take advantage of replicated, distributed peer-to-peer
systems. High expectations have been raised on this fundamental technology,
which rearranges the complex network of today’s information and its impacts
into an easy-to-understand structure—a “chain” of processes.

Everybody agrees that blockchain is a foundational technology, but neither
has a unified definition of blockchain been established, nor does a commonly
agreed upon standard exist, as Rocco De Nicola also points out in [34] for cloud-
based approaches.

This paper therefore aims to present a unifying DLT approach that is based
on a general virtual shared memory layer [27]. This middleware layer is flexible
enough to realize the different interpretations of a blockchain.

The paper is structured as follows: Sect. 2 analyses requirements on a flex-
ible distributed ledger technology (DLT). Section 3 summarizes virtual shared
memory (VSM) approaches and their suitability to implement a DLT. In Sect. 4
the Coordination Kernel-based VSM is used to demonstrate that VSM offers a
good abstraction level to realize DLTs with different requirements. A simplified
public blockchain is additionally modeled. Section 5 summarizes the work and
presents planned future work.

2 Distributed Ledger Technology (DLT)

This section discusses requirements on a flexible DLT:

Digital asset management. The DLT maintains assets that must exist in
digitized form. It stores the value of the asset and its owner peer.

Trust in a trustless environment. Peers have different and diverging inter-
ests. They need not trust each other nor do they need to know each other.
We have to expect that there are unauthorized individuals that might change
the records.

Trustworthy transactions. A transaction is a transfer of rights on assets
among peers. The transaction must be trustworthy so that one can determine
at any time who is the owner of the asset.

Security. Transactions must be secured with help of cryptographic mechanisms.
All peers possess a private and a public key. Each transaction contains the
public key of the new owner and is signed with the private key of the current
owner.

A Distributed Ledger Technology Based on Shared Write-Once Objects 139

Chronological order. The time when a transaction was executed is relevant.
The DLT must track the chronological order of (related) transactions. There-
fore, the chronologically sorted chain data structure is valuable. It provides
the irreversibility of records.

No central coordinator. A DLT shall avoid one single central coordinator who
might influence or censor transactions on the assets. The assumption is that
there is no trustworthy third party. All intermediaries and brokers shall be
excluded. Instead, a direct interaction—based on P2P transmissions between
all peers—takes place.

P2P replication. As there is no single server, the peers must administrate
and store all data. Therefore, it is necessary that the data are copied to all
distributed peer sites. We assume here that all peers are “full peers” that
keep all the records. In reality, not every peer will store all data on its hard
disk, but rather connect to another full peer.

Shared access. The data in a blockchain are shared among the peers that
(eventually) must have a commonly agreed upon view of them (see consensus
below). The type of allowed access to the data depends on the type of the
blockchain, which is, e.g., global for public blockchains.

Concurrent access. All distributed peers concurrently and asynchronously
access the data with regard to both reading and writing. Nevertheless, a
defined level of eventual consistency must be guaranteed.

P2P consensus. All peers must eventually gain a consensual view of the assets
and their ownerships. There is no strict consensus possible among distributed
peers if we have to cope with system or network failures and do not trust
the peers [24,31]. The ingenious solution of the Bitcoin blockchain layer is
a statistical consensus based on proof-of-work. Every peer has to solve a
complex mathematical task in order to be allowed to close a block. It is
rewarded with Bitcoins for doing this work. Unfortunately, this solution is
not environmentally friendly and, therefore, cannot be a sustainable solution
to build on in the future. Consensus finding can be split into two layers: (1)
on the infrastructure layer for which the DLT is responsible (all peers agree
on the right blocks and their order), and (2) on the application layer.

Immutability. The chain data structure must not be altered. In other words,
it is “write-once”, which makes it tamper-free.

Persistence. After a crash, a peer must be able to restore the entire blockchain.
It must be permanent and recoverable.

Provenance. The history of each asset must be transparent, meaning that
from its first occurrence in the blockchain, all transactions on it and their
respective order must be visible. This is important and enables every peer
to autonomously verify the correctness of a transaction, i.e., whether all its
preconditions are fulfilled. Proving the provenance of anything helps to build
an “Internet of trust”.

Privacy and anonymity. Depending on the kind of blockchain (public or per-
missioned), the contents of transactions are visible to all peers or only a group.
In a public blockchain, for instance, all data are visible to everyone. Another
aspect is the identity of the peers, which also depends on the type of the

140 E. M. Kuehn

blockchain. E.g., in a public one, the peers are anonymous. However, in Bit-
coin’s blockchain, for example, we can only speak about pseudonymity: The
chain of transactions can be retraced, meaning that one sees which transac-
tions were issued by the same peer (albeit this peer’s identity is not known).

Transparency. All transactions are visible and can be verified by everyone.
Peer verification. Each peer can verify the correctness of a block, i.e., all

transactions it contains and whether its chronological order is correct. In
fact, it is obliged to do so, because otherwise it must not accept a block.

User-defined rules. An advanced feature of a blockchain, which makes it useful
for applications beyond cryptocurrencies, is the definition of rules. These rules
are small application programs (also termed “smart contracts”) that define
and trigger transactions between nodes if certain conditions are fulfilled on the
blockchain. The rules are automatically executed by the blockchain. Basically,
rules cannot be changed (cf. write-once property on the blockchain), but if the
peers find a consensus, the overall effect of the rules can be altered due to the
addition of other ones. Rules can be complex: They represent business rules
that require a lot of events. Moreover, multi-party interactions are possible,
i.e., processes that involve two or more parties.

Availability. The availability of the blockchain is given through the P2P repli-
cation. As long as there is a peer that is interested in the blockchain and
keeps a copy of it, the blockchain exists.

In detail, these requirements will clearly depend on the overall requirements
of the respective blockchain application. A general DLT must be able to map
concrete needs in an easy way.

3 Virtual Shared Memory Approaches

Virtual shared memory (VSM) provides a different communication paradigm
than messaging. Instead of sending messages, a shared “space” is provided. The
participants communicate by accessing data in this space, which serves as com-
munication medium.

3.1 Shared Tuples Without Identity

The pioneering work on VSM is the well-known classic Linda Tuple Space [25].
It is a seminal work in the area of coordination languages and models, and
has triggered a plethora of research work in the coordination community, where
Rocco De Nicola is one of the leading and inspiring researchers (see, e.g., [20]). In
a nutshell, the shared data are so-called “tuples” which are semi-structured data
with an arity and determined field positions and types. Tuples have no identity,
but are retrieved by means of template matching. The operations of a Tuple
Space foresee the writing of a tuple into the space and the (destructive) reading of
a tuple with the template matching query mechanism. Initially, the Tuple Space
was designed to program with parallelism. Later on, when networks became

A Distributed Ledger Technology Based on Shared Write-Once Objects 141

faster, it became a new communication and coordination model for distributed
programming. Its advantages are the high-level abstraction it provides and the
simple API. With Java Spaces [11], the model has experienced a breakthrough
in the developer community. A notification operation, which informs in real-time
about the arrival of new tuples that fulfill a template, has been introduced by
Java Spaces as well as a transaction mechanism.

Rocco De Nicola has contributed valuable research on Tuple Spaces and coor-
dination models and languages with regard to formal foundations (e.g., [23]),
mobility and programming with localities (e.g., KLAIM [12–14,18,19,22]), soft-
ware engineering (e.g., [21]) and recently on benchmarking [16,17] of the Tuple
Space implementations GigaSpaces, KLAIM, MozartSpaces (XVSM) and Tuple-
ware.

3.2 Shared Objects with Identity

Another VSM approach is the “Coordination Kernel”, a middleware for write-
once, coordinated, shared“communication objects”. It was first introduced in [27]
and later extended towards updateable objects in [28]. In the following, the
original specification of the Coordination Kernel [27] with write-once objects is
illustrated.

Like in Tuple Spaces, asynchronous access to shared data in a space is pro-
vided. The shared data in the Coordination Kernel are denoted as “objects”,
because they have a network-wide unique identity termed OID (object identity).
It is important to clarify that a communication object is not an object in the
classic object-oriented sense, as it does not support the inheritance of methods
and functionality—this could be a matter of further research. A communication
object only provides encapsulation of data—it is in this sense a shared data
with a unique URL. Such an object can be structured and contains OIDs of
other objects as sub-data fields.

Objects are write-once. This means that after creation, only one peer is
allowed to write data to the object. The life-cycle of a communication object
is as follows:

1. Creation. First, the object is created at one peer site and the Coordination
Kernel generates a unique OID for it. The object is undefined after creation:
it still has no data value. Trying to read it will cause an exception or blocking
(depending on whether a synchronous or asynchronous API is used).
On object creation, the persistence (volatile or permanent) and a replication
strategy (see “asynchronous replication” below) are also configured for the
object. If the object is permanent, it can be recovered after system failures.
For the blockchain use case, we will use permanent objects.
Network failures are masked in any case. Each communication object may
have its own replication strategy.

2. Sharing. An OID can be published on one or more name servers with respec-
tive access rights from where it can be retrieved by name. A further sharing
possibility is to call a process (termed “entry” in [27]) at another peer’s site,

142 E. M. Kuehn

passing the OID in the parameter list of the process. A last possibility is to
write an OID into the data of an object that a peer already knows. These are
the three ways a peer can gain the access rights of an object.
The concurrent access is controlled by means of transactions: Read and write
operations can be grouped into atomic actions.

3. Asynchronous replication. A peer that possesses an OID maintains a local
copy of the object. The replication strategy implements a certain P2P topol-
ogy for the distributed sharing of this object. It is responsible for ensuring
that all peers in the network eventually have the same view of the object.
As the object has only two states (namely undefined and defined), in case
of network failures or partitions it might only happen that some peers do
not have the information about the data of the object yet, thinking it is still
undefined. However, it is impossible for peers to have different views of a
defined object’s data.
The time when the P2P transmission of the data takes place depends on the
chosen strategy. One supported and implemented strategy is, e.g., “passive
replication with a deep object tree” (PRD). PRD builds up a tree topology,
whereby the peer that possesses the root of the object tree is the primary copy
owner. This means it is allowed to write to the object by using a transaction.
If a peer that is not the primary copy owner wants to write to the object, it
must trigger a distributed protocol in order to get the primary copy.
The flags for PRD supported so far are eager and lazy replication. With eager
replication, a written value is immediately propagated to all other sharing
sites downstream in the PRD tree, whereas with lazy replication the changes
are only propagated on-demand in a lazy way, i.e., when the respective site
wants to read this object. There is no difference between the eager and lazy
options for the application; they only cause different messaging behavior in
the network.
Many peers might want to concurrently write data into an object using a
transaction. Upon commitment of the transaction, the primary copy of all
objects that shall be written in this transaction must be obtained by means
of the PRD protocol. Having a primary copy of an object means having an
implicit lock on it. Note that explicit locks are avoided, as this could lead to
complex deadlock situations in a distributed system. If one of these objects is
already defined, the transaction commit will fail.2 The strategy resolves con-
flicts by considering the ID of the transaction in which the object is written
as a network wide time-stamp [29]. This allows a priority among transactions
(older ones have higher priority) to be determined. Therefore, if two or more
peers compete to acquire the primary copy of an undefined object, the old-
est transaction will win. The others continue to (re)gain the needed primary
copies within their specified transaction timeout. A younger transaction must

2 As an advanced feature, the transaction mechanism also supports weaker forms of
commit. In this case, the transaction will not fail and rollback, but report an error
and allow certain operations to be withdrawn and new ones to be possibly added in
order to “repair” the transaction.

A Distributed Ledger Technology Based on Shared Write-Once Objects 143

give away a primary copy that it has already acquired in its commit phase if
an older transaction requires it. Once a transaction has all primary copies it
needs, it will no longer give away primary copies and will successfully commit.
One of the peer transactions will therefore “win”, i.e., be the first to success-
fully write and commit data into the object. These data cannot be overwritten
later on, as the object is write-once. Depending on eager or lazy replication,
the written data are propagated respectively to the descendant peer sites in
the PRD tree.
Note that message sending must also be persisted if the object is recoverable.
Critical messages are retried until an acknowledgment is received. This way,
the Coordination Kernel follows the principles of the “end-to-end argument
in system design” [33].

4. Resolving of administrative information. After a peer site has received
data for an object from an ancestor and if it has issued the propagation to
its descendants, it clears the administrative information about the PRD tree
structure.

5. Garbage collection. As objects have an OID, it is possible to implement
an automatic garbage collection mechanism based on a reference counting
of which peer still holds a copy of the object. If a peer process terminates
properly, it gives up its reference to the object. Everlasting processes are
recovered with their image, see [27]; they thus regain access to all objects
they had before. Each name server clearly is an everlasting process. Deleting
objects must be done explicitly in this case. Note that the removal of the
object will be deferred by the Coordination Kernel until no descendants exist
any more in the object’s P2P topology.

The supported operations on a communication object are: create, read, write
and delete. In addition, a notification that informs about the writing of data
into an object is supported.

Each distributed site has the same program of the Coordination Kernel run-
ning on it and maintaining the shared objects. The Coordination Kernel itself
is a language-independent framework used by applications possibly written in
different programming languages.

An extension of the Flex transaction model [15] is employed as distributed
transaction mechanism. This model provides nested transactions and relaxes the
isolation (“I”) property of ACID transactions [26]. A sub-transaction may com-
mit early; should the enclosing top-transaction fail, an optional compensation
action is executed for the successfully committed sub-transaction. In addition
to compensation actions, on-commit and on-abort actions are also supported.
These trigger the start of a process either if the transaction commit succeeds or
fails. Moreover, the transaction model controls the execution of remote processes
and sub-transactions.

Communication objects may be structured and contain the OIDs of other
communication objects as members. Thus, arbitrary and infinite data structures
can be created; for the blockchain use case, e.g., linked lists (“streams”) will
be used. Even more efficient data structures that are nevertheless able to keep

144 E. M. Kuehn

record of the ordering of a blockchain’s blocks, e.g., trees, can be built up with
OIDs.

There is no optimal replication strategy that fits every application. For exam-
ple, applications in which the participating peers and their number are known
have different requirements than those in which all peers are anonymous and
everyone can dynamically join at any time.

The Coordination Kernel architecture foresees the addition of new strategies
to the framework. In Sect. 4 we will use the implemented PRD protocol, but
in future work other P2P protocols, e.g., based on Paxos [30], will be used—in
fact, any consensus known from current blockchain implementations is think-
able. These protocols are responsible for the consensus finding at the DLT layer
about the chain of blocks. Due to its tree structure topology, the PRD protocol
has the following peculiarities: A peer that wants to write data into an object
is dependent on the availability of its ancestors in the tree. This can e.g., be
improved by providing alternative primary copies and adding a voting protocol.

3.3 Suitability for DLT

The major difference between Tuple Space-based VSMs and the Coordination
Kernel-based VSM is that the latter provides unique OIDs, defines a P2P archi-
tecture, provides built-in exchangeable P2P replication strategies, provides a
flexible transaction model, has strong network links (i.e., the OID references),
a security concept based access control lists for these OIDs (only authorized
processes may access an object), and enforces write-once behavior.

These properties map to the fundamental concepts of blockchains in a natural
way:

Peer-to-peer (serverless): P2P Coordination Kernel architecture conception.
Distribution: distributed peer sites.
Consensus and replication: flexible, distributed, nested transaction on

objects and built-in and selectable replication strategies.
Block: object with persistence, a well-defined data structure, and a certain

strategy.
Timely order of blocks: block linking (time/order preserving) with help of

OIDs.
Security: objects are protected against illegal access: Only processes that have

legally gained an OID are allowed to read, write or delete the object.
Tamper proof: write-once property of communication objects.
Smart contract: transactional process that is automatically fired (using noti-

fications) if the necessary conditions are fulfilled.

4 Proof-of-Concept: Blockchain Realizations

As a proof-of-concept for the flexibility of a VSM-based DLT, a fictive blockchain
is informally modeled with help of the Coordination Kernel and variants are

A Distributed Ledger Technology Based on Shared Write-Once Objects 145

discussed. The blockchain use case is related to the multi-database (MDBS) use
case shown in [27]. The MDBS use case realizes a global consensus about a set
of application transactions (txs) to be executed by autonomous local systems
(LSYSs), which are the distributed peer sites. The set of txs is termed global
tx (GTX). The GTX shall be executed atomically (“all or nothing”). Eventual
consistency due to the assumed asynchronicity of the system is allowed.

In the blockchain use case, the LSYSs issue txs on assets, so the trigger comes
from the peers instead of from one site where the LSYS txs are formulated.
These txs form the GTX which must be accepted by all peers. Both use cases
have in common that a kind of consensus protocol is needed at application level.
In the MDBS use case an asynchronous two-phase-commit protocol (2PC) is
implemented, which automatically semantically undoes early committed sub-txs
at the LSYSs if the GTX fails. Eventually all LSYSs will reach a consistent state.

We show a model of a simplified public cryptocurrency blockchain. The ver-
ification is carried out by a definable group of peers which is determined for
each block. The consensus rule says that a majority of these peers must have
positively verified the block.

We assume that the PRD protocol fulfills the availability requirement suf-
ficiently. This assumption is valid, as the protocol can easily be exchanged by
another one, that e.g., supports a replication group for the primary copy.

4.1 Data Structures

Figures 1, 2, 3, 4 and 5 show the data structures for peer, linked block, tx, coin
and verification. In the graphical notation, rectangles mark data structures and
basic data types, whereas circles denote OIDs.

Fig. 1. Peer data structure.

A peer (see Fig. 1) has a site and a public key. Its OID is published on a
name server under a unique nickname so that it can be retrieved by other peers
without knowing its identity.

A block (see Fig. 2) of the blockchain has a set of tx OIDs, and two OIDs
that link it with the other blocks in the chain, termed “Next” and“Alt”. Next
is the OID of the next block for the normal case. Alt also refers to a block; its
semantics will be explained below. In addition, a block has a “Verification” OID
that refers to an object that controls the verification process of this block. As
optimization, also a Prev OID could be added that is the OID of the previous
block, to ease the navigation in the chain.

146 E. M. Kuehn

Fig. 2. Chain of blocks data structure.

Fig. 3. Coin data structure.

Fig. 4. TX data structure.

A coin (see Fig. 3) has a creator tx OID (this is the application tx in which
this coin was created), the OID of its current owner peer, and the amount that
is transferred to the current owner by the creator tx.

A tx (see Fig. 4) consists of records where each record has a “FromCoin OID”
and several“ToCoin” OIDs. In addition it includes the signature of the peer that
issues the tx. The semantics of the tx are that the coins denoted by FromCoin
OID are transferred to the respective ToCoin OIDs.

A verification structure (see Fig. 5) has a field termed “N” stating how many
peers must successfully verify the block so that it is considered valid, and a
number of pairs, each consisting of a verifier peer OID and a verify result OID.
The verifier peer OID refers to a peer site at which a verification process is
triggered. The verify result OID serves to hold the result of the verification.

A Distributed Ledger Technology Based on Shared Write-Once Objects 147

Fig. 5. Verification data structure.

4.2 Program Logic

If a peer wants to transfer one or more coins to other peers3, it creates a new
tx object. For each coin that shall be transferred, a ToCoin OID is created for
each recipient peer and the information about the creator transaction, owner
peer and amount are written into it in a Coordination Kernel transaction. Note
that the owner peer object contains the public key of the peer. The tx object
is committed and signed with the private key of the peer. This mechanism is
similar to that in Bitcoin: Since the public key of the peer is known to everyone,
the tx can be verified as stemming from this peer. Finally, the peer publishes
the OID of the tx object on one or more “dashboards” (not explicitly modeled;
they are streams of tx OIDs) to which the peers subscribe.

Each peer is continuously notified about new txs and tries to add a next
block to the chain. The peer will receive rewards for issuing a correct block. It
includes this rewarding tx into the new block as well. For a new coin of this
kind, the creator tx is a fixed system tx OID. The more txs the block contains
the higher its reward is (in an exponential way) in order to motivate the peer to
wait until several txs are available and not to build blocks that are too small.
First the peer builds up a data structure for the new block. The peer verifies the
tx OIDs that it puts into the block data structure: (1) that the txs must have
valid FromCoins, (2) the txs must not yet be included in a previous block, and
(3) that the signature is correct. Then it creates new objects for Verification,
Alt and Next. Their OIDs are set in the data structure for the new block. Then
it creates and initializes a verification data structure. Finally the peer creates a
Coordination Kernel transaction which it uses to write:

– the verification data structure into the verification OID, and
– the new block data structure into the Next OID of the currently last block in

the chain.

Note that the Coordination Kernel will only accept valid data structures. If the
commit succeeds, a new block has been linked to the blockchain.

The verification process works as follows: All peers listen to information being
written into verification objects. If they occur in the verifier peers list, they start

3 If a peer wants to transfer only a sub-amount of a coin, then it will transfer the rest
to itself by creating a ToCoin at its own site.

148 E. M. Kuehn

to verify the correctness of the respective block and write in a Coordination
Kernel transaction their signed verification result in the respective OID. Each
peer that receives a next block4 can either perform the verification of the block
by itself and proceed5, or it may wait for the verification result of the verifier peer
group. This group quorum mechanism serves to “seal” a block. If the defined
majority has been reached, then the block is correct. If no majority can be
reached any more, then the Alt OID of the block comes into use. The Alt OID
refers to the alternative chain that replaces the current block that could not
be verified. On the alternative chain again the same alternative mechanism is
applied.

This verification mechanism implements the consensus protocol at the appli-
cation level. Each peer is responsible to actively check the verification result and
to autonomously decide which chain to follow.

4.3 Variants

Modeling blockchains with different requirements will only cause slight changes
to the model. This is a proof-of-concept that the underlying VSM-based DLT
provides a good and flexible abstraction.

A permissioned blockchain prescribes that only a pre-defined and identified
number of peers may access the blockchain. This would require the objects to be
published on name servers with access control, and the dashboard to be protected
with passwords.

A different consensus mechanism at the application level—that replaces the
shown group quorum mechanism—would require another verification data struc-
ture with different semantics. For the proof-of-work consensus, e.g., the miner
peer must solve a mathematical puzzle and write the result into the verification
object (relating to the “nonce” used in the Bitcoin protocol). Peers only accept
a block if the nonce is correct. Note that in the case of OID links the ineffi-
cient mechanism of switching to the longest blockchain is not necessary. Due to
the OID mechanism and the replication strategy of the Coordination Kernel, all
peers always have a consistent view of what the next block is. However, they
need to actively switch to the alternative chain if the verification has failed.

5 Conclusion

In this paper we have shown how a virtual shared memory (VSM)-based coordi-
nation middleware eases the implementation of distributed ledgers which form
the backbone of blockchains. The reference to Rocco De Nicola’s work is found
in coordination models and languages, shared data, Linda Tuple Space, dis-
tributed systems, peer-to-peer networks, replication and his recent contributions
to cloud-based blockchain solutions and standards. As no commonly agreed upon
4 Eager replication is used for all objects.
5 The peer shall reexamine the verification result of the peer group, which must be

the same as its own, if the verifier peers did not lie.

A Distributed Ledger Technology Based on Shared Write-Once Objects 149

blockchain standard exists yet, we believe that it is therefore important to have
distributed ledger technologies (DLTs) that can be tailored to the needs of the
respective blockchain application.

The classic Tuple Space model supports tuples that are retrieved by means
of template matching. The Coordination Kernel foresees also shared data in a
space with asynchronous access and notification facilities. As a VSM middleware
concept it manages distributed communication objects in a peer-to-peer (P2P)
fashion. It has been designed as a general coordination layer to support complex
distributed coordination scenarios.

However, it differs from the classical Tuple Space-based approaches in that
the shared objects have a unique identifier called the object id (OID). The advan-
tages of the here presented approach over Tuple Spaces is that these OIDs form
strong links in the network and are used to chain the blocks of the blockchain.
The blocks usually form a chain, but sometimes even more flexible structures,
which can easily be accomplished with OID links, have a greater benefit.

The realization of a simplified public blockchain with the Coordination
Kernel-based DLT was presented. Variants of it are easy to establish, as is demon-
strated by the flexibility of the VSM-based DLT. The reason is that the Coordi-
nation Kernel already provides the core technologies needed, like P2P replication
and consensus, security, network-wide links, a flexible transaction model and the
write-once paradigm for data. These properties map to the fundamental concepts
of blockchains in a natural way.

Future work will deal with formal foundations of the Coordination Kernel,
the specification and verification of other replication strategies, and the usage of
coordination language primitives to model smart contracts.

In memoriam Peter Kühn (1982–2018).

References

1. Bitcoin is an innovative payment network and a new kind of money. https://bitcoin.
org/en/

2. Corda R3. https://www.r3.com/corda-platform/. Accessed 01 Apr 2019
3. Ethereum. https://www.ethereum.org/. Accessed 01 Apr 2019
4. Hydrachain. https://github.com/HydraChain/. Accessed 01 Apr 2019
5. Hyperledger Fabric. https://www.hyperledger.org/projects/fabric/. Accessed 01

Apr 2019
6. J.P. Morgan Quorum Whitepaper. https://github.com/jpmorganchase/quorum-

docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf. Accessed 01 Apr 2019
7. Litecoin. https://litecoin.org/. Accessed 01 Apr 2019
8. NEM. https://nem.io/. Accessed 01 Apr 2019
9. Ripple. https://ripple.com/. Accessed 01 Apr 2019

10. Stellar. https://www.stellar.org/. Accessed 01 Apr 2019
11. Arnold, K., Hupfer, S., Freeman, E.: JavaSpaces Principles, Patterns, and Practice.

Addison-Wesley Professional, Boston (1999)
12. Bettini, L., et al.: The KLAIM project: theory and practice. In: Priami, C. (ed.)

GC 2003. LNCS, vol. 2874, pp. 88–150. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-40042-4 4

https://bitcoin.org/en/
https://bitcoin.org/en/
https://www.r3.com/corda-platform/
https://www.ethereum.org/
https://github.com/HydraChain/
https://www.hyperledger.org/projects/fabric/
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf
https://litecoin.org/
https://nem.io/
https://ripple.com/
https://www.stellar.org/
https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1007/978-3-540-40042-4_4

150 E. M. Kuehn

13. Bettini, L., De Nicola, R.: Mobile distributed programming in X-Klaim. In:
Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 29–68.
Springer, Heidelberg (2005). https://doi.org/10.1007/11419822 2

14. Bettini, L., De Nicola, R., Ferrari, G.L., Pugliese, R.: Mobile applications in X-
KLAIM. In: WOA 2000: Dagli Oggetti agli Agenti. 1st AI*IA/TABOO Joint Work-
shop “From Objects to Agents”: Evolutive Trends of Software Systems, Parma,
Italy, pp. 1–6 (2000)

15. Bukhres, O., Elmagarmid, A.K., Kühn, E.: Implementation of the Flex Transaction
Model. IEEE Data Eng. Bull. 16(2), 28–32 (1993)

16. Buravlev, V., De Nicola, R., Mezzina, C.A.: Tuple spaces implementations and
their efficiency. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016.
LNCS, vol. 9686, pp. 51–66. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39519-7 4

17. Buravlev, V., De Nicola, R., Mezzina, C.A.: Evaluating the efficiency of Linda
implementations. Concurr. Comput. Pract. Exp. 30(8), e4381 (2018)

18. De Nicola, R.: From process calculi to KLAIM and back. Electr. Notes Theor. Com-
put. Sci. 162, 159–162 (2006). US patent US6848109B1. https://patents.google.
com/patent/US6848109

19. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

20. De Nicola, R., Julien, C. (eds.): COORDINATION 2013. LNCS, vol. 7890.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38493-6

21. De Nicola, R., Kühn, E. (eds.): SEFM 2016. LNCS, vol. 9763. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-41591-8

22. De Nicola, R., Loreti, M.: A modal logic for Klaim. In: Rus, T. (ed.) AMAST
2000. LNCS, vol. 1816, pp. 339–354. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45499-3 25

23. De Nicola, R., Pugliese, R.: Linda-based applicative and imperative process alge-
bras. Theor. Comput. Sci. 238(1–2), 389–437 (2000)

24. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

25. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

26. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. The Mor-
gan Kaufmann Series in Data Management Systems (1992)

27. Kühn, E.: Fault-tolerance for communicating multidatabase transactions. In: Pro-
ceedings of the Twenty-Seventh Annual Hawaii International Conference on System
Sciences (HICSS), Wailea, Maui, Hawaii, vol. 2, pp. 323–332. IEEE (1994)

28. Kühn, E.: Coordination System. European Patent, Number EP0929864 B1 (March
21th 2001), PCT Number PCT/AT1997/000209

29. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

30. Lamport, L.: Byzantizing Paxos by refinement. In: Peleg, D. (ed.) DISC 2011.
LNCS, vol. 6950, pp. 211–224. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24100-0 22

31. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

32. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://
bitcoin.org/bitcoin.pdf

33. Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design.
ACM Trans. Comput. Syst. 2(4), 277–288 (1984)

https://doi.org/10.1007/11419822_2
https://doi.org/10.1007/978-3-319-39519-7_4
https://doi.org/10.1007/978-3-319-39519-7_4
https://patents.google.com/patent/US6848109
https://patents.google.com/patent/US6848109
https://doi.org/10.1007/978-3-642-38493-6
https://doi.org/10.1007/978-3-319-41591-8
https://doi.org/10.1007/3-540-45499-3_25
https://doi.org/10.1007/3-540-45499-3_25
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-642-24100-0_22
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

A Distributed Ledger Technology Based on Shared Write-Once Objects 151

34. Uriarte, R.B., De Nicola, R.: Blockchain-based decentralized cloud/fog solutions:
challenges, opportunities, and standards. IEEE Commun. Stan. Mag. 2(3), 22–28
(2018)

35. Xu, X., et al.: A taxonomy of blockchain-based systems for architecture design. In:
2017 IEEE International Conference on Software Architecture (ICSA), pp. 243–252
(2017)

Testing for Coordination Fidelity

Yehia Abd Alrahman1(B) , Claudio Antares Mezzina2 ,
and Hugo Torres Vieira3

1 Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden
yehia.abd.alrahman@gu.se

2 Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy
3 IMT School for Advanced Studies Lucca, Lucca, Italy

Abstract. Operation control in modern distributed systems must rely
on decentralised coordination among system participants. In particu-
lar when the operation control involves critical infrastructures such as
power grids, it is vital to ensure correctness properties of such coordi-
nation mechanisms. In this paper, we present a verification technique
that addresses coordination protocols for power grid operation control.
Given a global protocol specification, we show how we can rely on testing
semantics for the purpose of ensuring protocol fidelity, i.e., to certify that
the interaction among the grid nodes follows the protocol specification.

1 Introduction

Power generation and distribution have been undergoing a revolution in the
past years, on the one hand due to the introduction of different solutions for
generation, on the other hand because of the impact that such solutions have on
distribution grids. More concretely, having a unique power supplier in a grid is
an outdated configuration, instead now the scenario of interest involves multiple
power supplies and distribution to potentially all nodes of the grid, in particular
when renewable energy sources come into play. The real time requirements of
such systems demand automatic mechanisms for operation control, that must
be certifiably reliable given their critical nature.

Clearly, the outdated centralised control models of power grids cannot scale
with the complexity and heterogeneity of emerging configurations. Instead,
decentralised operation control must rely on the coordination of distributed
remote collaborating parties, for example for the purpose of balancing supply-
and-demand. It is however vital that such coordination mechanisms are encom-
passed with techniques that allow to ensure reliability in a rigorous way.

Several proposals of formal models for distributed coordination can be found
in the existing literature, for instance based on tuple spaces (e.g., [10]). We
may also find recent proposals for new paradigms for interaction models, such

Yehia Abd Alrahman is funded by the ERC consolidator grant D-SynMA under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 772459).

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 152–169, 2019.
https://doi.org/10.1007/978-3-030-21485-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_10&domain=pdf
http://orcid.org/0000-0002-4866-6931
http://orcid.org/0000-0003-1556-2623
http://orcid.org/0000-0001-7461-6156
https://doi.org/10.1007/978-3-030-21485-2_10

Testing for Coordination Fidelity 153

as attribute-based communication [1,2]. The common goal is to support system
modelling in a precise way and exclude unexpected behaviours. Building on such
characterisation of system behaviour, one may then ensure reliability properties
by means of verification techniques. We distinguish here the approaches based on
behavioural type specifications (cf. [16]) that allow to certify protocol fidelity, i.e.,
that ensure that interacting parties follow a prescribed protocol of interaction.

In this paper, we build on previous work that introduces a model of coordi-
nation protocols for power grid operation control [3]. The key principles under-
lying the proposal are a global programming model, that allows to reason on
grid behaviour as a whole, and a notion of operation control transference via
interaction. Intuitively, idle nodes react to synchronisations so as to carry out
their part in the operation control, hence interactions authorise nodes much
like interactions in a token ring protocol authorise nodes to access the shared
resource. Together with a notion of network configuration, in particular network
topology and state, the principles above are embedded in a protocol language
that is role-agnostic, i.e., that does not specify a priori the parties involved in
the communications. This means that the development of coordination protocols
may consider generic networks, as expectable, and the concrete association with
the network nodes involved in the communications is carried out on-the-fly at
runtime based on the transference of the operation control.

Likewise to the (global) protocol specification, also the controllers running in
network nodes should be developed targeting a generic setting. The key issue, for
the purpose of ensuring that the node controllers interact among them according
to the protocol specification, is to certify that the implementation of a node con-
troller exhibits the (local) actions expected at network level. Hence, a notion of
observational reasoning over implementations is required in order to certify that
an implementation complies with a prescribed protocol of interaction. Ideally,
such observational power should be as flexible as possible so to allow for the
greatest number of implementations to be deemed compliant with the specifica-
tion. We therefore rely on testing [11] since we may streamline the verification
by deriving the testers from the specification and abstract away from implemen-
tation details that are not pertinent for the protocol validation.

The global protocol language, presented in the next section, is equipped with
an operational semantics that provides the reference model of interaction. We refer
the interested reader to previous work [3] for a more detailed presentation of the
model, but nevertheless the presentation in this paper is self-contained. To that
end we illustrate here the flavour of the language in Sect. 3 by modelling a proto-
col that addresses the reconfiguration of a power grid which is new to this paper.
In Sect. 4 we present our novel technical development, starting by the definition
of the language model for testers and a technique that may be used to synthesise
testers from global protocol specifications. We then show how we can rely on a test-
ing semantics to ensure that an implementation complies with a protocol (Defini-
tion 1). Based on this notion of compliance, we may then ensure protocol fidelity
(Theorem 1), which attests that implementations follow the prescribed protocol
of interaction. Finally, Sect. 5 includes some concluding remarks.

154 Y. A. Alrahman et al.

2 A Model for Operation Control Protocols

In this section, we present a global language to model operation control protocols
governing power networks. Interaction in our language is driven by the structure
of the power network, in particular considering radial power networks, i.e., tree-
structures where the root provides power to respective subtree. The interaction
model also accounts for a notion of proximity so as to capture backup links. Thus,
we consider that nodes can interact if they are in a provide/receive power relation
or in a neighbouring relation. In order to identify the target of a synchronisation,
specifications include a direction that determines the type of the relation.

Table 1. Global language syntax

(Protocol) P ::= 0

| P |Q
| rec X.P

| X

| S

| (id)P

(Summation) S ::= [fd]oiP

| S+ S

(Direction) d ∈ {�, �, �, •}

As anticipated in the Introduction, the language model embeds the princi-
ple that control is transferred by means of synchronisations. For example, a
node enabling synchronisation on an action and another one reacting to it may
synchronise and the enabling node yields the control to the reacting one. Con-
sequently, the reacting node may enable the next step of the protocol. We may
therefore consider that active nodes enable synchronisations and, as a conse-
quence of a synchronisation, transfer the active role to the reacting node. This
allows to specify protocols as a (structured) set of interactions without prescrib-
ing the actual identities of the nodes involved, as these are determined opera-
tionally due to the transference of the active role in synchronisations.

The syntax of the language is given in Table 1. We use id to range over node
identifiers, f to range over synchronisation action labels, and c, i, o, . . . to range
over logical conditions. The protocols, ranged over by P and Q, consist of static
specifications and the active node construct (id)P, which says that the node with
identifier id is active to carry out the protocol P. Static specifications represent
the behaviour of the protocol which is defined by termination 0, fork P |Q to
specify that both P and Q are to be carried out, and infinite behaviour defined
in terms of the recursion rec X.P and recursion variable X, with the usual
meaning. Static specifications also include synchronisation summations (S, . . .),
where S1 + S2 states that either S1 or S2 is to be carried out (exclusively),

Testing for Coordination Fidelity 155

and where [fd]oi represents a synchronisation action: a node active on [fd]oiP
that satisfies condition o may synchronise on f with the node(s) identified by
the direction d for which condition i holds, leading to the activation of the
latter node(s) on protocol P. Intuitively, the node active on [fd]oiP enables the
synchronisation, which results in the reaction of the targeted nodes that are
activated to carry out the continuation protocol P.

A direction d specifies the target(s) of a synchronisation; � targets all (chil-
dren) of the enabling node; � targets the parent; � targets a neighbour; and
• targets the enabler itself and is used to capture local computation steps. We
remark that since one node can supply power to several others, synchronisations
with � direction may actually involve several reacting nodes. Any � synchronisa-
tions are therefore interpreted as broadcasts, i.e., � targets all (direct) children
that satisfy the reacting condition, which can be the empty set (e.g., the node
has no children or none of them satisfy the reacting condition). Binary interac-
tion, on the other hand, is interpreted as synchronisation and can only occur if
the identified target node satisfies the reacting condition.

Example 1. Consider the protocol: (id)([f1�]o1
i1
P1 + [f2•]o2

i2
(P2 |P3)) which spec-

ifies that node id is active to synchronise on f1 or f2, exclusively.

There are two language mechanisms, illustrated in Example 1, that may intro-
duce concurrency in the model. One is the broadcast which may lead to the
activation of several nodes: in the example, each one of the nodes reacting to
f1 will carry out P1. Another is the fork construct which allows a node to con-
currently carry out two subprotocols: in the example, a node active on (P2 |P3)
will carry out both P2 and P3, and potentially synchronise with different nodes
in each one.

The semantics of the language relies on a structural congruence relation ≡.
Structural congruence is the least congruence relation on protocols that satisfies
the rules given in Table 2. The first set of rules states that fork and summation are
associative and commutative, and that fork has identity element 0 (notice that
0 is syntactically excluded from summations). Rule (id)(P |Q) ≡ (id)P | (id)Q
states that a node id is active on both branches of the fork construct. Rule
(id1)(id2)P ≡ (id2)(id1)P states that the order of active nodes is immaterial
and rule (id)0 ≡ 0 states that a node active on 0 is equivalent to 0. Intuitively,
structural congruence rewriting allows active nodes to “float” in the term towards
the synchronisation actions. The rule for recursion unfolding is standard.

Example 2. Considering the active node distribution in a fork, we have that
[f1�]o1

i1
P1 + [f2•]o2

i2
(id)(P2 |P3) ≡ [f1�]o1

i1
P1 + [f2•]o2

i2
((id)P2 | (id)P3)

The definition of the semantics depends on the state of the network and on the
fact that nodes satisfy certain logical conditions. We consider state information
for each node so as to capture both “local” information about the topology (such
as the identities of the power provider and of the set of neighbours) and other
information relevant for condition assessment (such as the status of the power
supply). The network state, denoted by Δ, is a mapping from node identifiers

156 Y. A. Alrahman et al.

Table 2. Structural congruence

P |0 ≡ P P1 | (P2 |P3) ≡ (P1 |P2) |P3 P1 |P2 ≡ P2 |P1

rec X.P ≡ P[rec X.P/X] S1 + (S2 + S3) ≡ (S1 + S2) + S3 S1 + S2 ≡ S2 + S1

(id)(P |Q) ≡ (id)P | (id)Q (id1)(id2)P ≡ (id2)(id1)P (id)0 ≡ 0

to states, where a state, denoted by s, is a register id [id ′, t, n, k, a, e, g] contain-
ing the following information: id is the node identifier; id ′ identifies the power
provider; t captures the status of the input power connection; n is the set of
identifiers of neighbouring nodes; k is the power supply capacity of the node;
a is the number of power supply links (i.e., the number of nodes that receive
power from this one); g is the identity of a nearby power generator; and e is the
number of power supply links that are in a faulty state. We consider that the
elements in the register are natural numbers (and a set of natural numbers for
the neighbours) albeit in the examples we use some special symbols (e.g., ∞).

We check conditions against states for the purpose of allowing synchronisa-
tions. Given a state s we denote by s |= c that state s satisfies condition c,
where we leave the underlying logic unspecified. For example, we may say that
s |= (k > 0) to check that s has capacity greater than 0. We also consider a
notion of side-effects, in the sense that synchronisation actions may result in
state changes so as to model system evolution. By upd(id , id ′, fd,Δ) we denote
the operation that yields the network state obtained by updating Δ considering
node id synchronises on f with id ′, hence the update regards the side-effects of
f in the involved nodes. Namely, given Δ = (Δ′, id �→ s, id ′ �→ s′) we have that
upd(id , id ′, fd,Δ) is defined as (Δ′, id �→ fd!(s, id ′), id ′ �→ fd?(s′, id)), where
fd!(s, id ′) modifies state s according to the side-effects of enabling fd and con-
sidering id ′ is the reactive node (likewise for the reacting update, distinguished
by ?). We consider side-effects only for binary synchronisations (� and � direc-
tions), where both interacting parties are known, but state changes could also
be considered for other directions following similar lines.

The definition of the semantics relies on an auxiliary operation, denoted
d(Δ, id), that yields the recipient(s) of a synchronisation action, given the direc-
tion d, the network state Δ and the enabler of the action id . The operation yields
the power provider of a node in case the direction is �, (any) one of the neigh-
bours in case the direction is �, all the nodes that have as parent the enabler in
case the direction is �, and is undefined for direction •.

The operational semantics is given in terms of configurations consisting of a
protocol P and a network state Δ. We use Δ;P −→ Δ′;P′ to represent that con-
figuration Δ;P evolves in one step to configuration Δ′;P′, potentially involving
state changes (Δ and Δ′ may differ) and (necessarily) involving a step in the
protocol from P to P′.

The semantics of our language is reported in Table 3. Rule Bin captures
binary interaction where the direction (d) of the synchronisation action targets
either the parent (�) or a neighbour (�). Protocol (id)([fd]oiP + S) states that
node id can enable a synchronisation on f provided that the state of id satisfies

Testing for Coordination Fidelity 157

Table 3. Reduction rules

d ∈ {�, �} Δ(id) |= o d(Δ, id) = id ′ Δ(id ′) |= i Δ′ = upd(id , id ′, fd, Δ)

Δ; (id)([fd]oiP+ S) Δ′; [fd]oi ((id
′)P) + S

(Bin)

Δ(id) |= o � (Δ, id) = I ′ I = {id ′ | id ′ ∈ I ′ ∧ Δ(id ′) |= i}
Δ; (id)([f�]oiP+ S) Δ′; [f�]oi ((I)P) + S

(Brd)

Δ(id) |= o Δ(id) |= i

Δ; (id)([f•]oiP+ S) Δ; [f•]oi ((id)P) + S
(Loc)

Δ;P Δ′;P′

Δ; [fd]oiP Δ′; [fd]oiP
′ (Synch)

Δ;P Δ′;P′

Δ; (id)P Δ′; (id)P′ (Id)

Δ;P1 Δ′;P′
1

Δ;P1 + P2 Δ′;P′
1 + P2

(Sum)
Δ;P1 Δ′;P′

1

Δ;P1 |P2 Δ′;P′
1 |P2

(Par)

P ≡ P′ Δ;P′ Δ′;Q′ Q′ ≡ Q
Δ;P Δ′;Q

(Struct)

condition o, as specified in premise Δ(id) |= o. Furthermore, the reacting node
id ′, specified in the premise d(Δ, id) = id ′, is required to satisfy condition i.
As a result of the synchronisation, the configuration evolves to [fd]oi ((id

′)P) +
S, specifying that id ′ is active on the continuation protocol P. The resulting
network state is obtained by considering the side-effects of the synchronisation.
Note that the synchronisation action construct is preserved after the respective
synchronisation (see Example 3). We omit the rule that captures the case for the
singleton summation (likewise for Brd and Loc).

Rule Brd captures broadcast interaction (�) and is similar to rule Bin.
Except for the absence of side-effects, the main difference is that now a set
of potential reacting nodes is identified (I ′ denotes a set of node identifiers), out
of which all those satisfying condition i are singled out (I). The latter are acti-
vated to carry the continuation protocol. We use (I) to abbreviate (id1) . . . (idm)
considering I = id1, . . . , idm. We remark that the set of reacting nodes may be
empty (e.g., if none of the potential ones satisfies condition i), in which case
(∅)P is defined as P. Note that the reduction step nevertheless takes place, even
without reacting nodes, modelling a non-blocking broadcast. This differs from
the binary interaction which is blocked until all conditions are met, including
the reacting one.

Rule Loc captures local computation steps (•). For the sake of uniformity
we keep (both) output and input conditions. Note that the node that carries
out the f step retains control, i.e., the same id active in f is activated in the
continuation P. Like for broadcast, we consider local steps do not involve any
state update.

Rules for language closure state that nodes can be active at any stage of
the protocol, hence reduction may take place at any level, including after a

158 Y. A. Alrahman et al.

synchronisation action (rule Synch) and within a summation (rule Sum). By
preserving the structure of the protocol, including synchronisation actions that
have been carried out, we allow for participants to be active on (exactly) the
same stage of the protocol simultaneously and at different moments in time, as
the next example shows. Rules Id and Par follow the same principle and finally,
rule Struct closes reduction under structural congruence.

Example 3. Assuming that node id2 satisfies conditions i2 and o2 in Δ we may
derive, using axiom Loc, rule Sum, rule Struct, and rule Id the reduction:

Δ; (id1)(id2)([f1�]o1
i1
P1 + [f2•]o2

i2
P2) −→ Δ; (id1)([f1�]o1

i1
P1 + [f2•]o2

i2
(id2)P2)

where node id2 carries out the f2 local action. Notice that node id1 is still active
on the summation protocol, and both synchronisations are possible regardless of
the summation branch involved in the reduction step involving id2 shown above.

Since we are interested in developing protocols that may be used in different
networks, we will focus on static protocols for the purpose of the development,
where static protocols are given by the (id)-free fragment of the language. Then,
to represent a concrete operating system, active nodes may be added at “top-
level” to the static specification (e.g., (id)Ps where Ps denotes a static specifica-
tion, hence does not specify any active nodes), together with a concrete network
state (e.g., Δ; (id)Ps).

Also, to simplify protocol design, we consider that action labels are unique
(up to recursion unfolding) and that, as usual, recursion is guarded by (at least)
one synchronisation action (excluding, e.g., rec X.X). In the remainder, we only
consider well-formed protocols that follow the above guidelines, namely: originate
from specifications where recursion is guarded, all action labels are distinct, and
where the active node construct only appears top-level (e.g., (id1) . . . (idk)Ps).

3 Management of Distributed Generation in Power Grids

In this section, we model a protocol for managing distributed generation when
major faults in power sources happen. The goal is to find a replacement for failed
power sources and transfer the control to it.

We consider a cross section of a radial network of a power grid in Fig. 1.
The network consists of a primary power substation PS, two generators Hydro
and Wind Farms, and six secondary power substations, numbered from 1 to
6. The type of this network is called radial because every substation has only
one incoming power input and possibly multiple power outputs. Each secondary
substation has fault indicators (fault • and no fault ◦), line switches (closed | and
open ‖), and an embedded controller that implements the substation’s behaviour
and manages interactions with others. Fig. 1 illustrates a configuration where the
secondary substations 1–5 are energised by the primary substation PS, while
substation 6 is energised by Wind Farms. Secondary substations cannot operate
the switches or exchange information without authorisation from the primary
substation which supplies the power.

Testing for Coordination Fidelity 159

Fig. 1. Power distribution grid

Let us consider that the power source of the primary substation PS failed
which caused a blackout in its domain. The substation PS initiates a reconfigura-
tion protocol by synchronising with its directly connected secondary substations
and delegates them to locate the substation managing the hydroelectric genera-
tor so to transfer the control to it and restore power. To simplify the presentation,
our reconfiguration protocol is designed specifically to handle the configuration
in Fig. 1. However, it can be easily extended to handle any configuration.

Every substation delegates the substations connected to its output power
lines to collaborate to locate the generator. Once the signal is received by the
substation managing the generator (in our case, substation 4), it reconfigures
itself, triggers the generator, and the relocation protocol starts. A swap signal
is propagated in the direction of PS to reconfigure the connections of secondary
substations to the direction of the new source. Once this signal is received by PS,
it sends a permit signal to the substation where the signal came from so that the
control is transferred to the new source. At this point the transference protocol
starts and a release signal is propagated to the new source. Once received, the
new source claims the manager role and retains the control.

We fix the following terminology before we model the protocol in our global
language: the state of a source link t can be 0 (to indicate a faulty link, i.e.,
no power) or 1 otherwise. We use z as the source id when a substation is
not connected to a power supply. We also use ∞ in place of the source for
all primary stations. Initially, substations, with direct links to backup genera-
tors, e.g., substation 4, record the generators identities in their states regardless
of their current sources; otherwise the generation field is reset to ⊥, e.g., sub-
station 3. The initial state of each substation follows from Fig. 1. For instance,
substations 3, 4, and PS have the following initial states 3[2, 0, {2, 4}, 1, 1, 0,⊥],
4[3, 0, {3, 6}, 1, 0, 0,H], and PS[∞, 0, {1}, 2, 1, 0,⊥], respectively.

The reconfiguration protocol is reported below:

Reconfiguration � [Unlink�]o1
i1
rec X.([Locate�]o2

i1
X + [Found�]o3

i1
Relocation)

160 Y. A. Alrahman et al.

The protocol states that Unlink is broadcasted to the children of the enabling
substation, after which a recursive protocol is activated on the children. The
latter states that either Locate is broadcasted to the children of the enabling
substation, after which the recursive protocol starts over, or Found is sent to the
parent which consequently carries out the Relocation protocol.

A substation enabled on Reconfiguration enables Unlink only when its
source link is faulty and it serves as a primary substation, i.e., o1 = (t = 0) ∧
(i = ∞). Furthermore, a reactive/receiving substation can always synchronise
on Unlink, i.e., i1 = true.

The children carry out the continuation protocol which is responsible for
finding a replacement power source and guaranteeing safe reconfiguration of the
network. A child can broadcast Locate only if it cannot serve as a replacement
power source, i.e., o2 = (g �= H); otherwise, when o3 = (g = H), Found is sent
to the parent. Note that Locate has no side-effects on both sides while Found
requires that the enabling station sets its source to ∞ and the receiver sets its
generation field (g) to the id of the enabling substation. Note that once Found
is executed, the substation triggers the hydroelectric generator to supply power
and marks itself as a new replacement. The power will be restored once the last
substation in the network segment is configured correctly. Furthermore, both
actions can always be received. The relocation protocol is reported below:

Relocation � rec Y.([Swap�]o4
i1

Y + [Permit�]o5
i2
Transference)

Except for the primary substation, any substation enabled on Relocation can
send Swap, i.e., o4 = (i �= ∞); otherwise, when o5 = (i = ∞), Permit is sent to
its neighbour which would carry out the Transference protocol. The receiver
can always synchronise on Swap while for Permit the generation field (g) and the
source (i) of the substation should be equal, i.e., i2 = (i = g). Swap requires
that senders sets the value of their source to the one of their generation field.
The side-effects of Swap on the receiver are the same as of Found. For Permit,
the enabling station disconnects itself and sets its source to z. Furthermore,
Permit requires that the receiver resets its generation field. The Transference
protocol is reported below:

Transference � rec Z.([Release�]o6
i1

Z + [Claim•]o7
i1
Reconfiguration)

Similarly, the Transference protocol propagates a Release signal to release
the manager role of the network segment to the new source. Once the signal
is received, the new substation declares the end of the protocol by enabling
Claim which is a local signal. This way, the substation retains the control and
becomes ready to carry out the whole Reconfiguration protocol. Except for
the replacement substation, any substation can enable Release, i.e., o6 = (g �= H);
otherwise, when o7 = (g = H), Claim is enabled. Note that Release only requires
that the receiver resets its generation field while Claim has not side-effects at all.

The static protocol Reconfiguration abstracts from the concrete net-
work configuration. To represent a concrete network, active substations iden-
tifiers must be added at “top-level” together with a network state Δ, i.e.,

Testing for Coordination Fidelity 161

Δ; (PS)Reconfiguration. Note that the primary station, PS, is initially active
because in our scenario it is the only station that can initiate the protocol.

4 Testing for Protocol Fidelity

In this section, we present a technique ensuring that individual node controllers
follow a global protocol specification. We start by introducing a testing language
that provides a means of interaction with an implementation. Implementations
are left abstract as our focus is on the verification technique that only relies
that such implementations exhibit determined actions. Then, we show how we
can synthesise testers out of a global protocol specification, building on which
we introduce a notion of protocol compliance that characterises implementations
that pass the synthesised tests. We then present our protocol fidelity result (The-
orem 1) that attests implementations compliant with a protocol exhibit the local
actions prescribed by the global specification.

Tests T ::= T | T parallel
| 0 termination
| rec X.T recursion
| X recursion variable
| Σi∈I αi?.Ti input summation
| α!.T output
| √

success

Action prefix α ::= 〈c〉fd

Fig. 2. Target language syntax

The syntax of tests is given in Fig. 2. A test can be a parallel composition
T |T , the terminated process 0, the recursive definition rec X.T , a recursion
variable X, an input summation Σi∈I αi?.Ti, an output α!.T and the success

√
.

We remark that since we are interested in interacting with an implementation,
we do not expect interaction among different tests. Hence, a parallel composition
of tests captures two simultaneously active tests, but where no interaction can
occur, as will be made clear by the semantics of the language. Furthermore, we
remark on the

√
introduced for the sake of signalling the success of a test. Finally,

notice that action prefixes (〈c〉fd) are defined so as to match the observables
expected in the global interaction, identifying the synchronisation label f , the
direction d and the condition c that either refers to input or output conditions.

The semantics of testers is defined in terms of the following observable actions:
λ:: = α! | α? | √

. An observation λ can then be an input or an output or a success
label. We then define the semantics of tests by the rules given in Fig. 3, which
we now briefly discuss. Rule ParL allows the left part of a parallel composition
to evolve by itself by showing a label different from the success (

√
) one. The

162 Y. A. Alrahman et al.

T1
λ

T ′
1 λ �= √

T1 | T2
λ

T ′
1 | T2

ParL
T1

√
T ′
1 T2

√
T ′
2

T1 | T2

√
T ′
1 | T ′

2

ParS

T [rec X.T/X] λ
T ′

rec X.T
λ

T ′
Rec √ √

0
Success

j ∈ I

Σi∈I αi?.Ti

αj?
Tj

Input
α!.T α!

T
Output

Fig. 3. Tester language LTS

symmetric rule for the right part of the parallel composition is omitted. The
only way a success label can be propagated through a parallel composition is
when both parts are able to produce such label as reported in ParS. Rule Rec
deals with recursive processes in a standard way. Rule Success allows a success
prefix to reduce to the idle process, while rules Input and Output show how
the prefixes exhibit the corresponding labels and activate the continuation. We

say test T succeeds, written T ↓√, if T
√
−→ T ′ for some T ′.

As one can notice, in the given LTS there is no rule for synchronisation.
As previously announced, this is due to our goal of testing implementations, so
the goal is to allow testers to interact with an implementation and not among
themselves. We abstract away from how implementations are defined, and con-
sider implementations, ranged over by I, as black-boxes that exhibit labels of
the form α!, α? and τ . For the purpose of testing an implementation, we define
a new level of semantics given by the rules in Fig. 4, describing the interactions
between a test T and an implementation I, where we use ‖ to specify the par-
allel composition operator for the testing level. We consider that the actions of
implementations and tester are identical (up to the represented duality), which
in particular means that the conditions are exactly the same. Considering logical
equivalence instead would be more appropriate to support more flexibility, but
for the sake of simplifying the presentation we adopt here syntactic equality. We
leave for future work the refinement of this notion, together with a more in depth
exploration of the possible logical support for the correspondence, and consider
here that implementations refer to conditions as specified in the protocol.

I
α!

I ′ T
α?

T ′

I ‖ T
τ

I ′ ‖ T ′ CommL I
τ

I ′

I ‖ T
τ

I ′ ‖ T
Internal

Fig. 4. Testing semantics

Testing for Coordination Fidelity 163

The rules of Fig. 4 on the one hand capture the interaction between test and
implementation (rule CommL and the omitted symmetric version), and on the
other hand abstract away from the implementation internal behaviours (rule
Internal). The latter, conceivably, can be further generalised by disregarding
actions that are not relevant for the particular tester considered, e.g., by identi-
fying the set of labels of relevant actions and, like for τ , allowing evolutions of
the implementation that carry a non-relevant action label to be interleaved.

For the purpose of defining protocol compliance, we rely on the traces
observed for the composition of an implementation and a test. In order to
abstract from the internal moves of implementations, we rely on the weak vari-
ant of the transitions, defined next following standard lines. As usual, we add
τ to the set of relevant observations (because protocols also involve local steps)

and use λτ to represent either a λ or τ . We then denote by I ‖ T
λτ

=⇒ I ′ ‖ T ′

the evolution from I ‖ T to I ′ ‖ T ′ comprising a (possibly empty) sequence of

τ steps and a λτ , hence I ‖ T
τ−→ · · · τ−→ λτ

−−→ τ−→ · · · τ−→ I ′ ‖ T ′. Also, we denote

by I ‖ T
λ̃τ

=⇒ In ‖ Tn the sequence I ‖ T
λτ
1=⇒ I1 ‖ T1

λτ
2=⇒ · · · λτ

n=⇒ In ‖ Tn when
λ̃τ = λτ

1 , · · · , λτ
n.

Table 4. Tester synthesis

[[[fd]oi P]]?σ � 〈i〉fd!.[[P]]!σ | [[P]]?σ iSynch

[[[fd]oi P]]!σ � 〈o〉fd?.
√

oSynch

[[0]]rσ � 0 pNil

[[X]]?σ � 0 pVar

[[X]]!σ � [[P]]!σ (σ(X) = P) oVar

[[rec X.P]]rσ � [[P]]rσ[X �→P] pRec

[[P | Q]]rσ � [[P]]rσ | [[Q]]rσ pPar

[[S1 + S2]]
!
σ � [[S1]]

!
σ + [[S2]]

!
σ oSum

[[S1 + S2]]
?
σ � [[S1]]

?
σ | [[S2]]

?
σ pSum

We now show how we can automatically generate testers out of a protocol
specification. Tests T are synthesised directly from a protocol P through the
function [[P]]rσ defined in Table 4, where σ is a mapping from recursion variables
to protocols and r identifies the type of projection. When r is ? the result of
the projection tests if the implementation has an (expected) input. On the other
hand when r is ! the result of the projection tests if the implementation has
an (expected) output. The result of the (combination of these two types of)
projection allows one to verify static protocols (cf. Sect. 2).

We briefly discuss the definition of projection. In case iSynch, the projec-
tion yields the output (〈i〉fd!.[[P]]!σ) that is intended to interact with the expected
corresponding input. For this purpose, notice that the condition specified in the
tester output is precisely the one expected for the input i. Also, the continu-
ation of the tester output ([[P]]!σ) checks if the implementation can afterwards

164 Y. A. Alrahman et al.

(i.e., after the input) exhibit the active behaviour of the continuation. Therefore
the type of the projection for the continuation is !, and hence will test the imple-
mentation exhibits the expected outputs. Finally, the remainder of the protocol
is (inductively) projected for generating testers for other inputs ([[P]]?σ), which
are collected in parallel so inputs are tested without a causality relation, while
the causality is present between the input and the output reactions.

In case oSynch the yielded tester input specifies the condition of the out-
put expected from the implementation. If the implementation matches the
expectancy then the synchronisation may occur, in which case (this part of) the
test succeeds and hence the continuation of the tester input is

√
. The remaining

cases show how the two types of projections inductively proceed in the structure
of the protocol so as to generate the tester inputs and outputs for the whole
of the protocol. We remark that σ is used to generate the ! projection when
a recursion variable occurs in the continuation of a synchronisation action (cf.,
pRec and oVar).

We may now define the notion of protocol compliance in a way similar to
the notion of passing a test [11]. Protocol compliance relies on the ?-projection
to check if all expected inputs may be exhibited by the implementation, while
?-projection relies on !-projection to check for the expected outputs.

Definition 1 (Protocol Compliance). We say implementation I is compliant
with protocol P , written (I ‖ P) ⇓√, if

I ‖ [[P]]?∅
τ=⇒ I ′ ‖ T ′ and T ′ ↓√

The key idea of protocol compliance is to rely on an extensional observational
characterisation which allows to abstract away from implementation details.

The compositionality principle stated next is of particular use in our setting,
considering different protocols are developed using different action label alpha-
bets (cf. well-formed protocols). We remark that the projection is conservative
in this respect, i.e., protocols with disjoint action label alphabets yield testers
that also have disjoint action label alphabets. We then say that two tests T1 and
T2 are non-interfering if the sets of their action prefixes are disjoint, denoted by
T1#T2.

Proposition 1 (Compositionality). If I passes tests T1 and T2 with T1#T2,
then I passes test T1 |T2.

Proposition 1 thus allows to focus the verification of implementations consid-
ering each protocol separately, given an implementation that is compliant with
two protocols individually will also be compliant with the (parallel) combination
of the protocols.

As mentioned previously, protocol compliance addresses static protocols,
hence ensures that implementations exhibit all expected reactions. For the pur-
pose of our protocol fidelity result, we need to have a means of specifying the
initial enabling behaviour that is introduced by adding to a static protocol active
nodes at top-level. To this end, we define a third kind of projection, shown in

Testing for Coordination Fidelity 165

Table 5, that yields the outputs corresponding to the top-level actions of a pro-
tocol.

Table 5. Enabler synthesis

[[[fd]oi P]]eσ � 〈o〉fd!.0 iSynch

[[0]]eσ � 0 iNil

[[X]]eσ � [[P]]eσ (σ(X) = P) iVar

[[rec X.P]]eσ � [[P]]eσ[X �→P] iRec

[[P | Q]]eσ � [[P]]eσ | [[Q]]eσ pPar

[[S1 + S2]]
e
σ � [[S1]]

e
σ + [[S2]]

e
σ iSum

Example 4. To illustrate the synthesis of a test from a protocol specification,
we consider a simplified version of the Reconfiguration protocol in Sect. 3 as
follows:

Reconfiguration � [Unlink�]o1
i1
rec X.([Locate�]o2

i1
X + [Found�]o3

i1
0)

The e-synthesized test according to Table 5 is:

〈o1〉Unlink�!.0

The ?-synthesized test according to Table 4 is:

〈i1〉Unlink�!.(〈o2〉Locate�?.
√

+ 〈o3〉Found�?.
√

) |
〈i1〉Locate�!.(〈o2〉Locate�?.

√
+ 〈o3〉Found�?.

√
) | 〈i1〉Found�?.0

At this point we have all the technical ingredients on the implementation
side that allow to characterise protocol fidelity. However, we need to revisit the
semantics of the global language, instrumenting it in a way so that evolutions
(reductions) carry the respective information (in labels). Namely, we introduce
labels that reveal the interacting parties and the synchronisation action that
triggered the reduction step. Such labels thus refer to both parties involved in
an interaction, while our purpose is to ensure that the implementation of each
one of such parties exhibits the prescribed behaviours. So, we need a means to
focus a global label on an individual party. Furthermore, we introduce traces of
global (labeled) reductions and define a way to trim such traces so as to focus
on the contributions of a specific party. All of the above are defined next.

Definition 2 (Labeled Reduction). Given a reduction Δ;P −→ Δ′;P ′ derived
using the rules of Table 3 we write

1. Δ;P
(id)[fd]oi (id

′)−−−−−−−−→ Δ′;P ′ if the derivation has axiom Bin;

2. Δ;P
(id)[fd]oi (Ĩ)−−−−−−−→ Δ′;P ′ if the derivation has axiom Brd;

166 Y. A. Alrahman et al.

3. Δ;P τ−→ Δ′;P ′ if the derivation has axiom Loc.

We use ξ to range over such labels.

We now define the operation that allow us to focus global protocol labels on
an individual participant. Given a protocol label ξ we define (ξ)�id as follows:

((id)[fd]oi (id
′))�id = !〈o〉fd ((id ′)[fd]oi (id))�id = ?〈i〉fd

((id)[fd]oi (Ĩ))�id = !〈o〉fd ((id ′)[fd]oi (Ĩ))�id = ?〈i〉fd if id ∈ Ĩ

(τ)�id = τ (ξ)�id = ε otherwise

We also extend the definition of (·)�id for a trace ξ̃ as (ξ̃)�id = (ξ)�id · (ξ̃′)�id

when ξ̃ is ξ, ξ̃′, using ‘·’ to represent trace concatenation and taking ε as the
idempotent element (empty trace). We may now state our main result.

Theorem 1 (Protocol Fidelity). Let Δ be a network state, id a node iden-
tifier, P a protocol and I an implementation such that (I ‖ P) ⇓√. We have
that:

if Δ; (id)P
ξ1−→ Δ1;P1

ξ2−→ · · · ξn−→ Δn;Pn

then I | [[P]]e∅
λ̃=⇒ I ′ |T ′ with (ξ̃)�id = λ̃

Notice that in Theorem 1 we use the e type of projection to inject the initial
behaviours correspondent to the ones obtained by the top-level active node. This
is because the implementation I is ensured to exhibit the actions of the static
part of the protocol P but not the enabling actions corresponding to (id)P . So we
consider the implementation is composed (in parallel) with the implementation,
where synchronisation between them is not supported (hence, parallel supports
interleaving here). The result ensures that any sequence of actions prescribed for
any node at the level of the global trace is matched by the corresponding actions
of the implementation composed with the initial enabling behaviour.

Example 5. We return to the protocol shown in Example 4, namely:

Reconfiguration � [Unlink�]o1
i1
rec X.([Locate�]o2

i1
X + [Found�]o3

i1
0)

Let I be an implementation such that (I ‖ Reconfiguration) ⇓√. Consid-
erin the e-synthesized test shown in Example 4 we have that Theorem 1 ensures
that I | 〈o1〉Unlink�!.0 can exhibit the actions corresponding to the reductions of
Δ; (id)Reconfiguration. Notice that the initial action of id is given by the
e-projection, while remaining actions will be exhibited by the implementation
since it complies to the test given by the ?-projection (see Example 4).

We remark that the inverse direction of the implication stated in Theorem1
does not hold in general considering the protocol compliance given in Definition 1.
Intuitively, consider that implementations can exhibit more actions than the
ones prescribed by the tests, e.g., an implementation can exhibit simultaneously

Testing for Coordination Fidelity 167

(in parallel) two actions while the corresponding test prescribes that they must
happen in sequence. The strict correspondence is naturally a desirable property
that we leave for future work. We also remark that we focus here on observable
actions and do not introduce the state information explicitly (which may be
separated from the operational implementation). Refining the statement so as
to consider explicitly the state information may allow us to abstract away from
the logical conditions currently under consideration in the testing that supports
the protocol compliance, and explore different notions of logical support for
assessing when implementations meet the specifications.

5 Concluding Remarks

Ensuring that implementations meet specifications is of crucial importance in
software development. Techniques used to guarantee such correspondence should
be flexible enough to allow for a great number of implementations to (safely)
match a specification, so as to promote their usability. For the purpose of
analysing interacting systems, reasoning in terms of observational equivalences
has been used ever since the seminal work of Milner (cf. [18]). The key idea is
that systems are deemed equivalent if an external observer cannot distinguish
between them. Testing [11] embeds this principle and seems particularly fit for
the purpose of ensuring that implementations meet specifications, given that the
testers may be crafted so as to faithfully represent the specifications. The idea
is that two implementations are equivalent if no specification can distinguish
between them.

The above principle is at the basis of the development presented in this
paper. The goal is to allow for several implementations to conform to a proto-
col specification, abstracting away from details that do not compromise the safe
operation of the system. We have merely scratched the surface of the advan-
tages of using testing in this setting, in particular when taking into account the
broadness of the related literature (e.g., [4–6,9,12–15,17,19,20]). However, we
can already state a protocol fidelity result that ensures compliant implementa-
tions exhibit the actions prescribed by the protocol specifications. Introducing
a notion of testing preorder, relating implementations that pass all the tests of
other implementations, we may also characterise a substitution principle for the
safe replacement of controller implementations.

Our global protocol language can be anchored to the proposal of choreo-
graphic programming [7], in the sense that programming is carried out directly at
the protocol language level, and operationally correspondent distributed imple-
mentations can be automatically generated from the global specification (cf. [3]).
We take a different perspective here, admitting that node controllers are devel-
oped as usual in a separate way with respect to the specification. In fact, we
view implementations in an opaque way so as to allow for greater generality,
e.g., allowing for implementations that interleave their participation in different
protocols.

Nevertheless, following lines similar to previous work [3], given a protocol
specification we may consider a distributed network where each node is equipped

168 Y. A. Alrahman et al.

with a (compliant) controller implementation. Then, we may also show that the
yielded distributed model operationally corresponds to the global (centralised)
model of Sect. 2.

A Tribute to Rocco De Nicola. This paper is a contribution to the Festschrift
that celebrates Rocco De Nicola’s 65th birthday. We tried to gather topics in
which Rocco has been a pioneer and a prolific author: coordination models and
testing equivalences. Coordination is the goal of the model presented in Sect. 2
while Sect. 4 is undoubtedly inspired by Rocco’s seminal work on testing pre-
orders [8,11]. Besides being a very prolific and influential scientist, Rocco has also
been a mentor and a source of inspiration for many researchers. His dedication
to research and his quest for scientific rigour will inspire generations.

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based
communication. In: 36th IFIP WG 6.1 International Conference on Formal Tech-
niques for Distributed Objects, Components, and Systems, FORTE 2016, pp. 1–18
(2016)

2. Alrahman, Y.A., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, pp. 1840–1845. ACM (2015)

3. Alrahman, Y.A., Vieira, H.T.: Operation control protocols in power distribution
grids. CoRR abs/1811.01942 (2018)

4. Bernardi, G., Hennessy, M.: Mutually testing processes. Log. Methods Comput.
Sci. 11(2), 1–23 (2015)

5. Boreale, M., De Nicola, R.: Testing equivalence for mobile processes. Inf. Comput.
120(2), 279–303 (1995)

6. Boreale, M., De Nicola, R., Pugliese, R.: Trace and testing equivalence on asyn-
chronous processes. Inf. Comput. 172(2), 139–164 (2002)

7. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: The 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2013, pp. 263–274. ACM (2013)

8. De Nicola, R.: Testing equivalences and fully abstract models for communicating
systems. Ph.D. thesis, University of Edinburgh, UK (1986). http://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.649251

9. De Nicola, R.: Extensional equivalences for transition systems. Acta Inf. 24(2),
211–237 (1987)

10. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

11. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

12. De Nicola, R., Hennessy, M.: CCS without tau’s. In: Ehrig, H., Kowalski, R., Levi,
G., Montanari, U. (eds.) CAAP 1987. LNCS, vol. 249, pp. 138–152. Springer, Hei-
delberg (1987). https://doi.org/10.1007/3-540-17660-8 53

13. De Nicola, R., Melgratti, H.: Multiparty testing preorders. In: Ganty, P., Loreti,
M. (eds.) TGC 2015. LNCS, vol. 9533, pp. 16–31. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-28766-9 2

http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.649251
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.649251
https://doi.org/10.1007/3-540-17660-8_53
https://doi.org/10.1007/978-3-319-28766-9_2
https://doi.org/10.1007/978-3-319-28766-9_2

Testing for Coordination Fidelity 169

14. De Nicola, R., Segala, R.: A process algebraic view of input/output automata.
Theor. Comput. Sci. 138(2), 391–423 (1995)

15. Hennessy, M.: Algebraic Theory of Processes. MIT Press Series in the Foundations
of Computing. MIT Press, Cambridge (1988)

16. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

17. Laneve, C., Padovani, L.: The Must preorder revisited. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74407-8 15

18. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

19. Natarajan, V., Cleaveland, R.: Divergence and fair testing. In: Fülöp, Z., Gécseg,
F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 648–659. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60084-1 112

20. Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)

https://doi.org/10.1007/978-3-540-74407-8_15
https://doi.org/10.1007/3-540-60084-1_112

Data-Driven Choreographies à la Klaim

Roberto Bruni1, Andrea Corradini1, Fabio Gadducci1(B), Hernán Melgratti2,
Ugo Montanari1, and Emilio Tuosto3,4

1 University of Pisa, Pisa, Italy
fabio.gadducci@unipi.it

2 University of Buenos Aires & Conicet, Buenos Aires, Argentina
3 Gran Sasso Science Institute, L’Aquila, Italy

4 University of Leicester, Leicester, UK

Abstract. We propose Klaim as a suitable base for a novel choreo-
graphic framework. More precisely we advocate Klaim as a suitable lan-
guage onto which to project data-driven global specifications based on
distributed tuple spaces. These specifications, akin to behavioural types,
describe the coordination from a global point of view. Differently from
behavioural types though, our specifications express the data flow across
distributed tuple spaces rather than detailing the communication pat-
tern of processes. We devise a typing system to validate Klaim programs
against projections of our global specifications. An interesting feature of
our typing approach is that well-typed systems have an arbitrary number
of participants. In standard approaches based on behavioural types, this
is often achieved at the cost of considerable technical complications.

1 Introduction

Communication-centered programming is playing a prominent role in the pro-
duction of nowadays software. Programming peers that need to exchange infor-
mation is an error-prone activity and the behaviour of even small systems is
subject to a combinatorial blow-up as the number of peers increases. There-
fore well-structured principles and rigorous foundations are needed to develop
well-engineered, trustworthy software. One possibility is to exploit some sort
of behavioural types [8,15] to manage abstract descriptions of peers and for-
mally study their properties such as communication safety, absence of deadlocks,
progress or session fidelity: given the types of the peers, the emerging behaviour
of their composition is analysed. In the seminal paper [14], recently nominated
the most influential POPL paper (Award 2018), the authors push forward an

Research partly supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No. 778233, by UBACyT projects 200201701-
00544BA and 20020170100086BA, and CONICET project PIP 11220130100148CO,
by the EU COST Action IC1405, by the MIUR PRINs 201784YSZ5 ASPRA: Analysis
of program analyses and 2017FTXR7S IT-MaTTerS: Methods and tools for trustwor-
thy smart systems, and by University of Pisa PRA 2018 66 DECLWARE: Metodologie
dichiarative per la progettazione e il deployment di applicazioni.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 170–190, 2019.
https://doi.org/10.1007/978-3-030-21485-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_11

Data-Driven Choreographies à la Klaim 171

abstract notion of global type of interaction that represents a sort of contract
between the communicating peers. This is paired with the notion of local type
that gives an abstract description of the behaviour of each peer, as taken in
isolation. Interestingly, local types can be obtained “for free” by projection from
global types, while the properties of interest can be studied and guaranteed just
at the level of global types, without the need of studying the composition of
local types. The conformance of peers implementation w.r.t. the global type can
be studied instead at the level of local types, allowing a more efficient form
of type checking. Roughly this means that properties are stated globally but
checked locally. Global types have been inspired by session types [13] and by
choreography languages in service oriented computing (WS-CDL1), where com-
plex interactions are modelled from the point of view of the global sequence of
events that must take place in order to successfully complete the computation.

In the literature, global/local types have been studied mostly in the context of
point-to-point channel-based interactions. This means that the main action in a
choreography is the sending of a message from one peer to another on a specific
channel (of a given type). In this paper we explore a different setting, where
interaction over tuple-spaces replaces message passing, in the style of Linda-like
languages [10]. Instead of primitives for sending and receiving messages, here
there are primitives for inserting a tuple on a tuple space, for reading (without
consuming) a tuple from a tuple space or for retrieving a tuple from a tuple space.
We call these interactions data-driven, as decisions will be taken on the basis of
the type of the tuples that are manipulated. We coined the term klaimographies
in honour of the process language Klaim [1,6], a main contribution of Rocco De
Nicola in the fields of process algebras and distributed programming. Inspired by
Klaim, klaimographies exploit the notion of distributed tuple spaces to separate
the access to data on the basis of the interactions that are carried out.

A Marketplace Scenario. We illustrate this with a motivating example that we
will formalise later on (cf. Example 5 on page 8). We consider a scenario where
sellers and buyers use a marketplace provided by a broker. Sellers can put on sale
(several) items and buyers can inspect them. When an item of interest is found,
the client can start a negotiation with the seller. The intended behaviour of this
choreography is informally represented by the BPMN diagram2 in Fig. 1. The
diagram does not specify the protocol in a precise way. In our scenario there is a
single broker but an arbitrary number of sellers or buyers. This is not reflected
in the diagram because the BMPN pools ‘Seller’ and ‘Buyer’ represent partici-
pants, not roles that maybe enacted by many participants. Taking into account a
multiplicity of participants triggers interesting issues. For instance, the bargain-
ing subprocess should happen between two specific instances of participants: the
buyer interested in a particular item and the seller that advertised such item.
Moreover, the interactions among these specific instances must happen without
interference from other participants.

1 http://www.w3.org/2002/ws/chor.
2 The diagram has been drawn with the BeePMN tool https://www.beepmn.com.

http://www.w3.org/2002/ws/chor
https://www.beepmn.com

172 R. Bruni et al.

Fig. 1. A marketplace scenario

There are several distinguishing features of klaimographies w.r.t. the liter-
ature on global types that tackle the issues described above. First, klaimogra-
phies naturally support an arbitrary number of participants. This is uncommon
in standard behavioural types approaches where the number of participants in
interactions is usually fixed a priori, even when the number of participants is
a parameter of the type, as done in [16] (see also Sect. 5). Second, interactions
of klaimographies are multiway because each tuple can be read many times.
Typically, session types specify point-to-point interactions where messages have
exactly one producer and one consumer: see for instance [4] and the discussions
on multiway interactions therein. Third, all interactions involve a tuple space
locality instead of a channel name. Fourth, klaimographies are data-driven in
the sense that they aim to check properties of data-flow. An example of use of
klaimographies is to control the access to pieces of data in a tuple space.

The main contribution of this paper is to set up the formal setting of klaimo-
graphies and to prepare the ground for several interesting research directions: we
fix the syntax of global and local types and define the projection from global to
local types, as typical of choreographic frameworks. Global types are equipped
with a partial order semantics of events and local types with an ordinary oper-
ational semantics. Then, the conditions under which the behaviour of projected
local types is faithful to the semantics of global types are spelled out.

Shifting the focus from control to data in the choreographic framework has
several implications. Firstly, the emphasis is no longer on properties related to
computational actors. For instance, klaimographies admit computations where
some processes may not terminate and are left waiting for some data. In stan-
dard choreographic frameworks those would be undesired behaviours to rule out
with suitable typing disciplines. Nonetheless, we claim that in some application
domains computations with deadlocked processes have to be considered non-

Data-Driven Choreographies à la Klaim 173

erroneous. For instance, in reactive systems based on event-notification frame-
works some “listener” components must be kept waiting for events to occur. Our
work paves the way to the formal study of properties of data, like consumption,
persistence and availability, in a choreographic setting.

Another main innovation of klaimographies is that they allow one to easily
represent protocols where a role can be enacted by an arbitrary number of com-
ponents. We give an example of such protocol in Sect. 2.3. Remarkably, those
protocols can be specified in some existing choreographic frameworks [5,16], but
in a less abstract way that requires the explicit quantification on components.

Structure of the Paper. After some preliminaries in Sect. 2.1, we define klaimo-
graphies as global types in Sect. 2.2 and give some examples in Sect. 2.3. In
Sect. 3.1 we define the semantics of global types and give the adequacy condi-
tions for projecting global types to local types. In Sect. 3.2 we define the syntax
and operational semantics of local types and show how to project global types
over local types in Sect. 3.3. The semantic correspondence between global types
and local types is accounted for in Sect. 4. Some concluding remarks together
with the discussion of related and future work are in Sect. 5.

2 Klaimographies

Our type system hinges on the basic notions of Klaim that are based on tuples,
localities, and operations to generate and access tuple spaces. We recall that
Klaim features two kinds of access to tuples located on a tuple space dubbed
input and read access and often denoted as in t @ l and read t @ l in Klaim’s
literature. An input access in t @ l instantiates the variables in t corresponding to
the fields in the matching tuple at locality l and then removes such tuple from l,
while a read access read t @ l does not remove the tuple from l after instantiating
the variables in t. Section 2.1 introduces tuple types that basically abstract away
from values in Klaim’s tuples. Section 2.2 introduces global types meant to specify
Klaim systems from a global point of view that, using roles, abstracts away
from the actual instances of processes executing a protocol. Clearly, the form
of interactions featured in the global types are inspired by Klaim operations.3

Sect. 2.3 gives a taste of the expressiveness of our global types.

2.1 Tuple Types

We consider a set of variables V ranged over by x and a set of localities Loc
ranged over by l (and use � to range over Loc ∪V) and we let s range over basic
sorts which include int, bool, str and the sort loc of localities. The set T of
tuple (types) consists of the terms derived from the following grammar:

t ::= s
∣
∣ �

∣
∣ x : s

∣
∣ νx : s

∣
∣ t · t

3 Klaim allows code mobility, which for the sake of simplicity is disregarded here. See
however the discussion in Sect. 5.

174 R. Bruni et al.

Tuple types are trees t · t where leaves are either a sort s, any type �, a sorted
variable x : s, or a fresh sorted variables νx : s (the difference between x : s and
νx : s is clarified in Sect. 2.3). Note that νx : s are binders that define x ∈ V.
Hence, we talk about free and defined (sorted) names occurring in tuples. The
functions fn() and dn() return sets of pairs x �→ s assigning sort s to x ∈ V
and are given according to the definition below

dn(s) = ∅
dn(x : s) = ∅
dn(νx : s) = {x �→ s}
dn(t1 · t2) = dn(t1) ∪ dn(t2)
dn(�) = ∅

fn(s) = ∅
fn(x : s) = {x �→ s}
fn(νx : s) = ∅
fn(t1 · t2) = fn(t1) ∪ fn(t2)
fn(�) = ∅

We write � � to denote the projection of a set of pairs over its first component.
We say a tuple t is well-sorted if the following two conditions hold:

– �fn(t)� ∩ �dn(t)� = ∅, i.e., free and defined names are disjoint; and
– t = t1 · t2 implies t1 and t2 are well-sorted and their names are disjoint,

namely, �dn(t1)� ∩ �dn(t2)� = ∅ and �fn(t1)� ∩ �fn(t2)� = ∅.

Hereafter, we assume all tuples to be well-sorted. Note that fn(t) and dn(t) are
partial functions (from names to sorts) for well-sorted tuples.

A substitution of the free occurrences of a variable x in a (well-sorted) tuple
t by a variable y �∈ dn(t), written t{y/x}, is defined by

(x : s){y/x} = y : s and (t1 · t2){y/x} = (t1{y/x}) · (t2{y/x})

while it is the identity on the remaining cases. Let σ = {y1/x1, . . . , yn/xn} such
that xi �= xj for all i �= j (i.e., σ is a partial endo-function on V). We now write
tσ for the simultaneous substitution of each xi by yi. We use Σ for the set of
all substitutions. We write σ1σ2 for the composition of partial functions with
disjoint domain, and σ1[σ2] for the update of σ1 with σ2.

Tuple types t and t′ such that dn(t) ∩ dn(t′) = ∅ can match by producing
a substitution; this is realised by the partial function ��: T × T → Σ below

t �� t′ =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if t = � ∨ t′ = � ∨ t, t′ ∈ {s, x : s}
σ if t = t1 · t2 ∧ t′ = t′

1 · t′
2 ∧ t1 �� t′

1 = σ1 ∧ t2σ1 �� t′
2σ1 =σ

{y/x} if (t = νy : s ∧ t′ = x : s) ∨ (t′ = νy : s ∧ t = x : s)
undef otherwise

We write t �� t′ when t �� t′ = σ for a substitution σ ∈ Σ.
We say that t generates when in one of its fields there is a νx : loc type.

2.2 Global Types

We fix two disjoint sets U = {p, q, . . .} and M = {P,Q, . . .}, respectively of unit
roles and multiple roles, and define the set of roles R = U ∪ M, ranged over by

Data-Driven Choreographies à la Klaim 175

ρ. We conventionally write multiple roles with initial uppercase letters and unit
roles with initial lowercase letters.

Roles have to be thought of as types inhabited by instances of processes
enacting the behaviour specified in a choreography. Unit roles are unit types
while multiple roles account for multiple instances of processes all performing
actions according to their role.

Let us first define the grammar for prefixes used in global types:

π ::= ρ ! (t) @ � (autonomous) output
∣
∣ ρ ! t@ � (autonomous) read-only output
∣
∣ ρ ? (t) @ � (autonomous) input
∣
∣ ρ ? t@ � (autonomous) read
∣
∣ ρ→ ρ′ : (t)@ � consuming interaction
∣
∣ ρ→ ρ′ : t@ � read-only interaction

We syntactically distinguish two kinds of prefixes. The prefixes generated by the
first four productions in the grammar of π above are the autonomous prefixes,
that is those prefixes that processes can execute directly on a tuple space without
coordinating with other processes. They are analogous to Klaim primitives for
Linda-like interactions. The prefixes generated by the remaining two productions
are the interaction prefixes, namely those involving a role generating a tuple
and one accessing it. They are analogous to the usual prefixes of global types.
The set roles(π) ⊆ R of roles in π is defined in the obvious way; note that
roles(π) is a singleton if, and only if, π is an autonomous prefix. Inspired by
Klaim, processes can access tuple types according to two modalities syntactically
distinguished by the round brackets around the tuple in prefixes. More precisely,
when a prefix surrounds a tuple t with round brackets then t is meant to be
consumed, otherwise it is meant to be read-only.

We assume that tuple types used in read-only modalities do not generate.
Global types K have the following syntax

K ::=
∑

i∈I

πi.Ki

∣
∣ K≺ K

∣
∣ X

∣
∣ μρ X.K

for I a finite set of indexes, and we write either 0 or πj .Kj for
∑

i∈I

πi.Ki whenever

I = ∅ (we also omit trailing occurrences of 0) or I = {j}, respectively. The set
roles(K) ⊆ R of roles of K is the set of roles that are mentioned in K and it is
defined in the obvious way.

The syntax of global types features prefix guarded choices, sequential compo-
sition, and recursion. The semantics in Sect. 3.1 will make clear that the sequen-
tial composition ≺ allows for some degree of concurrency between actions in the
absence of role and communication dependencies. To handle recursive behaviour,
the construct μρ X.K singles out a role ρ ∈ roles(K) deciding whether to repeat
the execution of the body K or (if ever) to end it. To achieve this, ρ notifies
the decision to stop or to do a next iteration by generating tuple types for the

176 R. Bruni et al.

other roles (this is formally defined in Sect. 3.1). We omit the decoration ρ when
roles(K) = {ρ}.

We extend the notions of defined and free names to global types as follows:

fn(ρ ! (t) @ �) = fn(t) ∪ {� �→ loc} dn(ρ ! (t) @ �) = dn(t)

(omitted prefixes are defined analogously)

fn(
∑

i∈I

πi.Ki) =
⋃

i∈I

fn(πi) ∪ (fn(Ki) \ dn(πi))

fn(K1 ≺ K2) = fn(K1) ∪ fn(K2)
fn(X) = ∅
fn(μρ X.K) = fn(K)

dn(
∑

i∈I

πi.Ki) =
⋃

i∈I

dn(πi) ∪ dn(Ki)

dn(K1 ≺ K2) = dn(K1) ∪ dn(K2)
dn(X) = ∅
dn(μρ X.K) = dn(K)

We remark that in K1 ≺ K2 the scope of names defined in K1 does not include K2.
We write n() for the set of (sorted) defined and free names of a term. A set S
of sorted names is consistent if x �→ s ∈ S and x �→ s′ ∈ S implies s = s′.

The sets of well-sorted prefixes and terms are defined inductively as follows:

– π is well-sorted if fn(π) ∩ dn(π) = ∅ and n(π) is consistent, i.e., there are no
clashes/inconsistencies in the sorts of the names in the component t of π and
the locality � mentioned in π;

– K =
∑

i∈I

πi.Ki is well-sorted if for all i ∈ I both πi and Ki are well-sorted and

n(K) is consistent;
– K1 ≺ K2 is well-sorted if K1 and K2 are well-sorted and n(K1 ≺ K2) is consistent;
– X is well-sorted and μρ X.K is well-sorted if K is well-sorted.

We consider terms up-to α-renaming of defined names and recursion vari-
ables. Correspondingly, substitutions are capture avoiding, in the sense that
defined names can be renamed to fresh names before any substitution is applied
to a term. As usual we say that a global type K is closed when it does not contain
free occurrences of recursion variables X or free occurrences of names.

2.3 Some Examples

We give a few simple global types (Examples 1 to 4) to highlight some basic
features of klaimographies as well as a more complex example (Example 5) to
illustrate the kind of protocols our global types can capture.

Example 1. Consider the following global type that describes the interaction of
a client c with a simple service s that converts integers into strings.

K(1) = c→ s : (int)@ l . s→ c : (str)@ l

The client c produces an integer value on the locality l meant to be consumed by
the server s, which in turn produces back the converted string for the client.

Elaborating on the previous example we discuss a few features of our setting.

Data-Driven Choreographies à la Klaim 177

Example 2. Assume that we consider client and server in Example 1 as multiple
instead of unit roles, and write

K(2) = C→ S : (int)@ l .S→C : (str)@ l

In this case, K(2) states that each integer produced by a client will be consumed
by a server, which will in turn produce a string for one of the clients.

The type in Example 2 does not ensure that clients consume the string conversion
of the integer they produced, because all tuples are put at the same location l.
Name binders can be used to correlate tuples.

Example 3. Consider

K(3) = C→ S : (νx : int)@ l .S→C : (x : int · str)@ l

The first interaction binds the occurrence of x in the second interaction. The
use of x in the second interaction constraints the instances of S and C to share a
tuple whose integer expression matches the integer shared in the first interaction.
Despite the identifier is known only to the communicating instances, this does
not forbid two clients to generate the same integer value.

The klaimography in Example 3 does not establishes a one-to-one association
between instances of C and S. In fact, an instance of C does not necessarily inter-
act with the same instance of S in the two communications when two instances
of C generate the same integer in the first interaction.

Example 4. A one-to-one correspondence can be achieved by using defined
names for localities. Consider

K(4) = C→ S : (int · νx : loc)@ l .S→C : (str)@ x

As in Example 3, client and server instances establish a common fresh identity x
in the first interaction; this time the identity is a locality meant to share tuples in
subsequent communications: the second interaction can only take place between
the two instances sharing x, because such locality is known only to them.

The following example focuses on a more realistic scenario, allowing us to
combine together most of the features of our framework. For readability, we use
the notation μ1

ρ X.K for a recursive protocol where the body K is repeated at
least once. Formally,4

μ1
ρ X.K = K{μρ X.K/X}.

4 The reader should not be confused by the meaning of μρ X.K being different from
that of K{μρ X.K/X}: this is because iteration and termination require some implicit
interactions driven by ρ towards the other roles in K, as discussed in Sect. 3.1.

178 R. Bruni et al.

Example 5. The marketplace scenario described in Sect. 1 can be formalised by
the following global type.

broker→ Seller : start@ m .
μ1 X.Seller ! (str · int · νl : loc) @ m . X ≺

μ1
Buyer Y .

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ Z.Buyer ? str · int · loc@ m . Z ≺
Buyer ? (i : str · p : int · νl : loc) @ m .

μ1
Seller W.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Buyer→ Seller : (i : str · o : int)@ l .
Seller→Buyer : (quit)@ l .
Seller ! (i : str · p : int · νl : loc) @ m .
Y
+
Seller→Buyer : (sold)@ l . Y
+
Seller→Buyer : (more)@ l . W

+
Buyer→ Seller : (noway)@ l .

Seller ! (i : str · p : int · νl : loc) @ m .
Y

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The broker is a unit role that triggers sellers to start advertising their items on
the marketplace location m. Sellers and buyers are modelled as multiple roles.
Each seller advertises one or more items at m (see recursion at line 2). Each
buyer can inspect the advertised items (line 3) and eventually start bargaining
on a selected item of interest. Note that the consumption at line 4 instantiates
a private location l between the instance of Seller advertising the item and the
instance of Buyer interested in buying it. Location l is used to perform the
bargaining phase. See Sects. 3.1 and 3.2 for the exact semantics.

The seller instance controls the recursion μ1
Seller W. · · ·; the body of the recur-

sive type lets the buyer sharing location l decide whether to stop the bargaining
(by exchanging a noway tuple, in which case the seller re-advertises the unsold
item at m) or to make an offer to the seller (which can then decide either to stop
the bargaining, or to struck a deal, or to ask for an higher offer).

3 Semantics

We equip global types with a semantics based on pomsets, define projections
from global to local types (that is abstractions of Klaim processes enacting the
roles of global types), and define the operational semantics of local types.

3.1 Pomsets for Klaimographies

We give semantics to global types using partially-ordered multi-sets (pomsets
for short). Following [9], a pomset is an isomorphism class of labelled partially-
ordered sets (lposet) where, fixed a set of labels L, an lposet is a triple (E ,≤, λ),
with E a set of events, ≤ is a partial order on E , and λ : E → L a labelling function

Data-Driven Choreographies à la Klaim 179

mapping events in E to labels in L. Two lposets (E ,≤, λ) and (E ′,≤′, λ′) are
isomorphic if there is a bijection φ : E → E ′ such that e ≤ e′ ⇐⇒ φ(e) ≤′ φ(e′)
and λ = λ′ ◦ φ. Intuitively, the partial order ≤ yields a causality relation among
events; for e �= e′, if e ≤ e′ then e′ is caused by e or, in other words, the occurrence
of e′ must be preceded by the one of e in any execution respecting the order ≤.
Note that λ is not required to be injective: for e �= e′ ∈ E , λ(e) = λ(e′) means
that e and e′ model different occurrences of the same action. In the following,
[E ,≤, λ] denotes the isomorphism class of (E ,≤, λ), symbols r, r′, . . . (R,R′, . . .)
range over (sets of, respectively) pomsets, and we assume that pomset r contains
at least one lposet, which will possibly be referred to as (Er, ≤r, λr). The empty
pomset is denoted as ε.

An event e is an immediate predecessor of an event e′ (or equivalently, e′

is an immediate successor of e) in a pomset r if e �= e′, e ≤r e′, and for all
e′′ ∈ Er such that e ≤r e′′ ≤r e′ either e = e′′ or e′ = e′′. We draw pomsets as (a
variant5 of) Hasse diagrams of the immediate predecessor relation; for instance,
the pomset

[{e1, e2, e3, e4, e5}, {(e1, e2), (e1, e3), (e1, e4), (e1, e5), (e4, e5)}, λ]

is more conveniently written as

⎡

⎣

e1

e2 e3

e4

e5

⎤

⎦

λ

or

⎡

⎢
⎣

λ(e1)

λ(e2) λ(e3)

λ(e4)

λ(e5)

⎤

⎥
⎦

In the definition of our semantics we follow a principle that distinguishes the
nature of autonomous and interaction prefixes.

– A tuple type t generated by an autonomous output can be accessed by any
instance of any other role. However, there is no obligation to access the tuple
t, hence our semantics has to contemplate the cases where either no read or
no input of t happens.

– Interactions are slightly more subtle. Firstly, a tuple type t in a read-only
interaction is meant to be eventually accessed by (an instance of) the receiving
role. Secondly, the tuple type t of a consuming interaction must be eventually
consumed by an instance of the receiving role. Thirdly, if t is in a consuming
interaction, any instance of the receiving role is allowed to read t prior to its
consumption.

To capture this semantics we label events with autonomous prefixes π, pos-
sibly decorated as [i]π. Intuitively, e.g., a label [i]ρ ? t@ � ([i]ρ ! t@ �) represents
the fact that the ith instance of ρ reads (produces, respectively) a tuple of type
t. Labels π that are not prefixed with [] specify that the event can be performed
by any instance of the role in π. Hereafter, we only deal with pomsets labelled
5 Edges of Hasse diagrams are usually not oriented; here we use arrows so to draw

order relations between events also horizontally.

180 R. Bruni et al.

as above. Also, we assign basic pomsets bp(i, π) to prefixes π. A basic pomset
yields the causal relations of π imposed by the above design principle. For an
autonomous prefix π we define bp(i, π) =

{[
[i]π

]}

, and for interaction prefixes

bp(i, ρ→ ρ′ : t@ �) =
⋃

h≥1

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

[i]ρ ! ρ′ · t@ �

e1 eh

⎤

⎥
⎥
⎥
⎦

λ

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

bp(i, ρ→ ρ′ : (t)@ �) =
⋃

h≥1

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[i]ρ ! (ρ′ · t)@ �

e1 eh

[i]ρ′ ? (ρ′· ↓t)@ �

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

λ

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∪

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

[i]ρ ! (ρ′ · t′)@ �

[i]ρ′ ? (ρ′· ↓t)@ �

⎤

⎥
⎥
⎥
⎦

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

where each read-only event ej (with 1 ≤ j ≤ h) is labelled as λ(ej) =
ρ′ ? ρ′· ↓t@ � with ↓ t the binder-free version of t. Formally, ↓ is defined such
that ↓ (νx : s) = x : s, it is the identity on s, � and x : s and it behaves
homomorphically over · . Note that the tuples in the labels of the events are
“prefixed” by the role ρ′ meant to access them; this requires to extend s so to
include R.

We can now give the semantics of prefixes as follows

�π� =

{

bp(1, π) if π autonomous ∧ roles(π) ⊆ U
⋃

i≥1 bp(i, π) if π autonomous ∧ roles(π) �⊆ U

�ρ→ ρ′ : t@ �� =

{

bp(1, ρ→ ρ′ : t@ �) if ρ ∈ U
⋃

i≥1 bp(i, ρ→ ρ′ : t@ �) otherwise

�ρ→ ρ′ : (t)@ �� =

{

bp(1, ρ→ ρ′ : (t)@ �) if ρ ∈ U
⋃

i≥1 bp(i, ρ→ ρ′ : (t)@ �) otherwise

As customary in other choreographic approaches (see [8,12,15] and references
therein), the semantics of (closed) global types considers only well-formed global
types, namely those enjoying well-sequencedness and well-branchedness. With
respect to standard notions, however, these concepts have some peculiarities
that we are now going to discuss.

The key points of well-sequencedness are highlighted in the following type

ρ1 → ρ2 : (str · �)@ l≺ ρ2 → ρ3 : (str · int)@ l (1)

where an instance of ρ2 transforms a pair generated by ρ1 into a pair for ρ3. The
choreography (1) may be violated when ρ1 generates a tuple of type str · int.

Data-Driven Choreographies à la Klaim 181

In fact, such a tuple could match the type consumed by ρ3 and therefore ρ3
could “steal” the tuple from ρ2. The problem is due to the fact that the tuples
are generated on the same location and they match each other. More generally,
the problem arises when different interactions introduce races on tuple types.
Formally, write (t, l) ∈ K when there is a prefix in K whose tuple type is t and
whose location is l; we say that (t, l) is local to K if either of the following holds:

– K =
∑

i∈I

πi.Ki and there is i ∈ I such that either (t, l) is local to Ki or πi

outputs t at l for consumption and there is t′ in an input from l in Ki such
that t �� t′

– K = K1 ≺ K2 and either (t, l) is local to K1 or (t, l) is local to K2
– K = μρ X.K′ and (t, l) is local to K′.

Our notion of well-sequencedness requires absence of races on tuple types: we
say that K1 and K2 are well-sequenced (ws(K1, K2) in symbols) if for i �= j ∈ {1, 2}
– for all (t, l) local to Ki and for all (t′, l) ∈ Kj , t �� t′ implies (t′, l) is in a

read-only prefix in Kj

– for all (t, l) in an autonomous input prefix of Ki and for all (t′, l) generated
in Kj , t �� t′ implies (t′, l) is in an autonomous output prefix in Kj for
consumption.

Finally, the semantics of the sequential composition K1 ≺ K2 is as follows:

�K1 ≺ K2� =

{{

seq(�K1�, �K2�) if ws(K1, K2)
}

undef otherwise

where the auxiliary operation seq(,) sequentially composes pomsets r and r′

so to make the actions of a role in r to precede its actions in r′:

seq(r, r′) = [Er ∪ Er′ ,≤, λr ∪ λr′]

where we assume that Er ∩ Er′ = ∅ and ≤ is the reflexive and transitive closure
of ≤r ∪ ≤r′ ∪{(e, e′) ∈ Er × Er′

∣
∣ roles(e) = roles(e′)} (recall that the labels of

events are autonomous prefixes for which roles is a singleton).
We now consider well-branchedness, the other condition of well-formedness.

As usual [12], well-branchedness requires two conditions: single selector and
knowledge of choices. This can be formalised by requiring that one process
in the choice is active, namely it selects the branch to take, while the others
are passive, namely they are informed of the chosen branch by inputting some
information that unambiguously identifies each branch of the choice. We syntac-
tically6 enforce uniqueness of selectors: a choice with several branches takes the
form

∑

i∈I

ρ→ ρi : (ti)@ �i.Ki (2)

6 This is just for simplicity as we could adopt definitions similar to the ones in [11,12]
at the cost of higher technical complexity.

182 R. Bruni et al.

namely the instance of ρ acts as unique selectors. Intuitively, a passive instance
(for example one enacting role ρi) in (2) has to be able to ascertain which branch
the selector decided when the choice was taken. A simple way to ensure this is
to require that the first input actions of each passive role are pairwise “disjoint”
(i.e. non matching tuples or different locations) among branches.

The conditions on active and passive processes alone are not enough: in
our framework, the notion of well-branchedness is slightly complicated by the
presence of multiple roles. For instance, even assuming unique selectors, many
instances of a selector role could exercise choices concurrently. This may create
confusion if different branches generate matching tuples on a locality as illus-
trated by the next example.

Example 6. Let Kbad = A→B : (int)@ l.K1 +A→B : (str)@ l.K2 where

K1 = B→C : (str)@ l.C→B : (bool)@ l and K2 = B→C : (bool)@ l

In Kbad confusion may arise that could alter the intended data flow. In fact,
if two groups of participants execute the choice taking different branches, the
instance of C executing K2 in the second branch may receive the boolean that
the instance of C in K1 executing the first branch generates for B.
Therefore we require that tuple types in different branches of a choice do not
match when they are at the same locality and that if a branch of a choice involves
a unit role then none of the branches of the choice involves multiple roles. This
condition, dubbed confusion-free branching, ensures that different “groups” of
instances involved in concurrent resolutions of a choice do not “interfere” with
each other. If a unit role is involved, only one group can resolve the choice. We
remark that the above condition is not a limitation; in fact, we can pre-process
branches of choices by adding an extra field in all tuples of the branch so to
unequivocally identify on which branch the tuple type is used.

Summing up, a choice as in (2) is well-branched, written wb(
{ ⋃

i∈I πi.Ki

}

),
when it is confusion-free, there is a unique active role, and all the other roles are
passive. So we define

�
∑

i∈I

πi.Ki� =

⎧

⎪⎨

⎪⎩

{ε} if I = ∅
⋃

r∈�πi�,r′∈�Ki�
seq(r, r′) if wb(

{ ⋃

i∈I πi.Ki

}

)
undef otherwise

Finally, the semantic equation for μρ X.K requires some auxiliary functions:

STOP(ρ, K, ỹ) =ρ→ ρ1 : (stop)@ y1 ≺ . . . ≺ ρ→ ρn : (stop)@ yn

LOOP(ρ, K, ỹ, ỹ′) =ρ→ ρ1 : (νy′
1 : loc)@ y1) ≺ . . . ≺ ρ→ ρn : (νy′

n : loc)@ yn

where roles(K) = {ρ, ρ1, . . . , ρn} with ρ �∈ {ρ1, . . . , ρn} and ỹ = y1 · · · yn and
ỹ′ = y′

1 · · · y′
n. Then, we define

�μρ X.K� =

⎧

⎪⎨

⎪⎩

⋃

h≥0�unfoldh(μρ X.K, fn(K), ỹ, ỹ′)� if ws(K{0/X}, K{0/X})
and ỹ ∩ fn(K) = ∅

undef otherwise

Data-Driven Choreographies à la Klaim 183

where

unfoldh(μρ X.K, L, ỹ, ỹ′) =

{

STOP(ρ, ỹ) if h = 0
LOOP(ρ, K, ỹ, ỹ′)≺ K{K′

/X} otherwise

where K′ = unfoldh−1(μρ X.K, L ∪ ỹ ∪ ỹ′, ỹ′, ỹ′′) with ỹ′′ fresh.

3.2 Local Types

A local type L, which describes the interaction from the perspective of a single
role, is a term generated by the following grammar:

κ ::= t ! �
∣
∣ (t) ? �

∣
∣ t ? �

L ::=
∑

i∈I

κi.Li

∣
∣ L � L

∣
∣

(

μX(x̃) . L
)

〈̃�〉
∣
∣ X 〈̃�〉

Prefixes t ! �, (t) ? � and t ? � respectively stand for the production, consump-
tion and read of a tuple t at the locality �. Differently from global types, local
types do not distinguish the generation of read-only tuples from the ones that
can be consumed. Also, we use the symbol � instead of ≺ to remark the fact
that, on local types, the sequential operator � serialises all activities.

Formation rules for branching and sequential local types L are exactly the
same as for global types; analogously we write 0 for an empty sum. The syntax
of recursive local types deviates from global types to make explicit the localities
used for coordinating the execution; consequently, process variables are paramet-
ric (the syntax for recursive types is borrowed from [2]). The term

(

μX(x̃) . L
)

〈̃�〉
defines a process variable X with parameters x̃ to be used in L; the initial values
of x̃ are given by �̃. Accordingly, the usage of a process variable is parameterised,
i.e., X 〈̃�〉. For any

(

μX(x̃) . L
)

〈̃�〉, we assume that |x̃| = |̃�| and |x̃| = |�̃′| for any
bound occurrence of X〈�′〉 in L.

The notions of free and defined names, well-sorted and closed terms are
straightforwardly extended to local types; in

(

μX(x̃) . L
)

〈̃�〉, X and x̃ act as
binders for the occurrence in L. Substitution on local types is defined as follows:

(t ! �){y/x} = t{y/x} !(�{y/x}) if x �∈ dn(t)
((t) ? �){y/x} = (t{y/x}) ?(�{y/x}) if x �∈ dn(t)

(t ? �){y/x} = t{y/x} ?(�{y/x}) if x �∈ dn(t)
(
∑

i∈I

κi.Li){y/x} =
∑

i∈I

(κi{y/x}).(Li{y/x}) if ∀i.x �∈ dn(κi)

(L1 � L2){y/x} = L1{y/x} � L2{y/x}
X 〈̃�〉{y/x} = X 〈̃�{y/x}〉

(
(

μX(z̃) . L
)

〈̃�〉){y/x} =
(

μX(z̃) . L{y/x}
)

〈̃�{y/x}〉 if {x, y} ∩ z̃ = ∅

As for global types, we consider terms up-to α-renaming.

184 R. Bruni et al.

We consider the following syntax for the run-time semantics of a set of local
types running on a tuple space, dubbed specification.

Δ ::= ∅
∣
∣ Δ, ρ : L

∣
∣ Δ, t@ l

A specification is a multiset containing two kinds of pairs: ρ : L associates a
role with a local type, while t@ l indicates that a tuple of type t is available at
locality l. We assume that when ρ ∈ U then there is at most one pair ρ : L in Δ.
We write Γ to denote a specification containing only terms of the form t@ l.

The definition of fn() is straightforwardly extended to specifications.
We give an operational semantics to local types defined inductively by the

rules in Fig. 2, where labels α are of the form ρ : κ. Rule [LOut] accounts for the
behaviour of a role ρ that generates a tuple type t at locality l. The operational
semantics for the generation of a tuple t that contains binders ensures that each
defined name is substituted by a fresh free variable (i.e., a variable that does
not occur free in Δ, ρ : t ! l.L). This is achieved by requiring (i) all bound names
in t to be fresh, by α-renaming them if necessary (i.e., dn(t) fresh), and (ii)
the generated tuple ↓ t is the binder-free version of t. Rule [LIn] handles the
case in which a role ρ consumes a tuple specified as t from locality l. In order
for the consumption to take place, the requested tuple t should match a tuple
t′ available at the locality l. Note that the substitution σ generated from the
match is applied to the continuation L associated with the role ρ; the consumed
tuple is eliminated from the locality l. Rule [LRd] is analogous to [LIn], but
the read tuple is not removed from the tuple space. Rule [LSum] accounts for
a role that follows by choosing one of its enabled branches. The semantics of
a recursive term

(

μX(x̃) . L
)

〈l̃〉 is given by the rule [LRec], which unfolds the

definition (i.e., L{
(

μX(x̃) . L
)

/X}) and substitutes the formal parameters x̃ of the
recursive definition by the actual parameters l̃ via the substitution {˜l/x̃}.

3.3 Obtaining Local Types Out of Global Types

The projection of a global type K over a role ρ, written K �ρ, denotes the local
type that specifies the behaviour of ρ in K. Our projection operation is fairly
standard but for the case of recursive types, which coordinate their execution by
communicating over dedicated locations. Note that the semantics of recursive
global types μρ X.K introduces auxiliary interactions to coordinate their execu-
tion (see STOP(ρ, K, ỹ) and LOOP(ρ, K, ỹ, ỹ′) in Sect. 3.1). However, there is not
such an implicit mechanism in the execution of local types, where recursion is
standard. Consequently, those auxiliary interactions need to be defined explicitly
in local types; and consequently, they are introduced by projection (similarly to
the approach in [3]). Another subtle aspect of the semantics of a recursive global
type is that each iteration is parametric with respect to the set of localities used
for coordination. In fact, LOOP(ρ, K, ỹ, ỹ′) generates a set of fresh localities that
are used by the next iteration. Such behaviour is mimicked by local types by rely-
ing on parameterised process variables. As a consequence, projection depends on
the locations that are chosen as parameters of process variables. Hence, K �ρ is

Data-Driven Choreographies à la Klaim 185

[LOut]
dn(t) fresh

Δ, ρ : t ! l.L
ρ: t ! l

Δ, ρ : L, t@ l

[LIn]
t �� t′ = σ

Δ, ρ : (t) ? l.L, t′ @ l
ρ:(t′) ? l−−−−−→ Δ, ρ : Lσ

[LRd]
t �� t′ = σ

Δ, ρ : t ? l.L, t′ @ l
ρ:t′ ? l

Δ, ρ : Lσ, t′ @ l

[LSum]
Γ , ρ : κj .Lj

α
Δ′

Δ, Γ , ρ :
∑

i∈I

κi.Li
α

Δ, Δ′ j ∈ I

[LSeq1]
Δ, ρ : L1

α
Δ′, ρ : L′

1

Δ, ρ : L1 L2
α

Δ′, ρ : L′
1 L2

[LSeq2]
Δ, ρ : L1

α
Δ′, ρ : 0

Δ, ρ : L L1 2
α

Δ′, ρ : L2
[LRec]

Δ, ρ : L{ μX(x̃) . L
)

/X}{l̃/x̃} α
Δ′

Δ, ρ : μX(x̃) . L
)〈l̃〉 α

Δ′

Fig. 2. Semantics of local types

defined in terms of K �η
ρ, where η is a partial function that maps process variables

into sequences of locations, i.e., ηX = �̃; and K �ρ= K �∅
ρ. We now comment on

the definition of K �η
ρ in Fig. 3. As usual, the local type corresponding to a role ρ

that is not part of K is 0. The projection of a prefix π depends on the role played
by ρ in π: it is omitted when ρ does not participate on π; it is the production of
a tuple when π is an interaction or an autonomous output and ρ is the producer;
it is the consumption of a tuple when π is an autonomous input or a consuming
interaction and ρ is the consumer; or else it is the read of a tuple. Projection is
homomorphic with respect to choices and sequential composition.

A global type μρ X.K is projected as a recursive local type
(

μX(x̃) . L
)

〈̃�〉
where the formal parameters x̃ stand for the locations used for coordination and
�̃ are the initial values. Note that μρ X.K does not make explicit the set of initial
locations but they are so in local types. For this reason, we define projection
for a decorated version of global types, where each recursive sub-term μρ X.K is
annotated by a function φ : R �→ Loc defined such that dom(φ) = roles(K) \ {ρ}
and for all ρ ∈ dom(φ), φ(ρ) is globally fresh. Such annotations can be automati-
cally added by pre-processing global types so to associate a fresh set of locations
to each recursive process. Then, the projection of μφ

ρ′ X.K′ onto ρ depends on
whether ρ coordinates the recursion (i.e., ρ = ρ′) or not. When ρ is not the
coordinator, the recursive process needs just one location x to await for either
stop or a new location y for the next iteration. Note that the body of the recur-
sion K′ is then projected by considering an extended version of η where process
variable X is parameterised with the received location y. The initial value of x
is fixed according to φ (i.e., φρ). Differently, when ρ coordinates the recursion,
the projection generates a process variable that has several parameters, i.e., one
location xi for each passive role. In this case the body of the recursion consists

186 R. Bruni et al.

K �η
ρ=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ρ �∈ roles(K)
K′ �η

ρ if K = π.K′ and ρ �∈ roles(π)
t !
.(K′ �η

ρ) if K = ρ ! t@
.K′ or K = ρ ρ′ : t@
.K′

or K = ρ ! (t)@
.K′ or K = ρ ρ′ : (t)@
.K′

(t) ?
.(K′ �η
ρ) if K = ρ ? (t)@
.K′ or K = ρ′ ρ : (t)@
.K′

t ?
.(K′ �η
ρ) if K = ρ ? t@
.K′ or K = ρ′ ρ : t@
.K′

∑

i∈I

(πi.Ki) �η
ρ if K =

∑

i∈I

πi.Ki

K1 �η
ρ K2 �η

ρ if K = K1 ≺ K2
μX(x) .(stop) ?x.0+ ((νy : loc) ?x.K′ �η,X y

ρ)
)〈φρ〉

if K = μφ
ρ′ X.K′, ρ �= ρ′, and {x, y} ∩ (fn(K′) ∪ cod(η)) = ∅

μX(x̃) . stop !x1 . . . stop !xn.0+ νy1 : loc !x . . . νyn : loc !x.K′ �η,X ỹ
ρ

)〈φρ1 . . . φρn〉
if K = μφ

ρ X.K′, dom(φ) = {ρ1, . . . , ρn}, x̃ = x1 . . . xn,
ỹ = y1 . . . yn, and (x̃ ∪ ỹ) ∩ (fn(K′) ∪ cod(η)) = ∅

X〈ηX〉 if K = X

Fig. 3. Projection

of two branches: one that communicates the termination of the recursion to each
participant, while another executes the body of the recursion after distributing
fresh localities to each participants. Recursion parameters are initialised anal-
ogously. Finally, a process variable X is projected as its parameterised version
X〈ηX〉, where the value of parameters are established according to η.

4 Semantic Correspondence

This section establishes the correspondence between the denotational semantics
of global types and the operational semantics of local types. The partial order on
the events of a pomset yields an interpretation of linear executions in terms of
linearisations similar to interleaved semantics of concurrent systems. Intuitively
a linearisation of a pomset r is a sequence of the events Er that preserves the
pomset’s order ≤r. We show that the traces of projections of a global type cor-
respond to linearisations of its pomset semantics and that for each linearisation
in the pomset semantics there is a system executing a corresponding trace.

We first introduce the notion of linearisation. Given a set of events E ⊆ Er

of a pomset r, a permutation e1 · · · en of the events in E is a linearisation of r
if

– E ⊆ Er preserves ≤r namely ∀1 ≤ i < j ≤ n : ¬(ej ≤r ei)
– each event in Er corresponding to an access of an interaction is in E, namely

if e ∈ Er and the tuple type in λr(e) is of the form ρ · t then e ∈ E
– each output event in Er is in E and, letting I(e) be the set of events in

Er that are labelled by inputs of a tuple type matching the one in λr(e),
I(e) ∩ E = ∅ ⇐⇒ I(e) = ∅

– accesses in e1 · · · en are preceded by a matching output, namely, (i) for each
1 ≤ i ≤ n if ei accesses t at l then there is some j with 1 ≤ j < i such that

Data-Driven Choreographies à la Klaim 187

ej outputs t′ at l with t′ �� t, and (ii) for all h such that j < h < i if eh

inputs t′′ at l then ¬(t′ �� t′′).

Fix a sequence

[]π1 · · ·[] πn (3)

of labels of events (decorations are immaterial hence omitted in the following).
We say that (3) is in normal form if the defined names of any two generating
labels are disjoint; formally, for all 1 ≤ i �= j ≤ n

πi generates ti at l ∧ πj generates tj at l =⇒ dn(ti) ∩ dn(tj) = ∅

Also, for 1 ≤ i < j ≤ n, we say that πj is in the scope of πi if πi gen-
erates ti at l and πj generates tj at l with ti �� tj and ∀i < h <
j : πh generates th at l =⇒ ¬(th �� tj). Without loss of generality we
can assume that each sequence like (3) is in normal form (since we can rename
all defined names generated by some πi and the names of the labels πj in their
scope).

Let π � α hold if
⎧

⎪⎨

⎪⎩

(π = ρ ! (t) @ l ∨ π = ρ ! t@ l) ∧ α = ρ : t′ ! l
π = ρ ? (t) @ l ∧ α = ρ : (t′) ? l
π = ρ ? t@ l ∧ α = ρ : t′ ? l

and ∃σ : dn(t) → fn(t′) : ↓tσ = t′

This definition extends to sequences (3) with n ≥ 1 as follows: []π1 · · ·[] πn �
α1 · · · αn if n = 1 and π1 � α1 or n > 1 and

π1 � α1 ∧ ∀σ : dn(t) → fn(t′) : ↓tσ = t′ =⇒ ([]π2 · · ·[] πn)σ � α2 · · · αn

where t is the tuple in π and t′ is the one in α1.
The K-specification of a given global type K is a specification Δ made of the

projections of K only: formally

(i) ρ : L ∈ Δ iff ρ ∈ roles(K) and L = K �ρ, and
(ii) Δ has no tuple.

Our main results give a correspondence between the pomset semantics of a
global type K and its K-specification.

Theorem 1. Given a well-formed global type K, for all r ∈ �K� there is a K-
specification Δ such that for all linearisations e1 · · · en of r there is Δ

α1−−→
· · · αn−−→ such that λr(e1) · · · λr(en) � α1 · · · αn.

Proof (Sketch). The proof shows that the specification Δ =
(

ρ : K �ρ

)

ρ∈roles(K)

satisfies the property in the conclusion of the statement above. By induction on
the structure of K, one shows that

188 R. Bruni et al.

– each output event is matched by an application on Δ of the [LOut] rule in
Fig. 2, which adds a tuple type to the specification

– each input or read event has a correspondent transition in Δ from the receiv-
ing role according to rules [LIn] and [LRd] respectively; note that (cf. Fig. 2)
in the former case the tuple type is removed from the specification.

For input and read events, the existence of the substitution required by the
� relation is guaranteed by the hypothesis of rules [LIn] and [LRd]. The above
follows immediately in the cases of prefixes. In the case of sum, the thesis follows
by induction because the semantics of a choice is the union of the semantics of
each branch. ��

Theorem 2. Let Δ be a K-specification with K a well-formed global type. For all
Δ

α1−−→ · · · αn−−→ there is a linearisation e1 · · · en of a pomset r ∈ �K� such that
λr(e1) · · · λr(en) � α1 · · · αn.

Proof (Sketch). As for Theorem 1, the proof goes by induction on the structure
of K. Guided by the structure of K, we can relate the application of the rules of
Fig. 2 with the pomset semantics of the projections. ��

5 Conclusions

This paper, a modest attempt to thank Rocco for his work and friendship,
addresses the following question:

What notion of behavioural types corresponds to Linda-based coordination
mechanisms?

To answer such question we advocate Klaim-based global and local types,
dubbed klaimographies. Klaim has been designed to program distributed systems
consisting of processes interacting via multiple distributed tuple spaces.

For simplicity, we have neglected code mobility, a distinctive feature of Klaim.
Accommodating the mobility mechanism of Klaim would require to control the
multiplicity of running instances and to generalise the well-formedness condi-
tions to dynamically spawned processes. A further challenge would be to include
mobility of processes-as-values featured by Klaim, which shares many similar-
ities with session delegation. However, this can be associated to control-driven
problems. These challenges are the scope for future work.

Furthermore, we also neglected to consider parallel types. A simple way to
compose klaimographies in parallel would be to follow standard approaches by
restricting roles on single threads and disjoint tuple spaces. We consider this
option not very interesting, and we plan instead to explore more expressive
settings for parallel types such as the one in [11,12]. In particular, we conjecture
that to add parallel composition K | K′ of klaimographies is enough to require
that ¬(t �� t′) for all (t, l) ∈ K, (t′, l) ∈ K′. This condition is the counterpart
of the well-forkedness condition of [11,12] that requires different threads of a
choreography to have disjoint input actions.

Data-Driven Choreographies à la Klaim 189

Klaim has been extended with several features designed on theoretical foun-
dations and implemented in a suite of prototypes [1]. On the one hand, klaimo-
graphies share similarities with standard behavioural types centred on point-to-
point channel based communications; on the other hand, they also have some
peculiarities, some of which we highlighted here.

The closest work to ours is [5], which develops the initial proposal on parame-
terised choreographies in [7,16]. Notably, [5] is the first paper to support indexed
roles and to statically infer the participants inhabiting them. The main differ-
ence with the approach in [5] is that klaimographies do not focus on processes,
but rather on data. We envisage behavioural types as specifications of how to
guarantee general properties of tuple spaces. For instance, take the marketplace
example (cf. Example 5), one would like to check properties such as

for each tuple type t = i : str · p : int · νl : loc consumed from locality
m either a tuple type sold is eventually generated at locality l or t is
eventually generated at m.

This property does not concern typical properties controlled by behavioural types
(e.g., progress of processes, message orphanage, or unspecified reception).

As for future works, we aim to characterise the (classes of) properties of inter-
est that klaimographies enforce. We conjecture that the well-formedness condi-
tions defined here are strong enough to guarantee the property above. Another
interesting line of research is to identify typing principles for Klaim processes.
We believe that klaimographies can enable the possibility that the same pro-
cess may enact different roles. For instance, considering again the marketplace
example, a process can act both as seller and as buyer.

We have adopted a few simplifying assumptions. Other variants seem rather
interesting. For instance, guards of sums could be autonomous inputs and not
just consuming interactions, or even read-only access prefixes. Relaxing the con-
straint that read-only tuples cannot generate would lead to a sort of multi-cast
mechanism of fresh localities. We plan to study those variants in future work.

References

1. Bettini, L., et al.: The Klaim project: theory and practice. In: Priami, C. (ed.) GC
2003. LNCS, vol. 2874, pp. 88–150. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-40042-4 4

2. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15375-4 12

3. Bocchi, L., Melgratti, H., Tuosto, E.: Resolving non-determinism in choreographies.
In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 493–512. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54833-8 26

4. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Log. Methods Comput. Sci. 8(1), 1–45 (2012)

https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-54833-8_26

190 R. Bruni et al.

5. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint APIs for
dynamically-instantiated communication structures. In: POPL 2019, PACMPL,
vol. 3, pp. 29:1–29:30. ACM (2019)

6. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

7. Denielou, P.-M., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session
types. Log. Methods Comput. Sci. 8(4), 1–46 (2012)

8. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: an overview.
In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14458-5 1

9. Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation
of functions. In: LICS 1987, pp. 72–85. IEEE Computer Society (1987)

10. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

11. Guanciale, R., Tuosto, E.: An abstract semantics of the global view of choreogra-
phies. In: Bartoletti, M., Henrio, L., Knight, S., Vieira, H.T. (eds.) ICE 2016,
EPTCS, vol. 223, pp. 67–82 (2016)

12. Guanciale, R., Tuosto, E.: Semantics of global views of choreographies. Log. Alge-
braic Methods Program. 95, 17–40 (2018)

13. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL 2008, pp. 273–284 (2008)

15. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

16. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised multiparty session
types. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 128–145. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12032-9 10

https://doi.org/10.1007/978-3-642-14458-5_1
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-642-12032-9_10

Different Glasses to Look into the Three
Cs: Component, Connector, Coordination

Farhad Arbab1, Marco Autili2, Paola Inverardi2, and Massimo Tivoli2(B)

1 Centrum Wiskunde & Informatica,
Science Park 123, 1098 XG Amsterdam, The Netherlands

Farhad.Arbab@cwi.nl
2 Department of Information Engineering, Computer Science and Mathematics,

University of L’Aquila, L’Aquila, Italy
{marco.autili,paola.inverardi,massimo.tivoli}@univaq.it

Abstract. Component, connector, and coordination have been key con-
cepts exploited in different communities to manage the complexity of
concurrent and distributed system development. In this paper, we dis-
cuss three approaches within three different classes: composition in soft-
ware architectures, coordination models, and programming abstractions
for concurrency. These classes encompass different perspectives and solu-
tions to face crucial challenges in developing concurrent and distributed
systems. The approaches are discussed with respect to some character-
istics of interest for the above classes: compositionality, incrementality,
scalability, compositional reasoning, reusability, and evolution.

Keywords: Software components · Connectors ·
Software architectures · Coordination models ·
Programming abstractions

1 Introduction

Since late 70’s, the development of concurrent and distributed systems has been
receiving much attention from the research community [72,77]. Later, since 90’s,
component, connector, and coordination have been key concepts exploited in dif-
ferent communities to manage the complexity of concurrent and distributed sys-
tems development [2,4,9,17,18,24,32,37,43,47,49,52,75,78,79,83,84,87]. Pro-
cess calculi and algebras laid the theoretical foundation for concurrency. The
concept of coordination was introduced to offer software developers program-
ming language constructs and models at a level of abstraction higher than the
primitives offered by the parsimony of process algebras [3,39]. The concept of
connectors emerged in software architectures as a useful construct to facilitate
communication among independently developed components.

In this paper, we discuss three different approaches within three different
classes: composition in software architectures, coordination models, and pro-
gramming abstractions for concurrency. These classes encompass different per-
spectives and solutions to face crucial challenges in developing concurrent and
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 191–216, 2019.
https://doi.org/10.1007/978-3-030-21485-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_12

192 F. Arbab et al.

distributed systems. Strictly concerning the purpose of this festschrift paper, we
limit our discussion to previous work by De Nicola et al. and previous work by
the authors. Specifically, we focus on programming abstractions for concurrent
and autonomic systems [84]; exogenous coordination [5]; and the architectural
synthesis of software coordinators for the distributed composition of heteroge-
neous components [18].

Since these approaches are radically different in nature, it is not possible,
neither would it make sense, to make a point-to-point comparison or to force a
description of them by adopting a uniform writing strategy at the same level of
detail. However, this paper makes an effort to discuss the three approaches with
respect to the same set of characteristics of interest for the above classes: compo-
sitionality, incrementality, scalability, compositional reasoning, reusability, and
evolution.

This paper is organized as follows. Section 2 preludes our discussion by col-
locating the three works above within the state of the art. Section 3 provides
a concise, yet complete, description of the three works, which are then charac-
terized in Sect. 5 with respect to the six dimensions defined in Sect. 4. Section 6
concludes the paper.

2 Praeludium

In this section, we give a brief account of the three approaches that we consider
followed by a brief discussion on related approaches.

The first approach by De Nicola et al. [84] is based on the definition of
programming abstractions for concurrent and autonomic systems. The start-
ing point of the work is represented by the notions of autonomic components
(ACs) and autonomic-component ensembles (ACEs). The defined programming
abstractions permit to model their evolution and their interactions. The authors
define SCEL (Software Component Ensemble Language), a kernel language for
programming the behavior of ACs and the formation of ACEs, and for control-
ling the interaction among different ACs. These abstractions permit describing
autonomic systems in terms of behaviors, knowledge, and aggregations by com-
plying with specific policies.

The second approach essentially concerns the work conducted by Arbab as
described in [5], among other references. The author emphasizes the separation
between computation and coordination defining a data-flow paradigm. Arbab
defines the notion of Abstract Behavior Types (ABTs) as a higher-level alterna-
tive to ADT (Abstract Data Type) and proposes it as a proper foundation model
for both components and their composition. An ABT defines an abstract behav-
ior as a relation among a set of timed-data-streams, without specifying any detail
about the operations that may be used to implement such behavior or the data
types it may manipulate for its realization. ABTs allows for loosely coupling
and exogenous coordination that are considered as two essential properties for
components and their composition. ABTs serve as the primary formal semantic
model for the coordination language Reo.

Different Glasses to Look into the Three Cs 193

The third approach that we consider is described in the work conducted by
Inverardi et al. [18]. The authors provide a complete formalization of an auto-
mated synthesis method for the distributed composition and coordination of
software services. The method takes as input a specification of the global collab-
oration that the involved services must realize. This specification is given in the
form of a state machine. The methods automatically generates a set of Coor-
dination Delegates (CDs). CDs are additional software entities with respect to
the participant services, and are synthesized in order to proxify and control their
interaction. When interposed among the services, the synthesized entities enforce
the collaboration prescribed by the specification. The synthesized CDs are proved
to be correct by construction, meaning that the resulting distributed system real-
izes the specification. The synthesis method is able to deal with heterogeneous
services that communicate synchronously and/or asynchronously. CDs are able
to handle asynchrony through 1-bounded FIFO queues.

As already introduced, beyond the above mentioned approaches, there are
many other approaches in the literature that should be considered (see [85]
for an early comprehensive survey). For instance, in [2], the authors define a
control-flow event-based paradigm for both computation and coordination. The
WRIGHT architecture description language [1] is used as a specialized nota-
tion for architectural specification. As underlining formalism, the authors embed
in WRIGHT an approach based on process algebra. In fact, in [2], CSP [86]
(Communicating Sequential Processes) is used by the authors in order to pro-
vide an operational formalization of the separation between computation and
coordination.

A family of process calculi called “Kell calculus” is presented in [33,34,87,
90]. It has been intended as a basis for studying distributed (and ubiquitous)
component-based programming. Essentially, the Kell calculus is an high-order
extension of π-Calculus. Its aim is to support the modeling of different forms of
process mobility (e.g., logical and physical mobility). This is done by considering
the possibility to directly transmit processes as messages and not only channels
(used by processes in order to communicate) as it is in π-Calculus.

A further approach concerns the work described in [36]. The authors propose
an algebraic formalization of the structure of the interactions enabled by con-
nectors in component-based system implemented in the BIP framework [26,89].
It is a control-flow paradigm based on active/inactive communication ports of
components.

The work described in [79] presents a modeling approach based upon the
Bigraphical Reactive Systems framework developed by Milner, which consists of
a bigraph together with a collection of bigraphical rewrite rules. Analogously to
Kell calculus, this approach introduces mobility, locality and dynamism.

Further approaches are described in [37,47,75] and, as pure algebraic model-
ing approaches, they are theoretically very powerful although, they result to be
hard to be used by practitioners.

Beyond the notational/algebraic/mathematical class of works on connec-
tor/component modeling, another interesting class of works that should be

194 F. Arbab et al.

considered concerns quantitative approaches, e.g., [9,24]. These approaches are
quantitative in the sense that they are able to express, and reason about, char-
acteristics such as the probability of an event occurring, the elapse of time, per-
formance, QoS, etc. In particular, in [9], the work described in [5] is extended in
order to take into account QoS attributes of both computation and coordination,
e.g., shortest time for data transmission, allocated memory cost for data trans-
mission, and reliability represented by the probability of successful transmission.
Furthermore, this work defines a semantic model for connectors different from
ABTs, i.e., it is an operational model based on a QoS extension of constraint
automata [24] called Quantitative Constraint Automata. In spirit, this model is
a variant of a labelled transition-system model. Other extensions of Reo are also
based on the constraint-automata semantics, and allow two forms of probabil-
ity distributions, continuous-time (with no nondeterminism) and discrete-time
(with nondeterminism) [25].

3 Looking into the Three Cs

Within the “three Cs sphere”, the three approaches considered in this paper
represent three possible ways of dealing with component-based system devel-
opment, component connection and coordination. For different purposes and at
different levels, these approaches target the complexity of concurrent and dis-
tributed system development, and address crucial challenges to be faced when
developing component-based systems, possibly reusing existing third-party com-
ponents, connecting them and coordinating their interaction.

This section provides a concise, yet complete, description of the three
approaches. For each of them, we first provide an overview by summarizing
notions and aspects borrowed from the corresponding original work; then, we
discuss the approach with respect to the best-fitting “C”.

3.1 Software Component Ensemble Language

The aims of the work in [84] is to provide language designers with appropriate
programming abstractions and constructs to deal with the development of con-
current and autonomic systems, adaptation with respect to possibly unforeseen
changes of the working environment, evolving requirements, emergent behaviors
resulting from complex interactions. The work in [84] is based on the two fun-
damentals notions of Autonomic Components (ACs) and Autonomic-Component
Ensembles (ACEs), and defines programming abstractions to model their evolu-
tions and their interactions. The authors define the Software Component Ensem-
ble Language (SCEL) that is a programming language for programming the
behavior of ACs and the formation of ACEs, and for controlling the interaction
among different ACs. These abstractions permit describing autonomic systems
in terms of Behaviors, Knowledge, and Aggregations by complying with specific
Policies.

Different Glasses to Look into the Three Cs 195

Overview of the SCEL’s Design Principles – ACs and ACEs serve to
structure systems into independent and distributed building blocks that interact
and adapt.

ACs are entities with dedicated knowledge units and resources; awareness is
guaranteed by providing them with information about their state and behavior
via their knowledge repositories. These repositories also can be used to store
and retrieve information about ACs’ working environments, and thus can be
exploited to adapt their behavior to the perceived changes. Each AC is equipped
with an interface, consisting of a collection of attributes, describing the compo-
nent’s features such as identity, functionalities, spatial coordinates, group mem-
berships, trust level, response time, and so on.

Attributes are used by the ACs to dynamically organize themselves into
ACEs. Indeed, one of the main novelties of SCEL is the way groups of partners
are selected for interaction and thus how ensembles are formed. Individual ACs
can single out communication partners by using their identities, but partners can
also be selected by taking advantage of the attributes exposed in the interfaces.
Predicates over such attributes are used to specify the targets of communication
actions, thus permitting a sort of attribute-based communication. In this way,
the formation rule of ACEs is endogenous to ACs: members of an ensemble are
connected by the interdependency relations defined through predicates. An ACE
is therefore not a rigid fixed network but rather a highly flexible structure where
ACs’ linkages are dynamically established.

Fig. 1. Autonomic component ensembles

A typical scenario that gives rise to ACEs is reported in Fig. 1. It suggests
that ACEs can be thought of as logical layers (built on top of the physical
ACs’ network) that identify dynamic ubnetworks of ACs by exploiting specific

196 F. Arbab et al.

attributes; in the picture, these are the different colours associated to individual
ACs.

The main linguistic abstractions that SCEL provides developer with for pro-
gramming the evolution and the interactions of ACs and the architecture of
ACEs are listed as follows.

– Behaviors describe how computations may progress and are modeled as pro-
cesses executing actions, in the style of process calculi.

– Knowledge repositories provide the high-level primitives to manage pieces
of information coming from different sources. Each knowledge repository is
equipped with operations for adding, retrieving, and withdrawing knowledge
items.

– Aggregations describe how different entities are brought together to form ACs
and to construct the software architecture of ACEs. Composition and interac-
tion are implemented by exploiting the attributes exposed in ACs’ interfaces.

– Policies control and adapt the actions of the different ACs for guaranteeing
accomplishment of specific tasks or satisfaction of specific properties.

By accessing and manipulating their own knowledge repository or the repos-
itories of other ACs, components acquire information about their status (self-
awareness) and their environment (context awareness) and can perform self-
adaptation, initiate self- healing actions to deal with system malfunctions, or
install self-optimizing behaviors. All these self-* properties, as well as self-
configuration, can be naturally expressed by exploiting SCEL’s higher-order fea-
tures, namely, the capability to store/retrieve (the code of) processes in/from the
knowledge repositories and to dynamically trigger execution of new processes.
Moreover, by implementing appropriate security policies (e.g., limiting informa-
tion flow or external actions), components can set up self-protection mechanisms
against different threats, such as unauthorised access or denial-of-service attacks.

Discussion – More on the Component side, the work by De Nicola et al.
addresses the challenges to develop large systems composed of a massive num-
bers of components, featuring complex interactions among components, as well
as with humans and other systems. These complex systems are often referred to
as ensembles. The complexity of the ensembles is due to their large dimension
and their need to adapt to the changes of the working environment and to the
evolving requirements. Self-* abilities are thus desirable to make this kind of
systems autonomic, hence capable to self-manage by continuously monitoring
their behavior and context, and by selecting corrective actions if needed.

Due to such an inherent complexity, today’s engineering methods and tools
do not scale well, and new engineering techniques are needed to address the
challenges of developing, integrating, and deploying them. As the blending of
different concepts that have emerged in different fields of computer science and
engineering, the work by De Nicola et al. proposes programming abstractions
specific to autonomic system development, and reconcile them under a single
and uniform formal semantics. Main advances brought by De Nicola et al. are
(i) ability to deal with heterogenous systems and different application domains;

Different Glasses to Look into the Three Cs 197

(ii) flexibility and suitability to support adaptive context-aware activities in
pervasive and mobile computing scenarios together with transparent monitoring;
(iii) strict relation with component-based design, which has been indicated as a
key approach for adaptive software design; (iv) flexible and expressive forms of
communication and adaptation that are adequate to deal with highly dynamic
ensembles; (v) strict relation with context-oriented programming, which has been
advocated to program autonomic systems.

3.2 Reo Connectors

Reo [4,6,7] is a dataflow-inspired language for incremental construction of com-
plex connectors by composing simpler ones, with a graphical as well as a textual
syntax [45]. Every Reo connector encapsulates a concrete interaction protocol. In
contrast to traditional models of concurrency, where actions or processes consti-
tute the basic building blocks, Reo espouses and advocates an interaction-centric
model of concurrency, where the only first class primitive is interaction.

Reo views components in a concurrent system as black boxes, each of which
has an interface consisting of a set of ports. A port is a uni-directional means
of communication through which a component exchanges with its environment
by performing blocking I/O operations get and put. Because a component has
access to only its own ports and Reo offers no other means of inter-process com-
munication, components cannot communicate with each other directly. Instead, a
separate construct, a connector, connects to the ports of various components and
mediates the flow of data amongst them. Every connector imposes the interac-
tion protocols that it encapsulates upon the communication of the components,
exogenously (from the outside of the components, which remain oblivious to the
interaction protocol that engages them).

Fig. 2. A typical set of Reo channels

Overview of Reo – A complex connector in Reo is constructed as a graph
whose edges comprise of primitive binary connectors, called channels, and whose
vertices consist of particular synchronous dataflow components, called nodes.

A channel is a medium of communication that consists of two ends and
a constraint on the dataflows observed at those ends. There are two types of
channel ends: source and sink. A source channel end accepts data into its channel,
and a sink channel end dispenses data out of its channel. Every channel (type)
specifies its own particular behavior as constraints on the flow of data through
its ends.

Although all channels used in Reo are user-defined and users can indeed
define channels with any complex behavior (expressible in the semantic model)

198 F. Arbab et al.

that they wish, a very small set of channels, each with very simple behavior,
suffices to construct useful Reo connectors with significantly complex behavior.
Figure 2 shows a common set of primitive channels often used to build Reo
connectors.

A Sync channel has a source and a sink end and no buffer. It accepts a data
item through its source end iff it can simultaneously (i.e., atomically) dispense
it through its sink.

A LossySync channel is similar to a synchronous channel except that it
always accepts all data items through its source end. This channel transfers a
data item if it is possible for the channel to dispense the data item through
its sink end; otherwise the channel loses the data item. Thus, the context of
(un)availability of a ready consumer at its sink end determines the (context-
sensitive) behavior a LossySync channel.

A FIFO1 channel represents an asynchronous channel with a buffer of capacity
1: it can contain at most one data item. When its buffer is empty, a FIFO1
channel blocks I/O operations on its sink, because it has no data to dispense. It
dispenses a data item and allows an I/O operation at its sink to succeed, only
when its buffer is full, after which its buffer becomes empty. When its buffer is
full, a FIFO1 channel blocks I/O operations on its source, because it has no more
capacity to accept the incoming data. It accepts a data item and allows an I/O
operation at its source to succeed, only when its buffer is empty, after which its
buffer becomes full.

More exotic channels are also permitted in Reo, for instance, synchronous
and asynchronous drains. Each of these channels has two source ends and no
sink end. No data value can be obtained from a drain channel because it has no
sink end. Consequently, all data accepted by a drain channel are lost. SyncDrain
is a synchronous drain that can accept a data item through one of its ends iff a
data item is also available for it to simultaneously accept through its other end as
well. AsyncDrain is an asynchronous drain that accepts data items through its
source ends and loses them exclusively one at a time, but never simultaneously.

For a filter channel, or Filter(P), its pattern P ⊆ Data specifies the type of
data items that can be transmitted through the channel. This channel accepts a
value d ∈ P through its source end iff it can simultaneously dispense d through
its sink end, exactly as if it were a Sync channel; it always accepts all data items
d �∈ P through its source end and loses them immediately.

Fig. 3. Reo nodes

A Reo node is a logical place
where channel ends coincide and
coordinate their dataflows as pre-
scribed by its node type. Figure 3
shows the three possible node
types in Reo. A node is either
source, sink, or mixed, depending
on whether all channel ends that coincide on that node are source ends, sink
ends, or a combination of the two. Reo fixes the semantics of (i.e., the con-
straints on the dataflow through) Reo nodes, as described below.

Different Glasses to Look into the Three Cs 199

The source and sink nodes of a connector are collectively called its boundary
nodes. Boundary nodes define the interface of a connector. Components attach
their ports to the boundary nodes of a connector and interact anonymously
with each other through the interface of the connector. Attaching a component
to a (source or sink) node of a connector consists of the identification of one
of the (respectively, output or input) ports of the component with that node.
The blocking I/O operations performed by components on their own local ports,
triggers dataflow through their attached connector nodes.

A component can write data items to a source node that it is attached to.
The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A source node, thus, acts
as a synchronous replicator. A component can obtain data items, by an input
operation, from a sink node that it is attached to. A take operation succeeds only
if at least one of the (sink) channel ends coincident on the node offers a suitable
data item; if more than one coincident channel end offers suitable data items, one
is selected nondeterministically. A sink node, thus, acts as a nondeterministic
merger. A mixed node nondeterministically selects and takes a suitable data
item offered by one of its coincident sink channel ends and replicates it into all
of its coincident source channel ends. Note that a component cannot attach to,
take from, or write to mixed nodes.

A

B

CA

B

C

(b)

CC

(d)

(c)

A3

A2

A1 A1

A2

A3

A4

(a)

Fig. 4. Reo circuits for alternators

The connector shown in
Fig. 4(a) is an alternator
that imposes an ordering
on the flow of the data
from its input nodes A
and B to its output node
C. The SyncDrain enforces
that data flow through A
and B only synchronously
(i.e., atomically). The empty
buffer of the the FIFO1
channel together with the

SyncDrain guarantee that the data item obtained from A is delivered to C
while the data item obtained from B is stored in the FIFO1 buffer. After this,
the buffer of the FIFO1 is full and data cannot flow in through either A or B,
but C can dispense the data stored in the FIFO1 buffer, which makes it empty
again. Thus, subsequent take operations at C obtain the data items written to
A,B,A,B, ..., etc.

The connector in Fig. 4(b) has an extra Sync channel between node B and
the FIFO1 channel, compared to the one in Fig. 4(a). It is trivial to see that
these two connectors have the exact same behavior. However, the structure of
the connector in Fig. 4(b) allows us to generalize its alternating behavior to any
number of producers, simply by replicating it and “juxtaposing” the top and the
bottom Sync channels of the resulting copies, as seen in Fig. 4(c) and Fig. 4(d).

200 F. Arbab et al.

The connector in Fig. 4(d) is obtained by replicating the one in Fig. 4(b) 3
times. Following the reasoning for the connector in Fig. 4(c), it is easy to see
that the connector in Fig. 4(d) delivers the data items obtained from A1, A2,
A3,and A4 through C, in that order.

Semantics. Reo allows arbitrary user-defined channels as primitives; arbitrary
mix of synchrony and asynchrony; and relational constraints between input and
output. This makes Reo more expressive than, e.g., dataflow models, Kahn net-
works, synchronous languages, stream processing languages, workflow models,
and Petri nets. On the other hand, it makes the semantics of Reo quite non-
trivial. Various models have been developed to capture (various aspects of) the
semantics of Reo, each to serve some specific purposes [55]. In this paper, we
briefly describe only the ABTs [5], which constitute the primary formal seman-
tics of Reo.

Formally, an ABT is a relation on a set of time-data-streams. ABTs yield
an expressive compositional semantics for Reo where coinduction is the main
definition and proof principle to reason about properties involving both data
and time streams [14].

Discussion – Building upon earlier work on classical dataflow [15,44,56,57],
synchronous languages [30,31,40,48], and Ptolemy [38,74], interaction-centric
concurrency allows treatment of protocols as concrete objects of discourse.
Besides Reo, more recent work, such as BIP [16,27], multiparty session types [51],
Scribble [50,91], and Pabble [81,82] represent other examples of interaction-
centric models that to various degrees of expressiveness and generality. Allowing
arbitrary user-defined primitive building blocks and arbitrary mix of synchronous
and asynchronous communication in its compositions, Reo relaxes restrictions
and limitations implicit in most other above-mentioned models. See, for instance,
[46] for an in-depth comparison of BIP and Reo.

The examples in Fig. 4 demonstrate how more complex connectors can be
constructed by incremental composition of simpler ones. They also show how
(1) arbitrary mix of synchrony and asynchrony, (2) preservation of synchrony
through composition, which results in (3) propagation synchrony and exclusion
though composition make Reo an expressive language. Several model checking
tools are available for verification of Reo connectors [20–23,35,58–61,67–69].

A high-level language like Reo that supports this form of protocol spec-
ification offers clear software engineering advantages (e.g., programmability,
maintainability, verbatim-reusability, verifiability, scalability, etc.). The results
of on-going work on compiling Reo connectors suggest that smart optimizing
compilers for high-level protocol languages can generate executable code with
better performance than hand-crafted code produced by programmers written in
contemporary general-purpose languages with constructs of traditional models
of concurrency [54]. For some protocols, existing Reo compilers already generate
code that can compete with code written by a competent programmer [53].

Reo has been used for composition of Web services [12,64,73], model-
ing and analysis of long-running transactions in service-oriented systems [66],

Different Glasses to Look into the Three Cs 201

coordination of multi-agent systems [8], performance analysis of coordinated
compositions [9,10,13,80], modeling of business processes and verification of
their compliance [11,65,88], and modeling of coordination in biological sys-
tems [42].

3.3 Coordination Delegates

The work in [18] is based on the notion of Coordination Delegate and aims to
formalize an automated synthesis method for the distributed composition and
coordination of software services or, more in general, of software components.
Following a modular and reuse-based approach, the business functionality of the
system is assumed to be implemented by a set of software services, possibly
black-box since provided by third parties. The system to be realized – out of the
set of considered services – is specified as a global collaboration that the involved
services have to realize by interacting via either synchronous or asynchronous
message passing. This specification is given in the form of a state machine. Start-
ing from this specification, and accounting for the specification of the interaction
protocol performed by the involved services, the synthesis method is able to auto-
matically generates a set of Coordination Delegates (CDs). CDs are additional
software entities with respect to the participant services, and are synthesized
in order to proxify and control their interaction. When interposed among the
services by following the rules of a well-defined architectural style, the synthe-
sized entities enforce the collaboration prescribed by the system specification.
The synthesized CDs are correct by construction, meaning that the resulting
distributed system realizes the specification. CDs are able to handle asynchrony
through 1-bounded FIFO queues.

Overview of the Synthesis Method – Figure 5 shows an overview of the
method for the automatic synthesis of CDs that, when interposed among the
participant services, control those interactions that need coordination in order
to enforce the realizability [28,29] of the specified global collaboration.

The method is organized into four steps that are performed in the following
order: Projection, Selection, Synthesis, and Concretization.

1: Projection – It takes as input the system specification given in terms of a
state machine where transitions model possibly simultaneous message exchanges
among participants. As such, the system specification describes the way partic-
ipants perform their interactions from a global perspective defining the (par-
tial) order in which the message exchanges occur. Each single message exchange
involves two participants: the sender and the receiver of the message. The speci-
fication abstracts from the way participants communicate to exchange messages,
e.g., synchronous communication versus asynchronous one.

Out of the specification, Projection generates a behavioral model for each
participant. This model is a state machine where transitions model (sets of pos-
sibly simultaneous) actions sending or receiving message, or actions internal to
the participant that are not observable from outside. Message send and receive
are, instead, observable actions. Simultaneous actions serve to deal with parallel

202 F. Arbab et al.

Fig. 5. Synthesis method overview

flows specified in the global collaboration and, hence, simultaneous executions.
A projection represents the participant expected behavior according to the flows
of message exchanges specified by the collaboration. Being derived from the sys-
tem specification, also this model abstracts from the type of the send and receive
actions (synchronous or asynchronous). We call this model Abstract Participant
Behavior.

2: Selection – We recall that our approach is reuse-oriented, meaning that it
allows to enforce system realizability in contexts in which the system is not
implemented from scratch but it is realized by reusing, as much as possible, third-
party services published in a Service Inventory. Services are selected from the
inventory to play the roles of the abstract participants in the system specification.
This calls for exogenous coordination of the selected concrete participants since,
in general, we cannot access the participant code or change it.

A concrete service in the inventory comes with a behavioral specification of
its interaction protocol. We call this model Concrete Participant Behavior. It is
a state machine where transitions model (sets of possibly simultaneous) actions
sending or receiving message, or internal actions. Similarly to the choreography
specification, it can also specifies parallel flows that are joined afterwards. Dif-
ferently from the Abstract Participant Behavior, for each transition, its type is
specified: synchronous, asynchronous, or internal. That is, our approach does
not impose constraints on the way concrete participants communicate, hence
dealing with hybrid participants that can support both synchrony and asyn-
chrony. For instance, a concrete participant could be a SOAP Web Service whose

Different Glasses to Look into the Three Cs 203

WSDL1 interface defines both Request/Response (synchronous interaction) and
One-way operations (asynchronous interaction). In order to exchange messages
asynchronously, concrete participants make use of bounded message queues. Our
approach does not impose constraints on the size of the participants queues.

In order to select concrete participants that can suitably play the roles of
abstract participants, our approach exploits a notion of behavioral refinement
in order to automatically check whether the behavior of a concrete participant
PiC is a refinement (�� in the figure) of the behavior of an abstract participant
Pi. In the best case, for each abstract participant, a suitable concrete partici-
pant is found in the inventory. Otherwise, it might be the case that the set of
selected participants covers a subset of the abstract participants in the speci-
fication. In this case, the abstract behavior of the remaining participants can
support code generation activities to implement the missing concrete partici-
pants from scratch. Furthermore, the newly implemented concrete participant
can be published in the inventory for possible future reuse.

An important consideration here is that, even in the case of limited reuse
of third-party participants, our approach realizes separation of concern between
the pure business logic implemented locally to each participant and the coordi-
nation logic needed for the realization of the global collaboration specified for the
system. This logic is automatically generated as a set of CDs (Synthesis step).
Keeping the needed coordination logic separated from the business one saves
developers from writing code that goes beyond the development of the pure
business logic internal to single participants. This allows developers to realize
the specified system, without requiring any specific attention to what concerns
coordination aspects. This aspect permits practitioners to develop the specified
distributed system according to their daily development practices.

3 and 4: Synthesis and Concretization – The Synthesis step takes as input the
system specification and automatically generates a set of CD Abstract Behavior
models. Similarly to the Abstract Participant Behavior, each of them is a state
machine where transitions model (sets of possibly simultaneous) actions send-
ing or receiving message, or internal actions. These actions are related to the
standard communication performed to achieve the choreography business logic.
Differently from the Abstract Participant Behavior, there are also transitions
modeling the synchronous exchange of coordination/synchronization messages.
These actions model additional communication required to realize the coordina-
tion logic that is needed to enforce the realizability of the specified global collab-
oration. Standard communication takes place between a CD and the participant
it controls and supervises, or directly among participants in case coordination is
not required. When needed, additional communication messages are exchanged
among the involved CD.

The Synthesis step is performed after a set of suitable concrete participants
is obtained. Since the CD Abstract Behavior is generated out of the system
specification, it abstracts from the way the supervised participants communi-
cate (synchronously or asynchronously). This information will be added by the
1 www.w3.org/TR/wsdl.

www.w3.org/TR/wsdl

204 F. Arbab et al.

Concretization step that enriches the CD Abstract Behavior to achieve the so
called CD Concrete Behavior.

Fig. 6. Collaboration-based architectural style (a sample instance of)

For the set of synthesized CDs, correctness by construction means that when
they are composed with the selected participants, the behavior of the resulting
system realizes the specified global collaboration. That is, the generated CDs
enforce by construction the realizability of the specified collaboration. Lever-
aging results on choreography realizability and its decidability from the work
in [28,29], to correctly deal with asynchrony, the concrete CDs (Concretization
step) in the controlled system make use of 1-bounded message queues. According
to a predefined architectural style, CDs are interposed only among the partici-
pants needing coordination. Figure 6 shows an instance of the architectural style
underlying our synthesis method.

CDs perform coordination (i.e., additional communication in the figure) of
the participants interaction (i.e., standard communication in the figure) in a way
that the resulting collaboration realizes the specified system. According to the
type of actions performed by the concrete participants, standard communica-
tion can be synchronous or asynchronous. Additional communication is always
synchronous. It is worth to note that CDs coordinate the interaction among the
participants only when it is strictly needed for realizability enforcement purposes.
That is, some participants are left free to communicate directly on those inter-
actions that do not prevent the realizability of the specified global collaboration.
Furthermore, depending on the specified collaboration, CDs do not necessarily
require to be connected one to each other.

Discussion – Last but not least, on the Coordination side, the work by Inverardi
et al. targets the development of reuse-based concurrent and distributed systems,
from specification to composition and coordination code synthesis. The approach
finds its most effective application in the distributed computing environment
offered by the current Internet, which is increasingly populated by a virtually

Different Glasses to Look into the Three Cs 205

infinite number of software services that can be opportunistically composed to
realize more complex and powerful distributed applications.

According to John Musser, founder of the ProgrammableWeb2, the produc-
tion of application programming interfaces (APIs) growths exponentially and
some companies are accounting for billions of dollars in revenue per year via API
links to their services. The evolution of today Internet is expected to lead to an
ultra large number of available services, hence increasing their number from 104
services on 2007 to billions of services in the near future. This situation radically
changes the way software will be produced. Modern service-oriented systems
will be more and more often built by reusing and assembling existing pieces of
software, exposed through their APIs. Thus, the ability to automatically com-
pose and coordinate these pieces of software enables the productive construction
of innovative and revolutionary everyday-life scenarios within smart cities and
related software ecosystems [76].

Most of the existing approaches to software composition are heavily based
on central coordination. A centralized approach composes multiple components
into a larger application, in which one component centrally coordinates the whole
system interaction. The approach by Inverardi et al. permits to describe the inter-
actions among the different system parties from a global perspective. It permits
to model a peer-to-peer communication by defining a multiparty protocol that,
when put in place by the cooperating parties, allows reaching the overall goal
in a fully distributed way. In this sense, it differs significantly from a central-
ized approach, where all participants (but one) play the passive role of serving
requests. Future software systems will be increasingly composed of active entities
that, communicating peer-to-peer, proactively make decisions and autonomously
perform tasks according to their own imminent needs and the emergent global
collaboration. Each involved party knows exactly when to execute its operations
and with whom to interact. The system execution becomes a collaborative effort
focusing on the exchange of messages among several business participants to
reach a common global goal. Thus, (i) the ability to reuse, compose and coordi-
nate existing pieces of software are all basic ingredients to achieve this vision; (ii)
automated supported is needed to realize correct-by-construction coordination
logic.

4 Characteristics of Interest

The approaches presented in previous sections will be characterized in next
section by using the six characteristics of interest defined in the following.

– Compositionality: this characteristic concerns the ability to compose a
system in a hierarchical way out of simpler components/sub-systems and,
roughly speaking, it does not matter the way we conduct this hierarchical
construction, the result is always equivalent. This means that the system

2 https://www.programmableweb.com.

https://www.programmableweb.com

206 F. Arbab et al.

construction process is based on a composition operator ‘∗’ that is associa-
tive, i.e., for all x, y, z then x∗(y∗z) ≡ (x∗y)∗z. Compositionality is crucial for
system analysis purposes since it may improve the efficiency of the analysis.

– Incrementality: incrementality is implied by compositionality but the for-
mer does not imply the latter. This characteristic concerns hierarchical sys-
tem construction. However, differently from compositionality, the associativ-
ity property is not required. Icrementality is another crucial aspect for system
design purposes since it promotes reuse. It is implied by the existence of a
composition operator that hides the internal details of the composition and
exposes its observational (external) behavior.

– Scalability: also scalability is implied by compositionality and it refers to
the ability for a composition to scale to systems with an increasing number
of components (i.e., systems of systems).

– Compositional reasoning: this characteristic is related to compositionality
but not necessarily. It refers to the ability to infer properties held by the whole
by locally checking properties held by its constituents. This characteristic
promotes efficient system analysis by performing local checks instead of a
global one, hence facing complexity issues in some cases.

– Reusability: this characteristic concerns the reuse degree of components/
sub-systems. A sub-system can be: (i) reusable in any context (i.e., it is
context-free), (ii) parameterized with respect to an abstract characteriza-
tion of a set of contexts and, hence, reusable only in some contexts (i.e., it is
partially context-free), or (iii) not reusable at all (i.e., it is not context-free)
since it is tailored to a specific context.

– Evolution: this characteristic refers to the ability to express and deal with
dynamicity and reconfiguration, two aspects that promote system evolution.
It is related to programming constructs useful to model specific forms of
system evolution.

Note that the characteristics of interest above must be considered to be
general in nature and, as such, in the following are inflected in different ways
and interpreted according to the purposes of the three approaches.

5 Matching the Characteristics of Interest

In this section, we characterize the approaches described in Sect. 3 with respect
to the characteristics of interest introduced in Sect. 4. The results of the char-
acterization are summarized in the tables below, and discussed just after in the
following subsections.

We make use of “Yes”, “No”, and “Limited” to rank at a glance how the
considered approaches match the characteristics of interest. Obviously, “Yes”
and “No” are used to indicate that an approach enjoys or does not enjoy at
all, respectively, the ability/property associated to the indicated characteristic.
“Limited” is used to indicate either limited or constrained (i.e., if some assump-
tions hold) support for the indicated characteristic (Tables 1 and 2).

Different Glasses to Look into the Three Cs 207

Table 1. Matching the characteristics of interest (Part 1)

Approach Compositionality Incrementality Scalability

SCEL Yes Yes Yes

Reo connectors Yes Yes Yes

Coordination delegates Yes Yes Yes

Table 2. Matching the characteristics of interest (Part 2)

Approach Compositional
reasoning

Reusability Evolution

SCEL Either Yes or Limited
(to reachability
properties)

Yes Yes

Reo connectors Yes Yes Yes

Coordination delegates Yes Limited
(under
refinement)

Limited (under
variation points
specification)

5.1 Software Component Ensemble Language Characterization

The main benefits of SCEL can be summarized as follows with respect to the
characteristics of interest introduced in Sect. 4.

– Compositionality: as formalized in [84], SCEL builds systems by composing
in parallel subsystems/components in a process algebra style. The parallel
composition operator is both commutative and associative, hence directly
achieving incrementality and compositionality.

– Incrementality: it is directly implied by compositionality.
– Scalability: systems programmed in SCEL are able to self-manage by con-

tinuously monitoring their behavior and their working environment and by
selecting the actions to perform for best dealing with the current status of
affairs. The self-* properties supported by SCEL allows developer to over-
come typical scalability issues of ensembles, by improving their development,
integration and deployment.

– Compositional reasoning: compositional reasoning is not explicitly dis-
cussed in [84]. However, it is shown that SCEL supports the verification of
reachability properties such as checking the probability of reaching a config-
uration where a given predicate on collected data is satisfied within a given
deadline. The fact that a SCEL system is built by means of an associative
composition operator and its constituents are well-understood, independent
and distributed suggests that compositional reasoning might be supported at
least for such reachability properties.

208 F. Arbab et al.

– Reusability: SCEL supports different forms of reusability. It defines abstrac-
tions to program behaviors (ACs) and aggregations (ACEs) and its syntax is
parametric with respect to knowledge and policies. Thus, reusability of ACs
and ACEs with respect to different approaches to knowledge handling and
policies specification is supported. Similarly to what is done by the object-
oriented paradigm, SCEL components are exposed through their interface
that allows developers to control the access to their internal knowledge, poli-
cies and processes. Thus, another form of reusability that is directly supported
concerns the one achievable through subtyping. Furthermore, SCEL provides
high-order features to store/retrieve the code of processes in/from the knowl-
edge repositories and to dynamically trigger the execution of new processes.

– Evolution: as briefly discussed above, SCEL components are self-aware and
context-aware and enjoy a number of self-* properties, e.g., they are capable
to perform self-adaptation and self-reconfiguration. Thus, dynamic evolution
is completely supported by the programming abstractions provided by the
language.

5.2 Reo Connectors Characterization

For what concerns Reo, main benefits are as follows:

– Compositionality: Reo connectors are fully compositional. Starting with a
set of (user-defined) primitive binary connectors—i.e., channels—Reo’s com-
position rules, manifested as nodes, hierarchically construct more complex
connectors. Examples in Figs. 3 and 4 demonstrate this property. Composi-
tion in Reo is associative.

– Incrementality: This property is impled by Reo’s compositionality.
– Scalability: This property is impled by Reo’s compositionality. Figure 4

serves as an example that demonstrates scalability.
– Compositional reasoning: Hiding the internal nodes of a connector, e.g.,

the exclusive router in Fig. 4(a), simplifies its semantics to the behavior of
the connectors that is externally observable through its boundary nodes
which comprise its interface, e.g., XRout(〈α, a〉; 〈β, b〉, 〈γ, c〉), above. Once
this behavior is verified, using this simplified semantcs avoids the need to
repeat in-situ re-verification of its internal details whenever the connector is
used as a sub-connector in a construction.

– Reusability: Figures 3 to 4 demonstrate verbatim reusability of Reo connec-
tors.

– Evolution: Reo offers operations to dynamically reconfigure the topology
of its connectors, thereby changing the interaction protocol of a running
application. A semantic model for Reo cognizant of its reconfiguration capa-
bility, a logic for reasoning about reconfigurations, together with its model
checking algorithm, are presented in [41]. Graph transformation techniques
have been used in combination with the connector coloring model to for-
malize the dynamic reconfiguration semantics of Reo circuits triggered by
dataflow [62,63,70,71].

Different Glasses to Look into the Three Cs 209

5.3 Coordination Delegates Characterization

The main benefits of the synthesis method, and of using the notion of Coordi-
nation Delegate for distributed coordination, can be summarized as follows.

– Compositionality: the composition operator that is used to model the coor-
dination logic of the controlled system, i.e., the parallel composition of the
synthesized CDs, is based on a enhanced version of the synchronous product
of LTSs that is able to deal with aptly defined synchronization messages (addi-
tional communication in Fig. 6) that are exchanged synchronously among the
CDs in different ways (one-to-one, one-to-many, many-to-one, or many-to-
many interactions). Compositionality can be straightforwardly achieved by
making the non-synchronized communication observable from outside. This
means that the coordination logic can be modeled by composing in parallel
the CDs in an incremental way and it does not matter the order in which the
composition is performed.

– Incrementality: it is directly implied by compositionality.
– Scalability: concerning the CDs synthesis method, the experimental example

discussed in [18] show that: (i) the “performance” of the CDs scale, meaning
that they are not affected when the number of system consumers increases;
(ii) the time required for executing the needed distributed coordination logic
is neglectable with respect to the overall collaboration execution time, hence
confirming that the CDs enforces the specified global collaboration effectively
and efficiently.

– Compositional reasoning: the coordination logic synthesized by the
method supports compositional reasoning for verifying a global property of
the controlled system by just performing local checks. Each check considers:
(i) a projection (similarly to what is done in step 1) of the property with
respect to a set of participants; and (ii) a projection of the coordination logic
with respect to the same set of participants. Both (i) and (ii) provide local
(to each participant) models of the property and local models of the coor-
dination logic, respectively. Standard model-checking techniques can be then
used to singularly check each projection of the property against the related
projection of the coordination logic.

– Reusability: the abstract CDs as synthesized after step 3 (Synthesis) of the
method are concrete services independent since they are generated by only
looking at the global collaboration specification. This means that, as long as
the interaction protocol of the selected concrete participants refines the one
of the corresponding abstract participants in the specification, the generated
abstract CDs can be reused and only their Concretization (step 4) need to be
performed again. Thus, we can conclude that reusability is achieved, although
in a limited form.

– Evolution: in another recent work [19] from the authors of [18], which is
based on a slightly revised version of the summarized synthesis method, a
novel global collaboration specification is presented where the designer can
specify the so called variation points. They are points in the specification that

210 F. Arbab et al.

can be realized by alternative collaborations. Each alternative can be dynam-
ically enabled/disabled during system execution depending on the “sensed”
context. The CDs that are automatically synthesized out of this new speci-
fication are thus able to deal with this (limited) form of dynamic evolution
by performing not only exogeneous distributed coordination, as already dis-
cussed above, but by also handling the enabling/disabling of the different
specified alternatives.

6 Conclusions

Component, connector, and coordination have been key concepts exploited in
different communities to manage the complexity of concurrent and distributed
system development.

In this paper we discussed three approaches within three different classes:
composition in distributed software architectures, exogenous coordination mod-
els, and programming abstractions for concurrent and autonomic systems. These
classes encompass different perspectives and solutions to face crucial challenges
in developing concurrent and distributed systems.

Our discussion considered previous work by De Nicola et al. about the
SCEL language [84] for developing autonomic systems, and previous work by
the authors about Reo connectors [5] for achieving exogenous coordination and
distributed Coordination Delegates [18] for the distributed composition of het-
erogeneous components.

The approaches have been discussed with respect to some characteristics
of interest for the above classes: compositionality, incrementality, scalability,
compositional reasoning, reusability, and evolution.

All the three discussed approaches have been found to be representative for
the three classes above since they support to some extent all the six dimension
of interests for the engineering and development of concurrent and distributed
systems.

References

1. Allen, R.: A formal approach to software architecture. Ph.D. thesis, Carnegie Mel-
lon, School of Computer Science, January 1997. Issued as CMU Technical Report
CMU-CS-97-144

2. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3), 213–249 (1997)

3. Arbab, F.: What do you mean, coordination? Bulletin of the Dutch Association
for Theoretical Computer Science (NVTI), 19 March 1998

4. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

5. Arbab, F.: Abstract behavior types: a foundation model for components and their
composition. Sci. Comput. Program. 55(1–3), 3–52 (2005)

Different Glasses to Look into the Three Cs 211

6. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp.
169–206. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24933-
4 9

7. Arbab, F.: Proper protocol. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.)
Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 65–87. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30734-3 7

8. Arbab, F., Aştefănoaei, L., de Boer, F.S., Dastani, M., Meyer, J.-J., Tinnermeier,
N.: Reo connectors as coordination artifacts in 2APL systems. In: Bui, T.D., Ho,
T.V., Ha, Q.-T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 42–53. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89674-6 8

9. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS
guarantees. In: Murphy and Vitek [84], pp. 286–304

10. Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.-J., Verhoef, C.: From
coordination to stochastic models of QoS. In: Field and Vasconcelos [49], pp. 268–
287

11. Arbab, F., Kokash, N., Meng, S.: Towards using Reo for compliance-aware business
process modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp.
108–123. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-
8 9

12. Arbab, F., Meng, S.: Synthesis of connectors from scenario-based interaction spec-
ifications. In: Chaudron, M.R.V., Szyperski, C., Reussner, R. (eds.) CBSE 2008.
LNCS, vol. 5282, pp. 114–129. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87891-9 8

13. Arbab, F., Meng, S., Moon, Y.-J., Kwiatkowska, M.Z., Qu, H.: Reo2MC: a tool
chain for performance analysis of coordination models. In: van Vliet, H., Issarny,
V. (eds.) ESEC/SIGSOFT FSE, pp. 287–288. ACM (2009)

14. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-
2 2

15. Arvind, A., Gostelow, K.P., Plouffe, W.: Indeterminancy, monitors, and dataflow.
In: Rosen, S., Denning, P.J. (eds.) Proceedings of the Sixth Symposium on Oper-
ating System Principles, SOSP 1977, Purdue University, West Lafayette, Indiana,
USA, 16–18 November 1977, pp. 159–169. ACM (1977)

16. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework for
architecture composability. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014.
LNCS, vol. 8702, pp. 128–143. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10431-7 10

17. Autili, M., Chilton, C., Inverardi, P., Kwiatkowska, M., Tivoli, M.: Towards a
connector algebra. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol.
6416, pp. 278–292. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16561-0 28

18. Autili, M., Inverardi, P., Tivoli, M.: Choreography realizability enforcement
through the automatic synthesis of distributed coordination delegates. Sci. Com-
put. Program. 160, 3–29 (2018)

19. Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: On the model-driven
synthesis of evolvable service choreographies. In: Proceedings of the 12th Euro-
pean Conference on Software Architecture: Companion Proceedings, ECSA 2018,
Madrid, Spain, 24–28 September 2018, pp. 20:1–20:6 (2018)

https://doi.org/10.1007/978-3-642-24933-4_9
https://doi.org/10.1007/978-3-642-24933-4_9
https://doi.org/10.1007/978-3-319-30734-3_7
https://doi.org/10.1007/978-3-540-89674-6_8
https://doi.org/10.1007/978-3-540-88479-8_9
https://doi.org/10.1007/978-3-540-88479-8_9
https://doi.org/10.1007/978-3-540-87891-9_8
https://doi.org/10.1007/978-3-540-87891-9_8
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-319-10431-7_10
https://doi.org/10.1007/978-3-319-10431-7_10
https://doi.org/10.1007/978-3-642-16561-0_28
https://doi.org/10.1007/978-3-642-16561-0_28

212 F. Arbab et al.

20. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal verification for com-
ponents and connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04167-9 5

21. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for
modeling and verifying components and connectors. In: Field and Vasconcelos [49],
pp. 247–267

22. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and ver-
ification of systems with exogenous coordination using Vereofy. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 97–111. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16561-0 15

23. Baier, C., Klein, J., Klüppelholz, S.: Modeling and verification of components and
connectors. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp.
114–147. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-
4 4

24. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

25. Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connec-
tors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol.
4038, pp. 1–15. Springer, Heidelberg (2006). https://doi.org/10.1007/11767954 1

26. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM 2006: Proceedings of the Fourth IEEE International Conference
on Software Engineering and Formal Methods, Washington, DC, USA, pp. 3–12.
IEEE Computer Society (2006)

27. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Proceedings of SEFM 2006, pp. 3–12. IEEE (2006)

28. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7 2

29. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL.
ACM (2012)

30. Benveniste, A., Caspi, P., Le Guernic, P., Halbwachs, N.: Data-flow synchronous
languages. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803, pp. 1–45. Springer, Heidelberg (1994). https://doi.org/10.1007/3-
540-58043-3 16

31. Berry, G.: Esterel and Jazz: two synchronous languages for circuit design
(abstract). In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, p.
1. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2 1

32. Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion. Form. Asp.
Comput. 20(2), 205–224 (2008)

33. Bidinger, P., Schmitt, A., Stefani, J.-B.: An abstract machine for the Kell calculus.
In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 31–46.
Springer, Heidelberg (2005). https://doi.org/10.1007/11494881 3

34. Bidinger, P., Stefani, J.-B.: The Kell calculus: operational semantics and type
system. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS,
vol. 2884, pp. 109–123. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39958-2 8

35. Blechmann, T., Baier, C.: Checking equivalence for Reo networks. Electr. Notes
Theor. Comput. Sci 215, 209–226 (2008)

36. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP.
IEEE Trans. Comput. 57(10), 1315–1330 (2008)

https://doi.org/10.1007/978-3-642-04167-9_5
https://doi.org/10.1007/978-3-642-04167-9_5
https://doi.org/10.1007/978-3-642-16561-0_15
https://doi.org/10.1007/978-3-642-21455-4_4
https://doi.org/10.1007/978-3-642-21455-4_4
https://doi.org/10.1007/11767954_1
https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1007/3-540-58043-3_16
https://doi.org/10.1007/3-540-58043-3_16
https://doi.org/10.1007/3-540-48153-2_1
https://doi.org/10.1007/11494881_3
https://doi.org/10.1007/978-3-540-39958-2_8
https://doi.org/10.1007/978-3-540-39958-2_8

Different Glasses to Look into the Three Cs 213

37. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1), 98–120 (2006)

38. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a framework for
simulating and prototyping heterogenous systems. Int. J. Comput. Simul. 4(2),
155–182 (1994)

39. Carriero, N., Gelernter, D.: A computational model of everything. Commun. ACM
44(11), 77–81 (2001)

40. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: LUSTRE: a declarative language
for programming synchronous systems. In: Conference Record of the Fourteenth
Annual ACM Symposium on Principles of Programming Languages, Munich, Ger-
many, 21–23 January 1987, pp. 178–188. ACM Press (1987)

41. Clarke, D.: A basic logic for reasoning about connector reconfiguration. Fundam.
Inform. 82(4), 361–390 (2008)

42. Clarke, D., Costa, D., Arbab, F.: Modelling coordination in biological systems. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 9–25. Springer,
Heidelberg (2006). https://doi.org/10.1007/11925040 2

43. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26(5), 109–120 (2001)

44. Dennis, J.B., Gao, G.R.: An efficient pipelined dataflow processor architecture. In:
Michael, G.A. (ed.) Proceedings Supercomputing 1988, Orlando, FL, USA, 12–17
November 1988, pp. 368–373. IEEE Computer Society (1988)

45. Dokter, K., Arbab. F.: Treo: textual syntax for Reo connectors. In: Bliudze, S.,
Bensalem, S. (eds.) Proceedings of the 1st International Workshop on Methods and
Tools for Rigorous System Design, MeTRiD@ETAPS 2018. EPTCS, Thessaloniki,
Greece, 15th April 2018, vol. 272, pp. 121–135 (2018)

46. Dokter, K., Jongmans, S., Arbab, F., Bliudze, S.: Combine and conquer: relating
BIP and Reo. J. Log. Algebr. Meth. Program. 86(1), 134–156 (2017)

47. Fiadeiro, J.L., Lopes, A., Wermelinger, M.: A mathematical semantics for archi-
tectural connectors. In: Generic Programming, pp. 178–221 (2003)

48. Gautier, T., Le Guernic, P., Besnard, L.: SIGNAL: a declarative language for
synchronous programming of real-time systems. In: Kahn, G. (ed.) FPCA 1987.
LNCS, vol. 274, pp. 257–277. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-18317-5 15

49. Hirsch, D., Uchitel, S., Yankelevich, D.: Towards a periodic table of connectors.
In: Ciancarini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS, vol. 1594, p.
418. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48919-3 32

50. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19056-8 4

51. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, 7–12 January 2008, pp. 273–284. ACM (2008)

52. Inverardi, P., Tivoli, M.: Automatic synthesis of modular connectors via composi-
tion of protocol mediation patterns. In: 35th International Conference on Software
Engineering, ICSE 2013, San Francisco, CA, USA, 18–26 May 2013, pp. 3–12 (2013)

53. Jongmans, S.-S., Halle, S., Arbab, F.: Reo: a dataflow inspired language for mul-
ticore. In: Proceedings of DFM 2013, pp. 42–50. IEEE (2014)

https://doi.org/10.1007/11925040_2
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1007/3-540-48919-3_32
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4

214 F. Arbab et al.

54. Jongmans, S.-S.T.: Automata-theoretic protocol programming: parallel compu-
tation, threads and their interaction, optimized compilation, [at a] high level of
abstraction. Ph.D. thesis, Leiden University (2015, submitted)

55. Jongmans, S.-S.T., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2013)

56. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information Processing, Stockholm, Sweden, pp. 471–475. North
Holland, Amsterdam, August 1974

57. Kahn, G., MacQueen, D.B.: Coroutines and networks of parallel processes. In: IFIP
Congress, pp. 993–998 (1977)

58. Kemper, S.: SAT-based verification for timed component connectors. Electr. Notes
Theor. Comput. Sci. 255, 103–118 (2009)

59. Kemper, S.: Compositional construction of real-time dataflow networks. In: Clarke,
D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 92–106. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13414-2 7

60. Klein, J., Klüppelholz, S., Stam, A., Baier, C.: Hierarchical modeling and formal
verification. An industrial case study using Reo and Vereofy. In: Salaün, G., Schätz,
B. (eds.) FMICS 2011. LNCS, vol. 6959, pp. 228–243. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24431-5 17

61. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. Electr. Notes Theor. Comput. Sci 175(2), 19–37 (2007)

62. Koehler, C., Arbab, F., de Vink, E.: Reconfiguring distributed Reo connectors. In:
Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 221–235.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03429-9 15

63. Koehler, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of Reo connectors
triggered by dataflow. In: Ermel, C., Heckel, R., de Lara, J. (eds.) Proceedings
of the 7th International Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT 2008), vol. 10, pp. 1–13 (2008). ECEASST. ISSN 1863-2122.
http://www.easst.org/eceasst/

64. Koehler, C., Lazovik, A., Arbab, F.: ReoService: coordination modeling tool. In:
Krämer et al. [72], pp. 625–626

65. Kokash, N., Arbab, F.: Formal behavioral modeling and compliance analysis for
service-oriented systems. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 21–41. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04167-9 2

66. Kokash, N., Arbab, F.: Formal design and verification of long-running transac-
tions with extensible coordination tools. IEEE Trans. Serv. Comput. 6(2), 186–200
(2013)

67. Kokash, N., Krause, C., de Vink, E.: Data-aware design and verification of service
compositions with Reo and mCRL2. In: SAC 2010: Proceedings of the 2010 ACM
Symposium on Applied Computing, pp. 2406–2413. ACM, New York (2010)

68. Kokash, N., Krause, C., de Vink, E.P.: Verification of context-dependent channel-
based service models. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel,
M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 21–40. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17071-3 2

69. Kokash, N., Krause, C., de Vink, E.P.: Time and data-aware analysis of graphical
service models in Reo. In: Fiadeiro, J.L., Gnesi, S., Maggiolo-Schettini, A. (eds.)
SEFM, pp. 125–134. IEEE Computer Society (2010)

70. Krause, C.: Reconfigurable component connectors. Ph.D. thesis, Leiden University
(2011). https://openaccess.leidenuniv.nl/handle/1887/17718

https://doi.org/10.1007/978-3-642-13414-2_7
https://doi.org/10.1007/978-3-642-24431-5_17
https://doi.org/10.1007/978-3-642-03429-9_15
http://www.easst.org/eceasst/
https://doi.org/10.1007/978-3-642-04167-9_2
https://doi.org/10.1007/978-3-642-04167-9_2
https://doi.org/10.1007/978-3-642-17071-3_2
https://openaccess.leidenuniv.nl/handle/1887/17718

Different Glasses to Look into the Three Cs 215

71. Krause, C., Maraikar, Z., Lazovik, A., Arbab, F.: Modeling dynamic reconfigura-
tions in Reo using high-level replacement systems. Sci. Comput. Program. 76(1),
23–36 (2011)

72. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

73. Lazovik, A., Arbab, F.: Using Reo for service coordination. In: Krämer et al. [72],
pp. 398–403

74. Liu, X., Xiong, Y., Lee, E.A.: The Ptolemy II framework for visual languages. In:
2002 IEEE CS International Symposium on Human-Centric Computing Languages
and Environments (HCC 2001), Stresa, Italy, 5–7 September 2001, p. 50. IEEE
Computer Society (2001)

75. Lopes, A., Wermelinger, M., Fiadeiro, J.L.: Higher-order architectural connectors.
ACM Trans. Softw. Eng. Methodol. 12(1), 64–104 (2003)

76. Manikas, K., Hansen, K.M.: Software ecosystems - a systematic literature review.
J. Syst. Softw. 86(5), 1294–1306 (2013)

77. Milner, R.: A Calculus of Communicating Systems. Springer, New York (1982)
78. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge Uni-

versity Press, Cambridge (1999)
79. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-

sity Press, New York (2009)
80. Moon, Y.-J., Silva, A., Krause, C., Arbab, F.: A compositional semantics for

stochastic Reo connectors. In: Mousavi, M.R., Salaün, G. (eds.) FOCLASA.
EPTCS, vol. 30, pp. 93–107 (2010)

81. Ng, N., de Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default - safe
MPI code generation based on session types. In: Franke, B. (ed.) CC 2015. LNCS,
vol. 9031, pp. 212–232. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46663-6 11

82. Ng, N., Yoshida, N.: Pabble: parameterised scribble for parallel programming. In:
22nd Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, PDP 2014, Torino, Italy, 2–14 February 2014, pp. 707–714. IEEE
Computer Society (2014)

83. Nicola, R.D., Duong, T., Inverso, O., Trubiani, C.: AErlang: empowering Erlang
with attribute-based communication. Sci. Comput. Program. 168, 71–93 (2018)

84. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2),
7:1–7:29 (2014)

85. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Adv. Com-
put. 46, 329–400 (1998)

86. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall Inc., New
York (1998)

87. Schmitt, A., Stefani, J.-B.: The Kell calculus: a family of higher-order distributed
process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp.
146–178. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31794-
4 9

88. Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F., van den
Heuvel, W.-J.: Business process compliance through reusable units of compliant
processes. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp.
325–337. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16985-
4 29

https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/978-3-540-31794-4_9
https://doi.org/10.1007/978-3-540-31794-4_9
https://doi.org/10.1007/978-3-642-16985-4_29
https://doi.org/10.1007/978-3-642-16985-4_29

216 F. Arbab et al.

89. Sifakis, J.: A framework for component-based construction extended abstract. In:
SEFM 2005: Proceedings of the Third IEEE International Conference on Software
Engineering and Formal Methods, Washington, DC, USA, pp. 293–300. IEEE Com-
puter Society (2005)

90. Stefani, J.-B.: A calculus of Kells. Electr. Notes Theor. Comput. Sci. 85(1), 40–60
(2003)

91. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 3

https://doi.org/10.1007/978-3-319-05119-2_3

Logics and Types

From the Archives of the Formal Methods
and Tools Lab

Axiomatising and Contextualising ACTL

Stefania Gnesi(B) and Maurice H. ter Beek

Formal Methods and Tools Lab, ISTI–CNR, Pisa, Italy
{stefania.gnesi,maurice.terbeek}@isti.cnr.it

Abstract. We present a sound and complete axiomatisation of ACTL,
an action-based version of the well-known branching-time temporal logic
CTL, and place it into a historical context. ACTL was originally intro-
duced by Rocco De Nicola together with Frits Vaandrager 30 years ago,
and it has played a major role in shaping the activity of our Formal
Methods and Tools Lab from the nineties to this very day.

Keywords: Temporal logic · ACTL · Axiomatisation

1 Introduction

To appreciate the contribution of this paper, we first provide some necessary
context through a brief recollection of memories from the last 40 years.

1.1 Rocco and Stefania

Rocco and Stefania were fellow students in Computer Science at the University
of Pisa. They followed the same classes and had the same thesis supervisor. In
fact, both were advised by Ugo Montanari and both graduated in 1978. After
that, they followed a different road for some time. Their paths crossed again in
1984 when Stefania started working at the CNR, in the Istituto di Elaborazione
dell’Informazione (later incorporated in what is nowadays called the Istituto di
Scienza e Tecnologie dell’Informazione (ISTI)), where Rocco had been employed
a couple of years earlier. Those were the years of the birth of formal verification
techniques and tools. Temporal logics [11,12,15,16,26–28,47,53] were very much
à la mode at that time and the first automatic tools for the verification of
concurrent systems, mostly model checkers [15,17,18,33,48], were being realised.

The late eighties was the time during which Rocco and Frits Vaandrager
worked on the definition of the so-called action-based branching-time temporal
logics, namely ACTL and its extended version ACTL∗ [23–25]. Such temporal
logics are highly suitable to express properties of concurrent systems specified
by means of process algebras.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 219–235, 2019.
https://doi.org/10.1007/978-3-030-21485-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_13&domain=pdf
http://orcid.org/0000-0002-0139-0421
http://orcid.org/0000-0002-2930-6367
https://doi.org/10.1007/978-3-030-21485-2_13

220 S. Gnesi and M. H. ter Beek

1.2 Action-Based Temporal Logics

Process algebras [1,2,43,44,51] are generally recognised as being a convenient
means for describing concurrent systems at different levels of abstraction. Their
basic operational semantics is usually defined in terms of Labelled Transition
Systems (LTSs), which are then quotiented by means of observational equiva-
lences and allow the behaviour of a system to be analysed in relation to the
actions the specified system may perform.

Specific logics for process algebras were proposed (cf., e.g., [42,53]), typically
interpreted on LTSs, and ACTL and ACTL∗ were defined in this framework
as the action-based counterparts of CTL and CTL∗ [15,16,27,28]. In another
Festschrift contribution [6], we provided a more detailed historical account of
temporal logics for reasoning on state-based as well as action-based properties
and their interpretation structures, typically variants of the Doubly-Labelled
Transition Systems (L2TS) introduced by Rocco and Frits Vaandrager in [24,25].

1.3 Model Checking Action-Based Temporal Logics

Model-checking techniques [17,18] were defined to verify system properties,
expressed as temporal logic formulae, on finite-state models of the behaviour
of systems. Once a model of a system has been generated, the properties are
automatically verified by model-checking tools.

An efficient model checker, called AMC, was defined for ACTL to verify
the satisfaction of ACTL formulae over states in an LTSs as a collaboration
between Stefania, Rocco and other colleagues from Pisa and was first presented
at CAV’91 [20,21]. The model checker AMC was later integrated in the JACK
verification environment [14], whose extended version also contains a symbolic
model checker for ACTL, called SAM [36], and they were successfully used to
verify properties expressed as ACTL formulae on several concurrent systems,
among which some interesting industrial case studies [13,19,36,38].

Following this initial experience and to better deal with the so-called state-
space explosion problem which is typical of explicit-state model checkers, the
on-the-fly model checker FMC [41] was developed by Franco Mazzanti, another
Formal Methods and Tools Lab member. This tool formed the basis on which a
family of model checkers, named KandISTI, has been developed at ISTI–CNR for
over two decades now; that family now includes besides FMC, the UML model
checker UMC [4], the model checker CMC for verifying specifications in the
Calculus for Orchestration of Web Services (COWS) [35] and—the most recent
member of the family—the variability model checker VMC [9,10]. Each tool
allows for the efficient verification, by means of explicit-state on-the-fly model
checking of a family of logics based on ACTL. The KandISTI model checkers,
available online at http://fmt.isti.cnr.it/kandisti/, allow for model checking with
a complexity that is linear with respect to the size of the model and the size of the
formula, when ignoring the fixed point operators and the parametric aspects of
the logics (in which cases the complexity depends on the number of nested fixed
point operators and the number of instantiations of parametric subformulae).
In yet another Festschrift contribution [7], we described the development of the
KandISTI family of model checkers from its origins.

http://fmt.isti.cnr.it/kandisti/

Axiomatising and Contextualising ACTL 221

1.4 The ERCIM Workshop on Theory and Practice in Verification

The eighties and nineties of the last century saw the birth of numerous events
concerning the formal verification of systems and protocols. The IFIP WG6.1
established the series of symposia on Protocol Specification, Testing and Verifica-
tion (PSTV) and conferences on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE). In 1989, exactly 30 years ago,
the conference series on Computer Aided Verification (CAV) began as a work-
shop on Automatic Verification Methods for Finite State Systems, including a
contribution by Rocco and some of his colleagues from Pisa [22]. Subsequently, a
steering committee composed of Edmund Clarke, Robert Kurshan, Amir Pnueli
and Joseph Sifakis decided that CAV was to be organised annually. Started as
a workshop, nowadays it is the premier international conference on formal veri-
fication. Together with colleagues from Pisa, Rocco and Stefania contributed to
CAV’91 with a paper that shows how to model check ACTL formulae [20].

A year later, in 1992, Stefania and colleagues from Pisa organised a work-
shop on the Theory and Practice in Verification at the CNR, in the context of
the European Research Consortium for Informatics and Mathematics (ERCIM),
founded in 1989 to foster collaborative work within the European ICT research
community and to increase co-operation with European industry, which CNR
joined in 1992. This workshop was the first ‘European’ meeting in the context of
formal verification and Rocco was among the participants, together with many
of the main actors in verification in the context of process algebras (cf. Figs. 1
and 2).

1.5 The Formal Methods and Tools Lab of ISTI–CNR

From that moment, formal verification became one of the main research fields
for us and we may say that this particular event, as well as the collaborations
with Rocco on ACTL, have played a major role in shaping the activity of the
Formal Methods and Tools Lab of ISTI–CNR from the nineties to this very day.

Since Maurice joined the lab in the beginning of this century, he has worked
together with Rocco and Stefania in a number of European and national projects,
most notably the FP6-IP-IST-016004 project SENSORIA (Software Engineering
for Service-Oriented Overlay Computers) and the FP7-FET-ICT-600708 project
QUANTICOL (A Quantitative Approach to Management and Design of Col-
lective and Adaptive Behaviours), as well as the MIUR–PRIN 2010LHT4KM
project CINA (Compositionality, Interaction, Negotiation, Autonomicity for the
future ICT society) and the most recently approved MIUR–PRIN 2017FTXR7S
project IT MaTTerS (Methods and Tools for Trustworthy Smart Systems), both
coordinated by Rocco. During this period, he has become acquainted with ACTL
and he has helped to promote the model checkers from the KandISTI family
[5,7–10], which are characterised by their logics based on ACTL that allow for
the verification of action-based as well as state-based properties [3,4,6].

222 S. Gnesi and M. H. ter Beek

1.6 Contribution: An Axiomatisation of ACTL

An alternative to the model-theoretic approach to verification is the proof-
theoretic one, according to which a system is modelled in terms of set-theoretic
structures on which deduction rules are defined and theorems can be proved [49].
A proof assistant or theorem prover is an (interactive) tool which assists the user
in the development of formal proofs of properties of finite- as well as infinite-state
specifications, a known advantage over model checking. Furthermore, deductive
proofs can certify or justify the validity of a model-checking result [45,46]. How-
ever, there is no automatic procedure that can always determine whether there
exists a derivation of a given formula in a given logic setting, which is the reason
for which theorem proving typically involves interaction with a trained user.

The technical contribution of this paper is to present a set of axioms and
inference rules for ACTL, which provide a sound and complete axiom system
for ACTL, and which may thus form the basis for realising a proof-theoretic
approach to the verification of ACTL formulae. It complements the sound and
complete axiomatisations of CTL and CTL∗ first presented in [29,50], respec-
tively.1

Fig. 1. Rocco, Stefania and several other contributors, as well as 3/4 of the editors of
this Festschrift, at the 1992 ERCIM Workshop on Theory and Practice in Verification.

1 A preliminary version of the axiom system was presented in [40]; here we provide
a more succinct set of axioms, based on the fact that the eventually and always
operators F and G can be expressed in terms of the Until operator U , cf. Sect. 3.

Axiomatising and Contextualising ACTL 223

Fig. 2. Contents of the 1992 ERCIM Workshop on Theory and Practice in Verification
and the abstract of Rocco’s contribution (including his likely first-ever email address).

224 S. Gnesi and M. H. ter Beek

Outline
This paper is organised as follows. Section 2 provides some relevant prelim-

inary definitions. Section 3 contains the definition of the sound and complete
axiomatisation of ACTL. Section 4 concludes the paper.

2 Basic Definitions

The semantic models for the action-based branching-time temporal logic ACTL
are Labelled Transition Systems (LTSs).

Definition 1. A Labelled Transition System (LTS) is a triple

L = (Q, −→ , A ∪ {τ}),

where

– Q is a set of states, and u, v, w, s, t, . . . range over Q.
– A is a finite and non-empty set of visible actions, and a, b, c, . . . range over A;

τ is the silent action, which is not in A. We let Aτ = A ∪ {τ} = {�1, �2, . . .}.
– −→ ⊆ Q × Aτ × Q is the state transition relation. Instead of (s, �, t) ∈ −→ ,

we also write s
�−→ t and we call such transition an �-transition.

Remark 1. Hereafter, when we write that a state t is a successor of s, we intend
that ∃ � ∈ Aτ such that s

�−→ t; if s = t, such transition is called a loop (on �).

Definition 2. Let L = (Q, −→ , A ∪ {τ}) be an LTS and let

−→n = −→ × −→ × · · · × −→
︸ ︷︷ ︸

n times

and −→∞ = −→ × −→ × · · ·
︸ ︷︷ ︸

∞ times

be Cartesian products of the state transition relation −→ . Then:

– an infinite sequence σ of ordered triples of the form

σ = (s0, �0, s1) (s1, �1, s2) (s2, �2, s3) · · · ∈ −→∞

is called a path beginning in s0, and σ, π, δ range over paths.
– a finite sequence σ of ordered triples of the form

σ = (s0, �0, s1) (s1, �1, s2) · · · (sk−1, �k−1, sk) ∈ −→k

is called a (finite) path from s0 to sk (of length k).
– a path σ that cannot be extended, i.e. σ is infinite or ends in a state without

outgoing transitions, is called a full path.
– σ(0) is the starting state of the path σ, also denoted by first(σ).
– σ(n), for some n ≥ 0, is the nth state of the path σ.
– if σ is a finite path, last(σ) denotes its last state.
– the nth suffix of σ, denoted by σn, with n ≤ k for finite paths of length k,

is the sequence that contains all the states of σ starting from σ(n), which is
thus included. Thus σ0 = σ.

– if σ is a finite path and δ is a path such that last(σ) = first(δ), the path
π = σδ is called a concatenation of σ and δ (and δ is a suffix of π).

Axiomatising and Contextualising ACTL 225

3 The Temporal Logic ACTL

The branching-time temporal logic ACTL [23] is the action-based version of
CTL [15,16] and its semantic models are LTSs. ACTL is suitable for describing
the behaviour of systems that perform actions during their execution. In fact,
ACTL embeds the idea of “evolution over time by actions” and is suitable for
describing the various possible temporal sequences of actions that characterise a
system. The original definition of ACTL includes an action calculus to improve
the expressiveness of its operators.

In this section, we consider an LTS L = (Q, −→ , A ∪ {τ}) as defined above.

Definition 3. Let a ∈ A. Then action formulae f, g are defined by the grammar:

f, g ::= a | ¬f | f ∨ g

Let Afor be the set of action formulae over A.

Intuitively, the action formulae are Boolean expressions over (visible) actions.
Next we define the satisfaction of an action formula f by a single action a,

and we denote this satisfaction by a |= f .

Definition 4. Let a ∈ A and let f, g ∈ Afor. Then:

a |= a always holds
a |= ¬b holds for each b ∈ A such that a
= b

a |= ¬f iff a
|= f

a |= f ∨ g iff a |= f or a |= g

It is common to let tt denote a formula that is always satisfied in a calculus and
to let ff correspond to ¬tt. In our action calculus Afor, we define the formula tt
by choosing an a ∈ A and letting tt = a∨¬a (i.e. all actions of A are permitted).

Given f ∈ Afor, the set of actions satisfying f is defined as �f� = { a | a |= f }.
Well-formed ACTL formulae are defined by the state formulae generated by

the following grammar.

Definition 5. Well-formed formulae φ, ψ of ACTL are defined by the grammar:

φ, ψ ::= tt | φ ∧ φ | ¬φ | ∀π | ∃π

π ::= Xτ φ | Xf φ | X φ | φ fU ψ | φ fUg ψ

where f, g ∈ Afor are action formulae.

Here, ∀ and ∃ are universal and existential path quantifiers, while X and U
are (action-based) neXt(time) and Until operators (first introduced in [23]).

226 S. Gnesi and M. H. ter Beek

3.1 Models for ACTL

Let L be a total LTS (i.e. each state has a successor) and let RL be a non-empty
and suffix-closed set of paths on L (i.e. σ ∈ RL implies σi ∈ RL for all i ≥ 0). The
tuple (L,RL) is called an extended LTS and it is a model for ACTL formulae.
We consider only total LTSs to simplify the ACTL axiom system presented next.
Note that this is not a limitation, since there is a simple way to transform any
finite path of an LTS into an infinite one: it suffices to add a loop on τ in its
final state. First, we define the satisfaction relation for ACTL formulae.

Definition 6. Let M be an extended LTS, let s ∈ Q be a state of M , and let σ
be a path of M . Then the satisfaction relation |= for well-formed ACTL formulae
φ, ψ is inductively defined as follows:

M, s |= tt always holds
M, s |= ¬φ iff M, s
|= φ

M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

M, s |= ∀π iff ∀σ such that σ(0) = s : M,σ |= π

M, s |= ∃π iff ∃σ such that σ(0) = s and M,σ |= π

M, σ |= Xφ iff M,σ(1) |= φ

M, σ |= Xτ φ iff M,σ(1) |= φ and σ(0) τ−→ σ(1)

M,σ |= Xf φ iff M,σ(1) |= φ and σ(0) �−→ σ(1) such that �
= τ and � |= f

M, σ |= φ fU ψ iff ∃ k ≥ 0 such that M,σ(k) |= ψ and ∀ 0 ≤ j < k :

M,σ(j) |= φ and (σ(j) �−→ σ(j + 1)) → (� = τ or � |= f)
M,σ |= φ fUg ψ iff ∃ k ≥ 0 such that M,σ(k + 1) |= ψ, M, σ(k) |= φ,

(σ(k) �−→ σ(k + 1)) → (� |= g) and ∀ 0 ≤ j < k :

(M,σ(j) |= φ and (σ(j) �−→ σ(j + 1)) → (� = τ or � |= f))

The meaning of the propositional operators and the CTL path quantifiers is
standard. Intuitively, the neXt operator says that in the next state of the path
(reached by the silent action τ or by an action satisfying f) the formula φ holds;
the Until operator says that ψ holds at some future state of the path (reached
by an action satisfying g), while φ holds from the current state until that state
is reached and all actions executed meanwhile along the path satisfy f .

As usual, numerous modalities can be derived starting from these basic ones.
In particular, we may write ff for ¬tt and φ ∨ ψ for ¬(¬φ ∧ ¬ψ). Furthermore,
we define the following derived operators:

– ∃F φ stands for ∃[tt ttU φ]
– ∀Gφ stands for ¬∃F ¬φ
– 〈τ〉φ stands for ∃[tt ffU φ]
– 〈a〉φ stands for ∃[tt ffUa φ]

The meaning of ∃F φ is that φ must eventually be true in a possible Future,
while ∀Gφ means that φ must always be true in all possible futures (Globally).

Axiomatising and Contextualising ACTL 227

The meaning of 〈τ〉φ is that φ must be true in some future state reached by
zero or more τ -transitions. The meaning of 〈a〉φ is that φ must be true in some
future state reached by zero or more τ -transitions followed by an a-transition;
this resembles the diamond modality (possibly) of Hennessy–Milner logic [42],
which however does not require φ to be true immediately in the state reached
by the a-transition, but allows another zero or more τ -transitions also after the
a-transition before reaching the state in which φ is true (i.e. 〈a〉 〈τ〉φ in ACTL).
More details on the variants of Hennessy–Milner logic introduced in [24,42,52]
and their relation to ACTL can be found in [37]. Finally, the dual box modalities
(necessarily) of Hennessy–Milner logic, denoted by [·]φ, are defined by ¬〈·〉 ¬φ.

ACTL can thus be used to define the well-known properties of liveness
(“something good eventually happens”) and safety (“nothing bad can happen”).

Definition 7. Let M be an extended LTS and let s be a state of M . If M, s |= φ,
then we say that M is a model for φ in state s and that state formula φ is
satisfiable. Analogously for path formulae. We say that φ is valid, denoted by
|= φ, if φ is satisfiable for all models and all its states (for a state formula) and
similarly for a path formula.

Note that a formula is satisfiable iff its negation is not valid.

Notation 1. Neither ∀Xf∨τ φ nor ∃Xf∨τ φ is a well-formed ACTL formula.
Therefore, we define the following shorthands to be used in the rest of the paper:

∃Xf∨τ φ
def= ∃Xf φ ∨ ∃Xτ φ

∀Xf∨τ φ
def= ¬∃Xtt ¬φ ∧ ¬∃Xτ ¬φ ∧ ¬∃X¬f tt

We are now ready to present the main (technical) contribution of this paper.

3.2 An Axiom System for ACTL

We define an axiom system for ACTL, after which we present the main result of
this paper: the set of axioms and inference rules provides a sound and complete
axiomatisation of ACTL.

The axiom system for ACTL is shown in Fig. 3. We now provide some expla-
nations of this axiomatisation, discussing first the axioms and then the rules.

A0 represents any set of axioms that characterises the propositional tautologies.
A possible choice could be the following:

(A0/1) (φ ∨ φ) → φ

(A0/2) φ → (φ ∨ ψ)
(A0/3) (φ ∨ ψ) → (ψ ∨ φ)
(A0/4) (φ → ψ) → ((φ ∨ γ) → (ψ ∨ γ))

Together with the MP rule, this is a consistent and complete axiomatisation
of the calculus of the sentences.

228 S. Gnesi and M. H. ter Beek

Fig. 3. The axiom system of ACTL.

Axiomatising and Contextualising ACTL 229

A1 defines the ∃Xf operator in terms of single action ∃Xa operators.
A2–A12 concern the quantified neXt operators. More precisely:

A2 distribution law related to visible actions satisfying f .
A3 distribution law related to the silent action τ .
A4 defines the relation between the universal and existential next operators.

It says that if not all the states that are successors of a state s are reach-
able from s by satisfying f , then at least one of them is reachable either
by the silent action τ or by an action that does not satisfy f ; the reverse
holds too.

A5 defines the separation between the visible actions and the silent action. It
says that if not all the states that are successors of a state s are reachable
from s by the silent action τ , then there is one such successor state that
is reachable by a visible action satisfying f , and vice versa.

A6 defines the ∀Xf operator. It says that if a state s satisfies ∀Xf φ, then all
the successors of s satisfy φ (∀Xφ) and, moreover, they are all reachable
by actions that satisfy f (∀Xf tt).

A7 defines the ∀Xτ operator in a way that is analogous to A6.
A8 defines the ∃X operator.
A9 defines the ∀X operator as the dual of the ∃X operator.
A10 distribution law.
A11 distribution law.
A12 guarantees that each model for ACTL formulae must be total.

A13–A16 show the inductive way by which ∃(φ fU ψ), ∀(φ fU ψ), ∃(φ fUg ψ)
and ∀(φ fUg ψ) (in a slightly different way, cf. [40] for details) propagate
themselves along the paths of models. Note that A13–A16 do not forbid the
infinite unfolding of the Until operators, which is handled by A17–A20.

A17–A20 avoid the infinite unfolding of the Until operators. The trick is to use
a placeholder γ to characterise the case of infinite unfolding of an operator O
that should actually have a finite unfolding; we then say that if γ holds in a
state (i.e. such a state is the initial one for an infinite unfolding of O), then
in such a state O cannot hold.

A21–A22 avoid the infinite unfolding of the eventually operators F in a way
similar to the way this is done for the Until operators in A17–A20.

MP the usual Modus Ponens.
R∀X ensures that the theorems of the inference systems are closed under the

most general universal neXt operator.
R∀G ensures that the theorems of the inference systems are closed under the

always operator G.

We say that a formula φ can be inferred from an axiom system, denoted by
�φ, if there exists a finite sequence of formulae, ending with φ, such that each
formula is an instance of one of the axioms or follows from previous formulae by
applying one of the rules.

Finally, the next theorem ensures the soundness and completeness of the
axiom system for ACTL.

230 S. Gnesi and M. H. ter Beek

Theorem 1 (Soundness and Completeness). Each well-formed ACTL for-
mula φ is valid if and only if it can be inferred from the ACTL axiom system,
i.e.

�φ ↔ |= φ

Proof Sketch. (�φ → |= φ) The soundness proof is a rather standard proof by
induction on the structure of the derivation of φ.

(|= φ → �φ) The completeness proof is quite long and tedious; therefore,
we only provide an outline. It uses a technique from [26,30] based on a decision
algorithm for the satisfiability of CTL formulae. This technique is a variant of
the tableau approach, which was applied to the branching-time logics considered
in [12,34].

A formula ψ is consistent if ¬ψ cannot be inferred from the axiom system.
To show that any valid ACTL formula can be inferred from the axiom system,
it thus suffices to show that any consistent ACTL formula is satisfiable.

Let φ be a consistent ACTL formula. Then we need to define a procedure
to characterise a model for φ in a structural way, i.e. in a way that allows us
to automatically build and manipulate an LTS to achieve a model for φ. To do
so, we define a Fischer–Ladner finite closure set for φ (cf. [39]) and a particular
class of LTSs, so-called Hintikka Structures (HS), as in [12,30]. HS have the
property that each of their states is labelled by a subset of the Fischer–Ladner
closure of φ and we say that an HS is an HS for φ if one of its states contains
the formula φ. The following property holds: each model for φ is an HS for φ,
and each HS for φ is extendible to a model for φ without changing the number
of its states. Hence, if we have an algorithm that returns an HS for φ, then we
know that φ is satisfiable.

In order to write a procedure that takes φ, calculates its Fischer–Ladner
closure and tries to build an HS for φ, we must ensure that such a procedure
will terminate, i.e. that it is possible to build a finite HS for φ if φ is satisfiable.
To achieve this, we prove that φ is satisfiable if and only if it is possible to build
a finite HS that satisfies φ.

We conclude this proof sketch with an outline of the above mentioned decision
procedure:

1. Calculate the Fischer–Ladner closure of φ.
2. Let M be the set of all maximal subsets of this closure. Build an LTS L

that satisfies a minimal subset of conditions among those defining an HS and
whose states are elements of M . This ensures that whenever a finite HS for
φ exists, it is contained in L.

3. Purge all states of L that do not match the definition of HS. We prove that
(i) if φ is consistent, then there exists a consistent element S of M that
contains φ, and (ii) if a state is purged, then it was not consistent. Hence, S
cannot be purged by the procedure, and S will be a state of the resulting HS
that is calculated by the procedure. But S contains φ, so we obtain an HS
for φ and hence φ is satisfiable. ��

Axiomatising and Contextualising ACTL 231

4 Conclusion

In this paper, we have revisited De Nicola & Vaandrager’s action-based logic
ACTL. We have sketched the context in which it was introduced 30 years ago
and the impact it has had on our research and that of many of our colleagues of
the Formal Methods and Tools Lab. Furthermore, we have revamped an axiom
system for ACTL that has originally been published in the proceedings of a
national conference [40], by providing a more concise sound and complete axiom
system for ACTL.

Axiomatisation of a logic is often said to offer a better understanding of the
logic. Moreover, the ACTL axiom system may form the basis for developing a
theorem prover for the verification of ACTL formulae. In [40], a preliminary proof
assistant for ACTL implemented in HOL (http://hol-theorem-prover.org) was
described. Other directions for future work include the consideration of infinite-
state systems, to overcome limitations of model checking, and to investigate
the use of ACTL theorem proving to certify or justify the validity of an ACTL
model-checking result.

Finally, it would be interesting to develop an axiom system also for ACTL∗.
This logic, as is the case for CTL∗, includes both linear- and branching-time
operators, and it is well known that the model-checking algorithms for this class
of logics are PSPACE-complete. A proof-theoretic approach for ACTL∗ formulae
might ease verification for at least some classes of properties. However, it is
known from [26] and [31,32] that the complexity of checking satisfiability of
CTL and CTL∗ is EXPTIME-complete and 2-EXPTIME-complete, respectively,
in the length of the formula.

Acknowledgements. Stefania wishes to thank Salvatore Larosa, who worked on the
ACTL axiomatisation; Alessandro Fantechi, Franco Mazzanti, and Monica Nesi, for
interesting discussions on the preliminary version of the ACTL axiomatisation; and
Maurizio La Bella, who developed the ACTL proof assistant. And, last but not least,
Stefania would like to thank Rocco, for having initiated this line of research that has
led to so many interesting papers, projects, and collaborations with many different
people, and which in hindsight has made it worthwhile to remain at the CNR.

Maurice also would like to thank Alessandro and Franco, for numerous pleasant
collaborations on, among others, ACTL-like logics and the KandISTI family. And, of
course, also Rocco, for quality time spent together during a number of projects, not
limited to research.

References

1. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoret-
ical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990).
https://doi.org/10.1017/CBO9780511624193

2. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes. Cambridge Tracts in Theoretical Computer Science,
vol. 50. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/
CBO9781139195003

http://hol-theorem-prover.org
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1017/CBO9781139195003

232 S. Gnesi and M. H. ter Beek

3. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp.
133–148. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79707-
4 11

4. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002

5. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Using FMC for family-based
analysis of software product lines. In: Proceedings of the 19th International Soft-
ware Product Line Conference (SPLC 2015), pp. 432–439. ACM (2015). https://
doi.org/10.1145/2791060.2791118

6. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: States and events in KandISTI:
a retrospective. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets,
Meta: The What, the How, and the Why Not? LNCS, vol. 11200. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22348-9 9

7. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model
checkers. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems.
LNCS, vol. 8950, pp. 312–328. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15545-6 20

8. ter Beek, M.H., Mazzanti, F., Gnesi, S.: CMC-UMC: a framework for the verifi-
cation of abstract service-oriented properties. In: Proceedings of the 24th Annual
ACM Symposium on Applied Computing (SAC 2009), pp. 2111–2117. ACM (2009).
https://doi.org/10.1145/1529282.1529751

9. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: a tool for product variability
analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
450–454. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-
9 36

10. ter Beek, M.H., Mazzanti, F.: VMC: recent advances and challenges ahead. In:
Proceedings of the 18th International Software Product Line Conference (SPLC
2014), pp. 70–77. ACM (2014). https://doi.org/10.1145/2647908.2655969

11. Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. In:
Proceedings of the 8th Annual ACM SIGACT/SIGPLAN Symposium on Principles
of Programming Languages (POPL 1981), pp. 164–176. ACM (1981). https://doi.
org/10.1145/567532.567551

12. Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta
Inform. 20(3), 207–226 (1983). https://doi.org/10.1007/BF01257083

13. Bernardeschi, C., Fantechi, A., Gnesi, S., Larosa, S., Mongardi, G., Romano, D.: A
formal verification environment for railway signaling system design. Formal Meth-
ods Syst. Des. 12(2), 139–161 (1998). https://doi.org/10.1023/A:1008645826258

14. Bouali, A., Gnesi, S., Larosa, S.: JACK: Just Another Concurrency Kit - the inte-
gration project. Bull. EATCS 54, 207–223 (1994)

15. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

16. Clarke, E.M., Emerson, E.A.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982). https://
doi.org/10.1016/0167-6423(83)90017-5

https://doi.org/10.1007/978-3-540-79707-4_11
https://doi.org/10.1007/978-3-540-79707-4_11
https://doi.org/10.1016/j.scico.2010.07.002
https://doi.org/10.1145/2791060.2791118
https://doi.org/10.1145/2791060.2791118
https://doi.org/10.1007/978-3-030-22348-9_9
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1145/1529282.1529751
https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1145/2647908.2655969
https://doi.org/10.1145/567532.567551
https://doi.org/10.1145/567532.567551
https://doi.org/10.1007/BF01257083
https://doi.org/10.1023/A:1008645826258
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1016/0167-6423(83)90017-5

Axiomatising and Contextualising ACTL 233

17. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state
concurrent systems using temporal logic specifications: a practical approach. In:
Proceedings of the 10th Annual ACM SIGACT/SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL 1983), pp. 117–126. ACM (1983). https://
doi.org/10.1145/567067.567080

18. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986). https://doi.org/10.1145/5397.5399

19. De Nicola, R., Fantechi, A., Gnesi, S., Larosa, S., Ristori, G.: Verifying hardware
components with JACK. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995.
LNCS, vol. 987, pp. 246–260. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60385-9 15

20. De Nicola, R., Fantechi, A., Gnesi, S., Ristori, G.: An action based framework
for verifying logical and behavioural properties of concurrent systems. In: Larsen,
K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 37–47. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55179-4 5

21. De Nicola, R., Fantechi, A., Gnesi, S., Ristori, G.: An action-based framework for
verifying logical and behavioural properties of concurrent systems. Comput. Netw.
ISDN Syst. 25(7), 761–778 (1993). https://doi.org/10.1016/0169-7552(93)90047-8

22. De Nicola, R., Inverardi, P., Nesi, M.: Using the axiomatic presentation of
behavioural equivalences for manipulating CCS specifications. In: Sifakis, J. (ed.)
CAV 1989. LNCS, vol. 407, pp. 54–67. Springer, Heidelberg (1990). https://doi.
org/10.1007/3-540-52148-8 5

23. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

24. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation (extended
abstract). In: Proceedings of the 5th Annual Symposium on Logic in Computer
Science (LICS 1990), pp. 118–129. IEEE (1990). https://doi.org/10.1109/LICS.
1990.113739

25. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995). https://doi.org/10.1145/201019.201032

26. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Com-
puter Science. Formal Models and Semantics, vol. B, pp. 995–1072. Elsevier (1990).
https://doi.org/10.1016/B978-0-444-88074-1.50021-4

27. Emerson E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching
versus linear time (preliminary report). In: Proceedings of the 10th Annual ACM
SIGACT/SIGPLAN Symposium on Principles of Programming Languages (POPL
1983), pp. 127–140. ACM (1983). https://doi.org/10.1145/567067.567081

28. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branch-
ing versus linear time temporal logic. J. ACM 33(1), 151–178 (1986). https://doi.
org/10.1145/4904.4999

29. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. In: Proceedings of the 14th Annual ACM Symposium
on Theory of Computing (STOC 1982), pp. 169–180. ACM (1982). https://doi.org/
10.1145/800070.802190

30. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. J. Comput. Syst. Sci. 30(1), 1–24 (1985). https://
doi.org/10.1016/0022-0000(85)90001-7

https://doi.org/10.1145/567067.567080
https://doi.org/10.1145/567067.567080
https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/3-540-60385-9_15
https://doi.org/10.1007/3-540-60385-9_15
https://doi.org/10.1007/3-540-55179-4_5
https://doi.org/10.1016/0169-7552(93)90047-8
https://doi.org/10.1007/3-540-52148-8_5
https://doi.org/10.1007/3-540-52148-8_5
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1109/LICS.1990.113739
https://doi.org/10.1109/LICS.1990.113739
https://doi.org/10.1145/201019.201032
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
https://doi.org/10.1145/567067.567081
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/800070.802190
https://doi.org/10.1145/800070.802190
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1016/0022-0000(85)90001-7

234 S. Gnesi and M. H. ter Beek

31. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs
(extended abstract). In: Proceedings of the 29th Annual Symposium on Founda-
tions of Computer Science (FOCS 1988), pp. 328–337. IEEE (1988). https://doi.
org/10.1109/SFCS.1988.21949

32. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of
programs. SIAM J. Comput. 29(1), 132–158 (1999). https://doi.org/10.1137/
S0097539793304741

33. Emerson, E.A., Lei, C.-L.: Efficient model checking in fragments of the proposi-
tional mu-calculus (extended abstract). In: Proceedings of the First Annual IEEE
Symposium on Logic in Computer Science (LICS 1986), pp. 267–278. IEEE (1986)

34. Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Inf. Control 61(3),
175–201 (1984). https://doi.org/10.1016/S0019-9958(84)80047-9

35. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A log-
ical verification methodology for service-oriented computing. ACM Trans. Softw.
Eng. Methodol. 21(3), 161–1646 (2012). https://doi.org/10.1145/2211616.2211619

36. Fantechi, A., Gnesi, S., Mazzanti, F., Pugliese, R., Tronci, E.: A symbolic model
checker for ACTL. In: Hutter, D., Stephan, W., Traverso, P., Ullmann, M. (eds.)
FM-Trends 1998. LNCS, vol. 1641, pp. 228–242. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48257-1 14

37. Fantechi, A., Gnesi, S., Ristori, G.: Model checking for action-based logics. Formal
Methods Syst. Des. 4(2), 187–203 (1994). https://doi.org/10.1007/BF01384084

38. Fantechi, A., Gnesi, S., Semini, L.: Formal description and validation for an
integrity policy supporting multiple levels of criticality. In: Dependable Computing
and Fault-Tolerant Systems: Proceedings of the 7th IFIP International Conference
on Dependable Computing for Critical Applications (DCCA-7), vol. 12, pp. 129–
146. IEEE (1999). https://doi.org/10.1109/DCFTS.1999.814293

39. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci. 18(2), 194–211 (1979). https://doi.org/10.1016/0022-
0000(79)90046-1

40. Gnesi, S., Larosa, S.: A sound and complete axiom system for the logic ACTL.
In: Proceedings of the 5th Italian Conference on Theoretical Computer Science
(ICTCS 1995), pp. 343–358. World Scientific (1996). https://doi.org/10.1142/
9789814531184

41. Gnesi, S., Mazzanti, F.: On the fly verification of networks of automata. In: Pro-
ceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 1999), pp. 1040–1046. CSREA Press (1999)

42. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985). https://doi.org/10.1145/2455.2460

43. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs (1985)

44. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

45. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44585-4 2

46. Peled, D., Pnueli, A., Zuck, L.: From falsification to verification. In: Hariharan,
R., Vinay, V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 292–304.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45294-X 25

47. Pnueli, A.: Linear and branching structures in the semantics and logics of reactive
systems. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 15–32. Springer,
Heidelberg (1985). https://doi.org/10.1007/BFb0015727

https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1016/S0019-9958(84)80047-9
https://doi.org/10.1145/2211616.2211619
https://doi.org/10.1007/3-540-48257-1_14
https://doi.org/10.1007/BF01384084
https://doi.org/10.1109/DCFTS.1999.814293
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1142/9789814531184
https://doi.org/10.1142/9789814531184
https://doi.org/10.1145/2455.2460
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-45294-X_25
https://doi.org/10.1007/BFb0015727

Axiomatising and Contextualising ACTL 235

48. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). https://doi.org/10.1007/
3-540-11494-7 22

49. Ray, S.: Scalable Techniques for Formal Verification. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-1-4419-5998-0

50. Reynolds, M.: An axiomatization of full computation tree logic. J. Symb. Log.
66(3), 1011–1057 (2001). https://doi.org/10.2307/2695091

51. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Englewood
Cliffs (1997)

52. Stirling, C.: An introduction to modal and temporal logics for CCS. In: Yonezawa,
A., Ito, T. (eds.) CONCURRENCY 1989. LNCS, vol. 491, pp. 1–20. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-53932-8 41

53. Stirling, C.: Modal and temporal logics. In: Handbook of Logic in Computer Sci-
ence. Background: Computational Structures, vol. 2, pp. 477–563. Oxford Univer-
sity Press (1993)

https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/978-1-4419-5998-0
https://doi.org/10.2307/2695091
https://doi.org/10.1007/3-540-53932-8_41

Featherweight Scribble

Rumyana Neykova1 and Nobuko Yoshida2(B)

1 Brunel University London, London, UK
2 Imperial College London, London, UK

n.yoshida@imperial.ac.uk

Abstract. This paper gives a formal definition of the protocol speci-
fication language Scribble. In collaboration with industry, Scribble has
been developed as an engineering incarnation of the formal multiparty
session types. In its ten years of development, Scribble has been applied
and extended in manyfold ways as to verify and ensure correctness of
concurrent and distributed systems, e.g. type checking, runtime monitor-
ing, code generation, and synthesis. This paper introduces a core version
of Scribble, Featherweight Scribble. We define the semantics of Scrib-
ble by translation to communicating automata and show a behavioural-
preserving encoding of Scribble protocols to multiparty session type.

1 Introduction

The computational model, Klaim, introduced by De Nicola and others [8] advo-
cates a hybrid (dynamic and static) approach for access control against capa-
bilities (policies) to support static checking integrated within a dynamic access-
control procedure. Their capabilities can specify crucial operations for mobile
computation such as read, write and execute of processes in relation to the various
localities, as types. Around the same period, (binary) session types [14,27] were
proposed to describe a sequence of read (output), write (input) and choice oper-
ations for channel passing protocols. Later binary session types were extended
to multiparty session types [7,15], as a model of abstract choreographies of Web
Services Choreography Description Language [6]. See [16, §1] for more historical
backgrounds.

Scribble [13,26] is a protocol description language, formally based on the
multiparty session type theory. A protocol in Scribble represents an agreement
on how participating systems interact with each other. It specifies a format and
a predefined order for messages to be exchanged. The name of the language
embodies the motivation for its creation, as explained by the following quote
from the inventor of the Scribble language Kohei Honda:

The name (Scribble) comes from our desire to create an effective tool for
architects, designers and developers alike to quickly and accurately write
down protocols.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 236–259, 2019.
https://doi.org/10.1007/978-3-030-21485-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_14

Featherweight Scribble 237

Global Protocol

Local Protocol Local Protocol Local Protocol

FSM FSM FSM

Projection

.

FSM Generation

.

Fig. 1. Scribble development methodology

The development of Scribble is a result of a persistent dialogue between
researchers and industry partners. Currently Scribble tools are applied to verifi-
cation of main stream languages such as Java [18,19], Python [9,17], MPI [24],
Go [5], F# [22], Erlang [23].

All great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling

Although Scribble is often referred as “the practical incarnation of multiparty
session types (MPST)” [13,26], a formal correspondence between the two is not
proven in the literature. In this paper we present the semantics of Scribble proto-
cols, given by translation to communicating automata, and show a behavioural-
preserving encoding of Scribble protocols to multiparty session type.

Section 2 gives an overview of Scribble and explains the Scribble framework.
Section 3 presents the formal semantics of the Scribble language. Section 4 proves
the encoding of Scribble local and global protocols to global and local session
types to be behaviour-preserving. Section 5 gives the translation between local
Scribble protocols and Communicating Finite State machines (CFSMs) [10].
Section 6 concludes. Appendix contains omitted proofs.

2 Scribble Overview

Scribble protocols describe an abstract structure of message exchanges between
roles: roles abstract from the actual identity of the endpoints that may partici-
pate in a run-time conversation instantiating the protocol. Scribble enables the
description of abstract interaction structures including asynchronous message
passing, choice, and recursion.

Here we demonstrate the basic Scribble constructs via an example of an online
payment service. Figure 2 (left) shows the global Scribble protocol OnlineWallet.
The first line declares, under the name OnlineWallet, the Scribble global protocol
and the two participating roles. The protocol has a recursion at thetop-level. In

238 R. Neykova and N. Yoshida

global protocol OnlineWallet(
role S, role C){
rec LOOP {
Balance(int) from S to C;
Overdraft(int) from S to C;
choice at C {
Payment(int) from C to S;
continue LOOP;

} or {
CloseAccount () from C to S;

} or {
Quit() from C to S;

}}}

local protocol OnlineWallet(
self S, role C) {
rec LOOP {

Balance(int) to C;
Overdraft(ints) to C;
choice {

Payment(int) from C;
continue LOOP;

} or {
CloseAccount () from C;

} or {
Quit() from C;

}}}

Fig. 2. A global (left) and local (right) Scribble protocol

each iteration, the Server (S) sends theClient (C) the current balance and the
overdraft limit for client’s account. The Balance message has an int payload;
similarly for the Overdraft. Client then can choose to either make a payment,
close the account or quit this session.

Figure 1 gives an abstract overview of the Scribble verification process. From
a global Scribble protocol, the toolchain produces (1) a set of local protocols or
(2) a set of finite state machines (FSMs). We outline the tasks performed by the
Scribble toolchain.

Well-Formedness Check: A global Scribble protocol is verified for correctness
to ensure that the protocol is well-formed, which intuitively represents that a
protocol describes a meaningful interaction, beyond the basic syntax defined by
the language grammar. This well-formed checking is necessary because some of
the protocols are unsafe or inconsistent even if they follow the grammar. For
example, two choice branches from the same sender to the same receiver with
the same message signature lead to ambiguity at the receiver side. A protocol
is well-formed if local protocols can be generated for all of its roles, i.e., the
projection function is defined for all roles. The formal definition of projection
is given in Definition 4.10. Here we give intuition as to what the main syntactic
restrictions are. First, in each branch of a choice the first interaction (possibly
after a number of unfoldings) is from the same sender (e.g., A) and to the same set
of receivers. Second, in each branch of a choice the labels are pair-wise distincs
(i.e., protocols are deterministic).

Projection: A global Scribble protocol is projected to a set of local protocols.
More precisely, a local Scribble protocol is generated per each role declared in
the definition of the global protocol. Local protocols correspond to local (MPST)
types, they describe interactions from the viewpoint of a single entity. They can
be used directly by a type checker to verify that an endpoint code implementation
complies to the interactions prescribed by a specification. Figure 2 (right) lists
the Scribble local protocol OnlineWallet projected for role Server.

FSM Generation: An alternative representation of a local protocol can be
given in the form of a communicating finite state machine (FSM). This repre-

Featherweight Scribble 239

sentation is useful for runtime verification. Specifically, at runtime the traces
emitted by a program are checked against the language accepted by the FSM.

An implementation of Java and Python based Scribble tools for projection
and validation [26], as well as static verification for various languages can be
found in [1].

3 Syntax and Semantics of Scribble

3.1 Scribble Global Protocols

We now define the syntax of Scribble global protocols. The grammar is given
below.

Definition 3.1 (Scribble Global Protocols)

P :: = global protocol pro (role A1, ..., role An){G} specification

G :: = a(S) from A to B; G interaction

| choice at A {G} or . . . or {G} choice

| rec t {G} recursion

| continue t call

Protocol names are ranged over by pro. A (global) specification P declares a
protocol with name pro, involving a list (A1, ..An) of roles, and prescribing the
behaviour in G. The other constructs are explained below:

– An interaction a(S) from A to B; G specifies that a message a(S) should be sent
from role A to role B and that the protocol should then continue as prescribed
by the continuation G. Messages are of the form a(S) with a being a label and
S being the constant type of exchanged messages (such as real, bool and
int).

– A choice choice at A {G} or . . . or {G} specifies a branching where role
A chooses to engage in the interactions prescribed by one of the options G.
The decision itself is an internal process to role A, i.e. how A decides which
scenario to follow is not specified by the protocol.

– A recursion rec t {G} defines a scope with a name t and a body G. Any
call continue t occurring inside G executes another recursion instance (if
continue t is not in an appropriate scope than it remains idle).

Formal Semantics of Global Protocols. The formal semantics of global protocols
characterises the desired/correct behaviour of the roles in a multiparty protocol.
We give the semantics for Scribble protocols as a Labelled Transition System
(LTS). The LTS is defined over the following set of transition labels:

�:: = AB!a(S) | AB?a(S)
Label AB!a(S) is for a send action where role A sends to role B a message a(S).
Label AB?a(S) is for a receive action where B receives (i.e., collects from the

240 R. Neykova and N. Yoshida

queue associated to the appropriate channel) message a(S) that was previously
sent by A. We define the subject of an action, modelling the role that has the
responsibility of performing that action, as follows:

subj(AB!a(S)) = A subj(AB?a(S)) = B

As, due to asynchrony, send and receive are two distinct actions, the LTS
shall also model the intermediate state where a message has been sent but it
has not been yet received. To model these intermediate states we introduce the
following additional global Scribble interaction:

transit : a(S) from A to B; G

to describe the state in which a message a(S) has been sent by A but not yet
received by B. We call runtime global protocol a protocol obtained by extending
the syntax of Scribble with these intermediate states.

The transition rules are given in Fig. 3. Rule �send� models a sending action;
it produces a label AB!a(S). The sending action yields a state in which the global
protocol is in an intermediate state.

Rule �recv� models the dual receive action, from an intermediate state to a
continuation G. Rule �choice� continues the execution of the protocol as a con-
tinuation of one of the branches. Rule �rec� is standard and unfolds recursive
protocols.

We explain the remaining rules with more detailed illustration.
Due to asynchrony and distribution, in a particular state of a Scribble global

protocol it may be possible to trigger more than one action. For instance, the
protocol in (1) allows two possible actions: AB!a(S) or CD!a(S).

a(S) from A to B;
a(S) from C to D; (1)

This is due to the fact that the two send actions are not causally related as they
have different subjects (which are independent roles). We want the semantics
of Scribble to allow, in the state with protocol (1), not only the first action
that occurs syntactically (e.g., AB!a(S)) but also any action that occurs later,
syntactically, but it is not causally related with previous actions in the protocol
(e.g., CD!a(S)). Rule �async1� captures this asynchronous feature. CD!a(S), which
occurs syntactically later than AB!a(S) to possibly occur before. In fact, the
LTS allows (1) to take one of these two actions: either AB!a(S) by rule �send� or
CD!a(S) is allowed by �async1�. Rule �async2� is similar to �async1� but caters for
intermediate states, and is illustrated by the protocol in (2).

transit :a(S) from A to B;
a(S) from C to D; (2)

The protocol in (2) is obtained from (1) via transition AB!a(S) by rule �send�.
The above protocol can execute either AB?a(S) by rule �recv�, or CD!a(S) by rule
�async2�.

Featherweight Scribble 241

Fig. 3. Labelled transitions for global protocols.

Fig. 4. Labelled transitions for local protocols (from A’s point of view)

Fig. 5. Syntax for global and local types

Fig. 6. Labelled transitions for global types (adapted from [11])

Fig. 7. LTS for local session types (adapted from [11])

242 R. Neykova and N. Yoshida

3.2 Scribble Local Protocols

Scribble local protocols describe a session from the perspective of a single par-
ticipant. The syntax of Scribble local protocols is given below.

Definition 3.2 (Scribble Local Protocols)

L :: = local protocol pro at Ai(role A1, ..., roleA1){T}
T :: = a(S) to B; T | a(S) from B; T | choice at A {T1} or . . . or {Tn}

| rec pro {T} | continue pro | end

The construct a(S) to B; T models a send action from A to B; the dual
local protocol is a(S) from B; T that models a receive action of A from B.
The other protocol constructs are similar to the corresponding global proto-
col constructs. Recursive variables are guarded in the standard way, i.e. they
only occur under a prefix. For convenience we will, sometimes, use the nota-
tion choice at {ai(Si) from A; Ti}i∈{1,..,n} to denote protocols of the form
choice at {a1(S1) from A; T1} or . . . or {an(Sn) from A; Tn} with n > 1, or
of the form a(S) from A; T when n = 1.

Decomposing global protocols into a set of local protocols is called projection.
Projection is a key mechanism to enable distributed enforcement of global prop-
erties. Projection preserves the interaction structures and message exchanges
required for the target role to fulfil his/her part in the conversation. The for-
mal definition of projection, for a normal (canonical) form of global protocols,
is given by Definition 4.10.

Formal Semantics of Local Protocols. The LTS for local protocols is defined
by the rules in Fig. 4, and uses the same labels as the global semantics in Fig. 3.
The rules �send�, �recv�, �choice�, �rec� are similar to the respective rules for global
protocols. No rules for asynchrony are required as each participant is assumed
to be single threaded.

Formal Semantics of Configurations. The LTS in Fig. 4 describes the
behaviour of each single role in isolation. In the rest of this section we give
the semantics of systems resulting from the composition of Scribble local pro-
tocols and communication channels. Given a set of roles {1, . . . , n} we define
configurations (T1, . . . , Tn, #»w) where #»w :: = {wij}i�=j∈{1,...,n} are unidirectional,
possibly empty (denoted by ε), unbounded FIFO queues with elements of the
form a(S).

Definition 3.3 (Semantics of configurations). The LTS of (T1, . . . , Tn, #»w)
is defined as follows: (T1, . . . , Tn, #»w) �−→ (T′

1, . . . , T
′
n,

#»w ′) iff: :

(1) TB
AB!a(S)−−−−→ T′

B ∧ w′
AB = wAB · a(S) ∧ (ij �= AB ⇒ wij = w′

ij ∧ Ti = T′
i)

(2) TB
AB?la(S)−−−−−→ T′

B ∧ a(S) · w′
AB = wAB ∧ (ij �= AB ⇒ wij = w′

ij ∧ Tj = T′
j)

with A, B, i, j ∈ {1, . . . , n}.
In (1) the configuration makes a send action given that one of the participants
can perform that send action. Case (1) has the effect of adding a message, that

Featherweight Scribble 243

Glocal
protocols

≈ Normal Form

Prop. 4.6

≈ Global Types

Prop. 4.8

≈ Configuration
of Local Types

From [11]

≈ Configuration of
Local Protocols

Prop. 4.12

Fig. 8. Workflow of proving soundness of the projection

is sent, to the corresponding queue. In (2) the configuration makes a receive
action given that one of its participant can perform such an action and that the
message being received is currently stored in the corresponding queue. Thus, (2)
has the effect of removing the message received from the queue.

4 Correspondence Between Scribble and MPST

In this section we show that a trace of a global protocol corresponds exactly to a
trace of its projected local protocols. Correspondence is important as it ensures
that the composition of processes, each implementing some local protocol, will
behave as prescribed by the original global specification. In the context of MPST,
this property is known as soundness of the projection (Theorem 3.1, [11]) and has
already been proven for global types as defined in [11]. As explained in Sect. 4.1
a translation of this result to Scribble, however, is not obvious.

Figure 8 gives a high level overview of the results presented in this section.
First, we discuss the (syntactic) differences between global types and global
protocols. We present a normal form for global protocols such that a Scribble
global protocol in a normal form can be encoded into (MPST) global types and it
preserves semantics. We then prove a similar correspondence between Scribble
local protocols and (MPST) local types. The soundness of the projection of
global protocols then follows from soundness of the projection of MPST global
types (Theorem 3.1 from [11]).

4.1 Scribble Normal Form

We recall the syntax of global types from [11] in Fig. 5. It is very similar to the
syntax of Scribble global protocols in Sect. 3 except: (1) Scribble does not cater
for delegation and higher order protocols whereas global types do; and (2) the
choice and interaction protocols are two separated constructs in Scribble while
they are modelled as a unique construct in global types and (3) differently than
MPST, Scribble allows unguarded choice. The case of (2) is a consequence of the
specific focus of Scribble as a protocol design language directed at practition-
ers that are familiar with e.g., Java notation, who proved to find this notation
friendlier [12,13,26,28]. Regarding (3) the choice construct in Scribble directly
supports recursion and choice while in MPST the choice is always directly fol-
lowed by an interaction. In the following section we explain that these differences
are indeed syntactic and do not affect the soundness of the language.

244 R. Neykova and N. Yoshida

Fig. 9. Scribble protocol (left), and its
flatten form (right)

Fig. 10. Scribble protocol (left), and
its normal form (right)

Definition 4.1 (Scribble Normal Form (SNF))

G :: = choice at A {Ni}i∈{1,..,n} | N | rec t {N}
N :: = a(S) from A to B; G | continue t | end

First, we observe that a Scribble syntax with a guarded and a singleton choice
directly corresponds to MPST. We refer to a Scribble protocol, where all choices
are guarded, as a Scribble Normal Form (SNF). Later we show that there is a
behaviour preserving translation between a well-formed Scribble protocol and
its normal form. The Scribble Normal Form (SNF) for global protocols is given
below.

The encoding of Scribble global protocols to SNF requires two auxiliary func-
tions: flatten(G) and unfold(G). The latter collects top level global types from
a choice type, and is utilised in the encoding as to remove nested choice. The
former performs one unfolding of a recursion. We demonstrate flatten(G) in
the example in Fig. 9.

Definition 4.2 (Flatten). Given a Scribble protocol G then flatten(G) is
defined as flatten(G0)∪...∪flatten(Gn) if G=choice at A {Gi}i∈{1,..,n}. In all other cases,
flatten(G) is homomorphic, flatten(G) = G

Definition 4.3 (Unfold). Given a global Scribble protocols G then unfold(G) is
defined as unfold(G′[rec t {G′}/continue t])) if G = rec t {G′} and homomrhic
otherwise

Thus for any recursive type, unfold is the result of repeatedly unfolding the
top level recursion until a non-recursive type constructor is reached. Unfold
terminates given the assumption that recursive types are contractive, as in our
case. Intuitively, a protocol is translated to a normal form after first unfolding
all recursions once and then flattening nested choice. Figure 10 shows a Scribble
protocol and its translation to its normal form, and the encoding is given in
Definition 4.4.

Featherweight Scribble 245

Definition 4.4 (Encoding 〈〉 of Global Protocols to SNF)

〈a(S) from A to B; G〉 = a(S) from A to B; 〈G〉
〈choice at A {Gi}i∈{1,..,n}〉 = choice at A {flatten(〈Gi〉)}i∈{1,..,n}

〈end〉 = end 〈rec t {G}〉 = unfold(rec t {〈G〉}) 〈continue t〉 = continue t

Trace Equivalence. The definition of trace equivalence, denoted by ≈ is stan-
dard. We write G ≈ G′ if TR(G) = TR(G′) where TR(G) is the set of traces
obtained by reducing G

TR(G) = { #»

� | ∃G′, G
#»
�−→ G′}

We assume G is closed, i.e does not contain free type variables, where a type
variable t is bound in rec t {G′}, and free otherwise. We extend the definition
of traces for local protocols, global and local types, and we also extend ≈ and
� to local protocols, as well as global and local types, and configuration of local
protocols.

Lemma 4.5. Given a global protocol G then: (1) G ≈ flatten(G) (2) G ≈
unfold(G); and (3) 〈G′〉[rec t {〈G′〉}/continue t] ≈ 〈G′[rec t {G′}/continue t]〉
Proposition 4.6 (SNF Translation). Let G be a Scribble local protocol, then
G ≈ 〈G〉.

4.2 From Global Protocols to Global Types

Definition 4.7 (Encoding of Global Protocols to Global Types). The
encoding �� from SNF to global types is given below:

� a(S) from A to B; G� = A → B : {a〈S〉.�G�}
�choice at A {aj(Sj) from A to B; Gj}j∈{1···n}� = A → B : {aj〈Sj〉.�Gj�}j∈{1···n}
�rec t {G}� = μt.�G� �continue t� = t �end� = end

For convenience, we recall the semantics of global types in Fig. 6. The seman-
tics of global protocols and global types are similar except that the one for
MPSTs from [11] have no rule �Choice� as choice is handled directly in the rule
for send/selection and branch/receive. To match Scribble global protocols and
MPST step by step we extend the definition of encoding to account for interme-
diate steps:

�transit :a(S) from A to B; G′′� = A � B : a〈S〉.�G′′�

Proposition 4.8 (Correspondence of Global Protocols and Global
Types). Let G be a Scribble global protocol, then G ≈ �G�.

246 R. Neykova and N. Yoshida

4.3 From Local Protocols to Local Types

The syntactic differences between Scribble local protocols and local types (given
in Fig. 5) reflect the difference between Scribble global protocols and MPST
global types. We define an encoding of local protocols (Definition 3.2) to local
types on the normal form of a Scribble local protocol (Definition 4.9).

Definition 4.9 (Local Scribble Normal Form (LSNF))

T :: = choice at A{Ni}i∈I | N | rec t {N}
N :: = a(S) from B; T | a(S) to B; T | continue t | end

Local types are generated from global types following a syntactic procedure,
called projection. In a similar way we define projection on global protocols. The
definition of projection is given in Definition 4.10. We denote by P(G) the set of
roles in a protocol G.

Definition 4.10 (Projection). The projection of G onto A ∈ P(G), written
G ↓A, is defined by induction on G as follows:

(a(S) from B to C; G′) ↓A=⎧
⎪⎨

⎪⎩

a(S) from B; (G′ ↓A) if A = C

a(S) to C; (G′ ↓A) if A = B

G′ ↓A if A �= B, C

(rec t {G′}) ↓A={
rec t {(G′ ↓A)} G′ �= continue t

end otherwise

(choice at B {ai(Si) from B to C; Gi}i∈I) ↓A=⎧
⎪⎨

⎪⎩

choice at B {ai(Si) from B; (Gi ↓A)}i∈I if A = C

choice at B {ai(Si) to C; (Gi ↓A)}i∈I if A = B

choice at D (�{(Gi ↓A)}i∈I) if A �= B, C; Gi ↓A= ai(Si) from D; G′
i ↓A,∀i ∈ I

(continue t) ↓A= continue t (end) ↓A= end

If no side condition applies then G is not projectable on A and the global protocol
G is not well-formed. The case for choice uses the merge operator � to ensure
that (1) the locally projected behaviour is independent of the chosen branch (i.e
Gi = Gj, for all i, j ∈ I), or (2) the chosen branch is identifiable by A via a unique
label. The merge operator � [11] is defined as a partial commutative operator
over two types s.t.

{ai(Si) from B; Ti}i∈I � {a′
j(S

′
j) from B; T′

j}j∈J = {ak(Sk) from B; Tk}k∈I\J

∪ {a′
j(S

′
j) from B; T′

j}j∈J\I ∪ {ak(Sk) from B; Tk � T′
k}k∈I∩J

where for each k ∈ I ∩ J, ak = a′
k, Sk = S′

k Merge is homomorphic for all other
types (i.e E [Tk] � E [T′

k] = E [Tk � T′
k], where E is a context for local protocols.).

We say that G is well-formed if for all A ∈ P(G), G ↓A is defined. Note that a
normal form is preserved during projection, i.e a Sribble global protocol in a
normal form is projected to a Scribble local protocol in a normal form. Next
we give the encoding between Scribble local protocols and MPST local types.
Hereafter we write Scribble local protocol when referring to LSNF protocols.

Featherweight Scribble 247

Definition 4.11 (Encoding of Local Protocols to Local Types). The
encoding �� from (Scribble) local protocols to MPST local types is given below:

�a(S) to B; T� = B!{a : 〈S〉.�T�} �a(S) from B; T� = B?{a : 〈S〉.�T�}
�choice at A {T′

i}i∈I� =

{
B!{ai : 〈Si〉.�T′

i�}i∈I if T′
i = ai(Si) to B; Ti

A?{ai : 〈Si〉.�T′
i�}i∈I if T′

i = ai(Si) from A; Ti
�rec t {T}� = μt.�T� �continue t� = t �end� = end

Proposition 4.12 (Correspondence of Local Protocols and Local
Types). Let T be a Scribble local protocol, then T ≈ �T�.

Proposition 4.13 (Correspondence of Configurations). Let (T1, . . . ,
Tn,

#»w) be a configuration of Scribble local protocols, then (T′
1, . . . , T

′
n,

#»w) ≈
(�T1′�, . . . , �T′

n�,
»

w′).

4.4 Correspondence of Global and Local Protocols

Theorem 4.14 gives the correspondence between the traces produced by a global
protocol G and those produced by the configuration that consists of the compo-
sition of the projections of G onto P(G).

Theorem 4.14 (Soundness of projection). Let G be a Scribble global protocol
and {T1, . . . , Tn} = {G ↓A}A∈P (G) be the set of its projections, then

G ≈ (T1, . . . , Tn, #»ε)

Theorem 4.14 directly follows by: (i) the correspondence between (Scribble)
global protocols and MPSTs global types given in Sect. 4; (ii) trace equivalence
between global types and configuration of projected global types (Theorem 3.1
in [11]); (iii) the correspondence between configurations of MPSTs local types
and configurations of Scribble local protocols given in Sect. 4.

5 From Scribble to CFSMs

This section gives the translation of local protocols to CFSMs [4]. First, we start
from some preliminary notations. ε is the empty word. A is a finite alphabet and
A∗ is the set of all finite words over A. |x| is the length of a word x and x.y or
xy the concatenation of two words x and y. Let P be a set of participants fixed
throughout the section: P = {A, B, C, . . . p, q, . . .}.

Definition 5.1 (CFSM). A communicating finite state machine is a finite
transition system given by a 5-tuple M = (Q,C, q0, A, δ) where (1) Q is a
finite set of states; (2) C = {AB ∈ P2|A �= B} is a set of channels; (3)
q0 ∈ Q is an initial state; (4) A is a finite alphabet of message labels, and
(5) δ = Q × (C × {!, ?} × A) × Q is a finite set of transitions.

248 R. Neykova and N. Yoshida

Final State is a state q ∈ Q, which does not have any outgoing transitions.
If all states in Q are final, δ is the empty relation. A (communicating) system
S is a tuple S = (Mp)p∈P of CFSMs such that Mp = (Qp, C, q0p , A, δp). We
define a configuration for Mp to be a tuple s = (#»q , #»w) where #»q = (qp)p∈P and
where w = (wpq)p�=q∈P with wpq ∈ A∗. A path in M is a finite sequence of

q0, . . . , qn(n ≥ 0) such that (qi, �, qi+1) ∈ δ(0 ≤ i ≤ n − 1) and we write q
�−→ q′

if (q, �, q′) ∈ δ.
Definition 5.2 gives the translation of local Scribble protocols to CFSMs.

For convenience, we do not separate a label from a payload and we write msg
instead of a(S). Without loss of generality we assume all nested recursive types
are given as rec #»

t {T}, where rec #»
t {T} = T if | #»

t | = 0. If #»
t = (t0, . . . , tn), T′ �=

rec t {T′′}, then rec
#»
t {T} = rec t0{. . . rec tn {T′} . . .}.

We use the auxiliary function body(T) to denote the body of a recursive
term. Hence body(T) = T′if T = rec

#»
t {T′}; in all other cases body(T) = T. We

remind that recursive variables are guarded in the standard way, i.e. they only
occur under a prefix and therefore body(T) cannot be continue t.

Definition 5.2 (Translation from local types to CFSMs). We write
T′ ∈ T if T′ occurs in T. Let T0 be the normal form of the local type of par-
ticipant A projected from G. The automaton corresponding to T0 is A(T0) =
(Q,C, q0, A, δ) where: (1) Q = {T′|T′ ∈ T0, T′ �= continue t} \ ({T′|rec #»

t {T′} ∈
T0} ∪ {Ti|choice at A {Ti}i∈I ∈ T0}); (2) q0 = T0 (3) C = {AB | A, B ∈ G}; (4)
A = {msg | msg occurs in G} is the set of labels msg in G; and (5) δ is defined
below:

1. if body(T) = msg to B; T′ ∈ Q, then
{

1)(T, (AB!msg), rec #»
t

t∈ #»
t

{T′′}) ∈ δ if T′ = continue t, rec
#»
t

t∈ #»
t

{T′′} ∈ T0

2)(T, (AB!msg), T′) ∈ δ otherwise

2. if body(T) = msg from B; T′ ∈ Q, then
{

1)(T, (BA?msg), rec #»
t

t∈ #»
t

{T′′}) ∈ δ if T′ = continue t, rec
#»
t

t∈ #»
t

{T′′} ∈ T0

2)(T, (BA?msg), T′) ∈ δ otherwise

3. if T = choice at A {Ti}i∈I , then:
(a) if Ti = msgi to B; T′

{
1)T, (AB!msgi), rec

#»
t

t∈ #»
t

{T′′}) ∈ δ if T′ = continue t, rec
#»
t

t∈ #»
t

{T′′} ∈ Q,

2)T, (AB!msgi), T
′) ∈ δ otherwise

(b) if Ti = msgi from A; T′

{
1)(T, (BA?msgi), rec

#»
t

t∈ #»
t

{T′′}) ∈ δ if T′ = continue t, rec
#»
t

t∈ #»
t

{T′′} ∈ Q

2)(T, (BA?msgi), T
′) ∈ δ otherwise

Featherweight Scribble 249

Fig. 11. Scribble protocol (left) and
corresponding CFSM (right)

Fig. 12. Scribble protocol (left) and
corresponding CFSM (right)

Examples. We illustrate the translation with two examples, in Figs. 11 and
12. The CFSM A (T) for the local protocol T from Fig. 11 (left) is A (T) =
(Q,C, q0, A, δ). We first generate the states Q of A (T) from the suboccurrences of
the initial local protocol T. The states are denotes as s1 and s2 where s1 = T and
s2 = (m2 to B; continue t1;). A (T) is defined as the 5-tuple: 1) Q = {s1, s2}; 2)
C = {AB, BA}; 3) q0 = s1; 4) A = {m1, m2}; 5) δ = {(s1, m1!AB, s2), (s2, m2!AB, s1)}.

Next we consider the local type T, given on Fig. 12 (left). From the suboccur-
rences of the local protocol T we generate three states s1, s2, and s3, where s1 = T;
s2 = rec t2 m2 to B; choice at A m3 to B; continue t2 or m4 to B; continue t1;
and s3 = choice at A m3 to B; continue t2 or m4 to B; continue t1. Then the cor-
responding automaton A (T) is the 5-tuple (Q,C,A, q0, δ) where 1) Q =
{s1, s2, s3}; 2) C = {AB, BA}; 3) q0 = s1 4) A = {m1, m2, m3, m4}; 5) δ =
{(s1, m1!AB, s2), (s2, m2!AB, s3), (s3, m3!AB, s2), (s3, m4!AB, s1)}.

We proceed by proving operational correspondence between a local type T
and its corresponding A (T). We use an auxiliary function to map recursive
variables to types.

Definition 5.3 (Unfold mapping). We define a function unfMap : T × σ →
σ, where T is a type and σ is a mapping from recursive variables to types
unfMap(T, σ) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋃

i∈I

unfMap(Ti, σ) if T = choice at A {Ti}i∈I

unfMap(T′, σ) if either T = msg to B; T′, or T = msg from B; T′

unfMap(T′[rec #»
t {T′}/continue t]∀t∈ #»

t , σ
⋃

ti∈ #»
t

{ti �→ T})

if T = rec
#»
t {T′}; ti /∈ σ

σ if either T = rec
#»
t {T′} and ∃t′ ∈ #»

t : t′ ∈ σ, or T = end

We assume all recursive variables are distinct and also rec
#»
t {T′}σ = T′σ.

Hence, σ can contain t ∈ #»
t and we apply the substitution σ without α-renaming.

Lemma 5.4 (Suboccurrences). Given a local protocol T, with a suboccurrence
rec

#»
t {T′}(t∈ #»

t) ∈ T and a substitution σ s.t σ = unfMap((T, ∅)),then

rec
#»
t {T′}(t∈ #»

t)σ = T′′ with {t �→ T′′} ∈ σ

Theorem 5.5 (Soundness of translation). Given a local protocol T, then
T ≈ A (T).

250 R. Neykova and N. Yoshida

6 Conclusion and Related Work

De Nicola is the first person who proposed a location-based distributed model
with rich capability types, and implemented that model in Java as to demon-
strate a practical use of formal foundations for mobile computing. Following his
spirits, this paper gave a formal definition of a practical protocol description
language, Scribble. We proved a correspondence between Scribble and MPST
and showed that a global protocol corresponds to a system of CFSMs.

The work [10] is the first to explore the connection of MPST and CFSMs.
[10] gives a sound and complete characterisation of a class of communicating
automata that can be expressed by the language of multiparty session types. The
presented work is closely based on the translation of session types to CFSMs pre-
sented in [10], and hence we adhere to the same conditions as theirs, namely the
CFSM is deterministic and directed without mixed states (each state is either
sending or receiving to the same participant with distinct labels). Lange et al.
[20] presents an algotithm for synthesising global graphs from local multiparty
specifications, given as CFSMs, that allows more general constructs, such as fork
and join. Scribble currently does not support such constructs. The correspon-
dence of MPST and CFSMs with time constraints is further explored in [2,3].
The work [21] uses the result in [3] to implement a runtime monitor based on an
extension of Scribble with time annotations, but the work does not prove formal
correspondence between timed Scribble and timed automata.

The encoding of Scribble protocols to CFSMs presented in this article is an
important basis when building and verifying distributed systems. It guarantees
that global safety properties can be ensured through local, i.e, decentralised
verification. The setting defined by CFSMs does not require synchronisation at
runtime. Therefore our approach is more efficient to implement than a centralised
approach. In [9,17], we rely on this result to design and build a sound Scribble-
based framework for runtime and hybrid verification.

Several implementation works use the Scribble toolchian and the local CFSM
representation to generate APIs for programming distributed protocols [18,22].
In recent years, Scribble-based code generation has been extended with various
contructs, e.g. parameterised role [5] for distributed Go programming, delega-
tion in Scala [25], time constarints in Python [3], explicit connections [19] for
dynamic joining of roles in Java, and payload constraints in F# [22]. The above
mentioned works are either practical (hence no formal semantics nor operational
correspondence results are given) and/or informally rely on the correspondence
between MPST and Scribble as to justify the soundness of their respective imple-
mentations and extensions.

Future work includes formalisations of extended Scribble in the literature
explained above. In particular, there exists no operational semantics of multiple
multiparty session types with delegations and higher-order code mobility since
a single system of CFSMs corresponds to a single multiparty session type with
fixed participants. We plan to tackle this problem first extending CFSM models
from a fixed set to a family of participants.

Featherweight Scribble 251

Acknowledgments. We thank the reviewers for their comments. This work is par-
tially supported by EPSRC projects EP/K034413/1, EP/K011715/1, EP/L00058X/1,
EP/N027833/1 and EP/N028201/1. The first author was supported by an EPSRC
Doctoral Prize Fellowship.

A Scribble Normal Form

Proposition 4.6 (SNF Translation): Let G be a Scribble local protocol, then
G ≈ 〈G〉.

Proof. First we consider G � 〈G〉. The proof is mechanical and is done by induc-
tion on the transition rules applied for closed terms of G.

1. (base case) If G = end then both trmG and 〈G〉 produce an empty set of traces
and no rules can be applied.

2. (inductive case) if G �−→ G′ then 〈G〉 �−→ G′′ such that G′ ≈ G′′.
(a) if G = a(S) from A to B; G′

G can do AB!msg or � by �send� or �async1� respectively.
Then G � 〈G〉 follows by the induction hypothesis (IH) and by the defini-
tion of encoding

(b) G = rec t {G′}
G

�−→ G′′

By �rec� G′[rec t {G′}/continue t] �−→ G′′

By IH 〈G′[rec t {G′}/continue t]〉 �−→ G′′′ s.t G′′ ≈ G′′′

By Lemma 4.5
〈G′〉[rec t {〈G′〉}/continue t] ≈ 〈G′[rec t {G′}/continue t]〉
Thus, 〈G′〉[rec t {〈G′〉}/continue t] �−→ G′′′′ s.t G′′′ ≈ G′′′′

By �rec�rec t {〈G′〉} �−→ G′′′′

By Lemma 4.5 rec t {〈G′〉} ≈ unfold(rec t {〈G′〉}) = 〈G〉
(c) G = choice at A {Gi}i∈{1,..,n}

From �choice�G �−→ G′ with Gi
�−→ G′

From IH 〈Gi〉 �−→ G′′ s.t G′′ ≈ G′ From flatten(G) ≈ G it follows that
flatten(Gi)

�−→ G′′′ s.t G′′′ ≈ G′′

From �choice� it follows 〈G〉 �−→ G′′′

Now we consider 〈G〉 � G. The proof is by induction on the definition of
encoding of closed terms of G.

1. (base case) If 〈G〉 = end then both G and 〈G〉 produce an empty set of traces
and no rules can be applied.

2. (inductive case) if 〈G〉 �−→ G′ then G
�−→ G′′ such that G′ ≈ G′′.

(a) 〈a(S) from A to B; G〉 = a(S) from A to B; 〈G〉
〈G〉 can do AB!msg or � by �send� or �async1� respectively.
Then G � 〈G〉 follows by the IH and by the definition of encoding

252 R. Neykova and N. Yoshida

(b) 〈rec t {G}〉 = unfold(rec t {〈G〉}) = 〈G〉[rec t {〈G〉}/continue t]
From IH: G[rec t {G}/continue t] ≈ 〈G〉[rec t {〈G〉}/continue t]
Thus, if 〈G〉[rec t {〈G〉}/continue t] �−→ G′

then G[rec t {G}/continue t] �−→ G′′ s.t G′ ≈ G′′

From �rec� rule: rec t {G} �−→ G′′

(c) 〈G〉 = 〈choice at A {Gi}i∈{1,..,n}〉 = choice at A {flatten(〈Gi〉)}i∈{1,..,n}
From �choice�〈G〉 �−→ G′ with flatten(〈Gi〉) �−→ G′

By Lemma 4.5 flatten(〈G〉) ≈ 〈G〉 it follows that
〈Gi〉 �−→ G′′ s.t G′′ ≈ G′

From IH it follows that G
�−→ G′′′ s.t G′′′ ≈ G′′ ≈ G′.

B From Global Protocols to Global Types

Proposition 4.8 (Correspondence of Global Protocols and Global
Types): Let G be a Scribble global protocol, then G ≈ �G�.

Proof. First, we consider G � �G�. The proof is done by induction (on the depth
of the tree) on the transition rule applied.

1. (Base case) If G = end then both G and �G� produce an empty set of traces.
2. (Inductive case) if G �−→ G′ and we have to prove that �G�

�−→ �G′�.

– if G = a(S) from A to B; G′′ then we either have a send action by �send� or �
transition by �ASYNC1�

• �send� G
AB!a〈S〉−−−−→ transit :a(S) from A to B; G′′

By (1) �G� = A → B : {a〈S〉.�G′′�} and
(2) �transit :a(S) from A to B; G′′� = A � B : a〈S〉.�G′′� and

(3) �Select�MPST : A → B : {a〈S〉.�G′′�} AB!a〈S〉−−−−→ A � B : a〈S〉.�G′′�

we have �G�
AB!a〈S〉−−−−→ �G′�

• �async1�a(S) from A to B; G′′ �−→ a(S) from A to B; G′′ By (1) �G� = A →
B : {a〈S〉.�G′′�} and �G′� = A → B : a〈S〉.�G′′′� By (2) �G′′� �−→ �G′′′�, which
follows from the premise G′′ �−→ G′′′ of the �async1� and by IH and (3)
B �∈ subj(�), which follows from the premise of �async1�:
we can apply the �async1�MPST rule: �G�

�−→ �G′�
– if G = transit :a(S) from A to B; G′′

We proceed as in the above case. We either have a receive action by the rule
�recv� or � transition by the rule �async2�.

• �recv�G
AB?a〈S〉−−−−→ G′ where G′ = G′′

By (1) �G� = A � B : a〈S〉.�G′′� and �G′� = �G′′� and

(3) �branch�MPST : A � B : a〈S〉.�G′′�
AB?a〈S〉−−−−→ �G′′�

therefore �G�
AB?a〈S〉−−−−→ �G′�

Featherweight Scribble 253

• �async2�G �−→ G′ where G′ = transit :a(S) from A to B; G′′

By (1) �G� = A � B : a〈S〉.�G′′� and �G′� = A → B : {a〈S〉.�G′′′�} By (2)
�G′′� �−→ �G′′′�, which follows from the premises G′′ �−→ G′′′ of the �async1�
and by the induction hypothesis and
(3) A, B �∈ subj(�), which follows from the premise of �async2�:
we can apply the �async2�MPST rule: �G�

�−→ �G′�
– if G = choice at A {Gbj}j∈{1,..,n})

By �choice� we have G
�−→ G′ where by the rule premise we have for G′ that

ai(Si) from A to B; G′′ �−→ G′ for (i ∈ I) which brings us back to the first case.
– if G = rec t {G′′} the thesis directly follows by induction since

(1) by �rec�G �−→ G′ where G[rec t {G}/continue t] �−→ G′

(2) �G� = μt�G′′�
By �rec� �G′′�[μt.�G′′�/t]) �−→ �G′�
(3) From IH, G′ � �G′� and therefore G � �G�

Now we consider �G� � G.
The proof is done by induction on transition rules applied to the encoding

of G.

1. �G� = end then both �G� and G then no rules can be applied.
2. if �G� = A → B : {a〈S〉.�G�}, then we either have a send action by �select�MPST

or � transition by �async1�.

– �select�MPST �G�
AB!a〈S〉−−−−→ �G′�

By G = a(S) from A to B; G′′ and G′ = transit :a(S) from A to B; G′′ and

�send� it follows that G
AB!a〈S〉−−−−→ G′

– �async1�MPST �G�
�−→ �G′� where

�G� = A → B : {a〈S〉.�G′′�} and �G′� = A � B : a〈S〉.�G′′�
By (1) the rule premise �G′′� �−→ �G′′′� and by (2) IH it follows that G′′ �−→ G′′′.
Given also that A, B �∈ subj(�), we can apply �async1�. Thus, G �−→ G′

3. if �G� = �choice at A aj(Sj) from A to B; Gj� = A → B : {aj〈Sj〉.�Gj�}j∈{1,..,n}
Then by �choice� we have that �G�

�−→ �G′� when �ai(Si) from A to B; Gi�
�−→ �G′�

for i ∈ I.
Thus, we have to prove that
if �ai(Si) from A to B; Gi�

�−→ �G′� then ai(Si) from A to B; Gi
�−→ �G′�, which

follows from a).
4. if �G� = A � B : a〈S〉.�G′′� �G� can do a receive action by �branch�MPST or �

transition by �async2�.

– �branch�MPST �G�
AB!a〈S〉−−−−→ �G′�

By G = transit :a(S) from A to B; G′′ and

G′ = transit :a(S) from A to B; G′′ and �recv� it follows that G
AB?a〈S〉−−−−→ G′

254 R. Neykova and N. Yoshida

– �async2�MPST �G�
�−→ �G′� where

�G� = A � B : a〈S〉.�G′′� and �G′� = A → B : a〈S〉.�G′′�
By (1) the rule premise �G′′� �−→ �G′′′� and by (2) IH it follows that G′′ �−→ G′′′.
Given also that A, B �∈ subj(�), we can apply �async2�. Thus, G �−→ G′

5. if �G� = μt.�G′′� the thesis directly follows by induction.

C From Local Protocols to Local Types

Proposition 4.12 (Correspondence of Local Protocols and Local
Types): Let T be a Scribble local protocol, then T ≈ �T�.

Proof. First, we consider T � �T�.
The proof is done by induction (on the depth of the tree) on the transition

rule applied.

1. (Base case) If T = end then both T and �T� produce an empty set of traces.
2. (Inductive case) T

�−→ T′ and we have to prove that �T�
�−→ �T′�. We proceed

by case analysis on the structure of T

(a) if T = a(S) to B; T′′ AB!a〈S〉−−−−→ T′′ by �send�

�T� = B!{a : 〈S〉.�T′′�} AB!a〈S〉−−−−→ �T′′� by �LSel�

(b) if T = a(S) from B; T′′ AB?a〈S〉−−−−→ T′′ by �recv�

�T� = B?{a : 〈S〉.�T′′�} AB?a〈S〉−−−−→ �T′′� by �LBra�
(c) if T = choice at A {Ti}i∈I)

�−→ T′

Depending on the structure of Ti, this case folds back to previous cases
a) and b).

if Ti = ai(Si) from B; T′′ AB!a〈S〉−−−−→ T′′ = T′ then �Ti�
AB!a〈S〉−−−−→ �T′� by �LSel�

if Ti = B?{ai : 〈Si〉.�T′′�} AB?a〈S〉−−−−→= T′′ = T′ then �Ti�
AB?a〈S〉−−−−→ �T′� by

�LBra�
(d) if T = μt.T′′ the thesis directly follows by induction.

Now we consider �T� � T.
The proof is done by induction on transition rules applied to the encoding.

1. (Base case) If �T� = end then both �T� and T produce an empty set of traces.
2. (Inductive case) �T�

�−→ �T′� and we have to prove that T
�−→ T′. We proceed

by case analysis on the structure of �T�

– if �T� = B!{a : 〈S〉.�T′′�}
B!{a : 〈S〉.�T′′�} AB!a〈S〉−−−−→ �T′′� by �LSel�

T = a(S) to B; T′′ AB!a〈S〉−−−−→ �T′′� by �send�

Featherweight Scribble 255

– if �T� = B?{a : 〈S〉.�T′′�}
B?{a : 〈S〉.�T′′�} AB?a〈S〉−−−−→ �T′′� by �Lbra�

T = a(S) from B; T′′ AB?a〈S〉−−−−→ T′′ by �recv�
– if �T� = B?{ai : 〈Si〉.�Ti�}i∈I

B?{ai : 〈Si〉.�Ti�}i∈I
AB?a〈S〉−−−−→ �Tj�(j ∈ I)

By �recv� and the structure of Ti we have that ai(Ti) to B; Ti
AB!a〈S〉−−−−→ Ti and

therefore we can apply �choice�

Thus, T
AB!a〈S〉−−−−→ Tj

– if �T� = A!{ai : 〈Si〉.�T�}i∈I the case is analogical to the previous one.
– if �T� = μt.T′′ the thesis directly follows by induction.

Proposition 4.13 (Correspondence of Configurations): Let (T1, . . . , Tn, w)
be a configuration of Scribble local protocols, then (T′

1, . . . , T
′
n, w) ≈

(�T1′�, . . . , �T′
n�, w

′).

Proof. The proof is by induction on the number of transition steps. Inductive
hypothesis: (T1, . . . , Tn, w) ≈ (�T1�, . . . , �Tn�, w)
Now we want to prove that if (T1, . . . , Tn, w) �−→ (T′

1, . . . , T
′
n, w

′) then
(�T1�, . . . , �Tn�, w) �−→ (�T′

1�, . . . , �T
′
n�, w

′)
We do a case analysis on the transition label �:

(1) if � = AB!a〈S〉
By TB

AB!a〈S〉−−−−→ TB and Proposition 4.12 it follows: �TB�
AB!a〈S〉−−−−→ �TB�

By definition of configuration of local protocols:
w′

AB = wAB · a(T) ∧ (wij = w′
ij)for ij �=AB.

(2) if � = AB?a〈S〉
By TB

AB?a〈S〉−−−−→ T′
B and Proposition 4.12 it follows: �TB�

AB?a〈S〉−−−−→ �T′
B�

By definition of configuration of local protocols:
w′

AB = wAB · a(S) ∧ (⇒ wij = w′
ij)ij �=AB

In (1) and (2) we have by definition that Ti = T′
i(for �= AB), which by the

inductive hypothesis implies that �Ti� = �T′
i�

Then by the definition of configuration of local protocols (from (1) and (2))
it follows that (�T1�, . . . , , . . . , �Tn�, w) �−→ (�T′

1�, . . . , �T
′
n�, w

′).

D From Sribble to CFSM

Lemma 5.5 (Soundness of the translation). Given a local protocol T , then
T ≈ A (T).

Proof. In the proof we assume σ = unfMap(T, ∅). Also we assume T �= end.
When T = end the lemma is trivially true since T produces an empty set of
traces, δ is an empty relation and q0, the initial state, is also a final state.

256 R. Neykova and N. Yoshida

First, we consider T � A (T). Next we prove that if T �−→ T′ then ∃TA, T′
A ∈ Q such

that TAσ = T and T′
Aσ = T′, and (TA, �, T′

A) ∈ δ.
The proof is by induction on the transition relation for local types. In all

cases we assume that T = TAσ.

– �send� if the reduction is by �send� we have
TAσ = (msg to B; T′

A)σ = msg to B; (T′
Aσ).

Thus, TAσ
�−→ T′

Aσ where � = msg!AB.
Since body(TA) = msg to B; T′

A we proceed by case analysis on T′
A.

Case 1: T′
A �= continue t;

By Definition 5.2(1-2) and body(TA) = msg to B; T′
A ⇒ (TA, �, T′

A) ∈ δ.
Case 2: T′

A = continue t;
We have that T′

Aσ = continue t σ = T′′, where {t �→ T′′} ∈ σ.
By �send� we have TAσ

�−→ T′′.
By Definition 5.2(1-1) and bodyTA = msg to B; T′

A it follows that
(TA, �, rec

#»
t {T′′

A}) ∈ δ with rec
#»
t {T′′

A} ∈ T0.
By Lemma 5.4 we have rec

#»
t {T′′

A}σ = T′′ and we conclude the case.
– �recv� is similar to Case �send� and thus we omit.
– �choice� if the reduction is by �choice� we have
TAσ = (choice at A{TAi}i∈I)σ = choice at A{(TAiσ)}i∈I .
Case 1: if TAiσ has the shape (msgi to B; T′

Ai)σ = msgi to B; (T′
Aiσ),∀i ∈ I

then we have TAσ
�−→ T′

Ajσ for some j ∈ I with � = msgj !AB.
Since body(TA) = TA, we proceed by case analysis on T′

Aj.
Case 1.1: T′

Aj �= continue t;
By Definition 5.2(3-a-2) and body(TA) = TA we have (TA, �, T′

Aj) ∈ δ.
Case 1.2: TAj′ = continue t;

(1*) We have that T′
Ajσ = continue t σ = T′′, where {t �→ T′′} ∈ σ.

(2*) By �choice� we have TAσ
�−→ T′′.

By Definition 5.2(3-a-2) and body(TA) = TA ⇒ (TA, �, rec
#»
t {T′′

A}) ∈ δ
with rec

#»
t {T′′

A} ∈ T0.
By Lemma 5.4 we have rec

#»
t {T′′

A}σ = T′′.
Applying the IH to (1*) and (2*) we conclude the case.
Case 2: if TAiσ has the shape (msgi to B; T′

Ai)σ = msgi to B; (T′
Aiσ)

this case is similar to Case 1 and thus we omit.
Note that since the normal form of local types does not allow for unguarded
choice, hence, all possible transitions of TAσ are the transitions from Case 1
and Case 2.

– �rec� if the reduction is by �rec� we have then TAσ = (rec t {T′
A})σ = T′

Aσ. We
note that T′

Aσ does not contain the term continue t since unguarded recursive
variables are not allowed. Hence, T′

Aσ is either send, receive or choice and by
IH and �send�, �recv�, �choice� we conclude this case.

We next consider A (T) � T. We prove that given a local protocol T0

if (TA, �, T′
A) ∈ δ then ∃T s.t. T = TAσ and T

�−→ T′ and T′ = T′
Aσ with

σ = unfMap(T0, ∅). We proceed by case analysis on the transitions in δ.

Featherweight Scribble 257

Case 1: TA = msg to B; T′′
A and � = msg?AB.

Then T′ = TAσ and we have by �send�TAσ
�−→ T′′

Aσ.
Case 1.1: if T′′

A = T′
A �= continue t

The hypothesis follows from TAσ
�−→ T′

Aσ.
Case 1.2: if T′′

A = continue t
By Definition 5.2 T′

A = rec
#»
t {T′′′

A } ∈ T0, t ∈ t.
By Definition 5.3 and Lemma 5.4 we have t �→ T′′ s.t. rec #»

t {T′′′
A }σ = T′′.

From IH and TAσ
�−→ T′′

Aσ = T′′ = rec
#»
t {T′′′

A }σ = T′
Aσ we conclude the case.

Case 2: TA = msg from B; T′′
A and � = msg!AB.

Proceeds in a similar way as Case 2 and thus we omit.
Case 3: TA = choice at{msgi to B; TAi}i∈I

Then we have by �choice�
TAσ = choice at{msgi to B; TAiσ}i∈I

msg!AB−−−−→ TAjσ for some j ∈ I.
Case 3.1: if TAj = T′

A �= continue t

From IH and TAσ
�−→ T′

Aσ we conclude the case.
Case 3.2: if TAj = continue t
By Definition 5.2 TAj = rec

#»
t {T′′′

A } ∈ T0, t ∈ t
By Definition 5.3 and Lemma 5.4 we have t �→ T′′ s.t. rec #»

t {T′′′
A }σ = T′′.

We have that TAσ
�−→ TAjσ = T′′ = rec

#»
t {T′′′

A }σ = T′
Aσ, hence we conclude the

case.
Case 4: TA = choice at{msgi from B; TAi}i∈I

Proceeds in a similar way as Case 3 and thus we omit.
Case 5: TA = rec

#»
t {T′′

A}
Note that the T′′

A is either message send or message receive. Hence, By applying
the IH and Case 1, 2 we conclude the case.

References

1. Behavioural Types: From Theory to Tools. River Publishers, Delft (2017)
2. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: 26th Interna-

tional Conference on Concurrency Theory. LIPIcs, vol. 42, pp. 283–296. Schloss
Dagstuhl (2015)

3. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44584-6 29

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

5. Castro, D., Hu, R., Jongmans, S.-S., Ng, N., Yoshida, N.: Distributed programming
using role parametric session types in go. In: 46th ACM SIGPLAN Symposium on
Principles of Programming Languages, pp. 1–30. ACM (2019)

6. W3C WS-CDL. http://www.w3.org/2002/ws/chor/
7. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: A gentle introduc-

tion to multiparty asynchronous session types. In: Bernardo, M., Johnsen, E.B.
(eds.) SFM 2015. LNCS, vol. 9104, pp. 146–178. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18941-3 4

https://doi.org/10.1007/978-3-662-44584-6_29
http://www.w3.org/2002/ws/chor/
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4

258 R. Neykova and N. Yoshida

8. De Nicola, R., Ferrari, G., Pugliese, R.: Klaim: a kernel language for agents inter-
action and mobility. IEEE Trans. Softw. Eng. 24, 315–330 (1998)

9. Demangeon, R., Honda, K., Raymond, H., Neykova, R., Yoshida, N.: Practical
interruptible conversations: distributed dynamic verification with multiparty ses-
sion types and Python. FMSD 46(3), 197–225 (2015)

10. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

11. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2 18

12. Honda, K., et al.: Structuring communication with session types. In: Agha, G., et al.
(eds.) Concurrent Objects and Beyond. LNCS, vol. 8665, pp. 105–127. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44471-9 5

13. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
Interactions with a Formal Foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19056-8 4

14. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284. ACM (2008)

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types.
JACM 63, 1–67 (2016)

17. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interrupt-
ible conversations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp.
130–148. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-
1 8

18. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

19. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 116–133. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 7

20. Lange, J., Tuosto, E.: Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL, pp. 221–232. ACM (2015)

21. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. FAOC 29, 877–910 (2017)

22. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation for distributed protocols with interaction refinements in F#.
In: 27th International Conference on Compiler Construction, pp. 128–138. ACM
(2018)

23. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
CC. ACM (2017, to appear)

24. Ng, N., de Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default. In: Franke,
B. (ed.) CC 2015. LNCS, vol. 9031, pp. 212–232. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46663-6 11

https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-662-44471-9_5
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-642-40787-1_8
https://doi.org/10.1007/978-3-642-40787-1_8
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-46663-6_11

Featherweight Scribble 259

25. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: 31st European Conference on Object-
Oriented Programming. LIPIcs, vol. 74, pp. 24:1–24:31. Schloss Dagstuhl (2017)

26. Scribble Project.. http://www.scribble.org
27. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-

ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

28. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 3

http://www.scribble.org
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-319-05119-2_3

Embedding RCC8D in the Collective
Spatial Logic CSLCS

Vincenzo Ciancia(B), Diego Latella, and Mieke Massink

Consiglio Nazionale delle Ricerche - Istituto di Scienza e Tecnologie dell’Informazione
‘A. Faedo’, CNR, Pisa, Italy

vincenzo.ciancia@isti.cnr.it

Abstract. Discrete mereotopology is a logical theory for the specifi-
cation of qualitative spatial functions and relations defined over a dis-
crete space, intended as a set of basic elements, the pixels, with an
adjacency relation defined over it. The notions of interest are that of
region, intended as an arbitrary aggregate of pixels, and of specific rela-
tions between regions. The mereotopological theory RCC8D extends the
mereological theory RCC5D—a theory of region parthood for discrete
spaces—with the topological notion of connection and the remaining rela-
tions (disconnection, external connection, tangential and nontangential
proper parthood and their inverses). In this paper, we propose an encod-
ing of RCC8D into CSLCS, the collective extension of the Spatial Logic
of Closure Spaces SLCS. We show how topochecker, a model-checker for
CSLCS, can be used for effectively checking the existence of a RCC8D
relation between two given regions of a discrete space.

Keywords: RCC8D · Adjacency Spaces · Closure Spaces ·
Spatial logics · SLCS · CSLCS

1 Introduction

The study of logical approaches to modelling space and spatial aspects of
computation is a well established area of research in computer science and arti-
ficial intelligence. A standard reference is the Handbook of Spatial Logics [1].
Therein, several spatial logics are described, with applications far beyond topo-
logical spaces; such logics treat not only aspects of morphology, geometry and
distance, but also advanced topics such as dynamic systems, and discrete struc-
tures, that are particularly difficult to deal with, especially from a topological
perspective (see, for example [15,19]). For this reason, most of the work present
in the literature deals with continuous notions of space, such as Euclidean spaces.
In this context, a prominent area of research is represented by the logical the-
ories of “parthood”—Mereology—and of “connection” between “regions”, i.e.
sets of points in a continuous space—Mereotopology—representative of which
are the Region Connection Calculi RCC5 and RCC8, respectively. In particu-
lar, RCC8 [17] is widely referred to in the AI literature on Qualitative Spatial
Reasoning [5].
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 260–277, 2019.
https://doi.org/10.1007/978-3-030-21485-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_15

Embedding RCC8D 261

More recently, attention has been devoted also to logical approaches to
discrete spaces, including e.g. graphs or digital images, given the importance of
such structures in computer science. In particular, in [18] the notions of Discrete
Mereology and Discrete Meretopology have been presented and discrete versions
of RCC5 and RCC8, namely RCC5D and RCC8D, have been defined.

On the other hand, in recent work [9,10], Ciancia et al. proposed the Spatial
Logic for Closure Spaces (SLCS), defined along the same lines as the classical
work of Tarski on the spatial interpretation of the modal possibility operator
as the topological closure operator, but with two major differences. The first
one is that the underlying model for the logic is not that of topological spaces,
as in the classical approach, but rather Closure Spaces [15,16], a generalisa-
tion of topological spaces including also discrete structures such as graphs, and,
consequently, digital images. The second one is the inclusion of the surrounded
operator—denoted by S, to be read “surrounded”—an operator similar to the
spatial until discussed in [20] in the context of continuous spaces; a point satisfies
Φ1 S Φ2 if it satisfies Φ1 and there is no way for moving away to a point not
satisfying Φ1 without first passing by a point satisfying Φ2. In other words, the
points satisfying Φ1 are surrounded by points satisfying Φ2. In addition, in [10]
the logic has been extended with the collective fragment, leading to the definition
of the Collective Spatial Logic for Closure Spaces (CSLCS), where properties of
(connected) sets of points can be specified. Efficient model checking algorithms
have been defined for both SLCS and CSLCS and have been implemented in the
prototype tool topochecker1.

In this paper we present an encoding of RCC8D into CSLCS. This shows
that CSLCS is a suitable logic not only for reasoning about points in (closure)
spaces and connected sets of such points, but also for regions in the sense of the
Region Calculus and, in particular, of RCC8D.

The paper is organised as follows: in Sect. 2, SLCS and its extension CSLCS
are briefly described; furthermore, we state a proposition relating the tempo-
ral weak until connective with the interpretation of spatial surrounded on dis-
crete spatial models—the proof is provided in the appendix. Section 3 recalls
Adjacency Spaces and RCC8D of [5]. The encoding procedure is described in
Sect. 4 where some examples of use of topochecker are also shown as well as
the (graphical) result of RCC8D relations over sample regions. Finally, in Sect. 6
some conclusions are drawn.

2 Spatial Logics for Closure Spaces

Spatial logics have been mainly studied from the point of view of modal
logics. In his seminal work of 1938, Tarski presented a spatial, and in particular
topological, interpretation of modal logic; in 1944 Tarski and McKinsey proved
that the simple (and decidable) modal system S4 is complete when interpreting

1 Topochecker: a topological model checker, see http://topochecker.isti.cnr.it, https://
github.com/vincenzoml/topochecker.

http://topochecker.isti.cnr.it
https://github.com/vincenzoml/topochecker
https://github.com/vincenzoml/topochecker

262 V. Ciancia et al.

the possibility modality ♦ of S4 as closure on the reals or any similar met-
ric space. More specifically, a topological model M = ((X,O),V) of modal logic
is any topological space (X,O) where each point x ∈ X is associated with the
set of atomic propositions p it satisfies, namely the set {p|x ∈ V(p)}, negation
and conjunction are interpreted in the usual way, and the possibility operator ♦
is interpreted as topological closure, as follows (see [1], Chap. 5):

M, x |= ♦Φ ⇔ for all open sets o ∈ O such that x ∈ o
there exists x′ ∈ o such that M, x′ |= Φ.

Of course, by duality, the necessity operator � turns out to be interpreted as the
topological interior operator, namely M, x |= �Φ ⇔ there exists a open set o ∈
O such that x ∈ o and M, x′ |= Φ for all x′ ∈ o. We refer the reader to [20]
for further details. A legitimate question is whether the restriction to topologi-
cal spaces is too strong. For answering this question, it is appropriate to focus
on discrete spaces, e.g. graphs; any logical approach to reasoning about spatial
properties of distributed systems should obviously be capable to deal with dis-
crete structures. There exist of course relational models of S4, namely reflexive
and transitive Kripke structures and it is possible to derive a topological space
from any such a structure in a sound and complete way. The topological spaces
that are used are the so-called Alexandroff spaces. These are topological spaces in
which each point has a least open neighbourhood. Unfortunately, the correspon-
dence between topological spaces and reflexive and transitive Kripke structures
is not easily extended to arbitrary Kripke structures, as transitivity and reflex-
ivity always hold in topo-logics where the basic modality is the closure. On the
other hand, requiring transitivity in all models may be too limiting a constraint.
This is the main reason to further investigate non-transitive concepts of spa-
tial models and for resorting to models which are more general than topological
spaces. In our approach we use closure spaces as a generalisation of topological
spaces.

Definition 1. A closure space is a pair (X, C) where X is a non-empty set (of
points) and C : 2X → 2X is a function satisfying the following axioms:

1. C(∅) = ∅;

2. Y ⊆ C(Y) for all Y ⊆ X;

3. C(Y1 ∪ Y2) = C(Y1) ∪ C(Y2) for all Y1, Y2 ⊆ X. •
It is worth pointing out that topological spaces coincide with the sub-class

of closure spaces for which also the idempotence axiom C(C(Y)) = C(Y) holds.
Given any relation R ⊆ X × X, function CR : 2X → 2X with CR(Y) �

Y ∪ {x|∃y ∈ Y.y R x} satisfies the axioms of Definition 1 thus making (X, CR) a
closure space. It can be shown that the sub-class of closure spaces that can be
generated by a relation as above coincides with the class of quasi-discrete closure
spaces, i.e. closure spaces where every x ∈ X has a minimal neighbourhood

Embedding RCC8D 263

or, equivalently, for each Y ⊆ X, C(Y) =
⋃

y∈Y C({y}). Thus (finite) discrete
structures, like graphs or Kripke structures can be (re-)interpreted as quasi-
discrete closure spaces. For example, consider the graph of Fig. 1 where a set Y
of nodes is shown in red (1a); the closure C(Y) of Y is shown in green (1b).

(a) (b)

Fig. 1. A set of nodes Y in a graph (1a) and its closure C(Y) (1b). (Color figure online)

Being a special case of graphs, also digital images can be modelled by (finite)
quasi-discrete closure spaces. In particular, the pixels of the image are the nodes
of the space, whereas the relevant relation is typically both reflexive and sym-
metric. It may relate any pixel with all the pixels with which it shares an edge,
i.e. 5 pixels in 2D images, or with all the pixels with which it shares an edge or a
corner, i.e. 9 pixels in 2D images. In the first case, the relation is called othogonal,
whereas in the second case it is called orthodiagonal; in Sect. 3 we will use the
orthodiagonal relation, also called the adjacency relation in [18]. For instance,
the closure of the set of red pixels Y in Fig. 2a is shown in green in Fig. 2b, where
the orthogonal relation is used, and in Fig. 2c, where the orthodiagonal relation
is used instead.

(a) (b) (c)

Fig. 2. A set of red pixels Y in a digital image (2a) and its closure C(Y) according to
the orthogonal relation (2b) and the orthodiagonal relation (2c). (Color figure online)

The hierarchy of closure spaces is shown in Fig. 3.

2.1 The Spatial Logic for Closure Spaces - SLCS

In [9,10] the Spatial Logic for Closure Spaces (SLCS) was proposed. In the
remainder of this section we briefly recall the fragment of the logic we use in
the present paper, which consists essentially of S4—where the ♦ operator is

264 V. Ciancia et al.

Fig. 3. The hierarchy of closure spaces.

renamed N (to be read as near) for clarity reasons—enriched with an additional
operator, the surrounded operator S, where Φ1 S Φ2 characterises the set of points
belonging to an area satisfying Φ1 and such that one cannot “escape” from such
an area without hitting a point satisfying Φ2, i.e. they are surrounded by Φ2.
The syntax of SLCS is given below, for P a set of atomic predicates p:

Φ ::= p | ¬Φ | Φ1 ∨ Φ2 | NΦ | Φ1 S Φ2 (1)

In the sequel we provide a formal definition of the satisfaction relation for
SLCS. To that purpose, we need to first introduce the notion of path. A (quasi-
discrete) path π in (X, CR) is a function π : N → X, such that for all Y ⊆ N,
π(CSucc(Y)) ⊆ CR(π(Y)), where π(Y) is the pointwise extension of π on a set
of points Y and (N, CSucc) is the closure space of the natural numbers with the
successor relation: (n,m) ∈ Succ ⇔ m = n + 1. Informally: the ordering in the
path imposed by N is compatible with relation R, i.e. π(i)R π(i+1). Technically,
a (quasi-discrete) path is a continuous function from (N, CSucc) to (X, CR). We
refer to [10] for details. Set Y ⊆ X is path-connected if for all points y1, y2 ∈ Y
there exists a path π and an index i such that: π(0) = y1, π(i) = y2 and π(j) ∈ Y ,
for all 0 ≤ j ≤ i.

Definition 2. A closure model M is a tuple M = ((X, C),V), where (X, C) is a
closure space and V : P → 2X is a valuation assigning to each atomic predicate
the set of points where it holds. •
Definition 3. Satisfaction M, x |= Φ of a formula Φ at point x ∈ X in model
M = ((X, C),V) is defined by induction on the structure of formulas:

Embedding RCC8D 265

M, x |= p ∈ P ⇔ x ∈ V(p)
M, x |= ¬Φ ⇔ M, x |= Φ does not hold
M, x |= Φ1 ∨ Φ2 ⇔ M, x |= Φ1 or M, x |= Φ2

M, x |= N Φ ⇔ x ∈ C({y|M, y |= Φ})
M, x |= Φ1 S Φ2 ⇔ M, x |= Φ1 and

for all paths π and indexes � the following holds:
π(0) = x and M, π(�) |= ¬Φ1

implies
there exists index j such that:

0 < j ≤ � and M, π(j) |= Φ2 •
Standard derived operators can be defined in the usual way e.g.: Φ1 ∧ Φ2 ≡

¬(¬Φ1 ∨ ¬Φ2), ≡ p ∨ ¬p, ⊥ ≡ ¬, and so on.
In Fig. 4a an example is shown of a model, based on a 2D space of 100 points

arranged as a 10 × 10 grid, with reflexive, symmetric and orthogonal relation.
We assume the set of atomic predicates P is the set {black,white, red} and, in
Fig. 4a, we color in black the points satisfying black and similarly for white and
red. In Fig. 4b the points satisfying formula black ∨ red are shown in green2;
similarly, Fig. 4c shows the points satisfying ¬(black ∨ red), and Fig. 4a shows
those satisfying N black. Finally, the points in Fig. 4d satisfying black satisfy
also black S(N red). Several examples of use of SLCS, extensions thereof, and
related model-checking tools can be found in [3,9–14]

(a) (b) (c) (d)

Fig. 4. An example model (4a); the points shown in green are those satisfying black ∨
red (4b), ¬(black ∨ red) (4c), and N black (4d). (Color figure online)

Finally, we show the formal relationship between the SLCS surrounded oper-
ator interpreted on quasi-discrete closure spaces and the temporal logic weak
until operator. Let us consider a set X and a relation R ⊆ X × X; the pair
(X, CR) is a quasi-discrete closure space, but also a Kripke frame; any valuation
V of atomic propositions makes such a space (frame) a closure model (Kripke
model). The until operator Φ1UΦ2 is well-known. Let us recall the weak until
operator Φ1 W Φ2, whose satisfaction for path π is defined as M, π |= Φ1 W Φ2

iff M, π(i) |= Φ1 for all i, or M, π |= Φ1 U Φ2 (note that W and U are path-
formulas). The following holds:

2 Note that this colour does not correspond to any atomic predicate and so it is not
part of the model; we use it only for illustration purposes.

266 V. Ciancia et al.

Proposition 1.
Φ2 ∨ (Φ1 S Φ2) ≡ A(Φ1 W Φ2)

where A is the path universal quantifier. The proof is provided in the Appendix.

2.2 The Collective Extension - CSLCS

In this section we show how the logic defined above is extended in order to
reason about sets of (connected) points, instead of individual points (see [10]
for details). We introduce an additional class of formulas, namely the collective
formulas by extending the grammar given in (1) as follows:

Ψ ::= ¬Ψ | Ψ1 ∧ Ψ2 | Φ −< Ψ | GΦ (2)

Let Φ be an SLCS formula (“individual” formula, in the sequel), and Ψ a
collective formula. Informally, Φ −< Ψ (read: Φ share Ψ) is satisfied by set Y
when the subset of points of Y satisfying the individual property Φ also satisfies
the collective property Ψ . Formula GΦ (read: group Φ) holds on set Y when the
elements of the latter belong to a group, that is, a possibly larger, path-connected
set of points, all satisfying the individual formula Φ. The satisfaction relation
|=C for CSLCS is defined below:

Definition 4. Satisfaction M, Y |=C Ψ of a collective formula Ψ at set Y ⊆ X
in model M = ((X, C),V) is defined by induction on the structure of formulas:

M, Y |=C ¬Ψ ⇔ M, Y |=C Ψ does not hold
M, Y |=C Ψ1 ∧ Ψ2 ⇔ M, Y |=C Ψ1 and M, Y |=C Ψ2

M, Y |=C Φ −< Ψ ⇔ M, {x ∈ Y |M, x |= Φ} |=C Ψ
M, Y |=C G Φ ⇔ there exists Z ⊆ X such that

Y ⊆ Z and Z is path-connected and
for all z ∈ Z we have: M, z |= Φ •

Back to Fig. 4a, we note that, although each point satisfying black satisfies
also (black ∨ white)Sred, the set consisting exactly of the two points satisfying
black does not satisfy the collective formula G((black ∨ white)Sred), i.e. the mem-
bers of the set are not surrounded collectively by red points. The set of black
points in Fig. 5 instead satisfies G((black ∨ white)Sred).

Fig. 5. A model where the set of the black points satisfies G((black ∨ white)Sred).
(Color figure online)

Embedding RCC8D 267

Finally, it is useful to note that M, Y |=C Φ −< G⊥ for every M and every
Y if and only if Φ ≡ ⊥. Thus the formula Φ −< G⊥ can be used for checking
whether Φ denotes the empty set.

3 Discrete Spaces with Adjacency and RCC8D

In this section we briefly introduce a subclass of quasi-discrete closure spaces,
namely those spaces (X, CR) where the underlying relation R, called the adja-
cency relation, is reflexive and symmetric. The points of any such space can be
thought of as pixels and the space itself can be used as (a model for) a digital
picture [18].

Discrete Mereotopology (DM) is concerned with the study of the relations
among regions, where a region is interpreted as an arbitrary aggregate Y ⊆ X
of pixels. In particular, Mereology is the theory of parthood and those relations
which can be defined in terms of it. Parthood is defined as set inclusion restricted
to non-null regions:

P(Y1, Y2) ≡def Y1 ⊆ Y2 and Y1 �= ∅.

The intuition behind the definition of P(Y1, Y2) is fairly simple and comes from
set theory: Y1 is part of Y2 and should not be empty. The derived relations are
defined below. They are readily explained in terms of set theory; the interested
reader is referred to [18] for a discussion on the region relations and on their
relationships:

PP(Y1, Y2) ≡def P(Y1, Y2) ∧ Y1 �= Y2 [Proper Parthood]
Pi(Y1, Y2) ≡def P(Y2, Y1) [Inverse Parthood]
PPi(Y1, Y2) ≡def PP(Y2, Y1) [Inverse Proper

Parthood]
O(Y1, Y2) ≡def Y2 ∩ Y1 �= ∅ [Overlap]
PO(Y1, Y2) ≡def O(Y1, Y2) ∧ ¬P(Y1, Y2) ∧ ¬P(Y2, Y1) [Partially Overlap]
DR(Y1, Y2) ≡def ¬O(Y1, Y2) [Discrete]
EQ(Y1, Y2) ≡def P(Y1, Y2) ∧ P(Y2, Y1) [Equal]

The relation set {DR, PO, PP, PPi, EQ} is referred to as RCC5D, i.e. the Discrete
Region Connection Calculus based on 5 relations, which is a purely mereological
language. It is extended to the mereotopological language RCC8D through the
addition of the topological notion of connection and operators derived thereof,
as follows:

268 V. Ciancia et al.

C(Y1, Y2) ≡def ∃y1y2(y1 ∈ Y1 ∧ y2 ∈ Y2 ∧ y1Ry2) [Connection]
DC(Y1, Y2) ≡def ¬C(Y1, Y2) [Disconnection]
EC(Y1, Y2) ≡def C(Y1, Y2) ∧ ¬O(Y1, Y2) [External

Connection]
TPP(Y1, Y2) ≡def PP(Y1, Y2) ∧ ∃Z(EC(Z, Y1) ∧ EC(Z, Y2)) [Tangential

Parthood]
NTPP(Y1, Y2) ≡def PP(Y1, Y2) ∧ ¬∃Z(EC(Z, Y1) ∧ EC(Z, Y2)) [Non Tangential

Parthood]
TPPi(Y1, Y2) ≡def TPP(Y2, Y1) [Inv. Tangential

Parthood]
NTPPi(Y1, Y2) ≡def NTPP(Y2, Y1) [Inv. Non Tang.

Parthood]

The relation set {DC, EC, PO, TPP, NTPP, TPPi, NTPPi, EQ} forms what is known
as RCC8D. In Fig. 6 we give an illustration of these relations using models based
on a 2D space of 100 points arranged as a 10×10 grid, with reflexive, symmetric
and orthodiagonal relation, as in [18], which we refer to for a more detailed
description.

(a) DC (b) EC (c) PO (d) EQ

(e) TPP (f) NTPP (g) TPPi (h) NTPPi

Fig. 6. The eight RCC8D relations.

4 Encoding RCC8D into CSLCS

Let us now focus on the encoding of RCC8D in CSLCS. Let (X, C) be a finite
closure space. We associate the atomic predicate pY to each set Y ⊆ X, such
that in all closure models M = ((X, C),V) we have V(pY) = Y . The encoding
[[·]] of RCC8D in CSLCS is defined in the sequel.

Embedding RCC8D 269

We first encode standard set theoretic and closure operations into CSLCS in
the obvious way; in the sequel γ, γ1, γ2 range over expressions on sets built out
of constants, complement, intersection and closure:

[[Y]] = pY , for all Y ⊆ X [Constant]
[[γ]] = ¬[[γ]] [Complement]
[[γ1 ∩ γ2]] = [[γ1]] ∧ [[γ2]] [Intersection]
[[C(γ)]] = N ([[γ]]) [Closure]

Now we add the tests on the empty set, on set-inclusion and set-equality;
note the use of the format Φ −< G⊥ to check for the empty set, discussed at the
end of Sect. 2:

[[γ = ∅]] = [[γ]] −< G⊥ [Empty]
[[γ1 ⊆ γ2]] = [[(γ1 ∩ γ2) = ∅]] [Inclusion]
[[γ1 = γ2]] = [[γ1 ⊆ γ2]] ∧ [[γ2 ⊆ γ1]] [Equality]

Finally, the actual encoding of (RCC5D and) RCC8D is given below and
is self-explanatory; the right-hand side of the equation for the encoding of a
relation is just the logical encoding of the set-theoretical expression used in the
definition of the relation presented in [18] and recalled in Sect. 3 of the present
paper:

[[P(Y1, Y2)]] = [[Y1 ⊆ Y2]] ∧ ¬[[Y1 = ∅]] [Parthood]
[[PP(Y1, Y2)]] = [[P(Y1, Y2)]] ∧ ¬[[Y1 = Y2]] [Proper Parthood]
[[Pi(Y1, Y2)]] = [[P(Y2, Y1)]] [Inverse Parthood]
[[PPi(Y1, Y2)]] = [[PP(Y2, Y1)]] [Inverse Proper

Parthood]
[[O(Y1, Y2)]] = ¬[[Y1 ∩ Y2 = ∅]] [Overlap]
[[PO(Y1, Y2)]] = [[O(Y1, Y2)]] ∧ ¬[[P(Y1, Y2)]] ∧ ¬[[P(Y2, Y1)]] [Partial Overlap]
[[DR(Y1, Y2)]] = ¬[[O(Y1, Y2)]] [Discrete]
[[EQ(Y1, Y2)]] = [[P(Y1, Y2)]] ∧ [[P(Y2, Y1)]] [Equality on

non-null Regions]
[[C(Y1, Y2)]] = ¬([[C(Y1) ∩ Y2 = ∅]] ∨ [[C(Y2) ∩ Y1 = ∅]]) [Connection]
[[DC(Y1, Y2)]] = ¬[[C(Y1, Y2)]] [Disconnection]
[[EC(Y1, Y2)]] = [[C(Y1, Y2)]] ∧ ¬[[O(Y1, Y2)]] [External

connection]

[[TPP(Y1, Y2)]] = [[PP(Y1, Y2)]] ∧ ¬[[C(Y1) ∩ Y2 = ∅]] [Tangential PP]

[[NTPP(Y1, Y2)]] = [[PP(Y1, Y2)]] ∧ [[C(Y1) ∩ Y2 = ∅]] [Nontangential PP]
[[TPPi(Y1, Y2)]] = [[TPP(Y2, Y1)]] [Inverse

Tangential PP]
[[NTPPi(Y1, Y2)]] = [[NTPP(Y2, Y1)]] [Inverse

Nontangential PP]

Correctness of the above encoding is stated below:

Proposition 2. For all RCC8D formulas F the following holds: F holds in an
adjacency model M if and only if M, ∅ |=C [[F]].

Proof. Note that if M, Y |=C [[F]] holds for a set Y , then it holds for any other
set Y ′, thence we conventionally take Y = ∅. The proposition is straightforward

270 V. Ciancia et al.

to prove. The only case which requires a bit of explanation concerns the TPP
predicate (and NTPP). The definition of TPP given in [18] is the following:

TPP(Y1, Y2) = PP(Y1, Y2) ∧ ∃Z.(EC(Z, Y1) ∧ EC(Z, Y2)).

We show that the two definitions characterise the same property. Note that,
according to our embedding, TPP(Y1, Y2) implies that C(Y1) ∩ Y2 �= ∅ and Y1 ⊆
Y2; the latter also implies, by monotonicity of closure, C(Y1) ⊆ C(Y2). Take
Z = C(Y1) ∩ Y2. We show that EC(Z, Y1) holds, i.e. C(Z, Y1) and ¬O(Z, Y1):
Z ⊆ C(Y1) implies3 C(Z) ∩ Y1 �= ∅; moreover C(Y1) ∩ Z = Z and Z �= ∅ by
hypothesis; so C(Z, Y1) holds. Y1 ⊆ Y2 implies Y1 ∩Y2 = ∅, which in turn implies
Z ∩ Y1 = ∅, i.e. ¬O(Z, Y1).

Now we show that EC(Z, Y2) holds, i.e. C(Z, Y2) and ¬O(Z, Y2): We have
already proved C(Z) ∩ Y1 �= ∅; so we get ∅ �= C(Z) ∩ Y1 ⊆ C(Z) ∩ Y2 because
Y1 ⊆ Y2, i.e. C(Z) ∩ Y2 �= ∅; moreover ∅ �= C(Y1) ∩ Y2 = C(Y1) ∩ (C(Y1) ∩ Y2) ⊆
C(Y2)∩ (C(Y1)∩Y2) because C(Y1) ⊆ C(Y2) and C(Y2)∩ (C(Y1)∩Y2) = C(Y2)∩Z;
so C(Z, Y2) holds. Z ⊆ Y2 implies Z ∩ Y2 = ∅, i.e. ¬O(Z, Y2). In conclusion, we
proved that there exists Z such that EC(Z, Y1) and EC(Z, Y2) which, together
with P (Y1, Y2), completes the first half of the proof.

Now, suppose that PP(Y1, Y2) and there exists Z such that EC(Z, Y1) and
EC(Z, Y2); then Z ⊆ Y2, because EC(Z, Y2) implies ¬O(Z, Y2); moreover, EC is
commutative, so we have also EC(Y1, Z), which implies C(Y1) ∩ Z �= ∅, and then
C(Y1) ∩ Y2 �= ∅, since Z ⊆ Y2. The above, together with P(Y1, Y2), completes the
proof.

Correctness of our definition of NTPP can be proved in a similar way and is
left to the reader.

Note that our definition of [[C(Y1, Y2)]] could be simplified to ¬[[C(Y1)∩Y2 = ∅]]
due to symmetry of the adjacency relation. We prefer the more general definition
covering also the case in which the underlying relation is not symmetric. Finally,
our definition of [[TPP(Y1, Y2)]] resembles the alternative definition by equation
(32) in [18].

5 Model Checking RCC8D Using topochecker

The tool topochecker is a global spatio-temporal model checker, capable of
analysing either directed graphs, or digital images. The tool is implemented
in the functional programming language OCaml4, catering for a good balance
between declarative features and computational efficiency. The algorithms imple-
mented by topochecker are linear in the size of the input space. The spatial
model checking algorithm is run in central memory, and it uses memoization and
on-disk caching to store intermediate results, achieving high efficiency.

3 It is trivial to prove that, for quasi-discrete closure space (X, CR), whenever R is
symmetric, if B ⊆ CR(A) then CR(B) ∩ A �= ∅, for all non-empty A,B ⊆ X.

4 See http://www.ocaml.org.

http://www.ocaml.org

Embedding RCC8D 271

For SLCS formulas, the output of the tool consists of a copy of its input,
where the points on which each user-defined formula holds are indicated, e.g.
by colouring pixels (for images), or labelling nodes (for graphs). Although such
mechanism is quite useful (for instance, because it permits one to colour so
called “regions of interest” in medical images), it is not apt to report the result
of checking CSLCS formulas of the form M, ∅ |=C φ. This is so because the
application of Proposition 2 results in a truth value, not a set of points that
satisfy the property. In order not to change the way topochecker produces
its results, and to permit the use of both “truth-valued” CSLCS formulas and
“point-valued” SLCS formulas at the same time, the tool has been augmented
with a conditional formula constructor. Using this constructor, one can define a
new point-valued formula Φ by

Let Φ = IF Ψ THEN Φ1 ELSE Φ2 FI

where Ψ is a CSLCS truth-valued formula, whereas Φ1 and Φ2 are SLCS point-
valued formulas. The result of such a definition is that Φ is true on the points
where Φ1 holds, if M, ∅ |=C Ψ , and on the points where Φ2 holds, otherwise.
Formulas Φ1 and Φ2 can for instance be atomic propositions that denote “indi-
cator” areas that make truth of the CSLCS formula Ψ observable as graphical
output. Application of the conditional constructor is not limited to image mod-
els; for instance, given a quasi-discrete closure-space (X, CR), one can augment
the space with new isolated points (these are by definition not connected to X
via R), and new special indicator atomic propositions, which characterize each
new point. These indicator atomic propositions can then be used to produce
output in topochecker via the conditional constructor. The formal details are
left as an exercise.

We use this conditional constructor in the example in Fig. 7 to illustrate
the TPP operator using topochecker. On the left, an RGB image is displayed,
where each pixel has three colour components, red, green and blue, respectively,
each ranging over 8 bits (i.e. taking values from 0 to 255). This is the input
of the model checking session. Such input image consists of six rows, each one
containing a green-ish rectangle gi on the left, a red-ish rectangle ri on the right
of it (for i in {1, . . . , 6}) and two more squares further to the right yesi (the
leftmost square) and noi (the rightmost square).

All the information is encoded in the red, green and blue components of each
pixel. Each of the six rows is identified by a different shade of the blue component
of the pixels in that row (for example, in the topmost row the value of the blue
component of each pixel is equal to 0, whereas in row 3 the blue component of
each pixel is equal to 80); the pixels in each green-ish rectangle have their green
component equal to 255, whereas the pixels in each red-ish rectangle have their
red component equal to 255 (therefore, when gi and ri overlap, the overlapping
area has both red and green components equal to 255, that is, it shows up as
a yellow-ish area in Fig. 7). Each pixel in a yesi square has both red and green
components that are equal to 100, whereas each pixel in a noi square has both
red and green components that are equal to 200.

272 V. Ciancia et al.

Atomic properties for RGB images in topochecker are equalities and com-
parisons on colour components. For instance one can define the points of
g3 ∪ r3 ∪ yes3 ∪ no3 by5

Let row3 = [blue == 80]

because all pixels in the third row have their blue component set to 80. The
points of

⋃
i ri, i.e. all red pixels in all rows, can be identified by

Let right = [red == 255]

therefore, the red rectangle in row 3, namely r3, is characterised by the formula
row3 & right.

Fig. 7. Checking the TPP operator using topochecker. (Color figure online)

On the right of Fig. 7, the image produced by topochecker as a result of
spatial model checking is shown. For each row i, one of the two (right-most)
squares has been coloured in orange. More precisely, yesi is coloured if TPP(gi, ri)
holds, and noi is coloured otherwise (indeed, only TPP(g3, r3) actually holds).
Such image is produced by the following statement:

Check "orange" checktpp(row1) | checktpp(row2) | checktpp(row3)

| checktpp(row4) | checktpp(row5) | checktpp(row6)

where checktpp is a conditional definition that, for each row i, identifies either
yesi or noi according to the satisfaction value of TPP(gi, ri). Since the current
version6 of topochecker permits only the definition of point-valued macros (not
of truth-valued ones), the encoding of RCC8D in the definition of checktpp has
been expanded manually, as follows:
5 In the remainder of this section, we employ the syntax of topochecker, using & for

conjunction, | for disjunction, ! for negation, -< for the “share” connective, and Gr

for the “group” connective.
6 This may change in a future release of the model checker.

Embedding RCC8D 273

Let green(row) = row & left;

Let red(row) = row & right;

Let checktpp(row) =
IF ((green(row) & (!red(row))) -< Gr FF) &

(!((red(row) & (!green(row))) -< Gr FF)) &
(!(((N green(row)) & (!red(row))) -< Gr FF))

THEN yes & row
ELSE no & row
FI;

The condition of the IF-statement is a direct encoding of the TPP operator
into basic CSLCS operators following the encoding defined in Sect. 4. If the
condition holds then TPP(gi, ri) holds in the given row, i.e. the green area is
indeed a tangential proper part of the red area, and therefore the small square in
the third column is coloured orange, otherwise the square in the fourth, rightmost
column is coloured orange. This produces the results in Fig. 7 (right). Of course,
this is only one way to visualise the model checking results that exploits the
current features of topochecker and used here for the purpose of illustration.
Other ways can be defined or added as preferred or required by the application
at hand.

6 Conclusions

We defined an encoding of the mereotopological theory RCC8D as a fragment of
the Collective Spatial Logic of Closure Spaces (CSLCS). CSLCS comes equipped
with a model checking algorithm and tool, which also contains an experimental
spatio-temporal extension of the logic. The newly defined encoding adds a region-
based point of view to the point-based methodology of the existing framework.
Such developments can be used right away in current applications of spatial and
spatio-temporal model checking, including spatio-temporal properties of smart
transportation systems [11,14], and medical imaging case studies [2]. Especially
for the latter, it is worth mentioning that a new tool is being developed, which
is specialised for digital images (including 3D—e.g., magneto-resonance—scans
for medical purposes). The tool, called VoxLogicA and described in [4], achieves
a two-orders-of-magnitude speedup in the specialised setting. VoxLogicA does
not yet implement the collective operators of CSLCS, but this is a planned
development, enabling, by the encoding of RCC8D we propose, efficient image
analysis with both the point of views of points and regions. Another interesting
domain of application could be that of the characterisation of spatial properties
and relations in the context of simulation of biological systems [6–8].

One open question regards RCC8D interpreted in arbitrary closure spaces,
not just the symmetric ones. We consider worth investigating in future work
what operators may be obtained when the underlying relation is directed. Indeed,

274 V. Ciancia et al.

many relations can be defined (for instance, region A may be “half-connected”
to region B when there is an edge from A to B even if there is no edge from
B to A). Application domains and case studies will help to clarify which ones
make more sense in practice.

Acknowledgements. This paper was written for the Festschrift in honour of Prof.
Rocco De Nicola. We would like to thank Rocco for the many years of fruitful col-
laboration in the context of numerous European and Italian research projects and we
are looking forward to future collaboration in the context of the new Italian MIUR
PRIN project “IT MATTERS”. But most of all, we are grateful for his great sense
of humanity with which he dedicated part of his professional live to keep computer
science research alive in areas struck by devastating earthquakes and to give a second
professional chance to people from conflict areas.

A Proof of Proposition 1

Proof. We prove that, for all models M = ((X, C),V) and points x ∈ X, the
following holds:

M, x �|= Φ2 ∨ (Φ1 S Φ2) iff M, x �|= A(Φ1 W Φ2).

For the direct implication, we proceed as follows:
M, x �|= Φ2 ∨ (Φ1 S Φ2)

⇒ {Logic}
M, x �|= Φ2 and M, x �|= Φ1 S Φ2

⇒ {def. of S}
M, x �|= Φ2 and

there exists π, � s.t.

π(0) = x,M, π(�) �|= Φ1, and M, π(j) �|= Φ2, for all j s.t. 0 < j ≤ �

⇒ {Logic}
there exists π, � s.t.

π(0) = x,M, π(�) �|= Φ1, and M, π(j) �|= Φ2, for all j s.t. 0 ≤ j ≤ �

⇒ {def. of W}
M, π �|= Φ1 W Φ2

⇒ {def. of A}
M, x �|= A(Φ1 W Φ2)

For the one but last step of the above derivation, note that: (i) M, π(�) �|= Φ1

implies that M, π(i) |= Φ1 for all i does not hold; and (ii) M, π(j) �|=

Embedding RCC8D 275

Φ2, for all j s.t. 0 ≤ j ≤ � implies that, if there exists k s.t. M, π(k) |= Φ2, then,
it necessarily must be k > �; but then M, π |= Φ1 U Φ2 cannot hold because this
would not allow M, π(�) �|= Φ1, with � < k.

The derivation for the reverse implication is given below:

M, x �|= A(Φ1 W Φ2)

⇒ {def. of A}
there exists π s.t.

π(0) = x and M, π �|= Φ1 W Φ2

⇒ {def. of W}
there exist π, � s.t.

π(0) = x and M, π(�) �|= Φ1 and M, π �|= Φ1 U Φ2

⇒ {M, π �|= Φ1 U Φ2 implies M, π(0) �|= Φ2}
there exists π, � s.t.

π(0) = x and M, π(�) �|= Φ1 and M, π(0) �|= Φ2 and M, π �|= Φ1 U Φ2

Take the minimal � as above. If � = 0, then clearly M, x �|= Φ1SΦ2, by definition
of S, and since we also have M, x �|= Φ2, we get M, x �|= Φ2 ∨ (Φ1SΦ2), i.e.
the assert. If instead � > 0, then clearly M, π(j) |= Φ1 for 0 ≤ j < �, by
minimality of �, and since we also have M, π �|= Φ1 U Φ2, we get M, π(j) �|= Φ2

for 0 ≤ j ≤ �. So, there exist π, � s.t. π(0) = x, M, π(�) |= ¬Φ1 and for all j, 0 <
j ≤ �, M, π(j) �|= Φ2, which, by definition of S, is equivalent to M, x �|= Φ1 SΦ2.
Moreover, since we also know that M, π(0) �|= Φ2, we get M, x �|= Φ2 ∨ (Φ1SΦ2),
i.e. the assert.

References

1. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4

2. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial
logics and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf.
(2019). https://doi.org/10.1007/s10009-019-00511-9

3. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: From collective adaptive sys-
tems to human centric computation and back: spatial model checking for medical
imaging. In: ter Beek, M.H., Loreti, M. (eds.) Proceedings of the Workshop on
FORmal Methods for the Quantitative Evaluation of Collective Adaptive Sys-
Tems, FORECAST@STAF 2016, Vienna, Austria, 8 July 2016. EPTCS, vol. 217,
pp. 81–92 (2016). https://doi.org/10.4204/EPTCS.217.10

4. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: A Spatial Model
Checker for Declarative Image Analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0 16. http://arxiv.org/abs/1811.05677

https://doi.org/10.1007/978-1-4020-5587-4
https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.4204/EPTCS.217.10
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-3-030-17462-0_16

276 V. Ciancia et al.

5. Bennett, B., Düntsch, I.: Axioms, algebras and topology. In: Springer [1], pp. 99–
159

6. Binchi, J., Merelli, E., Rucco, M., Petri, G., Vaccarino, F.: jHoles: a tool for under-
standing biological complex networks via clique weight rank persistent homology.
Electr. Notes Theor. Comput. Sci. 306, 5–18 (2014). https://doi.org/10.1016/j.
entcs.2014.06.011

7. Buti, F., Cacciagrano, D., Corradini, F., Merelli, E., Tesei, L., Pani, M.: Bone
remodelling in BioShape. Electr. Notes Theor. Comput. Sci. 268, 17–29 (2010).
https://doi.org/10.1016/j.entcs.2010.12.003

8. Buti, F., Cacciagrano, D., Callisto De Donato, M., Corradini, F., Merelli, E., Tesei,
L.: BioShape: end-user development for simulating biological systems. In: Costa-
bile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol.
6654, pp. 379–382. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21530-8 45

9. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 18

10. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial log-
ics for closure spaces. Logical Methods Comput. Sci. 12(4) (2016). http://lmcs.
episciences.org/2067

11. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. STTT
20(3), 289–311 (2018). https://doi.org/10.1007/s10009-018-0483-8

12. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Spatial logic and spatial model
checking for closure spaces. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM
2016. LNCS, vol. 9700, pp. 156–201. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34096-8 6

13. Ciancia, V., Latella, D., Massink, M., Paskauskas, R.: Exploring spatio-temporal
properties of bike-sharing systems. In: 2015 IEEE International Conference on
Self-Adaptive and Self-Organizing Systems Workshops, SASO Workshops 2015,
Cambridge, MA, USA, 21–25 September 2015, pp. 74–79. IEEE Computer Society
(2015). https://doi.org/10.1109/SASOW.2015.17

14. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 46

15. Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.)
COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48384-5 17

16. Galton, A.: A generalized topological view of motion in discrete space. Theor. Com-
put. Sci. 305(1–3), 111–134 (2003). https://doi.org/10.1016/S0304-3975(02)00701-
6

17. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and con-
nection. In: Nebel, B., Rich, C., Swartout, W.R. (eds.) Proceedings of the 3rd
International Conference on Principles of Knowledge Representation and Reason-
ing (KR 1992), Cambridge, MA, USA, 25–29 October 1992, pp. 165–176. Morgan
Kaufmann (1992)

18. Randell, D.A., Landini, G., Galton, A.: Discrete mereotopology for spatial reason-
ing in automated histological image analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 35(3), 568–581 (2013). https://doi.org/10.1109/TPAMI.2012.128

https://doi.org/10.1016/j.entcs.2014.06.011
https://doi.org/10.1016/j.entcs.2014.06.011
https://doi.org/10.1016/j.entcs.2010.12.003
https://doi.org/10.1007/978-3-642-21530-8_45
https://doi.org/10.1007/978-3-642-21530-8_45
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1007/978-3-662-44602-7_18
http://lmcs.episciences.org/2067
http://lmcs.episciences.org/2067
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/978-3-319-34096-8_6
https://doi.org/10.1007/978-3-319-34096-8_6
https://doi.org/10.1109/SASOW.2015.17
https://doi.org/10.1007/978-3-319-47166-2_46
https://doi.org/10.1007/3-540-48384-5_17
https://doi.org/10.1007/3-540-48384-5_17
https://doi.org/10.1016/S0304-3975(02)00701-6
https://doi.org/10.1016/S0304-3975(02)00701-6
https://doi.org/10.1109/TPAMI.2012.128

Embedding RCC8D 277

19. Smyth, M.B., Webster, J.: Discrete spatial models. In: Springer [1], pp. 713–798
20. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Springer [1], pp.

217–298

From Behavioural Contracts
to Session Types

Alessandro Fantechi1, Elie Najm2(B), and Jean-Bernard Stefani3

1 Università di Firenze, Florence, Italy
alessandro.fantechi@unifi.it

2 Institut Polytechnique de Paris, Telecom Paris, LTCI, Paris, France
elie.najm@telecom-paristech.fr
3 INRIA, Rocquencourt, France
Jean-Bernard.Stefani@inria.fr

Abstract. We present a research trajectory of the authors and
colleagues dealing with the correctness and meaningful composition of
software components, trajectory that incrementally traverses succes-
sive paradigms and approaches: open distributed processing, contract
based reasoning, behavioural typing and session types. This research is
grounded on the foundational work of Robin Milner on processes and
observation equivalence, and the followup work by De Nicola and Hen-
nessy on testing relations. Indeed, these initial works have set bench-
marks that define the meaning of behaviour, which has fostered a full
body of research in concurrency and verification. Behavioural typing is
one of the avenues opened by these early contributions. This paper is a
brief and staged report of the research accomplished by the authors and
colleagues, presented in chronological order, starting with their work on
the computational model of open distributed processing and ending at
their latest work on sessions for web services.

Keywords: Distributed software components · Services ·
Coordination · Composition · Behavioural contracts · Session types ·
Verification

1 Introduction

In this paper, we present a trajectory of research undertaken by a group of
co-authors over the last two decades, which is directly or indirectly connected to
Rocco De Nicola’s seminal work. Numerous are the domains touched by Rocco
De Nicola in his long research career: process algebras, testing equivalence [19],
Linda [20], Klaim [21] and coordination languages, attribute-based communi-
cation [3], cloud computing [55], autonomic computing [18], service orientation
[7,34], sessions and session-types [9], to name a few. The early 1980s witnessed a
significant debate related to the meaning and representation of processes. Robin
Milner’s answer constituted a first major landmark, which comprises of a cal-
culus of Communication Systems for encoding processes, and an Observation
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 278–297, 2019.
https://doi.org/10.1007/978-3-030-21485-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_16

From Behavioural Contracts to Session Types 279

equivalence to abstract their behaviour [43]. By proposing the testing equiva-
lence [19], a coarser but still meaningful relation that refines the overly strong
observation equivalence, De Nicola, together with Hennessy, achieved a second
major landmark. Both, observational and testing relations influenced a full body
of research, and, most notably, fostered the emergence of a new approach for the
static verification of concurrent software, which is based on integrating types
and behaviour. The trajectory accounted for in this paper is grounded on this
basis.

This paper is a commented history of the contributions by the co-authors,
focused on behavioural typing. Its starting point is their contribution to the for-
mal semantics of the computational model of the Open Distributed Processing,
presented in Sect. 2. Then comes their work on behavioural typing and con-
tracts, which is given in Sect. 3. Section 4 then presents their results in service
oriented computing, session types and web services. This paper does not provide
an up-to-date account on the subject matter; connections to related work are
deliberately minimal. We think that the exposure of how research have been
progressed by the authors as a coherent research agenda carried out over two
decades is interesting in itself. In the conclusion, however, we touch upon the
latest developments in this field and refer the interested reader to the latest
survey [29].

2 Open Distributed Processing

The 1980s witnessed the development of the early foundations of networking: pro-
tocols versus services, layered architectures, naming and addressing, packet for-
warding, end to end communication, etc. This first development and the advent
of the object paradigm, paved the way for a new approach which addresses
both software engineering and distributed computing in an integrated vision.
This endeavor was conducted by many researchers from academia and industry
and was capitalized in the Open Distributed Processing (ODP) international
standard published in 1998 [30]. The ODP reference model prescribes that a dis-
tributed system needs to be considered and described under five complementary
viewpoints, each endowed with its abstract modeling language:

– Enterprise is the requirements viewpoint. The Enterprise model, among oth-
ers, decomposes a system into its stakeholders, delimits boundaries between
them, and establishes assume/guarantee relationships among them.

– Information is a viewpoint that describes the structure of the information
defining the system and how this information may change over time.

– Computation is the viewpoint that defines the units of distribution and sep-
aration and also the requirements on how these units interact.

– The Engineering viewpoint defines generic solutions of the infrastructure that
support the system and which satisfies the requirements defined in the Com-
putation viewpoint.

– Technology is the viewpoint that provides market or developed solutions that
conform to the generic solutions of the Engineering viewpoint.

280 A. Fantechi et al.

This novel approach to system development comes in contrast with the OSI
layered architecture where each layer is a proper part of the system. In ODP,
each viewpoint considers the system as a whole, and different models of the
system, conforming to different viewpoints, need to be consistent [5,22]. The
authors focused their research on the ODP Computational Model (ODP-CM).
Informally, the ODP-CM constitutes a language independent distributed pro-
gramming model turned towards system designers and developers. It exhibits
a number of distinctive features: (i) the ODP-CM is populated with objects,
(ii) objects encapsulate state and behaviour, (iii) objects come with dynamic
creation of multiple, strongly typed interfaces; (iv) objects are the unit of struc-
ture, and interfaces the unit of reference, (v) interfaces are either operational
or stream based, (vi) operational interfaces are for one way signals or request-
response operations; (vii) stream interfaces are for continuous (media) flows;
(viii) objects are bound implicitly or explicitly, allowing for the dynamic con-
figuration of communicating objects; (ix) quality of service declarations can be
associated with both the operational and stream interfaces.

In [49], the authors provided a formal semantics of a subset of the features of
the ODP-CM. It encompasses an interface type language with its type system
and algorithm, inspired by [4], and a rewriting logic semantics [38] which captures
the behaviour of the dynamically evolving configurations of interacting objects
and with changing communication patterns. Features (ii), (iii) and (viii) above
suggest a strong connection with the pi-calculus. Indeed, another formalization
[46] was given to DPL, a language compliant to the ODP computational model,
using a translation into the pi-calculus [24].

The advent of the ODP reference model opened an avenue of contributions
from industry and academia. Many dimensions were tackled that refine and
develop the abstract concepts provided in the reference model. In the sequel, we
present contributions that deal with some of these dimensions. In particular, the
following dimensions were addressed: (i) providing a framework for defining and
verifying quality of service contracts; (ii) adjoining behaviour dependent types
and contracts to interface types; (iii) experimenting with language bindings that
conform to the ODP computational model and its interface types.

3 Behavioural Contracts and Behavioural Types

3.1 Contracts for ODP

The quality of service dimension was approached in [24]. An extension to the
ODP-CM was first provided that views the behaviour of the computational
model as a collection of timed and observable interactions. In this setting, an
interaction takes place between two interfaces of two objects and has one of
two possible observable results: success or failure. A calculus of object contracts
(COC) is introduced. COC is a process algebra over a special set of Actions.
An action is either an observed interaction or an error notification. A typical
observed interaction is !?g.m(x:T) which represents the observation of the send-
ing by an object of a message m from its reference g and its successful reception

From Behavioural Contracts to Session Types 281

by the target object. Another typical observed interaction is the dual interac-
tion, !?g.m(x:T), which represents a sending of message m which has not been
received by the target object. An error notification is of the form: !w.m(F) where
w is the error notification interface, m the missed message, and where F designates
the incriminated object, which can be either the sender, noted !g, or the target
object, noted ?g. A contract is a COC process which is added as an observer (à
la aspect) to a configuration of objects, thus it observes and monitors the inter-
actions occurring between the objects of the configuration. In case of interaction
failure, it identifies and incriminates the faulty object. Thus the elegant formal
definition of contract fulfillment inspired by [1]: a configuration S, which is put
to run in an environment E, fulfills contract C if and only if, in any trace of
(C||S||E), any occurrence of an error notification incriminating S is preceded by
an occurrence of an error notification incriminating E. Contracts as processes
gave rise to an interesting theory, rich with modeling concepts, which are built
using the process algebraic counterparts : contracts can be compared, composed,
strengthened, weakened, split into assumptions and obligations. Another inter-
esting link can be made with run-time verification as COC processes can be
viewed as an early manifestation of run-time monitors.

3.2 Behavioural Types with Modalities

The influence of state and behaviour on the types of interfaces was not dealt with
in the work on formal semantics of the computational model presented in the
previous section. In the quest for the most expressive way to define behavioural
types acting as contracts between distributed interacting objects, we choose to
move the focus from objects to components, as the latter emphasizes both the
sending and receiving capacities of objects, and is more suitable for contract
based analysis.

In [13,14] we defined a framework in which a component can exhibit several
ports through which it communicates with other components. To each port is
associated a type, which is a localized abstraction of the behaviour of the com-
ponent. The interface type language introduces modalities on the sequences of
actions to be performed by ports using must and may prefixes and allows the
distinction between required messages and possible ones. The complexity of the
interface typing language is kept deliberately low, in order to facilitate com-
patibility verification among ports. We were not interested to define a specific
language for components, but we chose an abstract definition which is general
enough to accommodate different languages: components are abstracted as a set
of ports, by which they communicate, and whose behaviour is provided by a
set of internal threads of execution of which only the effects on ports can be
observed.

The approach was in part inspired by the work of De Alfaro and Henzinger [2],
who associate interface automata to components and define compatibility rules
between interfaces. Our approach, which belongs instead to the streamline of
process algebraic type systems, also brings in the picture the compliance between
components and interfaces: the interface of a port is thought as a contract with

282 A. Fantechi et al.

the external environment that the component should honor. The work on Modal
Transition Systems by Larsen, Steffen and Weise [36] has inspired our definition
of modalities and the way interface compatibility is checked.

Ports of components exhibit multiple features and capacities, thus ports:

– are the sources and targets of messages exchanged between components;
– can be in sending or in receiving states;
– can be dynamically created and deleted;
– can be bound to other ports located in other components;
– can send messages to, and receive messages from, only these other bound

ports;
– can be moved and become relocated at other components;
– are of two kinds, server and client, where client ports can be bound to server

ports but server ports cannot be bound.

A client port bound to a server port allows for a request to be sent to the server,
and this has the effect to create a new port that is collocated with this server
and where the newly created port and the requesting client port become bound
in a peer-to-peer manner.

The dynamic semantics of a single component is defined through labeled
transition systems. The state of a component depends on the current state of its
behaviour, the set of known ports, and the set of bindings established between
the local ports and the known ports. No syntax is defined for the behaviours
of components. The state of an assembly of components is the parallel com-
position of the components and of the communication medium (expressed in
a typical process-algebraic style as C1|| · · · ||Cn||Com). The labeled transition
system defining the behaviour of a component dictates the possible transitions
depending on the states of the components and the state of the communication
channels.

Fulfillment of a contract by a component, and hence the enforcement of
the correct usage of ports and their capacities as listed before, is operationally
defined by a set of rules that check the match between the transitions of the
component and the transitions allowed or enforced by its declared types. A
configuration made up of communicating components satisfies well-typedness
if each of its components abides by the contracts exposed by its ports, and
if the interface types of any couple of bounded ports are pairwise compatible.
Provable properties include subject reduction (no error state is ever reached),
message consumption (every message will be consumed eventually, under proper
fairness assumptions), inter-component deadlock freedom, livelock freedom under
specific assumptions on the computations.

In short, [13,14] brought about the following accomplishments: an abstract
component model is introduced, its operational semantics is given in terms of
labeled transition systems, an interface type language featuring modalities is
defined; each port can be explicitly associated with an interface type, a for-
mal definition of well-typedness of components is provided, a notion of sound
assembly of components is defined based on compatibility between bounded
ports (using subtyping), properties are proven on well typed configurations that

From Behavioural Contracts to Session Types 283

guarantee: subject reduction, all messages sent are consumed, and absence of
external deadlock.

The work covered by this contribution is incomplete however, in the sense
that it misses an instantiation on a language for encoding the behaviour of
components. This is the topic handled in the next section.

3.3 Behavioural Types for Object Calculi

In this section, we account for work done on the definition and properties of
object calculi with explicit behavioural typing of their interfaces. As presented in
the previous sections, the ODP computational model is a language independent
reference model for distributed computing. What remains is the work of finding
languages (or adapting existing ones) that comply with the reference model. To
that end, although we were inspired by the π-calculus, we have set our work
rather on object calculi, where interfaces, methods and invocations are primitive
concepts. Indeed, many approaches existed that considered behavioural typing
and its application. Most of the work was directly conducted on variants of the π-
calculus, or else on actors. The survey [29] provides a good discussion comparing
these approaches. However, we continued our efforts in substantiating the ODP-
CM and hence we proposed three embodiments of object calculi each with its
expressive power, its interface behavioural type language, its typing rules and
algorithms, and the properties guaranteed by the well-typedness verdict.

The first calculus introduced is COB [45] (Calculus of Object Bindings) which
features objects with multiple interfaces that can be dynamically created and
that can be migrated between objects. The interface type language is defined
in the format of a finite transition systems labeled with message types. The
novelty of COB is in the distinction that is made between the private and pub-
lic interfaces and between the client and server roles of interfaces. Hence, the
type discipline dictates that when an object sends the sending role of a private
interface, it looses that role and therefore can no longer send messages over that
interface. Configurations are made of COB objects that communicate in rendez-
vous. The messages they can exchange are tuples made of a message name and
an ordered list of arguments. Arguments are just interface roles. When an object
creates an interface, it possesses both the sending and receiving roles. Then it
can choose to migrate one or both of these roles by sending them over another
interface. A configuration is well typed if each object abides with the typing rules
and if any pair of dual roles present in any pair of objects of the configuration
have compatible interface types. Beyond the subject reduction property, any well
typed configuration also ensures the safety property at run time: when an object
is ready to send a message on an interface, and another object is ready to receive
a message on the receiving role of that interface, then there is a match between
the message to be sent and the receiving action.

The second calculus introduced is OL1 [48]. In COB, one could not define
interfaces having possibly infinite states, i.e., the labeled transition system defin-
ing the interface is finite. For instance, the type of a buffer in COB can be given
by the equation:

284 A. Fantechi et al.

Buffer = put(. . .); Buffer + get(. . .); Buffer

and thus, the type system cannot discard the case of a get access to an empty
buffer. OL1 extends COB by allowing such a feature. Each interface type is a
labeled transition system parameterized with a natural number (thus introducing
a dependent type). In OL1, the type of an unbounded buffer can be given by:

Buffer[n] = put(. . .); Buffer[n + 1] + [n > 0] get(. . .); Buffer[n − 1]

which enforces that any get access is only done when the buffer is full. The
language OL1 itself is also extended with guards that act on natural numbers.
The typing rules defined on OL1 ensure the same properties guaranteed by COB;
in a well-typed configuration, there may not be, at run-time, any state where a
message is not understood by its receiving object.

The third calculus introduced is OL2 [47] which is also an enhancement to
COB in two ways. First, communication between objects is asynchronous and
through FIFO channels, which is more realistic than the synchronous communi-
cation scheme of COB. Second, a distinction is made, both in the type language
and the calculus itself, between mobile and immobile (called stable) interfaces.
The type discipline enforces that no role of a stable interface can migrate and
that no role of a mobile interface can be sent to a mobile interface. Indeed, this
type discipline avoids situations where, for instance, a role is sent to an inter-
face which turns out to be already sent in a message by the target object and
is pending in a buffer destined to another mobile interface. This is obviously a
deadlock situation that is prevented by the type system. Hence, OL2 ensures
a liveness property which can be stated as follows: if a message is in a queue
targeting an object of the configuration, then the configuration can evolve to
a situation where this message has been consumed. It is worth noting that all
three calculi enjoy the configuration extension property : if a well typed object is
added to a well typed configuration and it refers to a compatible public interface
of an object of that configuration, then the new configuration is also well typed.

An important contribution of the above works on OL1 and OL2 is the idea
that types, as processes, enjoy notions of equivalence and subtyping correspond-
ing to behavioural relations of bisimilarity and similarity. More generally, this is
the idea that compatibility relations between behavioural types must correspond
to notions of similarity or refinement between processes. Although natural, this
idea was not necessarily prominent at the time. It relates to the first proposal
for subtyping in binary session types by Gay and Hole [25,26], which was pro-
posed independently, and which defined a subtype relation on binary session
types using a coinductive definition clearly inspired by the simulation preorder
on transition systems. It also plays a key role in understanding subtyping for
behavioural contracts, for example, as proposed by Castagna and Padovani [15],
and in eliciting the relationships between session types and behavioural contracts
as in the work of Bernardi and Hennessy [6].

From Behavioural Contracts to Session Types 285

The typed object calculi presented in this section are limited in their expres-
sive power in that they do not have internal concurrency. This restriction is
relaxed in session-based-service-oriented computing: in fact, service oriented
computing features services that result from the orchestration of other ser-
vices, and orchestration is naturally multi-threaded. Work on sessions and service
orchestration is covered in the following section.

4 Sessions, Session Types and Service Orchestration

Once the basics of the theory of contracts as behavioural types were estab-
lished, we needed to verify their potential application to concrete examples of
distributed software architectures. Our efforts therefore led us to service-oriented
computing, whose importance at that time was growing. Services are exposed
over a network via well-defined interfaces and specific communication protocols,
and the design of software is obtained as an orchestration of services, that is,
defining a local view of a structured set of interactions with remote services.

In this context, the interest is on guaranteeing that services interact safely.
To this aim, we were investigating means to check, at deployment time, whether
or not interacting services are compatible and will not yield interaction errors
at run time. The elementary construct in a Web service interaction is a message
exchange between two partner services. The message specifies the name of the
operation to be invoked and bears arguments as its payload. An interaction can
be long-lasting because multiple messages of different types can be exchanged
in both directions before a service is delivered. Also, an orchestration typically
requires support for concurrency in order to invoke multiple services simulta-
neously rather than sequentially [23]. The set of interactions supported by a
service defines its behaviour. We argue that the high concurrency and complex
behaviour found in orchestrations make them easily susceptible to programming
errors.

In this setting, the concept of sessions emerged to capture the exchange
of messages among components, starting from the request for a service and
ending at its fulfillment. The concept of sessions has also gained recognition
also in programming languages such as Java [50] and Erlang [44]. Sessions and
session types became a powerful means for developing correct-by-construction
components destined at collectively providing software services.

4.1 Session Types and Orchestration Charts

Orcharts. In the service orchestration community, a significant body of work
looks at formal models that support sessions for services as a first-class element
of the language, such as in the Service-Centered Calculus (SCC) [7], SSCC [33],
CaSPiS [8], the latter two being process calculi inspired by the π-calculus [41,42]
and Orc [32].

Most of these efforts adhere to the process algebraic paradigm. Hence, they
miss capturing one of the main features of orchestration which is how differ-
ent active sessions can influence each other at run-time. Indeed, one needs to

286 A. Fantechi et al.

explicitly capture how running sessions intertwine with control flows and data
flows within an orchestration program. In [23], we presented Orcharts, a service
orchestration language, specially designed to meet its modeling need. Orcharts
is graph-based, as graphs are well suited for conveying complex control and data
flows. Orcharts is accompanied by the typecharts, a session behavioural typing
language, based on finite labeled transition systems. A novelty in typecharts is
the presence of terminal states, which are meant to capture the successful ter-
mination of sessions.

Due to lack of space, we do not show here the graphical appearance of
Orcharts, but only give the main characteristics: an Orchart is a finite directed
acyclic graph where nodes can be of three types: input nodes, output nodes and
instantiation nodes, and where edges can be of two types: data carrying edges
and control edges. Each node is a unit of action; control is transferred from node
to node by (control and data) edges:

– Simple input nodes receive messages (read messages from the FIFO queue
associated with the referred session), whose value is assigned to write-once
variables, that are carried over to next nodes by data carrying edges.

– An input node can be internally structured in one or more capsules, that is,
expressions of a single receiving action, each in a different session.

– A structured input node behaves like a guarded command: when an input
node receives control, its capsules can consume messages that are waiting in
the FIFO queue of the referred session.

– When one message in a capsule is consumed, this capsule is fired and the flow
concurrently continues on all edges having their source at this capsule.

– When a capsule is fired, all other capsules of the same input node (and their
continuation flows) are discarded.

– An output node may contain one or more message emissions. Messages may
carry values that can be either simple data values (as carried by variables in
incoming data carrying edges) or service names. Each message emission refers
to a session name. When an output node receives control, each of its messages
is inserted in the FIFO queues corresponding to the named sessions.

– An instantiation node is analogous to a procedure call, that is, it refers to
an orchart defined elsewhere, or it may introduce recursion and therefore
iterative behaviour.

– Control can fork from a node in alternative or parallel control flows. Parallel
control flows can join in a node that acts as a synchronization point for the
two flows.

An orchart declares the session type for each required session and for each
provided session, by a reference to a typechart.

Typecharts. Typecharts are a special kind of deterministic finite labeled transi-
tion systems where labels represent messages with parameter types. Parameter
types can be data types, or names of typecharts. The transition system of a
typechart has an initial state and one or more final states, and states are parti-
tioned in two subsets: sending states and receiving states (initial and final states

From Behavioural Contracts to Session Types 287

can only be receiving states). The typechart declared for a required service can
be different from the one declared as provided in the service definition of this
required service, but compatibility is required.

Fig. 1. Two typecharts of News Agency services

In Fig. 1 two example typecharts from [23] are given, derived by a revisited
example of the News Agency service presented in [31]. A session typed with the
typechart (a) allows for a single exchange of request and reply, while (b) allows
for repeatable request/response interactions.

Subtyping. Compatibility is expressed recurring to the notions of subtyping
and type duality :

– Subtyping between typecharts, defined according to [56], in a way resembles
the classical simulation relation between transition systems:
T1 is a subtype of T2, written T1 � T2, if in any receiving state, T1 is able to
receive all the messages that T2 is able to receive, and in any sending state
T2 is able to send all the messages that T1 is able to send.

– A session has two ends, the end of the client and the end of the service. Session
types differ for a session if seen from the two ends, in the fact that what is an
input on one side is an output on the other side. Dual(T) is simply defined
exchanging sendings and receivings [56].

Substitutability and compatibility of types are defined, as in [56]:

– a session type T can safely substitute T ′ if T � T ′;
– a session type T is compatible with T ′ if T � Dual(T ′).

That is, two session types are deemed compatible if any sending of one is
matched by the reception of the other; hence, a session having at its two ends
compatible types does not internally deadlock. The typecharts NewsAgency-T
and NewsAgencyBis-T are defined so that NewsAgencyBis-T can safely substitute
NewsAgency-T.

288 A. Fantechi et al.

Well-Typedness of Orcharts. Substitutability and compatibility allow for
automatically checking, in a composition of services represented by two orcharts,
the conformance of the required session type of an orchart with the provided
session type of the other. The missing step is to ensure that effectively the
orcharts defining composed services conform to their own provided and required
typecharts.

In [23] a well-typedness algorithm is defined to this aim. The algorithm pro-
ceeds by discharging proof obligations: from the initial proof obligation (the
initial state of the orchart conforms to the provided typechart), the algorithm
proceeds with symbolic co-execution steps, where the orchart and the associated
typecharts are executed in a synchronised fashion. Either a step fails, in which
case the whole algorithm immediately terminates concluding a typing error, or
produces a set of new proof obligations to be discharged. The algorithm can
cope with instantiation nodes and with parallel flows so that it is guaranteed to
terminate.

The notion of well-typedness is finally extended to configuration of services,
by requiring well-typedness of each service and mutual type compatibility. A
well-typed configuration of services is claimed to enjoy the soundness property:
any service invocation potentially reaches a termination state.

4.2 Session Types and Web Service Orchestration

After looking for a specific language for reasoning on session types in service
orchestrations, we moved to study how to apply the same concepts to a standard
service oriented language.
Widely adopted standards such as the Web Service Description Language
WSDL [16] provide support for syntactical compatibility analysis by defining mes-
sage types in a standard way [35]. However, WSDL defines one-way or request-
response exchange patterns and does not support the definition of more complex
behaviour. Relevant behavioural information is exchanged between participants
in human-readable forms, if at all. Automated verification of behavioural com-
patibility is impossible in such cases.

As already discussed in the previous section, the session paradigm has the
potential to improve the verification of behavioural compatibility of web services
(e.g. [33,57]). To that end, we have applied in [39] the session based approach by
adapting and sessionizing a significant subset of the industry standard orches-
tration language BPEL [52]. SeB extends BPEL by featuring sessions as first class
citizens. Sessions are typed in order to describe not only syntactical informa-
tion but also behaviour. A SeB service exposes its required and provided session
types, and a client wishing to interact with a service begins by opening a session
with it. Thus, the interaction that follows the session initiation should behave
according to the guidelines declared by the type of the opened session. Achieving
the extension of BPEL with sessions and proving the benefits provided by this
extension involves many steps:

– Defining the syntax of the untyped SeB,

From Behavioural Contracts to Session Types 289

– providing its static and dynamic semantics, defining the session type language,
– defining the typed SeB,
– providing the algorithm of well typedness of SeB,
– defining the syntax and dynamic semantics of running configurations of

SeB services,
– characterisation of the interaction errors,
– defining well typed configurations of SeB services and the algorithm of its

verification,
– defining the syntax and dynamic semantics of well typed configurations of

SeB services,
– proving that well typed configurations of SeB services are interaction safe.

In the sequel, we give some hints on how these steps have been achieved.

SeB, a Sessionized BPEL. BPEL has its textual syntax defined in XML. Hence,
XML would have been the most natural choice of metalanguage for encoding
SeB’s syntax. However, the verbose nature of the XML is not suitable for the
purpose of the formal discussion that is engaged. Indeed, BPEL is essentially a
graph-based notation, with nodes representing either simple or structured activi-
ties and where edges act as control links between activities. A structured activity
is, in turn, a graph of linked activities. Hence, BPEL is not naturally expressible
by process algebras and cannot be reduced to traditional structured program-
ming with control constructs. Therefore we have adopted a mixed syntax: records
to encode activities, and graph notations for control links. Elementary activities
in BPEL are essentially made of service invocations. And the main structured
activities are:

– flow, for running activities in parallel;
– sequence, for sequential composition of activities,
– pick (also known as external choice), which waits for multiple messages, the

continuation behaviour being dependent on the received message.

SeB adopts the same structured activities of BPEL, but also introduces a new
activity for session opening, and adapts the two activities of invocation and
pick. Hence the three typical SeB activities are: opening a session, sending an
invocation over a session, and awaiting for a response on a session. A typical
sequence of SeB activities is (using a loose syntax):

r@serv ; r!req ; (r?resp1; Act1 + r?resp2; Act2)

which depicts the opening of a new session with service serv (and where the
session id is bound to variable r), then sending an invocation req over this
session, then awaiting for one of two possible responses resp1 or resp2 over this
session.
SeB also inherits from BPEL the possibility of having control links between con-
current subactivities contained in a flow, as well as adding a join condition as

290 A. Fantechi et al.

a guard to any activity. As in BPEL, a join condition requires that all its argu-
ments have a defined value (true or false) and must evaluate to true in order
for the activity to be executable. SeB also implements so-called dead path elim-
ination (DPE) whereby all links outgoing from a cancelled activity, or from its
subactivities, have their values set to false.

Session Types. The untyped SeB language is then equipped with explicit
typing by use of session types as a mean to abstract the interactions between
a client and a service. Session types used for SeB are very similar to the type-
charts introduced in Sect. 4.1. Indeed, the main difference of SeB, w.r.t. BPEL,
resides in the addition of the session concept. The mechanism used in BPEL to
relate and route distinct messages from one or more clients towards a partic-
ular service instance is called correlation. Correlation sets are application-level
message fields whose values are used as a basis for correlation. Note that the pur-
pose of both sessions and correlation sets is to maintain long-lasting interactions
between process instances, but correlation sets are more implicit by nature. For
example, with correlation sets, a service’s lifecycle is hidden from clients, and
the initiation of and reference to a specific instance of an interaction cannot be
done explicitly and with any certainty. SeB does not feature correlation sets and
instead relies on sessions as an explicit language element. Identifiable sessions are
particularly useful as one may then associate types to sessions, which facilitates
the fulfillment of our goal of checking that interactions are safe. Indeed, analysis
of interactions that stem from correlations seems difficult [11]. Hence, in SeB,
session identifiers are the only means to refer to the instances at each end of a
conversation.

SeB uses binary sessions, therefore interactions involve strictly two partners.
Correlation sets are more expressive than binary sessions in the sense that they
can, for example, allow multiple clients that are not aware of each other’s exis-
tence to communicate with one single service instance if the right correlation
data is included in the messages. Multiparty sessions have been studied in the
literature [11], as well as multiparty session types [28], and offer a solution as
to how this limitation can be lifted from binary sessions Multiparty sessions can
in fact be shown to emulate some of the behaviour that can be defined with
correlation sets.

Operational Semantics of SeB and of Service Configurations. In [39] we
first define a static semantics for SeB that defines well-formed activities. We then
define an operational semantics obtained in two steps: the nature of BPEL is such
that there is an additional layer of control over concurrent activities within a
local process. This layer of control manifests itself in the form of control links and
complementary join conditions. Compared to traditional theoretical concurrent
languages such as those based on the π-calculus, this adds a layer of complexity
when giving BPEL-style languages formal semantics. Undoubtedly, attempting
to combine the evaluation of local control flow while simultaneously studying
the value and message passing semantics of distributed processes would result

From Behavioural Contracts to Session Types 291

in very complicated semantics. Hence, the first step consists in the creation of
what we have called a control graph: before looking at how distributed services
interact, SeB activities are transformed into control graphs. Control graphs are
labeled transition systems that reflect the evaluation of the control flow of SeB
activities including the evaluation of join conditions, but do not address values
and message passing. By isolating this first step, we can study different prop-
erties and transformations of control graphs and distinguish between binding,
usage, and free occurrences of variables. This graph takes into account the effect
of the control flow part of a SeB activity, including the evaluation of join condi-
tions. Control graphs contain symbolic actions and no variables are evaluated in
the translation into control graphs. In the second step of the semantics we run
service definitions, service instances, and client instances alongside each other
(based on the control graphs obtained in the previous step) in what we call a ser-
vice configuration and we enable communication through FIFO message queues.
At this stage, the values of variables need to be taken into account as they
are exchanged in messages, by adjoining a memory map to each SeB activity,
providing the value and message passing semantics of SeB activities. This seman-
tics shows how a dynamic configuration of services can evolve by instantiating
sessions and exchanging messages.

Interaction Safety. Based on these semantics we formalise the concepts of
interaction error and of interaction safety. Informally, interaction safety is veri-
fied when the following situation never occurs: a service instance reaches a state
where it waits for an input on a session, and the message that is at the head of
the queue for that session is not expected, i.e., the service has no matching pick
or receive activity and cannot remove the message from the queue.

Similarly to what had been done for orcharts, but with a higher degree of
complexity due to the simultaneous presence of parallel flows and control links
in SeB, we are able to provide an algorithm that determines whether or not a
collection of services is able to interact correctly by verifying the compatibility
of the clients’required session types with the providers’provided session types.
We say that such a collection of services is well-typed. Finally, we prove that a
well-typed collection of interacting services is interaction safe, in the sense given
above, meaning that no unexpected messages or arguments are exchanged.

5 Conclusion

We have presented the history of a research activity centered on the need of
correctly composing distributed software components that has spanned over
almost two decades, following the evolution of the software component technolo-
gies, from Open Distributed Processing to service-oriented architectures. The
focal point of this research activity is the adoption of contracts, in the form of
behavioural types, to regulate the interactions between communicating software
components. The notion of behavioural contract has been successively refined
and subsumed by the concept of session type.

292 A. Fantechi et al.

Session types and behavioural contracts have undergone a significantly dense
research activity by a vast community, as witnessed by a recent survey [29], in
which, out of the extensive bibliography of 180 references, more than one hundred
papers have explicitly addressed these concepts in some form or another, only a
few are present in the bibliography below.

The aim of our paper was not to give just another exhaustive account of the
research in the field, but to closely follow, inside this large research stream, a
particular line that has been taken by the authors and pursued with the con-
stant aim to provide methods and techniques to effectively verify the absence of
interaction problems in assemblies of distributed software components, following
the technological evolution in this field. One characterising factor in our work
was the continuous reference to realistic computational models that include both
parallelism (e.g. between service invocations) and asynchronous communication,
two elements that make the proof of meaningful safety and progress properties
much more complex.

The research activity provided in this paper has been in several cases inspired
by Rocco De Nicola’s work, either as reference to his works on service-oriented
calculi [7,8], or indirectly when using process algebra concepts, behavioural
equivalences, labeled transition systems, simulation preorders which include a
range of mathematically powerful tools that have received prominent attention
and contributions by Rocco over the last three decades.

Session types and behavioural contracts later on evolved in several directions,
among which we cite multiparty sessions [11,28]; indeed, binary or biparty ses-
sions introduced in Sect. 4 are restricted to communication between two partners,
with dual communication capabilities, while multiparty sessions cover complex
communication schemes with three or more partners. A natural way to define
multiparty session types is to consider a global view of a conversation between
several parties, that is, of all the message exchanges that take place inside the
session, projecting then the global view to local views on the side of each part-
ner’s interface, similarly to binary sessions [10].

Work on multiparty session types [28] indicates two major difficulties: they
lack the duality between each end of a session that makes binary sessions rela-
tively straightforward, and the effects of non-linear use of communication chan-
nels is error-prone. As advocated in [28] (albeit for the π-calculus), it is possible
to project global types (for multiparty sessions) onto local processes, and these
local type projections can be used for local type verification. We believe that
our work on binary sessions for BPEL could be extended to embrace multiparty
sessions.

Another important direction pursued by the research stream on session types
and behavioural contracts concerns the properties satisfied by a distributed sys-
tem made up of communicating components. A classical distinction of program
properties is between safety and liveness properties; the former express that
a program execution will never exhibit an undesirable event, while the latter
establish the eventual occurrence of a desirable situation during the execution
of the program. While behavioural type systems provide a suitable way to prove

From Behavioural Contracts to Session Types 293

safety of distributed executions, using them to prove liveness properties has been
challenging. Indeed, compliance to behavioural types can be used to check (live-
ness) local progress inside a single session, while this becomes difficult in the
case of multiple simultaneously open sessions (binary or, especially, multiparty),
since types are associated to single sessions. Dependency between simultaneously
open sessions has to be taken into account in order to be able to deduce global
progress. In our work, we have first encountered this problem when address-
ing inter-component deadlock freedom in [14], proposing a solution under asyn-
chronous communication and assumptions on the communication dependency
between components, that somehow anticipates in a quite limited setting the
much more general and systematic latest results of [17] for asynchronous multi-
party sessions.

Finally, while most of the work on session types and behavioural contracts
has considered mobile computational models as in the π-calculus and the ODP
Computational Model, where process, object of component configurations are
essentially flat, with no other dependencies between processes, objects or com-
ponents than communication dependencies, we believe computational models
with non-flat configurations, i.e. featuring containment, failure and encapsula-
tion dependencies between their elements, need to be considered. Example com-
putational models of the sort include variants of the π-calculus with localities
such as Dpi [27], Klaim [21], the Kell calculus [53], Mobile Ambients and their
variants [12,37], as well as bigraphs [40,54]. Type systems for these models have
appeared in the literature but revisiting them in light of the recent advances on
session types and behavioural contracts seems worthwile, as well as dealing with
phenomena such as failures and encapsulation, which could require introducing
constructs and techniques borrowed from separation logic [51].

Acknowledgments. The work reported in the present paper has been carried out
over the years by a group of authors: Arnaud Bailly, Cinzia Bernardeschi, Cyril Car-
rez, Joubine Dustzadeh, Alessandro Fantechi, Arnaud Février, Jonathan Michaux, Elie
Najm, Abdelkrim Nimour, Frank Olsen, Jean-Bernard Stefani.

References

1. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang.
Syst. 15(1), 73–132 (1993). https://doi.org/10.1145/151646.151649

2. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE-01. Software
Engineering Notes, vol. 26, p. 5. ACM Press (2001)

3. Alrahman, Y.A., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Wainwright, R.L., Corchado, J.M., Bechini,
A., Hong, J. (eds.) Proceedings of the 30th Annual ACM Symposium on Applied
Computing, Salamanca, Spain, 13–17 April 2015, pp. 1840–1845. ACM (2015).
https://doi.org/10.1145/2695664.2695668

4. Amadio, R.M., Cardelli, L.: Subtyping recursive types. ACM Trans. Program.
Lang. Syst. 15(4), 575–631 (1993). https://doi.org/10.1145/155183.155231

https://doi.org/10.1145/151646.151649
https://doi.org/10.1145/2695664.2695668
https://doi.org/10.1145/155183.155231

294 A. Fantechi et al.

5. Bernardeschi, C., Dustzadeh, J., Fantechi, A., Najm, E., Nimour, A., Olsen, F.:
Consistent semantics and correct transformations for the ODP information and
computational models. In: Proceedings of 2nd IFIP Conference on Formal Meth-
ods for Open Object-based Distributed Systems (FMOODS). Chapman & Hall,
Canterbury, July 1997

6. Bernardi, G., Hennessy, M.: Using higher-order contracts to model session types.
Log. Methods Comput. Sci. 12(2) (2016)

7. Boreale, M., et al.: SCC: a service centered calculus. In: Bravetti, M., Núñez, M.,
Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11841197 3

8. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-68863-1 3

9. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: CaSPiS: a calculus of sessions,
pipelines and services. Math. Struct. Comput. Sci. 25(3), 666–709 (2015). https://
doi.org/10.1017/S0960129512000953

10. Bravetti, M., Zavattaro, G.: A foundational theory of contracts for multi-party
service composition. Fundam. Inf. 89, 451–478 (2008)

11. Bruni, R., Lanese, I., Melgratti, H., Tuosto, E.: Multiparty sessions in SOC. In:
Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 67–82.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68265-3 5

12. Cardelli, L., Gordon, A.: Mobile ambients. Theor. Comput. Sci. 240(1), 173–213
(2000)

13. Carrez, C., Fantechi, A., Najm, E.: Behavioural contracts for a sound assembly
of components. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS,
vol. 2767, pp. 111–126. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39979-7 8

14. Carrez, C., Fantechi, A., Najm, E.: Assembling components with behavioural con-
tracts. Annales des Télécommunications 60(7–8), 989–1022 (2005). https://doi.
org/10.1007/BF03219957

15. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. In:
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2008, pp. 261–272. ACM, New York (2008).
https://doi.org/10.1145/1328438.1328471

16. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Service Definition
Language (WSDL) Version 2.0, W3C. Technical report, June 2007

17. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: Inference of global
progress properties for dynamically interleaved multiparty sessions. In: De Nicola,
R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 45–59. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38493-6 4

18. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based approach
to autonomic computing. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue,
M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35887-6 2

19. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984). https://doi.org/10.1016/0304-3975(84)90113-0

20. De Nicola, R., Pugliese, R.: A process algebra based on Linda. In: Ciancarini, P.,
Hankin, C. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 160–178. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61052-9 45

https://doi.org/10.1007/11841197_3
https://doi.org/10.1007/978-3-540-68863-1_3
https://doi.org/10.1007/978-3-540-68863-1_3
https://doi.org/10.1017/S0960129512000953
https://doi.org/10.1017/S0960129512000953
https://doi.org/10.1007/978-3-540-68265-3_5
https://doi.org/10.1007/978-3-540-39979-7_8
https://doi.org/10.1007/978-3-540-39979-7_8
https://doi.org/10.1007/BF03219957
https://doi.org/10.1007/BF03219957
https://doi.org/10.1145/1328438.1328471
https://doi.org/10.1007/978-3-642-38493-6_4
https://doi.org/10.1007/978-3-642-35887-6_2
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1007/3-540-61052-9_45

From Behavioural Contracts to Session Types 295

21. DeNicola, R., Ferrari, G., Pugliese, R.: KLAIM: a Kernel language for agents inter-
action and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

22. Dustzadeh, J., Najm, E.: Consistent semantics for ODP information and computa-
tional models. In: Specification, Testing IFIP TC6 WG6.1, Techniques for X) and
18–21 November, 1997, Osaka, Japan. IFIP Conference Proceedings, vol. 107, pp.
107–126. Chapman & Hall (1997)

23. Fantechi, A., Najm, E.: Session types for orchestration charts. In: Lea, D., Zavat-
taro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 117–134. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68265-3 8

24. Février, A., Najm, E., Stefani, J.: Contracts for ODP. In: Bertran, M., Rus, T.
(eds.) Transformation-Based Reactive Systems Development. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63010-4 15

25. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–
3), 191–225 (2005)

26. Gay, S., Hole, M.: Types and subtypes for client-server interactions. In: Swierstra,
S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 74–90. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49099-X 6

27. Hennessy, M., Rathke, J., Yoshida, N.: SafeDpi: a language for controlling mobile
code. Acta Inf. 42(4–5), 227–290 (2005)

28. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. SIG-
PLAN Not. 43, 273–284 (2008). https://doi.org/10.1145/1328897.1328472

29. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016). https://doi.org/10.1145/2873052

30. ISO, IEC: Information Technology Open Distributed Processing Reference Model.
IS 10746 parts 1,2,3 (1998–2010), also published as ITU-T Recommendations X901,
X.902, X.903

31. Kitchin, D., Cook, W.R., Misra, J.: A language for task orchestration and its
semantic properties. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS,
vol. 4137, pp. 477–491. Springer, Heidelberg (2006). https://doi.org/10.1007/
11817949 32

32. Kitchin, D., Quark, A., Cook, W., Misra, J.: The orc programming language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE -2009. LNCS,
vol. 5522, pp. 1–25. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02138-1 1

33. Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining orchestration
and conversation in service-oriented computing. In: Proceedings of the Fifth IEEE
International Conference on Software Engineering and Formal Methods, SEFM
2007, pp. 305–314. IEEE Computer Society, Washington, DC (2007), https://doi.
org/10.1109/SEFM.2007.13

34. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 4

35. Lapadula, A., Pugliese, R., Tiezzi, F.: A WSDL-based type system for asyn-
chronous WS-BPEL processes. Form. Methods Syst. Des. 38(2), 119–157 (2011).
https://doi.org/10.1007/s10703-010-0110-0

36. Larsen, K.G., Steffen, B., Weise, C.: A constraint oriented proof methodology based
on modal transition systems. In: Brinksma, E., Cleaveland, W.R., Larsen, K.G.,
Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 17–40. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0 2

37. Levi, F., Sangiorgi, D.: Mobile safe ambients. ACM. Trans. Program. Lang. Syst.
25(1), 1–69 (2003)

https://doi.org/10.1007/978-3-540-68265-3_8
https://doi.org/10.1007/3-540-63010-4_15
https://doi.org/10.1007/3-540-49099-X_6
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2873052
https://doi.org/10.1007/11817949_32
https://doi.org/10.1007/11817949_32
https://doi.org/10.1007/978-3-642-02138-1_1
https://doi.org/10.1007/978-3-642-02138-1_1
https://doi.org/10.1109/SEFM.2007.13
https://doi.org/10.1109/SEFM.2007.13
https://doi.org/10.1007/978-3-540-71316-6_4
https://doi.org/10.1007/s10703-010-0110-0
https://doi.org/10.1007/3-540-60630-0_2

296 A. Fantechi et al.

38. Meseguer, J.: Conditioned rewriting logic as a united model of concur-
rency. Theor. Comput. Sci. 96(1), 73–155 (1992). https://doi.org/10.1016/0304-
3975(92)90182-F

39. Michaux, J., Najm, E., Fantechi, A.: Session types for safe web service orchestra-
tion. J. Log. Algebr. Program. 82(8), 282–310 (2013). https://doi.org/10.1016/j.
jlap.2013.05.004

40. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

41. Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992). Technical report ECS-LFCS-89-85

42. Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, II. Inf. Comput.
100(1), 41–77 (1992). Technical report ECS-LFCS-89-86

43. Milner, R.: A Calculus of Communicating Systems. Lecture Notes in Computer
Science, vol. 158. Springer, Heidelberg (1983)

44. Mostrous, D., Vasconcelos, V.T.: Session typing for a featherweight erlang. In: De
Meuter, W., Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp.
95–109. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21464-6 7

45. Najm, E., Nimour, A.: A calculus of object bindings. In: Proceedings of 2nd
IFIP Conference on Formal Methods for Open Object-based Distributed Systems
(FMOODS). Chapman & Hall, Canterbury, July 1997

46. Najm, E., Stefani, J.: A formal semantics of DPL. Technical report, Report
CNET/RC.V01.ENJBS.004., Esprit Project 2267 (Integrated Systems Architec-
ture) (1992)

47. Najm, E., Nimour, A., Stefani, J.-B.: Guaranteeing liveness in an object calcu-
lus through behavioral typing. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Formal
Methods for Protocol Engineering and Distributed Systems. IAICT, vol. 28, pp.
203–221. Springer, Boston (1999). https://doi.org/10.1007/978-0-387-35578-8 12

48. Najm, E., Nimour, A., Stefani, J.-B.: Infinite types for distributed object interfaces.
In: Ciancarini, P., Fantechi, A., Gorrieri, R. (eds.) FMOODS 1999. ITIFIP, vol.
10, pp. 353–369. Springer, Boston, MA (1999). https://doi.org/10.1007/978-0-387-
35562-7 28

49. Najm, E., Stefani, J.: A formal semantics for the ODP computational model. Com-
put. Netw. ISDN Syst. 27(8), 1305–1329 (1995). https://doi.org/10.1016/0169-
7552(94)00032-O

50. Ng, N., Yoshida, N., Pernet, O., Hu, R., Kryftis, Y.: Safe parallel programming
with session java. In: De Meuter, W., Roman, G.-C. (eds.) COORDINATION
2011. LNCS, vol. 6721, pp. 110–126. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21464-6 8

51. O’Hearn, P.W.: A primer on separation logic (and automatic program verification
and analysis). In: Software Safety and Security - Tools for Analysis and Verification,
NATO Science for Peace and Security Series - D: Information and Communication
Security, vol. 33. IOS Press (2012)

52. Organization for the Advancement of Structured Information Standards (OASIS):
Web Services Business Process Execution Language (WS-BPEL) Version 2.0, April
2007

53. Schmitt, A., Stefani, J.-B.: The kell calculus: a family of higher-order distributed
process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp.
146–178. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31794-
4 9

54. Sevegnani, M., Calder, M.: Bigraphs with sharing. Theor. Comput. Sci. 577, 43–73
(2015). https://doi.org/10.1016/j.tcs.2015.02.011

https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/j.jlap.2013.05.004
https://doi.org/10.1016/j.jlap.2013.05.004
https://doi.org/10.1007/978-3-642-21464-6_7
https://doi.org/10.1007/978-0-387-35578-8_12
https://doi.org/10.1007/978-0-387-35562-7_28
https://doi.org/10.1007/978-0-387-35562-7_28
https://doi.org/10.1016/0169-7552(94)00032-O
https://doi.org/10.1016/0169-7552(94)00032-O
https://doi.org/10.1007/978-3-642-21464-6_8
https://doi.org/10.1007/978-3-642-21464-6_8
https://doi.org/10.1007/978-3-540-31794-4_9
https://doi.org/10.1007/978-3-540-31794-4_9
https://doi.org/10.1016/j.tcs.2015.02.011

From Behavioural Contracts to Session Types 297

55. Uriarte, R.B., Tiezzi, F., De Nicola, R.: SLAC: a formal service-level-agreement
language for cloud computing. In: Proceedings of the 7th IEEE/ACM International
Conference on Utility and Cloud Computing, UCC 2014, London, United Kingdom,
8–11 December 2014, pp. 419–426. IEEE Computer Society (2014). https://doi.
org/10.1109/UCC.2014.53

56. Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the behavior of software com-
ponents using session types. Fundam. Inf. 73(4), 583–598 (2006)

57. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-
tured communication-based programming revisited: two systems for higher-order
session communication. Electron. Notes Theor. Comput. Sci. 171(4), 73–93 (2007).
https://doi.org/10.1016/j.entcs.2007.02.056

https://doi.org/10.1109/UCC.2014.53
https://doi.org/10.1109/UCC.2014.53
https://doi.org/10.1016/j.entcs.2007.02.056

Modal Epistemic Logic on Contracts:
A Doctrinal Approach

Paolo Bottoni1 , Daniele Gorla1(B) , Stefano Kasangian2,
and Anna Labella1

1 Dipartimento di Informatica, “Sapienza” Università di Roma, Rome, Italy
{bottoni,gorla,labella}@di.uniroma1.it

2 Dipartimento di Matematica, University of Milano, Milan, Italy
stefano.kasangian@unimi.it

Abstract. Problems related to the construction of consensus out of
distributed knowledge have become actual again under a new perspective
with the diffusion of distributed ledger techniques. In particular, when
dealing with contracts, different observers must agree that a contract is in
a certain state, even if not all transactions performed under the contract
are observable by all of them. In this paper, we revisit previous work on
algebraic modelling of labelled non-deterministic concurrent processes,
which identified an intuitionistic modal/temporal logic associated with a
categorical model. We expand this logic with typical epistemic operators
in a categorical framework in order to encompass distributed knowledge
to speak about transactions and contracts.

Keywords: Categorical logic · Doctrines · Modal operators ·
Epistemic logic · Distributed knowledge · Contracts

1 Introduction

This paper follows on a series of works [4,5,8,9,15] where a category, naturally
equipped with an internal logic, was introduced for reasoning on concurrent
computations. Indeed, a concurrent agent can be seen as an automaton, with
non-determinism expressing the fact that its states can offer different behaviours
at different moments in time. Differently from the classical approach taken in
automata theory, non-deterministic computations between a pair of states are
not described as a set of strings in a free monoid: rather, we deal with a labelled,
structured set of computations, where two computations can part from each
other while maintaining the same observable steps [15]. We defined a category

Dedication: With this paper, we all wish to thank Rocco for the stimulating discus-
sions, the original ideas and the collaborations carried out in the last twenty-five years.
Furthermore, apart from being a colleague and a guide, he has always primarily been a
friend for all of us, and his friendship is the main gift we received from him.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 298–314, 2019.
https://doi.org/10.1007/978-3-030-21485-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_17&domain=pdf
http://orcid.org/0000-0003-4662-2019
http://orcid.org/0000-0001-8859-9844
http://orcid.org/0000-0001-5405-5531
https://doi.org/10.1007/978-3-030-21485-2_17

Modal Epistemic Logic on Contracts: A Doctrinal Approach 299

of (action-labelled) trees that can be used to model unfolding of labelled transi-
tion systems and to study behavioural relations over them; in particular, many
different equivalences based on bisimulation were investigated in [8,9].

Recently [4,5] we moved to the study of the internal logic arising from our
model. In particular, in [5] we proposed a characterisation of visual interaction in
terms of games, and showed that the algebraic structure derived from the associ-
ation of temporal and spatial structures (actually, a variant of the model in [15])
is canonically associated with a logical system that can be naturally extended
by the introduction of operators which simultaneously model both temporal and
modal qualifications of formulae. This line has been extended in [4] where we
proved that, if the labelling set has enough properties, then the model presents
a two-fold internal logical structure, induced by two doctrines [16] definable on
it: one related to its families of subobjects and one to its families of regular sub-
objects. The first doctrine is Heyting and makes the model a Heyting category;
the second one is Boolean. The difference between these two logical structures,
namely the different behaviour of the negation operator, can be interpreted in
terms of a distinction between non-deterministic and deterministic behaviours
of agents able to perform computations in the context of the same process.
Moreover, the sorted first-order logic naturally associated with the model can
be extended to a modal/temporal logic, again using the doctrinal setting.

Based on [4], we perform here a step further and consider not only concur-
rent but also distributed systems, where knowledge about the current state varies
from agent to agent. To this end, we combine temporal operators with epistemic
ones (e.g., those defined in [12,18,19]), to reflect the evolution of the system in
time. Similarly to the original model, we have a system of categories based on a
bicategory, but now the logical system need not be built on top of a free monoid
(the labelling set); indeed, atomic labels are configurations of a transaction sys-
tem (which can only be prolonged according to a meet-semilattice structure) and
a temporal structure is associated with the order to describe the evolution of the
system, so that our model can support the modal/temporal operators from [4].
We then add to them new operators taken from epistemic logics, e.g., those for
public announcement, common knowledge and distributed knowledge.

The derived logic allows us to set up a language of epistemic formulae in
which to reason about properties of distributed and common knowledge, typi-
cally related to the possibility of maintaining a consistent set of beliefs across
different agents, in the presence of public announcements updating information
about some state of the world. In particular, we show how such a language can
be used to express knowledge maintained by different observers about the exe-
cution of some contract following some logics for public announcements [18],
as suggested in [17]. In particular, we model a contract as a formal device to
restrict the set of allowed transactions leading to the transfer of ownership of
some resource across different actors.

In the rest of the paper, Sect. 2 introduces a simple language of transactions,
used in Sect. 3 to specify contracts. In Sect. 4 relevant notions about categori-
cal/logical structures and epistemic logic are introduced. In Sect. 5 the algebraic
and logical structures of our model are presented, together with examples of the
use of the language. Section 6 draws some conclusions.

300 P. Bottoni et al.

2 Worlds of Resources

We present a simple model of worlds in which resources are either (1) assigned
to actors, or (2) present in the environment for actors to grab them, or (3) irre-
mediably destroyed. Resource exchanges, i.e., changes of assignments (including
the possibility of destroying a resource), are modelled as transactions.

With each universe of worlds, three finite disjoint sets are given: a set A of
proper actors, a fixed set Aenv = {�,⊥} of environment actors, and a set R
of resources. Here, � and ⊥ model the fact that a resource is available but not
assigned to any proper actor (yet) and that a resource is no longer assignable to
any proper actor (i.e., it has been destroyed), respectively. We talk generically of
actors when not distinguishing between proper and environment ones. We use
a, a1, . . . , an for actor names (which are unique) and r, r1, . . . , rn for resources.
The notation [r, 1] . . . , [r, k] is used to denote different copies of a resource r.

Configurations are collections of assignments evolving through transactions.
To be precise, a configuration C encodes an assignment function assC : R → (A∪
Aenv), so that each resource is uniquely associated with an actor. A transaction
is then an operator replacing an assignment function with another. The following
treatment, however, is based on a presentation of such functions and operators
through sets of individual assignments.

Definition 1 (Assignment). Given a set of proper actors A and a set of
resources R, an assignment over A,R is a couple (r, a) ∈ R × (A ∪ Aenv).
The set of all assignments over A,R is denoted by ASSR

A .

Definition 2 (Configuration). Given a set of resources, R, a set of proper
actors, A, and a total function, assC : R → (A ∪ Aenv), the induced set of
assignments C = {(r, a) ∈ R × (A ∪ Aenv) | a = assC(r)} ⊂ ASSR

A is called the
configuration over A,R induced by assC, (in short a configuration).

We denote by CONFR
A the set of configurations over A,R and with † the

dead configuration, induced by ass†, defined as ass†(r) = ⊥ for all r ∈ R.
Configurations evolve via transactions modifying individual assignments.

Definition 3 (Atomic transaction). Given a set of proper actors A and a set
of resources R, an atomic transaction over A,R is a triple (r, a1, a2) ∈ R×(A∪
{�})× (A∪Aenv) such that a1 �= a2. The effect of an atomic transaction trn =
(r, a1, a2) on C ∈ CONFR

A is the configuration C′ = eff(C, trn) ∈ CONFR
A:

C′ =
{

(C \ {(r, a1)}) ∪ {(r, a2)} if (r, a1) ∈ C
C otherwise

We say that trn is an effective atomic transaction for C if C′ �= C. Note that
no atomic transaction can be effective for †. The condition a1 �= a2, may appear
redundant, as one could well conceive of transactions leaving an assignment
unchanged. However, from a semantic point of view, it allows an observer, by
looking only at the effect of the application of a transaction, to distinguish

Modal Epistemic Logic on Contracts: A Doctrinal Approach 301

between successful (modifying the current configuration) and failed (leaving the
configuration unchanged) transactions, which would not be possible otherwise.

A transaction is then a collection of atomic transactions, which collectively
define an operator whose application to an assignment function assC produces
an assignment function assC′ .

Definition 4 (Transaction). Given a set of proper actors A and a set
of resources R, a transaction over A,R, denoted with Trn, is a finite set
{(ri, ai

1, a
i
2) | ri ∈ R, ai

1 ∈ A ∪ {�}, ai
2 ∈ A ∪ Aenv, ai

1 �= ai
2, i ∈ {1, . . . , n}} of

atomic transactions over A,R such that i �= j ⇔ ri �= rj. We denote by TRNR
A

the set of all transactions on the given sets A,R. The effect of a transaction
Trn = {trn1, . . . , trnn} ∈ TRNR

A on C ∈ CONFR
A is C′ ∈ CONFR

A, defined as
eff(. . . (eff(eff(C, trn1), trn2), . . .), trnn) if all trni are effective, C otherwise.

Note that each transaction can contain at most one atomic transaction defin-
ing a change of assignment for any given resource r; thus, the order in which
we consider the atomic transactions in Trn for its effect is immaterial. Further-
more, the effect of Trn is C′ �= C only if eff(C, trni) �= C, for all trni ∈ Trn;
thus, a transaction succeeds or fails as a whole. We say that Trn is an effective
transaction for C if C′ �= C; again, no transaction can be effective for †.

For any given CONFR
A , we introduce a notion of verification by assuming

the existence of a set of verifiers VR
A. Each verifier v ∈ VR

A is endowed with
some observational capability, modeled as an alphabet alphv = alphR

v ∪ alphA
v ,

with alphR
v ⊆ R and (Aenv ∪ {��}) ⊆ alphA

v ⊆ (A ∪ Aenv ∪ {��}). The special
name �� is used as a place-holder for proper actors not observable by v. In this
way, a verifier is always informed whether a resource r ∈ alphR

v is either

– assigned to an actor a observable by v (i.e., a ∈ alphA
v ∩ (A ∪ Aenv)); or

– assigned to an actor which is not observable by v (in which case the dummy
assignment (r, ��) is used by the verifier to record the fact that it does not
know the exact assignment for r, but it knows that it has neither been
destroyed nor is it free in the environment).

We denote by ASSR
A�� the extension of ASSR

A to include assignments of the
form (r, ��). An observation by v ∈ VR

A over a configuration C ∈ CONFR
A is the

result of obsv : CONFR
A → ℘(ASSR

A��), defined as follows: obsv(C) = {(r, a) |
(r, a) ∈ C, r ∈ alphR

v , a ∈ alphA
v } ∪ {(r, ��) | (r, a) ∈ C, r ∈ alphR

v , a �∈ alphA
v }.

A set of assignments Kv ⊂ ASSR
A�� (representing the knowledge v ∈ VR

A has
of a configuration) is consistent with C ∈ CONFR

A for v if Kv = obsv(C). Given
Kv ⊂ ASSR

A�� , with all the assignments in Kv formed with elements in alphv,
for v ∈ VR

A, we denote by CONSv(Kv) the set {C ∈ CONFR
A | Kv = obsv(C)}.

A verifier v becomes informed of the application of a transaction Trn to a
configuration C by receiving a public announcement of Trn, i.e., the list of the
atomic transactions in Trn, incorporating the received information inasmuch it
refers to elements of alphv. In particular, the knowledge Kv that v has of C
evolves, for each atomic transaction (r, a1, a2) ∈ Trn applied on C, as follows:

302 P. Bottoni et al.

1. if r, a2 ∈ alphv and either (r, a1) ∈ Kv or (r, ��) ∈ Kv, then K′v � (r, a2);
2. if r ∈ alphv and a1, a2 �∈ alphv and (r, ��) ∈ Kv, then K′v � (r, ��);
3. if r ∈ alphv and (r, a) ∈ Kv, then K′v �� (r, a), for any a ∈ A ∪ {�};
4. if r ∈ alphv and (r, a3) ∈ Kv and ���= a3 �= a1, then K′v = Kv;
5. if r �∈ alphv then K′v = Kv.

The third property guarantees that the condition on uniqueness of the assign-
ment for a resource also holds for the verifier’s knowledge, while the fourth one
rules out the possibility of continuing observing configurations not compatible
with a transaction or of maintaining inconsistent observations. Note that, if we
denote with †v for any v the configuration mapping alphR

v to ⊥, it holds that
obsv(†) = †v; by contrast, it is not true in general that obsv(C) = †v ⇒ C = †,
as C might contain assignments not observable by v.

Example 1. Let v be a verifier with alphv = {r1, r2, a1,�,⊥, ��} and let Kv =
obsv(C). When v receives a public announcement p of the (effective) execution
of Trn = {(r1, a1, a2), (r2, a2, a1)} on C, then its knowledge Kv is updated to
K′v = (Kv \ {(r1, a1), (r2, ��)}) ∪ {(r2, a1), (r1, ��)}.

Proposition 1. Let v be an arbitrary verifier on CONFR
A and let C, C′ ∈

CONFR
A be such that C′ = eff(C, T rn) for some Trn ∈ TRNR

A. Let Kv =
obsv(C) and let K′v be the set of assignments constructed by v after the public
announcement of Trn as indicated before. Then C′ ∈ CONSv(K′v).

Proof. Suppose K′v �= obsv(C′). Then there exist r, a3, a2 ∈ alphv, a3 �= a2 such
that (r, a3) ∈ K′v and (r, a2) ∈ C′. But this cannot happen if all entities are in
alphv, due to the first property of obsv. Conversely, if a2 �∈ alphv, then (r, ��)
∈ K′v, which would leave C′ ∈ CONSo(K′v), anyway. Since no other case can
cause a disagreement between K′v and obsv(C′), the proposition is proved. ��

Note that there may emerge a situation in which a sequence of effective trans-
actions is performed starting from a configuration C0 �= † for which obsv(C0) = †v.
In this case, in correspondence with the sequence of configurations 〈C0, . . . , Cn〉,
v would just keep observing the constant configuration †v. We say therefore that
a verifier v is invalidated by a transaction which would reduce its knowledge to
†v. Indeed, while †v is consistent with all the configurations Ci (as none of them
would change the assignment of a resource to ⊥), v would not be able to perform
any further verification distinguishing effective from non effective transactions.
A transaction which does not invalidate a verifier v is said to be compatible
with v. To summarise, observers maintain consistent knowledge of the evolution
of configurations through the reception of public announcements, but they can
verify their effect only as far as their knowledge is not reduced to †v.

3 Contracts on Resources

Based on the notions of configuration and transaction, we can now model con-
tracts as a way of specifying admissible sequences of transactions/configurations.

Modal Epistemic Logic on Contracts: A Doctrinal Approach 303

Definition 5 (Contract). With A and R sets of proper actors and resources,
a contract over A,R is a tuple Cnt = (TRNS, enbl, Init, Hon, Brc), where
TRNS ⊆ TRNR

A is a finite set of transactions, enbl: CONFR
A → ℘(TRNS),

and Init, Hon, Brc ⊆ CONFR
A are finite nonempty sets of configurations such

that enbl(C) �= ∅ for each C ∈Init, enbl(C) = ∅ for each C ∈ H on ∪ Brc, and
H on ∩ Brc = ∅. The set of all contracts over A,R is denoted by CNTR

A .

Function enbl defines the set of transactions enabled in each configuration,
whereas sets Init, Hon specify the admissible initial and honoured configurations
conforming to the contract, respectively, and Brc specifies the configurations
corresponding to a breach of the contract.

An admissible execution of Cnt is a pair (σ, C0), where σ = 〈Trn1, . . . , T rnn〉
is a sequence of effective transactions and C0 ∈ Init, such that there is a corre-
sponding sequence of configurations 〈C0, C1, . . . , Cn〉 with Cn ∈ Hon ∪ Brc and,
for each i ∈ {1, . . . , n}, Trni ∈ enbl(Ci−1) and Ci = eff(Ci−1, T rni). We say
that Cnt is honoured after the execution (σ, C0) if Cn ∈ Hon; it is broken if
Cn ∈ Brc. We denote the set of all executions which honour Cnt by HNR(Cnt)
and say that a contract is honourable if and only if HNR(Cnt) �= ∅. Analo-
gously, we use the notation BRC(Cnt) for the set of executions correspond-
ing to breaches of a contract. The semantics of a contract Cnt is the couple
Sem(Cnt) = (HNR(Cnt), BRC(Cnt)).

A verifier v is a contract verifier of Cnt = (TRNS, enbl, Init, Hon, Brc)
if and only if obsv(init) = init, obsv(hon) = hon and obsv(brc) = brc, for each
init ∈ Init, hon ∈ Hon and brc ∈ Brc. Note that, for a contract verifier v of
Cnt ∈ CNTR

A, alphv only needs to include all the resources and actors involved
in the initial and final configurations of Cnt.

Contract verifiers of Cnt evolve their knowledge through sequences of public
announcements corresponding to executions in HNR(Cnt) ∪ BRC(Cnt).

Proposition 2. Given a contract Cnt and a contract verifier v of Cnt, a
sequence 〈p1, p2, . . . , pn〉 of public announcements associated with an execution of
Cnt starting with C0 ∈Init and ending in Cn ∈ H on∪Brc, with initial knowledge
Kv

0 = obsv(C0) = C0, will leave v with knowledge Kv
n = Cn.

Proof. By iteration of the argument in the proof of Proposition 1, considering
that, for any C ∈ Init ∪ Hon ∪ Brc, we have obsv(C) = C and that † cannot
appear as an intermediate configuration in the execution of a contract. ��

Now, we can model the knowledge a contract verifier holds for a contract Cnt
as the set PAv(Cnt) of sequences of expected public announcements such that
the first element of the sequence is compatible with its current knowledge of the
configuration. With each emitted public announcement, PAv(Cnt) is evolved to
eliminate sequences in which transactions appear that invalidate v.

Example 2. Let us consider a contract Loan for a loan from paul to steve to be
remitted, with interests, in five monthly instalments. The debt can also be closed
at any month after the first by paying the remaining sum, without interests.

304 P. Bottoni et al.

We model this via configurations of obligations (of the lender to provide
the agreed sum, and of the borrower to remit the instalments), and publicly
announced transactions representing discharges of such obligations (or failures
to do so).

Let R = {brk, lndOblg} ∪ {[loanCnt, i], [hon, i] | i ∈ {1, 2}} ∪ {[insOblg, i] |
i ∈ {1, . . . , 5}} ∪ {[close, i] | i ∈ {2, . . . , 4}} and A = {paul, steve}.
The set Init of initial configurations contains a single configuration init =
{([loanCnt, 1], paul), ([loanCnt, 2], steve)} ∪ {(r,�) | r ∈ R \ {[loanCnt, i] | i ∈
{1, 2}}}, stating that both actors agree on the terms of Loan, without having
any obligation been assigned yet (nor, consequently, discharged).

The set of configurations for Loan being honoured is Hon =
{([hon, 1], paul), ([hon, 2], steve), ([loanCnt, 1], paul), ([loanCnt, 2], steve)} (i.e.,
the loan has been lended and all obligations have been discharged, by remitting
the instalments in the correct order, or closing at some month after the first).

The set of configurations modeling a breach of Loan is Brc =
{(brk, paul), (lndOblg, paul)} ∪ {BRKi | i ∈ {1, . . . , 5}}, where BRKi =
{(brk, steve), ([insOblg, j], steve) | j ∈ {i, . . . , 5}} ∪ {([close, i], steve) | 2 ≤ i ≤
4}, i.e., Loan can be broken by paul’s not lending the money or by steve’s failing
to pay an instalment when due or to close before the last instalment (we also
add {([loanCnt, 1], paul), ([loanCnt, 2], steve)} to each configuration in Brc).

Transactions express the discharge of obligations, abstracting away from
actual amounts or the calendar for discharges. Hence, TRNS = {START ,
LEND, FSTNST, . . . , LSTNST , SNDCLS, . . . , LSTCLS, LNDBRK,
RMTBRK}, with individual transactions named as follows:

– START = {(lndOblg, �, paul)}
– LEND = {(lndOblg, paul, ⊥), ([hon, 1], �, paul)} ∪⋃

r∈{[insOblg,i]|i∈{1,...,5}}{(r, �, steve)}
– FSTNST = {([insOblg, 1], steve, ⊥), ([close, 2], �, steve)}
– SNDNST = {([insOblg, 2], steve, ⊥), ([close, 2], steve, ⊥), ([close, 3], �, steve)}
– THDDNST = {([insOblg, 3], steve, ⊥), ([close, 3], steve, ⊥), ([close, 4], �, steve)}
– FRTNST = {([insOblg, 4], steve, ⊥), ([close, 4], steve, ⊥)}
– LSTNST = {([insOblg, 5], steve, ⊥), ([hon, 2], �, steve)}
– SNDCLS = {([close, 2], steve, ⊥), ([hon, 2], �, steve)} ∪

{([insOblg, l], steve, ⊥) | l ∈ {2, . . . , 5}}
– THDCLS = {([close, 3], steve, ⊥), ([hon, 2], �, steve)} ∪

{([insOblg, l], steve, ⊥) | l ∈ {3, . . . , 5}}
– LSTCLS = {([close, 4], steve, ⊥), ([hon, 2], �, steve)} ∪

{([insOblg, l], steve, ⊥) | l ∈ {4, 5}}
– LNDBRK = {(brk, �, paul)}
– RMTBRK = {(brk, �, steve)} ∪ {([close, k], steve, ⊥) | k ∈ {2, . . . , 4}}.

Note that breaking a contract does not cancel the obligations still standing.
Specific clauses can be devised to deal with them. Also, closing represents a
possibility, not an obligation. Finally, the enbl function is defined as follows1:

– enbl(init) = START ,

1 Remember that, by definition, enbl(hon) =enbl(brc) = ∅ for hon ∈Hon, brc ∈Brc.

Modal Epistemic Logic on Contracts: A Doctrinal Approach 305

– if (lndOblg, paul) ∈ C then enbl(C) = {LEND, LNDBRK}
– if ([insOblg, 1], steve) ∈ C then enbl(C) = {FSTNST, RMTBRK}
– if ([insOblg, 2], steve) ∈ C and ([insOblg, 1], steve) �∈ C then enbl(C) =

{SNDNST, SNDCLS, RMTBRK}
– if ([insOblg, 3], steve) ∈ C and ([insOblg, 2], steve) �∈ C then enbl(C) =

{THDNST, THDCLS, RMTBRK}
– if ([insOblg, 4], steve) ∈ C and ([insOblg, 3], steve) �∈ C then enbl(C) =

{FRTNST, LSTCLS, RMTBRK}
– if ([insOblg, 5], steve) ∈ C and ([insOblg, 4], steve) �∈ C then enbl(C) =

{LSTNST, RMTBRK}
It can be easily inferred that the sequences of public announcements corre-

sponding to sequences of configurations for HNR(Loan) are:

〈START, LEND, FSTNST, SNDNST, THDNST, FRTNST, LSTNST 〉,
〈START, LEND, FSTNST, SNDNST, THDNST, LSTCLS〉,
〈START, LEND, FSTNST, SNDNST, THDCLS〉,
〈START, LEND, FSTNST, SNDCLS〉

Similarly, the sequences of public announcements corresponding to sequences
of configurations in BRC(Loan) are:

〈START, LNDBRK〉, 〈START, LEND, RMTBRK〉,
〈START, LEND, FSTNST, RMTBRK〉,
〈START, LEND, FSTNST, SNDNST, RMTBRK〉,
〈START, LEND, FSTNST, SNDNST, THDNST, RMTBRK〉,
〈START, LEND, FSTNST, SNDNST, THDNST, FRTNST, RMTBRK〉

For a contract verifier, maintaining knowledge of the current configuration of
a contract means to know which worlds correspond to possible evolutions of the
configuration. Hence, receiving a public announcement eliminates the possibility
that an invalidated verifier can keep following the evolution of certain worlds.

Example 3. For any contract verifier v of Loan, alphv will contain not only brk,
[loanCnt, i] and [hon, i] for i ∈ {1, 2}, but also [lndOblig] and all the copies
of instOblig, since they can all appear if an execution results in a breach. As
an execution of Loan proceeds, a contract verifier of Loan will only accept as
compatible with reaching a final configuration of Loan worlds where, after each
public announcement, a transaction in enbl is expected.

We are therefore looking for a language able to express such properties in
this model. To this aim, we introduce an algebraic model whose internal logic
can support a set of modal operators both of temporal and epistemic kind.

4 Logical Background

We recall here some definitions and results from [4] in order to subsequently
present our model as an instance and an extension of the theory exposed there.

306 P. Bottoni et al.

Let B = (B,≤,
∧

) be a complete meet-(semi)lattice, i.e. a poset with all
possible small non-empty meets

∧
. Under these hypotheses, we have binary

meets (denoted by ∧) and a minimum element •, but also bounded joins, since
we can define

∨
ai =

∧
bk, where ai ≤ bk for every i and k. We also require the

following distributivity property to be satisfied: b ∧ ∨
i∈I ai =

∨
i∈I(b ∧ ai), i.e.,

binary meets do distribute over joins (when they exist).

Definition 6 (Category on a complete meet-semilattice). Given a com-
plete meet-semilattice B = (B,≤,

∧
), a category C is a category on B (actually,

a generalized metric space) when:

1. Each object X in C is a set X equipped with a B-valued function ιX : X → B
(extent) and a B-valued relation αX : X × X → B (agreement) such that,
∀x, y, z ∈ X:
– ιX(x) = αX(x, x) (reflexivity)
– αX(x, y) ∧ αX(y, z) ≤ αX(x, z) (transitivity)
– αX(x, y) = αX(y, x) (symmetry).

2. A morphism in C is a function f : X → Y (induced by the function f : X → Y
on the corresponding carrier sets) s.t. ∀x, y ∈ X:
– ιX(x) = ιY (f(x)).
– αX(x, y) ≤ αY (f(x), f(y)).

3. Composition is function composition.

Intuitively, an object X is a set of B-labeled elements, allowed to be equal up to
αX . We call LB the category on B of categories on a complete meet-semilattice
B with their functors. A subobject X ′ of X is a subset of B-labeled elements
in X such that αX′ is contained in αX as a B-valued relation. We denote with
Sub(X) the subcategory of all the subobjects of X with monos between them.

Fact 1. If B is a complete meet-semilattice with the distributive property as
above, then, LB is a Heyting category [4].

It is well known [14] that an infinitary Heyting first order logic can be asso-
ciated with a Heyting category. Connectives are interpreted via the algebraic
operations and quantifiers via functors Π and Σ, right and left adjoints to the
pullback functors.

In our case, for every object X in LB , Sub(X) is a Heyting algebra in such
a way that Sub : LB

op → H, where H is the category of Heyting algebras with
their homomorphisms, is a functor, and for every f : J → I in LB , the functor
f∗ = Sub(f) : Sub(I) → Sub(J) has both left and right adjoint, ∃f and ∀f ,
satisfying the Beck-Chevalley condition2. Hence, Sub is a Heyting doctrine.

With every object X in LB we associate the algebras uSub(X) and dSub(X),
alongside with Sub(X). These new algebras are obtained by closing the subob-
jects of X with respect to the prefix (resp. prolongation) relation (see Defini-
tion 7); the prolongation of a label is intuitively associated with time flow.
2 Given a pullback square gq = fp in LB and x ∈ Sub(J), the canonical morphisms

g∗∀f (x) → ∀qp
∗(x) and ∃qp

∗(x) → g∗∃f (x) are iso.

Modal Epistemic Logic on Contracts: A Doctrinal Approach 307

Definition 7 (Prefix/prolongation/closedness). Let X be an object in LB.

– Given two elements x and x′ in X , we say that x is a prefix of x′ (or x′ is a
prolongation of x), in symbols x � x′ (resp. x′ � x), iff ι(x) = α(x′, x).

– X ′ is an up- (or down-)closed subobject of X iff, for every x′ ∈ X , x ∈ X s.t.
x � x′ (resp. x′ � x) in X , then x ∈ X ′ and x � x′ (resp. x′ � x) in X ′.

– uSub(X) (dSub(X)) is the family of up- (resp. down-)closed subobjects of X .

In order to prove that from this situation a modal/temporal doctrine, in the
sense of [4], arises for Sub(X), one has to define suitable operators that can
provide adjoints to injections. This is realised by defining (see [4] for details):

– ♠X X ′ as the minimum up-closed subobject of X containing X ′.
– �X X ′ as the maximum up-closed subobject of X contained into X ′.
– ♥X X ′ as the minimum down-closed subobject of X containing X ′.
– �X X ′ as the maximum down-closed subobject of X contained into X ′.

Correspondingly, we can extend our first order logic with four modal/tem-
poral operators ♦u,�u,♦d,�d to be interpreted in the LB operators above. In
other words: a modal operator like ♦ (resp. �) is a closure (resp. interior) oper-
ator. Prefix and prolongation relations are used as past and future accessibility
relations. Let w be an element (world) in X , we define satisfiability as follows:

– w |=X φ iff w ∈ |φ| (i.e. its terminal state enjoys φ), where |φ| is the inter-
pretation of the formula φ.

– w |=X ♦d φ iff ∃w′(w � w′ ∧ w′ |=X φ). This is equivalent to w ∈ ♥X |φ|, i.e,
“there is a past of w in which φ is true”.

– w |=X �dφ iff ∀w′(w � w′ ⇒ w′ |=X φ). This is equivalent to w ∈ �X |φ|
i.e., “in all possible futures of w, φ is true”.

– w |=X ♦u φ iff ∃w′(w′ � w ∧ w′ |=X φ). This is equivalent to w ∈ ♠X |φ|, i.e,
“there is a future of w in which φ is true”.

– w |=X �u φ iff ∀w′(w′ � w ⇒ w′ |=X φ). This is equivalent to w ∈ �X |φ|,
i.e, “for every possible past of w, φ is true”.

All this can be summarized by the following Fact:

Fact 2. The diagram iu : uSub → Sub ← dSub : id is a modal/temporal
doctrine for Sub in LB (see [4] for details).

5 A Model for the Language of Transactions

In this section, we first define the algebraic structure of the model M, in which
the language of transactions will be interpreted, as a subcategory of an instance
of LB , and then the logics associated with it. Let us remark that the partiality
of the alphabet “visible” by a verifier introduces the necessary nondeterminism
in our model, so that it makes sense to speak about agreement between two
worlds, once they are observed. To this end, we abstract away from the actual

308 P. Bottoni et al.

mechanism by which a verifier updates its knowledge, and substitute the notion
of verifier with that of an observer which is aware of the possible worlds whose
evolution it can observe. In this view, for a verifier v to reach the †v configuration
is equivalent, for an observer, to ignoring, in evaluating a formula, the possible
worlds in which effective transactions continue to occur after †v has been reached.

Due to the evolution of labels (actually the series of public announcements),
in our objects we have both a temporal structure and a distributed one; hence,
we can introduce all the modal/temporal operators we had in Sect. 4 as well as
introduce, in the same vein, another set of modal/epistemic operators.

5.1 The Algebraic Structure of Sub(Uo)

Let U denote a universe, i.e., a set whose elements are called worlds, as above.
Given a couple of sets A,R as in Sect. 2, let us consider the set of admissi-
ble strings of configurations in CONFR

A , i.e. the sequences of configurations
〈C0, C1 . . . , Cn〉 such that, for all i ∈ {1, . . . , n − 1}, Ci+1 =eff (Ci, T rn), for
some Trn ∈ TRNR

A. Let o be an observer on U , associated with an alpha-
bet Aenv ∪ {��} ⊆ alpho ⊆ A ∪ Aenv ∪ {��} ∪ R and a function obso :
℘(CONFR

A) → ℘(CONFR
A��), defined as obsv in Sect. 2. Then, parallel to

any admissible sequence of configurations cSeq = 〈C0, C1, . . . , Cn〉, for each o
we identify the sequence oSeqo = 〈Ko

0,Ko
1, . . . ,Ko

n〉 where Ko
i = obso(Ci) for

all i ∈ {0, 1, . . . , n}. We denote by B(A,R, o) the set of all such sequences,
given o. We call a sequence in B(A,R, o) a string of observable configurations
for o. Once o is fixed, we simply denote B(A,R, o) by B(A,R). Sequences in
B(A,R) are ordered by the prefix relation, thus forming a locally complete meet-
semilattice B = (B(A,R),

∧
). The coherence condition and the restriction to

a given alphabet are preserved by considering prefixes. As in the general case,
prolongation of strings is intuitively related to time flow and defines a temporal
accessibility relation. On the other hand, B will be the locally complete meet-
semilattice containing all the B(A,R, o) for any o. Given an observer o, we also
associate with it an accessibility preorder relation Ro ⊆ U × U , thus inducing,
for each world w ∈ U , the pair of classes w+

o = {w′ ∈ Uo | (w,w′) ∈ Ro} and
w−

o = {w′ ∈ Uo | (w′, w) ∈ Ro}. If Ro is symmetric, then w+
o = w−

o for each
w ∈ Uo.

Summing up, the universe U , observed by an observer o, results provided with
a labeling function ιU : U → B(A,R); hence, Uo = (U, ιU ,∧) can be thought
of as an object of LB and, as such, associated with a Heyting algebra Sub(Uo)
(which is also a subcategory of LB), whose elements are objects X = (X, ιX , αX)
in LB such that X is a subset of U and ιX is the restriction of ιU to X. Morphisms
between them are monomorphisms in LB , commuting with respect to injections
into Uo so that they preserve Ro: if f : X → Y and wRow

′, then f(w)Rof(w′).

5.2 The Logical Structure of M
What has been said about LB in terms of connectives, quantifiers, logical laws,
and modal/temporal operators can now be directly adapted to Sub(Uo). More-

Modal Epistemic Logic on Contracts: A Doctrinal Approach 309

over, we can also extend the modal logic associated with LB described in Sect. 4
with a set of modal operators related to the new accessibility notion and the
restricted category Sub(Uo). These operators are substantially taken from the
classical epistemic logic treatment [12], rather than from the original presenta-
tion in [13], modulo some adaptation to our case.

We use transactions, as defined in Sect. 2, as atomic formulas.

Definition 8 (Language). Given the sets A,R and an observer o, the lan-
guage LΦ(A,R, o) of epistemic formulae on the knowledge of o with respect to
A,R is the minimum language which contains the following expressions:

φ ::= (p, i) | ¬(p, i) | φ ∧ φ | φ ∨ φ | ��
oφ | ♦�

oφ | �(p,i)φ.

for every p ∈ TRNA
R, i ∈ N, � ∈ {+,−}.

The intuitive meaning of the epistemic operators in LΦ(A,R, o) is:

– �oφ: o “necessarily accepts” φ.
– ♦oφ: o “possibly accepts” φ.
– �(p,i)φ: after p has been publicly announced at time i, φ is true.

Let σ = 〈Ko
0,Ko

1, . . . ,Ko
n〉 be a string of observable configurations for an

observer o. We say that a transaction p is in accordance with Ko
i in σ, if for

every (r, a1, a2) ∈ p, (r, a1) ∈ Ko
i and (r, a2) ∈ Ko

i+1. We say that p is in contrast
with Ko

i in σ if there are r, a1, a
′
1, a2, a

′
2 in alpho, such that a1 �= a′

1, a2 �= a′
2,

and there is (r, a1, a2) ∈ p and, either (r, a′
1) ∈ Ko

i or (r, a′
2) ∈ Ko

i+1.
For the moment, our model M will be Sub(Uo).

Definition 9 (Satisfiability). The following clauses define the satisfiability of
a formula φ according to a given world w with ι(w) = 〈K0,K1, . . . ,Kn〉.
– w |=M (p, i) iff p is in accordance with Ki.
– w |=M ¬(p, i) iff p is in contrast with Ki.
– w |=M φ ∧ ψ iff w |=M φ and w |=M ψ.
– w |=M φ ∨ ψ iff w |=M φ or w |=M ψ.
– w |=M ��

oφ iff w′ |=M φ for all w′ ∈ w�
o .

– w |=M ♦�
oφ iff w′ |=M φ for some w′ ∈ w�

o .
– w |=M �(p,i)φ iff w |=M′ φ where M′ is the restriction of M to worlds w′

where p is in accordance with Ki.

Let us now look for a categorical characterisation of these operators.

Definition 10 (Ro-closedness). We define the following:

– X ′ is an o+-closed (resp., o−-closed) subobject of X iff for every x′ ∈ X ′ and
x ∈ X s.t. x′Rox (resp., xRox

′), it holds that x ∈ X ′.
– o�Sub(X) is the family of o�-closed subobjects of X .

Remark 1. In the case of a symmetric relation Ro, o+Sub and o−Sub do coincide.

310 P. Bottoni et al.

Definition 11 (Modal Ro-accessibility operators in Sub(Uo)). We define
in Sub(Uo) the following operators:

– ♠o
X X ′ = 〈X ′′, ι♠oX ′ , α♠oX ′〉 where:
• X ′′ = {x ∈ X | ∃x′ ∈ X ′[xRox

′]}
• ι♠oX ′ = ιX ,

• α♠oX ′(x′, x′′) =
{

αX ′(x′, x′′) if x′, x′′ ∈ X ′

• otherwise
– �o

X X ′ = 〈{x′ ∈ X ′ | ∀x ∈ X[xRox
′ ⇒ x ∈ X ′]}, ιX ′ , αX ′〉

– ♥o
X X ′ = 〈X ′′, ι♥oX ′ , α♥oX ′〉 where
• X ′′ = {x ∈ X | ∃x′ ∈ X ′[x′Rax]}
• ι♥oX ′ = ιX

• α♥oX ′(x′, x′′) =
{

αX ′(x′, x′′) if x′, x′′ ∈ X ′

• otherwise
– �o

X X ′ = 〈{x′ ∈ X ′ | ∀x ∈ X[x′Rox ⇒ x ∈ X ′]}, ιX ′ , αX′〉.

Lemma 1. All the operators in Definition 11 are monotonic functions (func-
tors), and so are the injections:

io+X : o+Sub(X) → Sub(X) ← o−Sub(X) : io−
X

Moreover, io−
X and io+X have both left and right adjoint, namely (forgetting the

index X): ♠o � io− � �o and ♥o � io+ � �o such that

♠oio− � id �o io− � id ♥aio+ � id �o io+ � id

Proof. (Sketch) We have to prove that the definitions of ♠oX ′, �oX ′, ♥oX ′ and
�oX ′ can be extended to functors, and then prove the adjunctions. All the oper-
ators are monotonic and adjunctions formalise their representing minimal closure
and maximal closed subobjects, respectively. These properties and the required
isomorphisms are verified through simple inequations between subobjects. This
is essentially due to the fact that, assuming that the accessibility relations are
preorders, the operators result into closure (resp. interior) operators. ��
Lemma 2. o+Sub and o−Sub can be extended to Heyting doctrines in Sub(Uo).

Proof. We first prove that o+Sub and o−Sub are Heyting algebras: due to the
adjunctions from Lemma 1, o+Sub and o−Sub inherit unions and intersections
from Sub. In fact, ♠oX ′, being a left adjoint, preserves unions and, being a left
inverse, makes them the same as in Sub(X). Dually, �oX ′, being a right adjoint,
preserves intersections and, being a left inverse, it makes them the same as in
Sub(X). The same happens with o+Sub, using ♥oX ′ and �oX ′. Distributiv-
ity holds because it holds in Sub(X). It is now sufficient to show that, given
a morphism f : X → Y, the inverse image operator f∗ can be restricted to
the appropriate family and it has left and right adjoints. Since morphisms pre-
serve accessibility, f∗ preserves o+ (o−)-closedness, f∗ restricted to o+Sub(X)
(o−Sub(X)) has both adjoints, but they are not the immediate restrictions of

Modal Epistemic Logic on Contracts: A Doctrinal Approach 311

those in Sub(X): we need to compose the general ones with the suitable closure
operators and restrict the result.

Σo−
f = ♠o ◦ Σf ◦ io−, Πo−

f = �o ◦ Πf ◦ io−,

Σo+
f = ♥o ◦ Σf ◦ io+, Πo+

f = �o ◦ Πf ◦ io+

With these definitions, the adjointness result is routine. ��
Theorem 1. If we interpret a formula with the subobject satisfying it, then the
operators above are categorically characterizable as follows:

1. The interpretation of �−
o and �o is the right adjoint to the inclusion

o−Sub(X) → Sub(X), for every X in M.
2. The interpretation of ♦−

o and ♠o is the left adjoint.
3. The interpretation of �+

o and �o is the right adjoint to the inclusion
o+Sub(X) → Sub(X), for every X in M.

4. The interpretation of ♦+
o and ♥o is the left adjoint.

Hence, the 4-tuple (�−
o ,♦−

o ,�+
o ,♦+

o) is a modal doctrine (see [4]).

For the “public announcement operator”, we say that a subobject X ′ is
“(p, i)-closed” if, for every w ∈ X ′, p is in accordance with Ki in ι(w);
(p, i)Sub(X) is the algebra of the (p, i)-closed subobjects of X .

Proposition 3. �(p,i) can be interpreted as the functor associating with X ′

its larger (p, i)-closed subobject, i.e., the right adjoint to the inclusion i(p,i) :
(p, i)Sub(X) → Sub(X).

We are now able to formalize sentences such as the one in Example 3 of Sect. 3.
For example, we can express the fact that “necessarily in the future, after the
announcement that the third instalment has been remitted, an observer o, which
is a contract verifier of Loan and for which w is a possible world, will observe,
in all the worlds accessible from w, that the expected configurations evolve by
first applying one transaction out of the possible executions of Loan”:

�d(�(THDNST,5)((FRTNEST, 6) ∨ (LSTCLS, 6) ∨ (RMTBRK, 6) ∨ (RMTBRK, 7)))

This formula is true for all observers corresponding to contract verifiers of Loan
(some of them might also be able to observe some [close, i] resource).

More generally, a situation in which reaching the final configuration of a
contract (on a transaction announced as (p, i)) makes it possible to start a new
contract, whose possible sequences of observable configurations are represented
by a formula φ, can be expressed as w |=M �d♦+

o �(p,i)φ.
If we consider a set O of observers, M should now accomodate all Sub(Uo)

for o ∈ O. Other epistemic operators can then be introduced into the language.

312 P. Bottoni et al.

Definition 12 (Extended Language). Given A,R and a set of observers O,
the language LΦ(A,R, O) of epistemic formulae on the knowledge of O with
respect to A,R is the minimum language containing the following expressions:

φ ::= (p, i) | ¬(p, i) | φ ∧ φ | φ ∨ φ | ��
oφ | ♦�

oφ | ��
O′φ | K�

O′φ | D�
O′φ | �(p,i)φ.

for every p ∈ TRNA
R, i ∈ N, � ∈ {+,−}, o ∈ O, O′ ⊆ O.

The intuitive meaning of the new epistemic operators is:

– �O′φ: for all o ∈ O′, o “necessarily accepts” φ (this is called EO′ in [12]).
– KO′φ is common knowledge, the iteration of �O′ applied to φ (see [12]).
– DO′φ is distributed knowledge when φ is necessarily accepted with respect to

the intersection of the classes of all observers (see [12]).

Theorem 2. The operators above are categorically characterizable as follows:

1. ��
O′ =

∧
o′∈O′ ��

o′φ;
2. K�

O′φ =
∧

n∈N
��n

O′φ;
3. The interpretation of D∗

O′φ is the right adjoint to the inclusion O′∗Sub(X) →
Sub(X), where O′+Sub(X) contains all the X ′ closed w.r.t. all Ro′ , i.e. all
the X ′ that contain all the v s.t. vRo′w, for every w ∈ X ′ and o′ ∈ O′ (dually
for O′−Sub(X)).

Remark 2. Having an infinitary Heyting first order logic, we can use an infinitary
conjunction on the parts of the model common to different Sub(Uo) for o ∈ O.

While we leave to future work a thorough exploration of these new operators,
we just observe here that one can derive, for purely mathematical reasons, some
relations as in Proposition 4, the proof of which derives from the fact that both
operators, being right adjoints, preserve conjunctions.

Proposition 4. K�
O′(φ ∧ ψ) ≡ K�

O′φ ∧ K�
O′ψ and D�

O′(φ ∧ ψ) ≡ D�
O′φ ∧ D�

O′ψ.

6 Conclusions and Future Work

A fundamental problem in distributed systems is the presence of inconsistent
knowledge across different agents, and how to reconstruct a common knowledge
of the global state of the system. We are exploring the potential of a categorical
approach in the definition of a logic for reasoning about this kind of problems.

We have shown how a categorical modal/temporal logic, originally devel-
oped for reasoning about concurrent processes, can be adapted to an epistemic
logic, concerned with notions of distributed and common knowledge, based on a
“possible worlds” semantics. We have applied this logic to contracts, considering
whether observers of a contract execution agree on its being honoured or bro-
ken. This opens the way to verification and validation techniques, for example
to check if, given a certain sequence of transactions, these can be prolonged to
be executions which honour the contract.

Modal Epistemic Logic on Contracts: A Doctrinal Approach 313

We foresee several developments. Instead of contracts in isolation, one can
study problems arising from the interference of different contracts in which one or
more actors are simultaneously engaged. In recurring contracts, such as insurance
policies, the expiration of a contract enables its renewal, so that one should,
in principle, be able to reason on consequences of contracts. Another natural
development would be to provide a logic for reasoning about consensus on the
composition of a blockchain, using a limited form of common knowledge, where
some qualified form of agreement (typically majority) is required of observers on
their knowledge of the sequence of transactions the blockchain has gone through.
A logical treatment of the updates of blockchains has been recently proposed
in [6], but without reference to aspects related to common knowledge.

Deontic logic, i.e., a logic in which intentions and obligations can be discussed,
has also been proposed as an important tool in the evaluation of the feasibility of
contracts and in the monitoring of their execution [1]. Work is under way, aimed
at asserting whether the categorical structure we have devised in this paper can
also support this particular form of modal logic. Under this respect, we remark
that the ability of observers to distinguish successful and failed transactions can
be useful when modeling attempts.

As a final remark, we mention that the line of work discussed in this paper
resonates with De Nicola’s recent work on smart contracts [20] as well as with his
research on system modeling [2,7] and with his usage of modal logics to express
and verify system properties [3,10,11].

Acknowledgements. Work partially supported by Sapienza, project “Consistency
problems in distributed and concurrent systems”. We thank the anonymous referees
for indication on how to improve this paper.

References

1. Azzopardi, S., Pace, G.J., Schapachnik, F.: On observing contracts: deontic con-
tracts meet smart contracts. In: Palmirani, M. (ed.) Legal Knowledge and Infor-
mation Systems - JURIX 2018, vol. 313, pp. 21–30. IOS Press (2018)

2. Bernardo, M., De Nicola, R., Loreti, M.: A uniform framework for modeling non-
deterministic, probabilistic, stochastic, or mixed processes and their behavioral
equivalences. Inf. Comput. 225, 29–82 (2013)

3. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting bisimilarity and its modal logic
for nondeterministic and probabilistic processes. Acta Informatica 52(1), 61–106
(2015)

4. Bottoni, P., Gorla, D., Kasangian, S., Labella, A.: A doctrinal approach to
modal/temporal heyting logic and non-determinism in processes. Math. Struct.
Comput. Sci. 28(4), 508–532 (2018)

5. Bottoni, P., Labella, A., Kasangian, S.: Spatial and temporal aspects in visual
interaction. J. Vis. Lang. Comput. 23(2), 91–102 (2012)

6. Brünnler, K., Flumini, D., Studer, T.: A logic of blockchain updates. In: Artemov,
S., Nerode, A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 107–119. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-72056-2 7

https://doi.org/10.1007/978-3-319-72056-2_7

314 P. Bottoni et al.

7. De Nicola, R., Di Stefano, L., Inverso, O.: Toward formal models and languages
for verifiable multi-robot systems. In: Front. Robotics and AI 2018 (2018)

8. De Nicola, R., Gorla, D., Labella, A.: Tree-functors, determinacy and bisimulations.
Math. Struct. Comput. Sci. 20, 319–358 (2010)

9. De Nicola, R., Labella, A.: Tree morphisms and bisimulations. Electr. Notes Theor.
Comput. Sci. 18, 46–64 (1998)

10. De Nicola, R., Loreti, M.: A modal logic for mobile agents. ACM Trans. Comput.
Logic 5(1), 79–128 (2004)

11. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

12. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
The MIT Presss, Cambridge (1995)

13. Hendricks, V., Symons, J.: Epistemic logic. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall
2015 edn. (2015)

14. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford
Logic Guides, vol. 1. Clarendon Press, Oxford (2002). autre tirage: 2008

15. Kasangian, S., Labella, A.: Observational trees as models for concurrency. Math.
Struct. Comput. Sci. 9(6), 687–718 (1999)

16. Lawvere, B.: Equality in hyperdoctrines and the comprehension schema as an
adjoint functor. In: Heller, A. (ed.) Applications of Categorical Algebra, Proceed-
ings of Symposium in Pure Mathematics of the American Mathematical Society,
No. 17, pp. 1–14 (1970)

17. Magazzeni, D., McBurney, P., Nash, W.: Validation and verification of smart con-
tracts: a research agenda. Computer 50(9), 50–57 (2017)

18. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
19. Roelofsen, F.: Distributed knowledge. J. Appl. Non-Class. Logics 17(2), 255–273

(2007)
20. Uriarte, R.B., De Nicola, R.: Blockchain-based decentralized cloud/fog solutions:

challenges, opportunities, and standards. IEEE Commun. Stand. Mag. 2(3), 22–28
(2018)

Types for Progress in Actor Programs

Minas Charalambides , Karl Palmskog, and Gul Agha(B)

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{charala1,agha}@illinois.edu, palmskog@acm.org

Abstract. Properties in the actor model can be described in terms of
the message-passing behavior of actors. In this paper, we address the
problem of using a type system to capture liveness properties of actor pro-
grams. Specifically, we define a simple actor language in which demands
for certain types of messages may be generated during execution, in
a manner specified by the programmer. For example, we may want to
require that each request to an actor eventually results in a reply. The
difficulty lies in that such requests can be generated dynamically, along-
side the associated requirements for replies. Such replies might be sent
in response to intermediate messages that never arrive, but the property
may also not hold for more trivial reasons; for instance, when the code
of potential senders of the reply omit the required sending command in
some branches of a conditional statement. We show that, for a restricted
class of actor programs, a system that tracks typestates can statically
guarantee that such dynamically generated requirements will eventually
be satisfied.

Keywords: Concurrency · Actors · Liveness · Typestate

1 Introduction

Liveness properties state that a system will eventually produce an event of inter-
est [5,33]. For example, a client may request exclusive use of a resource from
a server, with the expectation that there will eventually be a reply indicating
whether access has been granted or denied. Liveness properties are an important
class of qualitative properties of open distributed systems and their models, and
are relevant for the languages and logics for agents and coordination proposed
and investigated in depth by De Nicola and his collaborators [17–19].

However, liveness properties are generally difficult to express and reason
about; this is primarily because they are formulated over, and thus require rea-
soning on, sequences of runtime configurations. In addition, even elementary
liveness properties may hinge on assumptions about fairness, which disallow the
indefinite postponement of basic operations such as message dispatch [4].

Usually, type systems provide a straightforward way to capture safety prop-
erties of programs, i.e., properties which rule out executions that reach undesir-
able states. In contrast to liveness, safety can be established by analyzing single
runtime transition steps. However, work in session types [43] has shown the feasi-
bility of using a type system to establish certain notions of progress. These works
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 315–339, 2019.
https://doi.org/10.1007/978-3-030-21485-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_18&domain=pdf
http://orcid.org/0000-0002-6122-7562
http://orcid.org/0000-0002-0580-4206
https://doi.org/10.1007/978-3-030-21485-2_18

316 M. Charalambides et al.

apply type discipline to the use of communication channels in the π-calculus, and
view issues of progress under the prism of session fidelity: communication pro-
tocols, and hence the types that describe them, are designed so that adhering
participants never get stuck. Session types usually constrain cyclic communica-
tion dependencies on the level of the protocol itself, so that well-typed processes
communicate in a manner that always makes progress [6,26]. However, as Sumii
and Kobayashi remark [42], there is more to progress than breaking cyclic depen-
dencies: programmer intent should be taken into account.

We are interested in guaranteeing that an implementation adheres to the
programmer’s intent on the delivery of certain messages. For example, the pro-
grammer may demand that whenever a client requests resource access from a
server, it must eventually receive a reply. This reply does not necessarily need to
come from the server process itself, but it does need to specify whether access to
the resource has been granted or not. Certain bugs in the implementation can
violate this requirement, for example, due to cyclic dependencies, or an omission
of a message sending command by the programmer.

This paper presents a possible solution to the problem in the context of
actors [2], which communicate via asynchronous message-passing. Our work is
structured around a simple actor calculus that allows the programmer to specify
how messaging requirements may be generated at runtime. We regard progress
to be a persistent property on the (runtime) program state such that a con-
figuration C satisfies progress if every execution trace from C ends in a state
where all (dynamically) generated messaging requirements have been satisfied.
We propose a type system to guarantee this property for every runtime configu-
ration resulting from the program. We use the notion of a typestate [41] both at
the language level and in the presented meta-theory, tagging actor names with
the multiset of message types that the corresponding actor needs to receive. We
therefore regard progress as the question of whether an actor eventually receives
all the messages included in their typestate. The type system enforces that, for
every requirement that appears at runtime, suitable action is taken: either it is
fulfilled in the current scope, or it is delegated to another actor. By recursive
reasoning, the type system guarantees that such a postponed requirement will
be satisfied by the delegate actor. In essence, we show that in all executions
of well-typed programs, all requirements generated at runtime will eventually
result in the corresponding messages being received. In that regard, our typing
can be seen as an effect system.

A preliminary version of this work appeared at the Workshop on Actors and
Active Objects [16], in 2017. The present paper makes the ideas more precise,
and discusses possible extensions. The most important shortcoming of the 2017
work is that the typing does not handle cyclic communication patterns. In order
to keep the discussion of the key ideas clear, this paper inherits the limitation
in the main presentation, and postpones an in-depth discussion with a possi-
ble solution until Sect. 6. Moreover, we do not clutter the type system with
handling elementary safety properties, such as checking the number of handler
arguments—those can be established by a separate type system.

Types for Progress in Actor Programs 317

Paper Outline. We first present, in Sect. 2, two example actor programs that
demonstrate the usefulness of message requirements with regard to establishing
progress. We then define our actor calculus formally in Sect. 3, with its abstract
syntax and operational semantics. The type system is defined in Sect. 4, where
we give example typings and discuss the system’s limitations. The main result is
proven in Sect. 5, where we show that executions of well-typed programs even-
tually satisfy stated requirements. Extensions for overcoming the system’s lim-
itations are discussed in Sect. 6. Lastly, we cover related work in Sect. 7, and
conclude in Sect. 8.

2 Motivating Examples

We motivate our approach by discussing two simple programs, given in pseudo-
code syntax reminiscent of Scala [29] with the Akka toolkit [28] for actors. Later,
in Sect. 3, we will define a minimal calculus to make the underlying ideas pre-
cise. The first program, shown in Listing 1, embodies a resource sharing scenario
among multiple clients via a central server. The second program, shown in List-
ing 2, implements a classic example from the session types literature, where two
buyers coordinate to purchase a book from a seller.

2.1 Resource Sharing Program

In the resource sharing program of Listing 1, there are three kinds of actors:
servers, clients, and resources. The clients attempt to acquire exclusive access
to resources administered by the server, by repeatedly messaging it until they
succeed. The server is responsible for responding to requests, by creating new
resource actors and handing out their names, as permitted by system limits. The
problem we consider in this example is how to ensure that (a) clients eventually
receive some reply after a request, whether positive or negative; (b) resources
are properly allocated and de-allocated; and that (c) allocated resources are
eventually put to work.

Actors are defined by their behavior, i.e., how they respond to messages, and
their persistent state. For example, server actors have handlers for request and
donemessages, and a count state variable that represents the number of available
resources. The program initially spawns a server actor and two client actors, on
lines 40 to 42. The two clients are each sent a start(s) message (lines 43 to 44),
informing them of the name of the server s . The clients then send request
messages to the server (line 19), to ask for resource access. Upon receiving a
request message, the server checks if count is zero or less (line 3), and if so, it
sends a later message to the client. If count is positive, the server spawns a
new resource actor to which it sends a lock message (line 8) with the client and
itself as the payload; then, it decrements count. The resource reacts to the lock
message by sending ok to the client (line 33), who replies with a work message
(line 22).

318 M. Charalambides et al.

Listing 1. Example – Resource Sharing.

1 Se r v e r (count : I n t) = {
2 r e q u e s t (c : C l i e n t) =
3 i f count ≤ 0 then
4 c ! l a t e r ()
5 e l s e
6 l e t r s = new Resource () i n
7 l e t rs_ = r s . add_req (k i l l) i n
8 rs_ ! l o c k (c , s e l f) ;
9 update (count - 1)

10
11 done (r : Resource) =
12 r ! k i l l () ;
13 update (count + 1)
14 }
15
16 C l i e n t () = {
17 s t a r t (s : S e r v e r) =
18 l e t s e l f_ = s e l f . add_req (ok + l a t e r)
19 i n s ! r e q u e s t (s e l f_)
20
21 ok (r : Resource , s : S e r v e r) =
22 r ! work (s e l f , s)
23
24 l a t e r () = . . .
25
26 done (r : Resource , s : S e r v e r) =
27 s ! done (r)
28 }
29
30 Resource () = {
31 l o c k (c : C l i e n t , s : S e r v e r) =
32 l e t s e l f_ = s e l f . add_req (work) i n
33 c ! ok (se l f_ , s)
34
35 work (c : C l i e n t , s : S e r v e r) =
36 . . .
37 c ! done (s e l f , s) ;
38 }
39
40 l e t s = new Se r v e r (1) i n
41 l e t c1 = new C l i e n t () i n
42 l e t c2 = new C l i e n t () i n
43 c1 ! s t a r t (s) ;
44 c2 ! s t a r t (s)

Listing 2. Example – Two Buyer Protocol.

45 S e l l e r () = {
46 get_quote (t i t l e : S t r i ng ,
47 b1 : Buyer1 ,
48 b2 : Buyer2) =
49 l e t p r i c e = p r i c e_o f (t i t l e) i n
50 l e t s e l f_ = s e l f . add_req (ye s + no) i n
51 b1 ! quote (p r i c e , b2 , s e l f_)
52
53 ye s () =
54 . . .
55
56 no () =
57 . . .
58 }
59
60 Buyer1 (con t r : I n t) = {
61 s t a r t (s : S e l l e r ,
62 b2 : Buyer2) =
63 l e t s e l f_ = s e l f . add_req (quote) i n
64 s ! get_quote ("1984" , se l f_ , b2)
65
66 quote (p r i c e : I n t ,
67 b2 : Buyer2 ,
68 s : S e l l e r) =
69 b2 ! ask (p r i c e , cont r , s)
70 }
71
72 Buyer2 (con t r : I n t) = {
73 ask (p r i c e : I n t ,
74 b1_contr : I n t ,
75 s : S e l l e r) =
76 i f p r i c e - b1_contr ≤ con t r then
77 s ! y e s ()
78 e l s e
79 s ! no ()
80 }
81
82 l e t s = new S e l l e r () i n
83 l e t b1 = new Buyer1 (11) i n
84 l e t b2 = new Buyer2 (5) i n
85 b1 ! s t a r t (s , b2)

The requirements (a), (b), and (c) from above are explicitly embedded in
the code via the use of the construct add_req. On line 18, we express that the
client actor currently executing this line is required to eventually receive either
ok or later. On line 7, add_req expresses the requirement that the actor whose
name is stored in rs (a resource actor) must eventually receive a kill message,
representing de-allocation. Finally, on line 32, we express that the resource actor
executing this line needs to eventually receive a work message.

As it turns out, the stated requirements will be satisfied in all executions
of the resource sharing program where message delivery and processing is not
indefinitely postponed. With regard to the delivery of either ok or later to the
clients, consider what happens when the server actor receives a request message.
It is either count ≤ 0, in which case the server sends later to the client actor right
away; or count > 0, and the client name is sent to the newly spawned resource
actor (line 8), which sends it an ok message on line 33.

Note that if we omit some message sending operation, requirements will be
violated; for example, leaving out the statement c ! done(self, s) from line 37
would violate the requirement set on line 7, thus resulting in failure to de-
allocate the resource. Consequently, satisfaction of requirements captures a form

Types for Progress in Actor Programs 319

of progress for actor programs, by ruling out that certain actors wait forever for
some specific message.

2.2 Two Buyer Protocol

The program in listing 2 builds on the two buyer protocol—a classic example
found, e.g., in the work of Honda et al. [27]. The general idea is that two buyers
need to coordinate to buy a book from a seller. The first buyer sends a quote
request to the seller, who replies with a price. When the first buyer receives this
quote, it tells the second buyer how much it is willing to contribute; then, the
second buyer decides if the remaining amount is within their budget, and lets
the seller know. In this example, the problem we consider is (a) whether the
first buyer eventually gets a quote from the seller, and (b) whether the seller
eventually receives a response to the quote.

There are three actor behaviors in the program: Seller, Buyer1, and Buyer2
. Execution begins with spawning one actor of each behavior, on lines 82 to 85.
The protocol starts when the first buyer actor receives a start message with the
names of the two other participants. The first buyer then sends a get_quote
message to the seller actor with the title of a book (line 64). Requirement (a)
is embedded in the use of add_req on line 63. In response to a get_quote
message, the seller actor looks up the price of the title and sends it back in a
quote message (lines 49 to 51). Notice the assignment with add_req on line 50,
which captures requirement (b) by demanding either one of the messages yes
or no.

The first requirement is easily seen to be fulfilled by the seller actor on line 51,
assuming the price_of invocation on line 49 terminates. The second requirement
is ultimately fulfilled by the buyer-two actor, which will either reply yes, or no, in
response to the askmessage from the buyer-one actor. Once again, omitting send
operations will result in requirement violations; for example, omitting s ! yes()
from line 77 would have that branch of the conditional (line 76) to proceed
without a response to the seller. As in the first example, it makes sense to demand
that both branches of a conditional satisfy all stated requirements, perhaps via
a different messaging path—in this example, via a yes or no (lines 77 and 79,
respectively).

As both presented examples hint at, making messaging requirements explicit
allows us to reason about the eventual delivery of certain messages—and to do
so statically. Our approach is to reduce difficult parts of this reasoning to the
checking of program conformance to a type system along the lines of process
types [24,39]. If a program passes the check, it is free of the discussed progress
issues.

3 Actor Calculus

Our calculus follows standard actor semantics; however, its syntax does not adopt
the λ-calculus extension of Agha et al. [2] – instead, to capture the examples

320 M. Charalambides et al.

above, we allow behaviors to include message handler definitions. The intention
here is the following: consider an actor α with behavior b, where the definition of
b includes a handler h with parameters x1 . . . xk and body S. Then, the receipt
of a message h(u1 . . . uk) by actor α will invoke the code S, replacing the formal
parameters x1 . . . xk with the values u1 . . . uk, and self with α. The reserved
name self refers to the actor in which it is evaluated.

In what follows, we abbreviate sequences of the form x1 . . . xk with x,
sequences of the form u1 . . . uk with u, et cetera. The calculus syntax is given
in Fig. 1: programs P consist of a list of behavior definitions B and an initial
statement S. An actor behavior definition includes a name b that identifies the
behavior, variables x that store the assuming actor’s state, and a list of message
handler definitions H. In turn, a message handler definition includes a name h
that identifies the handler, a list of message parameters x, and a statement S
to be executed upon invocation of the handler.

Statements generally consist of single operations followed by another state-
ment. For example, x!h(e).S sends a message for handler h of the actor x, with
argument list e, and then proceeds as S. The statement νx:b(e).S creates a new
actor (whose name is bound to x in S) with behavior b and initial state vari-
ables set to the values of the expressions e. The statement update(e) updates
the values of actor state variables, and the if statement has the usual meaning
of a conditional. A ready statement belongs to the runtime syntax, signifying
the end of handler execution.

The call add(x, R) adds the requirement R to the list of requirements already
associated with the actor x. Informally, to satisfy a disjunctive requirement
(h1 + h2) of some actor x, we have to send it a message labeled with either h1

or h2. Similarly, to satisfy a conjunctive requirement h1 ·h2, one has to send the
actor two messages, h1 and h2.

3.1 Operational Semantics

To formalize the semantics of our calculus, we first define an algebra on the
extended requirement syntax (including the empty, conjunction, and satisfaction
rules of Fig. 1). The relation ≡ on requirements is the least congruence relation
that includes the rules of Fig. 2. The empty requirement ε is the zero element
for + (disjunction) and the unit element for · (conjunction). Reductions on
requirements are defined in Fig. 3, and hold up to structural congruence. An
empty requirement ε is always considered satisfied, and we say that the messages
h1, . . . , hk satisfy a non-empty requirement R iff (. . . (R ÷ h1) ÷ h2) ÷ · · ·) ÷
hk) −→∗ ε.

Furthermore, we assume a reduction relation on expressions, such that the
notation e �Δ u means that the expression e reduces to the value u, given static
program information Δ. The latter is assumed to contain information extracted
from the program, such as the parameters of message handlers. The transition
relation for statements is defined in Fig. 4, where we write S l−→Δ S′ to say that
a statement S reduces to S′ via l. The label l records the action being taken; for

Types for Progress in Actor Programs 321

Fig. 1. Actor calculus syntax.

Fig. 2. Structural congruence on requirements.

Fig. 3. Requirement reductions.

322 M. Charalambides et al.

example, α!h(e).S reduces to S, and l = α!h(u) records the sent message. The
values u are computed from the expressions e, i.e., e �Δ u.

Fig. 4. Labeled transition semantics for statements. Expressions e follow standard
semantics, and Δ is static program information.

The transition relation S l−→Δ S′ is referenced in the program-level rules
of Fig. 5, which transform runtime configurations. A runtime configuration C
is a tuple (Δ,R,M,A), where Δ records static program information; R is a
map from actor names to requirements; M is the multiset of pending (sent,
but not received) messages; and A maps each actor name to a behavior, state,
and executing statement. Elements of M have the form α!h(u), where α is the
destination actor, h is the handler to be invoked upon receipt, and u are values
constituting the message payload. We denote A as a set of elements of the form

Fig. 5. Labeled transition semantics for actor configurations.

Types for Progress in Actor Programs 323

〈S〉b(w)
α , where α is the actor’s name, b corresponds to its behavior, the values w

constitute its state, and S is the statement the actor is currently executing.
We write C −→ C ′ to say that the runtime configuration C reduces to C ′ via

an application of some rule in Fig. 5. By extension, C1 −→ C2 −→ · · · denotes
a possibly infinite sequence of configurations where each adjacent pair follows
the transition rules of Fig. 5. Execution of a program P = B S then consists of a
sequence of transformations that starts from the program’s initial configuration.
Such an initial configuration is created via rule Prog in Fig. 5, and it records
information Δ from the program, associates no requirements with any actor, has
an empty message multiset, and includes a single initial actor executing S. This
actor has reserved name and behavior in, and no state variables. When R = ∅,
we define R(x) = ε for all x; i.e., by convention, ∅ maps no requirements to
any actor. We assume a straightforward extension of the requirement algebra to
runtime configurations, as shown in Fig. 6. As always, reductions hold up to ≡.

Fig. 6. Requirement algebra extended to requirement mappings and runtime configu-
rations.

Rule AddReq deals with calls of the form add(β, R) by appending R to R(β),
the latter being the requirements already associated with β. Note the use of ÷
in Send: the rule adds the sent message to the multiset of pending messages,
and reduces the requirements related to β, by re-mapping β to R(β) ÷ h. This
corresponds to the fact that β will eventually receive h.

Only idle actors can receive messages [3]. Since statements take the form
ready when completely reduced, Receive describes an idle actor α receiving a
message to be processed by handler h. The statement S to execute is extracted
from the program information Δ, and on it, the rule performs substitution of
current values for handler and state variables. These values are taken from the
message contents u and actor state w. Handler and behavior (i.e., state) param-
eters are looked up via the auxiliary function params. Rule Update writes new
values u to the state variables of α. Rule New creates a new actor 〈ready〉b(u)

β

with unique name β, initialized with the given behavior b and values u for its
state variables. Rule If has the usual effect of deciding a conditional.

324 M. Charalambides et al.

4 Type System

The typing rules are given in Fig. 7. As before, Δ records static program infor-
mation (such as the abstract syntax tree) which is used to retrieve, for example,
the body of message handlers. R maps names to pending requirements, and S
is the program statement being typed. Judgments have the form R �Δ S, read
“under program information Δ and requirement map R, the statement S is well
typed”.

Fig. 7. Static typing rules.

Rule T-Prog types programs, writing � P to state that the program P is well-
typed. The rule prescribes that P = B S is well-typed when, using the information
Δ extracted from the behavior definitions B, the statement S is well-typed under
the empty requirement map. Rule T-New requires that the statement following
the creation command be typed with no requirements associated with the new
actor. Rule T-Add demands that the statement following the add(x, R) command
is well-typed under an environment which includes the new requirements R
for x. Per rule T-If, typing conditionals requires that each of the two branches
satisfies the known requirements. Consistent with the fact that statements end in
a construct of the form update(e), rule T-Update is the base case of the recursive
typing algorithm: it demands that all requirements known in the current scope
have been satisfied.

Typing the action of sending a message takes into account that the execu-
tion of the related handler may satisfy some requirements known in the current
context. Thus, rule T-Send demands that the statement S following the send
command must be type-able under a “reduced” requirement map, from which we
have removed the sent message h, and the requirements satisfied by the body
of h. These include some requirements R1 associated with x, as well as some
requirements R2 associated with (some of1) the arguments e.
1 The careful reader might observe that the rule does not account for self being part of

the message payload. Accounting for self in messages poses no additional technical
difficulty, and is omitted to simplify the presentation.

Types for Progress in Actor Programs 325

Fig. 8. Example of requirement delegation.

Fig. 9. Typing the example of Fig. 8.

To clarify the use of these rules, consider the example in Fig. 8, and the
respective typing in Fig. 9. The program’s main statement adds the requirement
for a message m to y, but does not subsequently contain a y!m() statement;
rather, it sends h(y) to x. When x receives that message, the requirement for m
will be satisfied in the body of the handler, i.e., the statement z!m().update(),
with z bound to y. For this reason, when the typing reaches x!h(y), it requires
both the typing of the body of h, and the remaining commands—as in the
application of rule T-Send from Fig. 9.

5 Calculus Meta-theory

In order to establish our main result, we extend the typing relation to runtime
configurations:

Definition 1 (Runtime Typing). Let C be a runtime configuration. We say
that C is well-typed, written � C, iff C satisfies the rules shown in Fig. 10.

Fig. 10. Runtime typing rules.

326 M. Charalambides et al.

For a runtime configuration C, we write C −→ to mean that there exists
some C ′ such that C −→ C ′, and C 	−→ to mean that there exists no C ′ with
C −→ C ′. Note rule R-Transition, which is defined with the intention of forcing
the runtime typing to unfold program execution—facilitating the proofs of this
section. For example, we can show that typing holds up to equivalence and
requirement reductions (Fig. 6), captured by the next lemma.

Lemma 1. The following rules hold true:

C1 ≡ C2 � C1

� C2

R −→ R′ � (Δ,R,M,A)
� (Δ,R′,M,A)

The rule on the left maintains typing along structurally congruent configu-
rations. The rule on the right maintains typing after performing the operations
(+, ÷, ·) on requirements inside R. The proof is by induction on the structure
of runtime typing derivations, and is omitted.

The main result of this section is that during executions of well-typed pro-
grams, all requirements generated dynamically are eventually satisfied; that is,
runtime configurations satisfy the progress property:

Definition 2 (Progress). Let C = (Δ,R,M,A) be a runtime configuration.
We say that C satisfies the progress property, written P(C), iff for all executions
C −→ C1 −→ · · · −→ Ck that start from C, we have Ck = (Δ,Rk,Mk, Ak) with
Rk(x) −→∗ ε for all x ∈ dom(Rk).

We remind the reader that the initial configuration of a program P is denoted
with init(P), and that −→∗ is the transitive reflexive closure of the relation −→.
We can now state the main result:

Theorem 1. Let P be a program. Assuming statements S terminate, � P and
init(P) −→∗ C imply P(C).

The theorem states that all configurations reachable from the initial configura-
tion of a well-typed program satisfy the progress property, notwithstanding the
divergence of expressions (denoted with e in Fig. 1).

Proof Outline. The main idea is to show that

(i) well-typed programs generate well-typed initial configurations, that is, � P
implies � init(P);

(ii) the reduction relation of Fig. 5 preserves typing, that is, � C and C −→∗ C ′

imply � C ′; and
(iii) well-typed configurations satisfy the progress property, that is, � C implies

P(C).

In other words, we show that the typing of configurations guarantees progress,
and that reduction preserves the progress property. We proceed to prove the
above items in sequence.

Recalling that satisfying R1 · R2 requires the satisfaction of both R1 and R2,
we state—without proof—an auxiliary lemma, which can be shown by induction
on the structure of runtime typing derivations:

Types for Progress in Actor Programs 327

Lemma 2. If � (Δ, R1, M1, A1) and � (Δ, R2, M2, A2), then � (Δ, R1 ·
R2, M1 ∪ M2, A1 ∪ A2).

The next lemma captures our intuition that the static typing of programs
(per Fig. 7) implies that the respective runtime configurations are well-typed
(per Fig. 10).

Lemma 3. Let S be a statement where self has been replaced by a runtime
name α, and let A consist solely of actors executing ready. Then, for any static
program information Δ, requirement map R, behavior instantiation b(u), and
variables x with |x| = |u|, we have that

R[u/x] �Δ S[u/x] implies � (
Δ, R[u/x], ∅, A ∪ {〈S[u/x]〉b(u)

α })
.

Proof. We proceed by induction on the syntax of statements.

Base case. From Fig. 1, the base case is that of the update call. Let Δ, R, A, α,
x and b(u) be as per the statement of the lemma. Moreover, fix values w with
|w| = |u|. We need to show that

R[u/x] �Δ update(w)[u/x]
︸ ︷︷ ︸

update(w)

implies

� (Δ, R[u/x], ∅, A ∪ {〈update(w)[u/x]
︸ ︷︷ ︸

update(w)

〉b(u)
α }).

Notice that the variables x do not appear in the values w, and so the substitu-
tion [u/x] leaves update(w) unchanged. Assume R[u/x] �Δ update(w) per rule
T-Update in Fig. 7, i.e.,

∀y.(y ∈ dom(R[u/x]) =⇒ R[u/x](y) −→∗ ε).

From the above and rule R-Ready in Fig. 10, we have that

� (Δ, R[u/x], ∅, A ∪ {〈ready〉b(w)
α })

which, by R-Transition, implies

� (
Δ, R[u/x], ∅, A ∪ {〈update(w)〉b(u)

α })
.

Inductive step – message sending. Let Δ, R, A, α, x and b(u) be as per the
statement of the lemma. Moreover, fix a message handler h, values w, an actor
name β, a statement S, a behavior instantiation b′(u′), and variables x′ with
|x′| = |u′|. Assume that A = A1 ∪ A2 ∪ {〈ready〉b′(u′)

β } for some A1 and A2

consisting solely of ready actors, and that R = R′[u/x] for some R′. Also, assume
that S = S0[u/x] for some S0 where self has been replaced with α. Further
assumptions on x′ and u′ will become clear in the next few steps. We need to
prove that

R �Δ β!h(w).S implies � (
Δ, R, ∅, A ∪ {〈β!h(w).S〉b(u)

α })
.

328 M. Charalambides et al.

Assume R �Δ β!h(w).S was derived via an application of rule T-Send, and thus

R = R0︸︷︷︸
R01[u/x]

∪ {β �→ Rβ , γ �→ Rγ}
︸ ︷︷ ︸

R02[u/x]

(1)

for some mapping R0, requirements Rβ and Rγ , and γ = actors(Δ,w). From
T-Send, it is

R0︸︷︷︸
R01[u/x]

∪ {β �→ Rβ ÷ (h · R1), γ �→ Rγ ÷ R2}︸ ︷︷ ︸
R03[u/x]

�Δ S (2)

and {β �→ R1, γ �→ R2} �Δ body(Δ,h)[β/self][γ/z]
︸ ︷︷ ︸

S′
h = Sh[u′/x′]

(3)

where R1, R2, γ and z are as in rule T-Send. From the inductive hypothesis,
Eq. (2) implies

� (
Δ, R0 ∪ {β �→ Rβ ÷ (h · R1), γ �→ Rγ ÷ R2}, ∅, A1 ∪ {〈S〉b(u)

α })
(4)

since A1 consists solely of ready actors. Applying the inductive hypothesis on
Eq. (3), we get

� (
Δ, {β �→ R1, γ �→ R2}, ∅, A2 ∪ {〈S′

h〉b′(u′)
β })

(5)

because A2 consists solely of ready actors, and the mapping {β �→ R1, γ �→ R2}
subsumes the substitution [u′/x′]. Combining Eqs. (4) and (5) per Lemma 2, we
get

� (
Δ, R0 ∪ {β �→ (Rβ ÷ (h · R1)) · R1, γ �→ (Rγ ÷ R2) · R2}

∅, A1 ∪ A2 ∪ {〈S〉b(u)
α , 〈S′

h〉b′(u′)
β })

.
(6)

We apply Lemma 1 (reducing the requirements) to Eq. (6) to get

� (
Δ, R0 ∪ {β �→ Rβ ÷ h, γ �→ Rγ}, ∅, A1 ∪ A2 ∪ {〈S〉b(u)

α , 〈S′
h〉b′(u′)

β })
. (7)

We remind the reader that u′ contains (among others) names in w, and that
S′

h is the body of handler h with the required substitutions. Thus, by rule
R-Transition, Eq. (7) implies

� (
Δ, R0 ∪ {β �→ Rβ ÷ h, γ �→ Rγ},

{β!h(w)}, A1 ∪ A2 ∪ {〈S〉b(u)
α , 〈ready〉b′(u′)

β })
.

Since A = A1 ∪ A2 ∪ {〈ready〉b′(u′)
β }, the above can be written

� (
Δ, R0 ∪ {β �→ Rβ ÷ h, γ �→ Rγ}, {β!h(w)}, A ∪ {〈S〉b(u)

α })
.

Types for Progress in Actor Programs 329

Applying R-Transition again, the above implies

� (
Δ, R0 ∪ {β �→ Rβ , γ �→ Rγ}, ∅, A ∪ {〈β!h(w).S〉b(u)

α })
.

From Eq. (1), the above is the same as

� (
Δ, R, ∅, A ∪ {〈β!h(w).S〉b(u)

α })

which completes the proof for message sending. The rest of the cases are simpler,
and are thus omitted in the interest of space.

Corollary 1 (Static Typing Implies Runtime Typing). � P implies �
init(P) for all programs P.

Proof. Let P = B S be a program, and assume self does not appear in S (self
does not make sense in the context of the initial actor). We apply Lemma 3 to
∅ �Δ S and � (Δ, ∅, ∅, {〈S〉in()in }) with Δ = info(B).

We now show that the reduction relation of Fig. 5 preserves typing:

Lemma 4 (Type Preservation). Let C be a runtime configuration. Then
� C and C −→∗ C ′ imply � C ′.

Proof. Assume � C, which means that one of the rules in Fig. 10 (page 12)
applies. If there exists C ′ s.t. C −→ C ′, then � C ′ from the definition of typing
rule R-Transition. If C 	−→, i.e., C −→∗ C, the only possibility is that C
is a quiescent state, i.e., there are no messages to be delivered, and all actor
statements have been reduced to ready. Per rule R-Ready, C is well-typed.

Let C be a well-typed runtime configuration. Then, a derivation of � C
according to the rules of Fig. 10 forms a tree with root � C, such that every path
on this tree is a sequence of applications of R-Transition that ends in a single
application of R-Ready. On each such sequence, we focus on the configurations
on the rule conclusions, say C,C1 . . . Ck. We write Paths(� C) for the set of
all such sequences of configurations. As it turns out, Paths(� C) includes all
possible executions from configuration C:

Lemma 5 (Typing Unfolds Execution). Let C1 be a well-typed config-
uration, i.e., � C1 and C1 −→ · · · −→ Ck an execution from C1. Then,
(C1, . . . , Ck) ∈ Paths(� C).

Proof. Directly from Lemma4.

Finally, item (iii) from the proof outline is captured in the statement below:

Lemma 6 (Runtime Typing Guarantees Progress). Let C be a configu-
ration. Then � C implies P(C).

330 M. Charalambides et al.

Proof. A derivation of � C follows the rules of Fig. 10, and hence, such a deriva-
tion ends in an application of rule R-Ready. Thus, every sequence in Paths(� C)
ends in some configuration Ck for which � Ck is given by rule R-Ready. From
the definition of the rule, Ck must be a quiescent state with no requirements. By
Lemma 5 and the fact that � C, every execution from C ends in such a state.

We are now ready to prove the main result:

Proof (Theorem 1). Direct consequence of

� P implies � init(P) (corollary 1)
� C and C −→∗ C ′ implies � C ′ (lemma 4)
� C implies P(C) (lemma 6).

Error Programs. The progress property P(C) ensures that a configuration C
reduces to a state where all requirements have been satisfied. The property
implicitly captures the definition of error programs: those that can result in a
configuration C for which P(C) does not hold. More formally,

Definition 3 (Error Program). Let P be a program in the syntax of page 7.
It is error(P) when P � (Δ,R,M,A) and there exists α for which R(α) 	−→ ∗ε.

In other words, an error program is one that can reduce to a configuration
with non-empty requirements, and where no reduction rules (page 9) apply.
Theorem 1 directly implies that well-typed programs are not error:

Corollary 2. Let P be a program. Then � P implies that P /∈ error .

Proof. Direct consequence of Theorem 1 and Definition 2.

6 Augmented Typing

The typing presented so far is limited in some aspects. For example, it does not
consider a requirement fulfilled, if the necessary messaging happens via state
variables. To clarify this limitation, consider the program on the left-hand side of
Fig. 11. It includes two behavior definitions, b1 and b2, with one handler each: h1

in b1, and h2 in b2. Execution starts with the creation of actor x with behavior b1,
and actor y with behavior b2. Actor y is created with b2(x), i.e., storing x in the
behavior (state) variable z. The program proceeds to associate the requirement
h1 with x, then sends h2() to y. When y receives h2, it will send h1() to x.
However, the presented type system will reject the program, because the typing
rules for message sending do not consult with the actor’s state. Doing so requires
the static tracking of dynamically changing actor state, and is the topic of future
research.

A perhaps more important limitation is revealed by considering the example
on the right-hand side of Fig. 11. There, two actors exchange messages forever:
actor x sends h2 to y, which replies with h1, and so on. The complication arises

Types for Progress in Actor Programs 331

because both actors generate a requirement for themselves before satisfying the
requirement they already know for the other actor: on line 3, actor x adds a
requirement for h1 to itself; then, on line 4, it satisfies the requirement h2 for y,
to whom it relies for the satisfaction of its own (just added) requirement for h1.

Let us see what happens when we attempt to type the body of h1. First,
the system encounters the call add(self, h1), which adds a requirement for h1 to
self, i.e., x. Because the remaining statement is z!h2(self).update(), the typing
will have to proceed via rule T-Send. In accordance to the rule premises (page
10), we need to type the body of h2. In doing so, we will eventually reach
the statement add(self, h2), adding a requirement for h2 to self, i.e., y. The
remaining statement (line 11) is z!h1(self).update(), and T-Send demands the
typing of the body of h1. Attempting to type h1 essentially restarts the process,
entering an infinite sequence of rule applications.

Fig. 11. Untypeable examples.

Note that, although the typing of Sect. 4 fails, this program has the discussed
progress property, on an intuitive level: every generated requirement is eventually
satisfied, even though a new one takes its place immediately after. The root of
the problem with the typing of Sect. 4 is that the rules demand that obligation
delegation be linear, in the sense that symbolic tracing of the code should not
revisit the same parts in a circular fashion, to avoid infinite loops. As it turns
out, this requirement is an artifact of the design of the typing algorithm, which
was chosen to make the presentation easier to follow.

6.1 On Cyclic Communication

To detect that requirements are indeed satisfied even though new ones take their
place, we can look at each add statement separately: by unfolding execution from
the add statement onward, we can declare success if we find appropriate send
commands before looping back to that same add statement. If no such command

332 M. Charalambides et al.

was reached and no more unfolding is possible, then we can safely assume failure.
The problem of termination can be tackled by “remembering” the initial add call
site and breaking the loop if it is encountered again. We make these ideas more
precise with the rules in Fig. 12.

The rules assume that each add statement is associated with a unique token
k, as in add(x, R)k. Rule Augm-Add-Start bootstraps the process, with k carried
along the relation �, which unfolds execution. The algorithm only keeps track
of one actor name x and its requirements R, and declares success if it loops
back to the same k with an empty R (rule Augm-Add-End). Rule Augm-Send
reduces the tracked requirements by the sent message h, as well as the require-
ments R2 satisfied in the handler body Sh. Rule Augm-Delegate reduces the

Fig. 12. Augmented static typing for progress, overcoming issues with cyclic require-
ment delegation.

Types for Progress in Actor Programs 333

requirements of x when it is passed as an argument to the message h. Notice
that Augm-Update demands that no requirements remain unsatisfied.

The difference from the system of Fig. 7 lies in the fact that the rules pre-
sented here are intended for application on each add call site independently, via
application of Augm-Add-Start. Endless looping is prevented by keeping track of
the unique token k, and stopping when it is reached again (rule Augm-Add-End).

The Fairness Requirement. The typing strategy of this section only guarantees
requirement satisfaction for fair executions [22], i.e., executions where enabled
transitions are not infinitely postponed. Without this assumption, the program
on the right-hand side of Fig. 11 would not be guaranteed to satisfy all generated
requirements; for instance, h2(x) is not guaranteed to arrive at y, which is the
only way h1 gets sent to x after line 3.

The typing rules in Fig. 12 follow the rationale that after encountering an
add operation, execution must reach a configuration where a suitable send tran-
sition is taken, i.e., rule Send on page 9. One way that Augm-Add in Fig. 12
succeeds, is when the typing goes through rule Augm-Send, which removes the
added requirement. In other words, for a statement add(x, R).S, rule Augm-Add
succeeds if S contains a suitable send command. The silent assumption here is
that all necessary intermediate transitions are taken, that the send command is
reached, and the message is indeed sent. Note that such intermediate transitions
can be ones where x is sent over as the payload to another message—captured
by the typing rule Augm-Delegate. In those cases, the typing must go through
Augm-Send eventually, i.e., guarantee that a suitable send command is reached,
even if in another actor’s code.

7 Related Work

In mainstream programming languages, one expects that the arguments passed
to a procedure are compatible with the way they are used in the procedure’s
body. Pierce and Sangiorgi [37] extended this idea to Milner’s π-calculus [34],
ensuring the proper use of communicable values. Their system guarantees that
a value sent from one process to another can be safely used at the receiving end,
including when the sent value is a channel name. Through a suitable subtyping
relation, Pierce and Sangiorgi guarantee that after communicating the name of
a channel, subsequent interactions through that channel recursively satisfy this
same (safety) property.

Honda’s early work [24] took a different approach, focusing on the typing of
concurrent processes instead of channels. His system views types as descriptions
of the sequencing of communication actions, and demands that composed pro-
cesses have dual types. Duality corresponds to the sequencing of matching send
and receive actions, ensuring safety and deadlock-freedom in two-party interac-
tions. The idea was later applied to communication over π-calculus channels by
Takeuchi et al. [43], an approach in turn refined by Honda et al. [25] and later
by Yoshida and Vasconcelos [47].

334 M. Charalambides et al.

These early works have been captured in practice by WSCDL, i.e., the Web
Services Choreography Description Language [45]. In this language, one gives
specifications of protocols involving multiple concurrent web services and clients,
in XML form [44]. Its original purpose was to ensure standard safety properties:
clients only use services that exist, and communicated data is well-formed. Nev-
ertheless, WSCDL has served as the starting point for the treatment of protocol
types from a global perspective. For example, Carbone et al. [9] introduced the
notion of a projection—the restriction of a globally specified protocol onto the
individual participants, assigning a type to each concurrent entity in the system.
Then, type-checking can be performed on a per process basis, rather than having
to look at the protocol as a whole. This idea was extended by Honda et al. [26],
who allowed sessions to include more than two participants. In that and other
similar systems, a global type describes the session protocol, and a projection
algorithm mechanically derives end-point types for the individual processes—
describing how each process uses the channels known to them. The system by
Honda et al. ensures progress on a per session basis, under the condition that
communication within a session is not hindered by actions in a different session,
an assumption also made by Dezani-Ciancaglini et al. [21].

Subtyping for the system by Honda et al. was considered by Gay and
Hole [23], and for the π-calculus in general by Castagna et al. [12], but without
further progress guarantees. The assumption on the absence of inter-session hin-
drance was first lifted by Bettini et al. [6], who analyzed the flow of dependencies
on the use of channels, tracking the sending of channel names and preventing
cyclic dependencies. These systems have since been improved on to account
for parameterized participant numbers, and to capture more complex proto-
cols [14,15,20,46]. A different direction was taken by Carbone and Montesi [11],
who allowed the concurrent program itself to be written from a global per-
spective, while statically ensuring the absence of deadlocks via a suitable type
system.

Much like the present paper, some authors observed that deadlock-freedom
does not necessarily guarantee progress in the intuitive sense, and have con-
sidered more general notions [8]. For instance, Kobayashi [30] identifies three
important classes of channel usage, and guarantees a notion of progress for pro-
grams that use such channels. In general, Kobayashi’s typing associates a time
tag with each channel, inferred from the relative order of actions in which the
channel is involved. In order to disable cycles, the type system then enforces
an ordering relation on these tags. The use of a partial order to break cyclic
dependencies is also found in the work of Padovani [36].

Sumii and Kobayashi [42] take these ideas further with the explicit inclusion
of programmer intent in the code, so that channels are annotated with capa-
bilities and obligations. The resulting type system ensures that if a process has
the capability of performing an I/O action on a channel, that action will even-
tually succeed; similarly, if a process has the obligation to perform an action on
a channel, the action is eventually taken. This strategy for deadlock-freedom is
improved on in Kobayashi’s later work [31], where even more precise information

Types for Progress in Actor Programs 335

is used: channels are additionally associated with the minimum number of reduc-
tion steps needed until capabilities are met, and also the maximum number of
steps required until obligations are fulfilled. The automatic inference of similar
type annotations has also been considered [32].

Related to our approach is the work of Puntigam and Peter [39,40], who
allow actors to produce and consume tokens as a reaction to message receipt.
Their typing only allows an actor α to be sent a message m when the handler
for m does not consume more tokens than α has. The type system keeps track of
the tokens known in each scope; the effect is that, after a send command, actors
update their knowledge of the tokens associated with the recipient. Puntigam and
Peter distinguish between optional and obligatory tokens, such that if an actor is
aware of the existence of obligatory tokens in another actor, they need to ensure
that these tokens are consumed—by sending those actors suitable messages.
Puntigam and Peter’s system focuses on breaking cycles of requirements, and it
does so by imposing a partial order on obligatory tokens. A salient drawback of
their strategy is that well-typed programs still allow passing obligations around
in circles, never sending the required messages. It is worth mentioning that our
system does not suffer from this drawback, while in fact employing a simpler
typing strategy.

Similarly to in the work of Puntigam and Peter [40], object capabilities have
been considered by De Nicola et al. [18], who investigate the connections between
flow logic [35] and typing for a concurrent process calculus with localities. A
generic approach that nevertheless does not provide static guarantees is given
in the work of Abd Alrahman et al. [1], allowing processes to communicate with
each other based on boolean predicates. In that system, processes do not address
each other by name; rather, values are communicated among processes that sat-
isfy the given predicates. From the semantics perspective (as opposed to static
typing), many of the above calculi can be implemented using the basic primi-
tives of Boreale et al. [7]. For an in-depth discussion on static type systems for
concurrent programming, we refer the reader to the works of Charalambides [13]
and Carbone et al. [10].

8 Conclusions and Future Work

We presented a type-based approach to ensuring progress in actor systems,
allowing the programmer to state requirements on messages that an actor must
eventually receive at runtime. To demonstrate the practical usefulness of our
approach, we showed that such requirements can be naturally expressed in the
classic example scenarios of resource sharing and book selling. We formalized
the idea as a type and effect system for a simple language of stateful actors that
communicate via asynchronous message passing, and proved that executions of
well-typed actor programs will eventually fulfill all requirements that appear at
runtime.

We expect that similar type systems and constructs such as add_req can be
straightforwardly implemented in practical actor languages. However, as is com-
mon of decidable type systems capturing powerful properties in full-featured

336 M. Charalambides et al.

languages, such implementations will necessarily be incomplete—in the sense
that there will be programs that fulfill all requirements, but where type check-
ing cannot attest to this fact. Our system is no different in this respect, and
relevant examples were presented in Sect. 6, where cyclic messaging patterns
cause problems.

The restriction on cyclic communication patterns can be lifted to a great
extent by considering each requirement generation site separately. This way, it
is possible to remember each such site and avoid visiting it twice. To ensure
our progress property, it is sufficient to match each requirement generation com-
mand with message sending commands guaranteed to execute. We presented a
preliminary discussion of such extensions in Sect. 6; however, we leave the formal
treatment of the augmented type system for future work.

Moreover, the typing accepts programs where requirements are matched by
previously sent messages. This allows, for example, an actor to issue a compu-
tation, then add a requirement for the result. This is not always the intuitively
expected behavior, and we leave a detailed treatment of such cases as future
work.

Our type system is able to help programmers find simple but critical errors,
such as the omission of a key message sending operation. However, in its present
form, the type system does not deal with safety properties, even elementary ones
such as ensuring that a message handler receives the correct number of argu-
ments. We opted to not clutter the presentation with additional rules, to focus
solely on issues of progress. It is nonetheless clear that such safety checks can be
easily incorporated to this work as an additional type system, on top of ours. One
can envision superimposing a number of more complex systems; one example is
Puntigam’s token system [38] which ensures that an actor has sufficient tokens
to process the messages sent to it. Combining the two approaches would allow
complicated coordination constraints to be statically expressed and enforced.

Acknowledgments. We gratefully acknowledge Rocco De Nicola for inspiration, crit-
icism, and enduring influence on our work. We also thank the anonymous reviewers for
their comments. This work was supported in part by the National Science Foundation
under grants NSF CCF 14-38982, NSF CCF 16-17401 and NSF-CCF-1647432.

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A behavioural theory for interac-
tions in collective-adaptive systems. CoRR abs/1711.09762 (2017). http://arxiv.
org/abs/1711.09762

2. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor
computation. J. Funct. Program. 7(1), 1–72 (1997). https://doi.org/10.1017/
S095679689700261X

3. Agha, G., Thati, P.: An algebraic theory of actors and its application to a simple
object-based language. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-
Orientation to Formal Methods. LNCS, vol. 2635, pp. 26–57. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-39993-3_4

http://arxiv.org/abs/1711.09762
http://arxiv.org/abs/1711.09762
https://doi.org/10.1017/S095679689700261X
https://doi.org/10.1017/S095679689700261X
https://doi.org/10.1007/978-3-540-39993-3_4

Types for Progress in Actor Programs 337

4. Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press, Cambridge (1990)

5. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985). https://doi.org/10.1016/0020-0190(85)90056-0

6. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9_33

7. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-68863-1_3

8. Carbone, M., Dardha, O., Montesi, F.: Progress as compositional lock-freedom. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 49–64.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43376-8_4

9. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_2

10. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8:1–8:78
(2012). https://doi.org/10.1145/2220365.2220367

11. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Symposium on Principles of Programming Languages, pp.
263–274 (2013). https://doi.org/10.1145/2429069.2429101

12. Castagna, G., De Nicola, R., Varacca, D.: Semantic subtyping for the pi-calculus.
Theor. Comput. Sci. 398(1–3), 217–242 (2008). https://doi.org/10.1016/j.tcs.2008.
01.049

13. Charalambides, M.: Actor Programming with Static Guarantees. Ph.D. thesis,
Urbana, Illinois (2018). http://hdl.handle.net/2142/101036

14. Charalambides, M., Dinges, P., Agha, G.: Parameterized concurrent multi-party
session types. In: International Workshop on Foundations of Coordination Lan-
guages and Self Adaptation, pp. 16–30 (2012). https://doi.org/10.4204/EPTCS.
91.2

15. Charalambides, M., Dinges, P., Agha, G.A.: Parameterized, concurrent session
types for asynchronous multi-actor interactions. Sci. Comput. Program. 115–116,
100–126 (2016). https://doi.org/10.1016/j.scico.2015.10.006

16. Charalambides, M., Palmskog, K., Agha, G.: Types for progress in actor programs.
In: Proceedings of the Workshop on Actors and Active Objects, Torino, Italy (2017)

17. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998). https://
doi.org/10.1109/32.685256

18. De Nicola, R., et al.: From flow logic to static type systems for coordination lan-
guages. Sci. Comput. Program. 75(6), 376–397 (2010). https://doi.org/10.1016/j.
scico.2009.07.009

19. De Nicola, R., Loreti, M.: A modal logic for Klaim. In: Rus, T. (ed.) AMAST
2000. LNCS, vol. 1816, pp. 339–354. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45499-3_25

20. Deniélou, P., Yoshida, N.: Dynamic multirole session types. In: Symposium on Prin-
ciples of Programming Languages, pp. 435–446 (2011). https://doi.org/10.1145/
1926385.1926435

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-68863-1_3
https://doi.org/10.1007/978-3-540-68863-1_3
https://doi.org/10.1007/978-3-662-43376-8_4
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1016/j.tcs.2008.01.049
https://doi.org/10.1016/j.tcs.2008.01.049
http://hdl.handle.net/2142/101036
https://doi.org/10.4204/EPTCS.91.2
https://doi.org/10.4204/EPTCS.91.2
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.1109/32.685256
https://doi.org/10.1109/32.685256
https://doi.org/10.1016/j.scico.2009.07.009
https://doi.org/10.1016/j.scico.2009.07.009
https://doi.org/10.1007/3-540-45499-3_25
https://doi.org/10.1007/3-540-45499-3_25
https://doi.org/10.1145/1926385.1926435
https://doi.org/10.1145/1926385.1926435

338 M. Charalambides et al.

21. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session types
for object-oriented languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006). https://doi.org/10.1007/11785477_20

22. Francez, N.: Fairness. Texts and Monographs in Computer Science. Springer, Hei-
delberg (1986). https://doi.org/10.1007/978-1-4612-4886-6

23. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–
3), 191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

24. Honda, K.: Types for dyadic interaction. In: International Conference on Concur-
rency Theory, pp. 509–523 (1993). https://doi.org/10.1007/3-540-57208-2_35

25. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

26. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Symposium on Principles of Programming Languages, pp. 273–284 (2008). https://
doi.org/10.1145/1328438.1328472

27. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

28. Akka, Lightbend Inc. http://akka.io
29. Scala, École Polytechnique Fédérale (EPFL) Lausanne, Switzerland: The scala

programming language. https://www.scala-lang.org/
30. Kobayashi, N.: A partially deadlock-free typed process calculus. ACM Trans. Pro-

gram. Lang. Syst. 20(2), 436–482 (1998). https://doi.org/10.1145/276393.278524
31. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177(2), 122–159

(2002). https://doi.org/10.1006/inco.2002.3171
32. Kobayashi, N., Saito, S., Sumii, E.: An implicitly-typed deadlock-free process cal-

culus. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 489–504.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_35

33. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. 3(2), 125–143 (1977). https://doi.org/10.1109/TSE.1977.229904

34. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I. Inf. Comput.
100(1), 1–40 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

35. Nielson, H.R., Nielson, F.: Flow logic: a multi-paradigmatic approach to static anal-
ysis. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of
Computation. LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36377-7_11

36. Padovani, L.: From lock freedom to progress using session types. In: Workshop on
Programming Language Approaches to Concurrency and Communication-cEntric
Software, pp. 3–19 (2013). https://doi.org/10.4204/EPTCS.137.2

37. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Math.
Struct. Comput. Sci. 6(5), 409–453 (1996)

38. Puntigam, F.: Coordination requirements expressed in types for active objects.
In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 367–388.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0053387

39. Puntigam, F.: Concurrent Object-Oriented Programming with Process Types.
Habilitationsschrift. Der Andere Verlag, Osnabrück, Germany (2000)

40. Puntigam, F., Peter, C.: Types for active objects with static deadlock prevention.
Fundam. Inform. 48(4), 315–341 (2001)

41. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986). https://doi.
org/10.1109/TSE.1986.6312929

https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
http://akka.io
https://www.scala-lang.org/
https://doi.org/10.1145/276393.278524
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1007/3-540-44618-4_35
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/3-540-36377-7_11
https://doi.org/10.1007/3-540-36377-7_11
https://doi.org/10.4204/EPTCS.137.2
https://doi.org/10.1007/BFb0053387
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929

Types for Progress in Actor Programs 339

42. Sumii, E., Kobayashi, N.: A generalized deadlock-free process calculus. Electron.
Notes Theor. Comput. Sci. 16(3), 225–247 (1998). https://doi.org/10.1016/S1571-
0661(04)00144-6

43. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7_118

44. W3C: Extensible Markup Language. https://www.w3.org/XML/
45. W3C: The Web Services Choreography Description Language, November 2005.

http://www.w3.org/TR/ws-cdl-10/
46. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised multiparty session

types. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 128–145. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12032-9_10

47. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-
tured communication-based programming revisited: two systems for higher-order
session communication. Electron. Notes Theor. Comput. Sci. 171(4), 73–93 (2007).
https://doi.org/10.1016/j.entcs.2007.02.056

https://doi.org/10.1016/S1571-0661(04)00144-6
https://doi.org/10.1016/S1571-0661(04)00144-6
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://www.w3.org/XML/
http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1007/978-3-642-12032-9_10
https://doi.org/10.1016/j.entcs.2007.02.056

Event Structure Semantics
for Multiparty Sessions

Ilaria Castellani1, Mariangiola Dezani-Ciancaglini2, and Paola Giannini3(B)

1 Inria, Université Côte d’Azur, Sophia Antipolis, France
2 Dipartimento di Informatica, Università di Torino, Turin, Italy
3 DiSIT, Università del Piemonte Orientale, Alessandria, Italy

ilaria.castellani@inria.fr, dezani@di.unito.it, paola.giannini@uniupo.it

Abstract. We propose an interpretation of multiparty sessions as flow
event structures, which allows concurrency between communications
within a session to be explicitly represented. We show that this inter-
pretation is equivalent, when the multiparty sessions can be described
by global types, to an interpretation of global types as prime event
structures.

1 Introduction

Session types were proposed in the mid-nineties [32,46], as a tool for specify-
ing and analysing web services and communication protocols. They were first
introduced in a variant of the π-calculus to describe binary interactions between
processes. Such binary interactions may often be viewed as a client-server pro-
tocol. Subsequently, session types were extended to multiparty sessions [33,34],
where several participants may interact with each other. A multiparty session is
an interaction among peers, and there is no need to distinguish one of the partic-
ipants as representing the server. All one needs is an abstract specification of the
protocol that guides the interaction. This is called the global type of the session.
The global type describes the behaviour of the whole session, as opposed to the
local types that describe the behaviours of single participants. In a multiparty
session, local types may be retrieved as projections from the global type.

Typical safety properties ensured by session types are communication safety
(absence of communication errors), session fidelity (agreement with the protocol)
and, in the absence of session interleaving, progress (no participant gets stuck).

Some simple examples of sessions not satisfying the above properties are: (1)
a sender emitting a message while the receiver expects a different message (com-
munication error); (2) two participants both waiting to receive a message from
the other one (deadlock due to a protocol violation); (3) a three-party session

M. Dezani-Ciancaglini—Partially supported by EU H2020-644235 Rephrase project,
EU H2020-644298 HyVar project, IC1402 ARVI and Ateneo/CSP project RunVar.
P. Giannini—This original research has the financial support of the Università del
Piemonte Orientale.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 340–363, 2019.
https://doi.org/10.1007/978-3-030-21485-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_19

Event Structure Semantics for Multiparty Sessions 341

where the first participant waits to receive a message from the second partic-
ipant, which keeps interacting forever with the third participant (starvation,
although the session is not deadlocked).

What makes session types particularly attractive is that they offer several
advantages at once: (1) static safety guarantees, (2) automatic check of protocol
implementation correctness, based on local types, and (3) a strong connection
with automata [27], graphical models [37] and logics [13,47,49].

In this paper we further investigate the relationship between multiparty ses-
sion types and other concurrency models, by focussing on Event Structures [52].
We consider a standard multiparty session calculus where sessions are described
as networks of sequential processes [27]. Each process implements a participant
in the session. We propose an interpretation of such networks as Flow Event
Structures (FESs) [8,10] (a subclass of Winskel’s Stable Event Structures [52]),
which allows concurrency between session communications to be explicitly rep-
resented. We then introduce global types for these networks, and define an inter-
pretation of them as Prime Event Structures (PESs) [42,50]. Since the syntax
of global types does not allow all the concurrency among communications to be
expressed, the events of the associated PES need to be defined as equivalence
classes of communication sequences up to permutation equivalence. We show that
when a network is typable by a global type, the FES semantics of the former is
equivalent, in a precise technical sense, to the PES semantics of the latter.

The paper is organised as follows. Section 2 introduces our multiparty session
calculus. In Sect. 3 we recall the definitions of PESs and FESs, which will be used
in Sect. 4 to interpret processes and networks, respectively. PESs are also used in
Sect. 6 to interpret global types, which are defined in Sect. 5. In Sect. 7 we prove
the equivalence between the FES semantics of a network and the PES semantics
of its global type. Section 8 discusses related work in some detail and sketches
directions for future work. Last but not least, we conclude by expressing our
gratitude to Rocco.

For space reasons, all the proofs except that of the main theorem (Theorem4)
are omitted. The missing proofs may be found in the research report [15].

2 A Core Calculus for Multiparty Sessions

We now formally introduce our calculus, where multiparty sessions are repre-
sented as networks of processes. We assume the following base sets: session par-
ticipants, ranged over by p, q, r and forming the set Part, and messages, ranged
over by λ, λ′, . . . and forming the set Msg.

Let π ∈ {p?λ, p!λ | p ∈ Part, λ ∈ Msg} denote an atomic action. The action
p?λ represents an input of message λ from participant p, while the action p!λ
represents an output of message λ to participant p.

Definition 1 (Processes). Processes are defined by:

P :: = Σi∈Ip?λi;Pi | ⊕
i∈I p!λi;Pi | μX.P | X | 0

342 I. Castellani et al.

External choice (
∑

) and internal choice (
⊕

) are assumed to be associa-
tive, commutative, and non-empty. When I is a singleton, Σi∈Ip?λi;Pi will be
rendered as p?λ;P and

⊕
i∈I p!λi;Pi will be rendered as p!λ;P .

A process prefixed by an atomic action is either an input process or an output
process. Note that in an external choice all summands are input processes receiv-
ing from the same sender p, and in an internal choice all summands are output
processes sending to the same receiver p. Trailing 0 processes will be omitted.

Recursion is required to be guarded and processes are treated equi-
recursively, i.e. they are identified with their generated tree [45] (Chapter 21).

In a full-fledged calculus, messages would carry values, namely they would
be of the form λ(v). For simplicity, we consider only pure messages here. This
will allow us to project global types directly to processes, without having to
explicitly introduce local types, see Sect. 5.

Fig. 1. LTS for networks.

Networks are comprised of at least two pairs of the form p[[P]] composed in
parallel, each with a different participant p.

Definition 2 (Networks). Networks are defined by:

N = p1[[P1]] ‖ · · · ‖ pn[[Pn]] n ≥ 2, pi �= pj for any i, j

We assume the standard structural congruence on networks, stating that
parallel composition is associative and commutative and has neutral element
p[[0]] for any fresh p. To express the operational semantics of networks, we
use an LTS whose labels record the message exchanged during a communication
together with its sender and receiver. The set of atomic communications, ranged
over by α, α′, is defined to be {pλq | p, q ∈ Part, λ ∈ Msg}, where pλq repre-
sents the emission of a message λ from participant p to participant q. We write
part(pλq) = {p, q}.

The LTS semantics of networks is specified by the unique rule [Com] given in
Fig. 1. Notice that rule [Com] is symmetric with respect to external and internal
choices. In a well-typed network (see Sect. 5) it will always be the case that
I ⊆ J , assuring that participant p can freely choose an output, since participant
q offers all corresponding inputs. As usual, we write N

α1···αn−−−−−→ N′ as short for
N

α1−→ N1 · · ·Nn−1
αn−−→ N′.

3 Event Structures

We recall now the definitions of Prime Event Structure (PES) from [42] and
Flow Event Structure (FES) from [8]. The class of FESs is more general than

Event Structure Semantics for Multiparty Sessions 343

that of PESs: for a precise comparison of various classes of event structures, we
refer the reader to [9]. As we shall see in Sect. 4, while PESs are sufficient to
interpret processes, the generality of FESs is needed to interpret networks.

Definition 3 (Prime Event Structure). A prime event structure (PES) is
a tuple S = (E,≤,#) where:

1. E is a denumerable set of events;
2. ≤⊆ (E × E) is a partial order relation, called the causality relation;
3. # ⊆ (E × E) is an irreflexive symmetric relation, called the conflict rela-

tion, satisfying the property: ∀e, e′, e′′ ∈ E : e# e′ ≤ e′′ ⇒ e# e′′ (conflict
hereditariness).

We say that two events are concurrent if they are neither causally related nor
in conflict.

Definition 4 (Flow Event Structure). A flow event structure (FES) is a
tuple S = (E,≺,#) where:

1. E is a denumerable set of events;
2. ≺⊆ (E × E) is an irreflexive relation, called the flow relation;
3. # ⊆ (E × E) is a symmetric relation, called the conflict relation.

Note that the flow relation is not required to be transitive, nor acyclic (its
reflexive and transitive closure is just a preorder, not necessarily a partial order).
Intuitively, the flow relation represents a possible direct causality between two
events. Observe also that in a FES the conflict relation is not required to be
irreflexive nor hereditary; indeed, FESs may exhibit self-conflicting events, as
well as disjunctive causality (an event may have conflicting causes).

Any PES S = (E,≤,#) may be regarded as a FES, with ≺ given by < (the
strict ordering) or by the covering relation of ≤.

We now recall the definition of configuration for event structures. Intuitively,
a configuration is a set of events having occurred at some stage of the com-
putation. Thus, the semantics of an event structure S is given by its poset of
configurations ordered by set inclusion, where X1 ⊂ X2 means that S may evolve
from X1 to X2.

Definition 5 (PES Configuration). Let S = (E,≤,#) be a prime event
structure. A configuration of S is a finite subset X of E such that:

1. X is left-closed: e′ ≤ e ∈ X ⇒ e′ ∈ X ;
2. X is conflict-free: ∀e, e′ ∈ X ,¬(e#e′).

The definition of configuration for FESs is slightly more elaborated. For a subset
X of E, let ≺X be the restriction of the flow relation to X and ≺∗

X be its transitive
and reflexive closure.

Definition 6 (FES Configuration). Let S = (E,≺,#) be a flow event struc-
ture. A configuration of S is a finite subset X of E such that:

344 I. Castellani et al.

1. X is left-closed up to conflicts: e′ ≺ e ∈ X , e′ /∈ X ⇒ ∃ e′′ ∈ X . e′# e′′ ≺ e;
2. X is conflict-free: ∀e, e′ ∈ X ,¬(e#e′);
3. X has no causality cycles: the relation ≺∗

X is a partial order.

Condition (2) is the same as for prime event structures. Condition (1) is
adapted to account for the more general – non-hereditary – conflict relation. It
states that any event appears in a configuration with a “complete set of causes”.
Condition (3) ensures that any event in a configuration is actually reachable at
some stage of the computation.

If S is a prime or flow event structure, we denote by C(S) its set of finite
configurations. Then, the domain of configurations of S is defined as follows:

Definition 7 (ES Configuration Domain). Let S be a prime or flow event
structure with set of configurations C(S). The domain of configurations of S is
the partially ordered set D(S)=def(C(S),⊆).

We recall from [9] a useful characterisation for configurations of FESs, which is
based on the notion of proving sequence, defined as follows:

Definition 8 (Proving Sequences). Given a flow event structure
S = (E,≺,#), a proving sequence in S is a sequence e1; · · · ; en of distinct non-
conflicting events (i.e. i �= j ⇒ ei �= ej and ¬(ei#ej) for all i, j) satisfying:

∀i ≤ n∀e ∈ E : e ≺ ei ⇒ ∃j < i . either e = ej or e# ej ≺ ei

Note that any prefix of a proving sequence is itself a proving sequence.
We have the following characterisation of configurations of FESs in terms of

proving sequences.

Proposition 1 (Representation of configurations as proving sequences
[9]). Given a flow event structure S = (E,≺,#), a subset X of E is a configu-
ration of S if and only if it can be enumerated as a proving sequence e1; · · · ; en.

Since PESs may be viewed as particular FESs, we may use Definition 8 and
Proposition 1 both for the FESs associated with networks (see Sect. 4) and for
the PESs associated with global types (see Sect. 6). Note that for a PES the
condition of Definition 8 simplifies to

∀i ≤ n∀e ∈ E : e < ei ⇒ ∃j < i . e = ej

4 Event Structure Semantics of Processes and Networks

We interpret both processes and networks as event structures. The event struc-
tures associated with processes will be PESs. On the other hand, the event
structures associated with networks will be FESs that are not necessarily prime.
Process events, ranged over by η, η′, are actions π, π′ ∈{p?λ, p!λ | p ∈ Part, λ ∈
Msg} preceded by their causal history, which is a sequence of past actions.

Event Structure Semantics for Multiparty Sessions 345

Definition 9 (Process event). Process events η, η′ are defined by:

η ::= π | π · η

Let ζ denote a (possibly empty) sequence of actions, and � denote the prefix
ordering on such sequences. Each process event η may be written either in the
form η = ζ · π or in the form η = π · ζ. We shall feel free to use any of these
forms.

We define the action of a process event as follows:

act(ζ · π) = π

Definition 10 (Event Structure of a Process). The event structure of pro-
cess P is the triple

SP(P) = (PE(P),≤, #)

where:

1. PE(P) is defined by induction on the structure of P as follows:
(a) PE(Σi∈Ip?λi;Pi) =

⋃
i∈I{p?λi} ∪ ⋃

i∈I{p?λi · ηi | ηi ∈ PE(Pi)};
(b) PE(

⊕
i∈I p!λi;Pi) =

⋃
i∈I{p!λi} ∪ ⋃

i∈I{p!λi · ηi | ηi ∈ PE(Pi)};
(c) PE(0) = ∅;
(d) PE(μX.P) = PE(P{μX.P/X});

2. the ≤ relation on the set of events PE(P) is given by:
(a) ζ � ζ ′ ⇒ π · ζ ≤ π · ζ ′;

3. the # relation on the set of events PE(P) is given by:
(a) π �= π′ ⇒ π · ζ #π′ · ζ ′;
(b) η # η′ ⇒ π · η #π · η′.

Note that, due to Clause 1d of the previous definition, the set PE(P) is denu-
merable.

Example 1. If P ⊃ μX.q!λ;X ⊕ q!λ′, then PE(P) = {q!λ · . . . · q!λ
︸ ︷︷ ︸

n

·q!λ′ | n ≥ 0}.

Proposition 2. Let P be a process. Then SP(P) is a prime event structure with
an empty concurrency relation.

The definition of network events requires some preliminary notions. We
start by defining the projections of process events on participants, which yield
sequences of undirected actions of the form ?λ and !λ, or the empty sequence ε.
Let ϑ range over ?λ and !λ, and let Θ range over non empty sequences of ϑ’s.

Definition 11 (Projection of process events).

q?λ�p =

{
?λ if p = q,

ε otherwise.
q!λ�p =

{
!λ if p = q,

ε otherwise.

π.η �p =

{
η �p if π �p = ε,

π �p .η �p otherwise.

346 I. Castellani et al.

Sequences of undirected actions are related by a standard notion of duality.

Definition 12 (Duality of projections of process events).

?λ � !λ ϑ � ϑ′ and Θ � Θ′ ⇒ ϑ.Θ � ϑ′.Θ′

Network events are essentially pairs of matching process events. To formalise
the matching condition, we need to specify the locations of process events,
namely the participants to which they belong.

Definition 13 (Located event). We call located event a process event η
pertaining to a participant p, written p::η.

The duality between projections of process events induces a duality between
located events.

Definition 14 (Duality of located events). Two located events p :: η, q :: η′

are dual, written p :: η � q :: η′, if η � q � η′ � p and either act(η) = q?λ and
act(η′) = p!λ or act(η) = q!λ and act(η′) = p?λ.

Dual located events may be sequences of actions of different length. For instance
p :: q!λ · r!λ′ � r :: p?λ′ and p :: q!λ � q :: r!λ′ · p?λ.

Definition 15 (Network event). Network events ν, ν′ are unordered pairs of
dual located events, namely:

ν ::= {p :: η, q :: η′} where p :: η � q :: η′

We can now define the event structure associated with a network.

Definition 16 (Event Structure of a Network). The event structure of
network N = p1[[P1]] ‖ · · · ‖ pn[[Pn]] is the triple

SN (N) = (NE(N),≺, #)

where:

1. NE(N) =
⋃

1≤i�=j≤n{{pi :: ηi, pj :: ηj} | ηi ∈ PE(Pi), ηj ∈ PE(Pj), pi :: ηi �
pj :: ηj}

2. the ≺ relation on the set of events NE(N) is given by:
η < η′ & p :: η ∈ ν & p :: η′ ∈ ν′ ⇒ ν ≺ ν′;

3. the # relation on the set of events NE(N) is given by:
η # η′ & p :: η ∈ ν & p :: η′ ∈ ν′ ⇒ ν # ν′.

We define comm(ν) = pλq if ν = {p :: ζ · λ!q, q :: ζ ′ · λ?p} and we say that the
network event ν represents the atomic communication pλq.
Two events ν and ν′ are concurrent if part(comm(ν)) ∩ part(comm(ν′)) = ∅.
The set of network events can be infinite as in the following example.

Event Structure Semantics for Multiparty Sessions 347

Example 2. Let P be as in Example 1, Q = μY.p?λ;Y ⊕ p?λ′ and N = p[[P]] ‖
q[[Q]]. Then

NE(N) ⊃ {{p :: q!λ · . . . · q!λ
︸ ︷︷ ︸

n

·q!λ′, q :: p?λ · . . . · p?λ
︸ ︷︷ ︸

n

·p?λ′} | n ≥ 0}

Notably, concurrent events may also be related by the transitive closure of
the flow relation, as shown in Example 3.

Proposition 3. Let N be a network. Then SN (N) is a flow event structure with
an irreflexive conflict relation.

The following example shows how communications inherit the flow relation
from the causality relation of their components.

Example 3. Let N be the network

p[[q!λ1]] ‖ q[[p?λ1; r!λ2]] ‖ r[[q?λ2; s!λ3]] ‖ s[[r?λ3]]

Then SN (N) has three network events

ν1 = {p :: q!λ1, q :: p?λ1} ν2 = {q :: p?λ1; r!λ2, r :: q?λ2}

ν3 = {r :: q?λ2; s!λ3, s :: r?λ3}
The flow relation obtained by Definition 16 is: ν1 ≺ ν2 and ν2 ≺ ν3. Note that
each time the flow relation is inherited from the causality within a different par-
ticipant, q in the first case and r in the second case. By the same definition the
events ν1 and ν3 are concurrent. However, since ν1 ≺∗ ν3, the events ν1 and ν3
cannot occur in any order. Indeed, the nonempty configurations are {ν1}, {ν1, ν2}
and {ν1, ν2, ν3}. Note that SN (N) has only one proving sequence per configura-
tion (which is that given by the numbering of events in the configuration).

If N is a binary network, then its flow event structure may be turned into a
prime event structure simply by replacing ≺ by ≺∗:

Theorem 1. Let N = p1[[P1]] ‖ p2[[P2]] and SN (N) = (NE(N),≺, #). Then
the structure SN

∗ (N)=def(NE(N),≺∗, #) is a prime event structure.

If N has more than two participants, then the duality requirement on its events
is not sufficient to ensure the absence of circular dependencies1. For instance,
in the following ternary network (which may be viewed as representing the 3-
philosopher deadlock) the relation ≺∗ is not a partial order.

Example 4. Let N be the network

p[[r?λ; q!λ′]] ‖ q[[p?λ′; r!λ′′]] ‖ r[[q?λ′′; p!λ]].

1 This is a well-known issue in multiparty session types, which motivated the intro-
duction of global types in [33], see Sect. 6.

348 I. Castellani et al.

Then SN (N) has three network events

ν1 = {p :: r?λ, r :: q?λ′′; p!λ} ν2 = {p :: r?λ; q!λ′, q :: p?λ′} ν3 = {q :: p?λ′; r!λ′′, r :: q?λ′′}

By Definition 16(2) we have ν1 ≺ ν2 ≺ ν3 and ν3 ≺ ν1. The only configuration is
the empty configuration, because the only set of events that satisfies left-closure
is X = {ν1, ν2, ν3}, but this is not a configuration because ≺∗

X is not a partial
order (recall that ≺X is the restriction of ≺ to X) and hence the condition (3)
of Definition 6 is not satisfied.

The next example illustrates Proposition 3 and shows that a network event
may have both conflicting and concurrent causes.

Example 5. Let N be the network

p[[q!λ; r!λ1 ⊕ q!λ′; r!λ1]]‖ q[[p?λ; s!λ2+p?λ′; s!λ2]]‖
r[[p?λ1; s!λ3]]‖ s[[q?λ2; r?λ3]]

Then SN (N) has seven network events:

ν1 = {p :: q!λ, q :: p?λ} ν′
1 = {p :: q!λ′, q :: p?λ′}

ν2 = {p :: q!λ; r!λ1, r :: p?λ1} ν′
2 = {p :: q!λ′; r!λ1, r :: p?λ1}

ν3 = {q :: p?λ; s!λ2, s :: q?λ2} ν′
3 = {q :: p?λ′; s!λ2, s :: q?λ2}

ν4 = {r :: p?λ1; s!λ3, s :: q?λ2; r?λ3}

We have ν1 ≺ νi for i = 2, 3 and νj ≺ ν4 for j = 2, 3. Similarly, we have ν′
1 ≺ ν′

i

for i = 2, 3 and ν′
j ≺ ν4 for j = 2, 3. The events ν2 and ν′

2 share r :: p?λ1,
the events ν3 and ν′

3 share s :: q?λ2. Moreover νi # ν′
j for each i, j = 1, 2, 3,

whereas ν2 and ν3 are concurrent, and so are ν′
2 and ν′

3. The event ν4 has
two conflicting sets of causes {ν1, ν2, ν3} and {ν′

1, ν
′
2, ν

′
3}, and the nonempty

configurations are {ν1}, {ν1, ν2}, {ν1, ν3}, {ν1, ν2, ν3} and {ν1, ν2, ν3, ν4}, as well
as {ν′

1}, {ν′
1, ν

′
2}, {ν′

1, ν
′
3}, {ν′

1, ν
′
2, ν

′
3} and {ν′

1, ν
′
2, ν

′
3, ν4}. Let X = {ν1, ν2, ν3, ν4}

and X ′ = {ν′
1, ν

′
2, ν

′
3, ν4}. Note that the event ν4 has two concurrent causes in

both X and X ′. The proving sequences are:
ν1, ν1; ν2, ν1; ν3, ν1; ν2; ν3, ν1; ν3; ν2, ν1; ν2; ν3; ν4, ν1; ν3; ν2; ν4
ν′
1, ν′

1; ν
′
2, ν′

1; ν
′
3, ν′

1; ν
′
2; ν

′
3, ν′

1; ν
′
3; ν

′
2, ν′

1; ν
′
2; ν

′
3; ν4, ν′

1; ν
′
3; ν

′
2; ν4

Note that there are two proving sequences corresponding to the configuration X
(and similarly for X ′ and each of the configurations {ν1, ν2, ν3} and {ν′

1, ν
′
2, ν

′
3}).

A graphical representation of SN (N) is given in Fig. 2, where the arrows
represent the flow relation ≺ and the vertical dotted line for # indicates that
all the events on the left of the line are in conflict with all the events on the
right.

The next example shows that the relations of flow and conflict on network
events are not necessarily disjoint.

Event Structure Semantics for Multiparty Sessions 349

Fig. 2. Flow relation between events of SN (N) in Example 5.

Fig. 3. Flow relation between events of SN (N) in Example 6.

Example 6. Let N be the network

p[[q!λ; r!λ1; r!λ2⊕q!λ′; r!λ1; r!λ2]]‖ q[[p?λ+p?λ′]]‖ r[[p?λ1; p?λ2; s!λ3]]‖ s[[r?λ3]].

Then SN (N) has seven network events:

ν1 = {p :: q!λ, q :: p?λ} ν′
1 = {p :: q!λ′, q :: p?λ′}

ν2 = {p :: q!λ; r!λ1, r :: p?λ1} ν′
2 = {p :: q!λ′; r!λ1, r :: p?λ1}

ν3 = {p :: q!λ; r!λ1; r!λ2, r :: p?λ1; p?λ2} ν′
3 = {p :: q!λ′; r!λ1; r!λ2, r :: p?λ1; p?λ2}

ν4 = {r :: p?λ1; p?λ2; s!λ3, s :: r?λ3}
We have ν1 ≺ νi for i = 2, 3 and νj ≺ ν4 for j = 2, 3. Similarly, we have ν′

1 ≺ ν′
i for

i = 2, 3 and ν′
j ≺ ν4 for j = 2, 3. Moreover νi # ν′

j for each i, j = 1, 2, 3. Finally,
we have ν2 ≺ ν3 and ν′

2 ≺ ν′
3, and also the cross flows ν2 ≺ ν′

3 and ν′
2 ≺ ν3.

Since we have also ν2 # ν′
3 and ν′

2 # ν3, this shows that the two relations ≺ and

350 I. Castellani et al.

are not disjoint. The nonempty configurations are {ν1}, {ν1, ν2}, {ν1, ν2, ν3}
and {ν1, ν2, ν3, ν4}, as well as {ν′

1}, {ν′
1, ν

′
2}, {ν′

1, ν
′
2, ν

′
3} and {ν′

1, ν
′
2, ν

′
3, ν4}. The

proving sequences are:
ν1, ν1; ν2, ν1; ν2; ν3, ν1; ν2; ν3; ν4
ν′
1, ν′

1; ν
′
2, ν′

1; ν
′
2; ν

′
3, ν′

1; ν
′
2; ν

′
3; ν4

A graphical representation of SN (N) is given in Fig. 3, where we use the same
conventions as for Example 5.

5 Global Types

Global types are built from choices among atomic communications.

Definition 17 (Global types). Global types G are defined by:

G :: = p → q : �i∈Iλi;Gi | G ‖ G | μt.G | t | End

where λj �= λh for all j, h ∈ I, j �= h, i.e. messages in choices are all different.

Sequential composition (;) has higher precedence than choice (�). Recursion
must be guarded by atomic communications and it is treated equi-recursively.
While there is no syntactic restriction on parallel composition of global types,
our definition of projection will enforce that the component types have disjoint
sets of participants. When I is a singleton, a choice p → q : �i∈Iλi;Gi will be
rendered simply as p

λ→ q ;G. In writing global types, we omit the final End.
Participants of global types are defined inductively as follows:

part(p → q : �i∈Iλi;Gi) = {p, q} ∪ ⋃
i∈I part(Gi)

part(μt.G) = part(G) part(t) = part(End) = ∅
The projection of a global type onto participants is given in Fig. 4. As usual,

projection is defined only when it is defined on all participants. Because of the
simplicity of our calculus, the projection of a global type, when defined, is simply

Fig. 4. Projection of global types onto participants.

Event Structure Semantics for Multiparty Sessions 351

a process. The projection of a choice type on the sender produces an output pro-
cess sending one of its possible messages to the receiver and then acting according
to the projection of the corresponding branch. Similarly for the projection on
the receiver, which produces an input process. Projection of a choice type on
the other participants is defined only if it produces the same process for all the
branches of the choice. This is a standard condition for multiparty session types.
The projection of a parallel global type G1 ‖ G2 on a participant p is undefined
if p appears in both G1 and G2. Otherwise there are two possibilities: (1) if p
appears in Gi but not in Gj , for i �= j, then (G1 ‖ G2)�p yields the projection of
Gi on p; (2) if p appears in neither G1 nor G2, then (G1 ‖ G2)�p yields 0.

From now on we will only consider projectable global types.
The definition of well-typed network is given in Fig. 5. We first define a pre-

order on processes, P ≤ P ′, saying when a process P can be used where we expect
process P ′. In particular, P ≤ P ′, if either P is equal to P ′ or they are both
input processes receiving messages from the same participant, P may receive
more messages than P ′ and after receiving the same message the process P con-
tinues with a process that can be used when we expect the corresponding one
in P ′. The double line indicates that the rule is interpreted coinductively [45]
(Chap. 21). A network is well typed with global type G, if all its participants have
associated processes that behave as specified by the projections of a global type.
In Rule [Net], the condition part(G) ⊆ {pi | i ∈ I} ensures that all participants
of the global type appear in the network. Moreover it permits additional par-
ticipants that do not appear in the global type, allowing the typing of sessions
containing p[[0]] for a fresh p — a property required to guarantee invariance of
types under structural congruence of networks.

Fig. 5. Preorder on processes and network typing rule.

Example 7. The networks of Examples 2, 3, 5 and 6 can be typed respectively
by

G = μt.p → q : (λ; t � λ′)

G′ = p
λ1→ q; q λ2→ r; r λ3→ s

G′′ = p → q : (λ; p λ1→ r; q λ2→ s; r λ3→ s � λ′; p λ1→ r; q λ2→ s; r λ3→ s)

G′′′ = p → q : (λ; p λ1→ r; p λ2→ r; r λ3→ s � λ′; p λ1→ r; p λ2→ r; r λ3→ s)

The network of Example 4 instead cannot be typed.

352 I. Castellani et al.

Fig. 6. LTS for global types.

To formalise the classical properties of Subject Reduction and Session
Fidelity [33,34], we use the standard LTS for global types given in Fig. 6.
Rule [Icomm] is justified by the fact that in a projectable global type
p → q : �i∈Iλi;Gi, the behaviours of the participants different from p and
q are the same in all branches, and hence they are independent from the choice
and may be executed before it.

Theorem 2 (Subject Reduction). If � N : G and N
α−→ N′, then G

α−→ G′

and � N′ : G′.

Theorem 3 (Session Fidelity). If � N : G and G
α−→ G′, then N

α−→ N′ and
� N′ : G′.

6 Event Structure Semantics of Global Types

We define now the event structure associated with a global type. The events of
this PES will be equivalence classes of particular sequences of communications.

Let σ denote a finite (and possibly empty) sequence of atomic communica-
tions, and Seq denote the set of these sequences.

Definition 18 (Permutation equivalence). The permutation equivalence on
Seq is the least equivalence ∼ such that

σ · α1 · α2 · σ′ ∼ σ · α2 · α1 · σ′ if part(α1) ∩ part(α2) = ∅

We denote by [σ]∼ the equivalence class of the sequence σ, and by Seq/∼ the set
of equivalence classes on Seq. Note that [ε]∼ = {ε} ∈ Seq/∼, and [α]∼ = {α} ∈
Seq/∼ for any α. Moreover |σ′| = |σ| for all σ′ ∈ [σ]∼, where | · | yields the
length of the sequence.

The events associated with a global type, called global events and denoted
by γ, γ′, are equivalence classes of particular communication sequences that we
call pointed. Intuitively, all communications in a pointed sequence are causes of
some subsequent communication. Formally:

Event Structure Semantics for Multiparty Sessions 353

Definition 19 (Pointed communication sequence). A communication
sequence σ = α1 · · · αn, n > 0, is said to be pointed if

for all i, 1 ≤ i < n, part(αi) ∩ ⋃
i+1≤j≤n part(αj) �= ∅

Note that the condition of Definition 19 must be satisfied only by the αi with
i < n, thus it is vacuously satisfied by any communication sequence of length 1.

Example 8. Let α1 = pλ1q, α2 = rλ2s and α3 = rλ3p. Then σ1 = α1 and
σ3 = α1 · α2 · α3 are pointed sequences, while σ2 = α1 · α2 is not a pointed
sequence.

Definition 20 (Global event). Let σ = σ′ · α be a pointed communication
sequence. Then γ = [σ]∼ is a global event with communication α, notation
comm(γ) = α.

Notice that comm(·) is well defined due to the following proposition, where last(σ)
denotes the last communication of σ.

Proposition 4. Let σ be pointed communication sequence. If σ ∼ σ′, then σ′ is
a pointed communication sequence and last(σ) = last(σ′).

In order to interpret global types as ESs, we define a form of prefixing of a global
event by a communication, in such a way that the result is again a global event.

Definition 21 (Causal prefixing of a global event by communications).
The causal prefixing of a global event by a nonempty sequence of communications
is defined as follows:

1. The causal prefixing of a global event by a communication is defined by

pλq ◦ γ =

{
[pλq · σ]∼ if γ = [σ]∼ and pλq · σ is a pointed sequence
γ otherwise

2. The mapping ◦ naturally extends to communication sequences

(α · σ) ◦ γ = α ◦ (σ ◦ γ) σ �= ε

Definition 22 (Event Structure of a Global Type). The event structure
of global type G is the triple

SG(G) = (GE(G),≤, #)

where:

1. GE(G) is defined by induction on the structure of G as follows:
(a) GE(p → q : �i∈Iλi;Gi) =

⋃
i∈I{{pλiq}} ∪ ⋃

i∈I{pλiq ◦ γi | γi ∈ GE(Gi)};
(b) GE(G1 ‖ G2) = GE(G1) ∪ GE(G2);
(c) GE(End) = GE(t) = ∅;
(d) GE(μt.G) = GE(G{μt.G/t});

354 I. Castellani et al.

Fig. 7. Relation between events of SG(G′′) in Example 9.

2. the ≤ relation on the set of events GE(G) is given by:
[σ]∼ ≤ [σ′]∼ if σ · σ′′ ∼ σ′ for some σ′′;

3. the # relation on the set of events GE(G) is given by:
[σ]∼ # [σ′]∼ if σ ∼ σ1 · pλq · σ2 and σ′ ∼ σ1 · pλ′q · σ′

2 for some
σ1, σ2, σ

′
2, p, q, λ, λ′ such that λ �= λ′.

Note that, due to Clause 1d of Definition 22, the set GE(G) is denumerable.

Example 9. Let G1 = p
λ1→ q; r λ2→ s; r λ3→ p and G2 = r

λ2→ s; p λ1→ q; r λ3→ p. Then
GE(G1) = GE(G2) = {γ1, γ2, γ3} where

γ1 = {pλ1q} γ2 = {rλ2s} γ3 = {pλ1q · rλ2s · rλ3p, rλ2s · pλ1q · rλ3p}
with γ1 ≤ γ3 and γ2 ≤ γ3. The configurations are {γ1}, {γ2} and {γ1, γ2, γ3}
and the proving sequences are

γ1 γ2 γ1; γ2 γ2; γ1 γ1; γ2; γ3 γ2; γ1; γ3

If G′ is as in Example 7, then GE(G′) = {γ1, γ2, γ3} where

γ1 = {pλ1q} γ2 = {pλ1q · qλ2r} γ3 = {pλ1q · qλ2r · rλ3s}

with γ1 ≤ γ2 ≤ γ3. The configurations are {γ1}, {γ1, γ2} and {γ1, γ2, γ3}. There
is a proving sequence corresponding to each configuration. Notice that G′ types
the network of Example 3.
If G′′ is as in Example 7, then GE(G′′) = {γ1, γ

′
1, γ2, γ

′
2, γ3, γ

′
3, γ4, γ

′
4} where

γ1 = {pλq} γ′
1 = {pλ′q} γ2 = {pλq · pλ1r} γ′

2 = {pλ′q · pλ1r}
γ3 = {pλq · qλ2s} γ′

3 = {pλ′q · qλ2s}
γ4 = {pλq · pλ1r · qλ2s · rλ3s, pλq · qλ2s · pλ1r · rλ3s}
γ′
4 = {pλ′q · pλ1r · qλ2s · rλ3s, pλ

′q · qλ2s · pλ1r · rλ3s}

with γ1 ≤ γ2 ≤ γ4, γ1 ≤ γ3 ≤ γ4 and γ′
1 ≤ γ′

2 ≤ γ′
4, γ′

1 ≤ γ′
3 ≤ γ′

4. The configura-
tions are {γ1}, {γ′

1}, {γ1, γ2}, {γ′
1, γ

′
2}, {γ1, γ3}, {γ′

1, γ
′
3}, {γ1, γ2, γ3}, {γ′

1, γ
′
2, γ

′
3},

and {γ1, γ2, γ3, γ4}, {γ′
1, γ

′
2, γ

′
3, γ

′
4}. The configurations with less than three ele-

ments correspond to only one proving sequence, while the others correspond to

Event Structure Semantics for Multiparty Sessions 355

two proving sequences each. Notice that G′′ types the network of Example 5. A
graphical representation of SG(G′′) is given in Fig. 7, where the arrows represent
the covering relation of ≤. Note that the event structure is prime and so conflict
is hereditary. Indeed, since the events maintain their complete history the events
γ4 and γ′

4 are in conflict.

Proposition 5. Let G be a global type. Then SG(G) is a prime event structure.

Observe that while our interpretation of networks as FESs exactly reflects
the concurrency expressed by the syntax of networks, our interpretation of global
types as PESs exhibits more concurrency than that given by the syntax of global
types. This is because the parallel composition of global types is only defined
when its arguments have disjoint participants, and thus it cannot be used to
specify concurrency between two forking paths that may join again, e.g., two
concurrent events that are both causes of a third event, as γ1 and γ2 in GE(G1) =
GE(G2) in the above Example 9.

7 Equivalence of the Two Event Structure Semantics

We establish now our main result for typed networks, namely the isomorphism
between the domain of configurations of the FES of the network and the domain
of configurations of the PES of its global type. We start by stating the corre-
spondence between the communication sequences of networks and the proving
sequences of their event structures. To this end, we introduce some auxiliary
definitions.

Definition 23 (Truncation of a communication sequence). Let σ =
α1 · · · αn be a communication sequence with n > 0. For each i = 1, . . . , n + 1,
we define σ�i =def α1 · · · αi−1 to be the ith truncation of σ, where by convention
α1 · · · αi−1 = ε if i = 1. Note that σ�n+1 = σ.

Definition 24 (Projection). The projection of the communication sequence
σ on participant p, notation σ� p , is the process event defined by:

1. (pλq · σ)� p = q!λ · σ� p ;
2. (qλp · σ)� p = q?λ · σ� p ;
3. (rλs · σ)� p = σ� p if p �= r, s;
4. ε� p = ε.

It is easy to verify that if part(α1)∩part(α2) = ∅, then (α1·α2)� p = (α2·α1)� p
for all p. Therefore σ ∼ σ′ implies σ� p = σ′ � p .

Definition 25 (Network events from communications). If σ = α1 · · · αn

is a communication sequence with part(αi) = {pi, qi}, we define the sequence of
network events corresponding to σ by

nec(σ) = ν1; · · · ; νn

where νi = {pi ::σ�i+1� pi , qi ::σ�i+1� qi } for 1 ≤ i ≤ n.

356 I. Castellani et al.

It is immediate to see that, if σ = pλq, then nec(σ) is the event
{p :: q!λ, q :: p?λ}.

Lemma 1. Let N σ−→ N′.

1. If {r :: η, s :: η′} ∈ NE(N′), then {r ::σ� r · η, s ::σ� s · η′} ∈ NE(N);
2. nec(σ) is a proving sequence in SN (N).

Lemma 2. If ν1; · · · ; νn is a proving sequence in SN (N), then N
σ−→ N′ where

σ = comm(ν1) · · · comm(νn).

Similar relations hold between reductions of global types and their events.

Definition 26. (Global events from communications). If σ = α1 · · · αn is
a communication sequence, we define the sequence of global events corresponding
to σ by

gec(σ) = γ1; · · · ; γn

where γi = σ�i ◦ [αi]∼ for 1 ≤ i ≤ n.

Lemma 3. Let G σ−→ G′.

1. If γ ∈ GE(G′), then σ ◦ γ ∈ GE(G);
2. gec(σ) is a proving sequence in SG(G).

Lemma 4. If γ1; · · · ; γn is a proving sequence in SG(G), then G
σ−→ G′ and

σ = comm(γ1) · · · comm(γn).

To prove our main theorem we will also use the following separation result
from [9] (Lemma 2.8 p. 12):

Lemma 5 (Separation [9]). Let S = (E,≺,#) be a flow event structure and
X,X ′ ∈ C(S) be such that X ⊂ X ′. Then there exist e ∈ X ′\X such that
X ∪ {e} ∈ C(S).

We may now show the correspondence between the configurations of the FES
of a network and the configurations of the PES of its global type.

Let � denote isomorphism on domains of configurations.

Theorem 4. If � N : G, then D(SN (N)) � D(SG(G)).

Proof. By Lemma 2 if ν1; · · · ; νn is a proving sequence of SN (N), then N
σ−→ N′

where σ = comm(ν1) · · · comm(νn). By applying iteratively Subject Reduction
(Theorem 2) G σ−→ G′ and � N′ : G′. By Lemma 3(2) gec(σ) is a proving sequence
of SG(G).

By Lemma 4 if γ1; · · · ; γn is a proving sequence of SG(G), then G
σ−→ G′ where

σ = comm(γ1) · · · comm(γn). By applying iteratively Session Fidelity (Theo-
rem 3) N

σ−→ N′ and � N′ : G′. By Lemma 1(2) nec(σ) is a proving sequence of
SN (N).

Event Structure Semantics for Multiparty Sessions 357

Therefore we have a bijection between D(SN (N)) and D(SG(G)), given by
nec(σ) ↔ gec(σ) for any σ generated by the (bisimilar) LTSs of N and G.

We show now that this bijection preserves inclusion of configurations. By
Lemma 5 it is enough to prove that if ν1; · · · ; νn ∈ C(SN (N)) is mapped
to γ1; · · · ; γn ∈ C(SG(G)), then ν1; · · · ; νn; ν ∈ C(SN (N)) iff γ1; · · · ; γn; γ ∈
C(SG(G)), where γ1; · · · ; γn; γ is the image of ν1; · · · ; νn; ν under the bijection.

Suppose σ = comm(ν1) · · · comm(νn) = comm(γ1) · · · comm(γn).
Let comm(ν) = α. By Lemma 2, if ν1; · · · ; νn; ν is a proving sequence of

SN (N), then N
σ−→ N0

α−→ N′. Then we get ν = {p ::σ · α� p , q ::σ · α� q } by
Lemma 1(1). By Definition 25 nec(σ · α) = ν1; · · · ; νn; ν. By applying iteratively
Subject Reduction (Theorem 2) G

σ−→ G0
α−→ G′ and � N′ : G′. By Definition 26

gec(σ · α) = γ1; · · · ; γn; γ. By Lemma 3(2) gec(σ · α) is a proving sequence of
SG(G).

Let now comm(γ) = α. By Lemma 4, if γ1; · · · ; γn; γ is a proving sequence
of SG(G), then G

σ−→ G0
α−→ G′. By Lemma 3(1) we have γ = [σ ◦ α]∼. By

Definition 26 gec(σ · α) = γ1; · · · ; γn; γ. By applying iteratively Session Fidelity
(Theorem 3) N

σ−→ N0
α−→ N′ and � N′ : G′. By Definition 25 nec(σ · α) =

ν1; · · · ; νn; ν. By Lemma 1(2) nec(σ · α) is a proving sequence of SN (N).

8 Related Work and Conclusions

Event Structures (ESs) were introduced in Winskel’s PhD Thesis [50] and in the
seminal paper by Nielsen, Plotkin and Winskel [42], roughly in the same frame
of time as Milner’s calculus CCS [40]. It is therefore not surprising that the rela-
tionship between these two approaches for modelling concurrent computations
started to be investigated very soon afterwards. The first interpretation of CCS
into ESs was proposed by Winskel in [51]. This interpretation made use of Stable
ESs, because PESs, the simplest form of ESs, appeared not to be flexible enough
to account for CCS parallel composition. Indeed, since CCS parallel composi-
tion allows for two concurrent complementary actions to either synchronise or
occur independently in any order, each pair of such actions gives rise to two
forking computations: this requires duplication of the same continuation process
for each computation in PESs, while the continuation process may be shared
by the forking computations in Stable ESs, which allow for disjunctive causal-
ity. Subsequently, ESs (as well as other nonsequential “denotational models” for
concurrency such as Petri Nets) have been used as the touchstone for assessing
noninterleaving operational semantics for CCS: for instance, the pomset seman-
tics for CCS by Boudol and Castellani [7,8] and the semantics based on “concur-
rent histories” proposed by Degano, De Nicola and Montanari [23–25], were both
shown to agree with an interpretation of CCS processes into some class of ESs
(PESs for [23,24], PESs with non-hereditary conflict for [7] and FESs for [8]).
Among the early interpretations of process calculi into ESs, we should also men-
tion the PES semantics for TCSP (Theoretical CSP [11,43]), proposed by Goltz
and Loogen [39] and generalised by Baier and Majster-Cederbaum [2], and the
Bundle ES semantics for LOTOS, proposed by Langerak [38] and extended by

358 I. Castellani et al.

Katoen [36]. Like FESs, Bundle ESs are a subclass of Stable ESs. We recall the
relationships between the above classes of ESs (the reader is referred to [10] for
separating examples):

Prime ESs ⊂ Bundle ESs ⊂ Flow ESs ⊂ Stable ESs ⊂ General ESs

More sophisticated ES semantics for CCS, based on FESs and designed to
be robust under action refinement [1,22,29], were later proposed by Goltz and
van Glabbeek [28]. Importantly, all the above-mentioned classes of ESs, except
General ESs, give rise to the same prime algebraic domains of configurations,
from which one can recover a PES by selecting the complete prime elements.

More recently, ES semantics have been investigated for the π-calculus
by Crafa, Varacca and Yoshida [17,18,48] and by Cristescu, Krivine and
Varacca [19–21]. Other causal models for the π-calculus had already been put
forward by Jategaonkar and Jagadeesan [35], by Montanari and Pistore [41],
by Cattani and Sewell [16] and by Bruni, Melgratti and Montanari [12]. The
main new issue, when addressing causality-based semantics for the π-calculus, is
the implicit causality induced by scope extrusion. Two alternative views of such
implicit causality had been proposed in previous work on noninterleaving oper-
ational semantics for the π-calculus, respectively by Boreale and Sangiorgi [6]
and by Degano and Priami [26]. Essentially, in [6] an extruder (that is, an out-
put of a private name) is considered to cause any action that uses the extruded
name, whether in subject or object position, while in [26] it is considered to
cause only the actions that use the extruded name in subject position. Thus, for
instance, in the process P = νa (b〈a〉 | c〈a〉 | a), the two parallel extruders are
considered to be causally dependent in the former approach, and independent in
the latter. All the causal models for the π-calculus mentioned above, including
the ES-based ones, take one or the other of these two stands. Note that opting
for the second one leads necessarily to a non-stable ES model, where there may
be causal ambiguity within the configurations themselves: for instance, in the
above example the maximal configuration contains three events, the extruders
b〈a〉, c〈a〉 and the input on a, and one does not know which of the two extrud-
ers enabled the input. Indeed, the paper [18] uses non-stable ESs. The use of
non-stable ESs (General ESs) to express situations where a computational step
can merge parts of the state is advocated for instance by Baldan, Corradini and
Gadducci in [3]. These ESs give rise to configuration domains that are not prime
algebraic, hence the classical representation theorems have to be adjusted.

In our simple setting, where we deal only with single sessions and do not
consider session interleaving nor delegation, we can dispense with channels alto-
gether, and therefore the question of parallel extrusion does not arise. In this
sense, our notion of causality is closer to that of CCS than to the more complex
one of the π-calculus. However, even in a more general setting, where partici-
pants would be paired with the channel name of the session they pertain to, the
issue of parallel extrusion would not arise: indeed, in the above example b and c
should be equal, because participants can only delegate their own channel, but

Event Structure Semantics for Multiparty Sessions 359

then they could not be in parallel because of linearity, one of the distinguish-
ing features enforced by session types. Hence we believe that in a session-based
framework the two above views of implicit causality should collapse into just
one.

We now briefly discuss our design choices. Our calculus uses synchronous
communication - rather than asynchronous, buffered communication - because
this is how communication is modelled in ESs, when they are used to give seman-
tics to process calculi. Concerning the choice operator, we adopted here the basic
(and most restrictive) variant for it, as it was originally proposed for multiparty
session calculi in [33]. This is essentially a simplifying assumption, and we do not
foresee any difficulty in extending our results to a more general choice operator
allowing for different receivers, where the projection is more flexible thanks to
a merge operator [34]. Finally, concerning subtyping, we envisaged to use the
standard preorder on processes, in which a process with fewer outputs is smaller
than a process with more outputs. Session Fidelity becomes weaker, since the
reduction of global types only assures the reduction of networks, possibly with a
different atomic communication. The main drawback is that Theorem4 would no
longer hold, and the domains of network configurations would only be embedded
in the domains of their global type configurations.

As regards future work, we plan to define an asynchronous transition system
(ATS) [4] for our calculus, along the lines of [10], and show that it provides
a noninterleaving operational semantics for networks that is equivalent to their
FES semantics. This would enable us also to investigate the issue of reversibility,
jointly on our networks and on their FES representations, since the ATS seman-
tics would give us the handle to unwind networks, while the corresponding FESs
could be unrolled following one of the methods proposed in existing work on
reversible event structures [21,30,31,44].

Acknowledgments. It is a great pleasure for us to contribute to this volume in
honour of Rocco, who has been a long-time friend and colleague for all of us. For
some of us, this friendship dates back to the early years when Rocco was a Master
student at Pisa University. The human qualities that made him become so widely
appreciated in the community, namely his friendliness, sense of humour and warmth,
as well as his sharpness, dynamism and animating skills, were already quite visible at
the time. Since then, Rocco has built up a highly successful career and has acted as an
inspiring mentor for several students and young researchers. This is not the place for
an exhaustive tribute to Rocco, whose scientific contributions span a wide spectrum
of topics and are too numerous to recall. Suffice it to remember, besides his highly
influential work on testing in collaboration with Matthew Hennessy, his frontline work
on non-interleaving models of computation together with Pierpaolo Degano and Ugo
Montanari, and his more recent work on models for service-oriented computing with a
number of co-authors from the SENSORIA [5,14] and ASCENS projects. Our paper is
a wink to Rocco’s achievements in the last two areas of research.

We would like to thank the anonymous referees for their helpful comments.

360 I. Castellani et al.

References

1. Aceto, L., Hennessy, M.: Towards action-refinement in process algebras. In: Meyer,
A.R. (ed.) LICS 1989, pp. 138–145. IEEE Computer Society Press, Washington
(1989). https://doi.org/10.1109/LICS.1989.39168

2. Baier, C., Majster-Cederbaum, M.E.: The connection between an event structure
semantics and an operational semantics for TCSP. Acta Informatica 31(1), 81–104
(1994). https://doi.org/10.1007/BF01178923

3. Baldan, P., Corradini, A., Gadducci, F.: Domains and event structures for fusions.
In: Ouaknine, J. (ed.) LICS 2017, pp. 1–12. IEEE Computer Society Press, Wash-
ington (2017). https://doi.org/10.1109/LICS.2017.8005135

4. Bednarczyk, M.: Categories of Asynchronous Systems. Ph.D. thesis, University of
Sussex (1988)

5. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Caspis: a calculus of sessions,
pipelines and services. Math. Struct. Comput. Sci. 25(3), 666–709 (2015). https://
doi.org/10.1016/0890-5401(92)90008-4

6. Boreale, M., Sangiorgi, D.: A fully abstract semantics for causality in the
π-calculus. Acta Informatica 35(5), 353–400 (1998). https://doi.org/10.1007/
s002360050124

7. Boudol, G., Castellani, I.: On the semantics of concurrency: Partial orders and
transition systems. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.)
CAAP 1987. LNCS, vol. 249, pp. 123–137. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17660-8 52

8. Boudol, G., Castellani, I.: Permutation of transitions: an event structure semantics
for CCS and SCCS. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.)
REX 1988. LNCS, vol. 354, pp. 411–427. Springer, Heidelberg (1989). https://doi.
org/10.1007/BFb0013028

9. Boudol, G., Castellani, I.: Flow models of distributed computations: event struc-
tures and nets. Research Report 1482, INRIA (1991)

10. Boudol, G., Castellani, I.: Flow models of distributed computations: three equiva-
lent semantics for CCS. Inf. Comput. 114(2), 247–314 (1994). https://doi.org/10.
1006/inco.1994.1088

11. Brookes, S., Hoare, C., Roscoe, A.: A theory of communicating sequential processes.
J. ACM 31(3), 560–599 (1984). https://doi.org/10.1145/828.833

12. Bruni, R., Melgratti, H., Montanari, U.: Event structure semantics for nominal
calculi. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp.
295–309. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949 20

13. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

14. Caires, L., De Nicola, R., Pugliese, R., Vasconcelos, V.T., Zavattaro, G.: Core
calculi for service-oriented computing. In: Wirsing, M., Hölzl, M. (eds.) Rigorous
Software Engineering for Service-Oriented Systems. LNCS, vol. 6582, pp. 153–188.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20401-2 8

15. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Event structure semantics for
multiparty sessions (Extended Version). Research Report 9266, INRIA (2019)

16. Cattani, G.L., Sewell, P.: Models for name-passing processes: interleaving and
causal. Inf. Comput. 190(2), 136–178 (2004). https://doi.org/10.1016/j.ic.2003.
12.003

https://doi.org/10.1109/LICS.1989.39168
https://doi.org/10.1007/BF01178923
https://doi.org/10.1109/LICS.2017.8005135
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/s002360050124
https://doi.org/10.1007/s002360050124
https://doi.org/10.1007/3-540-17660-8_52
https://doi.org/10.1007/3-540-17660-8_52
https://doi.org/10.1007/BFb0013028
https://doi.org/10.1007/BFb0013028
https://doi.org/10.1006/inco.1994.1088
https://doi.org/10.1006/inco.1994.1088
https://doi.org/10.1145/828.833
https://doi.org/10.1007/11817949_20
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-20401-2_8
https://doi.org/10.1016/j.ic.2003.12.003
https://doi.org/10.1016/j.ic.2003.12.003

Event Structure Semantics for Multiparty Sessions 361

17. Crafa, S., Varacca, D., Yoshida, N.: Compositional event structure semantics for
the internal π-calculus. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007.
LNCS, vol. 4703, pp. 317–332. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74407-8 22

18. Crafa, S., Varacca, D., Yoshida, N.: Event structure semantics of parallel extrusion
in the Pi-calculus. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 225–
239. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9 15

19. Cristescu, I.: Operational and denotational semantics for the reversible π-calculus.
Ph.D. thesis, University Paris Diderot - Paris 7 (2015)

20. Cristescu, I.D., Krivine, J., Varacca, D.: Rigid families for CCS and the π-calculus.
In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp.
223–240. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9 14

21. Cristescu, I., Krivine, J., Varacca, D.: Rigid families for the reversible π-calculus.
In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 3–19. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40578-0 1

22. Darondeau, P., Degano, P.: Refinement of actions in event structures and causal
trees. Theor. Comput. Sci. 118(1), 21–48 (1993). https://doi.org/10.1016/0304-
3975(93)90361-V

23. Degano, P., De Nicola, R., Montanari, U.: On the consistency of truly concurrent
operational and denotational semantics. In: Chandra, A.K. (ed.) LICS 1988. IEEE
Computer Society Press, Washington (1988). https://doi.org/10.1109/LICS.1988.
5112

24. Degano, P., De Nicola, R., Montanari, U.: A partial ordering semantics for
CCS. Theor. Comput. Sci. 75(3), 223–262 (1990). https://doi.org/10.1016/0304-
3975(90)90095-Y

25. Degano, P., Montanari, U.: Concurrent histories: a basis for observing distributed
systems. J. Comput. Syst. Sci. 34(2/3), 422–461 (1987). https://doi.org/10.1016/
0022-0000(87)90032-8

26. Degano, P., Priami, C.: Non-interleaving semantics for mobile processes.
Theor. Comput. Sci. 216(1–2), 237–270 (1999). https://doi.org/10.1016/S0304-
3975(99)80003-6

27. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

28. van Glabbeek, R.J., Goltz, U.: Well-behaved flow event structures for parallel com-
position and action refinement. Theor. Comput. Sci. 311(1–3), 463–478 (2004).
https://doi.org/10.1016/j.tcs.2003.10.031

29. Goltz, U., Gorrieri, R., Rensink, A.: Comparing syntactic and semantic action
refinement. Inf. Comput. 125(2), 118–143 (1996). https://doi.org/10.1006/inco.
1996.0026

30. Graversen, E., Phillips, I., Yoshida, N.: Towards a categorical representation of
reversible event structures. In: Vasconcelos, V.T., Haller, P. (eds.) PLACES.
EPTCS 2017, vol. 246, pp. 49–60. Open Publishing Association, Waterloo (2017).
https://doi.org/10.4204/EPTCS.246.9

31. Graversen, E., Phillips, I., Yoshida, N.: Event structure semantics of (controlled)
reversible CCS. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp.
102–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7 7

32. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

https://doi.org/10.1007/978-3-540-74407-8_22
https://doi.org/10.1007/978-3-540-74407-8_22
https://doi.org/10.1007/978-3-642-28729-9_15
https://doi.org/10.1007/978-3-319-25150-9_14
https://doi.org/10.1007/978-3-319-40578-0_1
https://doi.org/10.1016/0304-3975(93)90361-V
https://doi.org/10.1016/0304-3975(93)90361-V
https://doi.org/10.1109/LICS.1988.5112
https://doi.org/10.1109/LICS.1988.5112
https://doi.org/10.1016/0304-3975(90)90095-Y
https://doi.org/10.1016/0304-3975(90)90095-Y
https://doi.org/10.1016/0022-0000(87)90032-8
https://doi.org/10.1016/0022-0000(87)90032-8
https://doi.org/10.1016/S0304-3975(99)80003-6
https://doi.org/10.1016/S0304-3975(99)80003-6
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1016/j.tcs.2003.10.031
https://doi.org/10.1006/inco.1996.0026
https://doi.org/10.1006/inco.1996.0026
https://doi.org/10.4204/EPTCS.246.9
https://doi.org/10.1007/978-3-319-99498-7_7
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567

362 I. Castellani et al.

33. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL 2008, pp. 273–284. ACM Press, New York
(2008). https://doi.org/10.1145/1328438.1328472

34. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1007/978-3-319-40578-0 1

35. Jategaonkar Jagadeesan, L., Jagadeesan, R.: Causality and true concurrency: a
data-flow analysis of the Pi-Calculus. In: Alagar, V.S., Nivat, M. (eds.) AMAST
1995. LNCS, vol. 936, pp. 277–291. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60043-4 59

36. Katoen, J.: Quantitative and qualitative extensions of event structures. Ph.D. the-
sis, University of Twente (1996)

37. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Rajamani, S.K., Walker, D. (eds.) POPL 2015, pp. 221–232.
ACM Press, New York (2015). https://doi.org/10.1145/2676726.2676964

38. Langerak, R.: Bundle event structures: a non-interleaving semantics for LOTOS.
In: Diaz, M., Groz, R. (eds.) Formal Description Techniques for Distributed Sys-
tems and Communication Protocols, pp. 331–346. North-Holland, Amsterdam
(1993)

39. Loogen, R., Goltz, U.: Modelling nondeterministic concurrent processes with event
structures. Fundamenta Informaticae 14(1), 39–74 (1991). https://dblp.org/rec/
bib/journals/fuin/LoogenG91

40. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

41. Montanari, U., Pistore, M.: Concurrent semantics for the π-calculus. In: Brookes,
S., Main, M., Melton, A., Mislove, M. (eds.) MFPS. ENTCS, vol. 1, pp. 411–429.
Elsevier, Oxford (1995). https://doi.org/10.1016/S1571-0661(04)00024-6

42. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part I. Theor. Comput. Sci. 13(1), 85–108 (1981). https://doi.org/10.1016/0304-
3975(81)90112-2

43. Olderog, E.-R.: TCSP: theory of communicating sequential processes. In: Brauer,
W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 441–465.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-17906-2 34

44. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
J. Log. Algebr. Methods Program. 84(6), 781–805 (2015). https://doi.org/10.1016/
j.jlamp.2015.07.004

45. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002).
https://dblp.org/rec/bib/books/daglib/0005958

46. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

47. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: Schneider-Kamp, P., Hanus, M. (eds.) PPDP 2011, pp. 161–
172. ACM Press, New York (2011). https://doi.org/10.1145/2003476.2003499

48. Varacca, D., Yoshida, N.: Typed event structures and the linear π-calculus. Theor.
Comput. Sci. 411(19), 1949–1973 (2010)

49. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014).
https://doi.org/10.1016/S1571-0661(04)00144-6

50. Winskel, G.: Events in Computation. Ph.D. thesis, University of Edinburgh (1980)

https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-319-40578-0_1
https://doi.org/10.1007/3-540-60043-4_59
https://doi.org/10.1007/3-540-60043-4_59
https://doi.org/10.1145/2676726.2676964
https://dblp.org/rec/bib/journals/fuin/LoogenG91
https://dblp.org/rec/bib/journals/fuin/LoogenG91
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/S1571-0661(04)00024-6
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1007/3-540-17906-2_34
https://doi.org/10.1016/j.jlamp.2015.07.004
https://doi.org/10.1016/j.jlamp.2015.07.004
https://dblp.org/rec/bib/books/daglib/0005958
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1016/S1571-0661(04)00144-6

Event Structure Semantics for Multiparty Sessions 363

51. Winskel, G.: Event structure semantics for CCS and related languages. In: Nielsen,
M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 561–576. Springer,
Heidelberg (1982). https://doi.org/10.1007/BFb0012800

52. Winskel, G.: An introduction to event structures. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 364–397. Springer,
Heidelberg (1989). https://doi.org/10.1007/BFb0013026

https://doi.org/10.1007/BFb0012800
https://doi.org/10.1007/BFb0013026

Distributed Systems Modelling

Process Calculi for Modelling Mobile,
Service-Oriented, and Collective

Autonomic Systems

Martin Wirsing(B) and Rolf Hennicker(B)

Ludwig-Maximilians-Universität München, München, Germany
wirsing@lmu.de, hennicker@ifi.lmu.de

- Dedicated to Rocco De Nicola -

Abstract. Process-algebraic methods have proven to be excellent tools
for designing and analysing concurrent systems. In this paper we review
several process calculi and languages developed and studied by Rocco De
Nicola and his students and colleagues in the three EU projects AGILE,
SENSORIA, and ASCENS. These calculi provide a theoretical basis for
engineering mobile, service-oriented, and collective autonomic systems.
KLAIM is a framework for distributed mobile agents consisting of a
kernel language, a stochastic extension, a logic for specifying properties
of mobile applications, and an automatic tool for verifying such prop-
erties. In the AGILE project of the EU Global Computing Initiative
I, KLAIM served as a the process-algebraic basis for an architectural
approach to mobile systems development. For modelling and analysing
service-oriented systems, a family of process-algebraic core calculi was
developed in the SENSORIA project of the EU Global Computing Initia-
tive II. These calculi address complementary aspects of service-oriented
programming such as sessions and correlations. They come with rea-
soning and analysis techniques, specification and verification tools as
well as prototypical analyses of case studies. In the ASCENS project,
the language SCEL was developed for modelling and programming sys-
tems consisting of interactive autonomic components. SCEL is based on
process-algebraic principles and supports formal description and analysis
of the behaviours of ensembles of autonomic components.

1 Introduction

In the seventies of the last century, Robin Milner and Tony Hoare used pro-
cess algebraic techniques for defining their concurrent programming languages
CCS and (T)CSP. Also main program analysis techniques such as strong and
weak bisimulation equivalence have been developed at that time. Since then pro-
cess algebra is a flourishing field of computer science and the mathematical tool
for modelling and analysing concurrent programming systems. Testing equiva-
lence [30] and branching bisimulation [43] are two other important notions of

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 367–387, 2019.
https://doi.org/10.1007/978-3-030-21485-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_20

368 M. Wirsing and R. Hennicker

program equivalence. They have been introduced by Robin Milner’s PhD stu-
dent Rocco De Nicola, the former notion together with Matthew Hennessy [32]
and the latter together with Frits Vandraager.

In the years 2002–2015, three FET EU projects – AGILE [10], SENSO-
RIA [73], and ASCENS [74] – aimed at developing rigorous engineering meth-
ods for advanced computing paradigms such as mobile, service-oriented, and
interacting autonomic systems. In all three projects, Rocco De Nicola was one
of the main contributors and the principal investigator who was responsible
for the use of process calculi as a main tool for providing mathematical foun-
dations and analysis techniques. In this paper we review main process calculi
and languages of AGILE, SENSORIA, and ASCENS, show their main language
primitives and draw some relationships between different calculi. In addition,
we shortly describe the projects AGILE, SENSORIA, and ASCENS and the
European initiatives which supported these projects.

Personal Note. Martin and Rocco know each other since 1981 when Rocco was
a PhD student at the University of Edinburgh and Martin was there as a guest
lecturer. Rocco and Martin were working on different research topics - Martin
on formal software development and algebraic specifications, Rocco on process
calculi and concurrent computations. They became friends and were meeting
for common excursions, dinners, and drinks. Almost 20 years later at an EU
workshop in Edinburgh for promoting the so-called Global Computing Initiative,
they met again and decided to plan a common project. Then at ETAPS 2001,
together with José Fiadeiro and Ugo Montanari the idea of AGILE was born
and a successful proposal was written. On January 1, 2002, the AGILE project
started and also the fruitful collaboration of Rocco and Martin, later joined by
Rolf. It continued in the SENSORIA and the ASCENS project where Rocco was
responsible for the development of the calculi for service-oriented computing and
the SCEL language for autonomic computing. The collaboration continues until
today. In 2013 Rocco was a guest professor at LMU Munich; in 2014, Rocco
and Martin (together with Matthias Hölzl) organised the track on “Rigorous
Engineering of Autonomic Ensembles” [72] at ISoLA 2014 [59]. Then in 2015
Rocco and Rolf edited the Festschrift for Martin [34] and wrote together the
paper on Martin’s professional career [33]; in 2018 Rocco and Martin (together
with Stefan Jähnichen) chaired a track at the ISoLA conference [60], the track
on “Rigorous Engineering of Collective Adaptive Systems” [35].

Working and discussing with Rocco is a very pleasant experience. He is not
only an outstanding scientist and an excellent coordinator of work; he is also a
warm-hearted and kind friend and colleague. We are looking forward to many
further inspiring exchanges with him.

Outline. In Sect. 2 we present shortly the Global Computing Initiative, the
AGILE project, and the process algebraic framework for network aware pro-
gramming that was developed in AGILE. In Sect. 3 we discuss service-oriented
computing and present basic features of the SENSORIA core calculi for service-
oriented computing. In Sect. 4 we introduce ensemble computing, present the

Process Calculi for Modelling Mobile 369

main characteristics of the SCEL language for modelling interacting autonomic
components, and draw some relationships between SCEL and KLAIM. Some
concluding remarks are given in Sect. 5.

2 Mobile Systems: The AGILE Project and
Network-Aware Programming

The AGILE project was one of the projects of the first Global Computing Ini-
tiative (see Sect. 2.1) the European Commission had launched in 2001. AGILE
(see Sect. 2.2) was focussing on software architectures for mobile computing and
on process-based calculi and languages for modelling and analysing mobile sys-
tems. One of the main results of AGILE is the KLAIM framework for network-
aware programming (see Sect. 2.3).

2.1 The Global Computing Initiative I

The Global Computing Initiative [4] was a proactive action within the Infor-
mation Society Technologies (IST) priority of 5th Framework Programme for
Research and Technological Development (FP5) of the European Commission.
In 2001–2005, the initiative was carried out as action-line IST-2001-6.2.2 of the
Future and Emerging Technologies (FET) unit of the European Commission.
The aim was to develop the theoretical foundations needed to enable the design
and construction of “rapidly evolving interacting systems” that work over a
“massive networked infrastructure composed of highly diverse interconnected
objects”. Dominant concerns were those of “handling the co-ordination and inter-
action, security, reliability, robustness, failure modes, and control of risk of the
entities in the system and the overall design, description and performance of the
system itself”.

13 research and development projects1 were funded by the initiative, among
them the projects AGILE and MIKADO. Typically, the projects had four to
seven partners from three or more European countries and were focussing on the
scientific foundations of global computing. The expert report on the results of the
initiative [66] states that “the Global Computing initiative successfully brought
together most of the best European theoretical computer science groups. With
more than 1000 peer-reviewed publications and 50 PhD theses, the scientific
output was found to be very high and the results were at the forefront of the
state of the art”.

1 AGILE, CRESCCO, DART, DBGLOBE, DEGAS, FLAGS, MIKADO, MRG,
MYTHS, PEPITO, PROFUNDIS, SECURE, SOCS (see [4]).

370 M. Wirsing and R. Hennicker

2.2 Architectures for Mobility: The AGILE Project

The project “Architectures for Mobility” (AGILE) [2,10] had eight partners2 (six
universities, one research institution and one company) from five countries and
was running from January 2002 until April 2005. It was developing an architec-
tural approach in which mobility aspects of software can be modelled explicitly
and mapped on the distribution and communication topology made available at
physical levels. The approach was founded on a uniform mathematical frame-
work based on process algebra and graph-oriented techniques that support sound
methodological principles, formal analysis, and refinement across levels of devel-
opment.

The AGILE project produced more than 180 scientific publications and - in
addition to the cooperation with ATX - established cooperations with 10 other
companies. A description of first results is given in [10], an informal overview
can be found in the AGILE brochure at [2]. Main results comprise an extension
of the program design language CommUnity in order to support the design of
mobile components [48], an extension of UML, called Mobile UML, to model
systems with mobility [14,57], two extensions of KLAIM for modelling mobile
open systems [15] and for addressing quantitative aspects [31] as well as temporal
logics and formalisms for specifying properties of mobile systems (e.g. the modal
logic MoMo [41]), software engineering (e.g. on property driven software devel-
opment and on combining agents and components [13,55]), analysis, verification
and refinement techniques (e.g. [46,53]), and many foundational results (e.g. on
tile systems [21]). Moreover, the AGILE methods have been applied to several
case studies including the GSM handover protocol and a multi-user-dungeon
game. Several tools were developed for helping the software engineer to model
mobile systems, to write better software, and to analyse properties of software
(e.g. the HAL modelchecker [45], for an overview see the tools list at [2]).

2.3 A Framework for Network-Aware Programming

A cornerstone of the AGILE project was the experimental programming lan-
guage KLAIM (Kernel Language for Agents Interaction and Mobility) and
its framework for network aware programming [15]. KLAIM has already been
defined before AGILE [29] and was also an important ingredient of the MIKADO
project. The KLAIM framework was developed by Rocco De Nicola (at that time
professor at Università di Firenze) and his research group in cooperation with
colleagues from ISTI and Università di Pisa.

KLAIM. KLAIM is specifically designed to model and to program distributed
concurrent applications with code mobility. It is inspired by the Linda coordi-
nation model [26,49]; it relies on the concept of tuple space to store data and on

2 The AGILE partners were LMU München (coordinator), Università di Pisa, Univer-
sità di Firenze, ISTI Pisa, ATX Software SA, Universidade de Lisboa, University of
Warsaw (from August 2002), and University of Leicester (from January 2003).

Process Calculi for Modelling Mobile 371

pattern matching for retrieving data. Concurrency is based on a basic process
calculus with process invocation and CCS-like parallel composition and action
prefixing; name restriction as in the π-calculus is available on the level of nets.
Distribution is modeled by hierarchically structuring concurrency: a KLAIM
program is a net which consists of a parallel composition of nodes; each node
has a name (called site) and contains a single tuple space and possibly several
concurrent processes in execution. The processes are the active computational
units. They may run concurrently either at the same node or at different nodes
and can perform different actions which in turn manage the tuple spaces, provide
code mobility and permit to create new network nodes.

Syntax and Semantics of KLAIM. More formally, a KLAIM net can be either a
single node or a composition of nets N1 and N2, N1 ‖ N2. A node is a triple s ::ρ C
where s is a site, i.e. a name for a locality, C is the component that is located at
s, and ρ defines an allocation environment. A site can be thought of as a globally
valid identifier for a node. Sites are considered to be first-order data which can
be created dynamically and shared using the tuple space. A component consists
of a parallel composition P |〈t1〉|...|〈tn〉 of a process P and tuples 〈t1〉, ..., 〈tn〉.
An allocation environment is a (partial) function from (locality) variables to
sites. [s/l] denotes the environment that maps the variable l to the site s. The
distinguished variable self refers to the current execution site.

The four basic actions out(t)@l, eval(Q)@l, read(T)@l, and in(T)@l corre-
spond to the Linda operations to generate a tuple t (out) at the site denoted
by l, spawn a process Q (eval), read a tuple matching the pattern T (read),
and consume a tuple matching T (in) [26]. In KLAIM, the actions have locality
variables as a postfix, which denote the sites the actions address. In addition to
the operations borrowed from Linda, the newloc(u) action is used to create a
fresh site; the locality variable u refers to that fresh site in the prefixed process.
The latter action is not postfixed with an address because it always acts locally.

The KLAIM semantics is given in terms of a structural congruence, rules for
pattern matching, and a reduction relation � over the nets. Figure 1 shows a few
structural operational rules; for the complete semantics see [15]. In rule (In) σ

Fig. 1. A few rules of KLAIM

372 M. Wirsing and R. Hennicker

is a substitution, in rule (New) S stands for the set of all currently existing sites
and S � N expresses that all sites occurring in the net N are elements of S.

Extensions of KLAIM. KLAIM has several extensions that support particular
programming and modelling styles.

MetaKLAIM is an extension of KLAIM to permit meta-programming activ-
ities such as linking of code fragments. It integrates an extension of SML for
multi-stage programming, called MetaML, with KLAIM and exploits an expres-
sive type system to dynamically enforce security policies [47]. STOcKLAIM [40]
is a stochastic extension of (the core calculus cKLAIM of) KLAIM for modelling
quantitative and qualitative aspects of mobile systems. The key idea is to mea-
sure action durations in a stochastic way by adding continuous random variables
with exponential distributions to the actions. The Kaos language [31] enriches
KLAIM actions with attributes for specifying quality of service properties and
access rights. Quality of service costs are described as abstract costs, formally
given as elements of a constraint semiring [18]. X-KLAIM is a programming lan-
guage that extends KLAIM with high-level constructs and strong mobility [16].

Logics and Type Systems for KLAIM. KLAIM is equipped with type
systems that express and ensure security policies. A capability-based static type
system guarantees the control of access rights and a dynamic type system enables
to program the acquisition of dynamic privileges, e.g. for controlling the access
of host resources by possibly malicious mobile processes (see [15,41], Sect. 4).

For reasoning about KLAIM and STOcKLAIM programs appropriate modal
logics ([15], Sect. 3 and [41]) and stochastic logics [36] have been developed. The
first logic is inspired by the Hennessy-Milner logic [51] and the μ-calculus [54] and
permits to specify and verify dynamic properties of networks such as resource
management and mobility aspects of concurrent processes. The modal logic is
accompanied by the KlaiML framework for analysing the properties of KLAIM
systems. Temporal properties of processes are typically expressed as 〈A〉Φ by
means of the diamond operator 〈〉 indexed with a set A of so-called label predi-
cates, i.e. predicates that specify finite or infinite sets of KLAIM actions. A net
N satisfies 〈A〉Φ if there exists an action a in A and a net N ′ such that by
performing a, N reduces to N ′ and N ′ satisfies the formula Φ.

A second modal logic, called MoMo [41], is not so closely related to KLAIM.
It abstracts from the specific KLAIM actions and instead models resource pro-
duction and consumption by state predicates and can express nominal properties
for handling names and mobility properties for controlling mobile processes. The
logics for reasoning on STOcKLAIM processes are the temporal stochastic log-
ics MOSL (Mobile Stochastic Logic) and MOSL+ [36]. The latter is inspired by
MoMo and can be seen as an action-based variant of the continuous stochastic
logic CSL [11]. MOSL+ formulas express stochastic performance and dependabil-
ity properties such as the likelihood of resource consumption and production.

Process Calculi for Modelling Mobile 373

Tools for Interpreting and Analysing KLAIM. Several tools support inter-
preting and analysing KLAIM models. Klava (KLAIM in JAVA) [17] is a JAVA
package implementing all the functionalities for the run-time systems of KLAIM.
Also the logics for KLAIM come with tools. The KLAIML prover supports reach-
ability analysis and satisfiability checking of properties [15]. Similarly, the reason-
ing tool SAM [36] for MOSL+ supports simulating STOcKLAIM specifications,
analysing their reachability graphs and checking the satisfiability of MOSL+

formulas.

3 Service-Oriented Systems

In 2004 the Future Emerging Technology unit launched a follow up call on Global
Computing for deepening and consolidating the results of the first Global Com-
puting Initiative (see Sect. 3.1). With its focus on service-oriented computing,
SENSORIA (see Sect. 3.2) was one of the three funded Integrated Projects. Pro-
cess calculi were a main strand of research in SENSORIA. They served as a
semantic basis for programming and modelling the dynamic aspects of service-
oriented systems and for analysing their properties (see Sect. 3.3).

3.1 The Global Computing Initiative II

In the 6th framework programme of the European Commission, the Future
Emerging Technology unit launched a follow-up action of the first Global
Computing Initiative. The call IST-2004-2.3.4.2(v) on Global Computing was
focussing on “computational infrastructures available globally and able to pro-
vide uniform services with variable guarantees for communication, co-operation
and mobility, resource usage, security policies and mechanisms, etc., with par-
ticular regard to exploiting their universal scale and the programmability of
their services.” Moreover, the call asked for large projects, so-called Integrated
Projects, and for a “research approach aiming at substantial integration between
theory, systems building and experimentation, following a foundational approach
typical of computer science research.”

As a result, in 2005 three Integrated Projects were funded: AEOLUS [1] on
“algorithmic principles for building efficient overlay computers”, MOBIUS [5]
on “proof-carrying code for Java on mobile devices”, and SENSORIA [7] on
“software engineering for service-oriented overlay computers.”

374 M. Wirsing and R. Hennicker

3.2 Modelling and Engineering Service-Oriented Systems: The
SENSORIA Project

The SENSORIA project [70,73] was a joint initiative of researchers from four
projects of the first Global Computing Initiative3. SENSORIA had 19 partners4

(14 universities, one research institution, and four companies) from seven coun-
tries and was running from October 2005 until February 2010. The aim of the
SENSORIA project was to develop a comprehensive approach to the engineering
of service-oriented software systems where foundational theories, techniques and
methods were fully integrated in a pragmatic software engineering approach.

The SENSORIA project produced more than 650 scientific publications and
more than 25 software tools; based on SENSORIA results, three spin-off compa-
nies were founded. The main results are collected in [73], an informal overview of
the results is given in the SENSORIA brochure at [7]. The results of SENSORIA
include semantically well-defined modelling and programming concepts (includ-
ing the SENSORIA Reference Modelling Language SRML and UML extensions
for service-oriented systems), calculi for service-oriented computing, calculi and
methods for negotiations, planning, and reconfiguration as well as qualitative and
quantitative analysis techniques and tools, and methods for model-driven devel-
opment and reverse engineering. The SENSORIA methods have been applied
to case studies in the service-intensive areas of e-business, automotive systems,
e-learning, and telecommunications.

3.3 A Family of Core Process Calculi for Service-Oriented Systems

Process calculi for service specification and analysis were a main strand of
research in SENSORIA. They served as a semantic basis for programming and
modelling dynamic aspects of services and service-oriented systems and for ana-
lysing qualitative and quantitative properties of services. In cooperation with
colleagues from Bologna, Lisboa, and Pisa, Rocco De Nicola and his research
group were leading and coordinating the SENSORIA research on calculi for
service-oriented computing.

Several calculi have been developed and studied. The core calculi aim at a
foundational understanding of the service-oriented computing paradigm whereas
the other calculi (such as λreq [12], CC-Pi [22], and PEPA [25]) focus on par-
ticular issues such as service discovery, negotiation, composition, transactions,
or performance modelling. The core calculi support complementary aspects of

3 AGILE, DEGAS, MIKADO, PROFUNDIS.
4 The SENSORIA partners were LMU München (coordinator), Università di Trento,

University of Leicester, University of Warsaw, TU Demark at Lyngby, Università
di Pisa, Università di Firenze, Università di Bologna, ISTI Pisa, Universidade de
Lisboa, ATX Software SA (ATX II Technologies SA, from October 2006), Telecom
Italia S.p.A., Imperial College London, University College London, FAST GmbH
(Cirquent GmbH, from 2008), S & N AG Paderborn, Budapest University of Tech-
nology and Economics, and MIP Business School of Politecnico di Milano (from
March 2007).

Process Calculi for Modelling Mobile 375

service-oriented computing [24,71]. The SENSORIA core calculi are SCC [19],
COWS [65], SOCK [50] and three SCC extensions CaSPIS [20], SSCC [56], and
CC [68]. MarCaSPiS [38] is a Markovian extension of CaSPiS.

A characteristics of service-oriented computing is the way how a service client
and the service provider communicate. In contrast to, e.g., the call mechanism
of object-oriented programming, a client does not call its partner only once
but both communication partners engage in a conversation during which they
interact several times. There are two types of conversations: a session instanti-
ates implicitly a private channel between client and server which is then used
for the communication; in a correlation-based communication, the link between
client and server is determined by so-called correlation values which are explicitly
included in the exchanged messages. We can classify the core calculi according to
their type of communication: SCC and its extensions are session-based, whereas
COWS and SOCK use correlations.

SCC is a minimalistic calculus following the slogan “everything is a service”;
sessions are dyadic conversations between exactly two communication partners.
The three other calculi extend SCC by a mechanism for inter-session commu-
nication: CaSPIS is dataflow-oriented and (similar to Orc [62]) uses pipelines
for passing data between different sessions; SSCC uses streams for inter-session
communication whereas CC focusses on multi-party conversations between sev-
eral communication partners such that conversation partners can be dynamically
added and dismissed. Both COWS and SOCK are inspired by WS-BPEL but
they differ in their form of correlation. COWS uses memoryless correlation based
on pattern matching whereas correlation in SOCK depends on the state of so-
called correlation variables and thus is memoryful.

The key notions of the session-oriented calculi are service definition, service
invocation and session. In particular, the session-oriented calculi SCC, CaSPIS,
and SSCC support explicit modelling of sessions both on the client and on the
service side, and provide mechanisms for session naming and scoping, by relying
on the constructs of π-calculus [61]. Here we use CaSPIS to describe the basic
service interactions for establishing a session in more detail (see [24]). For com-
parison we show also the corresponding rules of (the μ-fragment of) COWS which
use pattern matching for identifying the communication partners (see [65]).

A service definition in CaSPIS takes the form s.P , where s is a service name,
and P the body of the service. A client of a service is written s.Q. Synchronisation
of s.P and s.Q causes the activation of a new session, identified by a fresh
name r that can be viewed as a private, synchronous channel binding caller and
callee. A session naturally comes with two sides, written r � P and r � Q,
with r bound above them by (νr) (see rule (Sync) below). Values produced by
P can be consumed by Q, and vice-versa. Figure 2 shows three basic rules of
the operational semantics of CaSPIS: service definition, service invocation and
synchronisation.

In COWS a correlation is dyadic and indicated by two endpoints where an
endpoint is a pair p • o consisting of a communication partner name p and an
operation name o. A service invocation by client is atomic and has the form n!e

376 M. Wirsing and R. Hennicker

Fig. 2. Basic rules of CaSPIS

where n is an endpoint p • o and e is a tuple of expressions possibly containing
variables. The invocation can take place if all variables of the argument expres-
sion are instantiated (by fully evaluating e with the result v, see rule (Inv) of
Fig. 3). A receive activity of a server has the form n?w where n is an endpoint
p • o and w is a tuple of variables and values (see rule (Rec) of Fig. 3). For a
communication (see rule (Com) of Fig. 3), client and server are correlated by
performing matching of invocation and receive activities.

Fig. 3. Basic rules of COWS

3.4 Analysis Techniques, Logics and Case Studies

Static analysis techniques have been developed for all three session-oriented core
calculi CaSPIS, SSCC, and CC. In particular, CaSPIS has a type system for
control flow and client progress [8], CC a type system for conversation fidelity and
progress [8], and SSCC a type system for protocol compatibility for SSCC [56].

SocL [44] is an action and state-based branching time temporal logic
for expressing properties of COWS specifications. The CMC/UMC mod-
elchecker [44] supports the analysis of COWS models by an on-the-fly model
checking algorithm for SocL formulas; it has been applied to many SENSORIA
case studies.

The stochastic temporal logic SoSL [39] is a variant of MOSL+ [36]; it sup-
ports reasoning on quantitative properties of service-oriented systems expressed
in MarCaSPIS. For the automated analysis of SoSL formulas an existing state-
based stochastic modelchecker is used.

All core calculi have been applied for modelling and analysing properties of
the SENSORIA case studies (from the automotive, finance, telecommunication,
and eUniversity domains) [67].

Process Calculi for Modelling Mobile 377

4 Collective Autonomic Systems

In 2009 “Self-Awareness in Autonomic Systems” was the topic of a call of the
Future Emerging Technology unit in the 7th framework programme of the Euro-
pean Commission (see Sect. 4.1). The ASCENS project – one of four funded
projects – developed a comprehensive engineering approach for engineering dis-
tributed autonomic systems, so-called autonomic ensembles (see Sect. 4.2). A
central result of ASCENS is the Service Component Ensemble Language (SCEL)
and its framework for programming and reasoning on ensembles of autonomic
components (see Sect. 4.3).

4.1 Self-Awareness in Autonomic Systems

In the 7th framework programme for ICT of the European Commission, the
Future Emerging Technology unit launched several calls for projects in the area
of computing and communication paradigms. The action ICT-2009.8.5 addressed
the topic “Self-Awareness in Autonomic Systems” and called for “new con-
cepts, architectures, foundations and technologies” for computing and commu-
nication systems “that are able to optimise overall performance and resource
usage in response to changing conditions, adapting to both context (such as user
behaviour) and internal changes (such as topology).”

In 2010 four projects were funded: ASCENS [3] on “autonomic service-
component ensembles”, Recognition on “relevance and cognition for self-
awareness in a content-centric internet”, SAPERE on “self-aware pervasive ser-
vice ecosystems”, and EPiCS on “engineering proprioception in computing sys-
tems.”

4.2 Autonomic Service-Component Ensembles: The ASCENS
Project

Ensembles are distributed software-intensive systems that can operate in open-
ended environments, adapt to changing environments or requirements, and han-
dle failures of individual nodes [52]. The idea for the ASCENS project started
with discussions at several workshops of the Interlink project [69] where leading
international experts had identified the new paradigm of ensemble computing
systems and the development of self-organising systems as important challenges
and trends for software-intensive systems [52]. Consequently, the aim of the
ASCENS project [75] was to develop a comprehensive approach to engineer
autonomic ensembles. The ASCENS project had 17 partners5 (11 universities,

5 The ASCENS partners were LMU München (coordinator), Università di Pisa, Uni-
versità di Firenze, Fraunhofer FIRST (now Fraunhofer FOKUS), VERIMAG Labo-
ratory, Università di Modena e Reggio Emilia, Université Libre de Bruxelles, Ecole
Polytechnique Fédérale de Lausanne, Volkswagen AG, Lero - University of Limerick,
Zimory GmbH, and ISTI Pisa, and from July 2011 IMT Lucca, Mobsya, and Charles
University Prague.

378 M. Wirsing and R. Hennicker

four research institutions, and two companies) from seven countries and was
running from October 2010 until March 2015.

The ASCENS project produced more than 300 scientific publications - among
them 8 best paper awards - and more than 25 software products and prototypes.
ASCENS achieved both pragmatic and formal results (for a collection of main
results see [74], for an informal overview see the ASCENS brochure at [3]). The
pragmatic results comprise a process model for systems development called the
Ensemble Development Life Cycle (EDLC), engineering techniques and tools for
collective autonomic systems as well as case studies on autonomic robot swarms,
autonomic cloud computing platforms, and autonomic e-mobility support. The
foundational theories and methods developed in ASCENS support languages and
verification for collective autonomic systems, modelling and theory for adaptive
and self-aware systems, validation and verification of complex controlled systems,
monitoring and dynamic adaptation of autonomic systems, both at design and
at runtime.

4.3 The SCEL Framework for Ensemble Computing

A central result of ASCENS is the Service Component Ensemble Language
(SCEL) [37] and its framework for programming and reasoning on ensembles
of autonomic components. SCEL and its runtime environment were developed
by Rocco De Nicola and his research group in cooperation with colleagues from
ISTI and Pisa.

SCEL is a generic, high-level language for modelling autonomic systems. It
provides programmers with a complete set of linguistic abstractions for pro-
gramming the behaviour of components and the formation of ensembles, and for
controlling the interaction among them. These abstractions permit autonomic
systems to be described in terms of behaviours, knowledge and aggregations, by
complying with specific policies, and to support programming context-awareness,
self-awareness and adaptation.

Parameterised SCEL. SCEL can be seen as a generalisation and further devel-
opment of KLAIM with a number of important new features. A SCEL system
can be either a single component or a composition of systems S1 and S2 denoted
by S1 ‖ S2. This is similar to a KLAIM net which is structured into a parallel
composition of nodes. A SCEL component J [K,Π, P] consists of four subparts
(see Fig. 4): an interface I for publishing and making available structural and
behavioural information about the component itself in the form of attributes, a
knowledge repository K managing application data, internal status data (sup-
porting self-awareness) and environmental data (supporting context-awareness),
a set of policies Π regulating the interaction within the component and with
other components, and process P (which can be composed by several processes).
In particular, policies specify the authorisation requirements for communication
such as quality of service or security requirements.

Thus a SCEL component is more elaborated and software engineering-orien-
ted than a KLAIM node whose tuple space can be seen as a particular instance

Process Calculi for Modelling Mobile 379

Fig. 4. SCEL component [37]

of a component’s knowledge repository and whose site corresponds to the value
of the identifier attribute of the component. Moreover, KLAIM offers no choice
of policy; instead it adheres to a fixed (interleaving) policy.

Processes in SCEL are built with the usual CCS-like operators nil, action
prefixing and non-deterministic choice. In addition, there is process invocation
and - worth emphasising - a generalised parallel combinator the semantics of
which is not only parameterised but can also be dynamically given by the current
policy.

The actions of processes in SCEL are similar to those of KLAIM but instead
of addressing a single node, SCEL actions can single out dynamically ensembles
of communication partners by using predicates over their attributes, thus per-
mitting a sort of attribute-based communication. The SCEL actions get(T)@e,
qry(T)@e and put(t)@e are used to manage the shared knowledge repositories
identified by e where e is either a component name n or a predicate p; T denotes
patterns for selecting knowledge items t in the repositories. Component names
are used for point-to-point communication, while the predicate enables a group-
oriented “ensemble” communication. The set of components satisfying predicate
p are considered as the ensemble with which the process performing the action
intends to interact. The point-to-point communication action get(T)@n corre-
sponds to the KLAIM in for withdrawing information items, qry(T)@n corre-
sponds to the KLAIM read for retrieving items, and put(t)@n corresponds to the
KLAIM out for adding items. A main difference to KLAIM is the group com-
munication where get(T)@p and qry(T)@p choose nondeterministically one item
from a component interface satisfying the predicate p whereas put(t)@p stores t
in the repositories of all components satisfying p. Action new(I,K,Π, P) creates
a new component I[K,Π, P] with process P . This corresponds in KLAIM to a
composed action newloc(u).eval(P)@u.... which creates a new node with process
P . Action fresh(n) realises name restriction. It introduces a scope restriction for
the name n so that this name is guaranteed to be different from any other name
previously used. It has no directly corresponding action in KLAIM but a similar
effect as (νn)N .

380 M. Wirsing and R. Hennicker

Operational Semantics. The operational semantics of SCEL is parametric
in the notions of policy and knowledge representation. This allows the use of
different authorisation and interaction policies for regulating the execution of
actions (including the rules for parallel composition) and of different formats of
knowledge representation while leaving the operational rules untouched (for an
early similar approach to the semantics of Java see [27]).

The semantics is defined in three steps. The first step defines the seman-
tics of processes in the form of commitments: P ↓α P ′ means that process “P
can commit to perform action α and become P ′ after doing so.” The second
step specifies a labelled transition system for SCEL systems which is parametric
w.r.t. the process semantics and two predicates (� and �) expressing interaction
patterns and authorisation policies. There are particular system labels to indi-
cate the intention of a component to perform a (repository access) action or the
agreement with the execution of such an action depending on the current policy.
The final operational semantics consists of unlabelled reductions that rely on
the conditions and labels checked in the second step.

We describe briefly the semantics for creating a new component and for
group communication concerning put for which we need the rules shown in Fig. 5
(see [37] for the full operational semantics of SCEL).

Fig. 5. A few rules of SCEL

Rule (pr-sys) in Fig. 5 stems from [42]; it is a specialisation of the correspond-
ing rule in [37] omitting the case of action fresh(n). The purpose of this rule is

Process Calculi for Modelling Mobile 381

to lift process actions to the component level. If a process commitment P ↓α P ′

is given and if the interaction predicate Π, I : α � λ, σ,Π ′ generates, under
policy Π and interface I, from process action α the system label λ, substitution
σ and policy Π ′, then the component I[K,Π, P] can perform λ and becomes
I[K,Π ′, P ′σ]. A specific interaction predicate for component creation and put
action is defined by

Π, I : new(J ,K,Π,Q) � I : new(J ,K,Π, [[Q]]I), {},Π (1)

[[t]]I = t′ [[e]]I = γ

Π, I : put(t)@e � I : t′ � γ, {},Π
(2)

where [[·]] denotes the evaluation of terms w.r.t. interface I. Note that this inter-
action predicate yields the empty substitution and does not change policies.

In case (1), the system label I : new(J ,K,Π, [[Q]]I) expresses the willingness
of component I to create the new component. Rule (pr-sys) generates a tran-
sition with this label from the commitment (new(J ,K,Π,Q).P ′) ↓new(J ,K,Π,Q)

P ′. In the next step rule (newc) can be applied if the policy I.π of I authorises
the creation of the new component which is expressed by the authorisation pred-
icate I.π � I : new(J ,K,Π,Q),Π ′. This leads to the internal computation step
τ for component C which adds the new component in parallel and additionally
realises, in accordance with the authorisation predicate, a possible change of C’s
policy to Π ′. Internal computation steps can be propagated from components
to systems and finally moved to unlabelled system transitions (involving a name
restriction) with two further rules not shown here.

In case (2) the system label I : t′ � γ denotes the intention of component
I to add item t′ to the repositories determined by γ. Rule (pr-sys) generates a
transition with this label from the commitment (put(t)@e.P ′) ↓put(t)@e P ′. Now
we take into account rule (accput) which generates a transition with system
label I : t �̄J [Π ′/J .π] expressing that component J is ready to add an item
t to its knowledge base K and updating its policy J .π to Π ′ (provided the
authorisation predicate Π � I : t �̄ J ,Π ′ is satisfied). The intention to put an
item and willingness to accept an item are combined in rule (grput). This rule
generates a transition for a composed system S1 ‖ S2 where S1 is intending to
transfer an item to all components satisfying predicate p and S2 is ready for
acceptance where the target component J satisfies the predicate. Since we are
dealing with group communication for put, the resulting system transition from
S1 ‖ S2 to S′

1 ‖ S′
2 is again labelled by expressing the intention of I to send

the item (while updating its policy). Rule (engrput) is a congruence rule that
combines a system S willing to transfer an item t with a component that is not
involved in this action. “By repeatedly applying rules (grput) and (engrput) it is
possible ... that a component produces an item which is added to the repository
of all ensemble components that simultaneously are willing to receive the item.”
Finally an unlabelled system transition, denoted by � can be inferred from rule
(put).

382 M. Wirsing and R. Hennicker

SCEL Instantiations, Runtime, Analysis Tools, and Case Studies. The
first full instantiation of SCEL uses tuple spaces as knowledge representation
mechanism and the language FACPL ([74], Sect. 4) as policy language. FACPL
is a language for defining access control, resource usage and adaptation policies; it
is inspired by the XACML [63] standard for access control. StocS ([74], Sect. 7) is
a stochastic extension of SCEL where all repository operations have probabilistic
behaviour. The run-time environment jRESP ([74], Sect. 6) of SCEL supports
the development of autonomic and adaptive systems according to the SCEL
paradigm. It provides an interpreter, has been integrated with FACPL, and
offers a simulation environment and a statistical modelchecker. SCEL has also
been integrated with the SPIN modelchecker and the Maude-based modelchecker
MISSCEL (see [74], Sect. 6).

SCEL has been applied to all three main ASCENS case studies (on swarm
robotics, cloud computing, and e-mobility). Moreover, SCEL has been used to
model self-expression [23] and different adaptation patterns [28].

5 Conclusion

This paper gives a short review of process calculi and languages that are able to
capture the essential dynamic features of mobile, service-oriented and collective
autonomic systems and to provide a semantic basis for analysing properties of
such systems. These calculi and languages have been developed and studied by
Rocco De Nicola and his students and co-workers within the three European
projects AGILE, SENSORIA, and ASCENS during the years 2002–2015.

Process-algebraic research of modern programming language features is not
complete with these results but continues to be very active. Rocco is a perfect
role model for this research. For instance, the results of ASCENS were fur-
ther developed by Rocco and his colleagues in the project QUANTICOL [6] for
quantitatively modelling collective adaptive systems. The language CAS-SCEL -
renamed to CARMA in [58] (Collective Adaptive Resource-sharing Markovian
Agents) - focusses on quantitative evaluation and verification and offers con-
structs for “expressing timed and probabilistic behaviour of components which
operate in collectives” [6]. The novel basic process calculus AbC [9] can be seen
as the minimal subset of SCEL which focusses on attribute-based communica-
tion. In addition, Rocco was one of the chairs of the track “Rigorous Engineering
of Collective Adaptive Systems” of the ISOLA 2018 conference where process-
algebraic methods played again a major role.

Process Calculi for Modelling Mobile 383

References

1. AEOLUS: Algorithmic principles for building efficient overlay computers. EU 6th
Framework Programme, Integrated Project, 2005-09-01–2009-08-31, Grant 15964.
https://cordis.europa.eu/project/rcn/80615/. Accessed 06 January 2019

2. AGILE: architectures for mobility. EU 5th Framework Programme, Global Com-
puting Initiative, 2002-01-01–2005-04-30, Contract IST-2001-32747. https://cordis.
europa.eu/project/rcn/60315/factsheet/en. http://www.pst.ifi.lmu.de/Forschung/
projekte/agile/. Accessed 06 Jan 2019

3. ASCENS: Autonomic component ensembles. EU 7th Framework Programme, Inte-
grated Project, 2010-10-01–2015-03-31, Grant 257414. http://www.ascens-ist.eu/.
https://cordis.europa.eu/project/rcn/95141/. Accessed 06 Jan 2019

4. Global computing: co-operation of autonomous and mobile entities in dynamic
environments - IST-2001-6.2.2, Cordis Database, European Commission. https://
cordis.europa.eu/programme/rcn/7974/en. Accessed 13 Jan 2019

5. MOBIUS: Mobility, ubiquity and security for small devices. EU 6th
Framework Programme, Integrated Project, 2010-10-01–2009-08-31, Grant
015905. http://software.imdea.org/gbarthe/mobius/. https://cordis.europa.eu/
project/rcn/80614/. Accessed 06 Jan 2019

6. QUANTICOL: A quantitative approach to management and design of collective
and adaptive behaviours. EU 7th Framework Programme, Fundamentals of Collec-
tive Adaptive Systems, 2013-04-01–2017-03-31, Contract 600708. http://blog.inf.
ed.ac.uk/quanticol/. https://cordis.europa.eu/project/rcn/106237/. Accessed 17
Jan 2019

7. SENSORIA: Software engineering for service-oriented overlay computers. EU 6th
Framework Programme, Integrated Project, 2005-09-01–2010-02-28, Grant Id:
16004. http://www.sensoria-ist.eu/. https://cordis.europa.eu/project/rcn/80616/.
Accessed 06 Jan 2019

8. Acciai, L., Bodei, C., Boreale, M., Bruni, R., Vieira, H.T.: Static analysis tech-
niques for session-oriented calculi. In: Wirsing and Hölzl [73], pp. 214–231 (2011)

9. Alrahman, Y.A., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Wainwright, R.L., Corchado, J.M., Bechini,
A., Hong, J. (eds.) SAC 2015, pp. 1840–1845. ACM (2015)

10. Andrade, L., et al.: AGILE: software architecture for mobility. In: Wirsing, M., Pat-
tinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 1–33. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-2 1

11. Baier, C., Katoen, J.-P., Hermanns, H.: Approximative symbolic model checking
of continuous-time Markov chains. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR
1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48320-9 12

12. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Call-by-contract for ser-
vice discovery, orchestration and recovery. In: Wirsing and Hölzl [73], pp. 232–261
(2011)

13. Baumeister, H., Knapp, A., Wirsing, M.: Property-driven development. In: SEFM
2004, pp. 96–102. IEEE Computer Society (2004)

14. Baumeister, H., Koch, N., Kosiuczenko, P., Stevens, P., Wirsing, M.: UML for
global computing. In: Priami [64], pp. 1–24 (2003)

15. Bettini, L., et al.: The Klaim project: theory and practice. In: Priami [64], pp.
88–150 (2003)

https://cordis.europa.eu/project/rcn/80615/
https://cordis.europa.eu/project/rcn/60315/factsheet/en
https://cordis.europa.eu/project/rcn/60315/factsheet/en
http://www.pst.ifi.lmu.de/Forschung/projekte/agile/
http://www.pst.ifi.lmu.de/Forschung/projekte/agile/
http://www.ascens-ist.eu/
https://cordis.europa.eu/project/rcn/95141/
https://cordis.europa.eu/programme/rcn/7974/en
https://cordis.europa.eu/programme/rcn/7974/en
http://software.imdea.org/ gbarthe/mobius/
https://cordis.europa.eu/project/rcn/80614/
https://cordis.europa.eu/project/rcn/80614/
http://blog.inf.ed.ac.uk/quanticol/
http://blog.inf.ed.ac.uk/quanticol/
https://cordis.europa.eu/project/rcn/106237/
http://www.sensoria-ist.eu/
https://cordis.europa.eu/project/rcn/80616/
https://doi.org/10.1007/978-3-540-40020-2_1
https://doi.org/10.1007/3-540-48320-9_12
https://doi.org/10.1007/3-540-48320-9_12

384 M. Wirsing and R. Hennicker

16. Bettini, L., De Nicola, R.: Mobile distributed programming in X-Klaim. In:
Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 29–68.
Springer, Heidelberg (2005). https://doi.org/10.1007/11419822 2

17. Bettini, L., De Nicola, R., Pugliese, R.: Klava: a Java package for distributed and
mobile applications. Softw. Pract. Exper. 32(14), 1365–1394 (2002)

18. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

19. Boreale, M., et al.: SCC: a service centered calculus. In: Bravetti, M., Núñez, M.,
Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11841197 3

20. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-68863-1 3

21. Bruni, R., Montanari, U., Sassone, V.: Observational congruences for dynamically
reconfigurable tile systems. Theor. Comput. Sci. 335(2–3), 331–372 (2005)

22. Buscemi, M.G., Montanari, U.: CC-PI: a constraint language for service negotiation
and composition. In: Wirsing and Hölzl [73], pp. 262–281 (2011)

23. Cabri, G., et al.: Self-expression and dynamic attribute-based ensembles in SCEL.
In: Margaria and Steffen [59], pp. 147–163 (2014)

24. Caires, L., De Nicola, R., Pugliese, R., Vasconcelos, V.T., Zavattaro, G.: Core
calculi for service-oriented computing. In: Wirsing and Hölzl [73], pp. 153–188
(2011)

25. Cappello, I., et al.: Quantitative analysis of services. In: Wirsing and Hölzl [73],
pp. 522–540 (2011)

26. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32, 444–458 (1989)
27. Cenciarelli, P., Knapp, A., Reus, B., Wirsing, M.: From sequential to multi-

threaded Java: an event-based operational semantics. In: Johnson, M. (ed.)
AMAST 1997. LNCS, vol. 1349, pp. 75–90. Springer, Heidelberg (1997). https://
doi.org/10.1007/BFb0000464

28. Cesari, L., De Nicola, R., Pugliese, R., Puviani, M., Tiezzi, F., Zambonelli, F.:
Formalising adaptation patterns for autonomic ensembles. In: Fiadeiro, J.L., Liu,
Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 100–118. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07602-7 8

29. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE TSE 24, 315–330 (1998)

30. De Nicola, R.: Testing equivalences and fully abstract models for communicating
systems. Ph.D. thesis, University of Edinburgh, UK (1986)

31. De Nicola, R., Ferrari, G., Montanari, U., Pugliese, R., Tuosto, E.: A formal basis
for reasoning on programmable QoS. In: Dershowitz, N. (ed.) Verification: Theory
and Practice. LNCS, vol. 2772, pp. 436–479. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-39910-0 21

32. de Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. In: Diaz, J.
(ed.) ICALP 1983. LNCS, vol. 154, pp. 548–560. Springer, Heidelberg (1983).
https://doi.org/10.1007/BFb0036936

33. De Nicola, R., Hennicker, R.: A homage to Martin Wirsing. In: Software, Services,
and Systems [34], pp. 1–12 (2015)

34. De Nicola, R., Hennicker, R. (eds.): Software, Services, and Systems. LNCS, vol.
8950. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-15545-6

https://doi.org/10.1007/11419822_2
https://doi.org/10.1007/11841197_3
https://doi.org/10.1007/978-3-540-68863-1_3
https://doi.org/10.1007/978-3-540-68863-1_3
https://doi.org/10.1007/BFb0000464
https://doi.org/10.1007/BFb0000464
https://doi.org/10.1007/978-3-319-07602-7_8
https://doi.org/10.1007/978-3-540-39910-0_21
https://doi.org/10.1007/978-3-540-39910-0_21
https://doi.org/10.1007/BFb0036936
https://doi.org/10.1007/978-3-319-15545-6

Process Calculi for Modelling Mobile 385

35. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adap-
tive systems - introduction to the 2nd track edition. In: Margaria and Steffen [60],
pp. 3–12 (2018)

36. De Nicola, R., Katoen, J., Latella, D., Loreti, M., Massink, M.: Model checking
mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)

37. De Nicola, R., et al.: The SCEL language: design, implementation, verification. In:
Wirsing et al. [74], pp. 3–71 (2011)

38. De Nicola, R., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a Markovian
extension of a calculus for services. Electr. Notes Theor. Comput. Sci. 229(4),
11–26 (2009)

39. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Sosl: a service-oriented stochas-
tic logic. In: Wirsing and Hölzl [73], pp. 447–466 (2011)

40. De Nicola, R., Latella, D., Massink, M.: Formal modeling and quantitative analysis
of KLAIM-based mobile systems. In: Haddad, H., Liebrock, L.M., Omicini, A.,
Wainwright, R.L. (eds.) ACM Symposium on Applied Computing (SAC), pp. 428–
435. ACM (2005)

41. De Nicola, R., Loreti, M.: MoMo: a modal logic for reasoning about mobility.
In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2004. LNCS, vol. 3657, pp. 95–119. Springer, Heidelberg (2005). https://doi.org/
10.1007/11561163 5

42. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. TAAS 9(2), 7:1–7:29 (2014)

43. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation (extended
abstract). In: LICS, pp. 118–129 (1990)

44. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A
model checking approach for verifying COWS specifications. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78743-3 17

45. Ferrari, G.L., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification
environment for mobile processes. ACM Trans. Softw. Eng. Methodol. 12(4), 440–
473 (2003)

46. Ferrari, G.L., Gnesi, S., Montanari, U., Raggi, R., Trentanni, G., Tuosto, E.: Ver-
ification on the web of mobile systems. In: Augusto, J.C., Ultes-Nitsche, U. (eds.)
VVEIS 2004, pp. 72–74. INSTICC Press (2004)

47. Ferrari, G.L., Moggi, E., Pugliese, R.: MetaKlaim: a type safe multi-stage language
for global computing. Math. Struct. Comput. Sci. 14(3), 367–395 (2004)

48. Fiadeiro, J.L., Lopes, A.: CommUnity on the move: architectures for distribution
and mobility. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2003. LNCS, vol. 3188, pp. 177–196. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30101-1 8

49. Gelernter, D.: Generative communication in Linda. TOPLAS 7, 80–112 (1985)
50. Guidi, C.: Formalizing languages for service-oriented computing. Ph.D. thesis, Uni-

versita di Bologna (2007)
51. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.

ACM 32(1), 137–161 (1985)
52. Hölzl, M.M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive sys-

tems: state of the art and research challenges. In: Wirsing et al. [69], pp. 1–44
(2008)

53. Knapp, A., Merz, S., Wirsing, M., Zappe, J.: Specification and refinement of mobile
systems in MTLA and mobile UML. Theor. Comput. Sci. 351(2), 184–202 (2006)

https://doi.org/10.1007/11561163_5
https://doi.org/10.1007/11561163_5
https://doi.org/10.1007/978-3-540-78743-3_17
https://doi.org/10.1007/978-3-540-30101-1_8
https://doi.org/10.1007/978-3-540-30101-1_8

386 M. Wirsing and R. Hennicker

54. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

55. Krutisch, R., Meier, P., Wirsing, M.: The AgentComponent approach, combining
agents, and components. In: Schillo, M., Klusch, M., Müller, J., Tianfield, H. (eds.)
MATES 2003. LNCS (LNAI), vol. 2831, pp. 1–12. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39869-1 1

56. Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining orchestration
and conversation in service-oriented computing. In: SEFM 2007, pp. 305–314. IEEE
Computer Society (2007)

57. Latella, D., Massink, M., Baumeister, H., Wirsing, M.: Mobile UML statecharts
with localities. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp.
34–58. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31794-4 3

58. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with
CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM
2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34096-8 4

59. Margaria, T., Steffen, B. (eds.): ISoLA 2014. LNCS, vol. 8802. Springer, Heidelberg
(2014)

60. Margaria, T., Steffen, B. (eds.): ISoLA 2018, Proceedings, Part III. LNCS, vol.
11246. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03424-5

61. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

62. Misra, J., Cook, W.R.: Computation orchestration. Softw. Syst. Model. 6(1), 83–
110 (2007)

63. OASIS: eXtensible Access Control Markup Language (XACML) version 3.0, Jan-
uary 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf.
Accessed 22 Jan 2019

64. Priami, C. (ed.): GC 2003. Lecture Notes in Computer Science, vol. 2874. Springer,
Heidelberg (2003). https://doi.org/10.1007/b94264

65. Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. J. Appl. Log.
10(1), 2–31 (2007)

66. Sestini, F., Hogenhout, W.: A report on the FET global computing initiative.
European Commission, DG Information Society, Future and Emerging Technolo-
gies (2005)

67. ter Beek, M.H.: SENSORIA results applied to the case studies. In: Wirsing and
Hölzl [73], pp. 655–677 (2011)

68. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: a model of service-
oriented computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
269–283. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78739-
6 21

69. Wirsing, M., Banâtre, J., Hölzl, M.M., Rauschmayer, A. (eds.): Software-Intensive
Systems and New Computing Paradigms - Challenges and Visions. LNCS, vol.
5380. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89437-7

70. Wirsing, M., et al.: Semantic-based development of service-oriented systems.
In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006.
LNCS, vol. 4229, pp. 24–45. Springer, Heidelberg (2006). https://doi.org/10.1007/
11888116 3

71. Wirsing, M., et al.: Sensoria process calculi for service-oriented computing. In:
Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp.
30–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75336-0 3

https://doi.org/10.1007/978-3-540-39869-1_1
https://doi.org/10.1007/978-3-540-31794-4_3
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-030-03424-5
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
https://doi.org/10.1007/b94264
https://doi.org/10.1007/978-3-540-78739-6_21
https://doi.org/10.1007/978-3-540-78739-6_21
https://doi.org/10.1007/978-3-540-89437-7
https://doi.org/10.1007/11888116_3
https://doi.org/10.1007/11888116_3
https://doi.org/10.1007/978-3-540-75336-0_3

Process Calculi for Modelling Mobile 387

72. Wirsing, M., De Nicola, R., Hölzl, M.M.: Introduction to ‘rigorous engineering of
autonomic ensembles’- track introduction. In: Margaria and Steffen [59], pp. 96–98
(2014)

73. Wirsing, M., Hölzl, M.M. (eds.): Rigorous Software Engineering for Service-
Oriented Systems - Results of the SENSORIA Project on Software Engineering
for Service-Oriented Computing. LNCS, vol. 6582. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20401-2

74. Wirsing, M., Hölzl, M.M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems - The ASCENS Approach. LNCS, vol. 8998. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-319-16310-9

75. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: engineering auto-
nomic service-component ensembles. In: Beckert, B., Damiani, F., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-35887-6 1

https://doi.org/10.1007/978-3-642-20401-2
https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/978-3-642-35887-6_1

Autonomous Systems – An Architectural
Characterization

Joseph Sifakis(&)

Verimag Laboratory, Univ. Grenoble Alpes, Bâtiment IMAG,
700 avenue Centrale, 38401 St Martin d’Hères, France

joseph.sifakis@imag.fr

Abstract. The concept of autonomy is key to the IoT vision promising
increasing integration of smart services and systems minimizing human inter-
vention. This vision challenges our capability to build complex open trustworthy
autonomous systems. We lack a rigorous common semantic framework for
autonomous systems. It is remarkable that the debate about autonomous vehicles
focuses almost exclusively on AI and learning techniques while it ignores many
other equally important autonomous system design issues.
Autonomous systems involve agents and objects coordinated in some com-

mon environment so that their collective behavior meets a set of global goals.
We propose a general computational model combining a system architecture
model and an agent model. The architecture model allows expression of
dynamic reconfigurable multi-mode coordination between components. The
agent model consists of five interacting modules implementing each one a
characteristic function: Perception, Reflection, Goal management, Planning and
Self-adaptation. It determines a concept of autonomic complexity accounting for
the specific difficulty to build autonomous systems.
We emphasize that the main characteristic of autonomous systems is their

ability to handle knowledge and adaptively respond to environment changes.
We advocate that autonomy should be associated with functionality and not with
specific techniques. Machine learning is essential for autonomy although it can
meet only a small portion of the needs implied by autonomous system design.
We conclude that autonomy is a kind of broad intelligence. Building trust-

worthy and optimal autonomous systems goes far beyond the AI challenge.

Keywords: Autonomous systems � Architecture � Trustworthiness

1 The Concept of Autonomy

The concept of autonomy is key to the IoT vision promising increasing integration of
smart services and systems to achieve global goals such as optimal resource man-
agement and enhanced quality of life, with minimal human intervention.

This vision challenges our capability to build complex open trustworthy autono-
mous systems. In particular, we need an as much as possible, rigorous definition of
autonomy. Is there a general reference model that could provide a basis for evaluating
system autonomy? What are the technical solutions for enhancing a system’s

© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 388–410, 2019.
https://doi.org/10.1007/978-3-030-21485-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_21

autonomy? For each enhancement, is it possible to estimate the implied technical
difficulties and risks? These are very important questions for autonomous systems
engineering.

Currently, the profusion of concepts and terms related to autonomy reflects the lack
of a common semantic framework. It is remarkable that the technical discussion about
autonomous vehicles focuses almost exclusively on AI and learning techniques while it
ignores many other equally important autonomous system design issues.

An autonomous system consists of components of predefined types, agents and
objects sharing some common environment and coordinated so that the collective
behavior of the components meets given global goals.

• Objects are physical dynamic systems. Their states that can change either by agent
actions or internally.

• Agents are reactive systems. They have the ability to monitor the objects and act on
their state, either alone or in some coordinated manner. Each agent pursues specific
goals that may dynamically change depending on the state of its environment.

• The environment provides infrastructure and mechanisms implementing coordina-
tion rules that govern the interaction between components. These determine in
particular the connectivity between agents as well as the observability/
controllability of the objects.

Autonomous system design aims to determine the behavior of the system agents
pursuing each one its own specific goals so that the collective behavior of the system
including its agents and objects meets the global system goals.

We propose a technical definition of autonomy based on a general computational
model consisting of an agent architecture model and a system architecture model:

• The agent architecture model involves five modules, each one dealing with one
fundamental aspect of autonomy: Perception, Refection, Goal management, Plan-
ning and Self-adaptation. It specifies the coordination between these features in
order to achieve autonomous behavior. It also implicitly defines some abstract
partial order relation for comparing the autonomy level of agents pursuing identical
goals.

• The system architecture model specifies coordination between system agents and
their effect on the objects. We need such a model to explicate how an agent
perceives its environment and elaborates its control strategy.

We progressively introduce the concept of autonomy through a comparison
between five automated systems: a thermostat, an automatic train shuttle, a chess-
playing robot, a soccer-playing robot and a robocar.

1.1 Agent Environment

All the above systems automatically perform some mission characterized by their
respective goals. They integrate agents continuously interacting with their environment
through sensors and actuators. The sensors provide stimuli to the agent; the actuators
receive commands from the agent and change accordingly the state of its environment.

Autonomous Systems – An Architectural Characterization 389

All agents receive inputs and produce outputs so that their I/O relation meets their
specific goals. They are real-time controllers monitoring state changes of the controlled
environment and producing adequate responses. Nonetheless, there are significant
differences regarding the complexity and intricacy of their environments and their goals
with associated decision process.

The environment of a thermostat is simply a room and a heating device. Stimuli are
the temperature of the room and the state of the heater.

For the automatic shuttle, the environment includes the cars composing the shuttle
with their equipment and passengers. Stimuli take the form of numeric information
about the position and speed of the cars and the state of various equipment and
peripherals.

For the chess robot, the environment is a chessboard with pawns and the adversary
robot. Stimuli are the configuration of the pawns on the chessboard extracted from
static images provided by the robot camera.

For the soccer robot, the environment consists of all other players, the ball, the
goalposts and lines delimiting regions of the field. Stimuli are extracted in real time
from dynamic images; they include the position and speed of players and ball.

Finally for the robocar, the environment is more involved as it includes vehicles
and obstacles in its vicinity as well as traffic control and communication equipment.
The perceived environment state is the configuration of other robocars and obstacles
with their dynamic attributes and the state of traffic control and communication
equipment. The environment state is built from data provided by different types of
sensors adequately treated and interpreted.

1.2 Agent Goals and Plan Generation

As explained, agents behave as controllers acting on their environment to achieve their
specific goals. The agent environment can be modeled as a state machine with two
types of actions: controllable actions triggered by the agent; and uncontrollable actions
that are internal state changes of the environment. Without getting into technical
details, given a set of goals and an agent environment model, there are methods (semi-
algorithms) for the computation of plans. Figure 1 illustrates their principle for given
environment and goals. In the considered example, the goals require that the generated
plans avoid the state Bad and eventually reach the state Target. The plan generation
method consists in finding a subgraph of the environment state graph that is closed with
respect to uncontrollable actions (dashed arrows) and does not contain state Bad;
furthermore, by adequately triggering controllable actions (solid arrows) the state
Target can be reached.

In general, environment models are infinite and the generated plans for given goals
are infinite trees with alternating controllable and uncontrollable actions. When the
environment model is finite, algorithms are used to compute a maximal controller
including all the plans meeting the goals [1].

For infinite or complex environments, it is not possible to generate an explicit a
controller. The existence of plans cannot be theoretically guaranteed. It depends on the
type of goals and the controllability/observability relations.

390 J. Sifakis

In practice, for given goals, finite-horizon plans are computed on line from the
agent’s environment model. To cope with complexity, heuristics are used as well as
precomputed plan skeletons. Furthermore, adequately choosing at design time the
controllability/observability relation can significantly simplify on line plan generation.
For instance, for simple safety goals e.g. avoiding harmful states, a finite horizon
exploration from the current state may suffice.

Going back to the considered examples, the thermostat has an explicit controller
that is a simple two-mode automaton switching between On and Off modes when
temperature reaches minimal and maximal values, respectively.

The shuttle has a more involved decision process. Usually an explicit controller
ensures safety properties, while commands computed on line ensure adaptation to load
variation and comfort optimization.

For the chess robot, there is no explicitly precomputed controller. Depending on the
current configuration of the chessboard, the robotic agent chooses between a set of
strategies optimizing criteria implied by the rules of the game. Each strategy corre-
sponds to a sub-goal from a hierarchically structured set of goals. To accelerate plan
generation, precomputed knowledge is often used e.g. patterns of plans and associated
methods.

Similarly, for the soccer robot, plans are computed on line from the agent’s
environment model and its current configuration. Here a significant difference is the
dynamic nature of the game as the controller is subject to hard real-time constraints.
The game involves interaction between dynamically changing sets of agents (players).
Although the game rules are well-defined, their dynamicity makes the outcome less
predictable. The decision process generates plans from a dynamically changing envi-
ronment model. It should adequately combine defense and attack strategies to win a
game within 90 min. Knowledge is instrumental for plan generation; it consists in
using precomputed patterns and learning techniques for parameter estimation.

For the robocar, the controller is even much more complex. In contrast to the
previous examples, the environment involves a dynamically and unpredictably
changing number of agents and objects in particular due to agent mobility. While for

Fig. 1. Plan generation from goals and the environment model

Autonomous Systems – An Architectural Characterization 391

chess or soccer agents the gaming rules are static and well-understood, traffic rules are
context-dependent and hard to formalize [2]. Rigorous definition of a coherent set of
individual goals for an ensemble of robocars is a non-trivial problem. Individual goals
of robocars may be conflicting and a global consensus should be achieved in real-time
taking into account multiple safety and optimality requirements.

1.3 A Characterization of Autonomy

The discussed examples illustrate important differences when moving from simple
automation to full autonomy. They also show technical obstacles to overcome in
autonomous systems design. Autonomy is the capacity of an agent to achieve a set of
coordinated goals by its own means (without human intervention) adapting to envi-
ronment variations. It combines five complementary aspects:

• Perception e.g. interpretation of stimuli, removing ambiguity/vagueness from
complex input data and determining relevant information;

• Reflection e.g. building/updating a faithful environment run-time model;
• Goal management e.g. choosing among possible goals the most appropriate ones for

a given configuration of the environment model;
• Planning to achieve chosen goals resulting in actuation of devices that affect the

environment;
• Self-adaptation e.g. the ability to adjust behavior through learning and reasoning

and to change dynamically the goal management and planning processes.

Note that the first two aspects deal with agent’s situational awareness while the
third and the forth aspect deal with adaptation of decision. These four aspects are
orthogonal. Self-adaptation ensures adequacy of decisions based on predefined or on
line acquired knowledge.

The above characterization, which we refine in the following section, gives a clear
insight about the very nature of the concept of autonomy. An autonomous agent needs
to some extent each one of these five functions.

The level of autonomy of a system characterizes the relation between machine-
empowered vs. human-assisted autonomy. Figure 2 illustrates this relation in a five-
dimensional space. Improving autonomy for some aspect consists in replacing human
intervention by autonomous steering. Full autonomy means that the function for each
aspect is machine empowered.

An illustration of this concept is provided by the five autonomy levels for cars
defined by the SAE, shown in Table 1. Level 5 corresponds to full autonomy while
lower levels require increasing assistance of the driver.

Note that a thermostat is an automated agent that is not autonomous as it does not
use anyone of these functions. Its decision process is implemented by an explicit
controller for a fixed set of goals. Furthermore, it has a fully observable/controllable
environment providing stimuli that need no interpretation.

Automated agents are often integrated in complex processes where autonomy is
ensured by human operators. For instance, PLCs ensure production automation while
qualified staff performs supervision and overall coordination.

392 J. Sifakis

2 A Computational Model for Autonomous Systems

2.1 A System Architecture Model

In order explain how an autonomous agent behaves, we need an adequate holistic
model of its environment including other agents and objects. The model should in
particular, propose concepts and principles accounting for the complex structure of the
agent’s environment and intricate coordination mechanisms.

Fig. 2. Human assisted vs. machine empowered autonomy.

Table 1. SAE autonomy levels (https://en.wikipedia.org/wiki/Self-driving_car)

SAE autonomy levels

Level 0 No automation
Level 1 Driver assistance required (“hands on”)

The driver still needs to maintain full situational awareness and control of the
vehicle e.g. cruise control

Level 2 Partial automation option available (“hands off”)
Autopilot manages both speed and steering under certain conditions, e.g. highway
driving

Level 3 Conditional Automation (“eyes off”)
The car, rather than the driver, takes over actively monitoring the environment
when the system is engaged. However, human drivers must be prepared to respond
to a “request to intervene”

Level 4 High automation (“mind off”)
Self driving is supported only in limited areas (geofenced) or under special
circumstances, like traffic jams

Level 5 Full automation (“steering wheel optional”)
No human intervention is required e.g. a robotic taxi

Autonomous Systems – An Architectural Characterization 393

https://en.wikipedia.org/wiki/Self-driving_car

We succinctly present an expressive architecture model developed with autonomy
in mind. The model is inspired from the BIP coordination language. It has been studied
and implemented in two formalisms, one declarative [3] and another imperative [4, 5].

As already explained, an autonomous system involves two kinds of components:
agents and objects. The agents have computational capabilities. They can change the
states of the objects and coordinate to enforce global system goals.

Components are instances of predefined types of agents and objects:

• An agent type is a computing system characterizing a mission or a service, e.g.
Player, Arbiter, Sender, etc. Its semantics is a transition relation labeled with events
and associated functions. Functions are triggered by the events that are atomic state
changes involving other components, objects or agents.

• An object type is a dynamic system e.g. electromechanical system, whose state can
change through interaction with other components. Note that some objects may be
passive such as a pawn or a static obstacle.

We consider that a system model is a collection of architecture motifs, simply called
motifs.

A motif is a “world” where live dynamically changing sets of agents and objects. It
is equipped with a map represented by a graph specified by sets of nodes and edges.
Nodes represent abstract coordinates in some reference space. The connectivity relation
between the nodes of a map may admit a physical or a logical interpretation. For a lift
or a shuttle, the map is a simple linear structure: the nodes are floors or stations,
respectively. In the chess game, the map is an array representing the chessboard.

The position of an agent a or of an object o is given by a partial address function@:
@(a) and @(o) is the node of the map where a and o are located, respectively.

For example, an address function can define the distribution of pawns over the
chessboard. The function changes when pawns move; it is undefined for pawns not
placed on the board. For the soccer game, the map is a three-dimensional array rep-
resenting the field with some granularity grain. The only mobile object is the ball while
all the agents are mobile.

Finally, for robocars we need several maps to model the system. Figure 3 depicts a
model consisting of two motifs with their corresponding maps. A Road Chunk Map
accounts for the spatial configuration of robocars and of relevant objects, typically
obstacles. Other logical maps are necessary to specify coordination structure between
robocars; for instance, to form platoons or to describe connectivity of communication
infrastructure used by cars.

The dynamics of the system described by a motif is a transition relation between
configurations. A configuration is the set of the states of its components as well as their
corresponding addresses on the map. Configurations change when events occur as the
result of agent coordination: by execution of interactions rules or of configuration rules.

Interaction Rules. An interaction is an atomic state change of a non-empty set of
synchronizing agents that may also affect the state of objects. When the set is a
singleton, the interaction is simply an action. We use rules in the form of guarded
commands to describe interactions: the guard involves state variables of the synchro-
nizing components and the command is a sequence of operations on their states. The

394 J. Sifakis

rules are parametric which requires iteration over types of components. For example
the rule

for all a, a’:vehicle, if [distance(@(a),@(a’))<l] then exchange(a.speed, a’.speed).

says that when two vehicles a and a’ are close enough they exchange their speeds.
The model provides primitives encompassing strong or weak synchronization and

interactions of arbitrary arity.

Configuration Rules. Configuration rules allow the expression of three independent
types of dynamism: component dynamism, component mobility, and map dynamism.
They are guarded commands consisting of guards (conditions on state variables of
components) and sequences of specific reconfiguration operations.

Typical operations are create/delete for components and add/remove for elements
of maps. For instance, the operation create(a:messenger,@(a)=n) creates an agent
named a of type messenger at address n. The operation delete(o:pawn) removes the
pawn named o.

Agent mobility is modeled by rules modifying the address function of components.
For example, the execution of the rule

for all a:mobile if @(a)=n and @-1(n+1)=empty then @(a):=n+1

consists in moving forward agents of type mobile by one space of the map.
The proposed model is minimal and expressive. Each motif is a dynamic recon-

figurable architecture, an ensemble of agents and objects governed by specific coor-
dination rules.

Note that an agent may belong to more than one motif. Furthermore, components
can migrate from one motif to another using reconfiguration commands.

For instance, the model of a soccer game involves at least two motifs.
The Attack motif ensures coordination rules that aim at getting inside the adver-

sary’s defense and finally score a goal. The Defense motif ensures coordination rules
that aim at slowing down an offense to disrupt the pace and/or numerical advantage of

Fig. 3. Modeling principle for robocars with two motifs

Autonomous Systems – An Architectural Characterization 395

an attack and finally get possession of the ball. Players can dynamically migrate from
one motif to the other.

The model for an automated highway involves several motifs. All vehicles
belonging to a Road Chunk motif are subject to general traffic coordination rules.
A Platoon motif groups and coordinates an ensemble of vehicles cruising at the same
speed and closely following a leader vehicle. An Overtake motif involves an overtaking
vehicle and vehicles moving in the same direction in its vicinity. Finally, a Commu-
nication motif groups vehicles sharing a common communication infrastructure.

2.2 A Computational Model for Agents

We present the agent computational model that puts emphasis on architectural aspects
following the same line as [7]. It consists of four main modules and a Repository as
depicted in Fig. 4.

The Knowledge Repository. The Knowledge Repository contains different kinds of
knowledge used by the other modules for (1) the interpretation of sensory information;
(2) building the environment model of the agent; (3) goal management and subsequent
goal planning.

Some of the Repository knowledge is developed at design time and some is pro-
duced and stored at run time.

Design time knowledge specifies basic components of the agent’s environment,
their main observability/controllability features as well as key properties and methods
related to system goals. It includes in particular:

• A list of all the relevant types of agents and objects and their corresponding
behavioral specification with the admitted coordination patterns e.g. interaction
types and reconfiguration commands;

Fig. 4. The general architecture of the computational model for agents

396 J. Sifakis

• A list of predefined maps and coordination patterns used to build the agent’s
environment model;

• A list of the goals pursued by the agent as sets of properties of two types: (1) critical
properties requiring that some condition is never violated; (2) best-effort properties
dealing with resource management e.g. finding tradeoffs between performance and
resource utilization.

• A list of methods used to enrich the knowledge about the environment model and so
to produce additional knowledge at run time e.g. monitoring and learning
techniques.

Run time knowledge is generated on line from monitors, learning and analysis
techniques. It includes in particular:

• Properties of the agent model that may be generated by application of analysis
techniques or inferred by application of reasoning techniques;

• Knowledge produced by monitors of the agent’s behavior e.g. detecting failures or
intrusion;

• Knowledge produced by application of learning techniques, in particular to remove
ambiguity about the environment configuration or to estimate parameters charac-
terizing the dynamic behavior of the environment e.g. worst-case and average
execution times.

This presentation leaves open important questions about the nature of knowledge
and the different forms it can take [2]. We discuss below some issues relevant for agent
design.

We consider that knowledge is “truthful” information that is used in some specific
context to understand/predict a situation or to solve a problem. Truthfulness cannot
always be asserted in a rigorous manner. Mathematical knowledge has definitely the
highest degree of truthfulness, e.g. knowledge extracted from programs using analysis
tools. At the other extreme, empirical knowledge although not theoretically substan-
tiated, proves to be very useful in practice. The most widely used knowledge is
empirical e.g. common sense knowledge, but also knowledge from machine learning.

Additionally, knowledge may be declarative or procedural, regarding the form it can
take.

Declarative knowledge is a relation (property) involving entities of a domain. In the
Repository, can be stored: (1) logic formulas inferred from a set of axioms; (2) valid
system properties extracted from a system model e.g. system invariants; (3) architecture
patterns enforcing given properties.

Procedural knowledge takes the form of an executable description such as algo-
rithms, behavioral description of components and various analysis techniques.

The Knowledge Repository contains all these types knowledge. Utilizing them
effectively is essential for ensuring agent’s self-adaptation and autonomy.

The Perception Module. The Perception module extracts relevant information from
the various stimuli provided by sensors. For this purpose, it makes use of learning
techniques or of analysis and recognition processes. The extracted information is linked
to knowledge of the Repository. It concerns

Autonomous Systems – An Architectural Characterization 397

• the type and possibly the identity of each sensed agent or object;
• the state of the so identified components;
• the type of the external environment characterized as a set of motifs with maps and

associated coordination features.

For instance, the Perception module of a soccer agent provides, for each identified
component of the environment, its position and speed in the field map. The Perception
module of a robocar provides the types of the components in the vicinity with their
associated attributes. Some attributes connect the components to motifs and their
corresponding maps.

The Reflection Module. The Reflection module uses information provided by the
Perception module in order to build/update a model of the agent’s environment. For
some agents, the environment model - number of components, map, coordination rules -
does not change over lifetime e.g. chessboard robot, soccer robot. Thus, sensory
information determines mainly the state of components e.g. their position in the maps
and interactions.

Agents with dynamically changing environment e.g. robocars, are initially equipped
with some environment model that is dynamically updated e.g. by creating/deleting
motifs. For this to be feasible, the stimuli should provide information about architec-
tural changes of the environment. Furthermore, the detected changes should correspond
to patterns stored in the Knowledge Repository.

Reflection module extensively uses design-time knowledge of the Repository to
build a complete behavioral model of its perceived environment. Nonetheless, to
preserve faithfulness and freshness of the model, stimuli interpretation should be
precise enough and performed within acceptable delay.

Performance of this module is critical for mobile agents subject to real-time con-
straints. How fast the agent’s environment model can track changes of the real envi-
ronment? Additionally, for distributed multi-agents systems, there is an inherent
uncertainty about the global system states and thus a risk of discrepancy between
environment models of different agents [7].

Note that each agent builds a partial model of the system environment reflecting its
knowledge about its “neighborhood” that can be observed. In a distributed system,
there is no global model of the system environment.

The Decision Module. The Decision module is decomposed into two cooperating
submodules: a Goal Manager handling the actual agent’s goals and a Planner gener-
ating plans that implement particular goals.

The module manages a set of goals both critical and best effort. It assigns higher
priority to critical goals according to their importance.

Often goal management boils down to solving an optimization problem. It consists
in translating goals into utility function policies: a goal is characterized as the desired
set of feasible states for which the objective function is optimized subject to a set of
constraints [9].

For a selected goal, the Planner computes from the environment model a corre-
sponding plan. To cope with the exploding complexity of the planning process, various
heuristics and precomputed patterns from the Knowledge Repository may be used.

398 J. Sifakis

The generated plans involve commands for interaction with other agents or
reconfiguration of their environment provided by the system architecture model. The
allowed coordination patterns with other components of the environment are specified
in their definition stored in the Knowledge Repository. Note that interactions may
involve exchange of knowledge between interacting agents e.g. changing methods or
goals.

The Self-adaption Module. The Self-adaptation module supervises and coordinates
all the other modules. It continuously reassesses the coherency of the exchanged
information, creates new knowledge and provides directives to the Goal manager.

The module applies existing knowledge or generates new knowledge by combining
reasoning and run-time analysis techniques to detect significant changes in the envi-
ronment that require responsive adaptation. For instance, it applies monitoring or
analysis techniques to the environment model to detect critical situations; it also can
use learning techniques to estimate parameters or detect abnormal situations.

The adaptation directives to the Goal Manager concern:

(1) Change of parameters affecting the choice of the managed goals, especially
estimates of dynamic characteristics of the environment components;

(2) Change of the set of the managed goals (adding or removing a goal), in response
to some exceptional event in the environment or to an explicit requirement
through interaction with another agent.

3 Autonomous System Design Complexity Issues

An interesting technical question is how to adequately choose the autonomy level for
risk-benefit optimization in system design. Four main factors determine this choice.

The first is the required degree of trustworthiness. For critical complex systems,
semi-autonomy seems to be the realistic choice under the current state of the art e.g.
ADAS cars.

The other factors are three independent types of complexity discussed below:
autonomic complexity, design complexity and implementation complexity.

3.1 Autonomic Complexity

We need a concept of complexity accounting for the specific difficulty to build
autonomous systems. The following factors related to the fundamental aspects of
autonomy, capture autonomic complexity.

1. Complexity of perception characterizes the difficulty to interpret stimuli provided
by the environment and to timely generate corresponding inputs for the agent
environment model. It has various sources such as stimuli ambiguity (admitting
different interpretations) or vagueness (fuzzy or noisy stimuli). Additionally,
complexity is aggravated with the volume of stimuli data to be analyzed in order to
extract relevant input information.

Autonomous Systems – An Architectural Characterization 399

2. Lack of observability/controllability which implies partial knowledge of the agent’s
environment and consequently limitations for building a faithful run time model by
the Reflection module. This affects the ability to build plans and act on the
environment.

3. Complexity of goal management which is the complexity of the process of choosing
amongst a set of goals a maximal subset of compatible goals characterizing a
strategy for which a consistent plan is generated. The selection process may involve
both qualitative criteria such as priorities and quantitative criteria such as opti-
mization of physical quantities.

4. Complexity of planning which directly depends on the type of goals and the
complexity of the agent’s environment model. As explained goals may be as simple
as non-violation of a constraint and more complicated such as reachability of a
condition or achieving optimality over a given time period.

5. Complexity of adaptation which is directly related to uncertainty about the agent’s
environment. Sources of uncertainty are multiple, including time-varying load,
dynamic change due to mobility, bursty events, and most critical events such as
failures and attacks. The Self-adaptation module generates objectives to cope with
such situations involving imperfect knowledge and lack of predictability [2, 5]. This
can be achieved to some extent, using knowledge, e.g. [8].

Obviously, reduced observability is a source of uncertainty. Nonetheless, uncer-
tainty is not completely resolved by simply enhancing observability [2].

Note that for agents not directly interacting with a physical environment, autonomy
simply means to cope with the complexity of goals and limited uncertainty e.g. an
encoder adapting to varying load to avoid frame skipping. For a chess robot, only
complexity of goals and planning are relevant; its environment is fully
observable/controllable without uncertainty and the stimuli are non-ambiguous. For
robocars, all types of complexity are relevant.

3.2 Design Complexity and Its Relationship to Autonomy

System design complexity characterizes the difficulty to build a system out of com-
ponents – autonomous or not. It is conceptualized in a two-dimensional space [2].

One dimension represents reactive complexity [10] of the agents constituting a
system. The other dimension represents the complexity of the architectures used to
coordinate the agents.

Although design complexity is independent from autonomic complexity, it is
interesting to understand how the demand for autonomy affects system design choices.

Reactive Complexity. Reactive complexity characterizes the intricacy of the inter-
action between an agent and its environment. It is independent from space complexity
or time complexity measuring the quantity of computational resources needed by an
agent. We discuss below a classification of agents according to their reactive com-
plexity (Fig. 5).

• The simplest agents are transformational agents where the relation of the input to
the output is sufficient to characterize their behavior. Computation is performed in

400 J. Sifakis

batch mode without reference to any operating environment. Such agents are often
software systems oblivious to real-time constraints, with simple well-defined
environments. Adaptation consists in using precomputed knowledge to cope with
inherent complexity of decision problems, e.g. intelligent resource orchestration in
data centers, intelligent personal assistant, game playing agent.

• Streaming agents compute functions on streams of data. For a given input stream
of values, they compute a corresponding output stream. The output value at some
time t depends on the history of input values received by t. The goals for streamers
deal with functional correctness and specific time-dependent properties such as
latency. Data-flow systems are usually composed of streamers. Adaptation is
essential to cope with load unpredictability and meet latency constraints, see for
example [11].

• Embedded agents continuously interact with a physical environment to ensure
global properties. They are mixed HW/SW systems where real-time behavior and
dynamic properties are essential for correctness. Autonomous behavior is required
when their mission involves high-level goals and complex environments, in par-
ticular to adaptively manage computational resources and meet critical goals.
Embedded agents are integrated in industrial systems, transport systems and all
kinds of devices.

Note that the model of embedded agents should account for the behavior of their
internal environment including computational resources (see discussion below).

• A cyber physical agent is an embedded agent integrating in its internal environ-
ment objects that are exclusively under its control. Its behavior involves both dis-
crete and continuous variables representing the state of the integrated objects.

The environment model of such an agent should be refined to distinguish between
internal and external environment as shown in Fig. 6. The Perception module gets
sensory information from both the external and the internal environment model. The
Reflection module builds/updates the two models corresponding to the two environ-
ments. The decision process is applied to the product of the environment models to
generate plans with commands acting on both environments.

Fig. 5. Classification of agents according to their reactive complexity

Autonomous Systems – An Architectural Characterization 401

Cyber physical systems seek a tight integration between computers and their
physical environment. They are essential for building complex autonomous systems
e.g. self-driving cars.

Architecture Complexity. The proposed system architecture model provides a basis
for classifying system architectures according to their degree of dynamism, from static
to self-organizing architectures as shown in Fig. 7.

We enumerate some representative cases below for increasing complexity of
coordination.

1. Static architectures involve a given number of agents and objects, with fixed
coordinates e.g. a smart building with fixed microcontrollers and electromechanical
equipment.

Fig. 6. Computational model for cyber physical agent

Fig. 7. Complexity variation with respect to architecture, goals and implementation

402 J. Sifakis

2. Parametric architectures can have arbitrary initially known numbers of “plug-
gable” components for fixed coordination patterns e.g. token ring architecture, an
array computer.

3. Dynamic architectures are parametric architectures with dynamic creation/deletion
of agents or objects, e.g. array architecture for the Game of Life, client-server
architecture.

4. Mobile architectures are dynamic architectures where also the coordinates of
objects and agents can change dynamically, e.g. swarm robotic system. Addition-
ally, they may involve dynamic change of maps when mobile agents explore a
space and progressively build a model of their environment.

5. Self-organizing architectures are mobile architectures with many dynamically
changing motifs e.g. for robocars, soccer playing robots. Self-organization reflects
the ability of agents to migrate between motifs that are a kind of coordination
modes. It is essential for adaption to changing system dynamics. The coordination
rules of each motif correspond to sets of goals that must be met by the system.

All these types of architectures can be formalized as operators taking as arguments
arbitrary numbers of instances of agent and objects types [3–5]. We badly need theory
for studying their properties in a compositional manner.

Knowing the properties of the types of objects and agents involved, is it possible to
infer global system properties? A more ambitious avenue is to develop theory for
correctness by construction [6]: how to combine basic architecture patterns with well-
established properties in order to build complex architectures that preserve the prop-
erties. These are largely open hard problems that urgently need exploration.

Figure 8 illustrates design complexity for different types of systems depending on
the reactive complexity of their agents and their architectural complexity. Note the
separation between services and systems. Services use streamers and transformational
agents. IoT systems with advanced autonomy features, require mobile or self-
organizing architectures and integrate embedded or cyber physical agents. Self-
organization is important for such systems with many conflicting goals. Nonetheless,
contrary to common opinion, self-organization is not an intrinsic property of autono-
mous systems. An ordinary distributed system involving agents with explicit con-
trollers communicating by exchange of non-ambiguous messages is self-organizing if it
has multiple coordination modes. Similar arguments are applicable for other “self”-
prefixed properties commonly considered as characteristic properties of autonomous
systems.

3.3 Implementation Complexity

Implementation is the process that leads to the realization of the designed system
model. The latter can admit different implementations depending on the available
computational resources and their organization. In rigorous approaches, the outcome of
the implementation process is another model accounting for the physical distribution of
agents and features of infrastructure implementing the model coordination mechanisms
[12].

Autonomous Systems – An Architectural Characterization 403

We discuss below main choices for the implementation architecture depending on
how/where the decisions are made and how/where the information is shared between
the coordinating agents. We distinguish three main types of implementation
architecture.

1. Centralized architecture where the agents are not geographically distributed. They
coordinate through a shared memory that stores the data of a common Knowledge
Repository as well as the data representing the state of a common environment
model. In other words, each agent directly modifies/reads a shared data structure
representing the motifs with their maps and the associated addressing functions.
Such an implementation presents the advantage of the overall coherency of decision
and coordination. Nonetheless, access conflicts may affect performance. A typical
example is a blackboard architecture equipped with a common knowledge base,
iteratively updated by agents starting with a problem specification and ending with a
solution.

2. Decentralized architecture where agents are geographically distributed and there
is no central storage. Every agent makes decisions based on local knowledge and
the resulting system behavior is the aggregate response. Nonetheless, agents can
coordinate through local memory depending on the topology of the environment
maps. A typical example are stigmergic systems where mobile independent agents
e.g. ants, robots, use their common environment to for coordination purposes [13].

3. Distributed architecture where there are no shared data storages. Each agent
handles its own data and makes decisions according to its own goals. Coordination
between agents is exclusively through asynchronous message passing. A key issue
for such systems is coherency of coordination between components to achieve
global goals. These are an emerging property of the collective behavior of the
agents.

Fig. 8. Design complexity

404 J. Sifakis

Distributed autonomous agent systems are today a vast and active research field
because of multiple applications in various domains from blockchain protocols to
complex autonomous transportation systems.

4 Trustworthy Autonomous Systems – From Correctness
at Design Time to Autonomic Correctness

Systems Engineering comes to a turning point moving from small-size centralized non-
evolvable automated systems with predictable environments, to large distributed
evolvable autonomous systems with non-predicable dynamically changing
environments.

Is it possible to build trustworthy autonomous systems? As autonomous systems
are often critical, this is the object of a considerable and sometimes heated debate [15].
As explained in [2], the trend for autonomous systems renders obsolete current critical
systems engineering techniques and standards, such as ISO26262 and DO178B,
requiring conclusive trustworthiness evidence based on some rigorous design
methodology.

It is remarkable that currently cars with autonomy features are self-certified by their
manufacturers, contrary to most industrial products that are certified by independent
authorities. Furthermore, some carmakers consider that successfully passing an extre-
mely large number of test cases is a sufficient evidence of trustworthiness.

Trustworthiness is a transversal design issue. It is not limited to purely functional
correctness. A system is deemed trustworthy if it behaves as expected despite design
errors, hardware failures and any kind of harmful interaction with its human and
physical environment, including misuse, attacks, disturbances and any kind of unpre-
dictable events [6].

We briefly discuss how the rigorous model-based approach for guaranteeing
trustworthiness can be in principle, extended to autonomous systems and the implied
technical difficulties.

Currently, model-based approaches for achieving trustworthiness involve two
steps.

The first step aims at providing guarantees that some abstract system model
representing the system’s nominal behavior satisfies critical system goals. The nominal
behavior model usually assumes that system environment is fully reliable and to some
extent predictable. The second step deals with possible violations of these assumptions
for a given implementation.

Building autonomous system models accounting for nominal behavior requires
strong expertise on both modeling and algorithmic aspects. Algorithms describe how
individual goals of agents contribute to achieving global system goals. Their design is a
non-trivial problem because they are distributed or decentralized. Furthermore, they
pursue jointly critical and best effort goals for dynamically changing environments.
They allow the management of critical resources (space, time, memory, energy) by
optimizing performance and additionally respecting smoothness conditions. Typical
examples are collision avoidance algorithms for vehicles (cars, aircraft) that manage the
available space respecting requirements on speed and avoiding collision with obstacles.

Autonomous Systems – An Architectural Characterization 405

Other examples are mixed criticality systems involving critical and non-critical
features.

Modeling deals with agent nominal behavior description and coordination. Agent
nominal behavior assumes that both the sensors and the Perception function are
flawless and that sensory information is correctly interpreted into predefined concepts.
It focuses on Reflection and Decision and in particular on their dynamic aspects.

Following our approach, the coordination is described as the composition of motifs
each one corresponding to a system mode and solving a specific coordination problem.
Model correctness can be inferred in principle, by proving that the motifs are correct
with respect to their coordination goals and that they are composable [6].

Providing guarantees for complex autonomous systems faces several limitations
[2]. One is the decomposition and formalization of high-level goals in terms of concrete
requirements verifiable on the system behavioral model. A second limitation concerns
our ability to build faithful system models, especially when they involve cyber physical
components. The third limitation is that machine-learning techniques do not lend
themselves to behavioral modeling and should be treated as “black boxes”.

The second step aims at ensuring trustworthiness for a given implementation
taking into account deviations from nominal behavior e.g. possible harmful events such
as failures and security threats. It starts from the characterization of trustworthy states
for nominal behavior provided by the first step (Fig. 9). It involves a more or less
exhaustive analysis to identify all kind of harmful events and their possible effect.
Then, for each harmful event, specific techniques are used to ensure resilience e.g.
typically redundancy-based techniques. This practically means that the occurrence of a
single harmful event does not (immediately) compromise system trustworthiness. It
leads to some non-fatal state from which using DIR (Detection, Isolation, Recovery)
mechanisms it is possible to bring the system back to a trustworthy state [14].

This approach has been successfully applied to small, centralized critical systems. It
is costly and leads to overprovisioned systems [6] as it consists in estimating inde-
pendently, for each type of harmful event and associated DIR mechanism, worst-case

Fig. 9. Recovery from non-fatal states

406 J. Sifakis

situations and statically reserving the needed resources to cope with them. Its appli-
cation to autonomous systems is even more difficult as the characterization of the effect
of harmful events depends on complex environmental conditions. Such a characteri-
zation cannot be enumerative and exhaustive; it should be symbolic and conservative,
the result of a global model-based analysis.

Complexity of environmental conditions is illustrated by the pre-crash failure
typology shown in Fig. 10. For example, “Vehicle failure” needs further detailed and
complex analysis to identify recovery policies, depending on the conditions under
which this event occurs.

For autonomous systems, a key idea is to replace the individual DIR mechanisms
developed at design time, by adaptive mechanisms managing system resources globally
to achieve, first of all critical goals and plan best-effort goals according to resource
availability. Such an approach would avoid overprovisioning of traditional approaches
and would close the existing gap between critical and best-effort systems engineering
[6].

Moving from correctness at design time to autonomic correctness requires not only
cutting-edge theory but also finding adequate tradeoffs between quality of control and
performance. The adaptive DIR process involves complex decision methods that may
affect the ability to react promptly for timely recovery.

To conclude, the proposed computational model for autonomous systems can
provide a basis for studying model-based autonomous system design. Nonetheless, we
are far from ensuring that the conditions are in place to develop rigorous design flows.

Fig. 10. Pre-crash scenario typology covering 99.4% of all light-vehicle crashes for 5,942,000
cases, DOT HS 810 767, April 2017

Autonomous Systems – An Architectural Characterization 407

5 Discussion

The main characteristic of autonomous systems is their ability to handle knowledge
about their situation and adaptively respond to environment changes. The identified
aspects of autonomy have some similarity with types of awareness exhibited by human
mind [7].

Closing the gap between artificial and human autonomy encounters several difficult
to overcome barriers.

A first barrier is that human mind understands goals in terms of high-level concepts.
It is not trivial to link concepts to massive information collected by sensors or to
commands of actuators. The Perception process should be robust and reliable for
dynamically changing environment conditions.

Similarly, there is a big distance between directives such as “deviate from the
reference trajectory to avoid the obstacle” and their implementation in terms of con-
crete goals from which corresponding plans are effectively computed [2].

A second barrier is that situation awareness of humans is largely rooted in common
sense reasoning. Our mind has built and continuously maintains since our birth, a
complex semantic model of both our external and internal environments. It is practi-
cally impossible to elicit all the knowledge encompassed by such a model. No need to
understand Newton’s laws to expect that apple fall out of trees, that parents are older
than their children are, etc. The important question is how close computers can get to a
solution of this problem.

As humans have innate knowledge, we can equip an agent at design time with built-
in knowledge and a faithful model of its initial environment. Then the agent’s
Reflection function should: (1) have access to a huge Knowledge Repository involving
all common concepts and their relations; and (2) be able to consistently update the
environment model by matching the perceived information to predefined knowledge
patterns.

A third barrier for computers is matching human self-adaptation and the capacity:
to supervise the state of acquired knowledge; to understand never encountered situa-
tions; and to create new goals. Goal creation and handling is a grand challenge of
autonomy. How to assign individual goals to agents so that they all together concur to
the achievement of given global system goals?

The paper provides a technical characterization of autonomy as the combination of
five basic and independent features. It clearly separates aspects that are essential for
autonomic behavior from other general systems engineering aspects. In that respect, it
differs from other approaches using a large number of poorly understood “self”-pre-
fixed terms: Self-configuration, Self-healing, Self-optimization, Self-protection, Self-
regulation, Self-learning, Self-awareness, Self-organization, Self-creation, Self-
management, Self-description [16–18]. Such characterizations based on technically
non-substantiated terms obscure the debate about the very nature of autonomy. It
should be noticed that any ordinary fault-tolerant system with massive redundancy is to
some extent Self-Configuring, Self-Healing and Self-Protecting.

A main conclusion is that autonomy should be associated with functionality and not
with specific techniques. Machine learning is essential for removing ambiguity from

408 J. Sifakis

complex stimuli and coping with uncertainty of unpredictable environments.
Nonetheless, it can be used to meet only a small portion of the needs implied by
autonomous system design. Furthermore, it is not the only way to build perceptors and
controllers.

Autonomy is a kind of broad intelligence. Intelligence is not just automation of
decisions even if this requires the computation of strategies with exploding complexity.
Our characterization of autonomy as the combination of five different types of abilities
shows a big difference between an autonomous vehicle and a game playing robot. The
situation awareness required for the robot is minimal. The stimuli and the environment
models are trivial to interpret and build. The rules of the game are well-understood and
can be directly related to goals.

Computers would exhibit intelligence when they can handle knowledge (create and
use knowledge) in order to cope with the ever changing reality, as humans do. Building
trustworthy and optimal autonomous systems goes for far beyond the current AI
challenge.

References

1. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems.
In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0_76

2. Sifakis, J.: System design in the era of IoT—meeting the autonomy challenge, invited paper.
In: MetRiD 2018, EPTCS, vol. 272, pp. 1–22 (2018). https://doi.org/10.4204/eptcs.272.1

3. De Nicola, R., Maggi, A., Sifakis, J.: DReAM: dynamic reconfigurable architecture
modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 13–31.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5_2

4. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises in programming
dynamic reconfigurable systems: methodology and solution in DR-BIP. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 304–320. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03424-5_20

5. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming dynamic reconfigurable
systems. In: FACS 2018, pp. 118–136 (2018)

6. Sifakis, J.: Rigorous system design. Found. Trends Electron. Des. Autom. 6(4), 293–362
(2012)

7. Lewis, P.R., et al.: Architectural aspects of self-aware and self-expressive computing
systems: from psychology to engineering. IEEE Comput. 48(8), 62–70 (2015)

8. Bensalem, S., Bozga, M., Quilbeuf, J., Sifakis, J.: Optimized distributed implementation of
multiparty interactions with restriction. Sci. Comput. Program. 98(2), 293–316 (2015)

9. Maggio, M., et al.: Self-adaptation for individual self-aware computing systems. In: Kounev,
S., Kephart, J., Milenkoski, A., Zhu, X. (eds.) Self-Aware Computing Systems, pp. 375–399.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47474-8_12

10. Efroni, S., Harel, D., Cohen, I.R.: Reactive animation: realistic modeling of complex
dynamic systems. Computer 38, 38–47 (2005)

11. Combaz, J., Fernandez, J.-C., Sifakis, J., Strus, L.: Symbolic quality control for multimedia
applications. Real-Time J. 40(1), 1–43 (2008)

12. Basu, A., et al.: Rigorous component-based system design using the BIP framework. IEEE
Softw. 28(3), 41–48 (2011)

Autonomous Systems – An Architectural Characterization 409

http://dx.doi.org/10.1007/3-540-59042-0_76
http://dx.doi.org/10.4204/eptcs.272.1
http://dx.doi.org/10.1007/978-3-030-03424-5_2
http://dx.doi.org/10.1007/978-3-030-03424-5_20
http://dx.doi.org/10.1007/978-3-319-47474-8_12

13. Nouyan, S., Gross, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-organized
robot colonies. IEEE Trans. Evol. Comput. 13(4), 695–711 (2009)

14. Zolghadri, A.: Advanced model-based FDIR techniques for aerospace systems: today
challenges and opportunities. Progr. Aerosp. Sci. 53, 18–29 (2012)

15. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and scalable self-
driving cars. Mobileye (2017). arXiv:1708.06374v5 [cs.RO]

16. Wikipedia. https://en.wikipedia.org/wiki/Autonomic_computing
17. Kephart, J., Walsh, W.: An artificial intelligence perspective on autonomic computing

policies. In: Proceedings of the Fifth IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY 2004) (2004)

18. An architectural blueprint for autonomic computing. White paper, 3rd edn. IBM, June 2005

410 J. Sifakis

http://arxiv.org/abs/1708.06374v5
https://en.wikipedia.org/wiki/Autonomic_computing

Fluidware: An Approach Towards
Adaptive and Scalable Programming

of the IoT

Giancarlo Fortino1, Barbara Re2, Mirko Viroli3(B), and Franco Zambonelli4

1 Università della Calabria, Rende, Italy
giancarlo.fortino@unical.it

2 Università di Camerino, Camerino, Italy
barbara.re@unicam.it

3 Alma Mater Studiorum – Università di Bologna, Cesena, Italy
mirko.viroli@unibo.it

4 Università di Modena e Reggio Emilia, Modena, Italy
franco.zambonelli@unimore.it

Abstract. The objective of this paper is to present the vision and
structure of Fluidware, an approach towards an innovative program-
ming model to ease the development of flexible and robust large-scale
IoT services and applications. The key distinctive idea of Fluidware is to
abstract collectives of devices of the IoT fabric as sources, digesters, and
targets of distributed “flows” of contextualized events, carrying informa-
tion about data produced and actuating commands. Accordingly, pro-
gramming of services and applications relies on declarative specification
of “funnel processes” to channel, elaborate, and re-direct such flows in a
fully-distributed way, as a means to coordinate the activities of devices
and realize services and applications. The potential applicability of
Fluidware and its expected advantages are exemplified via a case study
scenario in the area of ambient assisted living.

Keywords: Internet of Things · Distributed programming ·
Middleware · Adaptive systems

1 Introduction

This article focuses on future “Internet of Things” (IoT) environments in which
our everyday objects, and our domestic and urban environments, will be densely
enriched with sensing, computational, and actuating capabilities [4,29]. Such
“IoT fabric” can potentially become a very powerful infrastructure that, if prop-
erly programmed, can provide a variety of smart IoT services and IoT appli-
cations (intended as coherent suites of services): they can work both at the
personal and at the community level, and can help us better interact with the
cyber-physical world and the objects in it. However, unveiling the true poten-
tials of large-scale IoT deployments requires novel and dedicated models and
programming abstractions [7,44].
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 411–427, 2019.
https://doi.org/10.1007/978-3-030-21485-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_22

412 G. Fortino et al.

Programming services and applications for the IoT fabric may involve the
composition and coordination of a multitude of heterogeneous devices, possi-
bly dispersed over a wide and/or articulated area—e.g., from smart houses,
buildings and hospitals, to whole factories or even smart cities. However, this
scenario embeds many sources of complexity: the potential high number and
density of deployed devices; the high frequency of computational events to occur
and be managed; the need to self-adapt to short-/medium-/long-term changes
and faults; the need to operate on top of a dynamically evolving infrastruc-
ture comprising IoT/edge/cloud devices and resources; the need of promptly
(often in quasi real-time) reacting to sophisticated space-time situations; and the
potential of running complex, goal-oriented orchestrations of distributed activi-
ties across devices of heterogeneous computational power (from tiny devices to
cloud servers).

The above issues can make it very hard to develop and deploy dependable
services and applications exhibiting predictable behavior, especially when using
traditional service composition approaches that would require explicit handling
of a multitude of possible exceptions and alternate scenarios. Accordingly, there
is compulsory need of novel programming approaches that make it possible to
abstract from mundane complexity details and rather rely on high-level con-
structs enabling to express the potentials of the IoT fabric in full.

To address such issues, we envision a novel programming model for IoT ser-
vices and applications (along with the associated supporting platform, engineer-
ing methodology and tools) conceived to ease the development of flexible and
robust large-scale IoT services and applications. Starting from previous findings
in the areas of attribute-based coordination [1,2,20], field-based coordination
[28,40], collective adaptive systems [3,34], and stream computing and aggregate
computing [5,7], the proposed “Fluidware” framework will address the complex-
ity of building modern, large-scale IoT systems, by a full-fledged engineering
approach revolving around a new notion of distributed programming.

Our approach relies on the idea to abstract collectives of devices of the IoT
fabric (sensors, actuators, and other edge/cloud devices) as sources, digesters,
and targets of distributed flows of contextualized events, carrying information
about data produced and manipulated over time. Accordingly, programming
services and applications implies specifying “funnel processes” to channel, elab-
orate, and re-direct such flows in a fully-distributed way, as a means to coordinate
the activities of devices and realize services and applications.

Funnel processes can be specified in a declarative way, in terms of how
they consume and produce events over space and time. They can be associ-
ated to distributed and contextualized streams (i.e., flows) of events in terms
of advanced pattern-matching and filtering mechanisms based on semantics of
data and space-time conditions on their production. Thus, the specification
of funnel processes totally abstracts from the actual devices to which events
belong: it can be such to include a limited number of local streams from a
limited number of devices, but also a large-number of devices spread over a
large-scale, enabling to define scale-independent computational activities inher-

Fluidware 413

ently addressing self-adaptation to contextual conditions, and smoothly fitting
various computing/network infrastructures. Indeed, a proper supporting plat-
form/middleware [32] will need to be put in place to take care of the actual
deployment of funnel processes, of their allocation at the level of IoT devices
and/or edge/cloud computers [35], of their optimized execution, and of their
transparent replication and distribution to opportunistically cover large-scale
areas.

Overall, the Fluidware approach, once fully developed, will support the
bottom-up construction of complex IoT applications through a correctness-
guaranteed stack of software components, incrementally encompassing basic
building blocks of stream/event manipulation, libraries for distributed coordina-
tion, and reusable IoT services.

In order to present the key ideas of the Fluidware approach, the remainder
of this article is organized as follows: Sect. 2 defines an application context on
ambient assisted living, Sect. 3 consequently derives challenges for novel pro-
gramming approaches, Sect. 4 sketches the Fluidware programming model and
how it would address those challenges, Sect. 5 defines the path towards the full
development of Fluidware and the research activities required, Sect. 6 discusses
related work in the area, and finally Sect. 7 summarizes contributions of the
paper and on-going developments.

2 A Case Study Scenario

As a reference to ground discussion, we consider an Ambient Assisted Living
(AAL) scenario which we call the “Fluidware house”, where the full potential of
the IoT is exploited to improve Mark’s daily life.

“Mark is a 65 years old retired person, married with no children. He had an
ischemic stroke with paralysis of the right upper and lower limbs 14 months
ago. Mark was discharged from the rehabilitation center three months after
the stroke, and then he continued to rehabilitate at home. Once his socio-
health situation was evaluated, the psychiatrist and social services have
suggested Mark and his wife to move to a Fluidware house, more suited
to the needs of the family.”

In a Fluidware house, we assume that all the rooms are densely enriched
with connected sensors and actuators: light and heat controllers, gas and smoke
detectors, presence and motion sensors, pressure sensors located on the sittings,
electric energy consume sensors, and so on. While the environment is monitored,
the person is constantly controlled by wearable sensors that are able to detect
vital signs (e.g. heart rate and respiration, activity level and posture). In such
a scenario, IoT devices can be exploited to realize a variety of different services
to support care activities of individuals, to help individuals and their family
members in their everyday self-managed health-care activities, and to control
the overall conditions of the house.

414 G. Fortino et al.

“Mark’s day begins at 8 am. After waking up, he is able to get out of
bed with the help of his wife. Mark is able to walk short distances with
orthosis and a stick support and can reach quite easily the bathroom where
he can wash in a bathtub with a rising platform, always with the help of a
caregiver. The morning is the part of the day dedicated to rehabilitation
aimed primarily at preventing complications due to hypomobility of limbs
and to increase physical performance. During this phase, as for the rest
of the day, it is very important to measure vital parameters through a
wearable system of sensors.”

In this situation, the Fluidware house will use sensors to monitor the activ-
ities carried out, which are then involved in the assessment of the condition of
normality/abnormalities. The normal condition implies that at least one sen-
sor registers the presence of the person through the recognition of a movement.
Terms of inactivity (e.g. TV watching, sleeping) are considered normal if they
involve the use of furniture such as chairs or bed with a pressure sensor that
detects the use. Abnormality conditions can depend on prolonged inactivity or
on alarms related to wearable sensors data exceeding thresholds.

“The afternoon is the time for relax and the presence of a caregiver within
the home is not essential.”

Here, the environmental sensors (e.g. luminosity, temperature, humidity, gas)
monitor the conditions inside the house. The supplied data are used by Fluidware
service to automatically adjust the environment conditions, optimizing the use
of energy in the rooms where Mark won’t typically move to.

“After lunch, Mark’s wife leaves her husband alone in the house. Mark gets
up from his chair and with the help of the stick goes into the bathroom
to wash his hands. The floor is slippery and he falls. Having mobility
problems, he is no longer able to stand up alone.”

In the unpleasant situation of a fall, we can have the intervention of several
sensors. The wearable sensors in place are able to detect the posture (vertical or
horizontal) and the acceleration along three axes [22]. This is particularly useful
to determine emergency conditions such as the occurrence of a fall [23]. Pres-
ence sensors are able to detect both walking movements in the selected detection
zone and respond to them accordingly. Moreover, motion sensors respond to the
tiniest movements using extremely high resolution and precision sensors detect-
ing the movement of arms and fingers. The condition of horizontal position and
the detection of a downward acceleration are considered fundamental situations
because they are considered an abnormality. If, over a short period of time, the
sensors do not detect a new acceleration upwards and if the person remains
in a horizontal position without moving, the Fluidware emergency service can
say, with a certain degree of certainty, that the person has fallen. The overall
coordination of emergency service involving the different caregivers can be also
implemented exploiting Fluidware potentialities.

Fluidware 415

“Each day, Mark’s doctor receives summary information about Mark’s
activity and vital parameters both on its PC and its smartphone. She can
check them, compare them with those of previous days or weeks to analyze
trends, and can then even command changes in the configuration of the
house or of the care program.”

All the information provided by the several sensors deployed in the house
get automatically aggregated, filtered, and channeled to the cloud. Moreover,
in the discussed scenario considering a lot of information exchange taking place
it is worth to notice the need to address privacy/security issues. Additional
processes living in the cloud take care of redirecting general information and
events to Mark’s doctor.

3 Challenges

The key motivations for Fluidware are to address a number of issues that cur-
rently hinder the possibility to easily develop complex and large-scale IoT sys-
tems and applications. The case study scenario we considered helps us identify
the following challenges:

Device Independence. Current IoT approaches are highly device-dependent,
assuming the existence of specific types of devices in specific locations. However,
the heterogeneity of devices, their ephemerality, and the impossibility to indi-
vidually control all devices in an environment, require programming approaches
enabling services to be programmed and expressed in device-independent terms.

In fact, Mark’s house seamlessly manages the co-existence of different types
of devices (e.g. motion, environment and medical sensors) in different environ-
ments and with heterogeneous characteristics (e.g. kitchen, bedroom, and bath-
room introduces their own space constraints).

Scalability. IoT services may involve individual sensors and actuators, or com-
pose and coordinate a limited number of local devices, but also exploit a mul-
titude of cooperating devices distributed over a wide area. An approach for
programming and deploying IoT services should adopt the same basic model
for small and for large-scale services, and should not lose in effectiveness when
scaling.

As Mark’s house is densely enriched with connected IoT devices, cooperating
to provide services, scalability is required for a number of reasons: Mark’s per-
sonal condition can quickly change, asking for prompt change also in the envi-
ronment as an increasing need of monitoring Mark’s daily routine; novel IoT
devices can be added into the house to provide applications that impose addi-
tional traffic overhead. As a result, there is need to handle a growing amount of
data in order to automatically manage high quality information on health and
environment status.

Adaptivity. IoT systems are called to operate in very dynamic environments.
Devices can be faulty, mobile, or become unreachable. Yet, IoT services and

416 G. Fortino et al.

applications must adaptively react and be highly available to serve reliably
despite contingencies.

The house is a live dynamic environment, where devices change their sensing
and actuating capability as a result of the changing condition of Mark’s personal
status. Different types of change need to be supported: there are situations not
known a priori that are partially-repeatable, unpredictable, and emergent, while
others are more structured, repeatable and predictable; overall, there is need to be
able to support both a self-adaptive management of daily routines and adaptation
in the sense of human-controlled (re-)configuration.

Seamless Integration of Devices, Edge, and Cloud Levels. The overall
IoT fabric will include a multitude of distributed devices, edge computers that
can act as “local clouds” for the devices in a locality, and general cloud resources.
To effectively exploit the IoT fabric, there is thus need of supporting both direct
device-to-device interactions, edge computation, and cloud resources, all within
the same design and programming abstraction.

Effectively monitoring and controlling Mark’s house means supporting dif-
ferent types of integration: direct device-to-device interactions will be needed in
order to implement local alarms (e.g. exceeding a temperature threshold), edge
computation to locally enact complex situation recognition (e.g. fall detection),
and cloud resources to store historical information and interact with external
stakeholders (e.g. caregivers and doctors).

Interoperability and Security. Enabling interoperability among heteroge-
neous devices and ensuring security of IoT systems and services are key chal-
lenges to enable the widespread diffusion of IoT services.

Interoperability [21] needs to be guaranteed in order to share information
between devices in the house (e.g. the daily routine involve several objects ded-
icated to understand normal and emergency situation), as well as between the
house and external environment (e.g. to interact with the hospital in case of
emergency), which requires to consider the multitude of standards applicable to
assistive technologies as well as the security and privacy issues concerning the
personal nature of the scenario.

4 The Fluidware Approach

The Fluidware approach considers IoT-enriched environments densely populated
with a variety of IoT devices (overall forming the “IoT fabric”), acting as sensors
or actuators or both. Sensing devices generate “contextualized streams” of data
representing events about something that is happening somewhere in the envi-
ronment. Actuating devices receive “contextualized command streams” related
to how they should affect the environment, and people within, over time.

4.1 Funnel Processes

The key idea of Fluidware is that IoT services and applications can be realized
by transformations of widely-distributed streams of events, which we also call

Fluidware 417

“event flows” (or simply “flows”), involving collectives of devices. This is achieved
by means of an abstraction of “funnel process”, acting as digester and producer
of “event flows”, elaborating/sending/(re)distributing them over the network of
distributed IoT devices or over the edge/cloud (see Fig. 1).

Fig. 1. A general abstract representation of funnel processes exploited locally.

Funnel processes will be specified in a declarative way independently of
their actual allocation and distribution (managed by the Fluidware middleware).
Their specification will be such to define which flow to connect to, depending
on contextual/spatio-temporal and semantic matching (e.g., from “in room X
now” to “where average temperature has been greater than 25 Celsius degrees
in the last 5 min”). Thus, a funnel specification will totally abstract from the
actual devices that are sources, manipulators, or targets for events: it can be
such to include a limited number of local events from a limited number of
devices, but also a large-number of devices spread over a large-scale. This enables
to define scale-independent computational activities, inherently independent of
external conditions and smoothly fitting various computing/network infrastruc-
tures. Most specifically, an event flow is manipulated computationally to produce
a new flow, by a combination of mechanisms typical of stream processing frame-
works and of self-adaptive and self-organizing systems, such as fully-distributed
and resilient aggregation, spreading, persistence, and so on [39].

In particular, we envision the definition of a library of primitive funnel tem-
plates, including:

– filters, that select only the events that match certain criteria, expressed via
conditions on attributes concerning event source, location, time, content, and
so on [20];

– aggregators, that cluster events into groups (based on correlations on their
attributes), and correspondingly create new events for each group (creating
average values over time or space, reunifying complex multi-event situations
into alert events, and so on);

418 G. Fortino et al.

– transmuters, that manipulate the content of events leaving their overall struc-
ture unchanged (resetting content, applying increments, mapping and so on);

– relocators, that move source/location/time of events (to specify space-time
relocation policies for event streams).

Then, special operators and combinators will be used to compose and inter-
connect funnel processes and attach them to physical elements of various kind,
such as;

– splitters, that take one stream and divide it in multiple streams;
– mergers, that conversely combine streams;
– pipes, that sequentially compose funnels;
– hooks, that connect funnels to virtualized devices (macro sensors/actuators/

computational resources [9]).

4.2 Deployment Scenarios

At the implementation and deployment level, the Fluidware platform/middleware
will take care of creating actual distributed processes, and connecting them to the
actual flows of events and the physical devices supporting them, to realize fun-
nel process specifications. Such processes can be deployed on any IoT device with
enough resources to support their execution. Opportunistically, funnel processes
can be deployed at the level of edge computers associated to some specific location
and having access to all devices in that location [37], or even at the level of some
centralized cloud.

Fig. 2. Overview of the Fluidware approach.

Clearly, when allocated to individual devices, a process can pre-digest and
elaborate the data sensed by that device before forwarding it to some other

Fluidware 419

devices or to some collection point. However, it can also be seamlessly used to
spread and re-distribute events to nearby devices, and itself contribute absorbing
and possibly aggregating events coming from nearby devices. This can be used
to realize composite services with a direct device-to-device coordination. This
scenario is represented in the left part of Fig. 2.

In addition, a funnel process to be connected to an event flow spread over
a multitude of devices, and/or a wide area, can be realized by initially repli-
cating and distributing multiple actual processes, all logically part of the same
distributed funnel process. Such aggregations can be used to realize services and
applications in the large-scale by reasoning at the level of collectives of devices
and, in the end, to promote scale-independent and device-independent com-
putations, along the lines of field-based coordination and aggregate computing
approaches [7,10,28]. The right part of Fig. 2 represents such a scenario.

On the other hand, when acting at the edge level, funnel processes can be
used to collect the events provided by devices at a specific location (e.g., a room,
a building, or a plaza), and elaborate them to produce flows of commands to the
local actuators, and possibly forwarding streams of data to the cloud. Finally,
nothing prevents one from associating funnel processes to some cloud servers to
realize some sorts of centralized services, either explicitly within funnel process
deployment specification [30], or implicitly as an opportunistic choice at the
platform level. This scenario is represented in the central part of Fig. 2.

We emphasize that, building on previous experience on formal models of dis-
tributed and adaptive business processes [16,17] and in distributed field-based
coordination [7,45], the Fluidware approach is meant to support a formalized
description of funnel processes supporting static and behavioral property ver-
ification, independently of where the approach acts at the level of individual
devices or at the edge/cloud level, and independently of whether it is used to
implement traditional composition of services or rather in-the-large collective
distributed coordination.

4.3 Addressing the Challenges

Let us now analyze how Fluidware has the potential to effectively address the
challenges identified in Sect. 3.

Device Independence. In Fluidware, whole collectives of IoT devices are
abstracted as producers (or consumers, for actuators) of distributed streams of
contextualized events, thus making system programming dependent on the avail-
ability of specific patterns of events, not on the specific identity of the devices
producing or consuming them.

With reference to the case study, a filter funnel can be put in place to get
events tagged with a specific “biometric” attribute [20], and can be composed
(by a pipe) to a relocator to make such data be available for monitoring from
a remote station owned by doctors. This will be specified without any a-priori
knowledge of which sensors produced such biometric data.

420 G. Fortino et al.

Scalability. In Fluidware, funnel processes can be used to access individual
streams, as well as – with the same model – to aggregate, compose and con-
trol distributed flows of events generated by myriads of devices, thus seamlessly
enabling small-scale service composition and large-scale services based on col-
lective behaviors.

With reference to the case study, a filter funnel can be put in place to get
events tagged with a specific “temperature” attribute, and can be composed (by
a pipe) to an aggregator to extract a stream of average values of temperature,
where each event is produced each minute. This will be specified without any a-
priori knowledge of the dislocation and number of sensors in place: aggregation
will be transparently executed by the sensors themselves by en-route combination
of values [39].

Adaptivity. In Fluidware, funnel processes are not statically tied to specific
IoT devices, but are dynamically bound to any flows of events matching con-
textual and semantic characteristics. Thus, they can operate by dynamically
re-connecting to different sets of devices, simply depending on their characteris-
tics, whenever needed to react to contingencies.

With reference to the case study, a composition of funnels can be put in
place to send periodic information about the house and Mark’s general status to
doctors. However, as soon as some physiological data exceed safety ranges for
a sufficient amount of time, those funnels start matching different streams of
data, and automatically reconfigure to send fine-grained samples of all available
physiological data to the doctors [9].

Seamless Integration of Devices, Edge, and Cloud Levels. In Fluidware
funnel processes may be playing the role of re-directing streams of data to the
edge, where further processes may digest them and re-direct them to realize
composite edge services, or they can be used to re-direct streams to the cloud.

With reference to the case study, funnels like aggregators, used to perform
some situation recognition across a possibly large set of devices, are specified in
a way that makes it possible to carry their process on in different ways, selected
depending on the available resources, or even possibly dynamically switching to
address contingencies: in a fully distributed way by cooperation of devices, by
having those devices simply sending their data to some cloud resource, or even
by having local edge devices computing local aggregates which are sent to the
cloud for further aggregation [41].

Interoperability and Security. Concerning interoperability, the possibility in
Fluidware to program services in a device-independent way promotes interop-
erability, and just requires devices to host a Fluidware local proxy, or – in the
case of very lightweight IoT devices – to directly communicate via standard IoT
protocols with Fluidware edge devices. Concerning security, Fluidware can rely
on existing security solutions, but can also integrate recent research approaches
to trust computing for the IoT and wireless sensor networks [24].

Mark’s house is intrinsically open and secure. First, when new kinds of sen-
sors are deployed, they automatically become part of the Fluidware ecosystem:

Fluidware 421

they either have a lightweight Fluidware software agent on board that carries on
all computational activities in cooperation with others, or they simply send their
data using standard protocols to the nearest fully-featured Fuildware edge device
(each room could have one installed in it). Additionally, Fluidware continuously
run processes of trust monitoring and control to detect malevolent devices and
progressively make them ignored by others to prevent unwanted perturbation of
the overall house—as suggested in [12].

5 The Path Towards Fluidware

The road-map of research activities needed to fully develop Fluidware includes:

1. development of the Fluidware model and associated programming abstrac-
tions, suitable for defining and composing services and systems possibly
involving a large-number of IoT devices distributed over a large area;

2. development of a prototype platform (i.e., a middleware and associated ser-
vices) to support deployment and execution of IoT systems according to the
Fluidware model;

3. development of an engineering methodology to guide developers in the analy-
sis and design of Fluidware-based complex IoT service systems, and associated
tools to support validation before deployment;

4. testing on IoT case studies, specifically in the area of smart healthcare and
AAL.

5.1 Programming Model

From the development and programming viewpoint, it can be expected that IoT
services and IoT applications will be mostly up to expert system developers. Yet,
the Fluidware declarative approach will also enable local managers of a location
(and, to some limited extent, end users) to be able to directly personalize the
behavior of such applications with simple forms of user-level programming of
funnel processes, for instance, in a similar way to “if this then that” approaches
[18] or by selecting specific funnel processes and services from libraries of reusable
specifications.

To formalize the Fluidware operational model and implement its basic pro-
gramming interface, the following activities are to be undertaken.

– Developing the operational model of funnel processes, to serve as a blueprint
for implementation of the platform, for defining composition techniques,
and to check well-formedness of specifications and properties. It will need
to include development of a core calculus, operational semantics, and by-
construction proofs of self-stabilization and safe encapsulation.

– Implementing a library to provide the core mechanisms devised in the model,
to specify and compose processes, as an interface towards the platform and
existing simulators. The adoption of modern techniques can be envisaged to
smoothly integrate with mainstream programming and functional-oriented
declarative approaches, e.g., by the features of the Scala language as in [14].

422 G. Fortino et al.

5.2 Middleware

Fluidware can be supported by a middleware capable of instantiating local prox-
ies of funnel processes and launch them in execution into the proper location
[25,26,32], and to relocating them as needed. To promote scalability and flex-
ibility, the platform will support interactions and coordination at three levels
(as from Fig. 2): direct device-to-device level (e.g., for field-based coordination),
with funnel processes directly instantiated on sets of devices, and with events
flowing, aggregating and re-distributing from device to device; edge level, with
funnel processes dynamically allocated on edge computers (i.e., cloudlets or fog
computers), to digest streams of events, implement local coordinated services,
and possibly to connect multiple edges to realize inter-edge coordination; cloud
level, for centralized monitoring, coordination, and storage.

The activities to develop the Fluidware middleware platform will address
three related objectives.

– To define a mapping from Fluidware programming specifications into a set
of distributed components to be deployed atop the Fluidware platform. Map-
ping will be based on a model-driven development [13] and will distin-
guish abstract platform-independent specifications from deployable platform-
dependent components.

– To implement a distributed engine for supporting the execution of Fluidware
systems and services. It will be organized as a three-layered (devices, edges,
and cloud) super-peer architecture. Platform-dependent components can be
dynamically activated and re-configured in IoT devices, edge servers and/or
cloud platforms.

– To analyze interoperability and security issues. Such an activity will define
guidelines for enabling devices to connect to the Fluidware platform, and will
analyze how a trust-oriented distributed infrastructure for inter-component
security can be integrated within it.

5.3 Engineering Methodology

The Fluidware approach will also require the definition of new conceptual
abstractions to reason about complex IoT services and applications and their
requirements. In addition, it will call for the identification of specific method-
ological guidelines to drive the development process, to be necessarily accom-
panied by Fluidware-specific tools to support the activities of the development
process, and to provide correctness guarantees [27,44].

Accordingly, there is need of synthesizing from the previously identified activ-
ities in order to make the basic engineering instruments available supporting the
analysis, design and implementation of complex IoT systems and services with
Fluidware. To this end, the following activities need to be implemented.

– Identify the key conceptual abstractions which the analysis and design of
Fluidware systems and services should rely on, and on this basis it will define
guidelines for analysis, design, implementation, testing, and adaptation of
Fluidware services and systems.

Fluidware 423

– Identify and prototype a set of tools in support of the development of Flu-
idware systems and services. These will include (i) basic support to verify
service behavior against specifications (by model-checking or static analy-
sis) [19]; and (ii) a large-scale simulator to verify overall system behaviors
[13]. Prototyping of such tools will be based on extending/adapting existing
techniques, tools, and simulators.

5.4 Application Studies

Fluidware is a general-purpose approach, suitable for developing IoT services and
applications in a variety of emerging scenarios, such as smart homes, smart cities,
traffic control systems, energy control systems, and smart production systems.
To keep focus without losing generality, it may be proper to focus on a specific
challenge related to the ageing society: AAL [18]. This will enable putting the
Fluidware approach at work in real-world problems, to guide its development
strategies, and to assess the effectiveness of the approach. In particular, we intend
to test AAL applications both at the scale of a real-life domestic indoor testbed
and of a large-scale simulated urban scenario. The domestic testbed will be aimed
at verifying ease and expressiveness of programmability of Fluidware, as well as
the effectiveness of the platform and its adaptability properties. The large-scale
simulated scenario will be useful to verify Fluidware scalability and flexibility.

Given the safety-critical nature of the described scenario, many services
related to e.g., the health condition of patients or the ambient conditions of
the house, may be required to continuously send information to be analyzed to
different actors (from doctors to caregivers). Thus, any approach for developing
services and applications should more properly conceive sensors and actuators
as producers and consumers of continuous flows of events, rather than as loci
of services to be invoked as often happens through conventional cloud-based
(virtualization) approaches.

6 Related Work

The Fluidware computational model definitely owns to methods proposing the
simplification of distributed programming by abstracting from individual net-
worked devices, and working at the level of their collective behaviors, such as
TOTA [28], SCEL [20], SAPERE [45], or DECCO [10]. These also include space-
time models for the universal manipulation of field data structures diffused in
space and evolving with time, such as spatial [36] and aggregate computing [7].
Fluidware, with its concept of funnel processes, will advance such approaches by
enabling the seamless modeling of small-scale composite services as well as large-
scale collective services, and by supporting the integration of semi-decentralized
approaches with fully distributed ones. Also, by exploiting the lessons of process
algebras [15] and formal approaches [8], Fluidware can add a process layer which
(i) internally carries on stream computation, and (ii) externally defines life-cycle
aspects such as funnel process generation, space-time extension, interaction with

424 G. Fortino et al.

environment, and de-allocation. By taking inspiration from frameworks to auto-
matically split data processing behavior for cloud- and cluster-style execution
(e.g., Spark [43], and Flink [11]), Fluidware will enrich traditional collective and
aggregate approaches to distributed programming by considering a transition
from handling collective “fields” of data to the notion of distributed stream of
events, thus addressing also non-functional aspects concerning the control of
dynamic aspects of event generation and diffusion.

Some recent approaches to programming IoT services propose new computa-
tional abstractions as building blocks of IoT services, such as the micro-services
of Osmotic computing [31,38], the core processors of EdgeIoT [37], or the deploy-
ment units of the Elastic Computing [30]. These approaches share with Fluid-
ware the idea of enabling the adaptive deployment of such building blocks at the
level of both cloud or edge computers, and possibly at the level of IoT devices.
However, Fluidware will enrich that with an operational semantics addressing
dynamically multi-layered architectures, with the possibility of also acting in
collective terms at the level of devices to enforce large-scale adaptive service
composition, like the Opportunistic IoT Services approach based on aggregate
computing [13].

Concerning middleware, a variety of platforms have been proposed to sup-
port the deployment and execution of IoT services and applications (see [32] for
a survey) and including solutions to adaptively handle interoperability [6,21],
context-dependency [33], and adaptivity [42,45]. Similarly to them, the Fluid-
ware platform will promote interoperability (thanks to device-independence of
the funnel process abstraction), adaptivity (due to the flexible deployment of
funnel processes) and context-dependency (events digested by funnel processes
are inherently contextual). However, it will also provide solutions for the collec-
tive execution and coordination of funnel processes on the large-scale.

Concerning software engineering, it is recognized that the development of
IoT systems and applications may require not only the extension of existing
methods [27] but also novel methodologies and tools [25,44]. However, actual
methodologies and tools specifically suited to future IoT scenarios are lacking,
Fluidware will fill this gap by producing novel software engineering guidelines
that – although studied in the context of Fluidware – can be of general help
towards the development of complex and large-scale IoT applications. Also, it
will produce tools (novel or extensions of existing ones) in support of the verifi-
cation of IoT system behavior, and that can be of general use in the context of
large-scale distributed systems.

7 Conclusions

In this article, we have presented the vision of Fluidware, an innovative approach
for the development of IoT services and applications, conceived, to ease the
development of flexible and robust large-scale IoT services and applications. To
summarize, we can list the key innovations that Fluidware promises to bring
about.

Fluidware 425

– Its funnel process abstraction goes significantly beyond the state-of-the-art
in computational models for distributed and collective systems, allowing to
declaratively express distributed processes managing contextualized streams
of events in a way that is effectively scale-independent, device-independent,
and independent of the temporal availability of specific devices, thus being
adaptive to changes and contingencies.

– The interplay between Fluidware model and platform will fully provide
utility-driven exploitation of infrastructure, enabling execution of funnel pro-
cesses along the entire IoT device/edge/cloud stack, hence supporting scenar-
ios where devices opportunistically exploit P2P interactions, edge devices, or
cloud resources, either to improve performance, save energy, or speed-up the
sense-to-react feedback.

– The definition of novel software engineering abstractions, methodologies, and
tools to support activities performed to develop Fluidware applications, can
shed new lights into the general software engineering issues associated to the
development of complex IoT systems and services in general, independently
of Fluidware.

Currently, we are in the process of developing the presented ideas, in the
hope of being able, with Fluidware, to actually deliver its identified potentials.

References

1. Alrahman, Y.A., De Nicola, R., Garbi, G., Loreti, M.: A distributed coordina-
tion infrastructure for attribute-based interaction. In: Baier, C., Caires, L. (eds.)
FORTE 2018. LNCS, vol. 10854, pp. 1–20. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-92612-4 1

2. Alrahman, Y.A., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, pp. 1840–1845. ACM (2015)

3. Andrikopoulos, V., Bucchiarone, A., Gómez Sáez, S., Karastoyanova, D., Mezzina,
C.A.: Towards modeling and execution of collective adaptive systems. In: Lomuscio,
A.R., Nepal, S., Patrizi, F., Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS,
vol. 8377, pp. 69–81. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06859-6 7

4. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

5. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Trans. Comput. Log. 20(1), 5:1–5:55 (2019). http://
doi.acm.org/10.1145/3285956

6. Ayala, I., Amor, M., Fuentes, L.: The sol agent platform: enabling group commu-
nication and interoperability of self-configuring agents in the internet of things.
JAISE 7(2), 243–269 (2015)

7. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things.
IEEE Comput. 48(9), 22–30 (2015)

8. Belzner, L., Hölzl, M., Koch, N., Wirsing, M.: Collective autonomic systems:
towards engineering principles and their foundations. In: Steffen, B. (ed.) Trans-
actions on Foundations for Mastering Change I. LNCS, vol. 9960, pp. 180–200.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46508-1 10

https://doi.org/10.1007/978-3-319-92612-4_1
https://doi.org/10.1007/978-3-319-92612-4_1
https://doi.org/10.1007/978-3-319-06859-6_7
https://doi.org/10.1007/978-3-319-06859-6_7
http://doi.acm.org/10.1145/3285956
http://doi.acm.org/10.1145/3285956
https://doi.org/10.1007/978-3-319-46508-1_10

426 G. Fortino et al.

9. Bicocchi, N., Mamei, M., Zambonelli, F.: Self-organizing virtual macro sensors.
TAAS 7(1), 2:1–2:28 (2012)

10. Bures, T., Plasil, F., Kit, M., Tuma, P., Hoch, N.: Software abstractions for com-
ponent interaction in the internet of things. IEEE Comput. 49(12), 50–59 (2016)

11. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flink: stream and batch processing in a single engine. In: Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, vol. 36, no. 4
(2015)

12. Casadei, R., Alessandro, A., Viroli, M.: Towards attack-resistant aggregate com-
puting using trust mechanisms. Sci. Comput. Program. 167, 114–137 (2018)

13. Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., Viroli, M.: Modelling
and simulation of opportunistic IoT services with aggregate computing. Future
Gener. Comput. Syst. 91, 252–262 (2019)

14. Casadei, R., Viroli, M.: Towards aggregate programming in Scala. In: Proceed-
ings of the 1st Workshop on Programming Models and Languages for Distributed
Computing, pp. 5:1–5:7. ACM (2016)

15. Choe, Y., Lee, M.: Algebraic method to model secure IoT. In: Karagiannis, D.,
Mayr, H., Mylopoulos, J. (eds.) Domain-Specific Conceptual Modeling, pp. 335–
355. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39417-6 15

16. Cognini, R., Corradini, F., Polini, A., Re, B.: Extending feature models to express
variability in business process models. In: Persson, A., Stirna, J. (eds.) CAiSE
2015. LNBIP, vol. 215, pp. 245–256. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19243-7 24

17. Cognini, R., Corradini, F., Polini, A., Re, B.: Business process feature model: an
approach to deal with variability of business processes. Domain-Specific Concep-
tual Modeling, pp. 171–194. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39417-6 8

18. Corno, F., De Russis, L., Roffarello, A.M.: A semantic web approach to simplifying
trigger-action programming in the IoT. Computer 50(11), 18–24 (2017)

19. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., Vandin, A.: BProVe: a
formal verification framework for business process models. In: Proceedings of the
32nd International Conference on Automated Software Engineering, pp. 217–228.
IEEE Computer Society (2017)

20. De Nicola, R., et al.: The SCEL language: design, implementation, verification.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16310-9 1

21. Fortino, G., et al.: Towards multi-layer interoperability of heterogeneous iot plat-
forms: the INTER-IoT approach. In: Gravina, R., Palau, C.E., Manso, M., Liotta,
A., Fortino, G. (eds.) Integration, Interconnection, and Interoperability of IoT Sys-
tems. IT, pp. 199–232. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
61300-0 10

22. Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., Jafari, R.: Enabling
effective programming and flexible management of efficient body sensor network
applications. IEEE Trans. Hum. Mach. Syst. 43(1), 115–133 (2013)

23. Fortino, G., Gravina, R.: Fall-mobileguard: a smart real-time fall detection system.
In: Proceedings of the 10th International Conference on Body Area Networks. ICST
(2015)

24. Fortino, G., Messina, F., Rosaci, D., Sarnè, G.M.L.: Using trust and local reputa-
tion for group formation in the cloud of things. Future Gener. Comput. Syst. 89,
804–815 (2018)

https://doi.org/10.1007/978-3-319-39417-6_15
https://doi.org/10.1007/978-3-319-19243-7_24
https://doi.org/10.1007/978-3-319-19243-7_24
https://doi.org/10.1007/978-3-319-39417-6_8
https://doi.org/10.1007/978-3-319-39417-6_8
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-61300-0_10
https://doi.org/10.1007/978-3-319-61300-0_10

Fluidware 427

25. Fortino, G., Russo, W., Savaglio, C., Shen, W., Zhou, M.: Agent-oriented coopera-
tive smart objects: from IoT system design to implementation. IEEE Trans. Syst.
Man Cybern. Syst. 48(11), 1939–1956 (2018)

26. Galzarano, S., Giannantonio, R., Liotta, A., Fortino, G.: A task-oriented framework
for networked wearable computing. IEEE Trans. Autom. Sci. Eng. 13(2), 621–638
(2016)

27. Jacobson, I., Spence, I., Ng, P.W.: Is there a single method for the internet of
things? Queue 15(3), 20 (2017)

28. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions: the TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4), 15:1–15:56
(2009)

29. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision,
applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

30. Moldovan, D., Copil, G., Dustdar, S.: Elastic systems: towards cyber-physical
ecosystems of people, processes, and things. Comput. Stand. Interfaces 57, 76–
82 (2018)

31. Nardelli, M., Nastic, S., Dustdar, S., Villari, M., Ranjan, R.: Osmotic flow: osmotic
computing+ IoT workflow. IEEE Cloud Comput. 4(2), 68–75 (2017)

32. Palade, A., Cabrera, C., White, G., Razzaque, M.A., Clarke, S.: Middleware for
internet of things: a quantitative evaluation in small scale, pp. 1–6. IEEE (2017)

33. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware com-
puting for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1),
414–454 (2014)

34. Pournaras, E.: Overlay service computing - modular and reconfigurable collective
adaptive systems. Scalable Comput. Pract. Exp. 16(3), 249–270 (2015). http://
www.scpe.org/index.php/scpe/article/view/1100

35. Rausch, T., Dustdar, S., Ranjan, R.: Osmotic message-oriented middleware for the
internet of things. IEEE Cloud Comput. 5(2), 17–25 (2018)

36. Shekhar, S., Feiner, S.K., Aref, W.G.: Spatial computing. Commun. ACM 59(1),
72–81 (2016)

37. Sun, X., Ansari, N.: EdgeIoT: mobile edge computing for the internet of things.
IEEE Commun. Mag. 54(12), 22–29 (2016)

38. Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing: a
new paradigm for edge/cloud integration. IEEE Cloud Comput. 3(6), 76–83 (2016)

39. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2), 1–28 (2018)

40. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of per-
vasive services through chemical-inspired tuple spaces. ACM Trans. Auton. Adapt.
Syst. 6(2), 14:1–14:24 (2011). http://doi.acm.org/10.1145/1968513.1968517

41. Viroli, M., Casadei, R., Pianini, D.: On execution platforms for large-scale aggre-
gate computing. In: Proceedings of the International Joint Conference on Pervasive
and Ubiquitous Computing, pp. 1321–1326. ACM (2016)

42. Vlacheas, P., et al.: Enabling smart cities through a cognitive management frame-
work for the internet of things. IEEE Commun. Mag. 51(6), 102–111 (2013)

43. Zaharia, M., et al.: Apache Spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016)

44. Zambonelli, F.: Key abstractions for IoT-oriented software engineering. IEEE
Softw. 34(1), 38–45 (2017)

45. Zambonelli, F., et al.: Developing pervasive multi-agent systems with nature-
inspired coordination. Pervasive Mob. Comput. 17, 236–252 (2015)

http://www.scpe.org/index.php/scpe/article/view/1100
http://www.scpe.org/index.php/scpe/article/view/1100
http://doi.acm.org/10.1145/1968513.1968517

HEADREST: A Specification Language
for RESTful APIs

Vasco T. Vasconcelos1 , Francisco Martins2(B) , Antónia Lopes1 ,
and Nuno Burnay1

1 LASIGE and Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
2 LASIGE and Universidade dos Açores, Ponta Delgada, Portugal

fmartins@acm.org

Abstract. Representational State Transfer (REST), an architectural
style providing an abstract model of the web, is by far the most pop-
ular platform to build web applications. Developing such applications
require well-documented interfaces. However, and despite important ini-
tiatives such as the Open API Specification, the support for interface
description is currently quite limited, focusing essentially on simple syn-
tactic aspects. In this paper we present HeadREST, a dependently-typed
language that allows describing semantic aspects of interfaces in a style
reminiscent of Hoare triples.

Keywords: REST · Web services · Description language

1 Introduction

Software services are not just a mechanism to compose software functionalities,
but, in the present case, it was also the motto to bring together once again two
groups of researchers, notably De Nicolas’s and Vasconcelos’ teams.

It all restarted in 2005, under the auspices of Sensoria, Software Engineer-
ing for Service-oriented Overlay Computers [15], a project revolving around the
idea of service as a basis for service-oriented computing. In 2006 we authored
together “SCC: A Service Centered Calculus” [3], a paper that laid down the
foundations for describing the dynamic behaviour of services in terms of a pro-
cess calculus. SCC introduces the notions of service definition, which provides for
service behaviours, and of service invocation, which consumes instances of ser-
vices. The communication between both ends of a service interaction happens in
the context of a session. Inside this, processes send and receive messages isolated
from other ongoing service interactions. A system is the parallel composition of
service definitions, invocations, and ongoing sessions.

Following to this work, we concentrated on the problems of composing and
orchestrating services, introducing SSCC [11]. This new calculus puts forward

An early version of this paper was presented at the 24th International Conference on
Types for Proofs and Programs, in June 2018.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 428–434, 2019.
https://doi.org/10.1007/978-3-030-21485-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_23&domain=pdf
http://orcid.org/0000-0002-9539-8861
http://orcid.org/0000-0002-2379-7257
http://orcid.org/0000-0003-0688-3521
http://orcid.org/0000-0001-6613-5192
https://doi.org/10.1007/978-3-030-21485-2_23

HEADREST: A Specification Language for RESTful APIs 429

a stream construct to play the role of a service orchestrator. In the following
year, De Nicola and his team proposed CaSPiS that also features intra- and
inter-session communication by using streams and pipelines [4]. CaSPiS further
allows for reasoning about session cancellation and termination, scenarios in
which processes may abandon or terminate their current sessions.

The explosive growth of the Web, and the adoption of services as one of the
pillars for building distributed applications over the Web, continued to draw
our attention to service-oriented computing. This time we decided to focus on
RESTful web services. Confident is a research project on the formal description
of RESTful web services using type technology [5].

Following the original spirit of REST [7], and in stark contrast to the philos-
ophy of SOAP [9], state of the art service description systems use mainly natural
language. While these descriptions may occasionally suit programmers, they are
not adequate for machine consumption. Machine checkable service descriptions
lie at the basis of static verification of RESTful-based applications, help in enforc-
ing service fidelity, and in the construction and evolution of complex distributed
applications.

2 Context and Related Work

Representation State Transfer (REST) is an architectural style proposed as an
abstract model of the web architecture. At its core lies the concept of resource [7].
According to Fielding and Taylor, a resource is a temporally varying membership
function MR(t), mapping time t to a set of entities which are deemed equiva-
lent [8]. The entities in the set MR(t) are resource representations and resource
identifiers. REST uses a resource identifier to identify the particular resource
involved in an interaction between components. Representations of resources
are transferred between components in REST interactions; components perform
actions on a resource by using a representation to capture the current or intended
state of that resource.

In our running example—a simple contact management system—contacts
are resources that admit (among others) a representation defined in terms of
a nickname, a name, an email address, and a postal address. Figure 1 shows
an example of two contacts. One of the contacts bears two different identifiers:
me and owner (the owner of all contacts). Both contacts have JSON and XML
representations that also differ in the amount of information included.

Systems that conform to the constraints of the REST architecture are called
RESTful. A RESTful system can be seen as a set of resources together with the
actions that can be performed on these. A RESTful API can be abstracted as
a set of resource identifiers together with the actions that can be performed on
each resource via that identifier.

REST systems typically communicate over HTTP and interface with exter-
nal systems as web resources identified by URIs. The actions in this case include
GET, POST, PUT, DELETE. In systems that communicate over HTTP, addi-
tional information can be sent in the request for the execution of the action.

430 V. T. Vasconcelos et al.

Key

resourceid of

representation of

type of

resource

resource type

Fig. 1. Two resources in a contact management REST service.

This comes in the form of parameters embedded in the URL, headers, and body.
Results always include a response. The table below shows four actions in the
contact management system, together with their URIs and a textual descrip-
tion.

Different interface description languages (IDLs) have been purposely
designed to support the formal description of REST APIs. The most representa-
tive ones are probably Open API Specification [12] (originally called Swagger),
the RESTful API Modeling Language [13] (RAML), and API Blueprint [1].
These IDLs allow a detailed description of the syntactic aspects of the data
transferred in REST interactions and are associated to a large number of tools,
in particular for documentation generation, client code generation in different
programming languages, and for test generation. Focused on the structure of the
data exchanged, they ignore important semantic aspects, such as the ability to
relate different parts of the same data, to relate the input against the state of

HEADREST: A Specification Language for RESTful APIs 431

the service, and to relate the output against the input. For instance, in the case
of the contact management system, none of IDLs discussed here allow express-
ing facts such as that, in the creation of a new contact, the nickname must be
shorter than the full name or that the name should be unique across all names
known to the system. Similarly, these languages do not allow expressing that the
type of representation transmitted in the response to a GET action depends on
the value of a given query parameter.

3 HEADREST

Our approach to the description of RESTful APIs relies on two key ideas:

– Types to express properties of server states and of data exchanged in client-
server interactions and

– Pre- and post-conditions to express the relationship between data sent in
requests and that obtained in responses, as well as the resulting state changes
in servers.

These ideas are embodied in HeadREST, a language built on the two fun-
damental concepts of DMinor [2]:

– Refinement types, x:T where e, consisting of values x of type T that satisfy
property e and

– A predicate, e in T, which returns true or false depending on whether the
value of expression e is or is not of type T.

HeadREST allows to describe properties of data and to observe state
changes in server through a collection of assertions. Assertions take the form
of Hoare triples [10] and are of the form

{φ} (a t) {ψ}
where a is an action (GET, POST, PUT, or DELETE), t is an URI template (e.g.,
/contacts/{i}), and φ and ψ are boolean expressions. Formula φ, called the
precondition, addresses the state in which the action is performed as well as the
data transmitted in the request, whereas ψ, the postcondition, addresses the state
resulting from the execution of the action together with the values transmitted
in the response. The assertion reads

If a request for the execution of action a over an expansion of URI tem-
plate t carries data satisfying formula φ and the action is performed in
a state satisfying φ, then the data transmitted in the response satisfies
formula ψ and so does the state resulting from the execution of the action.

A simple contact management system includes different (abstract) resources,
which HeadREST captures as new types. Resources are introduced as follows.

resource Contact

432 V. T. Vasconcelos et al.

Each resource may be associated to zero or more representations, each of
which is given a particular type. The type system of HeadREST is struc-
tural, yet the language provides for type abbreviations in order to ease the
writing of complex API descriptions. The syntax below introduces an identi-
fier (NameAndEmail) for an object type, intended to represent resource Contact.
NameAndEmail is an object composed of a name (a string of 3–15 lower and upper-
case letter) and an email (a string containing the symbol @).

type NameAndEmail = {

name: (x: string where matches(x, ^[a-zA-Z]{3 ,15}$)),

email: (x: string where contains(x, "@"))

}

Equipped with the declaration of a new resource (Contact) and a name for
one of the representations of the resource (NameAndEmail), one can write a few
assertions describing the behaviour of the API. One that describes a successful
contact creation could be written as

{request in {body: NameAndEmail} &&

∀c:Contact. ∀r:NameAndEmail.
r repof c ⇒ request.body.name �= r.name

}

POST /contacts

{response.code == 200 &&

response in {body: NameAndEmail , header: {Location: URI}} &&

request.body == response.body &&

∃c:Contact. response.body repof c &&

response.header.Location uriof c

}

where request and response are builtin identifiers, and predicates repof and
uriof describe values associated to resources as described in Sect. 2 (cf., Fig. 1).

The precondition first establishes that request contains a field named body of
type NameAndEmail, and then asks the new contact name (provided in the body of
the request) to be unique across all contacts and their representations, hence the
double quantification (first on resources and then on their representations). In
such a case, the postcondition signals success (code 200) and states that response

includes a representation (in field body) that is exactly what was sent in the
request. Furthermore, the response includes an URI (in field header.Location)
of the newly created Contact resource c.

A different assertion for the same pair action-URI describes the conflict story:
if the name of the new contact is known to the server, then this signals conflict
(code 409).

{request in {body: NameAndEmail} &&

∃c:Contact. ∃r:NameAndEmail.
r repof c ⇒ request.body.name == r.name

}

POST /contacts

{response.code == 409}

HEADREST: A Specification Language for RESTful APIs 433

We have used HeadREST to describe different APIs, including a part of
GitLab (800 lines of spec code). We have developed an Eclipse plugin to validate
the good formation of HeadREST specifications [5], a tool to automatically test
REST APIs against specifications [6], and a tool to generate server stubs and
client SDKs from HeadREST specifications [14].

4 Conclusion

In this short abstract we informally present HeadREST, a language designed
to support the entire application lifecycle based on REST APIs. We briefly dis-
cuss the language via a very simple example that illustrates the challenges of
describing REST APIs and the expressiveness of our specification language.

Equipped with such an API description, we build tools that (a) validate
the good formation of HeadREST specifications, (b) generate server stubs and
client SDKs from HeadREST specifications, and (c) that automatically test
REST APIs against specifications.

We intend to explore the specification of security issues in REST context,
in particular, how to use the HeadREST language to ensure compliance with
authentication and confidentiality requirements.

Acknowledgments. This work was supported by the Foundation for Science and
Technology (FCT) through project CONFIDENT (PTDC/EEI-CTP/4503/2014) and
the LASIGE research unit (UID/CEC/00408/2019).

References

1. API blueprint. https://apiblueprint.org/. Retrieved 7 Jan 2019
2. Bierman, G.M., Gordon, A.D., Hritcu, C., Langworthy, D.E.: Semantic subtyping

with an SMT solver. J. Funct. Program. 22(1), 31–105 (2012)
3. Boreale, M., et al.: SCC: a service centered calculus. In: Bravetti, M., Núñez, M.,

Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11841197 3

4. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: CaSPiS: a calculus of sessions,
pipelines and services. Math. Struct. Comput. Sci. 25(3), 666–709 (2015)

5. Confident, a toolchain for the construction and evolution of REST APIs. http://
rss.di.fc.ul.pt/tools/confident. Retrieved 7 Jan 2019

6. Ferreira, F.: Automatic test generation for RESTful APIs. Master’s thesis, Faculty
of Sciences, University of Lisbon (2017)

7. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California, Irvine (2000)

8. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2(2), 115–150 (2002)

9. HTTP Working Group: SOAP: Simple object access protocol. https://tools.ietf.
org/html/draft-box-http-soap-00. Retrieved 31 Jan 2019

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

https://apiblueprint.org/
https://doi.org/10.1007/11841197_3
http://rss.di.fc.ul.pt/tools/confident
http://rss.di.fc.ul.pt/tools/confident
https://tools.ietf.org/html/draft-box-http-soap-00
https://tools.ietf.org/html/draft-box-http-soap-00

434 V. T. Vasconcelos et al.

11. Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining orchestration
and conversation in service-oriented computing. In: Proceeedings of the Fifth IEEE
International Conference on Software Engineering and Formal Methods (SEFM
2007), pp. 305–314 (2007)

12. Open API Initiative. https://www.openapis.org. Retrieved 7 Jan 2019
13. RESTful API Modeling Language. https://raml.org. Retrieved 7 Jan 2019
14. Santos, T.: Code generation for RESTful APIs in headREST. Master’s thesis,

Faculty of Sciences, University of Lisbon (2018)
15. Sensoria: Software Engineering for Service-Oriented Overlay Computers. http://

sensoria.fast.de/. Retrieved 31 Jan 2019

https://www.openapis.org
https://raml.org
http://sensoria.fast.de/
http://sensoria.fast.de/

Security

Revealing the Trajectories of KLAIM
Tuples, Statically

Chiara Bodei1 , Pierpaolo Degano1 , Gian-Luigi Ferrari1 ,
and Letterio Galletta2(B)

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
2 IMT Institute for Advanced Studies Lucca, Lucca, Italy

letterio.galletta@imtlucca.it

Abstract. Klaim (Kernel Language for Agents Interaction and Mobil-
ity) has been devised to design distributed applications composed by
many components deployed over the nodes of a distributed infrastruc-
ture and to offer programmers primitive constructs for communicating,
distributing and retrieving data. Data could be sensitive and some nodes
could not be secure. As a consequence it is important to track data in
their traversal of the network. To this aim, we propose a Control Flow
Analysis that over-approximates the behaviour of Klaim processes and
tracks how tuple data can move in the network.

1 Introduction

Premise. About twenty years ago Rocco De Nicola contributed to the introduc-
tion of KLAIM, a Kernel Language for Agents Interaction and Mobility – as
the name suggests – designed for specifying the behaviour of distributed and
coordinated processes at a suitable level of abstraction. As it is often the case,
this line of work changed with the times, by always evolving to deal with the
challenges posed by the new programming paradigms. Starting by our common
interest in languages and process algebras, we decided to honour Rocco on his
65th birthday and our long friendship, by working on KLAIM and exploiting
our previous experience with static analysis techniques.

Contribution. Modern distributed systems are extremely difficult to model, spec-
ify and verify because they are inherently concurrent, asynchronous, and non
deterministic. Furthermore, computing nodes in a distributed system are loosely
coupled and exhibit a high level of autonomy. These features provide several ben-
efits. For instance, scaling is simplified since each computing node can be scaled
independently from the other nodes. Moreover, decoupling enables the design of
new mechanisms for orchestrating the overall behaviour. Designing secure and

The first three authors have been partially supported by Università di Pisa
PRA_2018_66 DECLWARE: Metodologie dichiarative per la progettazione e il deploy-
ment di applicazioni ; the last author by IMT project PAI VeriOSS.
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 437–454, 2019.
https://doi.org/10.1007/978-3-030-21485-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_24&domain=pdf
http://orcid.org/0000-0002-0586-9333
http://orcid.org/0000-0002-8070-4838
http://orcid.org/0000-0003-3548-5514
http://orcid.org/0000-0003-0351-9169
https://doi.org/10.1007/978-3-030-21485-2_24

438 C. Bodei et al.

safe distributed systems is of paramount importance given the vast attack sur-
face presented by them. We cannot address these issues without a solid formal
model of system security offering advantages of two different kinds. On the one
hand such a model permits to evaluate a priori how to prevent security breaches
and, on the other hand, it provides the machinery for identifying the techniques
one might adopt to achieve the goal of securing distributed systems.

In previous works [3–5], we proposed a Security by Design development
methodology, consisting of a kernel programming language to describe both the
structure of the system and its interactive capabilities. The kernel language is
equipped with a suitable static analysis that approximates the evolution of the
system by providing an abstract model of behaviour. These abstractions allow
predicting how (abstract) data may flow inside the system. Hence, designers
can detect a priori the occurrence of unsafe data and possible security breaches,
inspecting the “abstract simulation” and intervene as early as possible during the
design phase. This methodology has been extended in [6] by introducing a data
path analysis that supports tracking of the propagation of data, thus identifying
their possible trajectories among the computing nodes.

In this paper we apply our methodology to support the design of distributed
systems modelled using Klaim, Kernel Language for Agents Interaction and
Mobility [11]. This language has been specifically devised to design distributed
applications made up of several loosely coupled components deployed over the
nodes of a distributed infrastructure. The Klaim programming model relies
on tuples and tuple spaces to coordinate component communications and data
management. The language builds on Linda’s notion of generative communica-
tion through a single shared tuple space [17] and generalises it with multiple
tuple spaces.

A distinguishing feature of the Klaim model is the so-called network aware-
ness. It indicates the ability of the software components of a distributed appli-
cation to directly manage a sufficient amount of knowledge about the network
environment where they are currently deployed. This capability allows compo-
nents to have a highly dynamic behaviour and manage unpredictable changes of
the network environment over time. Crucial to network awareness are localities
associated with the network nodes, which are a first order feature of Klaim.

In this paper we introduce a control flow analysis that extends the one pro-
posed in [5,6], and that handles network awareness and coordination via multiple
tuple spaces. Our static analysis can be used to detect where and how data are
manipulated and how messages flow among the nodes of a Klaim network. More
in detail, the results of the analysis enable us to reason about

– the path in the Klaim network through which (a value in) a tuple of a specific
node reaches another one; and about

– which transformations are applied to a selected datum along those paths.

The proposed analysis permits to identify possible security breaches in the data
workflow of a distributed application. For instance, it may keep the safe paths
that data inside a tuple can traverse apart from those that pass through a pos-
sible untrusted node.

Revealing the Trajectories of KLAIM Tuples, Statically 439

Plan of the Paper. The next section briefly recalls the main aspects of Klaim.
Section 3 illustrates a simple example that is used along the paper. Section 4
defines the static analysis and shows how to inspect its results for checking
specific properties. The last section concludes.

2 Klaim: A Kernel Language for Agents Interaction
and Mobility

Klaim [11] has been specifically devised to design distributed applications con-
sisting of several components (both stationary and mobile) deployed over the
nodes of a distributed infrastructure. Its programming model relies on a unique
interface (i.e. set of operations) supporting component communications and data
management.

The basic building blocks of Klaim for guaranteeing network awareness are
the locations. They are the linguistic abstraction to manage addresses (i.e. net-
work references) of nodes and are referred to through identifiers. Locations can
be exchanged among the computational components and obey to sophisticated
scoping rules. They provide the naming mechanism to identify network resources
and to represent the notion of administrative domain: computations at a given
location are under the control of a specific authority. In this way, locations pro-
vide a natural abstraction to structure and support programming of spatially
distributed applications.

Klaim has multiple distributed tuple spaces. A tuple space is a multiset of
tuples. Tuples are anonymous sequences of data items and are retrieved from
tuple spaces by means of an associative selection. Interprocess communication
occurs through asynchronous exchange of tuples via tuple spaces: there is no
need for producers (i.e. senders) and consumers (i.e. receivers) of a tuple to
synchronise.

The obtained communication model has a number of properties that make it
appealing for distributed computing in general (see, e.g., [7,9,15,18]). It supports
time uncoupling (data life time is independent of the producer process life time),
destination uncoupling (the producer of a datum needs not to know the future
use or the final destination of that datum) and space uncoupling (programmers
need to know a single interface only to operate over the tuple spaces, regardless
of the node where the action will take place).

2.1 Syntax and Semantics

In this section, we introduce a dialect of Klaim in the style of a process calculus
whose syntax is presented in Table 1. The set of locations Loc consists of three
disjoint entities:

– the absolute locations � ∈ L ;
– the symbolic locations p ∈ LSym;
– the location variables u ∈ LV ars.

440 C. Bodei et al.

Table 1. Klaim syntax

Absolute locations are used to denote network addresses, through names already
assigned to absolute addresses of network components. Symbolic locations,
instead, provide the mechanism to support symbolic addressing. They are key-
words that refer to specific entities of which the currently running code is a part.
The entity referred to by these keywords thus depends on the execution context.
For instance, the symbolic location self will always refers to the current abso-
lute address of the current execution environment. Since locations are denotable
entities we also need location variables.

Nets are finite collections of nodes where processes and data can be placed.
A computational node takes the form � ::ρ P , where ρ is an allocation environment
and P is a process. Since processes may refer to location variables or symbolic
locations, the allocation environment acts as a name solver that binds locations
variables and symbolic locations to absolute locations. Tuples are sequences of
fields, i.e. of expressions and of locations. The precise syntax of expressions
is deliberately not specified; it is just assumed that they contain, at least, basic
values V , and value variables, ranged over by x. The tuple space of a node
consists of all the tuples that do not contain variables and that are located there
(we will sometimes refer to them as evaluated tuples). We will use [[t]] to denote
the result of evaluating the expression t, possibly applying also the allocation
environment ρ.

Processes are the active computational units of Klaim. Their syntax is
standard. Recursive behaviours are modelled via process definitions. For that we
assume a set of process identifiers, ranged over by A. A process definition has
the standard form A � P , but we additionally assume each identifier A has a
single defining equation. The actions processes perform provide the programming
abstractions that support data management. Three primitive behaviours are
provided: adding (out), withdrawing (in) and reading (read) a tuple to/from a
tuple space. Input and output actions are mutators: their execution modifies the

Revealing the Trajectories of KLAIM Tuples, Statically 441

Table 2. Structural congruence

tuple space. The read action is an observer : it checks the availability and takes
note of the content of a certain tuple without removing it from the tuple space.
Actions are tagged with the (possibly remote) location where they will take place.
Note that, in principle, each network node can provide its own implementation
of the action interface. This feature can be suitably exploited to sustain different
policies for data handling as done, e.g. in MetaKlaim [16].

Names occurring in processes and nets can be bound. For example, the action
prefix in(u)@l.P binds u in P , which is the scope of the bindings made by the
action. A name that is not bound is free. The sets of free and bound names of
a process/net term are defined in the standard way. As usual, we say that two
terms are α-equivalent, written ≡α, if one can be obtained from the other by
renaming bound names. Hereafter, we shall work with terms whose bound names
are all distinct and different from the free ones.

A pattern-matching mechanism is used for associatively selecting (evaluated)
tuples from tuple spaces. Intuitively, a tuple matches against an evaluated one
if both have the same number of fields and corresponding fields do match; two
values (locations) match only if they are identical, while variables match any
value of the same type. A successful matching returns a substitution associating
the variables contained in the fields of the tuples with the values contained in
the corresponding fields of the evaluated tuple. We will use σ to range over
substitutions. As usual, substitution application may require α-conversion to
avoid capturing of free names.

We will use the notation match([[t]], et) = σ to indicate that σ is the substi-
tution resulting from the pattern matching of tuple t with the evaluated tuple et.

The operational semantics is given in terms of a structural congruence ≡
and of a reduction relation �−→ over nets. The structural congruence is defined
as the smallest congruence relation over nets that satisfies the laws in Table 2.
These relate nets that intuitively behave the same, stating that ‖ is commutative
and associative, that the null process can always be safely removed/added, that
a process identifier can be replaced with the body of its definition, and that it
is always possible to transform a parallel of co-located processes into a parallel
over nodes. Indeed, rule (Struct) says that all structural congruent nets can
make the same reduction steps.

The reduction relation is the least relation induced by the rules in Table 3.
All the rules for (possibly remote) process actions require the target node to
exist. In addition, the rule (In) requires the chosen datum to occur in the target
node. Moreover, the rule says that action in(u)@l′ looks for any name �′′ at �′

442 C. Bodei et al.

Table 3. Operational semantics of Klaim

that is then used to replace the free occurrences of u in the continuation of the
process performing the input, while action in(�′′)@�′ looks exactly for the name
�′′ at �′; in both cases, the matched datum is consumed. With abuse of notation,
we use nil to replace the consumed data.

Rule (Par) says that if part of a net makes a reduction step, the whole
net reduces accordingly. Process interaction is asynchronous: no synchronisation
takes place between sender and receiver processes (only existence of target nodes
is checked). Moreover, communication is anonymous, because data do not include
the name of the sender, and associative, because data are accessed via pattern
matching.

3 Example: A Microservice Architecture

Microservices have been recently introduced as a software architecture pattern
used to build distributed applications composed of small, independent and highly
decoupled services. A microservice is equipped with a dedicated data storage
support (e.g. a data base) and provides basic (simple) services by computing
certain functionalities (e.g. querying a database). A microservice-based applica-
tion usually takes the form of a structured protocol composed by multiple phases.
Each phase is implemented by a specific microservice. Microservices interact by
exchanging messages. Since all the components of the software architecture are
microservices, the overall behaviour is derived by the coordination of its compo-
nents via message exchange. As an example, the Netflix service uses around 700
microservices to control each of its many parts.

Microservice software architectures present many security challenges, not
new, since they apply to the Service-Oriented paradigm. However, they become

Revealing the Trajectories of KLAIM Tuples, Statically 443

Auth

�1

Profile

�3

Select

�5

Delivery

�7

Auth

�2

Profile

�4

Select

�6

Delivery

�8
Pay

�9

• •

• •

•

� � � �

�

Fig. 1. A network of microservices. The same datum following the trajectory with
bullets • is at risk, while it is safe along the trajectory with boxes �.

even more challenging in this context since service requests are routed among
the multiple independent services. For instance, it may happen that a single
microservice controlled by a malicious entity may corrupt the coordination of
the service requests and therefore the overall behaviour of the application is
compromised.

We outline the main features of the design of a (simplified) Microservice
Application for delivering digital artefacts or contents (e.g. movies) to registered
users. The underlying structured protocol basically consists of several stages.
The first provides an authentication/authorisation facility. Registered users may
select one or more products to buy. In the second phase, the selected item is sent
to the users. Finally, the user pays, which requires the execution of an entire sub-
protocol, involving also a digital bank. In a monolithic architecture this will be
implemented as a stateful application. This is not the case with microservices
since one has to route the requests to multiple independent services. Figure 1
illustrates the structure of the application together with the underlying workflow
of messages. We comment on the architecture:

– The auth microservice provides facilities for authenticating registered user;
it also grants her/him some specific interactions;

– The profile microservice determines user’s profile taking into account all
what was stored by the application about the registered users;

– The select microservice supports the user in making the choice, possibly
suggesting the user the items she/he will like;

– The deliver microservice sends the required digital artefact to the user;
– The pay microservice deduces the monthly fee from the user’s account.

We assume that each stage of the application is split over and implemented
by groups of microservices. For instance, the auth service is distributed over
a pair of microservices independent from each other. This also implies that the
application has multiple entry points to control users’ access. Similarly multiple
profile microservices will be dedicated to manage user requests by providing
the suitable context of user preferences. Note that each profile micro service
may be built over different database schemata storing different data. This sort of

444 C. Bodei et al.

decentralised governance is applied to all the stages of the application. Figure 1
also illustrates a possible workflow of service requests with indicators of risk
level.

The software architecture briefly discussed above is rendered here by making
each microservice a Klaim node. For simplicity, we will focus on the coordination
among the microservices via tuple-based messaging. With an abuse of notation
we will freely exploit certain suitable processes without showing their detailed
implementation. The main processes of the auth microservice level are given
below:

H � in(usr, psw, req)@self.out(usr, psw)@self.in(usr, token)@self.
{for l ∈ Policy(usr, token)
out(usr, req, token)@l}.H

C � in(usr, psw)@self.I.out(usr, Check(usr, psw))@selfC

The handler process H receives the authentication request, obtained by sens-
ing in the tuple space the tuple (usr, psw, req), activates one of the processes
checking user credentials by emitting in the tuple space the tuple (usr, psw) and
finally generates the authentication token by inspecting the tuple space. The
authorisation token is made available by the checking user credential process.
We abstract from the detailed description of checking user credential process
C. We simply assume that the process is activated by the presence of the tuple
(usr, psw) in the tuple space and yields as result the tuple (usr, token), where
the value token is the authorisation information associated to the specific user
usr. The authorisation token is computed, after having executed some internal
activities I, by applying the function Check, which takes as input the values
usr, psw, making clear that the authorisation token strictly depends on the user
information. The result of the authentication is then forwarded to the profile
microservices hosted in the locations l, depending on a certain Policy function
that implements the workflow of messages in accordance with the multistage
pattern of the application.

To conclude the description of the authorisation stage, we present the Klaim
nodes that realise the auth microservices.

AUTH � (l1 ::ρ1 H | C | T1) ‖ (l2 ::ρ2 H | C | T2)

The authorisation microservices consist of two Klaim nodes located at l1 and l2
respectively. Intuitively, registered users can open more than one session of the
application at the same time and, therefore, using more than one microservice of
the application at the same time. Each node hosts the handler processes H and
the process C checking user credentials as discussed above together with the local
tuple spaces, represented by the suitable process T1 and T2. Each microservice
stores and manages its own data within the local tuple space. It is worth noting
the exploitation of tuple spaces to coordinate the behaviour of the processes
deployed in the nodes.

We now move our attention to the profile stage that computes the per-
sonal data associated to the specific registered user. Note that the user’s pro-
file depends on the location where the microservice is located, because, in a

Revealing the Trajectories of KLAIM Tuples, Statically 445

microservice-based architecture, each microservice owns and controls its own
database that is not shared with others to avoid conflicts. The main processes
of the profile stage are given below

D � in(usr, req, token)@self.out(usr, self, token)@self.
in(usr, profile)@self.out(usr, token, req, profile)@next .D

P � in(usr, u, token).@self.I.out(usr,UserProfile(usr, u))@self.P

The driver process D receives the user request, obtained by sensing in the
tuple space the tuple (usr, req, token). Note that each user request is tagged with
the authorisation token to identify the specific user’s session. The driver acti-
vates the process that has the task of calculating the user’s profile by emitting
in the tuple space the tuple (usr, profile). Finally, the next step in the workflow
begins with the generation of the tuple (usr, token, req, profile) and its trans-
mission to the remote node identified by the symbolic location next (that will be
instantiated by the allocation environment of the nodes where processes will be
deployed). The behaviour of the process P is straightforward. We only empha-
sise the role of the function UsrProfile. This function abstracts the activity of
computing user’s profile taking into account the information available locally.
This feature also implies a certain amount of autonomy of the microservice. The
awareness of the locality where information is taken transforms the tuple space
into a bounded context: each local tuple space may have its own understanding
of what a “user” is (e.g. maybe in a certain tuple space the “user” is characterised
by several tuples while in a different tuple space a single tuple is enough).

The Klaim nodes that implement the profile stage are the following

PROFILE � (l3 ::ρ3 D | P | T3) ‖ (l4 ::ρ4 D | P | T4)

Each node hosts the drive processes D and the process P computing user’s
profile as discussed above, together with the local tuple spaces, represented by
the suitable processes T3 and T4.

This third stage of the application is characterised by the select microser-
vice. Two processes drive the behaviour of the microservice. Both processes are
activated by sensing in the tuple space the tuple (usr, token, req, profile). The
first process S1 prompts a list of suggestions based on the user’s profile tak-
ing advantage of the information made available by the auxiliary process CS ,
with the obvious meaning. We only comment on the function CheckProfile that
abstracts the activities for computing the list of suggestions, according to the
user’s request and profile. The second process S2 simply shows to the user her/his
requests of the session at hand.

S1 � in(usr, token, req, profile)@self.out(usr, req, profile)@self.
in(usr, suggestion)@self.out(usr, token, req, suggestion)@self.S1

CS � in(usr, req, profile)@self.out(usr,CheckProfile(req, profile))
S2 � in(usr, token, req, profile)@self.out(usr, token, req)@self.S2

The Klaim nodes that implement the select stage are the followings

SELECT � (l5 ::ρ5 S1 | S2 | CS | F | T5) ‖ (l6 ::ρ6 S1 | S2 | CS | F | T6)

446 C. Bodei et al.

Each node hosts the drive processes S1, S2, the auxiliary process CS discussed
above, and the process F , the detailed description of which omitted here. This
process takes the user’s confirmation, sends the user digital rights for the pur-
chase (via the delivery microservice) and activates the payment microservice.

4 Control Flow Analysis

Below, we first introduce regular tree grammars that will be used to abstractly
represent Klaim data; then we present our control flow analysis; and finally
we show that the results of the analysis can be used to check how data are
manipulated and how they traverse the network of processes.

4.1 Abstract Representation of Data

In the following we represent the data populating and traversing a net of Klaim
processes in an abstract form. Since a system is designed to be continuously
active and may contain feedback loops, data can grow unboundedly, while we
insist on having finite representation. We resort then to set of regular trees and
we associate with data regular tree grammars [8] as finite abstractions. The
leaves of a tree in the language of a regular grammar represent basic values v
and locations �. Instead, its nodes represent functions applied to data, tuple
constructions and transfer from the tuple space of a specific computational node
to another one. A brief survey on regular tree grammars follows.

A regular tree grammar is a quadruple ̂G = (N,T, Z,R) where

– N is a set of non-terminals (with rank 0),
– T is a ranked alphabet, whose symbols have an associated arity,
– Z ∈ N is the starting non-terminal,
– R is a set of productions of the form A → t, where t is a tree composed from

symbols in N ∪ T according to their arities.

In the following we denote the language generated by a given grammar ̂G with
Lang(̂G).

Given a net of processes, the grammars we use will have the alphabet T

consisting of the following set of ranked symbols

– � (with arity 0) for each � ∈ L
– v� (with arity 0) for each value v ∈ Value and � ∈ L
– t� (with arity r) to represent a tuple with arity r in � ∈ L
– f � (with arity r) for each function f in � ∈ L with arity r
– s� (with arity 1) to represent an output from � ∈ L

The non-terminals N of our grammars include a symbol for each terminal, and
carry the label of the relevant computational node. Just for readability we shall
capitalize the ranked symbols above and use them as non-terminals, i.e. L�, V �,
T �, F �, and S�. When irrelevant, we shall omit the labels �, and we shall use
a capital letter for a generic non-terminal. For example, a r-tuple is abstractly

Revealing the Trajectories of KLAIM Tuples, Statically 447

t�0

f�0

0
g�1

1
f�0

0
g�1

Fig. 2. An infinite abstract tree

represented by a grammar with the production T � → t�(A1, ..., Ar) and the
productions for Ai, that generates the tree rooted in t� and children generated
by A1, ..., Ar.

It is convenient introducing some notation. For brevity and when not ambigu-
ous, we will simply write v̂ = (Z,R) for the grammar ̂G = (N,T, Z,R) with
starting non-terminal Z and regular productions in R, without explicitly list-
ing the terminals and the non-terminals. Then, we denote with R the set of all
possible productions over N and T.

As an example of a possible infinite abstract tree, consider two computational
nodes P�0 and P�1 and two binary functions f and h. Suppose that P�0 applies
f to 0 and to a value taken in the tuple space of P�1 . Similarly, P�1 applies h to
1 and the value taken in the tuple space of P�0 . The resulting value in the tuple
space of P�0 is abstracted as the set of binary trees of unbounded depth. The
following grammar represents them all (an element of its language is in Fig. 2):

(T �0 , {T �0 → t�0(F �0), F �0 → f �0(I�0
0 , G�1), I�0

0 → 0, G�1 → g�1(I�1
1 , F �0), I�1

1 → 1})

Now we are ready to introduce the abstract terms that belong to the set

̂V = 2N×R

4.2 Specification of the Analysis

The result or estimate of our CFA is a pair (Σ�, Θ�) for tuple fields tf , a triple
(Σ�, Θ�, κ) for processes P , and a triple (Σ,Θ, κ) for nets of processes. The
components of an estimate are the following abstract domains (we omit labels �
for brevity):

– abstract enviroment Σ : (LV ar∪V ars) → ̂V is an abstract environment that
associates symbolic locations and variables with a set of abstract values;

448 C. Bodei et al.

– abstract data collection Θ : L → ̂V approximates the values that a node
hosted at � can manipulate;

– abstract tuple space κ : L → ̂V approximates the tuple space of a node.

The syntax directed rules of Tables 4 and 5 specify when an analysis esti-
mate is valid and they are almost in the format of AFPL, which is a logic used
to specify static analyses and which allows systematically deriving analysis algo-
rithms [20]. For each tuple t (and its fields tf), the judgement (Σ�, Θ�) |=ρ

�
t : ϑ

(and (Σ�, Θ�) |=ρ
�
tf : ϑ) expresses that ϑ ∈ 2 ̂V approximates the set of tuples

that t (tf) may evaluate to, given the abstract environment Σ�. An actual loca-
tion and a value evaluate to the set ϑ, provided that their abstract represen-
tations belong to ϑ (rules (Loc) and (Val)). This abstract representation is a
grammar made of a non-terminal symbol whose production generates a tree
with a single node. For example, the abstract value for an actual location �′ is
(L�, {L� → �′}) that represents a grammar with the initial symbol is L� that
only generates the tree �′. The rule (L-sym) takes care of symbolic locations and
resolves them through ρ. The rules (L-var) and (E-var) for variables require the
binding for them to be included in ϑ. The rule (E-fun) analyses the application
of an r-ary function f to produce the set ϑ. To do that (i) for each term Ei, it
finds the sets ϑi, and (ii) for all sequences of r values (Zi, Ri) in ϑi, it checks
if ϑ includes the grammars with distinct symbol F � generating the trees rooted
in f � with subtrees generated by Zi. The rule (Tuple) is similar. Note that in
all the rules above, we require that the abstract data collection Θ(�) includes all
the abstract values in ϑ.

Table 4. Analysis of tuples (Σ�, Θ�) |=ρ
�
t : ϑ and of tuple fields (Σ�, Θ�) |=ρ

�
tf : ϑ.

Revealing the Trajectories of KLAIM Tuples, Statically 449

Some further auxiliary definitions may help keeping the logical specification
of the analysis of nets and processes less intricate. In particular, they simplify
handling the grammars and extracting the needed information from them. The
function put constructs a grammar that records that a tuple, approximated by
(Z,R), may be inserted in the tuple space of the computational node at �. The
function @ takes a set of grammars ϑ and returns the set of actual locations in
those grammars with starting symbol L. The function get recursively visits a
grammar to find a tuple that has been acquired by a process at �; its base cases
exhibit, if any, the tuple built by a process at �′ approximated by the grammar
with starting symbol T �′

.

Definition 1 (Auxiliary definitions for the analysis).
Let P be a process, � be an absolute location, and (Z,R) be an abstract value in
the following three auxiliary functions.

– put(�, (Z,R)) = (S�, {S� → s�(Z)} ∪ R)

– ̂@ϑ = {� | (L�, {L� → �}) ∈ ϑ}

–

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

get((S�, {S� → s�(T �′
), T �′ → t�

′
(Z1, . . . , Zr)} ∪ R)) =

〈(S�, {S� → s�(Z1)} ∪ R1), . . . , (S�, {S� → s�(Zr)} ∪ Rr)〉
where Ri are the productions concerning Zi

get((S�, {S� → s�(S�′
0)} ∪ R)) = get((S�′

0 , R))
get((A,R)) = 〈〉 if A
= S�

The specification of the analysis of nets (Σ,Θ, κ) |= N , and of processes
(Σ�, Θ�, κ) |=ρ

�
P is in Table 5. The rules (N-node) and (N-tuple) lift a process

and a tuple in a specific location where they have been analysed; note that the
approximation of the tuple is included in the abstract tuple space of the node �.
The rule (N-par) says that the estimate of the parallel composition is also valid
for the components.

The remaining rules are for processes. The rules for the inactive node (N-nil)
and for parallel composition (N-par) are standard, as well as those for process
definition and invocation, where to save notation, we assumed that each variable
X is uniquely bound to the body P . The rule (P-out) (i) approximates the tuple
t with ϑ and the symbolic location l with ϑ′; and (ii) for all grammar v̂ in ϑ and
for all locations �′ extracted from ϑ′, it checks if the tuple space approximation
κ(�′) contains a grammar that records that the (approximation v̂ of the) tuple t
has been inserted by the node �; and finally that P has a valid approximation.

The rule (P-in) for input and read is the most complex, with a premise made
of two conjuncts that imply three. The first conjunct of the condition finds the
approximation ϑ of the symbolic location l. The second one extracts the actual
locations �′ possibly bound to l and looks for the grammars approximating the
tuples in the space of those locations. If there are any (non-empty) such tuples
v̂1, · · · , v̂r and if a component tf i of the input/read tuple is an actual location �′′,
then �′′ must also occur in the same position in the approximation, i.e. in v̂i. This
statically implements pattern matching on tuple, but on locations only. The first

450 C. Bodei et al.

Table 5. Analysis of nets (Σ, Θ, κ) |= N , and of processes (Σ�, Θ�, κ) |=ρ
�

P .

conjunct of the conclusion of the implication requires that abstract environment
includes the abstract values for each identifier and location variables occurring
in the read tuple. The second and the third conjuncts require that the analysis
validates the other elements of the tuple and the continuation P .

4.3 Checking Data Manipulation and Trajectories

We now illustrate how the outcome of the analysis can be used to detect where
and how data are manipulated and how messages flow in a system. More pre-
cisely, the results of the analysis enable us to reason about (i) the path in the
network through which (a value in) a tuple of a specific node reaches another
one, and about (ii) which transformations are applied to a selected datum along
those paths.

In our example of Sect. 3 a designer could be interested in imposing a policy
that forbids serving a request coming from a certain geographic area while the
user is associated with a different area by the profile. This situation occurs,
e.g. when the user is travelling, the microservices reside in different areas and
the user connects to the closest such microservice. Suppose that the two auth
microservices serve each a different region. In our terms, one has to check whether
a certain request authorised in �2 does not reach the select microservice in �5.
For brevity, we consider below only the parts of the analysis that check this
property, while we do not consider data manipulations.

From now onwards, assume that all the symbolic names l have been bound
to the corresponding absolute locations by the environments. The analysis of
auth requires that the following holds

(Σ�, Θ�, κ) |=ρ2
�2

H

Revealing the Trajectories of KLAIM Tuples, Statically 451

One has to analyse first in(usr, psw, req)@�2. We skip this step and for simplicity
assume that the following holds, where (Zi, Ri) are suitable tree grammars

(Σ�2 , Θ�2) |=ρ2
�2

req : ϑ = {(Z1, R1) . . . (Zn, Rn)}
The process H terminates by sending the relevant tuple to �4 and its analysis

(Σ�, Θ�, κ) |=ρ2
�2

out(usr, req, token)@�4.H

enriches the grammars {(Z ′
1, R

′
1) . . . (Z ′

k, R′
k)} of the tuple with the informa-

tion about this transit, performed by the function put, yielding {(S�2 , {S�2 →
s�2(Z ′

1)} ∪ R′
1) . . . (S�2 , {S�2 → s�2(Z ′

k)} ∪ R′
k)}.

Now the analysis of select requires that of its actions, but we only concen-
trate on

(Σ�, Θ�, κ) |=ρ4
�4

out(usr, token, req, suggestion)@�5.S2

Again, the output tuple is enriched with the information represented by s�4 .
Before discussing how to use the analysis results of this example, we define

the following notions, formalising the inspection of results. We start by defining
a function that, given an abstract value v̂ (i.e. a tree grammar) returns a finite
set of finite sequences of labels, ending with either a value in Value or a location
in L . Below we assume as given a network N and the result of its analysis.

Definition 2 (Extracting trajectories). Let v̂ be a tree grammar, the set of
trajectories of the values and locations represented by v̂ is

TRJ(v̂) = ∅trj∅(v̂)

where ItrjJ is inductively defined on the shape of v̂ as follows

– ItrjJ (A�, {A� → c�(Z1, . . . , Zr)} ∪ R) =
⋃r

i=1,Zi /∈I{� · I′
trjJ∪A((Zi, Ri))}

– ItrjJ (L�, {L� → �′}) = � · �′

– ItrjJ (V �, {V � → v�}) = � · v

and

– � · X = {� · x | x ∈ X}
– I ′ =

{

I ∪ A if A /∈ J

I otherwise

As expected, the auxiliary function ItrjJ extracts a trajectory from an abstract
value, by accumulating on each sequence the location of a traversed node. The
trajectories are kept finite because the sets I and J keep track of the visited
nodes, which are not visited more than twice.

Now we define when a value or a label does not traverse a node that the
designer considers malicious, and thus that trajectory violates the policy.

452 C. Bodei et al.

Definition 3 (Datum reaches). A datum d ∈ Value ∪ L reaches a node �k

without passing through a node � if and only if

∀v̂ ∈ Θ�k
. �0 · · · �k · d ∈ TRJ(v̂) ⇒ ∀j. �
= �j

We turn our attention to data manipulations. In particular, we describe how
a designer can check where data originates and which functions transform them.

Definition 4 (Data manipulation). A datum d ∈ Value∪L , originated from
the node with label �0, is an ingredient of a node �k if and only if

∃v̂ ∈ Θ�k
. �0 · · · �k · d ∈ TRJ(v̂)

Furthermore, a function f may manipulate a value v reaching a node �k if and
only if there exists an abstract value (A,R) ∈ Θ�k

such that R contains a pro-
duction F �′ → f �′

(R1, . . . , Rn), for some �′.

The first part of the above definition is straightforward since inspecting the Θ�k

suffices to understand if a value may be stored in the tuple space of the node �k.
The second part checks if the function f may be applied in any node along the
path traversed by the value v. Again, this information can be extracted from the
grammars inside Θ�k

.
Back to our example, applying the function TRJ to an element v̂ of Θ�5 gives

the trajectory �2 · �4 · �5 ·v. The requirement that a user can only access a service
within his geographic area is therefore detected.

5 Conclusions

We have introduced a static analysis, technically a contol flow analysis, for a
variant of Klaim that provides an abstract simulation model that tracks the
propagation of tuples and identifies their possible trajectories within a Klaim
net. We have illustrated our approach on a microservice-based software architec-
ture, showing that one can detect when a datum can safely traverse a path in the
network, and when passing through a specific node may be dangerous. Our vari-
ant of Klaim includes no primitive mechanism for code mobility, e.g. the eval
action, which however can be managed with some additional technicalities. As
future work, we intend to study when nodes continue to behave in a reasonable
way even in the presence of not completely reliable data, by linking our approach
to that in [21]. There, the authors use the Quality Calculus to program software
components with a sort of backup plan in case of partly unreliable communica-
tion or data. Finally, we plan to consider one of the available implementations
of the Klaim model, e.g. [1,2], to instrument them with our static analysis and
to perform experimental evaluation on some case studies.

Revealing the Trajectories of KLAIM Tuples, Statically 453

Related Work. Several verification techniques have been defined for Klaim and
its variants. An important effort has been devoted to exploit behavioural type
systems for security [12,14,19]. By exploiting static and dynamic checks, type
checking guarantees that only those processes are allowed to proceed, the inten-
tions of which match the rights granted to them. An expressive language exten-
sion, MetaKlaim [16] integrates MetaML (an extension of SML for multi-
stage programming) and Klaim, to permit interleaving of meta-programming
activities (such as assembly and linking of code fragments), dynamic checking
of security policies at administrative boundaries, and traditional computational
activities. MetaKlaim exploits a powerful type system (including polymorphic
types á la system F) to deal with highly parameterised mobile components and to
enforce security policies dynamically: types are metadata that are extracted from
code at run-time and are used to express trustiness guarantees. The dynamic type
checking ensures that the trustiness guarantees of wide area network applications
are maintained also when computations interoperate with potentially untrusted
components.

A framework based on temporal logic [10] has been developed for specify-
ing and verifying dynamic properties of mobile processes specified in Klaim.
This framework provides support for establishing deadlock freedom and liveness
properties as well as security properties such as resource access and information
disclosure. A different approach to control accesses to tuple spaces and mobility
of processes is introduced in [13]. Like ours, this approach is based on Flow Logic
(so also enabling to design a fully static type system) and considers a version of
Klaim slightly different from ours. The abstract domains differ, because theirs
contain tuples only made by localities, while ours also have values. Since access
control is of interest, their domains also record possible policies and violations.

References

1. Bettini, L., De Nicola, R., Pugliese, R.: KLAVA: a Java package for distributed
and mobile applications. Softw. Pract. Exper. 32(14), 1365–1394 (2002)

2. Bettini, L., De Nicola, R., Pugliese, R., Ferrari, G.L.: Interactive mobile agents in
X-Klaim. In: Proceedings of 7th Workshop on Enabling Technologies (WETICE
1998), Infrastructure for Collaborative Enterprises, pp. 110–117. IEEE Computer
Society (1998)

3. Bodei, C., Degano, P., Ferrari, G.L., Galletta, L.: A step towards checking security
in IoT. In: Proceedings of ICE 2016, EPTCS, vol. 223, pp. 128–142 (2016)

4. Bodei, C., Degano, P., Ferrari, G.-L., Galletta, L.: Where do your IoT ingredients
come from? In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016.
LNCS, vol. 9686, pp. 35–50. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39519-7_3

5. Bodei, C., Degano, P., Ferrari, G.L., Galletta, L.: Tracing where IoT data are
collected and aggregated. Log. Methods Comput. Sci. 13(3), 1–38 (2017)

6. Bodei, C., Galletta, L.: Tracking data trajectories in IoT. In: Mori, P., Furnell, S.,
Camp, O. (eds.) Proceedings of the 5th International Conference on Information
Systems Security and Privacy, ICISSP, vol. 1, pp. 572–579. SCITEPRESS (2019).
https://doi.org/10.5220/0007578305720579, ISBN 978-989-758-359-9

https://doi.org/10.1007/978-3-319-39519-7_3
https://doi.org/10.1007/978-3-319-39519-7_3
https://doi.org/10.5220/0007578305720579

454 C. Bodei et al.

7. Castellani, S., Ciancarini, P., Rossi, D.: The ShaPE of ShaDE: a coordination
system. Technical report UBLCS 96-5, Dip. di Scienze dell’Informazione, Univ.
Bologna (1996)

8. Comon, H., et al.: Tree automata techniques and applications. http://www.grappa.
univ-lille3.fr/tata (2007). Released 12 Oct 2007

9. Davies, N., Wade, S., Friday, A., Blair, G.: L2imbo: a tuple space based plat-
form for adaptive mobile applications. In: Rolia, J., Slonim, J., Botsford, J. (eds.)
ICODP/ICDP. IFIPAICT, pp. 291–302. Springer, Boston (1997). https://doi.org/
10.1007/978-0-387-35188-9_22

10. De Nicola, R., Loreti, M.: A modal logic for mobile agents. ACM Trans. Comput.
Log. 5(1), 79–128 (2004)

11. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

12. De Nicola, R., Ferrari, G.L., Pugliese, R., Venneri, B.: Types for access control.
Theor. Comput. Sci. 240(1), 215–254 (2000)

13. De Nicola, R., et al.: From flow logic to static type systems for coordination lan-
guages. Sci. Comput. Program. 75(6), 376–397 (2010)

14. De Nicola, R., Gorla, D., Pugliese, R.: Confining data and processes in global
computing applications. Sci. Comput. Program. 63(1), 57–87 (2006)

15. Deugo, D.: Choosing a mobile agent messaging model. In: ISADS, pp. 278–286.
IEEE (2001)

16. Ferrari, G.L., Moggi, E., Pugliese, R.: MetaKlaim: a type safe multi-stage language
for global computing. Math. Struct. Comput. Sci. 14(3), 367–395 (2004)

17. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

18. Gelernter, D.: Multiple tuple spaces in Linda. In: Odijk, E., Rem, M., Syre, J.-
C. (eds.) PARLE 1989. LNCS, vol. 366, pp. 20–27. Springer, Heidelberg (1989).
https://doi.org/10.1007/3-540-51285-3_30

19. Gorla, D., Pugliese, R.: Dynamic management of capabilities in a network aware
coordination language. J. Log. Algebraic Program. 78(8), 665–689 (2009)

20. Nielson, F., Nielson, H.R., Seidl, H.: A succinct solver for ALFP. Nordic J. Comput.
9(4), 335–372 (2002)

21. Nielson, H.R., Nielson, F., Vigo, R.: A calculus of quality for robustness against
unreliable communication. J. Log. Algebraic Meth. Program. 84(5), 611–639 (2015)

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/978-0-387-35188-9_22
https://doi.org/10.1007/978-0-387-35188-9_22
https://doi.org/10.1007/3-540-51285-3_30

Lightweight Information Flow

Flemming Nielson(B) and Hanne Riis Nielson

Department of Mathematics and Computer Science,
Technical University of Denmark, 2800 Kgs., Lyngby, Denmark

fnie@dtu.dk, hrni@dtu.dk

Abstract. We develop a type system for identifying the information
flow between variables in a program in the Guarded Commands lan-
guage. First we characterise the types of information flow that may
arise between variables in a non-deterministic program: explicit, implicit,
bypassing, correlated or sanitised. Next we allow to specify security poli-
cies in a number of traditional ways based on mandatory access con-
trol: defining a security lattice, working with components or decentralised
labels, both as pertains to confidentiality and integrity. Offending infor-
mation flows are those identified by the type system and that violate
the security policy; a program is sufficiently secure if it contains only
acceptable information flows.

1 Introduction

Motivation. Much of the work of Rocco De Nicola has been within the general
area of process algebras [5]. This is a fascinating area containing a wide range
of fundamental ideas and many deep developments on topics such as semantics,
equivalences (including testing equivalences [3,10] and bisimulations [1,12]) and
model checking [11] to name just some of the key ones.

Some of the work of Rocco De Nicola has been on type systems ensuring
various desirable properties of systems, including security properties [7,8]. In
order to make these developments accessible to the wider computer science and
computer engineering communities it is essential to choose the primitives of the
process algebras at an appropriate level of abstraction. The work on Klaim (a
Kernel Language for Agents Interaction and Mobility) [2,6,9] incorporates a
choice that is sufficiently abstract to allow a rich theory and prototype systems
to be developed, while at the same time being sufficiently concrete to appeal to
a wide variety of researchers, engineers, programmers and students.

Contribution. In this paper we define a type system for identifying the security
vulnerabilities that may arise in non-deterministic programs.

The traditional approach is to define a type system that intends to ensure
that there are absolutely no security violations in well-typed programs. Non-
interference results, or generalisations of these, then provide guarantees about
the soundness of the type system. However, this does not close the loophole
that security vulnerabilities may exist below the level of formalisation, as when
c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 455–470, 2019.
https://doi.org/10.1007/978-3-030-21485-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_25

456 F. Nielson and H. R. Nielson

timing attacks can still be performed on systems only achieving non-termination-
sensitive security, nor that minor amounts of quantitative leakage might be
acceptable in practice.

Our approach is to define a type system that intends merely to identify the
security vulnerabilities that may still be present in well-typed programs. The aim
is to do so in a manner that appeals to a wide variety of researchers, engineers,
programmers and students, also outside the area of language based security. The
acceptability of the security vulnerabilities should then be assessed as part of a
code review.

The first step is to characterise the types of information flow that may arise
between variables in non-deterministic programs: they may be explicit (as in
assignments), implicit (as in conditional choices), bypassing (when one condi-
tional choice may bypass another), correlated (when variables are modified in
the same conditional branches that could have been bypassed) or sanitised (when
the flow is regarded as permissible regardless of the security policy).

The next step is to admit security policies in a number of traditional ways
based on mandatory access control: explicitly defining a security lattice, working
with components or decentralised labels, both as pertains to permissions (often
used for confidentiality) and restrictions (often used for integrity). This step is
fairly standard.

The final step is to develop a type system for identifying the information flow
between variables in a program in the Guarded Commands language. Offending
information flows are those identified by the type system and that violate the
security policy. A program is secure if it contains no information flows or only
acceptable ones (like the sanitised ones); in the absence of any information flow
we may establish a non-interference result but we would be more interested
in being able to quantify the amount of leakage so as to provide guidance to
engineers and programmers as part of a code review. The type system has been
implemented and is available for experimentation at http://FormalMethods.dk/
if4fun and makes use of heuristics for satisfiability of boolean expressions in
Guarded Commands.

2 Guarded Commands for Security

We shall base our development on Dijkstra’s language of Guarded Commands
[15] extended with arrays and a security primitive (san, to be explained shortly).
The conditional takes the form if b1 → C1 [] ... [] bk → Ck fi; as an example,
to express that C1 should be executed when b holds and that otherwise C2 should
be executed, we shall write if b → C1 []¬b → C2 fi. The iteration construct
takes the form do b1 → C1 [] ... [] bk → Ck od; as an example, to express that
C should be executed as long as b holds, we shall write do b → C od.

An example program is shown in the righthand half of Fig. 1; it non-
deterministically updates the entries of arrays A and E, of lengths A# and E#,
respectively. (It can be seen as an interleaved version of the parallel composition
of two programs handling each of the arrays, as shown in the lefthand half of
Fig. 1, but this is not part of the Guarded Commands language.)

http://FormalMethods.dk/if4fun
http://FormalMethods.dk/if4fun

Lightweight Information Flow 457

par

a:=0;

do san(a)<san(A#) →
A[a]:=A[a]+27;

a:=a+1

od

[]

e:=0;

do san(e)<san(E#) →
E[e]:=E[e]+12;

e:=e+1

od

rap

a:=0;

e:=0;

do san(a)<san(A#) →
A[a]:=A[a]+27;

a:=a+1

[] san(e)<san(E#) →
E[e]:=E[e]+12;

e:=e+1

od

Fig. 1. Two arrays being simultaneously updated. On the left we pretend it happens
in parallel, on the right we pretend it happens interleaved. Only the program on the
right is within Guarded Commands for Security as studied here.

Syntax. The syntax of the commands C and guarded commands GC of the
Guarded Commands for Security language are mutually recursively defined using
the following BNF notation:

C :: = x := a | A[a1] := a2 | skip | C1 ; C2 | if GC fi | do GC od
GC :: = b → C | GC1 []GC2

We make use of arithmetic expressions a (used in x := a and A[a1] := a2) and
boolean expressions b (used as a guard for when to execute a command C as in
b → C) given by

a :: = n | s | x | A[a1] | A# | a1 + a2 | a1 − a2 | a1 ∗ a2 | san a1

b :: = true | a1 = a2 | a1 >a2 | a1 ≥ a2 | b1 ∧ b2 | b2 | ¬ b1

where numbers n, strings s, variables x and arrays A are left unspecified. The
san construct will be used to bypass the security policy and will be explained in
Sect. 3.

Semantics. We shall present the key ideas behind giving an operational seman-
tics for Guarded Commands.

A command will be interpreted relative to a memory σ that assigns values
(say integers) to all variables and array entries in the command of interest. More
precisely, for each array A of length A# the memory will provide values for
A[0] · · · A[A#] as well as for A#.

An arithmetic expression a is then evaluated with respect to a memory σ
and we obtain a value A[[a]]σ as result. Evaluation is undefined if the arithmetic
expression accesses a variable or array entry for which the memory does not
assign a value. Also, the value of san a1 is the same as the value of a1.

A boolean expression b is also evaluated with respect to a memory σ and
we obtain a truth value B[[b]]σ as result. Evaluation is undefined if one of the
constituent arithmetic expressions is undefined.

458 F. Nielson and H. R. Nielson

We then define an operational semantics for interpreting commands (and
guarded commands) and list some of the key axioms and rules:

σ(x) and A[[a]]σ are defined

(x := a, σ) → σ[x �→ A[[a]]σ]

(C1, σ) → (C ′
1, σ

′)

(C1 ; C2, σ) → (C ′
1 ; C2, σ

′)

(C1, σ) → σ′

(C1 ; C2, σ) → (C2, σ
′)

B[[bi]]σ is true

(if b1 → C1 [] · · · [] bn → Cn fi, σ) → (Ci, σ)

B[[bi]]σ is true

(do · · · [] bi → Ci [] · · · od, σ) → (Ci ; do · · · [] bi → Ci [] · · · od, σ)

all of B[[bi]]σ are false

(do b1 → C1 [] · · · [] bn → Cn od, σ) → σ

In particular, this semantics is purely non-deterministic and does not make use
of a scheduler. (If needed, we would model a scheduler by explicitly modifying
the guards in guarded commands. Doing so would influence the results of the
information flow type system. This would be our way of modelling an attacker
that might collude with a scheduler.)

3 Types of Information Flow

We now introduce the types of information flow in non-deterministic programs.
These are not only between variables as we also have array entries and array
lengths. We therefore use the term data container to stand for any one of vari-
able, array entry or length. The notions of explicit, implicit and sanitised flows
are standard [13,14] whereas our treatment of bypassing flows grew out of [21]
and our focus on correlation flows is more novel.

Explicit Flows. In the command y := x there is a direct and explicit flow from
x to y. We write this as x →E y to indicate that it is an explicit flow.

In general, explicit flows arise whenever a data container is used to compute
the value of a data container.

A slightly more complex example is the command y := x ; z := y where there
are direct explicit flows from x to y and from y to z. The flow from x to z is
an indirect flow, and in general we use indirect to indicate that we exploit the
transitive nature of the flow relation. As for the type of flow we shall say that
the indirect flow is also explicit.

Lightweight Information Flow 459

Implicit Flows. In the guarded command x = 0 → y := 0 there is a direct and
implicit flow from x to y. We write this as x →I y to indicate that it is an implicit
flow.

In general, implicit flows arise whenever a data container is modified inside
the body of a command governed by a boolean condition containing some data
container.

The command if x = 0 → y := 0 [] ¬ (x = 0) → y := 1 fi ; z := y has a
direct implicit flow from x to y and a direct explicit flow from y to z. The flow
from x to z is an indirect flow and as for the type of flow we shall say that the
indirect flow is implicit (since x is not directly copied into z).

Bypassing Flows. In y := 0 ; if x = 0 → skip [] true → y := 1 fi there are
no explicit flows from x to y and also no implicit flows. However, it is still the
case that the final value of y might reveal something about x if one is able to run
the program many times and observe the different non-deterministic outcomes.
We write this as x →B y to indicate that it is a bypassing flow.

In general, bypassing flows arise whenever two conditions can be simulta-
neously true and more than one branch can be taken; in this case there is a
bypassing flow from the data containers in the condition of one branch to the
data containers modified in the command of the other.

In the command x := z ; y := 0 ; if x = 0 → skip [] true → y := 1 fi
there is a direct explicit flow from z to x and a direct bypassing flow from x to
y. The flow from z to y is an indirect flow and as for the type of flow we shall
say that the indirect flow is a bypassing one.

Correlation Flows. Bypassing flows capture some of the power of non-determinism
but not all of it. In if true → y := 0 ; x := 0 [] true → y := 1 ; x := 1 fi there are
no explicit, implicit or bypassing flows. Yet, if y was intended to be a private key
(albeit a short one) and x is a public variable, then clearly we can learn something
about y from knowing x. We write this as x →C y and y →C x to indicate that it
is a possible correlation flow between x and y.

In general, correlation flows arise whenever two conditions can be simultane-
ously true and the choice of branch is resolved non-deterministically; in this case
there is a correlation flow between the data containers modified in each branch.

In if true → y := 0 ; x := 0 [] true → y := 1 ; x := 1 fi ; z := x there is a
direct explicit flow from x to z and a correlation flow from y to x. The flow from
y to z is an indirect flow and as for the type of flow we shall say that the indirect
flow is a correlation one.

Sanitised Flows. Returning to the non-deterministic program in Fig. 1 there
would seem to be bypassing flows from A# to E[] and similarly from E# to A[].
We might consider these flows to be absolutely unproblematic and a traditional
approach is to use sanitisation for this; in our case this means using the san
construct of Guarded Commands for Security as illustrated in Fig. 1.

460 F. Nielson and H. R. Nielson

Rather than neglecting the direct bypassing flows from A# to E[] and from
E# to A[] we shall mark these as sanitised flows (that can be disregarded later
as part of a code review) and we write A# →S B[] and B# →S A[].

In general, sanitised flows arise whenever at least one sanitisation step is
involved in the flow. In line with previous decisions, if a sequence of flows involve
a sanitised flow we shall regard the overall flow as a sanitised one.

Representation of Flows. We shall take the point of view that some types of
flows are more worrying than others and that we only need to record the most
worrying one. We order the explicit (E), implicit (I), bypassing (B), correlation
(C) and sanitised (S) flows linearly by S < C < B < I < E. We then use max
and min for the corresponding least upper bound and greatest lower bound
operations.

A flow relation is a partial map from pairs of data containers to {E, I,B,C,S},
and we use F to range over flow relations and τ to range over types of flows. (This
is isomorphic to a total map from pairs of data containers to {⊥,E, I,B,C,S}
where ⊥ < S < C < B < I < E and thus gives rise to a pointwise definition of a
partial order ≤ between flow relations.)

We write δ1 →τ δ2 for the flow relation that is undefined everywhere, except
that the pair (δ1, δ2) is mapped to τ .

Extending this notation to sets of data containers we write Δ1 ⇒τ Δ2 for the
flow relation that is undefined everywhere, except that a pair (δ1, δ2) ∈ Δ1 ×Δ2

is mapped to τ .
As a special case, { } ⇒τ { } denotes the flow relation that is undefined

everywhere (regardless of the choice of τ).

4 Security Policies

The key motivation behind our development is to classify data containers accord-
ing to a security domain, and to consider it secure to transfer data as expressed
by an ordering on the elements of the security domain (see [17] for a general
introduction).

A security domain L is a finite and non-empty set equipped with a preorder

; this is a relation over L that is reflexive and transitive. The preorder indicates
the direction in which it is secure to move data along; we shall use this approach
regardless of whether we deal with confidentiality or integrity or mixtures or
modifications of these. In the literature, the security domain is often required to
be a (complete) lattice and hence is called a security lattice, but we do not need
this assumption for our approach.

A security association L is a mapping from the set of data containers of
interest into the security domain. Clearly security policies can be combined using
cartesian products and hence be built in a compositional manner.

A security policy consists of a security domain and a security association.
An information flow δ1 →τ δ2 is secure with respect to the security policy

whenever L(δ1)
 L(δ2). An information flow δ1 →τ δ2 with L(δ1) �
 L(δ2)
constitutes a security violation at level τ .

Lightweight Information Flow 461

{∗}

{ }

{ }

{∗}

Fig. 2. Illustrating restriction ordering (⊆) versus the permission ordering (⊇).

Components. Describing the security domain explicitly becomes cumbersome
once the security domain grows in size. We therefore consider ways of express-
ing the intended security lattice in more succinct ways following the approach
standard in Mandatory Access Control [17].

Define a finite and nonempty set C of security categories. A security compo-
nent then is a set of security categories and the security domain L = PowerSet(C)
is the set of all such security components. This security domain is indeed a (com-
plete) lattice.

Whenever the security categories are considered to be restrictions that can
be gained but cannot be lost, the security domain will be ordered by the subset
ordering (taking
 to be ⊆). This is often the case for integrity policies.

Whenever the security categories are considered to be permissions that can
be lost but cannot be gained, the security domain will be ordered by the superset
ordering (taking
 to be ⊇). This is often the case for confidentiality policies.

The security domain is then specified by listing the finite and nonempty set
of security categories and indicating whether to use the ordering for restrictions
or for permissions.

In both cases we retain the important principle that data may flow along the
preorder of the security domain. Determining which choice of ordering to go for
depends on determining whether or not it is considered to be secure to gain or
lose security categories along flows.

We shall write {∗} for the security component consisting of all security cat-
egories. In case of the restriction ordering, the least element then is { } and the
greatest element is {∗}, whereas in the case of the permission ordering, the least
element is {∗} and the greatest element is { }. This is illustrated in Fig. 2.

Decentralised Labels. The security perspective of components was of a rather
global nature. To accommodate that different security principals might have
different views on information flow, that all should be respected, we develop a
notion of decentralised labels – motivated by the Decentralised Label Model of
Myers and Liskov [18] and some of its adaptations [19,22] – while staying fully
within the lattice-based approach.

Define a finite and nonempty set P of security principals. A decentralised
label then is a total mapping from P to PowerSet(P) and the security domain
L = (P → PowerSet(P)) is the set of all such mappings. This security domain is
indeed a (complete) lattice.

462 F. Nielson and H. R. Nielson

As in the previous section there are two ways of considering the labels: as
restrictions that can be gained but cannot be lost, or as permissions that can be
lost but cannot be gained.

Whenever the labels are considered to be restrictions that can be gained but
cannot be lost, the security domain will be ordered as �1
 �2 if and only if
∀R ∈ R : �1(R) ⊆ �2(R). This is often the case for integrity policies.

Whenever the security categories are considered to be permissions that can
be lost but cannot be gained, the security domain will be ordered as �1
 �2 if
and only if ∀R ∈ R : �1(R) ⊇ �2(R). This is often the case for confidentiality
policies.

The security domain is then specified by listing the finite and nonempty set
of security categories and indicating whether to use the ordering for restrictions
or for permissions.

In both cases we retain the important principle that data may flow along the
preorder of the security domain. Determining which choice of ordering to go for
depends on determining whether or not it is considered to be secure to gain or
lose security categories along flows.

We shall allow to write ∗ for the list of all the security principals in P. In case
of the restriction ordering, the least element then is [∗ �→ { }] and the greatest
element is [∗ �→ {∗}], whereas in the case of the permission ordering, the least
element is [∗ �→ {∗}] and the greatest element is [∗ �→ { }].

5 Information Flow Type System

We are now ready to develop the analysis for over-approximating the set of
flows that may occur in a program. This takes the form of an inference system
for defining a judgement � C : F associating the command C with the flow F
and similarly for guarded commands. It may be seen as a generalisation of the
approach of [24] to a non-deterministic language.

We shall use fv(a) to denote those data containers that occur in a outside
any san construct and use sv(a) to denote those data containers that occur in a
inside one or more san constructs. Similarly for fv(b) and sv(b). Finally, we shall
use mv(C) to denote those data containers that may be modified within the
command C; this generally represents an over-approximation of those modified
in any execution.

Simple Assignments. For a simple assignment to a variable we need to record a
flow from the data containers in the arithmetic expression to the variable being
modified. These flows will be explicit unless the data container in question occurs
inside at least one san construct. This motivates the following axiom scheme.

� x := a :
(fv(a) ⇒E {x})⊕
(sv(a) ⇒S {x})

Lightweight Information Flow 463

The operation ⊕ is defined by

(F1 ⊕ F2)(δ1, δ2) = max{F1(δ1, δ2), F2(δ1, δ2)}
and incorporates the idea that whenever we have a choice between two different
types of flow between two data containers we should always choose the most
worrying one. (In case any of the Fi(δ1, δ2) being undefined we revert to the
isomorphic representation using total maps explained earlier and this amounts
to disregarding such cases.)

This definition can also be seen as a pointwise addition of matrices where
max plays the role of addition. It is immediate that both F ⊕ ({ } ⇒τ { }) and
({ } ⇒τ { }) ⊕ F equal F .

Assignments to Arrays. For assignment to arrays we take the point of view that
the data containers inside the index give rise to implicit rather than explicit
flows. This is based on the consideration that for an array A having 5 elements the
command if a1= 1 → A[1] := a2 [] · · · [] a1= 5 → A[5] := a2 fi is equivalent
to the program A[a1] := a2. This motivates the following axiom scheme.

� A[a1] := a2 :
(fv(a2) ⇒E {A[]})⊕
(fv(a1) ⇒I {A[]})⊕
(sv(a1) ∪ sv(a2) ⇒S {A[]})

Skip. The axiom for skip is immediate: � skip : ({ } ⇒E { }).

Sequencing. For sequential composition C1 ; C2 we need to compose the flows
arising from C1 and C2. However, as our designation of the set of data con-
tainers modified represents an over-approximation, and as we have not required
information flows to contain explicit flows from a data container to itself, we
need to take care to also include the flows from each of the components.

� C1 : F1 � C2 : F2

� C1 ; C2 : (F1 ⊗ F2) ⊕ F1 ⊕ F2

The operation ⊗ is defined by

(F1 ⊗ F2)(δ1, δ2) = max
{

min
{

F1(δ1, δ),
F2(δ, δ2)

}
| δ is a data container

}

and incorporates the following two ideas: (1) If we have flows δ1 →τ1 δ2 and
δ2 →τ2 δ3 then we also have a flow δ1 →τ δ3 where τ is the least worry-
ing of the two flows, i.e. τ = min{τ1, τ2}. (2) If additionally there is another
scenario where we have flows δ1 →τ ′

1 δ′
2 and δ′

2 →τ ′
2 δ3 then we want τ

to be the most worrying of the two candidates min{τ1, τ2} and min{τ ′
1, τ

′
2},

i.e. τ = max{min{τ1, τ2},min{τ ′
1, τ

′
2}}.

This definition can also be seen as a matrix multiplication where max plays
the role of addition and min plays the role of multiplication. It is immediate that
both F ⊗ ({ } ⇒τ { }) and ({ } ⇒τ { }) ⊗ F equal { } ⇒τ { }.

464 F. Nielson and H. R. Nielson

Conditional. For conditional most of the work is left to the analysis of the
guarded command inside.

� GC : F

� if GC fi : F

Iteration. In the case of iteration we need to take the transitive closure to reflect
the iterative nature.

� GC : F

� do GC od : F�

The operation � is defined by

F�(δ�, δ�) = max

⎧⎨
⎩min

⎧⎨
⎩

F (δ0, δ1),
· · · ,

F (δn−1, δn)

⎫⎬
⎭ | δ0, · · · , δn are data containers,

n > 0, δ0 = δ�, δn = δ�

⎫⎬
⎭

and incorporates the idea that the iteration can be performed any number of
times. The definition can also be seen as a form of transitive closure of a matrix.

Guarded Commands. For a guarded command bi → Ci we need to record the
implicit flow from the condition bi to the command Ci as well as incorporate the
flows arising from Ci. Some of the implicit flows will actually be sanitised flows
in case the data container inside bi occurs within at least one san construct. In
the context of a guarded command b1 → C1 [] · · · [] bn → Cn with multiple
choices these considerations account for the first line of the flow constructed in
the rule below.

� C1 : F1 · · · � Cn : Fn

�
b1 → C1

[] · · · []
bn → Cn

:
⊕

i≤n

⎛
⎝

(
fv(bi) ⇒I mv(Ci)

)
⊕

(
sv(bi) ⇒S mv(Ci)

)
⊕ Fi ⊕⊕

j∈cosat(i) (fv(bj) ⇒B mv(Ci)) ⊕ (sv(bj) ⇒S mv(Ci))
⊕ (mv(Ci) ⇒C mv(Ci))

⎞
⎠

The remaining two lines take care of the additional complications arising in a
non-deterministic language where more than one choice is possible. To express
this we shall assume that ‘j ∈ cosat(i)’ over-approximates when bj ∧ bi might
be satisfiable for different choices of j and i, i.e. if bj ∧ bi is satisfiable and
j �= i then ‘j ∈ cosat(i)’ must be true. Whenever ‘j ∈ cosat(i)’ we create the
bypassing flows possible, taking care of those that will actually be sanitised flows
instead, and we create the correlation flows between all data containers modified
in either body.

Offending Flows. Given a security policy (L,L) we can now obtain those flows
that violate the security policy by means of the following rule.

� C : F

(L,L) � C : F ′
where F ′(δ1, δ2) =

{
F (δ1, δ2) if L(δ1) �
 L(δ2)
undefined otherwise

Lightweight Information Flow 465

A command C is said to be offending at level τ with respect to a security policy
(L,L) whenever (L,L) � C : F and F (δ1, δ2) ≥ τ for some (δ1, δ2). In practice,
commands offending only at level S should be considered sufficiently secure if
the code review reveals that the san construct has been used with due care.

Example 1. Consider again the program shown in the righthand half of Fig. 1
and suppose that the security domain L = {cc, aa, ee} is ordered by cc � aa and
cc � ee. (You may read cc as clean, aa as Amazon and ee as eBay.)

If the security association has L(a) = aa, L(e) = ee, L(A[]) = aa, L(E[]) = ee,
L(A#) = aa and L(E#) = ee then the only offending flows are sanitised. So the
program is only offending at level S and should be considered sufficiently secure.

If the security association has L(a) = cc, L(e) = cc, L(A[]) = aa, L(E[]) = ee,
L(A#) = cc and L(E#) = cc then we get the offending correlation flows A[] →C a
and E[] →C e as well as offending sanitised flows. So the program is offending at
level C which upon closer inspections might be considered not to be problematic.

Discussion of Soundness. There are other and more subtle ways in which infor-
mation may flow than has been covered by our security analysis. The word covert
channel is used to describe such phenomena. As an example, the program

y := 0 ; x′ := x ; do x′ > 0 → x′ := x′ − 1 [] x′ < 0 → x′ := x′ + 1 od

always terminates. It has no flows of any kind from x to y but if we can observe
the execution time it reveals some information about the absolute value of x.
Similar examples can be constructed where the computation on x will only ter-
minate successfully for some values of x and otherwise enter a loop or a stuck
configuration. If we can observe the non-termination it also reveals some infor-
mation about the value of x.

The above discussion may be construed to say that our type system is not
sound. (But this holds for most published type systems for security: it is usually
not too hard to find a finer semantics that allows observations disregarded when
the type system was constructed.) This means that an engineer and programmer
taking part in a code review must maintain a perspective on whether the covert
channels not covered by the type system provide grounds for rejecting code
exhibiting no offending flows.

Nonetheless it would be desirable to ensure the robustness of the type system
against shortcomings other than the deliberate decision to ignore the covert
channels mentioned above.

For this we would like to explore a quantitative approach based on entropy.
The basic assumption is that we have joint probability distributions available
to characterise how sets of data containers take their values. Shannon’s entropy
is then the expected value of information contained in each observation. An
important derived concept is that of conditional entropy : the portion of the
entropy of a data container that is independent from another data container.

There are two extreme cases of the conditional entropy. One extreme case
is where the data containers are aliases for the same entity or are modified in
exactly the same way. The other extreme case is where the data containers are

466 F. Nielson and H. R. Nielson

truly independent. The consideration of correlation flows were intended as an
indicator of the first extreme case mentioned – but we are not close to be able
to establish a result along these lines.

We find the quantitative approach more appealing than merely establishing
a non-interference result [16,23,24] that guarantees how data containers of cer-
tain security classifications cannot influence data containers of another security
classification. Using the developments in [20, Section 5.5] we may establish the
following result. Suppose that (L,L) � C : { } ⇒S { } and (C, σ1) →∗ σ′

1 and
(C, σ2) →∗ σ′

2; if ∀y : L(y)
 L(x) ⇒ σ1(y) = σ2(y) we have σ′
1(x) = σ′

2(x).
However, (L,L) � C : { } ⇒S { } is likely to fail for non-deterministic programs
since the nature of non-determinism is to open up for bypassing and correlation
flows.

6 Algorithmic Issues

The type system is syntax-directed and easy to implement except for finding
efficient ways to deal with transitive closure and satisfiability.

Transitive Closure. For an efficient construction of F� using dynamic program-
ming let us define

F [0] = F F [n+1] = F ⊕ (F [n] ⊗ F [n])

This is intended to ensure that F [m] correctly summarises the effect of all paths
of length between 1 and 2m.

Proposition 1. If there are at most N data containers in the program consid-
ered then F� = F [M] where M = �log2N�.
Proof. We may prove by induction that

F [m](δ◦, δ•) = max

⎧⎨
⎩min

⎧⎨
⎩

F (δ0, δ1),
· · · ,

F (δn−1, δn)

⎫⎬
⎭ | δ0, · · · , δn are data containers,

1 ≤ n ≤ 2m, δ0 = δ◦, δn = δ•

⎫⎬
⎭

and it then suffices to realise that we only need to consider paths of length
between 1 and N ≤ 2M .

It is immediate that F�(δ◦, δ•) is greater than or equal to F [M](δ◦, δ•). If they
are not equal there must be a sequence of data containers δ◦ = δ0 = · · · = δn = δ•
with n > N such that min{F (δ0, δ1), · · · , F (δn−1, δn)} is not less than or equal
to F [M](δ◦, δ•). We proceed by contradiction and without loss of generality we
may assume that n is as small as possible.

There must be a data container that occurs more than once in δ◦ = δ0 = · · · =
δn = δ• so consider the reduced sequence obtained by omitting all data containers
between the first and the last occurrence and retaining just one occurrence of
the data container in question. The reduced sequence will provide a value τ of
the min{· · · } formula such that min{F (δ0, δ1), · · · , F (δn−1, δn)} is less than or
equal to τ , that is again less than or equal to F [M](δ◦, δ•). This provides the
desired contradiction.

Lightweight Information Flow 467

Over-Approximating Satisfiability Using a DAG Construction. We next develop
a heuristics for over-approximating whether or not two boolean expressions
might be jointly satisfiable. Since the system at http://FormalMethods.dk/if4fun
may be downloaded to personal devices and run locally we prefer this approach
rather than recasting the problem as an SMT problem (Satisfaction Modulo
Theories) that requires access to a solver such as Z3 [4].

Recall that we considered a construct b1 → C1 [] · · · [] bn → Cn and used
the notation ‘j ∈ cosat(i)’ to over-approximate whether or not bi and bj can be
jointly satisfied (for different choices of i and j). We shall define

(j ∈ cosat(i)) =
(
sat(bi ∧ bj) ∧ j �= i

)
and now explain our heuristics sat(·) in Fig. 3 for over-approximating satisfiabil-
ity.

function sat(b)
convert b to disjunctive normal form i bi1∧ · · · ∧bini

;

global := false;

iterating through all i do

local := true;

build the ordered DAG for bi1∧ · · · ∧bini
;

if the DAG contains a marked node ¬ t where also t is marked

then local := false;

if the DAG contains marked nodes t1 o1 t2 and t1 o2 t2
with (o1, o2) ∈ E then local := false;

global := global ∨ local;

return global

Fig. 3. Algorithm for sat(b).

As a preparation we need to extend the syntax to use < and ≤ (on top of =,
> and ≥) and to use ∨ (on top of ∧ and ¬). Recall that a boolean expression is
a literal when it has no occurrences of ∧ or ∨ and at most one occurrence of ¬.

The first step in Fig. 3 is to translate b into disjunctive normal form; this is
where ∨ may get introduced. The result is an equivalent formula∨

i
bi
1∧ · · · ∧ bi

ni

where each bi
j is a literal.

Iterating through each conjunction of literals bi
1∧ · · · ∧ bi

ni
the algorithm of

Fig. 3 first constructs an ordered DAG (directed acyclic graph), and next inspects
the ordered DAG to over-approximate satisfiability, as detailed below.

Constructing the Ordered DAG. To increase the amount of sharing in the ordered
DAG we need to keep track of the ‘transposed variants’ of the arithmetic and
relational operators:

T = {(+,+), (∗, ∗), (<,>), (≤,≥), (=,=), (≥,≤), (<,>)}

http://FormalMethods.dk/if4fun

468 F. Nielson and H. R. Nielson

This takes care of characterising both those operators that are commutative
(like +) and those that can be ‘transposed’ (like a1 < a2 may be transposed to
a2 > a1). In general, whenever (o1, o2) ∈ T it must be the case that t1 o1 t2 is
equivalent to t2 o2 t1.

Given a conjunction of literals we construct an ordered DAG by a bottom-up
traversal over the parse tree. Leaves will be numbers n, strings s, variables x,
arrays A, and true; internal nodes will be [],#, + , − , ∗ , san, < , ≤ , = , > , ≥
and ¬ . Some of the nodes will be marked, and internal nodes will retain the
order of their subgraphs.

When we encounter a potential new leaf in the bottom-up traversal over the
parse tree of bi

1∧ · · · ∧ bi
ni

, we reuse the node in the DAG if it is already there,
otherwise we construct a new leaf.

When we encounter a potential new internal node t1 o1 t2, we reuse the node
in the DAG if it is already there, otherwise we proceed as follows. If (o1, o2) ∈ T
and there already is a node in the DAG for t2 o2 t1, we use that node in the
DAG, otherwise we construct the node t1 o1 t2.

Once we encounter the root of one of the bi
j we mark the node.

Inspecting the Ordered DAG. To detect cases where satisfiability fails we need
to keep track of pairs of relational operators that exclude each other:

E = {(<,=), (<,≥), (<,>), (≤, >), (=, <), (=, >), (≥, <), (>,<), (>,≤), (>,=)}

In general, whenever (o1, o2) ∈ E it must be the case that a1 o1 a2 and a1 o2 a2

are not jointly satisfiable for any choices of a1 and a2.
We can then establish the over-approximating nature of our heuristics.

Proposition 2. If the boolean formula b is satisfiable then the algorithm sat(b)
returns true.

Proof. If the ordered DAG for a conjunction of literals contains a marked node
t that has an ancestor ¬ t that is also marked, then clearly the conjunction
of literals is not satisfiable. Similarly, if the ordered DAG for a conjunction of
literals contains nodes t1 and t2 that have marked ancestors t1 o1 t2 and t1 o2 t2
with (o1, o2) ∈ E , then the conjunction of literals is not satisfiable.

This shows that the resulting value of local for each iteration only reports
false when the conjunction of literals is not satisfiable. It follows that the overall
algorithm only reports false if none of the conjuncts of the disjunctive normal
form are satisfiable.

We may conclude that ‘j ∈ cosat(i)’ is a correct over-approximation of joint
satisfiability of bi and bj (for distinct i and j) from b1 → C1 [] · · · [] bn → Cn.

7 Conclusion

We developed a type system for identifying the offending information flow
between data containers in a program in the Guarded Commands language. It

Lightweight Information Flow 469

was based on classifying flows as being explicit, implicit, bypassing, correlated or
sanitised and on having general security policies incorporating multi-level secu-
rity, components and decentralised labels; the bypassing and correlation flows
were motivated by the need to deal with non-determinism. These developments
are incorporated in the demonstration tool at http://FormalMethods.dk/if4fun;
to allow it to be run on personal devices we make use of a heuristics for satisfi-
ability of boolean expressions in Guarded Commands.

The approach taken in this paper has been inspired by working with engi-
neers from safety critical software and observing how they react to incorporating
security into their workflow. Ultimately this means leaving the decision of the
acceptability of offending flows to the engineers and programmers taking part
in a code review. The type support is intended to provide support for these
decisions based on its classification of flows into the categories considered here.

References

1. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting bisimilarity and its modal logic
for nondeterministic and probabilistic processes. Acta Inf. 52(1), 61–106 (2015)

2. Bettini, L., De Nicola, R., Pugliese, R.: XKlaim and Klava: programming mobile
code. Electr. Notes Theor. Comput. Sci. 62, 24–37 (2001)

3. Boreale, M., De Nicola, R.: Testing equivalence for mobile processes. Inf. Comput.
120(2), 279–303 (1995)

4. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

5. De Nicola, R.: Testing equivalences and fully abstract models for communicating
systems. Ph.D. thesis, University of Edinburgh, UK (1986)

6. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng 24(5), 315–330 (1998)

7. De Nicola, R., Ferrari, G.L., Pugliese, R., Venneri, B.: Types for access control.
Theor. Comput. Sci. 240(1), 215–254 (2000)

8. De Nicola, R., et al.: From flow logic to static type systems for coordination lan-
guages. Sci. Comput. Program. 75(6), 376–397 (2010)

9. De Nicola, R., Gorla, D., Pugliese, R.: On the expressive power of Klaim-based
calculi. Theor. Comput. Sci. 356(3), 387–421 (2006)

10. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

11. De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: Model checking
mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)

12. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

13. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

14. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

15. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

http://FormalMethods.dk/if4fun
https://doi.org/10.1007/978-3-540-78800-3_24

470 F. Nielson and H. R. Nielson

16. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982, pp.
11–20. IEEE Computer Society (1982)

17. Gollmann, D.: Computer Security, 3rd edn. Wiley, Hoboken (2011)
18. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.

ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (2000)
19. Flemming Nielson and Hanne Riis Nielson: Atomistic Galois insertions for flow

sensitive integrity. Comput. Lang. Syst. Struct. 50, 82–107 (2017)
20. Nielson, F., Nielson, H.R.: Formal Methods: An Appetizer. Springer, Cham (2019)
21. Nielson, F., Nielson, H.R., Vasilikos, P.: Information flow for timed automata.

In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.)
Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 3–21. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63121-9 1

22. Nielson, H.R., Nielson, F.: Content dependent information flow control. J. Log.
Algebr. Meth. Program. 87, 6–32 (2017)

23. Volpano, D.M., Irvine, C.E.: Secure flow typing. Comput. Secur. 16(2), 137–144
(1997)

24. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. J. Comput. Secur. 4(2/3), 167–188 (1996)

https://doi.org/10.1007/978-3-319-63121-9_1

A Framework for Provenance-Preserving
History Distribution and Incremental

Reduction

Alberto Lluch Lafuente(B)

Technical University of Denmark, Kongens Lyngby, Denmark
albl@dtu.dk

Abstract. Provenance properties help asses the level of trust on the
integrity of resources and events. One of the problems of interest is
to find the right balance between the expressive power of the prove-
nance specification language and the amount of historical information
that needs to be remembered for each resource or event. This gives rise
to possibly conflicting objectives relevant to integrity, privacy, and per-
formance. Related problems are how to reduce historical information in a
way that the provenance properties of interest are preserved, that is suit-
able for a distributed setting, and that relies on an incremental construc-
tion. We investigate these problems in a simple model of computation
where resources/events and their dependencies form an acyclic directed
graph, and computation steps consist of addition of new resources and
of provenance-based queries. The model is agnostic with respect to the
actual provenance specification language. We present then a framework,
parametric on such language, for distributing, and incrementally con-
structing reduced histories in a sound and complete way. In the resulting
model of computation, reduced histories are computed incrementally and
queries are tested locally on reduced histories. We study different choices
for instantiating the framework with concrete provenance specification
languages, and their corresponding provenance-preserving history reduc-
tion techniques.

Keywords: Provenance · Integrity · Concurrency theory ·
Temporal logics · Minimisation

1 Introduction

Integrity is one of the key security goals in information security. Integrity tech-
niques aim at assessing and controlling the level of trust of resources and events.
Information about the history of a resource or event, e.g. who created it, how
was it derived from other resources or events, etc., is often called provenance
or lineage, and can be of great support for integrity mechanisms. This paper

This work has been supported by the EU H2020-SU-ICT-03-2018 Project No. 830929
CyberSec4Europe (cybersec4europe.eu).

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 471–486, 2019.
https://doi.org/10.1007/978-3-030-21485-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_26&domain=pdf
https://www.cybersec4europe.eu
https://doi.org/10.1007/978-3-030-21485-2_26

472 A. Lluch Lafuente

r1 : c r2 : c r3 : d

r4 : b r5 : b

r6 : a

{r1, r2} : c r3 : d

r4 : b r5 : b

r6 : a

{r1, r2} : c r3 : d

{r4, r5} : b

r6 : a r6 : a, b, c, d

C1 C2 C3 C4

Fig. 1. Four configurations: C1, C2, C3 and C4

is motivated by the need to efficiently check integrity properties of resources
or events based on their history. A typical scenario of interest are distributed
ledgers where transactions and their casual dependencies form an acyclic graph,
and where one would need to assess the integrity of a transaction t based on
the transactions it depends on: Is there any suspicious transaction t′ in the his-
tory of t? Is there a trustworthy transaction between t and t′ that would provide
some guarantees on the solidity of t? Another typical scenario of interest are
repositories of linked data: Was data item x freshly created? Or was x produced
by combining trustworthy data items y and z? Are y and z related, e.g. derived
from disjoint sources?

Provenance and Expressivity: Examples. Several languages can be used to
express properties of the history of resources or events. In the area of databases,
for example, provenance query languages have been studied for a long time, giv-
ing rise to variations of SQL and query languages for graphs (see e.g. [3,5,6,16]
and the references therein). In this paper we take a different perspective based
on models and techniques from the area of concurrency theory. From now on, we
will talk about resources without the implication that we focus on data items or
that we rule out events. We will start illustrating some basic choices for a prove-
nance query language based on well-known models from concurrency theory with
the examples of Fig. 1. The figure illustrates four different configurations, where
resources r1, r2, {r1, r2} . . . are annotated with their atomic observable proper-
ties (a, b, c, . . .), and are related to each other with arrows (r → r′ denotes that
r is a direct ancestor of r′).

Four natural options for a provenance query language arise if one considers
histories as sets, strings, trees, or graphs over the observable properties. Typically,
those options would provide an increasing observation power: a string language
would allow to observe the order of properties in the history, a tree language
would in addition allow to observe the merging of resources, and a graph-based
language would in addition allow to observe the forking of resources, and in gen-
eral the entire structure of the history. To illustrate this, assume a scenario where
the observable properties a, b, c . . . of resources denote the agents that created
the resources, respectively Alice, Bob, Charlie, In such scenario, examples of
provenance properties in the above mentioned cases could be:

(P1) Was the resource of interest influenced by Alice, Bob, Charlie, and Dave?

A Framework for Provenance-Preserving History Distribution 473

(P2) Was the resource of interest created by Alice and influenced by Charlie
through Bob or by Dave through Bob?

(P3) Was the resource of interest created by Alice and influenced by resources
created by Charlie and Dave that then Bob combined?

(P4) Was the resource of interest created by Alice and influenced by resources
created by Bob, which in turn depended on the same resource created by Char-
lie?

Let us now illustrate the effect of the expressive power of the provenance
language on a concrete example, namely the history of r6 in the configurations
in Fig. 1. An example of a set-based language would be a specification language
to check atomic observables of r6 and its entire genealogy (its direct and indirect
ancestors). In this case, the observable history of r6 would be the same in all
four configurations. Indeed we could see C4 as the minimised history of r6 in
C1–C3, where all ancestors have been collapsed into r6. Examples of string-
based languages could be based on any language to check the linear histories of
resources (from the resource backwards through ancestors), for example based
on regular expressions or linear-time logic (LTL) over sets of observables. In
this case, the observable history of r6 would be the same in C1–C3 (i.e. the
set of strings {{a}{b}{c}, {a}{b}{d}}) but different in C4 (i.e. the set of strings
{{a, b, c}}). Similarly as before we could see C3 as the minimised history of r6
in C1–C2, where resources r1, r2 and r4, r5 have been collapsed. An example
of a tree language could be computation-tree logic (CTL), interpreted on the
transition system obtained from the (backwards) reachable subgraph starting
from the resource of interest. In this case, C1–C2 would be indistiguishable but
distinguishable from C3, essentially since r4 and r5 have different dependencies.
Similarly as before we could see C2 as the minimised history of r6 in C1, where
resources r1, r2 have been collapsed. Finally, we could decide to observe the full
graphical structure of the history. In that case, all four configurations would be
distinguishable and there would be no room for reductions.

Reductions, Distribution and Incrementality. As we have seen, the choice of
the provenance language implicitly induces a notion of abstract history. Such
abstraction can be exploited to reduce concrete histories, i.e. represent them in a
more compact way. For example, C1 in Fig. 1 can be reduced to C2 if we consider
computation trees up to bisimulation, to C3 if we consider linear histories (trace
equivalence), and C4 if we are interested just in the set of reachable properties. In
many scenarios such configurations are continuously growing as new resources
or events are added. Being able to build new reduced histories incrementally
is desirable for the sake of scalability. As an orthogonal aspect, it may not be
feasible or desirable in some situations to implement configurations as global
structures. It may indeed be convenient or even mandatory to implement them
as a distributed structure, which, on the other hand, may pose challenges in
terms of communication or performance when checking provenance properties.
Distributing local histories can help address some of those issues. Figures 2, 3
and 4 illustrate distributed representations of the local histories (based on trees,

474 A. Lluch Lafuente

r1 : c r2 : c r3 : d

r4 : b r5 : b

r6 : a

• : c • : c • : d

• : c

• : b

• : c • : d

• : b

• : c • : d

• : b • : b

• : a

Fig. 2. Distributed configurations with minimised tree-based histories

strings and sets, respectively) for configuration C1 of Fig. 1. In the figures, each
resource is mapped via �→ arrows to its local history (enclosed in a square box).

Research Questions and Contribution. The main research question under consid-
eration in this paper is: Can we define a framework that is parametric with respect
to the provenance-specification language L and that allows us to distribute and
compress the history of resources in way that is (1) sound and complete w.r.t. to
L; and (2) incremental, i.e. possibly exploiting the already computed compressed
histories? We answer to the above research question by investigating this prob-
lem in a simple model of computation where new resources (with their depen-
dencies) can be added, and can be subject to provenance queries (Sect. 2). We
present in Sect. 3 a framework for history distribution and incremental reduction
that is parametric with respect to the actual provenance specification language L,
and we study in Sect. 4 several choices for L, and the corresponding provenance-
preserving history reduction techniques. Section 5 concludes the paper.

A Tribute to Rocco De Nicola. This paper is a contribution to the Festschrift
that celebrates Rocco De Nicola’s 65th birthday. I have had the pleasure and
the honour to work closely with Rocco for several years, an experience that has
inspired both my professional career and my personal life. This paper contains
several elements related to Rocco’s scientific contribution to models, languages
and applications of concurrency theory. First, the model of programmable con-
figurations in Sect. 2 has been inspired by coordination models investigated by
Rocco (see [9] for a survey of Rocco’s work in this field), in particular locality-
centred process calculi [8] and attribute-based interactions [2,11]. Such works
have motivated me to look for an unconventional model of coordination, based
on provenance. Second, the consideration of modal logics as provenance lan-
guages, and history reductions based on semantic equivalences relate to Rocco’s

A Framework for Provenance-Preserving History Distribution 475

contributions to those fields [7,10,12–14]. Even if Sect. 4 does not directly apply
Rocco’s own contributions, his search for generalisations and establishing rela-
tions between semantic equivalences and logics have motivated the search for
a general framework (Sect. 3) where different semantic notions of provenance
could fit. Last, the application domain of information security is very dear to
Rocco and has been present in his work in several occasions, from the access and
information flow control features of KLAIM [8] to his white paper on the future
of Cybersecurity in Italy [18].

2 A Simple Model of Programmable Global
Configurations

Configurations. Let R denote a universe of resource identifiers (resources, for
short) that we range over by r, r1, A (global) configuration in our model
is essentially a directed acyclic graph with resources as nodes. Resources have
associated values in some domain V and are labelled over a set Σ of atomic
observable properties on those values, through a function π : V → 2Σ .

Definition 1 (configuration). A configuration is a tuple 〈R, v, L,<〉 where R
is the set of nodes/resources, v : R → V is a mapping of resources to their actual
values, L : R → 2Σ is a mapping of resources to observable properties, <⊆ R×R
is the set of edges/dependencies, and such that < is acyclic.

Figure 1 illustrates four configurations, where values are not included. We
denote the set of all configurations by C. For a configuration C we will often use
R, v, L, and <, assuming implicitly that C = 〈R, v, L,<〉 when clear from the
context. Note that r < r′ is illustrated as an edge r → r′. Function pre∗

C : R →
2R denotes the genealogy of a resource in C (its direct and indirect ancestors,
including itself), i.e. pre∗

C(r) = {r′ ∈ R | r′ = r or ∃r′′ ∈ R.r′′ < r ∧ r′ ∈
pre∗

C(r′′)}. With C|r we will denote the sub-configuration of C formed just by
r and its predecessors (i.e. the subgraph of < backwards-reachable from r),
formally C|r = 〈pre∗

C(r), v|pre∗
C(r), L|pre∗

C(r), <|r〉 such that r′ <|r r′′ iff r′ < r′′

and {r′, r′′} ⊆ pre∗
C(r).

Provenance Properties. We use L to denote the provenance specification lan-
guage, and φ ∈ L to range over provenance properties. Given a configuration
C = 〈R, v, L,<〉 and a resource r, we use r, C |= φ to denote that r satisfies φ in
C. The actual semantics of |= depends on the choice of L. For a query language
L we will consider satisfaction relations |=⊆ M × L for several model domains
beyond R × C. For two model domains M1 and M2, the relation ≡L⊆ M1×M2

is defined in the usual way, i.e. M1 ≡L M2 whenever for all φ ∈ L we have that
M1 |= φ iff M2 |= φ. We restrict to our attention to languages L that are able
to observe atomic properties, and not actual values. The actual information
observable on resources is defined by function π, that can be understood as a
privacy-protecting function, hiding actual information about resources and just
exposing information needed to assess their integrity.

476 A. Lluch Lafuente

Global Computations. Computations in our model of programmable configura-
tions are of the form

C
λ�ρ−−−−→ C ′

denoting that configuration C reacts to action λ by transforming into C ′ and
producing ρ.

We consider first a simple model of internal computations with two actions
out and rd, respectively used to add fresh resources (and their explicit depen-
dencies), and to retrieve them with provenance-based queries.

More in detail, a computation based on action out(R′ < u) adds a fresh
resource r with value u, and dependencies on a subset R′ ⊆ R of the current set
of resources R.

r �∈ R R′ ⊆ R

〈R, v, L, <〉 out(R′<u)�r−−−−−−−−−−→ 〈R ∪ {r}, v ∪ {v 	→ u}, L ∪ {r 	→ π(u)}, <
⋃

r′∈R′
{r′ < r}〉

Computations based on rd actions return a resource r whose history satisfies
the provenance property φ, provided one such resource exists:

r ∈ R r, 〈R, v, L,<〉 |= φ

〈R, v, L,<〉 rd(φ)�r−−−−−−→ 〈R, v, L,<〉
Internal computations expose actual resources as part of the interactions

and demand causal dependencies to be specified explicitly. In many situations
resources need to be hidden, and causal dependencies need to be implicitly com-
puted. To deal with this we introduce external computations in our model of
programmable configurations with two actions: put and get.

In particular, put(f(φ1, .., φn)) is an action that, given a function f : V∗ → V
and n provenance formulas φ1, .., φn adds a new resource obtained by applying
f to the values of resources r1, .., rn, respectively satisfying φ1, .., φn and stor-
ing the corresponding dependencies. Such operation can be easily defined as a
combination of internal computations:

C
rd(φi)�ri−−−−−−−→ C for i ∈ {1, .., n} C

out({r1,..,rn}<f(v(ri),..,v(rn)))�r−−−−−−−−−−−−−−−−−−−−−−−−→ C ′

C
put(f(φ1,..,φn))�f(v(ri),..,v(rn)))−−−−−−−−−−−−−−−−−−−−−−−→ C ′

The query operation is very much like rd but it returns the value of the
resource instead of the resource identifier itself:

C
rd(φ)�r−−−−−−→ C

C
query(φ)�v(r)−−−−−−−−−−→ C

A Framework for Provenance-Preserving History Distribution 477

3 Distributed Configurations with Abstract Histories

We now introduce distributed configurations where the history of each resource
is localised and possibly reduced into some abstract history, from a domain H
of abstract histories, for which the satisfaction relation |=⊆ H × L is defined.

Definition 2 (distributed configurations). A distributed configuration is
a tuple 〈R, v, L, h〉 where R is a set of resources, v : R → V is a mapping of
resources to their actual values, L : R → 2Σ maps resources into their observable
properties, and h : R → H is a function that maps each resource to its own
abstract history.

Figures 2, 3 and 4 illustrate three examples of distributed configurations
where, respectively, the domain of abstract histories are (implicitly) trees,
strings, and sets of atomic properties, as we shall explain in detail in Sect. 4.
Abstract histories are enclosed in square boxes, and the mapping h is denoted
with �→ arrows. Dotted arrows are used to represent the original dependencies.
We denote the set of all distributed configurations by D.

Let α : R × C → H be a function that maps concrete histories (i.e. pairs
of resources and configurations) into abstract histories. We say that α is L-
preserving if and only if for all configurations C = 〈R, v, L,<〉 ∈ C, all resources
r ∈ R it holds r, C ≡L α(r, C). We will assume that all languages L of interest
are such that r, C ≡L r, C|r, i.e. their formulas allow to observe just the history
of events.

History abstraction functions can be lifted to a mapping from global config-
urations to distributed configurations.

Definition 3 (history distribution function). Let C = 〈R, v, L,<〉 be a con-
figuration and α : 2R×R → H be a history abstraction function. Then, α(C) is
the distributed configuration 〈R, v, L, {r �→ α(r, C|r) | r ∈ R}〉.

Note that for the trivial case when H is R × C, there is a trivial choice for
α, namely the function λr,C = ({r}, C|r) that would map each resource to just
own history. Other, more interesting cases could be mapping each resource into
a Σ-labelled transition system, finite-state automaton over Σ or just a subset of
Σ, as suggested in Figs. 2, 3 and 4, respectively. These cases will be discussed in
detail in Sect. 4.

Another component of our framework are history update functions of the
form ⊕ : R × 2Σ × 2H → H. These are functions that, given a resource r, its
observations A, and a set H of abstract histories (typically, the direct ancestors
of r), produce an abstract history for r.

We say that ⊕ is L-preserving for α if and only if for all configurations
C = 〈R, c, L,<〉 ∈ C, all resources r ∈ R and all provenance formulas φ ∈ L it
holds

α(r, C|r) ≡L (r, L(r)) ⊕ {α(r′, C|r′) | r′ < r}
that is, abstract histories obtained globally are L-equivalent to abstract his-

tories computed incrementally with ⊕.

478 A. Lluch Lafuente

Distributed Computations. The semantics for distributed configurations is simi-
lar to that of global configurations, but based on local histories. In particular, a
adding resource with out is now defined by rule

r �∈ R R′ ⊆ R

〈R, v, L, h〉 out(R′<u)�r−−−−−−−−−−−−� 〈R ∪ {r}, v ∪ {r 	→ u}, L ∪ {r 	→ π(u)}, h ∪ {r 	→ (r, π(u)) ⊕ ⋃

r′∈R′
h(r′)}〉

In words: a configuration is enriched by adding a fresh resource r and comput-
ing its local, abstract history incrementally, based on the local, abstract history
of its ancestors. Note that the computation is not entirely decentralised, as the
preconditions still require global information, but part of that information (set
R′) is in any case required to compute the history of r incrementally.

Internal queries, instead, rely only on local information:

r ∈ R h(r) |= φ

〈R, v, L, h〉
rd(φ)�r

−−−−−−−� 〈R, v, L, h〉
External computations with put and query are defined using the same com-

binations of rd and out operations with rules

D
rd(φi)�ri−−−−−−−−� D for i ∈ {1, .., n} D

out(r1,..,rn<f(v(ri),..,v(rn)))�r
−−−−−−−−−−−−−−−−−−−−−−� D′

D
put(f(φ1,..,φn))�f(v(ri),..,v(rn))

−−−−−−−−−−−−−−−−−−−−−−−� D′

and

D
rd(φ)�r

−−−−−−−� D

D
query(φ)�v(r)

−−−−−−−−−−� D

respectively.

Provenance-Preserving Result. We define now a relation ≈⊆ C × D that
relates global configurations and distributed configurations over the same set
of resources such that the concrete and abstract history of each resource is L-
equivalent.

Definition 4 (distribution relation). The relation ≈⊆ C ×D is the set of all
pairs (〈R, v, L,<〉, 〈R, v, L, h〉) such that ∀r ∈ R. r, C ≡L h(r).

Note that if α is L-preserving then, trivially, C ≈ α(C) for all configurations
C ∈ C. The main property of our framework is that, if α is L-preserving and
⊕ is L-preserving for α, then ≈ is a bisimulation. As a consequence a global
configuration C and its distributed version α(C) behave equivalently.

Theorem 1 (bisimilar distribution). Let α be a history reduction function
and ⊕ be a history update function such that (i) α is L-preserving and (ii) ⊕ is
L-preserving for α, then ≈.

A Framework for Provenance-Preserving History Distribution 479

Proof Sketch. To prove that ≈ is a bisimulation we have to show that for every
C ∈ C and every D ∈ D such that C ≈ D the following properties hold:

1. if C
λ�r−−−−→ C ′ then ∃D′ ∈ D.D

λ�r−−−−� D′ and C ′ ≈ D′.
2. if D

λ�r−−−−� D′ then ∃C ′ ∈ C.C
λ�r−−−−→ C ′ and C ′ ≈ D′.

We prove property (1) by considering the cases for λ separately:

[λ = out(r1, .., rn < u)] Let C = 〈R, v, L,<〉. By definition of ≈, we know that
D = 〈R, v, L, h〉 for some h such that ∀r ∈ R. r, C ≡L h(r).
The new global configuration

C ′ = 〈R ∪ {r}, v ∪ {r �→ u}, L ∪ {r �→ π(u)}, <
⋃

i∈{1..n}
{ri < r}〉

differs from C only in the addition of r, its properties and its dependencies.
Clearly D can make the same choice for λ by selecting the same r, thus
resulting in

D′ = 〈R ∪ {r}, v ∪ {r �→ u}, L ∪ {r �→ π(u)}, h ∪ {r �→ r ⊕ h(r1), .., h(rn)}〉

To show that C ′ ≈ D′ we just need to prove that for the newly added resource
r it holds

r, C ′ ≡L (r, L(r)) ⊕ h(r1), .., h(rn)

since the above property holds for all other resources as mentioned above.
We proceed as follows:

r, C ′

≡L (L observes histories only)
r, C ′

|r
≡L (α is L-preserving)

α(r, C ′
|r)

≡L (⊕ is L-preserving for α)
(r, L(r)) ⊕ α(r1, C ′

|r1
), .., α(r1, C ′

|r1
)

≡L (C ′
|ri

= C|ri
for i = 1..n)

(r, L(r)) ⊕ α(r1, C|r1), .., α(r1, C|r1)
≡L (⊕ is L-preserving for α)

(r, L(r)) ⊕ h(r1), .., h(rn)

We can conclude that C ′ ≈ D′.
[λ = rd(φ)] Note that in this case C ′ = C. From C

rd(φ)�r−−−−−−→ C we know
that r, C |= φ. Since C ≈ D we know that r, C ≡L h(r) and hence it holds

h(r) |= φ. We have thus the computation step D
rd(φ)�r

−−−−−−−� D. Trivially
choosing D′ to be D concludes our argument.

[λ = put(f(φ1, .., φn)) and λ = query(φ)] These are actually derived operations,
obtained by composition of the above two ones.

To prove property (2) we proceed similarly. ��

480 A. Lluch Lafuente

4 Instantiating the Framework

We instantiate the framework in a set of examples, respectively based on inter-
preting histories as trees (thus observing merging, order, and atomic properties
of resources), strings (thus observing order and atomic properties of resources
only) and sets (thus just observing atomic properties of resources). Each instance
consists of a specific choice for the domain H of abstract histories, the provenance
language L, the history reduction function α, and the incremental history update
function ⊕. It is not the aim of this section to show the most efficient option
for each case or to provide a comprehensive overview of all possibilities. Instead,
we aim at illustrating the framework with well-known models computation from
the area of concurrency theory and related ones.

4.1 Tree-Based Provenance

As abstract histories we will consider finite trees over Σ, compactly represented
as transition systems. We recall that a state-labelled transition system (a Kripke
structure) is a tuple 〈S, I,→,AP ,M〉 such that S is a set of states, I ⊆ S is set of
initial states, →⊆ S×S is a transition relation, AP is a set of atomic propositions
and M : S → AP is a mapping from states into subsets of atomic propositions.
Transition systems compactly represent trees in the same manner of graphs: the
trees of a transition system are obtained by unfolding the transition system.

Let H be T , the set of all transition systems with resources as states, depen-
dencies as transitions, Σ as atomic propositions and L as state labelling function.
In particular, TS (C, r) = 〈R, {r}, <−1, Σ, L〉 denotes the transition system rep-
resenting the history of r in C, where r is the initial state and the transition
relation is the inverse of the predecessor relation.1

A natural choice for L is then any logic to predicate over trees in a transition
system. We choose CTL for our illustration purposes. For φ ∈ CTL we define the
satisfaction relation for resources indirectly via a transformation of the history
into its transition system representation:

r, C |= φ iff TS (C, r) |= φ

In our example, the property (P3) Was the resource of interest created by
Alice and influenced by resources created by Charlie and Dave that then Bob
combined? can be expressed in CTL as a ∧ EF(b ∧ EFc ∧ EFd).

Let bmin : T → T be a bisimulation-minimisation algorithm that transforms
a transition system T into a smallest bisimilar one bmin(T). Let α be defined as
α(r, C) = bmin(TS (r, C|r)), that is the function that first transforms a history
into a transition system and then minimises it. Clearly, α is L-preserving since
bisimilar transition systems are CTL-equivalent.
1 Note that we do not introduce self-loop transitions in leaf states/resources. This

allows formulae to observe whether a resource has dependencies. Alternatively, loops
could have been introduced as usual in CTL semantics. In that case, the ability to
observe absence of dependencies can be obtained with a dedicated predicate.

A Framework for Provenance-Preserving History Distribution 481

For incremental history construction we define the following function ⊕

(r,A) ⊕ �i∈{1..n}〈Ri, ri,→i, Σ, Li〉
= bmin(〈{r} �i∈{1..n} Ri, {r},�i∈{1..n}{r → ri}� →i, Σ, {r �→ A} �i∈{1..n} Li〉)

In words: we first build a new transition system that has r as initial state,
and has a transition from r to the initial state ri of each of the n transitions
systems that represent abstract histories (that we assume disjoint to avoid the
cumbersome notation of introducing fresh renamings). Such transition system is
then minimised. We need to prove that ⊕ is CTL-preserving for bmin.

Lemma 1. The incremental history construction function ⊕ is CTL-preserving
for bmin.

Proof Sketch. We need to prove

bmin(TS (r, C|r)) ≡CTL (r, L(r)) ⊕ {bmin(TS (r′, C|r′)) | r′ < r}

we proceed as follows

bmin(TS (r, C|r))
≡CTL bisimulation preserves CTL

TS (r, C|r)
≡CTL (*)

(r, L(r)) ⊕ {TS (r′, C|r′) | r′ < r}
≡CTL bisimulation preserves CTL

(r, L(r)) ⊕ {bmin(TS (r′, C|r′)) | r′ < r}

The main idea behind (*) is that (r, L(r)) ⊕ {TS (r′, C|r′) | r′ < r} essentially
corresponds to an unfolding of TS (r, C|r) into a tree-shaped transition system,
and that unfolding of transitions systems preserves bisimulation and hence CTL.

��

Instantiating Theorem 1 in the above described setting provides the desired
result: if we choose CTL as provenance query language we can distribute and
incrementally compute histories without loosing information by resorting to
bisimulation minimisation algorithms. Figure 2 illustrates a distributed repre-
sentation of the transition system based local histories for configuration C1 of
Fig. 1. In the figure, the initial state of each transition system is its unique root.

4.2 Linear Provenance

We consider now abstract histories as sets of finite strings over 2Σ . A natural
way to compactly represent a set of strings is with a non-deterministic finite
automaton (NFA). Recall that an NFA is a tuple 〈Q, q0, F,A,→〉, where Q is
a set of states, q0 ∈ Q is an initial state, F ⊆ Q is a final set of states, A is

482 A. Lluch Lafuente

r1 : c r2 : c r3 : d

r4 : b r5 : b

r6 : a

• • •

•

•

•

•

•

•

•

b b

b

a

c c d

c c d

c d

Fig. 3. Distributed configurations with minimised string-based histories

an alphabet of symbols, and →⊆ 2S×Σ×S is a transition relation. Let us denote
with L(B) the language of the NFA B.

In particular, for a configuration C and a resource r, its abstract history can
be defined as the automaton NFA(C, r) = 〈R � ◦, r, {◦}, 2Σ ,→〉 where → is the

set of transitions {r′ L(r′)−−−→ r′′ | r′′ < r′} ∪ {r′ L(r′)−−−→ ◦ | ¬∃r′′.r′′ < r′}. In words,
the set of states of the automaton are the resources of C plus the unique final
state ◦, and transitions correspond to the observable properties in the departing
resource of the transition.

Let A denote the set of all such NFAs and let H be A. A natural choice for
L is then any language for finite strings, for example regular expressions. For a
regular expression φ we define the satisfaction relation for resources indirectly
via a transformation of the history into its NFA representation:

r, C |= φ iff L(NFA(C, r)) ⊆ L(φ)

in words, the history of a resource r in C satisfies the property φ if, for each
original ancestor r′, the path from r to r′ is accepted by φ.

In our example, the property (P2) Was the resource of interest created by
Alice and influenced by Charlie through Bob, or by Dave through Bob? can be
formalised by the regular expression {a}(.∗{b}.∗{c} + .∗{b}.∗{d}).

Let min : A → A be an NFA minimisation algorithm that transforms an
NFA into the smallest NFA accepting the same language. Let α be defined as
α(r, C) = min(NFA(r, C|r)), that is the function that first translates a concrete
history into an NFA and then minimises it. Clearly, α is L-preserving since NFA
minimisation preserve regular language equivalence.

For incremental history construction we define the following function ⊕.

A Framework for Provenance-Preserving History Distribution 483

r ⊕ �i∈{1..n}〈Ri, ri,→i, Σ, L〉
= min(〈{r} �i∈{1..n} Ri, ri,�i∈{1..n}{r → ri}� →i, Σ, L〉)

In words: we first build an NFA that has r as initial state, and has a transition
from r to the initial state ri of each of the n NFAs that represent abstract
histories. The resulting NFA is then minimised with min. Proving that ⊕ is
L-preserving for α can be done along the lines of Lemma 1.

Instantiating Theorem 1 allows us to use a provenance query language based
NFA so to distribute and incrementally compute reduced histories based on
NFA minimisation, without loosing information. Figure 3 illustrates a distributed
representation of the NFA-based local history for configuration C1 of Fig. 1. In
the figure, the initial state of each automaton is its unique root.

4.3 Set-Based Provenance

Let H be 2Σ , i.e. abstract histories are just subsets of Σ representing which
properties the resource has or has been influenced by. For a configuration C and
a resource r we can interpret the history of r with the following function inf to
compute the influencing properties of r:

inf (r, C) = L(r) � {inf (r′) | r′ < r}
The function is parametric on a function � to combine properties of resources

with the influencing properties of its ancestors. Taking h�H to be h∪
⋃

H would
provide all properties that r or any of its ancestors has. If instead we take h�H
to be h ∩

⋂
H we would consider the influencing properties as those that r and

all of its ancestors have.
A natural choice for the provenance language L could be just propositional

logic over Σ

r,C |= φ iff inf (r) |= φ

The example property (P1) Was the resource of interest influenced by Alice,
Bob, Charlie, and Dave? would be just the proposition a ∧ b ∧ c ∧ d.

We can now do two trivial choices for α and ⊗. First, let α be the function
inf , which is trivially L-preserving. Second, the incremental history construction
function ⊕ is defined based on ⊗:

r ⊕ {A1, .., An} = L(r) · {A1, .., An}
which can easily be show to be L-preserving for α. We can then instanti-

ate Theorem 1 to obtain the desired result: we can distribute and incrementally
compute histories on the above described mechanism without loosing informa-
tion. Figure 4 illustrates a distributed representation of the local histories for
configuration C1 of Fig. 1, where · is based on set union.

484 A. Lluch Lafuente

r1 : c r2 : c r3 : d

r4 : b r5 : b

r6 : a

• : c • : c • : d

• : b, c • : b, c, d

• : a, b, c, d

Fig. 4. Distributed configurations set-based histories

5 Conclusion

We have presented a basic framework to support provenance-based computa-
tions, with incremental history distribution and reduction. The main compo-
nents of the framework are an abstract domain of histories H, a provenance
specification language L, and two functions: α for history reduction, and ⊕ for
incremental history construction, that are required to be sound and complete
with respect to L. We have illustrated the framework with a basic model of
programmable configurations, and notions of abstract histories based on well-
understood models of computation and information flow.

The approach we have presented can lead to deeper investigations in the
future. First, in the examples we have used to illustrate our approach we have not
considered efficiency as an issue. Efficient algorithms for minimisation of histories
that exploit their acyclic structure could be to be identified. For example, in the
case of bisimulations a partition refinement algorithm based on [17] could easily
exploit the acyclic structure in the strategy to select the candidate partitions
subject to a partition check. The basic model of computation we have used
to illustrate the approach could lead to novel coordination languages, taking
inspiration from locality-centred [8] and provenance-tracking [4] coordination
languages, one could design a provenance-oriented coordination language where
interactions depended on provenance properties. An interesting variant of the
instances we have seen could be to consider histories up to stuttering. In the
case of computation trees and bisimulations we could consider the corresponding
notions of stuttering bisimulation minimisation algorithms [14,15]. For linear
provenance, it would be also interesting to investigate provenance queries based
on testing equivalences [1,10] or LTL variants.

A Framework for Provenance-Preserving History Distribution 485

References

1. Aceto, L., De Nicola, R., Fantechi, A.: Testing equivalences for event structures. In:
Zilli, M.V. (ed.) Mathematical Models for the Semantics of Parallelism. LNCS, vol.
280, pp. 1–20. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-18419-
8 9

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based
communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 1

3. Altintas, I., Wang, J., Crawl, D., Li, W.: Challenges and approaches for distributed
workflow-driven analysis of large-scale biological data: vision paper. In: Srivas-
tava, D., Ari, I. (eds.) Proceedings of the 2012 Joint EDBT/ICDT Workshops,
Berlin, Germany, 30 March 2012, pp. 73–78. ACM (2012). https://doi.org/10.1145/
2320765.2320791

4. Bodei, C., Degano, P., Ferrari, G.L., Galletta, L.: Tracing where IoT data are
collected and aggregated. Log. Methods Comput. Sci. 13(3) (2017). https://doi.
org/10.23638/LMCS-13(3:5)2017

5. Chavan, A., Huang, S., Deshpande, A., Elmore, A.J., Madden, S., Parameswaran,
A.G.: Towards a unified query language for provenance and versioning. In: Missier,
P., Zhao, J. (eds.) 7th USENIX Workshop on the Theory and Practice of Prove-
nance, TaPP 2015, Edinburgh, Scotland, UK, 8–9 July 2015. USENIX Asso-
ciation (2015). https://www.usenix.org/conference/tapp15/workshop-program/
presentation/chavan

6. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and
opportunities. In: Wang, J.T. (ed.) Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, 10–12 June 2008, pp. 1345–1350. ACM (2008). https://doi.org/10.1145/
1376616.1376772

7. De Nicola, R.: Extensional equivalences for transition systems. Acta Inf. 24(2),
211–237 (1987). https://doi.org/10.1007/BF00264365

8. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998). https://
doi.org/10.1109/32.685256

9. De Nicola, R., Ferrari, G.L., Pugliese, R., Tiezzi, F.: A formal approach to the
engineering of domain-specific distributed systems. In: Serugendo, G.D.M., Loreti,
M. (eds.) COORDINATION 2018. LNCS, vol. 10852, pp. 110–141. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-92408-3 5

10. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984). https://doi.org/10.1016/0304-3975(84)90113-0

11. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. TAAS 9(2), 7:1–7:29 (2014). https://
doi.org/10.1145/2619998

12. De Nicola, R., Montanari, U., Vaandrager, F.: Back and forth bisimulations. In:
Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 152–165.
Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039058

13. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

14. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995). https://doi.org/10.1145/201019.201032

https://doi.org/10.1007/3-540-18419-8_9
https://doi.org/10.1007/3-540-18419-8_9
https://doi.org/10.1007/978-3-319-39570-8_1
https://doi.org/10.1145/2320765.2320791
https://doi.org/10.1145/2320765.2320791
https://doi.org/10.23638/LMCS-13(3:5)2017
https://doi.org/10.23638/LMCS-13(3:5)2017
https://www.usenix.org/conference/tapp15/workshop-program/presentation/chavan
https://www.usenix.org/conference/tapp15/workshop-program/presentation/chavan
https://doi.org/10.1145/1376616.1376772
https://doi.org/10.1145/1376616.1376772
https://doi.org/10.1007/BF00264365
https://doi.org/10.1109/32.685256
https://doi.org/10.1109/32.685256
https://doi.org/10.1007/978-3-319-92408-3_5
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1145/2619998
https://doi.org/10.1145/2619998
https://doi.org/10.1007/BFb0039058
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1145/201019.201032

486 A. Lluch Lafuente

15. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation and
stuttering equivalence. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp.
626–638. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032063

16. Holland, D.A., Braun, U.J., Maclean, D., Muniswamy-Reddy, K.K., Seltzer, M.I.:
Choosing a data model and query language for provenance. In: Freire, J., Koop,
D. (eds.) IPAW 2008. LNCS, vol. 5272. Springer, Heidelberg (2008)

17. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987). https://doi.org/10.1137/0216062

18. Baldoni, R., De Nicola, R., Prinetto, P.: The future of cybersecurity in Italy: strate-
gic focus areas. Laboratorio Nazionale di Cybersecurity, CINI - Consorzio Interuni-
versitario Nazionale per l’Informatica (2018). https://www.consorzio-cini.it/index.
php/it/labcs-home/libro-bianco

https://doi.org/10.1007/BFb0032063
https://doi.org/10.1137/0216062
https://www.consorzio-cini.it/index.php/it/labcs-home/libro-bianco
https://www.consorzio-cini.it/index.php/it/labcs-home/libro-bianco

Utility-Preserving Privacy Mechanisms
for Counting Queries

Natasha Fernandes1, Kacem Lefki2, and Catuscia Palamidessi1(B)

1 Inria, Palaiseau, France
catuscia@lix.polytechnique.fr

2 University of Paris Saclay, Orsay, France

Abstract. Differential privacy (DP) and local differential privacy
(LPD) are frameworks to protect sensitive information in data collec-
tions. They are both based on obfuscation. In DP the noise is added
to the result of queries on the dataset, whereas in LPD the noise is
added directly on the individual records, before being collected. The
main advantage of LPD with respect to DP is that it does not need to
assume a trusted third party. The main disadvantage is that the trade-off
between privacy and utility is usually worse than in DP, and typically
to retrieve reasonably good statistics from the locally sanitized data it
is necessary to have a huge collection of them. In this paper, we focus
on the problem of estimating counting queries from collections of noisy
answers, and we propose a variant of LDP based on the addition of geo-
metric noise. Our main result is that the geometric noise has a better
statistical utility than other LPD mechanisms from the literature.

1 Introduction

With the ever-increasing use of internet-connected devices, personal data are
collected in larger and larger amounts, and then stored and manipulated for the
most diverse purposes. Undeniably, the big-data technology provides enormous
benefits to industry, individuals and society. On the other hand, however, the
collection and manipulation of personal data raises alarming privacy issues. Not
surprisingly, therefore, the investigation of mechanisms to protect privacy has
become a very active field of research.

Differential privacy (DP) [3] and local differential privacy (LDP) [2] repre-
sent the cutting-edge of research on privacy. DP aims at protecting the individ-
uals’ data while allowing to answer queries on the aggregate information, and
it achieves this goal by adding controlled noise to the query outcome. LDP is
a distributed variant in which the data are sanitized at the user’s end before
being collected. One of the main reason of their success is that DP and LPD are
compositional, i.e., robust to attacks based on combining the information from
different sources. Furthermore LPD has the additional advantage that there is no
need to assume that the entities collecting and storing data are trusted, because
they can only see, stock and analyze the already sanitized data.

c© Springer Nature Switzerland AG 2019
M. Boreale et al. (Eds.): De Nicola-Festschrift, LNCS 11665, pp. 487–495, 2019.
https://doi.org/10.1007/978-3-030-21485-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21485-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-21485-2_27

488 N. Fernandes et al.

LDP is having a considerable impact, especially now that large companies
such as Apple and Google have adopted it for collecting their customers’s data
for statistical purposes.

In this paper we consider the problem of statistical utility, namely how pre-
cisely can we retrieve the original distribution from the collection of noisy data.
Reconstruct the original distribution is important in order to make precise sta-
tistical analyses.

The notion of d-privacy has been advocated in a recent work [1] as a variant
of LDP able to provide a good trade-off between privacy and statistical utility.
In this paper, we consider a particular d-private mechanism: the geometric noise
distribution. We explore its properties and we show that indeed, in terms of
trade-off privacy-utility, it compares favorably to the typical LPD mechanism,
the k-Randomized-Responses (kRR) [2].

2 Preliminaries

In this section we recall some basic notions. We will consider only finite sets
and discrete mechanisms. Given a set X , a probability distribution p on X is a
function p : X → R such that ∀x ∈ X p(x) ≥ 0 and

∑
x p(x) = 1. We denote by

Distr(X) the set of all possible distributions on X . We use px to denote p(x).

2.1 Differential Privacy

Let D,D′ denote collections of data (datasets), D the set of all datasets of
interest, and let ∼ represent the adjacency relation between datasets. Namely,
D ∼ D′ means that D and D′ differ only for the value of a single record. Given
a query f : D → X , a mechanism K for f is a probabilistic function which, for
every D, gives a reported answer y ∈ Y with a certain probability distribution
that depends on the true answer to the query. Let P [K(D) = y] denote the
probability that K applied to D reports the answer y. We say that K satisfies
ε-DP, where ε is a non-negative real number denoting the level of privacy, if for
every pairs of adjacent datasets D ∼ D′, and for every y ∈ Y, we have:

P [K(D) = y] ≤ eε P [K(D′) = y]. (1)

2.2 Local Differential Privacy and Randomized Responses

In LDP the idea is that the mechanism obfuscates directly the value of the data
rather than the answer to a query. In this setting, let X denote the set of all
possible values for the data. A mechanism K is a probabilistic function which,
for every x ∈ X , returns a reported value y ∈ X with a certain probability
distribution that depends on the true value x. Let P [K(x) = y] be the probability
that K applied to x reports y. K provides ε-LPD if for all x, x′, y ∈ X we have:

P [K(x) = y] ≤ eε P [K(x′) = y]. (2)

Utility-Preserving Privacy Mechanisms for Counting Queries 489

A typical mechanism to implement LDP is the Randomized Responses
(kRR), where k represents the size of X . In its simplest variant it is defined
as follows:

P [kRR(x) = y] =

⎧
⎨

⎩

eε

k−1+eε y = x

eε

k−1+eε y �= x
(3)

2.3 d-privacy

In d-privacy, like in LDP, mechanism obfuscates directly the value of the data.
The main difference is that the domain X is assumed to be a metric space,
namely be endowed with a notion of distance d : X × X → R

≥0, where R
≥0 is

the set of non-negative real numbers.
A mechanism K provides ε-d-privacy if for every x, x′, y ∈ X we have:

P [K(x) = y] ≤ eε d(x,x′) P [K(x′) = y]. (4)

2.4 Generalized Counting Queries

In DP, a counting query is a function f : D → [0, n] such that f(D) gives the
number of records in D that satisfy a certain property. ([0, n] denotes the set of
integers between 0 and n.) In this paper, we will adopt a more general notion
of counting query, suitable for LPD. Namely, we assume that f : X → [0, n]
associates a number f(x) ∈ [0, n] to each element of x ∈ X. The idea is that
each x ∈ X represents a certain person, and f(x) could return, for example, the
age (in years), or the number of children, or the monthly salary (in Euros), etc.

A mechanism K for f , in this context, associates to each value i ∈ [0, n] a value
j ∈ [0, n] chosen randomly according to a probability distribution. We denote
by Cij the probability that K(i) = j. Note that Cij represent the conditional
probability of i given j, hence the values Cij form a stochastic matrix C (where
Cij is the element at the intersection of the i-th row and j-th column). From
now on for notational simplicity we will use C rather than K.

2.5 Geometric Mechanism

In the following, for simplicity we use α to indicate e−ε, where ε is the level of
privacy. Note that 0 < α ≤ 1. The geometric mechanism (for a counting query)
is represented by an infinite matrix C with rows indexed by [0, n] and columns
indexed by Z (the set of integers), and whose elements are given by:

Cij =
1 − α

α

|i−j|
(5)

In order to avoid dealing with an infinite output domain, we consider the trun-
cated version of a mechanism. The idea is that the probability mass of the nega-
tive element is remapped in 0, and the probability mass of the elements greater

490 N. Fernandes et al.

than n is remapped in n. The truncated geometric mechanism will be denoted
by G and it is defined as:

Gij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
1+ααi j = 0

1−α
1+αα|i−j| 0 < j < n

1
1+αα|i−n| j = n

(6)

The truncated geometric is ε-d-private:

Proposition 1. [4] If X is the domain [0, n] and d is the difference between
integers, then G is a d-private mechanism on X .

The following is another important property of the truncated geometric:

Proposition 2. [4] The matrix G is invertible.

3 Reconstructing the Original Distribution from a
Collection of Noisy Data

Assume that we have a collection of N noisy data representing the result of the
independent application of the geometric mechanism to the data of a certain
population. Each datum (as well as each noisy datum) is a number in [0, n].
Let π ∈ Distr([0, n]) be the prior distribution on the original data. The set of
original data is generated by a sequence of random variables X1,X2, . . . , XN

independent and identically distributed (i.i.d.), according to π. To each of the
X1,X2, . . . , XN we apply the geometric mechanism G, thus obtaining a sequence
of random variables Y1, Y2, . . . , YN . Let q ∈ Distr([0, n]) be the empirical dis-
tribution determined by Y1, Y2, . . . , YN . I.e., qj is obtained by counting the fre-
quencies of the value j in Y1, Y2, . . . , YN . Namely, qj = |{h|Yh=i}|/N.

The task we consider here is how best to reconstruct the original distribution
π from q. To this purpose, we consider the following iterative procedure, which
is inspired by the Bayes theorem. In the definition of this procedure, p represents
an arbitrary probability distribution with full support.

Definition 1. Let {p(k)}k be the sequence defined inductively as follows:

p(0) = p

p
(k+1)
i =

∑
j qj

p
(k)
i α|i−j|

∑
h p

(k)
h α|h−j|

The interest of the above definition relies in the following result:

Theorem 1. [4] Let {p(k)}k be the sequence of distributions constructed accord-
ing to Definition 1. Then:

1. The sequence converges, i.e., limk→∞ p(k) exists.
2. limk→∞ p(k) is the Maximum Likelihood Estimator (MLE) of π given q.

Utility-Preserving Privacy Mechanisms for Counting Queries 491

Fig. 1. The distribution generated by the kRR and the truncated geometric mecha-
nisms applied to x = 50. The values of the privacy parameters ε’s are ln 2 and ln 2/10,
respectively.

We will denote by p∗ the limit of the sequence {p(k)}k, i.e., p∗ def= limk→∞ p(k).
Theorem 1(2) means that for all possible distributions p′, the probability that
the distribution induced from the noisy data (sanitized with G) is q when the
prior is p∗ is higher than or equal to the same probability when the prior is p′.

Furthermore, p∗ can be characterized using G. For a distribution p and a
matrix C, let pC be the product of p and C. Namely, (pC)j =

∑
i piCij .

Proposition 3. [4] If r = q G−1 is a probability distribution, then p∗ = r.

4 Comparison Between the Geometric and Randomized
Response Mechanisms

In this section we compare the truncated geometric and the kRR mechanisms
from the point of view of the trade-off between privacy and statistical utility.

In order to make a fair comparison, we first need to calibrate the privacy
parameters of these mechanisms so that they represent the same level of privacy.
Indeed, although both are expressed in terms of a parameter ε, they do not have
the same meaning: the first satisfies ε-d-privacy, while the second satisfies ε-LPD.

To demonstrate, consider the kRR mechanism with parameter ε = ln 2 oper-
ating over integer-valued input and output domains with range [0, 100]. The pri-
vacy guarantee provided by this mechanism is given by the upper bound εln 2 = 2,
representing the maximum likelihood ratio between any possible reported value
and the true value. This upper bound is realised for every pair of different val-
ues in the input and output domains. By comparison, the truncated geometric
mechanism with the same ε = ln 2 would provide such an upper bound 2 only
for values immediately adjacent to the true one. For values further away, the
bound is smaller (making more distance values less likely). If we want to provide
the same upper bound 2 on the entire domain, then we would have to set ε to a
value 100 times smaller, namely ln 2/100, which would result in a very flat curve,
making the true value almost indistinguishable from a large part of the other
values.

492 N. Fernandes et al.

However, we argue that it is not necessary to inject so much noise, as this
destroys the utility-by-design of the geometric mechanism. As a compromise we
will require the upper bound 2 on a restricted subset of elements, for instance
those in a radius 10 from the true value. This can be achieved by setting ε to
ln 2/10. Figure 1 illustrates the situation.

As for statistical utility, intuitively it should account for how well we can
approximate statistics on the original data by using only the collected noisy data.
This can be formalized in terms of the distance between the original distribution
and the most likely one given the noisy data, which can be estimated by applying
the IBU (Definition 1). As for the notion of distance, we propose to use the
Kantorovich metric (based on the standard distance between natural numbers
as the ground distance). As argued in [1], in fact, this metric is related to a
large class of statistical functions. We recall the definition of the Kantorovich
distance:

Definition 2. Let (X , d) be a metric space and let μ, μ′ ∈ Distr(X). The Kan-
torovich distance based on d between μ and μ′ is defined as follows:

Kd(μ,mu′) = max
g∈G

|
∑

x∈X
g(x)μ(x) −

∑

x∈X
g(x)μ′(x)

where G is the set of the Lipshitz functions on X , namely g ∈ G if and only if
∀x, x′ ∈ X | f(x) − f(x′) |≤ d(x, x′).

4.1 Experimental Results

We now present the results of experiments designed to assess the statistical
utility of each of these mechanisms using the IBU method outlined in Sect. 3.

As above, we assume integer-valued inputs and outputs in the range [0, 100].
We constructed two different mechanisms to output noisy values: a trun-
cated geometric mechanism parametrised by ε = ln2/10 and a kRR mechanism
parametrised by ε = ln2.

We ran our experiments on 2 sets of data. The first set consisted of samples
of size 1000, 10000, 50000 and 100000 drawn from a binomial distribution. The
second set consisted of the same sample sizes drawn from a “4-point” distribution
(i.e. a random distribution over 4 ‘points’ in the output range). For each of the
8 samples we conducted 20 experiments using the following method:

1. Obfuscate the sample using each of the (geometric and kRR) mechanisms to
produce 2 obfuscated sets.

2. Convert each set into an empirical distribution over outputs using the fre-
quency counts of elements in each set.

3. Run IBU for 5000 iterations over each empirical distribution to compute the
maximum likelihood estimate (MLE) for the true distribution.

4. Compare the Kantorovich distance between the MLE and the true distribu-
tion as an estimate of the error caused by the obfuscation.

Utility-Preserving Privacy Mechanisms for Counting Queries 493

Fig. 2. IBU reconstruction of MLE (orange) distributions from noisy (green) distri-
butions based on 100k samples drawn from ‘4-point’ (left) and binomial (right) dis-
tributions. The blue graphs indicate the true distribution. The top distributions were
obfuscated by kRR, and the bottom by the geometric mechanism. Reconstruction for
the kRR is much better for the point distribution, but the opposite is true for the
geometric mechanism. (Color figure online)

In Fig. 2 we present some sample runs of IBU for each mechanism and distri-
bution. Interestingly, the reconstructed distribution for kRR is much better for
the ‘4-point’ sample than for the binomial sample. Conversely, the reconstructed
distribution for the geometric mechanism is much closer to the binomial sample.

However, the computed Kantorovich distances at the 5000 iteration point
for each run tell a different story. These results are shown in Fig. 3. We com-
puted the Kantorovich distance between the estimated distribution and the true
distribution, providing an approximation of the distance between the true dis-
tribution and the distribution resulting from obfuscation. We can see that the
average Kantorovich distances for the geometric mechanism are significantly
lower (up to 5 times) than the corresponding distances for the kRR mechanism.
We conjecture that this is because the errors caused by kRR are randomly dis-
tributed over the entire output space, which directly affects the Kantorovich
distance since it depends on the ground distance between points. This means
that for statistical applications in which the ground distance is important, the
geometric mechanism is still preferred to the kRR mechanism.

Another interesting observation we make is in the convergence rates for the
IBU method when applied to the different distributions. This is graphed in Fig. 4.
For each iteration of IBU we computed the ‘log likelihood’ function

L(Θ) =
∑

y

qy log(Θ · My)

494 N. Fernandes et al.

Fig. 3. Kantorovich distances between true and estimated distributions at IBU con-
vergence for the geometric and kRR mechanisms. Distances were computed over 20
experiments for each of the 4 sample sizes indicated. This shows the distributions pro-
duced by the geometric mechanism are much closer to the true distribution than for
the kRR.

Fig. 4. Log likelihood function against number of iterations for the geometric and
kRR mechanisms. This graph shows how fast each output distribution converges to the
MLE for one particular (representative) run of the IBU. We observe that the geometric
mechanism converges quickly whereas convergence for the kRR is almost flat.

where Θ is the current estimated distribution, qy is the empirical distribution and
M is the mechanism represented as a channel matrix.1 The log likelihood func-
tion indicates how close the current estimate is to the true MLE. The results for
one particular run are shown in Fig. 4. We can see that the geometric mechanism
converges to a close approximation of the MLE within 10 iterations, whereas the
convergence for kRR is linear and almost flat. This may also explain the better
performance of the kRR output on the ‘4-point’ sample, since there were far

1 The notation Θ · My indicates the dot product of Θ with the yth column of M .

Utility-Preserving Privacy Mechanisms for Counting Queries 495

fewer ‘skyscrapers’ in the original distribution to estimate. The shape of the
geometric mechanism seemed to favour the more ‘natural’ shape of the binomial
distribution sample.

5 Conclusion

In this paper, we have investigated the properties of the truncated geometric
mechanism in relation to the reconstruction from noisy data of the original dis-
tribution on the real data. We have provided an iterative algorithm to approxi-
mate the original distribution, and we have given a characterization of the fixed
point in terms of the inverse of the matrix. Finally, we have compared the trade-
off between privacy and utility of the truncated geometric mechanism and of the
kRRs, obtaining favorable results.

Acknowledgements. The work of Catuscia Palamidessi has been partially supported
by the ANR project REPAS.

References

1. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Pazii, A.: Local differential pri-
vacy on metric spaces: optimizing the trade-off with utility. In: 31st IEEE Computer
Security Foundations Symposium, CSF 2018, Oxford, United Kingdom, 9–12 July
2018, pp. 262–267. IEEE Computer Society (2018)

2. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical Minimax
rates. In: Proceedings of the 54th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 429–438. IEEE Computer Society (2013)

3. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

4. Kacem, L., Palamidessi, C.: Geometric noise for locally private counting queries.
In: Proceedings of the 13th Workshop on Programming Languages and Analysis for
Security, PLAS 2018, pp. 13–16. ACM, New York (2018)

https://doi.org/10.1007/11681878_14

Author Index

Aceto, Luca 7, 28
Achilleos, Antonis 28
Agha, Gul 315
Alrahman, Yehia Abd 152
Arbab, Farhad 191
Autili, Marco 191

Bernardo, Marco 92
Bettini, Lorenzo 115
Bodei, Chiara 437
Bottoni, Paolo 298
Bruni, Roberto 170
Burnay, Nuno 428

Castellani, Ilaria 340
Charalambides, Minas 315
Ciancia, Vincenzo 260
Corradini, Andrea 170

D’Angelo, Gianlorenzo 7
Degano, Pierpaolo 437
Dezani-Ciancaglini, Mariangiola 340

Fantechi, Alessandro 278
Fernandes, Natasha 487
Ferrari, Gian-Luigi 437
Flammini, Michele 7
Fortino, Giancarlo 411
Francalanza, Adrian 28

Gadducci, Fabio 170
Galletta, Letterio 437
Giannini, Paola 340
Gnesi, Stefania 219
Gorla, Daniele 298

Hennessy, Matthew 15
Hennicker, Rolf 367

Ingólfsdóttir, Anna 28
Inverardi, Paola 191

Inverso, Omar 7
Iovino, Ludovico 7

Kasangian, Stefano 298
Kuehn, Eva Maria 136

Labella, Anna 298
Lanese, Ivan 71
Latella, Diego 260
Lefki, Kacem 487
Lehtinen, Karoliina 28
Lluch Lafuente, Alberto 471
Lopes, Antónia 428

Martins, Francisco 428
Massink, Mieke 260
Melgratti, Hernán 170
Merelli, Emanuela 115
Mezzina, Claudio Antares 152
Montanari, Ugo 3, 170

Najm, Elie 278
Neykova, Rumyana 236
Nielson, Flemming 455
Nielson, Hanne Riis 455

Palamidessi, Catuscia 487
Palmskog, Karl 315

Re, Barbara 411

Sangiorgi, Davide 71
Sifakis, Joseph 388
Stefani, Jean-Bernard 278

ter Beek, Maurice H. 219
Tiezzi, Francesco 115
Tivoli, Massimo 191
Trubiani, Catia 7
Tuosto, Emilio 170

van Glabbeek, Rob 45
Vasconcelos, Vasco T. 428

Vieira, Hugo Torres 152
Viroli, Mirko 411

Wirsing, Martin 367

Yoshida, Nobuko 236

Zambonelli, Franco 411
Zavattaro, Gianluigi 71

498 Author Index

	Preface
	Organization
	Contents
	Homage from Friends
	From Tuscany to Scotland and Back
	1 Pisa and Milan
	2 Edinburgh
	3 True Concurrency
	4 KLAIM, CASPIS and AbC
	5 IMT, Lucca

	Building International Doctoral Schools in Computer Science in Italy, De Nicola's Way
	1 Introduction
	1.1 The Cultural Context

	2 Structuring an International PhD Programme in Computer Science at the GSSI
	3 The De Nicola Lessons on Establishing a Graduate School and a Centre for Advanced Studies
	4 Conclusions
	References

	Observational Semantics
	An Equational Characterisation of the Must Testing Pre-order for Regular Processes
	1 Introduction
	2 Regular Processes and Testing
	2.1 The Language
	2.2 Testing
	2.3 Characterisation

	3 The Proof System for the Testing Prorder
	4 Soundness
	5 Completeness
	References

	Testing Equivalence vs. Runtime Monitoring
	1 Introduction
	2 Preliminaries
	2.1 Labelled Transition Systems
	2.2 Testing Equivalences à la De Nicola and Hennessy

	3 Monitoring May Testing
	3.1 A Framework for Runtime Monitoring
	3.2 Previous Results
	3.3 May Testing via Monitors

	4 Monitoring Must Testing
	4.1 A Framework for Runtime Monitoring with Refusals
	4.2 Must Testing via Monitors

	5 Conclusions
	References

	Reward Testing Equivalences for Processes
	1 Introduction
	2 General Setting
	3 CCS: The Calculus of Communicating Systems
	4 Classical May and Must Testing for CCS
	5 Dual May and Must Testing
	6 Reward Testing for CCS
	7 Characterising Reward Testing
	8 Weaker Notions of Reward Testing
	9 Reward May Testing
	10 A Hierarchy of Testing Preorders
	11 Conditional Liveness Properties
	12 Congruence Properties
	13 Axiomatisations
	14 Failure of Congruence Property for Recursion
	15 Unguarded Recursion
	16 Related Work
	17 Conclusion
	References

	Playing with Bisimulation in Erlang
	1 Introduction
	2 Erlang Syntax
	3 Erlang Semantics
	4 Behavioural Equivalence
	4.1 Barbed Congruence
	4.2 A Proof Technique

	5 Properties
	5.1 Renaming
	5.2 Normalisation
	5.3 Wires

	6 Alternative Approaches
	7 Conclusion
	References

	Genesis and Evolution of ULTraS: Metamodel, Metaequivalences, Metaresults
	1 The ULTraS Metamodel
	2 Behavioral Metaequivalences on ULTraS
	2.1 Resolutions of Nondeterminism
	2.2 Reachability-Consistent Semirings
	2.3 Measure Schemata for Multistep Reachability
	2.4 Bisimulation and Trace Pre-/Post-metaequivalences: Coherency
	2.5 Comparing Bisimulation and Trace Metaequivalences
	2.6 Alternative Characterizations of Trace Metaequivalences

	3 Metaresults for Behavioral Metaequivalences
	3.1 A Process Algebraic View of ULTraS
	3.2 Congruence with Respect to Distribution/Dynamic Operators
	3.3 Congruence with Respect to Parallel Composition
	3.4 Final Remarks

	4 Future Directions
	References

	Coordination Models and Languages
	X-Klaim Is Back
	1 Introduction
	2 Klaim
	3 X-Klaim 2.0
	3.1 The Old Implementation
	3.2 The New Implementation
	3.3 The Leader Election Example in X-Klaim
	3.4 Additional Features
	3.5 Debugging X-Klaim Programs

	4 Concluding Remarks
	References

	A Distributed Ledger Technology Based on Shared Write-Once Objects
	1 Introduction
	2 Distributed Ledger Technology (DLT)
	3 Virtual Shared Memory Approaches
	3.1 Shared Tuples Without Identity
	3.2 Shared Objects with Identity
	3.3 Suitability for DLT

	4 Proof-of-Concept: Blockchain Realizations
	4.1 Data Structures
	4.2 Program Logic
	4.3 Variants

	5 Conclusion
	References

	Testing for Coordination Fidelity
	1 Introduction
	2 A Model for Operation Control Protocols
	3 Management of Distributed Generation in Power Grids
	4 Testing for Protocol Fidelity
	5 Concluding Remarks
	References

	Data-Driven Choreographies à la Klaim
	1 Introduction
	2 Klaimographies
	2.1 Tuple Types
	2.2 Global Types
	2.3 Some Examples

	3 Semantics
	3.1 Pomsets for Klaimographies
	3.2 Local Types
	3.3 Obtaining Local Types Out of Global Types

	4 Semantic Correspondence
	5 Conclusions
	References

	Different Glasses to Look into the Three Cs: Component, Connector, Coordination
	1 Introduction
	2 Praeludium
	3 Looking into the Three Cs
	3.1 Software Component Ensemble Language
	3.2 Reo Connectors
	3.3 Coordination Delegates

	4 Characteristics of Interest
	5 Matching the Characteristics of Interest
	5.1 Software Component Ensemble Language Characterization
	5.2 Reo Connectors Characterization
	5.3 Coordination Delegates Characterization

	6 Conclusions
	References

	Logics and Types
	From the Archives of the Formal Methods and Tools Lab
	1 Introduction
	1.1 Rocco and Stefania
	1.2 Action-Based Temporal Logics
	1.3 Model Checking Action-Based Temporal Logics
	1.4 The ERCIM Workshop on Theory and Practice in Verification
	1.5 The Formal Methods and Tools Lab of ISTI–CNR
	1.6 Contribution: An Axiomatisation of ACTL

	2 Basic Definitions
	3 The Temporal Logic ACTL
	3.1 Models for ACTL
	3.2 An Axiom System for ACTL

	4 Conclusion
	References

	Featherweight Scribble
	1 Introduction
	2 Scribble Overview
	3 Syntax and Semantics of Scribble
	3.1 Scribble Global Protocols
	3.2 Scribble Local Protocols

	4 Correspondence Between Scribble and MPST
	4.1 Scribble Normal Form
	4.2 From Global Protocols to Global Types
	4.3 From Local Protocols to Local Types
	4.4 Correspondence of Global and Local Protocols

	5 From Scribble to CFSMs
	6 Conclusion and Related Work
	A Scribble Normal Form
	B From Global Protocols to Global Types
	C From Local Protocols to Local Types
	D From Sribble to CFSM
	References

	Embedding RCC8D in the Collective Spatial Logic CSLCS
	1 Introduction
	2 Spatial Logics for Closure Spaces
	2.1 The Spatial Logic for Closure Spaces - SLCS
	2.2 The Collective Extension - CSLCS

	3 Discrete Spaces with Adjacency and RCC8D
	4 Encoding RCC8D into CSLCS
	5 Model Checking RCC8D Using topochecker
	6 Conclusions
	A Proof of Proposition1
	References

	From Behavioural Contracts to Session Types
	1 Introduction
	2 Open Distributed Processing
	3 Behavioural Contracts and Behavioural Types
	3.1 Contracts for ODP
	3.2 Behavioural Types with Modalities
	3.3 Behavioural Types for Object Calculi

	4 Sessions, Session Types and Service Orchestration
	4.1 Session Types and Orchestration Charts
	4.2 Session Types and Web Service Orchestration

	5 Conclusion
	References

	Modal Epistemic Logic on Contracts: A Doctrinal Approach
	1 Introduction
	2 Worlds of Resources
	3 Contracts on Resources
	4 Logical Background
	5 A Model for the Language of Transactions
	5.1 The Algebraic Structure of Sub(Uo)
	5.2 The Logical Structure of M

	6 Conclusions and Future Work
	References

	Types for Progress in Actor Programs
	1 Introduction
	2 Motivating Examples
	2.1 Resource Sharing Program
	2.2 Two Buyer Protocol

	3 Actor Calculus
	3.1 Operational Semantics

	4 Type System
	5 Calculus Meta-theory
	6 Augmented Typing
	6.1 On Cyclic Communication

	7 Related Work
	8 Conclusions and Future Work
	References

	Event Structure Semantics for Multiparty Sessions
	1 Introduction
	2 A Core Calculus for Multiparty Sessions
	3 Event Structures
	4 Event Structure Semantics of Processes and Networks
	5 Global Types
	6 Event Structure Semantics of Global Types
	7 Equivalence of the Two Event Structure Semantics
	8 Related Work and Conclusions
	References

	Distributed Systems Modelling
	Process Calculi for Modelling Mobile, Service-Oriented, and Collective Autonomic Systems
	1 Introduction
	2 Mobile Systems: The AGILE Project and Network-Aware Programming
	2.1 The Global Computing Initiative I
	2.2 Architectures for Mobility: The AGILE Project
	2.3 A Framework for Network-Aware Programming

	3 Service-Oriented Systems
	3.1 The Global Computing Initiative II
	3.2 Modelling and Engineering Service-Oriented Systems: The SENSORIA Project
	3.3 A Family of Core Process Calculi for Service-Oriented Systems
	3.4 Analysis Techniques, Logics and Case Studies

	4 Collective Autonomic Systems
	4.1 Self-Awareness in Autonomic Systems
	4.2 Autonomic Service-Component Ensembles: The ASCENS Project
	4.3 The SCEL Framework for Ensemble Computing

	5 Conclusion
	References

	Autonomous Systems – An Architectural Characterization
	Abstract
	1 The Concept of Autonomy
	1.1 Agent Environment
	1.2 Agent Goals and Plan Generation
	1.3 A Characterization of Autonomy

	2 A Computational Model for Autonomous Systems
	2.1 A System Architecture Model
	2.2 A Computational Model for Agents

	3 Autonomous System Design Complexity Issues
	3.1 Autonomic Complexity
	3.2 Design Complexity and Its Relationship to Autonomy
	3.3 Implementation Complexity

	4 Trustworthy Autonomous Systems – From Correctness at Design Time to Autonomic Correctness
	5 Discussion
	References

	Fluidware: An Approach Towards Adaptive and Scalable Programming of the IoT
	1 Introduction
	2 A Case Study Scenario
	3 Challenges
	4 The Fluidware Approach
	4.1 Funnel Processes
	4.2 Deployment Scenarios
	4.3 Addressing the Challenges

	5 The Path Towards Fluidware
	5.1 Programming Model
	5.2 Middleware
	5.3 Engineering Methodology
	5.4 Application Studies

	6 Related Work
	7 Conclusions
	References

	HEADREST: A Specification Language for RESTful APIs
	1 Introduction
	2 Context and Related Work
	3 HEADREST
	4 Conclusion
	References

	Security
	Revealing the Trajectories of KLAIM Tuples, Statically
	1 Introduction
	2 Klaim: A Kernel Language for Agents Interaction and Mobility
	2.1 Syntax and Semantics

	3 Example: A Microservice Architecture
	4 Control Flow Analysis
	4.1 Abstract Representation of Data
	4.2 Specification of the Analysis
	4.3 Checking Data Manipulation and Trajectories

	5 Conclusions
	References

	Lightweight Information Flow
	1 Introduction
	2 Guarded Commands for Security
	3 Types of Information Flow
	4 Security Policies
	5 Information Flow Type System
	6 Algorithmic Issues
	7 Conclusion
	References

	A Framework for Provenance-Preserving History Distribution and Incremental Reduction
	1 Introduction
	2 A Simple Model of Programmable Global Configurations
	3 Distributed Configurations with Abstract Histories
	4 Instantiating the Framework
	4.1 Tree-Based Provenance
	4.2 Linear Provenance
	4.3 Set-Based Provenance

	5 Conclusion
	References

	Utility-Preserving Privacy Mechanisms for Counting Queries
	1 Introduction
	2 Preliminaries
	2.1 Differential Privacy
	2.2 Local Differential Privacy and Randomized Responses
	2.3 d-privacy
	2.4 Generalized Counting Queries
	2.5 Geometric Mechanism

	3 Reconstructing the Original Distribution from a Collection of Noisy Data
	4 Comparison Between the Geometric and Randomized Response Mechanisms
	4.1 Experimental Results

	5 Conclusion
	References

	Author Index

