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Abstract. Ontologies have been used as a form of knowledge repre-
sentation in different fields such as artificial intelligence, semantic web
and natural language processing. The success caused by deep learning
in recent years as a major upheaval in the field of artificial intelligence
depends greatly on the data representation, since these representations
can encode different types of hidden syntactic and semantic relationships
in data, making their use very common in data science tasks. Ontolo-
gies do not escape this trend, applying deep learning techniques in the
ontology-engineering field has heightened the need to learn and gener-
ate representations of the ontological data, which will allow ontologies
to be exploited by such models and algorithms and thus automatizing
different ontology-engineering tasks. This paper presents a novel app-
roach for learning low dimensional continuous feature representations for
ontology entities based on the semantic embedded in ontologies, using a
multi-input feed-forward neural network trained using noise contrastive
estimation technique. Semantically similar ontology entities will have rel-
atively close corresponding representations in the projection space. Thus,
the relationships between the ontology entities representations mirrors
exactly the semantic relations between the corresponding entities in the
source ontology.
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1 Introduction

Ontologies are a powerful paradigm for knowledge representation and exchange,
they provide a specific vocabulary to a knowledge domain, and according to a
variable degree of formalization, they set the sense of the concepts and relation-
ships uniting them. Gruber defines the term ontology as: “An ontology is an
explicit specification of a conceptualization” [1]. Ontologies not only allow us to
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represent concepts that completely describe a knowledge domain, but also repre-
sent the semantics associated with them. The concepts are linked to each other
by taxonomic and semantic relationships forming a semantic network. Ontologies
have been used in several fields, such as engineering and knowledge management
systems, natural language processing, semantic web, intelligent integration of
information etc. The aim is to facilitate knowledge sharing and reuse [2].

In front of the huge success of deep learning techniques, until recently these
techniques did not get enough interest in the ontology-engineering field because
of the nature of the ontological data. However, representing ontological enti-
ties in a low dimensional continuous vector space provides generic representa-
tions for most machine learning and deep learning tasks, allowing the ontology-
engineering field to benefit from these techniques. Representing ontology entities
as continuous vector representations allows also applying several operations to
manipulate representations: measures of similarity or distance, addition, subtrac-
tion etc. Our contribution in this paper is the proposition of a model capable of
generating low dimensional continuous vector representations for ontology enti-
ties (concepts, individuals and semantic relationships) using multi-input feed-
forward neural networks trained using noise contrastive estimation technique,
where the training samples are generated on the basis of the different taxonomic,
semantic relationships and restrictions.

The rest of the paper is organized as follows. In Sect. 2 we give an overview of
related work. In Sect. 3 we present the technical details and the different methods
used to generate the continuous vector representations for ontology entities in
our approach. We evaluate and discuss the obtained results using several real
world ontologies in Sect. 4. In Sect. 5, we give the conclusion, and highlight some
directions and perspectives for future work.

2 Related Work

Conventional natural language processing tasks often use the one-hot or the bag
of words representations. However, these simple words representations face sev-
eral limitations, where they are very expensive i.e. the vectors are of high dimen-
sion, another limitation is that they cannot capture relations between words,
even if there is a strong semantic or syntactic correlation between some of them.
Continuous vector representations have been proposed for the first time for lan-
guage modeling in [3], the model consists to train a feed-forward neural network
to estimate the probability of the next word, based on the continuous represen-
tation of the previous words. These representations are called word embeddings,
neural embeddings or prediction-based embeddings, they have been introduced
through the construction of neural language models [4,5]. Word embeddings
are a projection of a vocabulary words into a low dimensional space in order
to preserve semantic and syntactic similarities. Thus, if the word vectors are
close to one another in terms of distance in the projection space, the words
must be semantically or syntactically close. Each dimension represents a latent
characteristic of the word, which can capture syntactic and semantic properties.
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The currently most popular word embeddings in the literature are provided
by the Word2vec toolkit [6,7]. The authors proposed two architectures CBOW
(Continuous Bag Of Words) and Skip-gram model for learning word embeddings
that are less expensive in terms of computing time than previous models. The
authors in [8] have shown that word embeddings created by a recurrent neural
network capture the similarities between words and word pairs. Another recent
approach is called GloVe [9], which combines two approaches: count-based matrix
factorization and predictive or neural models. This approach relies on the con-
struction of a global co-occurrence matrix of words, treating the whole corpus
using a sliding window. GloVe is a model of unsupervised learning that takes into
account all the information carried by the corpus and not only the information
carried by a sliding window of words.

Several algorithms have been proposed to solve the problem of dimensionality
reduction for graph representations such as [10–13] that were based on Principal
Component Analysis and Multi-Dimensional Scaling. Authors in [14] proposed a
semi-supervised algorithm to learn continuous feature representations for nodes
in networks based on random walks algorithm and motivated by the previous
work [6] on natural language processing. Authors in [15,16] proposed a method
for representing RDF (Resource Description Framework) nodes in linked open
data using language modeling approaches for unsupervised feature extraction
from sequences of words based on deep walk and deep graph kernels approaches.

Embeddings evaluation techniques can be classified into two major families,
extrinsic and intrinsic evaluations [17]. Extrinsic evaluation aims to evaluate the
continuous vector representations on real applications of the use of embeddings
for specific task. The intrinsic evaluation aims to evaluate semantic and syntactic
relations between words or concepts [18], it is an inexpensive method and it gives
a good estimation of a model that works or not. It uses the cosine similarity,
Euclidean distance, human judgment, etc. Continuous vector representations
models showed a good behavior and achieved good results in language modeling
tasks. They are rapid, efficient and easy to train, meanwhile, they need few
manipulations to have a model that works well and can be easily integrated into
the input of deep learning systems for example.

3 The Proposed Approach

The purpose of our approach is to encode ontology concepts, individuals and
semantic relations in a low dimensional space, so that the similarity in the
embedding space can be used to approximate the semantic similarity in the
ontology. It aims to learn low dimensional embedded vectors for ontology enti-
ties using multi-input feed-forward neural network to report semantics contained
in ontologies. This method allows us to represent each ontology entity by a cor-
responding real number vector in R

n. Another objective of our approach lies
in putting the information and data contained in ontologies at the disposal of
machine learning and deep learning algorithms. The ontology can be seen as a
set of triples (subject, predicate and object), it is built from conceptual models
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that are semantically richer due to the explicit definition of associations and rela-
tionships between entities in the conceptual schema. Therefore, in our approach,
we take benefit from these characteristics and exploit the semantic relations in
the ontologies to generate the embeddings.

3.1 The Ontological Approach

Our contribution aims to use several approaches to generate the ontology enti-
ties distributed representations based on the different taxonomic and semantic
relationships in the ontology.

Taxonomic Relationships. Taxonomic relations are the main mode of struc-
turing an ontology. We assume two concepts are similar if they have the same
super class. Let us consider the concepts C1, C2, C3 � � in an ontology O, then:

C1 � C2 ∧ C3 � C2 ⇒ C1 � C3 (1)

Non-taxonomic Relationships and Restrictions. Based on the non-
taxonomic semantic relationships (object properties), we assume two concepts
are semantically close if they have similar structural roles and they share seman-
tic relations or restrictions with the same concepts:

αC1.r(C2) ∧ βC3.r(C2) ⇒ C1 � C3 (2)

where r is a semantic relation and α, β ∈ {∀,∃,�n,�n}.

Instances. For the ontology individuals (instances), we have applied three
approaches to identify the similar individuals:

– We assume two individuals x and y are similar if they are instantiated from
the same class:

C1(x) ∧ C1(y) ⇒ x � y (3)

– The second approach is based on the relations between the individual’s con-
cepts:

C1(x) ∧ C2(y) ∧ αC1.r(C3) ∧ βC2.r(C3) ⇒ x � y (4)

– The third approach is based on the relations between the instances them-
selves. x, y and z are ontology individuals and r is an ontology role, then:

αx.r(y) ∧ βz.r(y) ⇒ x � z (5)
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3.2 The Neural Network Model

We have proposed a feed-forward multi-input neural network model, it aims
to predict an object o, given a subject s and a relation r in an ontology O i.e.
G(s, r) −→ o. The training set is a sequence of triples (subject, predecate, object)
defined as 〈(s1, r1, o1), · · · , (sk, rl, ok)〉 where k = |C|, l ∈ {1, 2, · · · , |R|} and C
is the set of the concepts and instances in the ontology O. The objective is to
learn a model g(s, r, o) = P (o|r, s) where g can be decomposed into three parts:

– A mapping M to a vector for ontology entity s in O.
– A mapping M ′ to a vector for each semantic relation r.
– The probability function P over the ontology entities in O.

The neural network model consists of two separated input layers, two separated
projection layers and an output layer (see Fig. 1).

Projection
layer

NCE
layer

Output

...
 ...
 

...
 

...
 

...
 

Concept
object (o)
P(o|s,r)

Input
layer

Concept 
subject (s) 

Relation
(r)

Fig. 1. The proposed neural network model architecture.

The neural probabilistic model specifies the distribution for the target con-
cept o given a subject s and a relation r using the scoring function f :

Pθ(o|s, r) =
exp(fθ(vo, vs, vr))

∑|C|
i=1 exp(fθ(vci , vs, vr))

(6)

where θ represents the model parameters, ci is an entity (concept or instance)
from the ontology O and vo, vs, vr, vci represent the vectors of o, s, r, ci respec-
tively. The scoring function f requires normalizing over the entire ontology enti-
ties, which is impractical and computationally expensive [19,20] when dealing
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with large ontologies. The noise contrastive estimation (NCE) [21] method has
been used to train the model to reduce the density estimation to a probabilistic
binary classification. The condition likelihood becomes:

P (D = 0|s, r, o) =
k × q(vo)

exp(fθ(vo, vs, vr)) + k × q(vo)
(7)

P (D = 1|s, r, o) =
exp(fθ(vo, vs, vr))

exp(fθ(vo, vs, vr)) + k × q(vo)
(8)

where k represents noise samples from q. D = 0 means that it is a noise sample,
whereas D = 1 defines true distribution sample. We can summarize the learning
process as follows:

– Each ontology entity c is associated with a vector v ∈ R
n initialized randomly.

– For each couple s, r in a triple (s, r, o) from O as an input, the element o is
taken into account as an output.

– P (D = 1|s, r, o) represents the probability that an ontology entity s is the
subject of a relation (predicate) r, which o is its object.

– P (D = 0|s, r, o) the probability that s is not the subject of a relation r, which
o is its object.

– The optimization objective function is defined as follows:

L(V ) = arg max
∑

s,o∈C,r∈R

log P (D = 1|s, r, o)+

∑

s′,o∈C,r∈R

log P (D = 0|s′, r, o) (9)

It defines the sum of the logarithms of the probabilities P (D = 1|s, r, o) for all
the ontology elements o as objects, s as subjects, r as a relation in the set of
triples, and the sum of the logarithms of the probabilities P (D = 0|s′, r, o) for
all the elements o and r in the set of triples and a random sample of elements
s′ out of their triples. The symbol V indicates the set of all the vectors v of
the elements which represents our model, and of which we try here to look
for the optimal values in order to maximize the objective function L(V ). The
gradient descent approach is used to find the optimal values of all vectors v
corresponding to the ontology elements.

This approach allows us to find the vectors that bring together the semantically
close ontology entities and can keep the semantically distant entities away.

4 Evaluation

In order to evaluate the performance of the proposed model, we have used sev-
eral ontologies from different domains obtained from The Open Biological and
Biomedical Ontologies (OBO1) Foundry [22] and BioPortal2 repository [23].
1 http://obofoundry.org.
2 https://bioportal.bioontology.org.

http://obofoundry.org
https://bioportal.bioontology.org
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4.1 Evaluation Metrics

To evaluate the quality of the ontology entities representations generated for each
ontology, three different approaches have been used: the projection onto a two or
three-dimensional map, cosine similarity and the Euclidean distance. Then we
compare these representations with their corresponding ontology entities based
on the semantic relations, restrictions and axioms using the Jaccard similarity.
This task aims to measure the degree of similarity of the close concepts and
instances in the ontology. The Jaccard index between two sets A and B is defined
as follows:

Jaccard(A,B) =
|A ∩ B|
|A ∪ B|

For two vectors x and y, the cosine similarity and the Euclidean distance are
defined as follows:

Cosine similarity(x, y) =
x · y

‖ x ‖ · ‖ y ‖

Euclidean distance(x, y) =

√
√
√
√

n∑

i=1

(xi − yi)2

The similarity values obtained from the generated representations and those
obtained from the corresponding concepts and instances in the ontologies are
evaluated using the standard metrics: Precision, Recall and F-measure. Given
a set of similar concepts B, the precision (P ) of the generated similar vector
representations A is the ratio of the correct matches found and the total number
of matches:

P (A,B) =
|A ∩ B|

|A|
The recall (R) computes the ratio of the correct matches found and the total
number of expected connections in the ontology:

R(A,B) =
|A ∩ B|

|B|
The metric F-measure (F1) is a harmonic measure, it combines both measures
of Precision and Recall:

F1(A,B) = 2 × P (A,B) × R(A,B)
P (A,B) + R(A,B)

4.2 Results and Discussion

For the visualization of the generated vectors in a two or three-dimensional map,
we have employed the t-Distributed Stochastic Neighbor Embedding (t-SNE)
technique [24], which is a non-linear dimension reduction technique particularly
suitable for projecting high dimensional data onto a two or three-dimensional
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space. These representations can be viewed as a scatter plot, Fig. 2 illustrates
a 2D representation of some concept embeddings obtained using our approach
on The Human Ancestry Ontology [25]. The countries that belong to the same
geographic region have close vector representations: Northern Africa countries,
South-Central Asia, Western Europe, Central America, Northern Europe and
the concepts representing the geographical regions as well.
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Fig. 2. The projection of some concept vectors obtained from The Human Ancestry
Ontology.

We can see that the concepts that are semantically close tend to have close
vector representations in the embedding space. The neural network learned also
to layout the corresponding concept vector representations hierarchically in the
embedding space based on the ontology taxonomic and semantic relationships
between concepts from general to the most specific relationships. Initially, the
entirety of the concept-vector-representations are seen as some initial concept
islets. By drilling down, we can visualize the next hierarchical level that displays
the respective concepts which increases the amount of information displayed
locally for that particular islet.

We have applied two qualitative methods for the similarity measures, the
cosine similarity and the Euclidean distance to identify the closest concepts (sim-
ilar) of a given concept. The concepts considered similar based on the generated
vector representations (using the cosine similarity and the Euclidean distance)
are then compared to the set of similar concepts obtained from the ontology
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using the Jaccard index based on the taxonomic and semantic relationships.
The three standard criteria: precision, recall and f-measure values are calculated
for each ontology based on the cosine similarity (see Table 1) and the Euclidean
distance (see Table 2).

Table 1. Values of precision, recall and f-measure for each ontology obtained using the
cosine similarity.

Ontology Precision Recall F-measure

HANCESTRO 0.99 0.99 0.99

SPD 0.91 0.99 0.95

UO 1.00 1.00 1.00

MF 0.99 1.00 0.99

BNO 1.00 1.00 1.00

NPI 1.00 1.00 1.00

BP 0.96 0.97 0.97

AO 1.00 1.00 1.00

BCTT 1.00 1.00 1.00

ADMIN 1.00 1.00 1.00

BFO 1.00 1.00 1.00

FAO 1.00 1.00 1.00

FHHO 0.99 1.00 0.99

SYMP 0.99 1.00 0.99

Average 0.99 0.99 0.99

From what preceded, and based on the values of the precision and recall, the
generated vector representations using our approach mimic to a large degree the
semantic properties of the corresponding ontology entities, where the semanti-
cally close concepts have close vector representations in the projection space (an
average of 99% for cosine similarity and Euclidean distance).

Another behavior have been observed concerning the generated representa-
tions, where we have found that the semantic relationships don not have the same
influence on the generated vector representations (the way that the generated
vector representations are grouped in the projection space). We have found that
the relationships that are frequently used in the ontology have more influence on
the generated vector representations than those that are less used. That gives
our method more expressiveness and an ability to better represent the concepts.
For the concepts: C1, C2, C3, C4, C5 � �, and the ontology roles r1 and r2, the
relation r1 is widely used in the ontology O than r2, then:

αC1.r1(C2) ∧ βC3.r1(C2) ∧ γC1.r2(C4) ∧ δC5.r2(C4) ⇒ C1 � C3 (10)

where α, β, γ, δ ∈ {∀,∃,�n,�n}. Thus, the concept C1 is more similar to C3

compared to C5.
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Table 2. Values of precision, recall and f-measure for each ontology obtained using the
Euclidean distance.

Ontology Precision Recall F-measure

HANCESTRO 0.99 0.99 0.99

SPD 0.91 0.98 0.94

UO 1.00 1.00 1.00

MF 0.99 1.00 0.99

BNO 1.00 1.00 1.00

NPI 1.00 1.00 1.00

BP 0.95 1.00 0.97

AO 1.00 1.00 1.00

BCTT 1.00 1.00 1.00

ADMIN 1.00 1.00 1.00

BFO 1.00 1.00 1.00

FAO 1.00 1.00 1.00

FHHO 1.00 1.00 1.00

SYMP 0.99 1.00 0.99

Average 0.99 0.99 0.99

The proposed model generates distributed vector representations in R
n for

each entity in the ontology, these vectors express the probability function of
the semantic relations in the ontology. The probability function is expressed as
the product of conditional probabilities of the object given the subject and the
predicate in the ontology triples. A low dimensional space makes it possible to
group semantically similar elements together where the position (the distance
and the direction) in the vector space makes it possible to encode the semantics
embedded in ontologies in a suitable continuous vector representation.

5 Conclusion

In this paper, we have presented a novel approach for learning low dimensional
continuous vector representations for ontology entities, based on taxonomic,
semantic relations and restrictions. A multi input feed-forward neural network
model have been proposed and used to generate ontology entities vector repre-
sentations, trained using noise contrastive estimation technique. This research
gives a glimpse of the potential of the neural networks and embedding approaches
to identify relationships between concepts and instances in ontologies, where the
geometric relationships between the generated vector representations in the vec-
tor space fully reflect the semantic relations between the corresponding entities
in the source ontology. Summing up the results, it can be concluded that the
continuous vector representations model is relatively simple to grasp (linear alge-
bra) and easy to implement. It makes it possible to find semantically equivalent
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entities in an ontology. Experiments also showed that its effectiveness depends
for a large part on the quality of the representations in ontologies (concepts and
semantic relations between them). In this paper, we have only examined different
semantic relationships between concepts and instances. More broadly, we intend
to concentrate on exploring different characteristics of the data types properties
as well. Further studies are needed to apply the results of our approach in the
ontology-engineering field tasks.
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