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Abstract. This paper aims to refine the formalization of David Lewin’s
Generalized Interval System (GIS) by the means of tropical semirings.
Such a new framework allows to broaden the GIS model introducing a
new operation and consequently new musical and conceptual insights and
applications, formalizing consistent relations between musical elements in
an original unified structure. Some distinctive examples of extensions of
well-known infinite GIS for lattices are then offered and the impossibility
to build tropical GIS in the finite case is finally proven and discussed.
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1 Introduction

One of the most significant results achieved by the introduction of the General-
ized Interval System (GIS) is to offer a consistent formal framework for musical
elements and transformations between them. Although David Lewin’s construc-
tion is very general and have been exploited for formalizing several different
musical elements and transformations, one of its most straightforward use is for
offering a formal framework for lattices, as the name itself suggests. Lattices
have served as the basis of the ideas of this paper, thus, all the example that
will be offered will be taken in their context. However, there may certainly be
other possibilities and applications. In fact, the GIS notion in Lewin’s own words
“generalizes certain intuitions we have concerning traditional sorts of intervals
that are directed from one pitch (or pitch class) to another. Generalized intervals
are similarly directed, from one object of a GIS to another. These objects need
not be pitches or pitch classes; they may have rhythmic, timbral, or other sort
of character” [15].

According to [14], a Generalized Interval System can be defined as follows.

Definition 1. A Generalized Interval System (GIS) is an ordered triple
(M,G,ϕ), where M is a set of musical objects, G is a group and ϕ is an action
of G on M which is free and transitive.
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Thus, for any m ∈ M , ϕ(g,m) = m if and only if g is the identity element
of G (free group action), and for any pair of elements m1,m2 ∈ M there is one
(and only one) g ∈ G such that ϕ(g,m1) = m2 (transitive group action).1

It is important to underline the fundamental ontological and theoretical dis-
tinction that a GIS makes between the undertaken musical elements and the
transformations among them: the former constituting a set of musical objects
that per se are not ordered, and the latter being a set of transformations that
forms a group and that acts on the aforesaid elements, defining and making
explicit the structure of their set. This distinction is not obvious at all and was
born as a generalization of Milton Babbitt and Allen Forte’s ideas [7,12,13].
Furthermore, such an approach seems to meet neat structuralist criteria, in fact
a GIS - misquoting Babbitt referring to a twelve tone-system - “like any formal
system whose abstract model is satisfactorily formulable, can be characterized
completely by stating its elements, the stipulated relation [. . . ] among these
elements, and the defined operations upon the so-related elements” [3].

In this framework, this paper aims to answer the following question: is it pos-
sible to refine the notion of the GIS so to find an even more detailed formaliza-
tion that could represent in further detail musical elements and transformations
among them?

There are certainly different ways to generalize GIS constructions, for
instance by relaxing the simple-transitivity condition [18] or via the concept
of groupoids and partial actions [16,17]. We have particularly investigated alge-
braic structures that might substitute the group one in the conventional defini-
tion of the GIS mainly in the context of lattices. The first apparently natural
step has been to try to replace the group with a ring, keeping the group binary
operation as the addition and introducing a multiplication that is distributive in
respect to addition and under which the structure is a monoid.2 As a result, in
the specific case of lattices, this formalization leads to musical nonsense. If addi-
tion ends up representing the meaningful previously defined operation between
transformation - that can be consistently seen as an ordered application of both
the transformations - it is difficult to find a musical meaning for the multiplica-
tion, or to define it so to have one. For instance, let us consider the traditional
case of intervals seen as a counting of semitones, hence constituting an algebraic
structure that is isomorphic to the additive group Z in the case of pitches and
to Z/12Z in the case of pitch classes. Multiplying 3 by 2 ends in repeating the
action of the interval 3 two times just for a mathematical contingency given by
the numerical representation of intervals. In fact, in the aforesaid systems 2 is not
a quantity but an interval, and multiplying two intervals has no acknowledged
musical meaning. Therefore, due to the purpose of refinement of this paper, the

1 According to Lewin’s exact definition, as given in [14], the group action on the set
is required to be “simply transitive”. That is equivalent to the requirement of a free
and transitive group action.

2 The definition of a monoid requires only associativity and the existence of the identity
element for the binary operation.
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ring structure seems to be a dead end with respect to lattices.3 Fortunately, if
we stay close to the ring structure - dealing with semigroups and semirings -
and we put the group binary operation of the GIS as the multiplication, we can
find GIS refinements that fit our need and such as both operations are musically
meaningful and could offer a more detailed insight of the undertaken musical
elements.

Consequently, we shall introduce the mathematics of semirings, tropical
semirings, min-plus and max-plus algebras, discussing then their implementa-
tion in the proposal for tropical Generalized Interval Systems both in the case
of finite and infinite sets of musical elements.

2 Semirings and Tropical Algebras

Let us now introduce the algebraic structures that are going to be employed,
in the order: semigroups, semirings, tropical semirings, min-plus and max-plus
algebras. From a historical perspective, they are quite recent notions. Semirings
have been introduced in 1934, in a short paper by Harry Schultz Vandiver [19],
who gave them that name because of their ring-like structure. However, the
same concept, although with a different name, has appeared in an earlier work
by Richard Dedekind in 1884 [2,11]. The ideas that led to tropical algebra and
tropical geometry can be traced back to the end of the fifties, as reported in
1979 in [5].

In the past 20 years a number of different authors, often apparently
unaware of one another’s work, have discovered that a very attractive for-
mulation language is provided for a surprisingly wide class of problems by
setting up an algebra of real numbers (perhaps extended by symbols such
as −∞, etc.) in which, however, the usual operations of multiplication and
addition of two numbers are replaced by the operations: (i) arithmetical
addition, and (ii) selection of the greater (or dually, the less) of the two
numbers, respectively.

Finally, “the adjective tropical was coined by French mathematicians, includ-
ing Jean-Eric Pin, in honor of their Brazilian colleague Imre Simon, who was
one of the pioneers in what could also be called min-plus algebra. There is no
deeper meaning in the adjective tropical. It simply stands for the French view
of Brazil” [20].

Let us now offer some formal definitions.

3 However, outside the framework of lattices the ring structure can be successfully used
to refine a GIS. Lewin gave in [15] an example of a GIS that calls out to be extended
to a ring, although he did not carry out the extension himself. In fact, with respect
to the GIS of Babbitt’s lists investigated in the aforesaid paper, the transformation
group can be easily and meaningfully extended to a ring. See Example 3 in Sect. 5
of this paper.
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Definition 2. A semigroup is an ordered pair (S, •) such that S is a non empty
set and • is an associative binary operation; thus for any a, b, and c in S:

(a • b) • c = a • (b • c). (1)

Notice that no other restrictions are placed on a semigroup: it does not need
an identity element and its elements do not need to have inverses within the
semigroup. Only closure and associativity are preserved.

Definition 3. A semiring is an ordered triple (S,⊕,⊗) such that S is a non
empty set, ⊕ and ⊗ are respectively called addition and multiplication, and
(S,⊕) and (S,⊗) are semigroups such that multiplication left and right dis-
tributes over addition; thus for any a, b, and c in S:

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c). (2)

It should be emphasized that: (1) to avoid trivial examples, a semiring is
hereby supposed to have at least two elements; (2) a semiring may or may not
have identity elements for addition and/or multiplication, which may or may not
coincide; (3) a semiring may or may not be additively and/or multiplicatively
commutative, however, in case both the semigroups are abelian the semiring is
said to be commutative [1]. For instance, (N,+,×), with N the set of all the
non-negative integers and + and × the usual addition and multiplication of
integers, is a commutative semiring with identity elements 0 and 1 for addition
and multiplication respectively.

According to [11], let us now offer a general definition for tropical semirings.

Definition 4. A tropical semiring is a semiring with idempotent addition;
thus for any a in S:

a ⊕ a = a. (3)

We can now introduce two of the most investigated tropical semirings.

Definition 5. A min-plus algebra and a max-plus algebra, are the two
tropical semirings (R∪{∞},⊕,⊗) and (R∪{−∞},⊕,⊗), with the operations as
follows:

x ⊕ y = min{x, y} or, respectively, x ⊕ y = max{x, y} and (4)

x ⊗ y = x + y. (5)

For them, the identity elements for the addition are ∞ and −∞, respectively,
and the multiplication is the usual addition of real numbers with 0 as the identity
element. Commonly, min-plus and max-plus algebras are defined as such, but
notice that in general in a tropical semiring the existence of an identity element
is not a requirement, both for addition and multiplication. In order to extend the
concept of a GIS, in which the elements of the algebras are - from a broader point
of view - intervals and transformations between musical elements, the definition
of an infinite one is thereby without any use, sense and practical application.
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3 Extended and Tropical GIS

Considering the purpose of extending the notion of a Generalized Interval Sys-
tem, we shall then replace the group structure with a semiring one.

Definition 6. An Extended Generalized Interval System (eGIS) is an
ordered triple (M,S, ϕ), where M is a set of musical objects, S is a semiring
(S,⊕,⊗) such that with multiplication (S,⊗) constitutes a group, and ϕ is an
action of (S,⊗) on M which is free and transitive.

Notice that to preserve the feature of the binary operation between the inter-
vals/transformations of a conventional GIS we have imposed the semiring mul-
tiplication to be a group. This way, it is possible to consider a standard GIS and
to expand it in an extended one, keeping the group operation as the multipli-
cation of the semiring and introducing a consistent addition that would satisfy
its axioms. In this respect, idempotent operations - and in particular kind of
minimum and maximum ones - ensure the definition of an order on the transfor-
mations, that to some extent one could read between the lines of the original idea
of Lewin’s GIS. In fact, in [14] Lewin refers to the transformations as “a family
of directed measurements, distances, or motions of some sort”. Therefore, the
ordering of the elements of the transformation by the means of an idempotent
binary operation lets explicit an otherwise not formally obvious metric of some
musical meaning.

In fact, as is known, there is a strict correlation between the ordering of a
set and some kinds of binary operations, as shown in the following two lemmas.
Their proofs are simple and thus only sketched.4

Lemma 1. To define a linear order in a set is equivalent to defining a binary
operation that is associative, commutative and such that its outcome is always
one of the two operands.

Proof. Let a linear order be given. Define a ⊕ b = min{a, b}. This is a binary
operation. The required properties are obvious. Conversely, let be given a binary
operation with those properties. Define a ≤ b if and only if a ⊕ b = a. This
is a binary relation. Since the outcome is always one of the two operands, the
relation is reflexive and, if it is an order, it is a linear one. Antisymmetry is
obvious. Since the operation is associative, the relation is transitive.

Lemma 2. To define in a set a binary operation that is associative, commuta-
tive, and idempotent is equivalent to defining a (partial) order in which, for any
two elements, there is a greatest lower bound, and also to defining a (partial)
order in which, for any two elements, there is a least upper bound.

Proof. If an order is given, define a ⊕ b = inf{a, b}. The required properties are
obvious. If, conversely, a binary operation is given, define a ≤ b if and only if
a⊕b = a. This relation is reflexive, owing to idempotency. It is obviously an order
4 See also [8], Proposition 2.1.
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relation, not necessarily linear. Anyway, it is easy to prove, using associativity
and idempotency, that (a ⊕ b) ≤ a and (a ⊕ b) ≤ b; moreover, if c ≤ a and c ≤ b,
then - again by associativity - c ≤ (a ⊕ b), so a ⊕ b = inf{a, b}, as required.

Notice that the hypotheses of Lemma 1 are a particular case of the ones of
Lemma 2. Let us then narrow down the concept of the eGIS to one that considers
only semirings with idempotent addition.

Definition 7. A Tropical Generalized Interval System (tGIS) is an eGIS
(M,S, ϕ) such that S is a tropical semiring.

The advantage of introducing extended GIS and tropical GIS is not only of
theoretical and explanatory nature in seeking new and more refined conceptual
insights of a musical space, but it can offer also benefits on the application side.
In a tropical GIS a kind of minimum or maximum binary operator works as the
addition, as well as the composition between transformations works as the mul-
tiplication, and the two operations can be dealt together in long mathematical
expressions of musical meaning that can be reduced and solved just as in tra-
ditional arithmetic. This is much different than simply requiring a linear order
on the intervals of a GIS. In fact, it could be possible to define a linear order
that implies a binary operation that could not satisfy the semiring features. The
musical meaning of such an impasse will be discussed in Sect. 5.

Let us now study tropical Generalized Interval Systems both in the infinite
and finite cases.

4 Infinite Tropical Generalized Interval Systems

Perhaps, the simplest example of a tropical GIS in the infinite case is the one
obtained extending the conventional GIS (P,Z, ϕ) such as P is the infinite set
of equal tempered pitches and its group of intervals is isomorphic to Z. Let us
define the two operations as follows:

x ⊕ y = min{x, y} and x ⊗ y = x + y (6)

where + is the usual addition in Z. The tropical semiring structure of (Z,⊕,⊗)
can be inferred from the min-plus algebra (R∪ {∞},⊕,⊗), of which (Z,⊕,⊗) is
a subsemiring. Our tGIS is then (P, (Z,⊕,⊗), ϕ), for which there is no identity
element for ⊕.

Another example can be given extending the GIS (F,Q, ϕ), where F are
all the frequencies represented as positive rational numbers and the group is
the multiplicative one Q of frequency ratios, that are positive rationals written
as irreducible fractions as well. Its simplest tropical extension can be achieved
defining the two operations such as:

x ⊕ y = min{x, y} and x ⊗ y = x × y (7)

where × is the usual multiplication in Q. In this case, ⊕ simply outputs the
shortest interval between the two operating ones.
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However, different solutions embodying musical meaning can be defined for
⊕, keeping the multiplication from the group structure of Q. For instance,
reminded that we are dealing with irreducible fractions, it is possible to con-
sider the following operation:

a

b
⊕ c

d
=

GCD(a, c)
LCM(b, d)

, (8)

such as GCD stands for the greatest common divisor and LCM for the least
common multiple of two integers. Consequently, such an operation outputs one
of the two elements only if the multiplication of it by a natural number gives the
other operand; in case it does not, it outputs the biggest element in Q such as
the two operands can be obtained multiplicating it by natural numbers. It is an
idempotent operation and multiplication left and right distributes over it. From
the point of view of music, it outputs the biggest interval expressed as a ratio in
respect of which the two operands can be seen as natural harmonics.

Let us now consider the GIS (F ( 12
√

2),Q∗( 12
√

2), ϕ). F ( 12
√

2) is the set of all
the frequencies that can be obtained as ratios combined with the ones in equal
temperament. Thus, it is the set of all the frequencies that can be written as
follows:

a11(
12
√

2)11 × a10(
12
√

2)10 × · · · × a1
12
√

2 × a0, (9)

with a0, a1, . . . , a11 ∈ Q. Here Q∗( 12
√

2) is a subgroup of the multiplicative group
of the algebraic number field Q( 12

√
2), generated by Q and 12

√
2. Such a GIS can

be extended with the semiring addition introduced in Eq. 7. On the contrary, the
one offered in Eq. 8 does not work, because not all the elements of F ( 12

√
2) can

be reduced to fractions, and, moreover, because a common submultiple between
two elements in Q∗( 12

√
2) does not necessarily exist; hence not every couple of

intervals can be seen as natural harmonics in a series.
In fact, regrettably, to extend an infinite GIS is not always as straightforward

as it could appear. For instance, we have tried without success to consider a third
proposal for ⊕ in order to extend (F,Q, ϕ) involving Euler’s consonance degree
value, gradus suavitatis, as it was described in [6] and investigated, amongst
many others, in [4,10]. First of all, given an irreducible fraction a

b and following
Euler’s principles, let us define the function Ce : Q → N∗ that associates a
fraction with its degree of consonance as follows:

Ce

( 1
2n

)
= n + 1 (10)

otherwise, for a, b ∈ N∗ such as a
b 
= 1

2n ,

Ce

(a

b

)
= Ce

(
1

LCM
(

a
GCD(a,b) ,

b
GCD(a,b)

)
)

= Ce

(
1

pk1
1 × pk2

2 × · · · × pkm
m

)
=

m∑
i=1

(pki
i − ki) + 1

(11)
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Thus, we have tried to define ⊕ accordingly:

a

b
⊕ c

d
=

⎧
⎪⎨
⎪⎩

a
b , if Ce

(
a
b

)
< Ce

(
c
d

)
;

c
d , if Ce

(
c
d

)
< Ce

(
a
b

)
;

min{(a
b

)
,
(
c
d

)} otherwise.
(12)

In this case, ⊕ outputs the most consonant interval between the two (the
one with the lowest degree of consonance); otherwise, if the two ratios share the
degree, it outputs the smallest of them. Unfortunately, the distributive law does
not work. In fact,

5 ⊗
(1

5
⊕ 1

8

)
= 5 ⊗ 1

8
=

5
8
, (13)

but, at the same time,
(
5 ⊗ 1

5

)
⊕

(
5 ⊗ 1

8

)
= 1 ⊕ 5

8
= 1. (14)

A last successful example can be given extending the GIS (FJ ,QJ , ϕ), where
FJ are all the pitches in 5-limit just intonation represented as frequencies and
QJ is the group of the just intonation ratios, i.e. the multiplicative subgroup of
Q made up of all the numbers that can be expressed in the form 2i3j5k such
that i, j, k ∈ Z. An idempotent addition can be defined as follows:

2i3j5k ⊕ 2i
∗
3j

∗
5k

∗
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2i3j5k, if k > k∗,
if k = k∗ and j > j∗,
if k = k∗, j = j∗ and i > i∗,

2i
∗
3j

∗
5k

∗
otherwise.

(15)

Therefore, for instance 8
27 ⊕ 1

5 = 233−350 ⊕ 20305−1 = 8
27 . Such an operation

might be easily adjusted to be used to extend different GIS with n-limit extended
just tuning intervals in the form 2i3j . . . nk with n prime.

Nevertheless, these are just a few examples of the multitude of potential
extensions of infinite GIS that can be built for better or alternative insights and
applications.

5 Finite Tropical Generalized Interval Systems

Considering our musical aims, it would be natural to try to apply the same
structures to modular arithmetics, due to the importance of groups of intervals
isomorphic to Z/12Z and Z/7Z in music theory. But, unfortunately, the following
theorem (which is, perhaps, the main result of this paper) makes it impossible
to build finite not trivial tropical GIS.

Theorem 1. Given a finite set of at least two elements, it is not possible to
define two binary operations such as one is associative, commutative and idem-
potent and the other is a group and is distributive over the first.
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Proof. Let us consider a finite set for which ⊗ is a group and ⊕ is associative,
commutative and idempotent. Therefore, because of Lemma 2, there is an order
in the set in which, for any two elements, there is a greatest lower bound, i.e.,
a ⊕ b is the greatest lower bound of a and b. Let 0 be the identity element for
⊗, s 
= 0, and t = 0 ⊕ s. If t 
= 0, then t ⊕ 0 = t and, applying the distributive
law, we get:

t ⊗ t = t ⊗ (t ⊕ 0) = (t ⊗ t) ⊕ (t ⊗ 0) = (t ⊗ t) ⊕ t. (16)

Thus,
(t ⊗ t) ⊕ t = t ⊗ t (17)

and, because of order transitivity,

(t ⊗ t) ⊕ 0 = t ⊗ t. (18)

Let us consider tm = t ⊗ t ⊗ · · · ⊗ t, m times, and such as tm = 0 (m surely
exists, because the group is finite). Then, by distributivity,

(t ⊗ tm−1) ⊕ (t ⊗ 0) = t ⊗ tm−1, (19)

thus, 0 ⊕ t = 0, a contradiction. If t = 0, then 0 = 0 ⊕ s and the proof is similar.

Let us discuss some related constructions which could be considered erro-
neously as counterexamples.

Example 1. Two-element Boolean algebra (also called Boolean semiring). This
is not a counterexample to Theorem 1, because the two elements, with multi-
plication, do not form a group: 0 has no multiplicative inverse. All the other
properties are verified [9].

Example 2. Finite fields (also called Galois fields). None of them is a coun-
terexample. The addition is not idempotent (the only idempotent element is 0)
and the element, with multiplication, do not form a group (the multiplicative
group of any field contains the elements different from 0). Note that the field
(Z/2Z,+,×) has two elements, as the Boolean algebra of Example 1. The only
difference between these two algebraic structures is the sum 1 + 1 (see next
example).

Example 3. Direct product of finite fields. In [15] David Lewin uses the term
“Boolean sum” for the sum modulo 2. In the above Example 1, the meaning
is different: in the two-element Boolean algebra 1 + 1 = 1; in the sum modulo
2, on the contrary, 1 + 1 = 0. In the same paper, the author uses the group
((Z/2Z)4,+). So, let us consider for a moment also finite products of finite
fields. None of them is a counterexample to Theorem 1 above. In fact, we can
repeat what we have already shown in Example 2. Moreover, in such products
there exist zero divisors, so the multiplicative group cannot even contain all the
elements different from 0. Note that, if we consider a finite product of copies of
(Z/2Z,+,×), we get a Boolean ring (i.e., the multiplication is idempotent). The
group used by Lewin can be extended to such a ring.
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The result offered by Theorem 1 is meaningful especially on the musical side.
In fact, the sensitive requirement that cannot be satisfied is the distributive law,
that de facto connects the two operations. Moreover, we have shown that to
define on a set a binary operation that is associative, commutative, and idempo-
tent is equivalent to defining an order in which, for any two elements, there is a
greatest lower bound and also to defining an order in which, for any two elements,
there is a least upper bound. As a matter of fact, cyclicity and linearity are not
compatible concepts: if we try to deal with a finite - thus, in some sense, cyclical5

- GIS from the point of view of a linear order we break its cyclical nature that
made any combination of transformations meaningful. As a consequence, such
linear orders could have only a theoretical significance on a taxonomic level6,
before any combination, and cannot offer any general systematic insight. Thus,
a finite GIS cannot be extended to a tropical one.

6 Conclusions

We have introduced a refinement of David Lewin’s Generalized Interval System
by the means of tropical semirings, investigated the links between a tropical
semiring addition and an ordering, studied some examples obtained extending
well-known infinite GIS mainly in the context of lattices, and proven and dis-
cussed the impossibility to build tropical GIS in the finite case. Such new theo-
retical framework has shown the capability to embody a more detailed knowledge
of the formalized musical elements in a unified structure. Moreover, we believe
that the several possibilities in the definition of the semiring addition, both in
the tropical and in the more general case of extended GIS, could trigger new
ideas and conceptual insights in dealing with such elements, as we have shown
in some of the examples offered. Therefore, further studies may be conducted in
deepening the various extending possibilities. Finally, we have deepened finite
and infinite tropical GIS, but the more general case of extended GIS is still open
to further studies, especially about the finite case.

Acknowledgments. We thank Claudio Bernardi (Università di Roma “La Sapienza”,
Department of Mathematics) and the reviewers for their useful suggestions and
remarks.

5 In fact, every element of a finite group generates a cyclical subgroup.
6 For instance, it would be meaningful to order the elements in Z/12Z from 0,

the minimum, to 11, the maximum, or, alternatively, in the following sequence:
0, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6, in which it is taken the distance from 0 on both side,
favoring the right one in case of the same value.
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