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Abstract. Music theorists have proposed two very different geometric
models of musical objects, one based on voice leading and the other based
on the Fourier transform. On the surface these models are completely
different, but they converge in special cases, including many geometries
that are of particular analytical interest.
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1 Introduction

Early twenty-first century music theory explored a two-pronged generalization
of traditional set theory. One prong situated sets and set-classes in continuous,
non-Euclidean spaces whose paths represented voice leadings, or ways of mov-
ing notes from one chord to another [4,13,16]. This endowed set theory with a
contrapuntal aspect it had previously lacked, embedding its discrete entities in
a robustly geometrical context. Another prong involved the Fourier transform
as applied to pitch-class distributions: this provided alternative coordinates for
describing chords and set classes, coordinates that made manifest their harmonic
content [1,3,8,10,19–21]. Harmonies could now be described in terms of their
resemblance to various equal divisions of the octave, paradigmatic objects such
as the augmented triad or diminished seventh chord. These coordinates also had
a geometrical aspect, similar to yet distinct from voice-leading geometry.

In this paper, we describe a new convergence between these two approaches.
Specifically, we show that there exists a class of simple circular voice-leading
spaces corresponding, in the case of n-note nearly even chords, to the nth Fourier
“phase spaces.” An isomorphism of points exists for all chords regardless of struc-
ture; when chords divide the octave evenly, we can extend the isomorphism to
paths, which can then be interpreted as voice leadings. This leads to a gen-
eral technique for replacing individual components of a Fourier analysis with
qualitatively similar voice-leading calculations.

2 Voice Leading and Fourier Phase

We begin by considering transpositions of a single n-note chord type lying in
some c-note scale. We first explain how the nth Fourier component represents
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chords on a circular space, sharing the same angular coordinate when related
by O/n semitone transposition. (Here O is the size of the octave.) We then
show that voice-leading spaces contain very similar subspaces, only now with
the sum of the chord’s pitch classes determining the angular coordinate. Thus
when restricting our attention to the transpositions of a single chord, the nth
Fourier phase is equivalent to pitch-class sum.

In what follows we represent pitches by real numbers in R rather than discrete
values in Z, as in much previous music-theoretical work.1 Pitch classes arise by
identifying octave-related pitches, and can be represented by real numbers in the
range 0 ≤ p < O; the collection of distinct pitch classes forms a one-dimensional
circular space known as the “pitch class circle.” These basic definitions are com-
mon to both theoretical approaches considered below. We will generally consider
the octave to have size 12, with C corresponding to 0, C� to 1, and so on. In
scalar contexts, it is useful to consider an octave of size n. This amounts to using
the scale as a metric, so that, by definition, it divides the octave evenly [16].

The Fourier transform represents musical objects as a collection of complex
numbers or components. The kth Fourier component of a pitch class is a vector
with magnitude 1 and angular position p mod c/k; the resulting space can be
understood as the quotient of the familiar pitch-class circle by rotation, as if the
octave had been “reduced” to size O/k. The kth Fourier component of a chord
is represented by the vector sum of its component pitch classes. For a finite
collection of notes, X = {x1, x2, . . . , xn} ∈ R/c, we have:

Fk(X) =
∑

x∈X

e−2iπkx/c (1)

(Again many previous authors consider only equal-tempered pitches with values
in Zc, but the approach extends naturally to continuous pitch classes.) The
angle of the resulting chord, or arg(Fn) is its phase. The combination of reduced
octave and vector sum gives rise to many of the Fourier transform’s distinctive
properties.

The left side of Fig. 1 presents the third Fourier component for single pitch
classes and for major triads in the familiar twelve-tone chromatic universe.
Because 3 divides 12 evenly, major-third transpositions leave angular position
unchanged. The twelve equal-tempered triads occupy four separate angular posi-
tions dividing the circle into four equal parts; transposing a chord by descending
semitone moves its angular position a quarter-turn clockwise. For some combi-
nations of chord- and scale-size, the reduced octave may not be equivalent to
an integer pitch-class interval, and no two distinct pitch-classes or transposi-
tions of a chord have the same angular position. The right side of Fig. 1 shows
the F5 position of the twelve chromatic pitch classes, and minor ninth chords.

1 Throughout this paper we assume that pitch classes are labeled with a continuous
map from the space of notes’ fundamental frequencies to R, with the integer values
of traditional music theory arising as a discretization of this mapping. This permits
labelings like f(C) = 0, f(C�) = 1, f(D) = 2, but not f(C) = 0, f(G) = 1, f(D) = 2.



48 D. Tymoczko and J. Yust

Fig. 1. The third Fourier component in complex space for pitch classes and major
triads, and the fifth component for pitch classes and minor ninth chords.

Here the octave has size 12/5 and semitone transposition corresponds to rotation
by (5/12)2π. The distinct transpositions of any 12-tone equal-tempered chord
will therefore have unique angular positions, with fifth-related chords adjacent
to one another.

On the surface, voice-leading spaces are very different from Fourier spaces,
as they use neither the reduced octave nor vector summation of pitch classes.
Instead, the theory of voice leading represents pitch classes as points on a circle
whose size is equal to the octave O. The main objects of interest are paths in pitch
class space which represent motion along the circle: thus C 4−→E corresponds to the
ascending major third, ascending by a quarter turn, while C −8−−→E represents the
descending minor sixth, moving three-quarters of a turn in the other direction.
A voice leading is a multiset of paths in pitch-class space, representing a way of
moving from one chord to another.

This situation can be modeled geometrically by configuration spaces in which
points represent entire chords and paths represent voice leadings; distance in
these spaces can therefore be understood as the aggregate physical distance
required to move one set of notes to another on an instrument like the piano.
Different paths between the same points correspond to different voice leadings.
These spaces are quotients of Rn modulo octave equivalence and permutation
of their coordinates: for an n-note chord, the configuration space is Tn/Sn, the
n-torus modulo the symmetric group on n letters. (Starting with R

n, with each
dimension representing the pitch of one voice, we can derive these spaces by
identifying octave-related pitches and permutationally related chords, or those
with the same notes in different voices; the resulting orbifold is known as n-note
chord space [13,16].) These chord spaces have one circular dimension repre-
senting transposition; the remaining (“horizontal”) dimensions form an (n − 1)-
dimensional simplex with singular boundaries. These horizontal cross-sections



Fourier Phase and Pitch-Class Sum 49

can be taken to contain all chords whose pitch classes sum to the same value
modulo O. For a c-note scale, there will be c distinct cross sections containing
chords lying in that scale. (Here, pitch-class sum is computed by scalar addition
modulo O, as opposed to vector addition.) A fundamental and counterintuitive
fact is that the line containing transpositionally related n-note chords winds n
times around the circular dimension, since transposition by 12/n leaves a chord’s
pitch-class sum unchanged. Since a complete turn along the circular dimension
represents transposition by 12/n, chords have the same circular coordinate if
they are related by 12/n semitone transposition.

In other words, we find a role for the “reduced octave” O/n in both models.
This quantity is manifest in the basic definition of Fourier space but arises as
a non-obvious consequence of the fundamental geometry of voice-leading space.
Figure 2 compares the two perspectives for the case of major triads in the chro-
matic scale. On the left we show the phases of the chords’ F3 component; on the
right we represent them using a spiral diagram devised by Tymoczko [11,17],
where the angular component corresponds to the circular dimension (with coor-
dinates given by pitch-class sum) and the“line of transposition” is winds n times
around it.

Fig. 2. Major triads in Ph3 and the circular dimension of voice-leading space

This correspondence can be generalized.

Proposition 1. Consider the collection T = {tx} consisting of the transposi-
tions of any n-note chord, A, in any c-note scale. There is an equivalence between
(a) differences between sum of the pitch classes for each tx and (b) differences
between their component-n phase values (Phn). That is, ΣTx(A) − ΣA =mod12

Phn(A) − Phn(Tx(A)) (where Σ denotes pitch-class sum).
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Proof. Transposition by x is equivalent to multiplication by a unit vector in the
Fourier space, so it changes Phn by nx mod 12. Similarly, Tx adds a constant of
nx, mod 12, to the pitch-class sum. Therefore the change in Phn is the change
of pitch-class sum.

This result also holds in continuous pitch space via the limit c → ∞. The
two different music-theoretical approaches thus converge on very similar graphs,
so long as we restrict our attention to just a single chord type. Such graphs
can be found throughout the analytical literature, as it is often useful to focus
on e.g. diatonic triads or chromatic dominant sevenths. Historically, the circular
coordinate was of crucial importance, as the initial exploration of both kinds
of space was motivated by the goal of understanding set classes; in the Fourier
realm this space can be constructed by ignoring phase while in the voice-leading
case it involves focusing on (quotients of) the cross-sections with fixed pitch-class
sum [2,9].

3 Glide Paths in Fourier Space

One of the central ideas in the theory of voice leading is to associate discrete
events (voice leadings) with continuous paths in configuration space. Specifi-
cally, to the discrete pitch succession X → Y : (x1, x2, ..., xn) → (y1, y2, ..., yn)
we associate the image, in Tn/Sn of the line segment X → Y in Rn. These
images, or “generalized line segments,” trace the sonorities that result from a
continuous linear interpolation between chord X and Y , with each note xi of
chord X gliding smoothly to its destination yi. The resulting paths in Tn/Sn

can be associated with ways of moving the notes of X to the notes of Y , or
voice leadings as musicians think of them. Equivalently, voice leadings can be
understood as homotopy classes of paths in the orbifold Tn/Sn, since there is
exactly one homotopy class for each generalized line segment [6,7]. The homo-
topy classes of paths in a circular space such as Fig. 2 can be associated with
a special kind of voice leading: bijective, strongly-crossing free voice leadings,
or one-to-one mappings that have no crossings no matter how their voices are
arranged in register [14]. These can in turn be decomposed into the product of a
transposition Tx, and a “zero-sum” voice leading, or strongly-crossing-free voice
leading Z = X → T−xY whose paths sum to 0. (Since the latter voice leading
need not connect chords lying in the same scale, we need continuous space for
this decomposition [16]). The angular component of a path in voice-leading space
is given entirely by the transposition.

We can apply a similar approach in the Fourier domain as well, using voice
leadings to define glide paths in the complex plane of the nth Fourier component.
A continuous path X → Y is given by a vector sum eictz1(t) + eictz2(t) + ... +
eictzn(t) in this space, where eict represents the voice leading’s transpositional
component, each zi(t) is a voice leading moving a single voice and Z =

∑
zi(t)

is a zero-sum voice leading. A question immediately arises whether the resulting
paths are homotopically equivalent to those in circular voice-leading space.
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By complex linearity, we can factor out the transpositional component eict,
rewriting this vector sum as eictZ(t); the total angular motion in Fourier space
will be the sum of the angular motions of eict and Z(t). From this it follows
that we can restrict our attention to the zero-sum component: if a voice leading
X → Y produces homotopically distinct paths in the two spaces, then its zero-
sum component will do the same. Thus we ask whether we can find bijective voice
leadings Z(t) connecting transpositionally related chords, whose paths sum to
zero (using standard addition), but which traverse one or more complete circles
in Fourier space.

The answer is that we can, but only when the chord divides the octave some-

what unevenly. For example, consider the voice leading (C, D, E)
(−4,2,2)−−−−−→(G�, E,

F�). Figure 3 shows that the two voices D→E and E→F� point in opposite direc-
tions in Ph3, adding to 0 by vector addition; since both rotate counterclockwise
one half-turn they contribute nothing to the vector sum. That sum is instead
determined by the voice C→G�, which makes a complete clockwise turn. So this
is a bijective, zero-sum voice leading between transpositionally related chords
that has no angular component in voice-leading space but makes a complete
turn in Fourier space. The example generalizes to the case where n − 1 voices
divide the circle equally (summing to 0); these can be moved by O/(n − 1) in
one direction while a final voice makes a complete circle in the other direction.

Fig. 3. The voice leading (C, D, E)
(−4,2,2)−−−−−→(G�, E, F�) in F3

By contrast, when chords divide the octave relatively evenly then paths will
be homotopically equivalent. Figure 4 shows the paths corresponding to the voice
leading (C, E, G)

−1,0,1−−−−→(B, E, G�) in the third Fourier space. Here the vectors
marked x1 and x3 simply switch positions, so that the chord’s vector sum remains
pointing in the upper right quadrant. It is clear that a complete circle will never
result so long as all the chord’s vectors remain pointing in the same half-plane
throughout the voice leading. It follows from basic voice-leading geometry that
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Fig. 4. The voice leading (C, E, G)
(−1,0,1)−−−−−→(B, E, G�) in F3

the bijective, strongly crossing-free voice leadings of a nearly-even chord will
always be of this form.

We can understand this phenomenon heuristically as follows: when a
chord is nearly even, its bijective, strongly crossing free voice leadings are all
transposition-like in the sense that they move all their notes by approximately
the same distances [14,16]. Thus when we factor out transpositional motion,
what remains is something close to the identity, which by continuity will involve
small changes in Fourier space. By contrast when a chord is very uneven, its
bijective, strongly crossing-free voice leadings are not at all transposition-like;
hence factoring out transposition can produce a voice leading that traverses a
full circle in Fourier space. We will return to this point shortly.

As of this writing, we cannot specify precisely how uneven a chord may
become before the equivalence breaks down. The criterion that all voice leadings
remain in a single half-plane is sufficient to ensure the correspondence, and covers
many common musical cases (e.g. equal-tempered triads and seventh chords). It
is not necessary for convergence, though: the (025) and (015) trichords also
have balanced voice leadings that do not produce phase-space cycles. Nor is
it straightforward to characterize the cases in which the correspondence fails:

the 18-tone equal-tempered voice leading (0, 16
3 , 6)

4
3 ,− 10

3 ,2−−−−−→ ( 43 , 2, 8) results from
a deformation of Fig. 3 above; even though no single voice makes a complete
circle in phase space, the glide path does. Establishing precise bounds on the
correspondence between the two spaces is thus a project for future work.

4 Crossfade Paths in Fourier Space

While some theorists [1,3,15] have applied the Fourier transform in continuous
pitch-class space, the more common approach [1,10,20] assumes pitches lying
in a particular equal division of the octave; these may be assigned real-valued
weights representing musical salience. In this context, paths have been defined by
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gradually “fading out” some pitch classes while fading in others – a smooth inter-
polation of magnitudes that never leaves the equal-tempered domain.2 That is,
we define a crossfade path from chord X to X ′ as (t)X + (1 − t)X ′ for t : 0 → 1
where the multiplication can be understood as applying to the weightings of
either individual pitch classes or the resultant chordal vectors.3 Such “crossfade
paths” do not, on the surface, carry any implications about voice leading. Never-
theless, Yust, in [20] and subsequently in [21–23], has used the language of voice
leading to interpret paths in these spaces. Here we consider the justification for
this association.

Clearly, for non-antipodal points, “crossfade paths” will trace out a minimal
trajectory through Fourier phase space. Figure 5, from [21], records the fifth
Fourier phase of the twelve diatonic scales in the familiar chromatic universe;
it is equivalent to the circular voice-leading space for equal tempered diatonic
scales. Imagine fading out the F of C major (0�) while fading in F� to move to G
major (1�); the phase of the resultant vector will move clockwise by one twelfth
of a cycle. By our previous work, this is the same path in phase that would
be traced out by a maximally efficient voice leading between the same scales,
one in which F ascends by semitone to F�. Thus there is indeed justification for
associating“crossfade paths” with particular voice leadings.

However, one must be careful when drawing theoretical conclusions from
this association, as the two forms of path arise in very different ways: changes
of weighting rather than paths along the circle. Consider Yust’s identification
of enharmonicism with complete circles in Fig. 5. Tymoczko [12,16] and Hook
[5] have argued that notation reflects the logic of voice leading, with each letter

Fig. 5. Diatonic scales (labeled by number of accidentals) in Ph5

2 Such smoothly changing distributions might occur in algorithmic composition or
in statistical analysis. Yust [20] touts this approach as a “cardinality-flexible,”
“common-tone-based” conception of musical distance, because it can relate chords
of different sizes based on shared pitch-class content. It is possible that a something
similar might be achieved by non-bijective cross-cardinality voice leading.

3 Note that we define these crossfade paths for real-valued pitch classes, assuming each
chord only has a finite number of non-zero weighted pitch classes.
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name recording an abstract musical voice: when C major moves to G major,
the “F voice” ascends by semitone to F�. Yust [18] explains enharmonicism in
exactly these (voice-leading-based) terms, using similar language to describe Ph5

cycles [20,22,23]. In particular, he points out that a sequence of modulations that
travels a full circle in this space will involve enharmonic respelling, sending C
major to either B� major (for a clockwise path) or D�� major (counterclockwise).4

The subtle question is whether this phenomenon is to be explained by voice
leading or the Fourier transform.

Here the important observation is that distinct voice leadings will gener-
ally produce different paths, whether in voice-leading space or using glide paths
in Fourier space. Therefore, voice-leading methods can distinguish the modula-
tion from C major to D� major, C → D�, that descends five semitones from
the modulation C → C� that ascends by seven semitones. (Note that we are
making this point using notation, but as Tymoczko [16] argues, the notation
serves to distinguish different voice leadings between background scales, and
these can be present even in non-notated contexts.) The crossfade method will
always choose the shortest way in Fourier phase space, so to make this kind
of distinction requires, e.g., adding some other intermediary. We conclude that
only voice-leading accurately represents enharmonicism as it can be modeled by
scalar context, and hence that voice-leading provides a sufficient explanation of
enharmonicism as we most commonly encounter it.5

5 Simulating Fourier Methods with Voice Leading

The correspondence we have been exploring is delicate one that arises only in
certain special and limiting cases. This is illustrated by Fig. 6, which graphs the
position of {CEG} and {C�EF�} in the two spaces; here chords with the same
sum have different Fourier phases, a divergence that reflects differences between
vector and scalar addition. The mere introduction of a second chord type thus
breaks the correspondence between the two worlds.

However, from another point of view the connection is more robust. In ear-
lier work Tymoczko [15] argued that there is a close correspondence between
Fourier magnitudes and voice-leading distance: specifically the magnitude of the
nth Fourier component is closely correlated with the voice-leading proximity to
the nearest “doubled subset” of the nearest perfectly even n-note chord.6 We can
now give similar characterization of Fourier phase as well: the phase of a chord
X’s nth Fourier component is closely correlated with the transposition of E,
the perfectly even n-note chord that is “nearest” to X, with distance measured
by the size of the smallest voice leading from X to some subset of E’s notes.
(These subsets are represented by unisons in the nth Fourier space.) Fig. 7 plots

4 This is a reflection of the fact that a loop enclosing the circular dimension of voice-
leading space sends each note in a chord up or down by one chordal step.

5 It remains an open question whether there exist forms of enharmonicism, perhaps
arising from extended just intonation, that cannot be captured by scalar context.

6 Amiot [1], pp. 145–9, subsequently demonstrated this analytically.
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Fig. 6. Positions of {CEG} and {C�EF�} in F3 and circular voice-leading space.

Fourier phase against the transposition of E for 100,000 randomly chosen tri-
chords, tetrachords, and pentachords in continuous space. The correlation and
its approximate nature are both clear: while the two quantities are generally
related, it is possible for them to diverge substantially, particularly in the case
of chords with small Fourier magnitude.

Fig. 7. Plots of Phn versus pitch-class sum for 100,000 randomly chosen trichords,
tetrachords, and pentachords

The difference between the perspectives is largely attributable to the diver-
gence between scalar and vector addition. In Fourier space we compute the
magnitude and phases by adding the vectors representing the pitch classes of
a chord; in voice-leading space, we can perform a similar calculation by asking
what pitch class in the “reduced octave” of size O/n, has the smallest voice
leading to the pitch classes of the chord; if we adopt the Euclidean metric, the
resulting vector is one of the n vectors that can serve as the “average” of the n
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points on the circle. Figure 8 illustrates in the case of the “fourth chord” (C, F,
B�), where the two methods coincide (compare Fig. 1).

Fig. 8. Calculation of Ph3 and the nearest subset of a perfectly even chord for {CFB�}

This twofold correspondence gives us a general strategy for using voice lead-
ing to approximate the results of Fourier analysis: we replace the phase of the
nth Fourier component with the transposition of the “nearest” perfectly even
n-note chord (as just defined), and the magnitude with the voice-leading prox-
imity (a decreasing function of distance) to that chord. While these quantities
will not reproduce the Fourier transform exactly, they often provide an accept-
able approximation. Furthermore, there is no obvious musical reason to privilege
Fourier analysis over voice leading: at present, it remains controversial whether
Fourier analysis, for all its mathematical elegance and familiarity, directly mod-
els anything in the minds of composers or listeners; while voice leading is more
straightforwardly connected to the basic mechanics of music-making. Thus diver-
gences between the two methods need not count against the voice-leading app-
roach.

This more general connection between the two worlds provides a way to
understand some puzzling features of the Fourier transform. Consider for exam-
ple the divergence between pitch-class sum and Fourier phase noted at the begin-
ning of this section: this results from the fact that chords with the same sum can
be close to different subsets of the same perfectly even chord, or even different
subsets of different perfectly even chords. For example, the first chord in Fig. 6,
(C, E, G) is maximally close to the augmented triad a third of a semitone below
C, while the second, (C�, E, F�) is maximally close to (C�, F, F); in the context of
our approximation, this is straightforward. Likewise, when we restrict our atten-
tion to a collection of highly even chords, all representing small perturbations of
perfectly even chords, then we can expect a convergence between the methods.
Thus for example, the positions of major and minor triads are consistent in both
Ph3 and circular voice-leading space.
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Return now to the voice leading (C, D, E)
(−4,2,2)−−−−−→(G�, E, F�), discussed in

Sect. 3 above. Earlier we presented this as an case of divergence between the
voice leading and Fourier worlds: a “balanced” voice leading that involves no
change in pitch-class sum, but traverses a full circle in Ph3. The voice-leading
based approximation directs us, not to the sum of the pitch classes, but to the
nearest perfectly even chord (represented by a unison in the reduced octave of
4 semitones). In the picture we have just described, this “nearest” chord indeed
traverses a (discontinuous) circle in the reduced octave, much like Fourier phase.
Thus what began as a delicate convergence between two fundamentally different
ways of thinking leads, in the end, to a much more robust and general connection.

It thus appears that many music-theoretical uses of the Fourier transform
can be reconceived in terms of voice leading. An interesting future project is
specifying those musically relevant aspects of Fourier analysis that resist such
reconceptualization – presumably, distinctively harmonic features that comple-
ment the broadly contrapuntal perspective we have been considering.
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