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Abstract. This work presents some concepts related to voice-leadings
and proposes a formalization of them. The aim is to teach voice-leadings
in a systematic way by using elements of mathematical music theory.
Within this formalization, we defined the nabla distance of a chord pro-
gression. This distance is a measure of how close the voices are among
them. One of its applications is to produce voice-leadings with nice prop-
erties, especially for jazz music. The nabla distance has been imple-
mented in the form of an application, the ∇ application. This application
computes the optimal voice-leading for a given chord progression.
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1 Introduction

Voice-leading is the art and science of how to connect chords to one another. In
the 20th century, Lewin [7] introduced Neo-Riemannian theory, which is based on
the idea of connecting chords according to some definition of harmonic proxim-
ity [2]. This notion of harmonic proximity requires, in turn, a notion of a distance
between chords. It is natural then to introduce at this point some mathematical
formalism to address the question of how to measure the distance between two
chords; see the work of Tymoczko [8–10], Hall and Tymocko [6], and Derfler [3],
just to name but a few.

This work focuses on the pedagogical aspects of voice-leading in jazz music,
a style where voice-leading is also an important feature. We would like to pro-
vide composers with a tool to understand and write voice-leadings by following
criteria that are at the same time systematic and musically meaningful. On the
mathematical side, we offer the musician a minimal but meaningful mathemat-
ical formalization of voice-leadings so that musical concepts are still recogniz-
able in the formalization. The structure of this paper is as follows. We start
by introducing some definitions, which will help build the formal framework

I. del Pozo—Independent researcher and musician.

c© Springer Nature Switzerland AG 2019
M. Montiel et al. (Eds.): MCM 2019, LNAI 11502, pp. 352–358, 2019.
https://doi.org/10.1007/978-3-030-21392-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21392-3_30&domain=pdf
http://orcid.org/0000-0003-3471-3319
https://doi.org/10.1007/978-3-030-21392-3_30


Formalization of Voice-Leadings and the Nabla Algorithm 353

(the musical universe). In Sect. 3, we study metric spaces in music and introduce
the nabla distance, which is the distance to measure the size of a voice-leading.
Section 4 contains the pedagogical applications of the nabla methodology.

2 The Musical Universe

We begin by defining the space of frequencies. In principle, it would be enough
for our purposes to consider the set of audible frequencies, say, the interval
(20, 2 · 104), when measured in Hz. However, for completeness we will consider
the space of frequencies Φ as the real line (it is closed under product and sum
of frequencies). Let x, y be two pitches described by their frequencies. We write
x ∼ y if and only if x = 2k · y, for some integer k. Recall that two pitches are an
octave apart when the quotient of the highest frequence to the lowest is 2. This
relation identifies all the pitches that are apart any number of octaves as just
one pitch.

From now on, we assume we are in the presence of the equal temperament.
Given a fixed pitch class [k], we define the circle of fifths PCk/∼ as the set
PCk/∼ =

{
[k],

[
k · 2

7
12

]
,
[
k · 2

14
12

]
,
[
k · 2

21
12

]
, . . . ,

[
k · 2

77
12

]}
. This definition is

illustrated in Fig. 1. The pitch class of A was chosen as the base and then the
circle of fifths is built up from it by multiplying the previous pitch by 2

7
12 , the

distance of a fifth in terms of frequency.

Fig. 1. The circle of fifths

A chord X(q) is a subset of the pitch classes in PCk/∼. In Western tonal
music, some chords are described by a root and a quality. A chord is an
unordered collection of pitches. When we introduce the root and the quality,
the pitches are then ordered. The root is the lowest pitch in the chord whereas
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the quality refers to labels given to chords. For example, a dominant seventh
chord on C is the chord composed by C-E-G-B�, in that order. The root of this
chord is C and the quality dominant seventh. This label tells us that the first
three notes form a major triad and that B must flat so that there is minor sev-
enth between C and B. The quality of a chord is indicated by several symbols
(m or lowercase for minor chords, + for augmented chords, etc.).
A chord progression is a sequence of chords. As such, chords in a progression
are presented in a given order, which is the order they appear in time. A suitable
way to deal with chord progressions is by considering the matrix of classes. If
P ∈ Mm×n(PCk/∼) is a chord progression of length n, then each chord is a
vector of m notes and there are n chords in the progression. We can arrange the
notes of the chord progression in a matrix as follows.

P =

⎛
⎜⎝

[θ11] . . . [θ1n]
...

. . .
...

[θm1] . . . [θmn]

⎞
⎟⎠

To fix ideas, let consider the 2-note chord progression {E, C} to {F, E}, which
from now on will be notated as {E, C}=⇒{F, E}. Its matrix representation is

P =
(

[E] [F ]
[C] [E]

)
.

Let Φ+ be the set of positive frequencies. A voicing or a voice-leading of
a chord is a mapping VX(q) from Mm×n(PCk/∼) to Mm×1(Φ+). The mapping
takes a given class to a note. Indeed,

VX(q)

⎛
⎜⎝

⎛
⎜⎝

[θ1j ]
...

[θmj ]

⎞
⎟⎠

⎞
⎟⎠ =

⎛
⎜⎝

φ1j

...
φmj

⎞
⎟⎠

where φij ∈ [θij ], for i = 1, . . . , m and some j in {1, . . . , n}. Following with
the previous example, a voice leading for the chord progression could be (among

other possibilities) VX(q)

((
[C]
[E]

))
=

(
C4
E4

)
. For ease of reading, we will notate

the frequencies by their standard names instead of their numerical values. There-
fore, we will write A4 instead of 440 Hz.

An arrangement of a chord progression is the mapping defining which notes
of the chords are chosen for the voice-leading. Formally, it is a mapping AC∼ :
Mm×n(PCk/∼) → Mm×n(Φ+) written as

AC∼

⎛
⎜⎝

⎛
⎜⎝

[θ11] . . . [θ1n]
...

. . .
...

[θm1] . . . [θmn]

⎞
⎟⎠

⎞
⎟⎠ =

⎛
⎜⎝

φ11 . . . φ1n

...
. . .

...
φm1 . . . φmn

⎞
⎟⎠ ,

where φij ∈ [θij ], for i = 1, . . . , m and j = 1, . . . , n. From now on, arrangements
will be notated as (φ1, . . . , φn) −→ (φ′

1, . . . , φ
′
n), that is, as bijections between

sequences of notes; compare this notation to that of chord progressions above.
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For the chord progression {E, C}=⇒{D, G}, AC∼ could take on the form,

among others, of AC∼

((
[C] [G]
[E] [D]

))
=

(
C4 G4
E4 D4

)
.

3 The Nabla Distance

It is possible to endow the musical space with a metric. The idea is to measure
the distance between two notes and what follows is just a formalization of what
our ears do in a natural way all the time; see [4] for more information on the
cognitive aspects of music. We define a metric Δ : (Φ+)2 → R as an integral.

Δ(α, β) =

∣∣∣∣∣
∫ β

α

Ω

φ
dφ

∣∣∣∣∣ ,

where α and β are frequencies and Ω is a constant such that
∣∣∣∫ 2

1
Ω
φ dφ

∣∣∣ = 12;
see [1] for a relationship between this constant and the definition of cents. By
working out the integral above, this distance can be expressed as Δ(α, β) =∣∣∣Ω ln

(
α
β

)∣∣∣. The value of the constant is Ω = 12 · |log2(e)|, which indicates
that the octave is divided into 12 equal half-tones. This Δ function does hold
the three properties of a metric, namely: positivity, Δ(α, β) ≥ 0; symmetry,
Δ(α, β) = Δ(β, α); and the triangle inequality Δ(α, β) ≤ Δ(α, γ) + Δ(γ, β).

The pair (Φ+,Δ) is called the musical metric space. This metric can be
extended to the spaces of pitch classes by just taking the minimum of the ele-
ments in each pitch class. For two classes [θ], [τ ] in PCk/∼, we have Δ̃([θ], [τ ]) =
min {Δ(α, β) |α ∈ [θ], β ∈ [τ ]}. See the work [5] of Forte for more information
on distance functions. For example, Δ(C5, E4) = 8 and Δ(C4, E5) = 16, but
Δ̃([C], [E]) = min {Δ(α, β) |α ∈ [C], β ∈ [E]} = 4. Notice that the maximum
value the distance Δ̃ can take is 6.

Let P ∈ Mm×n(PCk/∼) be a chord progression such that P = ([pij ]),
for i = 1, . . . ,m and j = 1, . . . , n. Consider σ, an element in the symmetric
group Sm defined over the set of indices {1, 2, . . . ,m}. Then, we define E(P ),
the extension of P , as those matrices B = (bij) in Mm×n(PCk/∼) such the
following two conditions hold: (1) For some values of j, [pij ] = [bij ], for all
i = 1, . . . ,m; (2) For the rest of values of j, [pij ] = [bσk(i)j ], for all i = 1, . . . , m,
where σk is a permutation in Sm.

These conditions state that a column in B is either the same column in P or
a permutation of some column of P . E(P ) is the set of such matrices. Consider
again the matrix associated to the chord progression {E, C}=⇒{F, A}. Then,
the extension of P is

E(P ) =
{(

[C] [A]
[E] [F ]

)
,

(
[C] [F ]
[E] [A]

)
,

(
[E] [A]
[C] [F ]

)
,

(
[E] [F ]
[C] [A]

)}
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Next, we need to define the distance that a voice travels through a
given chord progression. We will use the symbol ∇̃ to define the distance
of a chord progression P . Then, ∇̃(P ) is defined as follows: ∇̃(P ) =∑m

i=1

∑n−1
j=1 Δ̃([θij ], [θi(j+1)]). The value of ∇̃(P ) is the sum of all the distances

between consecutive notes of a voice over all voices in the chord progression.
The operator nabla can also be defined for the set E(P ) as follows:

∇̃(E(P )) =
{

∇̃(B) |B ∈ E(P )
}

. Notice that ∇̃(P ) is a real value and ∇̃(E(P ))

a set of values. Let us compute ∇̃(P ) for the chord progression {E, C}=⇒{F, A}.
Indeed, ∇̃(P ) =

∑m
i=1

∑n−1
j=1 Δ̃([θij ], [θi(j+1)]) = Δ̃([E], [F ]) + Δ̃([C], [A]) =

1 + 3 = 4 Actually, we don’t need to consider all the matrices in E(P ) to
compute ∇̃(E(P )). It is enough to choose those where the first column is not
rearranged. The nabla distances of the matrices in E(P ) are

∇̃
((

[C] [A]
[E] [F ]

))
= 1 + 3 = 4, ∇̃ =

((
[C] [F ]
[E] [A]

))
= 5 + 5 = 10,

The nabla value of the extension of P is ∇̃(E(P )) =
{

∇̃(B) |B ∈ E(P )
}

=
{4, 10}.

A chord progression is said to be optimal if ∇̃(P ) = min
{

∇̃(E(P ))
}

. In
our example, the chord progression {E, C}=⇒{F, A} was optimal as the nabla
distance attained the minimum at that progression.

Analogously, the nabla distance can be defined for arrangements; it will be
notated by ∇ (without tilde). If A = (φij) ∈ Mm×n(Φ+) is an arrangement,
then the formal definition of ∇ is ∇(A) =

∑m
i=1

∑n−1
j=1 Δ(φij , φi(j+1)).

An arrangement A is said to be optimal if ∇(A) = ∇̃(PA), where PA is
the chord progression associated to A. Let us consider two arrangements asso-
ciated to the chord progression {E, C}=⇒{F, E}, say, A1:(E4, C4)−→(F4, E4)
and A2:(E4, C4)−→(F5, E5). Let us find which one is optimal by computing
their nabla distances. We have ∇(A1) = Δ(E4, F4) + Δ(C4, E4) = 1 + 4 = 5
and ∇(A2) = Δ(E4, F5) + Δ(C4, E5) = 13 + 16 = 29. Therefore, the first
arrangement is the optimal one.

Let us work out a larger example, with three voices and three chords in
the progression. In the example below, we have removed the square brackets to
simplify the notation as it is clear we are speaking of pitch classes. Since the
extension of P is composed of all permutations of the columns of P , we can
apply a sequence of permutations (the σ’s below) to obtain a sequence of chord
progressions reaching the minimum value.

P =

⎛
⎝

A D G
F B E
D G C

⎞
⎠ σ1:D↔G−−−−−−→ P1 =

⎛
⎝

A G G
F B E
D D C

⎞
⎠ σ2:G↔B−−−−−→ P2 =

⎛
⎝

A B G
F G E
D D C

⎞
⎠

∇̃(P ) = 31 ∇̃(P1) = 15 ∇̃(P2) = 13
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P2 =

⎛
⎝

A B G
F G E
D D C

⎞
⎠ σ3:G↔E−−−−−→ P3 =

⎛
⎝

A B E
F G G
D D C

⎞
⎠ σ4:C↔E−−−−−→ P4 =

⎛
⎝

A B C
F G G
D D E

⎞
⎠

∇̃(P2) = 13 ∇̃(P3) = 11 ∇̃(P4) = 7

In this case, P4 is the chord progression with minimum ∇̃ distance.
Let us discuss now how to obtain the chord progression of minimum value.

Assume we have a chord progression P = ([θij ]), where i = 1, . . . ,m and j =
1, . . . , n. Each transition from a chord to the next can be thought of as a bijection
between two sets of cardinal m. We know by elementary combinatorics that the
total number of bijections is (m!)n−1. If we assume that the number of voices is
constant, then the size of E(P ) is exponential in n. However, constructing the
whole set E(P ) is not practical. It is more interesting to design an algorithm
to find the optimal chord progression through a set of operations performed on
P . The example above could suggest that a possible algorithm would take the
shortest distances between pitch classes and build the optimal sequence of chord
progression (Fig. 2).

Fig. 2. The nabla application.

Alas, the previous statement is not true
in general and the following little example
disproves such a claim. Consider the chord
progression {(C, E, B}=⇒{(B, F, A}. If we
look for the shortest distances between the
individual notes, we will obtain the bijection
C ↔ B,G ↔ F,E ↔ A; the nabla distance
of this bijection is 7. However, the bijection
below gives a smaller nabla distance. which
has ∇̃(P1) = 1 + 5 + 1 = 7 as its minimum
value. Notice that the choice of E ↔ A is
forced by the choices of previous notes. How-
ever, the bijection C ↔ B,E ↔ F,G ↔ A
gives a smaller nabla distance: ∇̃(P1) = 1 +
2 + 2 = 5.

4 The Nabla Application

In this section we show how to use the idea of
the nabla distance to teach voice-leadings in
jazz music. Voice-leadings, contrary to what
it might seem, are common in jazz music
and part of a proper performance practice. In

order to help the interested musician to understand and use the nabla approach
to part-writing, we wrote an application, the ∇ app, which, from a sequence of
chords input by the user, computes the optimal chord progression. The applica-
tion is already available on Apple store and the interface is in Spanish, although
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it will be translated into English very soon. This application can be used to illus-
trate concepts of mathematical theory in the classroom. It may help the music
student to familiarize themselves with mathematical formalization (all the con-
cepts found in Sect. 2). Also, it allows the teacher to take a hands-on approach
to part-writing in jazz or classical music.
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