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Abstract. Formulation and processing of expectation has long been
viewed as an essential component of the emotional, psychological, and
neurological response to musical events. There are multiple theories of
musical expectation, ranging from a broad association between expec-
tation violation and musical affect to precise descriptions of neurocog-
nitive networks that contribute to the perception of surprising stimuli.
In this paper, we propose a probabilistic model of musical expectation
that relies on the recursive updating of listeners’ conditional predictions
of future events in the musical stream. This model is defined in terms of
cross-entropy, or information content given a prior model. A probabilistic
program implementing some aspects of this model with melodies from
Bach chorales is shown to support the hypothesized connection between
the evolution of surprisal through a piece and affective arousal, indexed
by the spread of possible deviations from the expected play count.

Keywords: Affect - Entropy - Music - Perception -
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1 Introduction

Meyer’s seminal work, Emotion and Meaning in Music (1956) formed the basis
of a widely held conceptualized of musical expectation as a cognitive process
in a broadly Bayesian mold. Meyer described the crucial role that expectation
violations play in constructing musical affect, thus implying that expectation
mediates between musical perception and emotional response. Other scholars
soon incorporated this claim into their own approaches to a cognitive analysis
of musical expectation and surprisal. Narmour’s implication-realization model,
which was crafted as an alternative to the Schenckerian orthodoxy in music
analysis, represents the first such theory to explicitly draw on Gestalt principles
of perception (Narmour 1989). It would later be amended to include distinctions
between “top-down” (or semantic) and “bottom-up” (or phonetic) expectations
(Narmour 1991).

Since then, theorists have also begun representing musical expectation using
analogies to physical processes or established measures from information theory.
Margulis’s delineation of three distinct kinds of musical tension (Margulis 2005)
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and Larson’s representation of melodies as obeying the musical equivalent of
gravity, inertia, and magnetism (Larson 2002; 2004) are indicative of this trend,
and offer ample room for computational exploration. Other researchers have
taken more directly computational approaches. For instance, Temperley applied
Bayesian probability theory directly to describe the cognitive process by which
humans predict underlying structural features from musical surfaces (Temperley
2004) and devised a musical version of Shannon entropy (Temperley 2007), and
Margulis and Beatty investigated its usefulness as an analytic tool (Margulis
and Beatty 2008).

Recently these two general approaches have converged. Agres, Abdallah, and
Pearce demonstrated that information-theoretic measures such as those devel-
oped by Margulis and Temperley are related to musical memory (Agres et al.
2018). Bayesian modelling has been applied, with varying amounts of success, to
neurological correlates of surprisal, notably the mismatch negativity (MMN)
(Lieder et al. 2013) and early right anterior negativity (ERAN) (Broderick
et al. 2018). In addition, there is a theorized inverse-U relationship between
musical complexity and reported preference (Giigliitiirk et al. 2016; McMullen
and Arnold 1976), and recent research has led to descriptive models of this cor-
relation (Agres et al. 2017). However, a generative model capable of directly
predicting behavioral correlates of musical liking or preference based on mea-
sures of musical expectation and surprisal is lacking.

This study aims to fill precisely this gap. Its specific aims are twofold: to
devise a Bayesian model on a cognitive level of analysis that will capture both
the underlying construction of musical expectations and how those expectations
relate to behavior surrounding liking; and to determine what measures of liking
or preference are feasible and useful for training and assessing such a two-level
model.

2 Model Foundations

Extant theories suggest four primary characteristics of musical expectation: it
is recursive, in that the match or mismatch between an expectation and an
observed event is used to construct future expectations; it is dynamic, in that
the mental model used to make predictions is not fixed; it is based on musi-
cal tendencies, as opposed to physical or cultural pressures; and it is related
to information content. Furthermore, as indicated both by neurophysiological
research and theories of musical semiotics, music is perceived as a sequence of
events, rather than a continuous stream of sound. Given the symbolic nature of
musical perception, two approaches to modelling music expectation — Huron’s
ITPRA model from his book Sweet Anticipation (2006), and Agres, Abdallah,
and Pearce’s two-level model of informational expectation (2018) — offer advances
in this area of scholarship that are particularly relevant to the present project.
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2.1 The ITPRA Model

Huron (2006) theorizes that musical expectations are constructed in five over-
lapping stages that are organized into two epochs: the pre-event epoch, consist-
ing of the imagination and tension stages; and the post-event epoch, consisting
of the prediction, reaction, and appraisal portions. This structure is shown in
Fig. 1. First, listeners imagine possible outcomes of an event. The approach of
the imagined event leads to an increase in tension, as the listener waits to dis-
cover whether or not their prediction is valid. Once the event occurs, there is
an immediate assessment of the accuracy of the prediction and an immediate
reactive assessment, followed by a more thorough appraisal and adjustment of
the predictive parameters.

event
onset

l Reactive

Imaginative Appraisal

Tension \

. Prediction
time ———

Fig. 1. The ITPRA model of musical expectation

This approach highlights both the affective nature of musical expectation pro-
posed by Meyer (1956) and the plasticity of prediction. To Huron, expectation
is based more on the listener’s beliefs about musical structure than the music’s
actual structure; to borrow from Lerdahl (1988), expectation has more to do with
the listener’s grammar than with the composer’s. Therefore, Huron’s construc-
tion of musical expectation is fundamentally Bayesian, as it entails a listener
making non-deterministic inferences about a piece of music and, by extension,
about its creator.

2.2 Probabilistic Expectation

As described by Margulis and Beatty (2008), entropy and other information-
theoretic measures have become increasingly popular in music analysis. These
measures were shown by Agres et al. (2018) to be related to musical expectation.
Specifically, they showed that a probabilistic model relying on measures of infor-
mation content, coding gain, and predictive information could accurately simu-
late memory for musical sequences. In addition, they demonstrated the benefits
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of training both a long-term (top-down) and a short-term (bottom-up) predictive
model simultaneously, and using both to generate an expectation.

This approach is not necessarily resource-rational, and does not reflect
abstract perception of musical types. But it does represent an important advance
in modelling musical expectation. Most notably, it recasts the problem of build-
ing expectation, which had previously been a question of pure prediction, as an
optimization problem on information-theoretic measures of musical structure.
This approach is potentially much more efficient, and lends itself very well to
expansions into more ecologically-valid models of musical expectation.

3 Surprisal Model of Musical Liking

Huron’s (2006) model is explicitly broken into pre-event and post-event epochs,
but the post-event epoch entails two distinct processes: the immediate affective
response, represented by the Prediction and Reaction segments; and the reassess-
ment of the listener’s mental representation of the piece of music, represented
by the Appraisal portion. Although the ITPRA construction entails five sepa-
rate cognitive processes, this implies a functional division into an expectation
formulation portion, an affective response portion, and a prediction assessment
portion. If true, then a functional model of the ITPRA framework should explic-
itly encode that division in such a way that the output of the affective response
mirrors empirically assessed correlates of musical affect.

To this end, a three-stage model of musical expectation was constructed. This
surprisal model of musical liking relies on Temperley’s construction of cross-
entropy to generate both a short-term, extrinsic (from the perspective of the
listener) model of musical expectation and a long-term, intrinsic collection of
models for expectations on inferred musical types.

3.1 Mathematical Formulation

Extrinsic Model. For a naive listener, the initial condition is assumed to be
generated from a flat Dirichlet distribution:

P = (Po; - Pk—1)
Spot (1)

Here, p is any element of the open standard k — 1-simplex.

k—1
Po(alp) = [T pi=" (2)
1=0

This initial distribution is used in the pre-event epoch to generate an intrinsic
musical expectation. The initial (empty) sequence of musical events is denoted
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Dy, and the sequence of the first n events is D,,. At each musical event, the lis-
tener makes an observation and assesses its surprisal given this expected intrinsic
distribution:

1
anl(Dn,Pnfl) = —ﬁloan,l(Dn|Dn,1), n = 1,27 (3)

The surprisal vector H = (H, ..., Hx—1) will be used to generate a liking
rating at the end of the process. During the post-event epoch, the probability
distribution is updated within the bounds of a malleability tolerance r, to prevent
over-fitting early in the process:

P, = arg min Hn_l(Dn,P) (4)
|P7Pn_1‘<’l“

Here, |P — P,,_1] is determined by a distance measure on distributions such
as the Kullbach-Liebler divergence, and r governs how much the intrinsic distri-
bution can change in any time-step.

Intrinsic Model. This intrinsic process runs in parallel to an extrinsic, long-
term process, which operates according to similar principles. The primary math-
ematical difference between the extrinsic and intrinsic models is that while the
intrinsic model constructs an expectation based on observed data from within a
piece of music, the extrinsic model predicts which type or category of music a
piece belongs to and constructs an expectation based on an archetypal distribu-
tion for that type. Since pieces are sorted into categories, if the observed dataset
consists of only one piece, there is by definition only one available type. As a
result, the distribution over the number of categories is initialized after encoun-
tering a second piece. For a néive listener, this distribution is sampled from a
Dirichlet distribution where, for piece k with the distribution over n categories
at time step k — 1 denoted qx—1 = (qo, ---, gn—1), the following holds:

o= (OL07 "'7an)
w1
a, (n — 1)(]1’ On (5)

qr = sample(Dir(a))

This construction maintains a bias toward the same number of categories as
in the previous step, with a neutral possibility of adding another category. The
distribution over the number of categories is optimized after each piece of music,
so the expected number of categories F(qy) remains constant while a piece of
music is playing.

Each category has an associated probability distribution, denoted @Q;. At
each time step, the listener selects the most likely category C; given the musical
context by minimizing cross-entropy:

i= argmin H,_1(D,,Q;) (6)
i€0,...,E(qk)
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After a musical piece concludes, the number of categories is inferred. If a
category is added, the new piece is assumed to be the seed. If there are fewer
categories than before, the most similar pair (by Kullbach-Leibler divergence)
are combined:

P = (po7 7pJ)7 Q = (CIO7 7qj)

RZ{(m;qi)} | (7)

reed

After the categories are set, the last categorization choice C; is preserved and
the corresponding distribution is updated using the last short-term distribution
P to minimize distribution cross-entropy:

Z QZ—(X :x) logQ(X :x)

zeX

(®)

Q; = arg min
|Q—-Qil<R

This intrinsic model reaches a series of locally stable sets of categories, which
are only perturbed by unusual or uncategorizable pieces of music. However, the
terms of genres drift over time, which reflects the fundamentally dynamic nature
of genre proposed by contemporary theorists such as Brackett (2016), Sturm
(2014), Frow (2005), and Bhatia (2004; 2016).

Musical Resolution. Since D,, is a sequence of events, where “events” are
arbitrarily defined, this structure allows for variation in perceptual resolution
depending on what kind of events are analyzed. Some a priori possibilities
include onsets (isochronous or otherwise), beats, harmonic shifts, phrases, or
melodic cycles. In human cognition, these “events” are likely even more abstract,
as they are learned subdivisions of continuous auditory signals.

Liking. The relationship between musical affect and liking is complicated by the
strong connection between preference for certain categories or genres of music
and exemplars of those categories or genres (Rentfrow and Gosling 2007). How-
ever, the inverse-U relationship discussed earlier indicates a relationship between
surprisal and preference may emerge when controlling for other extramusical
associations or characteristics of music. One possible explanation, which will be
assessed in the experimental portion of this paper, is that features of the sur-
prisal vector are related to affective arousal, but not valence. This would imply
that information content and the accuracy of expectations are connected to the
strength of the affective response, but not necessarily its direction.

3.2 Bayesian Formulation

This procedure is somewhat simpler to depict using a Bayesian network, such as
the one in Fig. 2. In this depiction, the precise probabilistic descriptions of the
inference steps are hidden in favor of showing the connections among the various
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Fig. 2. Schematic of the Bayesian model connecting liking with musical surprisal.

models. Two notable features of this approach stand out: first, although the
extrinsic and intrinsic models are probabilistically dependent, there is no causal
dependence between the two; second, the only decision made by the listener
is the hierarchical choice between the extrinsic and intrinsic predictions. Since
music unfolds in time, the network in Fig. 2 represents the activity in one time-
step, and does not include the process of adjusting the extrinsic model after a
piece has concluded.

Since there is limited data being passed, and the resource-heavy portion
occurs after the piece has concluded, this framework is likely resource-rational,
especially since the only preserved information is a finite set of distributions.

Categorical
/ models o
| \\ Intrinsic

Training |/ —
———»¥ (long-
set — (long

| / term)
\ -
# of categories —

MCMC (offline)

[ HIEI’EIT(?"IICa| ]_,< Expectation $
choice

\ N

: -

\ Extrinsic

Sams (short-
Variational term)
inference and
enumeration

Testing set

Fig. 3. Visual schematic of implementation in Python and WebPPL.
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4 Assessment Methods

The explicit implementation of the surprisal model in this study, shown in Fig. 3,
required several restrictions. First and foremost, rather than learn the extrinsic
and intrinsic portions in parallel, the intrinsic model was implemented offline
and then applied as a static set of distributions. This was to avoid determin-
ing an order in which the melodies in question were encountered. Second, the
domain of “musical events” was restricted to melodic pitch onsets, rather than
a more general description of musical possibilities. Third, the number of pos-
sible categories in the extrinsic model was assumed to be between 1 and 10,
and the length of a musical “word” was held to two consecutive onsets when
constructing the melodic language of thought. These restrictions were to con-
serve computational power, and do not reflect assumptions about the genuine
cognitive process that this model approximates. Lastly, the intrinsic model was
trained using a Markov chain Monte Carlo (MCMC) approach, although the
theorized methodology is closer to variational inference. This last alteration was
due to interference between the inferences on the number of categories and the
distributions that characterize those categories.

The adjusted model was implemented in WebPPL using a data management
and cross-validation procedure written in Python. Once finished, this process
generates a series of surprisal vectors, with a new cross-entropy value generated
for each melodic onset.

The probabilistic program described above was applied to a set of 371
melodies from Bach chorales, extracted from the KernScores database hosted
by the Center for Computer-Assisted Research in the Humanities (CCARH)
at the Stanford University Music Department (Sapp 2005). Post-hoc statistical
methods, most notably hierarchical cluster analysis, were used to analyze the
resulting data. These methods are not thought to reflect actual cognitive behav-
ior, but are rather an attempt to uncover structures that are embedded in the
surprisal vectors.

5 Expected Outcomes

If the ITPRA model does produce something similar to the inverse-U relationship
between complexity and liking, the surprisal vectors should be connected to a
measure of musical liking. Since the dataset consists entirely of Bach chorales,
this should effectively control for valence effects of musical genre, and imply
that the inferred categorization relates more to elements such as key or mode,
meter, or intended performance venue.! Without making assumptions about
which features contribute to higher liking values, clustering surprisal vectors
using a time-warping or trajectory analysis algorithm should produce groups

1 There are notable differences between pieces written for casual or amateur musicians
and those written for professional musicians, and the rise in virtuosic compositional
practice was contemporaneous with Bach’s career (Baron 1998; Lott 2015; Radice
2012).
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Fig. 4. Dendrogram showing clusters in the surprisal vectors for Bach chorale melodies.

of pieces with different preference ratings. These preference ratings should then
be reflected in behavioral measures such as consumption or recommendation
frequency.

6 Results

As the melodies are all of different lengths, the surprisal vectors were resampled
to include the same number of data points. Distance between surprisal vectors
was then calculated using the Keogh lower bound on the dynamic time-warping
distance to preserve contour features of their development in time, and those
distances were used to cluster the melodies with Ward’s algorithm (Fig.4).

This clustering approach has been used in automatic genre recognition
(AGR) research, and has been shown to have a favorable accuracy over other
methods when dealing with pieces of significantly different tempi (Holzapfel and
Stylianou 2008). In addition, time-warping methods have been shown to ame-
liorate the effects of noise when searching for periodicity in time series signals
(Elfeky et al. 2005), which provides further support for its validity as an analyt-
ical method here. Play counts for a subset of these chorales were extracted from
Spotify. Since the play counts decay logarithmically as the album progresses,
deviation from the expected play count was computed and plotted against cat-
egory in the surprisal analysis (Fig.5).

This plot indicates that categories 1 and 3 were much more concentrated
around no deviation, while categories 2 and 4 were more likely to overshoot
the expectation. However, an ANOVA indicated no significant shift in the mean
deviation from expected play time by category.
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Fig. 5. Plot of log(playCount) — E(log(playCount)) against surprisal vector category.

7 Discussion

Although these data are imprecise, and the results are not statistically clear,
there are a few potentially interesting conclusions that may be drawn. Most
notably, these data suggest a relationship between features of the surprisal vector
and the variation in liking, especially upwards variability. This specific connec-
tion is derived from the distance metric used; dynamic time-warping distance
preserves similarities in trajectories that are not preserved by more standard
metrics such as Euclidean distance. Such expanded variability suggests a possi-
ble link between features of surprisal’s movements in time and affective arousal,
although further study is necessary for confirmation.

Most promising is that these trends follow the theoretical prediction that
expectation violation is directly related to musical affect, and that this effect is
visible even with the severe limitations of this particular implementation. The
dataset in this case, consisting solely of soprano melodies from Bach chorales,
is limited in size, does not have much internal variation, and is underconsumed
in the current musical market. Similarly, using deviation from expected play
counts as a proxy for liking suffers from multiple assumptions, most notably the
assumptions that more-played tracks are better-liked and that deviation from a
logarithmic trendline is a robust measure of deviation in play counts.

Further research requires a more complete dataset, including a larger range
of musical idioms and a more thorough language of musical symbols, and a more
accurate measure of liking. One possibility is to use MIDI realizations of pop
songs, build symbols consisting of note simultaneities (a generalization of chords
and harmonies), dynamic levels or motion, and basic instrumentation, and corre-
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late the resulting surprisal categories with measures of chart performance. This
would allow the model to train sequentially rather than building the intrinsic
model offline, much like a real listener would.

Acknowledgments. My thanks to Noah Goodman, Ben Peloquin, Robert Hawkins,
Malcolm Slaney, and Jonathan Berger for their assistance in the development and
implementation of this research.
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