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Abstract. This paper presents a generalization of the neo-Riemannian
PLR group to the set of triads with inversions (major, minor, diminished
and augmented). A second generalization is proposed, using an extended
system of seventh chords with inversions. Both the sets of triads and
seventh chords are defined with constraints on semitone separation of
voices. In the case of triads, the set of parsimonious transformations is
shown to have the structure of a semi-direct product of groups of the
form Sn � Z

n−1
12 , where n is the number of chord types in the set.
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1 Introduction

1.1 Constraint-Based Systems

In this paper we consider voicings of triads and seventh chords from the view-
point of semitone separation constraints.

Constraint-based definitions of chords are meant to yield a collection of
chords which are close together in the sense of parsimonious voice-leading. In
particular, such chords should have spacing between voices which are some-
what similar. We choose to specify such spacing by focusing on the total spread
between the highest and lowest pitches, and also the vector of spreads between
adjacent pitches. This method also seems to capture some of the well-known and
useful chord collections in the case of triads and seventh chords.

The cost of this approach is that we consider systems of chord-types in an
absolute sense, not as pitch-class sets. Each chord type is a root position or chord
inversion which can be described by the semitone separation type. The benefit
of this approach is that we can include chords which have different numbers of
inversion types into one system for the purpose of parsimonious voice-leading.
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For example, the augmented triad has only one separation type, unlike the other
triads. Similarly, the dominant seventh chord with flat fifth has only two sepa-
ration types, unlike the other seventh chords.

The two systems of constraints can be described simply as follows. For the
system of major, minor, diminished, and augmented triads, we constrain the
separation between pairs of consecutive notes to be from 3 to 6 semitones, and
the separation between the upper and lower notes to be from 6 to 9 semitones.
All of these triads and their chord inversions are recovered precisely in this way.
A similar system of sevenths chords can be defined with separation between pairs
of consecutive notes to be from 1 to 4 semitones, and the separation between
the upper and lower notes to be from 8 to 11 semitones. All of the standard
seventh chords and their chord inversions are recovered in this way, as well as
two additional chords obtained from the dominant seventh by lowering or raising
the fifth by one semitone.

In order to explore the transformations between these chord types, we con-
sider chords to be ordered tuples of integers such as (a, b, c) or (a, b, c, d), with
a < b < c < d. This distinguishes a root position chord from its inversions, as
separate chord types. In this context, the concept of pitch class set can still be
invoked on these chord collections as an equivalence relation. It is also conve-
nient to work with equivalence classes of chord types modulo twelve, but still
preserving the types. For example, the set of triad types modulo 12, with C as
0, includes the B major triad in root position, represented as (11, 15, 18) or as
(−1, 3, 6), but not as (3, 6, 11). The latter is of course the first inversion, which
in this context is not equivalent as a chord type to the previous two.

What is gained from this point of view is a simple approach to parsimonious
voice-leading, and the induced groups of transformations. We recover the PLR
group for triads as a subgroup of the larger parsimony group, which we show to
be isomorphic to S10 � Z

9
12.

These methods can be put into a wider context, where we start with a system
of chord types and consider the group generated by basic parsimonious transfor-
mations which swap chord types by changing only one voice by one semitone. If
there are n chord types which are defined with a system of constraints similar
to the two cases we describe, then it is interesting to investigate whether it is
possible to describe the parsimony group as Sn � Z

n−1
12 .

1.2 Background

In his foundational work, David Lewin [7] explored music theory and composi-
tion from the perspective of transformational theory. In this context, algebraic
structures, such as groups, play an important role in defining and elucidating
musical content. In this branch of transformational music theory, known as neo-
Riemannian theory, voice-leading between chords plays an important role. The
canonical example of this is the PLR group, originally introduced by the 19th-
century music theorist Hugo Riemann [8]. The transformations P , L, and R
each represent the chord change between a major and minor triad by moving
one voice of each chord by one or two semitones. Moreover, these transformations
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relate the important pairs of such triad relationships such as Parallel, Relative,
or Leading-Tone Exchange. These types of voice-leading involving small steps
between voices are often called parsimonious.

Transformations between voicings of triads are also considered in [4], where
the authors consider extensions of P , L and R to linear functions defined on all
of Z

3
12.
In addition to the algebraic action of the PLR group on the set of major and

minor triads, a geometric model called the Tonnetz is central to the study of neo-
Riemannian transformations. For a full description of the Tonnetz and operations
in the PLR group as Dihedral group, we refer the reader to [1] and [3].

In Sect. 2 we recall some facts about the PLR group, in particular its struc-
ture as a semi-direct product of groups. In Sect. 3 we identify the structure of the
parsimony group G for the constraint-based system of triads with inversions. In
Sect. 4 we describe the constraint-based system of seventh chords, and in Sect. 5
we propose some future work.

2 The PLR Group as a Semi-direct Product of Groups

The well-known PLR group is a group of transformations on the set of 24 conso-
nant (major and minor) triads. Here we consider triads as pitch-class sets, each
consisting of three elements: root, third, and fifth. We will label the sets M and
m of major and minor triads as:

M = {M0,M1, . . . ,M11}, m = {m0,m1, . . . ,m11}
where M0 = C major, M1 = C� major ... M11 = B major, and m0 = C minor,
m1 = C� minor ... and m11 = B minor.

Next recall the three neo-Riemannian transformations:

– P (parallel) swaps major and minor triads by lowering the third (of major
triads) or raising the third (of minor triads) by one semitone

– L (leading tone) swaps major and minor triads by moving the root (of major
triads) down a semitone, or the fifth (of minor triads) up a semitone

– R (relative) swaps major and minor triads by moving the fifth (of major
triads) up a whole tone, or moving the root (of minor triads) down a whole
tone

The set of all transformations on the set of major and minor triads which
are generated from these is called the PLR group, which we label here as:

GPLR = 〈P,L,R〉.
We can also represent these transformations with indices as follows:
P : Mi �→ mi, mi �→ Mi L: Mi �→ mi+4, mi �→ Mi−4 R: Mi �→ mi+9,

mi �→ Mi−9

These transformations can be described by an ordered pair (s, t), where s
takes the value σ if the transformation swaps M and m, and 1 (the identity
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permutation) if the transformation does not swap M and m. The value t is an
integer vector (t,−t) which indicates the shift (or translation) t (modulo twelve)
on the index i of a major triad, and the shift −t (modulo 12) on the index j of
a minor triad.

For instance, we describe the three transformations as:

P : (σ, (0, 0)), L : (σ, (4,−4)), R : (σ, (9,−9))

Note: We differ slightly from Hook’s notation in [5] where the symbols +
and − are used instead of 1 and σ to describe the mode of his Uniform Triadic
Transformations, or UTT’s.

If S2 = {1, σ} is the symmetric group consisting of permutations of the two
symbols M and m, and Z12 is the group of integers modulo 12, then we can
represent any element of GPLR as an ordered pair (s, t) in the set product:

S2 × Z12 × Z12.

Finally, we quote here the well-known structure theorem for GPLR (see [5]
for a proof).

Theorem 1. The neo-Riemannian group GPLR is isomorphic to a semi-direct
product S2 � Z12.

Note: Since the semi-direct product S2 �Z12 is isomorphic to the dihedral group
of order 24 (see for instance [3]), we also get the standard representation of the
PLR group as a dihedral group of order 24.

3 Constraint-Based System of Triads

Triads can be obtained in root position by stacking major or minor thirds. This
produces the four triad types: major, minor, diminished and augmented. In music
theory it is often preferred to think in terms of pitch class sets, so the chord
inversions of these four triads are taken to be equivalent to their root position
versions. In this paper, we consider each inversion as a separate entity. In order
to distinguish them, we identify each chord by its “successive-interval array”.
This notion is first defined by Chrisman in [2], in a more general context. For
our purpose, we include only the semitone gaps between successive notes, leaving
out Chrisman’s inclusion of the semitone gap between the highest pitch and one
octave above the lowest pitch. In this paper we refer to this simplified array of
semitone gaps as si-type, for “successive interval type”.

We will refer to chords (in equal temperament) by integer tuples which indi-
cate pitches relative to some fixed starting value. For example, if middle C is
represented as 0, then a piano with 88 keys is represented by the values −39 (A0)
to 48 (C8). The triple (0, 4, 7) then represents a C Major triad in root position,
with root middle C. We will always assume that such a triple (a, b, c) of integers
satisfies a < b < c, or equivalently that the pitch values are increasing from left
to right.
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The si-type [x, y] describes a triad (a, b, c) where x = b−a and y = c−b. Thus
the si-type of the C Major triad above, or any other Major triad in root position,
is [4, 3]. The first inversion of this triad then is represented by (4, 7, 12) and has
si-type [3, 5]. The four types of triad, together with their chord inversions, yield
10 different si-types, which are listed in the following Table 1:

Table 1. si-types of triads

chord name (and symbol) Root 1st Inv 2nd Inv

Major triad (M) [4, 3] [3, 5] [5, 4]

minor triad (m) [3, 4] [4, 5] [5, 3]

diminished triad (o) [3, 3] [3, 6] [6, 3]

augmented triad (+) [4, 4] [4, 4] [4, 4]

Constraint-based definition of triad (based on si-type): We define a triad
(a, b, c), given with integers a < b < c, to be one with si-type [x, y] = [b−a, c−b]
satisfying the following constraints:

3 ≤ x, y ≤ 6 and 6 ≤ x + y ≤ 9.

It is easy to check that the above 10 si-types in the table are the only ones which
satisfy these constraints.

Now consider parsimonious voice-leading transformations from one triad to
another which are of the simplest type: changing one of a, b, or c by only one
semitone. (Note: we refer to the three voices of the chord based on their position,
not their function as root, third or fifth.)

The following table lists all such transformations which yield another chord
in this collection. Here we indicate the transformation with the notation a+ to
mean that the note value a is replaced with a + 1:

a+ : (a, b, c) → (a + 1, b, c)

and a− to mean that a is replaced with a − 1:

a− : (a, b, c) → (a − 1, b, c),

and so on for b and c (Table 2).

Triads modulo 12
We define the set T of triads (a, b, c) mod 12, according to their si-type and
lowest pitch value a. We take the value a = 0 to be the pitch C, etc. Since
there are 10 si-types and 12 possible values for a, we have 120 elements in T .
It is important to note that these elements are not pitch class sets, since we
are still distinguishing between inversions as separate triads. We will use the
common notations but add superscripts and subscripts to indicate chord types
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Table 2. Parsimonious Transformations on si-types

symbol si-type a− a+ b− b+ c− c+

M [4, 3] [5, 3] [3, 3] [3, 4] [4, 4]

M1 [3, 5] [4, 5] [4, 4] [3, 4] [3, 6]

M2 [5, 4] [4, 4] [4, 5] [6, 3] [5, 3]

m [3, 4] [4, 4] [4, 3] [3, 3] [3, 5]

m1 [4, 5] [3, 5] [3, 6] [5, 4] [4, 4]

m2 [5, 3] [6, 3] [4, 3] [4, 4] [5, 4]

o [3, 3] [4, 3] [3, 4]

o1 [3, 6] [4, 5] [3, 5]

o2 [6, 3] [5, 3] [5, 4]

+ [4, 4] [5, 4] [3, 4] [3, 5] [5, 3] [4, 3] [4, 5]

and inversions. (Since lower case letters are already being used for voices, we
write Cm for a C minor triad instead of c.) For example, one could list:

C = (0, 4, 7), A�1 = (0, 3, 8), F2 = (0, 5, 9), Cm = (0, 3, 7), Am1 = (0, 4, 9),

Fm2 = (0, 5, 8), Co = (0, 3, 6), Ao
1 = (0, 3, 9), F �o

2 = (0, 6, 9), C+ = (0, 4, 8)

for chords occuring in the ten different si-types having starting pitch C, or a = 0.
Each of the si-types determines a subset of T , so we use the symbol or the

si-type for subsets as well. For example:

M = [4, 3] = {C = (0, 4, 7), C# = (1, 5, 8),D = (2, 6, 9), . . . , B = (11, 15, 18)}

is the subset of 12 major triads, and

o1 = [3, 6] = {Ao
1 = (0, 3, 9), B�o1 = (1, 4, 10), Bo

1 = (2, 5, 11), . . . , A�o1 = (11, 14, 20)}

is the subset of 12 first inversion diminished triads, etc. (Note that we maintain
the order a < b < c, and that we consider (a, b, c) as representative of an equiv-
alence class modulo 12. So we could use A�o

1 = (−1, 2, 8) but not (11, 2, 8) since
it is an ordered triple but not a pitch-class set.)

Next, we define transformations between si-types, in particular the swaps of
order two between si-types which are induced by raising or lowering one voice a,
b, or c, by one semitone. As permutations on the set T , these are involutions since
they swap all triads of one si-type with triads of another si-type, and performing
this swap twice results in the identity permutation. (Note the usual P and L
transformations are now factored into three swaps on si-types.) We indicate each
transformation with its corresponding pair of adjustments to one voice (Table 3).
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Table 3. Parsimonious transformation labels

P0 : M ←→ m, b−, b+ P1 : M1 ←→ m1, a−, a+ P2 : M2 ←→ m2, c−, c+

L0 : M ←→ m2, a−, a+ L1 : M1 ←→ m, c−, c+ L2 : M2 ←→ m1, b−, b+

f0 : M ←→ o, a+, a− f1 : M1 ←→ o1, c+, c− f2 : M2 ←→ o2, b+, b−
g0 : m ←→ o, c−, c+ g1 : m1 ←→ o1, b−, b+ g2 : m2 ←→ o2, a−, a+

α0 : M ←→ +, c+, c− α1 : M1 ←→ +, b+, b− α2 : M2 ←→ +, a+, a−
β0 : m ←→ +, a−, a+ β1 : m1 ←→ +, c−, c+ β2 : m2 ←→ +, b−, b+

These transformations are pictured (as swaps of chord types) in the following
diagram:

y = 6 o1

y = 5 M1 m1

y = 4 m + M2

y = 3 o M m2 o2

x = 3 x = 4 x = 5 x = 6

f1
g1

P1

L1
α1 β1

L2

g0
P0

β0

α0
β2

α2

P2
f2

f0 L0 g2

Fig. 1. Parsimonious transformation diagram

Note that in any small triangle of the following shape, if we start with any
chord, then follow the arrows clockwise, this results in an increase by one semi-
tone to each of the voices, resulting in a transformation which affects this one
chord type as:

(a, b, c) −→ (a + 1, b + 1, c + 1).
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o1

M1 m1

c+
b+

a+

Similarly, if we follow the arrows counterclockwise this results in:

(a, b, c) −→ (a − 1, b − 1, c − 1).

o1

M1 m1

f1
g1

P1

A few more observations on this diagram are in order before we state the
theorem. First, the only transformations which change the lower voice (a) of
a triad are those which appear as horizontal arrows, such as f0, L0, etc. The
remaining transpositions leave a fixed and hence can be interpreted as pure
swaps of subsets. By this we mean that if the sets M and m are swapped by P0

and we index the entries of each of these sets then the major and minor triads (in
root position) are swapped at the same index value, with no translation inside
the two sets. Another type of transformation is the pure translation on subsets,
such as P0f0g0f0, which can be seen to shift m up by one semitone, and shift M
down by one semitone. If we specify an order to the si-types, or subsets, as:

(M,M1,M2,m,m1,m2, o, o1, o2,+)

then we can indicate these pure translations with the vector notation. For
instance, P0f0g0f0 would be represented as (−1, 0, 0, 1, 0, 0, 0, 0, 0, 0).

With the above notation, it is straight-forward to generate the following such
pure translations:

(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0), (−1, 0, 1, 0, 0, 0, 0, 0, 0, 0), (−1, 0, 0, 1, 0, 0, 0, 0, 0, 0),

(−1, 0, 0, 0, 1, 0, 0, 0, 0, 0), (−1, 0, 0, 0, 0, 1, 0, 0, 0, 0), (−1, 0, 0, 0, 0, 0, 1, 0, 0, 0),

(−1, 0, 0, 0, 0, 0, 0, 1, 0, 0), (−1, 0, 0, 0, 0, 0, 0, 0, 1, 0), (−1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

This can be achieved by conjugation, or simply preceeding and following
P0f0g0f0 by a series of transpositions which are in reversed orders. For example,
we obtain
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(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0) = L1(P0f0g0f0)L1

and
(−1, 0, 1, 0, 0, 0, 0, 0, 0, 0) = L2g1f1L1(P0f0g0f0)L1f1g1L2.

Next, we define the parsimony group G to be the group of transformations
generated by all of the above defined transformations, acting as involutions on
the set T of 120 triads modulo 12.

G = 〈P0, P1, P2, L0, L1, L2, f0, f1, f2, g0, g1, g2, α0, α1, α2, β0, β1, β2〉.
We will show that G is isomorphic to a semi-direct product of two groups:

G ∼= S10 � Z
9
12.

The first of these is the full permutation group S10 on 10 symbols, in this case
on the chord symbols or si-types. The second factor in the semidirect product
is Z

9
12, obtained from the action of the group Z12 on subsets of chords in one

si-type. This factor can be seen as the subgroup Z of Z
10
12 consisting of all vectors

t = (t1, . . . , t10) satisfying
∑10

i=1 ti = 0.
We need to specify the group operation in G which is given by the homo-

morphism
φ : S10 −→ Aut(Z)

with φ(s) = s(t), or in other words, the action of φ(s) on a vector t in Z is to
simply permute the vector components of t. We can represent any element of G
as a pair (s, t) and then the product is given as:

(s, t) · (s′, t′) = (ss′, t + s(t′)),

where
s(t′) = (t′s(1), t

′
s(2), . . . , t

′
s(10)).

To see this, let the vector of si-types be relabeled with superscripts so that

(M,M1,M2,m,m1,m2, o, o1, o2,+) = (T 1, T 2, . . . , T 10).

Each of the twelve chords inside each si-type can then be indicated with sub-
scripts, so that C major root position is now T 1

0 , and B augmented, or B+, is
now T 10

11 . With this notation we can see that

(s, t)(T i
j ) = T

s(i)
j+ti

.

This product then satisfies the properties:

Lemma 1. For any elements (s, t) and (s′, t′) in the parsimony group G, we
have:

– (s, t) · (s′, t′) = (ss′, t + s(t′))
– (s, t)−1 = (s−1, s−1(−t))
– (s, t)(1, t′)(s, t)−1 = (1, s(t′))
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Proof. The product (with first factor acting first) is verified by:

((s, t) · (s′, t′))(T i
j ) = (s′, t′)(T s(i)

j+ti
) = T

s′(s(i))
j+ti+t′

s(i)
= T

(ss′)(i)
j+ti+s(t′

i)
,

and the form of the inverse follows directly. The last property is verified as:

(s, t)(1, t′)(s, t)−1 = (s, t)(1, t′)(s−1, s−1(−t)) = (s, t)(s−1, t′ + s−1(−t))

= (1, t + s(t′ + s−1(−t))) = (1, s(t′)).

�
From the last property of the Lemma we obtain:

Corollary 1. The group Z of pure translations is a normal subgroup of G.

Next, we recall that a group G is a semi-direct product, written K �φ H if
the following hold:

– K and H are subgroups of G
– H is normal in G
– KH = G
– φ : K −→ Aut(H) is a homomorphism, k �→ φk

– The product in G is (k, h)(k′, h′) = (kk′, hφk(h′))

Theorem 2. The parsimony group G defined above is isomorphic to S10 � Z
9
12.

Proof. The proof follows the outline of the proof of Theorem 1 in [1]. There
are two steps: (1) We show that the permutation part of this group contains all
transpositions on the sets of triad types, and (2) We show that the vectors of
integers modulo 12 contain all elements of the type

(t1, t2, . . . , t10)

satisfying
∑10

i=1 ti = 0, which shows that the subgroup of pure translations Z
is isomorphic to Z

9
12. The first part follows from Fig. 1 where we can identify a

sequence of transpositions which generate all of S10. In fact, we can generate
all transpositions, or swaps of two si-types, where we avoid any translations.
This is done simply by following arrows in the diagram from one si-type to
another but avoiding the horizontal arrows. For example, the swap between type
o (diminished triad in root position) and type m2 (minor triad second inversion)
can be obtained as:

g0L1α1β2α1L1g0.

Since the transpositions generate the full symmetric group, the first part is done.
It is evident that the generators of G satisfy the property that the translation
vector has sum of its components equal to zero. The second part follows by
noting that we can express any element of the specified type as a sum of the
elements generated above, in particular:

(t1, t2, . . . , t10) = t2(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0) + · · · + t10(−1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

where the first coordinate is automatically correct since t1 = −(t2 + · · · +
t10). �
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We can immediately identify the PLR group as a subgroup of the parsimony
group G. In particular, since each operation now factors as a product of three
transpositions, we have:

GPLR
∼= 〈P0P1P2, L0L1L2, R0R1R2〉.

4 Constraint-Based System of Seventh Chords

Extensions of the PLR group to seventh chords are explored in several recent
papers. In [6] Kerkez defines a PS-group, isomorphic to GPLR, which acts on
the major and minor seventh chords. In [1] Cannas, Antonini, and Pernazza,
define a group called PLRQ which generalizes the PLR group to five types of
seventh chords: dominant, minor, half-diminished, major, and diminished, and
they show that this group is isomorphic to the semi-direct product S5 � Z

4
12.

Continuing in this vein, we now extend these results to a larger constraint-based
system of seventh chords.

A typical definition of seventh chord might be: “A four-note chord obtained
by stacking thirds based on a major or minor scale.” One should also add that
such a chord can be inverted in the usual way, giving three other equivalent
four-note chords. If we are interested primarily in pitch classes, then of course
these all represent the same pitch-class set. In this paper we consider these as
individual chords in their own right, and note that their structure gives way to
a very simple constraint-based description of seventh chords.

If seventh chords are assumed to come from the major or minor scale con-
struction alluded to above, then we have the following seven types, which we
call the classical types of seventh chords.

Dominant seventh (7), minor seventh (m7), half-diminished seventh (∅7),
Major seventh (M7), minor-Major seventh (mM7), augmented Major seventh
(+M7), diminished seventh (o7).

As we did for triads, recalling Chrisman’s “successive-interval array” in [2],
we introduce the “successive-interval type”, or si-type: [x, y, z] for a seventh
chord. In equal temperament, we can represent a four-note chord by an integer
vector of values (a, b, c, d). Here we will assume that the note values are listed in
increasing order a < b < c < d.

We define the successive-interval type, or si-type: [x, y, z] for a seventh chord
(a, b, c, d) to be:

[x, y, z] = [b − a, c − b, d − c],

or simply the numbers of semitones separating the notes of the chord, from left
to right.

For example, if we use 0 to represent middle C, then the chord (0, 4, 7, 10)
would be C Dominant seventh chord in root position. The si-type for this chord is
then [4, 3, 3]. The first inversion of this chord is (4, 7, 10, 12), with si-type [3, 3, 2].
Note: The si-type describes a chord inversion, but is not an invariant of the pitch
class set.
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It is easy to see that there are 25 si-types associated to these classical seventh
chords with all of their inversions. The only chord whose inversions do not gen-
erate new si-types is the full diminished chord. It is also easy to check that the
semitone separation variables x, y, z exhibited in these classical seventh chord
types always assume values 1, 2, 3 or 4, and that any such chord (a, b, c, d) with
one of these types must have total spread x + y + z to be at least 8 semitones
(a minor sixth) and at most 11 semitones (a Major seventh). Next, we take the
above description of si-types and turn it into a definition of seventh chord:

Constraint-based definition of seventh chord (based on si-type): We define
a seventh chord (a, b, c, d), given with integers a < b < c < d, to be one with
si-type [x, y, z] = [b − a, c − b, d − c] satisfying the following constraints:

1 ≤ x, y, z ≤ 4 and 8 ≤ x + y + z ≤ 11.

Practiclly speaking, we are defining a seventh chord to be one which can be
played on the piano by simply choosing four notes in such a way that: (1) any
two adjacent notes are separated by a major third, a minor third, a whole step,
or a half step, and (2) the spread from the first to the last notes is at least a
minor sixth, and at most a major seventh.

An obvious question to ask is whether the above constraints are a description
of precisely the above collection of 25 si-types, or have we introduced something
new? The answer is that indeed there are precisely two new chords in this family:
the flat 5 seventh (7�5) and the sharp 5 seventh (7�5).

The si-types of the classical seventh chords as well as these two additional
chords are listed in the following Table 4:

Table 4. si-types of constraint-based system of seventh chords

chord name (and symbol) Root 1st Inv 2nd Inv 3rd Inv

Dominant seventh (7) [4, 3, 3] [3, 3, 2] [3, 2, 4] [2, 4, 3]

minor seventh (m7) [3, 4, 3] [4, 3, 2] [3, 2, 3] [2, 3, 4]

half-diminished seventh (∅7) [3, 3, 4] [3, 4, 2] [4, 2, 3] [2, 3, 3]

Major seventh (M7) [4, 3, 4] [3, 4, 1] [4, 1, 4] [1, 4, 3]

minor-Major seventh (mM7) [3, 4, 4] [4, 4, 1] [4, 1, 3] [1, 3, 4]

augmented Major seventh (+M7) [4, 4, 3] [4, 3, 1] [3, 1, 4] [1, 4, 4]

diminished seventh (o7) [3, 3, 3] [3, 3, 3] [3, 3, 3] [3, 3, 3]

flat 5 seventh (7�5) [4, 2, 4] [2, 4, 2] [4, 2, 4] [2, 4, 2]

sharp 5 seventh (7�5) [4, 4, 2] [4, 2, 2] [2, 2, 4] [2, 4, 4]

Since the 7�5 chord only generates two si-types, while the 7�5 generates four
types, we have a total of 31 si-types for this constraint-based system of seventh
chords. We label the set of these 31 si-types S7:

S7 = {[x, y, z] : 1 ≤ x, y, z ≤ 4, 8 ≤ x + y + z ≤ 11}.
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Let’s call the set of integer vectors (a, b, c, d) representing a seventh chord as
above C7, which is a subset of Z

4:

C7 = {(a, b, c, d) : a < b < c < d, x = b − a, y = c − b, z = d − c, 1 ≤ x, y, z ≤ 4,

8 ≤ x + y + z ≤ 11}.

Finally, we consider C7 modulo translation by the group Z12. By this we
mean that two chords (a, b, c, d) and (a′, b′, c′, d′) are considered equivalent if
they have the same si-type [x, y, z] and a ≡ a′ (mod 12). We can represent each
of these equivalence classes by a chord (a, b, c, d) with 0 ≤ a ≤ 11. Denote the
equivalence class of a chord (a, b, c, d) by simply (a, b, c, d)12. Then we define:

X7 = {(a, b, c, d)12 : (a, b, c, d) ∈ C7}.

The size of X7 is 31 · 12 = 372.
We define the parsimony group G7 for this set X7 of seventh chords to be the

group generated by all parsimonious transformations which raise or lower one
of the four voices, a, b, c or d, of the seventh chord by one semitone, but only
allowing such transformations in the case where the resulting chord is in the same
set X7. Just as with the parsimony group G for triads, each such transformation
can be seen as a swap of two s-types, with a possible shift modulo 12.

5 Future Work

We propose to investigate the following question in a continuation of this work:
Is the parsimony group G7 defined above isomorphic to S31 � Z

30
12?

We can define an infinite graph on the constraint-based system of seventh
chords with edges which exist if there is a parsimonious voice-leading trans-
formation between the two chords. We have developed software to play random
walks on this graph, and propose to use this type of system for generative music.

X7 breaks up naturally into some subsets which can be described as stabi-
lizers of permutation actions on the si-type. Such subsets are:

X1 = {7,m7, ∅7}, X2 = {M7,mM7,+M7}, X3 = {o7}, and X4 = {7�5, 7�5}.

We propose to study further these subsets, and the corresponding subgroups of
the parsimony group G7, and their significance for voice-leading and generative
music.
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