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Abstract. Initiated by David Lewin, the contextual PLR-transforma-
tions are well known from neo-Riemannian theory. As it has been noted,
these transformations are only used for major and minor triads. In this
paper, we introduce non-contextual bijections called JQZ transforma-
tions that could be used for any kind of chord. These transformations
are pointwise, and the JQZ group that they generate acts on any type of
n-chord. The properties of these groups are very similar, and the JQZ-
group could extend the PLR-group in many situations. Moreover, the
hexatonic and octatonic subgroups of JQZ and PLR groups are subdual.
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In the neo-Riemannian theory, the use of algebraic structures provides a deep
insight into the concept of musical structures and transformational processes.
The contextual transformations P (Parallel), L (Leading Tone) and R (Rela-
tive) rediscovered by Lewin [15], Hyer [12,13] and Cohn [3–5] from the works of
musicologist Hugo Riemann in the late 19th century [16], laid the foundations
of the neo-Riemannian theory.

The present paper is organized as follows. After a reminder of some properties
of the neo-Riemannian transformations P , L, and R we choose, as we did in 2005
(see [14]), three suitable generators J,Q, and Z for the T/I-group (formed by
translations (Tn(x) = x + n mod 12) and inversions (In(x) = −x + n mod 12).
The T/I-group is known to be isomorphic to the dihedral group D12 of 24 ele-
ments, the symmetry group of a 12-sided regular polygon [2,11]. In this paper
we use the term JQZ-group synonymously to the term T/I-group. This is in
analogy to the usage of the term PLR-group synonymously to the term S/W -
group (Schritt/Wechsel group). This particular system of generators J,Q, and
Z has not been systematiclly studied before, but its has very similar properties
to the generators P , L and R of the Schritt-Wechsel group. They are not con-
textually defined and can be applied pointwise. Their definition is unique up to
conjugation. Our concrete choice depends upon the choice of the C-major triad
{0, 4, 7} as a distinctive chord of reference. The choice of any other consonant
triad f({0, 4, 7}) in this role yields a conjugated triple fJf−1, fQf−1, fZf−1 of
generators. As in the case of the PLR-group, two subgroups of the JQZ-group
are important: the hexatonic group generated by transformations J and Q, and
the octatonic group generated by transformations J and Z.
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1 PLR Transformations

As usual, we encode pitch classes using the standard model of Z12, where c = 0,
c� = 1, d = 2, and so on up to b = 11. Through this bijection, a major chord is
a set of pitches consisting of three notes that has a root x, major third x + 4,
and perfect fifth x+7; a minor chord is a set of pitches consisting of three notes
that has a root x, minor third x + 3, and perfect fifth x + 7, where the root
of the chord ranges through Z12. Major and minor triads are identified with
3-element subsets of Z12 of the form {x, x + 4, x + 7} and {x, x + 3, x + 7},
respectively. The set of the 24 major and minor chords is also called the set
of consonant triads. Their interval structure can be expressed in terms of third
chains (4, 3) and (3, 4), respectively. Rooted interval chains ((a, b), x) can be
mapped to the associated pitch class sets via: ((a, b), x) �→ {x, x + a, x + a + b}.
Some neo-Riemannian approaches use pitch-class segments denoted by angular
brackets. The set Σ of consonant triads then consists of the major segments
〈x, x + 4, x + 7〉 and minor segments 〈x, x − 4, x − 7〉 where the (dualistic) root
x ranges over Z12. Properties on PLR groups have been established by Thomas
Fiore et al. [1,7–10]. The PLR transformations on (dualistic) root position triads
within Σ are defined by1

P 〈x, y, z〉 = Ix+z 〈x, y, z〉 (1)
R 〈x, y, z〉 = Ix+y 〈x, y, z〉
L 〈x, y, z〉 = Iy+z 〈x, y, z〉

The transformation P (Parallel) exchanges a major triad with the associated
parallel minor triad. For instance, P 〈c, e, g〉 = P 〈0, 4, 7〉 = 〈7, 3, 0〉 = 〈g, e�, c〉.
The transformation R (Relative) exchanges a major triad with its relative minor
triad (the real root of the relative minor triad is a minor third below the root of
the major triad) R 〈c, e, g〉 = R 〈0, 4, 7〉 = 〈4, 0, 9〉 = 〈e, c, a〉 . And the transfor-
mation L (Leittonwechsel, Leading tone exchange) exchanges a major triad with
a minor triad with its real root a major third above L 〈c, e, g〉 = L 〈0, 4, 7〉 =
〈11, 7, 4〉 = 〈b, g, e〉 . In other words, P relates triads that share a common fifth;
L relates triads that share a common minor third; and R relates triads that
share a common major third.

The PLR-transformations are involutions P 2 = L2 = R2 = Id, they are their
own inverses. As noted, the group generated by P , L and R is called the PLR-
group, the Schritt/Wechsel group or the neo-Riemannian group after the late
19th-century music theorist Hugo Riemann. Since P = R(LR)3, the PLR-group
is generated by L and R. It has been shown that the PLR-group is the dihedral
group of 24 elements. And by corollary, the PLR-group acts simply transitively
on the set of consonant triads. In the following, major and minor chords are

1 Observe, however, that applying the formulae (1) to chord inversions leads to:
L 〈0, 4, 7〉 = 〈11, 7, 4〉 (Em), L 〈7, 4, 0〉 = 〈9, 0, 4〉 (Am) and L 〈4, 7, 0〉 = 〈3, 0, 7〉
(Cm). In this case, one can not use the equivalence of chord inversions. But these
formulae can alternatively be interpreted as voicing transformations [10].



Non-Contextual JQZ Transformations 151

indicated by compact pitch class notations, with A = 10 and B = 11: 904 is the
minor chord 〈9, 0, 4〉 = 〈e, c, a〉 and 48B is the major chord 〈4, 8, 11〉 = 〈e, g�, b〉.
The planar representation of the PLR group is a torus.

It is well known, that the transformations P, L, R are not defined on the 12
pitch classes themselves. P sends e = 4 in < 0, 4, 7 > to 3 and in < 9, 1, 4 > to 9.
The transformations are contextually defined on the basis of the specific interval
structure of the major and minor triads. There is no canonic way to define them
in strict analogy on other single chord classes, and there are serious obstacles to
extend them to all pitch class sets at once. Therefore it is the goal of the next
section is to find non-contextual inversions as partners for P, L and R on Z12,
which are then automatically valid for all k -chords.

2 JQZ Transformations

The purpose of this section is to select congenial inversions for the generators
P , L and R among the 12 inversions Ik on Z12.

In a first step, we look for an inversion J that behaves like the Wechsel P
for the C-major triad, i.e. which transforms the major chord {0, 4, 7} into the
minor chord {0, 3, 7}. The transformation J = I7 fulfills this and is uniquely
determined. For all x ∈ Z12, we get J({x, x + 4, x + 7}) = {−x,−x + 3,−x + 7}.
In other words, J transforms the major chord rooted at x into the minor chord
rooted at −x (mod 12). It can be interpreted as the permutation (in cyclic
notation): J = (0, 7)(1, 6)(2, 5)(3, 4)(8, 11)(9, 10).

In the second step, we look for an inversion Q that behaves like the Leiton-
wechsel L on the C-major triad, i.e. transforming the major chord {0, 4, 7} into
the Leading-tone-exchange chord (Leittonwechselklang) {4, 7, 11}. The transfor-
mation Q = I11 fulfills this and is uniquely determined. For all x ∈ Z12, we get
Q({x, x + 4, x + 7}) = {−x + 4,−x + 7,−x + 11}. In other words, Q transforms
the major chord rooted at x into the minor chord rooted at 4−x (mod 12). The
transformation Q is the permutation Q = (0, 11)(1, 10)(2, 9)(3, 8)(4, 7)(5, 6).

In the third and last step, we look for an inversion Z which behaves like the
Wechsel R on the C-major triad, i.e. which transforms the major chord {0, 4, 7}
into the relative minor chord {9, 0, 4}. The transformation Z = I4 fulfills this
and is uniquely determined. For all x ∈ Z12, we get Z({x, x + 4, x + 7}) =
{−x + 9,−x,−x + 4}. In other words, Z transforms the major chord rooted at
x into the minor chord rooted at 9 − x (mod 12). The transformation Z is the
permutation: Z = (0, 4)(1, 3)(5, 11)(6, 10)(7, 9).

Since JQZ transformations act pointwise, the order of the pitch classes does
not matter.

As noted, the transformations J, Q, Z depend upon the choice of the C-major
triad. But analogous transformations can be chosen with a different chord of
reference, such that they behave like the transformations P, L, R on this chord.
Introducing the transformations J(x,+) = I2x+7, Q(x,+) = I2x−1, Z(x,+) =
I2x+4 for a major chord, and the transformations J(x,−) = I2x+7, Q(x,−) =
I2x+3, Z(x,−) = I2x−2 for a major chord, we have the following result.
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Theorem 1. For the major chord X = {x, x+4, x+7} we define the inversions:

J(x,+) = I2x+7, Q(x,+) = I2x−1, Z(x,+) = I2x+4

For the minor chord X = {x, x + 3, x + 7} we define the inversions

J(x,−) = I2x+7, Q(x,−) = I2x+3, R = Z(x,−) = I2x−2

In both cases s = ± we obtain J(x, s)(X) = P (X), Q(x, s)(X) = L(X), Z(x, s)
(X) = R(X). Moreover, the transformations J(x, s), Q(x, s), Z(x, s) are conju-
gates of J,Q and Z, respectively:

J(x,+) = TxJT−1
x , Q(x,+) = TxQT−1

x , Z(x,+) = TxZT−1
x ,

J(x,−) = IxJIx, Q(x,−) = IxQIx, Z(x,−) = IxZIx.

Proof. The proof is straightforward using Eq. (1). For instance, one has:

P 〈x, x + 4, x + 7〉 = I2x+7 〈x, x + 4, x + 7〉 = J(x,+)

Using the properties (see Eq. (2) below), we have

TxJT−1
x = TxI7T−x = TxI7+x = I2x+7 = J(x,+) = J(x,−)

Other relationships are shown in the same way.

These conjugation relations allow us to choose a reference point (here x = 0),
but it can be adapted for musical purpose. The Cayley-graph of the action of the
neo-Riemannian group on the consonant triads with respect to the generators
P , L, and R is known under the nickname “chickenwire torus”. Analogously, the
Cayley graph of the JQZ transformations is represented on Fig. 1. The torus is
visualized by gluing the right border with the left side, and the top side with
the bottom, according to the chords.

3 The JQZ and PLR Groups

The JQZ -transformations are involutions J2 = Q2 = Z2 = Id. They generate
the JQZ -group of order 24, with presentation:

〈J,Q,Z〉 =
〈
J,Q,Z | J2 = Q2 = Z2 = (JQ)3 = (JZQ)2 = (JZ)4 = 1

〉

The toroidal representation was made by several authors including Richard Cohn
in [3–5]. Derek Waller was one of the first authors to introduce the torus in
musical representations [17]. The donut that is made by gluing the edges of
the tonnetz was called the chicken-wire torus by Douthett and Steinbach [6].
Whether we start from the PLR network or from the JQZ network, we find the
same topological figure (see Fig. 2).
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Fig. 1. Tonnetz of the JQZ-transformations

Fig. 2. Chicken-Wire Torus (left PLR, right JQZ)

In the Cube Dance, another figure introduced by Douthett and Steinbach in
[6], each vertex represents a consonant triad or an augmented triad, and each
solid edge is labeled by either P or L. A slightly differing figure can be obtained
with the transformations J and Q: Observe, that four cubes dance in two pairs
here (see Fig. 3).

Although there is an isomorphism between PLR and JQZ groups, this
isomorphism is not obvious. In the T/I group, the transpositions commute
TnTm = TmTn = Tm+n but the inversions do not commmute. They satisfy
the relations:

InIm = Tn−m TnIm = In+m ImTn = Im−n (2)

PLR -Transformations commute with transpositions (PTn = TnP, LTn = TnL,
RTn = TnR), while J , Q and Z anticommute (JTn = T−nJ , QTn = T−nQ,
ZTn = T−nZ).
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Fig. 3. Douthett’s Cube Dance (left PLR, right JQZ)

Theorem 2. The transformations J,Q,Z satisfy the relations

JIn = I2−nJ, ZIn = I8−nZ, QIn = I10−nQ

Commutation relations are obtained for JI1 = I1J , ZI10 = I10Z, QI5 = I5Q.

Proof. Substituting J,Q,Z by respectively I7, I11, I4 leads to the relations. For
instance,

JIn = I7In = T7−n = T2−n+5 = T2−n−7 = I2−nI7 = I2−nJ

Commutation relations are obtained only if ImIn = T6. Since ImIn = Tm−n, n
must be equal to n = m + 6mod 12 . Then for m = 7, n = 1, for m = 10, n = 4
and for m = 4, n = 10.

Theorem 3. The transformations P , L, R on the set of consonant triads Σ
satisfy the relations:

Tx−yPL = Ty−xLP, Tz−yPR = Ty−zRP, Tz−xLR = Tx−zRL

Proof. We have PL〈x, y, z〉 = P 〈y + z − x, z, y〉 = 〈y, 2y − x, y + z − x〉.
On the other hand, the computation: T2y−2xLP 〈x, y, z〉 = T2y−2xL〈z, x +
z − y, x〉 = T2y−2x〈2x − y, x, x + z − y〉 = 〈y, 2y − x, y + z − x〉 = PL〈x, y, z〉
leads to the formula. The proof of the two other relations is similar.

In the following table, we give a dictionary between the two groups. already
remarked, the JQZ transformations do not depend on element The transposi-
tions Tn can be expressed as a combination of JQZ transformations. The corre-
spondence of an element of the JQZ-group with an element in the PLR-group
is given by their concordant behavior on a chosen triad. If this element 〈x, y, z〉
is a minor chord, the correspondance is given by J ↔ P , Q ↔ L, Z ↔ R.
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But if the element is a minor chord, we have to inverse the element given by
the minor chord. For instance, for the transposition T3 up to a minor chord
T3 = I7I4 = JZ, the corresponding element in PLR is PR for a minor chord
and (PR)−1 = RP for a major chord. The verification is straightforward:

PR 〈x, x + 8, x + 5〉 = P 〈x + 8, x, x + 3〉 = 〈x + 3, x + 11, x + 8〉
= T3 〈x, x + 8, x + 5〉

For the inversions, the dependence is not only related to the major or minor
chord but also to the root of the chord. For instance, we get

PRL 〈x, x + 4, x + 7〉 = PR 〈x + 11, x + 7, x + 4〉 = P 〈x + 7, x + 11, x + 2〉
= 〈x + 2, x + 10, x + 7〉 = I2x+2 〈x, x + 4, x + 7〉

In the following table, the index n in 2x + n must be computed first in order to
use the PLR column. For instance, the passage from A� (803) to Fm (085) is I8.
The chord A� is a major chord rooted at x = 8. It follows that 2x+n = 8 implies
n = 4. In the column Major, at line I2x+4 the corresponding PLR transformation
is R. Thus the passage from A� to Fm is the R transform. Moreover, since
inversions are involution, the passage from Fm (085) to A� (803) is also I8. The
chord root of the minor chord Fm is x = 0 since the minor chord are of the form
〈x, x + 8, x + 5〉 . It follows from 2x + n = 8 and x = 0 that n = −4. In the
column Minor at line I2x−4, the corresponding PLR transformation is R. Thus
the passage from Fm to A� is the R transform.

T/I JQZ Major Minor
T0 1 1 1
T1 QJZJ (LPRP )−1 LPRP
T11 (QJZJ)−1 (PRPL)−1 PRPL
T2 (QZ)2 (LR)−2 (LR)2

T10 (QZ)−2 (LR)2 (LR)−2

T3 JZ (PR)−1 PR
T9 (JZ)−1 PR (PR)−1

T4 QJ (LP )−1 LP
T8 (QJ)−1 LP (LP )−1

T5 ZQ (RL)−1 RL
T7 (ZQ)−1 RL (RL)−1

T6 (ZJ)2 (RP )−2 (RP )2

T/I JQZ Major Minor PLR
I0 JQZ I2x I2x PLR
I1 ZJZ I2x+1 I2x−1 RPR
I2 JZQ I2x+2 I2x−2 PRL
I3 JQJ I2x+3 I2x−3 PLP
I4 Z I2x+4 I2x−4 R
I5 ZQZQJ I2x+5 I2x−5 RLRLP
I6 QZQ I2x+6 I2x−6 LRL
I7 J I2x+7 I2x−7 P
I8 QJZ I2x+8 I2x−8 LPR
I9 ZQZ I2x+9 I2x−9 RLR
I10 JZJ I2x+10 I2x−10 PRP
I11 Q I2x+11 I2x−11 L

A dictionnary between T/I, JQZ and PLR elements

With the presentation of the PLR-group and the JQZ -group, finding an
isomorphism between the two groups which has a musical meaning is not obvious.
However, there exists some isomorphisms between the PLR group and the JQZ
group through the permutations of the symmetric group S24. The calculation
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was done with the GAP software. It shows that if the PLR group is built with
the generators:

P = (0, 19)(1, 15)(2, 14)(3, 11)(4, 0)(5, 18)(6, 7)(8, 22)(9, 23)(12, 21)(13, 20)(16, 17)

R = (0, 16)(1, 20)(2, 21)(3, 23)(4, 22)(5, 17)(6, 19)(7, 18)(8, 13)(9, 12)(10, 15)(11, 14)

L = (0, 4)(1, 2)(3, 5)(6, 8)(7, 9)(10, 12)(11, 13)(14, 16)(15, 17)(18, 20)(19, 21)(22, 23)

and the group JQZ is built with the generators:

J = (0, 7)(1, 6)(2, 5)(3, 4)(8, 11)(9, 10)
Q = (0, 11)(1, 10)(2, 9)(3, 8)(4, 7)(5, 6)
Z = (0, 4)(1, 3)(5, 11)(6, 10)(7, 9)

then the group isomorphism is defined by P → J , L → Q and R → Z.
From the musical point of view, the JQZ and PLR paths in the tonnetz are

very similar. The examples studied by Alissa S. Crans, Thomas M. Fiore, and
Ramon Satyendra in [2] are reinterpreted here by JQZ relations. For instance,
in the “Grail” theme of the Prelude of Parsifal (1882), the chord progression
written under the compact form:

A�

803
→ Fm

580
→ D�

158
→ B�m

A15
→ A�

803
is interpreted in two ways. The PLR interpretation shows the importance of
relative chords while the JQZ interpretation highlights the action of the octa-
tonic subgroup, namely the inversion ZJZ between chords. The vertical arrows
are not the same in the PLR transformations (one is R, and the other RLR)
while they are perfectly symmetrical (ZJZ = JZ) in the case of the group JQZ,
representing the inversion I1. Taking the chord A� as a reference will lead to
simpler relationships.

PLR Interpretation: JQZ Interpretation:

A�
R

Fm

L

B�m

RLR

D�
R

A�
QJZ

Fm

ZJZ

B�m

ZJZ

Db
QZQ

In the Lento occulto of Feruccio Busoni’s Sonatina seconda, the similarity
between PLR and JQZ group is clear in the chord progression,

E�
ZJZQ

RPRL
�� C�

ZJQJ

PRPL
�� D

ZJQJ

PRPL
�� E�

ZJQJ

PRPL
�� E

QZRL

��
E�

��

E
JQJZ

PLPR
�� C

QJ

PL
�� F

QZ

RL
�� B

JZJZ

PRPR
��

as well as in Debussy’s Danseuses de Delphes (Preludes vol. 1):

B�
J

L
Dm

ZQ

RL
�� Gm

JQZ

PRL
C

ZQZ

RLR
Dm

J

L
B�

ZQZQ

RLRL
�� C

ZQ

LR
�� F
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4 Dual and Subdual Groups

In this section, we study two particularly interesting subgroups: the hexatonic
group and the octatonic group. The hexatonic group is the group generated by
transformations J and Q. It has the presentation

〈J,Q〉 =
〈
J,Q | J2 = Q2 = 1, JQJ = QJQ

〉

The group has six elements: 〈J,Q〉 = {T0, I7, T4, I3, T8, I11} = {1, J,QJ, JQJ,
JQ,Q}. Each element of the group is compute using the relations J = I7 and
Q = I11. For instance,

JQ(x) = J(−x + 11) = −(−x + 11) + 7 = x − 4 = x + 8 mod 12 = T8(x)

The group acts on the major and minor chords, but likewise it acts on any other
set class. The 3-chord {0, 6, 11} has the 6-element orbit

{{0, 6, 11}, {1, 7, 8}, {3, 4, 10}, {3, 4, 9}, {2, 7, 8}, {0, 5, 11}}
within the set class 3–5 (Forte’s nomenclature).

The octatonic group is generated by the transformations J and Z. It has
the presentation: 〈J, Z〉 =

〈
J, Z | J2 = Z2 = 1, (ZJ)2 = (JZ)2

〉
. The group has

eight elements: 〈J, Z〉 = {T0, I7, T9, I10, T6, I1, T3, I4} = {1, J, ZJ, JZJ, (ZJ)2,
ZJZ, JZ,Z}. For instance, we compute

JZ(x) = J(−x + 4) = −(−x + 4) + 7 = x + 3 mod 12 = T3(x).

Since the groups T/I, PLR and JQZ are isomorphic, they have the same cen-
ter. This centre is the group of ordre 2 consisting of {1, T6}. The group Q of quasi
uniform triadic transformations of order 1152 (GAP 1152#32554) introduced
by Hook [11] is a refinement of the group U of uniform triadic transformations
of order 288 (GAP 288#239). The group U is isomorphic to the wreath product
of the cyclic group C12 of order 12 by the cyclic group C2 of order 2. The group
Q is the wreath product of the T/I group by the symmetric group of 2 elements
S2.

U = C12 � C2 Q = T/I � S2 	 D12 � S2

The notion of dual groups in the sense of Lewin has been introduced in [8].

Definition 1. Two subgroups G1, G2 of a group S are dual (in the sense of
Lewin) if both act simply and transitively and are each others centralizers.

CS(G1) = G2 and CS(G2) = G1

For instance, the centralizer of the T/I group in Q is the JQZ -group (or
PLR-group) and the centralizer of the JQZ -group (or PLR-group) in Q is the
T/I group. The computation is straightforward with the GAP software.

CQ(T/I) = 〈J,Q,Z〉 and CQ(〈J,Q,Z〉) = T/I
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The same is true in the symmetric group Sym(Σ) 	 S24 of permutations of 24
elements [2] instead of Q: the JQZ -group and the T/I -group are subgroups of
Sym(Σ). The subduality of the hexatonic group and the octatonic group has
been studied by Thomas Fiore and Thomas Noll in the same reference [8]. They
define the concept of subduality in the following sense.

Definition 2. Let G1, G2 be dual subgroups of the symmetric group S24 of the
24 triads and let H1, H2 be two subgroups of G1, G2 respectively. H1 and H2

are subdual groups if both act simply and transitively on a subset X ⊂ S24 and
are each others centralizers within the symmetric group SX of this subset.

CSX
(H1) = H2 and CSX

(H2) = H1

The hexatonic JQ-group 〈J,Q〉 has 4 orbits, namely two pairs of tritone-
related sets of six triads each.

{C, Cm, E, Em, A�, A�m} and {D, Dm, F �, F �m, B�, B� m} as well as
{D�, E �m, F, Gm, A, Bm} and {D�m, E �, Fm, G, Am, B}. The orbits in the
first pair are triads in proper hexatonic collections, i.e. they are also orbits of
the hexatonic PL-group 〈P,L〉. The orbits in the second pair form orbits under
a conjugate of 〈P,L〉, namely: R 〈P,L〉 R. This leads to the following result.

Theorem 4. With respect to the first two orbits the group 〈J,Q〉 is subdual to
〈P,L〉. With respect to the second two orbits 〈J,Q〉 is subdual to R 〈P,L〉 R.

The octatonic JZ-group 〈J, Z〉 has 3 orbits of 8 triads each. The first one
{F �m, F �, E �m, A, Cm, C, Am, E �} is also orbit of the octatonic PR-group.
The two others {Bm, C �, G�m, E, Fm, G, Dm, B�} and {B�m, D, Gm, F, Em,
G�, C �m, B} are orbits under conjuguation (RL) 〈P,R〉 (RL)−1. This lead to
the following result.

Theorem 5. With respect to the first orbit the group 〈J, Z〉 is subdual to 〈P,R〉.
With respect to the second two orbits 〈J, Z〉 is subdual to (RL) 〈P,R〉 (RL)−1.

5 The Atonal Triad

The study of the interplay of the PLR group and the JQZ group is helpful in
atonal analysis. We will illustrate this for the atonal triad 〈0, 1, 6〉.

The main advantage of JQZ transformations is to be able to consider all
types of chords and not only consonant chords. For instance, if the JQZ group
acts on the atonal triad 016 {c, c�, f�}, the action leads to a new lattice. In the
other hand, if we replace the set Σ of consonant triads by the set Γ of atonal
triads rooted on x of the form 〈x, x + 1, x + 6〉 and 〈x, x − 1, x − 6〉 we get new
relations

P 〈x, x+ 1, x+ 6〉 = 〈x+ 6, x+ 5, x〉 , P 〈x, x+ 11, x+ 6〉 = 〈x+ 6, x+ 7, x〉
R 〈x, x+ 1, x+ 6〉 = 〈x+ 1, x, x+ 7〉 , R 〈x, x+ 1, x+ 6〉 = 〈x+ 11, x, x+ 5〉
L 〈x, x+ 1, x+ 6〉 = 〈x+ 7, x+ 6, x+ 1〉 , L 〈x, x+ 11, x+ 6〉 = 〈x+ 5, x+ 6, x+ 11〉
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This allows us to interpret Georges Crumb’s Gargoyles, a piano piece, extract
from Makrokosmos, in both ways:

238 SZ

(PL)3
�� 56B

QZ

PR
�� 016 SZ

(PL)4
�� 349

QS

LPRP
�� 781

(SZ)2

RL
�� 127

107 SZ

(LP )3
�� 43A

QZ

RP
�� BA5 SZ

(LP )3
�� 218

QS

(LP )4
�� 650

(ZS)2

LR
�� 0B6

The right hand evolves in the same way as the left hand: the atonal triads are
linked by the transformations (JZ, QJ). The same transformations are used in
both hands, except in the last triads. But if we consider a crossing of the hands:
781 goes to 0B6 by the transformation J , just as 650 goes to 127 by the same
transformation.

Another interpretation is possible. As we saw for the PLR group, we can
consider two kinds of atonal triads, one of structure (1, 5) and the other of
structure (5, 1). From the relations of PLR seen above, we can introduce the
transformations for atonal triads {x, x + 1, x + 6},

J(x,+) = I2x+6, Q(x,+) = I2x+7, Z(x,+) = I2x+1

and for the atonal triads {x, x + 5, x + 6},

J(x,−) = I2x+6, Q(x,−) = I2x−7, Z(x,−) = I2x−1

For x = 0, we have three new transformations J = I6, Q = I7, Z = I1. The
tritone (6) has replace the fifth (7) in the definition of J . Applying these trans-
formations to Olivier Messiaen’s Regard de l’Onction terrible (extract of Vingt
Regards de l’Enfant Jesus #18), leads to the following chords progression, which
evolves against the same chord A94, on the left hand. We use the following nota-
tion for the conjuguaison: ZJ = JZJ .

650
JQ

PL
��

ZJQRPL
��

54B
JQ

PL
��

RPJZ
��

43A
JQ

PL
��

RLZQ

��

329
JQ

PL
��

RPLZJ
��

218
JQ

PL
��

ZQJ(LP )4

��

107 ��

(LP )3 ZJJQ

��

107

(RP )2JQ

��
A94 �� A94 �� A94 �� A94 �� A94 �� A94

JQ

LP
�� 0B6

This demonstrates the interest and power of these non-contextual transforma-
tions for the analysis of all kind of music, but especially for atonal music.
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