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Abstract. Non-reentrant functions are commonly used in multi-thread pro-
grams, such as network services and other event-driven programs, to reserve
some global states in a concurrent context. However, calling non-reentrant
functions may bring several kinds of dangerous pointer dereference faults, and
will lead to serious consequences such as program vulnerabilities. To beat this,
this paper presents an approach to check state consistency against non-reentrant
functions based on taint analysis and symbol execution technology. The pro-
posed method records the program taint states and traces the data flow during the
symbol execution process where some rules are specified to check the state
consistency and exceptions such as null pointer reference, pointer double free
and pointer use-after-free. We implement a proof-of-concept system SC2NRF
based on the symbol execution framework angr. Further experiments show that
our approach is able to effectively check state consistency of non-reentrant
functions in binary programs.

Keywords: Binary program � State consistency � Non-reentrant function �
Taint analysis � Symbol execution

1 Introduction

Non-reentrant functions have been widely used in large-scale real-life programs to
provide user-friendly and smart functionality. There are usually referenced in a con-
current context a competing code sequences (e.g. threads or signal handlers) that may
influence their states [1, 2]. If not carefully designed, the calling of programs with non-
reentrant functions will lead to dangerous program state faults, and then introduce
serious consequences, such as pointer dereference error. For clarity, we explain this
problem using two CVEs with high scores, i.e. CVE-2018-0101 and CVE-2015-0291.
In the first example, a buffer address in a non-reentrant function is assigned to a global
pointer and a local buffer pointer. The local buffer pointer is freed in the tail of the
function, while the global pointer still holds the buffer address. When the function is
called again, a double-free vulnerability is triggered and a system crash will happen. In
the another example CVE-2015-0291, there is a non-reentrant function in which the
address of a local buffer A is assigned to another local pointer B and the length of buffer
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A is also assigned to another local variable C. When the function returned, local pointer
B is set to NULL, but the local variable C is not processed accordingly. When this
function is called again in a specified condition, the local pointer B remains there, but
the value of local variable C holds the last time assignment, and the rest codes uses the
value of C to access B, which leads to a null-pointer dereference vulnerability and
results in process crash.

Both the two CVEs are exemplars about non-reentrant function problems, however,
the issue cannot be avoided or resolved using existing thread safety techniques. The
root cause is that the states of different variables are inconsistent in program semantics,
and this inconsistency in a defect program implementation will cause serious software
faults. Existing vulnerability detection technologies (e.g. double free checking and null-
pointer checking techniques based on static and dynamic detection methods) cannot
meet the requirements of checking such state inconsistency in non-reentrant function.
Additionally, state inconsistencies also exist in block-chain applications such as smart
contracts [3, 4]. The core problem of consistency checking is to find the relations of
state variables and track the data flow of state variables in different execution paths.
Based on the data flows in a non-reentrant function, existing defects in binary programs
can be detected for further improvements.

According to above analysis of this inconsistency issue, we model it as a kind of
consistency checking of program states between different program paths. The key
factors to solve this issue are program state model, state analysis of program executions
and dynamic consistency checking, and several techniques can be leveraged for this
purpose. In general, both the static analysis and dynamic analysis can be used to
analyze non-reentrant function. But static analysis solutions (e.g., [5]) usually have
high false positives because many program states are dynamically generated [6], and
are only fit for small programs due to intrinsic challenge (i.e., alias analysis). Given a
specific execution, the program state and data flow are deterministic, it is easier and
more reliable to use dynamic analysis to check state consistency.

Several dynamic analysis techniques are widely adopted for program analysis, e.g.,
symbol execution [7], taint analysis [8] and information flow analysis [9]. Symbol
execution could explore program paths thoroughly and discover program states in a
more proactive way, but most solutions of symbol execution could not accurately
analyze the relations of program states in different paths. Taint analysis can trace the
taint propagation process and record the taint relation of program states, but existing
solutions are not fine-grained enough for consistency checking. Current solutions based
on information flow analysis include flow-insensitive, path-sensitive, and context-
sensitive flow analysis [9–11], can build data flow in multi-grain levels. However, the
disadvantages of these approaches are that the inter-process data flows are omitted,
including call stack data flow and function return data flow, and data flows constructed
are limited. Similar to heap overflow [12] and double-fetch [13, 14], state inconsis-
tencies are root cause of program faults. Hence, a fine-grained state consistency
analysis approach is necessary to solve this problem.

To address this issue, the data flow of non-reentrant function need to be con-
structed, and consistencies of data flow are modeled and checked in case of any non-
consistencies in given non-reentrant function. Based on this idea, we present a state
consistency checking method, and propose an inter-process data flow model for state
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consistency checking. Especially, we leverage symbol execution technology to con-
struct multiple execution traces, together with the data flow constructed with taint
analysis technique.

The main contributions of this paper include: (1) a state consistency checking
framework (implemented as SC2NRF system) for constructing and analyzing inter-
process data flow; (2) a symbol assisted taint analysis approach to trace data flow and
build data flow relations; and (3) a rule-based state consistency checking algorithm to
find data flow faults in program implementations.

The rest of this paper is organized as follows. In Sect. 2, the state consistency
checking framework together with its working process and checking algorithm is
discussed in detail. Section 3 describes the implementation and experiments of the
SC2NRF system. Discussions and the conclusions are presented in Sect. 4.

2 State Consistency Checking Framework

We aim to discover state inconsistencies in program execution process with the
combination of static control analysis and symbol execution. To achieve this goal, we
define the data flow models of binary program in advance, and describe how to
manually define consistency rules and automatically generate them based on heuristic
algorithms.

Furthermore, to make the solution efficient and practical, we propose an approach
which uses taint-assisted symbol execution methods to generate full data flow and
detect potential inconsistencies of program states. At last we concrete values in path
constraints and inconsistency constraints to speed up the checking process.

Figure 1 depicts the working flow of the proposed framework. Firstly, we analyze
the target program with static analysis to construct the control flow graph and identify
function call attributes. The program is run by taint assisted symbol execution and we
will collect taint expressions and path constraints during each block’s execution. Our
analysis module then tries to build global data flow relations and checks any incon-
sistencies against given consistency rules. At last, inconsistency results are exported
and identified for further analysis.

Program

Taint assisted 
Symbol

execution Data flow builting 
and consistency 

checking

Static analysis CFG analysis and 
function label

Taint expressions 
and constraints

Inconsistencies
result

Consistency Rules

Fig. 1. Framework overview.
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2.1 Information Flow Model for Code Block

A data flow shows how instructions correlate with each other with respect to the
production and consumption of data. Efficiently generating a sound data flow for a
binary slice has several challenges. First, program slicing requires a flow-sensitive and
context-sensitive data flow analysis, which however has a run-time complexity expo-
nential to the number of all possible paths in a program. Second, analyzing the data
flow of binary programs poses some unique problems. Hence, we propose a data flow
model upon a single code block of binary program to provide fine-grained data flow
relations.

Definition 1. GivenCFGf the control flowgraph of a non-reentrant function f and c a code
block in CFGf, we model the operation expressions list of block c as Ic = {yi = op(xi), for
xi in block c}, where op is an algorithm operation or logic operation. Given two blocks in
CFGf namely c1 and c2, edge econdition = (c1, c2) records condition of block c1 to block c2 if
data Ic1 of c1 flows to Ic2 of c2 under the condition.

Definition 2. We use DFRc to denotes summary of data flow relation in block c. For
each dfr in DFRc, dfr(yi, yj) means that there is a data flow relation between yi and yi.
For example, if yi is the buffer pointer of a input string, and yj is the string length of the
input string, then dfr(yi, yj) equals to yj = str_length(yi), where str_length is a typical
kind of data flow relations. Other data flow relations include pointer aliasing, pointer
repositioning, logic operations and so on.

We also define the typical data flow relations between code blocks as in Fig. 2. In
Fig. 2(a), the fork flow model means that two data flows are forked by program
execution conditions, and in Fig. 2(b), relation flow means that flow1 and flow2 are
flowed to next code block with the relation r, and in Fig. 2(c), flow1 and flow2 are
aggregated in one block by algorithm operation or logic operation. In our discussion,
the three data flow relations are common in real-programs.

Based on the data flow relations in Definitions 1 and 2, we model the fine-grained
data flows along the execution traces of non-reentrant functions. However, data flow
relations in real programs are complex and diverse, and the state consistency rules have
to be defined based on data flow relations. To handle the issues mentioned above, our
framework follows [15] to analyze data flow, which is an inter-procedural data flow
analysis algorithm that uses def-use chains.

flow1 flow2 flow1 flow2 flow1 flow2

r

(a) fork flow (b) relation flow (c) aggregate flow

Fig. 2. Three kinds of basic data flow relations.
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2.2 Taint-Assisted Symbol Execution Approach

To analyze a given non-reentrant function, we build the constraints between input bytes
and the data flow relations of program code blocks by performing symbolic execution.
However, existing symbol execution approaches are lack of support for fine-grained
data flow analysis. We propose a new solution to mitigation this issue. More specifi-
cally, we tag data flows and taint them between code blocks. Based on the state-copy
symbol execution techniques, we can calculate the overall data flow relationship in
parallel, and check state consistency online. It is worthy that detecting state inconsis-
tency between different program paths no matter there is any broken consistency rules.

The SC2NRF system tracks taint data flows of program paths. In general, it per-
forms a fine-grained taint propagation analysis to track each value’s source and data
flow relation.

However, previous taint analysis solutions trace only the taint sources. The relation
between different data flow and taint propagation process are not recorded. For
example, programs may use strlen or other custom functions to infer some values (e.g.,
length) of the inputs, and then use them as size to allocate memory. In this case,
operations upon the input buffer are indirectly affected by the inputs. Both the input
buffer and variable that record the length of the buffer need to be record.

Classical dynamic taint analysis solutions usually do not propagate taint informa-
tion for control dependencies [16], due to the concern of taint propagation efficiency.
Instead, the SC2NRF system taints the symbol input, the data flow relation and their
propagation by extending the symbol execution techniques to support fine-grained data
flow taint. More specially, this system leverages the position of input bytes as taint
attributes, and propagate these taint expressions along the trace.

For the generic instrumentation, we adopt a taint propagation policy based on the
notion of data dependency [17–19]. If the output is a direct copy or transformation of
the input, then it will be tainted if the input is tainted. This gives us a good coverage
over all instructions and allows us to implement taint propagation without a special
handler for each type of instruction in VEX IR instruction set, which is an architecture-
agnostic, side-effects-free representation of a number of target machine languages.
Based on VEX IR, the SC2NRF system implements taint propagation with operation
expressions for tracing fine-grained data flow relations. To achieve this goal, we have
identified several kinds of operation expressions in Table 1. These operation expres-
sions account for the exact semantics of the data flow. They are used both as a
performance improvement for commonly-used instructions, and an accuracy
improvement for instructions with certain modes of operation that violates the basic
data dependency rules.

To record the taint attributes and taint expression in symbol execution process, we
have defined several kinds of set to aid analysis process. These recording set include
store expression table STOREREC, register expression table REGREC, temp expression
table TMPREC and global taint label table GLOBALTAINTREC, to record the memory
store records, register writing records, local variables and immediate variables and
global taint information in the symbol execution process.

Furthermore, the traces we collected only include user space instructions. Then
some data flows will be missing when the system library functions are called. The
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Table 1. Operation expression cases to generic data dependency propagation.

Instruction type Reason and specific expression

Algorithm, logic and BITS wide
transformation instructions

These instructions are recorded with the form of
value = op(EXPA1, EXPA2,…), and new expression is
built and inserted into TMPREC, where op is a concrete
instruction type and Ai is one of the arguments

System library call These instructions are identified by function call graphs
generated by static analysis, and are recorded with the
form of value = call(EXPA1, EXPA2,…), and a new
expression is built and inserted into TMPREC, where
call is a concrete instruction type and Ai is one of the
arguments

Memory store instructions To identify the operation semantics of these
instructions, both the target memory address and the
data need to be checked before generating an
expression. These writing data could be one of the
memory store types, include arguments preparing for
next function call with the form of
BP+positive_immediate_value, local variable saving
for temp results with the form of BP-
positive_immediate_value or BP-
negative_immediate_value, reading return results from
sub function call SP-positive_immediate. Hence, the
corresponding expression is inserted into
STOREREC(address)

Memory loading instructions Similarly, the address of memory loading instructions
could be one of the following types, namely loading
immediate value with the form of immediate_value,
loading argument values from program stack with the
form of add(sp, positive_immediate), loading temp
results from program stack with the form of add(bp,
negative_immediate), and so on, then an expression
with the form is inserted into TMPREC

Register writing instructions In these register writing instructions, the written data
should be one of the following types, immediate value
with the form of immediate, or another temp result in
TMPREC. In all cases, the target register ID is checked
to analyze the program semantic. For example, if the
register ID is BP or SP, the instruction is going to
preparing program stack for function call entry or
function call exit. Otherwise, an expression is inserted
into REGREC to save the temp result

Register reading instructions At first, if the register ID is in REGREC, then get the
operation expression from REGREC and insert it into
TMPREC. Otherwise, we use the lazy initialization
approach proposed in previous work to initialize the
register and generate a temp expression and insert it
into TMPREC
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SC2NRF system will check values of registers before and after the system call
instructions (e.g., malloc). If the value of any register other than the destination operand
has changed, a potential data flow missing is found. In this case, we will clean the taint
attributes of the register to avoid false positives. Another choice is using summary
information of syscalls to propagate the taint attributes for kernel execution.

The SC2NRF system leverages a lazy initialization policy to initialize registers in
REGREC and global memory in TMPREC. As non-reentrant functions with initialization
code that is responsible for setting various memory locations to initial values, setting up
request handlers, and performing other housekeeping tasks cannot execute before
analysis if some data structures are not initialized, superfluous paths based on normally
infeasible environment conditions are introduced into the analysis. To mitigate this,
SC2NRF system adopts a lazy approach to memory and register initialization. When
the symbol execution engine encounters a memory read from uninitialized memory, it
identifies other procedures that contain direct memory writes to that location, and labels
them as initialization procedures. If an initialization procedure is identified, the state is
duplicated: one state continues execution without modification, while the other one
runs the initialization procedure before resuming execution. This allows the SC2NRF
system to safely execute initialization code without the risk of breaking the analysis.

With the taint propagation process defined in Sect. 2.2, the SC2NRF system can
build global information flow relations along the program traces in symbol execution.
Let uses TG for a global variable set and TL as a local variable set, then the information
flow of a non-reentrant function TF can be built. Based on the taint expression and
symbol execution, the information flow building process is shown as follows.

Let uses f as a non-reentrant function to be analyzed, CFGf is the inter-process
control flow graph of function f, ci is a basic block in CFGf’s node set. Let uses
TI ¼ TG [TL [TF to denote the variable set to be analyzed in code block c, where
TG = {Tg1, Tg2,…, Tgm}, TL = {Tl1, Tl2,…, Tlm} and TF = {Tf1, Tf2,…, Tfm}. For each
step in symbol execution, let uses c to the denote current code block executed. The
following steps S1–S5 illustrate how to build the global information flow.

S1. Sets the arguments and global variables in function f as tainted variables;
S2. For each element yi = op(xi) in Ic, The SC2NRF system uses the operation
expression case to propagate the tainted variables and record the taint expression
simultaneously.
S3. If yi is an global variable in TG, then we can search STOREREC using the key yi
and get exp = STOREREC[yi], which is the information flow of yi. Meanwhile, the
taint label of yi can be obtained by expression GLOBALTAINTREC[exp];
S4. If yi is an local variable in TI, then we can search TMPREC using the key yi and
denote it as exp = TMPREC[yi], which is the information flow of yi. Also, the taint
label of yi can be obtained by expression GLOBALTAINTREC[exp];
S5. If yi is an argument to a sub function in TF, then it will be disposed according to
the type. If yi is a register argument, we search the REGREC with expression yi and
denote it as exp = REGREC[yi], which is the information flow of yi. and the taint label
of yi is GLOBALTAINTREC[exp]. Otherwise, the argument yi is a stack argument,
then we acquire the temp expression of yi from TMPREC[yi] and search the
STOREREC with keyword exp = TMPREC[yi], that is, we get exp1 = STOREREC[exp],
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which is the information flow of yi. At last, the taint label of yi can be expressed as
GLOBALTAINTREC[exp1].

2.3 State Consistency Checking Algorithm

To provide automated support for state consistency checking requirements, we have
design an algorithm for analyzing the program states. The SC2NRF system checks the
requirements of state consistency against a given consistency rules. Because the con-
sistency rules describe the properties that non-reentrant functions must satisfy, the
consistency rules by our algorithm are independent of a particular application.

Consistency rules defined in the SC2NRF system are expressed with condition lists.
Meanwhile, the condition types include operation timing condition, space condition,
other attribute condition, which usually are defined on function calls, value assignments,
and memory positions and so on. For example, given a consistency rule of the case that a
global buffer pointer and a local buffer pointer pointing to the same location, it follows a
common operation list with the form of R = <malloc, free, set_to_NULL> (otherwise
double-free or use-after-free vulnerability will happen on this buffer).

Checking the consistency of program states is usually quite complex. We must follow
different data flows of this buffer and checkwhether the common operation list is preserved
during the execution process. To solve this issue, the SC2NRF system leverages a con-
sistency checker to incrementally check program state when a new code block is executed.
We design a checking algorithm to validate operation expressions of each code block’s
execution against current program states, which is show in Algorithm 1. To simplify the
analysis process, we use function get_exp(x) to denote the retrieving of taint expression of
variable x, update_state to denote the taint propagation and taint expressions computing.

Algorithm 1. Consistency checking algorithm for program state.
Inputs Consistency rules R; 

Code block c; 
Operation list Ic={yi=op(xi), for xi in block c}; 
Current program state set S;

Outputs Inconsistency results IR;
Step S0 Set IR={} 

Step S1

For  each element yi=op(xi) in Ic: 
exp=get_exp(yi) 
S=update_state(S, exp) 
For each state s in S: 

For each r in R:
If s1.flow r.conditions and p s2.flow r.conditions

ir=<s1, s2, r.conditions> 
IR.add(ir)

    End for
End for

End for
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Consistency rules are broken once their conditions are meet in two data flow, which
is shown in Algorithm 1. Thus, this algorithm checks the program state from the angle
of data flow relations, consistency conditions and new attributes in current code
block c. It is easy to know that the computational complexity of this algorithm is
O(max(|R|) � max(|S|) � max(|I|)), where the upper bound of |I| is the max size of a
code block size, and the upper bound of |S| is the max number of paths in target non-
reentrant function.

3 Implementation and Evaluations

In this section, we present the implementations and evaluation of the SC2NRF system.
Our prototype implementation leverages angr as the symbol execution engine, which
provides the state-copy path discovery and is suitable for our state management and
consistency checking. In addition, the taint propagation and data flow relations are
expressed in VEX immediate representation language. The taint analysis components
takes about 1100 LOC of python codes, and this component is integrated with angr’s
main code. Meanwhile, the state class of angr is also patched to support the taint
expression computing.

The analysis environment is a 64-bit Ubuntu 16.04 system running on a computer
of Intel Xeon (R) CPU E5-2630 v4 2.20 GHz and 64G RAM. As show in Table 2, 4
known vulnerabilities in 4 applications are validated in our experiment. During this
test, three kinds of data were collected, including the number of code blocks, consumed
time and the length of tainted instructions. The total number of code blocks in a tested
function represents the workload of the analysis process, and the consumed time of
each test is increased as the number of code blocks increases. The max length of tainted
expressions in each function varies according to the computed data flow. Finally, the
SC2NRF is able to discover all of them successfully. It is worth noting that, additional
python codes are needed to analyze each function.

For vulnerability CVE-2015-0327 in Openssl 1.0.2, it requires to invoke the
clinethello message twice. During the execution process, different paths will check a

Table 2. Known state inconsistencies validated by SC2NRF system.

ID Function Code
blocks

Consumed time
(s)

Max length of tainted
Exp.

CVE-2018-
0101

sub_8079B40 895 4.12 29

CVE-2015-
0291

sub_4406C0 1335 6.43 8

CVE-2015-
8651

sub_996EC80 2006 8.02 24

CVE-2011-
0073

sub_1046620E 720 3.94 76
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common global pointer for reading and writing. Our solution can detect the incon-
sistencies in the two paths. Other samples also illustrate the effectiveness of our
approach.

Actually, this solution in general will not generate false negatives since the rules are
defined manually. The SC2NRF system can validate inconsistencies existing in known
vulnerabilities but not all are not exploitable. Another disadvantage of SC2NRF is that
the non-reentrant functions in binary program need to be identified manually by pro-
gram analysis, which is a time-consume job.

4 Conclusions

State inconsistencies are the root cause of memory corruptions in non-reentrant func-
tions. In this paper, we have proposed an approach for state consistency checking
which based on consistency rules, and implemented a system called SC2NRF using
famous symbol execution angr. The key components of SC2NRF system include taint
assisted symbol execution module and consistency checking module. It is able to
explore each program path in depth to find inconsistencies that are hard to detect and
prone to miss by existing solutions. We also evaluated the SC2NRF system with
several known CVEs, making our solution more practical. The experiment results show
that this solution is effective.
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