
Enhancing an Attack to DSA Schemes

Marios Adamoudis1, Konstantinos A. Draziotis2(B), and Dimitrios Poulakis1

1 Department of Mathematics, Aristotle University of Thessaloniki,
Thessaloniki, Greece

marios.p7@hotmail.com, poulakis@math.auth.gr
2 Department of Informatics, Aristotle University of Thessaloniki,

Thessaloniki, Greece
drazioti@csd.auth.gr

Abstract. In this paper, we improve the theoretical background of the
attacks on the DSA schemes of a previous paper, and we present some
new more practical attacks.

Keywords: Public key cryptography · Digital Signature Algorithm ·
Elliptic Curve Digital Signature Algorithm · Closest Vector Problem ·
LLL algorithm · BKZ algorithm · Babai’s Nearest Plane Algorithm

MSC 2010: 94A60 · 11T71 · 11Y16

1 Introduction

In August 1991, the U.S. government’s National Institute of Standards and Tech-
nology (NIST) proposed the Digital Signature Algorithm (DSA) for digital signa-
tures [13,15]. This algorithm has become a standard [6] and was called Digital
Signature Standard (DSS). In 1998, an elliptic curve analogue called Elliptic
Curve Digital Signature Algorithm (ECDSA) was proposed and standardized,
see [10]. In the first subsection we recall the outlines of DSA and ECDSA.

1.1 The DSA and ECDSA Schemes

First, let us summarize DSA. The signer chooses a prime p of size between 1024
and 3072 bits with increments of 1024, as recommended in FIPS 186-3 [6, p. 15].
Also, he chooses a prime q of size 160, 224 or 256 bits, with q|p − 1 and a
generator g of the unique order q subgroup G of the multiplicative group F

∗
p of

the prime finite field Fp. Furthermore, he selects a randomly a ∈ {1, . . . , q − 1}
and computes R = ga mod p. The public key of the signer is (p, q, g, R) and his
private key a. He also publishes a hash function h : {0, 1}∗ → {0, . . . , q − 1}. To
sign a message m ∈ {0, 1}∗, he selects randomly k ∈ {1, . . . , q − 1} which is the
ephemeral key, and computes r = (gk mod p) mod q and s = k−1(h(m) +

c© Springer Nature Switzerland AG 2019
M. Ćirić et al. (Eds.): CAI 2019, LNCS 11545, pp. 13–25, 2019.
https://doi.org/10.1007/978-3-030-21363-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21363-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-21363-3_2


14 M. Adamoudis et al.

ar) mod q. The signature of m is the pair (r, s). The signature is valid if and
only if we have:

r = ((gs−1h(m)modqRs−1r mod q) mod p) mod q.

For the ECDSA the signer selects an elliptic curve E over Fp, a point
P ∈ E(Fp) with order a prime q of size at least 160 bits. According to FIPS
186-3, the prime p must be in the set {160, 224, 256, 512}. Further, he selects
randomly a ∈ {1, . . . , q − 1} and computes Q = aP . The public key of the
signer is (E, p, q, P,Q) and his private key a. He also publishes a hash function
h : {0, 1}∗ → {0, . . . , q−1}. To sign a message m, he selects randomly k ∈ {1, . . . ,
q − 1} which is the ephemeral key and computes kP = (x, y) (where x and y are
regarded as integers between 0 and p − 1). Next, he computes r = x mod q and
s = k−1(h(m) + ar) mod q. The signature of m is (r, s). For its verification one
computes

u1 = s−1h(m) mod q, u2 = s−1r mod q, u1P + u2Q = (x0, y0).

He accepts the signature if and only if r = x0 mod q.
The security of the two systems is relied on the assumption that the only

way to forge the signature is to recover either the secret key a, or the ephemeral
key k (in this case is very easy to compute a). Thus, the parameters of these
systems were chosen in such a way that the computation of discrete logarithms
is computationally infeasible.

1.2 Our Contribution

Except the attacks in discrete logarithm problem, we have attacks based on
the equality s = k−1(h(m) + ar) mod q which use lattice reduction techniques
[1–5,11,12,16–19]. In this paper, we also use this equality and following the ideas
of [19], we improve the efficiency of attacks on the DSA schemes described in it.

The attack described in [19] is based on a system of linear congruences of a
particular form which has at most a unique solution below a certain bound, which
can be computed efficiently. Thus, in case where the length of a vector, having as
coordinates the secret and the ephemeral keys of some signed message is quite
small, the secret key can be computed. More precisely in this work, we also
consider the system of linear congruences of [19] and we improve the upper bound
under which it has at most one solution. This extension provides an improvement
of the attack [19], which also remains deterministic. Thus, when some signed
messages are available, we can construct a such system whose solution has among
its coordinates the secret key, and so it is possible to find it in practical time.

Furthermore, an heuristic improvement based on our attack is given. We
update experimental results on (EC)DSA based on known bits of the ephemeral
keys. In fact we prove that if we know 1 bit of a suitable multiple of the ephemeral
keys for 206 signatures, we can find the secret key with success rate 62%. The
previous best result was of Liu and Nguyen [12], where they provided a prob-
abilistic attack based on enumeration techniques, where managed to find the



Enhancing an Attack to DSA Schemes 15

secret key if they know 2 bits of 100 ephemeral keys. The attack provided in
[12] first reduces the problem of finding the secret key, to the hidden number
problem (HNP) and then reduces HNP to a variant of CVP (called Bounded
Decoded Distance problem : BDD).

The Structure of the Paper. The paper is organized as follows. In Sect. 2, we recall
some basic results about lattices, and the Babai’s Nearest Plane Algorithm. In
Sect. 3, we prove some result which we need for the presentation of our attacks.
Our attacks are presented in Sects. 4. Some experimental results are given in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Background on Lattices

In this section, we collect several well-known facts about lattices which form the
background to our algorithms.

Let b1,b2, . . . ,bn linearly independent vectors of Rm. The set

L =

⎧
⎨

⎩

n∑

j=1

αjbj : αj ∈ Z, 1 ≤ j ≤ n

⎫
⎬

⎭

is called a lattice and the set B = {b1, . . . ,bn} a basis of L. All the bases of
L have the same number of elements n which is called dimension or rank of L.
If n = m, then the lattice L is said to have full rank. We denote by M the
n × m-matrix having as rows the vectors b1, . . . ,bn. If L has full rank, then
the volume of the lattice L is defined to be the positive number |det M | which
is independent from the basis B. It is denoted by vol(L) or detL (see also [7]).
If v ∈ R

m, then ‖v‖ denotes, as usually, the Euclidean norm of v. We denote
by LLL(M), the application of well-known LLL-algorithm on the rows of M .
Finally, we denote by λ1(L) the smaller of the lengths of vectors of L.

We define the approximate Closest Vector Problem (CV Pγn
(L)) as follows:

Given a lattice L ⊂ Z
m of rank n and a vector t ∈ R

m, find a vector u ∈ L such
that, for every u′ ∈ L we have:

‖u − t‖ ≤ γn‖u′ − t‖ (for some γn ≥ 1).

We say that we have a CVP oracle, if we have an efficient probabilistic algo-
rithm that solves CVPγn

for γn = 1. To solve CVPγn
, we usually use Babai’s

algorithm [7, Chapter 18] (which has polynomial running time). In fact, com-
bining this algorithm with LLL algorithm, we solve CVPγ(L) for some lattice
L ⊂ Z

m, for γn = 2n/2 and n = rank(L) in polynomial time.

Babai’s Nearest plane Algorithm:

INPUT: A n × m-matrix M with rows the vectors of a basis B =
{bi}1≤i≤n ⊂ Z

m of the lattice L and a vector t ∈ R
m

OUTPUT: x ∈ L such that ||x − t|| ≤ 2n/2dist(L, t).



16 M. Adamoudis et al.

01. M ← LLL(M) (δ = 3/4) # we can also use BKZβ(M)
02. M∗ = {(b∗

j )j} ← GSO(M) # GSO : Gram-Schimdt Orthogonalization
03. b ← t
04. For j = n to 1
05. cj ←

⌊
b·b∗

j

||b∗
j ||2

⌉
#	x
 = 	x + 0.5�

06. b ← b − cjbj

07. Return t − b
Note that there is a variant of CVP, called BDD, where we search for vectors

u such that ‖u− t‖ ≤ λ1(L)/2. Further, there are enumeration algorithms that
compute all the lattice vectors within distance R from the target vector, see
[8,9]. These algorithms are not of polynomial time with respect to the rank of
the lattice.

3 Auxiliary Results

In this section we prove some results that we need for the description of our
attack.

Proposition 1. Let n, q and Aj be positive integers satisfying

q
j

n+1+fq(n)

2
< Aj <

q
j

n+1+fq(n)

1.5
(j = 1, . . . , n), (1)

where fq(n) is a positive real number such that

fq(n) +
n

n + 1
< 1 (2)

and
q1+2fq(n)

1.5
< q − 1

2
q

n
n+1+fq(n) (3)

Let L be the lattice generated by the vectors

b0 = (−1, A1, . . . , An),b1 = (0, q, 0, . . . , 0), . . . ,bn = (0, . . . , 0, q).

Then, for all non-zero v ∈ L, we have:

‖v‖ >
1
2

q
n

n+1+fq(n).

Proof. Suppose that there is a vector v ∈ L \ {0} such that

‖v‖ ≤ 1
2

q
n

n+1+fq(n). (4)

Then, the inequality (2) yields:

‖v‖ <
q

2
< q. (5)



Enhancing an Attack to DSA Schemes 17

Since v ∈ L, there are integers x0, x1, . . . , xn such that

v = x0b0 + · · · + xnbn = (−x0, x0A1 + x1q, . . . , x0An + xnq).

Thus, we deduce:

|x0|, |x0Aj + xjq| ≤ 1
2
q

n
n+1+fq(n).

If x0 = 0, then we get the vector v = (0, x1q, . . . , xnq) with length > q. On
the other hand, (5) implies ‖v‖ < q. Thus, we have a contradiction, and so we
deduce that x0 �= 0.

Since 1 ≤ |x0| ≤ 1
2qn/(n+1)+fq(n), we distinguish the following two cases:

(i) There is k ∈ {1, 2, . . . , n − 1} such that

q
k−1
n+1 < |x0| < q

k
n+1 .

By (1), we obtain:

1
2

q
n+1−k
n+1 +fq(n) ≤ An+1−k ≤ 1

1.5
q

n+1−k
n+1 +fq(n).

Multiplying the two previous inequalities, we get:

1
2

q
n

n+1+fq(n) < |x0|An+1−k <
1

1.5
q1+fq(n).

By (3), we have:

q1+fq(n)

1.5
<

q1+2fq(n)

1.5
< q − 1

2
q

n
n+1+fq(n).

It follows:
1
2

q
n

n+1+fq(n) < |x0|An+1−k < q − 1
2

q
n

n+1+fq(n) (6)

If x0An+1−k + qxn+1−k = 0, then |x0|An+1−k = q|xn+1−k| > q, which
contradicts the above inequality. Thus, we have x0An+1−k + qxn+1−k �= 0.

Since ‖v‖ ≥ |x0An+1−k + qxn+1−k|, we get:

‖v‖ ≥ ||x0|An+1−k − q|xn+1−k|| ≥ q|xn+1−k| − |x0|An+1−k. (7)

Assume that xn+1−k �= 0. It follows: ‖v‖ ≥ q − |x0|An+1−k. Then, using the
right part of inequality (6), we get:

‖v‖ >
1
2

q
n

n+1+fq(n),

which contradicts (4). Hence, we have xn+1−k = 0. By (7), we have: ‖v‖ ≥
|x0|An+1−k. Using the left part of inequality (6) we obtain:

‖v‖ >
1
2

q
n

n+1+fq(n),

which is a contradiction.



18 M. Adamoudis et al.

(ii) We have:
q

n−1
n+1 < |x0| < q

n
n+1+fq(n).

Further, (1) gives:

1
2

q
1

n+1+fq(n) ≤ A1 ≤ 1
1.5

q
1

n+1+fq(n).

Multiplying the two inequalities we obtain:

1
2

q
n

n+1+fq(n) < |x0|A1 <
1

1.5
q1+2fq(n).

By (3), we have:
1

1.5
q1+2fq(n) < q − 1

2
q

n
n+1+fq(n).

Combining the two above inequalities, we deduce:

1
2

q
n

n+1+fq(n) < |x0|A1 < q − 1
2

q
n

n+1+fq(n),

which is relation (6) with k = n. Proceeding, as previously, we obtain a contra-
diction. Thus, the result follows.

Remark 1. Proposition 1 is an improvement of [19, Lemma 1], since the obtained
lower bound is better than the lower bound ‖v‖ > qn/(n+1)

8 , obtained in
[19, Lemma 1]. Furthermore, the number of signed messages in [19, Lemma 1],
for q 160-bits, are less than ln ln q ≈ 4. In the previous proposition the number
of messages can be much larger. Note that a largest lower bound will allow us,
as we shall see, to attack larger DSA keys (for fixed n and q).

Using the terminology of Proposition 1, we prove the following.

Proposition 2. Let q and Ai, Bi (i = 1, . . . , n) be positive integers with Ai as
in Proposition 1. Then, the system of congruences

yi + Aix + Bi ≡ 0 (mod q) (i = 1, . . . , n)

has at most one solution v = (x, y1, . . . , yn) such that

‖v‖ <
1
4

q
n

n+1+fq(n).

If such v exists, then v = w − b, where b = (0, B1, . . . , Bn), and w is a vector
obtained by using a CVP oracle for the lattice L of Proposition 1 and b.

Proof. Let v = (x, y1, . . . , yn) be a solution of the system with

‖v‖ <
1
4

q
n

n+1+fq(n).



Enhancing an Attack to DSA Schemes 19

We denote by L the lattice spanned by the rows of the (n + 1) × (n + 1) matrix
⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1 A1 A2 . . . An

0 q 0 . . . 0
0 0 q . . . 0
...

...
...

. . .
...

0 0 0 . . . q

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8)

and set b = (0, B1, . . . , Bn). Since yi + Aix + Bi ≡ 0 (mod q) there is zi ∈ Z,
such that yi +Bi = −Aix+ziq. Set u = v+b = (x, y1 +B1, . . . , yn +Bn). Then
u = (x,−A1x + z1q, . . . ,−Anx + znq) belongs to L and we have

‖u − b‖ = ‖v‖ <
1
4

q
n

n+1+fq(n).

On the other hand, using the CVP-oracle, we compute w ∈ L such that

‖w − b‖ ≤ ‖u − b‖ <
1
4

q
n

n+1+fq(n).

Thus, we get: ‖w − u‖ ≤ ‖w − b‖ + ‖b − u‖ < 1
2 q

n
n+1+fq(n). Since w − u ∈ L,

Proposition 1 implies w = u. So, the CVP oracle outputs the vector u and so
we can compute v = u − b.

To get an idea how to choose the sequence fq(n) we use the following well
known result.

Lemma 1. (Hermite). For every full rank lattice L ⊂ R
n we have:

λ1(L) ≤ √
n (det L)1/n.

In our case we get λ1(L) ≤ √
n + 1 q

n
n+1 . The lower bound of Proposition 1

is of the form 1
2qx. So, we get:

1
2
qx ≤ λ1(L) ≤ √

n + 1 q
n

n+1 .

Solving with respect to x, we obtain:

x ≤ ln 2 + 1
2 ln (n + 1)
ln q

+
n

n + 1
=

ln (4(n + 1))
2 ln q

+
n

n + 1
.

Thus, we get an upper bound for x. For instance we may select

fq(n) =
ln 2 + ln (n + 1)

2n ln q
.

In general, we can choose

fq(n) = gq,b,c,d(n) =
c ln (n + 1)

bnd ln q
, (9)

where b, c, d are chosen such that 0 < gq,b,c,d(n) < ln (4(n+1))
2 ln q .



20 M. Adamoudis et al.

4 The Attack

In this section we describe our attack. Let mi (i = 1, . . . , n) be messages
signed with (EC)DSA system and (ri, si) their signatures. Then, there are
ki ∈ {1, . . . , q − 1} such that ri = (gki mod p) mod q (resp. ri = xi mod q
and kiP = (xi, yi)) and si = k−1

i (h(mi) + ari) mod q. It follows that

ki + Cia + Di ≡ 0 (mod q) (i = 1, . . . , n),

where Ci = −ris
−1
i mod q and Di = −s−1

i h(mi) mod q. Multiplying both sides
by C−1

i mod q, we get: C−1
i ki + a + C−1

i Di ≡ 0 (mod q).
Now, we pick integers Ai satisfying

q
i

n+1+fq(n)

2
< Ai <

q
i

n+1+fq(n)

1.5

and we multiply by Ai both sides of the above congruence. So, we get:

AiC
−1
i ki + Aia + AiC

−1
i Di ≡ 0 (mod q).

Set Bi = AiC
−1
i Di mod q (i = 1, . . . , n). Then, the vector

s = (a,A1C
−1
1 k1 mod q, . . . , AnC−1

n kn mod q)

satisfies the system

yi + Aix + Bi ≡ 0 (mod q) (i = 1, . . . , n). (10)

We set b = (0, B1, . . . , Bn) and Mn,q = 1
4 q

n
n+1+fq(n), for some sequence

fq(n) satisfying the hypotheses of Proposition 1. The vectors

b0 = (−1, A1, . . . , An), b1 = (0, q, 0, . . . , 0), . . . ,bn = (0, . . . , 0, q),

form a basis of Rn+1. We denote by L the lattice spanned by b0,b1, . . . ,bn. If
‖s‖ < Mn,q, then Proposition 2 implies that s = w − b, where w is a vector
obtained by using a CVP oracle for L and b. Thus, we can compute the secret
key a which is the first coordinate of s.

An Improvement of the Attack. The previous attack, which is deterministic,
needs quite short solution vector (and so small secret key) in order to succeed.
Now, we remark that if u ∈ L, then u − b is a solution of the system (10).
Indeed, since u ∈ L, there are integers l0, . . . , ln such that u = l0b0 + · · ·+ lnbn,
and so we get:

u − b = (−l0, l0A1 + l1q − B1, . . . , l0An + lnq − Bn) = (x, y1, . . . , yn).



Enhancing an Attack to DSA Schemes 21

Thus, we obtain that yi + Aix + Bi = liq ≡ 0 (mod q). So, the vectors of the
form x − b, where x is in the set

Aγn
(b) = {u ∈ L : ||u − b|| < γnMn,q},

are solutions of the system (10), for some positive number γn.
The parameters we usually use in a (EC)DSA system, provides a solution

s = (x, y1, . . . , yn), where all the entries are 160-bits integers and smaller than
q. In this case, we compute experimentally that the value of γn = ‖s‖

Mn,q
is on

average approximately equal to 38. For larger values of γn, Babai’s algorithm (or
some other approximation algorithm) may succeed in finding in polynomial time
such a vector. Indeed, we checked (see Sect. 5) that Babai’s algorithm managed
to find a solution for γn ∈ [44, 52]. We get such values of γn in the case where
we have smaller keys. We provide the details of these experiments in Sect. 5.

This attack is non deterministic, since γn > 1 and so Proposition 2 does not
hold. If γn = 1, then Proposition 2 holds, and the attack is deterministic. Below
we present our attack.

Babai’s Attack

Input : A public key (p, q, g, R) of a DSA scheme or a public key (E, p, q, P,Q)
of a ECDSA scheme. Further, m signed messages are given.
Output : The secret key or Fail.
1. Choose fq(n).
2. Pick the maximum integer n > 0 such that there is an integer in the intervals

Ii =
(

qi/(n+1)+fq(n)

2
,
qi/(n+1)+fq(n)

1.5

)

, 1 ≤ i ≤ n.

3. If n ≤ m, then go to the next step, else return fail.
4. Choose randomly Ai from Ii.
5. Set b = (0, B1, . . . , Bn) and construct the system

yi + Aix + Bi ≡ 0 (mod q) (i = 1, . . . , n).

6. Construct the lattice L, generated by the rows of the DSA matrix (8).
7. Compute B = LLL(A).
8. Apply Babai’s Nearest Plane Algorithm in the rows of matrix B with target
vector b. Let s be the output.
9. If the first coordinate s1 of s satisfy gs1 = R, (respectively Q = s1P ) in F

∗
p,

return s1, else return fail.
The attacker, say Eve, has to make the choice of n and fq. The choice of n is

not random. A minimal condition is to choose it, in such a way that the interval
Ii contains at least one integer. Then, she can construct a system of the form
yi + Aix + Bi ≡ 0 (mod q), 1 ≤ i ≤ n, and Ai ∈ Ii. So, in practice the difficult
part for Eve, is to find n signed messages. So Eve must be an active attacker
and uses the DSA system as a signing oracle.



22 M. Adamoudis et al.

Remark 2. (i) Proposition 2 may not be satisfied, but the attack may return the
secret key. This is because the hypotheses of Proposition 2 are only necessary
and not sufficient.

(ii) The attack may fail in the sense that will not compute the secret key. The
probability of success depends on the choices of Ai.

(iii) In the 7th step we can use BKZ algorithm with a suitable blocksize instead
of LLL. This is something common in case we want a more reduced basis.

5 Experimental Results

For the following experiments we used the computer algebra system Sagemath
[20]1. We generated 100 DSA-systems of the form (10), yi + Aix + Bi ≡ 0
(mod q), 1 ≤ i ≤ n, having a solution s = (x, y1, . . . , yn) where x is the secret
key. Once q is fixed to a 160 bit prime, we choose a natural number n = n0 such
that the intervals Ii contain at least one integer and a sequence fq(n), such that
the value fq(n0) satisfies the inequalities (2) and (3) of Proposition 1. Then, we
choose the secret key x and yi (we call yi’s derivative ephemeral keys), such that
Proposition 2 is satisfied. In fact we pick the solution vector s such that

qn/(n+1)

16
< ‖s‖ <

qn/(n+1)+fq(n)

4
.

The attack in [19], it may fail for the previous experiments, since the norm of
solution we are looking for, is larger than qn/(n+1)

16 and n � ln(ln(q)). But our
attack will succeed since Proposition 2 is satisfied. The attack is deterministic. A
choice that satisfies the previous is q : a 160-bit prime, n0 = 14, fq(n) = ln (n+1)

n ln q .
We generated 100 DSA systems with the previous parameters and secret key 147
bits and derivative ephemeral keys 145 bits. As a CVP oracle, we used Babai
algorithm. In all the instances we found the secret key, as our attack suggests.
We tested our improvement (Babai’s attack), which is no longer deterministic.
We summarize the results in Table 1.

Remark 3. In the Example studied in [19] some typographic errors occurred in
the values of the quantities A1, h(m2), h(m3), s2 and s3. The correct values are
A1 = 32D1 (and so, we have l1 = a−1k132 mod q < 296), and

h(m2) = 432847687632257989627045945667165545993050789339,
h(m3) = 102247883422181353858596598828981363231626289233,

s2 = 1286644068312084224467989193436769265471767284571,
s3 = 1357235540051781293143720232752751840677247754090.

1 The code can be found in https://github.com/drazioti/python scripts/tree/master/
paper dsa.

https://github.com/drazioti/python_scripts/tree/master/paper_dsa
https://github.com/drazioti/python_scripts/tree/master/paper_dsa


Enhancing an Attack to DSA Schemes 23

Table 1. We set n = 206 and fq(n) = 170 ln (n+1)
n ln q

. We generated 100 random DSA
systems for each row. The pair (α, β) at the first column, means that we pick the secret
key uniformly from [2α−1, 2α −1] and the derivative ephemeral keys from [2β−1, 2β −1]
(and fixed 160 bit prime q). For preprocessing we used BKZ with blocksize 70. The
second column is the average value of γn. The last column contains the percentage that
Babai’s attack succeeds in finding the solution i.e. the secret key.

bits:(Skey, Der.Ep.keys) γn suc.rate

(158, 157) 43.81 17%

(158, 155) 51.34 100%

(157, 157) 44.15 23.3%

(157, 156) 48.68 100%

A Further Heuristic Improvement. We can further improve the previous
results. The idea is to use another target vector instead of b = (0, B1, . . . , Bn).
We consider the following vector

b = (ε, ε + B1, . . . , ε + Bn),

where ε = 2159 − 2157. That is the new target vector is equal with the previous
plus the vector (ε, . . . , ε). The reason for picking such a target vector, is because
the entries of the solution vector are balanced, i.e. of the same bit lengths. We
test the previous idea, by choosing the solution vectors

s ∈ {2159, . . . , 2160 − 1} × {2158, . . . , 2159 − 1}n.

That is the secret key has 160−bits and the derivative ephemeral keys 159−bits.
We considered 100 DSA such systems with n = 206 and fq(n) as in Table 1,
preprocessing BKZ-85, and our algorithm found the secret keys in 62 instances.
The time execution per example was on average 2 min in an I3 Intel CPU.
So, having one least (or most) significant bit for 206 derivative ephemeral keys,
we can find the secret key. This result improves, in some sense, the result [12,
Sect. 4.4], where with 100 signatures and knowing 2 least significant bits of the
ephemeral keys, they computed the secret key with success rate 23% and in
4185 s on average per instance.

6 Conclusion

Following the ideas of [19], we have presented new attacks on DSA schemes.
First, we have improved the bound for the lengths of the secret and ephemeral
keys and we replaced the use of Micciancio-Voulgaris algorithm [14], by the
polynomial complexity Babai’s algorithm. This allowed us to find larger keys
than in [19]. Our attack remained deterministic. Furthermore, we presented an
heuristic extension of our attack for finding even larger secret keys. Finally,
we improved the state of the art attack in (EC)DSA presented in [12]. Several
experiments were described.



24 M. Adamoudis et al.

References

1. Bellare, M., Goldwasser, S., Micciancio, D.: “Pseudo-random” number generation
within cryptographic algorithms: the DDS case. In: Kaliski, B.S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0052242

2. Blake, I.F., Garefalakis, T.: On the security of the digital signature algorithm. Des.
Codes Cryptogr. 26(1–3), 87–96 (2002)

3. Draziotis, K.A., Poulakis, D.: Lattice attacks on DSA schemes based on Lagrange’s
algorithm. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS,
vol. 8080, pp. 119–131. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40663-8 13

4. Draziotis, K.A.: (EC)DSA lattice attacks based on Coppersmith’s method. Inform.
Proc. Lett. 116(8), 541–545 (2016)

5. Faugère, J.-L., Goyet, C., Renault, G.: Attacking (EC)DSA given only an implicit
hint. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 252–274.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6 17

6. FIPS PUB 186–3, Federal Information Processing Standards Publication, Digital
Signature Standard (DSS)

7. Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

8. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
159–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-
7 10

9. Hanrot, G., Stehlé, D.: Improved analysis of Kannan’s shortest lattice vector
algorithm. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 10

10. Johnson, D., Menezes, A.J., Vanstone, S.A.: The elliptic curve digital signature
algorithm (ECDSA). Int. J. Inf. Secur. 1, 36–63 (2001)

11. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Cryptogr. 23, 283–290 (2001)

12. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36095-4 19

13. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1997)

14. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on Voronoi cell computations. In: Proceedings of the
42nd ACM Symposium on Theory of Computing - STOC 2010, pp. 351–358. ACM
(2010)

15. National Institute of Standards and Technology (NIST). FIPS Publication 186:
Digital Signature Standard, May 1994

16. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm
with partially known nonces. J. Cryptology 15, 151–176 (2002)

17. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Des. Codes Cryptogr. 30, 201–217 (2003)

https://doi.org/10.1007/BFb0052242
https://doi.org/10.1007/BFb0052242
https://doi.org/10.1007/978-3-642-40663-8_13
https://doi.org/10.1007/978-3-642-40663-8_13
https://doi.org/10.1007/978-3-642-35999-6_17
https://doi.org/10.1007/978-3-642-20901-7_10
https://doi.org/10.1007/978-3-642-20901-7_10
https://doi.org/10.1007/978-3-540-74143-5_10
https://doi.org/10.1007/978-3-642-36095-4_19


Enhancing an Attack to DSA Schemes 25

18. Poulakis, D.: Some lattice attacks on DSA and ECDSA. Appl. Algebra Eng. Com-
mun. Comput. 22, 347–358 (2011)

19. Poulakis, D.: New lattice attacks on DSA schemes. J. Math. Cryptol. 10(2), 135–
144 (2016)

20. Sage Mathematics Software, The Sage Development Team (version 8.1). http://
www.sagemath.org

http://www.sagemath.org
http://www.sagemath.org

	Enhancing an Attack to DSA Schemes
	1 Introduction
	1.1 The DSA and ECDSA Schemes
	1.2 Our Contribution

	2 Background on Lattices
	3 Auxiliary Results
	4 The Attack
	5 Experimental Results
	6 Conclusion
	References




