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Preface

These proceedings contain the papers presented at the 8th International Conference on
Algebraic Informatics (CAI 2019) held from June 30 to July 4, 2019, in Niš, Serbia,
and organized under the auspices of the University of Niš and its Faculty of Science.

CAI is the biennial conference serving the community interested in the intersection
of theoretical computer science, algebra, and related areas. As with the previous seven
CAIs, the goal of CAI 2019 was to enhance the understanding of syntactic and
semantic problems by algebraic models, as well as to propagate the application of
modern techniques from computer science in algebraic computation.

This volume contains the abstracts of three invited lectures and 20 contributed
papers that were presented at the conference. The invited lectures were given by Paul
Gastin, Bane Vasić, and Franz Winkler. In total, 20 contributed papers were carefully
selected from 35 submissions. The peer review process was single blind and each
submission was reviewed by at least three, and on average 3.1, Program Committee
members and additional reviewers. The papers report original unpublished research and
cover a broad range of topics from automata theory and logic, cryptography and coding
theory, computer algebra, design theory, natural and quantum computation, and related
areas.

We are grateful to a great number of colleagues for making CAI 2019 a successful
event. We would like to thank the members of the Steering Committee, the colleagues
in the Program Committee and the additional reviewers for careful evaluation of the
submissions, and all the authors for submitting high-quality papers. We would also
thank Jelena Ignjatović, chair of the Organizing Committee, Ivan Stanković, who
created and maintained the conference website, and all other members of the
Organizing Committee, for a successful organization of the conference.

The reviewing process was organized using the EasyChair conference system
created by Andrei Voronkov. We would like to acknowledge that this system helped
greatly to improve the efficiency of the committee work.

Special thanks are due to Alfred Hofmann and Anna Kramer from Springer LNCS,
who helped us to publish the proceedings of CAI 2019 in the LNCS series.

The sponsors of CAI 2019 are also gratefully acknowledged.

April 2019 Miroslav Ćirić
Manfred Droste

Jean-Éric Pin
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Neural Network Decoding of Quantum
LDPC Codes

Bane Vasić, Xin Xiao, and Nithin Raveendran

Department of Electrical and Computer Engineering,
Department of Mathematics, University of Arizona, Tucson

vasic@ece.arizona.edu
http://www2.engr.arizona.edu/*vasic

Quantum error correction (QEC) codes [1] are vital in protecting fragile qubits from
decoherence. QEC codes are indispensable for practical realizations of fault tolerant
quantum computing. Designing good QEC codes, and more importantly
low-complexity high-performance decoders for those codes that can be constructed
using lossy and noisy devices, is arguably the most important theoretical challenge in
quantum computing, key-distribution and communications.

Quantum low-density parity check (QLDPC) codes [4] based on the stabilizer
formalism [3] has led to a myriad of QLDPC codes whose constructions and decoding
algorithms rely on classical LDPC codes and the theory of syndrome measurement
based decoding of quantum stabilizer codes. QLDPC codes are a promising candidate
for both quantum computing and quantum optical communications as they admit
potentially simple local decoding algorithms, and the history of success in classical
LDPC codes in admitting low-complexity decoding and near-capacity performance.

Traditional iterative message-passing algorithms for decoding of LDPC codes are
based on belief propagation (BP) [5], and operate on a Tanner graph [6] of the code’s
parity check matrix. The BP, as an algorithm to compute marginals of functions on a
graphical model, has its roots in the broad class of Bayesian inference problems [2].
While inference using BP is exact only on loop-free graphs (trees), and provides close
approximations to exact marginals on loopy graphs with large girth, due to the
topology of Tanner graphs of finite-length LDPC codes and additional constraints
imposed by quantum version, the application of traditional BP for QEC codes in
general, and for QLDPC codes in particular has some fundamental limitations.

Despite the promise of QLDPC codes for quantum information processing, they
have several important current limitations. In this talk we will discuss these limitations
and present a method to design practical low-complexity high-performance codes and
decoders. Our approach is based on using neural networks (NN). The neural network
performs the syndrome matching algorithm over a depolarizing channel with noiseless
error syndrome measurements. We train our NN to minimize the bit error rate, which is
an accurate metric to measure the performance of iterative decoders. In addition it uses
straight through estimator (STE) technique to tackle the zero-gradient problem of the

Supported by the NSF under grants ECCS-1500170 and SaTC-1813401.



objective function and outperforms conventional min-sum algorithm up to an order of
magnitude of logical error rate.

Keywords: Quantum error correction �Quantum low-density parity check codes �
Iterative decoding � Neural networks � Neural network decoding
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Algebraic Differential Equations –
Parametrization and Symbolic Solution

Franz Winkler

RISC, Johannes Kepler University Linz
franz.winkler@risc.jku.at

An algebraic differential equation (ADE) is a polynomial relation between a function,
some of its partial derivatives, and the variables in which the function is defined.
Regarding all these quantities as unrelated variables, the polynomial relation leads to an
algebraic relation defining a hypersurface on which the solution is to be found. A so-
lution in a certain class of functions, such as rational or algebraic functions, determines
a parametrization of the hypersurface in this class. So in the algebro-geometric method
we first decide whether a given ADE can be parametrized with functions from a given
class; and in the second step we try to transform a parametrization into one respecting
also the differential conditions.

This approach is called the algebro-geometric method for solving ADEs. It is
relatively well understood for rational and algebraic solutions of single algebraic
ordinary differential equations (AODEs). First steps are taken in a generalization to
other types of solutions such as power series solution. Partial differential equations and
systems of equations are the topic of current research.
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Modular Descriptions of Regular
Functions

Paul Gastin(B)

LSV, ENS Paris-Saclay and CNRS, Université Paris-Saclay, Cachan, France
paul.gastin@lsv.fr

Abstract. We discuss various formalisms to describe string-to-string
transformations. Many are based on automata and can be seen as opera-
tional descriptions, allowing direct implementations when the input scan-
ner is deterministic. Alternatively, one may use more human friendly
descriptions based on some simple basic transformations (e.g., copy,
duplicate, erase, reverse) and various combinators such as function com-
position or extensions of regular operations.

We investigate string-to-string functions (which are ubiquitous). A preprocessing
that erases comments from a program, or a micro-computation that replaces a
binary string with its increment, or a syntactic fix that reorders the arguments
of a function to comply with a different syntax, are all examples of string-to-
string transformations/functions. We will discuss and compare various ways of
describing such functions.

Operationally, we need to parse the input string and to produce an output
word. The simplest such mechanism is to use a deterministic finite-state automa-
ton (1DFA) to parse the input from left to right and to produce the output along
the way. These are called sequential transducers, or one-way input-deterministic
transducers (1DFT), see e.g. [17, Chapter V] or [14]. Transitions are labelled with
pairs a | u where a is a letter read from the input string and u is the word, pos-
sibly empty, to be appended to the output string. Sequential transducers allow
for instance to strip comments from a latex file, see Fig. 1. Transformations that
can be realized by a sequential transducer are called sequential functions. A very
important property of sequential functions is that they are closed under compo-
sition. Also, each sequential function f can be realized with a canonical minimal
sequential transducer Af which can be computed from any sequential trans-
ducer B realizing f . As a consequence, equivalence is decidable for sequential
transducers.

With a sequential transducer, it is also possible to increment an integer writ-
ten in binary if the string starts with the least significant bit (lsb), see Fig. 2
left. On the other hand, increment is not a sequential function when the lsb is
on the right. There are two possibilities to overcome this problem.

The first solution is to give up determinism when reading the input string.
One-way input-nondeterministic finite-state transducers (1NFT) do not neces-
sarily define functions. It is decidable in PTIME whether a 1NFT defines a
c© Springer Nature Switzerland AG 2019
M. Ćirić et al. (Eds.): CAI 2019, LNCS 11545, pp. 3–9, 2019.
https://doi.org/10.1007/978-3-030-21363-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21363-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-21363-3_1


4 P. Gastin

b | b

\ | \
a | a % | ε

\n | \n

c | ε

Fig. 1. A sequential transducer stripping comments from a latex file, where a, b, c ∈ Σ
are letters from the input alphabet with b /∈ {\, %} and c �= \n.

1 | 0
0 | 1

0 | 0
1 | 1

| ε

| 1 | ε

1 | 0
0 | 1

0 | 0
1 | 1

| ε | 1

| ε

Fig. 2. Transducers incrementing a binary number.

function [18,16]. We are interested in functional 1NFT (f1NFT). This is in par-
ticular the case when the transducer is input-unambiguous. Actually, one-way,
input-unambiguous, finite-state transducers (1UFT) have the same expressive
power as f1NFT [19]. For instance, increment with lsb on the right is realized by
the 1UFT on the right of Fig. 2. Transformations realized by f1NFT are called
rational functions. They are easily closed under composition. The equivalence
problem is undecidable for 1NFT [15] but decidable in PTIME for f1NFT [18,16].
It is also decidable in PTIME whether a f1NFT defines a sequential function,
i.e., whether it can be realized by a 1DFT [7,19].

Interestingly, any rational function h can be written as r ◦ g ◦ r ◦ f where f, g
are sequential functions and r is the reverse function mapping w = a1a2 · · · an

to wr = an · · · a2a1 [12]. We provide a sketch of proof below.1

The other solution is to keep input-determinism but to allow the transducer
to move its input head in both directions, i.e., left or right (two-way). So we con-
sider two-way input-deterministic finite-state transducers (2DFT) [1]. To realize
increment of binary numbers with the lsb on the right with a 2DFT, one has to

1 Assume that h is realized with a 1UFT B. Consider the unique accepting run

q0
a1|u1−−−→ q1 · · · qn−1

an|un−−−−→ qn of B on some input word w = a1 · · · an. We have
h(w) = u1 · · · un. Let A be the DFA obtained with the subset construction applied

to the input NFA induced by B. Consider the run X0
a1−→ X1 · · · Xn−1

an−−→ Xn of
A on w. We have qi ∈ Xi for all 0 ≤ i ≤ n. The first sequential function f adorns
the input word with the run of A: f(w) = (X0, a1) · · · (Xn−1, an). The sequential
transducer C realizing g is defined as follows. For each state q of B there is a tran-

sition δ = q
(X,a)−−−→ p in C if there is a unique p ∈ X such that δ′ = p

a−→ q is a
transition in B. Moreover, if δ′ outputs u in B then δ outputs ur in C. Notice that

qn
(Xn−1,an)|ur

n−−−−−−−−−→ qn−1 · · · q1 (X0,a1)|ur
1−−−−−−−→ q0 is a run of C producing ur

n · · · ur
1 = h(w)r.

The result follows.
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,

1 | ε,

0 | ε,

1 | ε,
0 | 0,
| ε,

1 | 1,

0 | ε,ε,

1 | ε,

0 | 1,
| 1,

1 | 0,
,

Fig. 3. Two-way transducer incrementing a binary number.

locate the last 0 digit, replace it with 1, keep unchanged the digits on its left
and replace all 1’s on its right with 0’s. This is realized by the 2DFT of Fig. 3.
We use �,� /∈ Σ for the end-markers so the input tape contains �w� when given
the input word w ∈ Σ∗.

Transformations realized by 2DFTs are called regular functions. They form a
very robust class. Regular functions are closed under composition [8]. Actually,
a 2DFT can be transformed into a reversible one of exponential size [10]. In a
reversible transducer, computation steps can be deterministically reversed. As
a consequence, the composition of two 2DFTs can be achieved with a single
exponential blow-up. Also, contrary to the one-way case, input-nondeterminism
does not add expressive power as long as we stay functional: given a f2NFT, one
may construct an equivalent 2DFT [13]. Moreover, the equivalence problem for
regular functions is still decidable [9].

In classical automata, whether or not a transition can be taken only depends
on the input letter being scanned. This can be enhanced using regular look-
ahead or look-behind. For instance, the f1NFT on the right of Fig. 2 can be
made deterministic using regular look-ahead. In state 1, when reading digit 0,
we move to state 2 if the suffix belongs to 1∗ and we stay in state 1 otherwise,
i.e., if the suffix belongs to 1∗0{0, 1}∗. Similarly, we choose to start in the initial
state 2 (resp. 1) if the word belongs to 1∗ (resp. 1∗0{0, 1}∗). More generally, any
1UFT can easily be made deterministic using regular look-ahead: if we have the
choice between two transitions leading to states q1 and q2, choose q1 (resp. q2)
if the suffix can be accepted from q1 (resp. q2). This query is indeed regular.
Hence, regular look-ahead increases the expressive power of one-way determin-
istic transducers. But regular look-ahead and look-behind do not increase the
expressive power of the robust class of regular functions realized by 2DFTs [13].

Regular functions are also those that can be defined with MSO transductions
[13], but we will not discuss this here.

By using registers, we obtain another formalism defining string-to-string
transformations. For instance incrementing a binary number with lsb on the
right is realized by the one-way register transducer on Fig. 4. It uses two
registers X,Y initialized with the empty string and 1 respectively and updated
while reading the binary number. Register X keeps a copy of the binary number
read so far, while Y contains its increment. The final output of the transducer
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X := ε;Y := 1

Y

1 | X := X1;Y := Y 0 0 | Y := X1;X := X0

Fig. 4. One-way register transducer incrementing a binary number.

X := ε;Y := ε;Z := ε

1 | X := X1;Y := Y 0;Z := Z Z := 1Y

0 | Z := X;X := ε;Y := ε

1 | X := X1;Y := Y 0;Z := Z 0 | Z := Z0X;X := ε;Y := ε

Z := Z1Y

Fig. 5. Streaming string transducer incrementing a binary number.

is the string contained in register Y . This register automaton is a special case
of “simple programs” defined in [8]. In these simple programs, a register may be
reset to the empty string, copied to another register, or updated by appending a
finite string. The input head is two-way and most importantly simple programs
may be composed. Simple programs coincide in expressive power with 2DFTs
[8], hence define once again the class of regular functions.

Notice that when reading digit 0, the transducer of Fig. 4 copies the string
stored in X into Y without resetting X to ε. By restricting to one-way register
automata with copyless updates (e.g., not of the form Y := X1;X := X0 where
the string contained in X is duplicated) but allowing concatenation of registers
in updates (e.g., Z := Z0X;X := ε), we obtain another kind of machines, called
copyless streaming string transducers (SST), once again defining the same class
of regular functions [3]. Continuing our example, incrementing a binary number
with lsb on the right can be realized with the SST on Fig. 5. It uses three registers
X,Y,Z initialized with the empty string and updated while reading the binary
number. The final output of the transducer is the string contained in register Z.

The above machines provide a way of describing string-to-string transfor-
mations which is not modular. Describing regular functions in such devices is
difficult, and it is even more difficult to understand what is the function real-
ized by a 2DFT or an SST. We discuss now more compositional and modular
descriptions of regular functions. Such a formalism, called regular list functions,
was described in [6]. It is based on function composition together with some
natural functions over lists such as reverse, append, co-append, map, etc. Here
we choose to look in combinators derived from regular expressions.

The idea is to start from basic functions, e.g., (1 | 0) means “read 1
and output 0”, and to apply simple combinators generalizing regular expres-
sions [4,2,11,5]. For instance, using the Kleene iteration, (1 | 0)∗ describes
a function which replaces a sequence of 1’s with a sequence of 0’s of same
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length. Similarly, copy := ((0 | 0) + (1 | 1))∗ describes a regular function
which simply copies an input binary string to the output. Now, increment-
ing a binary number with lsb on the right is described with the expression
increment0 := copy · (0 | 1) · (1 | 0)∗, assuming that the input string contains
at least one 0 digit. If the input string belongs to 1∗, we may use the expres-
sion increment1 := (ε | 1) · (1 | 0)∗. Notice that such a regular transducer
expression (RTE) defines simultaneously the domain of the regular function as
a regular expression, e.g., dom(increment0) = (0 + 1)∗01∗, and the output to
be produced. The input regular expression explains how the input should be
parsed. If the input regular expression is ambiguous, parsing the input word is
not unique and the expression may be non functional. For instance, copy ·(1 | 0)∗

is ambiguous. The input word w = 1011 may be parsed as 10 · 11 or 101 · 1 or
1011 · ε resulting in the outputs 1000 or 1010 or 1011 respectively. On the other
end, increment := increment0 + increment1 has an unambiguous input regular
expression.

A 2DFT may easily duplicate the input word, defining the function w �→ w$w,
which cannot be computed with a sequential transducer or a f1NFT. In addition
to the classical regular combinators (+ for disjoint union, · for unambiguous
concatenation or Cauchy product, ∗ for unambiguous Kleene iteration), we add
the Hadamard product (f � g)(w) = f(w) · g(w) where the input word is read
twice, first producing the output computed by f then the output computed by
g. Hence the function duplicating its input can be simply written as duplicate :=
(copy · (ε | $)) � copy. This can be iterated duplicating each #-separated words
in a string with f := (duplicate · (# | #))∗. We have f(u1#u2# · · · un#) =
u1$u1#u2$u2# · · · un$un# when u1, . . . , un are binary strings.

The Hadamard product also allows to exchange two strings u#v �→ v#u
where u, v ∈ {0, 1}∗. Let erase := ((0 | ε) + (1 | ε))∗ and

exchange :=
(
erase · (# | ε) · copy · (ε | #)

)
�

(
copy · (# | ε) · erase

)
.

Again this can be iterated on the output of the function f defined above with
the map

g := erase · ($ | ε) · (exchange · ($ | $))∗ · erase · (# | ε) .

We have g ◦ f(u1#u2# · · · un#) = u2#u1$u3#u2$ · · · un#un−1$. It turns out
that the regular function g ◦ f cannot be described using the regular combina-
tors +, ·, ∗, �. This is the reason for introducing a 2-chained Kleene iteration
[4]: [K,h]2+ first unambiguously parse an input word as w = u1u2 · · · un with
u1, . . . , un ∈ K and then apply h to all consecutive pairs of factors, resulting
in the output h(u1u2)h(u2u3) · · · h(un−1un). For instance, with the functions
defined above, we can easily check that g ◦ f = [K,h]2+ with K = {0, 1}∗# and
h := exchange · (# | $).

Another crucial feature of 2DFTs is the ability to reverse the input w �→ wr,
e.g., (1101000)r = 0001011. In regular transducer expressions, we introduce a
reversed Kleene star r-∗ which parse the input word from left to right but pro-
duce the output in reversed order. For instance, fr-∗(w) = f(un) · · · f(u2)f(u1)
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if the input word is parsed as w = u1u2 · · · un. Hence, reversing a binary string is
described with the RTE reverse := ((0 | 0) + (1 | 1))r-∗. There is also a reversed
version of the two-chained Kleene iteration. With the above notation, we get
[K,h]r-2+(w) = h(un−1un) · · · h(u2u3)h(u1u2).

Once again, we obtain an equivalent formalism for describing regular func-
tions: the regular transducer expressions using +, ·, �, ∗, r-∗, 2+ and r-2+
as combinators [4,2,11,5]. Alternatively, as illustrated on an example above,
we may remove the two-chained iterations if we allow function compositions,
i.e., using the combinators +, ·, �, ◦, ∗ and r-∗. Further, we may remove the
Hadamard product if we provide duplicate as a basic function. Indeed, we can
easily check that f � g = (f · ($ | ε) · g) ◦ duplicate. Also, the reversed Kleene
iteration may be removed if we use reverse as a basic function. We will see that
fr-∗ = (f ◦ reverse)∗ ◦ reverse. Indeed, assume that an input word is parsed
as w = u1u2 · · · un when applying fr-∗ resulting in f(un) · · · f(u2)f(u1). Then,
reverse(w) is parsed as ur

n · · · ur
2u

r
1 when applying (f ◦reverse)∗. The result follows

since (f ◦ reverse)(ur) = f(u).
To conclude, we have an expressively complete set of combinators +, ·, ∗ and

◦ when we allow duplicate and reverse as basic functions. We believe that this
is a very convenient, compositional and modular, formalism for defining regular
functions.
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1 Introduction

In August 1991, the U.S. government’s National Institute of Standards and Tech-
nology (NIST) proposed the Digital Signature Algorithm (DSA) for digital signa-
tures [13,15]. This algorithm has become a standard [6] and was called Digital
Signature Standard (DSS). In 1998, an elliptic curve analogue called Elliptic
Curve Digital Signature Algorithm (ECDSA) was proposed and standardized,
see [10]. In the first subsection we recall the outlines of DSA and ECDSA.

1.1 The DSA and ECDSA Schemes

First, let us summarize DSA. The signer chooses a prime p of size between 1024
and 3072 bits with increments of 1024, as recommended in FIPS 186-3 [6, p. 15].
Also, he chooses a prime q of size 160, 224 or 256 bits, with q|p − 1 and a
generator g of the unique order q subgroup G of the multiplicative group F

∗
p of

the prime finite field Fp. Furthermore, he selects a randomly a ∈ {1, . . . , q − 1}
and computes R = ga mod p. The public key of the signer is (p, q, g, R) and his
private key a. He also publishes a hash function h : {0, 1}∗ → {0, . . . , q − 1}. To
sign a message m ∈ {0, 1}∗, he selects randomly k ∈ {1, . . . , q − 1} which is the
ephemeral key, and computes r = (gk mod p) mod q and s = k−1(h(m) +

c© Springer Nature Switzerland AG 2019
M. Ćirić et al. (Eds.): CAI 2019, LNCS 11545, pp. 13–25, 2019.
https://doi.org/10.1007/978-3-030-21363-3_2
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ar) mod q. The signature of m is the pair (r, s). The signature is valid if and
only if we have:

r = ((gs−1h(m)modqRs−1r mod q) mod p) mod q.

For the ECDSA the signer selects an elliptic curve E over Fp, a point
P ∈ E(Fp) with order a prime q of size at least 160 bits. According to FIPS
186-3, the prime p must be in the set {160, 224, 256, 512}. Further, he selects
randomly a ∈ {1, . . . , q − 1} and computes Q = aP . The public key of the
signer is (E, p, q, P,Q) and his private key a. He also publishes a hash function
h : {0, 1}∗ → {0, . . . , q−1}. To sign a message m, he selects randomly k ∈ {1, . . . ,
q − 1} which is the ephemeral key and computes kP = (x, y) (where x and y are
regarded as integers between 0 and p − 1). Next, he computes r = x mod q and
s = k−1(h(m) + ar) mod q. The signature of m is (r, s). For its verification one
computes

u1 = s−1h(m) mod q, u2 = s−1r mod q, u1P + u2Q = (x0, y0).

He accepts the signature if and only if r = x0 mod q.
The security of the two systems is relied on the assumption that the only

way to forge the signature is to recover either the secret key a, or the ephemeral
key k (in this case is very easy to compute a). Thus, the parameters of these
systems were chosen in such a way that the computation of discrete logarithms
is computationally infeasible.

1.2 Our Contribution

Except the attacks in discrete logarithm problem, we have attacks based on
the equality s = k−1(h(m) + ar) mod q which use lattice reduction techniques
[1–5,11,12,16–19]. In this paper, we also use this equality and following the ideas
of [19], we improve the efficiency of attacks on the DSA schemes described in it.

The attack described in [19] is based on a system of linear congruences of a
particular form which has at most a unique solution below a certain bound, which
can be computed efficiently. Thus, in case where the length of a vector, having as
coordinates the secret and the ephemeral keys of some signed message is quite
small, the secret key can be computed. More precisely in this work, we also
consider the system of linear congruences of [19] and we improve the upper bound
under which it has at most one solution. This extension provides an improvement
of the attack [19], which also remains deterministic. Thus, when some signed
messages are available, we can construct a such system whose solution has among
its coordinates the secret key, and so it is possible to find it in practical time.

Furthermore, an heuristic improvement based on our attack is given. We
update experimental results on (EC)DSA based on known bits of the ephemeral
keys. In fact we prove that if we know 1 bit of a suitable multiple of the ephemeral
keys for 206 signatures, we can find the secret key with success rate 62%. The
previous best result was of Liu and Nguyen [12], where they provided a prob-
abilistic attack based on enumeration techniques, where managed to find the
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secret key if they know 2 bits of 100 ephemeral keys. The attack provided in
[12] first reduces the problem of finding the secret key, to the hidden number
problem (HNP) and then reduces HNP to a variant of CVP (called Bounded
Decoded Distance problem : BDD).

The Structure of the Paper. The paper is organized as follows. In Sect. 2, we recall
some basic results about lattices, and the Babai’s Nearest Plane Algorithm. In
Sect. 3, we prove some result which we need for the presentation of our attacks.
Our attacks are presented in Sects. 4. Some experimental results are given in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Background on Lattices

In this section, we collect several well-known facts about lattices which form the
background to our algorithms.

Let b1,b2, . . . ,bn linearly independent vectors of Rm. The set

L =

⎧
⎨

⎩

n∑

j=1

αjbj : αj ∈ Z, 1 ≤ j ≤ n

⎫
⎬

⎭

is called a lattice and the set B = {b1, . . . ,bn} a basis of L. All the bases of
L have the same number of elements n which is called dimension or rank of L.
If n = m, then the lattice L is said to have full rank. We denote by M the
n × m-matrix having as rows the vectors b1, . . . ,bn. If L has full rank, then
the volume of the lattice L is defined to be the positive number |det M | which
is independent from the basis B. It is denoted by vol(L) or detL (see also [7]).
If v ∈ R

m, then ‖v‖ denotes, as usually, the Euclidean norm of v. We denote
by LLL(M), the application of well-known LLL-algorithm on the rows of M .
Finally, we denote by λ1(L) the smaller of the lengths of vectors of L.

We define the approximate Closest Vector Problem (CV Pγn
(L)) as follows:

Given a lattice L ⊂ Z
m of rank n and a vector t ∈ R

m, find a vector u ∈ L such
that, for every u′ ∈ L we have:

‖u − t‖ ≤ γn‖u′ − t‖ (for some γn ≥ 1).

We say that we have a CVP oracle, if we have an efficient probabilistic algo-
rithm that solves CVPγn

for γn = 1. To solve CVPγn
, we usually use Babai’s

algorithm [7, Chapter 18] (which has polynomial running time). In fact, com-
bining this algorithm with LLL algorithm, we solve CVPγ(L) for some lattice
L ⊂ Z

m, for γn = 2n/2 and n = rank(L) in polynomial time.

Babai’s Nearest plane Algorithm:

INPUT: A n × m-matrix M with rows the vectors of a basis B =
{bi}1≤i≤n ⊂ Z

m of the lattice L and a vector t ∈ R
m

OUTPUT: x ∈ L such that ||x − t|| ≤ 2n/2dist(L, t).
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01. M ← LLL(M) (δ = 3/4) # we can also use BKZβ(M)
02. M∗ = {(b∗

j )j} ← GSO(M) # GSO : Gram-Schimdt Orthogonalization
03. b ← t
04. For j = n to 1
05. cj ←

⌊
b·b∗

j

||b∗
j ||2

⌉
#	x
 = 	x + 0.5�

06. b ← b − cjbj

07. Return t − b
Note that there is a variant of CVP, called BDD, where we search for vectors

u such that ‖u− t‖ ≤ λ1(L)/2. Further, there are enumeration algorithms that
compute all the lattice vectors within distance R from the target vector, see
[8,9]. These algorithms are not of polynomial time with respect to the rank of
the lattice.

3 Auxiliary Results

In this section we prove some results that we need for the description of our
attack.

Proposition 1. Let n, q and Aj be positive integers satisfying

q
j

n+1+fq(n)

2
< Aj <

q
j

n+1+fq(n)

1.5
(j = 1, . . . , n), (1)

where fq(n) is a positive real number such that

fq(n) +
n

n + 1
< 1 (2)

and
q1+2fq(n)

1.5
< q − 1

2
q

n
n+1+fq(n) (3)

Let L be the lattice generated by the vectors

b0 = (−1, A1, . . . , An),b1 = (0, q, 0, . . . , 0), . . . ,bn = (0, . . . , 0, q).

Then, for all non-zero v ∈ L, we have:

‖v‖ >
1
2

q
n

n+1+fq(n).

Proof. Suppose that there is a vector v ∈ L \ {0} such that

‖v‖ ≤ 1
2

q
n

n+1+fq(n). (4)

Then, the inequality (2) yields:

‖v‖ <
q

2
< q. (5)
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Since v ∈ L, there are integers x0, x1, . . . , xn such that

v = x0b0 + · · · + xnbn = (−x0, x0A1 + x1q, . . . , x0An + xnq).

Thus, we deduce:

|x0|, |x0Aj + xjq| ≤ 1
2
q

n
n+1+fq(n).

If x0 = 0, then we get the vector v = (0, x1q, . . . , xnq) with length > q. On
the other hand, (5) implies ‖v‖ < q. Thus, we have a contradiction, and so we
deduce that x0 �= 0.

Since 1 ≤ |x0| ≤ 1
2qn/(n+1)+fq(n), we distinguish the following two cases:

(i) There is k ∈ {1, 2, . . . , n − 1} such that

q
k−1
n+1 < |x0| < q

k
n+1 .

By (1), we obtain:

1
2

q
n+1−k
n+1 +fq(n) ≤ An+1−k ≤ 1

1.5
q

n+1−k
n+1 +fq(n).

Multiplying the two previous inequalities, we get:

1
2

q
n

n+1+fq(n) < |x0|An+1−k <
1

1.5
q1+fq(n).

By (3), we have:

q1+fq(n)

1.5
<

q1+2fq(n)

1.5
< q − 1

2
q

n
n+1+fq(n).

It follows:
1
2

q
n

n+1+fq(n) < |x0|An+1−k < q − 1
2

q
n

n+1+fq(n) (6)

If x0An+1−k + qxn+1−k = 0, then |x0|An+1−k = q|xn+1−k| > q, which
contradicts the above inequality. Thus, we have x0An+1−k + qxn+1−k �= 0.

Since ‖v‖ ≥ |x0An+1−k + qxn+1−k|, we get:

‖v‖ ≥ ||x0|An+1−k − q|xn+1−k|| ≥ q|xn+1−k| − |x0|An+1−k. (7)

Assume that xn+1−k �= 0. It follows: ‖v‖ ≥ q − |x0|An+1−k. Then, using the
right part of inequality (6), we get:

‖v‖ >
1
2

q
n

n+1+fq(n),

which contradicts (4). Hence, we have xn+1−k = 0. By (7), we have: ‖v‖ ≥
|x0|An+1−k. Using the left part of inequality (6) we obtain:

‖v‖ >
1
2

q
n

n+1+fq(n),

which is a contradiction.
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(ii) We have:
q

n−1
n+1 < |x0| < q

n
n+1+fq(n).

Further, (1) gives:

1
2

q
1

n+1+fq(n) ≤ A1 ≤ 1
1.5

q
1

n+1+fq(n).

Multiplying the two inequalities we obtain:

1
2

q
n

n+1+fq(n) < |x0|A1 <
1

1.5
q1+2fq(n).

By (3), we have:
1

1.5
q1+2fq(n) < q − 1

2
q

n
n+1+fq(n).

Combining the two above inequalities, we deduce:

1
2

q
n

n+1+fq(n) < |x0|A1 < q − 1
2

q
n

n+1+fq(n),

which is relation (6) with k = n. Proceeding, as previously, we obtain a contra-
diction. Thus, the result follows.

Remark 1. Proposition 1 is an improvement of [19, Lemma 1], since the obtained
lower bound is better than the lower bound ‖v‖ > qn/(n+1)

8 , obtained in
[19, Lemma 1]. Furthermore, the number of signed messages in [19, Lemma 1],
for q 160-bits, are less than ln ln q ≈ 4. In the previous proposition the number
of messages can be much larger. Note that a largest lower bound will allow us,
as we shall see, to attack larger DSA keys (for fixed n and q).

Using the terminology of Proposition 1, we prove the following.

Proposition 2. Let q and Ai, Bi (i = 1, . . . , n) be positive integers with Ai as
in Proposition 1. Then, the system of congruences

yi + Aix + Bi ≡ 0 (mod q) (i = 1, . . . , n)

has at most one solution v = (x, y1, . . . , yn) such that

‖v‖ <
1
4

q
n

n+1+fq(n).

If such v exists, then v = w − b, where b = (0, B1, . . . , Bn), and w is a vector
obtained by using a CVP oracle for the lattice L of Proposition 1 and b.

Proof. Let v = (x, y1, . . . , yn) be a solution of the system with

‖v‖ <
1
4

q
n

n+1+fq(n).
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We denote by L the lattice spanned by the rows of the (n + 1) × (n + 1) matrix
⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1 A1 A2 . . . An

0 q 0 . . . 0
0 0 q . . . 0
...

...
...

. . .
...

0 0 0 . . . q

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8)

and set b = (0, B1, . . . , Bn). Since yi + Aix + Bi ≡ 0 (mod q) there is zi ∈ Z,
such that yi +Bi = −Aix+ziq. Set u = v+b = (x, y1 +B1, . . . , yn +Bn). Then
u = (x,−A1x + z1q, . . . ,−Anx + znq) belongs to L and we have

‖u − b‖ = ‖v‖ <
1
4

q
n

n+1+fq(n).

On the other hand, using the CVP-oracle, we compute w ∈ L such that

‖w − b‖ ≤ ‖u − b‖ <
1
4

q
n

n+1+fq(n).

Thus, we get: ‖w − u‖ ≤ ‖w − b‖ + ‖b − u‖ < 1
2 q

n
n+1+fq(n). Since w − u ∈ L,

Proposition 1 implies w = u. So, the CVP oracle outputs the vector u and so
we can compute v = u − b.

To get an idea how to choose the sequence fq(n) we use the following well
known result.

Lemma 1. (Hermite). For every full rank lattice L ⊂ R
n we have:

λ1(L) ≤ √
n (det L)1/n.

In our case we get λ1(L) ≤ √
n + 1 q

n
n+1 . The lower bound of Proposition 1

is of the form 1
2qx. So, we get:

1
2
qx ≤ λ1(L) ≤ √

n + 1 q
n

n+1 .

Solving with respect to x, we obtain:

x ≤ ln 2 + 1
2 ln (n + 1)
ln q

+
n

n + 1
=

ln (4(n + 1))
2 ln q

+
n

n + 1
.

Thus, we get an upper bound for x. For instance we may select

fq(n) =
ln 2 + ln (n + 1)

2n ln q
.

In general, we can choose

fq(n) = gq,b,c,d(n) =
c ln (n + 1)

bnd ln q
, (9)

where b, c, d are chosen such that 0 < gq,b,c,d(n) < ln (4(n+1))
2 ln q .
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4 The Attack

In this section we describe our attack. Let mi (i = 1, . . . , n) be messages
signed with (EC)DSA system and (ri, si) their signatures. Then, there are
ki ∈ {1, . . . , q − 1} such that ri = (gki mod p) mod q (resp. ri = xi mod q
and kiP = (xi, yi)) and si = k−1

i (h(mi) + ari) mod q. It follows that

ki + Cia + Di ≡ 0 (mod q) (i = 1, . . . , n),

where Ci = −ris
−1
i mod q and Di = −s−1

i h(mi) mod q. Multiplying both sides
by C−1

i mod q, we get: C−1
i ki + a + C−1

i Di ≡ 0 (mod q).
Now, we pick integers Ai satisfying

q
i

n+1+fq(n)

2
< Ai <

q
i

n+1+fq(n)

1.5

and we multiply by Ai both sides of the above congruence. So, we get:

AiC
−1
i ki + Aia + AiC

−1
i Di ≡ 0 (mod q).

Set Bi = AiC
−1
i Di mod q (i = 1, . . . , n). Then, the vector

s = (a,A1C
−1
1 k1 mod q, . . . , AnC−1

n kn mod q)

satisfies the system

yi + Aix + Bi ≡ 0 (mod q) (i = 1, . . . , n). (10)

We set b = (0, B1, . . . , Bn) and Mn,q = 1
4 q

n
n+1+fq(n), for some sequence

fq(n) satisfying the hypotheses of Proposition 1. The vectors

b0 = (−1, A1, . . . , An), b1 = (0, q, 0, . . . , 0), . . . ,bn = (0, . . . , 0, q),

form a basis of Rn+1. We denote by L the lattice spanned by b0,b1, . . . ,bn. If
‖s‖ < Mn,q, then Proposition 2 implies that s = w − b, where w is a vector
obtained by using a CVP oracle for L and b. Thus, we can compute the secret
key a which is the first coordinate of s.

An Improvement of the Attack. The previous attack, which is deterministic,
needs quite short solution vector (and so small secret key) in order to succeed.
Now, we remark that if u ∈ L, then u − b is a solution of the system (10).
Indeed, since u ∈ L, there are integers l0, . . . , ln such that u = l0b0 + · · ·+ lnbn,
and so we get:

u − b = (−l0, l0A1 + l1q − B1, . . . , l0An + lnq − Bn) = (x, y1, . . . , yn).
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Thus, we obtain that yi + Aix + Bi = liq ≡ 0 (mod q). So, the vectors of the
form x − b, where x is in the set

Aγn
(b) = {u ∈ L : ||u − b|| < γnMn,q},

are solutions of the system (10), for some positive number γn.
The parameters we usually use in a (EC)DSA system, provides a solution

s = (x, y1, . . . , yn), where all the entries are 160-bits integers and smaller than
q. In this case, we compute experimentally that the value of γn = ‖s‖

Mn,q
is on

average approximately equal to 38. For larger values of γn, Babai’s algorithm (or
some other approximation algorithm) may succeed in finding in polynomial time
such a vector. Indeed, we checked (see Sect. 5) that Babai’s algorithm managed
to find a solution for γn ∈ [44, 52]. We get such values of γn in the case where
we have smaller keys. We provide the details of these experiments in Sect. 5.

This attack is non deterministic, since γn > 1 and so Proposition 2 does not
hold. If γn = 1, then Proposition 2 holds, and the attack is deterministic. Below
we present our attack.

Babai’s Attack

Input : A public key (p, q, g, R) of a DSA scheme or a public key (E, p, q, P,Q)
of a ECDSA scheme. Further, m signed messages are given.
Output : The secret key or Fail.
1. Choose fq(n).
2. Pick the maximum integer n > 0 such that there is an integer in the intervals

Ii =
(

qi/(n+1)+fq(n)

2
,
qi/(n+1)+fq(n)

1.5

)

, 1 ≤ i ≤ n.

3. If n ≤ m, then go to the next step, else return fail.
4. Choose randomly Ai from Ii.
5. Set b = (0, B1, . . . , Bn) and construct the system

yi + Aix + Bi ≡ 0 (mod q) (i = 1, . . . , n).

6. Construct the lattice L, generated by the rows of the DSA matrix (8).
7. Compute B = LLL(A).
8. Apply Babai’s Nearest Plane Algorithm in the rows of matrix B with target
vector b. Let s be the output.
9. If the first coordinate s1 of s satisfy gs1 = R, (respectively Q = s1P ) in F

∗
p,

return s1, else return fail.
The attacker, say Eve, has to make the choice of n and fq. The choice of n is

not random. A minimal condition is to choose it, in such a way that the interval
Ii contains at least one integer. Then, she can construct a system of the form
yi + Aix + Bi ≡ 0 (mod q), 1 ≤ i ≤ n, and Ai ∈ Ii. So, in practice the difficult
part for Eve, is to find n signed messages. So Eve must be an active attacker
and uses the DSA system as a signing oracle.
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Remark 2. (i) Proposition 2 may not be satisfied, but the attack may return the
secret key. This is because the hypotheses of Proposition 2 are only necessary
and not sufficient.

(ii) The attack may fail in the sense that will not compute the secret key. The
probability of success depends on the choices of Ai.

(iii) In the 7th step we can use BKZ algorithm with a suitable blocksize instead
of LLL. This is something common in case we want a more reduced basis.

5 Experimental Results

For the following experiments we used the computer algebra system Sagemath
[20]1. We generated 100 DSA-systems of the form (10), yi + Aix + Bi ≡ 0
(mod q), 1 ≤ i ≤ n, having a solution s = (x, y1, . . . , yn) where x is the secret
key. Once q is fixed to a 160 bit prime, we choose a natural number n = n0 such
that the intervals Ii contain at least one integer and a sequence fq(n), such that
the value fq(n0) satisfies the inequalities (2) and (3) of Proposition 1. Then, we
choose the secret key x and yi (we call yi’s derivative ephemeral keys), such that
Proposition 2 is satisfied. In fact we pick the solution vector s such that

qn/(n+1)

16
< ‖s‖ <

qn/(n+1)+fq(n)

4
.

The attack in [19], it may fail for the previous experiments, since the norm of
solution we are looking for, is larger than qn/(n+1)

16 and n � ln(ln(q)). But our
attack will succeed since Proposition 2 is satisfied. The attack is deterministic. A
choice that satisfies the previous is q : a 160-bit prime, n0 = 14, fq(n) = ln (n+1)

n ln q .
We generated 100 DSA systems with the previous parameters and secret key 147
bits and derivative ephemeral keys 145 bits. As a CVP oracle, we used Babai
algorithm. In all the instances we found the secret key, as our attack suggests.
We tested our improvement (Babai’s attack), which is no longer deterministic.
We summarize the results in Table 1.

Remark 3. In the Example studied in [19] some typographic errors occurred in
the values of the quantities A1, h(m2), h(m3), s2 and s3. The correct values are
A1 = 32D1 (and so, we have l1 = a−1k132 mod q < 296), and

h(m2) = 432847687632257989627045945667165545993050789339,
h(m3) = 102247883422181353858596598828981363231626289233,

s2 = 1286644068312084224467989193436769265471767284571,
s3 = 1357235540051781293143720232752751840677247754090.

1 The code can be found in https://github.com/drazioti/python scripts/tree/master/
paper dsa.

https://github.com/drazioti/python_scripts/tree/master/paper_dsa
https://github.com/drazioti/python_scripts/tree/master/paper_dsa
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Table 1. We set n = 206 and fq(n) = 170 ln (n+1)
n ln q

. We generated 100 random DSA
systems for each row. The pair (α, β) at the first column, means that we pick the secret
key uniformly from [2α−1, 2α −1] and the derivative ephemeral keys from [2β−1, 2β −1]
(and fixed 160 bit prime q). For preprocessing we used BKZ with blocksize 70. The
second column is the average value of γn. The last column contains the percentage that
Babai’s attack succeeds in finding the solution i.e. the secret key.

bits:(Skey, Der.Ep.keys) γn suc.rate

(158, 157) 43.81 17%

(158, 155) 51.34 100%

(157, 157) 44.15 23.3%

(157, 156) 48.68 100%

A Further Heuristic Improvement. We can further improve the previous
results. The idea is to use another target vector instead of b = (0, B1, . . . , Bn).
We consider the following vector

b = (ε, ε + B1, . . . , ε + Bn),

where ε = 2159 − 2157. That is the new target vector is equal with the previous
plus the vector (ε, . . . , ε). The reason for picking such a target vector, is because
the entries of the solution vector are balanced, i.e. of the same bit lengths. We
test the previous idea, by choosing the solution vectors

s ∈ {2159, . . . , 2160 − 1} × {2158, . . . , 2159 − 1}n.

That is the secret key has 160−bits and the derivative ephemeral keys 159−bits.
We considered 100 DSA such systems with n = 206 and fq(n) as in Table 1,
preprocessing BKZ-85, and our algorithm found the secret keys in 62 instances.
The time execution per example was on average 2 min in an I3 Intel CPU.
So, having one least (or most) significant bit for 206 derivative ephemeral keys,
we can find the secret key. This result improves, in some sense, the result [12,
Sect. 4.4], where with 100 signatures and knowing 2 least significant bits of the
ephemeral keys, they computed the secret key with success rate 23% and in
4185 s on average per instance.

6 Conclusion

Following the ideas of [19], we have presented new attacks on DSA schemes.
First, we have improved the bound for the lengths of the secret and ephemeral
keys and we replaced the use of Micciancio-Voulgaris algorithm [14], by the
polynomial complexity Babai’s algorithm. This allowed us to find larger keys
than in [19]. Our attack remained deterministic. Furthermore, we presented an
heuristic extension of our attack for finding even larger secret keys. Finally,
we improved the state of the art attack in (EC)DSA presented in [12]. Several
experiments were described.
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Abstract. In this paper, we consider the problem of transmitting binary
messages over data-dependent two-dimensional channels. We propose
a deliberate bit flipping coding scheme that removes channel harmful
configurations prior to transmission. In this method, user messages are
encoded with an error correction code, and therefore the number of
bit flips should be kept small not to overburden the decoder. We for-
mulate the problem of minimizing the number of bit flips as a binary
constraint satisfaction problem, and devise a generalized belief propaga-
tion guided method to find approximate solutions. Applied to a data-
dependent binary channel with the set of 2-D isolated bit configurations
as its harmful configurations, we evaluated the performance of our pro-
posed method in terms of uncorrectable bit-error rate.

Keywords: Probabilistic inference · Graphical models ·
Generalized belief propagation

1 Introduction

Many of probabilistic inference problems can be reformulated as the computa-
tion of marginal probabilities of a joint probability distribution over the set of
solutions of a constraint satisfaction problem (CSP) [1,2]. A CSP consists of a
number of variables and a number of constraints, where each constraint specifies
admissible values of a subset of variables. A solution to a CSP is an assignment
of variables satisfying all the constraints. Message passing algorithms have been
successfully used for solving hard CSPs [3]. Traditional low-complexity approxi-
mate algorithms for solving these problems are based on belief propagation (BP)
[4,5] which operate on factor graphs. BP, as an algorithm to compute marginals
over a factor graph, has its roots in the broad class of Bayesian inference prob-
lems [6]. It is well known that the BP algorithm gives exact inference only on
cycle-free graphs (trees). It has been also observed that in some applications
BP surprisingly can provide close approximations to exact marginals on loopy
graphs. However, an understanding of the behavior of BP in the latter case is
far from complete. Moreover, it is known that BP does not perform well on
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graphs which contain a large number of short cycles. A new class of message-
passing algorithm called generalized belief propagation (GBP) is introduced in
[7] to solve the problem of computing marginal probability distributions on fac-
tor graphs with short cycles. The algorithm relies on the extension of cluster
variation method [8,9], which is called the region graph method. The GBP algo-
rithm provides approximate marginals by minimizing the Gibbs free energy using
region graph method. In GBP, messages are sent among clusters of variables
nodes instead of the node-to-node message passing fashion in BP and SP. More
recently GBP has been shown empirically to have good performance, in either
accuracy or convergence properties, for certain applications [10,11].

In this paper, we consider the problem of transmitting a binary message
over a data-dependent communication channel and recovering it back at the
receiver side. This problem is one of the most fundamental problems in com-
munication theory, and can be considered as an instance of a CSP. Shannon in
his seminal work [12] introduced two coding schemes for reliable transmission
of information over a noisy channel, namely error correction coding and con-
strained coding. The first method protects user messages against random errors,
which are independent of input data, by introducing redundancy in the messages
prior to transmission. On the other hand, a constrained coding method assumes
that channel solely introduces errors in response to specific patterns in input
messages, and removing these problematic patterns makes the channel noiseless.
Recent advances in emerging data storage technologies like magnetic record-
ing systems [13,14], optical recording devices [15] and flash memory drives [16]
necessitate to study two-dimensional coding (2-D) techniques for reliable stor-
age of information. In these systems, user information bits are arranged into
2-D arrays for storing over the recording channel, and occurrences of specific
patterns in input arrays are the significant cause of errors during read-back
process. These systems require the use of some form of error-correction coding
in addition to constrained coding of the input data or symbol sequences. It is
therefore natural to investigate the interplay between these two forms of coding
and the possibilities for efficiently combining their functions into a single coding
operation. For this purpose, we introduce a generic 2-D channel with a set of
harmful configurations to model patterning effects on an information bit from
its neighboring bits in a 2-D channel input array. In this model, information
bits contained in the harmful configurations are more vulnerable to errors than
the other bits. Different 2-D constrained coding methods have been proposed
to remedy the patterning effects in data-dependent 2-D channels, e.g., [17–22].
The goal of most of these methods is to achieve tighter bounds on the Shannon
noiseless channel capacity of constraint. However, these schemes are non-linear
in nature, and their encoder/decoder has a memory. Therefore, combinations of
these methods with an error-correction coding scheme are challenging, and even
a small number of bit errors can result multiple errors and severely degrade the
performance of an error correction decoder. As an alternative coding scheme to
address the non-linear effects of conventional 2-D constrained coding schemes,
we present a deliberate bit flipping (DBF) coding scheme for data-dependent
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2-D channels, where passing through channel specific patterns in inputs are the
main cause of errors. The user message is first encoded by an error correction
code, and is arranged into a 2-D array as an input to the channel. The idea is to
completely eliminate a constrained encoder and, instead, to remove the harmful
configurations by deliberately flipping the selected bits prior to transmission.
The DBF method relies on the error correction capability of the error correction
code (ECC) being used so that it should be able to correct both deliberate errors
and channel errors. Therefore, it is crucial to keep the number of flipped bits
small in order not to overburden the error correction decoder.

The problem of minimizing the number of deliberate bit flips for removing a
set of configurations from a 2-D array is an instance of a CSP, where variables
are arranged into a 2-D array, and constraints are defined locally over a set of
neighboring variables. Assignments to variables are chosen from encoded mes-
sages of information bits (the codewords of ECC being used), and a constraint is
violated if the realization of the neighboring variables involved in the constraint
belongs to the given set of configurations. An initial realization of variables may
violate some of constraints, and the goal is to change values of minimum number
of variables to make all the constraints satisfied. This is equivalent to removing
the forbidden configurations entirely from the 2-D array by flipping minimum
number of bits. Using a factor graph representation, we devise a constrained com-
binatorial formulation for minimizing the number of bit flips in the DBF scheme
for removing a given set of configurations. We find an approximate solution by
reformulating the minimization problem as a 2-D maximum a posteriori (MAP)
problem using a probabilistic graphical model. In this framework, patterns which
do not contain harmful configurations are assumed to be uniformly distributed,
and each pattern containing a harmful configuration has zero probability. The
GBP algorithm, as a MAP inference method, is used to find the approximate
solution for the 2-D MAP problem. Applied to a data-dependent 2-D channel
with 2-D isolated bit patterns as the set of harmful patterns for the channel, we
have shown the performance of DBF method in terms of uncorrectable bit-error
rate.

The organization of the paper is as follows. Section 2 introduces the data-
dependent 2-D channel model. The DBF coding scheme is presented in Sect. 3.
Section 4 explains the probabilistic formulation devised for minimizing the num-
ber of bit flips in DBF coding scheme. Numerical results are given in Sect. 5.

2 Channel Model

In this section, we present a data-dependent 2-D communication channel which
transmits binary rectangular patterns and produces as an output a binary pat-
tern. Passing through the channel, information bits belong to a predefined set of
configurations are more prone to errors than the other bits. The channel is char-
acterized by this set of binary configurations, which is called the set of harmful
configurations and is denoted by F .
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(a) (b)

Fig. 1. Fig. shows (a) Q+(i, j) and (b) Pi,j over the lattice Z
2 for the case of cross-

shaped polyomino.

The set of channel input patterns and the set of channel output patterns are
denoted by X and Y. An input pattern x = [xi,j ] is chosen uniformly and ran-
domly from X , and is transmitted through the channel. A pattern y = [yi,j ] ∈ Y
is observed through the channel. The input pattern x can be considered as a
square binary tiling of a rectangle, where each information bit xi,j on the 2-
D input pattern represents a colored tile (0 (1) refers to a white (black) tile).
The channel is data-dependent, and for each tile xi,j , error is characterized by a
Bernoulli random variable which depends on the realization of polyominoes hav-
ing intersection with this tile. A polyomino of order k is constructed by joining
k square tiles. Here we consider cross-shaped polyominoes of order 5 which are
defined over the 2-D lattice Z

2 as the following

Q+(i, j) = {(i, j − 1), (i − 1, j), (i, j), (i, j + 1), (i + 1, j)} . (1)

The set of cross-shaped polyominoes that have intersection with tile xi,j over an
m × n rectangle is identified by

Pi,j =
⋃

(i′,j′)∈Q+(i,j)

Q+(i′, j′). (2)

Figure 1 shows Q+(i, j) and Pi,j on a 2-D lattice Z
2.

The received tile yi,j is characterized by

yi,j = xi,j ⊕ zi,j , (3)

where zi,j is a Bernoulli random variable which depends on the realization of
Pi,j , xPi,j

, and is defined by

zi,j ∼
{

Bern(αb), xPi,j
∈ F ,

Bern(αg), xPi,j
�∈ F .

(4)

Passing through the channel, colors of input tiles belong to F invert with prob-
ability αb, while colors of other tiles invert with probability αg. Since patterns
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belong to the set F are the main source of errors for this communication channel,
we have αb � αg.

The introduced channel has two states where in each state acts as a binary
symmetric channel with a different cross-over probability, and can be consid-
ered as an instance of the Gilbert-Elliot channel [23]. However, the state transi-
tions in the introduced channel depends on input data which makes the problem
of designing capacity achieving codes difficult. As we explain in the following
section, we introduce a deliberate bit flipping coding strategy for this communi-
cation channel to overcome the effects of harmful configurations.

3 Deliberate Bit Flipping Coding Method

In this section, we characterize the deliberate bit flipping coding strategy for
removing harmful configurations from 2-D channel input patterns before trans-
mission through a data-dependent 2-D channel.

A user binary message m of length K is given. The message m is first encoded
by an error correction code with rate R = K

N , and we have the codeword c of
length N . The codeword is arranged into a 2-D array x = [xi,j ] of size m × n,
where xi,j = c(i−1)m+j and N = m × n. For each tile xi,j , a 2-D constraint is
defined over polyominoes having intersection with this tile. The 2-D constraint
S forbids some of the configurations of Pi,j , where the set of these configurations
are denoted by F . These configurations are essentially harmful configurations for
the channel, and they must be removed before transmission. We use a deliberate
error insertion approach to remove the harmful configurations from the input
pattern x before transmission through the channel. Whenever there is a config-
uration from the list F in the input pattern x, the color of selected tiles in x
are inverted to remove the forbidden configurations. In the following, we present
an example to highlight the basic ideas behind the DBF method for removing
a set of predefined configurations from a 7 × 7 random binary pattern. In this
example, the set of 2-D isolated bit patterns are required to be removed form
the given random pattern.

Example 1. A 7 × 7 random binary pattern x as shown in Fig. 2 is given. The
goal is to use the DBF scheme to remove the 2-D isolated bit configurations. We
assume zero entries (white tiles) outside of x, i.e., xi,j = 0, while i < 1, j < 1,
i > 7, or j > 7. There are two isolated bit patterns in x, which are xQ+(3,6)

and xQ+(7,7). Passing through the channel, the tiles whose belong to these two
patterns are more prone to errors than the other tiles. These tiles are (2, 6),
(3, 5), (3, 6), (3, 7), (4, 6), (6, 7), (7, 6) and (7, 7). For instance, for the tile (2, 6),

P2,6 =
⋃

(i′,j′)∈Q+(2,6)

Q+(i′, j′). (5)

Since Q+(3, 6) ⊂ P2,6 and xQ+(3,6) is a 2-D isolated bit pattern, we have xP2,6

contains a 2-D isolated bit pattern. Similarly, we can verify this for the rest of
tiles in x. 2-D isolated bit configurations can be removed form x by inverting
the colors of tiles (3, 6) and (7, 7).
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Fig. 2. In order to remove the 2-D isolated bit patterns from the given 7 × 7 binary
pattern, the colors of tiles (3, 6) and (7, 7) are inverted.

In the DBF method, the main role is to select tiles whose colors need to
be inverted for removing the harmful configurations. We define a tile-selection
function to determine these tiles.

Definition 1 (Tile-Selection Function). The tile-selection function θ : X →
{0, 1}m×n selects tiles whose colors need to be inverted for removing the harmful
configurations from the pattern x.

Using θ, eDBF is defined to identify the locations of tiles whose colors are
inverted,

eDBF = θ(x) = [eDBF
i,j ], (6)

where eDBF
i,j = 1 if the color of (i, j)-th tile is inverted, otherwise, eDBF

i,j = 0.
Therefore, x ⊕ eDBF does not contain any harmful configurations from the list
F . Furthermore, the number of tiles whose colors are inverted is wH(eDBF).
Now, instead of x, we send x⊕ eDBF over the channel, and the received pattern
is y = x⊕eDBF⊕eCH, where eCH indicates the locations of tiles whose colors are
inverted due to channel errors. A decoder ψ : {0, 1}m×n → X maps a received
pattern y to a pattern x̂ in the input set X . In the following, we define the
average probability of error and the capacity of the method.

Definition 2 (Average Probability of Error). λm = p(m̂ �= m|m) is the
probability that the decoded message m̂ is different from the actual message m.
The average probability of error is defined by

p(N)
e = p(m̂ �= m) =

∑

m∈M
λmp(m)=

1
2�NR�

∑

m

λm. (7)

Definition 3 (Achievable Rate and Capacity). A rate R is said to
be achievable if for some N and εN > 0, p

(N)
e ≤ εN . The capacity is defined

as the supremum over all achievable rates.

In this communication system with DBF method, there are two types of
error. The first type of error is the deliberate errors which are introduced before
transmission through the channel, and the second type is the random channel
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errors. If we assume that the main cause of errors are the presence of harmful
patterns in input patterns, removing the harmful configurations makes the chan-
nel almost noiseless. Therefore, for the Hamming distance between the input and
received patterns, we have

dH(x,y) = wH(x ⊕ y) 
 wH(eDBF). (8)

Without loss of generality, if we use a bounded-distance decoder, it should be
ideally decode all the messages that

dH (x(m),y) 
 wH(eDBF) ≤ �dmin − 1
2

�, (9)

where dmin is the minimum distance of the code. Therefore, the main obstacle
for using the DBF method for removing harmful configurations is to keep the
number of deliberate errors small enough not to overburden the decoder. For a
given binary user message and a set of forbidden configurations, we are interested
in finding x̂, that minimizes wH(x̂ ⊕ x) and x̂ ∈ S. This minimization problem
can be considered as a constrained combinatorial optimization problem. Finding
a binary pattern which satisfies a certain local constraints (which do not contain
a predefined set of 2-D configurations), and has the minimum Hamming distance
with the input binary pattern x via an exhaustive search can be computationally
prohibitive for large patterns. This problem can be regarded as an instance of the
Levenshtine distance problem [24], which is known to be a hard combinatorial
problem. In the following section, we present a probabilistic graphical model,
and reformulate the problem as a maximum a-posetriori (MAP) problem to find
an approximation solution for the problem.

4 A Probabilistic Formulation for DBF Method

In this section, we present a probabilistic formulation for the problem of minimiz-
ing the number of bit flips in the DBF scheme. In this framework, the set of input
patterns which do not contain any harmful configurations has uniform distribu-
tion, while the patterns containing harmful configurations have zero probability.
For a given random input pattern, the problem originally is to find the pattern
which does not contain any harmful configurations, and has the minimum Ham-
ming distance with the given input pattern. We translate this problem into the
problem of finding the most likely pattern (that does not contain any harmful
configurations) to the given pattern using a binomial expression.

An input pattern x is given. For each tile xi,j over x, existence of harmful
configurations is determined based on the configuration of Pi,j , xPi,j

. There-
fore, the problem of finding x̂ ∈ S which has the minimum wH(x̂ ⊕ x) can be
break down locally over each Pi,j . We define a local distortion function D over
Pi,j ’s to determine the Hamming distance between x̂Pi,j

and xPi,j
. The func-

tion D : {0, 1}|Pi,j | × {0, 1}|Pi,j | → N is defined over the tiles indexed by Pi,j as
follows
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D
(
x̂Pi,j

,xPi,j

)
=

{
wH

(
x̂Pi,j

⊕ xPi,j

)
, x̂Pi,j

�∈ F ,

∞, x̂Pi,j
∈ F ,

(10)

where the patterns belonging to F are specified by ∞. One may use the outputs of
this function over the tiles in x to find x� ∈ S which has the minimum Hamming
distance with x. This process can be intractable for large patterns as it needs to
compute the output of D for each tile, which has 2|Pi,j | different configurations,
and take exponentially large memory just to store. In the following, we present
a probabilistic formulation to find approximate solution for this problem using
GBP algorithm.

We use a binomial probability expression to reformulate the distortion
indicator function defined in Eq. (10), and present a probabilistic formu-
lation for the problem of minimizing the Hamming distance. We assume
that the color of each tile contained in a harmful configuration is inverted
with the probability 0 < λ ≤ 1. For each tile xi,j , we define a function
Dp : {0, 1}Pi,j × {0, 1}Pi,j → R

0, 1 over the tiles tiles indexed by Pi,j ,

Dp(xPi,j
, x̂Pi,j

) =

{
λwH(ePi,j

)(1 − λ)|Pi,j |−wH(ePi,j
), x̂Pi,j

�∈ F ,

0, x̂Pi,j
∈ F ,

(11)

where ePi,j
= x̂Pi,j

⊕ xPi,j
, and |Pi,j | indicates the number of tiles in Pi,j . This

function is called as the local probabilistic distortion function. For each tile
(i, j) ∈ Am,n, the distortion now is defined as the probability of having a dis-
torted pattern xPi,j

which has the Hamming distance wH(x̂Pi,j
⊕ xPi,j

) with
x̂Pi,j

�∈ F . When x̂Pi,j
∈ F , this probability is set to be zero, as the first con-

straint is to find x̂ ∈ S.
For a given input pattern x and a set of harmful configurations F , the goal is

now to find x̂ ∈ S that maximizes p (x̂|x), which is equivalent to finding x̂ that
minimizes wH (x̂ ⊕ x). In another word, we are interested in finding

x̂ = arg max
x̂∈S

{p(x̂|x)} . (12)

The a-posteriori probability p (x̂|x) for a fixed λ is factored into

p (x̂|x) =
p (x|x̂) p (x̂)

p (x)
(a)∝ p (x|x̂)

(b)
=

∏

(i,j)

p
(
xPi,j

|x̂Pi,j

)
,

(c)
=

∏

(i,j)

Dp(xPi,j
, x̂Pi,j

), (13)

where (a) comes from this assumption that the set of patterns which do not
contain harmful configurations has uniform distribution, (b) is established as
harmful configurations can be determined locally over Pi,j ’s, and (c) is obtained
according to the local probabilistic distortion function, Eq. (11). Therefore, we
have
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p (x̂|x) =
1

Z(x)

∏

(i,j)∈Am,n

Dp(xPi,j
, x̂Pi,j

), (14)

where Z(x) is the partition function and defined by

Z(x) =
∑

x

∏

(i,j)∈Am,n

Dp(xPi,j
, x̂Pi,j

). (15)

Providing either exact or approximate solutions for the marginal probabilities
in general is a NP-hard problem [3], as we need to take sum over exponen-
tial number of variables. In [7,25], it is shown that region-based approximation
(RBA) method provides an approximate solution for the partition function by
minimizing the region-based free energy (as an approximation to the variational
free energy). Therefore, GBP as a method for finding approximate solution for
region-based free energy can be used to solve the problem of minimizing the
number of bit flips in the DBF scheme.

5 Numerical Results

In this section, we present the numerical results, and explain how the DBF
method relies on the error correction capability of the code being used. We first
provide an example of a short BCH code with incorporating DBF method.

5.1 Example of BCH-[5,7,15] Code

Consider the user messages of length 5, m1 = (0, 1, 0, 0, 0), m2 = (1, 0, 0, 0, 0),
m3 = (0, 1, 1, 1, 1) and m4 = (0, 1, 1, 0, 1). The messages are encoded by the
BCH-[5, 7, 15] code, and the codewords are

c1 = (0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0) , c2 = (1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1) ,

c3 = (0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0) , c4 = (0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0) .

The codewords are arranged into 3 × 5 arrays as four different binary patterns.
These patterns are shown in Fig. 3. We want to remove forbidden configurations
by the 2-D n.i.b. constraint entirely from the patterns with flipping minimum
number of bits. We only focus on these four patterns out of 32 possible binary
patterns with BCH-[15, 5, 7] code as they present all different possible bit flipping
scenarios for removing 2-D isolated bit patterns.

In Fig. 3(a), the pattern does not contain any of the 2-D isolated bit configu-
rations, therefore there is no need to invert the tile colors, and wH(e(a)) = 0. The
pattern in Fig. 3(b) contains single 2-D isolated bit pattern, which is xQ+(2,3).
This 2-D isolated bit pattern can be removed by inverting the color of any one
of the tiles in Q+(2, 3), and therefore the minimum wH(e(b)) = 1. For the pat-
tern in Fig. 3(c), there are two overlapping 2-D isolated bit patterns, which are
xQ+(2,3) and xQ+(3,3). These two isolated bit patterns can be removed simulta-
neously by inverting either the color of tile (2, 3) or (3, 3), and therefore for this
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Fig. 3. The input patterns for this example. Outside of these patterns are filled with
white tiles (zero entries).

case also the minimum wH(e) = 1. In Fig. 3(d), the pattern contains two non-
overlapping 2-D isolated bit patterns, which are xQ+(1,5) and xQ+(3,4). At least
colors of two tiles over this input pattern should be inverted, and for this case
the minimum wH(e(d)) = 2. For the systematic BCH-5, 7, 15 code (where the
codewords are arranged into 3 × 5 arrays and the first row is equipped with the
user bits), in average it needs to flip 0.6563 bits/pattern to remove the forbidden
configurations by the 2-D n.i.b. constraint.

5.2 Uncorrectable Bit-Error Rate

In this section, we present the statistics of the number of bit flips required for
removing 2-D isolated bit configurations from a random 2-D pattern of size
32 × 32, and also compute the uncorrectable bit-error rate (UBER) using these
statistics.

The statistics of the number of bit flips are obtained by applying GBP-based
DBF method for removing 2-D isolate bit patterns from a set of 8000 random
2-D patterns of size 32 × 32. Similar to the other examples, we assume white tiles
or zero entries outside of patterns. Figure 4(a) shows the occurrence probability
of the number of flipped bits.

Fig. 4. (a) Fig. presents an occurrence probability of the number of bit flips for remov-
ing 2-D isolated bit configurations from a random 2-D pattern of size 32 × 32. (b) The
UBER for the DBF scheme with BCH codes of length 1024 is given.
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Using these occurrence probabilities, we can compute the UBER for an ECC
being used, as follows

UBER =

⎡

⎢⎣
∑

wH(eDBF)>� dmin−1
2 �

p
(
wH(eDBF)

)
⎤

⎥⎦ /NR, (16)

where dmin is the minimum distance of code, N = m × n is the size of the pattern
(length of the code), and R is the rate of the ECC. In fact, we compute the UBER
under the assumptions that the channel only introduces errors in response to
presences of 2-D isolated bit configurations, and removing these configurations
make the channel noiseless. In our introduced channel, this is the case when
αg = 0 and αb �= 0. As an example, we use BCH codes of length 1024 with
different code rates, and draw the UBER for these codes in Fig. 4(b).

6 Conclusions

We have presented a deliberate bit flipping coding scheme for data-dependent
2-D channels. For this method, we have shown that the main obstacle is the
number of deliberate errors which are introduced for removing harmful config-
urations before transmission through the channel. We have devised a combina-
torial optimization formulation for minimizing the number of bit flips, and have
explained how this problem can be related to a binary constraint satisfaction
problem. Finally, through an example, we have presented uncorrectable bit-error
rate results of incorporating DBF for removing 2-D isolated-bit configurations
from 2-D patterns of certain size.

Acknowledgment. This work is funded by the NSF under grants ECCS-1500170 and
SaTC-1813401. A comprehensive version of this paper has been submitted to IEEE
Transactions on Communications [26].
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GFS of type 2 can be easily implemented and examples of such ciphers are
RC6 [4], HIGHT [3] and CLEFIA [5]. Unfortunately this type of a Feistel struc-
ture has low diffusion for large k and needs a large number of rounds.

Suzaki and Minematsu [6] suggested the improved generalized Feistel struc-
ture (GFSπ) as a modification of the generalized Feistel structure of type 2. This
modification allows improvement of the diffusion property. Further investigations
and new ideas on the improved generalized Feistel structures are presented in
[1,2,7,9]. We briefly describe here how a block cipher based on GFSπ works.

The block length is k.n and the block has k parts of the same length (n-bits).
We shall denote by P1, P2, . . . Pk the subblocks of the input plain text block. The
block is encrypted (decrypted) in R rounds (rounds 1, 2, . . . R). We denote the
parts of the input block to round r by Xr

1 ,Xr
2 , . . . Xr

k , and those of the output
block by Y r

1 , Y r
2 , . . . Y r

k , where X1
i = Pi and Xr

i = Y r−1
i for i = 1, 2, . . . k and

r = 2, 3, . . . R.
The subblocks are grouped two by two for the round transformation, namely

Xr
i and Xr

i+1 (for each odd i) are in one pair. The value of Xr
i remains unchanged,

while the value of a nonlinear function f(Xr
i ) is added bitwise to the value of

Xr
i+1. Then a permutation πr is applied to the subblocks.

Xr
1

⇓

Xr
1

⇓

↔
Xr

2

⇓

Xr
2

⊕
f(Xr

1 )
⇓

Xr
3

⇓

Xr
3

⇓

↔
Xr

4

⇓

Xr
4

⊕
f(Xr

3 )
⇓

. . .
Xr

k−1

⇓

Xr
k−1

⇓

↔
Xr

k

⇓

Xr
k

⊕
f(Xr

k−1)
⇓

p e r m u t a t i o n πr

⇓

Y r
1

⇓

Y r
2

⇓

Y r
3

⇓

Y r
4

. . . ⇓

Y r
k 1

⇓

Y r
k

The inverse permutation π−1
r is used for the decryption. If the permutation

applied at each round is the cyclic shift the generalized Feistel structure of type
2 (GFS2) is obtained.

Note that no permutation is applied at the last round or, if it is more conve-
nient, we can think that the permutation at this round is the identity permuta-
tion (1)(2) . . . (k).

Full diffusion is achieved if each subblock depends on all input subblocks.
Denote by re and rd the smallest rounds after which full diffusion is achieved
by encryption and decryption respectively. We shall call the bigger of them full
diffusion round and will further denote it by Rd, namely

Rd = max(re, rd).



40 T. Baicheva and S. Topalova

For GFS2 with k subblocks Rd = k. The diffusion round of GFSπ depends on
the permutations used at the different rounds.

In [6] Suzaki and Minematsu construct for all even k ≤ 16 all permutations
π which lead to the smallest Rd if one and the same permutation π is applied at
each round. They notice that the permutations with smallest Rd are even-odd
ones, namely map odd to even numbers and vice versa. They next prove that
for even-odd permutations

Rd ≥ RD,

where aRD−1 <
k

2
≤ aRD

and aRD
is the RD-th element of the Fibonacci

sequence (starting with 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .). For k ≤ 16
the values of RD are

k 2 4 6 8 10 12 14 16
RD 2 4 5 6 6 7 7 7

Note that this lower bound is derived by assuming that the permutations are
even-odd, but not by assuming that the permutation is one and the same at all
rounds. That is why the same bound can be applied in the multiple permutation
case which we consider.

Suzaki and Minematsu show by exhaustive computer search that Rd = RD

for k ≤ 8 and Rd = RD + 1 for 10 ≤ k ≤ 16 if one and the same permutation
π is applied at each round. In conclusion they point out that the consideration
of a different permutation at each round might lead to structures with better
diffusion. This was our motivation to start the present work.

1.2 The Present Paper

We consider GFSπ with different permutations at the different rounds. That is
why for all even values of k ≤ 16 we construct permutation sequences π1, π2, . . .,
πRD−1 and examine their diffusion property until we find permutation sequences
which lead to a GFSπ with RD rounds and such that full diffusion is achieved
after the last round. The investigation is computer-aided. All possible permuta-
tion sequences are, however, (k!)RD−1 and this is too much for our computer.
Thus only a representative part of them must be tested. The challenge in this
problem is to determine a small enough representative part. In Sect. 2 we explain
the basic ideas of our construction method. Section 3 contains a summary of the
results and a comparison to the previously known ones.

2 Construction Method

2.1 Notations and Dependence Matrices

Consider an R-round GFSπ with k subblocks. Denote by πr the permutation at
round r < R. To simplify the notations, when it is clear from the context which
round r is concerned, we shall use Xi instead of Xr

i and Yi instead of Y r
i . Let

Πr = πrπr−1 . . . π1.
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The notation means that Πr is a permutation obtained by superposition of these
r permutations, where π1 is applied first, then π2, . . . πr. We use the notation
Yi ← Pj , which means that Πr(j) = i, namely as a result of the permutations
at the first r rounds the j-th subblock moved to the i-th place.

We construct even-odd permutations πr for each round r < RD. As a mea-
sure of the diffusion after the r-th round we consider the dependence matrix
M = (mij)k×k, where mij is 1 if the value of the i-th subblock depends on the
value of the j-th subblock of the plaintext, and 0 if not. In the following examples
we denote by Mr the dependence matrix after round r, and by Fr the depen-
dence matrix after the Feistel transformation at round r (before applying πr).
For each odd i the value of the subblock Xi remains unchanged by the Feistel
transformation, while the value of a nonlinear function f(Xi) is added bitwise
to the value of Xi+1. That is why after the Feistel transformation the subblock
Xi+1 starts depending on all subblocks on which Xi depends. Therefore the odd
rows of Fr are the same as those of Mr−1, while for even i the elements of the
i-th row of Fr are obtained as disjunction (‘or’) of the corresponding elements
of rows i − 1 and i of Mr−1. We denote this by

Fr = M⊕
r−1.

The matrix Mr is then obtained by applying πr on the rows of Fr. Namely:

Mr = πrFr = πrM
⊕
r−1.

Note that at the full diffusion round RD each of the matrices Fr and Mr is the
all-one k × k matrix.

We also use a related to Fr and Mr matrix, which we call base. The round
r-th base is a matrix Br = (br

ij)k×k which can be obtained by applying the
permutation Π−1

r to the rows of Mr, i.e.

Br = Π−1
r Mr.

Note that the rows of Br are the same as the rows of Fr or Mr, but sorted by the
Pi (while those of Fr and Mr are sorted by the Xi and Yi respectively). Namely,
the i-th row of the base shows the dependencies accumulated by subblock Pi

while being encrypted during the previous rounds. The base does not know which
place Pi moved to, but it holds all the necessary information for a study of the
diffusion property. As we will point out below, several dependence matrices (and
the corresponding to them permutation sequences) can have one and the same
base. Since we want to reduce the number of the tested possible permutation
sequences, the base is of major importance both for designing and for explaining
our algorithm.

Example 1. Consider a four round GFSπ with k = 4 and the permutation
sequence presented in Table 1. Before the first round the dependence matrix
is the same as the base (every subblock depends on itself only):
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M0 P1 P2 P3 P4

X1 = P1 1 0 0 0
X2 = P2 0 1 0 0
X3 = P3 0 0 1 0
X4 = P4 0 0 0 1

At the first round π1 = (1, 2)(3, 4). The dependencies at round 1 are presented
below, where F1 is obtained from M0 by changing 0-s to 1-s in rows 2 and 4 if
there are 1-s in the corresponding columns of rows 1 and 3 respectively, M1 is
obtained from F1 by applying π1 on its rows (π1(1) = 2, π1(2) = 1, π1(3) = 4,
π1(4) = 3, i.e. row 1 becomes 2-nd, row 2 first, row 3 fourth and row 4 third),
and B1 is obtained by sorting the rows of F1 or M1 by the Pi.

F1 P1 P2 P3 P4

X1 ← P1 1 0 0 0
X2 ← P2 1 1 0 0
X3 ← P3 0 0 1 0
X4 ← P4 0 0 1 1

M1 P1 P2 P3 P4

Y1(X2) ← P2 1 1 0 0
Y2(X1) ← P1 1 0 0 0
Y3(X4) ← P4 0 0 1 1
Y4(X3) ← P3 0 0 1 0

B1 P1 P2 P3 P4

P1 1 0 0 0
P2 1 1 0 0
P3 0 0 1 0
P4 0 0 1 1

At the second round π2 = (1, 4, 3, 2). The dependencies at round 2 follow,
where F2 is obtained from M1 by changing 0-s to 1-s in rows 2 and 4 if there are
1-s in the corresponding columns of rows 1 and 3 respectively, M2 is obtained
from F2 by applying π2 on its rows (π1(1) = 4, π1(4) = 3, π1(3) = 2, π1(2) = 1,
i.e. row 1 becomes 4-th, row 4 moves to the third place, row 3 to the second and
row 2 to the first), and B2 is obtained by sorting the rows of F2 or M2 by the Pi.

F2 P1 P2 P3 P4

X1 ← P2 1 1 0 0
X2 ← P1 1 1 0 0
X3 ← P4 0 0 1 1
X4 ← P3 0 0 1 1

M2 P1 P2 P3 P4

Y1(X2) ← P1 1 1 0 0
Y2(X3) ← P4 0 0 1 1
Y3(X4) ← P3 0 0 1 1
Y4(X1) ← P2 1 1 0 0

B2 P1 P2 P3 P4

P1 1 1 0 0
P2 1 1 0 0
P3 0 0 1 1
P4 0 0 1 1

At the third round π3 = (1, 2)(3, 4) and the dependencies are:

F3 P1 P2 P3 P4

X1 ← P1 1 1 0 0
X2 ← P4 1 1 1 1
X3 ← P3 0 0 1 1
X4 ← P2 1 1 1 1

M3 P1 P2 P3 P4

Y1(X2) ← P4 1 1 1 1
Y2(X1) ← P1 1 1 0 0
Y3(X4) ← P2 1 1 1 1
Y4(X3) ← P3 0 0 1 1

B3 P1 P2 P3 P4

P1 1 1 0 0
P2 1 1 1 1
P3 0 0 1 1
P4 1 1 1 1

At the forth round π4 = (1)(2)(3)(4). This is the full diffusion round. Every
output subblock is affected by all plaintext subblocks.

F4 P1 P2 P3 P4

X1 ← P4 1 1 1 1
X2 ← P1 1 1 1 1
X3 ← P2 1 1 1 1
X4 ← P3 1 1 1 1

M4 P1 P2 P3 P4

Y1(X1) ← P4 1 1 1 1
Y2(X2) ← P1 1 1 1 1
Y3(X3) ← P2 1 1 1 1
Y4(X4) ← P3 1 1 1 1

B4 P1 P2 P3 P4

P1 1 1 1 1
P2 1 1 1 1
P3 1 1 1 1
P4 1 1 1 1
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2.2 The Backtrack Search

The construction of the permutation sequences is based on backtrack search with
suitability tests on the partial solutions.

Suppose we have constructed permutations for the first r − 1 rounds and
now we are choosing solutions for πr. For that purpose our algorithm generates
all permutations for which the two restrictions described below hold. Then the
suitability test is applied to each of them and if it is positive, the current par-
tial solution is extended further with permutations for the remaining rounds. If
the suitability test is negative, the next possibility for the r-th permutation is
considered. If in this case no more untested possibilities for πr exist, we return
back and test the next possibility for πr−1.

If the dependence matrix of the current solution at round RD has only
nonzero elements, we check whether for decryption the full diffusion round is
RD too. Namely, we compute the full diffusion round of a GFSπ with a permu-
tation sequence π−1

RD−1, π
−1
RD−2, . . . π

−1
1 . If it is RD, the algorithm stops because a

solution attaining the lower bound for even-odd permutations has been obtained.

2.3 Restrictions

Allowing different permutations at the different rounds makes the search space
very large. It is therefore infeasible to test all possibilities and the probability
to come upon a good one (with respect to diffusion) in reasonable time is quite
small. To solve the problem we impose some restrictions which narrow the search
space.

Restriction 1. We construct only even-odd permutations.
This means that a nonlinear part (possibly with new dependencies) is added

to each subblock exactly once in any two successive rounds. The even-odd prop-
erty leads to the best diffusion in the one-and-the-same permutation case consid-
ered in [6]. We expect it to yield solutions with the best diffusion in the multiple
permutation case too.

Restriction 2. We construct only round permutations for which:
at odd rounds: πr(2t − 1) = 2t, t = 1, 2, . . . k

2

at even rounds: πr(2t) = 2t − 1, t = 1, 2, . . . k
2

In this way we actually determine the movement of the odd plaintext sub-
blocks during the whole encryption process. Such a restriction does not cut off
diffusion solutions because the diffusion property depends only on the way the
subblocks are grouped in pairs for the Feistel transformation, not on the exact
place of each pair. That is why we can fix the position of one element of each
pair. Since we construct even-odd permutations, without loss of generality we
choose to fix the movement of the odd plaintext subblocks (i.e. the i-th one will
be i-th at odd rounds, and i+1-st at even rounds). By this requirement we actu-
ally cut off many permutations for which the dependence matrices are different,
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but the base is the same as in the cases considered by our algorithm. Any of
the solutions which are cut off this way, can be obtained by permutations of the
pairs in the solutions we find. This is illustrated in the following example.

Example 2. The GFSπ from Example 1 has a permutation sequence (1, 2)(3, 4),
(1, 4, 3, 2), (1, 2)(3, 4). Now we will compare it to a GFSπ with a permutation
sequence (1, 2)(3, 4), (1, 2, 3, 4), (1, 2)(3, 4).

The dependencies at round 1 are the same as in Example 1. At the next
rounds:

π2 = (1, 2, 3, 4)

F2 P1 P2 P3 P4

X1 ← P2 1 1 0 0
X2 ← P1 1 1 0 0
X3 ← P4 0 0 1 1
X4 ← P3 0 0 1 1

M2 P1 P2 P3 P4

Y1(X4) ← P3 0 0 1 1
Y2(X1) ← P2 1 1 0 0
Y3(X2) ← P1 1 1 0 0
Y4(X3) ← P4 0 0 1 1

B2 P1 P2 P3 P4

P1 1 1 0 0
P2 1 1 0 0
P3 0 0 1 1
P4 0 0 1 1

π3 = (1, 2)(3, 4)

F3 P1 P2 P3 P4

X1 ← P3 0 0 1 1
X2 ← P2 1 1 1 1
X3 ← P1 1 1 0 0
X4 ← P4 1 1 1 1

M3 P1 P2 P3 P4

Y1(X2) ← P2 1 1 1 1
Y2(X1) ← P3 0 0 1 1
Y3(X4) ← P4 1 1 1 1
Y4(X3) ← P1 1 1 0 0

B3 P1 P2 P3 P4

P1 1 1 0 0
P2 1 1 1 1
P3 0 0 1 1
P4 1 1 1 1

π4 = (1)(2)(3)(4)

F4 P1 P2 P3 P4

X1 ← P2 1 1 1 1
X2 ← P3 1 1 1 1
X3 ← P4 1 1 1 1
X4 ← P1 1 1 1 1

M4 P1 P2 P3 P4

Y1(X1) ← P3 1 1 1 1
Y2(X2) ← P2 1 1 1 1
Y3(X3) ← P1 1 1 1 1
Y4(X4) ← P4 1 1 1 1

B4 P1 P2 P3 P4

P1 1 1 1 1
P2 1 1 1 1
P3 1 1 1 1
P4 1 1 1 1

Denote by pi the encrypted Pi, no matter where it moved to and consider
the pairs (denoted ↔) for the Feistel transformation at each round. The pairs
can be seen from the successive pairs of rows of Fr. We explicitly show them
here.

For Example 1:

round X1 ↔ X2 X3 ↔ X4

1 p1 ↔ p2 p3 ↔ p4
2 p2 ↔ p1 p4 ↔ p3

3 p1 ↔ p4 p3 ↔ p2
4 p4 ↔ p1 p2 ↔ p3

For this permutation sequence:

round X1 ↔ X2 X3 ↔ X4

1 p1 ↔ p2 p3 ↔ p4
2 p2 ↔ p1 p4 ↔ p3
3 p3 ↔ p2 p1 ↔ p4
4 p2 ↔ p3 p4 ↔ p1

We can see that at each round the same elements are in one pair for both
sequences. Therefore as far as diffusion is concerned, the two second round per-
mutations (1, 2, 3, 4) and (1, 4, 3, 2) have the same effect. This can also be seen
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from the bases which are the same in both examples. The requirements of Restric-
tion 2 hold for Example 1 (see the bold elements above which show the required
movement of the odd plaintext subblocks), but do not hold for the second per-
mutation sequence. That is why for π1 = (1, 2)(3, 4) our algorithm will not
construct π2 = (1, 2, 3, 4).

The number of all tested permutations at each round is reduced by Restric-
tion 1 from k! to (k

2 !)2 (for k = 16 this means from 20922789888000 to
1625702400), and further to k

2 ! by Restriction 2. (for k = 16 this is 40320).
Thus by applying the upper restrictions we search for best diffusion solutions
among (k

2 !)RD−1 permutation sequences (for k = 16 this is 403206 ≈ 4.1027).
We further reduce this number by applying a suitability test.

2.4 Suitability Test

Denote by or and er the number of 1-s in all odd and, respectively, all even rows
of Fr. Their values can be at most k2/2 which is the number of all elements in the
odd (even) rows. The Feistel transformation at each round can add new depen-
dences only to the even subblocks. Since we construct even-odd permutations,
the odd (even) subblocks at the beginning of round r are mapped by πr to even
(odd) subblocks, and so are the rows of Fr - the odd (even) ones are mapped
to even (odd) rows of Mr (and Fr+1 respectively). The best possible scenario
for the diffusion is when all dependences of the odd subblocks are new for the
corresponding even subblocks, i.e. the Feistel transformation adds the greatest
possible number of new dependences to the even subblocks (this means that the
greatest possible number of 1-s is added to the even rows of Mr to obtain Fr).
More precisely for r ≥ 2:

or = er−1 (1)
er ≤ or−1 + er−1 (2)

er ≤ k2

2
(3)

The best scenario implies equality in either (2) or (3). The suitability test
at round r counts the exact value of or+1 and er+1. Then using (1), (2) and
(3) for the remaining rounds, it calculates upper bounds on the number of the
1-s in the odd (even) rows of FRD

. If oRD
< k2/2 or eRD

< k2/2, there will
be zero elements in FRD

and it cannot be the full diffusion round. Therefore
the current permutation sequence cannot be extended to a sequence with full
diffusion round RD. In this case we skip the current solution for πr and construct
the next possibility for it.
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Example 4. Consider a GFSπ with k = 8. Suppose we have constructed π1 =
(1, 2)(3, 4)(5, 6)(7, 8). Then the dependencies after round 1 are

F1 P1 P2 P3 P4 P5 P6 P7 P8

X1 ← P1 1 0 0 0 0 0 0 0
X2 ← P2 1 1 0 0 0 0 0 0
X3 ← P3 0 0 1 0 0 0 0 0
X4 ← P4 0 0 1 1 0 0 0 0
X5 ← P5 0 0 0 0 1 0 0 0
X6 ← P6 0 0 0 0 1 1 0 0
X7 ← P7 0 0 0 0 0 0 1 0
X8 ← P8 0 0 0 0 0 0 1 1

M1 P1 P2 P3 P4 P5 P6 P7 P8

Y1(X2) ← P2 1 1 0 0 0 0 0 0
Y2(X1) ← P1 1 0 0 0 0 0 0 0
Y3(X4) ← P4 0 0 1 1 0 0 0 0
Y4(X3) ← P3 0 0 1 0 0 0 0 0
Y5(X6) ← P6 0 0 0 0 1 1 0 0
Y6(X5) ← P5 0 0 0 0 1 0 0 0
Y7(X8) ← P8 0 0 0 0 0 0 1 1
Y8(X7) ← P7 0 0 0 0 0 0 1 0

We are now constructing all possibilities for π2. To each of them we apply
the suitability test. Suppose we constructed π2 = (1, 2)(3, 4)(5, 6)(7, 8). Then:

F2 P1 P2 P3 P4 P5 P6 P7 P8

X1 ← P2 1 1 0 0 0 0 0 0
X2 ← P1 1 1 0 0 0 0 0 0
X3 ← P4 0 0 1 1 0 0 0 0
X4 ← P3 0 0 1 1 0 0 0 0
X5 ← P6 0 0 0 0 1 1 0 0
X6 ← P5 0 0 0 0 1 1 0 0
X7 ← P8 0 0 0 0 0 0 1 1
X8 ← P7 0 0 0 0 0 0 1 1

M2 P1 P2 P3 P4 P5 P6 P7 P8

Y1(X2) ← P1 1 1 0 0 0 0 0 0
Y2(X1) ← P2 1 1 0 0 0 0 0 0
Y3(X4) ← P3 0 0 1 1 0 0 0 0
Y4(X3) ← P4 0 0 1 1 0 0 0 0
Y5(X6) ← P5 0 0 0 0 1 1 0 0
Y6(X5) ← P6 0 0 0 0 1 1 0 0
Y7(X8) ← P7 0 0 0 0 0 0 1 1
Y8(X7) ← P8 0 0 0 0 0 0 1 1

F3 P1 P2 P3 P4 P5 P6 P7 P8

X1 ← P1 1 1 0 0 0 0 0 0
X2 ← P2 1 1 0 0 0 0 0 0
X3 ← P3 0 0 1 1 0 0 0 0
X4 ← P4 0 0 1 1 0 0 0 0
X5 ← P5 0 0 0 0 1 1 0 0
X6 ← P6 0 0 0 0 1 1 0 0
X7 ← P7 0 0 0 0 0 0 1 1
X8 ← P8 0 0 0 0 0 0 1 1

From F3 we count that at round 3: o3 = 8, e3 = 8. Then using (1), (2) and
(3) we calculate:

at round 4: o4 = 8, e4 ≤ 16,
at round 5: o5 ≤ 16, e5 ≤ 24,
at round 6: o6 ≤ 24, e6 ≤ 32.

You can see that o6 < 32, i.e. there will be zero elements in F6. Since we
want to construct a permutation sequence with full diffusion round 6, we
reject the solution (1, 2)(3, 4)(5, 6)(7, 8) for π2. Note that if a suitability test
is not applied, this solution will be considered and extended to (4!)3 = 13824
solutions for π1, π2, π3, π4, π5, which start by π1 = (1, 2)(3, 4)(5, 6)(7, 8) and
π2 = (1, 2)(3, 4)(5, 6)(7, 8).
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Suppose π2 = (1, 4, 3, 2)(5, 8, 7, 6). Then

F2 P1 P2 P3 P4 P5 P6 P7 P8

X1 ← P2 1 1 0 0 0 0 0 0
X2 ← P1 1 1 0 0 0 0 0 0
X3 ← P4 0 0 1 1 0 0 0 0
X4 ← P3 0 0 1 1 0 0 0 0
X5 ← P6 0 0 0 0 1 1 0 0
X6 ← P5 0 0 0 0 1 1 0 0
X7 ← P8 0 0 0 0 0 0 1 1
X8 ← P7 0 0 0 0 0 0 1 1

M2 P1 P2 P3 P4 P5 P6 P7 P8

Y1(X2) ← P1 1 1 0 0 0 0 0 0
Y2(X3) ← P4 0 0 1 1 0 0 0 0
Y3(X4) ← P3 0 0 1 1 0 0 0 0
Y4(X1) ← P2 1 1 0 0 0 0 0 0
Y5(X6) ← P5 0 0 0 0 1 1 0 0
Y6(X7) ← P8 0 0 0 0 0 0 1 1
Y7(X8) ← P7 0 0 0 0 0 0 1 1
Y8(X5) ← P6 0 0 0 0 1 1 0 0

F3 P1 P2 P3 P4 P5 P6 P7 P8

X1 ← P1 1 1 0 0 0 0 0 0
X2 ← P4 1 1 1 1 0 0 0 0
X3 ← P3 0 0 1 1 0 0 0 0
X4 ← P2 1 1 1 1 0 0 0 0
X5 ← P5 0 0 0 0 1 1 0 0
X6 ← P8 0 0 0 0 1 1 1 1
X7 ← P7 0 0 0 0 0 0 1 1
X8 ← P6 0 0 0 0 1 1 1 1

The suitability test will be positive. In particular it will give:

round 3: o3 = 8, e3 = 16,
round 4: o4 = 16, e4 ≤ 24,
round 5: o5 ≤ 24, e5 ≤ 32,
round 6: o6 ≤ 32, e6 ≤ 32.

So this solution will be extended.

The suitability test and the imposed restrictions allow us to cut off big
branches of the search tree and make it possible to construct the permutations
which are presented in the next section.

3 Summary of the Results

In Table 1 we present round permutations for GFSπ of 4, 6, 8, 10, 12, 14 and 16
subblocks. They can be used to construct GFSπ with RD rounds which have a
full diffusion round equal to the lower bound RD for even-odd permutations. If
one and the same permutation is applied at each round this bound cannot be
attained for 10, 12, 14 and 16 subblocks. Files with the dependence matrices at
the different rounds of the GFSπ from Table 1 can be downloaded from http://
www.moi.math.bas.bg/∼svetlana.

We have to point out here that if the presented permutation sequences are
used as the first RD − 1 permutations in a GFSπ with more than RD rounds,
then the diffusion round for encryption will be RD, but the diffusion round for
decryption may not be RD.

http://www.moi.math.bas.bg/~svetlana
http://www.moi.math.bas.bg/~svetlana
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Table 1. Permutation sequences for k subblocks with a full diffusion round equal to
the lower bound for even-odd permutations

k=4
π1 = (1,2)(3,4)
π2 = (1,4,3,2)
π3 = (1,2)(3,4)

k=6
π1 = (1,2)(3,4)(5,6)
π2 = (1,6,5,4,3,2)
π3 = (1,2,5,6,3,4)
π4 = (1,6,5,2)(3,4)

k=8
π1 = (1,2)(3,4)(5,6)(7,8)
π2 = (1,4,3,2)(5,8,7,6)
π3 = (1,2)(3,4)(5,6)(7,8)
π4 = (1,8,7,2)(3,6,5,4)
π5 = (1,2,5,6,7,8)(3,4)

k=10
π1 = (1,2)(3,4)(5,6)(7,8)(9,10)
π2 = (1,10,9,8,7,6,5,4,3,2)
π3 = (1,2,5,6,9,10,3,4,7,8)
π4 = (1,6,5,10,9,4,3,8,7,2)
π5 = (1,2,7,8,9,10,3,4)(5,6)

k=12
π1 = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)
π2 = (1,4,3,2)(5,8,7,12,11,10,9,6)
π3 = (1,2)(3,4)(5,6,11,12)(7,8)(9,10)
π4 = (1,10,9,4,3,8,7,2)(5,12,11,6)
π5 = (1,2,9,10,5,6)(3,4,7,8,11,12)
π6 = (1,2)(3,12,11,4)(5,6)(7,10,9,8)

k=14
π1 = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)
π2 = (1,4,3,2)(5,14,13,12,11,10,9,8,7,6)
π3 = (1,2,7,8,11,12)(3,4,5,6,13,14,9,10)
π4 = (1,8,7,12,11,6,5,10,9,4,3,14,13,2)
π5 = (1,2,3,4,7,8,9,10,11,12,13,14,5,6)
π6 = (1,14,13,4,3,2)(5,12,11,6)(7,10,9,8)

k=16
π1 = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)
π2 = (1,4,3,2)(5,8,7,6)(9,12,11,10)(13,16,15,14)
π3 = (1,2,11,12)(3,4,7,8)(5,6,15,16)(9,10,13,14)
π4 = (1,6,5,2)(3,10,9,4)(7,14,13,8)(11,16,15,12)
π5 = (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)
π6 = (1,16,15,2)(3,14,13,8,7,10,9,6,5,12,11,4)

The present results show that the allowance to use different round permuta-
tions (without requiring that any two of them are different) can lead to a better
diffusion property of the improved generalized Feistel structures.

We cannot say much for GFSπ of more than 16 subblocks. The method which
we describe here, is weak to cover the next cases. A different computational
approach seems to be needed for bigger k, because our construction algorithm,
even well-tuned, remains exponential.
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We obtain the results by setting two restrictions on the properties of the con-
structed permutations. Restriction 2 does not lead to any loss of generality, but
Restriction 1 does. It implies the usage of even-odd permutations only. Although
this is a well working strategy in the cases we cover, and the even-odd case seems
to be intuitively the best choice, we may consider the question of the existence
of sequences of permutations which are not even-odd, but might attain Suzaki
and Minematsu’s even-odd diffusion bound, or might even be better than it.
We cannot give a precise answer to this question. We suppose that the diffusion
of any sequence cannot be better than the even-odd diffusion bound, but that
this bound can also be attained by sequences in which not all permutations are
even-odd.
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Abstract. Here we consider an approach for fast computing the alge-
braic degree of Boolean functions. It combines fast computing the ANF
(known as ANF transform) and thereafter the algebraic degree by using
the weight-lexicographic order (WLO) of the vectors of the n-dimensional
Boolean cube. Byte-wise and bitwise versions of a search based on the
WLO and their implementations are discussed. They are compared with
the usual exhaustive search applied in computing the algebraic degree.
For Boolean functions of n variables, the bitwise implementation of the
search by WLO has total time complexity O(n.2n). When such a function
is given by its truth table vector and its algebraic degree is computed by
the bitwise versions of the algorithms discussed, the total time complex-
ity is Θ((9n − 2).2n−7) = Θ(n.2n). All algorithms discussed have time
complexities of the same type, but with big differences in the constants
hidden in the Θ-notation. The experimental results after numerous tests
confirm the theoretical results—the running times of the bitwise imple-
mentation are dozens of times better than the running times of the byte-
wise algorithms.

Keywords: Boolean function · Algebraic Normal Form ·
Algebraic degree · Weight-Lexicographic Order ·
WLO sequence generating · Byte-wise algorithm ·
WLO masks generating · Bitwise algorithm

1 Introduction

Boolean functions are of great importance in the modern cryptography, cod-
ing theory, digital circuit theory, etc. When they are used in the design of block
ciphers, pseudo-random numbers generators (PRNG) in stream ciphers etc., they
should satisfy certain cryptographic criteria [5–7]. One of the most important
cryptographic parameters is the algebraic degree of a Boolean function or vec-
torial Boolean function, called also an S-box. This degree should be higher in
order the corresponding Boolean function (or S-box, or PRNG) to be resistant to
various types of cryptanalytic attacks. The process of generating such Boolean
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functions needs this parameter, as well as the other important cryptographic
parameters, to be computed as fast as possible. In this way, more Boolean func-
tions can be generated and a better choice among them can be done.

Let f be a Boolean function of n variables given by its Truth Table vec-
tor denoted by TT (f). There are two main approaches for computing the
algebraic degree of f . The first one uses the Algebraic Normal Form (ANF)
representation of f and selects the monomial of the highest degree in it. The
second approach uses only the TT (f), its weight, support, etc., without com-
puting the ANF of f . In [5,6,8,10] it is proven that if TT (f) has an odd weight,
then the algebraic degree of f is maximal. This condition holds for the half of
all Boolean functions and it can be verified very easily. The algorithms pro-
posed in [8] work only with the TT (f) and use this property. They are fast for
just over half of all Boolean functions of n variables. However, when these algo-
rithms are compared with an algorithm of the first type (i.e., based on ANF),
the computational results set some questions about the efficiency of algorithms
used for computing the ANF and thereafter the algebraic degree. This is one
of the reasons that motivated us to do a more comprehensive study of the first
approach—fast computing the algebraic degree of Boolean functions by their
ANFs. We have already done three basic steps in this direction discussed in
Sects. 3 and 4.2. Here we represent the next step which is a natural continuation
of the previous ones. It includes a bitwise implementation of the ANF Transform
(ANFT) followed by a bitwise computing the algebraic degree by using masks
for one special sequence representing the weight-lexicographic order (WLO) of
the vectors of Boolean cube.

The paper is structured as follows. The basic notions are given in Sect. 2. In
Sect. 3 we outline some preliminary results about the enumeration and distri-
bution of Boolean functions of n variables according to their algebraic degrees,
as well as the WLO of the vectors of the Boolean cube and the corresponding
sequences. At the beginning of Sect. 4, an algorithm for computing the algebraic
degree of Boolean function by using the WLO sequence is discussed. Section 4.2
starts with a comment on the preliminary results about the bitwise ANF trans-
form. Thereafter, a search by using masks for the WLO sequence is considered.
Section 5 shows a scheme of computations and used algorithms. The time com-
plexities of the algorithms under consideration are summarized and the exper-
imental results after numerous tests are given. They are used for comparison
of the byte-wise and bitwise implementations of the proposed algorithms. The
general conclusion is: in computing the algebraic degree of a Boolean func-
tion it is worth to use the bitwise implementation of proposed algorithms instead
of the byte-wise one—it is tens of times faster. In the last section, some ideas
about the forthcoming steps of this study are outlined. Experiments in one of
these directions have already begun and their first results are good.

2 Basic Notions

Here N denotes the set of natural numbers. We consider that 0 ∈ N and N
+ =

N\{0} is the set of positive natural numbers.
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Usually, the n-dimensional Boolean cube is defined as {0, 1}n =
{(x1, x2, . . . , xn)| xi ∈ {0, 1},∀ i = 1, 2, . . . , n}, i.e., it is the set of all n-
dimensional binary vectors. So |{0, 1}n| = |{0, 1}|n = 2n. Further, we use the
following alternative, inductive and constructive definition.

Definition 1. (1) The set {0, 1} = {(0), (1)} is called one-dimensional Boolean
cube and its elements (0) and (1) are called one-dimensional binary vectors.

(2) Let {0, 1}n−1 = {α0, α1, . . . , α2n−1−1} be the (n − 1)-dimensional Boolean
cube and α0, α1, . . . , α2n−1−1 be its (n − 1)-dimensional binary vectors.

(3) The n-dimensional Boolean cube {0, 1}n is built by taking the vectors of
{0, 1}n−1 twice: firstly, each vector of {0, 1}n−1 is prefixed by zero, and
thereafter each vector of {0, 1}n−1 is prefixed by one:

{0, 1}n = {(0, α0), (0, α1), . . . , (0, α2n−1−1),
(1, α0), (1, α1), . . . , (1, α2n−1−1)}.

For an arbitrary vector α = (a1, a2, . . . , an) ∈ {0, 1}n, the natural number
#α =

∑n
i=1 ai.2n−i is called a serial number of the vector α. So #α is the natural

number having n-digit binary representation a1a2 . . . an. A (Hamming) weight of
α is the natural number wt(α), equal to the number of non-zero coordinates of α,
i.e., wt(α) =

∑n
i=1 ai. For any k ∈ N, k ≤ n, the set of all n-dimensional binary

vectors of weight k is called a k-th layer of the n-dimensional Boolean cube. It
is denoted by Ln,k = {α|α ∈ {0, 1}n : wt(α) = k} and we have |Ln,k| =

(
n
k

)
,

for k = 0, 1, . . . , n. These numbers are the binomial coefficients from the n-th
row of Pascal’s triangle and so

∑n
k=0

(
n
k

)
= 2n = |{0, 1}n|. The family of all

layers Ln = {Ln,0, Ln,1, . . . , Ln,n} is a partition of the n-dimensional Boolean
cube into layers.

For arbitrary vectors α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bn) ∈ {0, 1}n,
we say that “α precedes lexicographically β” and denote this by α ≤ β, if α = β
or if ∃ k, 1 ≤ k ≤ n, such that ak < bk and ai = bi, for all i < k. The relation
“≤” is a total (unique) order in {0, 1}n, called lexicographic order. The vectors
of {0, 1}n are ordered lexicographically in the sequence α0, α1, . . . αk, . . . , α2n−1

if and only if:

– αl ≤ αk,∀ l ≤ k and αk ≤ αr,∀ k ≤ r;
– the sequence of their serial numbers #α0,#α1, . . . , #αk, . . . ,#α2n−1 is

exactly 0, 1, . . . , k, . . . , 2n − 1.

A Boolean function of n variables (denoted usually by x1, x2, . . . , xn) is a
mapping f : {0, 1}n → {0, 1}, i.e. f maps any binary input x = (x1, x2, . . . , xn) ∈
{0, 1}n to a single binary output y = f(x) ∈ {0, 1}. Any Boolean function
f can be represented in a unique way by the vector of its functional values,
called a Truth Table vector and denoted by TT (f) = (f0, f1, . . . f2n−1), where
fi = f(αi) and αi is the i-th vector in the lexicographic order of {0, 1}n, for
i = 0, 1, . . . , 2n − 1. The set of all Boolean functions of n variables is denoted by
Bn and its size is |Bn| = 22

n

.
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Another unique representation of the Boolean function f ∈ Bn is the
algebraic normal form (ANF) of f , which is a multivariate polynomial

f(x1, x2, . . . , xn) =
⊕

γ∈{0,1}n

a#γ xγ .

Here γ = (c1, c2, . . . , cn) ∈ {0, 1}n, the coefficient a#γ ∈ {0, 1}, and xγ

means the monomial xc1
1 xc2

2 . . . xcn
n =

∏n
i=1 xci

i , where x0
i = 1 and x1

i = xi,
for i = 1, 2, . . . n. A degree of the monomial x = xc1

1 xc2
2 . . . xcn

n is the integer
deg(x) = wt(γ)—it is the number of variables of the type x1

i = xi, or the
essential variables for xγ . The algebraic degree (or simply degree) of f is defined
as deg(f) = max{deg(xγ)| a#γ = 1}. When f ∈ Bn and the TT (f) is given, the
values of the coefficients a0, a1, . . . , a2n−1 can be computed by a fast algorithm,
usually called an ANF transform (ANFT)1. The ANFT is well studied, it is
derived in different ways by many authors, for example [5,6,9]. Its byte-wise
implementation has a time-complexity Θ(n.2n). The vector (a0, a1, . . . , a2n−1) ∈
{0, 1}n obtained after the ANFT is denoted by Af . When f ∈ Bn is the constant
zero function (i.e., TT (f) = (0, 0, . . . , 0)), its ANF is Af = (0, 0, . . . , 0) and its
algebraic degree is defined as deg(f) = −∞. If f is the constant one function
(TT (f) = (1, 1, . . . , 1)), then Af = (1, 0, 0, . . . , 0) and deg(f) = 0.

3 Some Preliminary Results

3.1 Distribution of Boolean Functions According to Their Algebraic
Degrees

It is well-known that half of all Boolean functions of n variables have an algebraic
degree equal to n, for n ∈ N

+ [5,6,8,10]. Furthermore, in [6, p. 49] Carlet notes
that when n tends to infinity, random Boolean functions have almost surely
algebraic degrees at least n − 1. We consider that the overall enumeration and
distribution of all Boolean functions of n variables (n ∈ N

+) according to their
algebraic degrees is very important for our study. The paper where we explore
them is still in review, but some results can be seen in OEIS [11], sequence
A319511. We will briefly outline the results needed for further exposition.

Let d(n, k) be the number of all Boolean functions f ∈ Bn such that
deg(f) = k.

Theorem 1. For arbitrary integers n ∈ N and 0 ≤ k ≤ n, the number

d(n, k) = (2(nk) − 1).2
∑k−1

i=0 (ni).

1 In dependence of the area of consideration, the same algorithm is called also (fast)
Möbius Transform, Zhegalkin Transform, Positive polarity Reed-Muller Transform,
etc.
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Sketch of proof: let X be the set of n variables. There are
(
n
k

)
monomials of

degree = k because so many are the ways to choose k variables from X. The
first multiplier in the formula denotes the number of ways to choose at least one
such monomial to participate in the ANF. The second multiplier is the number
of ways to choose 0 or more monomials of degrees < k and to add them to the
ANF.

Corollary 1. The number d(n, n − 1) tends to
1
2

· |Bn| when n → ∞.

Let p(n, k) be the discrete probability a random Boolean function f ∈ Bn to
have an algebraic degree = k. It is defined as

p(n, k) =
d(n, k)
|Bn| =

d(n, k)
22n

,

for n ≥ 0 and 0 ≤ k ≤ n. The values of p(n, k) obtained for a fixed n give
the distribution of the functions from Bn according to their algebraic degrees.
Table 1 represents this distribution, for 3 ≤ n ≤ 10 and n−3 ≤ k ≤ n. The values
of p(n, k) in it are rounded up to 10 digits after the decimal point. Furthermore,
p(n, k) ≈ 0, for 0 ≤ k < n − 3, and their values are not shown in the table.

Table 1. Distribution of the functions from Bn according to their algebraic degrees,
for n = 3, 4, . . . , 10

The values of p(n, k), for:

n k = n − 3 k = n − 2 k = n − 1 k = n

3 0.00390625 0.0546875 0.4375 0.5

4 0.0004577637 0.0307617187 0.46875 0.5

5 0.0000152439 0.0156097412 0.484375 0.5

6 0.0000002384 0.0078122616 0.4921875 0.5

7 0.0000000019 0.0039062481 0.49609375 0.5

8 0 0.0019531250 0.498046875 0.5

9 0 0.0009765625 0.4990234375 0.5

10 0 0.0004882812 0.4995117187 0.5

These results were used:

– To check for representativeness the files used to test all algorithms discussed
here. These are 4 files containing 106, 107, 108 and 109 randomly generated
unsigned integers in 64-bit computer words. We used each of these files as an
input for Boolean functions of 6, 8, 10, . . . , 16 variables (reading 2n−6 integers
from the chosen file) and we computed the algebraic degrees of all these
functions. The absolute value of the difference between the theoretical and
computed distribution is less than 0.88% (it exceeds 0.1% in only a few cases),
for all tests. So we consider that the algorithms work with samples of Boolean
functions which are representative enough.
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– When creating the algorithms represented in the following sections. The dis-
tribution shows why the WLO has been studied in detail and what to expect
for the running time of algorithms that use WLO.

3.2 WLO of the Vectors of n-dimensional Boolean Cube

The simplest algorithm for computing the algebraic degree of a Boolean function
is an Exhaustive Search (we refer to it as ES algorithm): if f ∈ Bn and
Af = (a0, a1, . . . , a2n−1) is given, it checks consecutively whether ai = 1, for
i = 0, 1, . . . , 2n − 1. The algorithm selects the vector of maximal weight among
all vectors αi ∈ {0, 1}n such that ai = 1. The algorithm checks exhaustively
all values in Af (which correspond to the lexicographic order of the vectors of
{0, 1}n) and so it performs Θ(2n) checks.

The basic parts of a faster way for the same computing are considered in
[1,2]. Here they are given in short, but all related notions, proofs, illustrations,
algorithms and programming codes, details, etc., can be seen in [2].

The sequence of layers Ln,0, Ln,1, . . . , Ln,n gives an order of the vectors of
{0, 1}n in accordance with their weights. When α, β ∈ {0, 1}n and wt(α) <
wt(β), then α precedes β in the sequence of layers, and if wt(α) = wt(β) = k,
then α, β ∈ Ln,k and there is no precedence between them. We define the corre-
sponding relation R<wt

as follows: for arbitrary α, β ∈ {0, 1}n, (α, β) ∈ R<wt
if

wt(α) < wt(β) or if α = β. When (α, β) ∈ R<wt
we say that “α precedes by weight

β” and write also α <wt β. Thus R<wt
is a partial order in {0, 1}n and we refer

to it (and to the order determined by it) as a Weight-Order (WO). To develop
an algorithm we use the serial numbers of the vectors in the sequence of layers
instead of the vectors themselves. For an arbitrary layer Ln,k = {α0, α1, . . . , αm}
of {0, 1}n, we define the sequence of serial numbers of the vectors of Ln,k and
denote it by ln,k = #α0,#α1, . . . ,#αm. Let ln = ln,0, ln,1, . . . , ln,n be the
sequence of all serial numbers corresponding to the vectors in the sequence of
layers Ln,0, Ln,1, . . . , Ln,n. Thus ln represents a WO of the vectors of {0, 1}n and
we call ln a WO sequence of {0, 1}n. One of all possible

∏n
k=0

(
n
k

)
! WO sequences2

deserves a special attention. Firstly, we define the operation addition of the nat-
ural number to a sequence as follows: if n,m ∈ N

+ and s = a1, a2, . . . , an is
a sequence of integers, then s + m = a1 + m,a2 + m, . . . , an + m. Following
Definition 1, we obtain:

Definition 2. (1) The WO sequence of the one-dimensional Boolean cube is
l1 = 0, 1.

(2) Let ln−1 = ln−1,0, ln−1,1, . . . , ln−1,n−1 be the WO sequence of the (n − 1)-
dimensional Boolean cube.

(3) The WO sequence of n-dimensional Boolean cube ln = ln,0, ln,1, . . . , ln,n is
defined as follows:
• ln,0 = 0 and it corresponds to the layer Ln,0 = {0̃n}, where 0̃n is the zero
vector of n coordinates;

2 You can see the sequence A051459 in the OEIS [11] for details.
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• ln,n = 2n − 1 and it corresponds to the layer Ln,n = {1̃n}, where 1̃n is the
all-ones vector of n coordinates;
• ln,k = ln−1,k, ln−1,k−1 + 2n−1, for k = 1, 2, . . . , n − 1. Here ln,k is a
concatenation of two sequences: the sequence ln−1,k is taken (or copied)
firstly, and the sequence ln−1,k−1 + 2n−1 follows after it. The sequence ln,k

corresponds to the layer Ln,k.

Theorem 2. Let n ∈ N
+ and ln = ln,0, ln,1, . . . , ln,n be the WO sequence,

obtained in accordance with Definition 2. Then, the serial numbers in the
sequence ln,k determine a lexicographic order of the vectors of the corresponding
layer Ln,k, for k = 0, 1, . . . , n.

Theorem 2 is proven by mathematical induction in [2]. It states that Defini-
tion 2 determines a second criterion for ordering the vectors within the existing
WO of the Boolean cube—this is the lexicographic order. Since it is a total order
for each subsequence ln,k, 0 ≤ k ≤ n, a total weight order for the sequence ln is
obtained. We call it a Weight-Lexicographic Order (WLO).

The WLO algorithm is based on Definition 2 and Theorem 2, and so they
imply its correctness. For a given input n ∈ N

+, it starts from l1 and com-
putes consecutively the sequences l2, l3, . . . , ln. Some results computed by the
algorithm are given in Table 2. More results can be seen in OEIS [11], sequence
A294648.

The time complexity of the WLO algorithm is Θ(2n), it is exponential with
respect to the size of the input n. Furthermore, it is linear with respect to the
size of the output. The space complexity of the algorithm is of the same type.
We note that the running time for precomputation of the sequence ln in a lookup
table is negligible (≈ 0 s).

4 Computing the Algebraic Degree of Boolean Functions
by WLO

4.1 Byte-Wise Approach

The terms of the WLO sequence ln form a permutation of the numbers
0, 1, . . . , 2n − 1 and we denote this permutation as ln = (i0, i1, . . . , i2n−1). We
use the sequence ln to compute the algebraic degree of a given Boolean function

Table 2. Results obtained by the WLO algorithm for n = 1, 2, . . . , 5

n ln

1 0, 1

2 0, 1, 2, 3

3 0, 1, 2, 4, 3, 5, 6, 7

4 0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 12, 7, 11, 13, 14, 15

5 0, 1, 2, 4, 8, 16, 3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 7, 11, 13, 14, 19, 21, 22, 25, 26, 28, 15, . . .
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f ∈ Bn. The proposed algorithm is similar to the ES algorithm, but it checks
the coordinates of Af = (a0, a1, . . . , a2n−1) in accordance with the values of ln,
from right to left. It starts with the i2n−1-th coordinate of Af . If it is equal to
zero the algorithm checks the i2n−2-th coordinate of Af , and so on, looking for
the first coordinate of Af which is equal to one and then it stops. If there is
not such a coordinate, then f is the constant zero function. Otherwise, if the
algorithm stops the searching on the ij-th coordinate (0 ≤ j < 2n) of Af , it
returns the number of the subsequence that contains the number ij as an out-
put. If ij is a term of ln,k, 0 ≤ k ≤ n, then the layer Ln,k contains a vector which
serial number is ij and therefore deg(f) = k. The algorithm is correct, since it
follows the WLO and stops at the right place—if it continues with the checks, it
will find possible monomials of degree ≤ k. Thus the algorithm performs O(2n)
checks and this is its time complexity. This general estimation concerns a very
small number of functions f ∈ Bn because the computing will finish after O(n)
checks at almost 100% of all such functions (especially when n grows)—as it is
shown in Sect. 3.1. Since this algorithm works in a byte-wise manner and after
the byte-wise ANFT, we call it Byte-wise WLO algorithm .

4.2 Bitwise Approach

In [3] we represented a comprehensive study of the bitwise implementation of
the ANFT. When 64-bit computer words are used, the obtained algorithm has a
time-complexity Θ((9n−2).2n−7) and a space complexity Θ(2n−6), i.e., both are
of the type Θ(2n). But the experimental results show that the bitwise version of
the algorithm is about 25 times faster in comparison to the byte-wise version3.
Analogous research concerning the parallel bitwise implementation of the ANFT
is represented in [4] and similar results about its efficiency are obtained.

After these results it is natural to think about a bitwise implementation
of the last algorithm. Otherwise, bitwise computing an ANFT seems unnec-
essary, since computing the other cryptographic parameters of Boolean func-
tions needs a byte-wise representation (see Fig. 1). Our first idea is to check
all vectors in the same layer in one (or several) step(s). For this purpose we
use n + 1 masks mn,0,mn,1, . . . , mn,n corresponding to the vectors in the layers
Ln,0, Ln,1, . . . , Ln,n. The mask mn,i is a binary vector of the same length as Af

and mn,i contains units only in these bits, whose coordinates correspond to the
numbers in the subsequence ln,i, for i = 0, 1, . . . , n. So we need to repeat bitwise
conjunctions between Af and mn,i, for i = n, n − 1, . . . , 0, until Af ∧ mn,i = 0.
If this equality holds for all values of i, then f is the constant zero function.
Otherwise, if k is the first value of i (when i decreases from n to 0) such that
Af ∧ mn,k > 0, then k is the algebraic degree of f . So the algorithm stops and
returns k. We call it Bitwise WLO algorithm accepting that it always uses
masks.

3 Both algorithms have been implemented as C++ programs in Code::Blocks 13.12
IDE, built as 32-bit applications in Release mode and tested with the largest file of
109 integers.
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When Af occupies one computer word, the algorithm performs at most n+1
steps and so its time complexity is O(n), i.e., it is of logarithmic type (n =
log2 2n) with respect to the size of the input. If the size of the computer word is
64 = 26 bits and f is a function of n > 6 variables, then TT (f) and Af occupy
s = 2n/64 = 2n−6 computer words. So mn,i will occupy s computer words too
and the computing Af ∧ mn,i will be done in s steps, for i = n, n − 1, . . . , 0.
If on some of these steps the conjunction between the corresponding computer
words of Af and mn,i is greater than zero, the algorithm returns i and stops.
Therefore, in the general case, the bitwise WLO algorithm has a time complexity
O(n + 1).O(s) = O(n.2n−6). This estimation concerns a very small number of
functions f ∈ Bn again—the computing will finish after O(1 + s) = O(2n−6)
checks at almost 100% of all such functions.

Let us consider the masks’ generating. For arbitrary i, 0 ≤ i ≤ n, it is easy
to put units in all these bits of mn,i that correspond to the numbers in the
subsequence ln,i. We note that we use the serial numbers of the masks, stored in
the necessary number of 64-bit computer words, as well as the vectors TT (f) and
Af . Furthermore, we generate them in accordance with the following definition.

Definition 3. (1) For n = 1, the serial numbers of the masks corresponding to
the subsequences l1,0 and l1,1 are #m1,0 = 2 and #m1,1 = 1.

(2) Let #mn−1,0,#mn−1,1, . . . ,#mn−1,n−1 be the serial numbers of the masks
corresponding to the subsequences ln−1,0, ln−1,1, . . . , ln−1,n−1.

(3) The serial number of the mask mn,i corresponding to the subsequence ln,i is:

#mn,i =

⎧
⎨

⎩

22
n−1

.#mn−1,0 = 22
n−1, if i = 0 ,

1, if i = n ,

22
n−1

.#mn−1,i + #mn−1,i−1, if 0 < i < n ,

for i = 0, 1, . . . , n.

Definition 3 corresponds to Definitions 1 and 2. Its correctness can be proven
strictly by mathematical induction on n. The running time for generating (pre-
computation of) the masks in accordance with Definition 3 is negligible (≈ 0 s).
We note that when n > 6, the generating algorithm has some particularities
because it works with s = 2n−6 computer words for each mask. The serial num-
bers of masks grow exponentially—see Table 3, as well as the sequence A305860
in OEIS [11].

Example 1. Let us consider f ∈ B4 whose ANF, the coordinates’ (or bits’)
numbers (these which are greater than 9 are represented by their last digit) and
the masks (for n = 4) are given in Table 4. When we use the byte-wise WLO
Algorithm, it checks consecutively the coordinates of Af , from right to left, i.e.,
15, 14, 13, 11, 7, 12—see the WLO sequence l4 in Table 2. Af contains zeros in all
coordinates before 12-th, in this coordinate Af contains one and so the algorithm
stops after 6 checks. Since 12 is a term of l4,2, hence deg(f) = 2. When the
bitwise WLO algorithm is used, it computes the conjunctions: Af ∧ m4,4 = 0,
Af ∧ m4,3 = 0, Af ∧ m4,2 > 0 and thereafter it stops. So deg(f) = 2 and it is
computed in 3 steps.
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Table 3. Serial numbers of the masks, for n = 1, . . . , 5

n #mn,0 #mn,1 #mn,2 #mn,3 #mn,4 #mn,5

1 2 1 – – – –

2 8 6 1 – – –

3 128 104 22 1 – –

4 32768 26752 5736 278 1 –

5 2147483648 1753251840 375941248 18224744 65814 1

Table 4. The data used in Example 1

Coordinates’ numbers 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Af = 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0

#m4,0 = 32768, m4,0 = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

#m4,1 = 26752, m4,1 = 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

#m4,2 = 5736, m4,2 = 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0

#m4,3 = 278, m4,3 = 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0

#m4,4 = 1, m4,4 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The second idea for a new bitwise algorithm is to check the bits of Af in
accordance with the WLO sequence. This algorithm will be similar to the byte-
wise WLO algorithm and it will have a time complexity of the same type: O(2n).
We discarded this idea because the time complexity of the bitwise WLO algo-
rithm is O(n.2n−6) and n.2n−6 < 2n when 6 < n < 64. But during the revision
of this paper, we noticed that for almost 100% of all f ∈ Bn, the bitwise WLO
algorithm performs O(2n−6) checks, whereas the byte-wise WLO algorithm (as
well as the new bitwise algorithm) performs O(n) checks. Furthermore, the check
of a serial bit of Af (in accordance with the WLO sequence) needs no more than
5 bitwise operations. Hence the new bitwise algorithm will have a small con-
stant hidden in the O-notation. For example, the bitwise WLO algorithm will
be better for small n (say n ≤ 8). But for n = 16 the bitwise WLO algorithm will
perform quite more operations than the new bitwise algorithm. The forthcoming
tests will show when and how faster is the new algorithm.

5 Experimental Results

We return to the main problem of this study—fast computing the algebraic
degree of a Boolean function f ∈ Bn given by its TT (f). A scheme of the
computations and used algorithms is shown in Fig. 1.

In accordance with this scheme, the time complexities of the algorithms con-
sidered are summarized as follows:
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Fig. 1. A scheme for computing the algebraic degree of Boolean functions

1. The byte-wise ANFT algorithm followed by the ES algorithm are referred
as Byte-wise ANFT&ES further. So, their time complexity is a sum of
Θ(n.2n) + Θ(2n) = Θ(n.2n).

2. The byte-wise ANFT algorithm followed by the byte-wise WLO algorithm are
referred as Byte-wise ANFT&WLO . Their time complexity is Θ(n.2n) +
O(2n) = Θ(n.2n).

3. The bitwise ANFT algorithm followed by the bitwise WLO algorithm are
referred as Bitwise algorithms. When 64-bit computer words are used, the
time complexity of the bitwise algorithms is Θ((9n− 2).2n−7)+O(n.2n−6) =
Θ((9n − 2).2n−7) = Θ(n.2n).

It has to be noted that these time complexities are:

– dominated by the time complexity of the corresponding ANFT—the cost of
search is relatively small and it is absorbed into the cost of ANFT;

– of the same type Θ(n.2n), and the differences between them are in the con-
stants hidden in the Θ-notation.

To understand what these theoretical time complexities mean in practice, we
have done a lot of tests. Some more important tests’ parameters are:

1. Hardware parameters: Intel Pentium CPU G4400, 3.3 GHz, 4 GB RAM,
Samsung SSD 650 120 GB.

2. Software parameters: Windows 10 OS and MVS Express 2015 for Windows
Desktop. The algorithms are written in C++. All programs were built in
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Table 5. Experimental results about all 232 Boolean functions of 5 variables

Tested algorithms Pure running time in seconds for:

32-bit application 64-bit application

Byte-wise ANFT& ES 540.824 507.407

Byte-wise ANFT& WLO 450.521 378.374

Bitwise algorithms 6.470 6.512

Table 6. Experimental results for 32-bit applications

32-bit
implementation of:

Pure running time in seconds for Boolean functions of:

6 vars,
108 BFs

8 vars,
108/4 BFs

10 vars,
108/16 BFs

12 vars,
108/64 BFs

16 vars,
97 656 BFs

Byte-wise ANFT&
ES

38.834 42.400 42.664 43.466 44.740

Byte-wise ANFT&
WLO

22.003 20.022 18.758 18.230 18.808

Bitwise algorithms 1.078 1.958 1.560 1.563 1.431

Table 7. Experimental results for 64-bit applications

64-bit
implementation of:

Pure running time in seconds for Boolean functions of:

6 vars,
108 BFs

8 vars,
108/4 BFs

10 vars,
108/16 BFs

12 vars,
108/64 BFs

16 vars,
97 656 BFs

Byte-wise ANFT&
ES

37.429 39.178 37.699 38.789 40.350

Byte-wise ANFT&
WLO

17.443 15.880 14.224 14.243 14.454

Bitwise algorithms 0.861 0.819 0.709 0.640 0.718

Release mode as 32-bit and 64-bit console applications and executed without
Internet connection.

3. Methodology of testing: all tests were executed 3 times, on the same computer,
under the same conditions. The running times are taken in average. All results
were checked for coincidence. The time for reading from file and conversion
to byte-wise representation is excluded.

Table 5 shows the obtained running times of the compared algorithms for all
232 Boolean functions of 5 variables.

Functions of 6 and more variables have been tested with the file of 108 inte-
gers. Depending on the number of variables, 2n−6 integers are read from the file
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and so they form the serial Boolean function. Tables 6 and 7 show the results for
Boolean functions (BFs) of 6 and more variables (vars).

6 Conclusions

We hope that the obtained results show convincingly the advantages of the WLO
approaches in computing the algebraic degree of Boolean functions. The bitwise
implementations of the considered algorithms are dozens of times faster than the
byte-wise implementations. Their usage economizes valuable time, especially in
generating S-boxes. The natural continuation of the topic under consideration
includes an experimental study of:

– The second bitwise algorithm proposed at the end of Sect. 4.2.
– Combination of both approaches discussed in Sect. 1 as follows. First, compute

the weight of TT (f). If it is an odd number, then f is of maximal degree.
Otherwise, continue with the bitwise algorithms. Some tests with the largest
file (of 109 integers) have already begun. The first results show that due to
this modification, the bitwise algorithms run about two times faster.

– More appropriate software environment (for example, Linux) in order to mini-
mize the effects of background processes running during the executions of the
tests. Afterward, repeat all tests since some running times in the last two
tables are less than one second and they might not been precise enough.

– Application of the bitwise algorithms in computing the algebraic degree of
true examples of S-boxes.

– Parallel implementations of the bitwise algorithms.
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Abstract. We propose a new construction for the multiplication algo-
rithm of D.V. and G.V. Chudnovsky in order to improve scalar algebraic
complexity. In particular, we improve the Baum-Shokrollahi construc-
tion for multiplication in F256/F4 based on the elliptic Fermat curve
x3 + y3 = 1.

Keywords: Finite field · Algebraic function field ·
Algebraic complexity

1 Introduction

We are interested by the multiplicative complexity of multiplication in a finite
field Fqn , i.e. by the number of multiplications required to multiply in the
Fq-vector space Fqn of dimension n. There exist two types of multiplications
in Fq: the scalar multiplication and the bilinear one. The scalar multiplication is
the multiplication by a constant (in Fq). The bilinear multiplication is a multi-
plication that depends on the elements of Fqn that are multiplied. The bilinear
complexity is independent of the chosen representation of the finite field.

Definition 1. The total number of scalar multiplications in Fq used in an algo-
rithm U of multiplication in Fqn is called scalar complexity and denoted μs(U).

More precisely, the multiplication of two elements of Fqn is an Fq-bilinear map
from Fqn × Fqn onto Fqn . Then, it can be considered as an Fq-linear map from
the tensor product Fqn ⊗Fq

Fqn onto Fqn . Therefore, it can also be considered as
an element T of (Fqn)� ⊗Fq

(Fqn)� ⊗Fq
Fqn , where F

�
qn denotes the dual of Fqn .

Set T =
∑r

i=1 x�
i ⊗ y�

i ⊗ ci, where x�
i ∈ F

�
qn , y�

i ∈ F
�
qn and ci ∈ Fqn . The

following holds for any x, y ∈ Fqn :

x · y = T (x ⊗ y) =
r∑

i=1

x�
i (x)y�

i (y)ci.

c© Springer Nature Switzerland AG 2019
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Definition 2. A bilinear multiplication algorithm U is an expression

x · y =
r∑

i=1

x�
i (x)y�

i (y)ci,

where x�
i , y

�
i ∈ (Fqn)�, and ci ∈ Fqn . Such an algorithm is said symmetric if

x�
i = y�

i for all i. The number r of summands in this expression is called the
bilinear (resp. symmetric bilinear) complexity of the algorithm U and is denoted
by μ(U) (resp. μsym(U)).

Definition 3. The minimal number of summands in a decomposition of the
tensor T of the multiplication is called the bilinear (resp. symmetric bilinear)
complexity of the multiplication and is denoted by μq(n) (resp. μsym

q (n)):

μq(n)(resp. μsym
q (n)) = min

U
μ(U)(resp. μsym(U))

where U is running over all bilinear (resp. symmetric bilinear) multiplication
algorithms in Fqn over Fq.

In their seminal papers, Winograd [11] and De Groote [7] have shown that
μq(n) ≥ 2n − 1, with equality holding if and only if n ≤ 1

2q + 1. Winograd has
also proved [11] that optimal multiplication algorithms realizing the lower bound
belong to the class of interpolation algorithms. Later, generalizing interpolation
algorithms on the projective line over Fq to algebraic curves of higher genus over
Fq, D.V. and G.V. Chudnovsky provided a method [6] which enabled to prove
the linearity [2] of the bilinear complexity of multiplication in finite extensions
of a finite field. This is the so-called Chudnovsky2 algorithm (or CCMA). Note
that the original algorithm CCMA is naturally symmetric.

Several studies focused on the qualitative improvement of CCMA but the
problem of its scalar complexity was only addressed in 2015 by Atighehchi,
Ballet, Bonnecaze and Rolland [1]. They proposed a new construction which
slightly improved the scalar complexity eventhough the main objective of this
work was not to optimize scalar complexity. Thus, in the absence of a dedicated
strategy to scalar optimization, the number of scalar multiplications has not been
significantly reduced in finite distance. Therefore, we note that so far, practical
implementations of multiplication algorithms of type Chudnovsky over finite
fields have failed to simultaneously optimize the number of scalar multiplications
and bilinear multiplications.

Our main goal is to seek an optimal construction of Chudnovsky2 algorithm
in order to optimize its multiplicative complexity. We will consider the elliptic
case for which it has been proven that the bilinear complexity of the algorithm
is optimal [9]. Therefore, we will focus on optimizing the scalar complexity of
this algorithm.

The paper is arranged as follows. Section 2, describes CCMA in the general
case. Section 3 proposes a new method of construction with an objective to reduce
the scalar complexity of Chudnovsky2 multiplication algorithms. An optimized
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basis representation of the Riemann-Roch space L(2D) is sought in order to
minimize the number of scalar multiplications in the algorithm. Considering the
multiplication in F256/F4, which is the case study of Baum and Shokrollahi in
[4], our strategy leads to improve the scalar complexity of their algorithm.

2 The Chudnovsky2 Multiplication Algorithm

2.1 Description and Construction of CCMA Algorithm

Let F/Fq be an algebraic function field over the finite field Fq of genus g(F ). We
denote by Nk(F/Fq) the number of places of degree k of F over Fq. If D is a
divisor, L(D) denotes the Riemann-Roch space associated to D. We denote by
OQ the valuation ring of the place Q and by FQ its residue class field OQ/Q which
is isomorphic to Fqdeg Q where deg Q is the degree of the place Q. The order of a
divisor D =

∑
P aP P in the place P is the number aP , denoted ordP (D). The

support of a divisor D is the set supp D of the places P such that ordP (D) �= 0.
The divisor D is called effective if ordP (D) ≥ 0 for any P . Let us define the
following Hadamard product in Fql1 ×Fql2 ×· · ·×FqlN denoted by � , where the
li’s denote positive integers, by (u1, . . . , uN ) � (v1, . . . , vN ) = (u1v1, . . . , uNvN ).
The following theorem describes the original multiplication algorithm of D.V.
and G.V. Chudnovsky [6].

Theorem 1. Let

– n be a positive integer,
– F/Fq be an algebraic function field,
– Q be a degree n place of F/Fq,
– D be a divisor of F/Fq,
– P = {P1, . . . , PN} be an ordered set of places of degree one of F/Fq.

We suppose that supp D ∩ {Q,P1, ..., PN} = ∅ and that

(i) The evaluation map

EvQ : L(D) → FQ

f �→ f(Q)

is surjective
(ii) The evaluation map

EvP : L(2D) → F
N
q

f �→ (
f (P1) , . . . , f (PN )

)

is injective

Then
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(1) For any two elements x, y in Fqn , we have:

xy = EQ ◦ EvP |ImEvP
−1

(
EP ◦ Ev−1

Q (x) � EP ◦ Ev−1
Q (y)

)
, (1)

where EQ denotes the canonical projection from the valuation ring OQ of the
place Q in its residue class field FQ, EP the extension of EvP on the valuation
ring OQ of the place Q, EvP |ImEvP

−1 the restriction of the inverse map of
EvP on its image, and ◦ the standard composition map.

(2)
μsym

q (n) ≤ N.

Since Q is a place of degree n, the residue class field FQ of place Q is an
extension of degree n of Fq and it therefore can be identified to Fqn . Moreover,
the evaluation map EvQ being onto, one can associate the elements x, y ∈ Fqn

with elements of Fq-vector space L(D), denoted respectively f and g. We define
h := fg by

(h(P1), ..., h(PN )) = EP(f) � EP(g) = (f(P1)g(P1), ..., f(PN )g(PN )) . (2)

We know that such an element h belongs to L(2D) since the functions f, g lie in
L(D). Moreover, thanks to injectivity of EvP , the function h is in L(2D) and is
uniquely determined by (2). We have

xy = EvQ(f)EvQ(g) = EQ(h)

where EQ is the canonical projection from the valuation ring OQ of the place Q
in its residue class field FQ, EvQ is the restriction of EQ over the vector space
L(D).

In order to make the study and the construction of this algorithm easier, we
proceed in the following way. We choose a place Q of degree n and a divisor D of
degree n+g−1, such that EvQ and EvP are isomorphisms. In this aim in [2], S.
Ballet introduces simple numerical conditions on algebraic curves of an arbitrary
genus g giving a sufficient condition for the application of the algorithm CCMA
(existence of places of certain degree, of non-special divisors of degree g − 1)
generalizing the result of A. Shokrollahi [9] for the elliptic curves. Let us recall
this result:

Theorem 2. Let q be a prime power and let n be an integer > 1. If there exists
an algebraic function field F/Fq of genus g satisfying the conditions

1. Nn > 0 (which is always the case if 2g + 1 ≤ q
n−1
2 (q

1
2 − 1)),

2. N1 > 2n + 2g − 2,

then there exists a divisor D of degree n + g − 1 and a place Q such that:

(i) The evaluation map

EvQ : L(D) → OQ

Q

f �→ f(Q)

is an isomorphism of vector spaces over Fq.
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(ii) There exist places P1,...,PN such that the evaluation map

EvP : L(2D) → F
N
q

f �→ (
f (P1) , . . . , f (PN )

)

is an isomorphism of vector spaces over Fq with N = 2n + g − 1.

Remark 1. First, note that in the elliptic case, the condition (2) is a large
inequality thanks to a result due to Chaumine [5]. Secondly, note also that the
divisor D is not necessarily effective.

By this last remark, it is important to add the property of effectivity for the
divisor D in a perspective of implemention. Indeed, it is easier to construct the
algorithm CCMA with this assumption because in this case L(D) ⊆ L(2D) and
we can directly apply the evaluation map EvP instead of EP in the algorithm
(1), by means of a suitable representation of L(2D). Moreover, in this case we
need to consider simultaneously the assumption that the support of the divisor
D does not contain the rational places and the place Q of degree n and the
assumption of effectivity of the divisor D. Indeed, it is known that the support
moving technic (cf. [8, Lemma 1.1.4.11]), which is a direct consequence of Strong
Approximation Theorem (cf. [10, Proof of Theorem I.6.4]), applied on an effective
divisor generates the loss of effectivity of the initial divisor (cf. also [1, Remark
2.2]). So, let us suppose these two last assumptions.

Remark 2. As in [3], in practice, we take as a divisor D one place of degree
n + g − 1. It has the advantage to solve the problem of the support of divisor D
(cf. also [1, Remark 2.2]) as well as the problem of the effectivity of the divisor
D. However, it is not required to be considered in the theoretical study, but, as
we will see, it will have some importance in the strategy of optimization.

We can therefore consider the basis BQ of the residue class field FQ over Fq as
the image of a basis of L(D) by EvQ or equivalently (which is sometimes useful
following the considered situation) the basis of L(D) as the reciprocal image of
a basis of the residue class field FQ over Fq by Ev−1

Q . Let

BD := (f1, ..., fn) (3)

be a basis of L(D) and let us denote the basis of the supplementary space M of
L(D) in L(2D) by

Bc
D := (fn+1, ..., fN ) (4)

where N := dimL(2D) = 2n + g − 1. Then, we choose

B2D := BD ∪ Bc
D (5)

as the basis of L(2D).
We denote by T2D the matrix of the isomorphism EvP : L(2D) → F

N
q in

the basis B2D of L(2D) (the basis of F
N
q will always be the canonical basis).

Then, we denote by TD the matrix of the first n columns of the matrix T2D.



On the Scalar Complexity of Chudnovsky2 Multiplication Algorithm 69

Therefore, TD is the matrix of the restriction of the evaluation map EvP on the
Riemann-Roch vector space L(D), which is an injective morphism.

Note that the canonical surjection EQ is the extension of the isomorphism
EvQ since, as Q /∈ supp(D), we have L(D) ⊆ OQ. Moreover, as supp(2D) =
supp(D), we also have L(2D) ⊆ OQ. We can therefore consider the images of
elements of the basis B2D by EQ and obtain a system of N linear equations as
follows:

EQ(fr) =
n∑

m=1

cm
r EvQ(fi), r = 1, ..., N

where EQ denotes the canonical projection from the valuation ring OQ of the
place Q in its residue class field FQ, EvQ is the restriction of EQ over the vector
space L(D) and cm

r ∈ Fq for r = 1, ..., N . Let C be the matrix of the restriction
of the map EQ on the Riemann-Roch vector space L(2D), from the basis B2D

in the basis BQ. We obtain the product z := xy of two elements x, y ∈ Fqn by
the algorithm (1) in Theorem 1, where M t denotes the transposed matrix of the
matrix M :

Algorithm 1. Multiplication algorithm in Fqn

Require: x =
n∑

i=1

xiEvQ(fi), and y =
n∑

i=1

yiEvQ(fi) //xi, yi ∈ Fq

1. X := (X1, ..., XN ) ← (x1, ..., xn)T
t
D

Y := (Y1, ..., YN ) ← (y1, ..., yn)T
t
D

2. Z := X � Y = (Z1, ..., ZN ) ← (X1Y1, . . . , XNYN )
3. (z1, . . . , zn) ← (Z1, ..., ZN )(T t

2D)−1Ct.

Ensure: z = xy =
n∑

i=1

ziEvQ(fi) //z := xy

Now, we present an initial setup algorithm which is only done once.

Algorithm 2. Setup algorithm
Require: F/Fq, Q, D, P = {P1, . . . , P2n+g−1}.
Ensure: B2D, T2D and CT −1

2D .
(i) Check the function field F/Fq, the place Q, the divisors D are such that Condi-

tions (i) and (ii) in Theorem 2 can be satisfied.
(ii) Represent Fqn as the residue class field of the place Q.
(iii) Construct a basis B2D := (f1, . . . , fn, fn+1, . . . , f2n+g−1) of L(2D), where BD :=

(f1, . . . , fn) is a basis of L(D), and Bc
D := (fn+1, ..., f2n+g−1) a basis of the

supplementary space M of L(D) in L(2D).
(iv) Compute the matrices T2D, C and CT −1

2D .

2.2 Complexity Analysis

The total complexity, in terms of number of multiplications in Fq, is equal to
(3n + 1)(2n + g − 1), including 3n(2n + g − 1) scalar multiplications. Recall
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that the bilinear complexity of Chudnovsky2 algorithms of type (1) in Theorem
1 satisfying assumptions of Theorem 2 is optimized. Therefore, we only focus
on optimizing the scalar complexity of the algorithm. From Algorithm (1), we
observe that the number of the scalar multiplications, denoted by Ns, depends
directly on the number of zeros in the matrices TD and C.T−1

2D , respectively
denoted by Nzero(TD) and Nzero(C.T−1

2D ). Indeed, all the involved matrices being
constructed once, the multiplication by a coefficient zero in a matrix has not to
be taken into account. Thus, we get the formula to compute the number of
scalar multiplications of this algorithm with respect to the number of zeros of
the involved matrices as follows:

Ns = 2
(

n(2n + g − 1) − Nzero(TD)
)

+
(

n(2n + g − 1) − Nzero(C.T−1
2D )

)

= 3n(2n + g − 1) − Nzero,
(6)

where
Nzero = 2Nzero(TD) + Nzero(C.T−1

2D ). (7)

3 Optimization of the Scalar Complexity

By Sect. 2.2, reducing the number of operations means finding an algebraic func-
tion field F/Fq having a genus g as small as possible and a suitable set of divisors
and place (D,Q,P) with a good representation of the associated Riemann-Roch
spaces, namely such that the matrices TD, T2D and C.T−1

2D are as hollow as
possible. Therefore, for a place Q and a suitable divisor D, we seek the best
possible representations of Riemann-Roch spaces L(D) and L(2D) to maximize
both parameters Nzero(TD) and Nzero(C.T−1

2D ).

3.1 Different Types of Strategy

With Fixed Divisor and Places. In this section, we consider the optimization
for a fixed suitable set of divisor and places (D,Q,P) for a given algebraic
function field F/Fq of genus g. So, let us give the following definition:

Definition 4. We call UF,n
D,Q,P := (UA

D,Q,P ,UR
D,Q,P) a Chudnovsky2 multiplica-

tion algorithm of type (1) where UA
D,Q,P := EP ◦ Ev−1

Q and UR
D,Q,P := EQ ◦

EvP |ImEvP
−1, satisfying the assumptions of Theorem 1. We will say that two

algorithms are equal, and we will note: UF,n
D,Q,P = UF,n

D′,Q′,P′ , if UA
D,Q,P = UA

D′,Q′,P′

and UR
D,Q,P = UR

D′,Q′,P′ .

Note that in this case, this definition makes sense only if the bases of implied
vector-spaces are fixed. So, we denote respectively by BQ, BD, and B2D the
basis of the residue class field FQ, and of Riemann-Roch vector-spaces L(D),
and L(2D) associated to UF,n

D,Q,P . Note that the basis of the Fq-vector space F
N
q

is always the canonical basis. Then, we obtain the following result:
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Proposition 1. Let us consider an algorithm UF,n
D,Q,P such that the divisor D is

an effective divisor, D−Q a non-special divisor of degree g−1, and such that the
cardinal of the set P is equal to the dimension of the Riemann-Roch space L(2D).
Then we can choose the basis B2D as (5) and for any σ in GLFq

(2n + g − 1),
where GLFq

(2n + g − 1) denotes the linear group, we have

UF,n
σ(D),Q,P = UF,n

D,Q,P ,

where σ(D) denotes the action of σ on the basis B2D of L(2D) in UF,n
D,Q,P , with

a fixed basis BQ of the residue class field of the place Q and Bc the canonical
basis of F2n+g−1

q . In particular, the quantity Nzero(C.T−1
2D ) is constant under this

action.

Proof. Let E, F and H be three vector spaces of finite dimension on a field
Krespectively equipped with the basis BE , BF and BH . Consider two morphisms
f and h respectively defined from E into F and from F into H and consider
respectively their associated matrix Mf (BE ,BF ) and Mh(BF ,BH). Then it is
obvious that the matrix Mh◦f (BE ,BH) of the morphism h ◦ f is independant
from the choice of the basis BF of F . As the divisor D is effective, we have
L(D) ⊂ L(2D) and then UA

D,Q,P := EP ◦ Ev−1
Q = EvP ◦ Ev−1

Q and as D − Q
a non-special divisor of degree g − 1, EvQ is an isomorphism from L(D) into
FQ and we have UA

D,Q,P = EvP |L(D) ◦ Ev−1
Q . Moreover, as the cardinal of the

set P is equal to the dimension of the Riemann-Roch space L(2D), EvP is an
isomorphism from L(2D) into F

2n+g−1
q equipped with the canonical basis Bc.

Thus, UR
D,Q,P := EQ ◦ Ev−1

P |ImEvP = EQ|L(2D) ◦ Ev−1
P . Then, the matrix of

UA
D,Q,P (resp. UR

D,Q,P) is invariant under the action of σ in GLFq
(n) (resp. in

GLFq
(2n+g −1)) on the basis BD (resp. B2D) since the set (E,F,H) is equal to

(FQ,L(D),Bc) (resp. (F2n+g−1
q ,L(2D),BQ)) for h ◦ f := EvP |L(D) ◦Ev−1

Q (resp.
EQ|L(2D) ◦ Ev−1

P ). ��
Remark 3. Note that a priori for any permutation τ of the set P, we have
UF,n

σ(D),Q,τ(P) different from UF,n
D,Q,P , where σ(D) denotes the action of σ on the

basis B2D of L(2D) in UF,n
D,Q,P , with a fixed basis BQ of the residue class field

of the place Q. Indeed, the action of τ corresponds to a permutation of the
canonical basis Bc of F2n+g−1

q . It corresponds to a permutation of the lines of
the matrix T2D. In this case, Nzero(T2D) is obviously constant under the action
of τ but nothing enables us to claim that Nzero(C.T−1

2D ) is constant.

Proposition 2. Let UF,n
D,Q,P be a Chudnovsky2 multiplication algorithm in a

finite field Fqn , satisfying the assumptions of Proposition 1. The optimal scalar
complexity μs,o(UF,n

D,Q,P) of UF,n
D,Q,P is reached for the set {BD,max,BQ} such that

BD,max is the basis of L(D) satisfying

Nzero(TD,max) = max
σ∈GLFq (n)

Nzero(Tσ(D)),
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where σ(D) denotes the action of σ on the basis BD of L(D) in UF,n
D,Q,P , TD,max

the matrix of the restriction of the evaluation map EvP on the Riemann-Roch
vector space L(D) equipped with the bases BD,max and BQ = EvQ(BD,max).

In particular,

μs,o(UF,n
D,Q,P) = min

σ∈GLFq (n)
{μs(UF,n

σ(D),Q,P | σ(BD) is the basis of L(D)

and BQ = EvQ(BD)})

= 3n(2n + g − 1) − (2Nzero(TD,max) + Nzero(T−1
2D,n)),

where matrices C and T2D are defined with respect to the basis BQ =
EvQ(BD,max), and B2D = BD,max∪Bc

D with Bc
D a basis of the kernel of EQ|L(2D),

and T−1
2D,n denotes the matrix constituted of the n first lines of the matrix T−1

2D .

Proof. It follows directly from Proposition 1 and formulae (6) and (7). Note that
since the quantity Nzero(C.T−1

2D ) is constant for any basis B2D of L(2D), we can
take the matrix C.T−1

2D = T−1
2D,n if Bc

D is a basis of the kernel of EQ|L(2D). ��

Other Strategies of Optimization. In the view of a complete optimization
(with respect to scalar complexity i.e. with fixed bilinear complexity) of the mul-
tiplication in a finite field Fqn by a Chudnovsky2 type multiplication algorithm,
we have to vary the eligible sets (F,D,Q,P). As an example, for a fixed integer
n, a given algebraic function field F/Fq, and a couple divisor and place (D,Q)
satisfying the conditions of Proposition 1, we must apply the optimization strat-
egy studied in Sect. 3.1 on each suitable ordered subset P (of cardinal 2n+g−1)
of the set of rational places (i.e. each suitable subset P and all their associated
permutations τ(P)). Then we have to vary the couples (D,Q) and apply the
previous step: for example, we can start by fixing the place Q and then vary
the suitable divisors D. We can then look for a fixed suitable algebraic function
field of genus g, up to isomorphism, and repeat all the previous steps. Finally,
it is still possible to look at the trade-off between scalar complexity and bilin-
ear complexity by increasing the genus and then re-conducting all the previous
optimizations.

3.2 Optimization of Scalar Complexity in the Elliptic Case

Now, we study a specialisation of the Chudnovsky2 multiplication algorithm of
type (1) in the case of the elliptic curves. In particular, we improve the effective
algorithm constructed in the article of U. Baum and M.A. Shokrollahi [4] which
presented an optimal algorithm from the point of view of the bilinear complexity
in the case of the multiplication in F256/F4 based on Chudnovsky2 multiplication
algorithm applied on the Fermat curve x3 +y3 = 1 defined over F4. Our method
of construction leads to a multiplication algorithm in F256/F4 having a lower
scalar complexity with an optimal bilinear complexity.
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Experiment of Baum-Shokrollahi. The article [4] presents Chudnovsky2

multiplication in F44 , for the case q = 4 and n = 4. The elements of F4 are
denoted by 0, 1, ω and ω2. The algorithm construction requires the use of an
elliptic curve over F4 with at least 9 F4-rational points (which is the maximum
possible number by Hasse-Weil Bound). Note that in this case, Conditions 1)
and 2) of Theorem 2 are well satisfied. It is well known that the Fermat curve
u3 + v3 = 1 satisfies this condition. By the substitutions x = 1/(u + v) and
y = u/(u + v), we get the isomorphic curve y2 + y = x3 + 1. From now on, F/Fq

denotes the algebraic function field associated to the elliptic curve C with plane
model y2 + y = x3 + 1, of genus one. The projective coordinates (x : y : z) of
F4-rational points of this elliptic curve are:

P∞ = (0 : 1 : 0), P1 = (0 : ω : 1), P2 = (0 : ω2 : 1), P3 = (1 : 0 : 1),

P4 = (1 : 1 : 1), P5 = (ω : 0 : 1), P6 = (ω : 1 : 1), P7 = (ω2 : 0 : 1), P8 = (ω2 : 1 : 1).

Now, we represent F256 as F4[x]/Q(x) with primitive root α, where Q(x) =
x4 + x3 + ωx2 + ωx + ω.

– For the place Q of degree 4, the authors considered Q =
∑4

i=1 pi

where p1 corresponds to the F44 -rational point with projective coordinates
(α16 : α174 : 1) and p2, p3, p4 are its conjugates under the Frobenius map.
We see that α16 is a root of the irreducible polynomial Q(x) = x4 + x3 +
ωx2 + ωx + ω. Thus, the place Q is a place lying over the place (Q(x)) of
F4(x)/F4. Note also that the place ((Q(x)) of F4(x)/F4 is totally splitted in
the algebraic function field F/F4, which means that there exist two places of
degree n in F/F4 lying over the place (Q(x)) of F4(x)/F4, since the function
field F/Fq is an extension of degree 2 of the rational function field F4(x)/Fq.
The place Q is one of the two places in F/F4 lying over the place (Q(x)).
Notice that the second place is given by the orbit of the conjugated point
(α16 : α174 + 1 : 1). Therefore, we can represent F256 = F44 = F4[x]/Q(x) as
the residue class field FQ of the place Q in F/F4.

– For the divisor D, we choose the place described as
∑4

i=1 di where d1 corre-
sponds to the F44 -rational point (α17 : α14 : 1) and d2, d3, d4 are its conjugates
under the Frobenius map. By computation we see that α17 is a root of irre-
ducible polynomial D(x) = x2 + x + ω and deg D = 4 because d1, d2, d3, d4
are all distinct. Therefore, D is the only place in F/F4 lying over the place
(D(x)) of F4(x) since the residue class field FD of the place D is a quadratic
extension of the residue class field FD of the place D, which is an inert place
of F4(x) in F/F4.

The matrix T2D obtained in the basis of Riemann-Roch space L(2D):
B2D = {f1 = 1/f, f2 = x/f, f3 = y/f, f4 = x2/f, f5 = 1/f2, f6 = xy/f2, f7 =
y/f2, f8 = x/f2}, with f = x2 + x + ω is the following:
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T2D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 0 0 0 0
ω2 0 1 0 ω 0 ω2 0
ω2 0 ω 0 ω 0 1 0
ω2 ω2 0 ω2 ω 0 0 ω
ω2 ω2 ω2 ω2 ω ω ω ω
ω ω2 0 1 ω2 0 0 1
ω ω2 ω 1 ω2 1 ω2 1
ω 1 0 ω2 ω2 0 0 ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, computation gives:

C =

⎛

⎜
⎜
⎝

1 0 0 0 ω 0 ω2 ω
0 1 0 0 0 ω2 ω 0
0 0 1 0 1 0 0 1
0 0 0 1 1 ω 0 ω

⎞

⎟
⎟
⎠ and CT−1

2D =

⎛

⎜
⎜
⎝

1 ω 1 ω 1 1 ω 0
1 0 ω2 ω 1 ω2 1 ω
1 ω ω ω2 1 ω2 ω ω
0 ω ω2 ω 1 ω2 0 0

⎞

⎟
⎟
⎠ .

Consequently, we obtain:

Nzero(TD) = 10, Nzero(CT−1
2D ) = 5.

Thus, the total number Ns of scalar multiplications in the algorithm constructed
by Baum and Shokrollahi in [4] is Ns = 71 by the formula (6). In the next section,
we follow the approach described in Sect. 3, and we improve the Chudnovsky2

multiplication algorithm in F44 constructed by Baum and Shokrollahi in [4]. By
using the same elliptic curve and the same set {D,Q,P}, we obtain an algorithm
with the same bilinear complexity and lower scalar complexity.

New Design of the Baum-Shokrollahi Construction. The new construc-
tion of Chudnovsky2 algorithm for the multiplication in F256/F4 using strategy
given in Proposition 2 of Sect. 3.1 gives the following matrices T2D with a better
basis B2D = (f1, f2, ..., f8) of L(2D) space, where

f1 = (ωx2 + x)/(x2 + x + ω),

f2 = (ω2x2 + ω2x + ω2)/(x2 + x + ω),

f3 = ω2/(x2 + x + ω)c + (ω2x + 1)/(x2 + x + ω),

f4 = ω2/(x2 + x + ω)c + (ω2x + ω)/(x2 + x + ω),

f5 = (x2 + x)/(x4 + x2 + ω2)c + (x4 + ωx3 + ωx2 + ωx)/(x4 + x2 + ω2),

f6 = ω2x/(x4 + x2 + ω2)c + (ωx4 + x2 + ωx + 1)/(x4 + x2 + ω2),

f7 = (ω2x + 1)/(x4 + x2 + ω2)c + (ω2x4 + ω2x3 + ωx2 + ω)/(x4 + x2 + ω2),

f8 = (x2 + ωx + 1)/(x4 + x2 + ω2)c + (x4 + ωx3 + x2 + ω2x + ω2)/(x4 + x2 + ω2).
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T2D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω ω2 0 0 1 ω ω2 1
0 ω 0 ω 0 ω 0 ω
0 ω ω 0 0 ω ω 0
1 0 0 1 1 1 ω2 ω2

1 0 1 0 ω ω ω2 0
0 0 1 0 ω ω 0 1
0 0 0 1 1 ω2 ω 0
ω ω 1 ω2 1 0 0 ω2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and T−1
2D,4 =

⎛

⎜
⎜
⎝

0 ω 1 0 0 1 1 ω2

0 0 0 0 1 ω ω ω2

ω2 ω ω2 ω2 ω ω 0 0
1 ω2 ω ω2 0 0 1 ω2

⎞

⎟
⎟
⎠

Therefore, Nzero(TD) = 16 and Nzero(T−1
2D,4) = 11. By the formula (6), we

obtain Ns = 53, a gain of 25% over Baum and Shokrollahi’s method.
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Abstract. Integral circulant graphs are proposed as models for quan-
tum spin networks. Specifically, it is important to know how far infor-
mation can potentially be transferred between nodes of the quantum
networks modeled by integral circulant graphs and this task is related
to calculating the maximal diameter of a graph. The integral circulant
graph ICGn(D) has the vertex set Zn = {0, 1, 2, . . . , n−1} and vertices a
and b are adjacent if gcd(a−b, n) ∈ D, where D ⊆ {d : d | n, 1 ≤ d < n}.
Motivated by the result on the upper bound of the diameter of ICGn(D)
given in [N. Saxena, S. Severini, I. Shparlinski, Parameters of integral
circulant graphs and periodic quantum dynamics, International Journal
of Quantum Information 5 (2007), 417–430], which is equal to 2|D| + 1,
in this paper we prove that the maximal value of the diameter of the
integral circulant graph ICGn(D) of a given order n with its prime fac-
torization pα1

1 · · · pαk
k and |D| = k, is equal to k+|{i |αi > 1, 1 ≤ i ≤ k}|.

This way we further improve the upper bound of Saxena, Severini and
Shparlinski. Moreover, we characterize all such extremal graphs. We also
show that the upper bound is attainable for integral circulant graphs
ICGn(D) such that |D| ≤ k.

Keywords: Integral circulant graphs · Diameter ·
Chinese remainder theorem · Quantum networks

1 Introduction

Circulant graphs are Cayley graphs over a cyclic group. A graph is called inte-
gral if all the eigenvalues of its adjacency matrix are integers. In other words,
the corresponding adjacency matrix of a circulant graph is the circulant matrix
(a special kind of a Toeplitz matrix where each row vector is rotated one element
to the right relative to the preceding row vector). Integral graphs are extensively
studied in the literature and there has been a vast research on some types of
classes of graphs with integral spectrum. The interest for circulant graphs in
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graph theory and applications has grown during the last two decades. They
appear in coding theory, telecommunication network, VLSI design, parallel and
distributed computing (see [8] and references therein).

Since they possess many interesting properties (such as vertex transitivity
called mirror symmetry), circulants are applied in quantum information trans-
mission and proposed as models for quantum spin networks that permit the
quantum phenomenon called perfect state transfer [1,2,15]. In the quantum com-
munication scenario, the important feature of this kind of quantum graphs (espe-
cially those with integral spectrum) is the ability of faithfully transferring quan-
tum states without modifying the network topology. Integral circulant graphs
have found important applications in molecular chemistry for modeling energy-
like quantities such as the heat of formation of a hydrocarbon [9,11,14,16].
Recently there has been a vast research on the interconnection schemes based
on circulant topology – circulant graphs represent an important class of inter-
connection networks in parallel and distributed computing (see [8]). Recursive
circulants are proposed as an interconnection structure for multicomputer net-
works [13]. While retaining the attractive properties of hypercubes such as node-
symmetry, recursive structure, connectivity etc., these graphs achieve noticeable
improvements in diameter.

Various properties of integral circulant graphs were recently investigated
especially having in mind the study of certain parameters useful for modeling a
good quantum (or in general complex) network that allows periodic dynamics.
It was observed that integral circulant graphs represent very reliable networks,
meaning that the vertex connectivity of these graphs is equal to the degree of
their regularity. Moreover, for even orders they are bipartite [15] – note that
many of the proposed networks mainly derived from the hypercube structure
by twisting some pairs of edges (twisted cube, crossed cub, multiply twisted
cube, Möbius cube, generalized twisted cube) are nonbipartite. Other impor-
tant network metrics of integral circulant graphs are analyzed as well, such as
the degree, chromatic number, the clique number, the size of the automorphism
group, the size of the longest cycle, the number of induced cycles of prescribed
order ([3–6,10,12]).

In this paper we continue the study of properties of circulant networks rele-
vant for the purposes of information transfer. Specifically, it would be interesting
to know how far information can potentially be transferred between nodes of the
networks modeled by the graph. So, it is important to know the maximum length
of all shortest paths between any pair of nodes. Moreover, for a fixed number of
nodes in the network, a larger diameter potentially implies a larger maximum
distance between nodes for which (perfect) transfer is possible (communication
distance). Therefore, for a given order of a circulant graph the basic question
is to find the circulant graph which maximizes the diameter. The sharp upper
bound of the diameter of a graph of a given order is important for estimating
the degradation of performance of the network obtained by deleting a set of a
certain number of vertices.
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Throughout the paper we let ICGn(D) be an arbitrary integral circulant
graph of order n and set of divisors D. In [15], the following sharp bounds on
the diameter of integral circulant graphs are obtained.

Theorem 1. Let t be the size of the smallest set of additive generators of Zn

contained in D. Then

t ≤ diam(ICGn(D)) ≤ 2t + 1.

Direct consequences of the previous assertion are the following bounds

2 ≤ diam(ICGn(D)) ≤ 2|D| + 1. (1)

In this paper we find the maximal diameter of all integral circulant graphs
ICGn(D) of a given order n and the cardinality of the divisor set D equal to k,
for n = pα1

1 · · · pαk

k . We actually show that the maximal diameter of this class of
graphs is equal to r(n), where

r(n) = k + |{i |αi > 1, 1 ≤ i ≤ k}|.
As r(n) ≤ 2t+1, for t = k we conclude that the diameter of these graphs can

not attain the upper bound given by (1). Moreover, we characterize all ICGn(D)
such that the maximal diameter is attained by describing all divisor sets D such
that diam(ICGn(D)) = r(n).

2 Preliminaries

In this section we introduce some basic notations and definitions.
A circulant graph G(n;S) is a graph on vertices Zn = {0, 1, . . . , n − 1} such

that vertices i and j are adjacent if and only if i−j ≡ s (mod n) for some s ∈ S.
The set S is called the symbol of graph G(n;S). As we will consider undirected
graphs without loops, we assume that S = n − S = {n − s | s ∈ S} and 0 �∈ S.
Note that the degree of the graph G(n;S) is |S|. A graph is integral if all its
eigenvalues are integers. A circulant graph G(n;S) is integral if and only if

S =
⋃

d∈D

Gn(d),

for some set of divisors D ⊆ Dn [17]. Here Gn(d) = {k : gcd(k, n) = d, 1 ≤
k ≤ n − 1}, and Dn is the set of all divisors of n, different from n. Therefore
an integral circulant graph (in further text ICG) G(n;S) is defined by its order
n and the set of divisors D. An integral circulant graph with n vertices, defined
by the set of divisors D ⊆ Dn will be denoted by ICGn(D). The term ‘integral
circulant graph’ was first introduced in the work of So, where the characteriza-
tion of the class of circulant graphs with integral spectra was given. The class
of integral circulant graphs is also known as ‘gcd-graphs’ and arises as a gen-
eralization of unitary Cayley graphs [3,12]. From the above characterization of
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integral circulant graphs we have that the degree of an integral circulant graph
is deg ICGn(D) =

∑
d∈D ϕ(n/d). Here ϕ(n) denotes the Euler-phi function [7].

If D = {d1, . . . , dt}, it can be seen that ICGn(D) is connected if and only if
gcd(d1, . . . , dt) = 1, given that G(n; s) is connected if and only if gcd(n, S) = 1.

Recall that the greatest distance between any pair of vertices in a graph is
graph diameter. The distance d(u, v) between two vertices u and v of a graph is
the minimum length of the paths connecting them. Throughout this paper we let
that the order of ICGn(D) have the following prime factorization n = pα1

1 · · · pαk

k .
Also, for a given prime number p and an integer n, denote by Sp(n) the maximal
number α such that pα | n. If Sp(n) = 1 we write p‖n.

3 Main Result

Let G = ICGn(D) be a connected graph with maximal diameter in the class of
all integral circulant graphs of order n, and D = {d1, d2, . . . , dt}.

Let D′ be an arbitrary subset of D, such that gcd({d | d ∈ D′}) = 1. The
graph ICGn(D′) is connected and clearly a subgraph of ICGn(D), so it follows
that

diam(ICGn(D)) ≤ diam(ICGn(D′)).

Since ICGn(D) has maximal diameter, we have diam(ICGn(D′)) =
diam(ICGn(D)). Therefore, we will find maximal diameter among all ICGn(D)
such that for every subset of divisors D′ ⊂ D it holds that gcd({d | d ∈ D′}) > 1
(the graphs ICGn(D′) are unconnected). Furthermore, from the last assumption
it follows that gcd(d1, . . . , ds−1, ds+1, . . . , dt) > 1 for every 1 ≤ s ≤ t and from
the connectedness of ICGn(D) we have gcd(d1, d2, . . . , dt) = 1. Thus, we con-
clude that for each s there exists a prime divisor pis of n such that pis � ds and
pis |dj for all 1 ≤ j �= s ≤ t.

Therefore, we may define a bijective mapping f : {d1, . . . , dt} →
{pi1 , . . . , pit}, since ds1 �= ds2 implies pis1

�= pis2
. Finally, we conclude that

for every divisor ds, 1 ≤ s ≤ t, it holds that

pis � ds (2)
pi1 , . . . , pis−1 , pis+1 , . . . , pit | ds. (3)

So, in the rest of the paper we will assume that the divisors of the integral
circulant graph ICGn(D) have the property described above, unless it is stated
otherwise.

In the following example we illustrate how to narrow the search for the finding
maximal diameter among all integral circulanat with order n = 12 and divisor
set D′ that has the properties (2) and (3). It is easy to see that we have only
two such examples D′ = {2, 3} and D′ = {3, 4} and the diameters of the graphs
ICG12({2, 3}) and ICG12({3, 4}) are 2 and 3, respectively. However, the graph
ICG12({3, 4, 6}) does not have the properties (2) and (3) and its diameter can
not exceed the diameters of the previous graphs (Fig. 1).
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Fig. 1. Integral circulant graphs ICG12({3, 4}) on the left and ICG12({3, 4, 6}) on the
right whose diameters are equal to 3 and 2, respectively

Recall that two vertices a and b of ICGn(d1, d2, . . . , dt) are adjacent if and
only if gcd(a − b, n) = di for some 1 ≤ i ≤ t. Given that the graph ICGn(D) is
vertex-transitive, we are going to focus on the vertex 0 and construct shortest
paths from the vertex 0 to any other vertex 0 ≤ l = |a − b| ≤ n − 1.

If we manage to find a solution x = (x1, x2, . . . , xq) to the following system
of equations

x1 + x2 + · · · + xq ≡ l (mod n)

and
gcd(xi, n) = dh(i)

for 1 ≤ i ≤ q and some function h : {1, . . . q} 
→ {1, . . . , t}, then we can construct
the path from 0 to l of length q passing through the vertices

0, x1, x1 + x2, . . . , x1 + x2 + · · · + xq.

We are going to look for solutions of the above system of congruence equations
and greatest common divisor equalities, in the following representation

d1y1 + d2y2 + · · · + dtyt ≡ l (mod n) (4)

with the constraints

gcd(djyj , n) = dj for 1 ≤ j ≤ t, (5)

where each summand djyj corresponds to one or more xi’s. Notice that some of
the yj , 1 ≤ j ≤ t, can be equal to zero and in that case we do not consider the
constraint (5).

In the following lemma we prove that an upper bound of the diameter of
ICGn(d1, d2, . . . , dt), for t = k, is equal to k + |{i |αi > 1, 1 ≤ i ≤ k}| and we
denote this value by r(n).
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Lemma 1. The diameter of the integral circulant graph ICGn(d1, d2, . . . , dk),
where the set of divisors D = {d1, d2, . . . , dk} satisfies the properties (2) and
(3), is less or equal to r(n).

Proof. Since the order of the divisors in |D| = k is arbitrary and divisor set
satisfies (2) and (3), we may suppose with out loss of generality that is = s, for
1 ≤ s ≤ k. We are going to use the representation (4) for t = k, which requires
solving the following system

d1y1 + d2y2 + · · · + dkyk ≡ l (mod p
αj

j ) 1 ≤ j ≤ k, (6)

with the constraints

gcd(djyj , n) = dj for 1 ≤ j ≤ k.

The last equation is equivalent to

gcd(yj ,
n

dj
) = 1 ⇔ pi � yj , if Spi

(dj) < αi, 1 ≤ i ≤ k. (7)

From (2) we have Spj
(dj) = 0 < αj and it directly holds that pj � yj .

Furthermore, as gcd(dj , p
αj

j ) = 1 it follows

yj ≡ (l − pjt) · d−1
j (mod p

αj

j ),

where by pjt we denote d1y1 + · · ·+ dj−1yj−1 + dj+1yj+1 + · · ·+ dkyk. Note that
the only constraint is that dj cannot be divisible by pj as we already discuss
above.

If pj does not divide l, we can directly compute yj which is not divisible by
pj . Assume now that pj divides l.

For αj = 1, as pj | l we have

yj ≡ (l − pjt) · d−1
j ≡ 0 (mod p

αj

j )

and we can decide not to include the summand djyj in the above summation
(otherwise, we obtain a contradiction with the constraint pj � yj). This basically
means that we are going to put yj = 0 (ignore that summand) and in this case
we do not consider the constraint gcd(djyj , n) = dj .

For αj > 1, assume that

yj ≡ (l − pjt) · d−1
j ≡ p

βj

j · s (mod p
αj

j ), (8)

where pj � s. For βj = αj , we can similarly drop the summand djyj from the
summation.

If βj < αj , then yj = 0 obviously is not a solution of the congruence equation.
The trick now is to split yj into two summands y′

j + y′′
j which are both coprime
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with pj and the sum is equal to p
βj

j · s modulo p
αj

j . This can be easily done by

taking y′
j = 1 and y′′

j = p
βj

j · s − 1. Therefore, we split the summand djyj into
two summands that satisfy all the conditions

dj · 1 + dj · (pβi

j · s − 1).

This means that for the prime factors with αj > 1 we need two edges in order
to construct a path from 0 to l when p

βj

j ‖l − pjt, βj < αj .
Finally, we conclude that if we want to construct a path from 0 to l, for

an arbitrary l, we need at most one edge that corresponds the modulo pj , if
αj = 1, and at most two edges that correspond the modulo pj , if αj > 1, for
every 1 ≤ j ≤ k. This means that diam(ICGn(d1, . . . , dk)) ≤ r(n).

In the following theorem we show that the maximal diameter of
ICGn(d1, d2, . . . , dt), for t = k, is equal to r(n) and characterize all extremal
graphs.

Theorem 2. The maximal diameter of the integral circulant graph ICGn(d1,
d2, . . . , dk), where the set of divisors D = {d1, d2, . . . , dk} satisfies the properties
(2) and (3), is equal to r(n). The equality holds in two following cases

(i) if αj > 1 then Spj
(di) > 1, for 1 ≤ i �= j ≤ k

(ii) if n ∈ 4N + 2 and d1 ∈ 2N + 1 then there exists exactly one 2 ≤ j ≤ k
such that pj‖d1, Spj

(di) > 1, for 2 ≤ i ≤ k and other prime factors pl

(1 ≤ l �= j ≤ k) satisfy Spl
(di) > 1, if αl > 1, for 1 ≤ i �= l ≤ k.

Proof. Since the diameter of ICGn(d1, d2, . . . , dk) is less or equal to r(n), where
the set of divisors D = {d1, d2, . . . , dk} satisfies the properties (2) and (3),
according to Lemma 1, in the first part of the proof we analyze when the graph
has diameter less than r(n). From (8) we conclude that this is the case when the
condition l − pjt ≡ 0 (mod p

αj

j ) is satisfied, for αj > 1 and pj | l.
Observe that the sum pjt can be rewritten in the following form

pj(t1 + · · · + tuj
) + p2j (tuj+1 + · · · + tk−1), (9)

where uj = |{di | i ∈ {1, . . . , j − 1, j + 1, . . . , k}, pj‖di, diyi = pjti}| and
pj � t1, . . . , tuj

. From (7) we conclude that this form is indeed always possible
since it holds that pj � y1, . . . , yuj

as 1 = Spj
(di) < αj , 1 ≤ i ≤ uj . Furthermore,

since we take into consideration the values diyi modulo p
αj

j , we can assume, with
out loss of generality, that Spj

(p2j ti) < αj for uj + 1 ≤ i ≤ k, where diyi = p2j ti.
In that case, according to (7) it must be that pj � yi, for all 1 ≤ i ≤ k.

Assume first that uj ≥ 2. We see that l − pjt ≡ 0 (mod p
αj

j ) if and only if

t1 + · · · + tuj
+ pj(tuj+1 + · · · + tk−1) ≡ l

pj
(mod p

αj−1
j ). (10)

Furthermore, since pj � t1 we see that t1 must satisfy the following system
t1 ≡ l

pj
− t2 − · · · − tuj

− pj(tuj+1 + · · · + tk−1) (mod p
αj−1
j ) and t1 �≡ pjs1
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(mod p
αj−1
j ), for some 0 ≤ s1 < p

αj−2
j . Again, since pj � t2 too, we obtain that

t2 �≡ { l
pj

−t3−· · ·−tuj
−pj(tuj+1+· · ·+tk−1)−pjs1, pjs2} (mod p

αj−1
j ), for some

0 ≤ s2 < p
αj−2
j . Therefore, if pj > 2 we can find the value t2 modulo p

αj−1
j which

is a solution of the system if we take arbitrary values t3, . . . , tk−1 modulo p
αj−1
j

(the value t1 modulo p
αj−1
j can be obviously computed thereafter using the values

t2, . . . , tk−1). If pj = 2 and l
pj

− t3 −· · ·− tuj
∈ 2N+1, we can not find an odd t2

which would be a solution of the system. For such l, in the same way we can prove
that the system d1(y

(1)
1 +y

(2)
1 )+d2y2+ · · ·+dj−1yj−1+dj+1yj+1+ · · ·+dkyk ≡ l

(mod p
αj

j ), pj � y
(1)
1 , y

(2)
1 , y2, . . . , yk, has a solution by reducing it to the form

t11 + t21 + t2 + · · ·+ tuj
+pj(tuj+1 + · · ·+ tk−1) ≡ l

pj
(mod p

αj−1
j ). So, in this case

we need at most two edges for the parts of the path from 0 to l corresponding
to the moduli p1 and pj , since l − pjt ≡ 0 (mod p

αj

j ) and yj = 0. Finally, we
conclude that the diameter of this graph can not reach the value r(n), since
r(pα1

1 ) + r(pαj

j ) > 2.

Now, let uj = 1. If pj > 2, similarly to the previous case by examining the
system d1(y

(1)
1 +y

(2)
1 )+d2y2+· · ·+dj−1yj−1+dj+1yj+1+· · ·+dkyk ≡ l (mod p

αj

j )
(which corresponds to the equation t11+t21+pj(t2+· · ·+tk−1) ≡ l

pj
(mod p

αj−1
j ))

and pj � y
(1)
1 , y

(2)
1 , y2, . . . , yk, we see that we can find t11, t

2
1, t2, . . . , tk−1 such

that l − pjt ≡ 0 (mod p
αj

j ) and therefore we can set yj = 0. Furthermore, as

p1 | d2, . . . , dk it holds that d1(y
(1)
1 +y

(2)
1 ) ≡ l (mod p1) and if both y

(1)
1 , y

(2)
1 �= 0

then we conclude that for p1 = 2 and l ∈ 2N+1 the parity of left and right hand
sides of the equation is violated (p1 � y

(1)
1 , y

(2)
1 ). So, in this case we need one

extra edge and therefore at most three edges for the parts of the diameter path
corresponding to moduli p1 and pj . Finally, we conclude that maximal diameter
of this graph can be attained if the value r(pα1

1 ) + r(pαj

j ) is equal to 3 and this
is the case if only if α1 = 1. If pj = 2, we have already proved that for l

pj
∈ 2N

the system t11 + t21 + pj(t2 + · · · + tk−1) ≡ l
pj

(mod p
αj−1
j ), pj � t11, t

2
1 has a

solution (case uj = 2) and therefore l−pjt ≡ 0 (mod p
αj

j ) (yj = 0). Considering

the modulus p1, we can find y
(1)
1 , y

(2)
1 not divisible by p1 and y

(1)
1 + y

(2)
1 =

(l − p1t
′)d−1

1 , where p1t
′ = d2y2 + . . . + dj−1yj−1 + dj+1yj+1 + · · · + dkyk as

p1 > 2. In this case we need at most two edges for the parts of the path from
0 to l corresponding to the moduli p1 and pj (the diameter of this graph can
not reach the value r(n)). If l

pj
∈ 2N + 1, assume that p1 � l, then by examining

the system d1y1 + d2y2 + · · · + dj−1yj−1 + dj+1yj+1 + · · · + dkyk ≡ l (mod p
αj

j )
(which corresponds to the equation t1 + pj(t2 + · · · + tk−1) ≡ l

pj
(mod p

αj−1
j ))

and pj � y1, y2, . . . , yk, we see that t1 ∈ 2N + 1 satisfies the following system
t1 ≡ l

pj
− pj(tuj+1 + · · · + tk−1) (mod p

αj−1
j ) and t1 �≡ pjs (mod p

αj−1
j ), for

some 0 ≤ s < p
αj−2
j . Moreover, y1 ≡ (l − p1t

′)d−1
1 (mod pα1

1 ) is a solution of the
congruence equation modulo p1 and in this case we need one edge for the parts
of the path from 0 to l corresponding to the moduli p1 and pj (the diameter of
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this graph can not reach the value r(n)). Finally, if l
pj

∈ 2N + 1 and p1 | l, the
following system can be similarly solved d2y2 + · · ·+ dj(y1

j + y2
j )+ · · ·+ dkyk ≡ l

(mod p
αj

j ), pj � y1
j , y2

j .
We have proved that if ui = 1, n ∈ 2N and l, d1 ∈ 2N + 1, we can find a

solution of the congruence system d1(y
(1)
1 +y

(2)
1 +y

(3)
1 )+d2y2 + · · ·+dj−1yj−1 +

dj+1yj+1 + · · · + dkyk ≡ l (mod p
αj

i ), pi � y
(1)
1 , y

(2)
1 , y

(3)
1 , y2, . . . , yk. Notice, that

if uj = 1 and pj‖d1 we can find a solution of the congruence system d1(y
(1)
1 +

y
(2)
1 + y

(3)
1 ) + d2y2 + · · · + dj−1yj−1 + dj+1yj+1 + · · · + dkyk ≡ l (mod p

αj

j ),

pj � y
(1)
1 , y

(2)
1 , y

(3)
1 , y2, . . . , yk. This implies that we can set yj = 0 and conclude

that we need three edges for the parts of the path corresponding to the moduli
p1, pi and pj and this path can not attain the value r(n). The same conclusion
holds for more than two prime divisors.

From the discussion above we conclude that the diameter path can attain
the value r(n), if Spj

(di) > 1 for αj > 1 and i ∈ {1, . . . , j − 1, j + 1, . . . , k} (the
case uj = 0). In yet another case the value r(n) of the diameter can be attained
if Spj

(d1) = 1 < Spj
(di), 2 ≤ i ≤ k, and pj , d1 ∈ 2N+1, for n ∈ 4N+2 (the case

uj = 1). Now, we prove that there exists a vertex l0 where the distance from 0
to l0 is equal to r(n) in both of the mentioned cases.

In the first case, we derive l0 from the system of congruence equations com-
posed by choosing exactly one of the following equation, for each 1 ≤ j ≤ k
(which exists due to the Chinese remainder theorem)

l0 ≡ −1 (mod pj) if αj = 1
l0 ≡ pj (mod p

αj

j ) if αj > 1.

For all 1 ≤ j ≤ k such that αj = 1, we need at least one summand djyj in the
representation (6) of l0 since l0 �≡ 0 (mod p

αj

j ) and all other di are divisible by
p

αj

j for i �= j. On the other hand, for all 1 ≤ j ≤ k such that αj > 1 we cannot
have exactly one such summand as otherwise we would have djyj ≡ l0 − p2j t

′ ≡
pjs (mod p

αj

j ) and pj � s, which would be a contradiction as pj � djyj , where
p2j t

′ = d1y1 + · · ·+ dj−1yj−1 + dj+1yj+1 + · · ·+ dkyk. Therefore, we need at least
two summands for αj > 1.

In the second case, we derive l0 from the following system of congruence
equations

l0 ≡ −1 (mod pi) if αi = 1
l0 ≡ p2j (mod p

αj

j ) if Spj
(d1) = 1 < Spj

(dl), 2 ≤ l ≤ k

l0 ≡ pi (mod pαi
i ) if αi > 1, i �= j.

It remains to prove that we need two edges by considering the modulus p
αj

j ,
for pj , d1 ∈ 2N+1 and Spj

(d1) = 1 < Spj
(dl), 2 ≤ l ≤ k. Indeed, we cannot have

exactly one such summand as otherwise we would have djyj ≡ l0 − pjt ≡ pjs
(mod p

αj

j ) and pj � s, which is a contradiction due to pj � djyj .
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This proves that the diameter of ICGn(D) in these cases is greater or equal
to r(n) and therefore diam(ICGn(D)) = r(n), which completes the proof of the
theorem.

We provide several examples to illustrate how Theorem 2 is applied to deter-
mine whether the diameter of ICGn(D) such that |D| = k attains r(n).

(i) If n = 22 · 33 · 5 and D = {32 · 5, 22 · 5, 22 · 33} then diam(ICGn(D)) = 5,
according to the first part of Theorem 2 and the diameter of the graph attains
r(n).

We will also compute the diameter of ICGn(d1, d2, d3) for n = 22 · 33 · 5,
d1 = 32 · 5, d2 = 22 · 5 and d3 = 22 · 33 to illustrate the methods from the proof
of Theorem 2. Indeed, for any 0 ≤ l ≤ n − 1 we will try to solve the equation
in the following form d1y1 + d2y2 + d3y3 ≡ l (mod n), with the constraints
gcd(djyj , n) = dj , for 1 ≤ j ≤ 3. This is equivalent with the following system

y1 ≡ (l − d2y2 + d3y3) · d−1
1 (mod 5)

y2 ≡ (l − d1y1 + d3y3) · d−1
2 (mod 33)

y3 ≡ (l − d1y1 + d2y2) · d−1
3 (mod 22),

where 5 � y1, 3 � y2 and 2 � y3. If 5 � l then we can directly compute y1. Similarly
if 3 � l or 2 � l, we can directly compute y2 or y3, respectively. In particular, if
5 � l, 3 � l and 2 � l we conclude that the distance between 0 and l is equal to 3.

If 5 | l − d2y2 + d3y3 or 33 | l − d1y1 + d3y3 or 22 | l − d1y1 + d2y2 then
we obtain that a solution of the corresponding equation is y1 = 0 or y2 = 0 or
y3 = 0, respectively. On the other hand, if 32‖l−d1y1 +d3y3 or 3‖l−d1y1 +d3y3
we can not find y2 satisfying the above congruence equation such that 3 � y2.
However, for such l there exist y′

2 and y′′
2 such that y′

2+y′′
2 ≡ (l−d1y1+d3y3)·d−1

2

(mod 33) and 3 � y′
2, y

′′
2 . This means that we need two edges in order to construct

a path from 0 to l when 32‖l − d1y1 + d3y3 or 3‖l − d1y1 + d3y3 corresponding
to the modulus 33. Similarly, if we take 2‖l − d1y1 + d2y2 in order to construct
a path from 0 to l we need two edges edges corresponding to the modulus 22.
Finally, the distance between any two vertices is less or equal to 5. According to
the above discussion we can, say, choose l such that

l ≡ −1 (mod 5)
l ≡ 3 (mod 33)
l ≡ 2 (mod 22),

and calculate that l = 354 using the Chinese Remainder Theorem. Therefore,
we conclude that the distance between 0 and l is equal to 5.

(ii) If n = 2 · 33 · 53 and D = {3 · 52, 2 · 53, 2 · 32} then diam(ICGn(D)) = 5,
due to the part (ii) of Theorem 2 as there exists exactly one pj = 3 | d1 such
that Spj

(d1) = 1 < Spj
(d3) and d1 ∈ 2N + 1, for n ∈ 4N + 2 and the diameter of

the graph is equal to r(n) = 5.
(iii) If n = 22 · 32 · 5 · 7 and D = {3 · 5 · 7, 22 · 5 · 7, 22 · 32 · 7, 22 · 32 · 5}

then diam(ICGn(D)) = 5 (less than r(n)), as n ∈ 4N even though the other
conditions from the part (ii) of Theorem 2 are satisfied.
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(iv) If n = 22 · 3 · 5 · 7 and D = {3 · 5 · 7, 2 · 5 · 7, 22 · 3 · 7, 22 · 3 · 5} then
diam(ICGn(D)) = 4 (less than r(n)), as the conditions from the part (ii) of
Theorem 2 are satisfied only for pj = 2.

(v) If n = 2 · 32 · 52 · 72 and D = {3 · 5 · 7, 2 · 52 · 72, 2 · 32 · 72, 2 · 32 · 52} then
diam(ICGn(D)) = 5 (less than r(n)), as the conditions from the part (ii) of
Theorem 2 are satisfied for more than one divisor (in this case the three divisors
pj ∈ {3, 5, 7}).

We also directly conclude that in the class of all integral circulant graphs with
a given order n and k−element divisor set D we can not find an example for which
diam(ICGn(d1, . . . , dk)) = 2k + 1, since diam(ICGn(d1, . . . , dk)) ≤ r(n) ≤ 2k.
So, in this case the upper bound from (1) is not attainable.

4 Conclusion

In this paper we find the maximal diameter of integral circulant graphs of a
given order n and cardinality of the divisor set k. Moreover, we characterize all
ICGn(D) such that the maximal diameter is attained. We have already men-
tioned that the maximal diameter of some class of graphs of a given order plays
an important role if that class is used for modeling a quantum network that
allows quantum dynamics, having in mind applications like perfect state trans-
fer. Therefore, it would be very important to find the maximal diameter of
integral circulant graphs of a given order n and any cardinality of the divisor
set D. Moreover, a possible challenging direction in future research would be
examining the existence of an integral circulant graph of a given order allowing
perfect state transfer that attains maximal diameter.

On the other hand, we may notice that we can not improve the lower bound
in the inequality (1) for prescribed n and any prescribed cardinality of the divisor
set D. Indeed, according to Theorem 9 from [12] we observe that ICGn(1) = 2
if and only if n is a power of 2 or n is odd (in both of the cases n is not prime).
This implies that diam(ICGn(1, d2, . . . , dt)) = 2, for any t and the mentioned
values of n (as long as {1, d2, . . . , dt} �= Dn).

In the remaining case, for n = 2α1m, where m > 1 is odd and α ≥ 1, we
can prove that diam(ICGn(1, 2α1)) = 2. Indeed, for every 0 ≤ l ≤ n − 1, such
that l is even we will prove the existence of l in the form s1 + s2 ≡ l (mod n)
such that gcd(s1, n) = 1, gcd(s2, n) = 1. Now, let pi be an arbitrary divisor
of n such that Spi

(n) = αi. By solving the above congruence equation system
modulo pαi

i we get that s1 ≡ l−s2 �≡ piu (mod pαi
i ) and s2 �≡ 0 (mod pi) (which

is equivalent to s2 �≡ piv (mod pαi
i )), for 0 ≤ u, v < pαi−1

i − 1. Therefore, we
obtain s2 �≡ {piv, l − piu} (mod pαi

i ) and it can be concluded that the maximal
number of values that s2 modulo pαi

i can not take is equal to 2pαi−1
i . This

number is less than the number of residues modulo pαi
i any pi (as l is even), so

this system has a solution in this case.
Now, suppose that l ∈ 2N+1. We find s1 and s2 such that s1+s2 ≡ l (mod n)

such that gcd(s1, n) = 1, gcd(s2, n) = 2α1 . Similarly to the previous discussion,
we can conclude that the above conditions can be reduced to the following system
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s2 �≡ {piv, l−piu} (mod pαi
i ), for 2 ≤ i ≤ k and s2 ≡ 0 (mod 2α1). As pi > 2 this

system has a solution. We finally conclude that diam(ICGn(1, 2α1 , d3, . . . , dt)) =
2, for any t and the mentioned values of n (as long as {1, 2α1 , d3, . . . , dt} �= Dn).
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Abstract. A spread in PG(n, q) is a set of mutually skew lines which
partition the point set. A parallelism is a partition of the set of lines by
spreads. The classification of parallelisms in small finite projective spaces
is of interest for problems from projective geometry, design theory, net-
work coding, error-correcting codes, cryptography, etc. All parallelisms of
PG(3, 2) and PG(3, 3) are known and parallelisms of PG(3, 4) which are
invariant under automorphisms of odd prime orders and under the Baer
involution have already been classified. In the present paper, we classify
all (we establish that their number is 252738) parallelisms in PG(3, 4)
that are invariant under cyclic automorphism groups of order 4. We com-
pute the order of their automorphism groups and obtain invariants based
on the type of their spreads and duality.

Keywords: Finite projective space · Parallelism · Automorphism

1 Introduction

For background material concerning projective spaces, spreads and parallelisms,
refer, for instance, to [8] or [17].

Let PG(n, q) be the n-dimensional projective space over the finite field Fq.
For a positive integer t such that t + 1 divides n + 1, a partition of the set of
points of PG(n, q) into subspaces PG(t, q) is possible. Such a partition is called
a t-spread. Two t-spreads are isomorphic if there is a collineation of PG(n, q)
which takes one to the other.

If t+1 divides n+1, a t-parallelism of PG(n, q) is a partition of the set of all
t-dimensional subspaces of PG(n, q) into spreads. A 1-spread is called a spread
or a line-spread and a 1-parallelism a parallelism or a line-parallelism.

Let V = {Pi}vi=1 be a finite set of points, and B = {Bj}bj=1 a finite collection
of k-element subsets of V , called blocks. D = (V,B) is a 2-design with parameters
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2-(v, k, λ) if any 2-subset of V is contained in exactly λ blocks of B. A parallel
class is a partition of the point set by blocks. A resolution of the design is
a partition of the collection of blocks by parallel classes. The incidence of the
points and t-dimensional subspaces of PG(d, q) defines a 2-design [27, 2.35–2.36].
The points of this design correspond to the points of the projective space, and
the blocks to the t-dimensional subspaces. There is a one-to-one correspondence
between parallelisms and the resolutions of the related point-line design.

Parallelisms are also related to translation planes [11], network coding [12],
error-correcting codes [14], cryptography [25], etc.

Two parallelisms are isomorphic if there is a collineation of PG(n, q) which
takes the spreads of one parallelism to the spreads of the other. The classification
problem for parallelisms is the problem of determining a set of representatives
for the isomorphism classes of parallelisms.

An automorphism of a parallelism is a collineation which fixes the parallelism.
Assuming non-trivial automorphisms is a popular approach, because the search
space is reduced since the object must be a union of complete orbits of the
assumed group.

A spread of PG(3, q) has q2 +1 lines and a parallelism has q2 +q +1 spreads.
A regulus of PG(3, q) is a set R of q + 1 mutually skew lines such that any

line intersecting three elements of R intersects all elements of R. A spread S of
PG(3, q) is regular if for any three distinct elements of S, the unique regulus
determined by them is contained in S. A parallelism is regular if all its spreads
are regular. A spread is called aregular if it contains no regulus. A spread is called
subregular if it can be obtained from a regular spread by successive replacements
of some reguli by their opposites [27]. These three spreads are also known as
Desarguesian, Hall and semified spread. Up to isomorphism, there is only one
regular spread. The number of subregular and aregular spreads grows quickly in
q and in n. A parallelism is uniform if it consists entirely of isomorphic spreads.

The dual space of PG(n, q) is the space whose points are the hyperplanes
of PG(n, q), with the co-dimension two subspaces considered as lines and with
reversed incidence. This is a PG(n, q) too. A dual spread in PG(3, q) is a set
of lines which have the property that each plane contains exactly one line. The
lines of a spread in PG(3, q) are lines of a dual spread too. Consequently each
parallelism defines a dual parallelism. Dual parallelisms in PG(3, q) are also
parallelisms of the dual space (obtained by interchanging the points and the
planes of the initial space). There exists a dual transformation (a permutation
of the points and a permutation of the lines of the dual space) which maps
the dual space to the initial space, and the dual parallelism PD (dual of the
parallelism P ) to a parallelism Pd of the considered initial projective space. The
parallelism P is self-dual if it is isomorphic to Pd.

A construction of parallelisms of PG(n, 2) is presented in [1,33]. A construc-
tion of parallelisms of PG(2n − 1, q) is given in [7]. Constructions for PG(3, q)
can be found in [10,15,16,20].

All parallelisms of PG(3, 2) and PG(3, 3) are known [3]. For larger projective
spaces, the classification problem for parallelisms is beyond reach at the moment.
The most promising case is that of PG(3, 4), where there are 5096448 spreads in
exactly three isomorphism classes: regular, subregular and aregular [9].
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Parallelism classification results which rely on an assumed group of sym-
metries can be found in [21,23,24,26,28–30], for instance. Bamberg [2] in an
unpublished note claims that there are no regular parallelisms in PG(3, 4).

By considering the order of PΓL(4, 4), it follows that if p is the prime order
of an automorphism of a parallelism of PG(3, 4), then p must be one of 2, 3, 5, 7
and 17.

All parallelisms of PG(3, 4) with automorphisms of odd prime orders are
known. Some of the parallelisms with automorphisms of order 2 have been clas-
sified too, namely those which are invariant under the Baer involution (Table 1).
The problem of the classification of the remaining parallelisms with automor-
phisms of order 2, and of those with the trivial automorphism is still open.

Table 1. The known parallelisms of PG(3, 4) with nontrivial automorphisms

Autom. group order Isomorphism classes References

2 ≥270088 [6]

2m,m > 1 ≥0

3 8 115 559 [31]

5 31 830 [5,29]

6 4 488 [31]

7 482 [32]

10 76 [5,29]

12 52 [31]

15 40 [5,29,31]

17 0 [29]

20 52 [5,29]

24 14 [31]

30 38 [5,29,31]

48 12 [31]

60 8 [5,29,31]

96 2 [31]

960 4 [5,29,31]

Total ≥8422745

The present paper considers parallelisms of PG(3, 4) invariant under cyclic
groups of order 4. The investigation is computer-aided. We use our own C++
programs written for this purpose, as well as Orbiter [4], GAP [13], Magma [18]
and Nauty [19]. As a result, 252738 nonisomorphic parallelisms are constructed,
and 252620 of them are new.

2 Construction Method

2.1 PΓL(4, 4) and Its Sylow Subgroup of Order 2

The projective space PG(3, 4) has 85 points and 357 lines. We denote by G its full
automorphism group, where G ∼= PΓL(4, 4) and |G| = 213.34.52.7.17. The full
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automorphism group of all the related designs is G too. Each spread contains 17
lines which partition the point set and each parallelism has 21 spreads.

Consider GF (4) with generating polynomial x2 = x + 1 and the points of
PG(3, 4) as all the 4-dimensional vectors (v1, v2, v3, v4) over GF (4) such that
if vk = 0 for all k > i then vi = 1. The second and third authors sort in
lexicographic order these 85 vectors and assign them numbers, such that (1, 0,
0, 0) is number 1, and (3, 3, 3, 1) number 85. This lexicographic order on the
points is used to define a lexicographic order on the lines and on the constructed
parallelisms. The latter is necessary for the minimality test described in Sect. 2.6.

Each invertible matrix (ai,j)4×4 over GF (4) defines an automorphism of the
considered projective space by the map v′

i =
∑

j

ai,jvj .

Denote by G2 a Sylow 2-subgroup of G. It is of order 213 and has elements
of orders a = 2, 4 and 8 which are partitioned in 9 conjugacy classes (Table 2)
and generate cyclic groups Gaf

, where f is the number of lines which are fixed
by Gaf

. We denote by N(Gaf
) the normalizer of Gaf

in G, which is defined as
N(Gaf

) = {g ∈ G | gGaf
g−1 = Gaf

}.

Table 2. Conjugacy classes of elements of G2 and the cyclic groups they generate

Element 1000 3000 1000 1000 1000 3000 3000 1000 3000

0100 0300 0100 1100 0100 0300 0300 1100 0300

1010 0030 0010 0110 1010 1030 0030 0110 2030

0101 0003 1001 0011 0011 0103 1003 1011 1023

Gaf G221 G235 G237 G41 G45 G47 G411 G81 G83

|N(Gaf )| 30720 40320 368640 256 3072 384 768 64 128

subgroups G221 G235 G237 G221 G237 G221 G237 G221 , G41 G237 , G45

There are three conjugacy classes of elements of order 2. We denote the
groups generated by their representatives by G221 , G235 and G237 respectively.

The group G235 contains a Baer involution, namely a collineation of PG(3, 4)
which fixes a subspace PG(3, 2) pointwise. Up to conjugacy, there is a unique
Baer involution. All parallelisms invariant under it are classified in [6].

Parallelisms invariant under G237 cannot be constructed, because the group
fixes 37 lines and therefore some of the fixed spreads should contain orbits of
length 2 with mutually disjoint lines. There are, however, no nontrivial orbits
under G237 with mutually disjoint lines.

The group G221 fixes 5 points and 21 lines and partitions the remaining lines
in 168 orbits of length 2. Our investigations show that there are millions of
parallelisms which are invariant under G221 . In the present paper we classify
those of them which possess cyclic automorphism groups of order 4. Each such
group is generated by a cyclic collineation of order 4.

There are 4 conjugacy classes of elements of order 4 in G2. Consider the cyclic
group of order 4 which such an element generates. It consists of two permutations
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of order 4, one of order 2 and the identity. We denote by G41 , G45 , G47 and G411

the cyclic groups of order 4 generated by representatives of the four conjugacy
classes. A collineation of order 2 that generates G237 is contained in G45 and
G411 . Hence they cannot be the automorphism group of a parallelism.

The other two subgroups of order 4 contain G221 . We construct here all
parallelisms which are invariant under G41 or G47 and find the orders of their
full automorphism groups.

As a check of the correctness of the obtained results, we also consider cyclic
groups of order 8. The group G2 has two conjugacy classes of elements of order 8.
The cyclic group generated by an element of order 8 is made of four collineations
of order 8, two of order 4, one of order 2 and the identity. The group G83 cannot
be the automorphism group of a parallelism because its collineation of order 2
generates G237 . Hence it suffices to consider only G81 whose collineation of order
2 generates G221 .

2.2 Types of Line and Spread Orbits

Consider the action of Gaf
∈ {G41 , G47 , G81} on the set of lines. There are f

line orbits of length 1 (f fixed lines, or f trivial orbits), s orbits of length a/2
(short orbits) and l orbits of length a (full orbits), where a ∈ {4, 8} is the order
of the group. In general, a group of order a = 8 might have line orbits of length
a/4 too, but G81 has no line orbits of length 2.

The nontrivial line orbits can be of two different types with respect to the
way they can be used in the construction of parallelisms with assumed automor-
phisms. Orbits whose lines are mutually disjoint (the orbit lines contain each
point at most once) are of the first type. We call them spread-like line orbits. A
whole orbit of this type can be part of a spread which is fixed by the assumed
group. Lines from orbits of the second type (non-spread-like) can only be used
in nonfixed spreads.

A spread in PG(3, 4) consists of 17 mutually disjoint lines. To construct a
parallelism invariant under Gaf

we need to consider the action of this group on
the spreads. The length of a spread orbit under Gaf

can be 1, a/2 or a and there
are 3 different types of spreads (and respectively spread orbits) according to the
action of the different subgroups of Gaf

. The parallelisms invariant under this
group can have spreads which are fixed only by some of its subgroups.

Type F : Such a spread is fixed by Gaf
(and therefore by all of its subgroups

too). It is made of fF fixed lines and several spread-like orbits. Among them we
denote by lF the number of orbits of length a, and by sF the number of those
of length a/2.

fF + alF +
a

2
sF = 17.

We further use the notation FfF ,sF
for a spread of type F with fF fixed lines

and sF orbits of length a/2.
Type S : The spread is fixed only by the subgroup G221 of order 2. Its spread

orbit under Gaf
is of length a/2. Such a spread contains sS lines from short orbits

under Gaf
and dS whole spread-like orbits under G221 which belong to line orbits
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of length a under Gaf
, such that the collineations of order a map each of these

dS orbits to a/2 − 1 other spread-like orbits under G221 .

sS + 2dS = 17.

We denote by SsS
a spread of type S with sS lines from short orbits.

Type L: This spread contains lines from 17 different line orbits (under
Gaf

) of one and the same length lL. To specify the orbit length we use the
notation LlL

.
Remark: For cyclic groups of order 8, spreads fixed only by the subgroup of

order 4 might also be possible, but this does not concern the case we consider. If
Gaf

= G81 we cannot construct a spread which is not fixed by G81 , but fixed by
its subgroup of order 4, because its spread orbit under G81 should be of order 2,
and (since the number of lines is 17) the spread must contain at least one line
from a line orbit of length 2 under G81 . There are, however, no line orbits of
length 2 under G81 .

2.3 The Automorphism Group G41

It fixes a point and a line. There are s = 10 line orbits of length 2 and l = 84 of
length 4. The number of spread-like orbits of length two is 8, and of length four
48. There is one fixed line and all the lines from short orbits share a point with
it. Therefore the fixed spread should be of type F1,0. It contains the fixed line
a1 and four spread-like orbits of length 4 (ci, ci+1, ci+2, ci+3, i = 1, 5, 9, 13).

F1,0 : a1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

There are 32 different spread orbits of type F1,0 (Table 3).

Table 3. Spread orbits under the assumed automorphism groups

G41

type number
F1,0 32
S5 1 216
L4 159 936

G47

type number
F1,0 40
F3,1 64
S5 144
L4 193 600

G81

type number
F1,0 4
S5 100
L8 37472

Since the number of short line orbits is less than 17, spreads of type L2

are not possible. The short line orbits under G41 can only take part in spreads
of type S. Two short line orbits contain the first point, so there should be at
least two spreads of type S. Our computer-aided investigations show that the
parallelisms invariant under G41 have two spreads of type S5. They have 5 lines
b1, b2, . . . , b5 from orbits {bi, b

′
i}, i = 1, 2, . . . , 5 of length 2 under G41 and 6 whole

orbits {ci, ci+1}, i = 1, 3, . . . , 11 of length 2 under G221 which are part of orbits
{ci, c

′
i, ci+1, c

′
i+1}, i = 1, 3, . . . , 11 of length 4 under G41 , where a permutation
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of order 4 permutes them as (ci, c′
i, ci+1, c

′
i+1). This way the spread orbit under

G41 contains the two spreads:

S5 S5 :
b1 b2 b3 b4 b5 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

b′
1 b′

2 b′
3 b′

4 b′
5 c′

1 c′
2 c′

3 c′
4 c′

5 c′
6 c′

7 c′
8 c′

9 c′
10 c′

11 c′
12

There are 1216 different spread orbits of type S5 (Table 3).
There are spreads of type L4 too. They contain 17 lines ci, i = 1, 2, . . . , 17

of orbits {ci, c
′
i, c

′′
i , c′′′

i } of length 4 under G41 . Their number is 159936 (Table 3)
and their spread orbit looks like:

L4 L4 L4 L4 :

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17

c′
1 c′

2 c′
3 c′

4 c′
5 c′

6 c′
7 c′

8 c′
9 c′

10 c′
11 c′

12 c′
13 c′

14 c′
15 c′

16 c′
17

c′′
1 c′′

2 c′′
3 c′′

4 c′′
5 c′′

6 c′′
7 c′′

8 c′′
9 c′′

10 c′′
11 c′′

12 c′′
13 c′′

14 c′′
15 c′′

16 c′′
17

c′′′
1 c′′′

2 c′′′
3 c′′′

4 c′′′
5 c′′′

6 c′′′
7 c′′′

8 c′′′
9 c′′′

10 c′′′
11 c′′′

12 c′′′
13 c′′′

14 c′′′
15 c′′′

16 c′′′
17

A parallelism invariant under G41 has 21 spreads among which one fixed
spread, two spread orbits of length 2 with spreads of type S5 and four spread
orbits of length 4 with spreads of type L4:

F1,0 S5 S5 S5 S5 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4

Using the normalizer of G41 which is of order 256 we take away most of the
isomorphic solutions and obtain 3 possibilities for the first spread, 292 for the
first 3 spread orbits and 107320 parallelisms. It takes several hours on a 3 GHz
PC. The subsequent application of a full test for isomorphism shows that the
number of nonisomorphic parallelisms is 107030.

2.4 The Automorphism Group G47

It fixes 3 points and 7 lines. There are s = 7 line orbits of length 2 (4 of them
spread-like), and l = 84 line orbits of length 4 (among them 48 spread-like). The
maximum set of disjoint fixed lines is of size 3. That is why a spread of type F
can have either 3 or 1 fixed line. There are only 4 short spread-like line orbits
under G47 and they have a common point. Therefore a spread of type F may
contain at most one of them, and there are spreads of types F1,0 and F3,1.

The structure of a spread of type F1,0 is the same for G47 and G41 and was
considered in the previous subsection. We construct 40 different spreads of type
F1,0 in PG(3, 4), which are fixed by G47 (Table 3).

A spread of type F3,1 contains three fixed lines a1, a2, a3, a spread-like short
line orbit {b1, b2} and three spread-like orbits of length 4 {ci, ci+1, ci+2, ci+3},
i = 1, 5, 9. There are 64 spreads of type F3,1 fixed under G47 (Table 3).

F3,1 : a1 a2 a3 b1 b2 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

We further establish that the structure of the spreads of types S and L is
the same for G47 and G41 . It was presented in the previous subsection. For G47

we obtain 144 spread orbits of type S5 and 193600 of type L4 (Table 3).
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A parallelism invariant under G47 has one spread of type F1,0, two spreads
of type F3,1, one spread orbit of length 2 (under G47) with spreads of type S5,
and four spread orbits of length 4 with spreads of type L4:

F1,0 F3,1 F3,1 S5 S5 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4 L4

Using the normalizer of G47 (of order 384) we take away most isomorphic
solutions, and obtain 3 possibilities for the first spread, 49 for the first 3 fixed
spreads and 146024 parallelisms. The search takes several hours. We next estab-
lish that 145780 parallelisms are nonisomorphic.

2.5 The Automorphism Group G81

It fixes a point and a line. There are s = 5 line orbits of length 4 and l = 42
of length 8. The number of spread-like orbits of length four is 4, and of length
eight 8. The fixed spread is of type F1,0. It contains the fixed line a1 and two
spread-like orbits of length 8 {ci, ci+1, . . . , ci+7}, i = 1, 9.

F1,0 : a1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

There are 4 different spread orbits of type F1,0 (Table 3) constructed accord-
ing to this pattern.

Parallelisms invariant under G81 contain spreads of type S5. They have 5
lines b1, b2, . . . , b5 from orbits {bi, b

′
i, b

′′
i , b′′′

i }, i = 1, 2, . . . , 5 of length 4 under
G81 and 6 whole orbits {ci, ci+1}, i = 1, 3, . . . , 11 of length 2 under G221

which are part of orbits {ci, c
′
i, c

′′
i , c′′′

i , ci+1, c
′
i+1, c

′′
i+1, c

′′′
i+1}, i = 1, 3, . . . , 11 of

length 8 under G81 , where a permutation of order 8 permutes the lines as
(ci, c′

i, c
′′
i , c′′′

i , ci+1, c
′
i+1, c

′′
i+1, c

′′′
i+1). This way the spread orbit under G81 contains

the following four spreads:

S5 S5 S5 S5 :

b1 b2 b3 b4 b5 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

b′
1 b′

2 b′
3 b′

4 b′
5 c′

1 c′
2 c′

3 c′
4 c′

5 c′
6 c′

7 c′
8 c′

9 c′
10 c′

11 c′
12

b′′
1 b′′

2 b′′
3 b′′

4 b′′
5 c′′

1 c′′
2 c′′

3 c′′
4 c′′

5 c′′
6 c′′

7 c′′
8 c′′

9 c′′
10 c′′

11 c′′
12

b′′′
1 b′′′

2 b′′′
3 b′′′

4 b′′′
5 c′′′

1 c′′′
2 c′′′

3 c′′′
4 c′′′

5 c′′′
6 c′′′

7 c′′′
8 c′′′

9 c′′′
10 c′′′

11 c′′′
12

There are 100 different spread orbits of type S5 (Table 3).
The parallelisms have spreads of type L8 too. They contain lines of 17 dif-

ferent orbits of length 8 under G81 . Their number is 37472 (Table 3).
A parallelism invariant under G81 has one fixed spread, one spread orbit of

length 4 with spreads of type S5 and two spread orbits of length 8 with spreads
of type L8:

F1,0 S5 S5 S5 S5 L8 L8 L8 L8 L8 L8 L8 L8 L8 L8 L8 L8 L8 L8 L8 L8

Using the normalizer of G81 (which is of order 64), we take away part of the
isomorphic solutions and obtain 248 parallelisms. The computation takes about
an hour. We next find out that the number of nonisomorphic parallelisms is 220.
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2.6 Computer Search

We construct the parallelisms by backtrack search with rejection of equivalent
partial solutions at several stages. Since each spread orbit is defined by any one
of its spreads, we find only one spread from each orbit and call it spread orbit
leader. This way, instead of all 21 spreads, we construct 7 orbit leaders for the
parallelisms with an assumed group G41 , 8 for G47 , and 4 for G81 .

The three authors offer slightly differing construction methods. The approach
of the first and third authors implies construction of all the possible spread orbit
leaders in advance. Their number is presented in Table 3. They are obtained
by backtrack search on the lines of the projective space. A spread consists of
disjoint lines. If we have chosen part of its lines, we add the line l if it is disjoint
to all of them, and if it meets the requirements of the spread type (for instance,
if the spread is of type F , the line orbit of l under Gaf

must contain mutually
disjoint lines, all of them disjoint to each of the already chosen spread lines). The
parallelisms are constructed next by backtrack search on these possible spreads.
The spread which we add must be disjoint to all the spreads from the current
partial solution.

The second author does not construct the possible spreads first. The search is
on the lines. The line l is added to the current spread if it meets the requirements
of the spread type, and has not been used in the already constructed spreads of
the parallelism. The latter requirement is quite restrictive and that is why the
computation times needed by the two approaches are comparable.

All the authors apply isomorphism testing at several stages within the search.
For that purpose the first author uses the graph theory package Nauty [19],
while the other authors apply a normalizer-based minimality test. It checks
if there is an element of the normalizer N(Gaf

) (of Gaf
in G) which takes the

constructed partial parallelism to a lexicographically smaller partial solution. If
so, the current partial solution is discarded.

3 Results

All the constructed parallelisms are available online. They can be downloaded
from http://www.moi.math.bas.bg/moiuser/∼stela. A summary of the obtained
results is presented in Table 4, where the order of the full automorphism group
|GP | of the parallelisms is given in the first column and the number of solutions
obtained with the assumed groups G41 and G47 in the next two columns. There
are parallelisms which are invariant both under G41 and G47 , so that the total
number is less than the sum of the numbers in the previous two columns. In
that case the row background is gray. You can see from the fifth column that
the number of self-dual parallelisms is relatively small.

We determine the type of each spread in the parallelism. The number of
subregular, regular and aregular spreads form an invariant which partitions the
constructed parallelisms to 129 classes. The number of such classes for the par-
allelisms with each order of the full automorphism group is presented in the last
column of Table 4.

http://www.moi.math.bas.bg/moiuser/~stela
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Table 4. The order of the full automorphism group of the constructed parallelisms

|GP | G41 G47 Total Selfdual Invariants
4 106464 145372 251836 522 129
8 420 232 596 14 14

12 40 40 – 1
16 122 48 170 6 5
20 52 52 – 8
32 14 8 14 2 2
48 12 12 – 1
60 8 8 – 1
64 4 4 4 – 1
96 2 – 2 2 1

960 4 4 4 – 1
Total 107030 145780 252738 546 129

Table 5. Types of spreads of the parallelisms with a full automorphism group of order
greater than 4

|GP | S R A G41 G47 G81 Total
8 0 1 20 56 56 56
8 0 5 16 2 2 2
8 4 0 17 16 16 16
8 4 1 16 122 136 40 258
8 4 9 8 8 2 8
8 6 1 14 8 8
8 8 1 12 30 30 30
8 8 5 8 4 4 4
8 10 1 10 16 16
8 12 0 9 40 40 40
8 12 1 8 72 8 38 80
8 12 9 0 10 2 10
8 16 1 4 4 4 4
8 20 1 0 32 32 6 64
12 20 1 0 40 40
16 4 1 16 28 20 24 48
16 4 9 8 12 12
16 12 1 8 16 16

|GP | S R A G41 G47 G81 Total
16 12 9 0 12 12
16 20 1 0 54 28 82
20 6 0 15 4 4
20 10 1 10 4 4
20 11 0 10 4 4
20 11 5 5 4 4
20 15 1 5 10 10
20 16 0 5 10 10
20 20 1 0 8 8
20 21 0 0 8 8
32 4 1 16 8 4 4 8
32 20 1 0 6 4 6
48 20 1 0 12 12
60 20 1 0 8 8
64 20 1 0 4 4 4 4
96 20 1 0 2 2
960 20 1 0 4 4 4 4

Table 6. Uniform parallelisms invariant under cyclic groups of order 4

Type |GP | = 4 |GP | = 20 Assumed automorphism group

Subregular 244 8 G47

Aregular 4816 G41
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To find out if there are parallelisms invariant both under G41 and G47 (and
thus constructed with each of these assumed groups) we test for isomorphism
all parallelisms which have the same invariants and an automorphism group
of order more than 4. The results are presented in Table 5, where columns S
(subregular), R (regular) and A (aregular) present the invariants. The gray rows
mark the parallelisms whose automorphism group contains both G41 and G47 .

We use our results for G81 to partially check the correctness of our com-
putations. All the constructed parallelisms with automorphism group G81 are
isomorphic to parallelisms obtained with an assumed group G41 . The data about
G81 is presented in Table 5.

Uniform parallelisms are of particular interest [22]. We obtain many aregular
and subregular parallelisms and no regular ones (Table 6). The parallelisms we
construct have at most 10 regular spreads.

The number of parallelisms with automorphisms of prime orders 5 and 3 is
in consistence with the classifications in [29,31]. Only 118 of the parallelisms
constructed here were known before the present work.
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Abstract. In this work, constructions of ordered covering arrays are
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Rosenbloom-Tsfasman spaces (RT spaces), improving or extending some
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1 Introduction

Roughly speaking, covering codes deal with the following problem: Given a met-
ric space, how many balls are enough to cover all the space? Several applications,
such as data transmission, cellular telecommunications, decoding of errors, foot-
ball pool problem, have motivated the study of covering codes in Hamming
spaces. Covering codes also have connections with other branches of mathemat-
ics and computer science, such as finite fields, linear algebra, graph theory, com-
binatorial optimization, mathematical programming, and metaheuristic search.
We refer the reader to the book by Cohen et al. [7] for an overview of the topic.

Rosenbloom and Tsfasman [18] introduced the RT metric on linear spaces
over finite fields, motivated by possible applications to interference in parallel
channels of communication systems. Since the RT metric generalizes the Ham-
ming metric, central concepts on codes in Hamming spaces have been investi-
gated in RT space, like perfect codes, MDS codes, linear codes, distribution,
packing and covering problems.
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Most research on codes using the RT metric focuses on packing codes; cover-
ing codes in RT spaces have not been much explored. Brualdi et al. [2] implicitly
investigated such codes when the space is induced by a chain. The minimum
covering code for a chain is computed in [19]. An extension to an arbitrary RT
space is proposed in [4], which deals mainly with upper bounds, inductive rela-
tions and some sharp bounds as well as relations with MDS codes. More recently,
[5] improved the sphere covering bound in RT spaces under some conditions by
generalizing the excess counting method. In this work, we explore upper bounds
and inductive relations for covering codes in RT spaces by using ordered covering
arrays (OCA), as briefly described below.

Ordered covering arrays (OCAs) are a generalization of ordered orthogo-
nal arrays (OOA) and covering arrays (CA). Orthogonal arrays are classical
combinatorial designs with close connections to coding theory; see the book on
orthogonal arrays by Hedayat et al. [11]. Covering arrays generalize orthogonal
arrays and have been given a lot of attention due to their use in software test-
ing and interesting connections with other combinatorial designs; see the survey
paper by Colbourn [8]. Ordered orthogonal arrays are a generalization of orthog-
onal arrays introduced independently by Lawrence [14] and Mullen and Schmid
[15], and are used in numerical integration. OCAs have been introduced more
recently by Krikorian [13], generalizing several of the mentioned designs; their
definition is given in Sect. 3. In [13], Krikorian gives recursive and Roux-type
constructions of OCAs as well as other constructions using the columns of a
covering array and discusses an application of OCAs to numerical integration
(evaluating multi-dimensional integrals).

In this paper, we apply OCAs to obtain new upper bounds on covering codes
in RT spaces. We review the basics on RT metric and covering codes in Sect. 2.
CAs and OCAs are defined in Sect. 3. Section 4 is devoted to recursive relations
on the parameters of OCAs. Finally, in Sect. 5, we obtain upper bounds on
covering codes in RT spaces from OCAs.

2 Preliminaries: RT Metric and Covering Codes

We review the RT metric based on [2]. Let P be a finite partial ordered set
(poset) and denote its partial order relation by �. A poset is a chain when
any two elements are comparable; a poset is an anti-chain when no two distinct
elements are comparable. A subset I of P is an ideal of P when the following
property holds: if b ∈ I and a � b, then a ∈ I. The ideal generated by a subset
A of P is the ideal of the smallest cardinality which contains A, denoted by 〈A〉.
An element a ∈ I is maximal in I if a � b implies that b = a. Analogously, an
element a ∈ I is minimal in I if b � a implies that b = a. A subset J of P is an
anti-ideal of P when it is the complement of an ideal of P . If an ideal I has t
elements, then its corresponding anti-ideal has n − t elements, where n denotes
the number of elements in P .

Let m and s be positive integers and Ω[m, s] be a set of ms elements parti-
tioned into m blocks Bi having s elements each, where Bi = {bis, . . . , b(i+1)s−1}
for i = 0, . . . , m − 1 and the elements of each block are ordered as bis �



102 A. G. Castoldi et al.

bis+1 � · · · � b(i+1)s−1. The set Ω[m, s] has a structure of a poset: it is the
union of m disjoint chains, each one having s elements, which is known as
the Rosenbloom-Tsfasman poset Ω[m, s], or briefly an RT poset Ω[m, s]. When
Ω[m, s] = [m × s] := {1, . . . , ms}, the RT poset Ω[m, s] is denoted by RT poset
[m × s] and its blocks are Bi = {i + 1, . . . , (i + 1)s}, for i = 0, . . . , m − 1.

For 1 ≤ i ≤ ms and 1 ≤ j ≤ min{m, i}, the parameter Ωj(i) denotes the
number of ideals of the RT poset [m × s] whose cardinality is i with exactly j
maximal elements. In [5, Proposition 1], it is shown that Ωj(i) =

(
m
j

)(
i−1
j−1

)
if

j ≤ i ≤ s.
The RT distance between x = (x1, . . . , xms) and y = (y1, . . . , yms) in Z

ms
q is

defined as [2]

dRT (x, y) = |〈supp(x − y)〉| = |〈{i : xi �= yi}〉|.
A set Z

ms
q endowed with the RT distance is a Rosenbloom-Tsfasman space, or

simply, an RT space.
The RT sphere centered at x of radius R, denoted by BRT (x,R) = {y ∈

Z
ms
q : dRT (x, y) ≤ R}, has cardinality given by the formula

V RT
q (m, s,R) = 1 +

R∑

i=1

min{m,i}∑

j=1

qi−j(q − 1)jΩj(i). (1)

As expected, the case s = 1 corresponds to the classical Hamming sphere. Indeed,
each subset produces an ideal formed by minimal elements of the anti-chain
[m × 1], thus the parameters Ωi(i) =

(
m
i

)
and Ωj(i) = 0 for j < i yield

Vq(m,R) = V RT
q (m, 1, R) = 1 +

R∑

i=1

(q − 1)i

(
m

i

)
. (2)

In contrast with the Hamming space, the computation of the sum in Eq. (1) is
not a feasible procedure for a general RT space. In addition to the well studied
case s = 1, it is known that V RT

q (1, s, R) = qR for a space induced by a chain
[1 × s], see [2, Theorem 2.1] and [19]. Also, it is proved in [5, Corollary 1] that,
for R ≤ s,

V RT
q (m, s,R) = 1 +

R∑

i=1

min{m,i}∑

j=1

qi−j(q − 1)j

(
m

j

)(
i − 1
j − 1

)
.

We now define covering codes in an arbitrary RT space, and refer the reader
to [4] for an overview.

Definition 1. Given an RT poset [m × s], let C be a subset of Zms
q . The code

C is an R-covering of the RT space Z
ms
q if for every x ∈ Z

ms
q there is a codeword

c ∈ C such that dRT (x, c) ≤ R, or equivalently,
⋃

c∈C

BRT (c,R) = Z
ms
q .

The number KRT
q (m, s,R) denotes the smallest cardinality of an R-covering of

the RT space Z
ms
q .
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In particular, KRT
q (m, 1, R) = Kq(m,R). The sphere covering bound and a

general upper bound are stated below.

Proposition 1. ([4, Propositions 6 and 7]) For every q ≥ 2 and R such that
0 < R < ms,

qms

V RT
q (m, s,R)

≤ KRT
q (m, s,R) ≤ qms−R.

3 Ordered Covering Arrays

In this section, we define an important combinatorial object for this paper. We
start recalling two classical combinatorial structures.

Definition 2. Let t, v, λ, n, N be positive integers and N ≥ λvt. Let A be an
N × n array over an alphabet V of size v. An N × t subarray of A is λ-covered
if it has each t-tuple over V as a row at least λ times. A set of t columns of A is
λ-covered if the N × t subarray of A formed by them is λ-covered; when λ = 1
we simply say it is covered.

In what follows, whenever λ = 1, we omit λ from the notation.

Definition 3. (CA and OA) Let N , n, v and λ be positive integers such that
2 ≤ t ≤ n. A covering array CAλ(N ; t, n, v) is an N × n array A with entries
from a set V of size v such that any t-set of columns of A is λ-covered. The
parameter t is the strength of the covering array. The covering array num-
ber CANλ(t, n, v) is the smallest positive integer N such that a CAλ(N ; t, n, v)
exists. An orthogonal array is a covering array with N = λvt.

We are now ready to introduce ordered covering arrays.

Definition 4. (OCA and OOA) Let t, m, s, v and λ be positive integers such
that 2 ≤ t ≤ ms. An ordered covering array OCAλ(N ; t,m, s, v) is an N ×ms
array A with entries from an alphabet V of size v, whose columns are labeled
by an RT poset Ω[m, s], satisfying the property: for each anti-ideal J of the RT
poset Ω[m, s] with |J | = t, the set of columns of A labeled by J is λ-covered.
The parameter t is the strength of the ordered covering array. The ordered
covering array number OCANλ(t,m, s, v) is the smallest positive integer N
such that there exists an OCAλ(N ; t,m, s, v). An ordered orthogonal array
is an ordered covering array with N = λvt.

Remark 1. Ordered covering arrays are special cases of variable strength cover-
ing arrays [16,17]. Ordered covering arrays were first studied by Krikorian [13].

Example 1. The following array is an OCA of strength 2 with 5 rows:

OCA(5; 2, 4, 2, 2) =

1 2 3 4 5 6 7 8⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 1 0 1 0 1
1 1 1 0 0 0 0 0
0 0 1 1 1 0 1 0
1 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎦

.
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The columns of this array are labeled by [4 × 2] = {1, . . . , 8} and the blocks of
the RT poset [4 × 2] are B0 = {1, 2}, B1 = {3, 4}, B2 = {5, 6} are B3 = {7, 8}.
We have ten anti-ideals of size 2, namely,

{1, 2}, {3, 4}, {5, 6}, {7, 8}, {2, 4}, {2, 6}, {2, 8}, {4, 6}, {4, 8}, {6, 8}.

The 5× 2 subarray constructed from each one of theses anti-ideals covers all the
pairs (0, 0), (0, 1), (1, 0) and (1, 1) at least once.

In an OCAλ(N ; t,m, s, v) such that s > t, each one of the first s− t elements
of a block in the RT poset Ω[m, s] is not an element of any anti-ideal of size
t. Therefore, a column labeled by one of these elements will not be part of any
N × t subarray that must be λ-covered in an OCA. So we assume s ≤ t from
now on.

Two trivial relationships between the ordered covering array number and the
covering array number CANλ(t, n, v) are:

(1) λvt ≤ OCANλ(t,m, s, v) ≤ CANλ(t,ms, v);
(2) For t ≤ m, CANλ(t,m, v) ≤ OCANλ(t,m, t, v).

If λ = 1, we just write OCA(N ; t,m, s, v). We observe that if N = λvt, an
OCAλ(λvt; t,m, s, v) is an ordered orthogonal array OOAλ(λvt; t,m, s, v). When
s = 1, an OCAλ(N ; t,m, 1, v) is the well-known covering array CAλ(N ; t,m, v).

4 Recursive Relations for Ordered Covering Arrays

In this section, we show recursive relations for ordered coverings arrays.

Proposition 2. (1) If there exists an OCAλ(N ; t,m, t − 1, v), then there exists
an OCAλ(N ; t,m, t, v).

(2) If there exists an OCAλ(N ; t,m, s, v), then there exists an OCAλ(N ;
t,m, s − 1, v).

(3) If there exists an OCAλ(N ; t,m, s, v), then there exists an OCAλ(N ; t,m −
1, s, v).

Proof. Parts (2) and (3) are easily obtained by deletion of appropriate columns
of the OCAλ(N ; t,m, s, v). We prove part (1). Let P be an RT poset Ω[m, t],
and let B0, B1, . . . , Bm−1 be the blocks of P . Each Bi, 0 ≤ i < m, is a chain, and
we denote by min(Bi) and max(Bi) the minimum and maximum elements of Bi,
respectively. Let M = {max(B0), . . . ,max(Bm−1)} and let π be a derangement
of M . Let P ′ = P \ {min(B0), . . . ,min(Bm−1)}, an RT poset Ω[m, (t − 1)],
and let A′ be an OCAλ(N ; t,m, t − 1, v) with columns labeled by P ′. We take
a map f : P → P ′ given by f(x) = x if x ∈ P ′ and f(x) = π(max(Bi)), if
x = min(Bi). In Fig. 1, we depict P ′ (above) and P (below) where min(Bi) is
labeled by a where a = π(max(Bi)). Construct an array A with columns labeled
by elements of P by taking the column of A labeled by x to be the column of
A′ labeled by f(x). Let J be any anti-ideal of P of size t and let J ′ = f(J).
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1

2

t− 1

t

t+ 1

2(t− 1)

(m− 2)(t− 1) + 1

(m− 2)(t− 1) + 2

(m− 1)(t− 1)

(m− 1)(t− 1) + 1

(m− 1)(t− 1) + 2

m(t− 1)

m(t− 1)

1

t− 1

t− 1

t

2(t− 1)

(m− 2)(t− 1)

(m− 2)(t− 1) + 1

(m− 1)(t− 1)

(m− 1)(t− 1)

(m− 1)(t− 1) + 1

m(t− 1)

Fig. 1. Above, P ′ is an RT poset Ω[m, t − 1]; below, P ⊃ P ′ is an RT poset Ω[m, t].

Then either J = J ′ ⊆ P ′, or min(Bi) ∈ J for some i, which implies J = Bi and
J ′ = (Bi \ {min(Bi)}) ∪ max(Bj) for some j �= i. In either case, J ′ is an anti-
ideal of P ′, and so the set of t columns of A′ corresponding to J ′ is λ-covered.
Therefore, the set of t columns of A corresponding to J is λ-covered, for any
anti-ideal J of P of size t, and A is an OCAλ(N ; t,m, t, v). �

As a straightforward consequence of Proposition 2 items (1) and (2), we have
the following result.

Corollary 1. There exists an OCAλ(N ; t,m, t, v) if and only if there exists an
OCAλ(N ; t,m, t − 1, v).

By the above corollary, when t = 2, the right hand side OCA has s = t−1 =
1 which corresponds to a covering array; therefore, in this case, the ordered
covering array number is equal to the covering array number. This also shows
that we need t > 2 in order to have ordering covering arrays essentially different
than covering arrays.

Example 2. OCANλ(2,m, 2, v) = CANλ(2,m, v).
Let us label the columns of a CAλ(N ; 2,m, v) by the elements of [m] =

{1, . . . , m}. Choose the columns of CAλ(N ; 2,m, v) labeled by the elements of
[m] given in Fig. 2. We use again the notation a to duplicate a ∈ [m] in the RT
poset Ω[m, 2] in such a way that a and a are not comparable, but the columns
of CAλ(N ; 2,m, v) labeled by a and a are equal.

2

1

3

2

m

m− 1

1

m

Fig. 2. Blocks of the RT poset Ω[m, 2].
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It is known from [12] that CAN(2,m, 2) is the smallest positive integer N
such that m ≤ (

N−1
�N

2 �−1

)
. As a consequence, we obtain the following result.

Corollary 2. The ordered covering array number OCAN(2,m, 2, 2) is the
smallest positive integer N such that m ≤ (

N−1
�N

2 �−1

)
.

In the next result, we show an upper bound for the ordered covering array
number over an alphabet of size v from the ordered covering array number over
an alphabet of size v + 1. It generalizes [9, Lemma 3.1] and part of [10, Lemma
3.1].

Theorem 1. (Fusion Theorem) OCANλ(t,m, s, v) ≤ OCANλ(t,m, s, v+1)−2.

Proof. Let V = {1, . . . , v + 1} be an alphabet of size v + 1 and consider an
OCAλ(N ; t,m, s, v + 1) over V . The permutation of the entries of any column
of the OCAλ(N ; t,m, s, v + 1) still produces an ordered covering array with the
same parameters. If necessary, applying a permutation in each of the columns,
we can guarantee that there exists a row in OCAλ(N ; t,m, s, v + 1) such that
all the entries are v + 1. We delete this row.

Choose a second row r = (c1, . . . , cms) of OCAλ(N ; t,m, s, v + 1). In every
row except r, where there exist an entry v + 1 in column i, replace v + 1 by ci if
ci �= v + 1, otherwise, replace v + 1 by any element of {1, . . . , v}. Delete row r.

The array A obtained by deleting these two rows of OCAλ(N ; t,m, s, v + 1)
is an OCAλ(N − 2; t,m, s, v), since each t-tuple that was covered by row r is
now covered by one or more of the modified rows. �

By [6, Theorem 3] and Theorem 1, we derive an upper bound on the ordered
covering array number.

Corollary 3. Let q be a prime power. Then, OCAN(t, q + 1, t, q − 1) ≤ qt − 2.

5 Constructions of Covering Codes Using Covering
Arrays

In this section, ordered covering arrays are used to construct covering codes in RT
spaces yielding upper bounds on their size. Theorems 2 and 3 are a generalization
of results already discovered for covering codes in Hamming spaces connected
with surjective matrices [7].

Let I = {i1, . . . , ik} be a subset of [n] = {1, . . . , n}. Given an element
x = (x1, . . . , xn) ∈ Z

n
q , the projection of x with respect to I is the element

πI(x) = (xi1 , . . . , xik) ∈ Z
k
q . More generally, for a non-empty subset C of Z

n
q ,

the projection of C with respect to I is the set πI(C) = {πI(c) : c ∈ C}.
In [4, Theorem 13], it was proved that KRT

q (m, s,ms − t) = q if m ≥ (t −
1)q + 1. What can we say about KRT

q (m, s,ms − t) when m = (t − 1)q? In this
direction, we have the following result. A reference for item (1) is [7]; the other
two items are original results of the present paper.
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Theorem 2. For t ≥ 2,

(1) Kq((t − 1)q, (t − 1)q − t) ≤ q − 2 + CAN(t, (t − 1)q, 2).
(2) KRT

q ((t − 1)q, s, (t − 1)qs − t) ≤ Kq((t − 1)q, (t − 1)q − t).
(3) KRT

q ((t − 1)q, s, (t − 1)qs − t) ≤ q − 2 + CAN(t, (t − 1)q, 2).

Proof. (Sketch.) We only prove part (2) here; part (3) is straightforward from (1)
and (2). Let M be the set of all maximal elements of the RT poset [(t − 1)q × s]
and C ′ be a ((t−1)q − t)-covering code of the Hamming space Z

(t−1)q
q . Let C be

the subset of Z(t−1)qs
q such that c ∈ C if and only if πM (c) ∈ C ′ and all the other

coordinates of c are equal to zero. Given x ∈ Z
(t−1)qs
q , let πM (x) ∈ Z

(t−1)q
q . Since

C ′ is a ((t− 1)q − t)-covering of the Hamming space Z
(t−1)q
q , there exists c′ ∈ C ′

such that πM (x) and c′ coincide in at least t coordinates. Let c ∈ C such that
πM (c) = c′. Therefore dRT (x, c) ≤ (t−1)qs−t, and C is a ((t−1)qs−t)-covering
of the RT space Z

(t−1)qs−t
q . �

Applying the trivial bounds we have that 3 ≤ KRT
3 (3, s, 3s − 2) ≤ 9. The

upper bound can be improved by Theorem 2.

Corollary 4. KRT
3 (3, s, 3s − 2) ≤ 5.

Proof. Theorem 2 yields KRT
3 (3, s, 3s − 2) ≤ 1 + CAN(2, 3, 2). On the other

hand, CAN(2, 3, 2) = 4, according to [12], and the upper bound follows. �

MDS codes have been used to improve upper bounds on Kq(n,R) [1,3,7]. In
[4, Theorem 30], MDS codes in RT spaces are used to improve upper bounds for
KRT

q (m, s,R). We generalize these results using ordered covering arrays.

Theorem 3. KRT
vq (m, s,R) ≤ OCAN(ms − R,m, s, v)KRT

q (m, s,R).

Proof. Throughout this proof, the set Zvq is regarded as the set Zvq = Zv × Zq

by setting the bijection xq + y → (x, y). This strategy allows us to analyze the
information on the coordinates x and y separately.

Let H be an R-covering of the RT space Z
ms
q , and let C be the set of the

rows of an OCA(N ;ms − R,m, s, v). We show that

G = {((c1, h1), . . . , (cms, hms)) ∈ Z
ms
vq : (c1, . . . , cms) ∈ C, (h1, . . . , hms) ∈ H}

is a R-covering of the RT space Z
ms
vq .

Indeed, for z = ((x1, y1), . . . , (xms, yms)) ∈ Z
ms
vq , let x = (x1, . . . , xms) in Z

ms
v

and y = (y1, . . . , yms) in Z
ms
q . Since H is an R-covering of the RT space Z

ms
q ,

for y ∈ Z
ms
q there exists h = (h1, . . . , hms) ∈ H such that dRT (y, h) ≤ R. Let I

be the ideal generated by supp(y −h) and I ′ be an ideal of the RT poset [m× s]
of size R such that I ⊆ I ′. Then there exists a codeword c = (c1, . . . , cms) in
C such that x and c coincide in all coordinates of the complementary set of I ′

(which is an anti-ideal of size ms − R). Thus supp(x − c) ⊆ I ′.
Let g = ((c1, h1), . . . , (cms, hms)) in G. By construction, z and g coin-

cide in all coordinates of the complementary set of I ′. Thus, dRT (z, g) =
|〈supp(z − g)〉| ≤ |I ′| = R and the proof is complete. �
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Together with [4, Theorem 13] we get the following consequences of
Theorem 3.

Corollary 5. (1) For q < m ≤ 2q and 2 ≤ s ≤ 3, KRT
2q (2m, s, 2ms − 3) ≤

q(OCAN(3,m, s, 2) + CAN(2,m, 2)).
(2) If (t−1)q+1 ≤ m ≤ (t−1)qv, then KRT

qv (m, s,ms−t) ≤ qOCAN(t,m, s, v).

If OCAN(t,m, s, v) = vt, then there exists an ordered orthogonal array
OOA(t,m, s, v). In the following results, ordered orthogonal arrays are used to
obtain upper bounds for covering codes in RT spaces. Item (1) has appeared in
[4, Theorem 30]. Item (2) is a consequence of Theorem 3 and [6, Theorem 3].

Corollary 6. (1) If there is an ordered orthogonal array OOA(ms − R,m, s, v),
then KRT

vq (m, s,R) ≤ vms−RKRT
q (m, s,R).

(2) Let q be a prime power, m ≤ q+1 and s ≤ t. Then, we have KRT
qv (m, s,ms−

t) ≤ qtKRT
v (m, s,ms − t).

(3) Let q be a prime power. For t ≥ 2, we have KRT
(q−1)v(q + 1, t, qt) ≤ (qt −

2)KRT
v (q + 1, t, qt).

In order to get better upper bounds on KRT
vq (m, s,R), we improve the upper

bound on KRT
v (m, s,R) for suitable values of m and R. For this purpose, we

look at a covering code that gives the trivial upper bound for KRT
v (m, s,R) and

modify some of its codewords to reduce the size of the covering code.

Theorem 4. For s ≥ 2,

(1) KRT
v (2, s, s) ≤ vs−2(v2 − 1),

(2) KRT
v (3, s, 2s − 1) ≤ v(vs − 1).

Proof. (1) Let I = {1, . . . , s} ideal of the RT poset [2 × s]. The trivial upper
bound for KRT

v (2, s, s) is vs, and a s-covering of the RT space Z
2s
v of size vs is

C = {c ∈ Z
2s
v : πI(c) = 0 ∈ Z

s
v}.

For each z ∈ Z
s−2
v , let

Cz = {c ∈ C : πJ(c) = z ∈ Z
s−2
v },

where J = {s + 3, . . . , 2s} is an anti-ideal of the RT poset [2 × s]. The following
properties hold:

(a) Cz ∩ Cz′ = ∅ if and only if z �= z′;
(b) |Cz| = v2 for all z ∈ Z

s−2
v ;

(c) Cz is a s-covering of the RT space Z
s+2
v × {z} over the RT poset [2 × m];

(d) C =
⋃

z∈Z
s−2
v

Cz.
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For each z ∈ Z
s−2
v , we construct a new set Az from Cz of size v2 − 1 such that

Az is a s-covering of the RT space Z
s+2
v × {z}.

Let C ′
z = Cz\{(0; 0, 0; z)}. For each c = (0; cs+1, cs+2; z) ∈ C ′

z define

φz(c) =
{

(0; cs+1, cs+2; z) if cs+2 = 0,
(0; cs+1, cs+2; cs+1, cs+2; z) if cs+2 �= 0.

We show that Az = {φz(c) ∈ Z
2s
v : c ∈ C ′

z} is a s-covering of the RT space
Z

s+2
v × {z}. Given x = (x1, . . . , xs;xs+1, xs+2; z) ∈ Z

s+2
v × {z}, we divide the

proof into three cases.

(a) If xs+2 �= 0, then x is covered by (0;xs+1, xs+2;xs+1, xs+2; z);
(b) If xs+1 �= 0 and xs+2 = 0, then x is covered by (0;xs+1, 0; z);
(c) If xs+1 = xs+2 = 0, then we have two subcases:

(i) If xs = 0, then x is covered by (0; a, 0; z), where a �= 0;
(ii) If xs �= 0, then x is covered by (0;xs−1, xs;xs−1, xs; z).

Therefore, the set A =
⋃

z∈Z
s−2
v

Az is a s-covering of the RT space Z
2s
v of size

vs−2(v2 − 1).
(2) Let I = {1, . . . , 2s − 1} ideal of the RT poset [3 × s]. The trivial upper

bound for KRT
v (3, s, 2s − 1) is vs+1, and a (2s − 1)-covering of the RT space

Z
3s
v is

C = {c ∈ Z
3s
v : πI(c) = 0 ∈ Z

2s−1
v }.

For each z ∈ Zv let Cz = {c ∈ C : π2s(c) = z}. The following properties hold:

(a) Cz ∩ Cz′ = ∅ if and only if z �= z′;
(b) |Cz| = vs for all z ∈ Zv;
(c) Cz is a (2s−1)-covering of the RT space Z

2s−1
v ×{z}×Z

s
v over the RT poset

[3 × s];
(d) C =

⋃
z∈Zv

Cz.

For each z ∈ Zv, we construct a new set Az from Cz of size vs − 1 such that
Az is a (2s − 1)-covering of the RT space Z

2s−1
v × {z} × Z

s
v.

Let C ′
z = Cz\{(0 . . . 0; 0 . . . 0z; 0 . . . 0)}. For each c ∈ C ′

z define

φ(c) =
{

c if c3s = 0
(c2s+1, . . . , c3s; cs+1, . . . , c2s; c2s+1, . . . , c3s) if c3s �= 0.

We claim that Az = {φz(c) ∈ Z
3s
v : c ∈ C ′

z} is a (2s − 1)-covering of the RT
space Z

2s−1
v × {z} × Z

s
v. Indeed, given x = (x1, . . . , x2s−1, z;x2s+1, . . . , x3s) ∈

Z
2s−1
v × {z} × Z

s
v, we divide the proof into two cases.

(a) If (x2s+1, . . . , x3s) �= (0 . . . 0), then c ∈ Az such that πJ(c) = (x2s+1, . . . , x3s)
covers x, where J = {2s + 1, . . . , 3s};

(b) If (x2s+1, . . . , x3s) = (0 . . . 0), then we have two subcases:
(i) If xs = 0, then x is covered by (0, . . . , 0; 0, . . . , 0, z; z′, 0, . . . , 0), where

z′ �= 0;
(ii) If xs �= 0, then x is covered by (x1, . . . , xs; 0, . . . , 0, z;x1, . . . , xs).
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Therefore, the set A =
⋃

z∈Zv
Az is a (2s − 1)-covering of the RT space Z

3s
v

of size v(vs − 1). �
Example 3. A 3-covering code of the RT space Z

6
2 (RT poset [2 × 3]) with 23 is

C = C0 ∪ C1, where

C0 = {000000, 000010, 000100, 000110},

C1 = {000001, 000101, 000011, 000111}.

Theorem 4 item (1) improves the upper bound KRT
2 (2, 3, 3) ≤ 8 by using the

3-covering code A = A0 ∪ A1, where A0 = {000100, 001100, 010110}, and A1 =
{001001, 011101, 000011}. Therefore, KRT

2 (2, 3, 3) ≤ 6. �
Corollary 7. Let q be a prime power.

(1) For q + 1 ≤ (t − 1)v, KRT
qv (q + 1, t, qt) ≤ qtvt−2(v2 − 1).

(2) For m ≤ q + 1, KRT
qv (m, s,ms − (s + 1)) ≤ qs+1v(vs − 1).

(3) KRT
(q−1)v(q + 1, t, qt) ≤ (qt − 2)vt−2(v2 − 1).

Proof. (1) Applying [4, Proposition 17] with n = q − 1,

KRT
v (q + 1, t, qt) ≤ KRT

v (2, t, t).

Theorem 4 item (1) yields KRT
v (q + 1, t, qt) ≤ vt−2(v2 − 1). The result follows

by Corollary 6 item (2).
(2) Theorem 3 shows that

KRT
qv (m, s,ms − (s + 1)) ≤ OCAN(s + 1,m, s, q)KRT

v (m, s,ms − (s + 1)).

Since there exists an OOA(s + 1, q + 1, s + 1, q) then there exists an OOA(s +
1,m, s, q) for m ≤ q + 1. Applying Theorem 4 item (2) and [4, Proposition 17]
with n = m − 2,

KRT
v (m, s,ms − (s + 1)) ≤ KRT

v (3, s, 2s − 1) ≤ v(vs − 1).

Therefore, the upper bound desired is attained.
(3) Applying [4, Proposition 17] with n = q − 1,

KRT
v (q + 1, t, qt) ≤ KRT

v (2, t, t).

Theorem 4 item (1) implies that KRT
v (q + 1, t, qt) ≤ vt−2(v2 − 1). Corollary 6

item (3) completes the proof. �
We compare the upper bounds for KRT

qv (q + 1, t, qt). By Theorem 4 item (1),
(qv)t−2((qv)2 − 1) is an upper bound for KRT

qv (q + 1, t, qt). However, Corollary 7
item (1) yields the upper bound qtvt−2(v2 − 1) which improves the one given by
Theorem 4 item (1).
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Abstract. Determining correctness and performance for complex engi-
neered systems necessitates testing the system to determine how its
behaviour is impacted by many factors and interactions among them.
Of particular concern is to determine which settings of the factors (main
effects) impact the behaviour significantly. Detecting arrays for main
effects are test suites that ensure that the impact of each main effect is
witnessed even in the presence of d or fewer other significant main effects.
Separation in detecting arrays dictates the presence of at least a specified
number of such witnesses. A new parameter, corroboration, enables the
fusion of levels while maintaining the presence of witnesses. Detecting
arrays for main effects, having various values for the separation and cor-
roboration, are constructed using error-correcting codes and separating
hash families. The techniques are shown to yield explicit constructions
with few tests for large numbers of factors.

1 Introduction

Combinatorial testing [21,31] addresses the design and analysis of test suites
in order to evaluate correctness (and, more generally, performance) of complex
engineered systems. To set the stage, we introduce some basic definitions. There
are k factors F1, . . . , Fk. Each factor Fi has a set Si = {vi1, . . . , visi

} of si possible
levels (or values or options). A test is an assignment of a level from vi1, . . . , visi

to
Fi, for each 1 ≤ i ≤ k. The execution of a test yields a measurement of a response.
When {i1, . . . , it} ⊆ {1, . . . , k} and σij ∈ Sij , the set {(ij , σij ) : 1 ≤ j ≤ t} is a
t-way interaction. The value of t is the strength of the interaction. A main effect
is a 1-way interaction. A test on k factors covers

(
k
t

)
t-way interactions. A test

suite is a collection of tests. A test suite is typically represented as an N × k
array A = (σi,j) in which σi,j ∈ Sj when 1 ≤ i ≤ N and 1 ≤ j ≤ k. The size
of the test suite is N and its type is (s1, . . . , sk). Tests correspond to rows of A,
and factors correspond to its columns.

When the response of interest can depend on one or more interactions, each
having strength at most t, a test suite must cover each interaction in at least one
row (test). To make this precise, let A = (σi,j) be a test suite of size N and type
(s1, . . . , sk). Let T = {(ij , σij ) : 1 ≤ j ≤ t} be a t-way interaction. Then ρA(T )
denotes the set {r : arij = σij , 1 ≤ j ≤ t} of rows of A in which the interaction
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is covered. A t-way interaction T must have |ρA(T )| ≥ 1 in order to impact the
response. For a set T of interactions, ρA(T ) =

⋃
T∈T ρA(T ).

When used in practical testing applications, as in [1,18,33], further require-
ments arise. First, if we suppose that some set T of interactions are those that
significantly impact the response, yet there is another interaction T �∈ T for
which ρA(T ) ⊆

⋃
S∈T ρA(S), the responses are inadequate to determine whether

or not T impacts the response significantly. This requirement was explored in
[14], and later in [15,16,27]. Secondly, one or more tests may fail to execute cor-
rectly, and yield no response or yield outlier responses. To mitigate this, Seidel
et al. [34] impose stronger ‘separation’ requirements on the test suite.

Extending definitions in [14,16,34], we formally define the test suites with
which we are concerned. Let A be a test suite of size N and type (s1, . . . , sk). Let
It be the set of all t-way interactions for A. Our objective is to identify the set
T ⊆ It of interactions that have significant impact on the response. In so doing,
we assume that at most d interactions impact the response. Without limiting d,
it can happen that no test suite of type (s1, . . . , sk) exists for any value of N [27].

An N ×k array A of type (s1, . . . , sk) is (d, t, δ)-detecting if |ρA(T )\ρA(T )| <
δ ⇔ T ∈ T whenever T ⊆ It, and |T | = d. To record all of the parameters, we
use the notation DAδ(N ; d, t, k, (s1, . . . , sk)). To emphasize that different factors
may have different numbers of levels, this is a mixed detecting array. When
all factors have the same number, v, of levels, the array is uniform and the
notation is simplified to DAδ(N ; d, t, k, v). The parameter δ is the separation of
the detecting array [34], and the definition in [14] is recovered by setting δ = 1.
Rows in ρA(T )\ρA(T ) are witnesses for T that are not masked by interactions in
T . A separation of δ necessitates δ witnesses, ensuring that fewer than δ missed
or incorrect measurements cannot result in an interaction’s impact being lost.

Setting d = 0 in the definition, T = ∅ and ρA(∅) = ∅. Then a (0, t, δ)-
detecting array is an array in which each t-way interaction is covered in at least δ
rows. This leads to a standard class of testing arrays for testing: A covering array
CAδ(N ; t, k, (s1, . . . , sk)) is equivalent to a DAδ(N ; 0, t, k, (s1, . . . , sk)). Again the
simpler notation CAδ(N ; t, k, v) is employed when it is uniform.

In this paper we focus on detecting arrays for main effects. In Sect. 2, we
develop a further parameter, corroboration, for detecting arrays to facilitate the
construction of mixed detecting arrays from uniform ones. In Sect. 3 we briefly
summarize what is known about the construction of detecting arrays. In Sect. 4
we develop constructions of (1, 1)-detecting arrays with specified corroboration
and separation using results on perfect hash families of strength two and higher
index, or (equivalently) using certain error-correcting codes. In Sect. 5 we extend
these constructions to (d, 1)-detecting arrays for d > 1 using a generalization of
perfect hash families, the separating hash families.

2 Fusion and Corroboration

Covering arrays have been much more extensively studied [10,21,31] than have
detecting arrays and their variants; they are usually defined only in the case when
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δ = 1, and in a more direct manner than by exploiting the equivalence with cer-
tain detecting arrays. Often constructions of covering arrays focus on the uniform
cases. In part this is because a CAδ(N ; t, k, (s1, . . . , si−1, si−1, si+1, . . . , sk)) can
be obtained from a CAδ(N ; t, k, (s1, . . . , si−1, si, si+1, . . . , sk)) by making any two
levels of the ith factor identical. This operation is fusion (see, e.g., [11]).

When applied to detecting arrays with δ ≥ 1, however, fusion may reduce the
number of witnesses. Increasing the separation cannot overcome this problem.
Because techniques for uniform covering arrays are better developed than for
mixed ones, generalizations to detecting arrays can be expected to be again
more tractable for uniform cases. As with covering arrays, fusion for detecting
arrays promises to extend uniform constructions to mixed cases.

In order to facilitate this, we propose an additional parameter for detecting
arrays. We begin with a useful characterization. Let A be an N × k array. Let
T = {(ij , σij ) : 1 ≤ j ≤ t} be a t-way interaction for A. Let C = {ci : 1 ≤ i ≤ d}
be a set of d column indices of A with {i1, . . . , it}∩{c1, . . . , cd} = ∅. A set system
SA,T,C is defined on the ground set {(c, f) : c ∈ C, f ∈ Sc} containing the collec-
tion of sets {{(c1, v1), . . . , (cd, vd)} : T ∪ {(c1, v1), . . . , (cd, vd)} is covered in A}.

Lemma 1. An array A is (d, t, δ)-detecting if and only if for every t-way inter-
action T and every set C of d disjoint columns, every subset X of elements of
the set system SA,T,C , whose removal (along with all sets containing an element
of X) leaves fewer than δ sets in SA,T,C , satisfies |X| > d.

Proof. First suppose that for some t-way interaction T = {(ij , σij ) : 1 ≤ j ≤ t}
and some set C = {ci : 1 ≤ i ≤ d} of d disjoint columns, in the set system
SA,T,C there is a set of elements X = {(c1, v1), . . . , (cd, vd)} for which fewer than
δ sets in the set system contain no element of X. Define Ti = {(ij , σij ) : 1 ≤ j ≤
t − 1} ∪ {(ci, vi)}. Set T = {T1, . . . , Td}. Then T �∈ T but |ρA(T ) \ ρA(T )| < δ,
so A is not (d, t, δ)-detecting.

In the other direction, suppose that A is not (d, t, δ)-detecting, and consider
a set T = {T1, . . . , Td} of d t-way interactions and a t-way interaction T for
which T �∈ T but |ρA(T ) \ ρA(T )| < δ. Without loss of generality, there is no
interaction T ′ ∈ T for which T and T ′ share a factor set to different levels in
each (and so, because T �= T ′, T ′ contains a factor not appearing in T ). For each
Ti ∈ T , let ci be a factor in Ti that is not in T ′, and suppose that (ci, vi) ∈ Ti for
1 ≤ i ≤ d. Then the set X = {(ci, vi) : 1 ≤ i ≤ d}, when removed from SA,T,C ,
leaves fewer than δ sets. ��

Lemma 1 implies that a (d, t, δ)-detecting array must cover each t-way inter-
action at least d + δ times; indeed when d ≥ 1, for each t-way interaction T
and every column c not appearing in T , interaction T must be covered in at
least d + 1 rows containing distinct levels in column c. In particular, a nec-
essary condition for a DAδ(N ; d, t, k, (s1, . . . , si−1, si−1, si1 , . . . , sk))) to exist is
that d < min(si : 1 ≤ i ≤ k) (see also [14]).

These considerations lead to the parameter of interest. For array A, with
t-way interaction T and set C of d disjoint columns, suppose that in SA,T,C , for
each column in C one performs fewer than s fusions of elements within those
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arising from that column. Further suppose that, no matter how these fusions
are done, the resulting set system has the property that every subset X of
elements of the set system, whose removal (along with all sets containing an
element of X) leaves fewer than δ sets, satisfies |X| ≥ d + 1. Then (T,C) has
corroboration s in A. When every choice of (T,C) has corroboration (at least) s
in a DAδ(N ; d, t, k, (s1, . . . , sk)), it has corroboration s. We extend the notation
as DAδ(N ; d, t, k, (s1, . . . , sk), s) to include corroboration s as a parameter.

3 Covering Arrays and Sperner Partition Systems

As observed in [14], one method to construct detecting arrays is to use covering
arrays of higher strength. The following records consequences for separation and
corroboration.

Lemma 2. A CAλ(N ; t, k, v) is

1. a DAδ(N ; d, t − d, k, v, 1) with δ = λ(v − d)vd−1, and
2. a DAδ(N ; d, t − d, k, v, v − d) with δ = λ(d + 1)d−1

whenever 1 ≤ d < min(t, v).

Proof. Let A be a CAλ(N ; t, k, v). Let d satisfy 1 ≤ d < min(t, v). Let T be a
(t−d)-way interaction, and let C be a set of d columns not appearing in T . Using
the parameters of the covering array, SA,T,C contains at least λvd sets, and each
element appears in at least λvd−1 of them. Suppose that d elements of SA,T,C

are removed, and further suppose that the numbers of elements deleted for the d
factors are e1, . . . , ed (so that d =

∑d
i=1 ei). Then the number of remaining sets is

λ
∏d

i=1(v−ei), which is minimized at δ = λ(v−d)vd−1. This establishes the first
statement. For the second, performing at most v−d−1 fusions within each factor
of SA,T,C and then deleting at most d elements leaves at least δ = λ(d + 1)d−1

sets by a similar argument. ��

The effective construction of detecting arrays is well motivated by practi-
cal testing applications, in which the need for higher separation to mitigate
the effects of outlier responses, and higher corroboration to support fusion of
levels, arise. Despite this, other than the construction from covering arrays of
higher strength, few constructions are available. In [43] uniform (1, t)-detecting
arrays with separation 1, corroboration 1, and few factors are studied. This was
extended in [36,38] to (d, t)-detecting arrays, and further to mixed detecting
arrays in [37]. Each of these focuses on the determination of a lower bound on
the number of rows in terms of d, t, and v, and the determination of cases in
which this bound can be met. For d + t ≥ 2, however, the number of rows must
grow at least logarithmically in k, because every two columns must be distinct.
Hence the study of arrays meeting bounds that are independent of k necessarily
considers only small values of k. In addition, none of these addresses separation
or corroboration.
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For larger values of k, algorithmic methods are developed in [34]. The algo-
rithms include randomized methods based on the Stein-Lovász-Johnson frame-
work [20,25,40], and derandomized algorithms using conditional expectations
(as in [7,8]); randomized methods based on the Lovász Local Lemma [3,19]
and derandomizations using Moser-Tardos resampling [30] (as in [12]). Although
these methods produce (1, t)-mixed detecting arrays for a variety of separation
values, they have not been applied for d > 1 or to increase the corroboration.
Extensions to larger d for locating arrays are considered in [23].

When t = 1, one is considering detecting arrays for main effects. A Sperner
family is a family of subsets of some ground set such that no set in the family is
a subset of any other. Meagher et al. [28] introduced Sperner partition systems
as a natural variant of Sperner families. An (n, v)-Sperner partition system is a
collection of partitions of some n-set, each into v nonempty classes, such that no
class of any partition is a subset of a class of any other. In [24,28], the largest
number of classes in an (n, v)-Sperner partition system is determined exactly
for infinitely many values of n for each v. In [9], lower and upper bounds that
match asymptotically are established for all n and each v. As noted there, given
an (n, v)-Sperner partition system with k partitions, if we number the elements
using {1, . . . , n} and number the sets in each partition with {1, . . . , v}, we can
form an n×k array in which cell (r, c) contains the set number to which element
r belongs in partition c. This array is a DA1(n; 1, 1, k, v, 1), and indeed every
such DA arises in this way. Even when d = t = s = δ = 1, the largest value of k
as a function of n is not known precisely. Therefore it is natural to seek useful
bounds and effective algorithms for larger values of the parameters.

4 (1, 1, δ)-Detecting Arrays

In this section, we consider the case when d = t = 1. As noted, Sperner parti-
tion systems address the existence of such detecting arrays when the separation
δ = 1. A naive way to increase the separation simply forms δ copies of each
row in a DA1(N ; 1, 1, k, v, 1) to form a DAδ(δN ; 1, 1, k, v, 1). This leaves the cor-
roboration unchanged; in addition, it employs more rows than are needed to
obtain the increase in separation. In order to treat larger values of separation
and corroboration, we employ further combinatorial arrays.

An (N ; k, v)-hash family is an N × k array on v symbols. A perfect hash
family PHFλ(N ; k, v, t) is an (N ; k, v)-hash family, in which in every N × t sub-
array, at least λ rows each consist of distinct symbols. Mehlhorn [29] introduced
perfect hash families, and they have subsequently found many applications in
combinatorial constructions [41].

Colbourn and Torres-Jiménez [17] relax the requirement that each row have
the same number of symbols. An N × k array is a heterogeneous hash family,
or HHF(N ; k, (v1, . . . , vN )), when the ith row contains (at most) vi symbols for
1 ≤ i ≤ N . The definition for PHF extends naturally to perfect heterogeneous
hash families; we use the notation PHHFλ(N ; k, (v1, . . . , vN ), t).

Returning to detecting arrays, we first consider larger separation.
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Lemma 3. Whenever a PHFδ(N ; k, v, 2) exists, a DAδ(v(N + δ); 1, 1, k, v, 1)
exists.

Proof. Let A be a PHFδ(N ; k, v, 2) on symbols {0, . . . , v−1}. Let Ai be the array
obtained from A by adding i modulo v to each entry of A. Let B be the δv × k
array consisting of δ rows containing only symbol i, for each i ∈ {0, . . . , v − 1}.
Vertically juxtapose A0, . . . , Av−1, and B to form a v(N + δ) × k array D. To
verify that D is a DAδ(v(N + δ); 1, 1, k, v, 1), consider a main effect (c, σ) and
let c′ �= c be a column. Among the rows of D covering (c, σ), we find σ exactly
δ times in the rows of B (and perhaps among rows of one or more of the {Ai}).
Further, each of the δ rows in the PHF having different symbols in columns c
and c′ yield a row in one of the {Ai} in which (c, σ) appears but c′ contains
a symbol different from σ. Hence no symbol in c′ can cover all but δ − 1 rows
containing (c, σ). ��

When does a PHFδ(N ; k, v, 2) exist? Treating columns as codewords of length
N on a v-ary alphabet, two different codewords are at Hamming distance at least
δ. Hence such a PHFδ(N ; k, v, 2) is exactly a v-ary code of length N and minimum
distance δ, having k codewords. (See [26] for definitions in coding theory.) When
δ = 1, the set of all vN codewords provides the largest number of codewords,
while for δ = 2, the set of vN−1 codewords having sum 0 modulo v provides the
largest code. For δ ≥ 3, however, the existence question for such codes is far
from settled, particularly when v > 2 (see [22], for example). As applied here,
this fruitful connection with codes permits increase in the separation but not
the corroboration. We address this next.

Construction 1 (h-inflation). Let v be a prime power and let 1 ≤ h ≤ v. Let
{e0, . . . , ev−1} be the elements of Fv. Let A be an (N ; k, v + 1)-hash family on

{e0, . . . , ev−1} ∪ {∞}. Define 2 × 1 column vectors Ch containing c∞ =
(

1
0

)

and cx =
(

x
1

)
for x ∈ Fv. Form a set of rh row vectors Rh = (r1, . . . , rrh

) so

that for every ca ∈ Ch, each da = (rica : 1 ≤ i ≤ rh) contains each entry of Fv

at least h times. Form B by replacing each element a in array A by the column
vector dT

a . Then B is a (rhN ; k, v)-hash family, an h-inflation of A.

In Construction 1, each column vector da contains each element of the field
at least h times. Moreover, if a �= b, the h coordinates in which da contains a
specific element of the field contain h different elements in these coordinates in
da. Both facts can be easily checked.

Lemma 4. Whenever v is a prime power, a PHFδ(N ; k, v + 1, 2) exists, and
1 ≤ s ≤ v − 1, a DAδs((rs+1N ; 1, 1, k, v, s) exists.

Proof. Using Construction 1 and the subsequent facts, any (s + 1)-inflation, B,
of a PHFδ(N ; k, v + 1, 2), A, is a DAδs((rs+1N ; 1, 1, k, v, s). ��

Given a PHFδ(N ; k, v+1, 2), Lemma 4 produces a DAδ(v−1)(v2N ; 1, 1, k, v, v−
1) that is, in fact, a covering array CAδ(Nv; 2, k, v). Although this does not lead
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to the largest number of columns in a covering array with these parameters
when δ = 1 (compare with [13]), it is competitive and applies for all δ. More
importantly, one can make detecting arrays for a variety of separation and cor-
roboration values.

To illustrate this, we adapted the ‘replace-one-column–random extension’
randomized algorithm from [12] in order to construct PHFs of index δ. In the
interests of space, we do not describe the method here, noting only that it is
an heuristic technique that is not expected to produce optimal sizes. In Table 1
we report the largest number of columns found for a PHFδ(N ; k, 6, 2) for various
values of N and 1 ≤ δ ≤ 4. Recall that each is equivalent to a 6-ary code of
length N and minimum distance δ with k codewords.

Table 1. Number k of columns found for a PHFδ(N ; k, 6, 2)

δ ↓ N → 1 2 3 4 5 6 7 8 9 10

1 6 36 216 1296 7776 46656

2 6 36 216 1296 7776 46656

3 6 33 156 704 3156 14007

4 6 30 116 429 1776 7406 26374

Suppose that we are concerned with a large (but fixed) number of factors,
such as 10000. Together with the Lemma 4, the results in Table 1 imply, for
example, the existence of the following:

DA1(84; 1, 1, 10000, 5, 1) DA2(114; 1, 1, 10000, 5, 2) CA1(150; 2, 10000, 5)
DA2(98; 1, 1, 10000, 5, 1) DA4(133; 1, 1, 10000, 5, 2) CA2(175; 2, 10000, 5)
DA3(112; 1, 1, 10000, 5, 1) DA6(152; 1, 1, 10000, 5, 2) CA3(200; 2, 10000, 5)
DA4(140; 1, 1, 10000, 5, 1) DA8(190; 1, 1, 10000, 5, 2) CA4(250; 2, 10000, 5)

These examples demonstrate not only that increases in both separation and
corroboration can be accommodated with a reasonable increase in the number
of rows, but also that detecting arrays for main effects can be constructed for
very large numbers of factors.

5 (d, 1, δ)-Detecting Arrays

Next we extend these methods to treat higher values of d. To do so, we employ
a generalization of PHFs. An (N ; k, v, {w1, w2, . . . , wt})-separating hash family
of index λ is an (N ; k, v)-hash family A that satisfies the property: For any
C1, C2, . . . , Ct ⊆ {1, 2, . . . , k} such that |C1| = w1, |C2| = w2, . . . , |Ct| = wt,
and Ci ∩ Cj = ∅ for every i �= j, whenever c ∈ Ci, c′ ∈ Cj , and i �= j, different
symbols appear in columns c and c′ in each of at least λ rows. The notation
SHFλ(N ; k, v, {w1, w2, . . . , wt}) is used. See, for example, [2,32,39]; and see [4]
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for the similar notion of ‘partially hashing’. When heterogeneous, we use the
notation SHHFλ(N ; k, (v1, . . . , vN ), {w1, w2, . . . , wt}). In the particular case of
SHF1(N ; k, v, {1, d}), these are frameproof codes (see, for example, [39,42]).

Theorem 1. Let v be a prime power. When an SHFδ(N ; k, v + 1, {1, d}) exists,
and 1 ≤ s ≤ v − d, a DAδs(rs+dN ; d, 1, k, v, 1) and a DAδ(rs+dN ; d, 1, k, v, �(s +
d − 1)/d�) exist.

Proof. Using Construction 1, let B be an (s + d)-inflation of an SHFδ(N ; k, v +
1, {1, d}), A. Then B is a rs+dN × k array with entries from Fv. Now consider a
set of distinct columns {c, c1, . . . , cd} of A. Let R be the set of (at least δ) rows of
A in which the entry in column c does not appear in any of columns {c1, . . . , cd}.
For each σ ∈ Fv, the inflation of a row in R yields at least s + d rows in which
column c contains σ and each of {c1, . . . , cd} contains d + s distinct symbols.
Indeed, setting T = {(c, σ)} and C = {c1, . . . , cd}, the inflation of each row in
R places d + s mutually disjoint sets in SB,T,C . Consequently, any removal of d
elements from SB,T,C can remove at most d of the s + d sets arising from a row
in R. Hence at least δs must remain, and B is a detecting array with separation
(at least) δs. Identification of fewer than �(s + d − 1)/d� levels for each factor of
SB,T,C leaves at least δ sets, giving the second DA. ��

In order to apply Theorem 1, we require {1, d}-separating hash families.
Their existence is well studied for δ = 1 (see [35] and references therein), but
they appear not to have been studied when δ > 1. When δ = 1, Blackburn [6]
establishes that an SHF1(N ; k, v, {1, d}) can exist only when k ≤ dv�N

d � − d.
Stinson et al. [42] use an expurgation technique to establish lower bounds on k
for which an SHF1(N ; k, v, {1, d}) exists. One consequence of their results is that

an SHF1(N ; k, v, {1, 2}) exists for k =
⌈

1
2

(
v2

2v−1

)N
2
⌉
.

Let us consider a concrete set of parameters. Suppose that we are to construct
an SHF1(13; k, 6, {1, 2}). The bounds ensure that the largest value of k for which
one exists satisfies 1112 ≤ k ≤ 559870. A straightforward computation yields
such an SHF with k = 8014. Naturally one hopes to improve on both the lower
and upper bounds, and to generalize them to cases with separation more than
δ = 1. Error-correcting codes are not equivalent to the SHF s required when
d > 1, but they again provide constructions; we leave this discussion for later
work. Nevertheless, there appears to be a need to resort to computation as well.

Table 2 gives the largest values of k that we found for an SHFδ(N ; k, 6, {1, 2})
for 1 ≤ δ ≤ 4 and various values of N . Each yields a DAδ(15N ; 2, 1, k, 5, 1) (and
other detecting arrays, from Theorem 1).

The entries in Table 2 have again been determined using a variant of the
‘replace-one-column–random-extension’ algorithm developed in [12]. This heuris-
tic method is not expected in general to yield the largest possible number of
columns (and the lower and upper bounds on such largest numbers are currently
far apart). When the number of rows is small, however, we can make some com-
parisons, and we do this next. First we establish an upper bound on k when
N ≤ d + δ − 1.
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Table 2. Number k of columns found for an SHFδ(N ; k, 6, {1, 2})

δ ↓ N → 1 2 3 4 5 6 7 8 9 10 11 12

1 6 10 36 51 154 201 373 634 1003 1751 2825 4578

2 6 7 34 39 142 152 262 342 529 805 1257

3 6 6 30 32 72 80 168 195 328 486

4 6 6 27 27 56 58 125 134 231

δ ↓ N → 13 14 15 16 17 18 19 20 21 22 23 24

1 8068 10000

2 2041 3163 4920 8431 10000

3 716 1086 1695 2543 3891 6290 9878 10000

4 311 466 696 1005 1540 2310 3387 5181 8242 10000

Lemma 5. Let d ≥ 2, δ ≥ 1, and α ≥ 1. Then

k ≤ max

(

v1, . . . , vd+δ−α,

⌊∑d+δ−α
i=1 (vi − 1)

δ

⌋)

whenever an SHHFδ(d + δ − α; k, (v1, . . . , vd+δ−α), {1, d}) exists.

Proof. Let A be an SHHFδ(d + δ − 1; k, (v1, . . . , vd+δ−α), {1, d}). An entry in A
is a private entry if it contains the only occurrence of a symbol in its row. If
some row contains only private entries, then k ≤ max(v1, . . . , vd+δ−α). If some
column c were to contain d + 1 − α entries that are not private, for each of
d+1−α such rows choose a column that contains the same symbol as in column
c. Let X be the set of at most d + 1 − α columns so chosen. There could be
at most δ − 1 rows separating {c} from X, which cannot arise. Consequently
every column of A contains at least δ private entries, and at most d − α that
are not private. Row i employs vi symbols and hence contains at least k − vi +1
entries that are not private. It follows that (d−α)k ≥

∑d+δ−α
i=1 (k−vi +1). Hence

∑d+δ−α
i=1 (vi − 1) ≥ δk and the bound follows. ��

When δ = 1 and N is larger, Blackburn [6] partitions the N rows into d
classes; then when the largest class has r rows in it, he amalgamates all rows
in the class into a single row on vr symbols. He employs a version of Lemma 5,
using δ = 1 and not exploiting heterogeneity, to obtain the upper bound on k
already mentioned. Our heterogeneous bound underlies an improvement in the
upper bound in some situations. In particular, in the example given before, an
SHF1(13; k, 6, {1, 2}) must have k ≤ 326590. Unfortunately, although the amal-
gamation strategy cannot reduce a separation δ ≥ 2 to zero, it can nonetheless
reduce it to 1. Hence Lemma 5 does not lead to an effective upper bound on k
as a function of N when δ > 1. Despite this, Lemma 5 implies that the upper
bounds on k match the lower bounds found computationally for the entries in
Table 2 when N = 2 + δ − 1, showing their optimality.
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Proceeding to the next diagonal, when N = d + δ, we employ a general
observation: Whenever there exists an SHFδ+1(N ; k, v, {1, d}), one can delete any
of the N rows to produce an SHFδ(N − 1; k, v, {1, d}). An elementary argument
shows that k ≤ v2 in an SHF1(d + 1; k, v, {1, d}) when d ≤ v, and hence this
upper bound on k extends to SHFδ(d + δ; k, v, {1, d}). Equality is met if and
only if there exist d + δ − 2 mutually orthogonal latin squares of side v (via
their equivalence with “(d + δ)-nets”, see [5]); we omit the proof here. The non-
existence of two orthogonal latin squares of side 6 explains in part the entries
on this diagonal in Table 2.

For few rows, these observations indicate that the SHF s found in Table 2 are
optimal, or nearly so. We do not anticipate that the numbers of columns given
are optimal for larger numbers of rows, but they provide explicit solutions that
are better than known general lower bounds, and often substantially better.

6 Concluding Remarks

Certain separating hash families, the frameproof codes, can be used to pro-
duce detecting arrays for main effects supporting larger separation (to cope with
outlier and missing test results) and corroboration (to permit fusion of some
levels). Although such SHFs have been extensively researched for index one, the
generalization to larger indices is not well studied. Because we require explicit
presentations of detecting arrays for testing applications, we examine construc-
tions for SHFs for small indices, and demonstrate that a randomized algorithm
can be used to provide useful detecting arrays.
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19. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some
related questions. In: Infinite and Finite Sets, pp. 609–627. North-Holland, Ams-
terdam (1975)

20. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

21. Kuhn, D.R., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. CRC
Press, Boca Raton (2013)
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Abstract. We extend the classical characterization (a.k.a. Medvedev
theorem) of any regular language as the homomorphic image of a local
language over an alphabet of cardinality depending on the size of the
language recognizer. We allow strictly locally testable (slt) languages of
degree greater than two, and instead of a homomorphism, we use a ratio-
nal function of the local type. By encoding the automaton computations
using comma-free codes, we prove that any regular language is the image
computed by a length-preserving local function, which is defined on an
alphabet that extends the terminal alphabet by just one additional let-
ter. A binary alphabet suffices if the local function is not required to
preserve the input length, or if the regular language has polynomial den-
sity. If, instead of a local function, a local relation is allowed, a binary
input alphabet suffices for any regular language. From this, a new simpler
proof is obtained of the already known extension of Medvedev theorem
stating that any regular language is the homomorphic image of an slt
language over an alphabet of double size.

1 Introduction

The family of regular languages has different characterizations using regular
expressions, logical formulas or finite automata (FA). In the latter approach the
more abstract formulation, often named Medvedev theorem [6,8], uses a local
language (i.e., a strictly locally testable (slt) [5] language of testability degree
k = 2) and a letter-to-letter homomorphism: every regular language R ⊆ Σ∗

is the homomorphic image of a local language, called the source, over another
alphabet Λ; the alphabetic ratio |Λ|

|Σ| is in the order of the square of the number
of FA states. Continuing a previous investigation [3] motivated by the attractive
properties of slt encoding, we address the following question: how small can
the source alphabet, or, better, the alphabetic ratio, be? We recall the answer
provided by the generalized Medvedev theorem [3]: any regular language is the
homomorphic image of a k-slt language over an alphabet Λ of cardinality 2|Σ| –
but in general not less – where k is in the order of the logarithm of the FA size.
Thus the minimal alphabetic ratio is independent from the FA size.
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The present study concerns new possibilities of reducing the source alphabet
size, while generalizing Medvedev theorem in a different direction: the homo-
morphism is replaced by a rational function [1] (also known as transduction) of
the local type [9]. Loosely speaking, a local function defines a mapping from a
source language L ⊆ Λ∗ to a target language R ⊆ Σ∗ by means of a partial local
mapping from words of fixed length k ≥ 1, over Λ, to letters of Σ: parameter
k is called the degree of locality of the function. To the best of our knowledge,
the approach to regular language characterization using local rational functions
instead of homomorphisms, has never been considered before, in this context.

Since a homomorphism is a function of locality degree one, the main question
we address is whether every regular language is the image of a local function,
defined on a source alphabet of cardinality smaller that 2|Σ|; the latter, as said,
is the minimum needed for a characterization using homomorphism.

Exploiting the properties of comma-free codes [2] to encode the computations
of an FA, we obtain a series of results. First, the main question above bifurcates
depending on the local function being length-preserving or not. If the local func-
tion is allowed to be length-decreasing, we show that every regular language is
the target of a local function defined on a binary alphabet. Second, assuming
that the local function preserves the input length up to a fixed constant value,
we prove that the source alphabet of size |Σ| + 1 suffices to characterize any
regular language using a local function. Moreover, for the subfamily of regular
languages having polynomial density, we show that a binary source alphabet
permits to define every language using a local length-preserving function.

In a further generalization, the second part of the paper moves from a local
function to a local relations, i.e., a set of pairs of source and target words. Again,
we assume the relation to be length-preserving, and we prove that the source
alphabet can be taken to be binary, independently of the complexity of the target
regular language. At last, the latter results permits to obtain a new, simpler proof
of the already mentioned homomorphic characterization theorem in [3].

It is noteworthy that although the theorems differ with respect to their use of
local functions/relations and on the length-preserving feature, all the proofs have
a common structure and rely on a formal property of comma-free codes when they
are mapped by a morphism and a local function/relation. Stating such property
as a preliminary lemma permitted considerable saving in the following proofs.

Altogether, a rather complete picture results about the minimum alphabet
size needed to characterize regular languages by means of local functions (includ-
ing homomorphism as special case) and relations.

Paper Organization. Section 2 lists the basic definitions for slt languages and
rational local functions/relations; it also includes the definition and the number
of comma-free codes, and states and proves the preliminary lemma mentioned
above. Section 3 defines the local function that encode the labelled paths of an
FA, proves the results for length-decreasing and then for length-preserving func-
tions, and finishes with the case of languages having polynomial density. Section 4
presents the characterization of regular languages based on local relations,
and the new proof of the homomorphic characterization result in [3]. Section 5
summarizes the main results.
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2 Preliminaries

For brevity, we omit the basic classical definitions for language and automata
theory and just list our notations. The empty word is denoted ε. The Greek
upper-case letters Γ,Δ,Θ,Λ and Σ denote finite terminal alphabets. For clarity,
when the alphabet elements are more complex than single letters, e.g., when a
finite set of words is used as alphabet, we may also embrace the alphabet name
and its elements between “〈” and “〉”. For a word x, |x| denotes the length of
x. The i-th letter of x is x(i), 1 ≤ i ≤ |x|, i.e., x = x(1)x(2) . . . x(|x|). For any
alphabet, Σ≤k stands for

⋃
1≤i≤k Σi. Let # be a new character not present in

the alphabets, to be used as word delimiter to shorten some definitions, but not
to be counted as true input symbol.

A homomorphism ξ : Λ∗ → Σ∗ is called letter-to-letter if for every b ∈ Λ,
ξ(b) is in Σ.

A finite automaton (FA) A is defined by a 5-tuple (Σ,Q,→, I, F ) where Q
is the set of states, → the state-transition relation (or graph) →⊆ Q × Σ × Q;
I and F are resp. the subsets of Q comprising the initial and final states. If
(q, a, q′) ∈ →, we write q

a→ q′. The transitive closure of → is defined as usual,
e.g., we also write q

x→ q′ with x ∈ Σ+ with obvious meaning, and call it a
path, with an abuse of language (for a nondeterministic FA, q

x→ q′ may actually
correspond to more than one path in the transition graph). We denote the label
x of the path α = q

x→ q′ by lab(α). The starting and ending states are resp.
denoted by in(α) = q and out(α) = q′. If q ∈ I and q′ ∈ F , the path is called
accepting.

Strictly Locally Testable Language Family. There are different equivalent defini-
tions of the family of strictly locally testable (slt) languages [4,5]; without loss of
generality, the following definition is based on bordered words and disregards for
simplicity a finite number of short words that may be present in the language.

The following short notation is useful: given an alphabet Λ and for all k ≥ 2,
let

Λk
# = #Λk−1 ∪ Λk ∪ Λk−1#.

For all words x, |x| ≥ k, let Fk(x) ⊆ Λk
# be the set of factors of length k present

in #x#. The definition of Fk is extended to languages as usual.

Definition 1 (Strict local testability). A language L ⊆ Λ∗ is k-strictly
locally testable (k-slt), if there exist a set Mk ⊆ Λk

# such that, for every word
x ∈ Λ∗, x is in L if, and only if, Fk(x) ⊆ Mk. Then, we write L = L(Mk). A
language is slt if it is k-slt for some value k, which is called the testability degree.
A forbidden factor of Mk is a word in Λk

# − Mk.

The degree k = 2 yields the family of local languages. The k-slt languages form
an infinite hierarchy under inclusion, ordered by k.
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Local Relations and Functions. Let Λ and Σ be finite alphabets, called the source
and target alphabet, respectively. A rational relation (also called a transduction)
[1,8,9] over Λ and Σ is a rational (i.e., regular) subset r ⊆ Λ+ × Σ∗. The
image of a word x ∈ Λ+ is the set of words y ∈ Σ∗ such that (x, y) ∈ r. The
source and target languages of a rational relation are respectively defined as
{x ∈ Λ+ | ∃y ∈ Σ∗ : (x, y) ∈ r} and as {y ∈ Σ+ | ∃x ∈ Λ+ : (x, y) ∈ r}.

A rational relation r is length-preserving if, for all pair of related words, the
length of the words differ by at most a constant value, i.e., there exists m ≥ 0
such that for all (x, y) ∈ r, abs(|x| − |y|) ≤ m.

Let r be a rational relation such that, for all x ∈ Λ∗, |{y ∈ Σ+ | (x, y) ∈ r}| ≤
1. Then the mapping f : Λ∗ → Σ∗ defined by f(x) = y is a (partial) function.

Next, we focus on the rational relations/functions called local1 [9], where
there exists k > 0 such that the image of each word x ∈ Λ+ only depends on
its factors of length k; such factors may be visualized as the contents of window
of width k that slides from left to right on the source word. More precisely, for
every word w ∈ Λ∗ ∪ #Λ∗ ∪ Λ∗# ∪ #Λ∗#, with |w| ≥ k, we define the scan [9],
denoted by Φk(w), as the sequence:

Φk(w) = 〈w(1) . . . w(k)〉, 〈w(2) . . . w(k + 1)〉, . . . , 〈w(|w| − k + 1) . . . w(|w|)〉.
Clearly, a scan Φk(w) can be viewed as a word over the “alphabet” Λk

#, that we
denote 〈Λk

#〉 to prevent confusion. Such alphabet comprises all k-tuples in #Λk−1

∪ Λk ∪ Λk−1#. For instance, Φ3(#abbab#) is the word 〈#ab〉〈abb〉
〈bba〉〈bab〉〈ab#〉.
Definition 2 (local function/relation). A (partial) function f : Λ∗ → Σ∗ is
local of degree k, k ≥ 1, if there exist a finite set T ⊆ 〈Λk

#〉, and a homomorphism
ν : T ∗ → Σ∗, called associated, such that f(x) = ν (Φk(#x#)).

A local relation r ⊆ Λ∗×Σ∗ of degree k is similarly defined, using a finite sub-
stitution σ : T ∗ → 2Σ∗

instead of a homomorphism, as: r = {(x, σ(Φk(#x#)) )}.
A function (a relation) is called local if it is local of degree k for some k ≥ 1.

It is obvious that the source language of a local function/relation is a k-slt
language, defined by the finite set T of factors.

Comma-Free Codes. A finite set X ⊂ Λ+ is a code [2] if every word in Λ+ has at
most one factorization in words (also known as codewords) of X, more precisely:
for any u1u2 . . . um and v1v2 . . . vn in X, where the u and v are codewords,
the identity u1u2 . . . um = v1v2 . . . vn holds only if m = n and ui = vi for
1 ≤ i ≤ n. We use a code X to represent a finite alphabet Γ by means of a
one-to-one homomorphism, denoted by � �X : Γ+ → Λ+, called encoding, such
that �α�X ∈ X for every α ∈ Γ .

Let n ≥ 1. A set X ⊂ Λn is a comma-free code, if, intuitively, no codeword
overlaps the concatenation of two codewords: more precisely, for any t, u, v, w ∈
Λ∗, if tu, uv, vw are in X, then u = w = ε, or t = v = ε.
1 Unfortunately, the adjective “local”, for slt languages means of testability degree

two, whereas for the locality degree of functions, it means any integer value.
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Number of Words of Comma-Free Code. We need the following result (see [7]
and its references) on the number of codewords in a comma-free code of length
k over an alphabet with cardinality |Λ| = n. Let 
k(n) = 1

k

∑
μ(d)nk/d, where

the summation is extended over all divisors d of k, and μ is the Möbius function
defined by

μ(d) =

⎧
⎨

⎩

1 if d = 1
0 if d has any square factor

(−1)r if d = p1 p2 . . . pr where p1 p2 . . . pr are distinct primes.

Proposition 1. For every alphabet with n letters and for every odd integer k ≥
1 there is a comma-free code of length k with 
k(n) words.

The definition of the Möbius function μ is such that if k is a prime number the
summation in the formula is just equal to nk − n, i.e., for k prime:


k(n) =
nk − n

k
. (1)

Comma-Free Codes and Local Functions/Relations. The next lemma will be
repeatedly invoked in later proofs.

Lemma 1. Let Λ, Γ and Σ be finite alphabets and X ⊂ Λk be a comma-free
code of length k, for some k > 1, such that |X| = |Γ |. Let L ⊆ Γ+ be the 2-slt
language L(M2) defined by a set M2 ⊂ Γ 2

#.

1. The encoding of L by means of code X, i.e., the language �L�X , is a 2k-slt
language included in (Λk)∗.

2. Given a homomorphism π : Γ ∗ → Σ∗, the language π(L) is the target lan-
guage of a local function f : Λ∗ → Σ∗ of degree 2k, having �L�X as source
language.

3. Given a finite substitution σ : Γ ∗ → 2Σ∗
, the language σ(L) is the target of a

local relation r ⊆ Λ∗ × Σ∗ of degree 2k, having �L�X as source language.

Proof. We first claim that XX+ is a (2k)-slt language. Let F2k(XX+) be the
set of the factors of length 2k of #XX+#, hence it is obvious that XX+ ⊆
L(F2k(XX+)). We prove the converse inclusion by contradiction. Let z ∈ Λ+

be such that F2(z) ⊆ F2k(XX+) but z �∈ XX+. Since every word in F2k(XX+)
must have a code x ∈ X has a factor, then for z not to be in L(F2k(XX+)), the
set F2k(z) must include a word of the form xy ∈ Λ2k, with x ∈ X, y �∈ X, y ∈
Λk, or a word of the form xy#, with x ∈ X, y ∈ Λ<n. We only consider the
former case, since the latter is analogous. Since xy ∈ F2k(XX+), there is a word
p ∈ XX+ including xy as a factor of length 2k.

Since p ∈ XX+, p must be of the form X∗txyΛ+, with t �= ε (otherwise
y ∈ X), |t| < k, and there exist u, v ∈ Λ+ such that uv = x ∈ X and tu ∈ X;
therefore, p has the form X∗tuvwX∗, with w being a non empty prefix of y and
such that also vw ∈ X. By definition of comma-free code, since the three words
tu, uv and vw are in X, either t = v = ε, or u = w = ε, a contradiction with the
assumption that all those words are in Λ+.
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We need a few definitions. Let Ψ2k ⊂ Λ2k
# be the set of forbidden factors of

M2 when encoded with X, i.e., the set:

Ψ2k = {#�α�XΛk−1 | α ∈ Γ,#α /∈ M2} ∪ {�αβ�X | α, β ∈ Γ, αβ /∈ M2}∪
{Λk−1�β�X# | β ∈ Γ, β# /∈ M2}.

(2)

To define language �L�X we use the following set which avoids the forbidden
factors:

M2k = F2k(XX+) − Ψ2k. (3)

Clearly, the inclusion L(M2k) ⊆ X+ holds since M2k ⊆ F2k(XX+).

Part (1). We claim that L(M2k) is exactly the language �L�X , i.e., for any
x ∈ Λ+, x ∈ �L�X if, and only if, F2k(�x�X) ⊆ M2k.

We prove L(M2k) ⊆ �L�X . Let x ∈ L(M2k) therefore F2k(x) ⊆ M2k and, by
contradiction, let x /∈ �L�X . Since x ∈ XX+ and �L�X ⊆ X+, x must contain a
factor of one of the forbidden forms (2) in Ψ2k, a contradiction.

We prove �L�X ⊆ L(M2k). Let x ∈ �L�X ; it is enough to show that F2k(x) ⊆
M2k. By contradiction, assume that there is w ∈ F2k(x), with w /∈ M2k. Since
w ∈ F2k(XX+), it must be w /∈ Ψ2k. Therefore, w can only be of the form
y�α�Xz, with yz ∈ Λk, for some α ∈ Γ , with both y, z �= ε, otherwise x could
not be the comma-free encoding of a word of L while having a factor not in Ψ2k.
However, since x ∈ X+, there exist β, γ such that w′ = �γ�X�α�X�β�X is a factor
of x, with y a suffix of γ and z a prefix of β. If at least one of �γ�X�α�X , �α�X�β�X

is in Ψ2k, then x /∈ �L�X , a contradiction. If both �γ�X�α�X , �α�X�β�X /∈ Ψ2k,
then by definition of F2k(XX+) it is necessary that y�α�Xz ∈ M2k, also a
contradiction.

Part (2). Define a homomorphism ν′ : 〈Λ2k
# 〉∗ → Σ∗ for every z ∈ 〈Λ2k

# 〉, by
means of the following cases, for all u ∈ Λ+:

H1 : if z has the form 〈#u〉, let ν′(z) = ε
H2 : if z has the form 〈�α�X �β�X〉, for some α, β ∈ Γ, let ν′(z) = π(α)
H3 : if z has the form 〈u〉, with u �= 〈�α�X �β�X∀α, β ∈ Γ, let ν′(z) = ε
H4 : if z has the form 〈u�α�X#〉, let ν′(z) = π(α).

(4)

Loosely speaking, the image is a non-empty word in two cases: H2, when the
“sliding window” contains two codewords, and H4, when the window ends with
a codeword followed by #.

The local function f ′ : Λ∗ → Σ∗, defined (as in Definition 2) by applying
morphism ν′ to the scan Φ2k, is total, since it is defined for every γ ∈ Λ2kΛ∗.
This is useful in the following proof.

If, as usual, we consider M2k as an alphabet, denoted as 〈M2k〉, we can define
a homomorphism ν : 〈M2k〉∗ → Σ∗, as ν(z) = ν′(z) for every z ∈ 〈M2k〉 ⊆ 〈Λ2k

# 〉.
Let f : Λ∗ → Σ∗ be the local function defined as f(x) = ν(Φ2k(#x#)), for all
x ∈ L(M2k), which is thus defined only over L(M2k). We claim that the target
language of f is π(L).



130 S. Crespi Reghizzi and P. San Pietro

(i) We first prove that π(L) ⊆ f(Λ∗). The proof is by induction on the length
n ≥ 2 of words in L (ignoring shorter words as usual). Precisely, the induction
hypothesis is:

if z ∈ Γ+ has length n ≥ 2, then ν′(Φ2k(#�z�X)) = π(z).

From this the thesis follows immediately: if y ∈ π(L), then y = π(z) for some
z ∈ L ⊆ Γ+; obviously, F2k(�z�X) ⊆ M2k so f ′ is defined. Since f, f ′ have the
same value where they are both defined, it follows that f(�z�X) = f ′(�z�X) =
π(z).

Base Case: if |z| = 2, then z = αβ, for α, β ∈ Γ . By definition, the set
M2 contains #α, αβ, β#. Thus, the set F2k(�αβ�X) ⊆ M2k comprises three
words: t1 = #�α�Xv, t2 = �αβ�X , t3 = u�β�X#, for suitable u, v ∈ Λk−1. By
Eq. (4), ν′(t1) = ε, ν′(t2) = π(α), ν′(t3) = π(β). Since Φ2k(x) = t1t2t3, we have
ν′(t1t2t3) = π(α)π(β).

Inductive Step: assume now |z| > 2 and that the induction hypothesis holds
for every word z′ ∈ Γ+ with |z′| < |z|. Word z can be factored into
δαβγ, where δ ∈ Γ ∗, α, β, γ ∈ Γ . Let z′ = δαβ: by induction hypothe-
sis, ν′(Φ2k(#�z′�X)) = π(z′) = π(δαβ). Let u be the suffix of length k − 1
of β: Then, ν′(Φ2k(#�δαβγ�X#)) = ν′(Φ2k(#�δαβ�X)) · ν′(Φ2k(u�γ�X#)) =
π(δαβ) · ν′(Φ2k(u�γ�X#)).

By definition of ν′ (case H4), ν′(Φ2k(u�γ�X#)) = π(γ), hence the thesis
follows.

(ii) We now show that f(Λ∗) ⊆ π(L). It is enough to prove by induction on
n ≥ 2k that

for every x ∈ XX+ ⊆ Λ+ of length n, there exists z ∈ Γ+ s.t. f ′(x) = π(z). (5)

In fact, to prove (ii), it suffices to notice that if y ∈ f(Λ∗), then there is x ∈ X+

such that y = f(x) is defined (i.e., F2k(x) ⊆ M2k): since by (5) f ′(x) = π(z), we
have f(x) = f ′(x) = π(z) (functions f and f ′ are the same where f is defined).

We prove the base case n = 2k of (5). Let x = �α�X�β�X for α, β ∈ Γ . As in
the proof of Part (1), F2k(x) ⊆ M2k is composed of three words: t1 = #�α�Xu,
t2 = �αβ�X , t3 = v�β�X#, for suitable u, v ∈ Λk−1. Since ν′ is total, f ′(x) =
ν′(Φ2k(#x#) is by definition ν′(t1)ν′(t2)ν′(t3) = π(α)π(β) = π(αβ).

The inductive case is also trivial. Let x ∈ XX+, |x| = n, with the induction
hypothesis holding for words of length less than n. Word x can be factored into
x′x′′, with x′ ∈ X+, x′′ ∈ X. By induction hypothesis, there exists z′ ∈ Γ+ such
that f ′(x′) = z′. The proof is then analogous to the base case.

Part (3). (Sketch) We notice that for every z ∈ Γ , the substitution σ(z) is a
finite set of words over Σ, and we let m be the length of the longest word in
σ(Γ ). We can thus define a finite alphabet 〈Θ〉, whose elements are the subsets
in 2(Σ

≤m), and a new finite substitution τ : 〈Θ〉∗ → 2(Σ
≤m), associating every

symbol in 〈Θ〉 with its corresponding set of words. We define the homomorphism
π : Γ ∗ → 〈Θ〉∗, as ∀z ∈ Γ, π(z) = 〈σ(z)〉.
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Then, the substitution σ can be defined as the composition of substitution τ
with homomorphism π, i.e., σ(L) = τ(π(L)).

By Part (2), there is a local function f : Λ∗ → Θ∗ such that its target
language is equal to π(L). It is then clear that τ(f(L)) is a local relation. ��
Example 1. We first illustrate Definition 2. Let Λ = {a, b} and Σ = {0, 1}. We
define a local function f : {a, b}∗ → {0, 1}∗ of degree 4. Let the set T ⊆ Λ4

# be
T = F4 ({aab, bab}+). To finish, let the associated homomorphism ν : T ∗ → Σ∗

be: {
ν(#aab) = 0, ν(baab) = 0, ν(bbab) = 1,
for all other z ∈ F4 ({aab, bab}+) : ν(z) = ε.

Notice that ν is undefined for all other words in Λ4
#, such as #a3 and abab. The

target language of f is 0{0, 1}∗; we show how to compute a value of f :
f(aab bab) = ν (Φ4(#aab bab#))

= ν(〈#aab〉) ν(〈aabb〉) ν(〈abba〉) ν(〈bbab〉) ν(〈bab#〉)
= 0εε1ε = 01.

Observe that X = {aab, bab} is a comma-free code of length 3, therefore
{aab, bab}+ is a 6-slt language, although in this particular case is also 4-slt.
If we encode 0 and 1 resp. with the codewords aab and bab, then the function f

can be defined as follows: f (�z�X ) =
{

z, if z ∈ 0(0 ∪ 1)∗

⊥, otherwise . Clearly function f

is not length-preserving, because of the definition of ν.
To illustrate Part 1 of Lemma 1, observe that L = 0(0 ∪ 1)∗ is 2-slt, with

L = L(M2) and M2 = {#0, 00, 01, 10, 11, 0#, 1#}. Since the code length is 3,
the language �L�X is 6-slt; its defining set M6 has the form of Eq. (3); we just
list some factors: M6 = {#aabaa,#aabba,aabaab, . . . , abaaba, . . . abaab#}
where codewords are evidenced in bold.

3 Characterization of Regular Languages by Local
Functions

By the extended Medvedev theorem [3] (reproduced below in Theorem5), every
regular language over Σ is the homomorphic image of an slt source language
over an alphabet Λ, where |Λ| = 2|Σ|, and a smaller alphabet does not suffice
in general. Instead of a homomorphism, we study the use of a local function
(of degree greater than one) such that its target language is exactly the regular
language to be defined. Then, the main question is how small the source alphabet
can be. The first answer (Theorem 1) is that a binary source alphabet suffices
if the local function is not required to be length-preserving. Second, Theorem2
says that for a local length-preserving function, a source alphabet containing
just one more letter than the target alphabet suffices. Then, a specialized result
(Theorem 3) for regular languages of polynomial density, says that a length-
preserving local function over a binary source alphabet suffices, irrespectively of
the size of Σ.
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Theorem 1. For every regular language R ⊆ Σ∗, there exist a binary alphabet
Δ and a local function f : Δ∗ → Σ∗, such that the target language of f is R.

Proof. Let A = (Σ,Q,→, I, F ) be an FA recognizing R and let Γ =→ be the
set comprising the edges of A; let m = |Γ |. Choose a prime k such that in
Eq. (1) 
k(2) ≥ m: this is always possible since 
k(2) = 2k−2

k . Therefore, there
exists a comma-free code Z ⊂ Δk such that |Z| = m, and �q

a→ q′�Z is the
codeword for 〈q a→ q′〉.

Define (as in the classical proof of Medvedev theorem) the 2-slt language
L = L(M2) ⊆ Γ+, where M2 ⊆ 〈Γ 2

#〉 is the set:

M2 =
{

#〈q a→ q′〉 | q ∈ I, a ∈ Σ, q′ ∈ Q
}

∪
{

〈q a→ q′〉 〈q′ b→ q′′〉 | a, b ∈ Σ, q, q′, q′′ ∈ Q
}

∪
{

〈q a→ q′〉# | q ∈ Q, a ∈ Σ, q′ ∈ F
}

.

Define the homomorphism π : Γ ∗ → Σ∗ by means of π(〈q a→ q′〉) = a. It is
obvious that π(L) = R. From Lemma 1, Part (2), we have that π(L) is the
target language of a local function of degree 2k. ��

In general, the local function of Theorem 1 is not length-preserving. A length-
preserving function may require a source alphabet size depending on the target
alphabet size. We prove that a source alphabet barely larger than the target one
is sufficient, also improving on the alphabetic ratio of the generalized Medvedev
theorem [3].

Theorem 2. For every regular language R ⊆ Σ∗, there exist an alphabet Λ of
size |Σ| + 1 and a length-preserving local function f : Λ∗ → Σ∗ such that the
target language of f is R.

We need some definitions and intermediate properties to prove the thesis. First,
we define certain sets of paths of bounded length in the graph of the FA A that
recognizes the language R ⊆ Σ∗.

Definition 3 (Bounded paths). Let A = (Σ,Q, δ, I, F ) and let k ≥ 1. For
∼∈ {<,≤,=}, let Σ∼k be the set of words in Σ+ of length, respectively, less
than, less or equal to, or equal to k. We define the following sets:

P∼k = {q
y→ q′ | q, q′ ∈ Q, y ∈ Σ∼k}, P∼k,F = {q

y→ qF | q ∈ Q, q′ ∈ F, y ∈ Σ∼k}.

We view the sets P∼k, P∼k,F as finite alphabets, to be respectively written as
〈P∼k〉 and 〈P∼k,F 〉. The language of the accepting paths of automaton A, of
length ≥ k, is denoted by Pk ⊆ 〈P=k〉+〈P≤k,F 〉.

Of course, P<k ⊆ P≤k, P=k ⊆ P≤k and P∼k,F ⊆ P∼k.
The following statement is obvious.
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Lemma 2. The language of the accepting paths of an FA A, Pk ⊆
〈P=k〉+〈P≤k,F 〉, is the 2-slt language Pk = L(M2) defined by the following set:

M2 = {#α | α ∈ 〈P=k〉, in(α) ∈ I} ∪
{αα′ | α ∈ 〈P=k〉, α′ ∈ 〈P=k〉 ∪ 〈P≤k,F 〉, out(α) = in(α′)} ∪
{α# | α ∈ 〈P≤k,F 〉} . (6)

Next, we define the homomorphism

π : (〈P>k〉 ∪ 〈P≤k,F 〉)∗ → Σ∗ as: π(α) = lab(α). (7)

It is obvious that π(Pk) = L(A) ∩ Σ≥k.
Now, we encode every path in P≤k with a comma-free code X of the same

length k.

Proposition 2. There exist k > 0, an alphabet Λ of cardinality |Σ| + 1 and a
comma-free code X ⊂ Λk such that |P≤k| = |X|.
Proof. The set P≤k can be viewed as a subset of Q× (∪1≤i≤kΣi)×Q. By posing
n = |Σ|, it follows that |P≤k| ≤ |Q|2 ∑

1≤i≤k ni ≤ |Q|2nk+1. By Eq. (1), if k

is prime then 
k(n + 1) = (n+1)k−n−1
k . To have 
k(n + 1) ≥ |P≤k|, we need to

choose k so that |Q|2nk+1 ≤ (n+1)k−n−1
k , i.e., |Q|2knk+1 + n + 1 ≤ (n + 1)k. For

fixed n and fixed Q, the inequality holds for all sufficiently large k. ��

Thus, each path α ∈ P≤k is encoded by a word �α�X of X and the following
inequality holds, to be used to prove the length-preserving property of the local
function:

∀β ∈ P≤k : |lab(β)| ≤ |�β�X | ≤ |lab(β)| + k − 1. (8)

Proof of Theorem 2. To finish the proof, we apply Lemma1, Part (2) with the
following correspondence between mathematical entities:

– The alphabet Γ is the set of paths P≤k of Definition 3
– The code X is the one defined in Proposition 2
– The language L ⊆ Γ+ is Pk of Lemma 2
– The homomorphism π is defined in Eq. (7).

Hence a local function f of degree 2k exists, length-preserving by
inequality (8). ��
The Case of Polynomial Density Languages. Here we focus on the family of
regular languages that have polynomial density. The density function [10] of a
language R ⊆ Σ∗ counts the number of words of length n in R and is defined
as ρR(n) = |R ∩ Σn|. Language R has polynomial density if ρR(n) = O(nk) for
some integer k ≥ 0. Clearly, a language R has polynomial density if, and only if,
a deterministic trim FA that recognizes R is such that, for any states q, q′ ∈ Q,
the number of distinct paths of length n from q to q′ is polynomial. We prove
that if a regular language has polynomial density, then in Theorem2 a binary
source alphabet suffices.
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Theorem 3. Let R ⊆ Σ∗ be regular language of polynomial density. There is a
binary alphabet Δ and a length-preserving local function f : Δ∗ → Σ∗ such that
f(Δ∗) = R.

Proof. The number of words of length h is O(hm−1), where m is the number of
states of a deterministic FA recognizing R. By letting in Eq. (1) (Proposition 1)
n = |Λ| = 2 and choosing a prime value for k, we have that 
k(2) = 2k−2

k , which
is O(2k), i.e., there is a comma-free code X with |X| being O(2k). If the FA
is trim, the number of different k-paths is at most polynomial in k, hence for
suitably large k it will be smaller than |X|. Therefore, the proof of Theorem 2
still holds with a binary comma-free code. ��

4 Other Results

Theorem 2 above says that any regular language is the result of a local length-
preserving function applied to words over an alphabet containing one more letter.
The next theorem positively answers the question whether any improvement over
the previous result is possible if the image is defined by means of a local relation
instead of a function.

Theorem 4. For every regular language R ⊆ Σ∗, there exist a binary alphabet
Δ and a length-preserving local relation r ⊆ Δ+ × Σ+ such that the target
language of r is R.

Proof. Let A = (Σ,Q,→, I, F ) be an FA. Refer to Lemma 1, and assume that
Λ = Δ, X ⊆ Δk is a comma-free code of length k, and Γ = {(q, q′) | q, q′ ∈
Q,∃α ∈ P≤k, q = in(α), q′ = out(α)}. We can safely assume that k is large
enough so that |X| = |Q|2, hence we can define a codeword �(q, q′)�X for every
pair (q, q′) of states of Q. The proof resembles the proof of Theorem 2 but,
instead of encoding every labelled accepting path, we just encode the two end
states of the same path, omitting the path label. Let ξ : 〈P≤k〉∗ → Δ∗ be
the homomorphism that erases the label of a path α ∈ 〈P≤k〉, and returns
its encoding by X, more precisely: ξ(α)= �〈in(α), out(α)〉�X . Define the 2-slt
language L = L(M2) specified by the following set M2 over the alphabet 〈Γ 2

#〉:

M2 = {#〈q, q′〉 | q ∈ I,∃α ∈ P=k, 〈q, q′〉 = ξ(α)} ∪
{〈q, q′〉 〈q′, q′′〉 | ∃α ∈ P=k, β ∈ P≤k, ξ(α) = 〈q, q′〉, ξ(β) = 〈q′, q′′〉} ∪
{〈q, q′〉# | q′ ∈ F,∃α ∈ P=k, 〈q, q′〉 = ξ(α)} .

We define a finite substitution σ : 〈Γ 〉∗ → 2Σ∗
as follows: ∀z ∈ 〈Γ 〉∗, σ(z) =

lab
(
ξ−1 (�z�X)

)
. From Lemma 1, Part (3), we have that σ(L) is the target

language of a local relation of degree 2k. ��
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Characterization of Regular Languages as Homomorphic Images of slt Lan-
guages. Our last contribution is a new simpler proof, based on Theorem4, of the
known result (Theorem 8 of [3]) that every regular language over an alphabet
Σ is the homomorphic image of an slt language over an alphabet of size 2|Σ|.
The new proof sets a connection between the old result and the preceding theo-
rems. Overall, we obtain a fairly complete picture of the alphabetic ratio needed
for computing regular language by means of local functions, local relations, and
homomorphic images of slt languages.

It is convenient to introduce a binary operation that merges two strings
into one. Given two alphabets Δ,Σ, define the operator ⊗ : Δ+ × Σ+ →
(Δ × (Σ ∪ ε))+ as follows.

For every u ∈ Δ+, v ∈ Σ+ such that j = |u| ≥ |v| = k, let

u ⊗ v = 〈u(1), v(1)〉 . . . 〈u(k), v(k)〉 〈u(k + 1), ε〉 . . . 〈u(j), ε〉 .

E.g., if u = 010001 and v = abbab, then u ⊗ v = 〈0, a〉〈1, b〉〈0, b〉〈0, a〉〈0, b〉〈1, ε〉.
The operator can be extended to languages over the two alphabets as usual. We
also need the projections, resp. denoted by [ ]Δ and [ ]Σ onto the alphabets Δ
and Σ, defined as: [u ⊗ v]Δ = u, [u ⊗ v]Σ = v.

Proposition 3. If X ⊂ Δk is a comma-free code of length k > 1, then every
subset Z of X ⊗ Σ≤k is also a comma-free code of length k.

Proof. By contradiction, assume that a word w ∈ Z+ can be factored as w = uzv
and as w = uu′z′v′, where |u′| < k and both z, z′ ∈ Z, i.e., z, z′ do overlap in w.
By definition, z = x ⊗ y and z′ = x′ ⊗ y′, for x, x′ ∈ X, y, y′ ∈ Σ≤ k; therefore
[z]Δ and [z′]Δ are codewords of X, but they also overlap in [w]Δ, the projection
of w to Δ, a contradiction of the definition of comma-free code. ��
Theorem 5 (part of Theorem 8 of [3]). For any language R ⊆ Σ∗, there
exists an slt language L ⊆ Λ∗, where Λ is a finite alphabet of size |Λ| = 2|Σ|,
and a letter-to letter homomorphism ϑ : Λ∗ → Σ∗, such that R = ϑ(L).

Proof. For the sake of simplicity, we prove a looser bound, namely |Λ| = 2(|Σ|+
1). The tighter bound is proved in [3]. Let Δ = {0, 1}, the homomorphism
ξ : 〈P≤k〉∗ → Δ∗ and the comma-free code X ⊂ Δ+ be defined as in the proof
of Theorem 4. Let Λ = Δ × (Σ ∪ ε). Let Z ⊂ Λk be a comma-free code of length
k, such that the encoding of each α ∈ 〈P≤k〉 is defined as �α�Z = ξ(α) ⊗ lab(α).

Referring to Lemma 1, we consider Γ to be the alphabet 〈P≤k〉 and the homo-
morphism π : Γ ∗ → Σ∗ to be the projection π(α) = lab(α) for every α ∈ 〈P≤k〉.
Therefore, there exists a local function f : Λ∗ → Σ∗ whose source language is a
2k-slt language L ⊆ Λ∗ and whose target language is R.

Define a letter-to-letter homomorphism ϑ : Λ∗ → Σ∗ as the projection to
the alphabet Σ, i.e., ϑ(z) = [z]Σ for every z ∈ Λ. Let z ∈ L,α ∈ 〈P≤k〉+ be
such that z = �α�Z . It is clear that ϑ(z) = lab(α), and f(z) = lab(α) as well.
Therefore, R = ϑ(L). ��
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In comparison, the proof in [3] used an ad hoc encoding paying the price
of computing its size; moreover, it did not take advantage of the properties in
Lemma 1 about comma-free codes, slt languages and local relations, that have
permitted to shorten and simplify all the proofs in this paper.

5 Conclusion

We sum up the known results about characterizations of regular languages
through local mappings (local function, local relation, homomorphic image of
strictly locally testable language) in the following diagram:

We add that the lower limit 2|Σ| for the case of homomorphism is tight [3].
On the other hand, it is likely but not proved that the |Σ| + 1 limit for length-
preserving local functions is tight.

Acknowledgements. D. Perrin directed us to comma-free codes. We thank the
anonymous referees for their helpful suggestions.
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Abstract. We introduce rational weighted tree languages with stor-
age over commutative, complete semirings and show a Kleene-Goldstine
theorem.

1 Introduction

In [39], Kleene published his famous result on the coincidence of rational lan-
guages of words and regular languages of words, i.e., languages recognized by
one-way nondeterministic finite-state automata.

Soon there was a need for more powerful automata which could better model,
e.g., programming languages or natural languages. Thus a number of models
of automata with auxiliary data store were introduced; examples of such data
stores are pushdown [5], stack [30], checking-stack [18], checking-stack pushdown
[48], nested stack [1], iterated pushdown [8,19,36,42], queue, and monoid [12,
Ex. 3] (cf. [38]). Each of these automata models follows the recipe “finite-state
automaton + data store” [46] where (i) the finite-state automaton uses in its
transitions predicates and instructions and (ii) the data store [19,33,46] is a set
D of configurations on which the predicates and instructions are interpreted. A
string u ∈ Σ∗ is accepted if there is a sequence d of transitions such that (i) d
leads from some initial to some final state, (ii) the projection of d to Σ∗ is u,
and (iii) the projection of d to the set I∗ of sequences of instructions yields a
sequence v which is executable on D (e.g., pop pop is not executable on the
pushdown, because initially it contains only one symbol).

In [33–35] Goldstine advocated a new approach to the recipe “finite-state
automaton + data store” by applying the implication “regular ⇒ rational” of
Kleene’s theorem to the automaton part of the recipe. He illustrated the benefit
by contrasting the specification of the context-free language L = {anbn | n ∈ N}
by means of a usual pushdown automaton with his new approach, cf. Fig. 1.
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In general, he defined an automaton with data store [34, p. 276] as a rational
subset A of the monoid (Σ∗ × I∗)∗. The language defined by A is the set

L(A) = {u ∈ Σ∗ | there is a sequence v ∈ Â(u) which is executable}

finite-state automaton + pushdown [46] rational expression + pushdown [33]
A = ({q0, q1, q2}, {a, b}, {Z0, Z}, δ, q0, Z0, {q2})
δ(q0, ε, Z0) = {(q2, ε)}
δ(q0, a, Z0) = {(q0, Z0Z), (q1, Z0Z)} A = (a, Z)∗(b, Z−1)∗(ε, Z−1

0 )
δ(q0, a, Z) = {(q0, ZZ), (q1, ZZ)}
δ(q1, b, Z) = {(q1, ε)}

δ(q1, ε, Z0) = {(q2, ε)}

Fig. 1. Comparison of the specification of L = {anbn | n ∈ N}. In the right-hand side,
Z, Z−1, Z−1

0 mean “push Z”, “pop Z”, and “pop Z0”, respectively.

where (̂.) is the natural morphism from the free monoid (Σ∗×I∗)∗ to the product
monoid Σ∗×I∗ (with string concatenation in both components), i.e., Â ⊆ Σ∗×I∗.
For instance Â(abb) = {ZZ−1Z−1Z−1

0 }, thus abb �∈ L(A) because ZZ−1Z−1Z−1
0

is not executable; and Â(ab) = {ZZ−1Z−1
0 }, thus ab ∈ L(A) because ZZ−1Z−1

0

is executable. The following is very important to notice: although each sequence
v ∈ Â(u) is built up according to the rational set A, its executability is checked
outside of Â. This is understandable because, in general, executability is not
decomposable under rational operations.

Motivated by the wish to model not only qualitative properties of for-
mal string languages but also quantitative ones, Schützenberger introduced
weighted automata [45]. Also, there was a need to analyse tree-structured objects,
which gave rise to finite-state tree automata [10,11,47]. By now, the theo-
ries of weighted string automata [4,13,15,41,43–45], finite-state tree automata
[6,17,27,28], and weighted tree automata [2,3,23,25,40] are very well established.
In particular, Kleene’s theorem was proved for finite-state tree automata [47] and
for weighted tree automata [2,14]. The combination of weighted string automata
and data store was studied in [26,37,49].

In this paper we apply Goldstine’s approach to the recipe “weighted regu-
lar tree grammar + storage” [24] (cf. [19] for the unweighted case). More pre-
cisely, we apply the implication “regular ⇒ rational” of Kleene’s theorem [14] to
the weighted regular tree grammar part and check executability of instruction
sequences outside of the rational weighted tree languages. Actually, sequences of
instructions turn now into trees, which we call behaviours (cf. [21] where they
are called approximations). This leads to the new concept of rational weighted
tree language with storage.

Due to Kleene’s theorem for weighted tree automata [14] and a decomposition
theorem for “weighted regular tree grammar + storage” (cf. Theorem 1), we
can conclude that, for each weighted tree language s : TΣ → K the following
equivalence holds: s can be defined by a weighted regular tree grammar with
storage iff s is a rational weighted tree language with storage (cf. Theorem 3).
This characterization might be called a Kleene-Goldstine theorem.
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2 Preliminaries

We let N = {0, 1, . . .} (set of all natural numbers) and N+ = N \ {0}. The
powerset of a set A is denoted by P(A).

A ranked alphabet is a finite, non-empty set Σ in which each element σ has
a rank in N, denoted by rkΣ(σ). As usual, we set Σ(k) = {σ ∈ Σ | rkΣ(σ) = k}
and write σ(k) to denote that σ ∈ Σ(k) for each k ∈ N and σ ∈ Σ. We abbreviate
max{k | Σ(k) �= ∅} by maxrk(Σ). For any set H, we denote by TΣ(H) the set
of trees over Σ indexed by H [24, Sec. 2.3]. Let ξ ∈ TΣ . We denote the set of
positions of ξ (or: Gorn-addresses of ξ) by pos(ξ); we note that pos(ξ) ⊆ N∗

+

with ε denoting the root of ξ. For every ξ ∈ TΣ and w ∈ pos(ξ), we denote by
ξ(w) the label of ξ at w. A 0-extension of Σ is a ranked alphabet Θ such that
Σ ⊆ Θ, rkΘ(σ) = rkΣ(σ) for each σ ∈ Σ, and rkΘ(σ) = 0 for each σ ∈ Θ \ Σ.

A semiring (cf. [32] and [13, Ch. 1]) is an algebra (K,+, ·, 0, 1) such that
(K,+, 0) is a commutative monoid and (K, ·, 1) is a monoid, multiplication ·
distributes over addition +, and a ·0 = 0 ·a = 0 for every a ∈ K. The semiring K
is commutative if · is commutative. A semiring is complete if, for each countable
index set I, it has a sum operation

∑
I : KI → K which coincides with + when

I is finite and for which the axioms of [15, p. 124] hold for infinite index sets
(guaranteeing commutativity, associativity, and distributivity).

In the sequel, if K or Σ are left unspecified, then they stand for an arbitrary
commutative complete semiring and an arbitrary ranked alphabet, respectively.

A (Σ,K)-weighted tree language is a mapping s : TΣ → K. We call s a
polynomial (monome) if the set supp(s) = {ξ ∈ TΣ | s(ξ) �= 0} is finite (has at
most one element). A monome s with supp(s) ⊆ {ξ} for some ξ ∈ TΣ is also
denoted by s(ξ).ξ. A 0-extension of s is a weighted tree language s′ : TΘ → K
such that Θ is a 0-extension of Σ, s′|TΣ

= s and s′(ξ) = 0 for every ξ ∈ TΘ \TΣ .
We denote the set of all (Σ,K)-weighted tree languages by K〈〈TΣ〉〉.

Let Δ be a ranked alphabet, τ : TΔ → P(TΣ) a mapping, and s : TΣ →
K a (Σ,K)-weighted tree language. Then we define the (Δ,K)-weighted tree
language (τ ; s) : TΔ → K for each ζ ∈ TΔ by (τ ; s)(ζ) =

∑
ξ∈τ(ζ) s(ξ).

3 Storage Types and Behaviour

We recall the (slightly modified) concept of storage type from [19]. Storage types
are a reformulation of the concept of machines [46] and data stores [34,35].

A storage type is a tuple S = (C,P, F, c0), where C is a set (configurations),
c0 ∈ C (initial configuration), P is a set of total functions each having the
type p : C → {0, 1} (predicates), and F is a nonempty set of partial functions
f : C → C (instructions). Moreover, we assume that F contains the identity
instruction (on C), i.e., the total function idC : C → C such that idC(c) = c for
each c ∈ C.

The trivial storage type is the storage type TRIV = ({c}, ∅, {id{c}}, c), where
c is some arbitrary but fixed symbol. Another example of a storage type is the
counter COUNT = (N, {zero?}, {idN, inc,dec}, 0), where for each n ∈ N, we let
zero?(n) = 1 iff n = 0, inc(n) = n+1, and dec(n) = n−1 if n ≥ 1 and undefined
otherwise.
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We define the predicates true and false by true(c) = 1 and false(c) = 0 for
every c ∈ C. We denote by BC(P ) the Boolean closure of P , i.e., the set which
consists of true, false, and all predicates which can be obtained by finitely many
applications of negation ¬, disjunction ∨, and conjunction ∧ on elements P . For
each p ∈ BC(P ) and c ∈ C, the truth value p(c) is defined in the usual way. If P
is finite, then BC(P ) is also finite because it is a finitely generated subalgebra
of the Boolean algebra of all predicates over C (cf. [31, Cor. 2]).

In the sequel, if S is left unspecified, then it stands for an arbitrary storage
type S = (C,P, F, c0). Also, if P and F are left unspecified, then they stand for
the sets of predicates and instructions, respectively, of some storage type S.

Let P ′ ⊆ P a finite and F ′ ⊆ F be a finite and nonempty subset. Moreover,
let n ∈ N. We define the ranked alphabet

Δ =
⋃

0≤k≤n
Δ(k) with Δ(k) = BC(P ′) × (F ′)k.

We call Δ the ranked alphabet n-corresponding to P ′ and F ′. We write ele-
ments (p, f1, . . . , fk) of Δ in the slightly shorter form (p, f1 . . . fk). Obviously,
the parameter n is used to put an upper bound on the rank of symbols in Δ,
i.e., maxrk(Δ) = n. The ranked alphabet corresponding to Σ, P ′, and F ′ is the
ranked alphabet n-corresponding to P ′ and F ′ where n = max{maxrk(Σ), 1}.

The concept of behaviour is inspired by the set LD of all executable sequences
of instructions (defined on [29, p. 148]; also cf. the notion of storage tracks in [34]).
In [21, Def. 3.23] a family of behaviours is put together into a tree by sharing com-
mon prefixes; such a tree is called approximation. Here we recall the concept of
approximation from [24], but we keep the original name “behaviour”.

Formally, let c ∈ C, n ∈ N, and Δ be the ranked alphabet n-corresponding
to P ′ ⊆ P and F ′ ⊆ F . Then a tree b ∈ TΔ is a (Δ, c)-behaviour if there is a
family (cw ∈ C | w ∈ pos(b)) of configurations such that cε = c and for every
w ∈ pos(b): if b(w) = (p, f1 . . . fk), then p(cw) = 1 and for every 1 ≤ i ≤ k, the
configuration fi(cw) is defined and cwi = fi(cw). If b is a (Δ, c)-behaviour, then
we call (cw ∈ C | w ∈ pos(b)) the family of configurations determined by b and
c. A Δ-behaviour is a (Δ, c0)-behaviour. (Figure 2 right shows an example b of
a Δ-behaviour; the grey-shaded tree is the family of configurations determined
by b and 0.) We denote the set of all Δ-behaviours by B(Δ). We refer the reader
to [24, Fig. 2] for an example of a behaviour of the pushdown storage.

4 Rational Weighted Tree Languages with Storage

In this section we generalize the approach of [34,35] from the unweighted case
to the weighted case and from strings to trees. For the definition of rational
weighted tree languages, (disregarding storage for the time being) we first recall
the usual rational operations [14,25]. Let Θ be a ranked alphabet.

Let k ∈ N, θ ∈ Θ(k), and s1, . . . , sk ∈ K〈〈TΘ〉〉. The top concatenation of
s1, . . . , sk with θ is the (Θ,K)-weighted tree language topθ(s1, . . . , sk) defined
for each ξ ∈ TΘ by topθ(s1, . . . , sk)(ξ) = s1(ξ1) · . . . · sk(ξk) if ξ = θ(ξ1, . . . , ξk)
for some ξ1, . . . , ξk ∈ TΘ, and 0 otherwise. For k = 0 we have topθ( ) = 1.θ.
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Let s ∈ K〈〈TΘ〉〉 and a ∈ K. The scalar multiplication of s with a is the
(Θ,K)-weighted tree language a ·s defined for each ξ ∈ TΘ by (a ·s)(ξ) = a ·s(ξ).

Let s1, s2 ∈ K〈〈TΘ〉〉. The sum of s1 and s2 is the (Θ,K)-weighted tree
language (s1 + s2) defined for each ξ ∈ TΘ by (s1 + s2)(ξ) = s1(ξ) + s2(ξ).

For the definition of concatenation of weighted tree languages, we need the
following concept. Let α ∈ Θ(0) and ζ ∈ TΘ with exactly r ≥ 0 occurrences of
α. Moreover, let ξ1, . . . , ξr ∈ TΘ. We define ζ[α ← (ξ1, . . . , ξr)] to be the tree
obtained from ζ by replacing the ith occurrence of α by ξi for every 1 ≤ i ≤ r
(cf. [14, p. 7]). Let s1, s2 ∈ K〈〈TΘ〉〉 and α ∈ Θ(0). The α-concatenation of s1 and
s2 [14] is the (Θ,K)-weighted tree language (s1 ◦α s2) defined for every ξ ∈ TΘ

by
(s1 ◦α s2)(ξ) =

∑
ζ,ξ1,...,ξr∈TΘ

ξ=ζ[α←(ξ1,...,ξr)]

s1(ζ) · s2(ξ1) · . . . · s2(ξr).

Let s ∈ K〈〈TΘ〉〉 and α ∈ Θ(0). We define the (Θ,K)-weighted tree language
sn

α (called the n-th iteration of s at α) for every n ∈ N inductively as follows
[20] (cf. [14, Def. 3.9]): s0α = 0̃ and sn+1

α = (s ◦α sn
α) + 1.α for every n ≥ 0,

where 0̃ is the weighted tree language which associates 0 to each tree. Let us
assume that s is α-proper, i.e., s(α) = 0. Then, for every ξ ∈ TΘ and n ∈ N, if
n ≥ height(ξ)+1, then sn+1

α (ξ) = sn
α(ξ) [14, Lm. 3.10]. This justifies to define the

operation α-Kleene star of s as follows: it is the (Θ,K)-weighted tree language
s∗

α defined for every ξ ∈ TΘ by s∗
α(ξ) = s

height(ξ)+1
α (ξ) [20] (cf. [14, Def. 3.11]).

We denote by L(Θ,K) the smallest class of (Θ,K)-weighted tree languages
which is closed under top-concatenation with Θ, scalar multiplication with K,
sum, Θ-tree concatenation, and Θ-Kleene star. By iterating top-concatenations
and using scalar multiplication and sum we can build up each polynomial, hence
each (Θ,K)-polynomial is in L(Θ,K).

Definition 1. The set of (Θ,K)-rational weighted tree languages, denoted by
Rat(Θ,K), contains each (Θ,K)-weighted tree language s such that there is a
0-extension s′ ∈ L(Θ′,K) of s for some 0-extension Θ′ of Θ.

In particular, L(Θ,K) ⊆ Rat(Θ,K). We use the concept of 0-extension for the
following purpose: for the analysis of chain-free (Θ,K)-regular tree grammars
(cf. Sect. 5), extra nullary symbols for tree concatenation are needed (see [14,
Thm. 5.2], cf. also [47, Thm. 9]), and we provide them by the 0-extensions.

In our definition of rational weighted tree languages over Σ with storage S, we
will use the rational operations to build up trees and each such tree ζ combines
a tree ξ ∈ TΣ and a tree b over the ranked alphabet Δ corresponding to Σ and
some finite sets P ′ ⊆ P and F ′ ⊆ F . Then, according to Goldstine’s idea, we
check outside of the building process whether b is a behaviour. In order to allow
manipulation of the storage via P ′ and F ′ also independently from the generation
of a Σ-symbol, we use ∗ as a padding symbol of rank 1 such that ∗ �∈ Σ. Formally,
we define the Σ-extension of Δ, denoted by 〈Δ,Σ〉, to be the ranked alphabet
where 〈Δ,Σ〉(1) = Δ(1) × (Σ(1) ∪ {∗}) and 〈Δ,Σ〉(k) = Δ(k) × Σ(k) for k �= 1.
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Additionally, let R be the term rewriting system having for every k ∈ N and σ ∈
Σ(k) the rules:

σ(x1, . . . , xk) → 〈(p, f1 . . . fk), σ〉(x1, . . . , xk) for every (p, f1 . . . fk) ∈ Δ(k)

σ(x1, . . . , xk) → 〈(p, f), ∗〉(σ(x1, . . . , xk)) for every (p, f) ∈ Δ(1).

Then we define the mapping BΔ : TΣ → P(T〈Δ,Σ〉) for each ξ ∈ TΣ by

BΔ(ξ) = {ζ ∈ T〈Δ,Σ〉 | ξ ⇒∗
R ζ and pr1(ζ) ∈ B(Δ)} ,

where pr1 : T〈Δ,Σ〉 → TΔ is the relabeling [16] defined by pr1((δ, )) = δ for
every (δ, ) ∈ 〈Δ,Σ〉. We call BΔ(ξ) the set of Δ-behaviours on ξ.

Definition 2. Let s : TΣ → K be a weighted tree language. Then s is (S,Σ,K)-
rational if there are finite sets P ′ ⊆ P and F ′ ⊆ F and a weighted tree language
t ∈ Rat(〈Δ,Σ〉,K) where Δ is the ranked alphabet corresponding to Σ, P ′, and
F ′ such that

s = BΔ; t, i.e., for each ξ ∈ TΣ : s(ξ) =
∑

ζ∈BΔ(ξ)
t(ζ) .

We denote by Rat(S,Σ,K) the class of all (S,Σ,K)-rational weighted tree lan-
guages or for short: the class of rational weighted tree languages with storage.

Now we compare Definition 2 with the automata with data store [34]. For
every set B and each B′ ⊆ B, the characteristic function of B′ in B is the
mapping χ(B,B′) : B → K defined for every a ∈ B by χ(B,B′)(a) = 1 if a ∈ B′

and χ(B,B′)(a) = 0 otherwise. If we transcribe the definition of the language
L(A) ⊆ Σ∗ defined by a Goldstine-automaton A (as given in [34, p. 276] for
some alphabet Σ) by replacing the membership test u ∈ L(A) (for some string
u ∈ Σ∗) by the equation χ(Σ∗,L(A))(u) = 1, then the definition of L(A) reads:

χ(Σ∗,L(A))(u) =
∨

v∈I∗:
ι(v):D0 
→D1

χ(Σ∗×I∗,Â)(u, v)

where ι(v) : D0 �→ D1 says that there is an initial configuration c0 ∈ D0 and a
final configuration c1 ∈ D1 such that the sequence v of instructions can transform
c0 into c1. This can be easily compared to our definition

s(ξ) =
∑

ζ∈BΔ(ξ)
t(ζ) .

Thus our concept of (S,Σ,K)-rational weighted tree languages generalizes the
concept of automata over data store [34] from the unweighted to the weighted
case and from strings to trees.

In the following two examples we drop the parentheses corresponding to
unary symbols occurring in trees.
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Example 1. Let (N ∪ {∞},+, ·, 0, 1) be the commutative, complete semiring of
natural numbers and Σ = {σ(2), δ(1), α(0)}. We consider the weighted tree lan-
guage s : TΣ → N∞ (derived from [24, Ex. 3.1]) where, for each ξ ∈ TΣ , we
let

s(ξ) = 8n if ξ = σ(δ2n(α), δ2n(α)) for some n ∈ N, and 0 otherwise .

We show that s is (COUNT, Σ,N)-rational. For this we show that there is a
weighted tree language t ∈ Rat(〈Δ,Σ〉,K) such that s = BΔ; t, where Δ is the
ranked alphabet corresponding to Σ, P , and F . Thus,

〈Δ,Σ〉 = {〈(p, ε), α〉(0) | p ∈ BC(P )} ∪ {〈(p, f), ∗〉(1) | (p, f) ∈ BC(P ) × F}
∪ {〈(p, f), δ〉(1) | (p, f) ∈ BC(P ) × F}
∪ {〈(p, f1f2), σ〉(2) | (p, f1f2) ∈ BC(P ) × F 2} .

We define the weighted tree language t ∈ Rat(〈Δ,Σ〉,N) as follows (where
we abbreviate 〈(true, ε), α〉 by α):

t = (t1)∗
α ◦α top〈(true,idNidN),σ〉

(
t2, t2

)
,

where t1 = 2.〈(true, inc), ∗〉(α)
, t2 = (t3)∗

α ◦α 1.〈(zero?, ε), α〉, and
t3 = 2.〈(true, id), δ〉(〈(¬zero?,dec), δ〉(α)

)
.

Note that true and ¬zero? are in BC({zero?}) but they are not predicates of
COUNT.

Thus, for each ζ ∈ T〈Δ,Σ〉, we have (t1)∗
α (ζ) = 2n if ζ = 〈(true, inc), ∗〉n

(
α

)

for some n ∈ N, and (t1)∗
α (ζ) = 0 otherwise. Moreover, t2(ζ) = 2n if ζ =(〈(true, id), δ〉〈(¬zero?,dec), δ〉)n(〈(zero?, ε), α〉) for some n ∈ N, and t2(ζ) = 0

otherwise.
Now let ξ ∈ TΣ and ζ ∈ BΔ(ξ) such that t(ζ) �= 0. By the definition of t, there

are n, n1, n2 ∈ N and ζi =
(〈(true, id), δ〉〈(¬zero?,dec), δ〉)ni

(〈(zero?, ε), α〉) for
each i ∈ {1, 2} such that

ζ = 〈(true, inc), ∗〉n
(〈(true, idNidN), σ〉(ζ1, ζ2)

)
.

Moreover, t(ζ) = 2n · 2n1 · 2n2 . Since ξ ⇒∗
R ζ, we have ξ = σ(δ2n1(α), δ2n2(α)).

Since pr1(ζ) ∈ B(Δ), we have n = n1 = n2. Hence
∑

ζ∈BΔ(ξ) t(ζ) = s(ξ) for
every ξ ∈ TΣ , i.e., s ∈ Rat(COUNT, Σ,N). ��

5 Weighted Regular Tree Grammars with Storage
and the Main Result

In this section we define weighted regular tree grammars with storage and prove
our Kleene-Goldstine theorem. Our grammar model is the weighted version of



Rational Weighted Tree Languages with Storage 145

regular tree grammar with storage [21], where we take the weights from a com-
mutative, complete semiring. Our concept slightly extends the form of rules of
(S,Σ,K)-regular tree grammar as defined in [24, Sec. 3.1]; on the other hand,
the weight algebras of our concept are commutative, complete semirings and not
the more general complete M-monoids as in [24].

A weighted regular tree grammar over Σ with storage S and weights in K
(for short: (S,Σ,K)-rtg) is a tuple G = (N,Z,R,wt), where N is a finite set
(nonterminals) such that N ∩ Σ = ∅, Z ⊆ N (set of initial nonterminals), R
is a finite and nonempty set of rules; each rule has the form A(p) → ξ, where
A ∈ N , p ∈ BC(P ), and ξ ∈ TΣ(N(F )) with N(F ) = {A(f) | A ∈ N, f ∈ F},
and wt : R → K is the weight function.

If r is a rule of the form A(p) → B(f), then it called a chain rule. If G does
not have chain rules, then we call it chain-free. We call G start-separated if it
has exactly one initial nonterminal and this nonterminal does not occur in the
right-hand side of a rule. We say that G is in normal form if each rule contains
at most one symbol from Σ.

Let PG ⊆ P be the finite set of all predicates which occur in Boolean com-
binations in rules in R. (We assume that each of such Boolean combinations
is given by a Boolean expression, hence PG can be determined by checking the
rules in R.) Moreover, let FG ⊆ F be the finite set of all instructions which occur
in rules in R, and let ΔG be the ranked alphabet corresponding to Σ, PG , and
FG .

For the definition of the semantics of G, we view R as a ranked alphabet by
associating with each rule r the number of nonterminals occurring in the right-
hand side of r (rank of r). We define the mappings π : TR → TΣ , β : TR → TΔG ,
and wtG : TR → K inductively. Let r(d1, . . . , dk) ∈ TR:

– The tree π(r(d1, . . . , dk)) is obtained from the right-hand side of r by replacing
the ith occurrence of an element in N(F ) (in the order left-to-right) by π(di).

– The tree β(r(d1, . . . , dk)) is (p, f1 . . . fk)(β(d1), . . . , β(dk)) if r has the form
A(p) → ξ and the ith occurrence of a nonterminal in ξ is associated with fi.

– The value wtG(r(d1, . . . , rk)) is wtG(d1) · . . . · wtG(dk) · wt(r).

We refer to Fig. 2 for examples of π and β.
A derivation tree of G is a tree d ∈ TR which satisfies the conditions: (i) the

left-hand side of d(ε) must be an initial nonterminal, (ii) for each position w ∈
pos(d), if A is the ith occurrence of a nonterminal in the right-hand side of d(w),
then A is the left-hand side of d(wi), and (iii) β(d) ∈ B(ΔG). Then we say that
d is a derivation tree of G for π(d). For each ξ ∈ TΣ , we denote the set of all
derivation trees of G for ξ by DG(ξ).

The weighted tree language generated by G is the mapping [[G]] : TΣ → K
defined for each ξ ∈ TΣ by

[[G]](ξ) =
∑

d∈DG(ξ)
wtG(d).

Two (S,Σ,K)-rtg G1 and G2 are equivalent if [[G1]] = [[G2]].
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Let s be a (Σ,K)-weighted tree language. It is called (S,Σ,K)-regular if
there is an (S,Σ,K)-rtg G such that s = [[G]]. The class of all (S,Σ,K)-
regular tree languages is denoted by Reg(S,Σ,K). We denote the class of all
s ∈ Reg(S,Σ,K) such that there is a chain-free (S,Σ,K)-rtg G with s = [[G]] by
Regnc(S,Σ,K) (no chain). We call a (TRIV, Σ,K)-rtg just (Σ,K)-rtg, and we
abbreviate Reg(TRIV, Σ,K) by Reg(Σ,K).

0

1

2

2

1

0

2

1

0

Z(true) Z(inc)

Z(true) Z(inc)

Z(true) σ (A(id ), A(id ))

A(¬zero?) 2 (A(dec))

A(¬zero?) 2 (A(dec))

A(zero?) α

A(¬zero?) 2 (A(dec))

A(¬zero?) 2 (A(dec))

A(zero?) α

π

β

σ

4

α

4

α

(true, inc)

(true, inc)

(true, id id )

(¬zero?, dec)

(¬zero?, dec)

(zero?, ε)

(¬zero?, dec)

(¬zero?, dec)

(zero?, ε)

Fig. 2. A derivation tree d ∈ DG(ξ) (left), the input tree ξ = π(d) = σ(δ4(α), δ4(α))
(up middle), the ΔG-behaviour b = β(d) (right), the family (cw | w ∈ pos(b)) of
configurations (in grey) determined by b and 0.

Example 2. We consider the weighted tree language s : TΣ → N∞ from
Example 1. It is easy to see that s = [[G]] for the (COUNT, Σ,N∞)-rtg
G = (N, {Z}, R,wt) where N = {Z,A} and R contains the following rules and
weights:

rule r: wt(r): rule r: wt(r):
Z(true) → Z(inc) 2 A(¬zero?) → δ2(A(dec)) 2
Z(true) → σ(A(idN), A(idN)) 1 A(zero?) → α 1

Figure 2 shows the trees d ∈ DG(ξ), π(d) = ξ, and β(d) for ξ = σ(δ4(α), δ4(α)). ��
Lemma 1. For each (S,Σ,K)-rtg G there is an equivalent start-separated (S,Σ,
K)-rtg G′ which is in normal form.

Proof. As in [24, Lm. 3.2], we can first transform G into an equivalent start-
separated (S,Σ,K)-rtg G1. Then we can apply the usual construction (cf., e.g.,
[17, Thm. 3.22]) to G1 in order to decompose rules with more than one terminal
symbol into several rules with at most one terminal symbol. ��

In [24, Thm. 5.3] a crucial decomposition theorem was proved for particular
(S,Σ,K)-rtg: each such rtg is in normal form and, for each rule A(p) → ξ, the
inclusion p ∈ P holds. Next we will lift this theorem to (S,Σ,K)-rtg of the
present paper.
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Theorem 1. (cf. [24, Thm. 5.3]) For every s : TΣ → K the following two state-
ments are equivalent:

(i) s = [[G]] for some (S,Σ,K)-rtg G.
(ii) There are finite sets P ′ ⊆ P and F ′ ⊆ F , and a chain-free (〈Δ,Σ〉,K)-rtg

G such that Δ is the ranked alphabet corresponding to Σ, P ′, and F ′, and
s = BΔ; [[G]].

Proof. For the proof of both implications (i) ⇒ (ii) and (ii) ⇒ (i), we can assume
by Lemma 1 that G is in normal form. Then the proof of [24, Thm. 5.3] can be
extended easily to rtg in normal form with an arbitrary Boolean combination in
the left-hand side of rules. ��
Theorem 2. For each ranked alphabet Θ we have Regnc(Θ,K) = Rat(Θ,K)
[14, Thm. 5.2 and Thm. 6.8(2)].

Now we can prove our Kleene-Goldstine theorem for weighted regular tree
grammars with storage. This theorem generalizes [14, Thm. 7.1] from TRIV to
an arbitrary storage type.

Theorem 3. Reg(S,Σ,K) = Rat(S,Σ,K).

Proof. Let s ∈ Reg(S,Σ,K). By Theorem 1, there is a t ∈ Regnc(〈Δ,Σ〉,K)
such that s = BΔ; t. By Theorem 2, t ∈ Rat(〈Δ,Σ〉,K), hence by definition
s ∈ Rat(S,Σ,K). This argumentation also holds in the reverse order. ��

If S has finitely many configurations (e.g. if S = TRIV), then by Theorem 3
Rat(S,Σ,K) is the class of weighted tree languages recognized by K-weighted
tree automata over Σ as defined in, e.g., [25] (cf. [24, Cor. 6.5]; note that S
contains an identity and each (S,Σ,K)-rtg can have the always true predicate
in its rules; each M-monoid associated with a complete semiring is compressible).

As another application, we mention the n-iterated pushdown storage type
Pn where n ∈ N [19,21,36]. Theorem 3 provides a Kleene-Goldstine theorem
for (Pn, Σ,K)-weighted tree languages, in particular, for the infinite hierarchy
(Rec(Pn, Σ,B) | n ∈ N) of classes of tree languages, the OI-hierarchy of n-level
tree languages [7] (cf. [9, Thm. 1] and [22, Thm. 6.15]). This starts with the
regular tree languages (n = 0) and the OI context-free tree languages (n = 1).

If we choose Σ to be monadic (i.e., Σ = Σ(1) ∪ Σ(0) and |Σ(0)| = 1), then
Theorem 3 provides a Kleene-Goldstine theorem for K-weighted regular string
grammars with storage S, which are equivalent to K-weighted automata with
storage S.
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Abstract. We consider the state complexity of intersection, union and
the shuffle operation on commutative regular languages for arbitrary
alphabets. Certain invariants will be introduced which generalize known
notions from unary languages used for refined state complexity state-
ments and existing notions for commutative languages used for the sub-
class of periodic languages. Our bound for shuffle is formulated in terms
of these invariants and shown to be optimal, from this we derive the
bound of (2nm)|Σ| for commutative languages of state complexities n
and m respectively. This result is a considerable improvement over the
general bound 2mn−1 + 2(m−1)(n−1)(2m−1 − 1)(2n−1 − 1).

We have no improvement for union and intersection for any alphabet,
as was to be expected from the unary case. The general bounds are opti-
mal here. Seeing commutative languages as generalizing unary languages
is a guiding theme. For our results we take a closer look at a canonical
automaton model for commutative languages.

Keywords: Commutative language · State complexity · Shuffle ·
Automata theory

1 Introduction

The state complexity of some regular language L is the minimal number of
states needed in a complete deterministic automaton accepting L, or equiva-
lently it is the number of Nerode right-equivalence classes. We will denote the
state complexity of L by sc(L). Investigating the state complexity of the result
of an operation on languages was first initiated in [9] and systematically started
in [14], for a survey of this important and vast field see [5]. Here we consider the
state complexity of the shuffle operation, and of union and intersection, on the
class of commutative languages, which will be introduced below. Commutative
automata, which accept commutative languages, were introduced in [3]. They
are precisely the permutation-closed languages. First we recap some notions and
fix notations of the theory of formal languages and automata. Then we state
some results for unary languages which will be needed in the sequel. The reader
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might notice that several results, notions and methods of proofs are generalisa-
tions from unary languages. Then we look at commutative regular languages, we
define the minimal commutative automaton first introduced in [7] and investigate
some properties. This automaton is crucial for many of the following definitions.
With its help we also give a new characterization of the class of periodic lan-
guages first introduced in [4] and used for a sufficient condition for context-free
commutative languages to be regular. In the course of this we introduce the index
and period vectors of some commutative regular language, and use these invari-
ant extensively in all the following statements. We then give state complexity
results, first by relating our invariants to the number of states, then by proving
bounds and showing them to be tight. Lastly we look at aperiodic commutative
languages, and commutative group languages, and show that every commutative
language could be written as a union of shuffle products of an aperiodic and a
group commutative language.

2 Prerequisites

Let Σ = {a1, . . . , ak} be a finite set of symbols1, called an alphabet. The set
Σ∗ denotes the set of all finite sequences, i.e., of all words. The finite sequence
of length zero, or the empty word, is denoted by ε. For a given word we denote
by |w| its length, and for a ∈ Σ by |w|a the number of occurrences of the
symbol a in w. Subsets of Σ∗ are called languages. With N = {0, 1, 2, . . .} we
denote the set of natural numbers, including zero. A finite deterministic and
complete automaton will be denoted by A = (Σ,S, δ, s0, F ) with δ : S × Σ → S
the state transition function, S a finite set of states, s0 ∈ S the start state
and F ⊆ S the set of final states. The properties of being deterministic and
complete are implied by the definition of δ as a total function. The transition
function δ : S × Σ → S could be extended to a transition function on words
δ∗ : S ×Σ∗ → S by setting δ∗(s, ε) := s and δ∗(s, wa) := δ(δ∗(s, w), a) for s ∈ S,
a ∈ Σ and w ∈ Σ∗. In the remainder we drop the distinction between both
functions and will also denote this extension by δ. Herein we do not use other
automata models. Hence all automata considered in this paper will be complete,
deterministic and initially connected, the last notion meaning for every s ∈ S
there exists some w ∈ Σ∗ such that δ(s0, w) = s. The language accepted by some
automaton A = (Σ,S, δ, s0, F ) is L(A) = {w ∈ Σ∗ | δ(s0, w) ∈ F}. A language
L ⊆ Σ∗ is called regular if L = L(A) for some finite automaton. If u, v ∈ L for
some language L ⊆ Σ∗ we define the Nerode right-congruence with respect to
L by u ≡L v if and only if ∀x ∈ Σ : ux ∈ L ↔ vx ∈ L. The equivalence class
for some w ∈ Σ∗ is denoted by [w]≡L := {x ∈ Σ∗ | x ≡L w}. A language is
regular if and only if the above right-congruence has finite index, and it could
be used to define the minimal deterministic automaton AL = (Σ,Q, δ, [ε]≡L

, F )
with Q := {[w]≡L

| w ∈ Σ∗}, δ([w]≡L
, a) := [wa]≡L

for a ∈ Σ, w ∈ Σ∗ and
F := {[w]≡L

| w ∈ L}. It is indeed the smallest automaton accepting L in terms
1 If not otherwise stated we assume that our alphabet has the form Σ = {a1, . . . , ak}

and k denotes the number of symbols.
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of states. Given two automata A = (Σ,S, δ, s0, F ) and B = (Σ,T, μ, t0, E),
an automaton homomorphism h : A → B is a map between the state sets
such that for each a ∈ Σ and state s ∈ S we have h(δ(s, a)) = δ(h(s), a),
h(s0) = t0 and h−1(E) = F . If B is a surjective homomorphic image of A
as above then L(B) = L(A). The minimal deterministic automaton has the
additional property that every accepting automaton could be homomorphically
mapped onto it. Let Σ = {a1, . . . , ak} be an alphabet. The map ψ : Σ∗ →
N

k given by ψ(w) = (|w|a1 , . . . , |w|ak
) is called the Parikh-morphism. For a

given word w ∈ Σ∗ we define perm(w) := {u ∈ Σ∗ : ψ(u) = ψ(w)} and for
languages L ⊆ Σ∗ we set perm(L) :=

⋃
w∈L perm(w). We also define the one-

letter projection mapping πj : Σ∗ → {aj}∗ by πj(w) := a
|w|aj

j . A language is
called commutative if perm(L) = L, i.e., with every word each permutation of
this word is also in the language.

Definition 1. The shuffle operation, denoted by �, is defined by

u� v :=
{

x1y1x2y2 · · · xnyn | u = x1x2 · · · xn, v = y1y2 · · · yn,
xi, yi ∈ Σ∗, 1 ≤ i ≤ n, n ≥ 1

}

,

for u, v ∈ Σ∗ and L1 � L2 :=
⋃

x∈L1,y∈L2
(x� y) for L1, L2 ⊆ Σ∗.

The shuffle operation is commutative, associative and distributive with
respect to union. We will use these properties without further mention. In writing
formulas without brackets we suppose that the shuffle operation binds stronger
than the set operations, and the concatenation operator has the strongest
binding.

Theorem 1. The class of commutative languages is closed under union, inter-
section, complement and the shuffle operation.

The state complexity of the above operations will be a major concern of our
paper. A regular language is called aperiodic if it is accepted by some complete
automaton in which no word induces a permutation of some subset of states.
More formally if for all w ∈ Σ∗, states s ∈ S and n ≥ 1 we have δ(s, wn) = s
implies δ(s, w) = s. Notice that by this condition all minimal cycles in the
automaton must be labelled by primitive words, where a word is primitive if it
is not a non-trivial power of another word, and conversely if a non-trivial power
of a word labels a minimal cycle then the above condition cannot hold. The
class of aperiodic languages was introduced in [11] and admits a wealth of other
characterizations in terms of logic, regular expressions and other means. We call
a language a (pure-)group language2 if it is accepted by a complete automaton
where every letter acts as a permutation on the state set. Such automata are also
called permutation automata, and the name stems from the fact that the trans-
formation monoid of such an automaton forms a group. Note some ambiguity
here in the sense that if Σ = {a, b} then (aa)∗ is not a group language over this

2 These were introduced in [10] under the name of pure-group events.
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alphabet, but it is over the unary alphabet {a}. Hence we mean the existence of
a permutation automaton over any alphabet. By definition {ε} is considered to
be a group language3, this will unify the statements of some results.

Lemma 1. An automaton A = (Σ,S, δ, s0, F ) is aperiodic if and only if there
exists n ≥ 0 such that for all states s ∈ S and any word w ∈ Σ we have
δ(s, wn) = δ(s, wn+1).

2.1 Unary Languages

Let Σ = {a} be a unary alphabet. In this section we collect some results about
unary languages, and in a sense our results for commutative regular languages
are strongly motivated by generalizing from unary languages. Let L ⊆ Σ∗ be
regular with an accepting complete deterministic automaton A = (Σ,S, δ, s0, F ),
then by considering the sequence of states δ(s0, a1), δ(s0, a2), δ(s0, a3), . . . we find
numbers i ≥ 0, p > 0 with i + p minimal such that δ(s0, ai) = δ(s0, ai+p). We
call these numbers the index i and the period p of the automaton A, note that
i + p = |S|. For the unique minimal complete automaton we call these numbers
the index and period of the language.

Lemma 2. Let L be unary regular with accepting automata A = (Σ,S, δ, s0, F )
and B = (Σ,T, μ, t0, R) and automaton homomorphism h : A → B. If μ(t0, ai) =
μ(t0, ai+p) with p > 0, i+ p minimal and δ(s0, aî) = δ(s0, aî+p̂) with p̂ > 0, then
i ≤ î and p divides p̂.

As the minimal automaton is a homomorphic image of every accepting
automaton we get the following corollary.

Corollary 1. For unary regular languages L with index i and period p and any
accepting deterministic automaton A = (Σ,S, δ, s0, F ), if δ(s0, aî) = δ(s0, aî+p̂)
for î ≥ 0, p̂ > 0, then i ≤ î and p divides p̂.

As done in [13] the index and period could be used for refined state complexity
statements in the unary case. Later we will need the following result from [13].

Theorem 2 ([13]). Let U, V ⊆ Σ∗ be two unary languages with U accepted
by an automaton with index i and period p, and V accepted by an automaton
with index j and period q. Then the concatenation U · V could be accepted by an
automaton of index i + j + lcm(p, q) − 1 and period lcm(p, q), and this result is
optimal in the case of gcd(p, q) > 1 in the sense that there exists languages that
reach these bounds.

In our discussion several times unary languages which are accepted by
automata with a single final state appear.

3 It is not possible to give such an automaton for |Σ| ≥ 1, but allowing Σ = ∅ the
single-state automaton will do, or similar as Σ∗ = {ε} in this case.
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Lemma 3. Let L ⊆ {a}∗ be a unary language which is accepted by an automaton
with a single final state and index i and period p. Then either L = {u} with
|u| < i (and if the automaton is minimal we would have p = 1), or L is infinite
with L = ai+m(ap)∗ and 0 ≤ m < p. Hence two words u, v with min{|u|, |v|} ≥ i
are both in L or not if and only if |u| ≡ |v| (mod p).

2.2 Commutative Regular Languaes

Let Σ = {a1, . . . , ak} be our finite alphabet. The minimal commutative automa-
ton for a commutative language was introduced in [7].

Definition 2. Let L be a commutative language, we define the minimal com-
mutative automaton CL = (Σ,S1 × . . . × Sk, δ, s0, F ) with

Sj := {[am
j ]≡L

: m ≥ 0}, F := {([π1(w)]L, . . . , [πk(w)]L) : w ∈ L}
and δ((s1, . . . , sj , . . . , sk), aj) := (s1, . . . , δj(sj , aj), . . . , sk) with one-letter tran-
sitions δj([am

j ]≡L
, aj) := [am+1

j ]≡L
for j = 1, . . . , k and s0 := ([ε]≡L

, . . . , [ε]≡L
).

In [7] it was shown that this notion is well-defined and accepts L. And surely
is finite if and only if L is regular. But it was also noted that in general the
minimal commutative automaton is not equal to the minimal deterministic and
complete automaton for L.

Theorem 3. For a commutative language its minimal commutative automaton
accepts this language. A commutative language is regular if and only if its com-
mutative automaton is finite.

The following definition on the one side generalizes a well-known notion from
unary regular languages [12,13], and a notion of periodic languages as introduced
in [4], at which we will also take a closer look later.

Definition 3 (Index and period vector). Let L be a commutative regular lan-
guage with minimal commutative automaton CL = (Σ,S1 × . . . × Sk, δ, s0, F ).
For 1 ≤ j ≤ k consider the sequence of states δ(s0, am

j ) for m = 0, 1, . . . with
respect to the input letter aj . By finiteness there exists ij ≥ 0 and pj > 0 with
ij + pj minimal such that δ(s0, a

ij
j ) = δ(s0, a

ij+pj

j ). As this state sequence could
be identified with Sj we have |Sj | = ij + pj . The vector (i1, . . . , ik) we call the
index vector and the vector (p1, . . . , pk) the period vector of L.

The next Lemma is helpful for deciding if a given word is in a given regular
commutative language.

Lemma 4. Let L be commutative regular with index vector (i1, . . . , ik), periodic
vector (p1, . . . , pk) and minimal commutative automaton CL = (Σ,S1 × . . . ×
Sk, δ, s0, F ). Then δ(s0, u) = δ(s0, v) if and only if

|u|aj
= |v|aj

∨ (min{|u|aj
, |v|aj

} ≥ ij ∧ |u|aj
≡ |v|aj

(mod pj))

for all j ∈ {1, . . . , k}.
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In the following the languages whose minimal commutative automaton has a
single final state are of particular importance. Related to those is the following
definition of unary languages derived from the minimal commutative automaton
of a given commutative regular language.

1start 2 3

4 5

a1 a1 a1 a1 a1

a1

a1 a1 a1 a1 a1

a1

a2a2 a2a2 a2a2 a2a2 a2a2 a2a2

Fig. 1. The minimal commutative automaton for L = (a1a1)
∗
� (a2a2)

∗ ∪ (a1a1a1)
∗
�

a2(a2a2)
∗. The final states are enumerated according to the sets U

(l)
j for j ∈ {1, 2},

l ∈ {1, . . . , 5}. See Example 1.

Definition 4. Let L be a commutative regular language with minimal commu-
tative automaton CL = (Σ,S1 × . . .×Sk, δ, s0, F ). Suppose F = {(s(l)1 , . . . , s

(l)
k ) |

l = 1, . . . |F |}. Then U
(l)
j := πj({w ∈ L | δ(s0, w) = (s(l)1 , . . . , s

(l)
k )}). These are

unary languages with U
(l)
j ⊆ {aj}∗.

If we write the sets U
(l)
j with 1 ≤ l ≤ |F | from the minimal commutative

automaton and j ∈ {1, . . . , k} we always implicitly assume a certain order rep-
resented by the l-parameter is given on the final state set F of the minimal
commutative automaton.

Example 1. Consider L = (a1a1)
∗
�(a2a2)

∗ ∪(a1a1a1)
∗
�a2(a2a2)

∗. See Fig. 1 for the
minimal commutative automaton. The final state sets are numbered in concordance
with the sets U

(l)
j from Definition 4. We have for example U

(2)
1 = a1a1(a1a1a1a1a1a1)

∗,

U
(1)
2 = (a2a2)

∗ and π1(L) = (a1a1)
∗ ∪ (a1a1a1)

∗ and π2(L) = (a2)
∗. Note that in this

case, the minimal commutative automaton equals the minimal automaton, for if two
states are in the top row and are both final or non-final, we see that after reading a2

we could distinguish them by some word from {a1}∗ on the bottom row, and a similar
reasoning applies to the bottom row.

Corollary 2. For a commutative regular language L we have L =
⋃n

l=1 U
(l)
1 �

. . .� U
(l)
k for some n ≥ 0.

Lemma 5. The minimal commutative automaton CL = (Σ,S1 × . . . ×
Sk, δ, s0, F ) for L accepts the languages U

(l)
j for j = 1, . . . , k, and for this purpose

only |Sj | states and a single final state are used.
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The minimal commutative automaton could also be used to accept the one-
letter projection languages.

Lemma 6. The minimal commutative automaton CL = (Σ,S1 × . . . ×
Sk, δ, s0, F ) for L accepts the projection languages πj(L) =

⋃n
l=1 U

(l)
j for j =

1, . . . , k, and for this purpose only |Sj | states are used.

The index and periods of the projected one-letter languages may differ in
general. For example let L = (a1a1)∗

� (a2a2)∗ ∪ (a1a1a1a1)∗
� a∗

2. We have
(i1, i2) = (0, 0) and (p1, p2) = (4, 2), but π1(L) = (a1a1)∗ and π2(L) = a∗

2. If
our commutative languages have a special form, two unary words over the same
letter aj are Nerode right-equivalent with respect to L exactly if they are Nerode
right-equivalent with respect to the one-letter projection language πj(L) over the
unary alphabet {aj}.

Lemma 7. Let L be language with L = π1(L) � . . . � πk(L). Then for each
j ∈ {1, . . . k} we have am

j ≡L an
j ⇔ am

j ≡πj(L) an
j , where on the right side the

equivalence is considered with respect to the unary alphabet {aj}.
The next notion is taken from [4]. Here we give a different definition, but

show its equivalence to the one from [4] in Lemma 8.

Definition 5. A commutative regular language L is called periodic if its mini-
mal commutative automaton has a single final state.

By our notation, this implies that L is periodic iff L = U
(1)
1 � . . .�U

(1)
k , but

we can say even more, namely that if we have a language as a shuffle product of
unary languages acceptable by an automaton with a single final state, then it is
periodic. Note that for languages of the form L = U1 � . . .� Uk as Uj = πj(L)
those languages Uj are uniquely determined. Hence for periodic regular languages
we have a normal form theorem.

Theorem 4. A commutative regular language L is periodic if and only if L =
U1 � U2 � . . . � Uk for unique unary regular languages Uj ⊆ {aj}∗ that are
acceptable by a unary automaton with a single final state.

Example 2. Note that we could not state something along the lines that L is periodic if
we could write L = U1� . . .�Uk. For example L = ((a1a1a1)

∗a1∪(a1a1a1)
∗)�(a2a2)

∗

is not periodic, if we write it in terms of the U
(l)
j -sets we would have L = (a1a1a1)

∗a1�

(a2a2)
∗ ∪ (a1a1a1)

∗
� (a2a2)

∗.

Corollary 3. Let L be a commutative regular language with minimal commuta-
tive automaton CL = (Σ,S1 × . . . × Sk, δ, s0, F ). We have L =

⋃|F |
l=0 U

(l)
1 � . . .�

U
(l)
k with the languages U

(l)
j from Definition 4. Then the languages of the form

U
(l)
1 � . . .� U

(l)
k are periodic.
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In [4] a sequence of vectors ρ = v0, v1, . . . , vk from N
k was called a base if

vi(j) = 0 for i, j ≥ 1 such that i �= j. The ρ-set was defined as Θ(ρ) = {v ∈
N

k : v = v0 + l1v1 + . . . + lkvk for some l1, . . . , lk ∈ N}. In some sense the
index and period vectors extend these notions to arbitrary regular commutative
languages. For periodic languages the entries in the period vector are precisely
the non-zero entries in the base vectors v1, . . . , vk. But v0 does not equal the
index vector, but its entries are at least the size of the index vector plus some
number determined by the position of the final state among the loop in the
minimal accepting automaton for infinite unary languages.

Lemma 8. A commutative regular language L is periodic if and only ψ(L) =
Θ(ρ) for some base ρ.

In [4] it was further noted that the base is unique, but follows also with
the uniqueness from Theorem 4. A language L is called strictly bounded if
L ⊆ a∗

1a
∗
2 . . . a∗

k. The maps L �→ perm(L) and L �→ L ∩ a∗
1 · · · a∗

k are mutu-
ally inverse bijections between the class of strictly bounded languages and the
class of commutative languages. Hence both language classes are closely related,
and the next Theorem 5 was firstly given in [6] formulated for strictly bounded
languages, and in [4] formulated for commutative languages. We note that it is
easily implied by utilizing the minimal commutative automaton.

Theorem 5. A commutative language is regular if and only if it is a finite union
of periodic languages.

Example 3. Note that we do not have uniqueness in Theorem 5, for example {a1,
a2}∗ = (a1)

∗
� (a2)

∗ = (a1)
∗
� (a2a2)

∗ ∪ (a1)
∗
� a2(a2a2)

∗.

The periodic languages fulfill the equation L = π1(L)� . . .� π2k(L), and
the class of all languages for which this equation holds true is a proper subclass
of all commutative languages, which occurs in later statements.

Example 4. The language aa∗
� b is periodic as its minimal commutative automaton

has a single final state. The language U = (a(aaa)∗ ∪ aa(aaa)∗) � b = a(aaa)∗
�

b ∪ aa(aaa)∗
� b is not periodic, as its minimal commutative automaton has more

than a single final state, but we have U = π1(U) � π2(U) here. For the language
V = aa(aaa)∗

� b(bb)∗ ∪ a(aaa)∗
� (bb)∗ we have (a(aaa)∗

� b(bb)∗) ∩ V = ∅ but as
π1(V ) = aa(aaa)∗ ∪ a(aaa)∗ and π2(V ) = b∗ the language V is properly contained in
π1(V )� π2(V ) as the latter contains a(aaa)∗

� b(bb)∗.

3 State Complexity Results

For a general commutative regular language we have the following inequality for
its state complexity.

Lemma 9. Let L be a commutative regular language with index vector
(i1, . . . , ik) and period vector (p1, . . . , pk). Then ij + pj ≤ sc(L) ≤ ∏k

r=1(ir + pr)
for j ∈ {1, . . . , k}.
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By Lemma 6 we can bound the state complexity of the projection languages
by the invariants ij and pj .

Lemma 10. If L is commutative regular with index vector (i1, . . . , ik) and period
vector (p1, . . . , pk) we have sc(πj(L)) ≤ ij + pj for each j ∈ {1, . . . , k}.

The state complexity of the one-letter projection languages πj(L) could be
strictly smaller than ij + pj , as is shown by L from Example 1, here we have
π2(L) = a∗

2, but i2 = 0, p2 = 2. But equality holds for periodic languages L and
more general by Lemma 7 we have the next corollary.

Corollary 4. If L = π1(L)� . . .�πk(L) is regular with index vector (i1, . . . , ik)
and period vector (p1, . . . , pk) then sc(πj(L)) = ij + pj and so sc(πj(L)) ≤
sc(L) ≤ ∏k

j=1 sc(πj(L)). In particular this holds for periodic languages.

In [8] it was shown that for an arbitrary (not necessarily commutative) regular
language L we have sc(πj(L)) ≤ e(1+o(1))

√
sc(L) ln sc(L). In the case of commuta-

tive regular languages combining Lemma 10 and Lemma 9 gives the following
improvement.

Corollary 5. For a regular commutative language L and j ∈ {1, . . . , k} we have
sc(πj(L)) ≤ sc(L).

Next our result on the state complexity of the shuffle for commutative regular
languages.

Theorem 6. Let U, V be commutative regular languages with index and period
vectors (i1, . . . , ik), (j1, . . . , jk) and (p1, . . . , pk), (q1, . . . , qk). Then the state com-
plexity of the shuffle U � V is at most

∏k
l=1(il + jl + 2 · lcm(pl, ql) − 1).

The following corollary is a little bit less involved in its statement, and helps
in giving a inequalities solely in terms of the state complexities of the original lan-
guages, without using the index and period vectors, as in Corollaries 7 and 8.

Corollary 6. Let U, V be commutative regular languages with index and period
vectors (i1, . . . , ik), (j1, . . . , jk) and (p1, . . . , pk), (q1, . . . , qk). Then the state com-
plexity of the shuffle U � V is at most

∏k
l=1 2(il + pl)(jl + ql).

Corollary 7. For periodic commutative languages U and V , we have sc(U �
V ) ≤ 2

∏k
j=1(sc(πj(U)) sc(πj(V ))).

Using Lemma 9 and Corollary 6 the state complexity of the shuffle of two
regular commutative languages U, V is at most (2 sc(U) sc(V ))|Σ|. Note that the
size of the alphabet appears here, and for fixed alphabets this is an improvement
over the general upper bound 2mn−1 + 2(m−1)(n−1)(2m−1 − 1)(2n−1 − 1) with
n = sc(U),m = sc(V ) as given in [1] for complete deterministic automata. But
note that the general bound is only tight for |Σ| ≥ mn−1 as shown in [1], hence
if the alphabet is fixed this bound is not reached by automata with sufficiently
large state sets. Later we will show that our bound given in Theorem 6 is tight
for any alphabet size.
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Corollary 8. The state complexity of the shuffle of two regular commutative
languages is at most (2 sc(U) sc(V ))|Σ|.

For unary languages with states complexities n,m by results from [13] we find
that n·m states are sufficient and necessary for the intersection and union, and so
we have no improvement over the general case. Similar for regular commutative
languages with more than one alphabet symbol we need that many states in the
worst case. But first we need some assertions about the minimal automaton for
a special class of commutative regular languages to prove this claim.

Lemma 11. If L = π1(L)� . . .�πk(L) is regular and the projection languages
are not aperiodic, then the minimal automaton equals the minimal commutative
automaton.

With Lemma 11 we can construct examples that reach the bound for inter-
section and shuffle in the next statements.

Theorem 7. For regular commutative languages U, V with state complexities n
and m respectively and |Σ| ≥ 1 arbitrary, n·m states are sufficient and necessary
to accept their union or intersection.

Theorem 8. The bound in Theorem 6 is sharp, i.e., there exists languages of
arbitrary large state complexities such that the state complexity of their shuffle
reaches the bound for every alphabet size.

4 A Decomposition Result

In this section we take a closer look at the aperiodic commutative languages and
at the commutative group languages. We show that for aperiodic commutative
languages we can improve our bound on the state complexity of the shuffle,
but also on the state complexities of the boolean operations. Also we show that
every commutative language could be written as a union of shuffle products of
an aperiodic language and a group language. It is easy to see that the standard
product automaton construction gives a permutation automaton if the original
automata are permutation-automata, and likewise yields an aperiodic automaton
if applied to aperiodic automata. Hence the following closure result is implied.

Theorem 9. The class of aperiodic and of group-languages is closed under the
boolean set operations union, intersection and complement.

For some results we need the following equivalence.

Lemma 12. A language is aperiodic (respectively a group language) if and only
if its minimal automaton is aperiodic (respectively a permutation-automaton).

Theorem 10. A commutative language is aperiodic if and only if its period
vector equals (1, . . . , 1). And it is a group-language if and only if the index vector
equals (0, . . . , 0).
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Corollary 9. If a commutative language L is aperiodic then its projection lan-
guages πj(L) for j = 1, . . . , k are aperiodic. Similarly if L is a group language,
then the projection languages are also group languages.

Example 5. The reverse implication does not hold in the above corollary. Let L =
a1(a1a1)

∗
� a2(a2a2)

∗ ∪ a1a1(a1a1)
∗
� (a2a2)

∗. This language is not aperiodic, but
π1(L) = a1a

∗
1 and π2(L) = a∗

2 are aperiodic languages. Similar for group languages
L = a∗

1 � {ε} ∪ {ε}� a∗
2 would be a counter-example for the reverse implication.

But we can prove the reverse direction for languages of the form L = π1(L)�
. . .� πk(L), in particular for periodic languages.

Lemma 13. If L = π1(L) � . . . � πk(L) then L is aperiodic (respectively a
group-language) if and only if each one-letter projection language is aperiodic
(respectively a group-language).

As every regular commutative language is a finite union of periodic languages4

by Theorem 5, and as we can decompose periodic languages in the shuffle product
of an aperiodic part and a group language part, which is motived by the same
result from unary languages, we can derive our decomposition result.

Theorem 11. If L is a commutative regular language, then it is a finite union of
commutative languages of the form U�V where U is aperiodic and commutative
and V is a commutative group-language.

Using Theorem 6 and results from [13] and [2], we can refine our state com-
plexity results for aperiodic languages. The method of proof is to look closely
at automata for the operations on unary languages, which is done in the above
mentioned articles. We apply those results to the unary projection languages
and combine them appropriately to get an automaton for the result, a similar
method is used in the proof of Theorem 6.

Theorem 12. Let U and V be aperiodic commutative languages with index vec-
tors (i1, . . . , ik) and (j1, . . . , jk). Then the state complexity of union and intersec-
tion is at most

∏k
l=1(max{il, jl} + 1). The state complexity of the shuffle U �V

is at most
∏k

l=1(il + jl + 1).

As for aperiodic languages by Theorem 10 the period is one, using Lemma 9
we get the next corollary to Theorem 12.

Corollary 10. If U, V are aperiodic commutative languages, then the state com-
plexity of union and intersection is at most (max{sc(U), sc(V )})|Σ|. The state
complexity of the shuffle U � V is at most (sc(U) + sc(V ) − 1)|Σ|.

4 Note that the notions of periodic and aperiodic languages appearing in this article
are not meant to be related in dichotomous way.
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5 Conclusion

We have examined the state complexity of shuffle, intersection and union for
commutative regular languages and have given a tight bound for shuffle that is
far better than the general bound given in [1]. We used the minimal commutative
automaton from [7] introduced with the help of the Nerode right-congruence
relation, investigated it further and introduced the index and period vector of
some commutative regular language. We believe this to be useful notions also
for other and future questions related to commutative regular languages.

In the course of our investigations we discovered two strict subclasses, the
periodic languages from [4], and those of the form L = π1(L)�. . .�πk(L), which
are properly contained in each other as shown by Example 4, and investigated
their properties and the relation of the minimal commutative automaton to the
general minimal automaton.
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Abstract. We initiate an algebraic approach to study DNA origami
structures. We identify two types of basic building blocks and describe
a DNA origami structure by their composition. These building blocks
are taken as generators of a monoid, called the origami monoid, and
motivated by the well studied Temperley-Lieb algebras, we identify a
set of relations that characterize the origami monoid. We present several
observations about Green’s relations for the origami monoid and study
the relations to a direct product of Jones monoids, which is a morphic
image of an origami monoid.

Keywords: DNA origami · Temperley-Lieb algebra ·
Rewriting system

1 Introduction

In the past few decades, bottom-up assemblies at the nano scale have intro-
duced new materials and molecular scaffoldings producing structures that have
wide ranging applications (e.g. [5,8]), even materials that seem to violate stan-
dard chemistry behavior (e.g. [14]). “DNA origami”, introduced by Rothemund
[11] in 2006, significantly facilitated the construction of ∼100 × 100 nm 2D
DNA nanostructures. The method typically involves combining an M13 single-
stranded cyclic viral molecule called scaffold with 200–250 short staple strands
to produce about 100 nm diameter 2D shapes [11], and more recently also to
produce a variety of 3D constructs (e.g. [4]). Figure 1 (left) shows a schematic
of an origami structure, where the thick black line represents a portion of the
cyclic vector plasmid outlining the shape, and the colored lines are schematics
of the short strands that keep the cyclic molecule folded in the shape. Because
the chemical construction of DNA origami is much easier than previous meth-
ods, this form of DNA nanotechnology has become popular, with perhaps 300
laboratories in the world today focusing on it.

Although numerous laboratories around the world are successful in achieving
various shapes with DNA origami, theoretical understanding and characteriza-
tions of these shapes is still lacking. With this paper we propose an algebraic
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system to describe and investigate DNA origami structures. The staple strands
usually have 2–4 segments of about 8 bases joining 2–3 locations (folds) of the
scaffold. All cross-overs between two staple strands and between two neighboring
folds of the scaffold are antiparallel. We divide the DNA origami structure to
local scaffold-staples interactions and to such local interactions we associate a
generator of a monoid which we call an origami monoid. The origami monoid we
present here is closely related to the Jones monoid [2,3] which is a monoid vari-
ant of the well studied Temperley-Lieb algebra [1]. We show that a DNA origami
structure can be associated to an element of an origami monoid and propose a
set of rewriting rules that are plausible for DNA segments to conform in DNA
origami. The number of generators of an origami monoid depends on the number
of parallel folds of the scaffold in the DNA origami. We observe that a direct
product of two Jones monoids is a surjective image of an origami monoid, and
we study the structure of the origami monoids through Green’s relations. We
characterize the origami monoids for small number of scaffold folds and propose
several conjectures for general origami monoids.

Fig. 1. (Left) A schematic figure of DNA origami structure with scaffold in black and
staples in color (edited from [11]). (Right) Various shapes made by DNA origami, from
[11]. Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer Nature (Folding DNA to create nanoscale shapes and patterns, Paul W. K.
Rothemund), [4561420919172] 2006

2 Preliminaries

2.1 Jones Monoids

Temperley-Lieb algebras have been used in many fields, particularly in physics
and knot theory (see, for example, [1,2,7,9]). The Jones monoid Jn is derived
from the Temperley-Lieb algebras and is defined with generators and relations
as follows [2,9]. The monoid Jn is generated by hi, i = 1, . . . , n − 1, and has
relations

(B) hihjhi = hi for |i−j| = 1, (C) hihi = hi (D) hihj = hjhi for |i−j| ≥ 2.
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The elements of Jn may be represented as planar diagrams with non-crossing
lines connecting n points at the top and n points at the bottom of the diagrams.
The diagram for the generator hi is depicted in Fig. 2(A) [9]. For each hi, parallel
vertical lines connect the top jth and bottom jth points (j �= i, i+1) of the dia-
gram for all but the ith and (i+1)st points, while the top ith and (i+1)st points
are connected, and the bottom ith and (i+1)st points are connected. Multipli-
cation of two elements is represented by concatenation of diagrams, placing the
diagram of the first element on top of the second, and removing closed loops.
The diagramatic representation of the monoid relations are depicted in Fig. 2(B),
(C) and (D). More details can be found in [2,9].

(D)(B)(A)

i

(C)

Fig. 2. The generators (A) and relations (B, C, D) of the Jones monoid

2.2 String Rewriting Systems

An alphabet Σ is a non-empty finite set of symbols. A word over Σ is a finite
sequence of elements (symbols) from Σ, and Σ∗ is the set of all words over
Σ. This set includes the empty string, the word containing no symbols, often
written as 1. A word u is called a factor of a word v if there exist words x and
y, which may be empty, such that v = xuy. Note that this is also sometimes
referred to as a subword.

A string rewriting system, (Σ,R) consists of an alphabet Σ and a set of
rewriting rules, R, which is a binary relation on Σ∗. An element (x, y) of R is
called a rewriting rule, and is written x → y. We extend R to factors of words −→

R
,

where for any s, t ∈ Σ∗, s −→
R

t if there exist x, y, u, v ∈ Σ∗ such that s = uxv,

t = uyv, and x → y. We also write s → t for simplicity if no confusion arises.
If there is a sequence of words u = x1 → x2 → · · · → xn = v in a rewriting

system (Σ∗, R), we write u →∗ v. An element x ∈ Σ∗ is confluent if for all
y, z ∈ Σ∗ such that x →∗ y and x →∗ z, there exists w ∈ Σ∗ such that y →∗ w
and z →∗ w. If all words in Σ∗ are confluent, then (Σ∗, R) is called confluent.
In particular, if R is symmetric, then the system (Σ∗, R) is confluent.

2.3 Monoids and Green’s Relations

A monoid is a pair (M, ·) where M is a set and · is an associative binary operation
on M that has an identity element 1. The set Σ∗ is a (free) monoid generated by
Σ with word concatenation as the binary operation, and the empty string as the
identity element. Presentations of monoids are defined from the free monoid in a



Algebraic Systems for DNA Origami 167

manner similar to presentations of groups. Rewriting systems define the monoid
relations by taking the equivalence closure of the rewriting rules, which makes
the rewriting system confluent.

For a monoid M , the principal left (resp. right) ideal generated by a ∈ M is
defined by Ma = {xa | x ∈ M} (resp. aM), and the principal two-sided ideal
s MaM . Green’s relations L , R, and J are defined for a, b ∈ M by aL b if
Ma = Mb, aRb if aM = bM and aJ b if MaM = MbM . Green’s H relation is
defined by aH b if aL b and aRb. Green’s D relation is defined by aDb if there
is c such that aL c and cRb. The equivalence classes of L are called L -classes,
and similarly for the other relations. In a finite monoid, D and J coincide. The
D-classes can be represented in a matrix form called egg boxes, where the rows
represent R-classes, columns L -classes, and each entry is an H -class. See [10]
for more details.

Example 1. In [3], D-classes are obtained for Jones and related monoids. Here
we include an example of a D-class of J3, which has a D-class consisting of
the identity element and another class of the (2 × 2)-matrix below, where each
element is a an H -class, which in this case are singletons:

[
h1 h1h2

h2h1 h2

]

where rows {h1, h1h2}, {h2h1, h2}, are the R-classes and columns {h1, h2h1},
{h1h2, h2} are the L -classes in this D-class. For instance, we see that multiplying
h1 and h1h2 by hi to the right gives rise to the same right ideal.

3 Origami Monoid On

3.1 Generators

Here we identify simple building blocks in DNA origami structures. With each
block type we associate a generator of a monoid and derive string rewriting
systems to describe DNA structures. We have two motivations for our choices.
(1) In Fig. 1 (left), one notices repeated patterns of simple building blocks whose
concatenation builds a larger structure. One type of these patterns is a cross-
over by the staple strands, and the other is a cross-over of the scaffold strand.
Thus, a natural approach to describe DNA origami structures symbolically is
to associate generators of an algebraic system to simple building blocks, and
to take multiplication in the system to be presented as concatenation of the
blocks. (2) In knot theory, a knot diagram is decomposed into basic building
blocks of crossings or tangles. For the Kauffman bracket version of the Jones
polynomial [7], for example, whose generators resemble building blocks observed
in Fig. 1 (left), are used.

For a positive integer n we define a monoid On, where n represents the
number of vertical double stranded DNA strands, that is, n is the number of
parallel folds of the scaffold. For the structure in Fig. 1, n = 6. The generators of
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On are denoted by αi (corresponds to anti-parallel staple strands cross-over) and
βi (corresponds to antiparallel scaffold strand cross-over) for i = 1, . . . , n − 1,
as depicted in Fig. 3. The subscript i represents the position of the left scaffold
corresponding to αi and βi, respectively, by starting at 1 from the leftmost
scaffold strand fold and counting right (Fig. 4).

Because DNA is chemically oriented, and the strands in the double stranded
DNA are oppositely oriented, we define an orientation within the building blocks
corresponding to generators. Because parallel scaffold strands are obtained by
folding of the scaffold, consecutive scaffold strands run in alternating directions,
while staple strands run in the opposite direction to the scaffold, and for con-
vention we take that the first scaffold runs in an upwards direction. In this way,
the direction of the scaffold/staple strands for any particular αi or βi depends
entirely on the parity of i, as shown in Fig. 3.

(a) αi, i odd (b) αi, i even (c) βi, i odd (d) βi, i even

Fig. 3. The generators identified Fig. 4. α4 in the context of a
6-fold stranded structure

Figure 4 shows a diagram corresponding to α4 as an example of the “full
picture” of one of these generators. For the sake of brevity, we neglect to draw
the extra scaffold and staple strands in most diagrams, but it may be helpful to
imagine them when we describe their concatenation. In addition, we often use
αi and βi to refer to the corresponding diagrams. As in Fig. 4, parallel scaffolds
in generator diagrams do not have counterpart parallel staples.

3.2 Concatenation as a Monoid Operation

To justify modeling DNA origami structures by words over the generators we
make a correspondence between concatenations of generators αi, βi and con-
catenations of DNA segments. For a natural number n ≥ 2, the set of generators
of the monoid On is the set Σn = {α1, α2, . . . , αn−1, β1, β2, . . . , βn−1}. For a
product of two generators xi and yj in Σn, we place the diagram of the first
generator above the second, lining up the scaffold strings of the two generators,
and then we connect each respective scaffold string. If the two generators are
adjacent, that is, if for indices i and j it holds |i − j| ≤ 1, then we also connect
their staples as described below. Otherwise, if |i − j| ≥ 2, no staple connection
is performed and the concatenation is finished.

We define a convention of connecting staples for adjacent generators, which is
motivated by the manner in which staples connect in Fig. 1. Note how the staples
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of α-type protrude “outside” of the scaffold in Fig. 3. We refer to these ends of a
staple as an“extending staple-ends”, and all other staple ends as “non-extending
staple-ends”. We connect staples everywhere except when two non-extending
staple-ends would have to cross a scaffold to connect (recall that the scaffold
strands are connected first), as can be seen in Figs. 6 and 7.

Our choice of coloring staples in the figure is arbitrary, and we re-color sta-
ples in the same color if they get connected when we concatenate generators.
By exhausting all possibilities, one can see that under our convention of connec-
tion, the staples remain short by concatenation without joining more than three
scaffold folds. Note that concatenation of three or more generators is associative
because generators can be connected in an associative manner following the rules
described above.

Fig. 5. αiαi+1, i odd Fig. 6. αiβi, i odd Fig. 7. αiαi−1, i odd

3.3 Relations in On

The rewriting rules (which generate the relations within the monoids) are moti-
vated by similarity between the DNA origami structures as seen in Fig. 1 (left)
and the diagrams of Jones monoids in Fig. 2. It is deemed that the relations
of Jones monoids simplify the DNA origami structure, and may be useful for
designing efficient and more solid structures by the rewriting rules proposed
below. The figures in this section are for justifying feasibility of corresponding
DNA structures, and to represent the rewriting system diagrammatically.

Rewriting Rules. For Σn = {α1, α2, . . . , αn−1, β1, β2, . . . , βn−1}, we establish
a set of rewriting rules that allows simplification of the DNA structure descrip-
tion. Define a string rewriting system (Σn, R) as follows.

To ease the notation, we define a bar on Σn by αi = βi and βi = αi, and
extend this operation to the free monoid by defining w for a word w by applying
bar to each letter of w. Let γ ∈ {α, β} and i ∈ {1, . . . , n − 1}, then we have:

(1) (Idempotency) γiγi → γi

(2) (Left Jones relation) γiγi+1γi → γi

(3) (Right Jones relation) γiγi−1γi → γi

(4) (Inter − commutation) γiγj → γjγi, for |i − j| ≥ 1
(5) (Intra − commutation) γiγj → γjγi, for |i − j| ≥ 2
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The rules are extended to Σ∗
n as described in Sect. 2.2.

The rewriting rules are inspired by Jones monoids, and they are also reflected
in the reality of the diagrams of DNA origami, as shown in Figs. 8 and 9. Specif-
ically, a pattern in the left of Fig. 8(a) has a small staple circle, which is deemed
to be simplified by the right side. Staple strands are holding the scaffold in a
certain position (obtained to the right of the arrow) and the cyclic staple only
reinforces the structure. The small circle of a scaffold in Fig. 8(b) left cannot
form in DNA origami, and therefore is simplified to the structure on the right
of the arrow.

(a) αiαi, i odd (b) βiβi, i odd

Fig. 8. Two examples of idempotency

Fig. 9. Examples of (A) Jones relation, (B) Inter-commutation, and (C) Intra-
commutation

Deriving Additional Rewriting Rules by Substitution. Since DNA
origami structure has no internal scaffold loops, applying rewriting rules sim-
ilar to (1)–(5) to concatenations of generators, that is, products of α’s and β’s,
is plausible for DNA origami structures. We extend these rules to more general
substitution rules for our specific case of generators αi and βi by considering
other γ’s, for instance γ = αβ. The composition diagrams show that such sub-
stitution rules describe the DNA origami staples/scaffold structure in the way
we proposed above (see Fig. 10), while these new structures produce rules that
cannot be derived from the listed ones in (1)–(5). Therefore we consider rewrit-
ing rules for concatenations of generators α’s and β’s. Furthermore, we focus
on concatenations of generators with the same or ‘neighboring’ indexes, because
only for these generators can the ends of the staples connect. However, αi and βj

(i �= j) can commute freely (by the inter-communication rule (4)), so we also do
not need to consider substitutions such as γ = αiβi+1. Further, we observe that
by setting γ ∈ {αiβi, βiαi}, the idempotency rule (1) holds as seen in Fig. 10.
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Therefore there are only four cases to consider: γ ∈ {αiβi, βiαi, αiβiαi, βiαiβi}
and check the plausibility of corresponding DNA diagrams.

First, consider γ ∈ {αβ, βα}, where γi indicates αiβi. Then substituting γ
into rewriting rules (1), (2), and (3) gives us new rewriting rules (1a), (2a), and
(3a). For example, (1a) consists of αiβiαiβi → αiβi and βiαiβiαi → βiαi. Note
that a provisional rewriting rule (5a) could easily be obtained by the rewriting
rule (5), so we do not consider it as a new rule. We also do not add rewriting
rule (4a) since it conflicts with the structure of the scaffold, as shown in Fig. 11.
Notice that the scaffold strand at the top left is connected to the second strand
only on the left side of the figure, and on the right hand side of the figure it is
connected to the third strand. Next we consider γ ∈ {αβα, βαβ}, which gives us
rewriting rules (1b), (2b) and (3b). Similarly as before, rules (4b) and (5b) are
not added, (4b) because of incompatible staple strands, and (5b) because it can
be derived from (5). In addition, (1b) can also be derived from (1) and (1a), so
it is not considered as a new rule. In the end, we are left with 10 rewriting rules
which we use to define the general rewriting rules and the monoids.

Fig. 10. Substitution of αβ and βα
(resp.) into the first rewriting rule (i odd)

Fig. 11. Substitution of γ = αβ into
rewriting rule (4) for i odd.

Definition 1. The origami monoid On is the monoid with a set of generators
Σn and relations generated by the rewriting rules (1) through (5), (1a), (2a),
(3a), (2b), (3b).

4 Monoid Structure of On

In this section, we present computational results on Green’s D-classes and com-
pare them to those for the Jones monoids obtained in [3]. For comparison, we
use the monoid epimorphism from On to the product Jn × Jn defined below.

Let Jn be the Jones monoid of degree n with generators hi, i = 1, . . . , n − 1.
We denote the submonoid of On generated by αs (resp. βs), by Oα

n (resp. Oβ
n).

An equivalent description for Oα
n is the set of all words consisting of only αs

(plus the empty word), and similarly for Oβ
n. Let Oαβ

n = [On \ (Oα
n ∪ Oβ

n)] ∪ {1}.

Lemma 1. Oαβ
n is a submonoid of On.



172 J. Garrett et al.

Proof. The left and right hand sides of each rewriting rule show that rewriting
a word by these rules does not change the absence, or existence of at least one α
in the word, and similarly for β. Thus multiplication of two words in Oαβ

n does
not remove α’s or β’s from the product, hence the product remains in Oαβ

n . 	

Let pα : On → Jn be the epimorphism defined by ‘projections’ pα(αi) = hi

and pα(βi) = 1, for all i = 1, . . . , n − 1, and let pβ be defined similarly for βs.
Define p : On → Jn × Jn by p(x) = (pα(x), pβ(x)) for x ∈ On. Since the monoid
relations of On hold under p, we have the following:

– Oα
n

∼= Oβ
n

∼= Jn.
– The map p : On → Jn × Jn is a surjective monoid morphism.

In particular, it follows that the order of On is at least |Jn|2.

4.1 Orders of Origami Monoids

For n = 2 we can determine the order of O2 as follows.

Lemma 2. Every non-empty element of O2 can be represented by the rewriting
rules as one of the following words: α1, β1, α1β1, β1α1, α1β1α1, or β1α1β1.

Proof. Since Σ2 = {α1, β1}, we list the words of length 3 or less exhaustively.
After applying rewriting rules to these words, they reduce to those words listed
in the statement.

Now consider a word w with length greater than 3. We show that w can be
reduced to a word with length 3 or less. If α1α1 or β1β1 are factors of w, we reduce
them to α1 or β1, respectively. Repeating this process, we may assume that w
is an alternating sequence of α1 and β1. Since α1β1 and β1α1 are idempotent,
w reduces to a word of length less than 4. 	


It is known that the elements of the Jones monoid Jn are in bijection with the
linear chord diagrams obtained from the arcs of the diagrams representing them,
and the total number of such chord diagrams is equal to the Catalan number

Cn =
1

n + 1

(
2n
n

)
[2]. Thus the numbers of elements of Jn for n = 2, . . . , 6

are 2, 5, 14, 42, 429, respectively. GAP computations show that the number of
non-identity elements in O3, O4, O5 and O6 are 44, 293, 2179, 19086 respectively
[12]. This sequence of integers is not listed in the OEIS [13] list of sequences.
We observe that the orders of origami monoids are much larger. In fact it is not
apparent from the definition whether they are all finite. Thus we conjecture the
following.

Conjecture 1. The order of On is finite for all n.
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4.2 Green’s Classes

We have the following observations for Green’s classes of On for general n.

Lemma 3. Let x ∈ Oα
n, y ∈ Oαβ

n be nonempty words and let Dx and Dy be the
D-classes containing x and y, respectively. Then Dx �= Dy.

Proof. By Lemma 1, if yL a, then a ∈ Oαβ
n , and if aRb, then b ∈ Oαβ

n . Thus we
cannot have yDx.

Corollary 1. The conclusion of Lemma 3 holds for x ∈ Oβ
n, y ∈ Oαβ

n and x ∈
Oα

n, y ∈ Oβ
n.

Remark 1. It follows from the definition of p that every D-class of On maps into
a D-class of Jn × Jn, and by Lemma 1.4 Ch. 5 in [6] the map is also onto. Also,
if On is finite, then each D-class of Jn × Jn is an image of a D-class of On by
p. We conjecture that there is in fact a one-to-one correspondence between the
D-classes of On and those of Jn × Jn. We show that this observation is true for
n ≤ 6.
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Fig. 12. D-classes of Jn (left) and On (right) for n = 3 (top left), n = 4 (bottom left),
and n = 5 (right)

4.3 Green’s Classes for n ≤ 6

Green’s relations for Jn have been studied in [7]. We show results of GAP compu-
tations that determine D-classes of origami monoids On for n ≤ 6; the structures
are presented in Figs. 12 and 13. Shaded squares represent H -classes which con-
tain an idempotent. We note that for n ≤ 6, every H -class of On is singleton,
so each square in the figure represents precisely one element of On.



174 J. Garrett et al.

 1

* * *

* *

* * *

* * *

* *

 3

* * * * * * * * *

* * * *

* * * * * * *

* * * * * * *

* * * * *

* * * * * *

* * * * * * * *

* * * * * *

* * * * *

 4

* * * * * * * * * * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * *

* * * * * *

* * * * * *

* * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * *

* * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * * * *

* * * * * *

 2

* * *

* *

* * *

* * *

* *

 5

* * * * * * * * *

* * * *

* * * * * * *

* * * * * * *

* * * * *

* * * * * *

* * * * * * * *

* * * * * *

* * * * *

 6

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

 10

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * *

* * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * *

 7

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * *

 8

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

 12

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

 9

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

 11

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * *

 13

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

 14

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

 15

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * *

Fig. 13. D-classes of O6 (left) and re-arranged and resized to fit the grid (right)

For n ≤ 6, since On is finite, the J and D relations coincide. A preorder
≤D is defined on On by a ≤D b if the two-sided principal ideal generated by
a is a subset of the two-sided principal ideal generated by b. This condition is
equivalent to the existence of x, y ∈ On such that xby = a. Since any two elements
of a D-class generate the same principal ideal, this preorder may be extended to
the set of D-classes of On such that D ≤D D′ if for a ∈ D and b ∈ D′, a ≤D b.
The lines between D-classes in the figures represent this preorder.

The relations between On and Jn described in Sect. 4.2 can be observed in
Fig. 12. We omit the D-class consisting of only the empty word from the dia-
grams, which is maximal among D-classes. For each n, two copies of the D-classes
of Jn can be found as the D-classes of Oα

n and Oβ
n, respectively, in the D-classes

of On. As described in Remark 1, these correspond to the direct product of one
identity and one non-identity D-class of Jn. The other D-classes are those of
Oαβ

n , and correspond to the direct product of two non-identity D-classes of Jn.
Which pair of D-classes of Jn correspond to which D-class of On can be better
seen in Fig. 13.

In Fig. 13, we arrange the D-classes of O6 to better illustrate the relation
between the D-classes of Jn, although the same process may be applied to other
n. On the right, the preorder of the D-classes remains, applying left-to-right as
well as top-to-bottom. The D-classes along the top row and left column are the
D-classes of Oα

6 and O
β
6 respectively, which as previously described are isomor-

phic to Jn. For any D-class of Oαβ
n , the D-classes which it maps onto are greater

in the preorder. Thus the grid of D-classes may be thought of as a table, with
the row and column of any entry determining the image of the D-class by pα and
pβ , respectively. Since rewriting rules are equivalent for α and β, the D-classes
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are symmetric up to switching rows and columns. This can be easily seen in
the D-classes in the upper right and lower left corners. However, the rows and
columns of any D-class may be ordered arbitrarily, and are automated by GAP,
making the symmetry non-obvious for other D-classes.

5 Concluding Remarks

In this paper, motivated by similarity to Temperley-Lieb algebras, we introduced
an algebraic system that describes DNA origami structures. Generators in this
system are defined such that they mimic basic building blocks of DNA origami.
Following the structural properties of the DNA origami, we established rewriting
rules, as well as monoids whose elements conform to the relations obtained from
these rules. To each DNA origami structure we can associate an element from
an appropriate monoid. For example, the structure in Fig. 1 corresponds to the
element represented by the word α1α3α5β2β4. We hope that such representations
of DNA origami may provide a tool for distinguishing constructs.

The monoids introduced here are connected to Jones monoids, and we pro-
vide several conjectures with the goal of relating them to known monoids. For
example, from our findings for n ≤ 6, we conjecture that On are finite for all
n, and H -classes are singletons. We also provide conjectures relating to the D-
classes of On and Jn under the morphism p. Specifically, we conjecture that the
D-classes of On are in one-to-one correspondence with the D-classes of Jn × Jn.
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Abstract. Extending our previous work [7], we introduce a novel tech-
nique to model and compute arbitrary strength covering arrays over v-ary
alphabets, using methods arising from linear algebra commutative alge-
bra and symbolic computation. Concrete instances of covering arrays for
given parameters then appear as points in varieties as they occur in solu-
tions of multivariate polynomial equation systems. To solve these systems
we apply polynomial solvers based on the theory of Gröbner bases and
exhaustive search using serial and parallel programming techniques.

Keywords: Covering arrays · Algebraic models · Solvers

1 Introduction

In recent years, covering arrays (CAs) are applied in a branch of automated soft-
ware testing called combinatorial testing [12]. Traditional applications of espe-
cially orthogonal and covering arrays lie in the field of Design of Experiments,
however, the requirements of customizability of combinatorial testing led to the
primary usage of covering arrays. Especially for applications in software testing
the defining property of covering arrays, coverage of all t-tuples in subarrays, has
been shown particularly beneficial; see [13]. Closely related NP-hard problems,
as in [6,15,16], suggest that also the problem of finding optimal covering arrays
is a hard combinatorial optimization problem, however, its actual complexity
remains unknown [9].

Several approaches for the construction of CAs have been introduced in the
literature so far. Amongst them are greedy heuristics, metaheuristics, combina-
torial constructions and exact methods, see [17] and references therein. Exact
methods can be based on backtracking, constraint programming [8] or on com-
putational algebra formalisms as in [7]. For a survey of CA generation methods,
the interested reader might have a look at [4] or [17].

c© Springer Nature Switzerland AG 2019
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Structure. The work presented in this paper builds upon the work presented in
[7]. In particular, in Sect. 3 the algebraic approach of modelling binary CAs of
strength two in [7] is extended for CAs over arbitrary alphabets and for higher
strengths. In Sect. 3.1, based on our algebraic model, we devise an algorithm for
the construction of such CAs. Further, in Sect. 4 we discuss how the proposed
algebraic modelling of CAs can be used when trying to extend a given CA with
an additional column and show how the degrees of the appearing polynomials
can be reduced. In Sect. 5 we list some experiments where we compute CAs
arising as solutions of equation systems using different solving techniques. Last,
Sect. 6 concludes the work and points out directions for future work.

2 Preliminaries

Notations. Throughout this paper we use the abbreviation [v] for the integer
interval {0, 1, . . . , v − 1}, and by Zv := Z/(vZ) the ring of integers modulo v. In
the scope of this paper we may identify the elements of Zv with the elements
of [v]. By

({k}
t

)
we denote the set of all subsets of {1, . . . , k} of cardinality t.

Further, with 1 we denote the vector having all entries equal to 1; the length of
the vector is clear from the context. Additionally, for vectors h = (h1, . . . , hN )T

we use the notation prod(h) :=
∏N

i=1 hi.
Although in general CAs can be over arbitrary alphabets, we restrict our

attention to arrays over integer intervals [v], as the properties we consider in
this paper only depend on the size of the alphabets rather than their actual
elements. The following definition follows the one given in [5], but is phrased
slightly different.

Definition 1. A covering array CA(N ; t, k, v) is an N × k array (c1, . . . , ck)
with the following properties:

(i) For all j ∈ [k] the values in the j-th column cj belong to the set {0, . . . , v−1}.
(ii) For each selection {cj1 , . . . , cjt} ⊆ {c1, . . . , ck} of t different columns, the

subarray that is comprised by the columns cj1 , . . . , cjt has the property that
every t-tuple in [v]t appears at least once as a row.

The values t, k and v are also referred to as the CA parameters, and the param-
eter t is also called the strength of the CA.

The smallest integer N for which a CA(N ; t, k, v) exists is called the covering
array number (CAN) and is denoted as CAN(t, k, v). Arrays that meet this bound
are called optimal. That this number is well defined and finite for all 1 ≤ t ≤ k
and alphabet sizes v, follows from the fact that the full product [v]k always
constitutes a CA for the respective parameters. The following notion formalizes
the concept of t-tuples, and can be also found in [1].

Definition 2. For a given alphabet size v, we define a v-ary t-way interaction
as a set of pairs T = {(p1, u1), . . . , (pt, ut)} with 1 ≤ p1 < p2 < . . . pt ≤ k and
ui ∈ [v] ∀i = 1, . . . , t. Usually the underlying alphabet is clear from the context
and we speak of t-way interactions for short.
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We say an N × k array covers a t-way interaction {(p1, u1), . . . , (pt, ut)}, if
one of its rows has the entry ui in position pi for all i ∈ {1, . . . , t}.

Aside from the problem of determining CANs, a variety of different problems
arise in the realm of covering arrays. An extensive list can be found in [7]. Due
to space limitations, in this paper we consider the following two problems, which
correspond to Problems 2 and 9 of [7].

Problem 1 (Computational Existence). For given CA parameters and given
N ∈ N, construct one/all covering array(s) with exactly N rows, or terminate
indicating there exists no such CA.

Problem 2 (Computational Factor Extension). Given a covering array and an
alphabet size v, construct one/all new additional column(s) such that the
extended matrix constitutes a covering array with the additional column (not
adding any additional rows), or terminate indicating there exists no such a
column.

3 Algebraic Models for CAs of Arbitrary Strength

Definition 3 (v-ary t-way interaction distinguish property). Let (R,+, ·,
0, 1) be an integral domain with 1, and a1, . . . , at ∈ R. We say that (R, a1, . . . , at)
has the v-ary t-way interaction distinguish property, if and only if ∀ui ∈ [v], ∀i =
1, . . . , t the elements u1a1 + . . . + utat ∈ R, are pairwise different, where we
interpret the natural numbers u ∈ [v] embedded in R as (1 + . . . + 1︸ ︷︷ ︸

u

).

Remark. Notice that from the v-ary t-way interaction distinguish property, for
t ≥ 1, it immediately follows that char(R) ≥ v or char(R) = 0. Hence the set
[v] = {0, 1, . . . , v − 1} of natural numbers is mapped injectively into R.

When the underlying alphabet [v] is clear from the context, we also speak of
the t-way interaction distinguish property for short. We can interpret the notion
of the t-way interaction distinguish property as a special kind of linear inde-
pendence, considering the appropriate algebraic structures. For that purpose,
using the same notations as in Definition 3, we regard the integral domain R
as a unitary Zv-module. Then (R, a1, . . . , at) having the v-ary t-way interaction
distinguish property is equivalent to the linear independence of a1, . . . , at. We
give some examples of rings R and elements a1, . . . , at, such that (R, a1, . . . , at)
has the v-ary t-way interaction distinguish property:

1. For a ring S of characteristic char(S) ≥ v or char(S) = 0, let R =
S[x1, . . . , xn] be the ring of all polynomials in the indeterminates xi, and
ai = xi ∀i = 1, . . . , n.

2. Let K ≥ L be fields of characteristic char(L) ≥ v or char(L) = 0, R = L and
let a1, . . . , at ∈ K be algebraically independent over L.
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Lemma 1. Let (R, a1, . . . , at) have the v-ary t-way interaction distinguish prop-
erty, then for any (u1, . . . , ut) ∈ [v]t and (x1, . . . , xt) ∈ [v]t we have:

(x1, . . . , xt) = (u1, . . . , ut) ⇔ (x1, . . . , xt) · (a1, . . . , at)T −
t∑

i=1

uiai = 0.

Proof. The claim follows directly from the definition of the v-ary t-way interac-
tion distinguish property.

In the following we will use elements a1, . . . , at to select t different columns
of a given matrix. For that purpose we need the following additional definition.

Definition 4. Let t ≤ k ∈ N and C = {c1, . . . , ct} ⊆ [k] with |C| = t. Further
let (R,+, ·, 0) be a ring and a1, . . . , at ∈ R \ {0}, then we define ιCt,k(a1, . . . , at)
as the (column) vector of length k having entry ai in position ci, ∀i = 1, . . . , t
and the entry 0 in all other positions.

For example, for C = {2, 3, 6} then ιC3,6(a1, a2, a3) = (0, a1, a2, 0, 0, a3)T .

Lemma 2. Let R be an integral domain (with 1) and (R, a1, . . . , at) have the
v-ary t-way interaction distinguish property, M be a given N × k matrix M =
(m1, . . . ,mk) defined over R, C = {c1, . . . , ct} with 1 ≤ c1 < . . . < ct ≤ k and
MC = (mc1 , . . . ,mct) be the matrix comprised of the t columns defined by C.
Further consider a t-tuple (u1, . . . , ut) ∈ [v]t, then the following statements are
equivalent:

1. The tuple (u1, . . . , ut) appears at least once as a row in the matrix MC .
2. The vector h := (h1, . . . , hN )T := M · ιCt,k(a1, . . . , at)−1(

∑t
i=1 uiai) contains

at least one component equal to zero.
3. prod(h) =

∏N
i=1 hi = 0.

Proof. The equivalence of 1 and 2 follows from Lemma 1. The equivalence of 2
and 3 holds since R is an integral domain.

Equations as in item 2 of Lemma 2 are formulated in such a way that they
are semantically equivalent to the appearance of a t-way interaction in an array.
Considering these equations for all t-way interactions and all selections of t
columns, Lemma 2 leads to the main result of this section.

Theorem 1. Let R be a ring and (R, a1, . . . , at) have the v-ary t-way interaction
distinguish property. Then for a matrix M ∈ Z

N×k
v the following statements are

equivalent :

1. M is a CA(N ; t, k, v)
2. ∀C ∈ ({k}

t

)
, ∀(u1, . . . , ut) ∈ [v]t:

prod(M · ιCt,k(a1, . . . , at) − 1 · (u1, . . . , ut) · (a1, . . . , at)T ) = 0. (1)
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Proof. The assertion of the theorem follows immediately considering that the
equivalence of 2 and 3 of Lemma 2 holds for all C ⊆ {1, . . . , k} with |C| = t and
all (u1, . . . , ut) ∈ [v]t.

Based on this algebraic characterization of CAs, we can now describe the pre-
viously mentioned computational or decisional problems for CAs as related prob-
lems found in multivariate polynomial algebra. In particular, through our alge-
braic modelling the problem(s) of constructing and computing covering arrays
can be formulated as instances of algebraic equation systems, where each solution
of the system, provided existence, corresponds to a covering array.

Corollary 1. Let R be a ring and (R, a1, . . . , at) have the v-ary t-way interac-
tion distinguish property, and X := (xi,j) be an N × k array of variables. Then
any solution to the following system of equations in the unknowns xi,j yields a
CA(N ; t, k, v):

1. ∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , k}
v−1∏

r=0

(xi,j − r) = 0. (2)

2. ∀C ∈ ({k}
t

)
, ∀(u1, . . . , ut) ∈ [v]t:

prod(X · ιCt,k(a1, . . . , at) − 1 · (u1, . . . , ut) · (a1, . . . , at)T ) = 0. (3)

Following the terminology of [7], we call the Eq. (2) of Corollary 1 the domain
equations and the Eq. (3) the coverage equations.

3.1 An Algebraic Algorithm for Searching CAs

Provided the derived algebraic characterization (Theorem1, Corollary 1) of CAs,
it is possible to interpret these combinatorial structures as elements in vari-
eties corresponding to ideals in polynomial rings over fields. In [7] an algorithm
was presented that addresses Problem 1 in the binary case for strength t = 2,
interpreting the appearing polynomials as elements of R = Q[x1, . . . , xγ , a1, a2],
depending on the binary 2-way interaction distinguish property of (R, a1, a2).

With the results presented in this paper, a natural way to generalize this
algorithm to the case of CA(N ; t, k, v) for arbitrary t and v is possible by inter-
preting appearing polynomials as elements of R = Q[x1, . . . , xγ , a1, . . . , at] and
relying on the t-way interaction distinguish property of (R, a1, . . . , at). Before we
describe such an algorithm, we address how the replacement of the indetermi-
nates ai can reduce the number of symbolic variables. For example, in Algorithm
3 of [7] the indeterminates ai were replaced by random elements of Q. In this
work, we show how we can choose values for the ai while still ensuring the t-way
interaction distinguish property.

Lemma 3. Let R = Q[x1, . . . , xγ ] and let v ∈ N with v ≥ 2, then (R, 1, v1, . . . ,
vt−1) has the v-ary t-way interaction distinguish property.
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Proof. We have to show that all elements utv
t−1 + . . . u2v

1 + u1v
0, for ui ∈ [v]

∀i = 1, . . . , t are pairwise different. Certainly this holds, as the elements of this
set are exactly the natural numbers in {0, . . . , vt−1} and (ut, . . . , u1) corresponds
to their base v representation.

Summarizing briefly, Algorithm1 initializes an N × k array of symbolic
variables, and generates all coverage equations (lines 4–9) and domain equa-
tions (lines 10–13) for this matrix according to Eqs. (2) and (3). Provided the
previous Lemma 3 we can interpret the appearing polynomials as elements of
Q[x1, . . . , xNk] using the elements ai = vi−1 for i = 1, . . . , t providing the t-way
interaction distinguish property. This system of multivariate polynomial equa-
tions then is fed to an external Solve procedure. In Sect. 5 we will describe how
such a procedure can be instantiated. Depending on the instantiation of this
Solve procedure, the respective version of Problem 1 for searching all or one
CA(s) is targeted.

Algorithm 1. AlgebraicSearchCAs

1: INPUT: N, t, k, v
Require: t ≤ k
2: Create a symbolic N × k array X containing variables x1, . . . , xNk

3: EQall := ∅
4: for C ∈ ({k}

t

)
do � Add coverage equations

5: for u ∈ [v]t do
6: EQ := prod(X · ιCt,k(a1, . . . , at) − 1 · (u1, . . . , ut) · (v0, . . . , vt−1)T ) = 0
7: add EQ to EQall
8: end for
9: end for
10: for i = 1, . . . , Nk do � Add domain equations
11: EQ :=

∏v−1
j=0 (xi − j) = 0

12: add EQ to EQall
13: end for
14: Interpret EQall as subset of Q[x1, ..., xNk]
15: V = Solve(EQall) � Call external solver
16: if V �= ∅ then
17: return V;
18: else print ”No CA exists”;
19: end if

4 An Algebraic Model for Column Extensions of CAs

Similar to Sect. 3, in this section we devise a model such that Problem 2 can be
treated as a problem of computational algebra. When extending a CA, with one
column it is sufficient to ensure that in all subarrays comprised by t columns,
involving the newly added column, all t-way interactions are covered, to guar-
antee that the defining properties of Definition 1 hold. Note that this technique
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of iteratively extending an existing CA with a column, followed by possible row
extensions, is applied in the widely used IPO strategy for CA construction (see
[14]). We illustrate this by the following example.

Example 1. Consider the following CA(9; 2, 3, 3):

M =

⎛

⎝
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1

⎞

⎠

T

.

Next, we will interpret the problem of extending M by one column as a problem
of finding solutions to the unknowns x1, . . . , x9, such that

M =

⎛

⎜
⎜
⎝

0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1
x1 x2 x3 x4 x5 x6 x7 x8 x9

⎞

⎟
⎟
⎠

T

(4)

is again a CA. One such solution is e.g. (x1, . . . , x9) = (0, 1, 2, 2, 0, 1, 1, 2, 0).

Theorem 2. Consider the ring R = Q[x1, . . . , xN ] and elements a1, . . . , at such
that (R, a1, . . . , at) has the v-ary t-way interaction distinguish property. Given an
N × k matrix M that is a CA(N ; t, k, v), the following assertions are equivalent:

1. There exists a vector c ∈ [v]N×1 such that the horizontal extension (M |c) of
M by the column c is a CA(N ; t, k + 1, v).

2. The system of equations in the unknowns x1, . . . , xN consisting of the equa-
tions in (5) and (6) has a non trivial solution.

∀i ∈ {1, . . . , N} :
v−1∏

j=0

(xi − j) = 0. (5)

∀C ∈
( {k}

t − 1

)
∀(u1, . . . , ut) ∈

∏

i∈C

[vi] × [vk+1] :

prod((M |x) · ι
C∪{k+1}
t,k+1 (a1, . . . , at) − 1

t∑

i=1

uiai) = 0. (6)

Note that in (6) we only consider those subsets of {1, . . . , k, k + 1} having
cardinality t that contain the element k + 1.

Proof. If there exists a vector c = (c1, . . . , cN ) ∈ [v]N×1 such that (M |c) is a
CA(N ; t, k+1, v), then x := c obviously satisfies the equations in (5). From The-
orem 1 we also get that x satisfies all equations in (6) when substituting k with
k + 1 in Theorem 1. Conversely assume x = (x1, . . . , xN ) ∈ [v]N×1 is a solution
to the system of equations given by (5) and (6). Since M is an CA(N ; t, k, v),
from Theorem 1 we get that prod(M · ιCt,k(a1, . . . , at) − 1

∑t
i=1 uiai) = 0 holds

for all C ∈ ({k}
t

)
and (u1, . . . , ut) ∈ [v]t. Together with (6) we have that
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prod((M |x) · ιCt,k+1(a1, . . . , at) − 1
∑t

i=1 uiai) = 0 holds for the remaining
C ∈ ({k+1}

t

)
and (u1, . . . , ut) ∈ [v]t. Corollary 1 then ensures that (M |x) is a

CA.

Remark 1 (Reduction of appearing Degree). Taking a closer look at the linear fac-
tors, e.g. the r-th factor (mr,1, . . . ,mr,k, xr) · ιC∪{k+1}

t,k+1 (a1, . . . , at)−∑t
i=1 uiai =

∑t−1
i=1(mr,ci − ui)ai + (xr − ut)at, of the polynomials appearing in (6), we can

see that some of them can never evaluate to zero, independent of the choice of
xr. This is due to the t-way interaction distinguish property, which ensures that∑t−1

i=1(mr,ci − ui)ai + (xr − ut)at = 0 if and only if (mr,c1 , . . . ,mr,ct−1 , xr) =
(u1, . . . , ut). Thus, (mr,c1 , . . . ,mr,ct−1) = (u1, . . . , ut−1) is a necessary condition
so that there exists a value for xr, such that the r-th factor evaluates to zero.
Therefore we can significantly reduce the degrees of the polynomials appearing
in the coverage equations, as in (6), when using the result of Theorem 2 for the
computation of CAs. We make this explicit by providing a small example.

Example 2. Continuing Example 1, we consider the matrixM , as given in (4), as
a matrix over GF (3)[a1, a2], the ring of polynomials in the indeterminates a1, a2

over the finite field with three elements, and consider the coverage equation for
C = {1, 4} and (u1, u2) = (1, 0).

prod((M |x) · (a1, 0, 0, a2)T − (a1, a1)) =
(0 · a1 + x1 · a2 − a1)(0 · a1 + x2 · a2 − a1)(0 · a1 + x3 · a2 − a1)·
(1 · a1 + x4 · a2 − a1)(1 · a1 + x5 · a2 − a1)(1 · a1 + x6 · a2 − a1)·
(2 · a1 + x7 · a2 − a1)(2 · a1 + x8 · a2 − a1)(2 · a1 + x9 · a2 − a1) = 0. (7)

Due to the 3-ary 2-way interaction distinguish property of GF (3)[a1, a2] we have
e.g. (0a1 + x1a2 − a1) �= 0 for any value of x1 ∈ GF (3) or (2a1 + x9a2 − a1) �= 0
for any value of x9 ∈ GF (3). Hence Eq. (7) is equivalent to

(a1 + x4a2 − a1)(a1 + x5a2 − a1)(a1 + x6a2 − a1) = 0, (8)

reducing the degree of the polynomial in this coverage equation from 9 to 3. A
similar reduction of the degrees can be done for the other coverage equations.
The combinatorial interpretation, or reason, for this reduction of the degrees, is
that, again considering the above example, the 2-way interaction {(1, 1), (4, 0)}
can only be covered by the 4-th, 5-th or 6-th row when extending M with one
column.

Similar to Algorithm 1, based on Theorem 2 one can formulate an algorithm
that treats Problem 2 i.e. an algorithm that finds all possible column extensions
to a given CA when they exist. Due to the simplicity of this algorithm and space
limitations we do not include it in this paper.

5 Experiments Using Gröbner Bases and Supercomputing

We employed two methodologies to solve the systems of polynomial equations
arising from our algebraic modelling for CAs. Firstly, Gröbner bases (GB) com-
putations in Maple and Magma, and secondly, exhaustive search using C and
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parallel programming using C/MPI (Message Passing Interface). Each of these
different solving implementations have been used as a means to instantiate the
Solve procedure in Algorithm 1.

5.1 Solving Using Gröbner Bases

For the Gröbner bases computations, we simply encode the system in Maple
and Magma format and computed lexicographical and total degree Gröbner
bases. If the result of the (reduced) Gröbner bases computation is equal to {1},
then we know that the system does not have any solutions [2]. If the result of
the (reduced) Gröbner bases computation is not equal to {1}, then we use the
actual basis to recover some solution of the system. We observed that in general,
Maple and Magma are able to successfully compute Gröbner bases for systems
of polynomial equations arising from CA constructions, for up to 20 binary and
10 ternary variables. We give a related example below:

Example 3 (Column extension of a covering array). Continuing Example 1,
recall that

M =

⎛

⎝
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1

⎞

⎠

T

and M =

⎛

⎜
⎜
⎝

0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1
x1 x2 x3 x4 x5 x6 x7 x8 x9

⎞

⎟
⎟
⎠

T

.

We generate the system of domain and coverage equations, where the 9 polyno-
mials in the domain equations have degree 3, and the degree of the polynomi-
als in the 27 coverage equations can be reduced from 9 to 3, when applying
the reduction of degrees as described in Remark 1. This system has 6 solu-
tions, namely {(0, 1, 2, 2, 0, 1, 1, 2, 0), (0, 2, 1, 1, 0, 2, 2, 1, 0), (1, 0, 2, 2, 1, 0, 0, 2, 1),
(1, 2, 0, 0, 1, 2, 2, 0, 1), (2, 0, 1, 1, 2, 0, 0, 1, 2), (2, 1, 0, 0, 2, 1, 1, 0, 2)}. Note the nice
linear equalities: x1 = x5 = x9 and x3 = x4 = x8 revealed by the GB and
reflected in the corresponding positions above, for the 6 solutions.

5.2 Exhaustive Search Using Supercomputing

For systems with more than 20 binary or 10 ternary variables we designed a serial
C program to perform exhaustive search. The program uses the ranking and
unranking functions described in [11] to efficiently enumerate all combinations
of values for the binary or the ternary variables. Obviously this approach readily
generalizes to quaternary variables and beyond. For each combination of the
variables generated, we solve the equations incrementally, i.e. we look at the
equations as constraints that must be satisfied simultaneously and proceed by
first checking whether the first equation is satisfied then secondly, by checking
whether the second equation is satisfied and so forth. If a particular generated
combination of values satisfies all equations then it is a solution and we collect
all solutions found in a result file for post-processing. We found it beneficial to
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use a meta-programming approach, i.e. a bash script that parses the systems of
polynomial equations arising from CA constructions automatically and generates
the corresponding serial C program, without any intervention by hand. Using
meta-programming allows us to produce massive amounts of bug-free and reliable
C code with minimal effort.

For systems where our serial C program approach is insufficient, to either pro-
duce solutions or verify that no solutions exist, we parallelize our automatically
generated C program using MPI. The parallelization is achieved with meta-
programming again, in order to make efficient use of the ranking and unranking
functions to distribute the workload among the parallel processors. We run our
generated C/MPI code on the heterogeneous cluster known as “graham”1, oper-
ated by Compute Canada at the University of Waterloo. Given that the system
of polynomial equations arising from CA constructions exhibit a very precise
structure and symmetries, we use this structure to distribute the computation
not only at the level of variables, but at the level of equations as well. More
precisely, by construction, the equations are divided in groups of r equations,
where the number of variables featured in each group is a function of r and is
significantly smaller than the total number of variables γ. This clearly suggests
a two-phase approach to solve the original system:

1. Solve each group of equations independently and in parallel.
2. Look for common solutions among the solutions of all the groups.

The first phase of the above two-phase approach is reminiscent of the selection
of subsets of clauses when applying resolution to large CNFs. Subsequently, we
revised the first phase, by amalgamating one or more groups together, which
has the advantage that fewer solutions are generated, and at the same time
may prove insolvability of the system, if one or more groups of equations do
not possess any solutions. Using our meta-programming bash script, we are able
to run multiple experiments, to determine optimal cut-off points, as far as the
number of groups of equations that can be solved independently, with the aim to
keep the sizes of the generated solutions files small enough for the second-phase
processing. We give below a related example using this approach:

Example 4 (Computation of optimal CAs). In this example we want to show how
an optimal CA(9; 2, 3, 3) can be computed based on Corollary 1 using exhaustive
search techniques. Therefore, we initialize a 9× 3 array X of symbolic variables

X =

⎛

⎝
x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8 x3,9

⎞

⎠

T

,

generate all 27 domain equations of degree 3 and the 27 coverage equations of
degree 9, according to Eqs. (2) and (3), where we use (a1, a2) = (3, 1) based on
Lemma 3:

1 https://docs.computecanada.ca/wiki/Graham.

https://docs.computecanada.ca/wiki/Graham
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1. ∀i ∈ {1, . . . , 9},∀j ∈ {1, 2, 3}

xi,j(xi,j − 1)(xi,j − 2) = 0.

2. ∀C ∈ ({3}
2

)
, ∀(u1, u2) ∈ {0, 1, 2}2:

prod(X · ιC2,3(3, 1) − 1 · (u1, u2) · (3, 1)T ) = 0.

Any solution of this system yields an optimal CA(9; 2, 3, 3), one of which is e.g.

⎛

⎝
x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8 x3,9

⎞

⎠

T

=

⎛

⎝
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1

⎞

⎠

T

.

5.3 Initial Experiments for Computation of Optimal CAs

Last, in Table 1 we list some initial experiments of ours, aiming for reconstruc-
tion and, if possible, updating the values (upper bounds) of CAN(3, k, 2) and
CAN(2, k, 3). Based on the algebraic model for CAs presented in Sect. 3, we used
an implementation of Algorithm1. For the computation of the precise value
of CAN(t, k, v), the input values t, k, v to Algorithm 1 are specified according
to the respective CA instance (given in the first column). Whereas the input
value N , determining the number of rows of the target CA to be constructed,
is set to either the exact value of CAN(t, k, v), or (CAN(t, k, v) − 1). In case of
N < CAN(t, k, v) our implementation returned “No CA exists”, as expected, and
for N = CAN(t, k, v) we found solutions for all cases documented above.

For example, we computed all optimal CA(8; 3, 4, 2) and 3022997 optimal
CA(9; 2, 3, 3). Note that we report the number of all solutions, i.e. we do
distinguish between equivalent CAs. We also proved that there do not exist
CA(7; 3, 4, 2) and CA(8; 2, 3, 3) arising from our algebraic models. Note that the
GB computations have been carried out in both, Maple and Magma.

Table 1. In column # Vars we list the number of unknowns in the respective equation
systems; in column # Sols we list the exact number of solutions, i.e. CAs for the
respective instance, except for entries ≥ x, which indicate that at least x solutions
were found. Column CAN lists the exact values of CAN and also the size of the
retrieved CA solutions.

CA instance Solver # Vars # Sols CAN Reference

CA(4; 2, 3, 2) GB 12 48 4 [10]

CA(5; 2, 3, 2) GB 15 1440 4 [10]

CA(5; 2, 4, 2) GB 20 1920 5 [10]

CA(8; 3, 4, 2) GB 32 80640 8 [3]

CA(9; 2, 3, 3) C/MPI 27 ≥ 3 · 106 5 [3]
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6 Conclusion and Future Work

We presented a way to model CAs of arbitrary strengths as solutions of mul-
tivariate polynomial equation systems, and solved these systems with algebraic
solvers based on Gröbner bases or supercomputing. Even though the presented
modelling is only considered for CAs over v-ary alphabets, a generalization for
other classes of covering arrays (e.g. mixed level or variable strength) might
be possible. We plan to investigate such extensions of our modelling as part of
future work. Moreover, we believe that our approach is capable of computing
the CAN for larger CA instances, especially when used in conjunction with sym-
metry breaking in the equation systems and solving these systems with the aid
of supercomputing.
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Abstract. A progress in complexity lower bounds might be achieved
by studying problems where a very precise complexity is conjectured.
In this note we propose one such problem: Given a planar graph on
n vertices and disjoint pairs of its edges p1, . . . , pg, perfect matching
M is Rainbow Even Matching (REM) if |M ∩ pi| is even for each
i = 1, . . . , g. A straightforward algorithm finds a REM or asserts that no
REM exists in 2g×poly(n) steps and we conjecture that no deterministic
or randomised algorithm has complexity asymptotically smaller than 2g.
Our motivation is also to pinpoint the curse of dimensionality of the
Max-Cut problem for graphs embedded into orientable surfaces: a basic
problem of statistical physics.

Keywords: Matching · Max cut · Exponential time hypothesis ·
Ising partition function

1 Introduction

Given a graph G = (V,E), a set of edges M ⊆ E is called perfect matching
if the graph (V,M) has degree one at each vertex. In this paper we introduce
and study the following matching problems which, as far as we know, were not
studied before.

Given a graph G = (V,E) and disjoint pairs of its edges p1, . . . , pg, we say
that a perfect matching M is a Rainbow Even Matching (REM) if |M ∩pi| is
even for each i = 1, . . . , g. For example, let C be a cycle of length 8 consisting of
consecutive edges e1, e2, . . . , e8. If g ≥ 1 and p1 = {e1, e2} then there is no REM
and if g = 3 and p1 = {e1, e3}, p2 = {e2, e4}, p3 = {e5, e6} then both perfect
matchings of C are REM. We consider the following problems:

1. Decision Rainbow Even Matching problem (DREM): Given a planar
graph G on n vertices and disjoint pairs of edges p1, . . . , pg, decide if there is
a REM.
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2. Enumeration Rainbow Even Matching problem (EREM): Given a
planar graph G on n vertices and disjoint pairs of edges p1, . . . , pg, calculate
the number of REMs.

3. If an integer weight function is given on the edge-set of the graph G then
DREM has a natural weighted version, denoted by OptDREM, to find the
maximum total weight of a REM, and EREM is turned into the problem
denoted by GenREM to find the generating function of weighted REMs.

There is a straightforward algorithm of complexity 2gpoly(n) to solve Opt-
DREM: For each S ⊂ {1, . . . , g} we find a maximum weight extension of the
set ∪i∈Spi into a perfect matching by edges of E \ ∪i≤gpi. The weighted perfect
matching algorithm does it.

There is also a straightforward algorithm of complexity 2gpoly(n) to solve
GenREM: For each S ⊂ {1, . . . , g} we calculate the generating function of the
REMs which contain all edges of ∪i∈Spi and no edge of ∪i/∈Spi. This can be done
by the method of Kasteleyn orientations briefly introduced in Subsect. 1.3.

Main Contribution

– We propose that the above standard algorithms are in fact optimal. Our Frus-
tration Conjecture 1 below states that up to a polynomial factor the precise
complexity of OptDREM with edge-weight in {−1, 0, 1} is 2g. This is more
tight complexity specification than the Strong Exponential Time Hypothesis.

– We show that refuting the Frustration Conjecture 1 implies that in the class
of graphs where the crossing number is equal to the genus, the complexity of
the Max-Cut problem is smaller than the additive determinantal complexity
of cuts enumeration. At present, no natural class of embedded graphs with
this property is known.

1.1 The Exponential Time Hypothesis

The Exponential Time Hypothesis (ETH) is an unproven computational hardness
assumption that was formulated by Impagliazzo and Paturi [7]. For each k let
sk be the infimum of reals s for which there exists an algorithm solving k–SAT
in time O(2sn), where n is the number of variables. ETH states that for each
k > 2, sk > 0. We note that 2–SAT can be solved in polynomial time. In the same
paper [7], the authors prove the Sparsification Lemma which implies that ETH
is equivalent to a potential strengthening of ETH where the k–SAT instances
have the number of clauses bounded from above by ckn for some constant ck; n
denotes the number of the variables.

The ETH was strengthened by Impagliazzo, Paturi and Zane [8] to the Strong
Exponential Time Hypothesis (SETH): For all d < 1 there is a k such that k-SAT
cannot be solved in O(2dn) time. No Sparsification Lemma is known for SETH.

Both ETH and SETH have a very natural role: they are used to argue that
known algorithms are probably optimal.



192 M. Loebl

I believe that the method of Kasteleyn orientations provides optimal algo-
rithms for the Max-Cut problem in the classes of embedded graphs.

My motivation for introducing REM has been to pinpoint this ‘curse of
dimensionality’ by a problem formulated with no reference to the geometry.

Conjecture 1 (Frustration Conjecture). No deterministic or randomised algo-
rithm can solve OptDREM with the edge-weights from {−1, 0, 1} in asymptoti-
cally less than 2g steps.

1.2 Justification for the Frustration Conjecture

An exponential lower bound for DREM is simply implied by ETH, see Corol-
lary 1. Next, Theorem2 connects the Frustration Conjecture 1 to the additive
determinantal complexity of cuts enumeration.

A well-established way to approach matching problems is to determine
whether some specific coefficient of the generating function of the perfect match-
ings (with suitable substitutions) is non-zero. This can be achieved because of
the Isolation Lemma, see [13], by calculating a single Pfaffian of a matrix where
the entries are monomials in possibly more than one variable. The Pfaffian is a
determinant type expression which can be computed with essentially the same
complexity as that of the determinant (of the same matrix). The complexity
of calculating the determinant of matrices with polynomial entries essentially
depends on the number of the variables.

After many failed attempts to use this machinery to disprove the Frustration
Conjecture I am convinced that this approach will not beat the 2g lower bound.
However, I do not have at present a general theorem of this nature, only some
partial results.

We can reduce, in a simple way suggested by Bruno Loff, (1 in 3)-SAT to
DREM showing DREM is NP-complete.

Theorem 1. DREM is an NP-complete problem.

Proof. The reduction of (1 in 3)-SAT to DREM is best explained by an example.
If the input of (1 in 3)-SAT is (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x4) where the first
clause is denoted by C1 and the second clause by C2 then the input graph for the
corresponding DREM is depicted in Fig. 1, with g = 2 and p11 = {e11, e

1
2}, p21 =

{e21, e
2
2}. This simply generalises.

Let x1, . . . , xn be the variables and let C1, . . . , Cm be the clauses of a (1 in
3)-SAT input. (1) With each clause Cj we associate a copy S(j) of the star with
three leaves. (2) Let x(i, j) denote the appearance of variable xi in clause Cj . (3)
If x(i, j) is equal to xi then let P (i, j) be a copy of the path of three edges. (4)
If x(i, j) is equal to ¬xi then let P (i, j) be a copy of the path of five edges. (5)
Let variables xi1 , xi2 , xi3 appear in clause Cj . Then we identify the two leaves
of P (i1, j) (P (i2, j), P (i3, j) respectively) with two leaves of S(j) as indicated in
Fig. 1. (6) Finally we specify g = 3m − n disjoint pairs of edges: Let i ≤ n and
let x(i, j1), . . . , x(i, jk) be all the appearances of variable xi. For l = 1, . . . , k let
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e(i, jl) be an edge adjacent to the middle edge of P (i, jl). For each i ≤ n and
l ∈ {1, . . . , k − 1} we will have edge-pair pi

l = {e(i, jl), e(i, jl+1)}.
(7) These pairs assure the following: Let M be a REM and 1 ≤ i ≤ n.

Then the middle edge of each P (i, j) belongs to M or the middle edge of no
P (i, j) belongs to M . This simply implies that there is a REM iff there is a (1
in 3)-satisfying assignment.

e11

C1

x1

e22

x3

x4

x2

C2

e12

e21

Fig. 1. An example of the DREM input graph for an instance of the (1 in 3)-SAT.

Corollary 1. Let D be the infimum of reals d for which there exists an algorithm
solving DREM in time O(2dg), where g is the number of the input pairs of edges.
Let us assume that the Exponential time hypothesis holds. Then D > 0.

Proof. We first note that 3-SAT with n variables and m clauses can be reduced
to (1 in 3)-SAT with n + 6m variables and 5m clauses by a construction of
Schaefer [14]. By the discussion in Sect. 1.1 we can assume that m ≤ c3n. After
this reduction we use the construction of the proof of Theorem 1.

1.3 Kasteleyn Orientations and Optimisation by Enumeration

Let me state a curious phenomenon: There is a strongly polynomial algorithm
to solve the Max-Cut problem in the planar graphs based on a reduction to
the weighted perfect matching problem, see e.g. [10].
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For the graphs of fixed genus g ≥ 1 the situation is different: There is a weakly
polynomial algorithm by Galluccio and Loebl ([4]; see also [5,6]); it was imple-
mented several times and applied in extensive statistical physics calculations
(see [12]). Recently other related algorithms based on the Valiant’s theory [16]
of holographic algorithms appeared (see [1,3]). All presently known approaches
are of enumeration nature even for the class of the toroidal square grids. The
weakly polynomial optimisation by enumeration method of [4] is as follows:

1. Let G = (V,E) be a graph. A set of edges E′ ⊆ E is called even if each degree
of the graph (V,E′) is even. A set of edges C ⊆ E is called an edge-cut of
G, if there is a V ′ ⊆ V so that C = {e ∈ E : |e ∩ V ′| = 1}. The Max-Cut
problem, one of the basic optimisation problems, asks for the maximum size
of an edge-cut in the input graph G, or, if weights on the edges are given, for
the maximum total weight of an edge-cut.

2. If a weight-function w : E → R and a set S of subsets of E are given then
the generating function of S is defined as

F(G,w, x) =
∑

A∈S

∏

e∈A

xw(e).

3. The generating function of the edge-cuts is simply equivalent to the Ising
partition function of the same graph, and it can be computed from the gen-
erating function of the even sets by a theorem of Van der Waender (for the
definitions, theorems and their proofs see e.g. [10]).

4. The generating function of the even sets can be computed by the Fisher
construction described in Sect. 2.3 as the generating function of the perfect
matchings of a modified graph.

5. The seminal technical proposition was formulated by Kasteleyn [9] and proved
by Galluccio, Loebl [4] and independently by Tesler [15]:

The generating function of perfect matchings of a graph of genus g can
be efficiently written as a linear combination of 22g Pfaffians. Pfaffians are
determinant type expressions that can be computed efficiently by a variant of
the Gaussian elimination. Cimasoni and Reshetikhin [2] provided a beautiful
interpretation of the formula which then became known as the Arf invariant
formula.

6. Summarising, the weakly polynomial algorithm solving the Max-Cut prob-
lem for the graphs of genus g by Galluccio and Loebl consists in calculating
22g Pfaffians and produces the complete generating function of the edge-cuts
of the embedded graph.

1.4 Additive Determinantal Complexity

A recent result of Loebl and Masbaum [11] indicates that this might be optimum
for the cuts enumeration. It is shown by Loebl and Masbaum in [11] that, if
we want to enumerate the edge-cuts of each possible size of an input graph G
of genus g, then in a strongly restricted setting called additive determinantal
complexity the number of the Pfaffian calculations cannot be smaller than 22g.
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This leads to a question: Is there an algorithm for solving the Max-Cut
problem in (a natural subclass of) the embedded graphs, whose complexity beats
the additive determinantal complexity of the cuts enumeration? At present no
such algorithm for a natural subclass of embedded graphs is known.

I believe that the answer to this question is NO and in Theorem 2 below
we present a partial result. We show that the Frustration Conjecture implies
that for the class of embedded graphs where the crossing number is equal to the
genus, there is no algorithm to solve the Max-Cut problem whose complexity
beats the additive determinantal complexity bound. The proof of Theorem 2 is
included in Sect. 2.

Theorem 2. Let G be a graph with n vertices and embedded to the plane with
g crossings. One can efficiently construct planar graph G′ with edge-weights in
{−1, 0, 1} and a set of 2g disjoint pairs of edges of G′ so that finding the max-
imum size of an edge-cut in G is polynomial time reducible to determining the
maximum weight of a REM in G′.

2 Edge-Cuts in Embedded Graphs

Let G = (V,E) be a graph. A set of edges E′ ⊆ E is called even if each degree of
the graph (V,E′) is even. A set of edges C ⊆ E is called an edge-cut of G, if there
is a V ′ ⊆ V so that C = {e ∈ E : |e ∩ V ′| = 1}. The Max-Cut problem, one
of the basic optimisation problems, asks for the maximum size of an edge-cut in
the input graph G, or, if weights on the edges are given, for the maximum total
weight of an edge-cut.

2.1 Surfaces

We recall the following standard description of a genus g surface Sg with one
boundary component (we follow [10,11]). (We reserve the notation Σg for a
closed surface of genus g.)

Definition 1. A 1-highway (see Fig. 2) is a surface S̄g which consists of a base
polygon R0 and bridges R1, . . . , R2g, where

– R0 is a convex 4g-gon with vertices a1, . . . , a4g numbered clockwise.
– Each R2i−1 is a rectangle with vertices x(i, 1), . . . , x(i, 4) numbered clockwise

and glued to R0. Edges [x(i, 1), x(i, 2)] and [x(i, 3), x(i, 4)] of R2i−1 are iden-
tified with edges [a4(i−1)+1, a4(i−1)+2] and [a4(i−1)+3, a4(i−1)+4] of R0, respec-
tively.

– Each R2i is a rectangle with vertices y(i, 1), . . . , y(i, 4) numbered clockwise
and glued to R0. Edges [y(i, 1), y(i, 2)] and [y(i, 3), y(i, 4)] of R2i−1 are iden-
tified with edges [a4(i−1)+2, a4(i−1)+3] and [a4(i−1)+4, a4(i−1)+5] of R0, respec-
tively. (Here, indices are considered modulo 4g.)
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R1

R2

R4

R3

Fig. 2. A 1-highway.

Before proceeding, we point out a simple fact that we will soon exploit: the
boundary of a 1-highway is isotopic to the boundary of a disk.

Now assume the graph G is embedded into a closed orientable surface Σg of
genus g. We think of Σg as Sg union an additional disk δ glued to the boundary
of Sg. By an isotopy of the embedding, we may assume that G does not meet
the disk δ and that, moreover, all vertices of G lie in the interior of R0.

We may also assume that the intersection of G with any of the rectangular
bridges Ri consists of disjoint straight lines connecting the two sides of Ri which
are glued to the base polygon R0.

Next, follows the standard analogous description of a genus g surface Sg with
more than one boundary component.

Definition 2. A highway surface Sg is obtained from a 2-sphere Z with
h disjoint polygons R1

0, . . . , R
h
0 specified, and h disjoint 1-highway surfaces

S̄1
g1

, . . . , S̄h
gh

, where g = g1 + . . . + gh, by first identifying the base polygon
of each S̄i

gi
with the polygon Ri

0, and then by deletion of the interiors of these
polygons Ri

0 (i = 1, . . . , h).

Now assume the graph G is embedded into a closed orientable surface Σg of
genus g. We again think of Σg as Sg union h additional disks δi (i = 1, . . . , h),
glued to the h boundaries of Sg. By an isotopy of the embedding, we may assume
that G does not meet the disks δi’s and that, moreover, no vertex of G lies in a
bridge. We may also assume that the intersection of G with any of the rectangular
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bridges Rj
i consists of disjoint straight lines connecting the two sides of Rj

i which
are glued to the base sphere Z.

2.2 Local Non-planarity

We note that each embedding of a graph G into Σg defines its geometric dual,
usually denoted by G∗, as follows: the vertices of G∗ are the faces of the embed-
ding of G and for each edge e of G there is an edge e∗ of G∗ connecting the
faces which have e on their boundary. For example, each toroidal square grid is
self-dual. We note that a dual can have loops and multiple edges.

We consider simultaneous embeddings of the graph and its geometric dual
into Σg.

Definition 3. Let G = (V,E) be a graph. A simultaneous embedding of G into
Σg consists of (1) an embedding N of graph G, and (2) an embedding N∗ of the
geometric dual G∗ = (V ∗, E∗) of N . In addition, we require that (a) G is the
geometric dual of N∗, (b) each vertex of G∗ (of G respectively) is embedded in
the face of N (N∗ respectively) it represents, (c) each pair of dual edges e, e∗

intersects exactly once, and N,N∗ have no other intersections, and (d) both
N,N∗ are embeddings into Sg ⊆ Σg.

For a collection of edges S ⊆ E we denote by S∗ ⊆ E∗ the collection of dual
edges e∗ such that e ∈ S.

Since a simultaneous embedding of G into Σg is by definition a subset of
Sg ⊆ Σg, we will also call it simultaneous embedding into Sg.

We may also assume that the intersection of G with any of the rectangular
bridges Rj

i consists of disjoint straight lines connecting the two sides of Rj
i which

are glued to the base sphere Z.

Definition 4. We recall that the intersection of an embedding of G in Sg with
any of the rectangular bridges Rj

i of Sg consists of disjoint straight lines con-
necting the two sides of Rj

i which are glued to the base sphere.
Let G be embedded in Sg. An even set E′ ⊂ E of the edges of G of which

crosses each bridge of Sg by an even number of disjoint straight lines will be
called admissible.

A simultaneous embedding of G into Sg is called even if it holds that C ⊆ E
is an edge-cut of G if and only if C∗ ⊆ E∗ is an admissible even set of the
embedding of G∗.

A basic example of an even simultaneous embedding is a toroidal square grid
and its geometric dual.

Definition 5. We say that a simultaneous even embedding of a graph G into
some Sg is restricted if E∗ intersects each bridge by at most 2 disjoint straight
lines.

Definition 6. We say that graph G belongs to class Cg if G is drawn to the
plane with exactly g edge-crossings and for each crossing there is a planar disc
where the drawing looks as depicted in Fig. 3.
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u

w

t v

Fig. 3. Illustration for Definition 6

Theorem 3. If G ∈ Cg, then G admits a restricted even simultaneous embedding
into Sg.

Proof. We consider the simultaneous local embedding of the graph G as
described in Fig. 4. The embedding is clearly restricted. We need to show that
the embedding is even.

We first observe that the set δ(v) of the edges of G incident with any vertex
v of G satisfies that δ∗(v) intersects each bridge in an even number of segments.
Since each edge-cut of G is the symmetric difference of some sets δ(v), v ∈ V ,
we get: If C is an edge-cut of G, then C∗ is admissible.

In order to prove that the embedding is even we need to show that each
admissible set C∗ of dual edges is a symmetric difference of faces of G∗; this
implies that C is an edge-cut of G. We can assume that C∗ has empty intersection
with the bridges (depicted in Fig. 4).

Consider the pair of bridges in Fig. 4. There is a face F1 of G∗ with exactly
2 edges on the vertical bridge and no edge on the horizontal bridge, and also a
face F2 of G∗ where the role of the two bridges is exchanged. We can use the
symmetric difference of C∗ with F1 or F2 to produce a new even set C∗

0 which has
empty intersection with each bridge. Moreover, if C∗

0 is a symmetric difference
of faces of G∗ then so is C∗.

It follows that C∗ is an even subset of an embedded planar subgraph of G∗.
For the planar graphs, the boundaries of faces generate all even sets of edges by
the symmetric difference operation. Hence the proof is finished if we show that
each face F of this planar subgraph is a symmetric difference of the faces of G∗.

Indeed, such F is either a face of G∗ itself, or it looks like the square of Fig. 4
comprised of edges depicted as thick lines, which is the symmetric difference of
the dual faces encircling the three unlabelled vertices of G of Fig. 4.
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v

u

w

t

Fig. 4. Simultaneous embedding of graph G ∈ Cg near a crossing. There is one pair
of bridges; the boundaries of the vertical bridge are depicted by dotted lines and the
boundaries of the horizontal bridge are not depicted to simplify the presentation. The
edges of G are depicted by normal lines and the dual edges are depicted by thick lines.

2.3 Proof of Theorem 2

We show that for a graph G = (V,E) with n vertices and embedded to the plane
with g edge crossings one can efficiently construct a planar graph H = (W,E′)
with edge-weights in {−1, 0, 1} and with 2g specified disjoint pairs of its edges
so that the maximum size of an edge-cut in G is equal to the maximum weight
of a REM in H. The construction goes as follows:

Step 1. We subdivide each edge of G near to each crossing; if e ∈ E got sub-
divided into edges e1, . . . , ek which form the path (e1, . . . , ek) then we let the
weight of e1 equal to 1 and the weight of e2, . . . , ek equal to −1. The resulting
weighted graph will be denoted by G1. We note that the Max-Cut problem in
G is reduced to the weighted Max-Cut problem in G1.

Step 2. We add, for each edge crossing of G1, the four edges of weight zero
forming a 4–cycle ( denoted by uvwt in Fig. 4) and further one new vertex which
we connect by four edges of weight zero to the two vertices near to this crossing
added in Step 1 so that the resulting graph, which we denote by G2, is in Cg.
We note that G2 is uniquely determined and the weighted Max-Cut problem
in G1 is reduced to the weighted Max-Cut problem in G2.

Step 3. We use Theorem 3. Let G∗
2 be the dual from the restricted simultaneous

even embedding of G2 into Sg. The weight of each edge e∗ of G∗
2 is defined to

be equal to the weight of the corresponding edge e of G2. We specify 2g pairs
p1, . . . , p2g of edges of G∗

2:
Each pair consists of the two edges embedded on one of the 2g bridges of Sg

(see Fig. 4). We note that the weighted Max-Cut problem for G2 is reduced to
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the problem of finding maximum weight even set of G∗
2 which contains an even

number of elements of each pair pi, i = 1, . . . , 2g. Finally we note that G∗
2 is

planar.
Step 4: Fisher’s construction. We transform G∗

2 into H by the Fisher’s con-
struction (see e.g. book [10]) described next.

Definition 7. Let G be a graph. Let σ = (σv)v∈V (G) be a choice, for every ver-
tex v, of a linear ordering of the edges incident to v. The blow-up, or Δ-extension,
of (G, σ) is the graph Gσ obtained by performing the following operation one by
one for each vertex v. Let e1, . . . , ed be the linear ordering σv and let ei = vui,
i = 1, . . . , d. We delete the vertex v and replace it with a path consisting of 6d
new vertices v1, . . . , v6d and edges vivi+1, i = 1, . . . , 6d−1. To this path, we add
edges v3j−2v3j , j = 1, . . . , 2d. Finally, we add edges v6i−4ui corresponding to the
original edges e1, . . . , ed.

u1

u3

u2

v

u1

u2

Γv

v6

v7

v13
v12

v18

v1

u3

Fig. 5. For a node v with the neighborhood illustrated in (a) the associated gadget Γv

is depicted in (b).

The subgraph of Gσ spanned by the 6d vertices v1, . . . , vd that replaced a
vertex v of the original graph will be called a gadget and denoted by Γv. The edges
of Gσ which do not belong to a gadget are in natural bijection with the edges of
G. By abuse of notation, we will identify an edge of G with the corresponding
edge of Gσ. Thus E(Gσ) is the disjoint union of E(G) and the various E(Γv)
(v ∈ V (G)) (Fig. 5).

It is important to note that different choices of linear orderings σv at the
vertices of G may lead to non-isomorphic graphs Gσ. Nevertheless, one always
has the following:

Lemma 1. There is a natural bijection between the set of even subsets of G and
the set of perfect matchings of Gσ. More precisely, every even set E′ ⊆ E(G)
uniquely extends to a perfect matching M ⊂ E(Gσ), and every perfect matching
of Gσ arises (exactly once) in this way.
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It follows that if we set the weights of the edges of the gadgets of (G∗
2)

σ equal
to zero, we get that the value of the Max-Cut problem for G is equal to the
max REM of H = (G∗

2)
σ. This finishes the proof of Theorem 2.
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Abstract. RCBQ are cryptcodes proposed in 2007. After that, sev-
eral papers for performances of these codes for transmission through a
binary-symmetric and Gaussian channels, have been published. Also, for
improving the performances of these codes several new algorithms have
been defined. In this paper we proposed a new modification of existing
cryptcodes obtaining new cryptcodes suitable for transmission in burst
channels. For generating burst errors we use the model of Gilbert-Elliott
burst channel. Experimental results for bit-error and packet-error proba-
bilities obtained for different channel and code parameters are presented.
Also, we made comparison of the results obtained with the old and the
new algorithms for RCBQ.

Keywords: Cryptcoding · Gilbert-Elliott channel · SNR ·
Bit-error probability · Burst errors · Quasigroup

1 Introduction

Cryptcodes based on quasigroups, called Random Codes Based on Quasigroups
(RCBQ) are defined in [2]. In this paper we consider performances of RCBQ for
decoding data transmitted through a Gilbert-Elliott channel. In order to improve
performances of these codes for correction of burst errors we propose a new mod-
ification of coding/decoding algorithms. There are several coding/decoding algo-
rithms for RCBQ, but we consider Cut-Decoding and 4-Sets-Cut-Decoding (#3)
algorithms proposed in [9,10]. In all algorithms for these codes in the process
of coding/decoding an encryption/decryption algorithm is used and therefore
these codes can correct some of the transmission errors and at the same time
they encrypt the messages. A few similar combinations of error-correcting codes
and cryptographic algorithms are proposed for cryptographic purposes [8,11,12].
Cryptographic properties of RCBQ are already investigated in several papers, for
example [1,6,7]. Here, we consider only error-correction capabilities of RCBQ.

The rest of the paper is organized on the following way. The model of
Gilbert-Elliott burst channel is described in Sect. 2. In Sect. 3 we explain Cut-
Decoding and 4-Sets-Cut-Decoding algorithms for RCBQ and we define new
algorithms (called Burst-Cut-Decoding and Burst-4-Sets-Cut-Decoding algo-
rithms) for improving the performances of RCBQ for correction of burst errors.
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Experimental results obtained with Cut-Decoding, 4-Sets-Cut-Decoding, Burst-
Cut-Decoding and Burst-4-Sets-Cut-Decoding algorithms are given in Sect. 4.
At the end, we give some conclusions for the presented results.

2 Gilbert-Elliott Burst Model

Gilbert-Elliott Burst Model is a channel model introduced by E. Gilbert and E.
O. Elliott. This model is based on a Markov chain with two states G (good or gap)
and B (bad or burst). In good state the probability for incorrect transmission of
a bit is small, and in bad state this probability is large. This model is widely used
for describing burst error patterns in transmission channels. The model is shown
in Fig. 1, where G represents the good state and B represents the bad state.
The transmission probability from bad to good state is PBG and this probability
from good to bad state is PGB [4,5].

Fig. 1. Gilbert-Elliott burst model

We made experiments with two kinds of Gilbert-Eliott channel. In the first
one, in each state the channel is binary symmetric with bit error probabilities
Pe(G) in a good state and Pe(B) in a bad state. In the second one, the channels
are Gaussian where SNRG in a good state is high and SNRB in a bad state
is low.

3 Description of Coding/Decoding Algorithms

RCBQs are designed using algorithms for encryption and decryption from the
implementation of TASC (Totally Asynchronous Stream Ciphers) by quasigroup
string transformation [3]. These cryptographic algorithms use the alphabet Q
and a quasigroup operation ∗ on Q together with its parastrophe \.

3.1 Description of Coding

At first, let describe Standard coding algorithm for RCBQs proposed in [2].
The message M = m1m2 . . . ml (of Nblock = 4l bits where mi ∈ Q and Q is an
alphabet of 4-bit symbols (nibbles)) is extended to message L = L(1)L(2)...L(s) =
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L1L2...Lm by adding redundant zero symbols. The produced message L has
N = 4m bits (m = rs), where Li ∈ Q and L(i) are sub-blocks of r symbols
from Q. In this way we obtain (Nblock, N) code with rate R = Nblock/N . The
codeword is produced after applying the encryption algorithm of TASC (given
in Fig. 2) on the message L. For this purpose, a key k = k1k2...kn ∈ Qn should
be chosen. The obtained codeword of M is C = C1C2...Cm, where Ci ∈ Q.

Encryption Decryption
Input: Key k = k1k2 . . . kn and Input: The pair
L = L1L2 . . . Lm (a1a2 . . . ar, k1k2 . . . kn)
Output: codeword Output: The pair
C = C1C2...Cm (c1c2 . . . cr,K1K2 . . .Kn)

For j = 1 to m For i = 1 to n
X ← Lj ; Ki ← ki;
T ← 0; For j = 0 to r − 1
For i = 1 to n X, T ← aj+1;

X ← ki ∗ X; temp ← Kn;
T ← T ⊕ X; For i = n to 2
ki ← X; X ← temp \ X;

kn ← T T ← T ⊕ X;
Output: Cj ← X temp ← Ki−1;

Ki−1 ← X;
X ← temp \ X;
Kn ← T ;
cj+1 ← X;

Output: (c1c2 . . . cr,K1K2 . . .Kn)

Fig. 2. Algorithms for encryption and decryption

In Cut-Decoding algorithm, instead of using (Nblock, N) code with rate R,
we use together two (Nblock, N/2) codes with rate 2R and for coding we apply
the encryption algorithm (given in Fig. 2) two times, on the same redundant
message L using different parameters (different keys or quasigroups). We obtain
the codeword of the message as concatenation of two codewords of N/2 bits. In
4-Sets-Cut-Decoding algorithm we use four (Nblock, N/4) codes with rate 4R and
the codeword of the message is a concatenation of four codewords of N/4 bits.

3.2 Description of Decoding

The decoding in all algorithms for RCBQ is actually a list decoding and the
speed of the decoding process depends on the list size (a shorter list gives faster
decoding).

In Standard decoding algorithm for RCBQs, after transmission through
a noisy channel, the codeword C will be received as a message D = D(1)

D(2) . . . D(s) = D1D2 . . . Dm where D(i) are blocks of r symbols from Q and
Di ∈ Q. The decoding process consists of four steps: (i) procedure for generat-
ing the sets with predefined Hamming distance, (ii) inverse coding algorithm,
(iii) procedure for generating decoding candidate sets and (iv) decoding rule.

Let Bmax be a given integer which denotes the assumed maximum number
of bit errors that occur in a block during transmission. We generate the sets
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Hi = {α|α ∈ Qr, H(D(i), α) ≤ Bmax}, for i = 1, 2, . . . , s, where H(D(i), α)
is Hamming distance between D(i) and α. The decoding candidate sets S0,
S1, S2,. . . ,Ss are defined iteratively. Let S0 = (k1 . . . kn;λ), where λ is the
empty sequence. Let Si−1 be defined for i ≥ 1. Then Si is the set of all
pairs (δ, w1w2 . . . w4ri) obtained by using the sets Si−1 and Hi as follows (wj

are bits). For each element α ∈ Hi and each (β,w1w2 . . . w4r(i−1)) ∈ Si−1,
we apply the inverse coding algorithm (i.e., algorithm for decryption given in
Fig. 2) with input (α, β). If the output is the pair (γ, δ) and if both sequences
γ and L(i) have the redundant zeros in the same positions, then the pair
(δ, w1w2 . . . w4r(i−1)c1c2 . . . cr) ≡ (δ, w1w2 . . . w4ri) (ci ∈ Q) is an element of Si.

In Cut-Decoding algorithm, after transmission through a noisy channel, we
divide the outgoing message D = D(1)D(2) . . . D(s) in two messages D1 =
D(1)D(2) . . . D(s/2) and D2 = D(s/2+1) D(s/2+2) . . . D(s) with equal lengths and
we decode them parallel with the corresponding parameters. In this decoding
algorithm we make modification in the procedure for generating decoding can-
didate sets. Let S

(1)
i and S

(2)
i be the decoding candidate sets obtained in the ith

iteration of both parallel decoding processes, i = 1, . . . , s/2. Then, before the
next iteration we eliminate from S

(1)
i all elements whose second part does not

match with the second part of an element in S
(2)
i , and vice versa. In the (i+1)th

iteration the both processes use the corresponding reduced sets S
(1)
i and S

(2)
i .

In [10], authors proposed 4 different versions of decoding with 4-Sets-Cut-
Decoding algorithm. The best results are obtained using 4-Sets-Cut-Decoding
algorithm#3 and here we use only this version. In this algorithm after trans-
mitting through a noisy channel, we divide the outgoing message D =
D(1)D(2)...D(s) in four messages D1, D2, D3 and D4 with equal lengths and
we decode them parallel with the corresponding parameters. Similarly, as in
Cut-Decoding algorithm, in each iteration of the decoding process we reduce
the decoding candidate sets obtained in the four decoding processes, as fol-
lows. Let S

(1)
i , S

(2)
i , S

(3)
i and S

(4)
i be the decoding candidate sets obtained in

the ith iteration of four parallel decoding processes, i = 1, . . . , s/4. Let Vj =
{w1w2 . . . wr·a·i|(δ, w1w2 . . . wr·a·i) ∈ S

(j)
i }, j = 1, 2, 3, 4 and V = V1∩V2∩V3∩V4.

If V = ∅ then V = (V1 ∩V2 ∩V3)∪ (V1 ∩V2 ∩V4)∪ (V1 ∩V3 ∩V4)∪ (V2 ∩V3 ∩V4).
Before the next iteration we eliminate from S

(j)
i all elements whose second

part is not in V , j = 1, 2, 3, 4.
The decoding rule is following. After the last iteration, if all reduced sets

S
(1)
s/2, S

(2)
s/2 in Cut-Decoding (or S

(1)
s/4, S

(2)
s/4, S

(3)
s/4, S

(4)
s/4 in 4-Sets-Cut-Decoding)

have only one element with a same second component then this component is
the decoded message L. In this case, we say that we have a successful decoding. If
the decoded message is not the correct one then we have an undetected-error. If
the reduced sets obtained in the last iteration have more than one element then
we have a more-candidate-error. If we obtain S

(1)
i = S

(2)
i = ∅ in some iteration

of Cut-Decoding or S
(1)
i = S

(2)
i = S

(3)
i = S

(4)
i = ∅ in some iteration of 4-Sets-

Cut-Decoding algorithm, then the process will finish (a null-error appears). But,
if we obtain at least one nonempty decoding candidate set in an iteration then
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the decoding continues with the nonempty sets (the reduced sets are obtained
by intersection of the non-empty sets only).

4 New Cryptcodes for Burst Channels

In experiments with burst channels explained in Sect. 2, we do not obtain good
results using Cut-Decoding and 4-Sets-Cut-Decoding algorithms and therefore
here we propose new algorithms for coding/decoding called Burst-Cut-Decoding
and Burst-4-Sets-Cut-Decoding algorithms. It is known that interleaving and
deinterleaving are useful for handling burst errors in a communication system.
So, in the new algorithms, we include an interleaver in coding algorithm and the
corresponding deinterleaver in the decoding algorithm. Namely, in the process
of coding before the concatenation of two (or four) codewords we apply the
interleaving on each codeword, separately. The interleaver rearranges (by rows)
m nibbles of a codeword in a matrix of order (m/k) × k. The output of the
interleaver is a mixed message obtained reading the matrix by columns. Then,
after transmission of a concatenated message through a burst channel we divide
the outgoing message D in two (or four) messages with equal length and before
the parallel decoding we apply deinterleaving on each messages, separately. The
coding/decoding process in the new algorithms is schematically presented on
Fig. 3.

Fig. 3. Coding/decoding process in the new algorithms

5 Experimental Results

In this section we present experimental results obtained with RCBQ for transmis-
sion through a burst channel. For simulation of the channel we use the Gilbert-
Elliott model explained in Sect. 2. We compare the values of packet-error prob-
ability (PER) and bit-error probability (BER) obtained with Cut-Decoding,
4-Sets-Cut-Decoding, Burst-Cut-Decoding and Burst-4-Sets-Cut-Decoding algo-
rithms. We consider codes (72, 288) with rate 1/4 using Cut-Decoding algo-
rithm and Burst-Cut-Decoding algorithm, and also (72, 576) with rate 1/8
using all algorithms (Cut-Decoding, 4-Sets-Cut-Decoding, Burst-Cut-Decoding
and Burst-4-Sets-Cut-Decoding). In the experiments we use the following code
parameters.

– For code (72, 288) in Cut-Decoding and Burst-Cut-Decoding algorithm, the
parameters are:

• redundancy pattern: 1100 1110 1100 1100 1110 1100 1100 1100 0000 for
rate 1/2 and two different keys of 10 nibbles.
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– For code (72, 576), the code parameters are:
• in Cut-Decoding/Burst-Cut-Decoding - redundancy pattern: 1100 1100

1000 00001100 1000 1000 0000 1100 1100 1000 0000 1100 1000 1000 0000
0000 0000, for rate 1/4 and two different keys of 10 nibbles,

• in 4-Sets-Cut-Decoding/Burst-4-Sets-Cut-Decoding - redundancy pat-
tern: 1100 1110 1100 1100 1110 1100 1100 1100 0000 for rate 1/2 and
four different keys of 10 nibbles.

For all experiments we use Bmax = 4 and the same quasigroup on Q given
in Table 1.

Table 1. Quasigroup of order 16 used in the experiments

∗ 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 3 c 2 5 f 7 6 1 0 b d e 8 4 9 a

1 0 3 9 d 8 1 7 b 6 5 2 a c f e 4

2 1 0 e c 4 5 f 9 d 3 6 7 a 8 b 2

3 6 b f 1 9 4 e a 3 7 8 0 2 c d 5

4 4 5 0 7 6 b 9 3 f 2 a 8 d e c 1

5 f a 1 0 e 2 4 c 7 d 3 b 5 9 8 6

6 2 f a 3 c 8 d 0 b e 9 4 6 1 5 7

7 e 9 c a 1 d 8 6 5 f b 2 4 0 7 3

8 c 7 6 2 a f b 5 1 0 4 9 e d 3 8

9 b e 4 9 d 3 1 f 8 c 5 6 7 a 2 0

a 9 4 d 8 0 6 5 7 e 1 f 3 b 2 a c

b 7 8 5 e 2 a 3 4 c 6 0 d f b 1 9

c 5 2 b 6 7 9 0 e a 8 c f 1 3 4 d

d a 6 8 4 3 e c d 2 9 1 5 0 7 f b

e d 1 3 f b 0 2 8 4 a 7 c 9 5 6 e

f 8 d 7 b 5 c a 2 9 4 e 1 3 6 0 f

For new burst algorithms, we made experiments for different values of k
(number of columns in the interleaver matrix), i.e., for all divisors of 36. Namely,
the number of nibbles of two (or four) concatenated codewords in Cut-Deco-
ding/Burst-Cut-Decoding (or 4-Sets-Cut-Decoding/Burst-4-Sets-Cut-Decoding)
algorithms is 36. Best results are obtained for k = 9. Further on, we will present
only results for this value of k.

In Subsect. 5.1. we present experimental results for Gilbert-Elliott model with
Binary Symmetric Channels for different values of probability of bit error and
transition probabilities. The experimental results for different values of SNR
and transition probabilities in Gilbert-Elliott model with Gaussian channels, are
given in Subsect. 5.2.
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5.1 Experiments for Gilbert-Elliott with BSC Channels

In all experiments for Gilbert-Elliott model with Binary Symmetric Channels
we use the value of bit-error probabilities in the good state Pe(G) = 0.01
and some different values of bit error probabilities in the bad state Pe(B) ∈
{0.2, 0.16, 0.13, 0.1}.

In Table 2, we give experimental results for bit-error probabilities BERcut

and packet-error probabilities PERcut (obtained with Cut-Decoding algorithm)
and the corresponding probabilities BERb−cut and PERb−cut (obtained with
Burst-Cut-Decoding algorithm) for code with rate 1/4, and following combina-
tions of transition probabilities from good to good state PGG and from bad to
bad state PBB :

– PGG = 0.8 and PBB = 0.8
– PGG = 0.5 and PBB = 0.5
– PGG = 0.2 and PBB = 0.8
– PGG = 0.8 and PBB = 0.2

Table 2. Experimental results with R = 1/4

Pe(B) PERcut PERb−cut BERcut BERb−cut

PGG = 0.8 PBB = 0.8

0.1 0.14069 0.06818 0.10453 0.05030

0.13 0.34014 0.18173 0.26055 0.13535

0.16 0.58078 0.32466 0.45424 0.24698

0.2 0.81271 0.51087 0.67081 0.40820

PGG = 0.5 PBB = 0.5

0.1 0.13464 0.04665 0.09799 0.03376

0.13 0.32711 0.12283 0.24417 0.08970

0.16 0.56365 0.23394 0.43088 0.17073

0.2 0.82358 0.43581 0.65848 0.33149

PGG = 0.2 PBB = 0.8

0.1 0.20470 0.14177 0.14853 0.10266

0.13 0.46781 0.34619 0.35206 0.25621

0.16 0.73048 0.59497 0.57155 0.45788

0.2 0.942468 0.84951 0.79485 0.68579

PGG = 0.8 PBB = 0.2

0.1 0.05709 0.00921 0.04201 0.00560

0.13 0.14292 0.01555 0.10386 0.01066

0.16 0.27728 0.03333 0.20678 0.02316

0.2 0.48898 0.07250 0.37152 0.05260

Analyzing the results in Table 2, we can conclude that for all values of Pe(B)
and for all values of PGG and PBB the results for BERb−cut are better than the
corresponding results of BERcut. Namely,
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– for PGG = 0.8 and PBB = 0.8, BERb−cut is from 1.6 to 2.5 times better than
BERcut;

– for PGG = 0.5 and PBB = 0.5, BERb−cut is from 1.9 to 2.8 times better than
BERcut;

– for PGG = 0.2 and PBB = 0.8, BERb−cut is about 1.2 times better than
BERcut;

– for PGG = 0.8 and PBB = 0.2, BERb−cut is from 7.5 to 10 times better than
BERcut.

The same conclusions can be derived for comparison of PERb−cut and PERcut.
In Table 3, we give experimental results for code with rate 1/8, with same

combinations of transition probabilities PGG and PBB as for the code with
rate 1/4. There, BERcut, BERb−cut, BER4sets and BERb−4sets are bit-error
probabilities obtained with Cut-Decoding, Burst-Cut-Decoding, 4-Sets-Cut-
Decoding and Burst-4-Sets-Cut-Decoding algorithm, correspondingly. Also,
PERcut, PERb−cut, PER4sets and PERb−4sets are corresponding packet-error
probabilities.

Table 3. Experimental results with R = 1/8

Pe(B) BERcut BERb−cut BER4sets BERb−4sets PERcut PERb−cut PER4sets PERb−4sets

PGG = 0.8 PBB = 0.8

0.1 0.09183 0.04224 0.01796 0.00601 0.15790 0.07445 0.03578 0.01252

0.13 0.23069 0.11561 0.08060 0.02616 0.37334 0.19549 0.16957 0.05429

0.16 0.41820 0.22276 0.20798 0.07405 0.62600 0.35476 0.41101 0.15207

0.2 0.64522 0.39519 0.45947 0.20217 0.85671 0.56624 0.75302 0.34288

PGG = 0.5 PBB = 0.5

0.1 0.08336 0.02759 0.01619 0.00412 0.14804 0.04989 0.03333 0.00784

0.13 0.21774 0.07662 0.07504 0.01353 0.36182 0.13364 0.16330 0.02887

0.16 0.20663 0.15975 0.20663 0.04268 0.41748 0.27016 0.41733 0.09245

0.2 0.63793 0.31083 0.47000 0.13001 0.87975 0.49294 0.79255 0.27095

PGG = 0.2 PBB = 0.8

0.1 0.13132 0.09052 0.03269 0.01683 0.22753 0.16028 0.07099 0.03729

0.13 0.32319 0.23406 0.13834 0.08086 0.52584 0.39026 0.29586 0.17713

0.16 0.54950 0.43033 0.36372 0.22914 0.80105 0.66229 0.66993 0.45636

0.2 0.77847 0.67042 0.66579 0.50899 0.97227 0.89840 0.95542 0.82632

PGG = 0.8 PBB = 0.2

0.1 0.03391 0.00320 0.00576 0.00044 0.05889 0.00583 0.01094 0.00079

0.13 0.0926 0.00866 0.02041 0.00124 0.16503 0.01684 0.04133 0.00230

0.16 0.18494 0.02014 0.06019 0.00256 0.31617 0.03578 0.12802 0.00518

0.2 0.34766 0.04408 0.16918 0.00803 0.55465 0.07913 0.34569 0.01569

From the results in Table 3, we can conclude that for all values of Pe(B) and
for all values of PGG and PBB , the results for BERb−cut are better than the
corresponding results of BERcut and the results for BERb−4sets are better than
the corresponding results of BER4sets. Also, if we compare the results for burst
algorithms, we can conclude that Burst-4-Sets-Cut-Decoding algorithm gives
from 2 to 7 times better results than Burst-Cut-Decoding algorithm depending of
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the channel parameters. The same conclusions can be derived for corresponding
packet-error probabilities.

5.2 Experiments for Gilbert-Elliott with Gaussian Channels

In this subsection, we presented the experimental results for Gilbert-Elliott
model with Gaussian channels with SNRG = 4 and for different values of
SNRB ∈ {−3,−2,−1} and the same transition probabilities as in the exper-
iments with binary symmetric channels. First, in Table 4 we give experimental
results for code with rate 1/4, where we use the same notations as previously.

Table 4. Experimental results with R = 1/4

SNRB PERcut PERb−cut BERcut BERb−cut

PGG = 0.8 PBB = 0.8

−3 0.56322 0.32366 0.44058 0.24605

−2 0.34886 0.17727 0.26411 0.13127

−1 0.16467 0.08179 0.12212 0.05911

PGG = 0.5 PBB = 0.5

−3 0.55235 0.23135 0.41796 0.16945

−2 0.32754 0.12348 0.24303 0.08867

−1 0.15243 0.05609 0.10993 0.03993

PGG = 0.2 PBB = 0.8

−3 0.73127 0.57783 0.57146 0.44170

−2 0.46867 0.35419 0.35223 0.26129

−1 0.22775 0.16561 0.16732 0.12115

PGG = 0.8 PBB = 0.2

−3 0.27282 0.03513 0.20121 0.02449

−2 0.15056 0.01980 0.10891 0.01393

−1 0.06732 0.00986 0.04852 0.00589

From Table 4, we can see that the results obtained with the new Burst-Cut-
Decoding algorithm are from 2 to 8 times better than the corresponding results
obtained with the old Cut-Decoding algorithm.

In Table 5, we give experimental results for bit-error probabilities and packet-
error probabilities for codes with rate 1/8. The notations are previously given.
From this table, we can make similar conclusions for rate 1/8 as for rate 1/4.
Namely, we can conclude that for all values of SNR, results for BER and
PER obtained with the new algorithms are better than the corresponding
results obtained with the old versions of the algorithms. Also, Burst-4-Sets-
Cut-Decoding algorithm gives from 2 to 8 times better results than Burst-Cut-
Decoding algorithm.
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Table 5. Experimental results with R = 1/8

SNRB BERcut BERb−cut BER4sets BERb−4sets PERcut PERb−cut PER4sets PERb−4sets

PGG = 0.8, PBB = 0.8

−3 0.40468 0.21957 0.202399 0.07334 0.61031 0.34835 0.40048 0.15092

−2 0.23806 0.11587 0.08246 0.02539 0.38256 0.19693 0.17461 0.05457

−1 0.10796 0.04945 0.02266 0.00871 0.17821 0.08640 0.04860 0.01771

PGG = 0.5 PBB = 0.5

−3 0.38576 0.15412 0.20372 0.04329 0.60865 0.26116 0.40710 0.09454

−2 0.21698 0.07825 0.07806 0.01490 0.37028 0.13637 0.16748 0.03204

−1 0.09497 0.03024 0.02002 0.00385 0.16402 0.05501 0.04169 0.00835

PGG = 0.2 PBB = 0.8

−3 0.53986 0.42327 0.35535 0.22462 0.78650 0.65300 0.65797 0.44758

−2 0.33082 0.24201 0.15007 0.08345 0.53269 0.40408 0.31820 0.18130

−1 0.15119 0.10676 0.03686 0.02265 0.26101 0.18613 0.08208 0.04910

PGG = 0.8 PBB = 0.2

−3 0.17904 0.02085 0.05540 0.00328 0.30645 0.03809 0.11880 0.00604

−2 0.09442 0.01037 0.02074 0.00134 0.16345 0.01886 0.04428 0.00252

−1 0.04009 0.00503 0.00703 0.00060 0.07063 0.00907 0.01404 0.00115

6 Conclusion

In this paper we define two new algorithms called Burst-Cut-Decoding and
Burst-4-Sets-Cut-Decoding algorithm for improving the performances for trans-
mission through a burst channel. In the new algorithms, we include an interleaver
in coding algorithm and the corresponding deinterleaver in the decoding algo-
rithm. In this way, we obtain better results for packet-errors and bit-error proba-
bilities than with the old Cut-Decoding and 4-Sets-Cut-Decoding algorithm. As
further work, we will investigate performances of proposed algorithms for other
fading channels.

Acknowledgment. This research was partially supported by Faculty of Computer
Science and Engineering at “Ss Cyril and Methodius” University in Skopje.
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Abstract. Zeroing Neural Network (ZNN) design arising from different
error monitoring functions (or Zeroing functions) defined on the basis of
Penrose matrix equations are considered. New Zeroing function based on
the Penrose equation AXA = A and initiated ZNN design for computing
the time-varying pseudoinverse are defined and investigated. Also, an
explicit form of defined model is proposed. Illustrative simulation results
are given to verify theoretical results.
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1 Introduction

For any matrix A ∈ C
n×n, its range and the null space are denoted by R(A)

and N (A), respectively.
The initial point in the investigation and computation of generalized inverses

of A∈C
m×n
r are Penrose equations with respect to unknown matrix X:

AXA = A (1)

XAX = X (2)

(AX)∗ = AX (3)

(XA)∗ = XA. (4)

The left inverse A−1
L of A ∈ C

m×n
m satisfies A−1

L A = I, while the right inverse
A−1

R of A ∈ C
m×n
n satisfies AA−1

R = I.
Recently, a number of nonlinear and linear recurrent neural network (RNN)

models have been developed for the purpose of numerical evaluation of the matrix
inverse and generalized inverses. RNN models dedicated to find zeros of equations
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or to minimize nonlinear functions are frequently used in computing generalized
inverses [1,3,5,6]. These models represent optimization networks. Optimization
RNN models can be divided in two classes: Gradient Neural Networks (GNN)
and Zeriong (or Zhang) Neural Networks (ZNN).

The GNN models are aimed to solving time-invariant problems, while the
ZNN models are able to solve time-varying problems [14]. The first step in defin-
ing both the GNN and ZNN design is to define an appropriate error function E(t)
on the basis of the matrix equation which is currently being solved. The error
matrix E(t) in a GNN design is defined by replacing the unknown matrix from
the considered problem by the time-varying matrix V (t) which will be approxi-
mated during the time t ≥ 0. The error function E(t) in ZNN models for solving
matrix algebra problems represents a complex matrix-valued error-monitoring
function, called the Zeroing (or Zhang) function (ZF).

The goal function of a GNN dynamics is the scalar function which is defined
by the Frobenius norm of E(t):

ε(t) =
‖E(t)‖2F

2
, ‖E‖F =

√
Tr(ETE).

The GNN dynamic evolution is based on direct proportionality between the time
derivative V̇ (t) and the negative gradient of the goal function ε(t):

V̇ (t) =
dV (t)

dt
= −γF

(
∂ε(t)
∂V

)
, V (0) = V0. (1.1)

Here, V (t) is the matrix of activation state variables, t ∈ [0,+∞) is the time and
F(·) : Rm×n → R

m×n denotes an odd and monotonically increasing activation
function. Larger values of the scaling parameter γ enable faster convergence.

The linear ZNN design assumes application of defined ZF by the dynamical
implicit evolution of the form

Ė(t) =
dE(t)

dt
= −γF (E(t)) , (1.2)

where Ė(t) is the time derivative of E(t) and γ ∈ R is a positive scalar used
to scale the convergence rate. The design parameter γ should be as large as the
hardware permits [1].

A comparison of zeroing neural network and gradient neural network evolu-
tion was considered in [11].

GNN model for finding the constant matrix inversion was investigated in
[4,5,9]. Various GNN dynamical systems for computing generalized inverses of
rank-deficient matrices were designed in [6].

ZNN models for solving online solution to complex-valued time-varying
matrix inversion problem were considered in [7,10,12]. Different ZNN mod-
els for computing the Moore-Penrose inverse of online time-varying full-rank
matrix were generalized, investigated and analyzed in [8]. Liao and Yhang in
[1] proposed five different complex ZFs and, accordingly developed and investi-
gated five complex ZNN models for computing the time-varying complex matrix
pseudoinverse.
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Our goal in the present paper is to investigate GNN and ZNN models arising
from different error monitoring functions E(t) defined on the basis of the matrix
Eqs. (1)–(4). New ZF based on the Penrose equation (1) and initiated ZNN
design for computing the time-varying pseudoinverse are defined. Convergence
of defined dynamical system is considered and illustrative simulation results are
presented.

The remainder of the manuscript is organized as follows. Preliminaries, sub-
ject, underlying motivation and related results are presented in Sect. 2. A new
explicit ZNN model for the pseudoinverse computation is defined in Sect. 3. Con-
vergence analysis of defined ZNN design in a constant matrix case is considered
in Sect. 4. Section 5 exposes simulation numerical examples.

2 Preliminaries, Subject, Motivation and Related Results

Zhang and Guo in [13] proposed five complex fundamental error-monitoring
functions for computing the time-varying Moore-Penrose inverse:

E1(t) = A(t)V (t) − I,

E2(t) = V (t)A(t) − I,

E3(t) = V (t)A(t)A(t)∗ − A∗(t),
E4(t) = A(t)∗A(t)V (t) − A∗(t),

E5(t) = A(t) − V (t)†.

(2.1)

It is important to mention that the error functions E1(t) and E2(t) are usable
for computing the inverse of a nonsingular matrix. A ZNN design arising from
E1(t) and E2(t) and appropriate for computing the Moore-Penrose inverse was
presented in [13]. This extension is based on the Tikhonov regularization princi-
ple. Also, the error functions E3(t) and E4(t) are usable for computing the left
and right inverse. These models can be used in computing the Moore-Penrose
inverse using the Tikhonov regularization, which leads to the following error
functions:

E3(t) = V (t)(A(t)A(t)∗ + λI) − A(t)∗,
E4(t) = (A(t)∗A(t) + λI)V (t) − A(t)∗,

(2.2)

where λ > 0 is a small real parameter.
Our intention is to consider ZF and initiated ZNN design based on the Pen-

rose equation (1):
E(t) = A(t) − A(t)V (t)A(t). (2.3)

Let us mention that the GNN design aimed to the computation of the Moore-
Penrose inverse and arising on the error matrix (2.3) was investigated in [3]. In
the present article we investigate the ZNN model based on the matrix equation
AXA = A, i.e., on the basis of the ZF (2.3).
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The main contributions of the paper are emphasized as follows.

(i) New ZF of the form (2.3) is proposed staring from the Penrose equation
(1). Accordingly, new ZD for computing the time-varying complex matrix
Moore-Penrose inverse is proposed.

(ii) Defined ZNN model is explicit.
(iii) Illustrative simulation results are presented during the computation of the

Moore-Penrose inverse.

3 ZNN Model for the Pseudoinverse Computation

Assume that A(t) ∈ R
m×n is the time-varying matrix where t ∈ [0,+∞) and the

entries of A(t) are differentiable functions. The time derivative of A(t) is denoted
by Ȧ(t). The goal is to construct the zeroing neural network for computing the
Moore-Penrose inverse A(t)†.

In order to do that, we need to assume that the range R(A(t)) and the null
space N (A(t)) do not depend on time t, i.e., that there exists subspaces T and
S such that R(A(t)) = T and N(A(t)) = S for all t ≥ 0. Denote by T⊥ and S⊥

the orthogonal complements of T and S respectively. Then R(A(t)†) = S⊥ and
N (A(t)†) = T⊥. The following proposition gives the property of the range and
null space of the time derivative matrix Ȧ(t).

Proposition 1 [2, Proposition 5.1]. Let A(t) ∈ R
m×n has differentiable entries,

its range and null space R(A(t)) = T and N (A(t)) = S are constant for every
t > 0. The range and the null space of the time derivative Ȧ(t) satisfy R(Ȧ(t)) ⊂
R(A(t)) = T⊥ and N (Ȧ(t)) ⊃ N (A) = S⊥.

Here the idea is to define the ZNN evolution design based on the underlying
error function (2.3) arising from the Penrose equation (1). It is known that, if
R(V (t)) ⊆ S⊥ and N (V (t)) ⊇ T⊥ then V (t) = A(t)† is the unique solution
of the first Penrose equation (1), i.e. of the Eq. (2.3). As a consequence, in
the rest of this section, it will be assumed that the conditions R(V (t)) ⊆ S⊥

and N (V (t)) ⊇ T⊥ are valid. Note that the matrix E(t) also satisfies similar
conditions, i.e., R(E(t)) ⊆ T and N (E(t)) ⊇ S.

In order to preserve range and the null space conditions for the matrix E(t),
we will further investigate the linear ZNN design

Ė(t) = −γE(t). (3.1)

The last step of defining the ZNN evolution requires the expansion of the design
formula (3.1). The time derivative Ė(t) is obtained directly from the defining
Eq. (2.3):

Ė(t) = Ȧ(t) − Ȧ(t)V (t)A(t) − A(t)V̇ (t)A(t) − A(t)V (t)Ȧ(t). (3.2)

Now, combining (2.3), (3.1) and (3.2), the following implicit dynamic evolution
equation of the ZNN model can be defined:

Ȧ(t) − Ȧ(t)V (t)A(t) − A(t)V̇ (t)A(t) − A(t)V (t)Ȧ(t)
= −γ (A(t) − A(t)V (t)A(t)) .

(3.3)
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In order to obtain the explicit dynamical system, one needs to isolate the term
with V̇ (t) on the left side of the equation, i.e.:

A(t)V̇ (t)A(t) =

Ȧ(t) − Ȧ(t)V (t)A(t) − A(t)V (t)Ȧ(t) + γ (A(t) − A(t)V (t)A(t)) .
(3.4)

Since the range and null space assumptions on A(t) and V (t) imply
V (t)A(t)A(t)† = V (t) = A(t)†A(t)V (t), multiplying the previous equation by
A(t)† both from left and right yields to the following explicit dynamic evolution
equation:

V̇ (t) = A(t)†Ȧ(t)A(t)† − A(t)†Ȧ(t)V (t) − V (t)Ȧ(t)A(t)†

+ γA(t)† (A(t) − A(t)V (t)A(t)) A(t)†.
(3.5)

The problem with (3.5) is the presence of the Moore-Penrose inverse A(t)† on
the right-hand side. To solve that problem, one needs to replace all occurrences
of A(t)† by V (t) on the right-hand side of (3.5). In such a way, we finally obtain
the following explicit dynamical system for computing the Moore-Penrose inverse
A(t)† of the time-varying matrix A(t):

V̇ (t) = −V (t)Ȧ(t)V (t) + γV (t) (A(t) − A(t)V (t)A(t)) V (t). (3.6)

The first term in (3.6) vanishes if the matrix A(t) is constant. The model (3.6)
will be further denoted by ZNN-EQ1.

Due to the replacements performed in the last step of the construction pro-
cess, the obtained model Eq. (3.6) and the initial (3.1) are no longer equivalent.
Hence, one needs to prove its convergence. It is done in the following section.

4 Convergence Analysis in the Constant Matrix Case

Assume that A(t) is constant. Therefore, in the rest of this section it will be
simply denoted by A. The model ZNN-EQ1 now reduces to

V̇ (t) = γV (t) (A − AV (t)A) V (t). (4.1)

Denote by ρ(M) the spectral radius of the matrix M , by λi(M) the i-th eigen-
value of the matrix M , and by O the zero matrix of the appropriate size. Also
denote by R(A) = T and N (A) = S the range and the null space of A respec-
tively.

The following is the main theorem which proves the convergence of the model
ZNN-EQ1 for the constant matrix A, given by (4.1).

Theorem 1. Assume that the initial matrix V (0) satisfies R(V (0)) = S⊥,
N (V (0)) = T⊥, ρ(AA† − AV (0)) < 1 and (AV (0))T = AV (0). Then V (t)
defined by (4.1) converges to the Moore-Penrose inverse A† when t → +∞.

Before we proceed to the proof of Theorem 1, we show the following two
auxiliary lemmas.
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Lemma 1. Under the assumptions of Theorem 1, the activation state variables
matrix V (t) satisfies V (t) = V (t)AA† and A†AV (t) = V (t) for every t ≥ 0.

Proof. Denote by Ṽ (t) = V (t)AA†. Using the equality (4.1) and AA†A = A
we get

˙̃V (t) = V̇ (t)AA† = γV (t)(A − AV (t)AA†A)V (t)AA†

= γV (t)(A − AṼ (t)A)Ṽ (t)

= γV (t)(AA†A − AA†AṼ (t)A)Ṽ (t)

= γV (t)AA†(A − AṼ (t)A)Ṽ (t)

= γṼ (t)(A − AṼ (t)A)Ṽ (t).

In other words, matrix Ṽ (t) = V (t)AA† also satisfies (4.1). The assumptions
on V (0) imply Ṽ (0) = V (0)AA† = V (0). Now the uniqueness of the solution
of (4.1) under prescribed initial value, we can conclude that Ṽ (t) = V (t). The
second equation AA†V (t) = V (t) can be proved analogously. ��
Lemma 2. Under the assumptions of Theorem 1, the matrix AV (t) is symmet-
ric, i.e. (AV (t))T = AV (t) for every t ≥ 0.

Proof. Denote W (t) = AV (t). Equation (4.1) directly implies:

Ẇ (t) = AV̇ (t) = γ(AV (t))2(I − AV (t)) = γ
(
W (t)2 − W (t)3

)

It is evident that W (t)T also satisfies the previous equation. Now using W (0) =
W (0)T (by assumption) and the same argument as in Lemma 1, one can conclude
that W (t) = W (t)T for all t ≥ 0. ��

Now we are ready to prove Theorem 1.

Proof (Theorem 1). Consider the residual matrix Ep(t) = AA† − AV (t).
Lemma 1 implies Ep(t)AA† = Ep(t), while AA†Ep(t) = Ep(t) follows imme-
diately. Now

Ep(t) = −AV̇ (t) = −γAV (t)(A − AV (t)A)V (t) = −γ(AV (t))2(I − AV (t))

= −γ(AA† − Ep(t))2(I − AA† + Ep(t))

Furthermore, since

(AA† − Ep(t))(I − AA† + Ep(t)) = AA†Ep(t) − Ep(t)2 = (AA† − Ep(t))Ep(t)

we obtain
Ėp(t) = −γ(AA† − Ep(t))2Ep(t). (4.2)

Let ε1(t) = ‖Ep(t)‖2F /2 = Tr(Ep(t)TEp(t))/2 where ‖ · ‖F is the Frobenius norm
and Tr(·) is the matrix trace. Its time derivative is given by

ε̇1(t) = Tr(Ėp(t)Ep(t)T) = −γTr
(
(AA† − Ep(t))2Ep(t)Ep(t)T

)

= −γTr
(
(AA† − Ep(t))T(AA† − Ep(t))Ep(t)Ep(t)T

)

= −γTr
(
((AA† − Ep(t))Ep(t))T(AA† − Ep(t))Ep(t)

)
.
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We used the fact that the matrix AA† − Ep(t) = AV (t) is symmetric
(Lemma 2). Since ε1(t) ≤ 0 for every t ≥ 0, the Lyapunov stability theory
implies that either Ep(t) → O or Ep(t) → AA† when t → +∞.

Suppose that Ep(t) → AA† when t → +∞. Then ε1(t) < 0 implies further
‖Ep(t)‖F ≤ ‖Ep(0)‖F and therefore

√
r = ‖A†A‖F ≤ ‖Ep(0)‖F , wherein r =

rank(A) = rank(Ep(0)). But, on the other hand, ρ(Ep(0)) < 1 implies

‖Ep(0)‖F =

√√√√
r∑

i=1

λi(Ep(0))2 <
√

r

which is the contradiction.
Therefore, Ep(t) → O and also (using once again Lemma 1):

‖A† − V (t)‖F = ‖A†AA† − A†AV (t)‖F ≤ ‖A†‖F ‖Ep(t)‖F → 0

when t → +∞. This completes the proof of Theorem 1. ��

5 Numerical Examples

We used Matlab Simulink implementation of the model ZNN-EQ1 for testing
purposes. The simulink is presented in Fig. 1. The solver ode23s was used in
all simulations. One suitable choice for the initial matrix V (0) satisfying the
conditions of Theorem 1 is

V (0) = αAT, α = 2/‖A‖2F .

That same choice will be used in all subsequent numerical examples including
once with the time-varying matrix A(t).

Example 1. Consider the constant matrix

A =

⎡
⎢⎢⎣

−200 −100 −200
110 10 −10

−204 −84 −156
−234 −90 −162

⎤
⎥⎥⎦

having rank(A) = 2, while its Moore-Penrose inverse is given by

A† =

⎡
⎣

23275
10011978

275965
40047912 − 17953

20023956 − 29125
13349304− 13225

10011978 − 38075
20023956 − 2965

10011978
209

6674652− 43025
10011978 − 295055

40047912 − 9829
20023956

10823
13349304

⎤
⎦ .

We apply the ZNN-EQ1 model to compute the Moore-Penrose inverse of the
matrix A. Figure 2 shows the trajectories of each element of the state matrix
V (t) for γ = 104 inside the total simulation time 3 · 10−3. Initial value is given
by V (0) = 2/‖A‖2F · AT.
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Fig. 1. Simulink implementation of the ZNN-EQ1 model (3.6).

The evolution of the residual norm ‖AV (t)A−A‖F for different values of the
parameter γ is shown in Fig. 3. It can be seen that larger values of γ significantly
decrease the required evolution time to obtain the Moore-Penrose inverse with
desired precision.

Example 2. Consider the time-varying matrix A(t) given by

A(t) = M0 + M1 cos(t) + M2 sin(t)

where

M0 =

⎡
⎣

−15 0 21
−30 −18 60
60 −45 −39

⎤
⎦ , M1 =

⎡
⎣

5 0 −7
20 −6 −22
5 −15 8

⎤
⎦ , M2 =

⎡
⎣

−5 0 7
−10 −6 20
20 −15 −13

⎤
⎦ .

and ω > 0 is the real parameter. It satisfies

R(A(t)) = T = span{(45, 164, 5), (−353, 0, 3177)},

N (A(t)) = S = span{(7, 5, 5)}.

We apply the model ZNN-EQ1 on the matrix A(t) taking V (0) = 2/‖A(0)‖2F ·
A(0)T as the initial value and γ = 10. Figure 4 shows the trajectories of each
element of the state matrix V (t), as well as the exact value of the Moore-Penrose
inverse A(t)†. It can be seen that the convergence is achieved in the steady-state
regime.

The residual norm ‖A(t)V (t)A(t) − A(t)‖F for different values of γ is shown
in Fig. 5. It can be seen that the steady state residual norm decreases when γ is
increasing. However, we see that for a large value of γ, the residual norm fluc-
tuates heavily, which means that no significant benefit is obtained by increasing
γ above the certain threshold.



Zeroing Neural Network Based on the Equation AXA = A 221

0 1 2 3

10-3

-2

-1

0

1

2

10-3

0 1 2 3

10-3

-15

-10

-5
10-4

0 1 2 3

10-3

-4

-3

-2

-1
10-3

0 1 2 3

10-3

0

2

4

6

8
10-3

0 1 2 3

10-3

-20

-15

-10

-5

0
10-4

0 1 2 3

10-3

-8

-6

-4

-2

0
10-3

0 1 2 3

10-3

-1.6

-1.4

-1.2

-1

-0.8
10-3

0 1 2 3

10-3

-6

-5

-4

-3
10-4

0 1 2 3

10-3

-12

-10

-8

-6

-4
10-4

0 1 2 3

10-3

-2

-1.5

-1
10-3

0 1 2 3

10-3

-6

-4

-2

0
10-4

0 1 2 3

10-3

-1

-0.5

0

0.5

1
10-3

Fig. 2. Elementwise trajectories of the V (t) of ZNN-EQ1, for the matrix A and
γ = 104 in Example 1.
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the parameter γ. Model ZNN-EQ1 is used for the matrix A in Example 1.
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0 5 10 15
-2

-1.5

-1

-0.5

0
10-3

0 5 10 15
-4

-3

-2

-1

0

10-3

0 5 10 15
0

2

4

6
10-3

0 5 10 15
-4

-2

0

2

4
10-3

0 5 10 15
-20

-15

-10

-5

0
10-3

0 5 10 15
0

0.005

0.01

0.015

0.02

0 5 10 15
0

0.005

0.01

0.015

0 5 10 15
-0.03

-0.02

-0.01

0

0 5 10 15
-5

0

5
10-3

Fig. 4. Elementwise trajectories of the V (t) of ZNN-EQ1, for the matrix A(t) and
γ = 10 in Example 2. Black and circled lines correspond to the elements of V (t) while
blue and triangled lines correspond to the elements of the exact value A(t)†.
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6 Conclusion

New Zeroing Neural Network (ZNN) dynamical evolution design for approxi-
mating the Moore-Penrose inverse is defined and investigated. The proposed
dynamical system is unique and original because of the fact that it is defined
on the basis of the original error monitoring function arising from the Penrose
equation (1). Moreover, after some approximations, an equivalent explicit for of
the introduced model is derived. Convergence of defined ZNN design in the con-
stant matrix case is considered. Simulation numerical examples are presented.

As the testing results suggest (on several matrices including one from
Example 2), the model ZNN-EQ1 is also convergent for non-rapidly chang-
ing time-varying matrices A(t), under the assumption that R(A(t)) and N (A(t))
are constant, introduced in the Sect. 3. The formulation of the exact convergence
conditions for the time-varying case is left for the further research.
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Furthermore, the notations A∗, R(A), rank(A), N (A) and σ(A) stand for the
conjugate transpose, the range, the rank, the null space and the spectrum of the
matrix A, respectively. In addition, R[S] (resp. R(S)) denotes the polynomials
(resp. rational functions) with real coefficients with respect to the unknown
variables S = s1, . . . , sk. The set of m × n matrices with elements in R[S] (resp.
R(S)) is denoted by R[S]m×n (resp. R(S)m×n).

The problem of pseudoinverses computation leads to the, so called, Penrose
equations

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA.

For any matrix A there exists a unique element in the set A{1, 2, 3, 4}, called
the Moore-Penrose inverse of A, which is denoted by A†. The Drazin inverse of a
square matrix A ∈ C

n×n, denoted by AD, is the unique matrix X ∈ C
n×n which

fulfills the matrix equation (2) and two additional matrix equations:

(1k) Al+1X = Al, l ≥ ind(A), (5) AX = XA.

Here, the notation ind(A) denotes the index of a square matrix A and it is
defined as ind(A) = min

{
j| rank(Aj) = rank(Aj+1)

}
. In the case ind(A) = 1,

the Drazin inverse becomes the group inverse X = A#. Consider a subset E ⊂
{1, 2, 3, 41k, 5}. We will say that the equation (i) is defined by E in the case
i ∈ E. The set of all matrices satisfying the equations defined by E is denoted by
A{E}. Any matrix in A{E} is called the E-inverse of A and is denoted by AE.

The outer generalized inverse A
(2)
T,S of A ∈ C

m×n is the matrix X ∈ C
n×m

which satisfies the Penrose equation (2) and has predefined range and null space:

XAX = X, R(X) = T, N(X) = S. (1.1)

If A ∈ C
m×n
r , T is a subspace of Cn of dimension t ≤ r and S is a subspace of

C
m of dimension m − t, then A has a {2}-inverse X such that R(X) = T and

N (X) = S if and only if AT ⊕ S = C
m, in which case X is unique and it is

denoted by A
(2)
T,S .

The Moore-Penrose inverse A† and the weighted Moore-Penrose inverse
A†

M,N , the Drazin inverse AD as well as the group inverse A# can be derived by
means of appropriate choices of T and S as follows (see, for example, [20,26]):

A† = A
(2)
R(A∗),N (A∗), A†

M,N = A
(2)

R(A�),N (A�)
, A� = N−1A∗M

AD = A
(2)

R(Ak),N (Ak)
, k ≥ ind(A), A# = A

(2)
R(A),N (A), ind(A) = 1.

(1.2)

For other important properties of generalized inverses see [1,20,26].

2 Short Overview on Symbolic Computation Algorithms

Many numerical algorithms for computing generalized inverses lack numerical
stability. In addition when rounding errors ate inherent, one has to identify
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some small quantities as being zero. It is therefore clear that cumulative round
off errors should be totally eliminated. During the symbolic implementation, vari-
ables are stored in “exact” form or can be left “unassigned” (without numerical
values) resulting in no loss of accuracy during the calculation [5]. Symbolic com-
putation of generalized inverses is one of interesting applications of computer
algebra. Moreover, algorithms presented for matrices in symbolic form are appli-
cable to significantly wider class of matrices and to a wider set of problems, with
respect to algorithms intended for constant matrices. Also, algorithms applica-
ble to matrices of unassigned symbols can be used in the construction of test
matrices and in the verification of some hypotheses.

Symbolic algorithms for various types of generalized inverses could be clas-
sified into several different categories.

– Algorithms based on the multiple-modulus residue arithmetic, aimed to error-
free computation of reflexive generalized inverses and the Moore-Penrose
inverse of a matrix having rational entries, were developed in [8] and [12],
respectively.

– Various extensions of the Leverrier-Faddeev algorithm, applicable in comput-
ing generalized inverses of polynomial matrices, were investigated in [2,4–6].

– Several extensions of the Greville’s partitioning method from [3], which are
applicable to rational and polynomial matrices, were established in [10,11,
17,19].

– The algorithm based on the LDL∗ factorization and aimed for computing
{1, 2, 3}, {1, 2, 4} inverses and the Moore–Penrose inverse of a given rational
matrix was developed in [15].

– An algorithm for the evaluation of the full-rank QDR decomposition and
its application in developing a new method and algorithm for the symbolic
computation of A

(2)
T,S inverses of one-variable polynomial or rational matrices

was proposed in [18].
– Yu and Wang in [28] introduced an algorithm for calculating {2}-inverses of a

polynomial matrix with prescribed image and kernel. It is based on the finite
algorithm for generalized inverse A

(2)
T,S of a matrix A over an integral domain

and the discrete Fourier transform. The algorithm proposed in [28] extends
the algorithms from [7].

– Sendra et al. in [13] showed how to extend the computation of Drazin inverses
over certain computable fields to the computation of Drazin inverses of matri-
ces with rational functions as entries. In [14], the authors considered the com-
putation of the Moore-Penrose inverse in a field with an involutory automor-
phism, having the property that all matrices over them have Moore-Penrose
inverse.

Recently, a number of nonlinear and linear dynamical systems and initiated
recurrent neural network models have been developed in order to numerically
evaluate the inverse matrix and the pseudoinverse of full-row or full-column rank
rectangular matrices (for more details, see [9,21,22]). Also, various recurrent
neural networks for computing generalized inverses of rank-deficient matrices
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were designed in [23,24]. The most general design evolution for solving the matrix
equation AXB = D was investigated in [16].

Although numerical computation clearly plays a more dominant role within
dynamical systems than symbolic computation, the application of computer alge-
bra techniques in this field is becoming more and more popular. In this paper, we
outline an algorithm for the symbolic computation of outer inverses of integral
and rational matrices using the approach based on the exact solution of dynamic
state equations defined by the Gradient Neural Network (GNN) dynamical sys-
tems for computing generalized inverses. More precisely, the algorithm arises
from the exact solution of systems of differential equations which appear in
dynamic state equations included in the GNN evolution of generalized inverses.

There are very sophisticated numerical methods for ordinary differential
equations and systems. Do we need analytic methods? There are several rea-
sons, for example

– When available, a formula covers all cases and is accurate, saving the effort
of multiple numerical integrations;

– one can vary parameters;
– one can use the result in all subsequent stages of calculation.

Our intention is to unify both the Recurrent Neural Network (RNN) and
symbolic approaches in a single computational method. What can be expected?
Usually, traditional numerical algorithms are of serial-processing nature and may
not be efficient enough for online or real-time simulations, which must guarantee
a response within specified time constraints. This deficiency can be overcome
using the dynamical system approach and RNN models.

On the other hand, numerical algorithms for computing generalized inverses
lack numerical stability and accumulate rounding errors. This deficiency can be
overcome using the symbolic computation techniques.

The rest of the paper is organized as follows. Dynamic state equations and
initiated dynamical models are defined in Sect. 3. Section 4 investigates symbolic
computation of outer inverses based on finding exact solutions of underlying
dynamic state equations. Section 5 presents a number of illustrative examples.

3 GNN Models for Computing Outer Inverses

The dynamics of the GNN models for solving a matrix equation M is defined on
the usage of the error matrix E(t). The error matrix is defined by replacing the
unknown matrix in M by the time-varying matrix V (t). The next step is the
minimization of the function which is defined as the scalar-valued norm-based
error function

ε(t) = ε(V (t)) =
1
2
‖E(t)‖2F , (3.1)

where and ‖A‖F :=
√

Tr(ATA) denotes the Frobenius norm of the matrix A
and Tr(·) denotes the trace of a matrix. The linear GNN design model is defined
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as the search towards the descent direction −∂ε(V (t))
∂V of the goal function, as

follows:

V̇ (t) =
dV (t)

dt
= −γ

∂ε(V (t))
∂V

. (3.2)

The scaling real parameter γ in (3.2) represents an inductance parameter or
the reciprocal of a capacitance parameter. Greater values of γ initiate faster
convergence.

The GNN design corresponding to the matrix equation

M := AXB = D

was investigated and applied in [16]. The error matrix for solving M is defined
by E(t) = D − AV (t)B. The scalar-valued norm-based error function is defined
by the Frobenius norm of E(t):

ε(t) = ε(V (t)) =
1
2
‖E(t)‖2F .

The gradient of the objective function ε(t) is equal to

∂ε(V (t))
∂V

= −AT(D − AV (t)B)BT = −ATE(t)BT.

According to the general GNN dynamics, the GNN model for solving AXB = D
is defined as

dV (t)
dt

= V̇ (t) = γATF(D − AV (t)B)BT. (3.3)

The GNN model in (3.3) will be denoted by GNN(A,B,D).

Proposition 1 [16]. Assume that the real matrices A ∈ R
m×n, B ∈ R

p×q and
D ∈ R

m×q satisfy
AA†DB†B = D. (3.4)

Then the state matrix V (t) ∈ R
n×m of the GNN(A,B,D) model (3.3) satisfies:

AV (t)B → D, t → +∞
ṼV (0) = lim

t→∞ V (t) = A†DB† + V (0) − A†AV (0)BB† (3.5)

for an arbitrary initial state matrix V (0).

GNN(A, I, I) model is aimed to solving AX = I and uses the error matrix
E(t) = AV (t) − I. It was proposed in [21]. Its dynamics can be expressed as

V̇ (t) =
dV (t)

dt
= −γATF (AV (t) − I) , V (0) = V0. (3.6)

According to Proposition 1, the general solution of GNN(A, I, I) is

ṼV (0) = A† + V (0) − A†AV (0).

The GNN(A, I, I) model can be used in:
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– finding the inverse of A, starting from arbitrary V (0);
– approximating the left inverse of a full-column rectangular matrix A, starting

from arbitrary V (0);
– computing the pseudoinverse of rank-deficient matrices under the zero initial

condition V (0) = 0.

The outer inverse X := A
(2)
R(G),N (G) of the input matrix A ∈ C

m×n
r is defined

using an appropriate matrix G ∈ C
n×m
s satisfying 0 < s ≤ r and rank(GA) =

rank(G). Then the matrix equation

MG := GAX = G (3.7)

is satisfied. As a consequence, the GNN(GA, I,G) model is defined for solving
the matrix equations MG.

The matrix equation MG, defined in (3.7), initiates the error matrix E(t) as

E(t) = GAV (t) − G, (3.8)

where V (t) ∈ R
n×m denotes the unknown matrix to be solved. Our intention is to

solve one of the equations included in (3.8) with respect to the unknown matrix
V (t) using the dynamic-system approach in conjunction with the symbolic data
processing. According to the GNN(A,B,D) design (3.3), we obtain the following
GNN(GA, I,G) dynamical system:

dV (t)
dt

= −γ (GA)T (GAV (t) − G) , V (0) = V0. (3.9)

The convergence of GNN(A,B,D) is investigated in Corollary 1.

Corollary 1. Assume that the real matrices A ∈ R
m×n
r , G ∈ R

n×m
s satisfy

0 < s ≤ r and rank(GA) = rank(G). Then:

(i) The unknown matrix V (t) of the model GNN(GA, I,G) is convergent
when t → +∞ and has the limit value

ṼV (0) = (GA)†G + V (0) − (GA)†GAV (0). (3.10)

(ii) In particular, V (0) = 0 initiates

Ṽ0 = (GA)†G = A
(2,4)
R((GA)∗),N (G).

The authors of [29] defined the dynamical system by omitting the constant
term (GA)T from (3.9):

dV (t)
dt

= −γ (GAV (t) − G) , V (0) = O. (3.11)

The dynamical evolution (3.11) will be termed as GNNATS2. The application
of the dynamic evolution design (3.11) is conditioned by the properties of the
spectrum of the matrix GA:

σ(GA) ⊂ {z : Re (z) ≥ 0}. (3.12)
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More precisely, the first GNN approach used in [29] fails in the case when
Re (σ(GA)) contains negative values. Clearly, the model (3.11) is simpler than
the models (3.9), but it loses global stability. An approach to resolve the require-
ment (3.12) and recover global stability was proposed in [29], and it is based on
the replacement of G by G0 = G(GAG)TG in (3.11).

4 Symbolic Implementation of the GNN Dynamics

The implementation in the Matlab programm requires a vectorization of the
system of matrix differential equations into the vector form (mass matrix) and
then solving the vector of differential equations by means of one of Matlab solvers,
such as ode45, ode15s, ode23. This requires repeated applications of one of
these solvers in unpredictable time instants inside the selected time interval
[0, tf ].

We want to define a Mathematica program for solving the dynamical equation
(3.11) symbolically as the opposite solution to the Matlab numerical implementa-
tion. The main idea is to solve the matrix differential equations in symbolic form.
The solution given in symbolic form would be generated only once. The solution
will be termed as “symbolic solver”. It is able to define wanted values of V (t)
in each time instant only by means of the simple replacement of the variable t
by an arbitrary time instant t0 ∈ [0, tf ]. Also, the possibility to investigate some
limiting properties of the symbolic solver by means of the Mathematica function
Limit is available.

According to the previous discussion, we present the corresponding Algo-
rithm 1 for computing outer inverses of the input matrix A ∈ R(S)m×n

r by find-
ing exact solutions of the dynamic state equation (3.11). The algorithm assumes
the choice of a matrix G ∈ R(S)n×m

s , 0 < s ≤ r. It is also assumed that the
variables s1, . . . , sk are different than the symbol t representing the time; that is
t /∈ S.

Algorithm 1. Computing outer inverse of a given matrix A ∈ R(S)m×n
r .

Require: Time-invariant matrices A ∈ R(S)m×n
r and G ∈ R(S)n×m

s , 0 < s ≤ r.
1: Construct the dynamic state equations contained in (3.11) in symbolic form.

Step 1:1: Construct the symbolic matrix V (t) = vij(t), t /∈ S.
Step 1:3: Construct the matrix −γ (GAV (t) − G) for GNNATS2 dynamics.
Step 1:4: Define the symbolic matrix equation, eqnstate, as V̇ (t) −
γ (GAV (t) − G) = O.

2: Define the initial state V (0) = O.
3: Solve (3.11) symbolically. Denote the output by V (t).

Step 3:1: Join vectorized lists eqnstate and V (0) in the list eqns.
Step 3:2: Solve the system of differential equations eqns with respect to variables
vij and the time t.

4: Return the outer inverse V = lim
t→∞

V (t) = A
(2)

R(G),N (G).
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The Algorithm 1 describes the implementation in the algebraic programming
language Mathematica. In the following, the usedMathematica codes are com-
mented; for further details on the programming language Mathematica we refer
to [27]. Let us mention that the Mathematica function DSolve can be applied
to generate a solution in Step 3:2 of Algorithm 1. More precisely, DSolve finds
symbolic (or “pure function”) solutions for the entries vij which are included in
the differential equations that appear in (3.9) or (3.11). Also, the Mathematica
function Limit can be applied to generate a solution in Step 5 of Algorithm 1.

In the case when the elements of A = A(S) are rational numbers or rational
expressions with respect to variables included in S and t /∈ S, Algorithm 1
produces the exact outer inverse A

(2)
R(G),N (G).

The main advantages of the symbolic processing in solving dynamical system
with respect to numerical processing can be emphasized as follows.

(1) The solution V (t) of the dynamical system is given in symbolic form with
respect to the variable representing the time. Denote this solution by
V[t]:=SymNNInv[A,G].
Then the values of the generalized inverse V [t0], t0 ∈ [0, tf ], tf > 0, in
the time instant t0, can be simply and efficiently generated only by the
replacement
SymNNInv[A,G]/.t->t0.

(2) In addition, it is possible to find limiting values of generated symbolic expres-
sions by means of the facilities of the computer algebra systems, such as
Mathematica. These limiting values can be generated by the expressions
SymNNInv[A,G]/.t->∞ and used in order to find exact outer inverses.

(3) As it was mentioned, RNN models in some practical applications must
guarantee a response within specified time frame. But, the real CPU time
spanned by the proposed dynamical systems inside the time interval [0, tf ] is
far from tf . It is known that dynamical models are appropriate for hardware
implementation would ensure responses in predefined time intervals. We
define the software implementation V[t]:=SymNNInv[A,G] which is appli-
cable for real-time applications. Instead of a hardware device we can use
corresponding symbolic expression which is ready for replacements of the
time variable by certain time instants.

5 Examples

Example 1. Consider the input matrix from [25]

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 0 0 0
−1 1 0 0 0 0
−1 −1 1 −1 0 0
−1 −1 −1 1 0 0
−1 −1 −1 0 2 −1
−1 −1 0 −1 −1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Using G = A.A and V D
G = SymNNInv[A, G], the following result in the conve-

nient matrix form can be obtained:

V D
G =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
4

(
1− e−8tγ

)
1
4

(−1 + e−8tγ
)

0
1
4

(−1 + e−8tγ
)

1
4

(
1− e−8tγ

)
0

0 0 1
4

(
1− e−8tγ

)
0 0 1

4

(−1 + e−8tγ
)

0 0 1
12

(−5 + 2e−27tγ − 3e−8tγ + 6e−tγ
)

0 0 1
12

(−7− 2e−27tγ + 3e−8tγ + 6e−tγ
)

0 0 0
0 0 0

1
4

(−1 + e−8tγ
)

0 0
1
4

(
1− e−8tγ

)
0 0

1
12

(−7−2e−27tγ+3e−8tγ+6e−tγ
)

1
6

(
4− e−27tγ − 3e−tγ

)
1
6

(
2 + e−27tγ − 3e−tγ

)
1
12

(−5+2e−27tγ−3e−8tμ+6e−tμ
)

1
6

(
2 + e−27tγ − 3e−tγ

)
1
6

(
4− e−27tγ − 3e−tγ

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix V D
G can be used as “symbolic solver”.

The limit expression V
D

G = Limit[V D
G /.γ → 103, t → ∞] produces the

following exact Drazin inverse of A:

V G = AD =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
4 − 1

4 0 0 0 0
− 1

4
1
4 0 0 0 0

0 0 1
4 − 1

4 0 0
0 0 − 1

4
1
4 0 0

0 0 − 5
12 − 7

12
2
3

1
3

0 0 − 7
12 − 5

12
1
3

2
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The positive real scaling constant γ should be chosen as large as possible in
order to achieve the convergence for smaller values of t. The state trajectories of
the elements xij = (VAT)ij 
= 0 in the case γ → 109, t ∈ [0, 10−8] are presented
in Fig. 1.

Example 2. The input matrix in this example is

A =

⎡

⎢
⎢
⎣

1 −1 0 0 0
−1 1 0 0 0
−1 1 −1 0 0
−1 −1 −1 1 0

⎤

⎥
⎥
⎦ .

The expression VAT = SymNNInv[A,Transpose[A]] becomes the “symbolic Simulink”
for computing the Moore-Penrose inverse of A. That expression is presented in
Fig. 2.
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2. 10 9 4. 10 9 6. 10 9 8. 10 9 1. 10 8

0.6

0.4

0.2

0.2

0.4

0.6

Fig. 1. The state trajectories of xij = (VA2)ij in the case γ → 109, t ∈ [0, 10−8]s in
Example 1.

Fig. 2. The matrix X=SymNNInv[A,Transpose[A]]//FullSimplify in Example 2.
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The limit expression V AT = Limit[X/.γ → 103, t → ∞] produces the exact
Moore-Penrose inverse of A, equal to

V AT = A† =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

5
12 − 5

12
1
3 − 1

3

− 1
12

1
12

1
3 − 1

3

− 1
2

1
2 −1 0

− 1
6

1
6 − 1

3
1
3

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

6 Conclusion

The present paper is a contribution to the symbolic computation of outer gener-
alized inverses of matrices. Also, derived results are a contribution to the applica-
tion of computer algebra systems in solving dynamical systems. The algorithm
considered in the present paper is based on the exact solution of systems of
differential equations which appear in dynamic state equations included in the
GNNN modeling of generalized inverses. The implementation in the program-
ming package Mathematica is described and used and tested in several examples.

The central part of our algorithm is the possibility to solve the system of
ordinary differential equations. This problem is a part of the scientific research
known as Computer Algebra and Differential Equations. Here, we used the pos-
sibility of the standard Mathematica function DSolve. Clearly, many different
approaches are available and could be exploited in further research.
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Abstract. This paper presents the first implementation in GeoGebra
of an algorithm computing the intersection curve of two quadrics. This
approach is based on computing the projection of the intersection curve,
also known as cutcurve, determining its singularities and structure and
lifting to 3D this plane curve. The considered problem can be used to
show some of the difficulties arising when implementing in GeoGebra
a geometric algorithm based on the algebraic analysis of the equations
defining the considered objects.
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1 Introduction

Algorithms for computing quadrics intersection date back to the late seventies.
Computing the representation of the curve defined as the intersection of two
quadrics has been a relevant problem to solve over the last decades. Levin in
1976 and 1979 (see [6,7]) introduced a method failing when the intersection
curve is singular and even generates results that are not topologically correct.
Levin’s method has been improved by Wang et al. (see [12]) making it capable
of computing geometric and structural information. Besides, Dupont et al. (see
[2]) succeeded in finding parameterizations that overcame the fact that Levin’s
method generated formulas that were not suited for further symbolic processing.
On the other hand, Mourrain et al. (see [8]) studied a sweeping algorithm for
computing the arrangement of a set of quadrics in R

3 that reduces the intersec-
tion of two quadrics to a dynamic two-dimensional problem. Dupont et al. (see
[3–5]) proposed algorithms that enable to compute in practice an exact form
of the parameterization of the intersection curve of two quadrics with rational
coefficients. These algorithms represent a substantial improvement of Levin’s
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method and its subsequent refinements. Another approach is based on the using
of the cutcurve and resultants (see [9,11]). This method can handle all kinds of
inputs including all degenerate ones where intersection curves involve cutcurves
with singularities. Here we propose an implementation of this method, in GeoGe-
bra, adapting the algorithm developed by Trocado and Gonzalez-Vega [11] to
the special characteristics of GeoGebra.

GeoGebra is a software system for doing dynamic geometry and algebra in
the plane. Since 2001 GeoGebra has gone from a dynamic geometry software
(DGS) to a powerful computational tool in several areas of mathematics. Power-
ful algebraic capabilities have been introduced in GeoGebra, such as an efficient
spreadsheet that can deal with many kind of objects, an algebraic and symbolic
system and several graphical views that extend the possibility of multidimen-
sional representations. The recent 3D features allow more intuitive interaction
with three-dimensional objects than most existing mathematical software. How-
ever, there are still missing capabilities in GeoGebra 3D, namely the determina-
tion of the intersection curve of two quadrics.

The aim of this paper is to present a new tool that allows to compute in
GeoGebra a graphical representation of the intersection curve of two quadrics
and, when possible, its parameterization. The implemented algorithm uses resul-
tants to determine the projection of the intersection curve in the plane z = 0
(the so called cutcurve) and the lifting of its regular and singular points is made
by using only one subresultant (the index one subresultant; see [11]). The imple-
mented algorithm presented here does not need to compute any resultant or
subresultant since they are provided fully precomputed (those formulae can be
found in [11]). When the Computer Algebra capabilities of GeoGebra do not
allow to compute a parameterization of the cutcurve (may be involving radicals)
or when such a parameterization is very complicated to deal with, a discretiza-
tion of this curve is determined. The lifting is independent of how the cutcurve
is presented: we get either a discretization or a parameterization (involving in
some cases radicals) of the intersection curve.

2 Mathematical Tools

Quadrics are the simplest non linear surfaces used in many areas and computing
their intersection is a relevant problem.

Definition 1. Quadrics are algebraic surfaces defined by the equation (ai,j ∈
R):

a11x
2+a22y

2+a33z
2+2a12xy+2a13xz+2a23yz+2a14x+2a24y+2a34z+a44 = 0.

In order to allow GeoGebra to compute the intersection curve of two quadrics
by using the algorithm in [11] we only need to use resultants and subresultants.
We will compute the intersection curve of two quadrics E1 and E2 presented by
their implicit equations:

f(x, y, z) = z2 + p1(x, y)z + p0(x, y) g(x, y, z) = z2 + q1(x, y)z + q0(x, y)
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with deg(p1) ≤ 1, deg(p0) ≤ 2, deg(q1) ≤ 1 and deg(q0) ≤ 2. Since p1 and q1 are
two polynomials of degree one:

p1 = a1x + a2y + a3 q1 = b1x + b2y + b3.

The polynomials p0 and q0 have degree two:

p0 = a4x
2+a5xy+a6y

2+a7x+a8y+a9 q0 = b4x
2+b5xy+b6y

2+b7x+b8y+b9.

Other cases (ie degree in z smaller than 2) can be considered too (details can be
found in [11]).

As usual (see [11]), to determine the projection of the intersection curve on
the plane z = 0, resultants will be used.
Definition 2. Let f and g be the two polynomials in R[x, y, z]

f(x, y, z) = z2 + p1(x, y)z + p0(x, y) g(x, y, z) = z2 + q1(x, y)z + q0(x, y)

(deg(p1(x, y)) ≤ 1, deg(p0(x, y)) ≤ 2, deg(q1(x, y)) ≤ 1 and deg(q0(x, y)) ≤
2) defining the quadrics whose intersection curve is to be computed. Then the
Sylvester resultant of f and g, with respect to z, is equal to:

S0(x, y) def= Resultant(f, g; z) =

∣
∣
∣
∣
∣
∣
∣
∣

1 p1(x, y) p0(x, y) 0
0 1 p1(x, y) p0(x, y)
1 q1(x, y) q0(x, y) 0
0 1 q1(x, y) q0(x, y)

∣
∣
∣
∣
∣
∣
∣
∣

= (p0(x, y) − q0(x, y))2 − (p1(x, y) − q1(x, y))
∣
∣
∣
∣

p0(x, y) p1(x, y)
q0(x, y) q1(x, y)

∣
∣
∣
∣
.

The projection of the intersection curve is contained in the curve of R2 defined
implicitly by S0(x, y) = 0.

Computing the intersection of the two quadrics defined by f and g is equiva-
lent to solve in R the system of polynomial equations f(x, y, z) = 0, g(x, y, z) = 0
which is equivalent to solve

S0(x, y) = 0 ∧ (q1(x, y) − p1(x, y)) z + (q0(x, y) − p0(x, y)) = 0. (1)

These two equations correspond to the subresultants of index 0 and 1 of f and
g with respect to z (see [11]).

When f or g have degree 1 in z, S0(x, y) is also the resultant of f and g with
respect to z and the subresultant of index 1 is one of the quadrics of degree 1.
The case of both equations with degree zero reduces to the intersection of two
conics and, for sake of simplicity, will not be included here.

3 Implementation of the Algorithm in GeoGebra

3.1 3D Capabilities of GeoGebra for Intersecting Two Quadrics

GeoGebra allows us to represent and determine the intersection curve of some
quadrics with a plane by using the command IntersectPath. We can also use the
command IntersectConic to determine the intersection of two quadrics when this
can be characterised as the intersection of a plane with a quadric [1]. Figure 1
provides some examples of these cases.
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Quadrics

f(x, y) = x2 + xy + x+ y + 1
g(x, y) = −2

GeoGebra Commands

a: x^2 + x y + x + y + 1 = 0
b: z=-2
IntersectConic(b, a)

Quadrics

f(x, y) = x2 + y2 + z2 − 2
g(x, y) = x2 + (y − 1)2 + z2 − 2

GeoGebra Commands

a: x^2+y^2+z^2=2
b: x^2+(y-1)^2+z^2=2
IntersectConic(b, a)

Fig. 1. Some cases when GeoGebra can determine the intersection of two quadrics.

3.2 The Algorithm

Let E1 and E2 be two quadrics in R
3 defined by f(x, y, z) = 0 and g(x, y, z) = 0

respectively. For computing the intersection curve of E1 and E2 in GeoGebra
we will consider three cases depending on the degree in z of f and g: both of
them with degree two, one with degree two and the other one with degree one
and both of them with degree one. The cases of one equation (or both) with
degree 0, for sake of simplicity, will not be included here but they follow the
same strategy (see [11]). For the three cases considered here, we will show how
the algorithm in [11] can be implemented in GeoGebra by adapting it to the
special characteristics of this software in order to get a more efficient behavior of
GeoGebra when computing the intersection curve of the two considered quadrics.

The method to be implemented in GeoGebra will be as follows (see [11]):
starts by computing the projection of the intersection curve of E1 and E2 (the
so-called cutcurve), continues with its analysis (paying special attention to its
singular points) and ends with its lifting.

Two Quadrics of Degree 2 in z
Let E1 and E2 be two quadrics defined by:

f(x, y, z) = z2 + p1(x, y)z + p0(x, y) g(x, y, z) = z2 + q1(x, y)z + q0(x, y).

The cutcurve of E1 and E2 is the set
{

(x, y) ∈ R
2 : S0(x, y) = 0, p1(x, y)2 − 4p0(x, y) ≥ 0, q1(x, y)2 − 4q0(x, y) ≥ 0

}

.
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The curves defined by p1(x, y)2 − 4p0(x, y) = 0 and q1(x, y)2 − 4q0(x, y) = 0 are
called the silhouette curves of E1 and E2, respectively.

The way of proceeding here will be the following one:

(a) Compute S0(x, y).
(b) Compute the region

AE1,E2 =
{

(x, y) ∈ R
2 : p1(x, y)2 − 4p0(x, y) ≥ 0, q1(x, y)2 − 4q0(x, y) ≥ 0

}

where the cutcurve lives: requires to compute the region defined by the two
silhouette curves which are two conics.

(c) Compute the singular points of the cutcurve on the line p1 = q1.
(d) Compute the singular points of the cutcurve outside the line p1 = q1.
(e) Compute “enough” regular points of the cutcurve (either in closed form or

through a discretization) and their lifting.
(f) Compute the lifting of the singular points of the cutcurve.

As seen in [11], we have:

S0(x, y) =
1
16

[

(p1 − q1)
4 + (ΔE1 − ΔE2)

2 − 2 (p1 − q1)
2 (ΔE1 + ΔE2)

]

(2)

where ΔE1 = p21 − 4p0 and ΔE2 = q21 − 4q0.

Fig. 2. Silhouette curves of two quadrics (in red and blue) and the cutcurve (in green)

The cutcurve and the region AE1,E2 where the cutcurve lives can be defined
in GeoGebra in closed form by using the commands1.
*The validation region within a list *
l1:={((a1 x+a2 y+a3)^2-4 (a4 x^2+a5 x y +a6 y^2+a7 x+a8 y+a9)) >=0,((b1 x+b2 y

+b3)^2-4 (b4 x^2+b5 x y+b6 y^2+b7 x+b8 y+b9)) >=0}
*Definition of the curve defined by the resultant *
S0:= Implicitcurve (1 / 16 ((a1 x+a2 y+a3 -(b1 x+b2 y+b3))^4+((a1 x+a2 y+a3)^2-4

(a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9) -((b1 x+b2 y+b3)^2-4 (b4 x^2+ b5 x y+
b6 y^2+b7 x+b8 y+b9)))^2-2(a1 x+a2 y+a3 -(b1 x+b2 y+b3))^2 ((a1 x+a2 y+a3)
^2-4 (a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9)+(b1 x+b2 y+b3)^2-4 (b4 x^2+b5 x
y+b6 y^2+b7 x+b8 y+b9))))

*Definition of the cutcurve*
cond(x,y):= Product(l1) *CAS*
K1:=point(S0)
K2:=If(cond(x(K1),y(K1))>0,K1)
cutcurve :=Locus(K2, K1)

1 In the GeoGebra commands presented here, we denote x# by x#.
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The lifting of the regular points of the cutcurve is determined by:

z =
p0(α, β) − q0(α, β)
q1(α, β) − p1(α, β)

. (3)

All regular points of the cutcurve are outside the line p1(x, y) = q1(x, y). The
same formula is to be used for lifting the singular points of the cutcurve outside
the line p1(x, y) = q1(x, y).

Some cutcurves can not be parameterized easily in closed form even by using
radicals: since the cutcurve has degree at most four, it can be parameterized
by using radicals but this parameterization is quite complicated and does not
take into account properly the real branches (see for example [10]). This is the
reason why the lifting of the regular points of the cutcurve will be made on
the discretization of the cutcurve branches (when such a parameterization is too
involved). To do that in GeoGebra, we need to define a free point, A, on the
cutcurve and compute its lifting by using the GeoGebra commands:
*Define a free point on the cutcurve*
A=Point(cutcurve)
*Lifting of point A*
P=(x(A),y(A),(a4 x(A)^2+a5 x(A) y(A)+a6 y(A)^2+a7 x(A)+a8 y(A)+a9 -(b4 x(A)^2+

b5 x(A) y(A)+b6 y(A)^2+b7 x(A)+b8 y(A)+b9))/ (b1 x(A)+b2 y(A)+b3 -(a1 x(A)
+a2 y(A)+a3)))

*Lifting of the cutcurve*
Locus(P,A)

In practice, if the cutcurve has singular points then Locus, close to some of
these points, does not work very properly. This is the reason why the singular
points will be determined separately and the lifting of the regular points close
to them will be made in a different way.

Singular points of the cutcurve can be classified as follows: those lying on
the intersection of the cutcurve and the line p1(x, y) = q1(x, y) and those lying
outside the line, p1(x, y) = q1(x, y), always coming from tangential intersection
points of E1 and E2. Singular points of the cutcurve on the line p1(x, y) = q1(x, y)
are determined by solving ΔE1(x, y) − ΔE2(x, y) = 0 ∧ p1(x, y) = q1(x, y) which
amounts to solve an univariate equation of degree 2. These singular points are
stored in the list s. Only those singular points stored in s in AE1,E2 will be stored
in the list s2.
s:= Solutions ({a1 x+a2 y+a3=b1 x+b2 y+b3, (a1 x+a2 y+a3)^2-4 (a4 x^2+a5 x y+a6

y^2+ a7 x+a8 y+a9)=(b1 x+b2 y+b3)^2-4 (b4 x^2+ b5 x y+b6 y^2+b7 x+b8 y+
b9)},{x, y}) *CAS*

*Testing points of s that live in the validation region*
s2:= RemoveUndefined(Sequence(If(cond(Element(s, i, 1), Element(s, i, 2)) > 0,

{Element(s, i, 1), Element(s, i, 2)}), i, 1, Length(s)))

The lifting of the points generated by the Locus GeoGebra function works
properly on the regular points of the cutcurve and on its singular points outside
the line p1(x, y) = q1(x, y). Therefore we only need to deal with the lifting of
the points in the list s2 but also with those regular points of the cutcurve which
are close to the points in the list s2. For that we remove from the cutcurve the
circles with center the points in the list s2 and radius eps ∈ R

+ (defined by the
user). To achieve this goal, we use the following GeoGebra command:



Intersecting Two Quadrics with GeoGebra 243

*Sequence of circles stored in a list l2*
l2:= Sequence ((x-Element(s2,i,1))^2+(y-Element(s2,i,2))^2>=eps^2,i,1,Length(s2

))

The points on the cutcurve to be lifted by using (3) are characterized by the
conditions defining the region AE1,E2 excluding the circles around the points on
the line p1(x, y) = q1(x, y) and on the cutcurve. In order to do this we define
the list l3 by using the conditions mentioned above, thus defining a new point,
B existing only if the conditions in l3 are verified. Making use of the point B,
we define in GeoGebra a new curve, called adaptcutcurve, by using the following
commands:
*Defining a list with both conditions*
l3:=Join(l1,l2)
*Function returning zero if and only if at least one condition is not

verified*
d(x,y):= Product(l3) *CAS*
B:=If(d(x(A),y(A))>0,A)
*Representing the cutcurve excluding the circles around the singular points

on the line p_1(x,y)=q_1(x,y)*
adaptcutcurve :=If(Length(s2)!=0, Locus(B, A), cutcurve)

Let C be a point in the curve adaptcutcurve. This point runs along the whole
cutcurve except for several small circles around the singular points on the line
p1(x, y) = q1(x, y). The lifting of the curve adaptcutcurve is determined by the
following GeoGebra commands:
*Defining the lifting of the adapted cutcurve*
C:=Point(adaptcutcurve)
P:=(x(C),y(C),(a4 (x(C))^2+a5 (x(C)) (y(C)) +a6 (y(C))^2+a7 (x(C))+a8 (y(C))+

a9 -(b4 (x(C))^2+b5 (x(C)) (y(C))+b6 (y(C))^2+b7 (x(C))+b8 (y(C))+b9))/(b1
(x(C))+b2 (y(C)) +b3 -(a1 (x(C))+a2 (y(C))+a3)))

adaptlift := Locus(P,C)

The singular points of the cutcurve on the line p1(x, y) = q1(x, y), stored in
s2, will be lifted by using:

z =
−p1(α, β) ± √

p1(α, β)2 − 4p0(α, β)
2

(4)

or

z =
−q1(α, β) ± √

q1(α, β)2 − 4q0(α, β)
2

(5)

The GeoGebra commands performing the lifting of these points are:
*Definition of functions*
lift1 :=(-(a1 x+a2 y+a3)+sqrt((a1 x+a2 y+a3)^2-4 (a4 x^2+a5 x y+a6 y^2+a7 x+a8

y+a9)))/2
lift2 :=(-(a1 x+a2 y+a3)-sqrt((a1 x+a2 y+a3)^2-4 (a4 x^2+a5 x y+a6 y^2+a7 x+a8

y+a9)))/2
*Definition of the lift*
sing1:= Sequence (( Element(s2,i,1),Element(s2,i,2),lift1(Element(s2,i,1),

Element(s2,i,2))),i,1,Length(s2))
sing2:= Sequence (( Element(s2,i,1),Element(s2,i,2),lift2(Element(s2,i,1),

Element(s2,i,2))),i,1,Length(s2))

As mentioned before (see [11]) singular points of the cutcurve not belonging
to the line p1(x, y) = q1(x, y) come from tangential intersection points of E1

and E2. The determination of these points is quite complicated but they will
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be very easy to lift: by continuity the lifting of the points produced by the
Locus GeoGebra function around these singular points produces automatically
their lifting to the intersection curve (and it is not necessary to compute them
explicitly).

Regular points of the cutcurve in the silhouette curves (see Fig. 2) can be
determined by solving (according to Eq. (2)):

2(p0 + q0) = p1q1,Δε1 = 0 and 2(p0 + q0) = p1q1,Δε2 = 0

which amounts, for each system, to intersect two conics. In order to determine
the lifting of the regular points of the cutcurve in the silhouette curves we must
use the following GeoGebra commands:
silh1:= Solutions ({2*((a4 x^2+a5 x y+a6 y^2+ a7 x+a8 y+a9)+(b4 x^2+b5 x y+b6 y

^2+b7 x+b8 y+b9))=(a1 x+a2 y+a3)*(b1 x+b2 y+b3) ,((a1 x+a2 y+a3)^2-4 (a4 x
^2+a5 x y+a6 y^2+a7 x+a8 y+a9))},{x,y}) *CAS*

silh2:= Solutions ({2*((a4 x^2+a5 x y+a6 y^2 +a7 x+a8 y+a9)+(b4 x^2+b5 x y+b6 y
^2+b7 x+ b8 y+b9))=(a1 x+a2 y+a3)*(b1 x+b2 y+ b3) ,((b1 x+b2 y+b3)^2-4 (b4
x^2+b5 x y+b6 y^2+b7 x+b8 y+b9))},{x,y}) *CAS*

*Definition of the function that lifts regular points*
lift :=(a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9 -(b4 x^2 +b5 x y+b6 y^2+b7 x+b8 y+b9)

)/(b1 x+b2 y+b3 -(a1 x+a2 y+a3))
ls1:= Sequence (( Element(silh1 ,i,1), Element(silh1 ,i,2), lift(Element(silh1 ,i

,1), Element(silh1 ,i,2))),i,1,Length(silh1))
ls2:= Sequence (( Element(silh2 ,i,1), Element(silh2 ,i,2), lift(Element(silh2 ,i

,1), Element(silh2 ,i,2))),i,1,Length(silh2))

At the neighbourhood of any singular point in p1(x, y) = q1(x, y) we will
compute n points for each branch to the left and to the right of the considered
singular point. Note that near the silhouette curves, GeoGebra might not repre-
sent properly the cutcurve due to precision problems: this is specially important
when the cutcurve is tangent to one of the silhouette curves. This discretization
for each branch to the left and to the right of every singular point is the way we
use to avoid the problems brought by GeoGebra into this situation.
*Defining x values near to singular points*
amp=eps/n
seq:= Sequence(Sequence(Element(s2,j,1) - i amp , i, -n, n),j,1,Length(s2))
*Definition of the curve inside the validation region and near to singular

points*
e:=If((b1 x+b2 y+b3)^2-4 (b4 x^2+b5 x y+b6 y^2+b7 x +b8 y+b9) >=0 && (a1 x+a2

y+ a3)^2-4 (a4 x^2+a5 x y+ a6 y^2+a7 x+a8 y+a9) >=0,1/16 ((a1 x+a2 y+a3 -(
b1 x+ b2 y+b3))^4+((a1 x+a2 y+a3)^2-4 (a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9)
-((b1 x+b2 y+b3)^2-4 (b4 x^2+b5 x y+b6 y^2+b7 x+b8 y+b9)))^2-2(a1 x+a2 y+
a3 -(b1 x+b2 y+b3))^2 ((a1 x+a2 y+a3)^2-4 (a4 x^2+a5 x y+a6 y^2+ a7 x+a8 y
+a9)+(b1 x + b2 y + b3)^2-4 (b4 x^2+b5 x y+b6 y^2+b7 x+b8 y+b9))))

*Compute y coordinate of every point on the cutcurve from every x value
stored in seq *

yseq:= Sequence(Sequence(NSolve(e(Element(seq ,j,i),y),y),i,1,2*n+1),j,1,Length
(s2)) *CAS*

For every x value stored in seq and y value in yseq we define a list, grouping x
with y, and storing them in the list pair defined by using the following GeoGebra
commands:
pair:= Sequence(Sequence(Sequence(If(Element(yseq ,i,j)=={} ,( Element(seq ,i,j),

maxim),(Element(seq ,i,j),RightSide(Element(Element(yseq ,i,j),k)))),k,1,If
(Element(yseq ,i,j)=={},1, Length(Element(yseq ,i,j)))),j,1,2*n+1),i,1,
Length(s2)) *CAS*
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The lifting of this set of points, the list fill below, will be constructed by using
the function lift, (3), applied to any regular point whose distance to the singular
one is between eps and eps/10. On the other hand, points whose distance to the
singular point is less than eps/10 will be lift by using the functions lift1 (4) and
lift2 (5).
*Definition of the lifting*
fill:= Sequence(Sequence(Sequence(If(distance ((x(Element(pair , k, j, i)), y(

Element(pair , k, j, i))),(Element(s2,k,1),Element(s2,k,2)))<eps/10,(x(
Element(pair , k, j, i)), y(Element(pair , k, j, i)), lift1(x(Element(pair ,
k, j, i)), y(Element(pair , k, j, i)))),If(eps/10< distance ((x(Element(

pair , k, j, i)), y(Element(pair , k, j, i))),(Element(s2,k,1),Element(s2,k
,2)))<eps ,(x(Element(pair , k, j, i)), y(Element(pair , k, j, i)), lift(x(
Element(pair , k, j, i)), y(Element(pair , k, j, i)))))), i, 1, Length(
Element(pair ,k,j))), j, 1, 2*n+1), k, 1, Length(s2))

Example 3. Let f and g be two ellip-
soids defined by: f (x, y, z) = z2 +
(−2/3x + 2/3y) z + 1/3x2 + 2/3y2 − 1/3
g (x, y, z) = z2 + (−2/17x + 1/17y−
2/17) z + 1/4x2 + 1/17y2 + 2/17x− 3/17.

Fig. 3. Two ellipsoids, the intersection
curve and relevant points.

In Fig. 3, green points result from the lifting of the singular points of the
cutcurve, while the red ones result from the lifting of common points between
the silhouette curves and the cutcurve.

In order to create a tool, in GeoGebra, it is necessary to use the menu Tools
and then the option Create New Tool. All eighteen parameters, that define the
two quadrics and the parameters n and eps must be selected as input. For the
output it is necessary to select the lists sing1, sing2, ls1, ls2, fill and the locus
adaptlift.

In the particular case when p1(x, y) ≡ q1(x, y), the cutcurve verifies:

S0(x, y) = (ΔE1 − ΔE2)
2
/16 = (p0 − q0)2.

The condition S0(x, y) = 0 ∧ p1(x, y) = q1(x, y) is equivalent to p0(x, y) =
q0(x, y). Thus, all the points of the cutcurve are considered as singular and their
lifting (by using (4) or (5)) is defined by:
part1:=If(a1 x + a2 y + a3 = b1 x + b2 y + b3,Sequence (( Element(s,i,1),

Element(s,i,2), lift1(Element(s,i,1), Element(s,i,2))),i,1,Length (s)))

part2:=If(a1 x + a2 y + a3 = b1 x + b2 y + b3,Sequence (( Element(s,i,1),
Element(s,i,2), lift2(Element(s,i,1), Element(s,i,2))),i,1,Length (s)))

It should be pointed out that, in this case, GeoGebra gives a parameterization
of the intersection curve of the two considered quadrics.

Quadrics of Degree 2 and 1 in z
Let f and g be the polynomials in R[x, y, z] defined by:

f(x, y, z) = z2 + p1(x, y)z + p0(x, y) g(x, y, z) = q1(x, y)z + q0(x, y)
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In this case the cutcurve is defined by S0(x, y) = p0q
2
1 −p1q0q1 +q20 in the region

defined by p21 − 4p0 ≥ 0. The lifting of any regular point (α, β) of the cutcurve
will be determined by z = −q0(α, β)/q1(α, β). Points of the cutcurve determined
by q1(x, y) = 0 can only be lifted by using (4) and, in this case, we only have one
silhouette curve. The GeoGebra commands to use start defining the following
elements:
l1:={(a1 x+a2 y+a3)^2-4 (a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9) >=0}
S0:= ImplicitCurve ((b1 x+b2 y+b3)^2 (a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9) - (a1

x+a2 y+a3) (b4 x^2+b5 x y+b6 y^2+b7 x+b8 y+b9) (b1 x+b2 y+b3)+(b4 x^2 +b5
x y+b6 y^2+b7 x+b8 y+b9)^2)

cond(x,y):=(a1 x+a2 y+a3)^2-4 (a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9)
lift:=(-(b4 x^2+b5 x y+b6 y^2+ b7 x + b8 y + b9)) / (b1 x + b2 y + b3)
P:=(x(C),y(C) ,(-(b4 (x(C))^2+b5 (x(C)) (y(C))+b6 (y(C))^2+b7 (x(C))+b8 (y(C))

+ b9))/(b1 (x(C))+b2 (y(C))+b3))
s:= Solutions ({(b4 x^2 + b5 x y + b6 y^2 + b7 x + b8 y + b9)=0,(b1 x + b2 y +

b3)=0},{x, y})
silh1:= Solutions ({(b1 x+b2 y+b3)^2 (a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9) - (a1

x + a2 y + a3) (b4 x^2+b5 x y+b6 y^2+b7 x+b8 y+b9) (b1 x+b2 y+b3)+(b4 x
^2+b5 x y+b6 y^2+b7 x+b8 y+b9)^2=0 ,(a1 x+a2 y+a3)^2 - 4 (a4 x^2+a5 x y+
a6 y^2+a7 x+a8 y+a9)=0},{x,y})

e:=If((a1 x+a2 y+a3)^2-4 (a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9) >=0,(b1 x+b2 y +
b3)^2 (a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9)-(a1 x+a2 y+a3) (b4 x^2+b5 x y+
b6 y^2+b7 x+b8 y+ b9) (b1 x+b2 y+b3)+(b4 x^2+b5 x y+b6 y^2+b7 x+b8 y+b9)
^2)

The computation of the intersection curve in this case follows the same GeoGebra
strategy shown previously.

Example 4. Let f be the hyperboloid of
one sheet and g the hyperbolic paraboloid
defined by:
f (x, y, z) = z2 + 3z − x2 + y2 − 3
g (x, y, z) = (x + y)z − 2x
The intersection curve can be represented
by GeoGebra: see Fig. 4.

Fig. 4. Hyperboloid of one sheet
and hyperbolic paraboloid intersection
curve and relevant points in GeoGebra

Two Quadrics of Degree 1 in z
Let f and g be the polynomials in R[x, y, z] defined by:

f(x, y, z) = p1(x, y)z + p0(x, y) g(x, y, z) = q1(x, y)z + q0(x, y)

The cutcurve is defined by S0(x, y) = p1q0 − p0q1. Note that, in this case, S0 is
a polynomial of degree three, at most. As before, in some cases GeoGebra gives
us the exact parameterization of the cutcurve. However, in general, the way to
proceed will be similar to the previous cases. As seen in [11], when p1(α, β) �= 0
or q1(α, β) �= 0, the lifting of (α, β) is given by:

z = −p0(α, β)
p1(α, β)

or z = −q0(α, β)
q1(α, β)

,
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respectively. If p1(α, β) = p0(α, β) = 0 then p0(α, β) = q0(α, β) = 0 and the line
{(α, β, z) : z ∈ R} is in the intersection curve.

In this case we use in GeoGebra the following commands:
e(x,y):=(a1 x+a2 y+a3)*(b4 x^2+b5 x y+b6 y^2+b7 x+b8 y+b9) -(a4 x^2+a5 x y+a6

y^2+a7 x+a8 y+a9)*(b1 x+b2 y+b3)
cutcurve := ImplicitCurve(e(x,y))

*Determine points that p1=0 && p0=0 *
s2:= Solutions ({a1 x+a2 y+a3=0,(a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+ a9)=0},{x, y})

*CAS*
*Lifting points that p1!=0*
lift:=-(a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9)/(a1 x+a2 y+a3)

*Define the region near to points that p1=0 && p0=0*
l3:= Sequence ((x - Element(s2, i, 1))^2+(y - Element(s2, i, 2))^2 >=eps^2,i,1,

Length(s2))

*Define adaptcutcurve - curve without region near to points that p1=0 & p0=0*
A=Point(cutcurve)
d(x,y):= Product(l3) *CAS*
B:=If(d(x(A),y(A))>0,A)
K1:=Point(cutcurve)
K2:=K1
adaptcutcurve :=If(Length(s2) != 0, Locus(B, A), Locus(K2,K1))
C:=Point(adaptcutcurve)
P:=(x(C),y(C),-(a4 (x(C))^2+a5 (x(C)) (y(C))+a6 (y(C))^2+a7 (x(C))+a8 (y(C))+

a9)/(a1 (x(C))+a2 (y(C))+a3))

*Lifting of points that p1=0 && p0=0 *
lift1 :=-((b4 x^2 + b5 x y + b6 y^2 + b7 x + b8 y + b9)/(b1 x + b2 y + b3))
sing1:= Sequence (( Element(s2,i,1),Element(s2,i,2),lift1(Element(s2,i,1),

Element(s2,i,2))),i,1,Length(s2))

*Determine points that p1=0 && p0=0 && q1=0 && q0=0 *
s3:= Solutions ({a1 x + a2 y + a3 = 0,(a4 x^2+a5 x y+a6 y^2+a7 x+a8 y+a9)=0,(b1

x + b2 y + b3)=0,b4 x^2+b5 x y+b6 y^2+b7 x+b8 y+b9=0},{x, y})

*Define vertical lines*
line:= Sequence(Line(( Element(s3,i,1), Element(s3,i,2)),zAxis),i,1,Length(s3))

Example 5. Let f be the hyperbolic
paraboloid and g the hyperboloid of one
sheet defined by:
f(x, y, z) = xz + x2 + 2y − 1
g(x, y, z) = yz + x2 + y2 − 2x
The parameterization of the intersection
curve can be computed by GeoGebra by
using the presented approach (Fig. 5).

Fig. 5. Intersection between the hyper-
boloid of one sheet and the hyperbolic
paraboloid.

4 Conclusion

For computing in GeoGebra the intersection curve of two quadrics, we have
adapted to GeoGebra the algorithm in [11]. Applying this implementation to fifty
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examples randomly generated, it produced the intersection curve in a few seconds
for each case. Despite some limitations of the Locus function in GeoGebra the
implementation worked efficiently in all cases. Sometimes the performance of the
software was a little slow namely when there were many singular points. Another
topic to be considered deals with the values of the parameters n and eps which
need to be carefully chosen by the user. In conclusion, our goal was attained,
producing an implementation in GeoGebra of the algorithm in [11].
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Abstract. We consider the problem of fast approximate kernel regres-
sion. Since kernels can map input features into the infinite dimensional
space, kernel trick is used to make the algorithms tractable. However
on large data set time complexity of O(n2) is prohibitive. Therefore,
various approximation methods are employed, such as randomization.
A Nyström method (based on a random selection of columns) is usually
employed. Main advantage of this algorithm is its time complexity which
is reduced to O(nm2 +m3). Space complexity is also reduced to O(nm)
because it does not require the computation of the entire matrix. An
arbitrary number m � n represents both the size of a random subset of
an input set and the dimension of random feature vectors. A Nyström
method can be extended with the randomized SVD so that l (where
l > m) randomly selected columns of a kernel matrix without replace-
ment are used for a construction of m-dimensional random feature vec-
tors while keeping time complexity linear in n. Approximated matrix
computed in this way is a better approximation than the matrix com-
puted via the Nyström method. We will prove here that the expected
error of the approximated kernel predictor derived via this method is
approximately the same in expectation as the error of the error of ker-
nel predictor. Furthermore, we will empirically show that using the l
randomly selected columns of a kernel matrix for a construction of m-
dimensional random feature vectors produces smaller error on a regres-
sion problem, than using m randomly selected columns.

Keywords: Kernel methods · Nyström method ·
Randomized algorithms · Random features · Regression

1 Introduction

Kernel methods have been applied to different real world problems such as com-
puter vision, text mining, computational biology etc. When kernels are applied
to a linear method they produce a nonlinear prediction. An intrinsic part of
every kernel method is the kernel matrix, a positive semi definite matrix of size
n × n, when n is the size of the input set. However they usually require time
complexity that is cubic in the number of data points which is too expensive for
large data sets. Time complexity required just for computation of a kernel matrix
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is O(n2). Also space complexity is O(n2) which is intractable for a number of
applications. Well known solution to this problem involve an approximation of
a kernel matrix.

Randomization methods which approximate kernel matrix using a random
subset of an input set, represent a popular solution to both time and space
complexity of kernel methods. Of these methods Nyström method achieves good
results both in practice and theoretically. In Nyström method [10] we randomly
select m (where m � n) columns of a kernel matrix without replacement and
approximate the entire matrix based on this columns. Main advantage of this
algorithm is its time complexity which is reduced to O(nm2 + m3). Space com-
plexity is also reduced to O(nm) because it does not require the computation of
the entire matrix.

Recently [8] proposed a fast method of computing random features which
in turn gives rise to the fast learning algorithms. Specifically an input space is
mapped using some random function and its elements are called random fea-
tures. This approach appears through different formulations in [4,7,9,11]. For
example, a consequence of a Nyström method applied on a kernel matrix is an
m-dimensional random feature vector computed for each input vector, and this
random vectors are called random Nyström features [11]. An arbitrary number
m � n represents both the size of a random subset of an input set and the
dimension of random feature vectors.

Logically, idea is formed that using l (where l > m) randomly selected
columns of a kernel matrix without replacement for a construction of m-
dimensional random feature vectors will produce better results then using only
m columns, all the while keeping time complexity linear in n. This is in contrast
to the Nyström method which uses m selected columns to derive m-dimensional
features. Li et al. [5] used this idea, and combined the Nyström method with
a randomized SVD [3]. Using only Nyström method will require performing
SVD on a l × l symmetric submatrix of a kernel matrix and it will produce
l-dimensional random features. However if a randomized SVD is applied as in
[5] algorithm will produce m-dimensional random features. This also allows the
algorithm to keep the time complexity linear in n. In [5] it is empirically shown
that using l (where l > m) randomly selected columns of a kernel matrix is bet-
ter than using only m columns. In this paper we will perform theoretical analysis
of this approximation method as applied on a least squares regression problem.
Additionally, we will show theoretically that this algorithm with sub quadratic
complexity exhibits the same predictive performance as the kernel regression.
We will show that we can choose l so that the expected error of approximate
kernel regression is approximately the same as the kernel regression error. Fur-
thermore, we demonstrate on real world data sets that m-dimensional random
features derived from l randomly selected input points produce without replace-
ment better results than random Nyström features.

This paper is structured as follows. In the Sect. 2, we review the method of
random Nyström features with and without a randomized SVD and its application
to a linear regression. Proof that the estimator learned on random features defined
in the Sect. 2 is close to the kernel estimator learned on the original input set is
presented in the Sect. 3. Finally, empirical results are described in the final section.
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2 Fast Kernel Regression Based on Random Nyström
Views

Let assume that the input data set is the following set:

T = {(xi ∈ Rd, yi ∈ R)}i=1,n (1)

In this section we will describe the algorithm for fast approximate kernel regres-
sion. The algorithm consists of two main steps. In the first step each feature
vector is mapped into a m-dimensional random feature vector, called random
view, via the Nyström method. In the second step linear regression is applied.
Bach [1] showed that the prediction error achieved using an approximate kernel
matrix (derived from an ordinary kernel matrix) is within an ε distance from the
prediction error achieved using an entire kernel matrix. Li et al. [5] proposed the
use of l sample points for the computation of the approximate kernel matrix and
empirically showed that the computed matrix is better approximation. Here we
will show how to derive random features from their method.

2.1 Random Nyström Features

Random features are low dimensional vectors derived from an input set using
some random mapping. Every input vector is mapped into its corresponding
random feature vector. Several types of random features are present in the lit-
erature such as Random Fourier features [8] or random Nyström features [11].
Their main advantage is the use of kernels with time complexity linear in the
number of points.

Assume that we have data set {(xi ∈ Rd)n
i=1} and a kernel (positive semi def-

inite function) k : Rd ×Rd → R. Gram matrix Kij = k(xi, xj) = 〈Φ(xi), Φ(xj)〉
represents a n × n positive semi definite matrix. Function Φ(x) maps data from
Rd into the high dimensional feature space. In random feature method, every
input vector xi is mapped into the m-dimensional random feature vector ri so
that rT

i rj approximates k(xi, xj). Nyström method is a random matrix approx-
imation method and when applied on a Gram matrix K its consequence are
random features. Specifically for a given m � n Nyström algorithm samples m
data vectors {x̂i}i=1,m from the input set. Approximation matrix K̃ is computed
in the following way:

K ≈ K̃ := k(x1:n, x̂1:m)k(x̂1:m, x̂1:m)+k(x1:n, x̂1:m)T (2)

where k(x̂1:m, x̂1:m)+ = V̂ D̂−1V̂ T is a pseudo inverse of k(x̂1:m, x̂1:m), where
columns of V̂ are eigenvectors and diagonal elements of matrix D̂ are eigenvalues
of the matrix k(x̂1:m, x̂1:m). We define a random feature vector ri in the following
way

ri = D̂−1/2V̂ T k(x1:n, x̂1:m)T . (3)

According to 2 K̃ij = rT
i rj and therefore k(xi, xj) = rT

i rj . Therefore, random
vector ri approximates Φ(xi). Furthermore, McWilliams et al. [7] called the
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vector ri random Nyström feature vector or random Nyström view. Mapping
z(xi) = ri is called a random Nyström mapping.

Training linear regression on this data set is the same as training it on the
kernel regression model where instead of the kernel matrix its Nyström approx-
imation is used.

Algorithm 1. XNV algorithm.
procedure SC(T, k,m)

Input: data set T = {(xi ∈ Rd, yi ∈ R)}i=1,n ;
Input: kernel k ;
Input: number of sampled feature vectors for Nyström method m ;
Sample m data vectors S = {x̂i}i=1,m;

Compute random features (random Nyström features) ri i = 1, n;
Perform linear regression on (ri, yi) i = 1, n
Output: Linear regressor.

end procedure

2.2 Randomized Eigenvalue Decomposition

Assume that we have a real symmetric matrix W ∈ Rl×l. In our paper we will
apply this algorithm on matrix derived during Nyström method from sampled
rows and columns (W = k(x̂1:l, x̂1:l) where x̂1:l are l sampled data points). Our
goal is to perform an eigenvalue decomposition of W . Time complexity of eigen-
value decomposition is O(l3). Using the algorithm from [3] time complexity can
be reduced to O(l2m+m3) using a randomized algorithm for a fixed integer num-
ber M . Randomized algorithm for eigenvalue decomposition consists of several
steps:

– We generate Gaussian random matrix Ω ∈ Rl×m

– Construct a matrix Y = WΩ ∈ Rl×m

– We perform a QR decomposition on a matrix Y . Matrix Q gives us the
following approximation A ≈ QQT A from which follows A ≈ QQT AQQT .

– Generate a matrix B = QT AQ and perform eigenvalue decomposition on a
matrix B = V ΛV T .

– Matrix U = QV gives approximate eigenvalue decomposition of a matrix
A = UΛUT

In the next section we will show how to apply this algorithms into the Nyström
method. Instead of sampling m data vectors from input data set we sample l > m
data vectors and perform combination of a Nyström method and a randomized
eigenvalue decomposition to derive m-dimensional random feature vectors.
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2.3 Random Feature Vectors Using a Combination of a Nyström
Method and a Randomized Eigenvalue Decomposition

Assume that we have data set {(xi ∈ Rd)n
i=1} and a kernel (positive semi definite

function) k : Rd × Rd → R. For a given l � n Nyström algorithm samples l
data vectors {x̂i}i=1,m from the input set. Recall that from a Nyström method,
the following matrix is an approximation of a Gram matrix (Kij = k(xi, xj)):

K̃ := k(x1:n, x̂1:l)k(x̂1:l, x̂1:l)+k(x1:n, x̂1:l)T .

From it we derive l-dimensional random Nyström features

ri = D̂−1/2V̂ T k(x1:n, x̂1:l)T .

Random Nyström features, derived using l sampled columns, map input vectors
into the l-dimensional space. However our goal is to map input vectors into the
m-dimensional space while steel using l-sampled data points, where l > m. Our
assumption is that using larger number of data points for approximation will
produce better results than using m points.

In order to produce m-dimensional random vectors we propose to use the
randomized eigenvalue decomposition of kernel submatrix k(x̂1:l, x̂1:l) and apply
it to a Nyström method. Gram matrix K is now approximated as follows:

K ≈ L := k(x1:n, x̂1:l)k(x̂1:l, x̂1:l)∗k(x1:n, x̂1:l)T

where k(x̂1:l, x̂1:l)∗ = V̂ D̂−1V̂ T is an approximated pseudo inverse of k(x̂1:l, x̂1:l),
where columns of V̂ ∈ R

l×m are approximate eigenvectors and diagonal elements
of matrix D̂ ∈ R

m×m are approximate eigenvalues of the matrix k(x̂1:l, x̂1:l).
Approximated eigenvalues and eigenvectors are computed using randomized
SVD (Sect. 2.2). Therefore random features are computed as follows:

ri = D̂−1/2V̂ T k(x1:n, ŷ1:l)T

Finally we apply linear regression algorithm. Putting it all together we get an
Algorithm 2.

3 Analysis of an Approximate Error

In this section, we will show that the approximated predictor (predictor learned
on random features derived from a combination of a Nystom method and a
randomized SVD) is close enough to the unapproximated one (the best overall
predictor). Bach [1] showed the same result for the ordinary Nyström method.
We will present here an outline of a proof, in which we use the following results:
matrix concentraton inequalities from [2,6], ideas about kernel regression anal-
ysis from [1], and analysis of matrix approximation error from [5].

In the theorem we will use the following notation: The diagonal vec-
tor of a square matrix A is denoted by the diag(A). Moreover, ||A|| =
{√

λ | λ is an eigenvalue of AT A} denotes a spectral norm of a matrix A,
||x||∞ = max(|x1|, . . . , |xd|) denotes a max norm of a d-dimensional vector
x = (x1, . . . , xd).
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Algorithm 2. RNV algorithm.
procedure SC(T, k, l,m)

Input: data set T = {(xi ∈ Rd, yi ∈ R)}i=1,n ;
Input: kernel k ;
Input: number of sampled feature vectors for Nyström method l ;
Sample l data vectors S = {ŷi}i=1,l from the input set T ;
Compute random features (random Nyström features via the randomized SVD)

ri i = 1, n;
Perform linear regress on (ri, yi) i = 1, n
Output: Linear regressor.

end procedure

Theorem 1. Let λ > 0 and let z ∈ R
n and K ∈ R

n×n be a vector of output
observations and a kernel matrix derived from input data points respectively.
Assume d = n||diag(K(K +nλI)−1)||∞ and R2

1 = ||diag(K)||∞ and R2
2 = ||K||.

Define the estimate zK = (K+nλI)−1Kz. Assume I is a uniform random subset
of p > 10 indices in {1, 2, . . . , n} and consider L as approximate kernel matrix
based on Nyström method and randomized eigenvalue decomposition, with the
approximate estimate zL = (L + nλI)−1Lz. For every δ ∈ (0, 1) there is p0
(dependent on δ) such that for p ≥ p0 the following is true

1
n

E[||zL − z||2] ≤ (1 + 6δ)
1
n

||z − zK ||2

Proof. Because K is a kernel matrix there exist a matrix Φ ∈ R
n×n such that

K = ΦΦT . Approximate kernel matrix L based on a combination of a Nyström
method and randomized eigenvalue decomposition can be written in the following
way L = K(:, I)Q(QT K(I, I)Q)−1QT K(I, :) where Q is derived from a QR
decomposition on a matrix K(I, I)Ω (where Ω is a Gaussian random matrix
of p × l dimension) as in RSVD Sect. 2.2. Matrix K(:, I) can be written in the
following way K(:, I) = ΦΦT

I where ΦI = Φ(I, :). Let

�Lγ = ΦΦT
I Q(QT ΦIΦ

T
I Q + pγI)−1QT ΦIΦ

T

be a regularized kernel matrix approximation. We can write Lγ = ΦNγΦT where
Nγ = ΦT

I Q(QT ΦIΦ
T
I Q + pγI)−1QT ΦI .

Using Sherman—Morrison—Woodbury identity approximate in sample error
can be computed in the following way:

1
n

||z − zLγ
|| = nλ2zT (ΦNγΦT + nλI)−2z (4)

Both function γ → Nγ and in sample prediction error are matrix non decreas-
ing functions. Therefore in order to find an upper bound for on error ||z − zL||2
it is enough to find an upper bound for ||z −zLγ

|| for any γ > 0 because L = L0.
Furthermore in order to find an upper bound for ||z − zLγ

|| for any γ > 0 it is
enough to find a matrix lower bound for Nγ .
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We define tI,Q = λmax( 1
nΨT Ψ − 1

pΨT
I QQT ΨI).Using the matrix manipulation

we get the following semi definite inequality:

I − Nγ � γ

1 − tI,Q
(
1
n

ΦT Φ + γI)−1 (5)

Applying this to the in sample approximate error we get

1
n

||z − zLγ
||2 = λ2zT (Lγ + nλI)−2z

≤ nλ2(1 − γ

λ(1 − tI,Q)
)−2zT (K + nλI)−2z

= (1 − γ

λ(1 − tI,Q)
)−2 1

n
||z − zK ||2

≤ (1 + 6
γ

λ(1 − tI,Q)
)
1
n

||z − zK ||2 (6)

This implies:

1
n

E[||z − zLγ
||2] ≤ (1 + 6

γ

λ(1 − E[tI,Q])
)
1
n

||z − zK ||2

Now we need to find an upper bound for E[tI,Q].

E[tI,Q] = E[|| 1
n

ΨT Ψ − 1
p
ΨT

I QQT ΨI ||]

= E[|| 1
n

ΨT Ψ − 1
p
ΨT

I ΨI +
1
p
ΨT

I ΨI − 1
p
ΨT

I QQT ΨI ||]

≤ E[|| 1
n

ΨT Ψ − 1
p
ΨT

I ΨI ||] +
1
p
E[||ΨT

I ΨI − ΨT
I QQT ΨI ||] (7)

Using the results from [1,2,5,6] we prove that there is p0 such that or p ≥ p0
the following inequality holds E[tI,Q] ≤ 1 − γ

δλ from which the desired result
follows.

4 Empirical Results

In this section we evaluate the performance of our algorithm RNV (Algorithm 2)
that uses the combination of a Nyström method and a randomized SVD against
the algorithm XNV (Algorithm 1) that uses the ordinary Nyström method. We
compare algorithms on real world data sets1,2,3, see Table 1.

1 http://www.dcc.fc.up.pt/ltorgo/Regression/DataSets.html.
2 http://www.gaussianprocess.org/gpml/data/.
3 https://archive.ics.uci.edu/ml/datasets.html.

http://www.dcc.fc.up.pt/ltorgo/Regression/DataSets.html
http://www.gaussianprocess.org/gpml/data/
https://archive.ics.uci.edu/ml/datasets.html
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Table 1. Data sets

Data set Instances Attributes

Ailerons 7154 40

Cal housing 10320 8

Elevators 8152 18

Sarcos5 44484 21

Sarcos7 44484 21

number of items
0 500 1000 1500

er
ro

r

1

1.2

1.4

1.6

1.8

2
XNV
RNV

(a) Ailerons

number of items
0 500 1000 1500

er
ro

r
3.8

4

4.2

4.4

4.6

4.8
XNV
RNV

(b) Cal housing

number of items
0 500 1000 1500

er
ro

r

1

1.5

2

2.5

3

3.5

4
XNV
RNV

(c) Elevators

number of items
0 500 1000 1500

er
ro

r

0.4

0.45

0.5

0.55

0.6

0.65

0.7
XNV
RNV

(d) Sarcos 5

number of items
0 500 1000 1500

er
ro

r

0.06

0.08

0.1

0.12

0.14

0.16
XNV
RNV

(e) Sarcos 7

Fig. 1. Performance comparison of RNV and XNV algorithms on real world data
sets.

We used Gaussian kernel whose hyper parameters are learned using 5-fold
cross validation. For the value of m we put 10 and for l we put 50. Random
features are derived from the entire data set, and the regression is applied on a
part of the data set. We show mean predictive error and its standard deviation
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and report results in a Fig. 1. Across all data sets RNV outperforms XNV.
Therefore we note that better results are achieved when using the larger number
of randomly selected columns for random view construction while at the same
time the time complexity remains linear in the size of the data set.
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