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Abstract. Predicting which entities are likely to be mentioned in sci-
entific articles is a task with significant academic and commercial value.
For instance, it can lead to monetary savings if the articles are behind
paywalls, or be used to recommend articles that are not yet available.
Despite extensive prior work on entity prediction in Web documents, the
peculiarities of scientific literature make it a unique scenario for this task.
In this paper, we present an approach that uses a neural network to pre-
dict whether the (unseen) body of an article contains entities defined in
domain-specific knowledge bases (KBs). The network uses features from
the abstracts and the KB, and it is trained using open-access articles and
authors’ prior works. Our experiments on biomedical literature show that
our method is able to predict subsets of entities with high accuracy. As
far as we know, our method is the first of its kind and is currently used
in several commercial settings.

1 Introduction

Retrieving relevant scientific literature is crucial to advance the state-of-the-art
in many disciplines. Unfortunately, a considerable subset of scientific articles is
unavailable to the general public. For instance, recent estimates suggest that so
far only 28% of publications are released as Open Access [22], and this excludes
publications which are not yet available (e.g., preprints). In this case, third
parties can only use public metadata to search for relevant literature, but this
might be only a subset of all information contained in the article.

Typically, the search of scientific articles is driven by some entities of inter-
est. For instance, one user might be interested in retrieving all papers that
mention “cardiovascular disorders” or “phosphorene”. These entities are often
domain-specific (e.g., drugs, or experimental procedures) and are contained in
high-quality knowledge bases (e.g., BioPortal [20]). Unfortunately, if the full arti-
cle is missing then this process can only return articles which explicitly mention
these entities in their abstracts or other metadata.

To overcome this limitation, one would need to be able to predict whether
a paper might contain a given entity. This task, which we call entity prediction
(EP), but is also known as entity suggestion [31], recommendation [5], or set
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expansion [29], can be used to rank unseen articles and can lead to significant
monetary savings if the articles are behind paywalls. Moreover, EP can also be
used for other tasks like to augment existing knowledge bases, or might con-
tribute for capturing the results of certain experiments in a more formal way
(e.g., see the movement around nanopublications [10]).

In the literature, entity prediction has been previously applied to improve
Web search results [3,12] or for knowledge base expansion [23]. In these cases,
the prediction models use the entities contained in the queries as a seed to predict
related entities mentioned in larger collections of documents (e.g., Web pages).
Our context, however, is more challenging. First, scientific articles contain more
technical nomenclature than regular Web pages and fewer entities are relevant.
Second, it is harder for us to acquire large amounts of training data due the
extreme coverage of topics, and because a significant number of articles is either
behind paywalls or available in obsolete formats.

In this paper, we address this challenge by proposing a novel method for
entity prediction on scientific literature. Our strategy is to construct a statistical
model to predict which entities are likely to be mentioned in an article given its
abstract and other metadata. We rely on knowledge bases to detect domain-
specific entities of interest and use scientific articles released with Open Access
to construct a training dataset of entity co-occurrences. After some initial failed
attempts where we tried different types of models, which range from standard
binary classifiers to neural networks with dense embeddings, linguistic, and other
semantic features extracted from the KB, we finally obtained satisfactory results
by restricting our focus to specific target entities. In this case, our model consists
of a multi-layer neural network that is trained to predict whether the body of
an article is likely to mention one entity of interest (or a class of entities). As
input, the network receives a Bag-Of-Word (BOW) feature vector constructed
using the entities in the abstract, and, optionally, also the entities mentioned
in prior works of the authors. As output, it returns the probability that one or
more target entities are mentioned.

We empirically evaluated our method considering scientific literature in the
biomedical field. In this context, our results are encouraging: The average accu-
racy on predicting eight example entities from the NCIT ontology [24] in about
2K scientific articles from PubMed was 0.865 (0.804 AUC). As far as we know,
we are not aware of other techniques for predicting entities in unseen articles,
and our results indicate that this is a valuable asset to improve semantic search
of scientific literature. In a more commercial setting, these predictions can also
be used to connect suppliers of scientific equipment (e.g., special machines or
chemical compounds) to potential customers (i.e., research labs) by looking at
the customers’ published papers. This last use case is precisely the one that moti-
vated our research and is currently explored in a number of industrial scenarios.

2 Related Work

Semantic Search. Our work falls into the broad research topic of semantic
search which largely focuses on searching related entities in knowledge bases



Predicting Entity Mentions in Scientific Literature 381

using structured and unstructured inputs. In this context, it is important to
discover related entities, and this is a process that usually starts with a small
entity subset of the target, namely the seed entities. In [9], the authors propose
a Bayesian model to determine if an entity belongs to a cluster or concept, and
use it to expand the set with more entities belonging to the same cluster as
the seeds. In [23], it is proposed to crawl the Web to get coordinated words
which are conjuncted by “and”, “or” and commas, then define similarity on top
of them. Moreover, the authors of [29] propose to learn wrappers of the seeds
from the semi-structured documents, e.g., HTML, then use learned wrappers to
find new entities in a bootstrap manner. Finally, [12] proposes GQBE, a system
that takes entity tuples as examples to find similar combinations from knowledge
graph. Our setting differs from these works since we assume that a large part
of the related entities are not available and we focus on the retrieval of domain-
specific entities which appear with lower frequencies.

In the context of query answering, the works at [14,30] propose to use lan-
guage models to estimate the probability of an entity given query term and
category. Furthermore, [28] proposes to use lexical similarity to constrain the
entity results with categories while [3] introduces a probabilistic framework to
model the query focusing on category information. More recently, [5] proposes
to take the neighbor nodes of the initial entities in a knowledge graph and rank
them with a learn-to-rank framework using co-occurrence, popularity and graph
attributes as features. This work takes only the entity from user query and out-
performs [7] which requires long descriptive text that contains concepts. Also,
the authors of [31] have proposed a technique to conceptualize the input entities
and build two probabilistic models between entities and concepts, thus they give
not only the related entities but also the concept that explains the relationship.
While these works are related in terms of objective, they are applied to domains
which are significantly different. To the best of our knowledge, we are not aware
of any previous works that apply EP to scientific literature using abstracts as
seeds.

Co-occurrence Analysis. We use co-occurrence as a measure of relatedness.
Co-occurrence is widely studied, especially in the biomedical field, in order to
discover new connections between entities of interest. The most related field is
literature-based discovery where the co-occurrence in academic publications is
used as the evidence of links between concepts [25]. Moreover, many researchers
have used co-occurrence for domain-specific tasks: For instance, the authors
of [13] use co-occurrence as a source of information to retrieve the biological
relationships between genes while [8] use co-occurrence information to form indi-
rect links and discover the hidden connections between drugs, genes, and dis-
eases. The work at [15] also uses co-occurrence in scientific articles to predict
implicit relations between biomedical entities. While these works also make use of
explicit mentions to draw conclusions, they focus on specific problems and do not
consider the co-occurrence relations between abstracts (which are highly dense
summaries) and the full document. Another emerging form of co-occurrence is
encoded in a latent space in the form of dense numerical vectors. The seminal
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work word2vec [17] is perhaps the most popular example of this kind applied to
English words. In our work, we did use a “word2vec”-like approach to encode
the co-occurrence of entities but we did not obtain good results.

Bag of Words (BOW). Finally, our approach uses a bag-of-words vector to
represent the entities. Typically BOW models treat all the words in the same
piece of text equally, but there is a significant research to enhance the perfor-
mance by adding a weighting scheme [26]. In our work, we choose standard
intra-document term frequency as a weighting scheme. The application of more
sophisticated weighting scheme should be seen as future work.

3 Entity Prediction in Scientific Literature

Our goal is to predict whether the unseen body of the article contains some enti-
ties of interest given in input some author information and abstract. To this end,
our proposal is to train a model that learns correlations between entity mentions
in the abstract and in the full body and use these to make the predictions. More
formally, let E and A be two predefined sets of entities and authors. Given two
sequences 〈e1, . . . , en〉 and 〈a1, . . . am〉, which represent respectively the list of
entities that appear in the abstract and list of authors, we want to build a model
to predict with high confidence whether some entities t1, . . . , tn ∈ E appear in
the body (which we assume is not accessible).

We make a few assumptions: First, we assume that we have available a
significant number of full articles which we can use for training our model.
This assumption is met in practice by considering articles published using the
open-access model. Second, we assume that entities are available in knowledge
bases which allow us to exploit semantic relations to improve the prediction. In
practice, useful knowledge bases can be large domain-specific ontologies such
as Unified Medical Language System (UMLS) [16], National Cancer Institute
Thesaurus (NCIT) [24], Headings and Systematized Nomenclature of Medicine-
Clinical Terms (SNOMED-CT) [6], or other encyclopedic ones like DBpedia [2].
For the purpose of this work, we view a knowledge base as a graph G where E
is a set of vertices (i.e., the entities in our case) while the edges encode semantic
relations between them. For instance, 〈Odontogenesis, IsA,Organogenesis〉 is
an example of such relation taken from the NCIT ontology.

We distinguish two operations: training, that is when our objective is to
construct a suitable model, and prediction, that is when we use the model to make
the predictions. In both cases, the first operation consists of applying a state-
of-the-art entity recognition (NER) tool and disambiguate the entity mentions
to entities in the knowledge base. In this work, we used NobleTools [27] for the
recognition and the disambiguation to the KB. For each extracted entity we
extract from the knowledge base its semantic type and neighbors. Moreover, we
store also the position of the entity in the original text. Then, we “embed” each
entity mention into a sequence of numerical features so that it can be used by the
statistical model. During the training phase, the embeddings of entities in both



Predicting Entity Mentions in Scientific Literature 383

metadata and body are used to train a statistical model. During the prediction,
the model is used to predict new entity mentions.

In the following, we first describe two early attempts at implementing the
model using two well-known techniques: A standard binary classifier and a Recur-
rent Neural Network (RNN) [11] used in combination with word embeddings.
Neither of these methods returned adequate performance. In Sect. 4, we describe
how we overcame the limitations of these two methods with a more performant
approach.

3.1 Failed Attempts

As a first step in our research, we decided to investigate how a well-known
technique such as a binary classifier would perform in our context. To this end,
we followed the standard practice of representing entities with feature vectors
and trained a classifier (we used a Support Vector Machine (SVM) [4]) to predict
to what extent a given entity in the abstract correlates with the appearance of
another entity in the article’s body.

We proceeded as follows. First, we created a feature vector for each entity
appearing in the abstract or body of the paper. Then, we concatenated the
feature vectors of one entity in the abstract, one entity in the body, and some
additional shared features together. The resulting vector was used as positive
example while pairs or non-existing random pairs of entities were used as negative
examples.

The entity feature vectors are composed of 13 features:

1. Two structural features: the distance from the start of the text and spread
of an entity, namely distance between the first and the last mention of one
entity. These features are introduced because typically important entities are
mentioned first in the text;

2. Seven standard statistical features: TF, IDF, TF*IDF on both abstract and
body entities, and respective co-occurrence frequencies;

3. Four features extracted from the considered ontologies: Jaccard, Dice, Milne-
Witten [18], and Adamic-Adar [1] distances between the entities in the repos-
itory. These features aim at capturing how close the two entities are in the
semantic domain which is represented by the ontology.

We calculated the Pearson coefficient of each feature against the true label
and did a feature ablation study by removing the feature with the worst coeffi-
cient one by another to find the best feature subset. Unfortunately, none of these
operations returned satisfactory performance. Using a training set of 3K articles
and a test set of 3K Pubmed articles, our best results were 0.309 as precision
and 0.394 as F1 score.

A limitation of the previous approach is that it does not take the sequence
of entities into account. To include this aspect in our prediction, we considered
the usage of Recurrent Neural Networks (RNN) and build a language model
using the appearance sequence of entities in the abstracts and bodies as input.
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To create suitable embeddings for the entities, we tried both a state-of-the-art
word2vec-variant called Entity2Vec [19] (using sequences of entities in the paper
as the “sentences”) and another technique called DeepWalk [21] which performs
random walks on the knowledge graph. During the training of the language
model, we only considered the body of open access articles as training data
since because the articles’ bodies contain many more entities and about 85%
of the entities which are mentioned in the abstract are also mentioned in the
body. During the testing phase, we fed the RNN with the sequence of entities in
an abstract (in the order they appear) and then computed the cosine distance
between the output of the network and the embeddings of all the entities in our
repository. The ones with the smallest values were selected as the output of the
prediction.

Unfortunately, also this method did not return satisfactory results with the
best precision, recall and F1 score averaging under 0.1. First, we observed that
taking the whole body as one single sequence of entities dilutes the semantic
relations between the tokens and adds noises to the model. A better approach
would be to segment the text into smaller sequences depending on domain knowl-
edge. Second, the quality of the entity embedding is not perfect and errors in
this space affect the downstream application. To evaluate this problem, we took
the embedding of one entity in the knowledge graph and calculated the cosine
similarity against all other entities in E, rank them according to this measure,
and extract the position of the synonyms. We repeated this process for 100
known synonyms pairs but the average position was below the top 10% with
either method. This indicates that the quality of the entity embeddings is not
high. Our third method, described in the next section, overcomes this problem
by adopting a sparse representation of the entities instead.

4 Using a Neural Network with BOW

We now describe our third attempt which uses a neural network with bag-of-
words (BOW) embeddings to perform the prediction. First, we map the list of
entities in E into a BOW vector e of length |E|. We use different weighting
scheme for the entities in the abstract and body. For the firsts, we use term
frequency as the feature value. For the seconds, we use a binary value depending
on the entity’s appearance.

Then, we train a neural network that takes in input the vector with the
frequency of entities in the abstract, which we call eabs, and in output another
vector with the entities found in the body, which we call ebdy. More formally, let
abs and bdy be the multisets of entities that appear in the paper’s abstract and
body respectively and let bdyn the set of entities that appear only in bdy. Then,

eabs = 〈TF (e1, abs), TF (e2, abs), ..., TF (e|E|, abs)〉 (1)
ebdy = 〈χ(e1, bdyn), χ(e2, bdyn), . . . , χ(e|E|, bdyn)〉 (2)

where TF (e, t) denotes the number of mentions of entity e in t while χ(e, t) is a
function that returns 1 if e appears in t or 0 otherwise.
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We add a number of hidden layers to bridge through the high-level latent
semantic correlations and add non-linearity to the model. Considering that the
dimension of the input is high (i.e., |E|), we set the size of hidden layers much
smaller than |E| to densify the representation. Finally, the model is trained by
minimizing the cross-entropy as usual.

After the training is finished, the network is ready to make the prediction.
Let e

̂bdy
= 〈ê1, . . . , ê|E|〉 be the output of the network for a given abstract. The

likelihood P (ei) that entity ei appears in the body of the article is computed as:

P (ei) =
êi

‖e
̂bdy

‖2 (3)

Since the network outputs a likelihood score for all entities, Eq. 3 can be
used to make a prediction for either all entities in E or for a subset of them. If
we restrict our focus to one or a few specific entities, then we can substantially
reduce the size of the BOW vectors to only the entities which are related to
our focus. To this end, let us assume that we are interested only on predicting
whether the paper mentions one entity of interest e∗. In this case, we can identify
all entities which are close to e∗ in the knowledge base and reduce the size of
the BOW vector to only those entities. We use the length of the paths between
entities in the knowledge graph as distance value. More formally, let the set
N(e) = {e} ∪ {ej ∈ V (G)|〈ej , e〉 ∈ E(G) ∨ 〈e, ej〉 ∈ E(G)} be the neighbour set
of the entity e in the graph G. Then we define N0(e) = N(e) and N i+1(e) =
N i(e)∪⋃

ej∈Ni(e) N(ej) for all i ≥ 0. In some of our experiments, we considered
entities in N i(e∗) where 1 ≤ i ≤ 2. This reduces the size of the embeddings from
|E| to |N i(e∗)| and this consequently improves significantly training time. In
Sect. 5, we report the performance of the model for predicting either all entities,
multiple or a single class of entities, or a single one.

4.1 Including Author’s Co-authorship

So far, only the entities in the abstract were considered for the prediction. How-
ever, researchers tend to specialize on specific topics, and co-authorships indicate
shared interests. Therefore, the list of authors is also a valuable asset for our goal.

We propose one extension to our previous method to exploit this information.
The main idea consists of using the authors as proxies to collect more relevant
entities. More specifically, our approach is to first collect up to n previous pub-
lications from each of the m authors of an article, and then construct the BOW
vectors for the abstract and body of a given article as follows.

e
′
abs = (1 − α)eabs + α

1
mn

m
∑

j=1

n
∑

i=1

eabsij , (4)

e
′
̂bdy

= (1 − β)e
̂bdy

+ β
1

mn

m
∑

j=1

n
∑

i=1

ebdyij
, (5)
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where eabs and e
̂bdy

are the BOW vectors of the abstract and the body
of the given article constructed with Eqs. 1 and 2, eabs11 , . . . , eabsmn

and
ebdy11 , . . . , ebdymn

are the vectors of the abstracts and bodies of the previous
n papers of m authors, and α and β are two hyperparameters used to control
the weights given to the modeled histories.

Initially, we gave an equal weight to all authors. However, since they can con-
tribute non-equivalently to the article, we decided to first determine the impor-
tance of each author by comparing the frequencies of the entities in the authors’
abstracts with the content of the paper and then consider only the author with
the highest overlap. In this way, we can exclude authors which have also pub-
lished in many other domains and therefore might introduce noise.

5 Evaluation

We report an empirical evaluation of the approach described in Sect. 4 on
biomedical scientific literature. We chose this field since it contains high quality
knowledge bases and many scientific papers. The goal of our experiments was to
evaluate the accuracy in predicting either a single or all entities (Sect. 5.1), the
effect of hyperparameters like the network structure or training size (Sect. 5.2),
and what is the impact of adding also author information in the predic-
tion (Sect. 5.3). All code, models, and data is available at https://github.com/
NiMaZi/BioPre.

Input. As input, we considered the scientific publications which are archived
in PubMed, the largest repository of biomedical articles. This collection con-
tains about 27M articles, of which about 17M (65.5%) of them contain only the
abstract, while 8M (32.3%) contain both abstract and full body. About 93.3%
of the papers in the second subset contain also author information. The content
of these papers is available and stored in raw text on Elasticsearch1, which we
use to query and retrieve the content of the papers.

Preprocessing. We extracted the entities in the articles with NobleTools [27],
which is a popular entity annotator for biomedical text. This tool can be config-
ured to use ontologies as the entity thesaurus. In our experiments, we used the
NCIT ontology since it is a well-known ontology that covers concepts that range
from disease to clinical care and is compatible with NobleTools. This ontology
can be seen as a knowledge graph with 133K entities and 1.6M relations. Noble-
Tools uses a number of heuristics to select potential entity candidates for each
mention. Then, it selects one candidate among them by preferring first candi-
dates with most synonyms, rejecting candidates that resemble abbreviations but
lack a case-sensitive match, and preferring at last candidates that are unstemmed.
Using NCIT, we extracted on average 59 entity mentions per abstract and 496
entity mentions in each body. Finally, we used an adapted version of Beard2 for
author disambiguation.
1 https://elastic.co.
2 https://github.com/inspirehep/beard.

https://github.com/NiMaZi/BioPre
https://github.com/NiMaZi/BioPre
https://elastic.co
https://github.com/inspirehep/beard
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Fig. 1. Precision, recall, and F1 for four types of predictions. (e) reports also the area
under the curve (AUC) for the EP prediction.

Testbed. We used Keras3 to implement the various models and Tensorflow4 as
backend. All the models are constructed with fully connected layers, and have
batch-wise L1 normalization and 0.5 dropout rate associated with each layer.
Unless otherwise specified, the models were trained with binary cross-entropy
as loss function and the weight matrix was updated with Nesterov-accelerated
Adaptive Moment Estimation (Nadam). We used mini-batch strategy for updat-
ing the model, where each batch contains 1024 articles. All the models were
trained using a machine with a dual 8-core 2.4 GHz (Intel Haswell E5-2630-v3)
CPU, 64 GB RAM, and two NVIDIA TITAN X graphic cards with Pascal archi-
tecture and one NVIDIA GTX 980 graphic card. Training a batch of articles
took about 6.5 min and we did not observe improvements after 5–10 epochs of
training.

5.1 Entity Prediction Using Abstract Entities

We trained a number of models to perform four types of predictions: First, we
perform a general prediction (GP), which means that try to predict all entity

3 https://github.com/keras-team/keras.
4 https://www.tensorflow.org/.

https://github.com/keras-team/keras
https://www.tensorflow.org/
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Table 1. Accuracy (EP prediction) changing several parameters.

mentions in the body. Second, we predict all possible classes of entities in the
body (CP). Third, we predict whether the article mentions one class of entities.
Fourth, we predict whether the article contains the mention of one specific entity.
For the third and fourth cases, we chose the class “Disease and Syndromes”
(DP) which contains 5227 entities while for the fourth case we chose the entity
“electroencephalography (EEG)” (EP). This arbitrary choice was selected due
to a real-world business case.

We created a neural network with one hidden layer of 512 units and the
Rectified Linear Unit (ReLU) as a global activation function. Then, we selected
a random subset of 147K articles as training data and 3K articles as test data for
the first three types of predictions. For the fourth type of prediction, we selected
56K and 2K random articles as training and test data respectively. In this case,
the test dataset contains about 1K positive examples and 1K negative ones.

We performed various experiments changing the output threshold value and
calculated the precision and recall (for EP we also computed the area under
the curve of ROC). The results are shown in Fig. 1. As we can observe from
the graphs, the F1 score for the GP predictions is significantly lower than for
the prediction of a single entity (EP). The F1 for CP is high as well, but this
is misleading because here we are predicting all classes and the articles almost
always contain the same classes of entities. For them, the model learns to always
return true (and indeed the best results are obtained by setting the threshold
closed to zero). In contrast, the F1 for predicting EEGs (EP) is high, but in
this case the threshold is not zero which means that the network has learned to
discriminate. From these results, we conclude that our model has indeed learned
to predict the occurrence of one entity of interest with high accuracy.

It is important to mention that Figs. 1d and e report the results for one spe-
cific entity, namely EEGs. In order to verify whether similar results can also
be obtained with other entities, we selected eight different entities and repeat
the same experiment. Instead of picking random entities, we made an effort to
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select a representative sample that contains entities which both are specific and
generic, and which belong to different classes. More specifically, we picked “Energy
Dispersive Spectroscopy (EDS)” from the category of spectroscopy, “Atomic
Force Microscope (AFM)”, “Scanning Electron Microscope (SEM)” and “Confo-
cal Microscope (CM)” from the category of microscope, “Heroin”, “Cocaine” and
“Cannabis” from the category of drugs, and “duck” from the category of birds.
Figure 1f reports the Area Under the ROC Curve (AUC) and accuracy for each
entity (note that the table reports also the same AUC of EEG shown in Fig. 1(e).
As we can see from the table, the models are able to return fairly high scores also
for other entities, which means that it can handle other types of entities as well.

5.2 Entity Prediction with Different Hyperparameters

We have also performed a series of experiments changing some hyperparameters
or configurations of the network to see to what extent the performance of the
single entity prediction (EEG) is affected by these changes. More in particular,
we tested different activation functions (Table 1a), different subsets of entities,
i.e., all entities, only the neighbours in N2(x) where x is the target entity, and
only the “leaf” entities in KB (Table 1b), different training set sizes (Table 1c),
and different weighting schemes (Table 1d). All these models, except the study
on different training set size, are trained on 56K articles and share the same
network settings as the previous experiments.

We can draw some conclusions from these results. First, we observe from
Table 1a that ReLU delivers the best results. Second, the study reported in
Table 1b shows that while the best results are obtained by considering all entities,
if we consider only the neighbors of the entity (N2), then we still get a fairly
high accuracy, but with the additional advantage that we reduced the size of the
input vectors to 25% of the original size. This loss in terms of accuracy might
be acceptable if the domain contains a very large number of entities. Table 1c
shows that while the accuracy gradually saturates with more than ten batches
of training articles, we still need to use the entire training set to get the best
results. Finally, we learn from Table 1d that the term frequency (tf) is the best
weighting scheme for the BOW vector.

5.3 Entity Prediction Including Co-Authorship

We now provide some preliminary results on including authors’ information in
the prediction as described in Sect. 4.1. First, we selected three representative
authors whose history vectors have different variances (anonymized details are
reported in Fig. 2a). For each author, we randomly picked 200 articles to create
the history of abstracts. Then, we used these vectors to predict all entities in
the body of other 100 random articles. We measure the F1 score by changing
the complement parameter α from 0.0 to 1.0 (if α is zero then the approach
is not considering any prior work while if it is 1 it only considers prior works).
The results, shown in Fig. 2b, show that including the information of authors
with lower variance does improve the F1 but this is true as long as the author
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Fig. 2. a–b: Statistics and performance including author embeddings. c–f: Performance
on entities “Drug Dependencies (DD)” and “Microscope (Mi)” with and without author
embeddings.

publishes in the same domain (i.e., with low variance) because otherwise noise is
introduced (as shown for authors A and B in Fig. 2b). This motivates our choice
of selecting only the author with the highest overlap with the content of the
paper.

We then evaluate the change of performance if we restrict our focus to the
prediction of small groups of entities that are in the same category. We picked
the class “microscopes” (that contains entities like “Scanning Electron Micro-
scope”, “Transmission Electron Microscope”, “Scanning Tunneling Microscope”,
“Confocal Microscope”, etc.) and “drug dependences” (with entities like “Alco-
hol Dependence”, “Cannabis Dependence”, “Cocaine Dependence”, etc.) as our
target groups (we selected these two classes of entities since they are the ones
whether the authors have published). The results, shown in Figs. 2c–f, show a
moderate increase of the F1 when we include prior abstracts of the selected
author. In the first case, the increase of the F1 was about 0.8% while in the
second case it was about 2.5%5. These results confirm that indeed the authors
constitute a valuable asset to improve the performance of the prediction.

5.4 Limitations

Table 2 reports, as anecdotal evidence, the top 10 relevant entities identified for
EEG. The relevance scores in this table were computed by simply creating a
fake abstract where only EEG was mentioned and ranking the entities with the
highest output values. While these results do not reflect completely the output
5 These experiments are repeated multiple time (≥5).
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Table 2. Top 10 relevant entities of EEG.

Entity Relevance score Entity Relevance score

Pharmacodynamic Study 13.98 NIPBL wt Allele 12.68

Obstructive Sleep Apnea 13.91 Audit 12.39

Proband 13.23 Central Nervous System Involvement 12.38

Lactic Acidosis 13.12 Cornelia De Lange Syndrome 12.35

Sweden 13.00 Reye Syndrome 12.19

of the network (since typically more entities are added in the input), they give
us an indication on which are the most relevant entities according to our model.
As we can see from the table, the model recognizes some relevant entities (like
diseases which require the use of EEG), but also returns some generic entities
(like Sweden).

We investigated the causes of errors using the optimal configuration to gain
some insights into the limitations of our method. If we consider once again the
prediction of EEG, then we obtained 244 errors in our test set, of which 118
were false positives and 126 false negatives. After analyzing the false positives,
we divided the errors into three major problems:

1. The prediction might become too much biased towards entities with high
intra-document frequency.

2. A similar bias is given for common entities which appear frequently in a wide
variety of topics.

3. The method is not able to distinguish secondary content in the abstract that
will not be discussed in detail in the corresponding body.

The first two problems make up 96% of all the false positives while the third
problem makes up for 4% of the cases. We believe that the first two problems can
be addressed by introducing more sophisticated weighting schemes to balance
different intra-frequencies and by giving smaller weights to abstract concepts.
Addressing the third cause of error requires a deeper understanding of the orga-
nization of a scientific article. Intuitively, the important content is mentioned in
the front of the abstract, thus the position of each entity in the abstract could
be used as a naive measurement of importance. A deeper investigation on these
issues should be seen as future work.

6 Conclusion

We proposed a machine-learning-based technique to predict entities mentioned
in scientific articles using the articles’ metadata. This task is useful to improve
the retrieval of relevant publications when the full content is not available either
because of a paywall or due to other reasons (e.g., preprints). Our technique can
be used to search for classes of entities or be targeted to specific entities (e.g.,
some special equipment, as it was for one of our business cases). Moreover, it
can be also useful for performing knowledge base completion, or more generally
to discover related entities based on co-occurrences.
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Our best-performing approach uses a neural network and a sparse represen-
tation such as BOW vectors using the entities in the abstract. We also show
that the performance can be further improved if we also consider prior works
by the authors. The results on the biomedical field are encouraging, especially
if we restrict the focus to subsets of entities. To the best of our knowledge, ours
is the first technique of its kind and several directions for future research come
to mind. First, we plan to address the limitations outlined in Sect. 5.4. Second,
it is interesting to research more sophisticated mechanisms to include author
information to further improve the performance. It is also interesting to improve
the predictions in order to distinguish principal and secondary entities, or to
determine also the position of the entity in the paper (e.g., either in the evalua-
tion or in the related work section). Finally, we plan to extend the application
of this work also to other fields such as physics or chemistry.
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