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Abstract. Knowledge graph embeddings models are widely used to pro-
vide scalable and efficient link prediction for knowledge graphs. They use
different techniques to model embeddings interactions, where their tensor
factorisation based versions are known to provide state-of-the-art results.
In recent works, developments on factorisation based knowledge graph
embedding models were mostly limited to enhancing the ComplEx and the
DistMult models, as they can efficiently provide predictions within linear
time and space complexity. In this work, we aim to extend the works of
the ComplEx and the DistMult models by proposing a new factorisation
model, TriModel, which uses three part embeddings to model a combi-
nation of symmetric and asymmetric interactions between embeddings.
We perform an empirical evaluation for the TriModel model compared
to other tensor factorisation models on different training configurations
(loss functions and regularisation terms), and we show that the TriModel
model provides the state-of-the-art results in all configurations. In our
experiments, we use standard benchmarking datasets (WN18, WN18RR,
FB15k, FB15k-237, YAGO10) along with a new NELL based benchmark-
ing dataset (NELL239) that we have developed.
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1 Introduction

In recent years, knowledge graph embedding (KGE) models have witnessed rapid
developments that have allowed them to excel in the task of link prediction for
knowledge graphs [22]. They learn embeddings using different techniques like
tensor factorisation, latent distance similarity and convolutional filters in order
to rank facts in the form of (subject, predicate, object) triples according to
their factuality. In this context, their tensor factorisation based versions like the
DistMult [23] and the ComplEx [21] models are known to provide state-of-the-art
results within linear time and space complexity [22]. The scalable and efficient
predictions achieved by these models have encouraged researchers to investigate
advancing the DistMult and the ComplEx models by utilising different training
objectives and regularisation terms [8,9].
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In this work, our objective is to propose a new factorisation based knowledge
graph embedding model that extends the works of the DistMult and the Com-
plEx models while preserving their linear time and space complexity. We achieve
that by modifying two of their main components: the embedding representation,
and the embedding interaction function.

While both the DistMult and the ComplEx models use the bilinear product
of the subject, the predicate and the object embeddings as an embedding inter-
action function to encode knowledge facts, they represent their embeddings using
different systems. The DistMult model uses real values to represent its embed-
ding vectors, which leads to learning a symmetric representation of all predicates
due to the symmetric nature of the product operator on real numbers. On the
other hand, the ComplEx model represents embeddings using complex numbers,
where each the embeddings of an entity or a relation is represented using two
vectors (real and imaginary parts). The ComplEx model also represents enti-
ties in the object mode as the complex conjugate of their subject form [21].
This enables the ComplEx model to encode both symmetric and asymmetric
predicates.

Since the embeddings of the ComplEx models are represented using two
part embeddings (real and imaginary parts), their bilinear product (ComplEx’s
embedding interaction function) consists of different interaction components
unlike the DisMult model with only one bilinear product component. Each of
these components is a bilinear product of a combination of real and imaginary
vectors of the subject, the predicate and the object embeddings, which gives the
ComplEx model its ability to model asymmetric predicates.

In this work, we investigate both the embedding representation and the
embedding interaction components of the ComplEx model, where we show that
the ComplEx embedding interaction components are sufficient but not neces-
sary to model asymmetric predicates. We also show that our proposed model,
TriModel, can efficiently encode both symmetric and asymmetric predicates
using simple embedding interaction components that rely on embeddings of
three parts. To assess our model compared to the ComplEx model, we carry
experiments on both models using different training objectives and regulari-
sation terms, where our results show that our new model, TriModel, provide
equivalent or better results than the ComplEx model on all configurations. We
also propose a new NELL [12] based benchmarking dataset that contains a small
number of training, validation and testing facts that can be used to facilitate
fast development of new knowledge graph embedding models.

2 Background and Related Works

Knowledge graph embedding models learn low rank vector representation i.e.
embeddings for graph entities and relations. In the link prediction task, they
learn embeddings in order to rank knowledge graph facts according to their
factuality. The process of learning these embeddings consists of different phases.
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First, they initialise embeddings using random noise. These embeddings are then
used to score a set of true and false facts, where a score of a fact is generated
by computing the interaction between the fact’s subject, predicate and object
embeddings using a model dependent scoring function. Finally, embeddings are
updated by a training loss that usually represents a min-max loss, where the
objective is to maximise true facts scores and minimise false facts scores.

In this section we discuss scoring functions and training loss functions in
state-of-the-art knowledge graph embedding models. We define our notation as
follows: for any given knowledge graph, E is the set of all entities, R is the
set of all relations i.e. predicates, Ne and Nr are the numbers of entities and
relations respectively, T is the set of all known true facts, e and w are matrices
of sizes Ne × K and Nr × K respectively that represent entities and relations
embeddings of rank K, φspo is the score of the triple (s, p, o), and L is the model’s
training loss.

2.1 Scoring Functions

Knowledge graph embedding models generate scores for facts using model depen-
dent scoring functions that compute interactions between facts’ components
embeddings. These functions use different approaches to compute embeddings
interactions like distance between embeddings [2], embedding factorisation [21]
or embeddings convolutional filters [5].

In the following, we present these approaches and specify some examples of
knowledge graph embedding models that use them.

• Distance-based embeddings interactions: The Translating Embedding model
(TransE) [2] is one of the early models that use distance between embeddings to
generate triple scores. It interprets triple’s embeddings interactions as a linear
translation of the subject to the object such that es + wp = eo, and generates a
score for a triple as follows:

φTransE
spo = ‖es + wp − eo‖l1/l2, (1)

where true facts have zero score and false facts have higher scores. This approach
provides scalable and efficient embeddings learning as it has linear time and space
complexity. However, it fails to provide efficient representation for interactions in
one-to-many, many-to-many and many-to-one predicates as its design assumes
one object per each subject-predicate combination.

• Factorisation-based embedding interactions : Interactions based on embedding
factorisation provide better representation for predicates with high cardinality.
They have been adopted in models like DistMult [23] and ComplEx [21]. The
DistMult model uses the bilinear product of embeddings of the subject, the
predicate, and the object as their interaction, and its scoring function is defined
as follows:

φDistMult
spo =

K∑

k=1

esk
wpk

eok
(2)



Link Prediction Using Multi Part Embeddings 243

where esk
is the k-th component of subject entity s embedding vector es. Dist-

Mult achieved a significant improvement in accuracy in the task of link prediction
over models like TransE. However, the symmetry of embedding scoring functions
affects its predictive power on asymmetric predicates as it cannot capture the
direction of the predicate. On the other hand, the ComplEx model uses embed-
ding in a complex form to model data with asymmetry. It models embeddings
interactions using the product of complex embeddings, and its scores are defined
as follows:

φComplEx
spo = Re(

K∑

k=1

esk
wpk

eok
)

=
K∑

k=1

er
sk

wr
pk

er
ok

+ ei
sk

wr
pk

ei
ok

+ er
sk

wi
pk

ei
ok

− ei
sk

wi
pk

er
ok

(3)

where Re(x) represents the real part of complex number x and all embeddings
are in complex form such that e, w ∈ C, er and ei are respectively the real and
imaginary parts of e, and eo is the complex conjugate of the object embeddings
eo such that eo = er

o−iei
o and this introduces asymmetry to the scoring function.

Using this notation, ComplEx can handle data with asymmetric predicates, and
to keep scores in the real spaces it only uses the real part of embeddings product
outcome. ComplEx preserves both linear time and linear space complexities as
in TransE and DistMult, however, it surpasses their accuracies in the task of
link prediction due to its ability to model a wider set of predicate types.

• Convolution-based embeddings interactions: Following the success of convo-
lutional neural networks image processing tasks, models like R-GCN [17] and
ConvE [5] utilized convolutional networks to learn knowledge graph embeddings.
The R-GCN model learns entity embeddings using a combination of convolu-
tional filters of its neighbours, where each predicate represent a convolution
filter and each neighbour entity represents an input for the corresponding pred-
icate filter. This approach is combined with the DistMult model to perform link
prediction. Meanwhile, the ConvE model concatenates subject and predicate
embeddings vectors into an image (a matrix form), then it uses a 2D convolu-
tional pipeline to transform this matrix into a vector and computes its interaction
with the object entity embeddings to generate a corresponding score as follows:

φConvE
spo = f(vec(f([es;wp] ∗ ω))W )eo (4)

where es and wp denotes a 2D reshaping of es and wp, ω is a convolution filter, f
denotes a non-linear function, vec(x) is a transformation function that reshape
matrix x of size m × n into a vector of size mn × 1.

2.2 Loss Functions

The task of link prediction can generally be cast as a learning to rank problem
where the object is to rank knowledge graph triples according to their factu-
ality. Thus, knowledge graph embedding models traditionally use ranking loss
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Fig. 1. Plots of different knowledge graph embedding loss functions and their training
error slopes. Red lines represent the score/loss slopes of the false triples and blue lines
represent the score/loss slopes of the true triples. (Color figure online)

approaches like pairwise and pointwise loss functions as in TransE and Com-
plEx respectively to model their training loss during the learning process. In
these approaches a set of negative facts i.e. corruptions, is generated using a
uniform random sample of entities to represent false facts, where training loss
uses a min-max approach to maximise true facts scores and minimise false facts
scores. Meanwhile, recent attempts considered using a multi-class loss to repre-
sent training error, where a triple (s, p, o) is divided into an input (s, p) and a
corresponding class o and the objective is to assign class o to the (s, p) input.

In the following, we discuss these two approaches with examples from state-
of-the-art knowledge graph embedding models.

• Ranking loss functions: Knowledge graph embedding models has adopted dif-
ferent pointwise and pairwise ranking losses like hinge loss and logistic loss to
model their training loss. Hinge loss can be interpreted as a pointwise loss or a
pairwise loss that minimises the scores of negative facts and maximise the scores
of positive facts to reach a specific configurable value. This approach is used in
HolE [15], and it is defined as:

L
Hinge

=
∑

x∈X

[λ − l(x) · f(x)]+, (5)

where l(x) = 1 if x is true and −1 otherwise and [c]+ is equal to max(c, 0). This
effectively generates two different loss slopes for positive and negative scores as
shown in Fig. 1.

The squared error loss can also be adopted as a pointwise ranking loss func-
tion. For example, the RESCAL [16] model uses the squared error to model
its training loss with the objective of minimising the difference between model
scores and their actual labels:

L
SE

=
1
2

n∑

i=1

(f(xi) − l(xi))2. (6)

The optimal score for true and false facts is 1 and 0, respectively, as shown in
Fig. 1. Also, the squared loss requires less training time since it does not require
configurable training parameters, shrinking the search space of hyperparameters
compared to other losses (e.g., the margin parameter of the hinge loss).
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The ComplEx [21] model uses a logistic loss, which is a smoother version of
pointwise hinge loss without the margin requirement (cf. Fig. 1). Logistic loss
uses a logistic function to minimise negative triples score and maximise positive
triples score. This is similar to hinge loss, but uses a smoother linear loss slope
defined as:

L
logisticPt

=
∑

x∈T

log(1 + exp(−l(x) · f(x))), (7)

where l(x) is the true label of fact x that is equal to 1 for positive facts and is
equal to −1 otherwise.

• Multi-class loss approach: ConvE model proposed a new binary cross entropy
multi-class loss to model its training error. In this setting, the whole vocabulary
of entities is used to train each positive fact that for a triple (s, p, o) all facts
(s, p, o′) with o′ ∈ E and o′ �= o are considered false. Despite the extra computa-
tional cost of this approach, it allowed ConvE to generalise over a larger sample
of negative assistances therefore surpassing other approaches in accuracy [5]. In
a recent work, Lacroix et al. [9] introduced a softmax regression loss to model the
training error of the ComplEx model as a multi-class problem. In this approach,
the objective for each triple (s, p, o) is to minimise the following losses:

Llog−softmax
spo = Lo′

spo + Ls′
spo,

Lo′
spo = −φspo + log(

∑
o′ exp(φspo′)

Ls′
spo = −φspo + log(

∑
s′ exp(φs′po)

(8)

where s′ ∈ E, s′ �= s, o′ ∈ E and o′ �= o. This resembles a log-loss of the softmax
value of the positive triple compared to all possible object and subject corrup-
tions where the objective is to maximise positive facts scores and minimise all
other scores. This approach achieved a significant improvement to the prediction
accuracy of ComplEx model over all benchmark datasets [9].

2.3 Ranking Evaluation Metrics

Learning to rank models are evaluated using different ranking measures includ-
ing Mean Average Precision (MAP), Normalised Discounted Cumulative Gain
(NDCG), and Mean Reciprocal Rank (MRR). In this study, we only focus on
the Mean Reciprocal Rank (MRR) since it is the main metric used in previous
related works.

Mean Reciprocal Rank (MRR). The Reciprocal Rank (RR) is a statistical
measure used to evaluate the response of ranking models depending on the rank
of the first correct answer. The MRR is the average of the reciprocal ranks of
results for different queries in Q. Formally, MRR is defined as:

MRR =
1
n

n∑

i=1

1
R(xi, f)

,
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Table 1. A comparison between the ComplEx model and different variants of its
scoring functions on standard benchmarking datasets

Model Definition NELL239 WN18RR FB237

MRR H@10 MRR H@10 MRR H@10

ComplEx i1 + i2 + i3 − i4 0.35 0.51 0.44 0.51 0.22 0.41

ComplEx-V1 i1 + i2 + i3 0.34 0.51 0.45 0.52 0.22 0.40

ComplEx-V2 i2 + i3 + i4 0.34 0.50 0.44 0.51 0.21 0.38

ComplEx-V3 i1 + i2 − i4 0.34 0.51 0.45 0.52 0.22 0.40

ComplEx-V4 i1 + i3 − i4 0.33 0.50 0.45 0.50 0.21 0.39

where xi is the highest ranked relevant item for query qi. Values of RR and MRR
have a maximum of 1 for queries with true items ranked first, and get closer to
0 when the first true item is ranked in lower positions.

3 The TriModel Model

In this section, we motivate for the design decision of TriModel model, and we
present its way to model embeddings interaction and training loss.

3.1 Motivation

Currently, models using factorisation-based knowledge graph embedding
approaches like DistMult and ComplEx achieve state-of-the-art results across
all benchmarking datasets [9]. In the DistMult model, embeddings interactions
are modelled using a symmetric function that computes the product of embed-
dings of the subject, the predicate and the object. This approach was able to
surpass other distance-based embedding techniques like TransE [23]. However,
it failed to model facts with asymmetric predicate due to its design. The Com-
plEx model tackle this problem using a embeddings in the complex space where
its embeddings interactions use the complex conjugate of object embeddings
to break the symmetry of the interactions. This approach provided significant
accuracy improvements over DistMult as it successfully models a wider range of
predicates.

The ComplEx embeddings interaction function (defined in Sect. 2) can be
redefined as a simple set of interactions of two part embeddings as follows:

φComplEx
spo =

∑

k

i1 + i2 + i3 − i4 (9)

where
∑

k is the sum of all embeddings components of index k = {1, ...,K}, and
interactions i1, i2, i3 and i4 are defined as follows:

i1 = e1sw
1
pe1o, i2 = e2sw

1
pe2o, i3 = e1sw

2
pe2o, i4 = e2sw

2
pe1o
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Fig. 2. Visual explanation for the flow of the TriModel model’s scoring function, where
embedding interactions are represented by i1 = e3sw

3
pe

1
o, i2 = e2sw

2
pe

2
o, and i3 = e1sw

1
pe

3
o.

where e1 represents embeddings part 1, and e2 is part 2 (1 → real and 2 → imag-
inary). Following this notation, we can see that the ComplEx model is a set of
two symmetric interaction i1 and i2 and two asymmetric interactions i3 and i4.
Furthermore, this encouraged us to investigate the effect of using other forms of
combined symmetric and asymmetric interactions to model embeddings interac-
tions in knowledge graph embeddings. We investigated different combination of
interactions i1, i2, i3 and i4, and we have found that by removing and/or chang-
ing the definition of one of these interactions (maintaining that the interactions
use all triple components) will preserve similar or insignificantly different pre-
diction accuracy across different benchmarking datasets (See Table 1). This led
us to investigate other different forms of interactions that uses a combination of
symmetric and asymmetric interactions where we found that using embeddings
of three parts can lead to better predictive accuracy than the ComplEx and the
DistMult models.

3.2 TriModel Embeddings Interactions

In the TriModel model, we represent each entity and relation using three embed-
ding vectors such that the embedding of entity i is {e1i , e

2
i , e

3
i } and the embedding

of relation j is {w1
j , w2

j , w3
j } where em denotes the m part of the embeddings and

where m ∈ 1, 2, 3 is used to represent the three embeddings parts.
The TriModel model is a tensor factorisation based model, where its embed-

dings interaction function (scoring function) is defined as follows:

φTriPart
spo =

K∑

k=1

e1skw1
pke3ok + e2skw2

pke2ok + e3skw3
pke1ok (10)

where k denotes the index of the embedding vector entries. The model uses a set
of three interactions: one symmetric interaction: (e2sw

2
pe2o) and two asymmetric

interactions: (e1sw
1
pe3o) and (e3sw

3
pe1o) as shown in Fig. 2. This approach models

both symmetry and asymmetry in a simple form similar to the DistMult model
where the DisMult model can be seen as a special case of the TriModel model if
the first and third embeddings part are equivalent (e1 = e3).
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Table 2. Statistics of the benchmarking datasets.

Dataset Entity count Relation count Training Validation Testing

WN18 41k 18 141k 5k 5k

WN18RR 41k 11 87k 3k 3k

FB15k 15k 1k 500k 50k 60k

FB15k-237 15k 237 272k 18k 20k

YAGO10 123k 37 1M 5k 5k

NELL239 48k 239 74k 3k 3k

3.3 Training the TriModel Model

Trouillon et al. [20] showed that despite the equivalence of HolE and ComplEx
models’ scoring functions, they produce different results as they use different loss
functions. They concluded that the logistic loss version of ComplEx outperforms
its hinge loss version. In addition, we have investigated different other ranking
losses with the ComplEx model, and we have found that squared error loss can
significantly enhance the performance of ComplEx on multiple benchmarking
datasets.

The TriModel model performs its learning process using two different training
loss configurations: the traditional ranking loss and the multi-class loss. In the
ranking loss configuration, the TriModel model uses the squared error (Eq. 6)
and the logistic loss (Eq. 7) to model its training error, where a grid search is
performed to choose the optimal loss representation for each dataset. In the
multi-class configuration, it uses the negative-log softmax loss (Eq. 8) with the
nuclear 3-norm regularisation [9] which is defined as follows:

LTriModel
spo = −φspo + log(

∑
o′ exp(φspo′))

−φspo + log(
∑

s′ exp(φs′po))

+
λ

3

∑K

k=1

∑3

m=1
(|em

s |3 + |wm
p |3 + |em

o |3)
(11)

where m denotes the embedding part index, λ denotes a configurable regularisa-
tion weight parameter and |x| is the absolute value of x. This allows the model
to answer the link prediction task in both directions: (subject, predicate, ?) and
(?, predicate, object). We also consider the use of predicate reciprocals in train-
ing as described in Lacroix et al. [9], where inverses of training predicates are
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added to the training set and trained with their corresponding original facts as
shown in the following:

LTriModel
spo = −φspo + log(

∑
o′ exp(φspo′))

−φspo + log(
∑

s′ exp(φo(p+Nr)s))

+
λ

3

∑K

k=1

∑3

m=1
(|em

s |3 + |wm
p |3 + |wm

p+Nr
|3 + |em

o |3)
(12)

where predicate p + Nr is the inverse of the predicate p where the model learns
and evaluates inverse facts using inverses of their original predicates. For all
the multi-class configurations, the TriModel model regularises the training facts
embeddings using a dropout layer [18] with weighted probability that it learns
during the grid search.

4 Experiments

In this section, we discuss the setup of our experiments where we present the
evaluation protocol, the benchmarking datasets and our implementation details.

4.1 Data

In our experiments we use six knowledge graph benchmarking datasets:

– WN18 & WN18RR: subsets of the WordNet dataset [11] that contains lexical
information of the English language [2,5].

– FB15k & FB15k-237: subsets of the Freebase dataset [1] that contains infor-
mation about general human knowledge [2,19].

– YAGO10: a subset of the YAGO3 dataset [10] that contains information
mostly about people and their citizenship, gender, and professions knowl-
edge [3].

– NELL239: a subset of the NELL dataset [6,12] that we have created to test
our model, which contains general knowledge about people, places, sports
teams, universities, etc.

Table 2 contains statistics about our experiments’ benchmarking datasets1.

4.2 Implementation

We use TensorFlow framework (GPU) along with Python 3.5 to perform our
experiments. All experiments were executed on a Linux machine with processor
Intel(R) Core(TM) i70.4790K CPU @ 4.00 GHz, 32 GB RAM, and an nVidia
Titan Xp GPU.

1 All the benchmarking datasets can be downloaded using the following url: https://
figshare.com/s/88ea0f4b8b139a13224f.

https://figshare.com/s/88ea0f4b8b139a13224f
https://figshare.com/s/88ea0f4b8b139a13224f
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4.3 Experiments Setup

We perform our experiments in two different configurations:

(1) Ranking loss based learning: the models are trained using a ranking based
loss function, where our model chooses between squared error loss and logis-
tic loss using grid search.

(2) Multi-class loss based learning: the models is trained using a multi-class
based training functions, where our model uses the softmax negative log
loss functions described in Eqs. 11 and 12.

In all of our experiments we initialise our embeddings using the Glorot uni-
form random generator [7] and we optimise the training loss using the Ada-
grad optimiser, where the learning rate lr ∈ {0.1, 0.3, 0.5}, embeddings size
K ∈ 50, 75, 100, 150, 200 and batch size b ∈ {1000, 3000, 5000, 8000} except for
YAGO10 where we only use b ∈ {1000, 2000}. The rest of the grid search hyper
parameters are defined as follows: in the ranking loss approach, we use the
negative sampling ratio n ∈ {2, 5, 10, 25, 50} and in the multi-class approach
we use regularisation weight λ ∈ {0.1, 0.3, 0.35, 0.01, 0.03, 0.035} and dropout
d ∈ {0.0, 0.1, 0.2, 0.01, 0.02}. The number of training epochs is fixed to 1000,
where in the ranking loss configuration we do an early check every 50 epochs
to stop training when MRR stop improving on the validation set to prevent
over-fitting.

In the evaluation process, we only consider filtered MRR and Hits@10 met-
rics [2]. In addition, in the ranking loss configuration, TriModel model uses a
softmax normalisation of the scores of objects and subjects corruptions, that a
score of a corrupted object triple (s, p, oi) is defined as:

φspoi
=

exp(φspoi
)∑

o′∈E exp(φspo′)
,

similarly, we apply a softmax normalisation to the scores of all possible subject
entities.

5 Results and Discussion

In this section we discuss findings and results of our experiments shown in
Tables 3 and 4, where the experiments are divided into two configurations: mod-
els with ranking loss functions and models with multi-class based loss functions.

5.1 Results of the Ranking Loss Configuration

In the results of the ranking loss configuration shown in Table 3, the results show
that the TriModel model achieves best results in terms of MRR and hits@10 in
five out of six benchmarking datasets with a margin of up to 10% as in the
YAGO10 dataset. However, on the FB15k-237 ConvKB [14] retains state-of-the-
art results in terms of MRR and Hits@10. Results also show that the factorisation
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Table 3. Link prediction results on standard benchmarking datasets. � Results taken
from [21] and our own experiments.

Model WN18 WN18RR FB15k FB15k-237 YAGO10 NELL239

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

R
a
n
k
in
g
lo
ss

CP 0.08 0.13 - - 0.33 0.53 - - - - - -

TransE � 0.52 0.94 0.20 0.47 0.52 0.76 .29 0.48 0.27 0.44 0.27 0.43

ConvKB - - 0.25 0.53 - - 0.40 0.52 - - - -

DistMult � 0.82 0.94 0.43 0.49 0.65 0.82 0.24 0.42 0.34 0.54 0.31 0.48

ComplEx � 0.94 0.95 0.44 0.51 0.70 0.84 0.22 0.41 0.36 0.55 0.35 0.52

R-GCN 0.81 0.96 - - 0.70 0.84 0.25 0.42 - - - -

TriModel 0.95 0.96 0.50 0.57 0.73 0.86 0.25 0.43 0.46 0.62 0.37 0.53

based models like the DistMult, ComplEx, R-GCN and TriModel models gen-
erally outperform distance based models like the TransE and ConvKB models.
However, on the FB15k-237 dataset, both distance based models outperform all
other factorisation based models with a margin of up to 15% in the case of the
ConvKB and the TriModel model. We intend to perform further analysis on
this dataset compared to other datasets to investigate why tensor factorisation
models fail to provide state-of-the-art results in future works.

5.2 Results of the Multi-class Loss Configuration

Results of the multi-class based approach show that TriModel model provide
state-of-the-art result on all benchmarking datasets, where the ComplEx mod-
els provide equivalent results on 3 out 6 datasets. Our reported results of the
ComplEx model with multi-class log-loss introduced by Lacroix et al. [9] are
slightly different from their reported results as we re-evaluated their models
with restricted embeddings size to a maximum of 200. In their work they used
an embedding size of 2000, which is impractical for embedding knowledge graphs
in real applications. And other previous works using the TransE, DistMult, Com-
plEx, ConvE, and ConvKB models have limited their experiments to a maximum
embedding size of 200. In our experiments, we limited our embedding size to 200
and we have re-evaluated the models of [9] using the same restriction for a fair
comparison2.

5.3 Ranking and Multi-class Approaches

In the link prediction task, the objective of knowledge graph embedding models is
to learn embeddings that rank triples according to their faculty. This is achieved
by learning to rank original true triples against other negative triple instances,
where the negative instances are modelled in different ways in ranking approaches
and multi-class loss approaches.

2 We have used the code provided at: https://github.com/facebookresearch/kbc for
the evaluation of the models: CP-N3, CP-N3-R, ComplEx-N3 and ComplEx-N3-R.

https://github.com/facebookresearch/kbc
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Table 4. Link prediction results on standard benchmarking datasets. † Results taken
from [9] with embedding size (K) limited to 200.

Model WN18 WN18RR FB15k FB15k-237 YAGO10 NELL239

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

M
u
lt
i-
c
la
ss

lo
ss

ConvE 0.94 0.95 0.46 0.48 0.75 0.87 0.32 0.49 0.52 0.66 0.37 0.45

CP-N3 † 0.12 0.18 0.08 0.14 0.35 0.56 0.22 0.42 0.40 0.64 - -

ComplEx-N3 † 0.92 0.95 0.44 0.52 0.58 0.79 0.30 0.51 0.46 0.67 - -

CP-N3-R † 0.93 0.94 0.41 0.45 0.62 0.78 0.30 0.47 0.55 0.69 - -

ComplEx-N3-R † 0.95 0.96 0.47 0.54 0.79 0.88 0.35 0.54 0.57 0.70 - -

TriModel - N3 0.95 0.96 0.47 0.54 0.84 0.91 0.35 0.54 0.57 0.71 0.41 0.57

TriModel -N3-R 0.95 0.96 0.47 0.54 0.81 0.91 0.35 0.54 0.57 0.70 0.41 0.58

In learning to rank approach, models use a ranking loss e.g. pointwise or
pairwise loss to rank a set of true and negative instances [4], where negative
instances are generated by corrupting true training facts with a ratio of nega-
tive to positive instances [2]. This corruption happens by changing either the
subject or object of the true triple instance. In this configuration, the ratio of
negative to positive instances is traditionally learnt using a grid search, where
models compromise between the accuracy achieved by increasing the ratio and
the runtime required for training.

On the other hand, multi-class based models train to rank positive triples
against all their possible corruptions as a multi-class problem where the range
of classes is the set of all entities. For example, training on a triple (s, p, o) is
achieved by learning the right classes “s” and “o” for the pairs (?, p, o) and
(s, p, ?) respectively, where the set of possible class is E of size Ne. Despite the
enhancements of the predictions accuracy achieved by such approaches [5,9],
they can have scalability issues in real-world large sized knowledge graphs with
large numbers of entities due to the fact that they use the full entities’ vocabulary
as negative instances [13].

In summary, our model provides significantly better results than other SOTA
models in the ranking setting, which is scalable and thus better-suited to real-
world applications. In addition to that, our model has equivalent or slightly
better performance than SOTA models on the multi-class approach.

6 Conclusions and Future Work

In this work, we have presented the TriModel model, a new tensor factorisation
based knowledge graph embedding model that represents knowledge entities an
relation using three parts embeddings, where its embedding interaction func-
tion can model both symmetric and asymmetric predicates. We have shown by
experiments that the TriModel model outperforms other tensor factorisation
based models like the ComplEx and the DistMult on different training objec-
tives and across all standard benchmarking datasets. We have also introduced a
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new challenging small size benchmarking datasets, NELL239, that can be used
to facilitate fast development of new knowledge graph embedding models.

In our future works, we intend to investigate new possible approaches to
model embedding interactions of tensor factorisation models, and we intend to
analyse the effects of properties of knowledge graph datasets like FB15k-237 on
the efficiency of tensor factorisation based models.
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