
Keeping Data Inter-related
in a Blockchain

Phani Chitti and Ruzanna Chitchyan(B)

Department of Computer Science, University of Bristol,
MVB Building, Woodland Road, Bristol BS8 1UB, UK

{sc18092,r.chitchyan}@bristol.ac.uk

Abstract. Blockchains are gaining a substantial recognition as an alter-
native to the traditional data storage systems due to their tampering-
resistant and decentralized storage, independence from any centralized
authority, and low entry barriers for new network participants. Presently
blockchains allow users to store transactions and data sets, however, they
don’t provide an easy way of creating and keeping relationships between
data entities. In this paper we demonstrate a solution that helps software
developers maintain relationships between inter-related data entities and
datasets in a blockchain. Our solution runs over Ethereum’s Go imple-
mentation. This is the first step towards a database management-like
middleware system for blockchains.

Keywords: Blockchain · Data integrity · Referential integrity ·
Relations · Data access · Data stores

1 Introduction

Blockchains are increasingly recognised as an alternative to traditional database
systems for transactional data and dataset storage. Yet, to be a feasible replace-
ment to the currently predominating relational databases for the enterprise use,
blockchains must also ensure that integrity constraints1 hold for their stored
data and for the interrelationships between such data entries. These (data and
referential) integrity constraints ensure accuracy and consistency of data over
its life-cycle and are important aspects of the design, implementation and usage
of database solutions.

Data integrity refers to the overall completeness, accuracy and consistency of
the stored data. Referential integrity ensures that data references spread across

1 We note that some popular databases (e.g., NoSQL) do not address referential
integrity constraints, which, we think, is one of the reasons of their slow penetration
into the mainstream enterprise use.

This research is funded by the UK EPSRC Refactoring Energy Systems fellowship
(EP/R007373/1).

c© Springer Nature Switzerland AG 2019
C. Cappiello and M. Ruiz (Eds.): CAiSE Forum 2019, LNBIP 350, pp. 48–59, 2019.
https://doi.org/10.1007/978-3-030-21297-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21297-1_5&domain=pdf
http://orcid.org/0000-0001-6293-3445
https://doi.org/10.1007/978-3-030-21297-1_5

Blockchain Data 49

entities2 are consistent. In a database, operations that modify the state of data
(like inserting a new entry, updating or deleting a data record) must maintain
the integrity constraints.

Presently blockchains don’t provide an easy way for creating, maintaining,
and using relationships between data entries, or for enforcing and utilising the
integrity constraints. In this paper we demonstrate a solution that helps software
developers maintain relationships between smart contracts, preserve these rela-
tions and enforce them during run-time. In short, our solution aims to provide
to Ethereum blockchain users some of the functions that a traditional database
management system delivers to its’ users. Our solution runs over Ethereum’s Go
implementation.

The paper presents a motivating example for this problem in Sect. 2. The
proposed architecture of the system and its components are explained in Sect. 3.
Section 4 briefly discusses some related work, and Sect. 5 concludes the paper.

2 Motivating Example

To demonstrate the need for data and referential integrity, let us consider the
example of a building occupancy analysis system [14]. This system collects and
analyses large data sets about a building: its’ sensors, equipment, energy con-
sumption and occupancy information. Figure 1 shows a part of the conceptual
schema for data representation in such a system, where inter-relations between
entities are highlighted via linked boxes.

Fig. 1. Relational schema

Traditionally, a database management system provides means to implement
such conceptual models within a database, as well as to ensure integrity when
adding or maintaining their relevant data. Let us consider how relational and
blockchain databases handle this.

2 I.e., digital representations of the real world objects or concepts.

50 P. Chitti and R. Chitchyan

2.1 Integrity in a Relational Database

The relational data model [6,7] is built around the mathematical structure
of relation. A relation, is a digital representation of an object or a concept
(as defined in a schema) which is instantiated as a tabular construct (i.e., with
columns for headings and rows for data entries). Constraints can be expressed
over a set of columns to ensure data and referential integrity.

The Structured Query Language (SQL) CREATE TABLE command in
Listing 1.1 creates a relation for the Site concept (shown in Fig. 1 conceptual
schema).

CREATE TABLE IF NOT EXISTS S i t e (
SID INT NOT NULL , SName VARCHAR(255) NOT NULL ,
SDesc VARCHAR(255) NOTNULL ,
. . .
UId INT NOT NULL,
PRIMARY KEY (SID) ,
FOREIGN KEY (‘UId ’) REFERENCES ‘ User ’ (‘ UId ’)

ON DELETE CASCADE)

Listing 1.1. Create SQL Statement

the text that is highlighted in bold in Listing 1.1 indicates the data and referential
integrity constrains over corresponding columns as explained below:

– NOT NULL construct prevents the corresponding column from accepting
NULL values, thereby ensuring that a valid data entry always has a non-null
value in this column.

– The PRIMARY KEY construct uniquely identifies each record in a table
and is also used in data indexing.

– The FOREIGN KEY construct establishes relationships between Site and
User tables, by referring and including the unique UId from User table into
the Site table.

– The ON DELETE CASCADE construct deletes all corresponding records
in the child table (Site) when a record in a parent table (User) is deleted,
thus ensuring data consistency when change happens across relations.

The INSERT Statement in Listing 1.2 inserts data into Site table while refer-
encing UId from User table.

INSERT INTO S i t e VALUES(1 , ‘ ‘ S i te −1” , ‘ ‘ F i r s t S i t e ” ,
−2.774757 ,50.628323 ,1)

Listing 1.2. Insert SQL Statement

Since the database management system ensures the data and referential integrity
constraints when updating data entries, the erroneous data entry is prevented.
For instance, it is not possible to enter a NULL or a STRING value for SID
attribute of Site table, as the respective constrains (as per Listing 1.1) reject such
data entries. Similarly it is not possible to enter Site details for a User who is

Blockchain Data 51

not present in User table, as the FOREIGN KEY(‘UId’) constraint in Listing 1.1
ensures that the UId must be an existing unique ID in User table. The database
management system performs corresponding actions for aforementioned integrity
related constructs during insert, update and delete operations to ensure the data
and referential integrity.

2.2 Integrity in a Blockchain

Ethereum blockchain is an immutable chain of interlinked blocks maintained in a
network of untrusted peers. Ethereum blockchain can be used as a data store by
modelling entities as smart contracts and deploying them to blockchain. Given
the conceptual schema in Fig. 1, a sample outline for the contract represent-
ing the User entity (written in Solidity [9] language) is shown in Listing 1.3.

cont rac t User {
// Spec i f y data Layout r ep r e s en t i n g the
// a t t r i b u t e s o f the en t i t y
struct UserDeta i l {

uint16 UId ;
s t r i n g UName;
s t r i n g Postcode ;
s t r i n g emai l ;
s t r i n g phone ;

}
//mapping data s t r u c tu r e used to s t o r e the Rows
mapping (i n t => UserDeta i l) uDeta i l s ;
// counter f o r key in mapping
uint32 counter = 0 ;
con s t ruc to r () pub l i c { }
//The Set methods i n s e r t s data row
func t i on SetData(address hash , u int16 uid , . . .)

pub l i c r e tu rn s (s t r i n g) {
//Get the next key value by i n c r e a s i n g the counter
counter++;

//Create a row us ing UserDeta i l S t ruct
//Append the row to uDeta i l s mapping us ing the counter as key

}
//The Get method return r equ i r ed data from
// the mapping data s t o r e .
f unc t i on GetData(address hash) pub l i c view

re tu rn s (u int16 uid , . . .) {
. . .
}

}
Listing 1.3. User Smart Contract

The text that is highlighted in bold in Listing 1.3 shows the constructs that set
out the data layout, and functions for data insertion and access.

– struct: Solidity’s struct construct specifies the data column layout for
attributes along with their data types. The UserDetail struct defines the data
layout for User as per the conceptual schema defined in Fig. 1.

52 P. Chitti and R. Chitchyan

– mapping: The mapping data structure specifies the data row layout for User
entity; it stores data in key-value pairs. Alternatively the event construct can
be used to store data. However, the drawback of using events is that the data
cannot be easily accessed and marked when it is updated or deleted.

– SetData: the SetData function receives data from an application and inserts
data into blockchain by appending a row in the uDetail mapping.

– GetData: many variants of the GetData function (as needed for the data
requested by the caller) retrieve data from the mapping structure and return
to the caller.

This approach has the following drawbacks:

– Uniqueness of a column: There is no straightforward way to ensure the unique-
ness of an entity’s “key” column. As a result, it is possible to insert two rows
that have the same UId. The mapping uDetails then stores both records, as
shown in Table 1, where user ID is duplicated.

Table 1. Mapping structure containing the inserted values for User contract

Key Value

1 1,“ABC”,“BS8 1PT”,“xyz@bristol.ac.uk”,“745967262”

2 1,“DEC”,“BS9 3PT”,“abc@bristol.ac.uk”,“749857262”

– Referential integrity: To enforce referential integrity constraints (e.g., check-
ing that a valid user with an ID ‘2’ exists in the User contract, before inserting
a data for ID ‘2’ into Site contract), Ethereum requires use of a structured
process [18]. So, for the above example, the Site contract will have to call the
getData function of the User contract to check the legitimacy of ID ‘2’. The
steps involved in this process are that:
• The callee contract (User) must be deployed into blockchain beforehand

(i.e., prior to Site calling it), to get its address.
• The Application Binary Interface (ABI) of the deployed contract (User)

must be specified in the caller contract along with the address of the
deployed smart contract.

• Public functions of the callee can be used via the ABI code and address.
This is a rigid process and makes the modelling cumbersome (when compared
to the simple SQL statement definition).

As a result, when the entities are modelled as individual contracts, without
efficiently implementing data and referential integrity features, it is possible to
have redundant, inconsistent and erroneous data.

Thus, below we present a solution that delivers (some of the) same fea-
tures for the Ethereum users, that the database management systems deliver to
the relational database system users. Our management system allows users to

Blockchain Data 53

define relationships between smart contracts, preserves these relationships and
ensures the referential integrity is maintained while performing operations on
data. The relationships between smart contracts are represented as a Directed
Acyclic Graph (DAG) and are stored in an underlying blockchain along with
metadata.

3 Proposed Solution

The proposed system’s architecture is presented in Fig. 2. Here the entities and
their attributes (that were identified in the conceptual schema in Fig. 1) are
modelled as smart contracts and deployed into the blockchain (Fig. 2, box a). The
relationships between entities are captured in a directed acyclic graph (Fig. 2, box
b) and will be handled by the Management System (Fig. 2, box c). Accordingly,
the system has two main components: the data model, and the management
system.

Fig. 2. Architecture overview

3.1 Ethereum-Based Data Model

This data model uses the Ethereum smart contract as the data structure to
model entities, and their attributes in a conceptual schema. The smart contract
for management system’s user entity defined in a conceptual schema is displayed
in Listing 1.4, titled msUser.

54 P. Chitti and R. Chitchyan

The Listing 1.3 User smart contract is similar to the msUser in Listing 1.4
except for the Detail mapping definition. To achieve data integrity, the pro-
posed system is using Address as a key in the mapping data structure.

cont rac t msUser {
// Spec i f y data Layout r ep r e s en t i ng the
// a t t r i b u t e s o f the en t i t y
s t r u c t UserDeta i l {

uint16 UId ;
. . .

}
//mapping data s t r u c tu r e used to s t o r e the Rows
mapping (address => UserDeta i l) uDeta i l s ;

c on s t ruc to r () pub l i c { }
//The Set methods i n s e r t s data row

func t i on setData (address hash , u int16 uid , . . .)
pub l i c r e tu rn s (s t r i n g)

{ . . . }
//The Get method return r equ i r ed data from
// the mapping data s t o r e .
f unc t i on getData (address hash) pub l i c view re tu rn s

(u int16 uid , . . .)
{ . . . }

}
Listing 1.4. User smart contract in Management System

Address is hash value calculated using the values of ‘key’ attributes that ensures
data integrity. In the User contract, the UId is a key field. Hence the hash would
be calculate on the value of UId and then would be inserted into User contract.
For instance, to insert the below row into msUser contract, the value of UId
field (1) would be hashed3.

{1,“ABC”,“BS8 1PT”,“xyz@bristol.ac.uk”,“745967262”}.
After insertion, the mapping uDetails is as shown in Table 2. If an attempt is
made to insert another row in which value of UId is 1, the insertion would fail
as the mapping already contains this key. This ensures the uniqueness of the
column and hence data integrity. In case of a multi-column key, a cumulative
hash will be generated. Where an entity in a conceptual schema does not have

Table 2. Mapping structure containing the inserted values with Hash

eulaVyeK
0xabXn3f6d....2Ccd1P6LG 1“ABC”,“BS8 1PT”,“xyz@bristol.ac.uk”,“745967262”

3 Hashing is used for creating a single-string key for establishing uniqueness, given
that both single and multi-column references would need to be handled, as discussed
below.

Blockchain Data 55

a key column (i.e., single column data set), the hash will be calculated from the
value of the column and used as a key.

3.2 Management System

The Management system achieves the referential integrity and has two respon-
sibilities: representing the relationships and ensuring the referential integrity
among data entities. The following sections explain each of them in detail.

Representing Relationships
The Directed Acyclic Graph (DAG) data structure is used to represent the rela-
tionships among the entities. The DAG is defined as

Relations(DB) = <N,E>

Where N is a set of nodes relating to all entities in the DB (database) schema
and E is a set of edges indicating relationships among entities. For the conceptual
schema defined in building occupancy analysis example, N and E are defined
as:

– N = {User, Site, Floor, SDevice, MultiSensor, SmartEquipment}
– E = {User–Site, Site–Floor, Floor–SDevice, SDevice–Multisensor, SDevice–

SmartEquipment}
The graph is represented as an adjacency matrix. The elements of the matrix
indicate the relationships between entities. The in-degree of an entity (number
of incoming relationships) can be computed by summing the entries of the cor-
responding column, and the out-degree (number of outgoing relationships) can
be computed by summing the entries of the corresponding row. The adjacency
matrix in Table 3 indicates the relationships among entities in the aforemen-
tioned conceptual schema of Fig. 1. In the Boolean representation of adjacency
(shown in Table 3), 1 represents a relationship between entities and 0 indicates
absence of a relationship. The entities User and Site are related hence the cor-
responding element is represented with 1 in the Matrix. It can be seen from
the matrix that the entity Site has an incoming relationships from User and an
outgoing relationship to Floor.

Table 3. Adjacency Matrix representing the relations among entities

User Site Floor SDevice MultiSensor SmartEquipment

User 0 1 0 0 0 0

Site 0 0 1 0 0 0

Floor 0 0 0 1 0 0

SDevice 0 0 0 0 1 1

MultiSensor 0 0 0 0 0 0

SmartEquipment 0 0 0 0 0 0

56 P. Chitti and R. Chitchyan

Referential Integrity
The Management System ensures the validity of data references among different
entities using the metadata about deployed contracts and relationships among
them. The metadata stores information about entities and their attributes in
predefined smart contracts. These predefined smart contracts are as follows:

– SCRepository contract stores the addresses of deployed smart contracts that
represent the entities. This smart contract also provides functionality to
obtain the address of the corresponding smart contract given an entity name
and vice-versa.

– SCEntityMetada contact stores metadata about an entity, the data layout and
other integrity related information. The data layout contains a list of columns
and their data types in the order they are entered. This smart contract also
provides functionality to obtain an entity’s metadata given an entity name
and vice-versa.

– SCRelationDetails: as discussed before, the management system stores the
adjacency matrix representing the relationships among entities. The set of
entities N will be stored as per the order they are arranged in the adjacency
matrix. Keeping the node order is important as the relationships are defined
based on this order. The set of relationships E is converted to a sequence of
1s and 0s, as shown below:

{E = 0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,1,0,0}.
The SCRelationDetails smart contact stores relationship information among
different entities and also provides functionality to obtain relationship data
from an entity metadata given the address of an entity.

Figure 3 shows the sequence of actions taken by the Management System to
ensure the referential integrity during a data insertion operation. The below row
would be inserted into Site contract as the value for UId is present in User
contract.

{2,“Site2”,“Second Floor”,-2.773238,50.844838,1}.
Table 4 shows the data in the Site contract, after successfully inserting the row.

Table 4. Mapping structure containing the inserted values for Site contract

eulaVyeK
0xbdhe3a0d819....j2Lsd3D3AF 1,“Site2”,“Second Floor”,-2.773238,50.844838,1

The below rows can not be added to Site contract, as the value provided for
UId is not present in User contract, ensuring the referential integrity.

{1,“Site1”,“First Floor”,-2.773838,50.883838,2}.

Blockchain Data 57

Fig. 3. Sequence diagram

4 Related Work

Since emergence of Bitcoin [17] a wide range of research and development activ-
ities is under way on using blockchain as a data storage mechanism. A small
selection of such related work is presented below.

One area of research is in transferring properties of blockchain to centralised
databases and/or database properties to blockchains. For instance, BigchainDB
[4] integrates properties of a blockchain into a database, while using an Asset as
a key-concept. Asset represents a physical or digital entity which starts its’ life
in BigchainDB with CREATE Transaction and lives further using TRANSFER
Transaction. Each Asset contains Metadata to specify details about the Asset.
The life-cycle of a BigchainDB Transaction is described in [5]. Each node in
BigchainDB will have a MongoDB [15] instance and will maintain the same set
of data. The Tendermint [19] is used as consensus protocol, which ensures the
data safety even if 1/3 of nodes are down in the network. Traditional database
features, like indexing and query support are carried out through the underlying
MongoDB.

Mystiko [3] is another attempt in the same direction where Cassandra [2] is
used in every node in the network as a database. Cassandra is a No-SQL column

58 P. Chitti and R. Chitchyan

store database and facilitates the features such as full text search and indexing
options for Mystiko users.

Another focus area is creating customised private/permissioned blockchains.
Hyperledger [1] is a permissioned open source blockchain and related tools,
started in December 2015 by the Linux Foundation. Quorum [16] is a permis-
sioned blockchain platform built from the Ethereum codebase with adaptations
to make it a permissioned consortium platform. Ethereum code base is modified
with private transactions, consensus (Proof-of-work to voting system). Quorum
creators increased the transaction rate. The Energy Web Foundation(EWF)’s
Energy Web is an open-source, scalable Ethereum blockchain platform specif-
ically designed for the energy sector’s regulatory, operational, and market
needs [8].

Hyperledger [1] is a permissioned blockchain system focused on scalability,
extensibility and flexibility through modular design. Different consensus algo-
rithm can be configured to this solution (e.g., Kafka, RBFT, Sumeragi, and
PoET) while smart contracts [10] can be programmed using a platform called
Chaincode with Golang [11]. Hyperledger uses Apache Kafka to facilitate private
communication channels between the nodes. It can achieve up to 3,500 transac-
tions per second in certain popular deployments. Work to support query [12] and
indexing [13] on temporal data in blockchain using Hyperledger is also underway.

In a similar vein, our work looks at integrating the well established relation-
ship management mechanisms of the relational databases with the blockchain
infrastructure.

5 Conclusions and Discussion

In this paper we have presented an initial implementation of a middleware that
preserves relationships among entities while storing data in a blockchain. This
middleware has two components, the Ethereum-based data model that supports
users in modelling entities as smart contracts and a management system that
maintains relationships between entities.

However, as this is an initial proof-of-concept implementation, it has a num-
ber of limitations, such as:

– Dependency on solc tool, which is used to compile smart contracts to create
ABI, BIN and .GO files. The solc changes whenever the solidity specification
changes. Currently, our middleware will have to change to adapt to such tool
changes.

– Time delay in blockchain response, caused by the need to carry out additional
validation activities while carrying out the usual insert/update operations.
This could be unacceptable, particularly when working on processing high
frequency data.

– Storing temporary files: while compiling a smart contract, a set of files (.abi.
.bin and *.go) are generated which must be available to create GO programs
that interact with the blockchain. Over the lifetime of the system these files
would grow in number and size, which could cause storage considerations.

Blockchain Data 59

Our immediate future research will focus on addressing the above pointed limita-
tions, always working towards making blockchains a more widely usable database
solution.

References

1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: EuroSys, NY, USA, pp. 30:1–30:15. ACM (2018)

2. Apache: Apache Cassandra. http://cassandra.apache.org/. Accessed 14 Feb 2019
3. Bandara, E., et al.: Mystiko-blockchain meets big data. In: IEEE Big Data, pp.

3024–3032, December 2018
4. BigchainDB: Bigchaindb..the Blockchain Database. https://www.bigchaindb.

com/. Accessed 14 Feb 2019
5. B. Blog: Lifecycle of a BigchainDB Transaction - The BigchainDB Blog.

https://blog.bigchaindb.com/lifecycle-of-a-bigchaindb-transaction-c1e34331cbaa.
Accessed 14 Feb 2019

6. Chen, P.P.-S.: The entity-relationship model-toward a unified view of data. ACM
Trans. Database Syst. 1(1), 9–36 (1976)

7. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

8. EWF: The Energy Web Blockchain-Energy Web Foundation. Accessed 20 Feb 2019
9. E. Foundation: Solidity - Solidity 0.4.24 Documentation. https://solidity.

readthedocs.io/en/v0.4.24/. Accessed 14 Feb 2019
10. E. Foundation: White paper.ethereum/wiki wiki github. https://github.com/

ethereum/wiki/wiki/White-Paper. Accessed 14 Feb 2019
11. Google: The Go Programming Language (2019). https://golang.org/. Accessed 13

Feb 2019
12. Gupta, H., Hans, S., Aggarwal, K., Mehta, S., Chatterjee, B., Jayachandran, P.:

Efficiently processing temporal queries on hyperledger fabric. In: 2018 IEEE 34th
International Conference on Data Engineering (ICDE), pp. 1489–1494, April 2018

13. Gupta, H., Hans, S., Mehta, S., Jayachandran, P.: On building efficient temporal
indexes on hyperledger fabric. In: 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), pp. 294–301, July 2018

14. Ioannidis, D., Tropios, P., Krinidis, S., Stavropoulos, G., Tzovaras, D.,
Likothanasis, S.: Occupancy driven building performance assessment. J. Innov.
Digit. Ecosyst. 3(2), 57–69 (2016)

15. MongoDB: Open Source Document Database — MongoDB. https://www.
mongodb.com/. Accessed 14 Feb 2019

16. Morgan, J.: Quorum — JP Morgan. Accessed 20 Feb 2019
17. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
18. Peh, B.: Calling a Function Another Contract in Solidity. https://medium.com/

@blockchain101/calling-the-function-of-another-contract-in-solidity-f9edfa921f4c.
Accessed 06 Mar 2019

19. Tendermint: Blockchain Consensus - Tendermint (2019). https://tendermint.com/.
Accessed 14 Feb 2019

http://cassandra.apache.org/
https://www.bigchaindb.com/
https://www.bigchaindb.com/
https://blog.bigchaindb.com/lifecycle-of-a-bigchaindb-transaction-c1e34331cbaa
https://solidity.readthedocs.io/en/v0.4.24/
https://solidity.readthedocs.io/en/v0.4.24/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://golang.org/
https://www.mongodb.com/
https://www.mongodb.com/
https://medium.com/@blockchain101/calling-the-function-of-another-contract-in-solidity-f9edfa921f4c
https://medium.com/@blockchain101/calling-the-function-of-another-contract-in-solidity-f9edfa921f4c
https://tendermint.com/

	Keeping Data Inter-related in a Blockchain
	1 Introduction
	2 Motivating Example
	2.1 Integrity in a Relational Database
	2.2 Integrity in a Blockchain

	3 Proposed Solution
	3.1 Ethereum-Based Data Model
	3.2 Management System

	4 Related Work
	5 Conclusions and Discussion
	References

