
D2IA: Stream Analytics on User-Defined
Event Intervals

Ahmed Awad1(B), Riccardo Tommasini2, Mahmoud Kamel1,
Emanuele Della Valle2, and Sherif Sakr1

1 University of Tartu, Tartu, Estonia
{ahmed.awad,mahmoud.shoush,sherif.sakr}@ut.ee

2 Politecnico di Milano, Milan, Italy
{riccardo.tommasini,emanuele.dellavalle}@polimi.it

Abstract. Nowadays, modern Big Stream Processing Solutions (e.g.
Spark, Flink) are working towards ultimate frameworks for streaming
analytics. In order to achieve this goal, they started to offer extensions
of SQL that incorporate stream-oriented primitives such as windowing
and Complex Event Processing (CEP). The former enables stateful com-
putation on infinite sequences of data items while the latter focuses on
the detection of events pattern. In most of the cases, data items and
events are considered instantaneous, i.e., they are single time points in
a discrete temporal domain. Nevertheless, a point-based time semantics
does not satisfy the requirements of a number of use-cases. For instance,
it is not possible to detect the interval during which the temperature
increases until the temperature begins to decrease, nor all the relations
this interval subsumes. To tackle this challenge, we present D2IA; a set of
novel abstract operators to define analytics on user-defined event inter-
vals based on raw events and to efficiently reason about temporal rela-
tionships between intervals and/or point events. We realize the imple-
mentation of the concepts of D2IA on top of Esper, a centralized stream
processing system, and Flink, a distributed stream processing engine for
big data.

Keywords: Big Stream Processing · Complex event processing ·
User-defined event intervals

1 Introduction

Streaming data analytics has become a key enabler for organizations’ success and
sustainability. Data velocity is often too high, and we are forced to process data
on-the-fly. To solve this challenge, Stream Processing Engines (SPEs) have been
proposed. SPEs are commonly classified into two main categories: Data Stream
Management Systems (DSMSs) and complex event processing (CEP) [8].

As streams are infinite sequences of partially ordered data (events), both
DSMSs and CEP solutions offer special operators to deal with unboundedness. In

c© Springer Nature Switzerland AG 2019
P. Giorgini and B. Weber (Eds.): CAiSE 2019, LNCS 11483, pp. 346–361, 2019.
https://doi.org/10.1007/978-3-030-21290-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21290-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-21290-2_22

D2IA: Stream Analytics on User-Defined Event Intervals 347

particular, DSMSs apply the concepts of temporal windowing that slice streams
into finite portions [9] and then applies stateful aggregations, e.g., the aver-
age temperature over the last 5 min (Listing 1.1 - Line 1). On the other hand,
CEP employs non-deterministic finite-state machines and rule-based languages
to define and detect event-patterns on streams [10], e.g., emit fire if a smoke
detection is followed by a temperature higher than 40 (Listing 1.1 - Lines 3, 4).

Listing 1.1. DSMS and CEP query in EPL
1 select avg (va l) from Temperature#time (5 min) output every 5 min ;

2

3 insert into Fire

4 select ∗ from pattern [Smoke −>Temperature (val >40)] where t imer : with in (5 min) ;

In practice, the state-of-the-art of SPEs is vast and includes a variety of
DSMSs and CEP languages, as well as hybrid approaches. For instance, EPL
is an industrial stream processing language that combines DSMS and CEP fea-
tures. Esper1 and OracleCEP2 are examples of centralized solutions that imple-
ment it. Recently, BigSPEs represent a new generation of distributed, scalable
and fault-tolerant SPE systems (e.g. Spark, Flink) that have been designed to
address the volume and velocity challenges of the Big Data wave. Nevertheless,
BigSPEs’ focus on scalability goes at the expense of providing less expressive-
ness. In particular, existing systems provide little expressive Domain Specific
Languages (DSL) that do not meet the expectations raised by the centralized
solutions [13]. In practice, such expressiveness is crucial in several applications,
e.g., healthcare. For example, let us consider the following air traffic scenario
where many events are continuously produced during flights, e.g., changes in
altitude, speed, and heading of an aircraft. In such scenario, we can be inter-
ested in detecting those intervals during which a plane is in cruising mode and
performs a change in altitude which is more than 10%.

Listing 1.2. Example encoded in EPL
1 create schema AltitudeChange as (starts long , endts long ,
2 init_alt long , fin_alt long);
3 create schema CruisePeriod as (onts long , offts long)
4 starttimestamp onts endtimestamp offts;
5 insert into AltitudeChange
6 select minby(ts).value as init_alt , maxby(ts).value as fin_al ,
7 maxby(ts).ts as endts , minby(ts).ts as starts
8 from Altitude#time (30 minutes) output every 30 minutes;
9 insert into CruisePeriod select onts , offts from CruiseMode

10 match_recognize (measures a.ts as onts , b.ts as offts
11 pattern (A B)* defines A as A.value=’On’, B as B.value=’Off ’);
12 select ac.* from AltitudeChange as ac, CruisePeriod cp
13 where ac.during(cp) and abs(ac.fin_alt - ac.init_alt) / ac.init_alt >= 0.1);

If we implement such scenario using EPL (Listing 1.2), we observe that we
cannot express it in a single query, however, we need to create a query network.
Moreover, the network complexity, i.e., the number of required queries, increases
when more conditions are added to the original scenario. On the other hand,
if we consider BigSPEs, we observe that they lack the possibility to generate

1 http://www.espertech.com/.
2 https://docs.oracle.com/cd/E17904 01/doc.1111/e14476/.

http://www.espertech.com/
https://docs.oracle.com/cd/E17904_01/doc.1111/e14476/

348 A. Awad et al.

and process streams of events with a duration, i.e., interval events. Figure 1
summarizes the spectrum of the streaming language operators extending the
CQL model proposed in [5] with three new families of operators, i.e., Event-to-
Interval (E2I), Interval-to-Interval (I2I), and Interval-to-Event (I2E) operators.

I2E
E2I

I2I

E2R

R2R E2E

R2E

Relations Event
Streams

Interval
Events

Fig. 1. Stream-Event-IntervalEvent models and operators

Among the state-
of-the-art stream pro-
cessing engines, only
centralized solutions
provide query lan-
guages that are expres-
sive enough to pro-
cess stream of events
with durations [4,17].
However, these queries have to be handcrafted by the application developer con-
necting several queries, as shown in Listing 1.2. In order to fill this gap, in this
paper, we introduce D2IA (Data-driven Interval Analytics), a novel family of oper-
ators that enables interval events generation and reasoning. In particular, D2IA
allows generating data-driven event intervals from instantaneous events (E2I)
by combining event patterns with an extensive collection of aggregation func-
tions. It selects intervals with maximum durations to reduce the complexity of
the processing (I2I). In addition, it enables efficient reasoning on intervals using
Allen’s Algebra [3] (I2E).

The operators of D2IA have been designed according to the principles of
Codd’s language [7,17]:: Minimality, i.e., a language should provide only the
necessary constructs to avoid multiple ways to express the same meaning. Sym-
metry, i.e., a language construct always expresses the same semantics regardless
of the usage context. Orthogonality, i.e., meaningful combinations of language
constructs should be applicable. We demonstrate the expressiveness and prac-
ticality of D2IA in two ways: (i) we provide an algorithm that translates D2IA
operators to an expressive streaming query language, EPL, that is employed only
by centralized solutions. (ii) We implement D2IA operators on top of Apache
Flink3, a popular distributed stream processing engine.

The remainder of the paper is organized as follows. Necessary background is
introduced in Sect. 2. Concepts behind D2IA are presented in Sect. 3. Section 4
describes the implementation details. Related work is discussed in Sect. 5 before
we finally conclude the paper in Sect. 6.

2 Background

2.1 Complex Event Processing

Complex event processing aims at the identification of patterns that represent a
complex event over input streams of low-level events [10]. Patterns are analogous
to defining regular expressions over strings; they are defined w.r.t. event types

3 https://flink.apache.org/.

https://flink.apache.org/

D2IA: Stream Analytics on User-Defined Event Intervals 349

and matched against event instances in the streams. Traditionally, events are
seen as instantaneous and the timestamp of the last matched event is assigned
to the emitted complex event. In the following, we recap these notions.

Definition 1 (Raw Event). A raw event is an instantaneous and atomic noti-
fication of an occurrence of interest at a point in time.

A raw event has a payload of interest to the application, a timestamp that
indicates the point in time when it took place. Moreover, event instances are
usually organized in classes or topics. We can represent an event as a triple
<id, payload, ts> where id is an identifier of the event source, payload is simply a
list of key-value pairs, and ts is the timestamp at which the event was generated.
The event type is a determined by id and payload. A complex event is derived
from a collection of events using pattern matching, e.g., FireEvent = SmokeEvent
followed-by HighTemperatureEvent.

Definition 2 (Complex Event). A complex event is a composition of one or
more events. The composition is obtained as a result of matching a pattern to
streams of composing events. A complex event has a payload and a timestamp
which depends on the semantics of the CEP language.

2.2 Data-Driven Windows

Recently, several types of data-driven windows have been discussed in literature.
Traditional window operators [5,9] lack the necessary expressiveness to capture
relevant situations. For instance, consider the case of a smart home application.
It might be interesting to report only those windows in which temperature goes
above a certain threshold. In such case, it is not known ahead when the tem-
perature will rise, i.e. the window width can not be provided. To tackle such
use-cases, more expressive window operators have been proposed. Session win-
dows [1] are one example of time-based windows that allows slicing the stream
based on user-behavior, e.g., a click stream session. Grossenklaus et al. [12] pro-
posed four types of data-driven windows called frames: (i) Threshold Frames
report time intervals within a stream where an attribute of a stream element goes
higher (lower) than a given threshold. (ii) Delta Frames report time intervals
within which an attribute of a stream element changes by more than amount x.
That is, we can find two elements within the interval such that the difference
between their attribute values is higher (lower) than x. (iii) Aggregate Frames
report time intervals within which an aggregate of an attribute of stream ele-
ments remains below a certain threshold. (iv) Boundary Frames are time
intervals within which an attribute of stream elements remains within one of the
predefined boundaries.

3 Operators for User-Defined Intervals Analytics

In this section, we start by defining interval events. Then, we present our D2IA
operators for deriving and reasoning about user-defined interval events.

350 A. Awad et al.

As stated in Definition 2, a complex event has a payload and a timestamp
similar to a raw event (Definition 1). However, while it is understandable that the
definition of the derived payload is left to the application developer in terms of
payloads of the composing events, the reasoning about the timestamp should be
more rigorous. The payload is a list of key-value pairs. We define two auxiliary
functions: (i) keys :: payload -> [keys], which returns the keys present in the
payload and; (ii) val :: payload, key− > value to retrieve the value associated to
a given key in a payload.

The literature on CEP contains some examples that acknowledge the limita-
tions of an instantaneous temporal model for events. Interval-based models have
a richer semantics than traditional point-based ones [4]. Moreover, an interval-
based temporal models can represent point events without loss of generality.

Definition 3 (Interval Event). An interval event is a special event that has a
temporal duration which is defined in term of a two time points, start and end.

Interval events, a.k.a. situations, are special kind of events that instead of having
a time point-based timestamp, they have a duration, i.e., a temporal interval,
within which the event is observed.

a5 a4 a3 a2 a1

b5 b4 b3 b2 b1

c5 c4 c3 c2 c1

HeIE

HoIE

Lowercase = Instantaneous events
Uppercase = Interval events
Match-i = match events
HoIE = Homogeneous interval events
HeIE = Heterogeneous interval events

...

...

...

A4 A4

B4. B3.

A3 A2

B2.

A5A6

B5.B6.

..

match 5
match 4

match 3

match 2..

Interval Operator

Fig. 2. D2IA overview: Homogeneous/Heterogeneous
Interval Event generators consume events streams and
produce interval events.

Considering Codd’s lan-
guage design principles,
introduced in Sect. 1, and
inspired by the data frames,
discussed in Sect. 2.2, we
elicit the following require-
ments: (R1) Contextual
State Management, i.e.,
the target language must
allow the definition of con-
textual variables and par-
titioning of the state. R1
is required to ensure the
feasibility of relative and
absolute conditions. (R2)
Analytical Features, i.e., the operators must enable stateful aggregations,
for example employing temporal/physical windows. R2 is required to express
data-driven windows. (R3) Pattern Detection, i.e., the operators must enable
interval generation via event detection. R3 is required since complex events can
be seen as interval events, considering the timestamp of the initial match and
the timestamp of the last match in the provided pattern [4].

In the following sections, we provide details about interval generators and
operators. Figure 2 exemplifies a pipeline in which two event streams are trans-
formed into interval events using interval generators and fed into an interval
operator that reasons about the interval events.

D2IA: Stream Analytics on User-Defined Event Intervals 351

3.1 Homogeneous Interval Events Generators

Interval event generators represent a family of D2IA operators which are respon-
sible for creating interval events out of a stream of instantaneous events. In
particular, the interval generator transforms the input stream(s) into the output
stream based on a pattern specification. If a single input stream is used, the
resulting event intervals are homogeneous. Otherwise, they are heterogeneous.

Definition 4 (Homogeneous Interval Event Generator). Let E be a raw
event from Definition 1. A homogeneous interval event HoIE specification is
defined by a tuple < E,Occurrence, V alue,KeyBy,Condition,Within > where:

– Event: refers to the type of the event on which the interval to be defined.
– Occurrence: is on the form (min,max) to indicate the minimum and max-

imum number of event instances to match. Also, wild card ∗ can be used to
make no upper-bound on the number of occurrences.

– V alue: refers to either a constant value, an expression, or an aggregation over
the event payload’s attribute value. Possible aggregation functions are: min,
max, avg, etc. aggregates are computed over the matched raw events.

– KeyBy: specifies an attribute in the event’s payload to group event instances.
– Condition: defines a filter condition over the event instances. Conditions

are expressed w.r.t. event’s payload attributes and can be either absolute
or relative. The former compares the event instance’s attribute value with
a constant value; the latter compares the event instance’s attribute value
with an expression over other event instances’ attribute values. Relative
condition are expressed with the form start(EventInstance.value θ v) ∧
subsequent(EventInstance.value θ V alue).

– Within: specifies a maximum time interval to wait for the match to validate
since the first event arrives. An example is 5 s,

A homogeneous event interval is generated when one or more (raw) events
of the same type are observed in succession. Using analogy with regular expres-
sions, a homogeneous event interval is on the form A{min,max}, where A is the
event type. Optionally, the interval definition can be restricted by a temporal
window, a condition, or a combination thereof. The temporal window restricts
the maximum temporal gap among the occurrences of event instances. The con-
dition puts a restriction on the value of an event instance property to consider
it as a match. In D2IA, it is possible to define relative and absolute conditions
(Definition 4). The interval event value can be obtained by applying an aggre-
gate on the matching raw events. We use HoIE as an operator to build intervals
specification using fluent APIs pattern4.

Example. Assume a temperature event on the form Temperature < sensor,
temp,ts> which refers to the sensor ID that generated the event, the tem-
perature temp reading and the timestamp ts for the reading. We can define an
event interval with absolute condition as

4 https://martinfowler.com/bliki/FluentInterface.html.

https://martinfowler.com/bliki/FluentInterface.html

352 A. Awad et al.

35 34 35 36 35 36 35 38 38 3838
Raw events of temperature
readings:

1) Interval with absolute
condition temp >= 35

2) Interval with relative condition:
start(temp >=35), subsequent
(temp >= Last.temp)

3) Delta interval of more than 2
degrees change: at least two events
with condition start(true),
subsequent(|temp—Min.temp|>= 2)

4) Aggregate interval with average
temperature below 35 degrees

20 21 26 27 36 37 38 39 40 4129

Warm (36.34,26,29) Warm (36.4,36,40)

Warm (38,26,29) Warm
(36,36,37) Warm (38,38, ?)

Delta (38,27,29) Delta (38,38, ?)

Aggregate(35,20,27)

Aggregate (35,36,36)

Aggregate (35,38,38)

Fig. 3. Homogeneous interval events for the different data-driven frames

Listing 3.1. Warm interval with absolute condition
1 WarmAbsolute=HoIE.Event(Temperature). Value(Aggregate.avg(
2 Temperature.temp)). Occurrence (2 ,5). KeyBy(Temperature.sensor)
3 .Within(5,seconds). AbsoluteCondition(Conditions.greaterOrEqual(
4 Temperature.temp ,35))

We can also define an event interval with a relative condition on the form.

Listing 3.2. Warm interval with relative condition
1 WarmRelative=HoIE.Event(Temperature). Occurrence (2,5)
2 .Value(Aggregate.max(Temperature.temp))
3 .KeyBy(Temperature.sensor). Within(5,seconds). RelativeCondition
4 .Start(Conditions.greaterOrEqual(Temperature.temp ,35))
5 .Subsequent(Conditions.greaterOrEqual(Temperature.temp ,
6 Last.key(Temperature.temp)))

In Listing 3.1, the interval generator is instructed to generate an interval
event of type WarmAbsolute. An instance of that interval event is generated upon
observing 2 to 5 instances of the Temperature event. These instances have to be
observed within 5 s from each other and each temperature event instance must
have its temp value grater than 35. The generated interval instance will have its
value as the average of the temperature readings of the matching Temperature
event instances. In Listing 3.2, an event interval of type WarmRelative is defined
on the same stream of Temperature events with the same time window. How-
ever, the relative condition indicates that the first matching Temperature event
must have its reading greater than 35. Each succeeding matching event must
have its reading greater than or equal to the previously matching event in the
pattern. The value of the generated event interval will be the maximum temper-
ature value from the matched raw events. In both cases, keyBy is used to group
the raw events, temperature events in these cases, by their sensor id. Figure 3
shows a stream of temperature events on the top, for the same sensor, and the
different matches and event intervals generated for the two cases on rows 1 and
2, respectively.

The ability to define relative conditions on stream elements contributing to a
homogeneous event interval allows D2IA to cover the four data frames discussed
in Sect. 2.2. To define a threshold frame on temperature events of value 35◦, an
interval in D2IA can be defined much like the WarmAbsolute interval definition

D2IA: Stream Analytics on User-Defined Event Intervals 353

from Listing 3.2. Within this context, a delta frame can be defined on the interval
within which the temperature reading increases by more than 2◦. This can be
defined as shown in Listing 3.3.

Listing 3.3. Delta interval
1 Delta=HoIE.Event(Temperature). Occurrence(2, Occurrences.Unbounded)
2 .Value(Aggregate.max(Temperature.temp))
3 .KeyBy(Temperature.sensor). RelativeCondition.Start(true)
4 .Subsequent(Conditions.greaterOrEqual ((Math.absolute(
5 Math.minus(Temperature.temp ,Min.key(Temperature.temp))) ,2)))

In the delta interval definition, we have not used a start condition. Thus, the
very first temperature event will start an interval as well as a new temperature
event after an interval has been generated. Moreover, we require the minimum
number of elements in the interval to be 2. This is to avoid cases where an interval
is a singleton. Row 3 in Fig. 3 shows example delta intervals. The first three
events were not included because the difference of their values to the minimum
value is below 2◦. Starting from the event at time 27, the first delta interval
begins as the second temperature event satisfies the delta condition. Another
interval begins at time 38 and continues.

Listing 3.4. Aggregate interval
1 Aggr=HoIE.Event(Temperature). Occurrence(1, Occurrences.Unbounded)
2 .Value(Aggregate.avg(Temperature.temp)). KeyBy(Temperature.sensor)
3 .RelativeCondition.Start(true). Subsequent(Conditions
4 .lessOrEqual(Aggregate.avg(Temperature.temp) ,35))

An aggregate frame of, e.g., average temperature threshold of 35◦ can be defined
shown in Listing 3.4. In this interval definition, we keep adding events to the
interval as long as the average of the added elements including the new one
makes the condition hold true. Examples of matches to the aggregate interval
definition are shown in row 4 in Fig. 3. The first interval spans the time from 20
to 27 as the average of temperature readings was less than or equal to 35. Other
two singleton intervals are defined at times 36 and 38 respectively.

The definition of a boundary frame is similar to the threshold frame. Yet,
several intervals have to be defined based on the required boundaries to be mon-
itored on the range of attribute values. For example, ranges on the temperature
readings of sensors can be defined as normal, readings until 25◦, warm from 26
to 30◦, and hot if above 30◦. This can easily be represented with intervals with
absolute conditions as the threshold interval above.

3.2 Heterogeneous Interval Events Generators

In the case of Heterogeneous event intervals, the types of events signifying the
start and the end of the intervals are different. Moreover, instances of other event
types might be required not to be observed within the interval. As an example
of a heterogeneous interval, consider the execution of a business process. The
whole duration of the process instance is a heterogeneous interval. Even for the
individual work items within a process instance, each work item can be seen
as a heterogeneous interval [18]. The interval is delimited by a start and end

354 A. Awad et al.

... Started (1,5,20) Started (2,5,22) Started (3,7,25) Failed (3,7,30) Started (3,8,32) Completed (2,5,33) Completed (1,7,34) Completed (3,8,35) ...

Not an Interval: start.resourceID != end.resourceID

Not an Interval: “Failed” observed in-between and start.resourceID != end.resourceID

Successfully Completed (2,22,33)

Successfully Completed (3,32,35)

1

2

3

4

Fig. 4. Heterogeneous interval events

events for the process or the work item. However, the two event instances have
to belong to the same process instance. Besides event types identifying the start
and the end of the interval, it is possible to refer to other event types within D2IA.
Instances of such event types must not be observed within the interval.

Definition 5 (Heterogeneous Interval Event). Let E be the universe of
event types. A heterogeneous interval event HeIE specification is defined by a
tuple < start, end,Exclude,KeyBy,Condition,Within > where:

– start ∈ E refers to the type of the start event for the interval,
– end ∈ E refers to the type of the start event for the interval and start �= end,
– Exclude ⊂ E, is the set of event types not to be observed within the interval,
– KeyBy: refers to the id attribute of the raw events and/or to any k ∈

Keys(value) of the raw events to group event instances with the same value
together,

– Condition: defines the filter condition over the matching events. The condi-
tion refers to the properties of the event instances,

– Within: is defined by a time span that is defined by the number of time units.

Example. Consider a process execution engine that emits three different event
types to reflect on the evolution of work items (task instances): Started,
Failed, and Completed. The three events share the same schema on the form
< workitemID, resourceID, ts > with a reference to the work item instance,
the resource who would execute the work item and the timestamp ts of the event.
We can define an interval for successfully completed work items as:
1 SuccessfullyCompleted=HeIE.Start(Started).End(Completed)
2 .Exclude(Failed). KeyBy(workitemID)
3 .Condition(Completed.resourceID =Started.resourceID)

Figure 4 shows on top a stream of the instances of the different event types.
D2IA will not consider Started(1, 5, 20) and Completed(1, 7, 34) as an interval
because the condition on resourceID is not satisfied, row 1 in the figure. Also,
row 3 is not considered as an interval because between Started and Completed
an instance of Failed event for the same work item was observed. Only intervals
on rows 2 and 4 are valid intervals as per the specification above.

D2IA: Stream Analytics on User-Defined Event Intervals 355

...Interval
Stream A ...

Interval
Stream B

A1 A2 A4A3

B3B2B1

A1 A2 A3 A4

B1 A1 di B1 A2 > B1 A3 > B1 A4 > B1

B2 A1 o B2 A2 o B2 A3 > B2 A4 > B2

B3 A1 < B3 A2 o B3 A3 d B3 A4 > B3

A d B: A occurs during B, A di B: B occurs during A,
A > B: A occurs after B, A < B: A occurs before B,
A o B: A overlaps with B

Fig. 5. Interval-interval and interval-point temporal relationships.

3.3 Intervals Temporal Relationships

Event Interval Operators is a family of D2IA operators which is based on Allen’s
interval relationships [3]. These operators can efficiently reason about interval
temporal relationships occurring between the generated interval events. The
interval operator is a binary operator that takes as one input, a stream of interval
events and as the other input, either another interval stream or a point-based
event stream, but not both. The operator produces point-based match events
whenever a match is found between two interval events (see I2E in Fig. 1).

Unlike stateless stream processing, e.g. [19], where each element is processed
independently, the derivation of interval relationships is a stateful operation [2,
14,16]. Thus, this calls for a temporal frame (e.g. windows) to collect a finite
subset of stream elements for both inputs. Therefore, we designed our interval
operator to work on a tumbling window [9]. The results of the interval operator
is a stream of match events. Definition 6 describes the inputs for the interval
operator.

Definition 6 (Match Event). A match event is an instantaneous event result-
ing from the reasoning about the relationship occurring between two interval
events. Match specification is defined by a tuple
< IntEvent1, IntEvent2, F rame1, F rame2, Relations, TSFunction > where:

– IntEvent1 and IntEvent2: refer to the interval event types to reason about.
– Frame1 and Frame2: refer to the the temporal scope, i.e., the windows

required to process (join) the interval event streams.
– Relations: refers to a list of temporal relationships to match between the

interval events in the scopes.
– TSFunction: is a function used to assign a timestamp to the output match

event which is instantaneous. Three timestamp function are available: now(),
i.e., current system time; earliest (latest), i.e., assign the oldest (most recent)
time instant choosing from the start-/end-points of the matched events.

Listing 3.5 shows an example of an interval operator that works on temper-
ature and smoke interval streams.

Listing 3.5. Interval operator specification
1 Match=IntervalOperator .Event1(TemperatureDelta)
2 .Frame1(5 minutes). Event2(SmokeThreshold)
3 .Frame2(5 minutes). Relation ([Relations.During])
4 .Timestamp(TimestampFunctions.LATEST)

356 A. Awad et al.

Grossniklaus et al. [12] defined data-dependent predicates that character-
ize the structure of a frame and, thus, influence the computation performance.
Therefore, to the extent of computing temporal interval relationships, we define
our frames to consider maximum intervals. This assumption, formalized in Defi-
nition 7, is relevant because it allows performance gain by minimizing the number
of interval events to compare. Thus, our operator provides I2I transformation
as shown in Fig. 1.

Definition 7 (Maximal Interval). Let I be the set of all possible interval
instances generated by an interval Specification. An interval i ∈ I is maximal iff
∀j ∈ I, j �= i : i < j ∨ i > j ∨ i m j ∨ i mi j.

As per Definition 7, we can be sure that the temporal relationships between
the sorted elements of the same interval stream is always ij < ij+1 for j ≥ 0. The
benefit of this property is that we can efficiently calculate temporal relationships
between pairs of interval instances of the left Event1 and the right Event2
interval streams without having to explicitly compare timestamps of each pair.
If contents of each window on the two inputs of the join are sorted by the
start timestamp, we can utilize the transitivity of temporal relationships [3] to
efficiently compute the temporal inter-relationships between interval instances.
For the cases where we have to compare timestamps of intervals, we rely on the
efficient set-theoretic approach presented in [11].

Example. Consider the two interval streams A and B in Fig. 5. The dashed rect-
angles represent the content of a window over each stream. Note that windows
width not necessarily should be the same. Within each window, the content is
sorted by the timestamp. As per Definition 7, the intervals are either before, after
or meet each other. Suppose that we want to define the temporal relationships
between contents of the window on stream A and the content of the window on
stream B. Namely, we need to find the relationship between A1, A2, A3, A4 on
the one hand and B1, B2, B3 on the other hand. The näıve way to implement
that is to perform 12 comparisons. A more efficient way is to infer the type of
inter-stream interval relationships utilizing the nature of intra-stream interval
relationship. Looking at the right table in Fig. 5, when we compare A1 with
B1, using their start and end timestamps, we can find that A1 contains B1, i.e.,
A1 di B1. As we learn this relationship, we can deduce the temporal relationship
between the other A intervals and B1. Since any interval Ai, i > 1 will always
occur after A1, we can deduce the same relationship between those intervals
and B1. This is represented with gray cells in the table. By comparing A1 and
B2, we find that A1 overlaps with B2, i.e.,A1 o B2. We can not infer an exact
relation between other intervals in the A stream and B2 because B2 ends after
A1 does. When we compare A2 and B2, we still find A2 o B2. However, we can
find that A2 ends after B2. Thus, we can deduce that future intervals of A will
always occur after B2. Finally, we have to compare each A interval with B3.

D2IA: Stream Analytics on User-Defined Event Intervals 357

Algorithm 1. HoIE Query Generation
Input: An Event type T; An Occurrence Expression Min,Max; An Absolute Condition Ca;

An Relative Condition Cr; An aggregation function F; An aggregation key K; A
temporal window W

1 patterns ← [] start ← e0
2 for k ← 0 to Min do
3 start ← followedBy start ei

4 if Max == Unbounded then
5 pattern ← where Ac [followedBy start constrain(Cr, ei)*]
6 add pattern patterns

7 else
8 for i ← min, i<=max, i++ do
9 pattern ← start

10 for j ← 0, j<i, j++ do
11 pattern ← where Ac [followedBy pattern constrain(Cf, ei)]

12 add pattern patterns

13 foreach p ∈ patterns do
14 output Head as select F (Kp) from p.window(W) where Ca

15 e0...ei with i=Max are of type T

4 Proof-of-Concept

In this section, we demonstrate how D2IA fills the gap between scalable streaming
data platforms and expressive centralized streaming solutions. In particular, we
investigate two complementary proof-of-concepts (i) we demonstrate how we
can rewrite D2IA into an expressive CEP languages, i.e., EPL, that supports
interval events and Allen’s relations, but was not implemented on a scalable
infrastructure. (ii) We present our implementation for a scalable version of D2IA
on top Apache Flink, a popular distributed stream processing engine.

4.1 Translation to EPL

EPL is an industrial stream processing language that combines DSMS and CEP
features. The combination of pattern matching and analytical queries relies on
the notion of Stream/Event type. I.e., every EPL stream has a schema that
corresponds to the type of the items it contains. EPL allows the creation of new
streams combing events w.r.t. the order of their appearance. A special operator
called “insert into” allows composing queries in a query network. EPL natively
supports the relationships of Allen’s algebra. Algorithm1 describes the steps of
how HoIE operators can be translated into an EPL query network.

Algorithm 1 uses the following notations: output T places an event of type T
to a target stream; where applies absolute conditions to a pattern; and constrain
applies relative conditions to an event. Moreover, it makes use of the following
DSMS/CEP operators window, select, from, and followedBy, Kleen′s star(∗),
and not. Listing 4.1 shows the delta interval from Listing 3.3 translated to EPL.

358 A. Awad et al.

Listing 4.1. EPL code for the Delta example
1 create context PartitionedById
2 partition by sensor from Temperature
3 context PartitionedById
4 insert into Delta select Math.avg(temps), startp , endp
5 from Temperature
6 match_recognize (measures A as temps , A[0].ts as startp , last(A.ts) as endp
7 pattern (A{2,})
8 define A as Math.abs(A.temp - Math.min(A.temp) >=2));

4.2 Implementation on Flink

Apache Flink is a scalable stream processing engine. It supports S2R transfor-
mation by applying different windowing on data streams. R2R is also supported
by manipulation of window contents. It also supports R2S as the results of win-
dowing can be emitted to other streams. In this context, E2E transformations
can be achieved using Flink CEP library5. In particular, FlinkCEP is a com-
plex event processing library defined on top of Flink. We use FlinkCEP APIs
to realize the interval generator operators, E2I. We use a so-called looping pat-
tern to define the Occurrence property of the interval specification. Relative
and absolute conditions are implemented via so-called IterativeConditions.
To compute the aggregate value of the interval, we leverage the feature in Flink-
CEP that returns a sequence of all the matched raw events. We use the first and
last elements of the sequence to obtain the timestamps that constitute interval’s
endpoints. Then, we create an instance of the interval type and populate its
properties and add it to the respective stream, see Fig. 2. To realize the interval
operator, I2E, we use the join operator of Flink. The join operator receives as
input two streams. As discussed in Sect. 3.3, we use the time frames, see Defi-
nition 6, to bound the number of interval instances to check the match for. To
realize I2I transformation, we employ a window operator on the generated inter-
val stream and emit maximal intervals only. Our implementation with example
intervals can be found on the project repository6.

0

20

40

60

80

100

120

8 16 32 64

Threshold Relative Threshold Absolute Delta Aggregate

Ru
nt

im
e

in
 m

in
ut

es

Number of nodes

Fig. 6. Different intervals on Flink

Evaluation. To evaluate our
implementation on FlinkCEP, we
use a data set of the linear road
benchmark7. Linear Road is a sim-
ulation of a large metropolitan city
which is 100 miles wide and long
and consists of 10 parallel express-
ways. Each tuple in the data set
describes a vehicle ID, its speed,
road, direction and the timestamp
of the record. In our evaluation, we created four different homogeneous interval

5 https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html.
6 https://github.com/DataSystemsGroupUT/ICEP.
7 http://infolab.stanford.edu/stream/cql-benchmark.html.

https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://github.com/DataSystemsGroupUT/ICEP
http://infolab.stanford.edu/stream/cql-benchmark.html

D2IA: Stream Analytics on User-Defined Event Intervals 359

specifications, for the different frame types with absolute and relative condi-
tions. We partition the data by vehicle ID and put the conditions on the speed
attribute. More details about the interval specifications can be found in the
GitHub repository. Figure 6 shows the scalability results in terms of time needed
by the different queries to process 1 million tuples of the data set under an
increasing number of computing nodes in a Flink cluster. Each node is equipped
with 30 GB of main memory and 16 cores at 2.0 GHz. For the different interval
specifications, it is clear that Flink scales well as the number of nodes increases.
However, for each interval specification, the processing time varies for the same
processing capabilities due to the difference in the complexity of the interval
specification.

5 Related Work

TPStream [14] introduced a stand alone operator that finds temporal relation-
ships among intervals. TPStream allows defining homogeneous intervals with
absolute conditions only. D2IA interval generation operators cover both homoge-
neous with absolute and relative conditions and heterogeneous intervals.

ISEQ [15] is an operator for reasoning about event intervals using Allen’s
temporal relationships. ISEQ assumes the existence of intervals and does not
provide means to define. Compared to our work, we allow the user to define the
intervals from raw (point) events. Moreover, we support both homogeneous and
heterogeneous intervals, allow rich conditions on matching events, and calculat-
ing aggregations over values of raw events.

CEDR [6] is an event streaming system that embraces an interval-based
temporal stream model to unify query language features, handles out-of-order
event delivery, and defines correctness guarantees as well as operator semantics.
CEDR’s events have a validity interval, which indicates the range of time when
the tuple is valid from the event provider’s perspective. This is used to retrieve
events which are still valid at query time. This case can be seen as an example
of interval algebra reasoning. However, Allen’s operators are not explicit in the
language.

ETALIS [4] is an event-driven approach for Complex Event Processing.
The language semantics is based on a logic programming. ETALIS represents
events as facts and translates complex event patterns into logic rules. Thus,
complex events are derived from simpler ones. ETALIS language is very expres-
sive. Although it is possible to express and derive interval relationship across
events, ETALIS does not provide any interval event generation mechanism.
Events must adopt a two-timestamps temporal model. Moreover, the language
does not exploit events ordering for optimizing reasoning about event interval.

360 A. Awad et al.

Table 1. Operators coverage and scalability comparison

Feature/System EPL TP-Stream ISEQ ETALIS CEDR Flink Flink+D2IA

Operator

S2R + − − − − + +

R2R + − − − − + +

R2S + − − − − + +

E2E + − + + + + +

E2I + + − − − − +

I2E + + + + − − +

I2I + − − − − − +

Scalability − N/A − − − + +

Table 1 summa-
rizes the compari-
son of D2IA with
related work. The
implementation of
D2IA on top of Flink
supports all opera-
tors from Fig. 1. In
addition, this imple-
mentation leverages
the performance scal-
ability provided by
Flink. Functionality-
wise, EPL supports all the operators. However, this has to be done manually by
the developer which is error-prone.

6 Conclusion

In this paper, we presented a family of operators to specify event intervals over
data streams and to reason about their temporal relationships (D2IA). D2IA sup-
ports event intervals derived from single source stream by means of aggregations
over timestamped events (homogeneous), and event intervals derived from two
or more sources (heterogeneous). D2IA translates intervals specification into com-
plex CEP specifications; it allows to cover a wide range data-driven intervals as
rich conditions regarding events inclusion; and it supports a wide range of aggre-
gations or references to composing events values. We realized a proof of concept
using both EPL and on top of Apache Flink. As an interval operator, D2IA is
more expressive than similar approaches as it allows relative conditions which
allows defining a wider range of homogeneous intervals than related approaches.

References

1. Akidau, T., et al.: The dataflow model: a practical approach to balancing correct-
ness, latency, and cost in massive-scale, unbounded, out-of-order data processing.
PVLDB 8(12), 1792–1803 (2015)

2. Alharbi, A., Bulpitt, A., Johnson, O.: Improving pattern detection in healthcare
process mining using an interval-based event selection method. In: Carmona, J.,
Engels, G., Kumar, A. (eds.) BPM 2017. LNBIP, vol. 297, pp. 88–105. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65015-9 6

3. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

4. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex
event processing in ETALIS. Semant. Web 3(4), 397–407 (2012)

5. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

https://doi.org/10.1007/978-3-319-65015-9_6

D2IA: Stream Analytics on User-Defined Event Intervals 361

6. Barga, R.S., Goldstein, J., Ali, M.H., Hong, M.: Consistent streaming through
time: a vision for event stream processing. In: CIDR, pp. 363–374 (2007)

7. Codd, E.F.: A database sublanguage founded on the relational calculus. In: Pro-
ceedings of the ACM-SIGFIDET Workshops (1971)

8. Cugola, G., Margara, A.: Low latency complex event processing on parallel hard-
ware. J. Parallel Distrib. Comput. 72(2), 205–218 (2012)

9. Dindar, N., et al.: Modeling the execution semantics of stream processing engines
with secret. VLDB J. 22(4), 421–446 (2013)

10. Etzion, O., Niblett, P.: Event Processing in Action. Manning, Shelter Island (2010)
11. Georgala, K., Sherif, M.A., Ngomo, A.N.: An efficient approach for the generation

of Allen relations. In: ECAI, pp. 948–956 (2016)
12. Grossniklaus, M., Maier, D., Miller, J., Moorthy, S., Tufte, K.: Frames: data-driven

windows. In: DEBS, pp. 13–24. ACM (2016)
13. Hirzel, M., Baudart, G., Bonifati, A., Valle, E.D., Sakr, S., Vlachou, A.: Stream

processing languages in the big data era. SIGMOD Rec. 47(2), 29 (2018)
14. Körber, M., Glombiewski, N., Seeger, B.: TPStream: low-latency temporal pattern

matching on event streams. In: EDBT, pp. 313–324 (2018)
15. Li, M., Mani, M., Rundensteiner, E.A., Lin, T.: Complex event pattern detection

over streams with interval-based temporal semantics. In: DEBS (2011)
16. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M.: Characterizing drift

from event streams of business processes. In: Dubois, E., Pohl, K. (eds.) CAiSE
2017. LNCS, vol. 10253, pp. 210–228. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59536-8 14

17. Paschke, A.: ECA-RULEML: an approach combining ECA rules with tempo-
ral interval-based KR event/action logics and transactional update logics. CoRR
(2006)

18. Richter, F., Seidl, T.: TESSERACT: time-drifts in event streams using series of
evolving rolling averages of completion times. In: Carmona, J., Engels, G., Kumar,
A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 289–305. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65000-5 17

19. van Zelst, S.J., Fani Sani, M., Ostovar, A., Conforti, R., La Rosa, M.: Filtering
spurious events from event streams of business processes. In: Krogstie, J., Reijers,
H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 35–52. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91563-0 3

https://doi.org/10.1007/978-3-319-59536-8_14
https://doi.org/10.1007/978-3-319-59536-8_14
https://doi.org/10.1007/978-3-319-65000-5_17
https://doi.org/10.1007/978-3-319-91563-0_3

	D2IA: Stream Analytics on User-Defined Event Intervals
	1 Introduction
	2 Background
	2.1 Complex Event Processing
	2.2 Data-Driven Windows

	3 Operators for User-Defined Intervals Analytics
	3.1 Homogeneous Interval Events Generators
	3.2 Heterogeneous Interval Events Generators
	3.3 Intervals Temporal Relationships

	4 Proof-of-Concept
	4.1 Translation to EPL
	4.2 Implementation on Flink

	5 Related Work
	6 Conclusion
	References

