
Chapter 15
Application Quantile-Based Risk
Measures in Sector Portfolio
Analysis—Warsaw Stock Exchange
Approach

Grażyna Trzpiot

Abstract The measurement of financial risk has been one of the main goals of the
investors as well as actuaries and insurance practitioners. Measuring the risk of a
financial portfolio involves firstly estimating the loss distribution of the portfolio,
next computing chosen risk measure. In the resent study, the robustness of risk
measurement procedures and their sensitivity into point out for the dataset in present.
The results show a gap between the subadditivity and robustness of riskmeasurement
procedures. We apply into analyses alternative risk measurement procedures that
possess the robustness property. The quantile-based risk measures have been applied
in sector portfolio analysis for the dataset from Warsaw Stock Exchange.
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15.1 Introduction

Themain aim of quantitativemodeling in finance is to quantify the risk, especially the
risk of financial portfolios. The Basel Committee guidelines for risk-based require-
ments for regulatory capital, and frequent use of Value-at-Risk, had created related
risk measurement methodologies and methodologies for measuring of the risk of
financial portfolios [1–3, 8]. Generally, in theoretical approach to risk measurement,
a risk measure is represented as an assignment to each random payoff a number (a
measure of risk). The goal in most of theoretical approach has been on the prop-
erties of defined maps and requirements for the risk measurement procedure to be
coherent, in a static or dynamic setting. Usually, in real applications, the probability
distribution is unknown and should be estimated from (historical) data, which means
as part of the risk measurement procedure. Thus, in practice, measuring the risk of
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a financial portfolio involves two steps: estimating the loss distribution of the port-
folio from available observations and computing a risk measure that we chosen for
measures the risk of this loss distribution. Estimation method connected with these
procedure errors on the portfolio loss distribution can have an important impact on
the final results on risk measures [9, 10].

The main goal of this paper is an application of the two-parameter quantile-based
risk measure to sector portfolio analysis for data from Warsaw Stock Exchange.
Next, the evaluation of the empirical results points out the existing gap between the
subadditivity and robustness of risk measurement procedures.

15.2 Estimation of Risk Measures

The payoff of a portfolio over a specified horizon may be represented as a random
variable X ∈ L ⊂ L1(�, F, P), where negative values are assumed to be a convex
cone containing all constants. A risk measure on L is a map ρ : L → R assigning
to each X ∈ L, a number representing measure of risk. Artzner et al. [3] defined the
axioms of coherent risk measures.

Below we list some properties for risk measures: for X; Y ∈ L,

(a) Monotonicity: ρ(X) ≤ ρ(Y ) if X ≤ Y;
(b) Cash invariance: ρ(X + c) = ρ(X) + c for any c ∈ R;
(c) Positive homogeneity: ρ(λX) = λρ(X) for any λ > 0;
(d) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y );
(e) Law determination: ρ(X) = ρ(Y ) if X and Y have the same distribution.

Definition 1 Amonetary risk measure satisfying conditions (a) and (b), and a coher-
ent risk measure is a risk measure satisfying (a)–(d).

For a set C ⊂ D ⊂ L1 representing the set of admissible (robust) return distri-
butions, we can notice according to the literature [4] the condition of qualitative
robustness of a risk estimator and use it to examine the robustness of the chosen for
application risk estimators.

Definition 2 A risk estimator ρ̂ is C-robust at F (the empirical return distributions)
if, for any ε > 0, there exist δ > 0 and n0 ≥ 1 such that, for all G ∈ C, d(G, F) ≤ δ

where d is the Lévy distance.2

When C = D, then we have situation not interesting in econometric or financial
applications3 since requiring robustness against all perturbations of the distributions
F that means it is restrictive and excludes estimators with the lower break point such
as the sample mean. In application, first we have to estimate the return distribution
F of the portfolio from available data and then apply the risk measure ρ to this

1D ⊂ L is the convex set of cumulative distribution functions (cdf) on R.
2Huber [12].
3If C = D, we have qualitative robustness called asymptotic robustness as outlined [12].
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Table 15.1 Behavior of
sensitivity functions for some
risk estimators

Risk estimator Dependence in z of S(t)

Historical VaR Bounded

Gaussian ML for VaR Quadratic

Laplace ML for VaR Linear

Historical expected shortfall Linear

Gaussian ML for expected shortfall Quadratic

Laplace ML for expected shortfall Linear

Source Cont et al. [4]

distribution. As the estimation of the loss distribution F(X), we can use an empirical
distribution from a historical or simulated sample (e.g., Monte Carlo) or a parametric
formwhose parameters are estimated from available data. Coherent measures as ESα

has a non-robust historical estimator [4]. In this paper, authors proposed a robust
family of risk estimators by modifying its definition.

Definition 3 Consider 0 < α1 < α2 < 1; we can notice the robust risk measure

1

α2 − α1

α2∫

α1

VaRu(F)du (15.1)

and, respectively, a discrete version of the above risk measure:

1

k

k∑
j=1

VaRu j (F), 0 < u1 < · · · < uk < 1 (15.2)

We will call ρeff the effective risk measure4 associated with the risk estimator ρ̂.
In order to quantify the degree of robustness of a risk estimator, we can notice the
concept of the sensitivity function [4]. The function S(t; F) measures the sensitivity
of the risk estimator to the addition of a new data point in a large sample.

Definition 4 (sensitivity function of a risk estimator) The sensitivity function of a
risk estimator defined as a function of distribution F belongs to set of all effective
risk measure distribution (Deff) is the function defined by

S(t) − S(t; F) = lim
ε→0+

ρeff(εδt + (1 − ε)F) − ρeff(F)

ε
(15.3)

for any t ∈ R such that the limit exists. See Table 15.1.

4In other words, while ρ is the risk measure, we are interested in computing.
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15.3 Two-Parameter Quantile-Based Risk Measures

The one-parameter families of risk measures, VaR and ES, can be noticed as a
more general two-parameter family of riskmeasures, called the Range-Value-at-Risk
(RVaR). The family of RVaR was introduced in Cont et al. [4].5 This transformation
into RVaRwas used by Embrechts et al. [6] to understand properties and comparative
advantages of risk measures. It helps on application RVaR as the underlying risk
measures in the real problem. Measures as VaR, ES, and RVaR can be represented
as average quantiles of a random variable.

Definition 5 For X ∈ L, the RVaR at level (α;β) ∈ R2+ is defined as

RVaRα,β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

β

α+β∫

α

VaRu(F)du if β > 0

VaRα(F) if β = 0

(15.4)

The family of risk measures Range-Value-at-Risk (RVaR) is the family of the
truncated average quantiles of a random variable. RVaRα;β is continuous with respect
to convergence in distribution (weak convergence). RVaR belongs to the large family
of distortion risk measures.6

Definition 6 For α, β; ∈ [0; 1) and α + β < 1, RVaRα;β belongs to the class of
distortion risk measures, that is, risk measures ρh of the Stieltjes integral form

ρh(X) =
1∫

0

VaRα(X)dh(α) (15.5)

for some non-decreasing and left-continuous function h: [0; 1]→ [0; 1] satisfying
h(0) = 0 and h(1) = 1, such that the above integral is properly defined. Here h is
called a distortion function.

For α, β; ∈ [0; 1) and α + β < 1, the distortion function of RVaRα;β (X) is given
by

h(α,β)(t) =

⎧⎪⎨
⎪⎩
min

{
I{t>α}

t − α

β
, 1

}
if β > 0

I{t>α} if β = 0
t ∈ [0, 1] (15.6)

For application on real data, especially in portfolio analysis, the important are
some of the relationship between the individual RVaR and the aggregate RVaR.

5For any 0 < α1 < α2 < 1, we can notice as β = α2 − α1.
6Kusuoka [15], Song and Yan [17], Dhaene et al. [5], Grigorova [11], Wang et al. [18].
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Theorem 1 [6]
For any X1, …, Xn ∈ L and any α1, …, αn; β1, …, βn > 0, we have

RVaR n∑
i=1

αi ,∀n
i=1βi

(
n∑

i=1

Xi

)
≤

n∑
i=1

RVaRαiβi (Xi ) (15.7)

By setting α1 = · · · = αn = 0 and β1 = · · · = βn , Theorem 15.1 reduces to the
classic subadditivity of ES. By setting β1 = · · · = βn = 0, we obtain the following
inequality for VaR.

For any X1, …, Xn ∈ L and any α1, …,αn > 0, we have

VaR n∑
i=1

αi

(
n∑

i=1

Xi

)
≤

n∑
i=1

VaRαi (Xi ) (15.8)

For n = 2, we can notice

RVaRα1+α2,β1∨β2(X1 + X2) ≤ RVaRα1,β1(X1) + RVaRα2β2(X2) (15.9)

for all X1; X2 ∈ L; α1; α2; β1; β2 ∈ R+. This subadditivity involves a combination
of the summation of the random variables X1, …, Xn ∈ L and the summation of
the parameters (α1; β1), …, (αn; βn) ∈ R2+ with respect to the two-dimensional
additive operation (+; v). Note that v-operation is known as the tropical addition in
the max-plus algebra [16].

In portfolio analysis, we had to find the optimal allocations for the corresponding
aggregate risk value for the RVaR family of risk measures. The following result
proved by Embrechts et al. [6] can solve this problem.

Definition 7 The inf-convolution of n risk measures ρ1, …, ρn is a risk measure
noticed as

�n
i=1ρi (X) := inf

{
n∑

i=1

ρi (Xi ) : (X1, . . . , Xn) ∈ An(X)

}
(15.10)

That is, the inf-convolution of n risk measures is the infimum over aggregate risk
values for all possible allocations.

Definition 8 For risk measures ρ1, …, ρn and X ∈ L:

(i) An n-tuple (X1, …, Xn) ∈ An(X) is called an optimal allocation of X if
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�n
i=1ρi (Xi ) =

n∑
i=1

ρi (Xi ) (15.11)

(ii) An n-tuple (X1, …, Xn) ∈ An(X) is called a Pareto-optimal allocation of X if
for any (Y 1, …, Yn) ∈ An(X) satisfying ρ i(Yi) ≤ ρ i(Xi) for all i = 1; …, n, we
have ρ i(Yi) = ρ i(Xi) for all i = 1; …, n.

Now we can notice the theorem that has been used in portfolio optimization.

Theorem 2 [6]
For any X1, …, Xn ∈ L and any α1, …, αn; β1, …, βn > 0, we have

�n
i=1RVaRαiβi (X) = RVaR n∑

i=1
αi ,∀n

i=1βi

(X) (15.12)

Now we can notice portfolio risk in the presence of uncertainty of distribution F
by using the resulting aggregate risk value. The assumption is that the distribution of
the total risk X ∈ L is misspecified. That in general implies problems for estimation
using VaR as a risk measures but not for RVaR or ES. This relates to the issue of the
robustness of VaR and RVaR, for a relevant discussion on robustness properties for
risk measures.7 Instead of the robustness of the risk measures themselves, we can
write the robustness of the optimal allocation.

Theorem 3 [6]
For risk measures RVaRα1β1 , . . . ,RVaRαnβn , (αi;βi)∈ [0; 1), αi + βi > 0, i =

1, . . . , n,
n∑

i=1
αi + ∀n

i=1βi < 1 and a doubly continuous random variable X ∈ L:

(i) There exists an L1-robust optimal allocation of X if and only if β1, …, βn > 0.
(ii) If X is bounded, then there exists an L∞-robust optimal allocation of X if and

only if β1, …, βn > 0.

Assuming
n∑

i=1
αi +∀n

i=1βi < 1, a Pareto-optimal allocation for any X1, …, Xn ∈ L

can be constructed explicitly as in Theorem 15.2, with the aggregate risk value

n∑
i=1

RVaRαiβi (X) = RVaR n∑
i=1

αi ,∀n
i=1βi

(X) (15.13)

15.4 Application RVaR in Sector Portfolio Analysis

Sector portfolio analysis was dedicated to food sector. WIG food is a sector index
listed on the Warsaw Stock Exchange, containing companies that participate in the

7Cont et al. [4], Kou et al. [13], Krätschmer et al. [14], and Embrechts et al. [7].
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Table 15.2 Parameters of rate-of-return distribution

ASTARTA COLIAN GOBARTO HELIO IMCOMPA

R 0.001 0.000 0.001 0.003 0.002

V 0.000 0.000 0.000 0.001 0.000

S 0.019 0.013 0.022 0.032 0.016

Skewness 0.512 0.571 −1.838 1.966 0.362

Kurtosis 1.892 4.344 46.205 10.51 3.385

INDYKPOL KANIA OTMU MILKILAND MBWS

R 0.000 0.000 −0.001 0.001 −0.001

V 0.000 0.000 0.001 0.001 0.001

S 0.022 0.019 0.025 0.034 0.023

Skewness 0.931 0.327 0.819 1.200 −1.407

Kurtosis 6.676 1.406 6.553 6.158 10.87

MILKILAND MBWS OTMU PEPEES WAWEL

R 0.001 −0.001 −0.001 0.003 0.000

V 0.001 0.001 0.001 0.001 0.000

S 0.034 0.023 0.025 0.028 0.017

Skewness 1.200 −1.407 0.819 2.243 0.159

Kurtosis 6.158 10.87 6.553 10.941 7.036

Source Main calculation

WIG index. The base date for the WIG food index was set as December 31, 1998.
The subindex is characterized by the same methodology with the main WIG index.
This means that it is an income index, and when calculating it, you should take into
account both the prices of the shares it contains, as well as the right to collect and
the income from dividends. TheWIG food index consists of 23 companies, of which
15 were selected for analysis, which brings together 86.37% of the total shares in
the portfolio and almost total shares in the market, as their sum amounts to 97.80%.
The surveyed period from February 18, l to February 19, 2018, consisted of 503
observations of closing prices for each of the companies.

The use of risk measures requires examining the types of rates of return distri-
butions. The consistency of the distribution of rates of return with the hypothetical
distribution was checked, which is necessary when using quantile risk measures.
For this purpose, the Kolmogorov–Smirnov test was used, with the help of which
the hypothesis on the compatibility of the distributions of rates of return with both
normal and lognormal distribution was verified. In each case, the significance of the
test is less than the assumed level of significance of 0.05. This means that distribu-
tions of the rates of return are consistent with the normal or lognormal distribution.
Next, the parameters of rate-of-return distribution for each of the companies were
calculated (Table 15.2), especially the third central moment, which is a measure of
the asymmetry of the observed rates of return.
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Table 15.3 ES values for selected quantiles

ES ASTARTA HELIO IMCOMPANY KSGAGRO PEPEES Portfolio

0.95 0.0454 0.0821 0.0354 0.0813 0.0704 0.0498

0.96 0.0477 0.0897 0.0370 0.0860 0.0774 0.0531

0.97 0.0511 0.0969 0.0394 0.0920 0.0870 0.0574

0.98 0.0537 0.1077 0.0428 0.0984 0.1005 0.0628

0.99 0.0570 0.1334 0.0486 0.1089 0.1259 0.0727

Source Main calculation

Table 15.4 RVaR measurement values for selected value values (α, β)

RVaR ASTARTA HELIO IMCOMPANY KSGAGRO PEPEES Portfolio

(0.95, 0) 0.0368 0.0599 0.0293 0.0652 0.0457 0.0384

(0.96, 0.01) 0.0417 0.0717 0.0312 0.0736 0.0542 0.0433

(0.97, 0.01) 0.0482 0.0786 0.0348 0.0835 0.0675 0.0498

(0.98, 0.01) 0.0537 0.1077 0.0428 0.0984 0.1005 0.0628

(0.99, 0.01) 0.0610 0.1467 0.0511 0.1488 0.1325 0.0793

Source Main calculation

Next the optimal portfolio was built; it has been assumed that the expected rate
of return on the portfolio had to be greater than or equal to 0.001. In addition, it
was assumed that the number of companies in the portfolio should be in the range
from 5 to 7, and therefore, simulations were carried out to finally choose the optimal
solution. Wallet received the optimal parameters. The following companies were
included in the portfolio companies: IMCOMPANY (43,3%), ASTARTA (28%),
PEPEES (14,8%), HELIO (0,77%), and KSGAGRO (0,61%). Portfolio parameters
E(Rp) = 0.001860, V (Rp) = 0.000115, S(Rp) = 0.010713.

Following to final step, an assessment of the risk of the designated portfolios with
the use of quantitative ES and RVaR risk measures has been made. Consideration of
all possible combinations of values (α, β) is a demanding task. In order to secure the
capital of the designated portfolio, we save selected results of the application of the
downside risk measures presented in the previous points.

Analyzing the obtained results, it can be concluded that the highest levels of capital
collateral are determined by the ES measure, followed by RVaR with a fixed value
of β = 0.01. By changing the value of β and a fixed value of α, the lowest levels
of capital collateral were obtained. When we used robust estimator, then we uses
specific technique on a tail of the distribution of the rate of return. Presented chosen
results (Tables 15.3, 15.4 and 15.5) confirm general rules, described in Sect. 15.2.We
had to take into account robustness of applied quantiles risk measures (Table 15.6).

In the presented application of the quantile risk measures on the portfolios, we
based on the selected sector. Portfolios from a selected sector were analyzed, and
the variability of the distribution of the rate of return in the audited period was not
so much significant. In the surveyed sector, all returns of the rate of return were
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Table 15.5 RVaR measurement values for selected value values (α, β)

RVaR ASTARTA HELIO IMCOMPANY KSGAGRO PEPEES Portfolio

(0.95, 0) 0.0368 0.0599 0.0293 0.0652 0.0457 0.0384

(0.95, 0.01) 0.0399 0.0650 0.0304 0.0699 0.0504 0.0411

(0.95, 0.02) 0.0425 0.0693 0.0321 0.0744 0.0566 0.0441

(0.95, 0.03) 0.0454 0.0821 0.0354 0.0813 0.0704 0.0498

(0.95, 0.04) 0.0454 0.0821 0.0354 0.0813 0.0704 0.0498

Source Main calculation

Table 15.6 RVaR
measurement values for
selected value values (α, β)
for portfolio

ES Portfolio RVaR Portfolio RVaR Portfolio

0.95 0.0498 (0.95, 0) 0.0384 (0.95, 0) 0.0384

0.96 0.0531 (0.96,
0.01)

0.0433 (0.95,
0.01)

0.0411

0.97 0.0574 (0.97,
0.01)

0.0498 (0.95,
0.02)

0.0441

0.98 0.0628 (0.98,
0.01)

0.0628 (0.95,
0.03)

0.0498

0.99 0.0727 (0.99,
0.01)

0.0793 (0.95,
0.04)

0.0498

Source Main calculation

characterized by a significant asymmetry, which means volatility in the tail of the
returns. These properties can have strong impact on the results.

15.5 Conclusion

In this paper, we present that the estimation properties as robustness and sensitivity
are important and need to be accounted to the dataset, with the same attention as
the coherence properties. An unstable or non-robust risk estimator can be useless in
practice, never less it has to be related to a coherent measure of risk. Regulatory risk
measures, as VaR and ES, in parametric estimation procedures for VaR and ES lead
to non-robust estimators. On the other hand, weighted averages of historical VaR
have robust empirical estimators. Historical VaR is a qualitatively robust estimation
procedure. The family of RVaRwas introduced in the context of robustness properties
of risk measures. This family of two-parameter risk measures (RVaR) can be seen
as a bridge connecting VaR and ES, which are the two most popular regulatory risk
measures. Measures as VaR, ES, and RVaR can be represented as average quantiles
of a random variable.

In the recent research, we obtain original results: We establish the level of RVaR
as a measurement values for selected value values (α, β) for sector portfolio from
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Warsaw Stock Exchange. We can claim that estimation RVaR level as the underlying
risk measures in the real problem and connected with these procedures errors is still
useful. Working with two-parameter quantile-based risk measures can have strong
impact to manage expected levels of capital collateral. Additionally, by using two-
parameter quantile-based risk measures, we received a tool for control a chosen part
of the tail loss distribution of the portfolio in the estimating process. To conclude we
would have to argue that the important impact form empirical results is that RVaR
looks as an agile risk measures, which is also robust and coherent. That means RVaR
should be an important part of the portfolio risk measurement procedure.

References

1. Acerbi, C.: Coherent measures of risk in everyday market practice. Quant. Finance 7, 359–364
(2007)

2. Acerbi, C.: Spectral measures of risk: a coherent representation of subjective risk aversion. J.
Bank. Finance 26, 1505–1518 (2002)

3. Artzner, P., Delbaen, F., Eber, J., Heath, D.: Coherent measures of risk. Math. Finance 9,
203–228 (1999)

4. Cont, R., Deguest, R., Scandolo, G.: Robustness and sensitivity analysis of risk measurement
procedures. Quant. Finance 10(6), 593–606 (2010)

5. Delbaen, F.: Monetary Utility Functions. Osaka University Press, Osaka (2012)
6. Embrechts, P., Liu, H., Wang, R.; Quantile-Based Risk Sharing. Working Paper, 24 Oct 2017
7. Embrechts, P., Wang, B., Wang, R.: Aggregation-robustness and model uncertainty of regula-

tory risk measures. Finan. Stochast. 19(4), 763–790 (2015)
8. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stochast. 6,

429–447 (2002)
9. Gourieroux, C., Liu,W.: Sensitivity analysis of distortion risk measures.Working Paper (2006)
10. Gourieroux, C., Laurent, J., Scaillet, O.: Sensitivity analysis of values at risk. J. Empir. Finance

7, 225–245 (2000)
11. Grigorova, M.: Stochastic dominance with respect to a capacity and risk measures. Statist. Risk

Model. 31(3–4), 259–295 (2014)
12. Huber, P.: Robust statistics. Wiley, New York (1981)
13. Kou, S., Peng, X., Heyde, C.C.: External risk measures and Basel accords. Math. Oper. Res.

38(3), 393–417 (2013)
14. Krätschmer, V., Schied, A., Zähle, H.: Comparative and quantitative robustness for law-

invariant risk measures. Finance Stochast 18(2), 271–295 (2014)
15. Kusuoka, S.: On law invariant coherent risk measures. Adv. Math. Econ. 3, 83–95 (2001)
16. Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry. Contemp.Math.

377, 289–318 (2005)
17. Song, Y., Yan, J.: Risk measures with comonotonic subadditivity or convexity and respecting

stochastic orders. Insur. Math. Econ. 45, 459–465 (2009)
18. Wang, R., Bignozzi, V., Tsakanas, A.: How superadditive can a risk measure be? SIAM J.

Financ. Math. 6, 776–803 (2015)


	15 Application Quantile-Based Risk Measures in Sector Portfolio Analysis—Warsaw Stock Exchange Approach
	15.1 Introduction
	15.2 Estimation of Risk Measures
	15.3 Two-Parameter Quantile-Based Risk Measures
	15.4 Application RVaR in Sector Portfolio Analysis
	15.5 Conclusion
	References




