
Chapter 11
The Investor’s Preferences
in the Portfolio Selection Problem Based
on the Goal Programming Approach

Donata Kopańska-Bródka , Renata Dudzińska-Baryła
and Ewa Michalska

Abstract Goal programming is the approach used for multicriteria decision making
when the decision maker aims to minimize deviations between the achievement of
goals and their aspiration levels. In the presence of skewness in the portfolio selection
problems, the goal programming technique is an excellent and powerful quantitative
tool in which the investor’s preferences among objectives are incorporated. In this
study, in the mean–variance–skewness framework, the utilization of the goal pro-
gramming model allows to determine the trade-off frontier or efficient frontier for
a given level of decision maker’s preferences in relation to the selected parameters.
Each change in the strength of preference for the expected value in relation to the
third moment is a trade-off frontier in the appropriate two-dimensional space or on
the surface of efficient portfolios in three-dimensional space.

Keywords Mean–variance–skewness portfolios · Efficient frontier · Trade-off
frontier · Goal programming

11.1 Introduction

The analysts basing on the Markowitz portfolio selection model have focused on
the expected return and variance and have stated that an investor should always
choose an efficient portfolio. They have assumed that the return rates of stocks have
a normal (symmetrical) probability distribution or the utility function is quadratic.
The assumption regarding a symmetrical distribution of the rate of return is unrealistic
and has no empirical evidence [12, 15, 23]. Many researchers argue that higher order
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moments of the portfolio’s return are relevant to investors’ decisions and cannot be
ignored. Scott and Horvath [25] have shown that if the distribution of random rates
of return is asymmetric or the investor’s utility function is a function of a higher
degree than the quadratic function, the assessment of the investment should be based
on at least the third and fourth order moments. As a result of the evidence against
the assumption of the normality of the rate of return distribution, the multiobjective
portfolio selection model incorporates the higher moments. In general, investors
prefer high values for odd moments and low ones for even moments. Increasing the
positive value of an odd moment can be interpreted as decreasing extreme values on
the side of losses and increasing them on the gains’ side.

The importance of skewness in the rate of return distribution is introduced by
Arditti in the stocks’ pricing [1, 2]. He claims that investors prefer positive skewness
as a result of decreasing absolute risk aversion. The preference for positive skewness
is also related to the concept of prudence introduced by Kimball [16]. A prudent
investor is characterized by a special behavior in a situation of risk i.e. a precautionary
saving or limiting consumption. In the context of the theory of expected utility,
prudence means the convexity of marginal utility [5, 18, 19].

The first publications in which portfolio selection models incorporating skewness
measures were proposed, appeared in the 1970s [26, 27]. Maximizing skewness
expresses the basic preferences of the decision maker and leads to an increase in the
chances of achieving above-average rates of return. Currently, different approaches to
themulticriteria portfolio selection are proposed, such as the use of goal programming
or the use of the utility functions of distribution moments [13, 20, 21].

The literature also explores efficient portfolios in terms of the first three moments
of the rate of return distribution [3, 10]. In addition, the problem of diversification of
optimal portfolios depending on the investor’s preferences regarding the skewness
of the rate of return is discussed. Independent research confirms that the greater the
strength of preference for skewness, the lower the degree of portfolio diversification
[11, 14, 26].

To sumup, themain purpose of this study is to propose amean–variance–skewness
goal programming model for portfolio selection based on the investor’s preferences.

The paper is organized as follows: Sect. 11.2 provides discussion on the portfolio
selection problem with third-order moments. The theoretical framework of the goal
programming model is discussed in Sect. 11.3. The numerical results are illustrated
in Sect. 11.4. Conclusion of the study and some computational details are presented
in the final section.

11.2 Skewness in Portfolio Selection

In the presence of skewness, the portfolio selection problem turns into a nonconvex
optimization problem which can be characterized by a number of conflicting and
competing objective functions. To solve this complicated task, various approaches
have been proposed in the literature. Konno et al. [17], Boyle andDing [4] applied the
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method of linear approximation of quadratic and cubic expressions in the optimiza-
tion model and in this way brought the issue to the convex programming problem.

The goal programming (GP) has been the most widely used approach in decision-
making problems with several conflicting and competing objectives. An important
feature of GP is the existence of optimal solution. Generally, the GP models vary
in the form of the achievement function, which minimizes the unwanted deviations
(absolute or relative) of the model’s goals [20].

The polynomial goal programming (PGP) approach to the portfolio selection with
skewness was proposed by Lai [21]. This article initiated the intensive development
of literature, in which portfolio optimization is conceived as amultiple goal program-
ming problem. Lai [21] and authors of the other papers [8, 9, 24] assumed that the
portfolio decision depends on the percentage invested in each asset and constructed
a PGP model that the portfolio choice can be rescaled and restricted on the unit
variance space. This PGP methodology has become popular for empirical research
looking at skewness persistence in a variety of international markets [7, 22]. Canela
and Collazo [6] pointed that under certain conditions, the PGP method can produce
mathematically feasible solutions, which would be unfeasible from a financial point
of view.

Chen and Shia [7] stressed that assets and portfolio returns tend to be asymmetri-
cally distributed and using variance as themeasure of investment risk is inappropriate
and unreasonable. They proposed a new portfolio selection model which uses down-
side risk in the form of “lower partial moments” instead of variance as the risk
measurement in the goal programming portfolio model.

Yaghoobi and Tamiz [28] considered the GP portfolio selection model in which
aspiration levels were not known precisely. They used the fuzzy approach where
imprecise level was treated as a fuzzy goal.

In our approach, the goal programming model with the weighted linear function
of relative deviations from the model’s goals is considered. We utilize the GP to
determine the trade-off frontiers of portfolios of selected stocks which constitute
WIG20 index on the Warsaw Stock Exchange.

11.3 Goal Programming Models

In this study, the investor’s preferences for skewness and expected value of the
distribution of the rate of return are incorporated in portfolio selection problem.

Let us introduce some symbols. Shares of stocks in portfolio form a vector x =
[x1, x2, . . . , xN ], where x1 + x2 + · · · + xN = 1 and xi ≥ 0 for i = 1, . . . , N . The
condition for nonnegativity of shares means that short sale is forbidden. Random
rates of return of stocks in portfolio make up a vector R = [R1, R2, . . . , RN ]. Rate
of return of portfolio is a random variable which distribution is generated by the
random rates of return of shares RP = R1x1+ R2x2 +· · ·+ RN xN . Our optimization
models make use of three moments of a portfolio random rate of return RP : the
expected value of the portfolio (EP ) which is the first-order moment, the variance



154 D. Kopańska-Bródka et al.

of the portfolio (VP ) which is the second central moment and the skewness of the
portfolio (SP ) measured by the third central moment and written as

SP = E[RP − EP ]3 = x · M3 · (xT ⊗ xT) (11.1)

where the symbol ⊗ denotes the Kronecker product. The matrix M3 consist of the
third central moments and co-moments of the random rate of return of stocks

M3 = E[(R − E(R)) · (R − E(R))T ⊗ (R − E(R))T] (11.2)

Our method of research (optimization) has three stages. In the first stage for a given
value of portfolio variance (V0), the expected value of optimal portfolio (E∗

P ) is
determined. Next, in the second stage for a given value of portfolio variance (V0),
the skewness of optimal portfolio (S∗

P ) is determined. And in the last stage, optimal
values E∗

P and S∗
P are used as goal values (aspiration levels) and for given values V0,

E∗
P and S∗

P the optimal portfolio with the minimal deviation from the goal values is
determined. In our procedure (method), the meaningful values of variance has to be
higher than the variance of the global minimum variance portfolio and lower than
the minimum of the variances of stock with the highest expected rate of return and
stock with the highest skewness.

In the first stage for selected values of variance V0, we optimized a well-known
Markowitz portfolio selection model of the form

max EP

VP = V0

N∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , N (11.3)

The expected rate of return of optimal portfolio based on model (11.3) is noted as
E∗

P . The optimal portfolio which maximizes the skewness for a given variance is the
following:

max SP
VP = V0

N∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , N (11.4)
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The desirable value of skewness is noted as S∗
P . To determine an optimal portfolio

which for a given variance is closest to the desirable values of expected rate of return
and skewness, we propose the following goal programming model

min α

∣∣∣∣
de

E∗
P

∣∣∣∣ + (1 − α)

∣∣∣∣
ds

S∗
P

∣∣∣∣

EP + de = E∗
P

SP + ds = S∗
P

VP = V0

N∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , N (11.5)

where de is a deviation of the expected portfolio rate of return from a desired value
E∗

P , ds is a deviation of portfolio skewness from a desired value S∗
P , α ∈ 〈0, 1〉

is a weight (weighting coefficient). The objective function minimizes the relative
deviations from desired values. The strength of preference toward a desired expected
return is reflected by a weight α, and the strength of preference toward a desired
skewness is reflected by a weight (1 − α). If α = 1, the portfolio preferred by an
investor is that whose expected rate of return is as close as possible to the maximum
rate of return for a given risk level and the optimal portfolio of (11.5) is the same
as a solution of model (11.3). Similarly if α = 0, the investor prefers a portfolio
that guarantees the achievement of extreme values of a positive rate of return for a
given level of risk and the optimal portfolio of (11.5) is the same as a solution of
model (11.4). For the assumed values of V0 and α, the solution of model (11.5) is the
optimal portfolio x = [x1, x2, . . . , xN ]; however, in our research the parameters of
the distribution of the return rate of the portfolio x will be analyzed, not its structure.

Moreover, for different values of variance the optimal values of objective function
of (11.3) and (11.4) are used to determine the boundary lines of the expected rate
of return and skewness of the optimal portfolios of (11.5). In the mean–variance
space, an area between the efficient frontier based on the solutions of model (11.3)
and the line of the expected returns of the optimal portfolios of (11.4) is a set of
feasible portfolios when the strength of preference toward the desired expected rate
of return is considered. Likewise, in the skewness–variance space, there is the set
of portfolios when the strength of preference toward a desired skewness of rate of
return is considered.
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11.4 Data and Tools

Ourmajor interest is to determine the set of efficient portfolios consisting of solutions
of goal programming approach to portfolio selection problem. The purpose of our
analysis is to illustrate how selected parameters of the return rate distribution of the
optimal portfolio vary for investors with different preferences for the expected value
and skewness. These preferences are expressed by means of the α parameter.

The data set contains daily logarithmic rates of return for the year 2017 for all
20 shares being components of the WIG20 index on the Warsaw Stock Exchange.
Calculations were made in the SAS software using the NLP solver and self-prepared
programs.

In this paper, we analyze the expected values and skewness of logarithmic rates
of return of optimal portfolios for various values of variance. Values of variance

have to be from the interval V0 ∈
〈
VGMVP,min

i

{
Vmax Ei , Vmax Si

}〉
where VGMVP

is a variance of the global minimum variance portfolio, Vmax Ei is a variance of
a stock with the highest expected value, Vmax Si is a variance of a stock with the
highest skewness. In other words, the assumed variance V0 has to be not lower than
the minimal variance of all portfolios and not higher than the lower from variances
of the maximum expected value share and the maximum skewness share. Table 11.1
shows the first three moments of logarithmic returns for all 20 shares and the global
minimal variance portfolio (GMVP) in the analyzed period.

Based on the values in Table 11.1, the interval of the assumed variance V0

is 〈0.592, 2.908〉. In the optimization models (11.3)–(11.5), we considered values
rounded to 0.1.

11.5 Results

By changing the values of variance in models (11.3) and (11.4), we obtain optimal
portfolios and we can construct efficient frontiers in mean–variance and skewness—
variance spaces. In addition, for each efficient frontier, a sequence of values of the
considered parameter: the third moment (as a measure of skewness) and the expected
value (mean), can be calculated for optimal solutions of the other model. Precisely,
in the mean–variance space, we determine the line of expected values for the optimal
portfolios of themodelwith the skewnessmaximization (11.4), and in the skewness—
variance space the line of the values of third moments for the optimal portfolios of
the model with the maximization of the expected value (11.3). Area between the effi-
cient frontier and the obtained line represents a set of trade-offs between the expected
return and skewness.

The optimal solution of the goal programming model (11.5) for a fixed level of α

and variance V0 is the portfolio with the following parameters: the expected value of
the portfolio’s rate of return EP(α, V0), variance V0, and skewness of the portfolio’s
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Table 11.1 Expected values
(E), variances (V ), and
skewnesses (S) of shares and
GMVP

Share E V S

ALIOR 0.153 3.363 2.887

ASSECOPOL −0.082 2.116 −0.011

BZWBK 0.091 3.225 2.985

CCC 0.135 3.627 0.971

CYFRPLSAT 0.004 2.350 −0.982

ENERGA 0.134 3.809 2.924

EUROCASH −0.158 4.101 −11.802

JSW 0.146 6.110 2.573

KGHM 0.074 3.960 2.780

LOTOS 0.164 5.005 1.669

LPP 0.181 3.628 −0.138

MBANK 0.131 4.399 1.343

ORANGEPL 0.020 3.591 −0.634

PEKAO 0.012 1.923 −0.846

PGE 0.057 3.500 −0.132

PGNIG 0.044 3.012 −0.097

PKNORLEN 0.087 4.376 −5.085

PKOBP 0.182 2.908 2.105

PZU 0.095 2.221 0.178

TAURONPE 0.027 3.086 2.655

GMVP 0.047 0.592 0.093

rate of return SP(α, V0). Generally, by solving the model (11.5) for a fixed α and any

value of variance V0 ∈
〈
VGMVP,min

i

{
Vmax Ei , Vmax Si

}〉
, we obtain optimal portfo-

lios whose expected values of the portfolio’s rate of return EP(α, V0) and skewness
of the portfolio’s rate of return SP(α, V0) create trade-off frontier in a correspond-
ing two-dimensional space (mean–variance space in Fig. 11.1a, skewness–variance
space in Fig. 11.1b).

LetP1 be the portfolio with themaximum expected value for a given variance, and
P2, the portfolio with the maximum skewness for a given variance. Both portfolios
can be presented in two spaces: mean–variance (Fig. 11.1a) and skewness–variance
(Fig. 11.1b). Any portfolio P belonging to the P1P2 segment has higher expected
value than P2 (Fig. 11.1a) at the expense of lower skewness than P2 (Fig. 11.1b),
and at the same time, portfolio P has higher skewness than P1 (Fig. 11.1b) at the
expense of lower expected value than P1 (Fig. 11.1a).

Applying the proposed goal programmingmodel (11.5) for any level of preference
α for the expected value in relation to the skewness allows to picture the corresponding
trade-off frontier in two-dimensional space (mean–variance or skewness–variance).
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Fig. 11.1 Set of trade-offs for expected value (a) and skewness (b)

Changing the value of parameter α allows us to analyze various alternatives in which
a different emphasis is placed on the expected value and skewness.

The trade-off frontiers are situated between the efficient frontier and the lower
restrictive line. For α close to 1, in the mean–variance plane the trade-off frontiers
are close to the efficient frontier, and in the skewness–variance plane to the lower
restrictive line. Figure 11.2a–d shows the trade-off frontiers for four levels of the
preference strength α (0.3, 0.4, 0.6 and 0.7, respectively), in the mean–variance plane
based on the quotations of 20 stocks listed on the Warsaw Stock Exchange in 2017.
The value 0.5 of the preference strength means that for an investor, the high expected
value of the portfolio is just as important as the high skewness. We have analyzed
the trade-off frontiers for many values of α and noted that when decreasing the value
of α initially the trade-off frontiers move away from the efficient frontier relatively
slower than for lower values of α. Similar behavior was observed for data from other
periods we have analyzed. This means that if the investors prefer higher values of
expected rates of return of optimal portfolios at the expense of lower skewness, a
gradual weakening of the preference strength causes a slow decrease in the expected
value, while further lowering a value of α (which is equivalent to stronger preference
for skewness) causes a radical reduction in the expected value.

Opposite patterns are observed in the skewness–variance plane. Figure 11.3a–d
illustrates the trade-off frontiers for four levels of the preference strength α (0.3, 0.4,
0.6 and 0.7, respectively), in the skewness–variance plane. Analyzing the trade-off
frontiers for different values of α, we stated that when decreasing the value of α

initially the trade-off frontiers move closer to the efficient frontier (in skewness—
variance plane) relatively faster than for lower values of α. We noted that the small
changes in the investor’s preferences for the expected rate of return of a portfolio are
related to the relatively large changes in the portfolio skewness. Thus, the sensitivity
to changes in the investor’s preferences is greater for the skewness of the portfolio
rate of return than for the expected value. Analogous behavior was observed for data
from the other periods.

Such behaviors for arithmetic means of expected values and skewnesses of the
portfolio rates of return for various values of α are illustrated in Fig. 11.4a, b, respec-
tively.
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Fig. 11.2 Trade-off frontiers for selected values of α in mean–variance plane

As we consider the first three moments of the distribution of the portfolio rate
of return, the trade-off frontier can be presented in three-dimensional space mean—
variance–skewness. Figure 11.5 shows the parameters of optimal portfolios being
the solutions of the model (11.5) for selected α (1, 0.4 and 0). For continuous values
of α, the trade-off frontiers would create an irregular surface of efficient portfolios,
which results from nonlinear conditions in the model (11.5).

The nonlinear optimization models (11.4) and (11.5) are nonconvex. Due to the
fact that there is no algorithm for solving such optimization problems and often they
have many local optima, the solution reported by a computer solving tool sometimes
may not be a global optimum. Furthermore, if a solver is run multiple times, different
solutions can be obtained. The SAS optimization NLP solver can be run in multistart
mode in which a number of starting points are randomly generated and can converge
to different local optima. The solution reported as optimal is in fact one of the
local optima with the best objective value. Therefore, the obtained solution is not
guaranteed to be global optimum.
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Fig. 11.3 Trade-off frontiers for selected values of α in skewness–variance plane

Fig. 11.4 Arithmetic means of expected values and skewnesses of the portfolio rates of return for
α ∈ 〈0, 1〉 with step 0.1
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Fig. 11.5 Optimal portfolios in mean–variance–skewness space

11.6 Conclusion

Our results clearly show a strong trade-off between expected value and skewness
which was traditionally assumed to be present only between expected value and
variance. The investors aware of additional criteria would have to accept a lower rate
of return if they chose to optimize the skewness of the portfolio rate of return. This
means that the observed efficient frontier based only on mean–variance optimization
is not an adequate efficient frontier and could lead investors toward sub-optimal
decisions when the skewness is considered. The incorporation of skewness into an
investor’s portfolio decision provokes a great change in the resultant optimal portfolio
allocation.

Our study adopts the GP approach to include third moment of rate of return distri-
bution in portfolio optimization process. The investors’ aim is to provide portfolios
with the highest expected rate of return and the highest third centralmoment. Because
these criteria are mutually competitive, investor expresses his own preferences for
one criterion relative to the other one by the subjective value of the parameter mea-
suring the preference strength. This parameter appears in the objective function in a
properly constructed GP model. We have proposed to use optimal solutions of the
GP model to determine trade-off frontiers which show how individual preferences
trade expected rate of return for skewness. Moreover, trade-off frontiers allow us to
examine the intensity of changes in the value of the rate of return distribution param-
eters of optimal portfolios depending on the subjective measure of the strength of
preferences.
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11. Dudzińska-Baryła, R., Kopańska-Bródka, D., Michalska, E.: Diversification problem in mean-
variance-skewness portfolio models. In: Pražák, P. (ed.) Conference Proceedings, 35rd Interna-
tional Conference Mathematical Methods in Economics, University of Hradec Králové, Czech
Republic, pp. 137–142 (2017)

12. Fama, E.F.: The behavior of stock market prices. J. Bus. 38(1), 34–105 (1965)
13. Harvey, C.R., Liechty, J.C., Liechty,M.W.,Müller, P.: Portfolio selectionwith higher moments.

Quant. Financ. 10(5), 469–485 (2010)
14. Kane, A.: Skewness preference and portfolio choice. J. Financ. Quant. Anal. 17, 15–25 (1982)
15. Kendall, M.G., Hill, A.B.: The analysis of economic time-series—Part I: Prices. J. R. Stat.

Soc., Ser. A 116(1), 11–34 (1953)
16. Kimball, M.S.: Precautionary saving in the small and in the large. Econometrica 58(1), 53–73

(1990)
17. Konno, H., Shirakawa, H., Yamazaki, H.: A mean-absolute deviation-skewness portfolio opti-

mization model. Ann. Oper. Res. 45, 205–220 (1993)
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