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Abstract

Lupins provide an insightful model for plant
domestication with five species domesticated
over a wide range of time and geography. The
most intensively studied species is narrow-
leafed lupin, a twentieth-century domesticate
where the addition of each successive domes-
tication trait was documented in the scientific
literature. Foundational to the advances made in
our understanding of lupin domestication was
the availability of excellent genetic resources:
Well-annotated wild seed collections, pub-
lished pedigrees of Australian narrow-leafed
lupin cultivars and a suite of wild x domesti-
cated cross populations. Rapid developments in
genomic technologies culminating in the refer-
ence genome for narrow-leafed lupin have
greatly increased our understanding of the
origins of domesticated lupins, how diversity
has been profoundly affected and the molecular
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control of domestication genes. This chapter
provides an overview of our current under-
standing of lupin domestication and how this
knowledge can equip lupin breeders to create
more diverse and productive cultivars.

8.1 Background

The legume genus Lupinus is special in many
respects, not least its extraordinary history of
domestication of several species across a wide
range of time and geography. Lupinus encom-
passes around 275 species distributed across the
Mediterranean region and North Africa (‘Old
World’ lupins) and the Americas (‘New World’
lupins) (Hughes and Eastwood 2006). While Old
World lupins represent just 13 of those 275
species, four Old World species can be consid-
ered fully domesticated, while several others
show signs of historic cultivation and selection
(Swiecicki and Swiecicki 1995). The oldest fully
domesticated species is white lupin (L. albus L.).
There is clear evidence that white lupin was
cultivated in Egypt by 300 BC and possibly as
early as 2000-1000 BC (Wolko et al. 2011).
Three further Old World species are more mod-
ern domesticates: Narrow-leafed Iupin (L.
angustifolius L.), yellow lupin (L. luteus L.) and
West Australian blue lupin or sandplain lupin (L.
cosentinii Guss.; often mistaken for L. digitatus
Forsk.). Despite the majority of Lupinus species
being from the New World, just one—Andean
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lupin (L. mutabilis Sweet)—has been domesti-
cated, likely 3000—4000 years ago.

Today, the most widely cultivated species are L.
angustifolius and L. albus, while L. luteus and L.
mutabilis are niche crops, and L. cosentinii is not
currently cultivated to our knowledge. The pro-
duction of lupin seeds as an agricultural product
still occurs mainly in Australia but also in parts of
Europe, Africa and South America. Although
production has fluctuated over the last 20 years,
over a million tonnes are produced every year. In
2017, the largest producers were Australia
(1,031,425 t), Poland (168,678 t) and the Russian
Federation (161,680 tonnes) (FAO 2017).

It is easy to understand why lupins attracted
the attention of early farmer and hunter-
gatherers: their seeds are large and highly nutri-
tious with protein contents of around 30-45%,
comparable to soybean (Lucas et al. 2015). Wild
types and landraces are high in bitter quino-
lizidine alkaloids but humans quickly learned to
remove most of the alkaloids by soaking and
rinsing in water. As a snack food some residual
bitterness in the lupin seeds provides a pleasant,
distinctive flavour, which remains popular in
Spain (‘altramuces’), Italy (‘lupini’), Ethiopia
(‘gibto’), Egypt and Sudan (‘termes’) and South
America (‘tarwi’ or ‘chocho’). Naturally low
alkaloid, ‘sweet’ cultivars have been developed,
which now represent most of the lupins culti-
vated worldwide. Sweet cultivars are grown
primarily for grain for animal feed but increas-
ingly as a healthy adjunct to the human diet in
breads and pastries, or to provide a gluten-free
alternative to wheat flour (Gresta et al. 2017).

The Lupinus genus has been the subject of
genomic studies since the late 1990s (Wolko
et al. 2011). Most extensive genomic research
has focused on the most widely cultivated spe-
cies L. angustifolius, which culminated in the
publication of a high-quality reference genome
(Hane et al. 2017). This chapter explores how the
genomic resources in L. angustifolius are
enabling a greater understanding of lupin
domestication, which is becoming an increas-
ingly insightful model for crop domestication
and species evolution more generally.
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8.2 Multiple Lupin Domestications
Spanning Time and Space

Domestication can be defined as the taming of
wild plants and animals to become more pro-
ductive for humans, enabling the development of
trade specializations and burgeoning human
populations (Diamond 2002). It involved pro-
gressively accumulating domestication traits that
made the plants increasingly more useful and
productive to people. The founding father of the
discipline, Nikolai Vavilov, described this as the
‘homologous series in inherited variation’ (Vav-
ilov 1951) and which is now known as the ‘do-
mestication syndrome’ (Hammer 1984). These
traits included reduced fruit dehiscence, increased
apical dominance, removal of seed dormancy,
altered time of flowering and maturity, and
reduced bitter compounds in seeds (Doebley et al.
2006). The domestication of lupin occurred sev-
eral times throughout human history and across
wide geographical regions (Gladstones 1998).

8.2.1 Ancient Lupin Domestication

The first records that suggest lupin had been
adopted and adapted for use within human cul-
ture are from Greek and Roman texts. However,
it is believed that lupins had been cultivated
around the Mediterranean much earlier, having
spread from the place of initial cultivation, Egypt
(Gladstones 1974). Archaeological remains of L.
albus have been found in Greece and Cyprus
dating from around the Bronze Age (Zohary
et al. 2012). It is believed that it was white lupin
that the ancient Greek writers Hippocrates (400—
356 B.C) and Theophrastus (372-288 B.C)
record, discussing soil type and harvesting
requirements for the crop. The Roman writer, the
elder Cato (243-149 B.C) referred to its use as a
cattle feed and as a green manure, and the poet
Virgil writes of its use in crop rotation with
cereals (Hondelmann 1984). It was at some point
during this early cultivation that the initial
domestication of white lupin would have occur-
red, selecting the permeable seed coats to aid
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even germination and non-shattering pods to
reduce wastage during harvest (Gladstones
1970). The history of lupin use and domestica-
tion in the ‘New World’ is harder to follow as
there are fewer records. The early cultivation of
L. mutabilis in the Andes of South America has
been dated to around 700 B.C. (Hondelmann
1984). Later, it was the Incas who used lupin
extensively in crop rotations until the Spanish
conquest in the early sixteenth century (Wolko
et al. 2011). Similar traits as those in L. albus
would have been selected for in the early
domestication and adoption of L. mutabilis into
South American agriculture, and there are no true
wild lines remaining without these domestication
traits (Eastwood and Hughes 2008).

Lupin cultivation and domestication under-
went a renaissance in the eighteenth century.
This was by royal decree in Prussia as a means of
soil improvement using L. albus. This species did
not thrive in the Northern European climate and
was replaced successfully with L. luteus, which
was used for seed production for animal feed as
well as soil improvement in crop rotations
(Wolko et al. 2011; Hondelmann 1984). L.
angustifolius was also introduced to Europe over
the following 100 years and along with L. luteus
was taken up by farmers in Northern Europe as
both species had good frost tolerance and suit-
able maturity timing compared to L. albus
(Wolko et al. 2011).

8.2.2 Modern Lupin Domestication

The driver for the modern era domestication of
lupins was to find sweet varieties which were low
in alkaloids (Hondelmann 1984). Up to this point,
all lupins were bitter and the consumption of seed
was only possible after soaking the seeds for a
period of time in water. If sweet varieties could be
developed, then it could open up a greater use of
the crop for animal feed as well as for humans
without the risk of toxicity. The first recorded
discovery of sweet plants for both L. luteus and L.
angustifolius was in the late 1920s by German
scientist and plant breeder Dr. Reinhold von
Sengbusch. This was only possible after the

development of a simple, high-throughput assay
to detect the presence of alkaloids (Hondelmann
1984; Gladstones 1970). The identification of
sweet types of L. albus was subsequently
achieved and this, along with breeding for early
maturity, was carried out in 1930-1940s in
northern Europe leading to varieties such as
Nahrquell being released post-war in West Ger-
many (Gladstones 1970).

At the same time, other key seed traits—in-
dehiscence, water permeability (soft seededness)
and white colouring—were included in the
selection and proved successful in L. luteus.
Lupin breeding also began in Poland in the
1930s, focused mainly on L. luteus and L.
angustifolius but it was not until after the Second
World War that interest for lupins grew, partic-
ularly in the Mediterranean, Australasia and
South Africa. In the 1950s, a breeding pro-
gramme was established in Western Australia for
L. angustifolius where the full domestication of
this species was achieved by incorporating
domestication genes from several sources
(Gladstones 1977) (Table 8.1). A L. angustifolius
breeding programme was also set-up in the USA
in the 1940s and continued to the 1960s with
advances made in disease resistance, particularly
to anthracnose and grey leaf mould. These vari-
eties and knowledge were then combined into the
Australian breeding programme (Gladstones
1977). Yield improvements then became the
focus for the breeding efforts as the domestica-
tion process had been completed.

L. mutabilis was another lupin species for
which von Sengbusch produced sweet types in
the 1930s, as other domestication traits such as
non-shattering were already in place. Mutation
breeding for sweetness using ethyl methanesul-
fonate (EMS) was also attempted later on, low-
ering alkaloid levels to around 0.2-0.3%
(Clements et al. 2008; Williams et al. 1984).
However, it was breeding work based on a natural
mutant by von Baer and Gross in Chile that led to
the production of an extremely low-alkaloid cul-
tivar, Inti (Gross et al. 1988). Breeding was then
continued in Western Australia from 1999,
focusing on flowering time and male sterility. The
Australian Lupin Collection containing a number
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Table 8.1 Key domestication genes in narrow-leafed lupin
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Domestication = Gene name Dominant | Description Chromosome, | Origin and
trait or interval size” | reference
recessive
Low alkaloid iucundus Recessive  Reduced level of NLL-07, Discovered by Von
quinolizidine alkaloids in 746 Kb Sengbusch in 1928
the plant. Possibly (Hackbarth 1957;
controlled by RAP2-7 gene Von Sengbusch
(Kroc et al. 2019) 1942)
Soft mollis Recessive = Water permeable seed NLL-17, Unknown origin in
seededness allowing immediate 119.5 Kb 1930 (Mikolajczyk
germination 1966; Forbes and
Wells 1968)
White flowers  leucospermus | Recessive | Anthocyanin pigments are NLL-03, Natural variant
and seeds suppressed leading to white | 907.1 Kb (Hallqvist 1921;
flowers and seeds, and no Hackbarth and
purple colouring in leaves Troll 1959)
and stems
Non-shattering  tardus Recessive | Pod seams are fused NLL-01, Discovered in 1960
pods together, reducing shattering ' 517.6 Kb (Gladstones 1967)
Non-shattering  lentus Recessive | Endocarp cells in the pod NLL-08, Discovered in 1960
pods walls lose their parallel 387.1 Kb (Gladstones 1967)
orientation, reducing
shattering
Early flowering = Ku Dominant | Loss of vernalization NLL-10, Discovered by
requirement for flowering 413 Kb Gladstones in 1961

leading to early flowering in
warmer environments.
Controlled by a Flowering
Locus T (FT) homologue
(Nelson et al. 2017)

(Gladstones and
Hill 1969)

“Hane et al. (2017)

of L. mutabilis accessions with differing charac-
teristics provided additional traits, which could be
combined into breeding programmes for the
continual improvement of L. mutabilis cultivars
(Clements et al. 2008).

L. cosentinii domestication and breeding was
undertaken by Gladstones in the 1950s, around a
century after it had been initially introduced to
the country for flour production. It was a good
choice for domestication as it had naturalized
well into the Western Australian environment
and thrived on infertile, sandy soils as well as
having some drought tolerance (Gladstones
1970). By this time, it was used mainly for soil
improvement and sheep feed. Domestication

traits that were targeted for L. cosentinii
improvement were low-alkaloid seed (from arti-
ficial mutagenesis), non-shattering pods, early
flowering and soft seededness, from natural
mutations (Gladstones and Francis 1965; Glad-
stones and Hill 1969; Gladstones 1958, 1967).
All of these were incorporated into the cultivar
‘Erregulla’. However, it was not widely taken up
due to problems with deformed seeds and
reduced seed filling (Cowling et al. 1998). While
this species is not currently grown to any
appreciable extent, it may provide a useful
legume rotation crop in a drying climate, as there
is anecdotal evidence of drought tolerance in this
species (Gladstones 1970).
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8.3 Genetic and Genomic Resources
Supporting Domestication
Research in Lupin

Lupins provide an excellent model for under-
standing domestication genes due to the multiple
independent domestications across wide spatial
(Europe, South America and Australia) and
temporal (from 4000 to 50 years ago) ranges.
Two crucial features supporting domestication
studies are the availability of extensive and
well-annotated seed collections made for Lupinus
species, and the relatively small diploid genomes
(2C = 1.16-2.44 pg, equivalent to around 600—
1200 Mbp per haploid genome; (Naganowska
et al. 2003)), which makes them tractable to
genomic analyses.

8.3.1 Genetic Resources

Lupin breeders and researchers are blessed with
excellent germplasm resources, especially for the
domesticated species, L. angustifolius, L. albus,
L. luteus and L. mutabilis. The value of seed
collections is not only related to the number of
accessions (estimated to be over 36,000 in the
largest 40 collections (Wolko et al. 2011)), but
also to the geographic spread and annotated
passport data (which is very good for a large
proportion of accessions). The largest and best
characterized collection is located in Perth,
Australia, the majority of which is currently
being transferred to the Australian Grain Gene-
bank in Horsham, Australia for long-term con-
servation (Sally Norton, pers. comm.). These
international collections cover both Old World
and New World species, wild and landrace types
as well as many breeding lines. These seed col-
lections are an invaluable resource for under-
standing plant domestication as well as a source
of genetic variation for important agronomic
traits such as abiotic and biotic stress tolerance
(Berger et al. 2017).

Recombinant inbred line (RIL) populations
have been created for L. angustifolius, L. albus
and L. luteus (Berger et al. 2013), which are
valuable for investigating the genetic basis of

domestication traits. RIL populations are pro-
duced by crossing contrasting parental lines to
produce an F; hybrid, which is self-pollinated to
produce a large F, population. Each F, individual
is then subjected to inbreeding by a process of
single seed descent to generate an inbred popu-
lation (typically Fg generation) in which traits of
interest have segregated. The value of RIL pop-
ulations is the capacity to generate unlimited seed
for replicated phenotyping and sharing with
research collaborators. The main reference RIL
populations for L. angustifolius, L. albus and L.
luteus were generated from wide crosses at the
Department of Primary Industries and Regional
Development (DPIRD, Perth, Australia) (Wolko
et al. 2011; Berger et al. 2013). All three popu-
lations segregate for domestication traits as they
were generated by crossing a domesticated parent
with a wild (L. angustifolius and L. luteus) or
partially domesticated landrace (L. albus) parent.

The L. angustifolius RIL population devel-
oped from a cross between 83A:476 (an Aus-
tralian breeding line) and P27255 (a Moroccan
wild accession) has been particularly instrumen-
tal for wunderstanding lupin domestication,
through the provision of genetic maps to locate
domestication genes (Boersma et al. 2005; Nel-
son et al. 2006, 2010; Kroc et al. 2014; Kam-
phuis et al. 2015; Zhou et al. 2018) and
ultimately as the genetic backbone for the first
lupin reference genome (Hane et al. 2017), a key
resource for domestication gene discovery. The
L. albus and L. luteus RIL populations are now
being used to further our understanding of
domestication in those species (Matthew N.
Nelson et al. unpublished data).

8.3.2 Genomic Resources

As the most widely grown lupin species, geno-
mic resources are most advanced for L. angus-
tifolius. Starting from humble beginnings with
protein isozyme markers (Wolko and Weeden
1989), genomic resources for L. angustifolius
have grown in scale and complexity as technol-
ogy has evolved. Transcriptomic (that is, sets of
expressed gene sequences) resource development
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began with cloning and sequencing genes
expressed in seed tissues (Nelson et al. 2006),
then exploded in scale with the advent of next
generation sequencing (NGS) platforms, result-
ing in comprehensive transcriptomes for seed,
leaf, flower, pod, stem and root organs (Kam-
phuis et al. 2015; Foley et al. 2011, 2015; Can-
non et al. 2015; Kroc et al. 2019; Yang et al.
2017). For a detailed review of lupin transcrip-
tome studies, see Chap. 5. Two genomic bacte-
rial artificial chromosomes (BAC) libraries based
on cultivars Sonet (from Poland; (Kasprzak et al.
2006)) and Tanjil (from Australia; (Gao et al.
2011)) proved to be useful tools for gene dis-
covery before the availability of whole genome
surveys (based on Tanjil; (Kamphuis et al. 2015,
Yang et al. 2013)) and then comprehensive
Tanjil genome assemblies (Zhou et al. 2018;
Hane et al. 2017). The Tanjil genome assembly is
currently  being  improved  with  long
sequence-read technology, and a pan-genome is
also being developed that will represent
species-wide genome diversity through incorpo-
rating portions of the L. angustifolius genome
that are absent in Tanjil but present in domesti-
cated and wild accessions (Karam B. Singh, pers.
comm.; Sect. 3.6.1).

While not yet as comprehensive as for L.
angustifolius, genomic have also
rapidly developed for other lupin species (see
Chaps. 3 and 5). Indeed, the first lupin tran-
scriptomic resources were generated to explore
L. albus cluster roots (Uhde-Stone et al. 2003),
which was followed up later with richer next
generation datasets (O'Rourke et al. 2013; Wang
et al. 2014; Secco et al. 2014). Other L. albus
transcriptomes were produced to explore seed
storage proteins and for genetic marker devel-
opment (Foley et al. 2015; Ksigzkiewicz et al.
2017). Transcriptome sequences were used for
marker discovery and exploring organ abscission
in yellow lupin (Parra-Gonzalez et al. 2012;
Glazinska et al. 2017), and its chloroplast gen-
ome was sequenced (Martin et al. 2014). In the
broadest sampling reported yet, Nevado et al.
(2016) sequenced transcriptomes from 55 New
World lupin species in order to understand
adaptive evolution of rapidly speciating lupins in

resources
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the New World. One of those species—L. poly-
phyllus—had been sequenced earlier by Cannon
et al. (2015) as part of the 1000 Plants
(Leebens-Mack et al. 2019).

High-quality reference genomes are being
prepared using long sequence-read technologies
and optical mapping for L. albus (Hufnagel et al.
2019) and L. luteus (Joshua Udall, pers. comm.).
These are expected to be as useful as the L.
angustifolius genome has already proven to be.
Taken together, these genomic resources provide
powerful tools for lupin domestication gene
discovery.

8.4 Lupin Domestication Gene
Discovery
8.4.1 Lupinus angustifolius
Identifying the genes controlling domestication
traits is important for basic understanding of
plant evolution but also for improving crops
through plant breeding. One of the key con-
straints in accessing trait diversity in wild rela-
tives for breeding purposes is the poor agronomic
performance of early generations of progeny
from crosses between breeding lines and wild
relatives (Cowling et al. 2009). The availability
of diagnostic molecular markers based on
domestication genes transforms the speed and
efficiency of the conversion of wild material into
a suitable domesticated background in which the
agronomic value of wild alleles can be measured.
Understanding how domestication genes operate
may also help to refine and improve the domes-
tication genes themselves, either through
prospecting for natural allelic diversity in those
genes or by biotechnological intervention
through transgenics or targeted mutation. For
example, a modified set of phenology genes
could be used to expand the adaptation of crops
to new or changing climatic regions (Mousavi-
Derazmahalleh et al. 2019; Taylor et al. 2019).
Our most advanced understanding of lupin
domestication genes comes from studies of L.
angustifolius. This twentieth-century domestica-
tion is special in that each event was recorded at


http://dx.doi.org/10.1007/978-3-030-21270-4_5
http://dx.doi.org/10.1007/978-3-030-21270-4_3#Sec7
http://dx.doi.org/10.1007/978-3-030-21270-4_3
http://dx.doi.org/10.1007/978-3-030-21270-4_5

8 How Have Narrow-Leafed Lupin Genomic Resources ... 101

the time in the scientific literature (Table 8.1).
There are five domestication traits controlled by
six major genes: soft seededness (mollis), seed
indehiscence (lentus and tardus), low alkaloid
(iucundus), early flowering through removal of
vernalization requirement (Ku and Julius) and
white flower/green vegetative organ pigmenta-
tion (leucospermus) as a marker for domestica-
tion (wild types having blue flowers and a purple
or red tinge throughout the vegetative organs)
(Nelson et al. 2006; Taylor et al. 2019). Several
studies have mapped each of the six domestica-
tion genes to the 83A:476 x P27255 reference
genetic map with increasing resolution as marker
technology improved and the size of the RIL
population expanded (Boersma et al. 2005, 2009;
Hane et al. 2017; Kamphuis et al. 2015; Kroc
et al. 2014; Nelson et al. 2006, 2010; Zhou et al.
2018). These studies shed light on the chromo-
somal location of domestication genes but fell
short of identifying the causal genes underlying
the domestication traits.

The first clue about the identity of a lupin
domestication gene was found by Kroc et al.
(2014). Alignment of the L. angustifolius genetic
map to the genome of the model legume Med-
icago truncatula revealed a cluster of three
homologues of the flowering time gene, FT, on
Chromosome 7 of M. truncatula at the equivalent
map position as the Ku locus in L. angustifolius.
Kroc et al. (2014) developed FT gene-based
markers and mapped them back into L. angusti-
folius. One of the FT markers (FTc) mapped
precisely to the Ku locus. This lead was followed
up by Nelson et al. (2017) who were able to
confirm that the FT homologue LanFTcI not only
mapped perfectly to the Ku locus but a 1.4 kb
deletion in its promoter region was perfectly
correlated with vernalization responsiveness in a
panel of 216 wild and domesticated accessions of
L. angustifolius. Of four FT homologues found in
the L. angustifolius, only LanFTcl showed ele-
vated gene expression across a range of organ
types in response to vernalization treatment in the
vernalization responsive accession P27255. Tay-
lor et al. (2019) were then able to demonstrate
conclusively that the 1.4 kb deletion was the
causal variant responsible for the loss of

vernalization responsiveness, presumably due to
a loss of regulatory sequence(s) that represses
LanFTcl expression. This explanation was sup-
ported by the discovery of a smaller, partly
overlapping 1.2 kb deletion in the LanFTcl pro-
moter region of a wild accession from Israel that
showed an intermediate flowering time pheno-
type. This discovery offers the exciting prospect
of an allelic series of LanFTc! that can be used as
a simple breeding tool for targeting lupin varieties
to specific climatic regions and flowering time in
lupins (see Chap. 9 for more detailed discussion).

The low-alkaloid trait is another important
target for gene identification for breeding in all
lupin crop species. Quinolizidine alkaloids
(QA) are responsible for the bitterness found in
the Lupinus genus but the specific QAs differ
between each of the species. In L. angustifolius,
the major QA is lupanine (Frick et al. 2017;
Wink et al. 1995). While several low-alkaloid
genes have been discovered in L. angustifolius,
only one 1is wused in cultivars: iucundus
(Table 8.1). It was first discovered by Von
Sengbusch in 1928 and found to be a single
recessive gene (Hackbarth 1957; Von Sengbusch
1942). However, it was not until the development
of genetic tools that the iucundus region could be
explored and the alkaloid biosynthesis pathway
further understood. Li et al. (2011) identified
markers linked to iucundus, which could be used
for marker-assisted selection in wild x domes-
ticated introgressive crossing programmes for
broadening genetic diversity in breeding pools.
Even more useful would be a perfectly predictive
marker based on the causal gene mutation
underlying iucundus. The iucundus gene was
mapped to a 746 Kb region on chromosome
NLL-07 (Hane et al. 2017). Kroc et al. (2019)
used a transcriptomic approach to identify a
strong candidate gene for iucundus in this inter-
val: RAP2-7, an ethylene responsive transcription
factor. A less promising candidate gene in the
same region could not be fully ruled out:
DHDPS, a 4-hydroxytetrahydrodipicolinate syn-
thase gene. Further validation work will be
required to confirm the causal mutation under-
lying iucundus. Three other alkaloid biosynthesis
genes genetically unlinked to iucundus have been
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identified in L. angustifolius. The first step in the
alkaloid biosynthesis pathway was found to be a
lysine decarboxylase (LDC; Bunsupa et al.
(2012)) and more recently the second step was
identified as a copper amine oxidase (CAO; Yang
et al. (2017)). A third gene, which role is not yet
fully understood, is an acyl transferase (LaAT;
Bunsupa et al. (2011)). The quinolizidine
biosynthetic pathway has yet to be elucidated in
any species, but most progress achieved to date
has been in L. angustifolius, which functions as a
model for other species. In this regard there has
been recent progress made on the genetic factors
affecting the biosynthetic pathway and how it
responds to some biotic (Frick et al. 2019) and
abiotic stresses (Frick et al. 2018) in L.
angustifolius.

8.4.2 Lupinus albus

The reference mapping population for L. albus
(Kiev Mutant x P27174 RIL population) segre-
gates for just two domestication traits: low alkaloid
(controlled by the pauper locus) and early flow-
ering. The first genetic map for L. albus mapped at
low resolution the pauper locus and two quanti-
tative trait loci (QTL) for flowering time (Phan
et al. 2007). This map was modestly improved by
Vipin et al. (2013) although this did not provide
more insight into the domestication traits. More
recently, Ksigzkiewicz et al. (2017) used geno-
typing by sequencing (GBS) in the same RIL
population to generate a much improved,
high-resolution map. They located pauper in a
well-defined interval on linkage group ALB18 and
identified a candidate gene residing in that region
—LaAT, a gene previously identified in L.
angustifolius by Bunsupa et al. (2011). The two
flowering time QTL previously identified by Phan
et al. (2007) were confirmed and furthermore were
demonstrated to be involved in the vernalization
responsive (Ksigzkiewicz et al. 2017). One of
these QTL may respond to the previously reported
brevis locus (Gladstones 1970) but this has yet to
be confirmed. An additional weak QTL was
identified, which was not vernalization related.
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The improved L. albus genetic map was aligned to
the L. angustifolius reference genome but inter-
estingly none of the mapped loci corresponded to
the positions of the equivalent iucundus and Ku
loci in L. angustifolius. However, the L. angusti-
folius genome provided candidate genes for the
flowering time QTLs, as subsequently described
by Rychel et al. (2019). This example illustrates
both the value and limitations of the L. angusti-
folius reference genome sequence for domestica-
tion gene research in other legume species. The
reference genome for L. albus based on the cultivar
Amiga (Hufnagel et al. 2019) is helping identify
the genes underlying pauper and other
low-alkaloid mutant loci in an international col-
laboration between France, Denmark, Poland, UK
and Australia (Nelson et al. unpublished data).

8.4.3 Lupinus luteus

The reference RIL population for L. luteus was
developed from a cross between the Australian
cultivar Wodjil (a selection from the Polish cul-
tivar Teo) (French et al. 2001) and P28213 (wild
accession from the Azores) (Igbal et al. 2019).
This population segregates for the complete suite
of domestication traits: soft seededness, seed
indehiscence, vernalization responsiveness in
flowering, alkaloid content and flower colour
(yellow versus orange). The first map for L.
luteus was recently released (Igbal et al. 2019)
and analysis of domestication traits is underway
(see Chap. 11). Domestication gene discovery
will be greatly facilitated by the availability of a
reference genome, which is currently under
development (Joshua Udall, pers. comm.).

8.4.4 Other Lupin Species

To our knowledge, little progress has been made
in other lupin species to identify domestication
genes. Foundational resources such as RIL pop-
ulations should be developed between wild and
domesticated accessions of both L. mutabilis and
L. cosentinii. Mining of available transcriptomic
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datasets (see above) may provide some initial
leads to follow-up in more comprehensive
experiments.

8.5 Genetic Consequences
of Domestication on Genome
Diversity

The domestication of grain crops involves a
series of population bottlenecks as new domes-
tication alleles undergo extreme selection pres-
sure (Doebley et al. 2006). This leads to a
reduction in genetic diversity, which takes time
to recover through gene flow from wild popula-
tions and spontaneous mutations. It is therefore
to be expected that the genetic diversity of a
young, twentieth-century domesticate such as L.
angustifolius will have very depleted diversity
compared to its wild ancestors. This was indeed
found to be the case in a diversity analysis of
1,248 wild and 95 domesticated accessions using
low-resolution Diversity Arrays Technology
(DArT) genotyping (Berger et al. 2012). Fig-
ure 8.1 graphically illustrates the small portion of

Fig. 8.1 Domesticated
cultivars of L. angustifolius
contain a small proportion of
species diversity. This
multidimensional scaling plot
was based on diversity
measured at 137 DArT
marker loci in 1,248 wild
(black crosses) and 95
domesticated (Australian
varieties represented by red
circles and European varieties
represented by blue triangles)
accessions. Redrawn from
data presented by Berger et al. ¥
(2012)
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diversity captured in Australian and European
cultivars compared to wild accessions collected
across the Mediterranean Basin. This highlighted
the need to understand where useful genetic
diversity can be found among wild accessions
(Berger et al. 2013).

A detailed analysis of 142 wild accessions
using high-resolution single nucleotide polymor-
phism (SNP) genotyping revealed that accessions
from the western Mediterranean region were more
diverse and that there had been an historic eastward
migration during which there was a shift in phe-
nological adaptation to warmer, lower rainfall
environments (Mousavi-Derazmahalleh et al.
2018a). This provides valuable guidance for lupin
breeders to identify untapped sources of genetic
and adaptive diversity for lupin improvement.
Mousavi-Derazmahalleh et al. (2018b) went fur-
ther to demonstrate that the western Mediterranean
region provided the founder populations for the
domestication of lupin, which had been suspected
previously based on morphological observations
(Gladstones 1998). Another important finding was
the much higher linkage disequilibrium evidence
in domesticated compared to wild accessions,

2D Stress: 0.17
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meaning that plant breeder efforts to accumulate
beneficial alleles will be hampered by unwanted
linkage to unfavourable alleles (Mousavi-
Derazmahalleh et al. 2018b). Only by introduc-
ing wild diversity into breeding programmes will
such unwanted linkages be broken up over time.
Interestingly, a search for footprints of selection
around domestication trait loci proved inconclu-
sive, which may have been due to the recentness of
L. angustifolius domestication.

Less is known about the impact of domesti-
cation on the genome diversity of other lupin crop
species. Gilbert et al. (1999) investigated the
genetic diversity present in 40 L. albus accessions
using ISSR-PCR. The small sample size, the
repeatability of the marker technology limitations
and lack of useful passport information accom-
panying accessions severely limited the conclu-
sions that could be drawn from this study. In a
more comprehensive study of 94 landrace and
cultivar accessions, Raman et al. (2008, 2014)
found that L. albus landraces clustered separately
from modern cultivars and that within landraces,
Ethiopian landraces were the most distinct.
Annicchiarico et al. (2010) investigated agro-
nomic and phenological diversity in a more
globally representative collection of L. albus
landraces. Current work is underway to extend
this work wusing high-resolution genotyping
(Paolo Annicchiarico, pers. comm.). Igbal et al.
(2012) used AFLPs to investigate diversity,
population structure and linkage disequilibrium.
They found that there was some clustering among
the accessions, but this could not be related to
geographic origin due to lack of information and
the probable high rate of transfer of germplasm
across the world. Their findings also showed a
weak population structure and a low level of
linkage disequilibrium, which can be helpful for
follow on experiments such as association map-
ping. In more focused analyses, Atnaf et al.
(2015) and Atnaf et al. (2017), explored agro-
nomic, phenological and low-resolution marker
diversity in Ethiopian landraces. So far, no study
has included wild accessions, which can now
only be found in Greece (known as graecus types;
(Gladstones  1998)).  Currently, we are
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investigating molecular and phenological diver-
sity in a large global collection of wild, landrace
and cultivar accessions from 15 countries, which
we believe will provide insights into the origin
and genetic consequences of L. albus domesti-
cation (M. Nelson, unpublished data).

8.6 Closing Remarks

The genomics revolution has provided powerful
new tools to answer basic questions about crop
domestication, an insightful model for species
evolution. The reference genome sequence of L.
angustifolius provides a valuable resource for
identifying domestication genes and under-
standing the effects of domestication on
genome-wide diversity in lupin crop species.
These discoveries provide the knowledge and the
genetic tools needed by lupin breeders and
pre-breeders to introduce much-needed genetic
and adaptive diversity into lupin crops.
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