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Preface

Ensuring potable water to billions of lives across the globe is a serious challenge 
facing humanity. Arsenic water contamination through natural or anthropogenic 
sources has been causing global mass poisoning. Nearly 300 million individuals are 
potentially at risk due to their exposure to water resources with unsafe levels of 
arsenic in more than 100 countries. The impact of arsenic contamination is severe in 
low-income communities with children being the most vulnerable. In this book, we 
synthesize research conducted on various aspects of arsenic water contamination 
across the globe.

Topics covered in this book are grouped into four main themes: (1) arsenic con-
tamination, (2) routes of arsenic exposure and potential health risks, (3) sustainable 
arsenic mitigation technologies and management policies, and 4) cases studies. 
Chapters 1 through 3 cover the arsenic contamination and its associated geochemi-
cal and hydrogeochemical aspects. Chapters 4 and 5 have detailed information of 
the routes of arsenic exposure to human beings and associated health risks. Various 
aspects of arsenic mitigation policies and sustainability are discussed in Chaps. 6 
through 10. Finally, two case studies are covered in Chaps. 11 and 12.

This is the second book in the Advances in Water Security Book Series. It is a 
unique book as it uses a holistic approach in investigating the risks related to 
groundwater resources. Overall, the book contributes to a better understanding of 
groundwater resources contamination and human health topics of interest to differ-
ent stakeholders who are interested in a better understanding of these issues and 
need reliable information to help them make well-informed decisions. This book 
sheds the light on this global environmental menace and will draw the attention of a 
diverse group of researchers and decision-makers interested in environmental sci-
ences, management, and sustainability to public health and policy. In addition, this 
book can serve as a reference for many groundwater hydrologists, students, and 
professionals.

Prairie View, TX, USA�   Ali Fares 
New York, NY, USA�   Sushant K. Singh 
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Chapter 1
Groundwater Arsenic Contamination 
and Availability of Safe Water for Drinking 
in Middle Ganga Plain in India

Sudarsan Sahu and Dipankar Saha

Abstract  The Middle Ganga Plain (MGP) is the second largest arsenic (As) con-
taminated groundwater zone in south-east Asia after the Bengal Delta Plain. 
About 90% of the total population in the MGP depends on shallow aquifer based 
groundwater supply for their drinking and irrigation need. More than ten million 
people in the alluvial belt of MGP are exposed to elevated levels of As (more than 
the limit set by Bureau of Indian Standards (BIS) 2012 drinking limit of 50 μgL−1) 
in their drinking water. In the light of synthesis of groundwater As distribution in 
MGP, the availability of safe sources of water for drinking have been analyzed. 
The current study delineates two aquifer systems in MGP through the study of 
borehole lithologs (n = 27). The first aquifer system persists from below the top 
aquitard to up to ~87–126 m below ground level (bgl), while the second aquifer 
system starts at various depths ranging from ~116 to 139 m bgl and continues up 
to the depth of ~250 m bgl. Suitability of the deeper (second) aquifer system for 
As free drinking water has been assessed through analysis of pumping test data. 
The Newer Alluvium comprising the top aquitard and the upper 15–20 m slice of 
the first aquifer system hosts the contaminated aquifers for the depth of ~50 m 
below ground surface. The Pleistocene aquifers (the bottom three-fourth part of 
the first aquifer system and the entire second aquifer system) are low in ground-
water As. The second aquifer system, existing in confined condition, can be used 
for community water supply through the installation of deep tube wells with a 
regulated draft. Community hand pumps in the depth range of 5–15  m below 
ground can be constructed in the sandy areas in the floodplain for drinking need 
of the local people. Large diameter dug wells can also be constructed to tap the 
replenished dynamic groundwater, which normally remains oxic and low in As.

S. Sahu (*) 
Central Ground Water Board, South Eastern Region, Bhujal Bhawan, Bhubaneswar, India 

D. Saha 
Former Member, Central Ground Water Board, Bhujal Bhawan, Faridabad, India
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1  �Introduction

The United Nations Security Council (UNSC) has adopted universally applicable 
Sustainable Development Goals (SDGs) for transforming the world and to end all 
forms of poverty by the year 2030 (UNSC 2017). Among those, sustainable develop-
ment goal 6 (SDG 6), which reads as ‘Ensure access to water and sanitation for all,’ 
seems to bear the greatest significance in the contemporary world where around 40% 
of the people are affected by the scarcity of water. It is a major challenge for the gov-
ernments and other authorities responsible for providing safe and affordable drinking 
water to all in a sustainable way by 2030. During the last few decades, besides the 
physical and/or economic water scarcity, deterioration in the quality of groundwater 
owing to both geogenic and anthropogenic reasons has reduced fresh water available 
for drinking supplies. It has been causing a kind of water scarcity in a scenario where 
the resource is plentifully available (Bigas 2012; Sharma et al. 2017).

Groundwater arsenic (As) of geogenic origin has been the major and serious 
health concern worldwide for the last several decades (Polya et al. 2005; Acharyya 
and Shah 2007). More than 296 million people are exposed to unsafe levels of As, 
beyond the World Health Organization (WHO 1996) set limit of 10 μgL−1, in their 
drinking water and food supplies (Chakraborti et al. 2017). The contamination is 
widely pervasive in low-lying alluvial settings such as floodplains of river systems 
and fluvio-deltaic regions of southern and south-eastern Asia. The deltaic region of 
Ganga-Brahmaputra-Meghna River system, also referred as Bengal Delta Plain 
(BDP), is the most severely affected region of the world (Nickson et  al. 1998; 
Burgess et al. 2010) where more than 50 million people were affected by the ele-
vated levels of As in drinking water (Nickson et  al. 1998; Burgess et  al. 2010; 
Chakraborti et al. 2017).

Groundwater As contamination (greater than 50 μgL−1) in the middle reaches of 
Ganga Plain was first detected in 2002 (Chakraborti et al. 2003). In the subsequent 
decade, a number of studies and researches focused on the groundwater As contami-
nation in the Middle Ganga Plain (MGP). The eastern parts of Uttar Pradesh (U.P.), 
the state of Bihar and the north-eastern parts of Jharkhand state falling in the stretch 
of MGP (Fig. 1.1) has been identified as the second largest groundwater As con-
tamination zone in south-east Asia after the BDP (Acharyya and Shah 2004; CGWB 
and PHED 2005; Shah 2008; Saha 2009; CGWB 2010; Saha et al. 2011a; CGWB 
and BIT 2013; Saha and Shukla 2013; Sahu and Saha 2015b; Saha and Sahu 2016). 
Wide alluvial tracts in the floodplains (of Holocene and Recent) along both the 
banks of the axial drainage Ganga and a few other Himalayan rivers exhibit elevated 
concentrations (greater than 50 μgL−1) of groundwater As (limit set by Bureau of 
Indian Standards (BIS)) (BIS 2012) in the shallow aquifers largely within ~50 m 
below ground level (Pandey et al. 2009). In the state of Bihar only, an estimate indi-
cates ~ten million people reside in the risk zone being exposed to the threat of As 
contamination (Sahu and Saha 2015b). If 10 μgL−1 limit of WHO is considered, this 
number can be in many folds (Sahu and Dwivedi 2012).

S. Sahu and D. Saha
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Fig. 1.1  Location map of the study area. The MGP lies between the Faizabad Ridge at the west 
and the Garo-Rajmahal hills at the east: the figure was cited from (Saha and Sahu 2016)

1  Groundwater Arsenic Contamination and Availability of Safe Water for Drinking…



4

Several very significant works of research related to groundwater As in MGP 
describe its occurrence and probable mobilization mechanisms (Acharyya and Shah 
2004; CGWB and PHED 2005; Mukherjee et al. 2007; Kumar et al. 2016; Nayak 
et al. 2008; Shah 2008; Saha 2009; MDWS 2011; Singh et al. 2016; Chakraborti 
et al. 2013). Limited studies are available which focus on the role of geology in the 
occurrence of groundwater As and the spatial distribution of the contaminant in dif-
ferent aquifer systems in MGP (Pandey et al. 2009; Saha et al. 2011a; Saha and 
Shukla 2013; CGWB and BIT 2013; Sahu and Saha 2015b; Saha and Sahu 2016). 
The present work delineates alternate safe deeper aquifer in MGP (Fig. 1.1), which 
can be tapped for drinking water supply. In order to identify the availability of such 
aquifers, the current study has analyzed the mobilization path of groundwater As in 
relation to the Holocene geomorphology and the stratigraphic architecture. It 
encompasses the study of aquifers geometry and their hydraulic characteristics to 
ascertain their aloofness from future contamination. The study also aims at delineat-
ing the probable alluvial patches in a part of the affected corridor where the shallow 
aquifers can host potable water with a lower concentration of As. In doing so, the 
study detects the vulnerable environments in the floodplains which are susceptible 
to groundwater As contamination.

2  �Study Area Set Up

The Ganga Plain in the Himalayan foreland basin is a shallow asymmetric depres-
sion that slopes easterly (Singh 1996). The deepest part lying close to the southern 
margin is occupied by the axial drainages, the Yamuna in the west and the Ganga in 
the east. The southern part slopes north/northeastward, whereas the northern part 
slopes south/southeastward, converging along the axial drainage line (Singh 1996). 
The plain has remained an active fluvial depositional basin, and has been configured 
in relation to the active response of the basin to the extra- and intra-basinal tecton-
ics, climate-driven sediment and water regime (Singh 2004; Sinha et  al. 2005a; 
Sahu et al. 2015). The plain has been formed out of the Quaternary alluvial deposits 
laid down by the rivers emerging from north (the Himalaya) as well as the south (the 
Indian peninsula) (Sahu and Saha 2015b; Singh 1996).

The basement of the Ganga Plain is criss-crossed with several ridges, depres-
sions, and faults (Fig.  1.1). The Delhi-Hardwar Ridge at the west, the Faizabad 
Ridge at the middle and the Munger-Saharsa Ridge at the east (Rao 1973; Singh 
1996; Narula et al. 2000; Sinha et al. 2005b) divide the plain into three major phys-
iographic units from west to east; (i) the Upper Ganga Plain (UGP), in the west of 
Faizabad ridge, (ii) the MGP, between Faizabad and Munger-Saharsa ridge/Garo-
Rajmahal hills, and (iii) the Lower Ganga Plain (LGP) in the east of Munger-Saharsa 
ridge. The LGP merges with the deltaic region of GBM (Singh 1991; Thomas et al. 
2002). In the current paper, the alluvial plain bounded between the Ganga-Yamuna 
confluence (on the eastern fringe of the Faizabad Ridge) at the west and Rajmahal 

S. Sahu and D. Saha
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Hills (on the eastern fringe of Munger-Saharsa Ridge) at the east has been consid-
ered as the MGP (Saha and Sahu 2016).

The MGP is divided into two major geomorphic units by the axial river Ganga; 
the North Ganga Plain (NGP) and the South Ganga Plain (SGP) (Fig. 1.1). In SGP, 
the northerly thickening Quaternary deposits are unconformable laid directly over 
the Precambrian basement (Prakash et al. 1990; Agarwal et al. 2002) in the western 
and the central parts, while the Gondwanas and the Rajmahal Trap of Mio-Pliocene 
age lie between the Quaternary sediment and the Precambrian basement in the east-
ern part. In the NGP, the Quaternary sediment overlies the Siwaliks deposits 
(Agarwal et al. 2002; Singh 2004). The southern extent of the Siwaliks is yet to be 
ascertained (Sastri et al. 1971; Singh 1996). The basement faults, ridges and depres-
sions have affected the river channel behaviour on the surface (Singh 2001), conse-
quently affecting the nature and thickness of sediment fill at different parts of the 
basin (Singh and Bajpai 1989; Singh et al. 1999).

The major northern tributaries of the Ganga, such as the Ghaghra, Gandak, Kosi, 
and Mahananda, originating either from Himalayan mountains or its foot-hills are 
located in MGP (Singh 1991, 1996). Among the southern tributaries, the Sone is the 
mightiest one (Fig. 1.2). The Himalayan rivers get ample contribution to drainage 
from the glacial melt (Owen et  al. 2002). They are generally multi-channel and 
braided with higher annual average discharge and sediment load. The southern trib-
utaries, in contrast, are ephemeral, and most of them remain dry during the summer 
months. The MGP with an average slope of ~2% is characterized by both the degra-

Fig. 1.2  Major Holocene floodplains and broad categories of land use in MGP (after Saha and 
Sahu 2016). The Himalayan rivers such as Ghaghra, Gandak, Kosi, and Mahananda form flood-
plains by shifting within the span of their megafans through channel migrations and avulsions. The 
floodplains along both the banks of the Ganga River are formed due to the oscillation and migra-
tion of the river. The Bhabar and Terai sub-zones together form the piedmont zone (Singh 1996)

1  Groundwater Arsenic Contamination and Availability of Safe Water for Drinking…
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dational and aggradational regimes. While the western parts adjoining to the UGP 
show erosional behavior, the rest of the eastern part of the unit shows predominantly 
a depositional setting (Sinha 2005). Sinha et al. (1996) have established a rapid rate 
of sediment accumulation during the late Holocene (0.7–1.5 mmyr−1 in last 
~2400 years) in part of the MGP.

Channel migrations and avulsions are more frequently observed in MGP, result-
ing in frequent occurrences of backs-swamps, meander scars, channel cut-off lakes, 
abandoned channels/crossbar channels, short length natural levee, etc. For instance, 
the Kosi has shifted ~150 km westward in the last 200 years by a series of avulsions 
(Wells and Dorr Jr 1987; Agarwal and Bhoj 1992). Similarly, the Gandak, the Sone 
and even the smaller rivers in the eastern half of MGP like Bagmati and Burhi 
Gandak also showed dynamic characters (Mohindra et  al. 1992; Jain and Sinha 
2005; Sahu et al. 2010; Sahu and Saha 2014). In the case of the Ganga, the north-
south oscillation at different segments (Swamee et al. 2003; Shah 2008; Sahu and 
Saha 2014) through channel migration and meander cut-offs are quite visible in the 
satellite images (Fig. 1.2).

Morphologically, the Gangetic Plains is sub-divided into three distinct zones: 
(i) the piedmont zone, located close to the Siwalik Hills (including the Bhabar 
and Terai sub-zones) (Fig. 1.2), (ii) the central alluvial plain, occupying the area 
between the piedmont zone and the axial rivers (the Yamuna at the west and the 
Ganga at the east), incorporating the floodplain of the Ganga, and (iii) the mar-
ginal alluvial plain between the axial drainage at north and the Indian peninsula 
(the craton) at south (Karunakaran 1976; Agarwal et al. 2002). The Bhabar1 pos-
sesses graveliferous sediments with steep slopes, whereas the Terai2 is charac-
terized by low-lying areas with the development of swamps, ponds and small 
sandy layers (Pathak 1982; Singh 1996). The Bhabar and Terai together consti-
tute the piedmont zone at the base of the Siwalik foothills (Singh 1996). The 
central alluvial plain, which occupies the major part, consists of (i) interfluve 
upland terrace (T2) representing the Older Alluvium (OA), and (ii) river-valley 
terraced formations, referred as Newer Alluvium (NA) (Fig.  1.3). The OA is 
made up of yellow to brownish yellow, medium to coarse sand with profuse 
calcareous nodules and iron concretions, inter-layered with clay and sandy clay 
(Shah 2010). The NA of Holocene age characteristically consists of unoxidized 
fine to medium sand, silt and clay (gray to dark gray in colour) deposited in the 
fluvial/fluvio-lacustrine setting. Within the NA the floodplain of the Ganga and 
its tributaries are incised on T2 surface. The entrenched river valley terrace (T1) 
upon the T2 surface, also referred as Older Floodplain (OFP), normally occurs 
above the regular flood level of the rivers. The Active Floodplain (AFP), also 
mentioned as T0 surface, are aligned as narrow zones along the rivers, entrenched 

1 Bhabar is the term used for the proximal part of the piedmont zone which comprises coalescence 
of several gravelly alluvial fans with sediment derived from the Siwaliks.
2 The Terai belt to further south is the distal part comprising fine sandy layers within the silty-
clayey framework. The entire piedmont zone is 10–50  km wide (Pathak 1982; Goswami and 
Yhokha 2010).

S. Sahu and D. Saha
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upon OFP and are marked with Recent sediments. The T0 surface is subjected to 
annual flooding (Acharyya 2005; Sahu and Saha 2015b).

2.1  �Floodplain Geomorphology

The floodplain of the axial drainage Ganga is dotted with a series of abandoned chan-
nels and meander scars, specifically on its right bank, which are left behind in the 
course of migration of the river (Singh 1996; Sinha et al. 2005a; Sahu et al. 2010). 
The geomorphic sub-features include low-lying mudflats, channel cut-off lakes, 
levees, and point bars with the typical ridge (scroll bar) and swale topography. The 
active cut-off lakes are observed particularly in the AFP (Sahu and Saha 2015a, b).

The cut-offs as well as small abandoned cross-bar channels associated with the 
meander scars, mainly in the OFP, have been leveled with finer argillaceous clayey 
sediments. However, those still form depressions and remain under seasonal flood 
water. When flood water recedes, those behave as mudflats. The point bar surfaces 
show alternating ridges and swales or depressions (meander scroll topography), 
formed as a result of channel shifting and formation of small and large cross-bar 
channels. The ridges are sandy with only a minor mud drape (0.5–1.0 m thick) at the 

Fig. 1.3  Schematic model of MGP showing the disposition of NA and OA. The OA upland sur-
face comprising of Pleistocene sediments is low in As content (Saha and Sahu 2016; Shah 2008)

1  Groundwater Arsenic Contamination and Availability of Safe Water for Drinking…
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surface. The depressions (swales), however, possess considerable clay/mud of 
~2.0–7.0 m thickness. Levees in the study area are wide and subdued in comparison 
to those observed in the downstream parts particularly around Patna urban area. 
They dip gently towards the south and merge with the floodplain. The levees along 
the cut-bank of the old meander scars are composed of silt and mud with infrequent 
lenses of very fine sand. However, the levees on the inner side of the meanders are 
relatively rich in the sand with minor lenses of mud (Sahu and Saha 2015a, b).

3  �Methodology

The study takes the help of published works on groundwater As contamination and 
its spatial distribution in MGP (Chakraborti et al. 2003; CGWB and PHED 2005; 
Ahamed et al. 2006; Ramanathan et al. 2006; Mukherjee et al. 2007; Nayak et al. 
2008; Shah 2008, 2010, 2014, 2015; Saha 2009; Saha et al. 2011a; PHED 2009; 
CGWB 2010; MDWS 2011; CGWB and BIT 2013; Chakraborti et al. 2017; Saha 
and Shukla 2013; Sahu and Saha 2015b; Chakraborti et al. 2013). The heterogeneity 
in the distribution patterns of As and their relation with geology helps to define spe-
cific environments in MGP and their groundwater As character. Based on the under-
standing, and the sedimentary facies and sequence models as proposed by Sahu and 
Saha (2015b), a geomorphic model has been proposed to describe the spatial vari-
ability of groundwater As in MGP. The available borehole lithologs (CGWB 2013) 
of shallow depth (~30 m bgl) have been studied in sub-meter scale to differentiate 
the Himalayan derived gray sediment from the brownish yellow sediment derived 
from the southern Indian peninsula (the craton). Aquifer systems in MGP have been 
delineated assessing the available borehole lithologs (n = 27) up to 300 m below the 
ground surface (CGWB 2013, 2015). Sahu and Saha (2016) and Sahu et al. (2018) 
have broadly assessed hydraulic conductivities and groundwater potential in various 
granular zones in the stratigraphic framework and the aquifer systems thereof based 
on the borehole sediment grain size analysis and the use of empirical methods. Sahu 
et al. (2018) have also analyzed the pumping test data of several deep tube wells 
(n = 19). The present work re-interprets the pumping test data of seven observation 
wells and one piezometer, which were constructed near the pumping wells tapping 
the deeper aquifer system in the As affected parts of MGP (CGWB 2013). Suitability 
of the aquifer system has been assessed for the supply of safe water for drinking.

4  �Occurrence of Groundwater Arsenic

Various government agencies and other researchers have carried out several analysis 
campaigns and studies pertaining to the groundwater As contamination in various 
parts of MGP since 2003 (Kumar et al. 2010, 2012, 2016; Acharyya and Shah 2004; 
CGWB and PHED 2005; Nickson et al. 2007; Ahamed et al. 2006; Ramanathan et al. 

S. Sahu and D. Saha
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2006; Mukherjee et al. 2007; Nayak et al. 2008; Shah 2008, 2010, 2014, 2015; Saha 
2009; Kunar et al. 2009; Pandey et al. 2009; Saha et al. 2009, 2011a; Chauhan et al. 
2009; CGWB 2010; MDWS 2011; PHED 2009; Saha and Dhar 2012; Yano et al. 
2012; CGWB and BIT 2013; Chakraborti et al. 2013, 2016a, b, 2018; Singh and 
Ghosh 2011, 2012; Singh et al. 2014; Saha and Shukla 2013; Sahu and Saha 2015b).

Arsenic contamination has been observed largely in alluvial corridors in the val-
leys of particularly the Himalayan rivers with severe incidence along the axial 
drainage Ganga (Fig. 1.4). The corridors mark the floodplains of the rivers where 
large number of shallow hand pumps (depth range: less than 50 m bgl) have been 
found to be affected by elevated concentration of groundwater As (CGWB and BIT 
2013; Kumar et al. 2016; Saha et al. 2011a; Saha and Shukla 2013; Sahu and Saha 
2015a, b; Shah 2008, 2010, 2014, 2015; Singh et al. 2014, 2016; Singh and Ghosh 
2011, 2012; Chakraborti et al. 2013). In the state of Bihar, the contamination zone 
covers a geographical area of 9104 km2 falling mostly in the rural parts of 15 dis-
tricts (out of total 38) (Fig. 1.4) encompassing 57 blocks including more than 1600 
habitations. As per the estimate of Sahu and Saha (2015a), considering the BIS limit 
of 50 μgL−1, more than ten million people (~10% of state populace) who depend on 
the shallow contaminated aquifer for their entire drinking need reside in the risk 
zone. If 10 μgL−1 limit (WHO 1996) is considered, this number can increase in 
many folds (Sahu and Dwivedi 2012). Figure 1.4 shows the districts in MGP in the 
states of U.P., Bihar and Jharkhand where groundwater As contamination is reported.

Fig. 1.4  A generalized geological map of MGP. It also depicts the districts with elevated concen-
tration of As in groundwater in the shallow aquifers (the figure has been cited from Saha and Sahu 
2016). The locations of tube wells where pumping tests have been carried out and the boreholes 
used for grain size analysis of drill-cut samples have been indicated in the map (see later 
sections)

1  Groundwater Arsenic Contamination and Availability of Safe Water for Drinking…
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In the similar line of West Bengal and Bangladesh in BDP, considerable spatial 
heterogeneity in groundwater As concentration is also observed in MGP. The con-
tamination occurs in patches and not the entire alluvial stretch of any locality shows 
the contamination. It is associated with the local geomorphic and sedimentary units 
(Sahu and Saha 2015a, b). Spatial heterogeneity in the distribution of various sedi-
mentary units associated with different geomorphic setups causes multi-fold differ-
ences in As concentrations in the hand pumps (Saha and Sahu 2016; Sahu and Saha 
2016). Even in the same village, more than a hundred-fold difference in the As 
content in the hand pump water has been noticed (Chakraborti et al. 2003; Singh 
et al. 2014). The spatial variation in concentration of As along the northern bank, as 
wide as in the areas from the southern bank of the Ganga, has not been reported. 
Higher As concentration in the range of 500–1861 μgL−1 have been recorded from 
various parts of MGP (Ahamed et  al. 2006; CGWB and BIT 2013; Chakraborti 
et  al. 2003; Chauhan et al. 2009; Kumar et al. 2010; Kunar et al. 2009; MDWS 
2011; Mukherjee et al. 2007; Pandey et al. 2009; Saha et al. 2011a; Sahu and Saha 
2015b; Shah 2014; Chakraborti et al. 2013). Various workers in specific research 
areas from major parts of MGP report ~40–80% of the hand pumps showing ground-
water As beyond 10 μgL−1, whereas, in ~20–60% of the hand pumps, As exceeds 50 
μgL−1 (e.g., Chakraborti et al. 2003, number of hand pumps (n) = 206; Shah 2008, 
2010; Kumar et al. 2010, n = 36; Saha et al. 2011a, n = 60; CGWB and BIT 2013, 
n  =  6364; Saha and Shukla 2013, n  =  57; Sahu and Saha 2015a, n  =  285). In 
Sahibganj district of Jharkhand State, however, comparatively lower proportion of 
hand pumps of ~36% and ~15% are found to exhibit As exceeding 10 μgL−1 and 50 
μgL−1, respectively, in (n = 3354+) (Chakraborti et al. 2013; Nayak et al. 2008). In 
an extensive sampling and analysis from 36 blocks in Bihar, all bordering the Ganga, 
Chakraborti et al. (2013), however, has reported 33% of the samples exceeding 10 
μgL−1 (n = 19,961), while only 18% (n = 5558) showed As content beyond 50 μgL−1. 
In the same study, the authors report 44% and 26% of the samples (n = 4780) from 
the western parts of MGP in U.P. with As concentration beyond 10 μgL−1 and 50 
μgL−1, respectively. The density of As-contaminated tube wells from Patna-Ballia 
alluvial stretch is higher compared to that of Buxar-Mirzapur stretch in the western 
parts of MGP (Saha and Sahu 2016).

A depth vs. As concentration cross-plot of samples from MGP (n = 183), reveals 
a rapid decrease in As concentration beyond ~40 m bgl. Figure 1.5 depicts the dep-
thwise variation in groundwater As gathered from various studies undertaken in 
MGP, indicating the maximum concentration in the depth range of 15–35 m below 
ground (CGWB and PHED 2005; Saha et al. 2011a; Saha and Shukla 2013; Sahu 
and Saha 2015b; Shah 2008, 2010). The groundwater samples collected by various 
researchers were generally from hand pumps with depth  <40  m. A few of them 
(specifically irrigation wells) reaches up to 75  m bgl. Because of potential sand 
zones at shallow depth, the depths of wells (including hand pumps) are shallower 
(10–45 m bgl) in the middle (including Patna-Ballia stretch) and eastern parts of 
MGP, whereas, at the west, beyond Buxar, the wells often go deeper, up to 75 m bgl. 
Pandey et al. (2009) reported up to 345 μgL−1 in the moderately deep (25–64 m bgl) 
hand pumps. However, Chauhan et al. (2009) analyzed 9 water samples collected 
from deeper hand pumps (depth range: 66–75 m bgl) and documented As in the safe 

S. Sahu and D. Saha



11

Fig. 1.5  Depth vs. 
groundwater As 
concentration in MGP 
(CGWB and PHED 2005; 
Chauhan et al. 2009; 
Pandey et al. 2009; Sahu 
and Saha 2015b; Shah 
2008, 2010, 2013)

range of 12–20 μgL−1. As shown in Table 1.1, the As concentration remained below 
even the WHO standard of 10 μgL−1 in tube wells tapping deep aquifers at depths 
beyond 50 m bgl (CGWB 2013).

The studies pertaining to the seasonal variation of groundwater As in the shallow 
phreatic aquifer in MGP is very limited. CGWB (2007), however, has reported a decline 
in As concentration during the monsoon months. It is to be noted that monsoon rainfall is 
the major source of recharge in the Gangetic Plains. Researchers have also reported an 
improvement in the chemical quality of groundwater in terms of major constituents dur-
ing the monsoon months (Saha et al. 2008). The timescales over which temporal variation 
in groundwater As may take place vary from hours through seasons to years or decades. 
Though, in Bangladesh, the studies pertaining to temporal variations of As are inconclu-
sive (BGS and DPHE 2001; Tareq et al. 2003), workers from West Bengal in the lower 
Ganga Plains (Chadha and Ray 1999; Chatterjee et al. 1995) indicate seasonal variations 
with minima during the post-monsoon period (November). Other than rainfall recharge, 
various rates of groundwater pumping and climate can be potential factors inducing such 
changes. Investigation on temporal variations in groundwater As in MGP may help in 
finding mitigation measures.

5  �Holocene Floodplain of Newer Alluvium (NA) Hosting 
Groundwater Arsenic

The Holocene floodplain comprising NA has been found to be contaminated 
with As. The As contaminated aquifers are phreatic type and mainly confined 
within the shallow depth of ~50 m below ground which is predominated by NA 
(Pandey et  al. 2009; Saha et  al. 2011a). Thin to moderately thick (~2–15  m) 

1  Groundwater Arsenic Contamination and Availability of Safe Water for Drinking…
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saturated fine sand lenses constitute these aquifers, which are widely tapped 
locally by dug wells and shallow tube wells for both drinking and irrigation 
purposes. However, differences of opinions exist on contamination level between 
the two geomorphic sub-units of NA; T0 (AFP) and T1 (OFP) surfaces. Few 
researchers advocated that T0 surface or the AFP is more contaminated (Acharyya 
2005; Sahu and Saha 2015b). In Bhojpur district, however, Sahu and Saha 
(2015b) have observed higher contamination in T1 than T0 surface. In this part, 
32% (n  =  34) samples from T0 and 45% (n  =  249) samples from T1 surface 
exceeded the 50 μgL−1. The Himalaya has been indicated as the source of As 
rich sediment in NA (Acharyya 2005; Mukherjee et  al. 2007; Sahu and Saha 
2015a, b). The sediment comprises fine to very fine micaceous gray to dark gray 
sand and mud/clay, which is in an un-oxidized state (Mukherjee et  al. 2007; 
Sahu 2013) (Fig. 1.6a, b). In contrast, the OA sediment, derived from peninsular 
highlands is oxidized, yellow to brownish-yellow in colour, coarse-grained and 
mixed with carbonate concretions, widely known as kankars (Saha et al. 2014; 
Sahu et  al. 2015) (Fig.  1.6c.i–iv). In a similar trend as reported from BDP 
(Ravenscroft et al. 2005), the OA in MGP also shows lower As concentrations 
in groundwater (Pandey et al. 2009; Saha et al. 2011a; Shah 2008).

Fig. 1.6  (a.i) Dry sand (lying above the water table) of a point bar of Ganga in its floodplain 
(OFP) exposed in a sand mine pit. (a.ii) Fine to very fine micaceous Ganga sand. (b.i–ii) Black 
clay cores recovered from a borehole. They are rich in organic carbon (often impressions/
remains of aquatic plants and shelly matter of aquatic organisms are observed) deposited in a 
lacustrine environment. Sometimes gravels of quartz, feldspar, and kankars (carbonate concre-
tions) are found mixed with the clay, which might have been brought to the channel cut-off lake 
by floods. (c.i–iv) Typical craton sand of brownish yellow colour and fine to coarse in size 
(Sahu 2013, Sahu and Saha 2015b)

S. Sahu and D. Saha
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5.1  �Sedimentary Facies and Sequence Models in Newer 
Alluvium

Sahu and Saha (2015a) have identified ten sedimentary facies (Table 1.2) types 
in the NA in the floodplain in the depth range of 0–30 m below ground. These 
facies include: (i & ii (Fig. 1.6)) channel lag deposits (l1, l2 (Table 1.2))- com-
prising reworked carbonate nodules and sand mostly in 1000–3000 μm size 
range, (iii & iv) a well-sorted fine sand (ƒ1, ƒ2)- where ~75–85% of the parti-
cles are in 130–240 μm size containing proportions of mica flakes (Fig. 1.6a), 
(v) a moderately well-sorted very fine sand with (ƒ3) in which 70–85% of the 
grains fall in 92–110  μm size range with varying proportions of silt, (vi) a 
clean, fine to coarse silt with a proportion of very fine sand (ƒ4); 69–82% of 
the particles remain in the size range of 22–45 μm (vii & viii) mud with varying 
proportions of silt and clay (m1, m2), and (ix & x) black clay/mud and organic 
matter with varying minor silt (c1, c2) (Fig. 1.6b.i-ii).

Various patterns of spatial distribution of the above sedimentary facies in differ-
ent geomorphic environments in the floodplain have given rise to eight sedimentary 
sequences (Sed. Seq.) models (Fig. 1.7) in MGP (Sahu 2013; Sahu and Saha 2015b). 
The authors have studied the level of groundwater As in each model and also the 
vulnerability of the models to contamination. About 94% of the samples (n = 85) 
from ridges on the point bars exhibited concentration less than 50 μgL−1 (Sed. seq. 
S1). The wells located on palaeo-levee were also less contaminated, where 87% of 
the samples (n = 71) remained <50 μgL−1 (Sed. seq. S2 and S8). On the other hand, 
the wells located either on or near the filled-cut off channels (generally with fine-
grained material) were found to be significantly contaminated, with 51% of them 
(n = 73) exceeding 50 μgL−1 and 30% even beyond 100 μgL−1 (Sed. seq. S3, S4, S6, 
and S7). Those also include the abandoned crossbar channel areas forming swales 
on point bars.

The most critically contaminated villages are located on earth-filled palaeochan-
nels (may be the locations of channel bar islands), which are raised by 2–3 m above 
the local flood level (Sed. seq. S7). A typical example of such villages is Semaria-
Ojhapatti, where 80% of the wells with As concentration greater than 50 μgL−1 (Sahu 
and Saha 2015b). Due to the non-availability of data, groundwater As concentrations 
related to Sed. seq. S5 could not be produced here. The relation of the As concentration 
with different geomorphic features and the shallow alluvial stratigraphy has been 
depicted schematically in Fig. 1.8. Most of the hand pumps (range: 87–94%) in the 
scroll bar ridges, point bar platforms and palaeo-levees, which cover ~70% of the area 
under meander scars, recorded lower As concentrations (<50 μgL−1). Exceptions do 
occur in the palaeo-levee at the channel cut-offs forming active lakes, where As con-
centration beyond 50 μgL−1 are also obtained. The channel-lakes of Recent meander 
cut-offs are areas of active biomass accumulation (Fig. 1.8).

The research findings of Sahu and Saha (2015a, b) indicated that groundwater As 
contamination has got a specific relation with the Holocene geomorphic sub-features 
and the shallow sedimentary sequences in the area. The contaminated areas coin-

1  Groundwater Arsenic Contamination and Availability of Safe Water for Drinking…
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cide with the palaeochannel cut-offs of the Ganga and the narrower belt on the inner 
sides of the cut-offs, which were earlier occupied by cross-bar channels of various 
dimensions. The organic carbon (OC) rich black clay/mud deposits reveal variable 
thickness from <1 m in cross-bar channels to 10–15 m in palaeochannel cut-offs as 
clay-plugs. The OC rich soil in the paddy fields in the floodplain might also be help-
ing in the leaching OC to the water table (Sahu and Saha 2015a, b). The presence of 

Fig. 1.7  Eight sedimentary sequences (S1-S8) identified in the area within 30 m below ground. 
f1-f4, m1-m2, and c1-c2 represent the sedimentary facies (Sahu 2013; Sahu and Saha 2015a, b)

Fig. 1.8  A schematic section in the Ganga floodplain (south to north) showing generalized topog-
raphy, floodplain morphology and shallow alluvial stratigraphy. It depicts the concentration of As 
in hand pumps (within ~30 m bgl) and their distribution in the settlement areas distributed in dif-
ferent geomorphic environments in the floodplain. High As (50–342 μg/L) has got an association 
with the hand pumps (depth: ~10–30 m bgl) in the villages settled on anthropogenic fills over the 
channel fill sequence. The sandier areas in the scroll bar ridges, levees (particularly in OFP) and 
proximal floodplain sequences often exhibit lower concentration of As (less than 50 μg/L). It is 
noteworthy that these environments together make ~70% of the area of a typical meander scar of 
the Ganga (Sahu and Saha 2015a, b)
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organic material increases the structural stability of soil and its resistance to rainfall 
impact, which otherwise clogs the pores by particle breaking. The retaining of pores 
in the soil enhances the infiltration rate through it (Roose and Barthes 2001). 
Analyses show 8.5–12.2 Tritium Units in groundwater in the shallow aquifer, sug-
gesting recent recharge (<40 years) (Saha et al. 2011b). A significant part of the 
recharge is possibly contributed from impounded surface water bodies like channel 
cut-off lakes and other floodplain depressions (buried cut-offs) as indicated by δ18O 
distribution (Saha et al. 2011b). The surface water while percolating downward col-
lects the OC through dissolution from the clay bodies. The OC might also be com-
ing to the groundwater continuously at the interface between the aquifer and clay 
bodies in the palaeochannels. On the banks of the active cut-off lakes, the modified 
hydraulic gradient owing to groundwater withdrawal in the settlements brings OC 
of lake water and underlying sediment to groundwater, which subsequently perco-
lates downward and moves village-ward along with the groundwater.

5.2  �Release of Arsenic in Groundwater in MGP

A clay-plug in the palaeochannel of Ganga measures 12–15 km in its arc-length 
with an average width of ~1.20 km. On average, the clay continues up to ~13 m 
depth (Ave. volume: 0.21 km3). The bottom surface of the lower part of this huge 
clay plug, which remains below the local water table, continuously remain in con-
tact with the aquifer and releases OC to the groundwater. The OC is consumed by 
the microbes present in the aquifer for their survival, which in turn consumes the 
available oxygen in groundwater. This produces a reductive environment and causes 
dissolution of hydrated iron oxide (HFO), releasing both the As and iron into 
groundwater. The reductive dissolution of HFO in As affected areas of MGP is also 
evident by a high concentration of dissolved iron in groundwater (Shah 2008, 2013). 
Reductive dissolution of adsorbed As from HFO has been reported in Bangladesh 
(Nickson et al. 1998; BGS and DPHE 2001). Arsenic is inherently present in the 
aquifer sediment, and Kumar et al. (2012) have detected ~15–40.81 mg/kg of total 
As content in sediments in the Semaria Ojhapatti village within 32 m depth. The OC 
only creates a suitable environment for As release to groundwater. In general, pyrite 
or any other As rich mineral that can release As to groundwater is not present in the 
sediment in MGP (Shah 2008).

The spread of the reducing environment from the OC bearing clay-plug depends 
upon the hydraulic conductivity, groundwater flow direction, groundwater develop-
ment and the volume of fresh oxic water recharge that reaches the spreading anoxic 
front (Sahu and Saha 2015a, b). The sandier areas along the scroll bar ridges and 
levees yield a low concentration of As as the oxic groundwater in such areas favours 
stability of hydrated iron oxide. Good hydraulic conductivity in the aquifer also 
helps in flushing out whatever contamination is there. There may be a source-
distance relation between the As concentration and the OC rich clay plugs in the 
sedimentary sequence. Ideally, it can be said that in case of a clay-plug in an aerially 
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extensive sand body, the concentration of groundwater As may decrease with an 
increase in distance from the plug. In the downgradient of groundwater flow, away 
from the plug, the anoxic front gets weaker due to its confrontation with more oxic 
groundwater, and thus, the groundwater As concentration may decrease (Saha et al. 
2009; Sahu and Saha 2015a, b).

5.3  �Spatial Variability of Groundwater Arsenic in MGP- 
A Geomorphic Model

The OA upland sediment in the MGP is low (<10 μgL−1) in groundwater As concen-
trations (CGWB and PHED 2005; Shah 2008). The OA in MGP form the deeper 
aquifer system, as well as the lower parts of the shallow aquifer system, are also low 
in As (Saha et al. 2011a). Groundwater As contamination derived mostly from the 
Himalayan sources is confined within the NA sediment in the floodplains of Ganga. 
However, there exists a spatial variability in the incidence of groundwater As within 
the affected areas itself. Considering the regulating limit of 50 μgL−1, Sahu and 
Saha (2015b) identified that only 34% of the tested sources as As contaminated, 
which could reach up to ~78% if the WHO (1996) standard of 10 μgL−1 is consid-
ered. The frequency of affected hand pumps is more in OFP than in AFP.

The schematic model depicted in Fig. 1.9 shows the role of organic-rich argil-
laceous sediment bodies in groundwater As concentration in various mor-
phostratigraphic units in the entire floodplain. The hand pumps of different 
depths within the contaminated zone of the shallow aquifer itself yield different 

Fig. 1.9  A schematic model of the distribution of clay-plugs of various dimensions in the flood-
plains and associated variability in the concentration level of groundwater As

1  Groundwater Arsenic Contamination and Availability of Safe Water for Drinking…
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concentration levels. The possibility of getting low As in hand pumps of shal-
lower depth (10–20 m bgl) is more owing to their location in sandier areas of 
scroll bar ridges, levees, and point bar platforms, whereas the chances of high As 
is more in moderately deep hand pumps (30–40 m bgl) in the clayey areas (clay-
plugged palaeochannels). Sahu and Saha (2015b) have also observed similar pat-
tern of As contamination in hand pumps in different geomorphic environments in 
the floodplain of NA in MGP (Fig. 1.10).

The sedimentary units in NA were deposited under fluvio-lacustrine environ-
ments. The MGP lies sufficiently upstream of the coastline and has been argued to 
remain out of the reach of marine influence (Tandon et al. 2008). As such the As 
contamination levels correlated with the low groundwater flushing from the Newer 
Alluvial deposits during the high-stand setting of sea level during Holocene, as sug-
gested earlier (Shah 2008), seem to bear a little scope. The channel entrenchment 
and its migration in MGP were driven by the forcing factors like climate and tecton-
ics (Sahu et al. 2010; Sahu and Saha 2014). The nature of the low-lying fluvial and 
fluvio-lacustrine features gave rise to various depositional environments, which 
evolved into various sedimentary sequences in the area. The thickness of the mud 
overlying the shallow aquifer and the dimension of the organic-rich argillaceous 
deposits control the level of As concentration in groundwater. The spatial distribu-
tion of such argillaceous bodies is reflected in the spatial variation in the level of 
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Fig. 1.10  Relations between the frequency of water samples and abundance of As in different 
geomorphic environments in the floodplain with different sub-surface stratigraphy. ‘n’ shows the 
number of groundwater samples tested (Sahu and Saha 2015b)
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groundwater As. A spatial lithology dominated by clay, no doubt, obstructs the 
groundwater flow, thereby increasing the resident time of water, which reacts with 
clay to release more OC and in turn increasing the As content in groundwater. Of 
course, the groundwater recharge, discharge, and flow regime play significant roles 
as modifying factors in this model. Groundwater development augments the con-
centration of As by modifying the local groundwater flow regime and activating the 
release of enhanced dissolved OC and biomass to groundwater.

6  �Aquifer Systems in the Middle Ganga Plain

The floodplain sediment, comprising NA in the top part of the stratigraphic column 
(Fig. 1.11), largely acts as an aquitard (Saha et al. 2014; Sahu et al. 2018). With a 
mud cover at the surface, it is inter-layered by fine sand lenses of various dimen-
sions. The sediment in the majority of the floodplain is purely Himalayan derived, 
deposited by the Ganga and other Himalayan rivers. The bottom part (~2–5 m) of 
the aquitard displays a mixed zone with alternate layers of the craton and Himalayan 
sediment (Fig. 1.11). The transitory zone is followed downward by thicker columns 
of coarser brownish yellow sediment of purely craton origin. The granular zones 
therein form moderate to high potential aquifer systems that spread regionally in 
MGP. The clay intercalations are often thin and less in number that gives rise to 
higher sand to clay ratio varying between ~70–95% in the depth range of ~50–
200 m below ground in the axial part of the MGP where there is more incidence of 
groundwater As contamination. The craton sediment comprises two principal 
assemblages of litho-types: (1) assemblage-1, dominated by coarse to very coarse 
sand and gravels (often highly loaded with kankars) of craton origin, with inter-
layers of fine sand and minor scale clay lenses at places, form moderate to high 
potential aquifer (30–60 m depth range), and (2) assemblage-2, consisting of mainly 
medium to very coarse sand (and gravels) and at places with lenses of fine to 
medium sand of craton origin.

Studies indicate that a few clay zones appear at different depth ranges, though in 
major cases they remain local in extent. However, the clayey zone forming an aquitard 
within the depth range of 87 and 139 m bgl is widely pervasive in a larger part of MGP 
(Fig. 1.12). The thickness of the aquitard hereafter referred as ‘middle clay,’ varies 
within 8–24 m. It broadly divides the vertical sand sequence into two aquifer systems, 
particularly in the central and eastern parts of MGP. The first aquifer system ranges 
from the bottom of the top aquitard down to the depth of ~87–126 m bgl. The upper 
half of the first aquifer system is predominated by the sediment assemblage-1. A 
mixed zone of craton and Himalayan sediment follows at the top of the assemblage. 
In this transition zone, it appears that there are several clay zones of the centimeter 
scale in thickness. The mixed zone is followed upward by the pure fine sand of 
Himalayan origin which hosts groundwater As at several locations. The assemblage-2 
at the bottom half forms the most potential part of the aquifer system in the entire area. 
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Fig. 1.11  Few representative shallow lithologs from different geomorphic environments in the 
As-contaminated floodplain of Ganga in Bihar in MGP (source: CGWB 2013). (a, b) Channel fill 
sequence, (c) Point bar platform sequence with cross bar channel activity. (d) Point bar sequence 
in the scroll bar ridge area with buried channel fill clay plug. (e) depicting the detail lithology in 
the lower part of ‘b’ litholog. (i) Represents the upper parts of the boreholes, dominated by Ganga 
sediment. (ii) Represents alternate sequence of coarser Sone sand and the finer Ganga sand. (iii) 
Represents coarser Sone sediment that prevails beyond the alternate sequence of the Sone and 
Ganga sand

Most of the tube wells and some hand pumps in the area, however, remain confined 
within the NA at the top and the assemblages-1 in the first aquifer system.

The second aquifer system starts at various depths ranging from ~116 to 
139 m bgl and continues up to the depth of ~250 m below ground (Fig. 1.12). 
Lying below the middle clay, it is laterally extensive and continues southward in 
plain forming the deeper aquifer system in OA. Groundwater occurs under semi-
confined to the confined condition. In comparison to the first aquifer system, its 
clay content is significantly low. At the eastern and central parts of the area, bot-
tom clay is noticed at the base of the second aquifer system. The aquifer system 
is broadly uniform in the area, except the variation in the size of the sand at vari-
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Fig. 1.12  A hydrogeological transect in the As affected area in MGP in the western parts of Bihar. 
The map of MGP (inset) shows the location of the section

ous depths. The thickness of the aquifer system increases westward because of 
the absence of the bottom clay.

At certain locations in the eastern parts of MGP (e.g., around Patna Urban 
Area), the first and second aquifer systems merge and seem to behave as a single 
aquifer system. However, the aquitard at the top of the sequence at surface 
remains quite thick (range: ~18–80 m) which gives a confined character to the 
aquifer system. In the northern parts of MGP, along the left bank of the Ganga, 
finer gray sand appears at deeper levels and also in the stratigraphic columns. 
However, the black clay (rich in organic matter) as found in NA at the top levels 
is generally absent at those deeper levels. Two similar aquifers systems are also 
observed in sufficiently large areas in the northern parts owing to the existence 
of middle clay layers. In certain parts of MGP, a third aquifer system is also 
noticed beyond the base of the second aquifer system. It probably exists within 
~250–300 m below ground.

7  �Depth to Water Levels in the Shallow Phreatic Aquifer

The depths to water levels (DTWs) in the phreatic aquifer in MGP reflect strong 
relation with the monsoonal rainfall. The deepest and shallowest water levels 
are observed at some point in time during the months of April–June and Aug-
Sept. Respectively, depending on the onset and retreat of monsoonal rainfall. In 
parts of MGP, about 65% of the total annual groundwater recharges being con-
tributed from monsoon rainfall. In the year 2015, the contaminated parts in 
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Bihar showed the pre-monsoon DTWs (CGWB 2016) varying between 1.27 m 
and 12.00 m bgl, whereas, during the post-monsoon period the DTWs remained 
in the range of 0.58–10.10 m bgl. The fluctuations in the water levels during the 
pre- and post-monsoon period of the year varied between −2.02 m and 8.47 m. 
Some of the wells recorded a fall in water level during the post-monsoon period 
owing to a deficit (~30%) in rainfall in the year. The annual mean water levels 
for the year (May 2015-Jan 2016) varied between 1.0 and 11.50  m bgl. The 
groundwater flows north-easterly to easterly coinciding with the direction of 
flow of the Ganga River. The Ganga remains a gaining river, receiving water 
from the aquifer/aquitard. The hydraulic gradient in NA (1:1700–1:5750) indi-
cated sluggish groundwater movement towards the Ganga (Saha et  al. 2009; 
Saha and Shukla 2013). The historical water level data (1985–2007) of four 
wells located in the contaminated areas of Bihar state in MGP exhibited stable 
or only marginal decline (<0.5 myr-1) in water levels (Saha et al. 2009; Saha 
and Shukla 2013).

8  �Arsenic Safe Deeper Pleistocene (OA) Aquifers

The studies in MGP (Acharyya 2005; CGWB and PHED 2005; Saha et al. 2011b; 
Shah 2008; Sahu and Shukla 2010) as well as in BDP (Acharyya et  al. 2000; 
Ravenscroft et  al. 2005) indicate that the groundwater As concentrations in the 
Pleistocene aquifers in OA remain low. Within the permissible limits of drinking 
(10 μgL−1). The thick aquifer systems underlying the thin veneer of the Holocene 
deposits comprise fine to coarse sand and gravel of brownish yellow colour which 
were deposited in an oxidizing environment (Saha et al. 2011a; Sahu 2013). The 
Pleistocene sediment that underlies the major part of the affected area in MGP is 
craton derived. Invariably containing calcium carbonate concretion (kankars) of 
various size, the sediment was laid down by the braided Sone River in its megafan 
over a large area (Sahu et al. 2015).

9  �How Safe the Pleistocene Aquifers Are?

Along with the top aquitard, the top 15–20 m slice of the first aquifer system is 
reported to host elevated levels of groundwater As. Though locally the bottom part 
of the first aquifer system is separated from the contaminated upper part by clayey 
layers, in most areas, it remains vulnerable to the downward spreading of ground-
water As (Fig. 1.13). Increase in agitations in aquifer owing to groundwater devel-
opment may help in the downward spreading of the contamination front. However, 
the second aquifer system in major part of the affected area possesses a confining 
layer (the middle clay) at its top. The overlying first aquifer system and the middle 
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clay act as the buffer zone for the second aquifer system. It will remain safe as long 
as the first aquifer system remains safe. Leaching of As water through the middle 
clay, which may act as an aquitard, may only contaminate the deeper (2nd) aquifer 
system. It may happen only when the piezometric head of the second aquifer system 
drops below that of the first aquifer system. The piezometric levels belonging to 
different times collected from the tube wells (CGWB 2013) tapping the second 
aquifer system varies between 0.8 and 12.98 m bgl (with a mean of 6.8 m bgl). 
Around Patna urban area in the eastern parts of MGP, the pre-monsoon water levels 
in the aquifer system were observed in the range of 4.1–12.7 m bgl, whereas those 
during the post-monsoon period varied between 1.49 and 10.08  m bgl (CGWB 
2015). Resting of the water levels much above the bottom of their confining layer of 
the aquifer system at its top indicates the piezometric nature of the hydraulic heads 
and the confined condition of the aquifer systems. It is observed that the piezometric 
head in the second aquifer system rests above that of the first aquifer system (Saha 
et al. 2011a; Sahu 2013), which may get reversed owing to increase in groundwater 
draft from the former one as found around Patna urban area (CGWB 2015).

Fig. 1.13  Schematic 
diagram showing 
aquifer-aquitard 
configuration and 
distribution of As in the 
multi-layered alluvial 
aquifer in the As affected 
area in MGP (Saha et al. 
2009)
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9.1  �Yield Potential and Drawdown in the Second Aquifer 
System

The existing tube wells in MGP, which have been constructed tapping the second 
aquifer system (CGWB 2013), record discharges in the range of ~46–535 m3/h with 
the majority values ranging between ~100 and 300 m3/h. The maximum observed 
drawdown values varied between 1.1 and 10.8 m. It indicates that the aquifer sys-
tem, comprising Pleistocene sediment of craton origin, is highly productive. The 
aquifer system with coarser granular material was laid down by the cratonic major 
Sone River in its megafan. Lower drawdown values in spite of higher discharges 
(Fig. 1.14) indicated a high coefficient of storage and transmissivity of the aquifer 
system (Driscoll 1986; Kruseman et al. 2000). Similarly, the binary plot between 
the drawdown and transmissivity (m3/d) of the aquifer system shows lower draw-
down values associated with higher values of transmissivity (Fig. 1.14).

9.2  �Pumping Tests to Ascertain the As the Safety of the Second 
Aquifer System

In the present section, it has been attempted to assess hydraulic parameters of trans-
missivity (T), storativity (S) and hydraulic conductivity (K) of the second aquifer 
system and the vertical conductivity (K′) in the middle clay overlying it. The pump-
ing test data of 7 observation wells and 1 piezometer have been re-analyzed using 
the Walton (1962) curve fitting method considering the aquifer as semi-confined 
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with the assumptions of non-steady flow of water in the aquifer and insignificant 
storage in the overlying aquitard. The pumping wells (PWs), as well as the observa-
tion wells (OWs) and piezometers (PZs), tap the granular zones in the second aqui-
fer system (Table 1.3). The effect of pumping on the top aquitard and the first aquifer 
system were studied by measuring water levels from shallow tube wells available at 
Bharauli (zones tapped 27.5–30.5 m) and Karnamepur (zones tapped 16.0–18.0 m) 
within a radius of 7.0 m from the pumping wells.

The duration of pumping were kept between 360 and 1000 min (Table 1.3). Pre-
pumping water levels in observation wells varied between 3.1 and 12.1  m bgl. 
Pumping discharges varied considerably between 57 and 200 m3 per hour. While the 
drawdown in the PWs remained within 2.8–11.0 m, those in the OWs/PZ varied in 
the range of 0.3–1.3 m. The water levels in shallow piezometers at Bharauli and 
Karnamepur were not affected until the end of pumping.

Analyses of the log-normal plot of time-drawdown data at Bharauli reveal minor 
increment in drawdown after 500 min of pumping (Fig. 1.15a), indicating a semi-
confined nature of the aquifer. Similarly, incremental drawdowns almost cease after 
300–400  min of pumping at Bariswan, Karnamepur, Kancha, and Nargada 
Narayanpur. At Konharaghat and Vidyapati Nagar, further drawdowns are observed 
even after 300 min of pumping. In the latter case, the drawdown ceases after only 
600 min. During pumping, the flow in the aquifer is considered to be horizontal but 
the flow induced in the aquitard remains vertical (Kruseman et al. 2000). The error 
introduced by this assumption is less than 5% if the K of the aquifer is two or more 
orders of magnitude greater than that of the aquitard (Neuman and Witherspoon 
1969).

The Walton match points in the log-log plot (Fig. 1.15b) of the time-drawdown 
data are produced in Table 1.4. The T values determined by the method range the 

Table 1.3  Tube well construction depth and various attributes of pumping tests in tube wells in the 
As affected parts of MGP. The ‘r’ denotes the distance between the PW and the OW/PZ

Sl. 
No Location

Distance 
(‘r’ in m)

Zones 
tapped 
(range 
in m)

Static water 
level (m bgl)

pumping 
duration 
(min)

Pumping 
Discharge 
(m3/h)

Drawdown 
(m)

OW PZ PW OW PZ PW OW PZ

1 Kancha 5 – 98–128 – 3.6 – 985 74 – 0.3 –
2 Vidyapati 

nagar
5.45 – 210–222 2.8 3.1 – 1000 57 5.8 1.3 –

3 Brahmpur – 4.5 120–202 3.0 – 3.8 500 200 11.0 – 0.7
4 Konharaghat 5 – 86–248 13.0 12.1 – 360 176 2.8 1.2 –
5 Bariswan 19.56 – 94–199 4.6 4.6 – 480 189 6.4 0.3 –
6 Karnamepur 6 – 136–199 6.6 6.6 – 700 195 9.9 0.8 –
7 Nargada 

Narayanpur
6.9 – 136–228 4.2 4.6 – 760 189 9.5 0.5 –

8 Bharauli 12.31 – 162–215 4.4 3.7 – 800 183 8.5 0.4 –
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Fig. 1.15  (a) Log-normal and, (b) the log-log plots of the time-drawdown data of the pumping 
tests in the As affected areas in MGP

Table 1.4  The parameters in the Walton method and the estimated transmissivity (T) and 
storativity (S) values for the second aquifer system. The last two columns show the saturated 
thickness of aquifer and the estimated average K values

Sl. 
No Location

Walton (1962) match 
pointsa

‘T’ (m2/d) S
‘D’ 
(m)

Ave. ‘K’ 
(m/d)

W(u, 
r/L) 1/u t s

1 Kancha 6.00 40,000 400 0.20 4243 4.7 × 
10−3

30 141

2 Vidyapati nagar 6.00 10,000 30 0.60 1085 3.0 × 
10−4

12 90

3 Brahmpurb 3.55 9500 40 0.30 4522 2.6 × 
10−3

82 55

4 Konharaghat 4.00 15,000 50 0.40 3367 1.25 × 
10−3

107 31

5 Bariswan 3.00 1000 32 0.11 9834 2.28 × 
10−3

97 101

6 Karnamepur 4.00 34,298 89 0.30 6197 9.4 × 
10−4

63 98

7 Nargada 
Narayanpur

4.00 10,000 65 0.23 6271 2.38 × 
10−3

92 68

8 Bharauli 4.00 6159 49 0.20 6986 6.4 × 
10−4

53 132

aWalton (1962) match point: An arbitrary point below the Walton type curve, matched in maximum 
part by the time-drawdown observed data curve. W(u, r/L) and 1/u are the coordinates of the match 
point on the Walton map, while t and s are the coordinates of the match point on the time-drawdown 
log-log plot of pumping test data (Walton 1962)
bTube well is a piezometer, while all others are observation wells
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minimum of 1085 m2/d to the maximum of 9834 m2/d at Bariswan (Table 1.4) indi-
cating moderate to good potentiality of the second aquifer system. The storage coef-
ficient values are estimated below 0.005 (range: 4.7 × 10−3 – 3.0 × 10−4), indicating 
the confined condition of the aquifer (Kruseman et al. 2000).

The K values for the second aquifer system were determined from the pumping 
test data based on the following relation:

	
K

T

D

T

d d
= =

− ′ 	

Where,

D = Saturated thickness of the aquifer system.
d = Sedimentary thickness (in m) between the lower level of the deepest slot and the 

upper level of the shallowest slot in the tube well.
d′ = Cumulative thickness of clay and sandy clay in between in m.

The saturated thickness of the aquifer system at the pumping test locations vary 
between 30 and 107 m. The estimated K values fall in the range of 31–141 m/d, 
indicating good potential of the aquifer system (Table 1.4). The vertical hydraulic 
conductivity (K´) of the middle clay (the aquitard) confining the second aquifer 
system has been worked out from the Walton method, based on the following 
relation;

	
c

L

T

D

K
= =

′
′

2

	

Where,

L = leakage factor in m.
c = Hydraulic resistance of the aquitard in day
D′ = saturated thickness of the aquitard (confining bed) in m.
K′ = hydraulic conductivity of the aquitard for the vertical flow in m/day.

The values of L are derived from r/L values of Walton Type Curve with which the 
time-drawdown curve has been matched during interpretation. The D´ varies from 
10  m at Vidyapati Nagar to 32  m at Kancha (Table  1.5). The values of L range 
between the minimum of 450 m at Brahmpur to the maximum of 4103 m at Bharauli. 
Large values of L indicate higher hydraulic resistance in the aquitard, and conse-
quently smaller leakage rate through the aquitard whereas-small values of L mean a 
high leakage. The K′ values of the clay have been estimated in the range of 0.01 at 
Bharauli and Bariswan to 0.33 m/d at Brahmpur. The low conductivity values show 
the impermeable character of its predominantly sandy clay to the clayey character 
(Bouwer and Bouwer 1978).
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9.3  �Groundwater Potential of Second Aquifer System Based 
on Sediment Grain Size Analysis

The horizontal K values of granular layers in the second aquifer system at five loca-
tions, namelyKarnamepur, Bharauli, Nargada Narayanpur, Paharpur and Simri (see 
Fig. 1.4 for locations), have been estimated using empirical relation based on the sedi-
ment grain size parameters of every layer (CGWB 2015; Sahu 2013; Sahu and Saha 
2016; Sahu et al. 2018). The average effective conductivity values (Ke) of multi-
layered aquifer systems have been worked out based on the following relation:

	
K

D
K d K d K de = + + …( )1

1 1 2 2 3 3 	

Where,

Ke = average effective horizontal K of the aquifer system.
D = total saturated thickness of the aquifer system (m)
= d1 + d2 + d3 ……
d1, d2, d3 = thickness of each layer (m)
K1, K2, K3 …. = horizontal hydraulic conductivity (m/d) of each layer

The Ke value coupled with the cumulative thickness of the granular zones has 
been used to estimate the Te (=KeD) approximations of the aquifer system, which 
can be expressed by the following relation:

	 T T T Te = + + …1 2 3 	

The grain size based empirical equation of Breyer (1964) has been used to esti-
mate the hydraulic conductivity of the aquifer systems (Breyer 1964). The equation 
is shown below:

Table 1.5  Thickness of the middle clay between the first and second aquifer systems at pumping 
test locations and the estimated leakage factors (L), hydraulic resistances (c) and the vertical 
conductivity (K′) values

Sl. 
No Location

Thickness of 
mid- clay (D’) 
(m) r/L

Leakage 
factor ‘L’ 
(m)

Ave. T 
(m2/d)

Hydraulic 
resistance ‘c’ 
(L2/T)

K′ 
(m/d)

1 Kancha 32 0.005 1000 4243 235.7 0.14
2 Vidyapati nagar 10 0.01 545 1085 273.8 0.04
3 Brahmpur 15 0.01 450 4522 44.8 0.33
4 Konharaghat 29 0.005 1000 3367 297.0 0.10
5 Bariswan 15 0.005 3912 9834 1556.2 0.010
6 Karnamepur 18 0.003 2000 6197 645.5 0.028
7 Nargada 

Narayanpur
22 0.005 1380 6271 303.7 0.072

8 Bharauli 25 0.003 4103 6986 2410.2 0.010
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K
g

v
C db= 10

2

	

Where Cb is Beyer empirical coefficient = × −6 10
5004 log
Uc

.

g = acceleration due to gravity (m/s2).
v = kinematic viscosity of water (m2/s).

The method is useful for analyzing heterogeneous porous media with the poorly 
sorted grains characterized by 1 < Uc < 20 and 0.06 mm < d10 < 0.6 mm. The method is 
considered as the most suitable for the assessment of the K approximations of the aqui-
fers consisting of unconsolidated sand in the Ganga Plain (Sahu and Saha 2016).

The depth ranges of the second aquifer system vary between 130 and 250 m bgl for 
the Karnamepur and Bharauli sites, and 134–247, 131–250 and 111–242 m bgl for the 
sites of Nargada Narayanpur, Paharpur, and Simri, respectively, (Table 1.6). The aqui-
fer system is continuous within the depth ranges at the sites of Bharauli and Nargada 
Narayanpur. However, intervening clays appear at the other sites; in the depth range 
of 203–222 m bgl at Karnamepur, 206–213 m bgl at Paharpur, and 211–214 m and 
224–227 m bgl at Simri. Nevertheless, these clays are lensoid type and local in extent 
which pinch out quickly. Hence, the aquifer system at these locations also possesses 
hydraulic continuity within the depth ranges as mentioned above. Thus, the estimated 
thicknesses of granular zones vary between the minimum of 101 m at Karnamepur 
to the maximum of 125 m at Simri. The estimated range of K values stands high 
at 43–196 m/d (average effective K: 80 m/d) for the Paharpur site, whereas the 
minimum range of 31–48 m/d (average effective K: 40 m/d) is assessed for the 
Bharauli. For Karnamepur, Nargada Narayanpur and Simri, the K-estimates fall in 
the ranges of 32–108 m/d (average effective K: 67 m/d), 36–165 m/d (average 
effective K: 53 m/d) and 22–118 m/d (average effective K: 88 m/d) respectively. 
The estimated T values vary between the maximum of 11,000 m2/d at Simri and the 
minimum of 4800 m2/d at Bharauli (average: 7503 m2/d) (Table 1.6). The estimated 
values of K and T suggest again the highly prospective character of the second 
aquifer system from groundwater development point of view.

Table 1.6  Cumulative thicknesses of granular zones and grain size based estimation of the aquifer 
parameters K (average effective conductivity) and T (transmissivity) for the second aquifer system 
in the As affected areas in MGP

Location

Parameters of the second aquifer system
Depth  
range (m)

Granular.  
zones, D (m)

Range  
of K (m/d)

average effective 
K (m/d) T (m2/d)

Karnamepur 130–250 101 32–108 67 6767
Bharauli 130–250 120 31–48 40 4800
Nargada 
Narayanpur

134–247 113 36–165 53 5989

Paharpur 131–250 112 43–196 80 8960
Simri 111–242 125 22–118 88 11,000
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9.4  �Groundwater As Safety in the Second Aquifer System

It has been increasingly evident from the research in BDP (Bangladesh, and West 
Bengal in India) and MGP that groundwater from yellow to brownish-yellow 
Pleistocene sediments exhibit relatively low As concentration, whereas the gray to 
dark gray Holocene sediments rich in silt/clay bear moderate to high As in ground-
water (Acharyya et al. 2000; Ravenscroft et al. 2005; Saha and Sahu 2016). The 
aquifer systems in OA in MGP comprising oxidized and yellow-brownish yellow 
Pleistocene sand of craton-origin also remain low in groundwater As (Pandey et al. 
2009; Saha 2009; Sahu and Saha 2015b). But, arises the question of whether the 
second aquifer system can sustain the leaching of As bearing groundwater from the 
overlying aquifers? The answer to this question is that it cannot happen unless the 
entire first aquifer system of up to ~100 m below ground gets contaminated. We 
know that the bottom part of this aquifer system comprising brownish-yellow 
Pleistocene sediment is yet safe from As. It might be acting as a physical buffer zone 
for the second aquifer system and protecting it from As contamination. Michael and 
Voss (2008, 2009) suggested about the flow-pattern defense while working on mod-
els related to groundwater heads and ages in BDP. The defense pattern protects the 
groundwater at depths greater than 150 m (modeled as more than 1000 years) if 
deep groundwater abstraction was limited to domestic supply and distributed among 
hand-pumped wells. However, large scale irrigation pumping from the deeper aqui-
fer, on the other hand, will amplify the downward flow of contaminated water and 
considerably shorten the travel time of As groundwater from the shallow aquifer to 
reach the deeper aquifer (Michael and Voss 2008, 2009). The geological formations 
characterized by more permeable materials below can augment the rate of down-
ward leaching of As water (Ravenscroft et al. 2009; Burgess et al. 2010). In contrast, 
shallow irrigation pumping does not impede the flow-pattern defense of deep 
groundwater. Instead, it provides an extra protection by creating a hydraulic barrier 
against downward As migration (Burgess et al. 2010).

Geochemical defense is another mechanism which might be helping to keep 
the groundwater safe from As contamination in the brownish yellow Pleistocene 
sediment (Burgess et al. 2010). The concept relies on the reactivity of the sediment 
to the As coming to groundwater. The oxidized Pleistocene sediment in the deeper 
aquifer contains ferric oxyhydroxides which have a large capacity to adsorb dis-
solved As (Dixit and Hering 2003). The oxic condition in the aquifer is expected to 
induce higher adsorption of As onto the sediment surfaces.

10  �Other Options of Safe Source of Water for Drinking

Other than the low As bearing deeper second aquifer system, the following ground-
water based options can be chosen to meet the drinking need in the contaminated 
parts of the Holocene floodplain in MGP.
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10.1  �Dug Wells

Dug well (DW) is the oldest kind of structure for groundwater abstraction. Various 
studies from the contaminated areas in BDP (Chakraborti 2001; BGS and DPHE 
2001; Ahmed and Rahman 2000; Warner et al. 2008; Bennett et al. 2010) and MGP 
(CGWB and PHED 2005; Saha and Chandra 2010; Saha and Sahu 2016) indicated 
low As concentrations in the open dug wells, complying with the WHO guideline 
value of 10 μgL−1. Most groundwater samples analyzed from dug wells in 
Bangladesh, West Bengal, Myanmar, and Nepal have been found to contain arsenic 
concentrations less than 50 μgL−1 (the national standard for most countries in Asia) 
(World-Bank 2012). The National Policy for As mitigation in Bangladesh (DPHE 
2004; Chakraborti 2001; Edmunds et al. 2015; World-Bank 2012) has suggested 
DWs as the preferable alternatives of safe drinking water in areas with groundwater 
As beyond the drinking limit. The exposure of water in the dug well to the open air 
and agitation during water withdrawal causes oxidation which causes precipitation 
of the dissolved As and even iron in water. The dug well collects water from the top 
layers in the shallow aquifer which gets fresh recharge in every year from rainfall 
and other surface water bodies. The recharge helps to contain the As concentration 
in the dug well zone in three ways; (1) flushing out of the dissolved As in the down-
slope of the water table and getting discharged in stream/rivers, (2) diluting the As 
level in groundwater, and (3) the percolating water collects air from the aerated zone 
and helps in precipitating the As through oxidation. The air and aerated water in 
well may also build an oxidized zone of soil around dug well, which can signifi-
cantly reduce the As level in water that infiltrates to the well through that zone. 
However, the As level in the dug well water needs to be checked regularly. The low 
residence time of water in the well owing to the high rate of withdrawal may not 
provide ample time for settling down of As.

Moderate to large diameter dug wells can no doubt be the good source of As safe 
water for drinking and other domestic uses. However, the contamination owing to 
bacteria and other surface derived pollutants remain as prime concerns that should 
be addressed properly before suggesting its use. Pollution in surface water can eas-
ily reach the dug well water. Thus, dug wells for the purpose should be constructed 
with requisite sanitary seals. The construction of an apron around the well can pre-
vent entry of contaminated used water at the well site by seepage into the well. 
Water may be withdrawn by the installation of a manually operated hand pump.

10.2  �Low As Zones in Shallow Aquifers

The entire geographic area of any block/taluka falling in the floodplain may not be 
affected by groundwater As. Around ~20–50% of hand pumps in the affected areas 
in MGP yield safe water with As less than 10 μgL−1. Proper understanding of the 
relation between elevated As content and aquifer hydraulics, groundwater flow 
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regime and local lithologic variations of the shallow aquifer can be used for 
mapping the As-safe areas in otherwise the affected block. The prominent ridges on 
point bars, levees, and point bar platforms, predominated by sand facies, are by and 
large low in As (Weinman et al. 2008; Sahu and Saha 2015a, b). The As contamina-
tion spreads along with spreading of the reducing front from the OC rich sediment 
unit. The rate of spreading depends upon the volume of OC release, hydraulic con-
ductivity in the aquifer, groundwater flow direction, the rate of groundwater devel-
opment and the volume of fresh oxic water recharge that reaches the spreading 
anoxic front. The sandier areas along the scroll bar ridges and levees exhibit low 
concentration of As as the oxic groundwater in such areas favors stability of hydrated 
iron oxide. There may be a source-distance relation between the As concentration 
and the OC rich clay plugs in the stratigraphic sequence (Sahu and Saha 2015a).

11  �Conclusion

The physical dynamics in the Ganga and other Himalayan rivers in MGP, such as 
their meandering and migration, and at places channel avulsion during the 
Holocene period have formed narrow to wide floodplains characterized by fluvio-
lacustrine/lacustrine environments of sediment deposition. Other than lithology, 
climate and tectonics have also played their roles in the shifting of the river chan-
nels in MGP. The geomorphology and the distinctive sedimentary facies associ-
ated with different sub-environments display characteristic groundwater As levels. 
Typical sedimentary sequences with rich OC content in the lithology display higher 
levels of As in groundwater. The distribution pattern of groundwater As bears 
significant correlation with the floodplain geomorphologic elements. Groundwater 
As contamination is observed in the NA affecting both the AFP and OFP. Vertically 
the contamination is confined largely within the depth of the top ~50 m of the sedi-
mentary sequence in MGP.

A two-tier aquifer system is noticed in MGP within 300 m bgl, overlain by an 
aquitard at the top. The Holocene deposits comprising the top aquitard and the 
upper slice (15–20 m) of the first aquifer system host the contaminated aquifers 
in MGP largely within the depth of ~50 m below ground. The sediment in the top 
aquitard is predominantly Himalayan derived, un-oxidized and gray in colour. 
The first aquifer system and the top aquitard are hydraulically connected and 
possess shallow water levels (<8  m bgl). This unit gets ample recharge from 
monsoon rainfall.

The Pleistocene aquifers (the bottom three-fourth of the first aquifer system and 
the entire second aquifer system) in the OA of MGP are low in groundwater As. 
The lower (second) aquifer system (beyond 100 m depth below ground) is sepa-
rated from the overlying first aquifer system by middle clay. The storage coeffi-
cient values of the second aquifer reveal its confined character and hydraulic 
separation from the upper aquifer system. The middle clay is characterized by 
large values of hydraulic resistance (range of L: 450–4103  m) which indicate 
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smaller leakage rate through the aquitard. The low vertical conductivity values 
(range of K′: 0.01–0.33 m/d) show the impermeable character of the aquitard. The 
aquifer system has got its recharge areas located at further south in the basin in the 
exposed Pleistocene sediments. The transmissivity values of the aquifer system 
indicate that it can be used for community water supply with a regulated draft so 
that its hydraulic head remains well above the head of the first aquifer. The 
water supply wells should adopt proper designs like cement sealing against the 
As-contaminated zones and the middle clay to prohibit downward leakage of 
As-contaminated groundwater from the top aquitard.

The entire area of the floodplain is not contaminated, and there are prominent 
ridges on point bars, levees and point bar platforms, predominated by sandy facies, 
which are by and large low in As. Most of the hand pumps (89–94%) from these units 
exhibit low As concentrations, often within the drinking limit prescribed by WHO. 
Community hand pumps in the depth range of 5–15 m below ground can be con-
structed in those areas for drinking need of the local people. However, regular quality 
check of such tube wells is a must to ensure the supply of low As groundwater.

Large diameter dug wells in the floodplain can also be constructed to tap the 
replenished dynamic groundwater, which is usually oxic and low in As. The air-
contact and the surging in dug wells during groundwater withdrawal help in precipi-
tating the As through oxidation. Other than diluting the As level in groundwater, the 
recharge in the dynamic zone of the shallow aquifer also removes As through flushing. 
However, the dug wells need to be constructed carefully with proper sanitary measures 
to ensure the safety of well water from bacteriological and other pollutions coming 
from the surface.
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Chapter 2
Geomorphic Controls on Spatial Arsenic 
Distribution in Aquifers 
of the Brahmaputra River Floodplains

Runti Choudhury, Chandan Mahanta, Pallavi Sharma, 
and Shirishkumar M. Baviskar

Abstract  The present study was conducted to explore the controls of geomorphic 
features on arsenic (As) mobilization in groundwater aquifers of the Brahmaputra 
River floodplains. Linear Imaging Self-Scanning Sensor-4 (LISS IV) imagery was 
used to demarcate different geomorphic units based on spectral signatures and field 
investigations using ArcGIS 9.3 software. A total of 132 groundwater samples cov-
ering four different geomorphic units were tested in the laboratory using Atomic 
Absorption Spectrophotometer (AAS). Overlay of test results of groundwater sam-
ples on classified geomorphic map revealed that out of a total 132 samples 77% 
sources in younger alluvium and 89% sources tested in older alluvium were found 
to be affected with As beyond permissible limit of 10 μg/L set by the World Health 
Organization. As enrichment along the different geomorphic units followed the 
trend as Younger Alluvium> Older Alluvium> Natural Levees> Floodplain Deep.

1  �Introduction

Arsenic contamination of groundwater is a major drinking water concern, and sev-
eral million people worldwide are affected by these crises (Smedley and Kinniburgh 
2002; Ravenscroft et  al. 2009; Chakraborti et  al. 2017; Mukherjee et  al. 2018; 
Biswas et al. 2012). The reductive dissolution of Fe-oxyhydroxides is the primary 
mechanism of arsenic release into groundwater, yet factors controlling the spatial 
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variation of arsenic from meters to tens of meters remains elusive. Mode of arsenic 
occurrence and mobility in sedimentary aquifers have been linked to local geology, 
geomorphology, hydrogeology, and geochemistry of sediments and water, as well 
as anthropogenic activities such as mining and land use (Kinniburgh and Smedley 
2001; Smedley and Kinniburgh 2002; Weinman et  al. 2008; Bhattacharya et  al. 
1997; Saha and Sahu 2016).

Arsenic contamination of groundwater in the Brahmaputra floodplains of Assam, 
in the northeastern part of India, has been reported lately (Singh 2004; Choudhury 
et al. 2015, 2018; Chetia et al. 2011). A recent study by UNICEF and the Public 
Health Engineering Department (PHED), Government of Assam, reported arsenic 
contamination in 76 blocks in 18 districts of Assam with 29% of wells (out of a total 
56,180 sources tested) having As concentration above the World Health 
Organization’s (WHO) permissible limits of 10 μg/L (Mahanta et al. 2015). More 
recently, there has been an increased attempt to understand the groundwater con-
tamination issue in the Brahmaputra Floodplains (Choudhury et  al. 2015, 2018; 
Verma et al. 2016). In the present study area, on the southern bank of the Brahmaputra 
River, Goswami et  al. (2014) reported dissolved As concentrations as high as 
500 μg/L. Based on their studies Verma et al. attributed high arsenic concentrations 
in the study site to differences in tectonic history and sediment provenance (Goswami 
et al. 2014).

Over three decades extensive studies on arsenic in Bangladesh and West Bengal 
have enriched our understanding on the arsenic menace (Ahmed et  al. 2004; 
Ravenscroft et al. 2009; McArthur 2019; Nickson et al. 2000; Bhattacharya et al. 
1997; Breit et  al. 2004). In terms of spread and thickness of alluvial plains, the 
Brahmaputra floodplains in Assam has some close resemblance to those of 
Bangladesh, yet in-depth studies concerning factors contributing to arsenic enrich-
ment within the aquifers of the region have only been taken up much recently 
(Mahanta et al. 2015). The current study thus aims to evaluate the geomorphic con-
trols on the spatial As heterogeneity in aquifers of the Brahmaputra River flood-
plains in Assam.

2  �Study Area

The study area forms a part of the Upper Assam foreland basin (Fig. 2.1). The land 
surface of the site is characterized by a depression followed by a slightly elevated 
area comprising of the sandy, loamy soil type characteristic of tea garden areas. A 
topographic gradient of 10–12 meters (m) is observed along the 35 m transect. The 
Brahmaputra River draining the Himalayas bounds the northern boundary while the 
Naga Patkai hill ranges bounds the southern boundary of the study transect. The two 
rivers, viz. Dhansiri and Bhogdoi, flowing from the Naga Hills mark the western 
and eastern extremities of the study area. The southern tributaries, the Burhi Dihing, 
the Dhansiri and the Kopili, drain through turbidities similar to those in Siwaliks, 
the Indian Plate and ophiolites (Singh 2006).
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Fig. 2.1  Map showing the location of (a) India, (b) Assam and (c) Context map of the Study Area
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2.1  �Land Use and Land Cover

Agricultural lands dominate most of the study area. Forests and wetlands cover the 
remaining areas of the district along with numerous perennial and non-perennial 
water bodies. Apart from crops, tea plantation is a major industry with several hect-
ares being used for plantations (Fig. 2.2) (CGWB 2013).

2.2  �Hydrogeology

Along the study area, groundwater occurs both under water table to semiconfined 
conditions in the near-surface conditions, and under semi-confined to confined con-
ditions in the deeper horizons (CGWB 2013). Depth to water level in the water table 
zone varies from 0.41 to 3.07 m bgl in the pre-monsoon period and 0.56 to 3.41 m 
bgl during the post-monsoon period. Available subsurface information indicates 
that three or four prolific systems exist down to an explored depth of 300 m, in the 
central parts. Adjacent to the Brahmaputra River, five to six aquifer systems with 
limited thickness exist within the depth range of 400 m (CGWB 2013). In the south-
ern parts, the aquifer system fades or its thickness reduced due to the mixing of finer 
particles of sand and clay (CGWB 2013).

Fig. 2.2  Land use and Land cover of the study area
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3  �Materials and Methods

The outcome of the Arsenic Screening and Surveillance Program in Assam valley 
(Mahanta et al. 2015), revealed groundwater As distributions to be localized at dis-
crete pockets within the Brahmaputra floodplains. Close scrutiny of some of these 
hotspot areas, where groundwater As concentration was much above WHO guide-
line values, demonstrated that significant variation in As concentrations occurred 
within the southern bank of the Brahmaputra River. Thus, for an in-depth under-
standing of this spatial variability, a 35 km representative transect perpendicular to 
the Brahmaputra River was selected for groundwater sampling and geomorphic 
mapping. The elevation difference of 10–12 m is observed along the 35-km long 
transect. A total of 132 groundwater samples were collected for detailed hydro-
chemical analysis during November 2016.

During sampling, ancillary information, such as the age of well, depth of well 
and drilling method adopted, was collected from the household. Prior to sampling 
each of the wells was purged for 5–10 min to homogenize the sample and minimize 
the impact of iron pipes. High density polyethylene (HDPE) bottles were used for 
sample collection, which were kept in 1.2 N HCl solution overnight and then washed 
5–6 times with double distilled water and air dried before sample collection. 100 mL 
water sample was filtered using 0.45 μm pore size Whatman of syringe filters and 
preserved with 3–4 drops of HCl for cations and trace metals while another set of 
the unacidified filtrate was collected in a separate bottle without any headspace in 
the bottle. All the water samples were protected from sunlight during transport to 
the laboratory, and stored at 4 °C until analysis. They were analyzed within 2 weeks 
of sampling (Fig. 2.3).

ESRI ArcGIS 9.3 software was used for the preparation of maps and spatial map-
ping of As and other parameters in the study area, while LISS IV imagery obtained 
from North East Space Application Center (NESAC) was used for mapping out 
geomorphic units in the study area. Required image processing was done prior to 
the use of the LISS IV imagery. Geomorphological units were identified through 
visual interpretation on the basis of tone, texture and structure of the different fea-
tures on the imagery.

4  �Results and Discussion

Geomorphic controls on As distribution patterns in the Bengal basin and the Central 
Gangetic plains have been widely reported by many (Weinman et al. 2008; McArthur 
et al. 2004; Saha and Sahu 2016). To investigate the influence of geomorphic fea-
tures on As distribution in the aquifers of the Brahmaputra Basin, LISS 1 V imagery 
of the southern transect was mapped. Mapping indicated that most parts of the study 
area are marked by depositional geomorphic units of fluvial origin (viz. Active 
Floodplain, Alluvial Plains and Older Alluvium), while hills of structural origin 
were observed towards the Naga Patkai Range (Fig. 2.4).
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Fig. 2.3  Map showing groundwater sampling (marked as white circles, n = 132) locations along 
the study area transect. Brahmaputra River is flowing from east to west at the bottom. The satellite 
image of the study site acquired from ESRI, World Imagery (ESRI 2018)

Fig. 2.4  Geomorphology map of the area along the southern transect, showing different geomor-
phic units mapped out from LISS IV Imagery

R. Choudhury et al.
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The study area forms part of upper Brahmaputra River floodplain, a geomorphic 
unit denoting the alluvial plain between Brahmaputra River in its North and Naga 
Patkai Hill ranges in its south. The younger alluvium is sediments deposited as an 
alluvial fan, and floodplain sediments brought down by the Brahmaputra and its 
southern tributaries, viz. Dhansiri and Bhogdoi that drain the Naga Patkai ranges 
(Mathur and Evans 1964). The Quaternary sediments, overlying uncomfortably the 
Tertiary deposits, are described as Older Alluvium or High Level Terraces, and con-
sist of indurated yellowish or reddish clays with sand, shingle, gravel and boulder 
deposits. Natural levees occur as wedges all along the banks, breaching of some of 
which leads to the development of crevasse splay deposits (Sarma 2005). Most of 
the existing paleochannels are manifestations of neotectonics (Sarma 2005). These 
paleochannels are the remnant geomorphic unit formed through the lateral shift of 
the rivers. Brahmaputra plain is covered by younger alluvial sediments at most of 
the places deposited from the sediment load carried by the river and its tributaries 
(Sarma and Phukan 2004). The Brahmaputra River forms a large anabranching, 
multichannel and multipattern axial Tributary River in the Brahmaputra valley por-
tion of the Himalayan foreland basin (Sarma 2005).

4.1  �Variation of As Concentrations in Different Geomorphic 
Features

Overlayed map132 groundwater samples tested for As on the geomorphic map 
revealed that the primary geomorphic features, which include Younger Alluvial 
Plains and the Older Alluviums, contain As above permissible limits as opposed to 
the widely reported observations that aquifers in older alluviums host low As aqui-
fers (Ahmed et al. 2004; Nickson et al. 2000; Polya et al. 2005) (Fig. 2.5). The older 
alluvium along the study transect are dominated by loamy sandy soils and are pri-
marily used for tea plantations. Out of 132 samples analyzed, 77% sources in 
Younger alluvium and 89% sources in older alluvium are found to be affected with 
As beyond permissible limit of 10 mg/L. As enrichment along the different geomor-
phic units followed the trend as Younger Alluvium> Older Alluvium> Natural 
Levees> Floodplain Deep (Fig. 2.6, Table 2.1).

In Bangladesh, older alluviums, which are the Pleistocene sands with their char-
acteristics yellow to brown hue, are reported to produce As safe aquifers; the under-
standing being that those aquifers have had considerable time to flush the As from 
the aquifers (Ahmed et al. 2004; Nickson et al. 2000; Polya et al. 2005). The high 
As concentration observed in the older alluvium in the study area can be attributed 
to the fact that the older alluvium units are depositional units with high potential for 
tea cultivation. Probable deep irrigation for tea plantations may perhaps facilitate 
drawdown of As enriched Holocene water to Pleistocene aquifers. The effect of 
deep irrigation on facilitating drawdown of As enriched Holocene water to 
Pleistocene aquifers has been well established in Bengal Basin and Vietnam (Berg 
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et al. 2008). Thus, As enrichment of older alluvium is attributed to the drawdown of 
As enriched groundwater to older alluvium aquifers, although it should be con-
firmed with further studies.

Although paleochannels have good potential for groundwater, these areas ironi-
cally are reported to host high As groundwater (Hoque et al. 2011). Satellite map-
ping of LISS IV image of the southern study transect demonstrate no such 
paleochannels in the area close to the Naga Hills. These areas instead are part of the 

Fig. 2.5  Overlayed map of groundwater As concentrations on the geomorphic map along the 
southern transect. Classified geomorphic units are similar to those outlined in Fig. 2.4
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young alluvial deposits. Aquifers dominated by thick clay cappings represent low 
energy environment. With little evidence of major south bank tributary system influ-
encing the zone of high As, it is hypothesized that weathered materials deposited 
from the Naga Patkai hills get accumulated in the topographic low in the frontal 
zone of the mountains. With limited scope of these materials to get flushed out, the 
aquifers near the foothills host high arsenic groundwater (Choudhury et al. 2018).

Unlike in most As affected areas, areas of active floodplains in the study transect 
host low As groundwater, particularly along the studied transect. Recently (Stahl et al. 
2016) reported two different conditions under which riverine recharge could either 
contaminate or flush aquifers of As. Active depositional sites near rivers are sites host-
ing high As owing to those being reactive riverbed sediments. On the contrary, non-
depositional areas are zones which host low As groundwater because non-deposition 
will decreases the thickness of the reactive riverbed sediments. While these possibili-
ties do exist in our study sites in the upper Brahmaputra Valley, considering that the 
active floodplain area near the Brahmaputra main channel is an area of active sedi-
ment deposition, we attribute the low As aquifers in areas of active floodplains to the 
recurrent flooding events which flush the aquifers of their As levels.

Natural levees in the study are observed to host high As groundwater, in confor-
mity to that observed in the Bengal Basin. Weinman et al. (2008) associated high As 
groundwater with levees formed during a relatively low-energy fluvial regime. The 
low energy regime facilitates the accumulation of finer materials and the formation 
of clay/mud capped aquifers. These clay capped aquifers host high As groundwater. 
An analogy can also be drawn for the southern transect where river meandering is a 
dominant characteristic of the tributaries.

5  �Conclusion

The present study reiterates the important role of geomorphic units in controlling As 
distribution. The study highlights that geomorphic features can explain As hetero-
geneity in the Brahmaputra Valley aquifers. Among different geomorphic features, 
younger alluvium, natural levees and older alluvium aquifers in the study area are 
observed to host high arsenic groundwater. While depositional features and levee 
characteristics explain high As aquifers in the levees, high As aquifers in older allu-
vium are attributed to leaching of As enriched groundwater from the uppermost 
contaminated shallow aquifer to the underlying to Pleistocene aquifers, although 
further studies would be required for certainty.

Table 2.1  Arsenic concentration in different geomorphic units in ppb (parts per billion)

Geomorphic units Min (ppb) Max (ppb) Average (ppb) Std. Dev (ppb)

Younger 0.0 604.0 117.0 138.5
Floodplain Deep 0.0 35.5 9.3 11.7
Natural Levee 39.9 229.0 133.6 76.9
Older 0.5 299.0 72.4 87.1

2  Geomorphic Controls on Spatial Arsenic Distribution in Aquifers…
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Chapter 3
Reductive Dissolution of Fe-oxyhydroxides 
a Potential Mechanism for Arsenic Release 
into Groundwater in the Alluvial Plain 
of River Brahmaputra

Shirishkumar M. Baviskar and Runti Choudhury

Abstract  The mobilization of dissolved arsenic (As) in groundwater environment 
is controlled by its chemodynamics associated with solid-phase arsenic. The mech-
anism of Arsenic mobilization in the Groundwater of the alluvial plains of river 
Brahmaputra were studied from aqueous and solid-phase geochemical analyses of 
groundwater samples and sediment cores at various depths from a borehole. The 
sediments cores were analyzed for parameters like total and sequentially extracted 
Fe and As, organic carbon content and carbonate phases. The groundwater samples 
collected from the close proximity of the drilled bore well were analyzed for major 
and trace element hydrogeochemistry. Fe oxyhydroxides were observed as the 
major leachable for arsenic solid phases. The presence of Fe oxyhydroxides was 
found in the aquifer sediments using scanning electronic microscope energy-
dispersive X-ray (SEM-EDX) and X-ray diffraction (XRD) analysis. This experi-
mental research study suggest that bacterially mediated reductive dissolution 
FeOOH is probably an important mechanism for releasing As from the sediments 
into the groundwater.

1  �Introduction

Consumption of Arsenic (As) can lead to arsenicosis which is fatal as it causes can-
cer of skin, lung, and bladder and gastrointestinal and pulmonary conditions (Smith 
et al. 2009; Chakraborti 2011). Higher As concentrations in water, soil, and sedi-
ments are a major public health concern in many parts of the world (Smedley and 
Kinniburgh 2002; Mohammed Abdul et al. 2015). Mobilization of As from the solid 
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phase into the aqueous phase is not yet fully understood (Blute et al. 2009; Dai et al. 
2018). As distribution between solid and aqueous phases is determined largely by 
redox conditions, which govern the oxidation states of As and the thermodynamic 
stability of solid phases. Due to the redox condition As associated with solid phase 
via surface adsorption as inner and outer sphere complexes (Goldberg and Johnston 
2001; Al-Sid-Cheikh et al. 2015) co-precipitates with an aqueous phase (Waychunas 
et al. 1993; Park et al. 2016).

Arsenite As(III) or arsenate As(V) or both, which are inorganic oxyanion forms 
of arsenic, dominate natural sediment and water systems with different toxicity lev-
els. Arsenite has been considered more toxic than arsenate. However, recent studies 
have shown that most of the ingested arsenate is reduced to arsenite (Welch and 
Stollenwerk 2003). Under the oxidizing environment, pentavalent arsenic is the 
dominant species (Eliche 2009). In oxidizing environments at below pH  2, As 
occurs as arsenic acid (H3AsVO4); while in reducing environments and at below 
pH 9, As occurs predominantly as arsenous acid(H3As3O3). At higher pH, arsenous 
acid is deprotonated and forms H3AsΙΙΙO2

− (Bhattacharyya et al. 2003).
It is reported that maximum As concentrations are observed in the Jorhat district 

located on the southern bank of the river Brahmaputra in Assam, India (Chakraborti 
et al. 2004). Recently researchers have investigated the As release mechanism from 
the solid phases into the dissolved phase (Mahanta et al. 2015a, b; Baviskar et al. 
2015). Chakraborti et al. (2008) had found As contamination of groundwater in the 
Brahmaputra floodplains of Assam, the northeastern part of India. Study by United 
Nations Children’s Fund (UNICEF) and the Public Health Engineering Department 
reported As contamination in 76 blocks in 18 districts of Assam with 29% of wells 
(out of a total 56,180 sources tested) having As concentration above the World 
Health Organization (WHO) permissible limits of 0.01 mg/L (Mahanta et al. 2015a). 
Chakraborty et  al. (2009) observed dissolved arsenic concentration values to be 
0.49 mg/L. Singh (2004) suggested that sediments having clay and organic com-
pounds in high percentage might retain and release As into the groundwater aquifers 
of Assam.

There have been extensive studies on the source and mobilization of arsenic in 
Hooghly river basin in West Bengal and Brahmaputra river basin in Assam in India 
and Bangladesh (Horneman et al. 2004; Anawar et al. 2004; Mahanta et al. 2015a, 
b; Baviskar et al. 2015). Many researchers have highlighted correlations between 
Iron (Fe) and As levels during the desorption from a solid phase to dissolved arse-
nate phase (Pedersen et al. 2006; Rowland et al. 2007; Quicksall et al. 2008). The 
objective of this research is to investigate the mechanism of co-dissolutions and 
correlations between Fe and As in Brahmaputra floodplain of Assam during mobili-
zation of As from solid to aqueous phase. The approach involves simultaneous 
experimental investigations by studying hydrogeochemistry and mineralogy of the 
groundwater, and soil samples obtained from freshly dug bore well, and analyze 
different parameters to identify factors that influence As release from solid phase 
into the aqueous phase.
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2  �Materials and Methods

2.1  �Study Area

The study area Jorhat district forms a part of the upper floodplains of the Brahmaputra 
River consisting of distributed young alluvial sediment terrains. The Jorhat district 
lies at 26.75°N 94.22°E in the Indian state Assam covering an approximate area of 
2851 km2 (Fig. 3.1). The area falls in a temperate climate zone marked by heavy 
rainfall and humidity (temperature ranges between 6 and 38 °C and mean relative 
humidity between 92.00% and 98.00%). The annual average rainfall in the study 
area is 2818 mm (Mahanta et al. 2015a, b; Baviskar et al. 2015). The Brahmaputra 
basin is surrounded by the eastern Himalayas in its north and east; the Naga and 
Patkai range in the northeastern part, with Shillong plateau on its south (Mahanta 
et al. 2015a). It is an integral feature of the fluvial landforms in Assam. The geologi-
cal characterization of the basin sediments shows that it is from the Paleozoic and 
Cenozoic era, comprising of gneisses, high and low-grade schist, ultrabasic rocks, 
shale, sandstone, mottled clay, and conglomerates (Sharma 2005). The recent allu-
vial deposits have originated as the alluvial fans and floodplain sediments of 
Brahmaputra River and its tributaries (Mahanta et  al. 2015a). The Brahmaputra 
River and its tributaries carry most of these alluvial sediments often disturbed by 
tectonism-induced seismicity and landslides (Sharma 2005). The northern tributar-
ies are braided, and the composite flood plain made up primarily of Holocene 

Fig. 3.1  Map of borewell location in the Jorhat district in Assam, India
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sedimentary aquifers. The predominant geologic formations include unconsolidated 
alluvial sediments of Quaternary age characterized as older and younger alluvium. 
The upland areas are occupied by older alluvium with oxidized sediments which is 
relatively compact in nature. The younger alluvium occurs along the low-lying 
tracks of the area aligned to the river course. A superficial blanket of clay belonging 
to younger alluvium occurs further in the southern part. The study area is character-
ized by thickness of aquifer in the central and northern parts comprising of medium 
to coarse sand within an explored depth of 450 m, capped in the upper parts by 30 
to 50 m of clay beds and varied thickness of clay intercalation in between the latter 
possibly inhibiting vertical connectivity of aquifers and thus confining the arsenic-
bearing strata to a specific depth horizon (Baviskar et  al. 2015; Mahanta et  al. 
2015a).

2.2  �Sample Collection and Characterization

The borewell was drilled for the present study around a few highly arsenic contami-
nated wells (Fig. 3.1). Drilling was done by hand flapper technique as describe by 
Horneman et al. (2004). The sediments from different depths of the drilled borehole 
were collected in January 2010. Water table depth was found to be in the range of 
2.10 to 2.60 m. The sediment samples were obtained at different depths ranging up 
to 35.00 m. To avoid direct contact with sunlight and oxygen the collected sedi-
ments were packed in two layers of zipped black polyethylene bags and brought and 
stored in the laboratory until analysis. The groundwater samples from 18 tube well 
sources located in the vicinity of the drilled well site were also collected. Standard 
procedures of groundwater sample collection and preservation were followed 
(Baviskar et al. 2015; Mahanta et al. 2015b). The in situ measurements for pH and 
electrical conductivity of the samples was done using a portable pH meter (pHTestr 
10 Eutech) and conductivity meter (ECTestr 11—Eutech). The collected groundwa-
ter samples were also transferred to the Environmental Engineering laboratory in 
IIT Guwahati for quantification of the physicochemical parameters.

2.3  �Sediment Analysis

Sediment samples were analyzed for Fe and As concentrations, organic content, 
carbonate content, moisture content and specific surface area. Elemental analysis 
was performed according to standard protocols for extraction of trace elements 
from sediments (as per D3974-8 (reapproved 2003) by ASTM validated by ISO 
11466:1995—Soil quality). The sequential extraction method was used to evaluate 
the metal distribution into different chemical forms present in solid phases (Tessier 
et al. 1979; Filgueiras et al. 2002). One gram of dry soil sediment samples were 
sequentially leached using deionized water (DIW) for quantification of the 

S. M. Baviskar and R. Choudhury



59

water-soluble fraction of As and other trace elements. For estimating the elements 
bound to carbonates, the first phase residue was extracted with 40 mL of 0.11 mol/L 
acetic acid (Tessier et al. 1979; Filgueiras et al. 2002). The second phase residue 
was then extracted by using 40 mL of 0.1 mol/L hydroxylammonium chloride to 
evaluate the elements in reducible phase, i.e., poorly crystalline and amorphous 
oxyhydroxides, followed by extraction with hydrogen peroxide to evaluate the oxi-
dizable phase, which contains the elements bound to the organic matter and sulfides. 
Finally, the last residue was extracted using aqua regia to estimate the residual phase 
which is the immobile phase (Baig et al. 2009). The extracts were filtered using a 
filter paper by adding 1 mol/L HNO3 solution in small quantities on the last residue 
in the centrifuge tube. The determination of Fe in the extracts was performed using 
flame atomic absorption spectroscopy (FAAS) and As by vapor generation assem-
blage (VGA) attached to FAAS. The calibration process for the determination of As 
and Fe using FAAS was followed using methods described in Hovind (2004). 
Table 3.1 shows the sequential extraction steps and the mobility of the elements 
evaluated together.

Organic and carbonate contents were evaluated by a loss on ignition method of 
Bengston and Enell (1986) and Dean (1974); while particle size distribution was 
determined using laser diffraction principle in a particle size analyzer (Master sizer 
2000, Malvern).

Mineralogy of the sediment samples was studied combining optical petrography, 
X-ray diffraction, and electronic scanning microscope (SEM) coupled with an 
energy-dispersive X-ray (EDX) analysis on the residuals obtained from each BCR 
protocol step. The mineralogical study (MAC Science XXP 18) was conducted on 
the residuals obtained from each sequential extraction protocol step by using X-ray 
powder diffraction with Cu Kα radiation and a position-sensitive detector. The 
accelerating voltage was kept at 30 kV and the current at 20 mA. A divergent slit 
(1°), a scattering slit (1°), and a receiving slit (0.2 mm) were used to produce the 

Table 3.1  Summary of the sequential extraction procedure followed in this research

Step Extractant Solid Phase

1 Deionized water Water Quantification of the water-soluble fraction of 
As and other trace elements

2 Acetic acid:
CH3COOH (0.11 mol/L) at 
pH 2.85

Exchangeable, water, and acid soluble (carbonates)

3 Hydroxyammonium chloride:
NH2OH.HCl, (0.1 mol/L)
at pH 2

Reducible (iron /manganese oxides)

4 Hydrogen peroxide:
H2O2

(8.8 mol/L) followed by 
ammonium acetate:
CH3COONH4,
(1.0 mol/L) at pH 2

Oxidizable (organics substances and sulfides)

5 Aqua regia: 3 HCL+ HNO3 Residual (remaining silicate bound metals)
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best spectrum. Scans were conducted from 4° to 80° at the rate of 1°– 2θ/min. The 
morphological investigation was also carried out on the residuals obtained from 
each phase of sequential extraction protocol by SEM-EDX, where the accelerating 
voltage was kept at 30 kV. The EDX was run with a lithium-drifted silicon detector 
at a resolution of 133 eV. The images were taken with maximum magnification. The 
mineral phases present in the residuals obtained from each BCR protocol step were 
also recognized by X-ray diffraction (XRD) analysis as described by Moeck (2008).

2.4  �Groundwater Analysis

Groundwater samples (n = 18) were analyzed for their chemical constituents like 
calcium, magnesium, sodium, potassium, chloride, bicarbonate, sulfate, phosphate, 
and nitrate. This was achieved using standard methods as suggested by the American 
Public Health Association (APHA—20th edition). Concentrations of Ca, Mg, and 
Na were measured using a flame photometer (Model: 128 Systronics). Standard 
solutions for the above analysis were prepared from respective analytical reagent 
grades. Chloride was measured using the argentometric method, sulfate was mea-
sured following a turbidimetric method, and phosphate was determined using an 
ascorbic acid method. Major anions HCO−

3, Cl−, PO4
3−, and SO42− were analyzed 

in unacidified water samples (APHA—20th edition). Quantification of HCO3− was 
done using a titration method. Arsenic concentrations were measured using a 
hydride generation technique (Haavard 2004) in FAAS with VGA. The instrument 
was calibrated, and the sample concentrations were confirmed using a series of As 
calibration standards of known concentrations. The calibration standards were pre-
pared from high purity single-element stock solutions.

3  �Results and Discussions

3.1  �Groundwater Chemistry

pH of the groundwater samples collected from 18 tube wells sources in the proxim-
ity of the drilled bore well was found to be ranging between 6.00 and 6.40. HCO3− 
dominated the anion chemistry with values ranging from 116.00 to 210.00 mg/L, 
while Cl− varied between 12.50 and 91.60  mg/ L.  Concentrations of SO42− and 
PO43− ranged between 1.50–46.70 and 0.22–2.40 mg/L, respectively. NO3− concen-
trations were low and ranged from 0.01 to 2.00 mg/L. Microbial degradation of 
organic matter in the aquifers results in the reduction of both SO42− and 
NO3

−(Mayorga et al. 2013; Yu et al. 2018b). Distribution of major cations in ground-
water (see Table 3.2) were Ca2+ (7.40–25.20 mg/L), Na+(14.00 – 48.60 mg/L), K+ 
(1.00–2.00 mg/L), and Mg2+ (1.80–6.10 mg/L). Concentrations of dissolved As, Fe, 
and Mn in groundwater in the study area are given in Table 3.2. Fe concentrations 
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in groundwater samples ranged between 0.95 and 42.88 mg/L, while Mn concentra-
tions ranged between 0.02 and 0.49 mg/L. The concentration of As from 18 sampled 
tube wells varied between 0.05 and 0.44 mg/L, with all samples having concentra-
tions above 0.01  mg/L (which is the WHO standard for safe drinking water). A 
recent study by Goswami et al. (2014) in the same district reported arsenic concen-
trations as high as 0.46 mg/L in groundwater, with 1.80% for 286 samples tested 
having As concentrations greater than 0.30 mg/L.

The magnitude of As contamination of groundwater in the Jorhat district seems 
alarming from the current study. The presence of cations and trace elements like Fe 
and Mn in groundwater (see Table 3.2) may relate their association with As as geo-
genic (Baviskar et  al. 2015). Lower pH (6.35) values of groundwater due to the 
presence of large anionic concentrations (see Table 3.2) and microbial decomposi-
tion of organic matter can create possible reducing conditions favorable for desorp-
tion and release of As from its geogenic sources (Lawson et  al. 2016; Yu et  al. 
2018a).

3.2  �Sediment Geochemistry

Variable concentrations of organic content, carbonate content, moisture content, 
and specific surface area were observed along different depths obtained from the 
borehole (see Fig. 3.2). Measurable organic content was found in the fine sand frac-
tions, with concentrations ranging between 1.49% and 4.32%. Carbonate content 
ranged between 1.59% and 4.9%. Since the study area is subjected to active fluvial 
deposition, the moisture content of the sediments was relatively high (Mukherjee 
et al. 2012). Geochemical results from the total digestion of sediment core samples 

Table 3.2  Groundwater geochemistry ((mg/L), pH and electrical conductivity (EC in μS/cm) of 
the study area (n = 18)

Parameters Max Min Mean Median Std. Dev

pH 6.8 6 6.4 6.35 0.25
EC 376 197 316 318.5 46.27
Na+ 48.63 14.09 33.35 34.39 9.43
Ca2+ 25.2 7.4 16.45 17.2 6.27
Mg2+ 6.12 1.8 4 4.18 1.52
Fe 42.88 0.95 17.13 14.94 11.14
K+ 1.95 1.05 1.34 1.38 0.29
Mn 0.49 0.02 0.24 0.21 0.14
HCO3

− 210 116 165.43 160 32.11
SO2−

4 46.7 1.5 13.8 9.15 11.82
Cl− 91.6 12.5 28.29 20.59 21.88
PO3−

4 2.4 0.22 0.7 0.39 0.61
NO−

3 2.02 0.01 0.64 0.38 0.63
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are shown in Fig. 3.3, which shows variations in concentrations of the two different 
elements. Fe concentrations ranged between 26,302.65 and 11,010.47 mg/kg and 
arsenic concentrations in sediments ranged between 1.79 and 3.77 mg/kg.

The presence of organic content and carbonate content found along the soil depth 
(see Fig. 3.2) may be because of biological decomposition of organic matter, which 
may be an additional factor for generating reducing conditions in the soil (Lawson 
et al. 2016; Yu et al. 2018a). The higher amount of moisture content of soil could 
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area along the depth
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cause easy migration for the trace elements into groundwater. Figure 3.2 shows that 
the soil samples obtained along the depth had a higher specific surface area. Thus, 
As associated possibly with Fe (Mn and Al) oxide/oxyhydroxides sorbed on these 
finer soil particles may get desorbed in reduction conditions (Bhattacharya et al. 
2013).

The observed concentrations of As in sediments are nearly within the natural 
range (Smedley and Kinniburgh 2002). The higher concentrations of Fe present 
along the soil depth as seen in Fig. 3.3 could help us to consider the presence of 
Fe–oxyhydroxides which may act as a sorbing surface for As (Acharyya 2002).

3.3  �Sequential Extraction

Sequential extraction analysis reveals that Mn- and Fe-oxyhydroxides are the major 
leachable As solid phases (see Fig. 3.4). The relative percentile quantification of 
iron showed crystalline phase (46.00%) followed by Fe–Mn oxides (22.00%), sur-
face and carbonate bound (20.00%), with minimum (13.00%) Fe bound to organics 
and sulfides (see Fig. 3.4a). The relative percentile measurment of arsenic showed 
that it was bound to the crystalline phase (89.00%) followed by Fe–Mn oxides 
(6.00%) then surface and carbonate (5.00%), with a small fraction (2.00%) bound 
to organics and sulfides (see Fig. 3.4b). As present in the residual phase at all depths 
was bound to the crystalline phase. Sequential extraction studies performed in the 
Bengal Delta plain have shown higher As present in the oxyhydroxide phases of Fe 
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(Reza et  al. 2010). The study area being predominated by aluminosilicates (clay 
minerals) has been highlighted by the SEM/EDX and XRD analysis (Fig. 3.5); the 
dominance of the residual phases can be justified since As and Fe are likely to be 
bounded significantly to the mineral structures of the silicate minerals. These miner-
als being relatively stable, compared to pH and redox-sensitive Fe–oxide/oxyhy-
droxides, are thus not expected to be sources of As to groundwater in our study area.

Sequential extraction data demonstrate that the highest proportion of the total 
extractable As is primarily associated with amorphous and crystalline Fe (Mn and 
Al) oxide/oxyhydroxides (see Fig. 3.4). Comparing to previous studies which are 
consistent with the observed results demonstrates that Fe(III) oxides/oxyhydroxides 
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Fig. 3.5  SEM and EDX of aquifer sediments at 23 m depth. (a) SEM and EXD of Untreated S23 
soil sediments; (b) SEM and EDX of Exchangeable S23 soil sediments; (c) SEM and EDX of 
Reducible S23 soil sediments; (d) SEM and EDX of Oxidizable S23 soil sediments; (e) SEM and 
EDX of Residual S23 soil sediments 
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are important hosts for arsenic (Haque et  al. 2008). Arsenic commonly gets 
associated with Fe(III) oxide/oxyhydroxides in aquifer sediments either by copre-
cipitation or by adsorption (Manning and Goldberg 1996, 1997). Under reduced 
redox conditions, these associated minerals are released to groundwater (Haque 
et  al. 2008). Specifically, the microbial-mediated reductive dissolution of Fe(III) 
oxides/oxyhydroxides which can release As into solution is hypothesized to be the 
primary source of arsenic in groundwater (Acharyya 2002).

3.4  �Aquifer Sediment Mineralogy

The SEM/EDX and XRD analyses of the sediment samples from that particular 
depth were carried out in order to understand how the different mediums like the 
exchangeable, reducible, oxidizable, and residual fractions might have affected the 
sediment morphology and mineralogy. A higher percentage of Fe is observed at 
23.00 m depth (sample S23) during sequential analysis for As in the sediment sam-
ple as shown in Fig. 3.5. EDX spectra further exhibited peaks for Cr in the oxidiz-
able and residual phases of the sediment sample. The SEM/EDX analysis profiles of 
the aquifer sediments shows that the mineralogy was dominated by aluminosilicates 
of Na, K, and Mg as well as that of Fe which were obtained from the depth of 
23.00 m.

The XRD analysis profiles of the sediment samples confirmed the presence of 
phyllosilicates (17-20-30), quartz (26.95, 26.85, and 27), NaCl (halite) (56), CaSO4 
(gypsum) (11.7, 46), CaCO3 (calcite) (46), feldspar (20–30, 27.5), Fe2O3 (hematite) 
(24.183), MgO (42.91), Al2O3 (45.86), AsS, and clay minerals (illite), with the bulk 
proportion being dominated by quartz, phyllosilicates, feldspars, and clay minerals 
(see Fig. 3.6). The amplitudes of the mineral peaks gradually diminished from the 
untreated soil to the residual step. Several minerals were sources of iron, manga-
nese, and arsenic in the aquifer sediments.

The EDX results acquired during sequential extraction steps indicated the pres-
ence of Na, K, Mg, and Fe bounded with silicates which could serve as adsorbing 
surface for As (Scott Fendorf et al. 1997). Peaks of Cr in all the steps of sequential 
extraction were visible in EDX graphs, but as EDX results are not sediment specific, 
which are insufficient results to consider Cr to be generally spread all over the aqui-
fer. The presence of Cr in the aquifer sediments could possibly be due to the diage-
netic processes involving iron oxides and aluminosilicate, which appears to be the 
most vital factor controlling the behavior of As and Cr in sediments 
(Sompongchaiyakul and Sirinawin 2004). The SEM and EDX analysis results fur-
ther revealed that the magnitude of agglomeration decreased from the first to the last 
step, and the EDX results supported the SEM grain mineralogy, where the ampli-
tude of the occurrence of the peaks representing respective elements decreased, 
suggesting a reduction of their relative concentration in the corresponding phases. 
The morphology of the different sequential extraction phases showed that the state 
of agglomeration decreased from the untreated sediment followed by the exchange-
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able phase to the residual state. Agglomeration of the sediment samples rendered 
different textures in the different phases indicating release of adsorbed elements 
into the groundwater when these sediments come in contact with changed chemical 
environment. Textural change of the sediment surfaces on which adsorption of Fe, 
Mn, and As may take place is also pointed out by the SEM and EDX analysis of 
sediment samples subjected to sequential extractions (see Fig. 3.5). Results of the 
SEM analysis also indicated that the sediment grains were moderately rounded to 
well rounded, suggesting that the sediments must have been transported over dis-
tance before deposition and the source of these sediments are not local, hinting that 
the Himalayas could be a possible provenance (Baviskar et al. 2015).

Results of the XRD analysis were in compliance with the sequential extraction, 
as the XRD analysis showed the presence of quartz in high amount, and the residual 
phase was mostly in crystalline phase (see Fig. 3.6). The lithology confirmed that 
the fine sediments composed of iron-bearing minerals and clay minerals including 
illite, as indicated by the XRD analysis, could be possible sources of As.

Fig. 3.6  XRD of aquifer sediments at 23 m depth
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Geochemical studies using sequential extraction results and scanning electron 
microscopy on our sediment samples demonstrate that Fe oxyhydroxides and Fe 
oxyhydroxide-coated quartz and feldspar are the dominant carriers of As in the sedi-
ments. Results of sediment and groundwater analyses support the mechanism of 
reductive dissolution of iron hydroxides and the concomitant release of sorbed or 
coprecipitated As into the groundwater. This mechanism can explain As concentra-
tions in the groundwater up to 0.44 mg/L in the proximity of the bore well.

4  �Conclusion

In this research, we investigated the chemical characteristics and nature of As 
released into the groundwater from aquifer sediments of Brahmaputra alluvial plain. 
The study improved our understanding of the solid and dissolved arsenic fate in the 
aquifer under study. The arsenic concentrations in the groundwater samples were 
above the WHO guidelines of 0.01 mg/L and ranged between 0.05 and 0.44 mg/L. In 
the target aquifers, low concentration of NO3

− and SO4
2− coupled with a high con-

centration of HCO3
−, which provided strong reducing conditions, was observed. 

Results of the sequential extraction and the presence of Fe oxyhydroxide phases as 
indicated by the SEM/EDX and XRD analysis further support the reductive dissolu-
tion of Fe oxyhydroxides as the potential mechanism of arsenic release in ground-
water. With no major industrial activities in the study area, arsenic contamination in 
the region is indicated to be of geogenic origin. Thus, the arsenic-rich phases in the 
aquifer remain the only likely source of arsenic in groundwater. More studies on 
source and processes of arsenic release and mobilization are required to better 
understand the arsenic contamination of groundwater in the region.
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Chapter 4
Sources of Arsenic Exposure in Well-
Nourished Children

Torsak Tippairote, Weeraya Karnpanit, and Dunyaporn Trachootham

Abstract  Arsenic contamination is a global burden and arsenicosis is mostly found 
in poor children living in highly exposed area. However, recent evidences suggest 
that continuous low-level exposure of arsenic can also link with some health haz-
ards. Therefore, this book chapter will describe the potential exposure sources of 
arsenic in the context of healthy, well-nourished children who lived in non-polluted 
area. Prevalence, biomarkers and factors affecting arsenic exposure in well-
nourished children will be described based on current scientific evidences. Sources 
of As exposure in well-nourished children including environmental, dietary sources 
and the relationship between both sources of arsenic will be discussed. Reference 
level/ safety limit of exposure from multiple sources of arsenic will be summarized. 
Methods of exposure assessment will be described. Furthermore, several perspec-
tives for future research will be addressed such as the need for establishment of 
cut-off level to categorize high As exposure group, data collection method for esti-
mation of dietary exposure to As, identification of underrepresented sources of As 
in well-nourished children and strategies to raise awareness and create sustainable 
preventive measures of arsenic contamination.

1  �Introduction

Arsenic contamination is widespread. Toxic levels of arsenic are well documented 
in natural water sources, soils, food crops, air, household environment, foods and 
consumer products. Arsenic is detected even in cosmetic products such as eye 
shadow, vaccines and house dust (Sainio et al. 2000; Hepp et al. 2014). Thus, human 
exposure to arsenic is almost inevitable. Based on exposure prevalence and poten-
tial impact on human health, the Agency for Toxic Substances and Disease Registry 
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(ATSDR) of the Unites States of America (US) ranked arsenic as the first in the 
hazardous substance priority list, (ATSDR 2017). Many studies showed detectable 
arsenic level in various human biological tissues such as peripheral blood, cord 
blood, red blood cells, plasma, serum and urine (May et al. 1986; Sakai et al. 2017; 
Minichilli et al. 2018).

Among the possible arsenic exposure routes, contaminated groundwater is the 
known biggest threat to public health (WHO 2018). People who lived in the pol-
luted area are continuously exposed to arsenic via drinking and cooking water, irri-
gation, the backyard soil, air and local agricultural products (Arcega-Cabrera et al. 
2017). The World Health Organization (WHO), European Union (EU), and United 
States Environmental Protection Agency (US EPA) set the drinking water arsenic 
level standard at 10 μg/L (Council 1999; ATSDR 2007; WHO 2018). In 2006, sev-
enty countries were reported to have arsenic level in drinking water above the WHO 
standard (Chakraborti et al. 2018). While moderate to high concentrations of arsenic 
in groundwater were found in 107 countries (Chakraborti et al. 2018). Approximately 
296 million individuals worldwide are at risk of arsenic toxicity (Chakraborti et al. 
2018). For example, a survey of municipal water supplies by the Kolkata Municipal 
Corporation (KMC) in India concluded that, on average, a person in the communi-
ties consumed 0.95 mg arsenic per kilogram of body weight per day (per kg bw/ 
day) with an estimated cancer risk of 1.425 × 10−3 (Chakraborti et al. 2018).

In areas with standard complied water quality (arsenic level lower than WHO 
standard), people are still possibly exposed to arsenic via other different routes such 
as food products, wood preservatives, cigarette smoking or air pollution (Edlich 
et al. 2005; Hojsak et al. 2015; Molin et al. 2015; González-Castanedo et al. 2015; 
Hays et al. 2006). For example, a recent study in South Australia reported 53% of 
rice-based food samples from supermarket contain arsenic exceeding EU recom-
mended value (100 μg/kg) for young children (Chakraborti et al. 2018). Furthermore, 
emerging studies reported growing concerns on cumulative low-level exposure 
(<10 μg/L) and potentially health risk. For example, detrimental effects on cognitive 
status of adults and elders were associated with long term residents in two counties 
of Texas, United States, where the average arsenic ground water levels were 3.0 and 
7.4 μg/L, respectively (O’Bryant et al. 2011). The impacts of chronic exposure to 
low-level arsenic include neurodevelopmental defects, immune-maturation and oth-
ers adverse events associated with alteration in genetic and epigenetic expression 
(Reichard et al. 2007; O’Bryant et al. 2011; Schmidt 2014). Importantly, younger 
children are more vulnerable than older children and adults due to their distinctive 
high susceptibility to toxins (ATSDR 2007).

To increase awareness about the potential health impacts of chronic exposure to 
low-level of arsenic, here we review the potential exposure sources of arsenic in the 
context of healthy and well-nourished children who lived in non-polluted area.
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2  �Prevalence of Arsenic Exposure in Well-Nourished 
Children

2.1  �Biomarkers of Arsenic Exposure

To quantify the absorbed arsenic dosage in human tissues, there are a number of 
biomarkers to be considered. Total arsenic level in blood, urine, hair and nail sam-
ples have been used and studied as the biomarkers of exposure (Hughes 2006). Total 
urinary arsenic is the most common biomarker of exposure for inorganic arsenic 
(iAs) (Hughes 2006). Studies had already shown association between environmen-
tal arsenic levels to the levels in these tissue samples. For examples, level of arsenic 
contamination in water sources and daily intake levels were associated with detected 
arsenic levels in blood, urine and hair samples (Valentine et al. 1979; Kurttio et al. 
1998). Arsenic concentrations in the air were also shown to be associated with mea-
sured arsenic levels in fingernails (Agahian et al. 1990). However, the arsenic level 
in these biological tissues carry their inherited differences and the measured level 
may be confounded by consumption of seafood containing high concentrations of 
organic arsenic (Karagas et  al. 2000). Understandings of their unique sources of 
exposure are needed to accurately interpret the exposure level from different tissue 
samples.

In blood samples, total arsenic levels represent only short-term exposure due to 
its rapid clearance from the blood within a few hours after oral ingestion (Tam et al. 
1979; Vahter et al. 1983). Therefore, the role of blood arsenic level as the biomarker 
of ongoing exposure in healthy unexposed children is quite limited. The possible 
application is when a physician needs to confirm the recent history of patient’s 
exposure and acute clinical presentations with possible arsenic poisoning (True 
2002).

In animal models, 75–98% of initial arsenic dosage were continuously excreted 
via urine for up to 3 days following single intravenous injection (Vahter et al. 1983). 
Hence, urine arsenic level can be used as an indicator of longer exposure duration 
than blood level. In a study, urinary arsenic levels were shown to be inversely cor-
related to the distance of children’s residence from the site of copper smelter stack 
(Milham and Strong 1974). While the arsenic levels in environmental samples were 
steadily decreased with the distance, the urinary levels were constant at background 
level after one-half mile beyond the smelter site (Polissar et al. 1990). Therefore, 
total urinary arsenic level is apparently not the ideal indicator for ongoing low con-
centration exposure in non-exposed population. The total arsenic level can also be 
confounded by exposure to less toxic organic arsenic from consumption of seafood, 
especially seaweed (Hughes 2006). However, one can choose to measure urinary 
inorganic arsenic and its methylated metabolites, specifically monomethylarsonic 
acid (MMA), to exclusively estimate inorganic arsenic exposure (Yamauchi et al. 
1989; Council 1999; Aylward et al. 2014). Inspite of its relatively short-term expo-
sure indicator, urine arsenic level is generally used as the biomarker for conducting 
studies on people who lived or worked near polluted areas (Milham and Strong 
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1974; Pinto et al. 1976; Enterline et al. 1987; Polissar et al. 1990; Minichilli et al. 
2018). A recent study showed high urinary porphyrins in arsenic exposed group; 
thereby, proposed urinary porphyrins as an early warning biomarker for chronic 
arsenic exposure especially in younger (less than 20 years old) population (Wang 
et al. 2002). Nevertheless, for the healthy unexposed children, urine arsenic level is 
still not the optimal biomarker of exposure.

In response to growing issues of chronic low-level arsenic exposure to children 
health, arsenic level in hair and nail samples seems to be superior biomarker to those 
in blood and urine samples. Many studies showed that the arsenic levels in hair and 
nail samples represented the long-term exposure ranging from 1 to 12 months ear-
lier (Valentine et al. 1979; Bencko et al. 1986; Choucair and Ajax 1988; Yamauchi 
et al. 1989; Agahian et al. 1990; ATSDR 2007). In addition, the simplicity and non-
invasive nature of sampling hair and nail make them more appealing choices in 
specific conditions such as repeated wide population studies or in young children 
group. However, subpopulation reference levels and quality control analysis are 
needed to ensure minimal inter- and intra-laboratory variations and accurate inter-
pretation of results (Puchyr et al. 1998; Kempson and Lombi 2011; Namkoong et al. 
2013; Wolowiec et al. 2013). To date, the most concerning issues for analysis of 
element in hair and nail samples are external incorporation of the elements into hair 
and nail. These contamination can be minimized by standardized sample collection, 
handling, washing and processing methods (Puchyr et al. 1998).

In general, urine arsenic levels are preferred for estimation of exposure level in 
individuals who lived near a polluted area (Milham and Strong 1974). Blood arsenic 
level is reserved for determination of acute intoxication in clinical settings such as 
unintentional or intentional ingestion of arsenic containing medications (ATSDR 
2007). Furthermore, skin hyperpigmentation and dermatologic lesions such as pal-
moplantar hyperkeratosis have been proposed as a long-term biomarker of cumula-
tive arsenic exposure (Puchyr et al. 1998). Nonetheless, in children who lived in 
areas with no documented source of arsenic contamination together with concerns 
of cumulative ongoing exposure, hair and nail arsenic levels may be the suitable 
biomarkers for exposure assessment.

2.2  �Prevalence of Arsenic Exposure in Well-Nourished 
Children

According to the data of U.S. National Health and Nutrition Examination Survey 
(NHANES), the average urinary total arsenic levels of 6–11-year-old children grad-
ually decreased from 8.30 μg/L in 2003 to 5.21 μg/L in 2014 (Puchyr et al. 1998). 
However, the average levels in high exposure groups, represented by 95th percentile 
rank, were not following such decreasing trend. These levels ranged from 29 to 
53 μg/L, which were 5–9 times of the average levels in the corresponding survey 
cycles. However, the reported levels in high exposure group were still not exceeding 
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the ATSDR’s upper limit level of 100  μg/L in unexposed individuals (ATSDR 
2007). The findings suggested that the national arsenic exposure control measures 
were effective to decrease the exposure levels in general population. However, cer-
tain groups of children were still vulnerable to potentially high exposure level.

A 2018 study from Thailand reported 36% prevalence rate of high arsenic level 
in hair samples of 3–7-year-old children who lived in urban area with no known 
arsenic polluted sites in surrounding area. Most of the children were well-nourished 
according to WHO BMI-for-age Z-score nutritional status categorization (Tippairote 
et al. 2018). The average hair arsenic level in these children was 0.18 μg/gm, while 
the average level in high exposure group and the maximal level were three and ten 
times higher than this level, respectively (Tippairote et al. 2016, 2018). Two sepa-
rate studies in Russian 3–4-year-old and 2–9-year-old healthy children showed 
average hair arsenic levels at 0.08 and 0.03 μg/gm, respectively (Skalny et al. 2017a, 
b). Healthy unexposed children from Brazil, U.K, German, France, Czech Republic, 
and Poland had the average urinary total arsenic level at the range of 3.60–6.73 μg/L 
as compared to 5.21–8.30 μg/L in U.S. children from previously mentioned report 
(Trepka et al. 1996; White and Sabbioni 1998; de Burbure et al. 2006). Among these 
studies in healthy children, there were certain variations in arsenic exposure level 
depending on the area of studies and degree of local environmental arsenic contami-
nation. Alarmingly, the number of healthy children with high arsenic levels seems 
to be higher than expected. In the Thai study, more than one out of three healthy 
children had high hair arsenic levels (Tippairote et al. 2018). Long term impacts of 
accumulated arsenic exposure on healthy development of these children warrant 
further investigation.

2.3  �Factors Affecting Arsenic Exposure in Well-Nourished 
Children

Children are more vulnerable to low-level arsenic exposure than adults (Chiba and 
Masironi 1992). For example, the relatively low arsenic concentration in tobacco 
did not affect the urinary total arsenic level in cigarette smoking adults, while the 
urinary levels in their children were proportionally associated to number of smoking 
parents living in the same houses (Chiba and Masironi 1992). Younger ages are 
more affected because of their innate lower tolerance to arsenic exposure due to 
various physiological and behavioral factors. These include the lower body weight 
in relation to the exposure dosage, larger skin surface in proportion to children body 
volume, immature absorption and excretion processes, immature hepatic biotrans-
formation enzymes and others (ATSDR 2007).

Children behaviors also affect their arsenic exposure levels. Comparing to adult, 
children spent more time outdoor, stay closer to the contaminated ground, less likely 
to discriminate hazardous or unhygienic items and sometimes eat inappropriate 
things (NRC 2001). Hand-to-mouth behaviors in children are common and probably 
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are their main exposure determinants (NRC 2001). Other family, socioeconomic, 
lifestyle and environmental factors also determine children arsenic exposure. Family 
socio-economic constraints can make them less likely to get access to good quality 
toys with less arsenic contamination (NRC 2001). Outdated copper arsenate treated 
wooden playground may still exist in their neighborhood. Family traditional beliefs 
and medical practices may possibly expose children to arsenic containing herbs or 
medications in contrast to modern healthcare options with minimal exposure to 
toxic substances including arsenic (ATSDR 2007). At the other end, children in high 
income family may be exposed to arsenic due to frequent access to high arsenic 
containing seafood meal or seaweed snacks (Awata et al. 2017). Our previous study 
showed that children who lived in the big city had higher level of arsenic in hair 
sample than those who lived in surrounding area (Tippairote et  al. 2018). Up to 
certain level, the cumulative arsenic exposure from different sources may eventually 
exceed the children's tolerance levels to toxin. This may explain the high arsenic 
levels found in tissue samples of well-nourished children with little or no history of 
exposure to arsenic.

It is worth noting that arsenic metabolism in children may differ from that of 
adults (Skröder Löveborn et al. 2016). For example, a previous study in Bangladesh 
found higher percentage of dimethylarsinic acid (DMA) and lower percentage of 
iAs in urine of 9-years-old children, compared to their mothers at pregnancy 
(Skröder Löveborn et al. 2016). Efficiency of arsenic methylation in children was 
strongly associated with plasma selenium and folate status (Chiba and Masironi 
1992). Therefore, the level of arsenic in biological specimens may also be influ-
enced by adequacy of these nutrients.

3  �Sources of Arsenic Exposure in Well-Nourished Children

Arsenic is a ubiquitous element. Therefore, exposure to arsenic arising from both 
natural processes and human activities is unavoidable. Children may become 
exposed to various arsenic forms (inorganic and organic) depending on geochemi-
cal occurrence and the levels of human activities in their living area. Arsenic expo-
sure can occur via ingestion, inhalation and dermal absorption (GomezCaminero 
et al. 2001; WHO 2011a). The primary routes of arsenic exposure are via ingestion 
of arsenic contaminated food and drinking water as well as accidental soil ingestion 
in young children (GomezCaminero et  al. 2001; WHO 2011a; De Miguel et  al. 
2017; Cubadda et al. 2017; ATSDR 2007). Arsenic exposure through inhalation can 
occur in children living in areas with high arsenic-containing air such as mining and 
smelting sites and industrial areas. Dermal exposure happens rarely (ATSDR 2007; 
Hong et al. 2014).
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3.1  �Environmental Sources

Arsenic exists mostly in bound form. Binding to carbon, iron, oxygen, and sulfur 
results in a variety of inorganic and organic arsenicals in various oxidation states. 
Environmental arsenic comes from natural, anthropogenic and use of arsenic con-
taining products (Hughes 2006).

3.1.1  �Natural Sources

Primarily inorganic arsenic is ubiquitously found in soil, air, and water. There are 
over 200 mineral species containing arsenic. The background levels of arsenic in 
soil range from 1 to 40 mg/kg (WHO 2001). Children may get exposed to contami-
nated soil via touching, eating, breathing and eye contact. Soil microorganisms and 
volcanic activity release arsenic into the air (Hughes 2006). Arsenic air levels vary 
across geographical area around the world. Lower levels of air arsenic were found 
in rural areas (0.007–28 ng/m3), while higher levels of air arsenic were observed in 
urban areas (3–200 ng/m3) (WHO 2001). Therefore, well-nourished children living 
in a city may actually inhale higher level of arsenic. Since water can dissolve min-
eral species and release arsenic, inorganic arsenic (iAs) was found in ground water, 
seawater and fresh water (Hughes 2006). The range of water from sea and river was 
1 to 10 μg/L (WHO 2001) while arsenic in ground water could be 1000 times greater 
than those ranges (Nordstrom 2002). Chakrabarti et al. wrote that about 107 coun-
tries have reported moderate to higher concentrations of arsenic in their groundwa-
ter. There were 296 million individuals potentially at risk of arsenicosis due to the 
consumption of arsenic through drinking, cooking, and irrigation water and food 
materials. Almost 59% of the 56 Asian countries have reported groundwater arsenic 
contamination issues (Chakraborti et al. 2018).

3.1.2  �Anthropogenic Sources

Nonferrous metal smelters and coal-burning energy plants are major anthropogenic 
sources of iAs. These processes contaminate air, water, and soil with iAs. Arsenic in 
air at a copper smelter in Tacoma, Washington, USA exceeded 1000 μg/m3 during 
certain periods of its operation (Enterline et al. 1987). Furthermore, manufacturing 
of arsenical pesticides and the improper operation of metal mining may contaminate 
the environment with iAs (Hughes 2006). Therefore, inhalation of arsenic contami-
nated air is commonly found in people working in or living near nonferrous smelt-
ers, coal burning industry and pesticide manufacturing plants. And they are generally 
considered as high-risk group of arsenic toxicity. In fact, a recent study in Chile 
reported that air As in the work-site of copper smelting were ranging from 0.0012 to 
0.092 mg/m3 (Schultze and Pastene 2018). These numbers exceeded the threshold 
limit of 0.01 mg/m3, established by both American Conference of Governmental 
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Industrial Hygienists (ACGIH) and Occupational Safety and Health Administration 
(OSHA) (ACGIH 2003; OSHA 2017). Consistently, the urine sample of all workers 
in the copper smelting area during 2007–2010 contained high As exceeding the 
permissible exposure limit of 35 μg/g creatinine (Schultze and Pastene 2018).

3.1.3  �Product Uses

There are a variety of commercial, medical, veterinary and pesticide products con-
taining arsenic. For example, semiconductors, glass, toys, preservatives, pesticide, 
growth promoter in farm animals and chemotherapeutic agents could be source 
of arsenic (Hughes 2006; WHO 2001). Well-nourished children living in city may 
be exposed to arsenic through uses of such products. Recently, wood preservatives 
containing chromated copper arsenate (CCA) has been found to be a potential 
source of arsenic exposure in well-nourished children living in residential area. 
CCA-treated wood is found in many residences and playgrounds in the United 
States. A study found five-fold increase of water-soluble arsenic on the hands of 
children who played on playgrounds built with CCA-treated wood compared to 
those without CCA-treated wood (Kwon et al. 2004). The concern is raised when 
children use their hands to eat food. In 2003, the use of CCA-treated wood in homes 
and playgrounds was voluntarily withdrawn owing to the concern about exposure to 
children (Hughes 2006). In conclusion, the major sources of environmental arsenic 
exposure in well-nourished children are air inhalation in urban area and direct/indi-
rect contact to the arsenic containing products. Nevertheless, the absorption of iAs 
after inhalation or dermal exposure is less than after oral exposure (NRC 1999; 
WHO 2001). Thus, dietary sources of arsenic exposure may be more important than 
other routes.

3.1.4  �Dietary Sources

The most important source of non-occupational human exposure to arsenic is diet. 
In the United States, the estimated daily intake of arsenic ranges from 2 to 92 μg/
day (Tao and Bolger 1999). Overall, organic arsenic is the major form of dietary 
arsenic. Organic arsenic (e.g. arsenobetaine) is mostly found in seafood such as 
shell fish (1.1 ppm to 30 parts-per-million (ppm), prawn and shrimp (42–174 ppm) 
(WHO 2001). In contrast, levels of inorganic arsenic (iAs) are highest in grains, 
fruits and vegetables. iAs contributes to 17–24% of total dietary arsenic (Schoof 
et al. 1999).

Drinking Water

The most important dietary medium of arsenic exposure is drinking water (Hughes 
2006). Exposure to arsenic particularly inorganic forms via drinking water is an 
important public health issue worldwide (Ng et  al. 2003; Naujokas et  al. 2013; 
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Singh et  al. 2015b). In groundwater, inorganic arsenic (iAs) namely arsenate 
[As(V)] and arsenite [As (III)] are the dominant forms of Arsenic (WHO 2011a; 
Baig et al. 2016). Low level (less than 0.3 μg/L) of organic arsenic such as methyl-
ated arsenicals can be found in natural water (WHO 2011a). In general, arsenic 
concentrations in drinking waters are low; however, there are some areas where 
people are exposed to drinking water contaminated with high arsenic levels. If water 
with arsenic levels exceed 10 μg/L is used for drinking and cooking, it will be the 
major inorganic arsenic exposure source (FAO/WHO 2011). Approximately 200 
million people worldwide are affected from arsenic-containing drinking water, and 
around 31 million people in South Asian countries consume drinking water with 
extremely high level of arsenic (greater than 50 μg/L) (Kordas et al. 2016; Rahman 
et al. 2009). Interestingly, a study in Pakistan reported high arsenic concentrations 
(up to 98 μg/L) of groundwater from hand pump machines in several districts, while 
the arsenic in municipal treated water samples were not above the WHO recom-
mended level of 10 μg/L (Baig et al. 2016). Risk assessment of drinking water in 
Pakistan children aged 6–15 years old showed that young children in certain dis-
tricts of Pakistan had high risk of carcinogenic and non-carcinogenic chronic arse-
nic toxicity (Baig et al. 2016). Likewise, another study in Patna district, in Bihar 
state in India, reported an estimated high cancer risk of 19 per 1000 and 87 per 1000 
for 5–10-year-old children living in Rampur Diara (RD) and Haldichapra (HC) 
area, respectively (Singh and Ghosh 2012). Such high-risk estimation was based on 
consumption of drinking water contaminated with 231 μg/L and 52 μg/L in RD and 
HC, respectively. These numbers exceeded both WHO guideline of 10 μg/L and the 
Bureau of Indian Standards (BIS) standard of 50 μg/L (Singh and Ghosh 2012).

Several studies showed that continuous exposure of arsenic via drinking water 
increased arsenic levels in biological specimens. A study in Bangladesh showed 
high levels of arsenic in hair samples (0.33–3.29 μg/g (ppm)) of children under 
12 years (Uddin et al. 2006). The average level was higher than maximum accept-
able level of 1 ppm (Uddin et al. 2006). The study concluded that such high levels 
resulted from longtime intake of arsenic-containing groundwater (Uddin et  al. 
2006). Interestingly, a study by Kurttio et al. concluded that an increase of 10 μg/L 
of arsenic in drinking water led to an increase of 0.1 μg/g arsenic in hair (Kurttio 
et  al. 1998). Likewise, another study by Karagas et  al. found strong correlation 
between arsenic in drinking water (greater than 1 μg/L) and in toenails (r = 0.83, 
p = 0.0001) (Ab Razak et al. 2015). A ten-fold increase of arsenic in well water 
resulted in a two-fold increase of arsenic in toenails (Karagas et al. 1996).

For well-nourished children living in areas with no geological or anthropogenic 
contamination of arsenic, low levels of arsenic were found in groundwater and 
drinking water. Therefore, those children may have low exposure of arsenic from 
drinking water (Kordas et  al. 2016; EFSA 2014). A study in urban city of India 
showed that 82% of tap water samples and 100% of filtered water samples had arse-
nic within the accepted limit (0.01 mg/L) (Singh et al. 2015a). Therefore, filtering 
water should be recommended. Consistently, another study in an urban part of Iran 
found that water treatment facility played an important role in reducing arsenic 
concentration in drinking water from 39 μg/L to 9 μg/L (Mosaferi et al. 2014).
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Food

Food is one of the significant sources of arsenic exposure in general population 
including children (WHO 2001; FAO/WHO 2011; Mosaferi et al. 2014). Arsenic 
contents in foods from different countries vary significantly depending on many 
factors such as the food type, cultivating conditions (soil, water, pesticides, and 
fertilizers) and geochemical activity. High arsenic levels are found in fish and shell-
fish, dried seaweed and rice. Lower contents of arsenic are detected in cereals, veg-
etables, fruits, and dairy products (GomezCaminero et al. 2001; WHO 2011a; FAO/
WHO 2011; Sigrist et  al. 2016). Fish and shellfish have been reported as major 
dietary arsenic sources; however, these food commodities mostly contain organic 
arsenicals especially arsenobetaine which are less toxic form of arsenic compounds. 
The ratio of inorganic arsenic in fish and shellfish usually does not exceed 10% of 
the total arsenic content (GomezCaminero et al. 2001; FAO/WHO 2011). Extremely 
high arsenic concentration, varying between 30 and 130 mg/kg, was reported in 
dried seaweed, (WHO 2011a). A seaweed species, namely Hijiki (Hizikia fusi-
forme), found in Chinese, Japanese and Korean cuisines contains high level of inor-
ganic arsenic of 67–96 mg/kg (Rose et al. 2007). To prevent high dietary exposure 
to inorganic arsenic, seaweed should be avoided especially in children diet (Rose 
et al. 2007).

Agriculture in most Asian countries relies on groundwater for irrigation. 
Therefore, iAs in contaminated groundwater can be transferred to crops in the food 
chain. A study in India found 19% of irrigation water samples from 597 irrigation 
tube wells located in West Bengal, exceeded the FAO standard for irrigation water 
of 100 μg/L (Chakrabarti et al. 2018). Consistently, 76% of the crops irrigated by 
such contaminated water contained inorganic arsenic (Chakrabarti et  al. 2018). 
Likewise, another study in Ganga River basin (GRB) area, which covers parts of 
India, Bangladesh, Nepal, and Tibet, reported hazardous levels of As in irrigation 
water (about 1000 μg/L) exceeding the FAO standard, and in food materials (up to 
3947 μg/kg) exceeding the Chinese Ministry of Health’s standard (0.15 mg/kg) for 
food in South Asia (Chakrabarti et al. 2018). Due to soil and water contact, terres-
trial plants particularly rice contains higher levels of inorganic arsenic (both triva-
lent and pentavalent) than those of other commodities (Sigrist et al. 2016; Rintala 
et al. 2014; Khan et al. 2010). Rice can intrinsically accumulate high levels of inor-
ganic arsenic compared to other cereals since it is commonly grown under flooded 
conditions with high arsenic mobility (Munera-Picazo et al. 2015; Zhu et al. 2008; 
Xu et al. 2008). The ratio of inorganic arsenic to total arsenic in rice varies from 10 
to 100% (Williams et  al. 2005; FAO/WHO 2011). Recently, rice and rice-based 
products for baby and young children are of concern as major source of inorganic 
arsenic exposure if they consumed it on daily basis (Zhu et al. 2008; Meharg et al. 
2008; Shibata et al. 2016). Other cereal-based foods such as bread and rolls were 
reported as the main contributor for arsenic exposure in European children (Mosaferi 
et al. 2014). Although most milk and dairy products contain undetectable or low 
levels of total arsenic and inorganic arsenic, high consumption these products in 
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some countries makes them major contributors to inorganic arsenic dietary expo-
sure of infants and toddlers (FAO/WHO 2011; Mosaferi et al. 2014).

3.2  �Relationship Between Environmental and Dietary Sources

Compared to children living near smelter, coal-burning energy plants or pesticide 
manufacturing factories, well-nourished children living in urban area may have less 
chance of direct arsenic exposure. However, migration of arsenic from environment 
along food chain is possible. Consumption of such arsenic contaminated diet may 
pose hidden health risk. Consumption of animal produces grown by contaminated 
drinking water, milk, and feeds may be considered as alternative source of arsenic 
exposure in well-nourished children. In fact, a recent study in West Bengal in India 
showed that egg, all organs of poultry, cows and milk in arsenic endemic area retains 
significantly high concentration of arsenic (Datta et  al. 2012). This is consistent 
with previous reports of arsenicosis in this endemic region even though they had 
been supplied with arsenic-free drinking water for over 12 years (Datta et al. 2010; 
All India Institute of Hygiene and Public Health 1996). Likewise, a study in 
Bangladesh found that arsenic concentrations in rice straw, husk and grains were 
higher in areas with high concentration of arsenic in groundwater and soils (Kabir 
et al. 2016). Thus, growing crops in arsenic contaminated soil or irrigation water 
could be responsible for accumulation of arsenic in crops. Naturally, vegetables and 
fruits contain low levels of arsenic, and it was reported that arsenic was not detected 
in 86% and 83% of vegetables and fruits, respectively. However, high arsenic con-
tents could be found in vegetables grown in arsenic contaminated soil or irrigated 
with arsenic contaminated water (FAO/WHO 2011; Smith et  al. 2006; Rehman 
et  al. 2016). Vegetables grown with arsenic contaminated water collected from 
Bangladeshi households had unusually high arsenic and inorganic arsenic maxi-
mum contents of 2.3 and 1.7 mg/kg, respectively (Smith et al. 2006). Of these, up to 
14% was attributable to inorganic arsenic in cooked rice. High levels of arsenic 
(exceeding 1 mg/kg) in vegetables such as bitter melon and luffa grown with arsenic 
contaminated water in Pakistan were reported (Rehman et al. 2016). Importantly, a 
study in an endemic area of chronic arsenicosis, in Bengal Delta in India, reported 
high amount of As in multiple crops including 194 μg/kg in boro rice and 156 μg/kg 
in aman rice (Samal et al. 2011). Urine analysis of adults and children in this area 
consistently showed high level of As (between 154 and 276 μg/L) in urine, with 
overall As retention of 50–60% (Samal et al. 2011). An in vivo study in animals 
showed that 90% bioavailability of iAs from rice consumption (Juhasz et al. 2006). 
Furthermore, rice consumption leads to an increased excretion of iAs (Davis et al. 
2012). Thus, it is highly likely that indirect exposure of As through consumption of 
the contaminated crops may induce arsenicosis (Munera-Picazo et  al. 2015). 
Nevertheless, further studies are needed to demonstrate direct relationship between 
consumption of iAs-contaminated food and risk arsenic-related diseases.
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In conclusion, consumption of arsenic contaminated grains and vegetables 
moves arsenic through food chain (from-farm-to-table). This could be the major 
sources of arsenic exposure in well-nourished children.

3.3  �Reference Level/Safety Limit of Arsenic Exposure

3.3.1  �Exposure Source

Water

	(a)	 Drinking water: World Health Organization provisional guideline for drinking 
water quality recommends that iAs in drinking water should not exceed 
0.01 mg/L (10 μg/L) (WHO 2011a, 2017). It is worth noting that some highly 
contaminated countries such as India, a permissible limit in absence of an alter-
native source is 0.05 mg/L (50 μg/L) (WHO 2005; WHO India 2018).

	(b)	 Irrigation water: The FAO’s recommended maximum concentration level of 
iAs in irrigation water is up to 100 μg iAs/L (Ayers and Westcot 1994). The 
maximum concentration is based on a water application rate of 10,000 m3 per 
hectare per year, which is consistent with good irrigation practices (Ayers and 
Westcot 1994).

Food

Since the reduction of permissible inorganic arsenic in drinking water to 10 μg/L the 
contribution of As exposure through rice and rice-based products became an increas-
ingly important. In 2014, Codex Alimentarius Commission has established a maxi-
mum limit of 200 μg iAs/kg in rice (Codex Committee on Food Additives and 
Contaminants 2017; Munera-Picazo et al. 2015). Consistently, European Union rec-
ommended 100 μg iAs/kg and 200 μg iAs/kg of inorganic arsenic for young chil-
dren and adult, respectively (Chakrabarti et al. 2018). For countries consuming rice 
as staple food, the safety standard has been set at lower level. For example, People’s 
Republic of China set the strictest regulation, with a maximum threshold of 150 μg 
iAs/kg for rice (Heikens 2006; Chakrabarti et al. 2018). For countries without rice 
as staple food such as Australia, the maximum permissible concentration (MPC) for 
As in rice is 1 mg/kg (Heikens 2006; Food Standards Australia and New Zealand 
2018). Besides rice, safety limit values of iAs for other foods in China are also 
lower than those of Australia; i.e. 100 μg iAs/kg of fish in China, compared to 2 mg 
iAs/kg of fish in Australia (Heikens 2006, Food Standards Australia and New 
Zealand 2018).

Although the permissible level of iAs in water and food had been established, no 
maximum safe intake values have been set up by any international food safety 
authority (Munera-Picazo et  al. 2015). Previously, the Joint Food Agricultural 
Organization/World Health Organization (FAO/WHO) Expert Committee on Food 
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Additives (JECFA) proposed a provisional tolerable weekly intake (PTWI) of arse-
nic at the level 15 mg/kg bw/week in 1998. However, the PTWI was withdrawn in 
2011 (FAO/WHO 2014). The reasons for withdrawal was based on the fact that such 
PTWI dose was higher than the range of benchmark dose lower confidence limit 
(BMDL01). European Food Safety Authority (EFSA) established a BMDL01 of iAs 
between 0.3 and 8 μg/kg bw/day for an increased risk of bladder, lung and skin 
cancer (EFSA Panel on Contaminants in the Food Chain 2009). Thus, it is difficult 
to establish a single value as maximum safe intake of inorganic arsenic in food.

Soil

Environment Agency, United Kingdom established the Soil Guideline Values 
(SGVs) for inorganic arsenic in soil according to land use; i.e. 32 mg iAs/kg dry 
weight of soil used in residential area, 43 mg iAs/kg dry weight of soil in allotment 
(gardening) area and 640 mg iAs/kg dry weight in commercial use (Martin et al. 
2009).

Air

Center for Disease Control, National Institute for Occupational Safety and Health, 
USA set up recommendation standard for occupational exposure of inorganic arse-
nic in 1973 and revised it in 1975. The latest recommendation stated that no worker 
should be exposed to a concentration of inorganic arsenic in excess of 0.002 mg 
(2  μg) per cubic meter of air as determined by a 15  minutes sampling period 
(U.S. Department of health, education, and welfare, Center for Disease Control, 
National Institute for Occupational Safety and Health 1975).

3.3.2  �Biological Markers

Currently, there were no international standard safety limit established for arsenic 
level in blood. There are some variations of reference values among countries.

Blood

According to Agency for Toxic Substances and Disease Registry (ATSDR, USA) 
normal levels of arsenic in low-exposed individuals are less than 1 μg/L in blood 
samples (ATSDR 2007). While other countries utilized RV95, the 95th percentile of 
the measured pollutant concentration levels in the relevant matrix of the reference 
population, as reference values (HBM (Human Biomonitoring) Commission 2016). 
Since RV95 values indicates the level of background exposure, people with amount 
of blood arsenic higher than RV95s indicated abnormally high exposure of arsenic 
(Saravanabhavan et  al. 2017). The reference level of total arsenic in blood for 
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6–19 years old and 20–79 years old Canadian population are 1.4 μg/L and 2.0 μg/L, 
respectively (Saravanabhavan et  al. 2017). In contrast, the reference values of 
Brazilian and Italian population (18–65 years old) are 9.87 and 5.32 μg/L, respec-
tively (Saravanabhavan et al. 2017). These data suggested that the reference values 
and background exposure of arsenic are varied among different countries. Since 
blood arsenic level only indicates acute exposure, RV95 values may be useful just for 
monitoring of potential acute toxicity but not for chronic health hazards.

Urine

ATSDR, USA recommended that normal levels of arsenic in low-exposed individu-
als should not exceed 100 μg/L in urine sample (ATSDR 2007). The reference val-
ues (RV95s) of total arsenic in urine for 3–79  years old Canadian population is 
27 μg/L. In contrast, the reference values of German, Belgium and Korean popula-
tion (18–65 years old) are 15, 48.8 and 106.1 μg/L, respectively. These data sug-
gested that the reference level in each country were varied.

Hair and Nail

ATSDR, USA suggested equal or less than 1 ppm (μg/g) of arsenic in hair or nail 
samples of a low-exposed person (ATSDR 2007); WHO maximum acceptable level 
is 1 ppm (1 μg/g) (ATSDR 2007). Some research studies compared the observed 
level of arsenic in hair with those of the certified value of arsenic in standard refer-
ence hair material (Samanta et al. 2004). For example, 0.28 ± 0.04 μg/g was the 
arsenic value of Standard reference materials (SRM) certified human hair from 
(GBW07601) from China National Analysis Center for Iron and Steel, Beijing, 
China (Samanta et al. 2004). The certified values were used to categorize as low or 
high exposed groups. A systemic review reported a variety of reference ranges for 
arsenic in hairs found in several studies (Mikulewicz et al. 2013). For example, an 
Italian study used 0.14–0.24 mg/kg as reference range for 3–5 years old children, 
while a Korean study used 0.05–0.2 mg/kg as reference range for 3–6 years old 
children (Mikulewicz et al. 2013). The systemic review pointed out that the refer-
ence range may depend on various factors including the sample preparation, ana-
lytical methods, gender and age of study populations (Mikulewicz et al. 2013).

3.4  �Methods of Dietary Exposure Assessment

3.4.1  �Dietary Exposure Assessment

Dietary exposure assessment aims to determine the extent of chemical substance 
exposure or intake via foods, beverages and drinking water consumption (WHO 
1995). The estimated exposure is usually presented as either a central tendency 
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estimate (CTE) which is the mean or median exposure or a reasonable maximum 
estimate (RME) calculating from high-end exposure (e.g. 90th, 95th and 97.5th 
percentile). However, calculation of RME would be reliable only if the data were 
obtained from at least 60 human volunteers (EFSA 2014). Since arsenic compounds 
consist of various species which are carcinogenic and non-carcinogenic, the expo-
sure assessment should be well-designed to achieve further risk characterization of 
carcinogenic or non-carcinogenic health effects. For non-carcinogenic effect, esti-
mated exposure can be calculated as average daily dose (ADD). For carcinogenic 
effect, dose is often calculated as lifetime average daily dose (LADD) with esti-
mated lifetime exposure is taken into account (US EPA 2005). Food consumption 
data and concentration of arsenic are prerequisite for estimation exposure to 
arsenic.

Ideally, food consumption data should include information on factors affecting 
dietary exposure such as demographic characteristics (age, ethnicity, gender and 
socio-economic status), body weight and geographic region. Dietary patterns and 
susceptible groups (e.g., infants and toddlers) should be taken into account for arse-
nic exposure assessment of children. There are various approaches used for collect-
ing food consumption data which can be classified as different levels of population 
or nation, household and individual (FAO/WHO 2005, 2009). National food con-
sumption data of several countries worldwide used for exposure assessment were 
conducted based on individual consumption. Most countries have food consump-
tion data for adults, but consumption data of children and infants is less available 
(FAO/WHO 2005). Several factors including cost, target population, education 
level, resource available and studied period time should be considered for selecting 
of method for food consumption data collection (FAO/WHO 2005, 2009).

One of common approaches for food consumption collection is food record sur-
vey or food diary which subjects record all foods consumed over a period. 
Significant limitations of this method are that parents or guardians must keep 
records for young children, and the amount of foods depend on the subject’s ability 
to estimate (FAO/WHO 2005, 2009). Individual dietary records were used for assess 
dietary exposure to inorganic arsenic in several studies (EFSA 2014; Lovreglio 
et al. 2012). Another method is the 24-hour recall which types and amounts of food 
consumptions are recalled from memory with the aid of a train interviewer. Although 
this method causes less burden for subjects, the obtained consumption data may be 
less reliable because it depends critically on memory of subjects. Parents or caretak-
ers also have to respond for children (FAO/WHO 2005). The 24-hour recall were 
used for evaluation of arsenic exposure especially from rice in many studies (Kordas 
et al. 2016; EFSA 2014; deCastro et al. 2014; Davis et al. 2014; Wu et al. 2015). The 
other approach widely used for collecting food consumption is food frequency 
questionnaire (FFQ). The questionnaire consists of a list of commonly consumed 
foods which can be completed by subjects or interviewers. The frequency of food 
consumed is estimated as per day, week, month, or year (FAO/WHO 2005). This 
approach is useful in the collection of retrospective or prospective data, and specific 
foods that are known to be contaminated of arsenic can be included in the question-
naires (FAO/WHO 2005). However, the intake frequency and amount of food con-
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sumed rely significantly on memory of subjects, and the validity depends on the 
representativeness of the foods listed in the questionnaire (FAO/WHO 2005). 
Several studies mostly conducted in adults applied FFQ to assess exposure to arse-
nic (Cascio et al. 2011; Wei et al. 2014; Cleland et al. 2009). Duplicate diet survey 
or duplicate portion study is a method by which the usual food portion consumed 
by individual is prepared in duplicate. Then, the duplicate sample is pooled and 
homogenized as daily intake sample. Although this approach is more precise than 
the others, it is not appropriate for large-scale study because of the cost and time-
consuming. It is also impracticable for participants who regularly eat out, and causes 
heavy burden for both staffs and subjects (FAO/WHO 2005). A few studies used 
duplicate diet survey for estimation of arsenic exposure in small group of subjects 
interested (Kile et al. 2007; Ohno et al. 2007). To improve reliability and validity of 
food consumption data, combining of the methods for the collection of data might 
be carried out (FAO/WHO 2005).

3.4.2  �Arsenic Concentration Assessment

In dietary exposure assessments, the selection of concentration of arsenic in food 
and drinking water applied for the assessment is very crucial (FAO/WHO 2005). 
Proposed maximum level of arsenic in particular food item and drinking water 
established by international and national organizations could be used for predicted 
exposure assessment as theoretical maximum daily intake (TMDI) (FAO/WHO 
2005). This approach assumes that arsenic is presented at the maximum level (ML) 
in individual food commodity, and merged with average daily consumption of foods 
per person. This approach is suitable for pre-regulation of arsenic in food, but it is 
commonly overestimated (FAO/WHO 2005).

For more refined exposure assessment, actual arsenic contents in foods and 
drinking water should be used. A major challenge for selection of arsenic content 
applied for exposure assessment is that various species of arsenic exists with exten-
sively different toxicity (WHO 2011b). As mentioned previously, some commodi-
ties contain high ratios of inorganic arsenic species which is the most toxic form and 
classified as human carcinogens by International Agency for Research on Cancer 
(IARC). Whereas several foods such as fish, seafood and dairy products had lower 
ratios of inorganic arsenic species (WHO 2011b; FAO/WHO 2011). Applying total 
arsenic concentration for exposure assessment to arsenic and further calculation of 
cancer risk could lead to misinterpretation. Since last decade, assessment of dietary 
exposure to arsenic were mostly conducted using inorganic arsenic concentrations 
together with total arsenic contents. Speciation analysis for arsenic contents in 
foods is a better approach to assess the arsenic exposure and characterize cancer 
risk; however, it is costly, complicated and time-consuming (Cubadda et al. 2017). 
Inexpensive, rapid and simple technique for arsenic species determination are still 
needed for monitoring and surveillance of arsenic in foods and drinking water. 
Alternatively, conversion factors of total arsenic into inorganic arsenic of particular 
commodity can be applied if the concentrations of inorganic arsenic are not avail-
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able. However, the conversion factors should be selected carefully to avoid uncer-
tain source of exposure data (EFSA 2014).

Another challenge is handling of non-detected concentration of arsenic in food 
samples. Some previous studies applied zero for non-detected arsenic level in foods 
which the exposure assessment could be underestimated depending on their limit of 
quantitation (LOQ) or limit of detection (LOD) of arsenic determination. While 
overestimated assessment could occur if non-detected values were replaced with the 
LOD or LOQ.  Where feasible, the substitution method using the lower-bound 
(LB), medium bound (MB) and upper-bound (UB) approach is suggested to apply 
for arsenic concentration below LOQ or LOD (FAO/WHO 2005, 2009; EFSA 
2010). For LB, MB and UB, the arsenic concentrations below the LOD/LOQ values 
were replaced by zero, half of LOD/LOQ value and LOD/LOQ value, respectively 
(FAO/WHO 2005, 2009, EFSA 2010).

3.4.3  �Combination of Dietary Intake and Arsenic Concentration Data

Two approaches, namely deterministic and probabilistic, are used to assess dietary 
exposure to arsenic by merging food consumption and arsenic concentration. 
Deterministic approach or point estimation is a traditional approach applied to 
estimate an exposure assessment. It is commonly used for exposure assessment 
because the procedure is easy and can be done even with limited data and resource 
(FAO/WHO 2005, 2009). Mostly, the estimation of average exposure of determin-
istic approach assumes that the distributions of concentration and/or consumption 
data are parametric. In fact, information on chemicals contents and intake rates is 
mostly non-parametric distributions; therefore, using median values are more repre-
sentative and less overestimated. In some cases, the normality of data was tested 
firstly. If it is non-parametric distribution, the data set was assumed as log-normal 
distribution for convenience. In fact, the data set of the concentration or consump-
tion is not true log-normal distribution. Consequently, the risk calculated from 
deterministic method is likely to be overestimated (FAO/WHO 2005, 2009). 
Additionally, the calculation of high-end exposure should depend on the data distri-
bution (e.g. normal, log-normal, exponential, etc.) (FAO/WHO 2005, 2009).

To overcome the exposure overestimation, probabilistic approach has been 
developed and applied widely. Probabilistic approach incorporates uncertainty and/
or variability information (FAO/WHO 2005, 2009; US EPA 2014). The degree of 
exposure assessment certainty and the differences between exposed populations are 
provided. Generally, deterministic method reports risks as average and high-end 
exposure but probabilistic approach can explain more on the uncertainties and/or 
variabilities in the estimated exposure. Probabilistic method can also identify the 
key contributing to the uncertainties and/or variabilities (US EPA 2014). Therefore, 
the information from this approach is useful for risk managers to compare the risks 
with different management alternatives, to accomplish a science-based level of 
safety and to support regulatory decision makings (US EPA 2014). Commercially 
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available software such as @RISK (Palisade cooperation) using Monte Carlo simu-
lation can be used for probabilistic risk assessment effectively (US EPA 2014).

4  �Perspectives for Future Research

4.1  �Establishment of Cut-off Level to Categorize High Arsenic 
Exposed Group

According to Agency for Toxic Substances and Disease Registry (ATSDR, USA) 
normal levels of arsenic in low-exposed individuals are less than 1  μg/L and 
100 μg/L in blood and urine samples, respectively, and equal or less than 1 ppm 
(μg/g) in hair or nail samples (ATSDR 2007). The usefulness of blood arsenic level 
to detect low-level exposure in healthy low-exposed children is very limited. The 
cut-off level cannot be established due to its narrow range and short half-life nature 
(Hughes 2006). The urine total arsenic levels in healthy low-exposed children with-
out recent history of seafood consumption are generally expecting to be below 
10 μg/L (ATSDR 2007; Council 1999; Hwang et al. 1997). Their baseline urinary 
levels can also be varied by study regions as described earlier. The exact cut-off 
level that warrant actions to prevent long-term health consequences in these healthy 
low-exposed children group was not established by any study to date. However, if 
one is determined to take proactive action for the issue, possible inorganic arsenic 
exposure sources may be worth investigating if the children urinary total arsenic 
levels were consistently above 10 ug/L.

The cut-off arsenic levels in hair samples of heathy low-exposed children at dif-
ferent ages are not yet identified. A study in Cambodia utilized data of hair arsenic 
and signs of arsenicosis from 616 respondents to propose the cut-off level of greater 
than 1.0 μg arsenic per 1 g of hair as an indicator of an arsenic exposed individual 
(Hashim et al. 2013). The standardization of sample collection, handling, washing, 
processing and analyzing procedures are still evolving. Therefore, discrepancy in 
the details can make the comparison of available analytic results from different 
studies not virtually accurate (Mikulewicz et al. 2013). However, several attempts 
were made to set up reference level in healthy low-exposed children from different 
countries. Studies in hair samples from 3–6-year-old Korean and 3–5-year-old 
Italian children reported arsenic levels of 0.20 and 0.24 ug/gm, respectively, at their 
upper and 95th percentile rank (Park et al. 2007; Senofonte et al. 1989). These hair 
arsenic upper range levels were much lower than those in older children. Other stud-
ies in 11–13-year-old Italian and 12–18-year-old Brazilian children yielded arsenic 
levels of 0.03 and 0.02 ug/gm, respectively, at the 97.5th and 90th percentiles rank 
(Dongarra et al. 2011; Carneiro et al. 2011b). In general, proactive actions should be 
considered when the detected hair arsenic levels in healthy low-exposed children 
exceeds two to three standard deviations above the average level of their age and 
location matched population. More studies are warranted to finalize the hair arsenic 
cut-off level to categorize high exposure group in healthy low-exposed children.
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Several studies reported different ranges of normal arsenic level in nail samples 
but generally not exceeding the ATSDR upper limit at 1 μg/g (ATSDR 2007; Council 
NR 1999; Narang et al. 1987; Takagi et al. 1988). A Brazilian study in 126 healthy 
unexposed 12–18-year-old students reported the 90th percentile rank level at 
0.17 μg/g (Carneiro et al. 2011a). However, the arsenic concentration in toenails of 
infants in New Hampshire Birth Cohort Study ranged from 0.000 to 1.21  μg/g 
(Davis et al. 2014). Such high arsenic level in infant nails were associated with their 
mother nail arsenic levels indicating in utero exposure (Davis et al. 2014). Based on 
EFSA scientific opinion on arsenic, dietary exposure to inorganic arsenic for chil-
dren under 3 years of age is estimated to be from two to three-fold that of adults 
(EFSA 2014). Since young children may be more sensitive to arsenic toxicity than 
older children and adults, specific cut-off levels for young children should be estab-
lished. Further cohort studies are warranted to establish association between arsenic 
levels in biological specimens of young children and long-term toxicity. This piece 
of information is the missing jigsaw.

An important challenge in establishing the cut-off levels is the lack of standard 
reference material. Nowadays only standard reference materials of total arsenic in 
urine, muscle and liver and speciated arsenics in urine have been certified (Hughes 
2006; Yoshinaga et al. 2000). Owing to more hazardous nature of inorganic arsenic, 
the reference materials for speciated arsenics are needed. Unfortunately, a previous 
report by Hansen et al. found that an arsenic sulfur compound detected in urine had 
been misidentified as trivalent methylated form of arsenic (DMAIII) (Hansen et al. 
2004). Another challenge of cut-off establishment is the varied susceptibility among 
different individuals. Polymorphism in genes encoding arsenic-metabolizing 
enzymes could influence variability in arsenic metabolism and susceptibility to 
arsenic toxicity (Vahter 2000). Genetic background should be considered when 
establishing cut-off levels, i.e. population with polymorphic genes may require 
lower cut-off levels of arsenic.

4.2  �Data Collection Methods for Estimation of Dietary 
Exposure to Arsenic

Information on food consumption is crucial for estimation of arsenic exposure. 
However, food consumption data of children in many countries are not available. 
This could be due to the difficulty in collecting consumption data from kids. A 
national survey in the United States, Feeding Infants and Toddlers Study (FITS) 
2016 collected dietary data by using a 24-h dietary recall telephone survey with the 
primary caregivers of 3235 children aged 0 to <4  years (Welker et  al. 2018). 
Although this work is one of the largest studies for feeding behavior of young chil-
dren, the authors admitted that there could be some reporting bias and measurement 
error inherently associated with dietary recall (Welker et al. 2018). Future studies 
should focus on developing new more attractive and effective tools to facilitate 
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collecting food consumption data of children such as visual methods, online appli-
cation and gamification. A new questionnaire DAFA had been recently developed 
and validated in 7–10 years old children. The answer choices are all in picture for-
mat (Barros et al. 2007).

Most of the previous studies on arsenic exposure in children have emphasized on 
collecting data based on particular food item such as rice or drinking water which 
are considered as major arsenic contributors. However, in order to obtain accurate 
arsenic exposure, collective effect of all food items consumed should be estimated. 
In addition, dietary exposure assessment should be carried out concomitantly with 
biomarker assessment.

It has been shown that different food items contain various forms of arsenic with 
different levels of toxicity. As a result, estimation of total arsenic exposure may not 
result in realistic estimation of the potential toxicity of arsenic. For example, sea-
food and dairy products have lower ratios of inorganic to total arsenic contents 
(WHO 2001). This lower ratio is associated with lower toxicity. In contrast, rice has 
higher ratio indicating higher toxic effects (Zhu et  al. 2008). Some studies have 
determined the total arsenic contents and used conversion factors to estimate the 
inorganic arsenic contents (EFSA 2014; Sigrist et al. 2016). Although this could be 
better than reporting only the total arsenic contents, the result may not reflect the 
actual toxic effect. There are wide variations in the ratio of inorganic to total arsenic 
levels depending on various factors such as cultivars, locations, agricultural prac-
tices. Therefore; further studies should focus on exposure to different arsenic spe-
cies commonly detected in foods (e.g. As(III), As(IV), DMA, MMA).

It is well known that types of food processing such as heating have a significant 
effect on chemical composition and their activities in foods (Devesa et al. 2008). A 
recent study showed that heat treatment exceeding 150 °C such as baking, grilling 
and frying not only reduced total arsenic content but also decomposed organo arse-
nic compounds into inorganic arsenic species (DMA and MMA) (Devesa et  al. 
2008). Thus, effect of processing and cooking should be taken into consideration for 
more effective estimation of exposure to toxic compounds. In addition, bioavail-
ability of food components determines the actual effect on human health (Zhu et al. 
2008). For example, bioavailability of organic arsenic species is much lower than 
that of inorganic forms (Khan et al. 2010; Zhang et al. 2016). To acquire realistic 
arsenic exposure highlighting the potential toxic effects, several factors should be 
considered as discussed.

4.3  �Identification of Underrepresented Sources of Arsenic 
in Well-Nourished Children

Young children are one of the most vulnerable group. Being fully nourished chil-
dren from a well-to-do family, they seem to have lower risk of arsenic exposure than 
undernourished children living in highly exposed area. Nevertheless, there are still 
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some underrepresented sources of arsenic exposure to this seemingly low risk well-
nourished group. A recent exposure assessment study in the United States showed 
that the largest source of inorganic arsenic for infants and toddlers between 4 and 
24 months old was rice cereal (55%), followed by other infant solid foods (19%), 
and drinking water (18%) (Shibata et al. 2016). Hazard quotient of chronic exposure 
(HQchronic) at the 50 and 75th percentiles in this group exceeded 1.0 for both rice 
cereal and total sources (Shibata et al. 2016). In a well-nourished family, iron-rich 
rice cereal is the first food commonly introduced to the 4–6 months old infant (Byrd-
Bredbenner 2016). Therefore, over-nourishment of young children may actually 
pose them to hidden risk. Interestingly, a recent national survey in the United States, 
Feeding Infants and Toddlers Study (FITS) 2016 reported that almost all (95%) 
American children aged 2–3  years old consumed grain products, and 59% con-
sumed a whole grain–rich products (Welker et al. 2018). Since the richest sources 
of inorganic arsenic are drinking water and rice, the above consumption data raised 
the concern of high arsenic exposure in young children. Interestingly, US Food & 
Drug Administration (USFDA) recently proposed to set the maximum arsenic limit 
of 100 parts per billion (100 ppb or 100 ng/g) (Erickson 2016). Furthermore, previ-
ous studies showed accumulation of inorganic arsenic in the bran of grain and pol-
ishing did reduce the inorganic arsenic (Zhao et al. 2010). Consistently, a recent 
Thai study found higher inorganic arsenic content in brown rice products for infant 
than that of white rice product (Wongsaengnak 2018). To ensure adequate intakes of 
fiber and vitamins, US nutritional guideline (My Plate) recommended that half of 
the total grain consumed should come from whole grains (Byrd-Bredbenner 2016). 
However, considering the increased health risk of inorganic arsenic in unpolished 
grain such as brown rice, national recommendations regarding whole grains intake 
of each country should consider the risk of arsenic in each specific geographical 
area with special caution for infant and young children. Risk assessment of arsenic 
in whole-grain products for young children should be further investigated.

4.4  �Strategies to Raise Awareness and Create Sustainable 
Preventive Measures of Arsenic Contamination

Social awareness is one of the most important factors for prevention of arsenic con-
tamination and toxicity. A recent study in India reported that 63% of surveyed popu-
lation in arsenic-affected communities were aware of arsenic problems (Singh et al. 
2018). The significant predictors of awareness included socioeconomic factors, 
water and sanitation behavior factors and social capital and trust factors (Singh et al. 
2018). Furthermore, lower-caste, less educated, and unemployed people were the 
ones with least awareness and at highest risk. To raise awareness of people in the 
society especially in the high-risk area, information technology could play a critical 
role in providing statistical information and create network of information for moni-
toring of the problems. Interestingly, a recent work proposed cloud-based decision 
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support system for arsenic health risk assessment (CC-AHRA) (Singh 2017). The 
CC-AHRA system is designed to establish database of research information from 
all stakeholders including academic institution, federal agencies, non-profit organi-
zations, private enterprises and independent researchers (Singh 2017). People 
worldwide can put such database in cloud/internet to be accessible. The CC-AHRA 
system also provided digital arsenic analyzer (in mobile application format) as a 
tool to assess health risk of arsenic at both individual and community levels (Singh 
2017). The system will definitely facilitate and accelerate decision making for any 
preventive/intervention measures in order to mitigate arsenic contamination and 
toxicity problems. More international collaborations and governmental supports are 
needed to create sharing and connecting network of information and to make it 
accessible by under-privileged communities. Then, CC-AHRA system could poten-
tially be a sustainable tool for resolving a global health challenge of arsenic 
contamination.
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Chapter 5
Environmental Arsenic Exposure 
and Human Health Risk

Anindita Mitra, Soumya Chatterjee, and Dharmendra K. Gupta

Abstract  Millions of people worldwide are exposed to arsenic through contami-
nated water used for drinking, cooking, and irrigation of crops. Presence of signifi-
cantly elevated levels of arsenic (exceeding the World Health Organization (WHO) 
recommended a provisional value of 10 μg/L) in food or drinking water has been 
documented from many parts of the world. Chronic exposure to the element is a 
major global public health issue. Clinical symptoms of acute arsenic poisoning 
include muscular weakness and muscle cramps, nausea, vomiting, and diarrhea. 
Arsenic-associated chronic poisoning leads to diseases like cancers, skin lesions, 
diabetes, hypertension, etc. Arsenic is a potent genotoxic agent for animals and 
humans that can damage DNA, induces chromosomal aberrations, sister chromatid 
exchange and micronuclei formations. Extensive research on the biological mecha-
nisms underlying arsenic-associated disease suggests that among a number of cel-
lular mechanisms, epigenetic modifications (altered DNA methylation, miRNA 
expression, and histone modification) are underpinned by arsenic exposure. 
Evidence support that inorganic arsenic is an epigenetic modulator of genes as it can 
alter enzymatic activity of DNA methyltransferases, histone deacetylase (HDAC) 
and histone acetyltransferase (HAT) that are associated with cellular growth and 
immune response. This review aims to present a comprehensive overview of the 
possible sources of arsenic exposure to humans, and effects on metabolic pathways 
and related health issues. Additionally, epigenetic modification underlying arsenic-
associated changes and their role in arsenic-induced toxicity are also discussed.
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1  �Introduction

Arsenic (symbol: As; atomic number: 33) is a naturally occurring metalloid, widely 
distributed in the Earth’s crust (Vahter 2008). This element, commonly represented 
by inorganic (iAs) and organic (complexed with organic matters) compounds in the 
environment, is considered to be one of the most toxic elements for global health 
(Vahter 2008). iAs is an established carcinogen and is the most substantial contami-
nant in drinking water globally (Cantor et al. 2006). The naturally accumulated As 
in earth’s crust or bedrocks permeate gradually into the water sources (Chakraborti 
et al. 1999; Gupta et al. 2017). Arsenic is found in four oxidation states namely −3, 
0, +3 and +5 and persists as elemental, sulfide and carbonate allotropic forms 
(Chakraborti et al. 1999; Henke 2009; Mitra et al. 2017a). Arsenic has long been 
recognized as an environmental hazard, raising great concern from the environment 
as well as human health perspectives (Iyer et al. 2016). A human may get exposed 
to As from various sources such as drinking of As-contaminated water, ingestion of 
food materials (fruits, cereals, vegetables) grown in the As-contaminated agricul-
ture fields, arsenical pesticides, contact of contaminated industrial/agricultural 
wastewaters and occupational exposures to As-contaminated dust, fumes or mist 
(Saha et al. 1999). Reduced trivalent compounds of arsenic (AsIII) are more polar 
than oxidized pentavalent arsenic compounds (AsV), therefore, more toxic in nature 
(Akter et al. 2005). Rapid and extensive absorption of arsenate and arsenite com-
pounds occur through the gastrointestinal tract following accumulation in tissues 
and body fluids (Alava et al. 2014). The rate of absorption of As through inhalation 
entirely depends on its molecular size. e.g., molecular absorption of sodium arse-
nite, sodium arsenate, and arsenic trioxide through inhalation were rated higher 
than arsenic sulfide and lead arsenate (Abdul et al. 2015). Acute and chronic expo-
sure of arsenic leads to a range of clinical symptoms characterized as “Arsenicosis” 
(Mc Carty et al. 2011). There are several experimental proofs signifying chronic 
exposure to As leads to the development of cancers of various organs, such as skin, 
lungs, liver, and urinary bladder, in humans. Arsenic exposure can also give rise to 
precancerous dermatological lesions like hyperkeratosis (palmar and plantar), 
hyper- and hypopigmentation and raindrop pigmentation (Banerjee and Giri 2016). 
Though skin symptoms are assigned as hallmarks of arsenic toxicity, a plethora of 
epidemiological surveys substantiate that chronic arsenic toxicity can also be 
noticeable in the form of nondermatological disorders such as peripheral neuropa-
thy, respiratory distress, ocular problems like conjunctivitis, cardiac arrest, diabe-
tes, and genotoxicity (Chatterjee et al. 2017a; Chakrabarti et al. 2018a). Arsenic, 
thus, is not only a silent killer but also responsible for reduced life expectancy and 
compromised life quality.
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2  �Sources of Human Exposure to Arsenic

2.1  �Drinking and Cooking Water

Drinking water is considered to be the primary source of As for humans as evi-
denced from epidemiological studies in arsenic-endemic areas (Diaz et al. 2015). 
Drinking water, also used for cooking, is considered to be the major source of expo-
sure to inorganic As in regions where arsenic concentration exceeded above 10 μg/L 
(FAO/WHO 2011) (Fig. 5.1). High levels of iAs in water in such areas used for 
cooking purposes additionally aggravate the level of exposure (Diaz et al. 2015). 
Therefore, As-contaminated water used for cooking is the source of the high total 
As levels detected in cooked food (Diaz et al. 2004). Groundwater in a number of 
countries, including Argentina, Bangladesh, Chile, China, India, Mexico, and the 
United States of America, is reported to contain high levels of iAS (FAO/WHO 
2011). Study based on different states of India (Mukherjee et al. 2006) revealed that 
groundwater in West Bengal, Bihar, Uttar Pradesh, Jharkhand, Assam, Chhattisgarh, 
and Manipur is highly contaminated with As. The study also uncovered that As accu-
mulation in major crops like rice, pulses, and vegetables was due to use of arsenic-
contaminated irrigation water (0.318–0.643mg-L) to grow these crops (Mukherjee 
et al. 2006).

2.2  �Food

Human population is exposed to inorganic As through food and drinking water 
(Yorifuji et al. 2011). In fact, food is the prime source for human As intake (WHO 
2001) if not exposed through drinking water. Seafood such as fish and shellfish 

Fig. 5.1  Routes of human 
exposure to arsenic
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consumed by a number of human populations has been recognized as the major 
source of As (WHO-IARC 2011) in which concentrations of the metalloid has been 
exceeded than those in most terrestrial foods. In marine biota, mostly organic form 
of As is found (EFSA 2014). Arsenobetaine (AsB), the major As species in most 
seafood, is presumed to be non-toxic in nature and remains unmetabolized (FAO/
WHO 2011). Arsenosugars and arsenolipids, the other more complex organic forms 
of As present at significant quantities in some types of seafood (1–100 μg/g), are 
metabolized by humans (Cubadda et al. 2016). Similar to iAs species, organic As 
compounds produce dimethylarsinate (DMA) as a urinary metabolite. However, 
according to recent findings, some forms of organic As compounds and their meta-
bolic intermediates show cytotoxicity in the cultured cell (Leffers et  al. 2013; 
Naranmandura et al. 2011a; Meyer et al. 2014, 2015). Organic As compounds like 
DMA and monomethylarsinate (MMA) in trace amount is present in various foods, 
including rice, other cereals, and seafood. Oral exposure to DMA adversely affects 
fetal development as well as organs such as urinary bladder, kidneys, and thyroid; 
whereas primary target of MMA is the gastrointestinal tract, followed by kidney, 
thyroid, and reproductive system (US FDA 2016).

Current risk assessments of dietary exposure to arsenic are solely based on the 
inorganic species due to its extreme level of toxicity (NRC 2014; Gupta and 
Chatterjee 2017). The major route of entry of iAs in the food chain of the terrestrial 
ecosystem is through plant crops, which uptake As from soils through their roots 
depending on the concentration and phytoavailability of the metalloid in the soil. 
The type of the soil parent material determines the iAs concentration in soils (Abdul 
et al. 2015). Besides this, soil physicochemical properties such as adsorbing ability 
also play a key role in increasing phytoavailability of iAs to plants by preventing its 
mobility in soil solution (Punshon et  al. 2017). Plants grown in highly 
As-contaminated soils have the ability to accumulate significant amounts of iAs in 
their edible parts like leaf and seeds (Signes-Pastor et  al. 2008; Williams et  al. 
2007). Whereas in the animal body, iAs undergoes metabolism and excretion, and 
hence animal foods contain less quantities of iAs compared to plant product. 
Anthropogenic activities and inappropriate arsenic-rich waste disposal resulted in 
the accumulation of iAs up to 723 ng g-1 in rice grain, as reported in the Hunan 
province of China (Okkenhaug et al. 2012; Wang et al. 2015). A very recent study 
for inorganic arsenic contamination in rice-based diets including rice cakes, rice-
based snacks, baby rice, and puffed rice obtained from supermarkets of South 
Australia, showed that the arsenic level in 53% of the samples were found to exceed 
the European Union recommended value (100 mg kg-1) for young children and in 
22% of the samples exceeded maximum level of 200 mg kg-1 recommended for 
adults (Chakrabarti et al. 2018b). Among all crops, rice was found to accumulate the 
highest level of iAs (0.1–0.4 mg As/kg dry weight), and rice-based products were 
also found to have the highest level of iAs (EFSA 2009; Meharg et  al. 2008; 
Chatterjee et al. 2017b). The portion of As varies in the rice plant in the following 
order: rice straw > bran > whole grain > polished rice > husk (Carey et al. 2012). 
The proportion of iAs (present both as As III and AsV) of total As in rice ranges 
between 10-93 %, and brown rice reported to have a higher iAs content than white 
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rice (Torres-Escribano et al. 2008; Sun et al. 2008; Mitra et al. 2017b). The reason 
is that total arsenic levels attached to bran were much higher than in endosperm of 
white rice obtained from the same whole grain rice (Rahman et al. 2007).

2.3  �Soil

Arsenic in soil exists solely in the inorganic form, except in regions where organic 
arsenic compounds are applied intentionally (Saxe et al. 2006). In soils, AsV species 
predominate due to oxidation of trivalent arsenicals (Gong et al. 2001). Soil encom-
passes a high level of As if contaminated with mining or smelter wastes (up to 27 
000 mg/kg), and also around the waste dumping point of an arsenical pesticide 
manufacturing plant (more than 20100 to 35500 mg/kg) (Chatterjee and Mukherjee 
1999). In agricultural soils treated with various arsenical pesticides, the mean total 
arsenic concentrations ranged from 50 to 550 mg/kg (Stilwell and Gorny 1997). 
Humans can be exposed to soil arsenic through multiple pathways including inci-
dental ingestion, dermal absorption, and inhalation of wind-blown soil particles 
(i.e., fugitive dust) (Hughes et al. 2011) (Fig. 5.1).

2.4  �Air

In comparison with the route of arsenic exposure from food and water, exposure 
through the air is generally low. In air arsenic present predominantly as particulate 
forms (2 μm in diameter) and as a mixture of arsenite and arsenate, with a negligible 
amount of organic species except in areas where arsenic pesticide are applied 
(Chung et al. 2014). The European Commission (2000) reported that air contributes 
less than 1% of total arsenic exposure, and levels of arsenic in air found lowest in 
remote areas (0–1 ng/m3) than in the rural areas (0.2–1.5 ng/m3), and, in urban areas 
(0.5–3 ng/m3), and maximum (about 50 ng/m3) adjacent to the industrial region. 
Humans may be exposed to a very low concentration (0.4–30 ng/m3) of arsenic 
through the air (Fig.  5.1). Humans per day typically inhale approximately 40 to 
90 ng of arsenic and in unpolluted areas, the value is less than 50 ng or less (US EPA 
2014).

2.5  �Other sources

Another potential route of As exposure is through occupational exposure to arsenic 
in several industries, particularly, non-ferrous smelting, electronics, copper smelt-
ers, wood preservatives, wood joinery shops, arsenic producing facilities, glass 
manufacturing facilities, production and application of arsenical pesticides and coal 
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plant, etc. Exposure may occur primarily through inhalation, accidental ingestion of 
arsenic-containing particulates and also through dermal exposure (Fig. 5.1) (Hughes 
et al. 2011).

Newborn babies may be exposed to a low level of As in breast milk from moth-
ers. For example, studies in New Hampshire, USA, showed that nursing mothers 
were exposed to a low level of arsenic in drinking water (Carignan et al. 2015). 
Infants have three times higher dietary arsenic exposure than adults as they have 
restricted diets (subsist on breast milk/powdered formula), lower dietary diversity 
(EFSA 2009) and have greater intake per unit body mass (Tsuji et  al. 2007). 
However, studies support that As in breast milk is relatively low in comparison to 
drinking water (Bjorklund et al. 2012; Islam et al. 2014). The species of As present 
in breast milk depend on the source or magnitude of exposure. For example, breast 
milk samples from Bangladeshi mothers exposed to high level of As in drinking 
water contained iAs (Vahter et al. 2006); whereas organic species of As was found 
in breast milk samples from Swedish mothers who had an unknown source of As 
exposure from drinking water (Bjorklund et al. 2012).

3  �Metabolic Pathway of Arsenic in Humans

After being exposed to a toxic chemical, its dispersal throughout the human body 
and the rate of excretion or metabolic alteration to less or more toxic forms varies 
according to the chemical species and also between individuals, which ultimately 
governs the toxicological outcome of exposures to the chemical (Banerjee and Giri 
2016). Arsenicals to which humans are most likely to be exposed in the environment 
are inorganic arsenic compounds, and metabolism and disposal of the inorganic 
compounds largely depend on their valence state (ATSDR 2007). Inorganic AsIII and 
AsV species are readily absorbed from the intestine in humans as well as rapidly 
excreted as methylated metabolites in urine than the parent compound (Lee 1999). 
Methylated forms of arsenic in the trivalent oxidation state (MMAIII) are stable 
intermediates formed during biomethylation as evidenced by different studies. For 
example, the bile of rats treated with arsenate or arsenite contains monomethylar-
sonous acid (Gregus et  al. 2000). Similarly, urine samples from individuals who 
have chronically consumed iAs-contaminated drinking water contain monomethyl-
arsonous and dimethylarsinous acid (Thomas 2016). Some of the methylated deriv-
atives of inorganic arsenic are more reactive and toxic than arsenite, and therefore, 
have more potential to induce cytotoxicity and genotoxicity (Naranmandura et al. 
2011b; Rehman et al. 2012) (Fig. 5.1). Besides the variations in the level of arsenic 
exposure between individuals, genetic polymorphism of the methyltransferase 
(AS3MT) gene is considered to be a major determinant for inter-individual varia-
tion in arsenic methylation patterns (Eichstaedt et al. 2015). Other factors playing a 
regulatory role in arsenic metabolism profile includes age, sex, body mass index and 
nutrition status of the individuals (Jansen et al. 2016; Kuo et al. 2017).

A. Mitra et al.



109

The classical pathway of As metabolism proposed earlier by Frederick Challenger 
(1945) and later substantiated by Cullen and Reimer (1989) describes that inorganic 
AsV is first reduced to AsIII, and then oxidative methylation occurs to form mono-
methyl arsenic acid (MMAV) in which methyl group is contributed by S-adenosyl-l-
methionine (SAM). It is typical for methyltransferases, in which AdoMet is the 
methyl donor and the catalytic reaction, to be interlinked to a multiple-step process 
regulating the availability of this prime methyl group donor (Drobna et al. 2009). 
MMAV is further reduced to the trivalent form monomethyl arsonous acid (MMAIII), 
that undergoes a second round of oxidative methylation (again in the presence of 
SAM) to form dimethyl arsinic acid (DMAV) (Banerjee and Giri 2016). The final 
product of arsenic metabolism in human is dimethyl arsinous acid (DMAIII) formed 
by reducing DMAV and is excreted through urine (Steinmaus et al. 2007). The regu-
latory genes involved in this pathway include those encoding arsenate reductases 
GSTO, methyltransferase (AS3MT) and purine nucleoside phosphorylase (PNP). 
According to a recent report by Zhang et al., AsB, less toxic organoarsenic deriva-
tives, was produced in marine herbivorous fish (Siganus fuscescens) following bio-
transformation of both AsIII and AsV (Zhang et al. 2016). Although methyltransferases 
(AS3MT) play a key role in methylation of AsIII, the liver and urine samples of 
arsenate-exposed AS3MT knockout mice still show mono- and dimethylated arseni-
cals, but to a lesser extent than wild-type mice, suggesting that either the presence 
of other genes, besides AS3MT, encoding methyltransferases or anaerobic intestinal 
microbiota can methylate orally administered arsenicals (Watanabe and Hirano 
2013).

Hayakawa et al. (2005) proposed an alternative pathway for arsenic metabolism 
involving glutathione. Accordingly, inorganic arsenite is first conjugated to cellular 
glutathione to form arsenic triglutathione (ATG) and subsequently methylated to 
monomethyl arsonic diglutathione (MADG). This MADG can then either be oxi-
dized to MMAV via the intermediate formation of MMAIII, or it can be further meth-
ylated and subsequently oxidized to yield DMAV. Therefore, both MMAV and DMAV 
are the end products of arsenic metabolism and excreted through urine.

A third model of arsenic metabolism was proposed by Rehman and Naranmandura 
(2012), in which, iAs first binds to protein moieties in the liver, followed by reduc-
tive methylation by conjugating with thiol groups (contributed either by cysteinyl 
residues of proteins or glutathione) involving S-adenosyl-methionine. Several 
authors have suggested that due to a higher affinity of arsenic toward cysteine-rich 
proteins than toward glutathione, the AsIII species mostly remain in the protein-
binding forms (Bogdan et al. 1994; Naranmandura et al. 2006; Khairul et al. 2017). 
The methylation of DNA also requires SAM and arsenic exposure may cause DNA 
hypomethylation due to continuous methyl depletion following depressed levels of 
SAM which concurrently facilitates aberrant gene expression that results in malig-
nant transformation (Roy and Saha 2002). The end products of arsenic metabolism 
are MMAV and DMAV, similar to the alternative pathway hypothesized by Hayakawa 
et al. (2005).
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4  �Acute Arsenic Poisoning to Humans

Symptoms of acute As toxicity usually occurs approximately 30  min following 
exposure or ingestion, and includes reddish rashes in the skin, extreme thirst but a 
difficulty in swallowing, and dryness inside the mouth with breath having a slightly 
garlicky odor (Hughes et  al. 2011; Chakrabarti et  al. 2018a). An appearance of 
transverse white lines across the fingernail called Mee’s lines specifies acute arsenic 
poisoning and the victim may die due to cardiovascular collapse and hypovolemic 
shock (Chakrabarti et  al. 2018a). Early acute As intoxication is clinically mani-
fested by symptoms including weakness, muscular cramps, and abdominal pain, 
nausea, vomiting and severe diarrhea (Hughes et al. 2011). Degenerative effects on 
mucosal vascular supply lead to capillary damage, generalized vasodilation, slough-
ing of tissue fragments, and vasogenic shock (Chatterjee et al. 2017a). In severe 
poisoning, skin turns into cold and clammy, due to circulatory failure beside 
decreased urine output and kidney damage. Development of psychosis associated 
with hallucinations, paranoid delusions, and delirium with seizures, coma, and 
death might follow (Saha et al. 1999 ; Hughes et al. 2011 ; Naujokas et al. 2013). 
Clinical manifestation also includes a diffuse skin rash, toxic cardiomyopathy, sei-
zures, hematological abnormalities, renal failure, respiratory failure, and pulmonary 
oedema; peripheral neuropathy or encephalopathy are also common in neurological 
manifestations (Ratnaike 2003).

5  �Chronic Arsenic Poisoning to Humans

Chronic nature of poisoning is more tricky as making a precise diagnosis of symp-
toms is very much challenging. Arsenic-related dermatosis is often confused with 
other related symptoms. Mostly affected systems are skin, liver, lungs, and blood; 
conjunctival congestions are infrequent in arsenical dermatosis (ASD) (Walkes 
et al. 2014; Argos et al. 2014). Anemia and leukopenia, as well as frequent occur-
rence of thrombocytopenia, are very common with chronic arsenic exposure 
(Chakrabarti et al. 2018a). Nonspecific but typical cutaneous mutability with early 
obstinate erythematous flush leading to melanosis, hyperkeratosis, and desquama-
tion is apparent (Hughes et al. 2011). Palms and soles are also affected by diffuse 
desquamation. Unending skin problems lead to the development of multicentric 
basal cell and squamous cell carcinomas (Saha et al. 1999). The most noticeable 
chronic manifestations of As exposure involves the skin, lungs, liver and blood sys-
tems and leads to a predisposition to varied disease of all the major organ/system as 
summarized in Table 5.1.
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Table 5.1  Summary of different diseases or clinical manifestation associated with As exposure.

System/Organ 
affected Clinical manifestations References

Integumentary 
System

Skin abnormalities are considered as a hallmark 
of chronic As exposure. Clinical manifestation 
includes melanosis, hyperkeratosis, 
hyperpigmentation on the neck, face and back, 
thickening of palm and sole, skin cancer

Guha Mazumder et al. 
(1998), Argos et al. 
(2011), and Chakrabarti 
et al. (2018a)

Respiratory 
System
(lung, trachea)

Inhalation of As dust or fume during mining of 
rocks or ores manifests respiratory complications 
such as a chronic cough, laryngitis, 
tracheobronchitis, and rhinitis. Other 
complications are a sore throat, voice harshness, 
hemorrhage at the mucosal and submucosal and 
alveolar region, reduced survival from pulmonary 
tuberculosis, lung cancer

Parvez et al. (2010), 
Dauphine et al. (2011), 
Naujokas et al. (2013), 
Steinmaus et al. (2014), 
and Chakrabarti et al. 
(2018a)

Cardiovascular 
System

Increased risk of cardiovascular diseases (CVD), 
injury to vascular system and heart; Myocardial 
injury and arterial thickening, increasing the risk 
of CVD and death.

Medrano et al. (2010), 
Gong and O’Bryant 
(2012), Wiwanitkit 
(2015), and Chakrabarti 
et al. (2018a)

Hepatic System Ascites, jaundice or enlargement of the liver, 
increased level of liver enzymes; hepatic fibrosis; 
non-cirrhotic portal fibrosis, cirrhosis, central 
necrosis, liver cancer

Yuan et al. (2010), Chen 
et al. (2010), Gibb et al. 
(2011), Jomova et al. 
(2011), and Chakrabarti 
et al. (2018a)

Renal System Oligourea, a higher level of serum creatinine, 
albuminuria and proteinuria, mutilation to 
capillaries and glomeruli of the kidney (As 
induced) with partial or total renal failure, bladder 
and other urinary cancer

Yuan et al. (2010), Gibb 
et al. (2011), Naujokas 
et al. (2013), Zheng et al. 
(2014), Peters et al. 
(2015), and Chakrabarti 
et al. (2018a)

Nervous System Arsenic species can cross the blood-brain barrier 
and found to distribute throughout the brain with 
the highest accumulation in hypophysis. Common 
clinical symptoms comprise paraesthesia, pain 
and numbness in the soles of the feet, myopathy, 
encephalopathy, headache, lethargy, restless sleep, 
loss of libido, increased urinary urgency, mental 
retardation, delusion, compromised intellectual 
function in children and adults; loss of reflexes, 
seizures and coma, impaired motor function

Sanchez-Pena et al. 
(2010), Vahidnia et al. 
(2007), Hamadani et al. 
(2011), Gong et al. 
(2011), and Parvez et al. 
(2011)

(continued)
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6  �Arsenic as a Genotoxic Agent

Arsenic exposure promotes chromosomal aberrations, micronuclei formation, DNA 
strand breakage, sister chromatid exchanges, and oxidative DNA damage in humans 
at a sub-cytotoxic concentration (Fig. 5.2) (Pozo-Molina et al. 2015; Salazar and 
Ostrosky-Wegman 2015; Ganapathy et  al. 2016; Alahmari et  al. 2017). Arsenic 
exposure has been associated with cancer, diabetes, cardiovascular and neurodegen-
erative diseases (Ruiz-Ramos et al. 2009; Tokar et al. 2010; Parvez et al. 2011; Syed 
et al. 2012; Maull et al. 2012). Though methylation of As is a prerequisite for the 
detoxification process, the trivalent methylated metabolites (MMAIII and DMAIII) 
have been shown to be more genotoxic than inorganic arsenic (Gosse et al. 2014). 
Naranmandura et al. (2011a) reported that methylated arsenicals treated RLC-16 
cells from rat liver generates reactive oxygen species (ROS) in mitochondria and 
causes ARE-mediated activation of thioredoxin reductase gene expression in WI-38 

Table 5.1  (continued)

System/Organ 
affected Clinical manifestations References

Immune System A major target of iAs is macrophages and As 
mediated immunotoxicity is accomplished by 
inhibiting the function of macrophage unfolded 
protein response (UPR) signaling pathway. iAs 
also impairs the maturation, activation, 
proliferation and function of lymphocytes. 
Variation in cytokine expression and immune-
related gene expression, inflammation and 
frequency of infant morbidity was found to 
increase due to the predisposition of infectious 
diseases.

Srivastava et al. (2013), 
Martin-Chouly et al. 
(2011), Spivey (2011), 
Ahmed et al. (2011), and 
Kile et al. (2012)

Endocrine 
System

Arsenic is a well-known endocrine disruptor of 
the thyroid, pancreas (inhibition of insulin 
activation; diabetes), gonads and also upsets 
hypothalamo-pituitary- adrenal axis.
Impaired glucose tolerance in pregnant women, 
and glucocorticoid receptor pathways, inhibition 
of a number of important enzymes; Phenylarsine 
oxide (PAO) hinders glucose transport, impedes 
NAD-linked oxidation of pyruvate or 
α-ketoglutarate.

Ciarrocca et al. (2012), 
Naujokas et al. (2013), Lu 
et al. (2011), Davila-
Esqueda et al. (2012), 
Shen et al. (2013), 
Goggin et al. (2012), 
Rahman et al. (2010), Del 
Razo et al. (2011), Islam 
et al. (2012), and 
Jovanovic et al. (2013)

Development 
and 
Reproductive 
System

Dose and duration dependent arsenic exposure 
have an impact on fetal growth and fetal death. 
Pregnancy complications along with premature 
delivery have been reported. In males, arsenic-
induced gonadal dysfunction was found through 
reduction of testicular weight, reduced level of 
testosterone and gonadotrophins, apoptosis and 
necrosis.

Golub et al. (1998), 
Tabocova et al. (1996), 
Chakraborti et al. (2003), 
Davila-Esqueda et al. 
(2012), Shen et al. (2013), 
Kim and Kim (2015), and 
Chakrabarti et al. (2018a)
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lung fibroblasts (Meno et al. 2009). Similar results found in human epidermal kera-
tinocytes after exposure to monomethyl arsonous acid with augmented expression 
of genes involved in skin carcinogenesis, stress response, synthesis of growth fac-
tors, and in a reversal of cell signaling pathways (Bailey et al. 2010). The activation 
of P13K/AKT signaling pathway, the key regulator for many physiologic processes, 
may aid for cancer development as evidenced from cell proliferation, migration, 
invasion, and anchorage-independent growth following chronic As exposure (Chen 
and Costa 2018). Similarly, activation of EGFR (epidermal growth factor receptor), 

Fig. 5.2  Schematic representation of arsenic-induced toxic effects in humans. (Modified after 
Hubaux et al. 2013)
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a tyrosine kinase transmembrane receptor has been reported following arsenic 
exposure in bladder cells regulating important processes in carcinogenesis, includ-
ing cell survival, cell cycle progression, tumor invasion, and angiogenesis (Carpenter 
and Jiang 2013). Several studies have shown that the genotoxicity of pentavalent 
organoarsenic compounds (MMAV and DMAV) is limited to millimolar dose range 
(higher concentration), while trivalent methylated species (MMAIII and DMAIII) are 
genotoxic at micromolar doses (lower concentration), therefore, more toxic in 
nature (Colognato et al. 2007). However, the genotoxic potential of another organo-
arsenical known as roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), widely used 
as a chicken fodder, was shown to induce micronuclei formation and DNA damage 
in mammalian cells (Zhang et al. 2012).

Arsenic-mediated DNA damage is indirect, occurs mainly due to oxidative stress 
(Liu et al. 2001a; Ganapathy et al. 2016), and leads to chromosomal aberrations, 
DNA strand breakage, DNA adducts, and DNA- protein crosslinks (Wang et  al. 
2001). Sister chromatid exchange (SCE) assay is a widely used method for genotox-
icity testing of any compound as it proves double-strand breaks, oxidation, and 
alkylation lesions or cross-links in DNA strand (Battal et al. 2015). The treatment of 
human lymphocyte culture with sodium arsenite showed dose-dependent increase 
in the frequency of SCE as recently reported by Bal et al. (2018a, b). Oxidative 
stress is produced due to the production of several reactive oxygen species (ROS), 
such as superoxide anion (O2

_), hydroxyl radical (·OH), hydrogen peroxide (H2O2), 
singlet oxygen (1O2). Superoxide anion is the primary species (Valko et al. 2006) 
produced by endothelial cells following exposure to As. Arsenite (AsIII), the most 
toxic inorganic As species can affect the expression of several genes such as stress-
responsive genes, DNA repair, and damage-responsive genes, and the activation of 
transcription factors such as the AP-1 complex (Salazar and Ostrosky-Wegman 
2015). Arsenite can also enhance the release of proinflammatory cytokines, influ-
encing the response to acute arsenic toxicity (Liu et al. 2001b).

The p53 antioncogene encodes a transcription factor and key regulator for sus-
taining genome integrity. p53 is triggered in response to several stress signals such 
as UV induced DNA damage and promotes  the transactivation of a number of 
downregulatory genes such as p21/CDKN1A (prevents cell cycle progression and 
let the cell for DNA repair before entering into S phase) (Kastan et  al. 1991; 
Derheimer and Kastan 2010), GADD 45, MDM2 or Bax (causes apoptosis via 
downregulation of Bcl-2  in cells with severely damaged DNA) (Miyashita et  al. 
1994). Mutation of the P53 gene is very common in cancerous cells (Greenblatt 
et al. 1994) and suggested to be a potential target of arsenic (Salazar and Ostrosky-
Wegman 2015). Exposure to high doses of arsenic increases the cellular level of p53 
and induces DNA damage (Martinez et al. 2011a, b; Muenyi et al. 2015), which is 
followed by G1 cell cycle arrest, allowing DNA to repair or trigger apoptosis (Liu 
et al. 2003; Louria-Hayon et al. 2003). Following As-induced DNA damage, p53 
promotes cell cycle arrest through activation of p53 target gene CDKN1A/p21 (Vogt 
and Rossman 2001; Yih and Lee 2000). The p53 protein also plays a crucial role in 
reducing intracellular ROS to non-toxic levels through transactivation of antioxi-
dant genes (namely Sestrin 1 (SESN1), Sestrin 2 (SESN2) and glutathione peroxi-
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dase-1 (GPX1)) (Sablina et  al. 2005). Mutation in the P53 gene significantly 
decreases the basal transcription of these antioxidant genes, leading to an upsurge 
of ROS and successive oxidative damage of DNA. In the absence of p53 surveil-
lance ROS may exert major changes in cell proliferation patterns from regulated 
toward malignancy in response to a low dose of arsenic exposure (Ganapathy et al. 
2016). Unusual increases of ROS and combined oxidative stress caused by arsenic 
exposure leads to an increase in mitochondrial transmembrane potential and activa-
tion of unfolded protein reaction (UPR) crucial for tumor development (Srivastava 
et al. 2013; Hunt et al. 2014). In response to arsenic exposure, p53 appears to be 
compromised before cells progress to malignant transformation (Ganapathy et al. 
2014, 2015). A recent report by Ganapathy et al. (2016) also supports that low dose 
of arsenic exposure suppresses p53 function and upregulates ROS which induces 
tumorigenesis via triggering endoplasmic reticulum (ER) stress and further promot-
ing unfolded protein reaction (UPR) as observed in human keratinocytes and lung 
epithelial cells.

7  �Arsenic-Mediated Epigenetic Modulation of Gene 
Expression

Perturbation of cellular oxidative balance by generating excess reactive oxygen spe-
cies (ROS) (Bailey and Fry 2014) subsequent to As exposure appears to be one of 
the epigenetic regulators of As toxicity in exposed aerobic cells (Cerda and 
Weitzman 1997). Besides Arsenic, several studies demonstrated that other metals 
such as nickel, cadmium, and lead induce epigenetic alterations (McVeigh et  al. 
2001; Dolinoy et al. 2007; Bleich et al. 2006). Metals aid to increase the synthesis 
of reactive oxygen species resulting in oxidative DNA damage that can alter the 
ability of methyltransferases to interact with DNA and leads to generalized altered 
methylation of cytosine residues at CpG sites (Baccarelli and Bollati 2009). The 
epigenetic modification does not comprise changes in the nuclear DNA sequences, 
but it modifies the processes that govern heritable changes with chromosomal 
markers in genomic expression (Feinberg and Tycko 2004; Cortessis et al. 2012; 
Ray et al. 2014). Epigenetic alteration, therefore, has potential to make a revers-
ible variation in DNA and a prime mechanism for next generations to better sus-
tain the biotic and abiotic stresses (Ren et al. 2011; Yong Villalobos et al. 2015; 
Talukder 2017). Three major epigenetic mechanisms, DNA methylation, covalent 
posttranslational modifications of a histone protein, and noncoding RNA-mediated 
gene silencing, are known each playing specific roles in the regulation of gene 
expression (Paul and Bhattacharjee 2016). A variety of environmental toxicants or 
xenobiotics can cause disease manifestation through epigenetic deregulation. Being 
an environmental toxicant and carcinogenic agent, As acts as an epimutagen and 
can induce epigenetic modifications that lead to different types of diseases includ-
ing cancer.
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7.1  �DNA Methylation by Arsenic Exposure

Although the role of DNA methylation in inducing different types of cancers have 
been extensively studied, very few studies have been made in arsenic-induced can-
cers. Chronic exposure to arsenic exhausts S-adenosylmethionine (SAM), the main 
methyl donor required for arsenic detoxification (during biotransformation of iAs to 
MMA and DMA), that sometimes reduces the consumption of methyl groups by a 
cellular device for different methylation activities leading to overall ‘global hypo-
methylation’ (Hubaux et al. 2013). Epigenetic alteration associated with As mainly 
occurs due to the scarcity of methyl (−CH3) groups within the cell following the 
altered availability of SAM, the chief provider of a methyl group for DNA methyl-
transferases (DNMT) (Chatterjee et  al. 2017a). This hypomethylation leads to a 
decrease in the activity of DNMT i.e., loss of CpG methylation status of promoters 
for some methylated-silenced genes which ultimately lead to activation of specific 
genes along with oncogenes (Deleted in Bladder Cancer 1 (DBC1), Hras1 and 
c-myc) (Cui et  al. 2006; Chen et  al. 2001; Takahashi et  al. 2002). Furthermore, 
hypomethylation leads to a decrease in LINE1 methylation and total 
5-methyldeoxycytidine content in lymphoblastoid cells (Intarasunanont et al. 2012).

However, hypermethylation of promoters of several tumor suppressor genes like 
p15, p16, p53, and death associated protein kinase (DAPK) by As exposure have 
also been reported in a dose-dependent manner (Chanda et al. 2006; Zhang et al. 
2007; Fu et al. 2010; Ren et al. 2011). Hypermethylated DAPK gene was found in 
urothelial carcinoma patients living in As-contaminated areas (Chen et al. 2007). 
Thus reports show that both epigenetic mechanism, i.e., hypomethylation and 
hypermethylation, leads to deregulation of gene expression and malignancy by 
upregulating oncogene expression and downregulating tumor suppressor genes, 
respectively (Reichard and Puga 2010; Ziech et al. 2011; Ren et al. 2011).

7.2  �Histone Modification by Arsenic Exposure

Nucleosomal histone modifications provide another mechanism for As mediated 
epigenetic gene regulation. The Nucleosome core particles, the basic structural unit 
of chromatin, consists of stretches of DNA (~146 bp) wrapped around a histone 
octamer consisting of two copies of each core histone (H2A, H2B, H3, and H4) 
(Luger et al. 1997). Histone H1 is not part of the nucleosome core, but it stabilizes 
the linker DNA strand wrapping the “bead,” forming the “pearl necklace” structure 
(Luger et al. 1997). The N terminal tails of the core histone protein (particularly 
those of histones H3 and H4) contains positively charged amino acids like lysine, 
arginine and serine (Bannister and Kouzarides 2011) that are subjected to frequent 
posttranslational and covalent modifications including acetylation, methylation, 
phosphorylation, citrullination, ubiquitination, sumoylation, ADP ribosylation, 
deamination, and proline isomerization (Kouzarides 2007; Bannister and Kouzarides 
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2011; Ray et al. 2014). Arsenic-mediated histone modifications include methylation 
and acetylation (Paul and Bhattacharjee 2016).

The key enzymes catalyzing the dynamic and reversible histone acetylation are 
histone acetyltransferases (HATs) and histone deacetylases (HDACs) (Glozak and 
Seto 2007). Evidence for As mediated epigenetic alteration through altered histone 
acetylation has been reported by a number of authors (Jensen et al. 2008). Alteration 
in histone H3 acetylation has been observed in AsIII- and MMAIII-exposed human 
urothelial cells (in vitro) undergoing malignant transformation (Jensen et al. 2008). 
AsIII induced histone acetylation is responsible for the up-regulation of genes 
involved in apoptosis or in stress response and probably is mediated by HDACs (Li 
et al. 2002, 2003). AsIII was found to hinder HDAC gene activity that can be corre-
lated with increased global histone acetylation (Ramirez et al. 2008). Another report 
of reduced histone acetylation (H4K16) and increased cytotoxicity was found in a 
dose and time-dependent manner by both AsIII and MMAIII treatment in human 
bladder epithelial cells. MYST1 mediated H4K16 acetylation is necessary to pro-
tect the cells against arsenicals (Jo et al. 2009).

Di-and trimethylated forms of lysine (K) residues within the histones are impera-
tive to chromatin conformation and maintaining its supercoiled structure. In vitro 
studies revealed that As can modify the methylation of these residues and have been 
associated with the advancement of several types of cellular dysfunctions and even 
tumorigenesis (Paul and Bhattacharjee 2016). e.g., an increased rate of methylation 
of H3K4me3 and H3K9me2 was noticed due to increased levels of histone methyl-
transferase G9a protein under AsIII stress (Zhou et al. 2009). Arsenic-mediated epi-
genetic regulation of gene expressions can be accompanied by histone methylation 
and recruitment of transcription factors to the binding site of the promoter as was 
found in ferritin gene expression, an arsenic-responsive gene (Huang et al. 2013). 
Ferritin gene, under oxidative stress, is transcriptionally upregulated through activa-
tion of the antioxidant responsive element (ARE) by the transcription factor Nrf, 
thereby, providing an important cellular defense mechanism by chelating excess 
intracellular free iron, thus lessening hydroxyl radical formation. The study of 
Huang et al. (2013) showed that arsenic induces histone H4R3 and H3R17 methyla-
tion in human keratinocytes, along with the nuclear accumulation of PRMT1 and 
PRMT4, which is accompanied by Nrf2 recruitment to the ARE in the promoter site 
and upregulates the expression of antioxidant gene ferritin.

7.3  �miRNA Mediated Gene Silencing by Arsenic Exposure

Potential roles of miRNAs in metal stress responses in plants have been studied 
extensively (Sunkar et al. 2006 ; Zhou et al. 2010 ; Li et al. 2012). Studies support 
that miRNAs mediated gene regulation is another epigenetic mechanism that affects 
development, growth, and response to stress in humans as well (Zhou and Xi 2018). 
Marsit et al. (2006) reported that exposure of human lymphoblasts to 2 μM NaAsO 
for 6 days altered the expression of several miRNAs including miR22, miR34a, 
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miR210, miR221, and miR222. While the expression of mi R210 was found to be 
repressed, the expression of miR22, miR34a, miR210, miR221, and miR222 was 
increased (Marsit et al. 2006). Another report shows miR19a and miR29a mediated 
apoptosis in the human bladder (T24) and hepatocellular carcinoma (HepG2) cells, 
respectively (Cao et al. 2011 ; Meng et al. 2011). Reduced expression of miR181b 
and miR9, and expression of Nrp1 resulted in cell migration, tube formation, and 
angiogenesis, which are otherwise under control in a normal cell (Wang et al. 2011 ; 
Cui et al. 2012 ; Hubaux et al. 2013). A study by Wang et al. (2011) showed that 
chronic arsenite exposure leads to repression of miR-200 which is mediated by 
EMT-inducing transcription factors ZEB 1 and ZEB 2 (zinc-finger E-box-binding 
homeobox factor) and progressive methylation of miR-200 promoters ultimately 
leads to malignant transformation of p53-knocked down human bronchial epithelial 
cells. Very recently it is proved that differential expression of miRNAs and target 
genes at the early stage of arsenite exposure may contribute to arsenic-induced car-
cinogenesis (Al-Eryani et al. 2018). The potential role of miRNA in mediating the 
response to arsenic exposure was evidenced from the study of Chen et al. (2017) 
which showed that inhibition of miR-155 by its specific inhibitor could remarkably 
mitigate the malignant growth and promotes apoptotic cell death in arsenite-
transformed cells. A similar report was found in lung adenocarcinoma cells, where, 
inhibition of miR-155 succeeded in reduced cell proliferation, and triggered cell 
death (Lv et al. 2016).

8  �Conclusion

Arsenic naturally occurs in the earth’s crust. However, the toxicity of the metalloid 
has created human misery in many parts of the world. Several researchers are work-
ing to develop technologies for As toxicity mitigation and uplift millions of people 
from this dreaded situation. Arsenic enters into the human body either through con-
taminated drinking water, food or inhalation. Both at genetic and epigenetic levels, 
As biotransformation into AsV, AsIII and its methylated conjugates play an important 
role in its carcinogenicity. Arsenic may interfere with the cellular process through 
the production of reactive oxygen species, which can induce or suppresses meta-
bolically active proteins/enzymes related to DNA damage repair, cell cycle regula-
tion, epigenetic abnormalities, etc. Chronic arsenic exposure leds to alteration in 
EGFR, PI3K/AKT pathways visibly linked to the development of oncogenicity. 
Molecular mechanisms of tumorigenesis and malignant transformation in the 
human body due to As toxicity should be investigated to produce more favorable 
translatable results for early mitigation. It is also essential to make As-related 
research and information readily available in a common platform for assessing risks 
and decision supports. Cloud-based computing and the Internet of things (IoT) may 
help to congregate data to support affected communities in evaluating risks due to 
arsenic exposure (Singh 2017). Therefore, an integrated study on various aspects 
like environmental monitoring, health surveillance, exposure data, individual risk 
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characterization, and human biomarkers are required to provide in-depth perception 
into the pathophysiological complexity for the genesis of As related toxicity and 
diseases processes for developing specific therapeutic and risk management strate-
gies against it.
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Chapter 6
Sustainable Arsenic Mitigation: Problems 
and Prospects in India

Nandita Singh and Om Prakash Singh

Abstract  Arsenic contamination of groundwater has emerged as a significant 
challenge for the human right to water in India because of over 80% dependence on 
groundwater for drinking, particularly in the rural areas. In order to mitigate the 
arsenic menace and provide safe drinking water to the masses, government and 
non-governmental agencies have initiated several interventions. These interven-
tions can be categorized under one of the following approaches, namely, treatment 
of contaminated water; supply of groundwater with acceptable level of arsenic; 
surface water supply; and rainwater harvesting. While it is a reality that all popula-
tions estimated to be ‘at risk’ of arsenic exposure have not yet achieved ‘coverage’ 
under one or more of these approaches, there exist more pertinent issues. These can 
be summarized under the rubric of ‘sustainability’ of the interventions, primarily 
from environmental, social, cultural and economic perspectives. This chapter eval-
uates the different arsenic mitigation interventions in India from these different 
sustainability perspectives, and proposes that rainwater harvesting offers the most 
promising way forward for sustainable arsenic mitigation.

1  �Introduction

High concentration of arsenic in groundwater is reported from several states of 
India. Among earliest known instances is West Bengal, first reported in 1983 (Garai 
et al. 1984), followed by Chattisgarh in 1999 (Chakraborti et al. 1999), in Bihar and 
Uttar Pradesh in 2003 (Chakraborti et al. 2003; Ahamed et al. 2006), in Jharkhand 
in 2004 and Rajasthan in 2012 (Chakraborti et  al. 2018). According to recent 
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research publications, arsenic above the WHO standard of 10 μg/l is presently 
reported in the groundwater in eight states: in 25 out of 75 districts of Uttar Pradesh, 
22 out of 38 districts of Bihar, three out of 24 districts of Jharkhand, three out of 33 
districts of Rajasthan, 14 out of 22 districts of Haryana, two of 27 districts of 
Chhattisgarh, one of 11 districts of Delhi, and 14 of 19 districts of West Bengal 
(Chakraborti et  al. 2018). However, according to Government of India sources, 
more than 50 μg/l of arsenic in ground water is reported from parts of ten states, 
namely, West Bengal, Assam, Bihar, Jharkhand, Uttar Pradesh, Punjab, Haryana, 
Chhattisgarh, Karnataka and Manipur (MOWRRDGR 2017). Moreover, arsenic 
concentration more than 10 μg/l is reported from patches in additional 11 States/
Union Territories. In all, about 239 million people across 153 districts in 21 states 
are estimated to be drinking water that contains unacceptably high levels of arse-
nic. This is almost one-fifth of the country’s population. Further, according to 
information lately tabled by the government in the Parliament, the total number of 
arsenic-affected persons in the country is about 14.8 million, with more than 10.4 
million in West Bengal, 1.7 million in Bihar, and 1.5 million in Assam (Anonymous 
2017). Calculations based on the recent government information reveal that 65% of 
Assam’s population (about 21 million), 60% in Bihar (about 59 million) and 44% 
in West Bengal (about 40 million) are exposed to arsenic-contaminated drinking 
water. In terms of absolute numbers Uttar Pradesh has the largest population at 
risk – over 65 million, while the total figure for the country could be up to 239 mil-
lion (Jadhav 2017).

In addition to drinking water, arsenic contaminated water also affects large popu-
lations through the food chain (Singh and Ghosh 2011). Vegetable crops grown in 
arsenic-rich groundwater adds manifold to daily arsenic intake, reported to be as 
high as 560 and 393 μg of arsenic for adult and children, respectively (Santra et al. 
2013). Highest arsenic accumulation has been reported in potato, brinjal, arum, rad-
ish, lady’s finger and cauliflower, while lower level has been observed in beans, 
green chilli, tomato, bitter gourd, lemon and turmeric. Besides, mustard, pea, Mung 
bean and rice are also substantially affected (Santra et al. 2013), and even milk has 
been found to be seriously affected in areas where groundwater is contaminated 
with arsenic (Rana et  al. 2007). An additional concern is that food crops grown 
using arsenic contaminated water are sold off to other places, including uncontami-
nated regions nationally as well as internationally where the inhabitants may end up 
suffering from arsenic toxicity from consumption of contaminated food (NIH and 
CGWB 2010).

Exposure to arsenic-contaminated water and food rings alarm bells from the 
perspective of the human rights of the masses (Kumar et al. 2016). According to 
the General comment No. 15 on the Right to Water adopted by the UN Committee 
on Economic, Social and Cultural Rights in 2003, “the water required for each 
personal or domestic use must be ‘safe’, therefore free from … chemical sub-
stances, … that constitute a threat to a person’s health” (CESCR 2002). Moreover, 
the International Covenant on Economic, Social and Cultural Rights (ICESCR), 
1966 under article 12 recognizes the human right to health as “the right of every-
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one to the enjoyment of the highest attainable standard of physical and mental 
health”, for which access to ‘safe’ water is the foremost “underlying determinant” 
(CESCR 2000). Prolonged ingestion of water containing arsenic concentrations 
higher than 10 μg/l causes multiple health problems, and so does high doses of 
arsenic through the food chain. More than 5 years of exposure can result in carci-
nogenic and non-carcinogenic health issues such as melanosis, keratosis, skin 
lesions, neurological disorders, liver damage, respiratory complications, and vari-
ous kinds of cancers (Jain and Chandramani 2018; Kumar et al. 2016; Abdul et al. 
2015; Ravenscroft et al. 2009).

According to the Universal Declaration of Human Rights proclaimed by the UN 
General Assembly in 1948, “everyone has the right to a standard of living adequate 
for the health and well-being of himself and of his family” (Article 25) as well 
as the right to work (Article 23) which includes “the opportunity to earn a livelihood 
by work freely chosen or accepted”, towards which States are obliged to take appro-
priate measures to develop an enabling environment for productive employment 
opportunities (UNGA 1948). The impact of arsenic exposure on health can progres-
sively interfere with the enjoyment of these rights by affected populations since an 
unhealthy body leads to unhealthy minds and appreciably lowers physical capacity 
at work, in some cases also leading to death, plunging dependent families into 
deeper circles of deprivation and poverty. Arsenic contamination of groundwater 
and hence drinking water sources and food are thus also a great impediment to sus-
tainable development (Johnston 2016).

In light of this, mitigation of arsenic in water consumed for drinking and irriga-
tion becomes a significant obligation for the government in India which is a signa-
tory to all the major human rights instruments of the United Nations. India is a 
federation of states and water is a ‘state’ subject under the Constitution. 
Consequently, it is the State governments which are directly responsible for adopt-
ing policies and implementing interventions for provision of safe drinking water to 
the affected populations. The Government of India has also taken an active role in 
guiding and supporting the State governments in terms of policy as well as financial 
resources in undertaking appropriate action towards mitigation of the arsenic men-
ace in drinking water, though the government appears to be less attentive to arsenic 
in the food chain.

It is a fact that though large populations as noted above are ‘at risk’ of exposure 
to excess arsenic through drinking water and that the number of people already 
known to be affected is large, not all affected pockets are yet ‘covered’ under arse-
nic mitigation interventions. While a good number of locations are quite recently 
identified, a greater concern is whether people living in habitations already ‘cov-
ered’ through safe water interventions are able to enjoy their human right to water 
and the concomitant rights as described before? Evidence suggests that many of the 
arsenic mitigation interventions are unable to provide arsenic-safe drinking water to 
the target populations due to a multitude of reasons. For example, some become 
dysfunctional soon after installation, some are abandoned by the users, while still 
others fall inadequate in fulfilling the demand (SOES 2004; Singh 2012b; Hossain 
et al. 2015; Kumar et al. 2016). In light of this, the pertinent questions to arise are: 
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Are the various arsenic mitigation interventions already in place in the 
arsenic-affected areas of India sustainable? What kinds of challenges confront sus-
tainability of these mitigation solutions? How can arsenic mitigation be made more 
sustainable so that the human rights of the ‘at risk’ populations are protected?

This chapter attempts to evaluate the different arsenic mitigation approaches 
and interventions in India from sustainability perspective, identifying the factors 
that influence their sustainability, and finally, proposing a way forward. The main 
focus is on arsenic mitigation interventions in India with respect to drinking water, 
but implications for the food chain are also considered. The chapter is organized 
into six sections. In the second section, the conceptual framework used for analyz-
ing the sustainability of arsenic mitigation interventions will be presented. The 
interventions adopted for mitigating arsenic in drinking water in different States 
encompass a variety of strategies and technologies. The third section will describe 
the approaches and interventions adopted for arsenic mitigation in India. In the 
fourth section, an overview of the approaches adopted by the different arsenic 
affected States in India will be presented. In the fifth section, the sustainability of 
the different arsenic mitigation interventions will be outlined, as seen from social, 
cultural, environmental and economic perspectives. Finally, the sixth section will 
summarize the sustainability perspectives on arsenic mitigation and identify a way 
forward for addressing the current limitations that can enable the women, men and 
children ‘at-risk’ to enjoy their human right to water, human right to health and 
other related rights.

2  �Methodology

The findings presented in this chapter are based upon long-term ethnographic 
research on arsenic mitigation undertaken by the authors in the states of West 
Bengal and Bihar. First-hand field research was undertaken in a total sample of 46 
villages in these two states. Primary data was collected from these villages through 
intensive residential fieldwork in connection with aspects like sufficiency, appro-
priateness (and thereby acceptability), accessibility, and affordability of the arsenic 
mitigation interventions. Data collection primarily rested upon qualitative tech-
niques like participant observation, key-informant and household level interviews, 
case studies and focus group discussions (FGDs). Besides, visualizing tools, like 
social and resource mapping, were also used. The informants included women as 
well as men from different segments of local community. Data analysis with 
respect to these criteria was primarily qualitative; first, the data pertaining to the 
ongoing interventions and their sustainability was classified under different crite-
ria, and then compared to arrive at generalizations and identify trends. Detailed 
interviews and FGDs that deal with implementation of technological interventions 
for arsenic mitigation were also organized with key representatives from – govern-
mental, non-governmental and international agencies. Also, scientists active in 
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research on the issue were consulted. This chapter further draws upon findings of 
similar research undertaken by the authors in Rajasthan and Gujarat where water 
quality has been an important historical concern and local communities have 
adopted traditional nature-based solutions to address the problem. The learnings 
from studies on these nature-based solutions in these quality-affected areas, that 
also offer the benefit of climate resilience as an added value, have been incorpo-
rated in attempting to define a way forward.

3  �Conceptual Framework for Analyzing Sustainability 
of Arsenic Mitigation

The word sustainable comes from the Latin sustenare which means “to hold up”, 
“to maintain” or “to support”. ‘Sustainability’ therefore implies ‘the ability to be 
maintained at a certain rate or level’1 or “the ability to keep something going for a 
long time” (Sutton 2004). The notion of sustainability has been applied to a diver-
sity of contexts, including development, technology, business, agriculture, liveli-
hoods, education and many others, each bringing forth its own perspective 
(Giovannoni and Fabietti 2013).

The usage of the term ‘sustainability’ in the current form was established at the 
1972 UN Conference on the Human Environment held in Stockholm. It was further 
developed and holistically described by the World Commission on Environment and 
Development (WCED), also called the Brundtland Commission, in 1987 through 
the concept of ‘sustainable development’ (Sutton 2004). Sustainable development 
denotes “development that meets the needs of the present without compromising the 
ability of the future generations to meet their own needs” (WECD 1987). This con-
cept considers three pillars of sustainability, namely, ecological, social and eco-
nomic, recognizing that all must be considered together to find lasting prosperity in 
society. Since then, these three pillars have been widely applied to identify, pursue 
and describe sustainability of efforts and actions in different contexts. In recent 
years, cultural sustainability has been considered as the fourth pillar, based on the 
argument that culture is a necessary foundation for the transition to a truly sustain-
able society (Soini and Birkeland 2014).

Sustainability can be described as a shared quality concerning a valued system, 
object, process or attribute in society and a question concerning sustainability may 
arise whenever there is a perception of threat or risk about its persistence or excel-
lence (Sutton 2005). The shared quality connected to the valued system, object, 
process or attribute could be defined along diverse axes, primarily social, environ-
mental, economic, and cultural. In the context of arsenic mitigation, the goal of 
sustainability is important in two senses: first, in terms of sustainability of the 
interventions implemented for mitigating the arsenic menace, and second, in terms 

1 URL: https://en.oxforddictionaries.com/definition/sustainability. Accessed on 12 Feb 2018.
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of their implications for sustainable development and promotion and protection of 
the basic human rights within a context of large-scale arsenic contamination in 
groundwater. It is obvious that failure to reach sustainability in the first sense 
would imply failure in fulfilling the second one too. It is therefore important to 
assess the sustainability of different arsenic mitigation interventions. These inter-
ventions may be seen as valued systems (approaches and policies), objects (tech-
nological solutions) or processes (user participation).

Sustainability of the arsenic mitigation interventions could be conceptualized as 
“the ability to continue to be implemented /used/managed for prolonged periods of 
time and delivering the same output in the same way as at the beginning, so as to 
help meet the needs of the present without compromising the ability of the future 
generations to meet their own needs of accessing arsenic safe water for drinking, 
livelihood and other uses”. Sustainability of arsenic mitigation interventions could 
be evaluated against each of the four parameters of sustainability: social equity, 
cultural acceptability, environmental sustainability and economic efficiency. The 
conceptual framework for evaluating sustainability of arsenic mitigation interven-
tions is represented in Fig. 6.1.

4  �Approach for Arsenic Mitigation in India: An Overview

The basic approach in arsenic mitigation in India has been provision of ‘safe’ 
drinking water to the affected populations, whether as immediate relief or as a 
long-term solution. The approach for supply of safe drinking water in turn consists 
of four different strategies, namely, (a) treatment of contaminated water, (b) sup-
ply of groundwater having acceptable level of arsenic, (c) surface water supply, 
and (d) rainwater harvesting. Under each of these strategies, different technologies 
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Fig. 6.1  Conceptual framework for evaluating sustainability of arsenic mitigation interventions
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have been developed and provided as options to water users in the local communi-
ties, particularly in the rural areas. These are briefly summarized below.

4.1  �Treatment of Contaminated Water

A number of technologies have been developed for the removal of high concentra-
tions of arsenic from drinking water. Some of these are developed in India while 
some others represent imported technologies. In general, the technologies are 
designed based upon the following processes: (a) oxidation and sedimentation, (b) 
coagulation, (c) sorptive filtration, (d) ion exchange, and (e) membrane techniques. 
Other potential approaches include phytoremediation or the use of bacteria, which 
can play an important role in catalyzing biological arsenic removal processes. All 
the arsenic treatment technologies ultimately concentrate arsenic in the sorption 
media, the residual sludge or in a liquid media. The treatment technologies are very 
commonly installed as community water supply points on hand pumps or some-
times through public tap stands. This option was widely adopted in West Bengal in 
the beginning and has since been seen as a short-term immediate solution in India. 
A major limitation of this approach is the high risk of environmental pollution from 
the used media due to leaching of arsenic into the ground or water resources and 
soil (Panda 2015).

4.2  �Supply of Groundwater with Acceptable Arsenic Levels

For this purpose, deep aquifers separated from shallow contaminated aquifers by 
impermeable layers are believed to be a dependable source. Consequently, installa-
tion of deep tube wells for tapping such aquifers is the common technology (WB/
WSP 2005). Such water can be further provided conveniently at community level 
through household-based piped water schemes or through community points. Dug 
wells that accumulate groundwater from the top layer of a water table, which is 
replenished each year by arsenic-safe rain and percolation of surface waters through 
aerated zone of the soil, are also found to represent a technological option even in 
areas where tube wells are contaminated. The water can be used for drinking and 
cooking after minor treatment using chlorination and lime (WB/WSP 2005). 
Converting them into sanitary wells is proposed as a way forward for protection 
against microbial contamination.
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4.3  �Surface Water Supply

Surface water supply has been recently seen in India as the best long-term option 
for arsenic mitigation (MDWS 2013). This approach presents several additional 
advantages such as water delivery near home, protection from external contamina-
tion, better quality control through monitoring and convenience in collection of 
water. Water can be made available through house connection, yard connection, or 
stand post, depending on affordability of each option to the consumer. However, 
despite the benefits, cost effectiveness of the option has been an important issue in 
question, especially where the settlements to be served are scattered. Also, in this 
option, the problem of biological and chemical contamination is to be addressed 
through treatment and disinfection if surface water is to be used for drinking. The 
supply source is more commonly from rivers, but even local ponds, lakes and tanks 
can be considered.

4.4  �Rainwater Harvesting

Rainwater harvesting is recently being promoted as a viable option in arsenic 
affected areas. Rainwater harvesting has been seen as a solution for arsenic problem 
in two ways: individual household-based rooftop rainwater harvesting which can 
provide potable water for families or harvested surface water run-off which can be 
used to recharge high arsenic groundwater resources, thereby diluting the concen-
trations (DDWS undated; Hossain et al. 2015).

However, while rainwater is usually seen as a much cleaner water source and 
may provide a low-cost solution, among technological limitations for the rooftop 
variety identified in rural areas are limitations of roof area, storage capacity and cost 
effectiveness that may actually prove to be disadvantageous as an option for the 
poorer segments. Also, appropriate maintenance of the system is seen as presenting 
several difficulties (WB/WSP 2005; Hossain et al. 2015).

5  �Arsenic Mitigation in India: State Perspectives

Of the 21 states affected by high arsenic in groundwater, some have initiated inter-
ventions for its mitigation. In this section, the policies and strategies adopted in the 
four worst affected states, namely, West Bengal, Bihar, Uttar Pradesh and Assam 
will be outlined. West Bengal, the first state to identify arsenic as a public health 
concern, has designed several interventions for assessing the threat and mitigating it 
for over a period of more than three decades. Supported by Rajiv Gandhi Drinking 
Water Mission from the Centre, the first Steering Committee was constituted by the 
State Government in 1988, which conducted a multi-centric study to find out the 
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cause of the problem. Thereafter a number of Task Forces have been constituted, 
with representation of all the academic and research institutes working on arsenic 
and groundwater quality-related problems. Lately, the State Government has devel-
oped a Master Plan for long term mitigation for the problem, which is presently in 
the process of implementation with financial support from the Centre (Planning 
Commission 2007).

Arsenic toxicity is known in nine districts of West Bengal and the State has 
received substantial financial support from the Government of India for undertaking 
action for mitigation (Santra 2017). In 2005, the Planning Commission constituted 
a Task Force to work out modalities of combating the menace of arsenic pollution 
with identification of appropriate technologies. On the whole, in West Bengal, arse-
nic removal technologies have been given considerable priority especially as a 
short-term remediation measure, with their installation starting at the end of 1998. 
By 2005, the West Bengal government and other organizations invested about three 
million USD in installing arsenic removal plants (ARPs) purchased from both 
national and international manufacturers (Hossain et al. 2005). 1900 units were set 
up at an average price of 1500 USD for each in five out of nine arsenic affected 
districts of West Bengal. Several community-based units installed in the State are 
based on sorptive filtration technique using activated alumina, such as the units 
manufactured by Alcan, Apyron, Oxide (India), and RPM Marketing. Granular fer-
ric oxide is used as the media in units produced by Pal-Trockner, while the READ-F 
arsenic filter from Japan uses hydrous cerium oxide as the adsorbent. Besides, 
coagulation-sedimentation-filtration and ion-exchange techniques have also been 
used (Hossain et al. 2005; Santra 2017). In fact, a Technology Park was set up in 
Baruipur block of South 24 Parganas district where 19 ARPs from 11 different 
national and international manufacturers were installed for evaluation in terms of 
their arsenic removal efficiency, cost-effectiveness and user-friendliness to help the 
State Government and other agencies in selecting the appropriate technologies. The 
‘Technology Park Project’ was implemented by All India Institute of Hygiene and 
Public Health (AIIH&PH), Govt. of India, Kolkata, in partnership with a number of 
NGOs under the financial support from India-Canada Environment Facility (ICEF) 
(Hossain et al. 2005). Based on the findings of the report from this park, the govern-
ment installed over 2000 ARPs in different arsenic affected habitations, but very 
few countable ones have proved to have sustained the test of time (Planning 
Commission 2007). A good number of domestic filter units based on different tech-
niques have also been developed and distributed in a number of districts, the opera-
tional life of which are varied (Singh et al. 2009).

Among medium- and long-term mitigation alternatives, surface water-based 
piped water supply has been implemented in some areas. For example, water from 
River Hooghly is being treated and made available to the villagers through piped 
distribution system in Nadia and North 24 Parganas districts. Where piped water 
supply schemes are based on groundwater, arsenic removal plants are attached to 
the supplying tube well, and in some places, pond-based schemes where rainwater 
is harvested and then treated for supply through pipes or standpoints. On the whole, 
the policy for arsenic mitigation adopted in West Bengal shows a gradual shift from 

6  Sustainable Arsenic Mitigation: Problems and Prospects in India



140

dependence on arsenic removal technologies to use of surface water. In some places, 
water supply based on deep tube wells in the range of 150–300 m has also been 
initiated but questions over sustainability of the option have been raised (Ghosh and 
Singh 2009).

In Bihar, arsenic was first reported in 2002 in Bhojpur district and since then it 
has come to be reported from 17 out of 38 districts (Kumar et al. 2016). With sup-
port from UNICEF, the Public Health Engineering Department (PHED) of the State 
government, which is the nodal agency for arsenic mitigation, has adopted a 
multi-pronged approach for arsenic mitigation. According to senior PHED officials, 
for safe water supply in the affected areas, piped water schemes based on surface 
water is the first approach in Bihar’s mitigation policy. Since the arsenic-affected 
areas lie close to the Ganges, a number of such schemes based on Ganges water are 
being executed. The first of these was executed in Bhojpur district, which is designed 
to serve affected population in 39 villages for the next 30 years, with a capacity of 
40 litres per capita per day (lpcd) and supply time of 2 hours a day. Here water is 
first drawn from the Ganges, thereafter, treated through conventional methods and 
then disinfected using sodium hypochlorite, to be finally delivered to villagers pri-
marily through community water points (Kumar et al. 2016).

The second approach in the PHED policy in Bihar State has been sanitary wells 
since the dug well water is free from arsenic contamination and also fairly accept-
able to the people as an age-old practice. The water can be used for drinking and 
cooking after minor treatment using chlorination and lime. At many places, dug 
wells which had mostly fallen out of use have been rejuvenated and converted into 
sanitary wells. UNICEF has constructed 50 sanitary wells in 11 districts. According 
to government reports, more than 300 new wells have also been constructed and 
fitted with hand pumps, including many at schools (NIH and CGWB 2010). The 
third approach has been mini-piped water schemes based on groundwater abstrac-
tion from arsenic-safe deep aquifers. The first of these was in Semaria Ojhapatti 
village in Bhojpur district, with more being planned in other affected districts. The 
fourth approach is based on rooftop rainwater harvesting, actively promoted by 
UNICEF in Bihar. ARPs are the last priority in Bihar’s mitigation strategy, pro-
moted in isolated pockets where any other option is not viable. The most common 
techniques are based on adsorption/ion-exchange process (Kumar et  al. 2016). 
According to PHED plans, arsenic removal units are to be installed in 700 schools 
with two filters in each school to supply arsenic-safe treated groundwater. Extensive 
IEC activities and awareness programmes are also being organized at District, 
Block and Panchayat level all over the state to educate the rural masses (Kumari and 
Maurya 2016).

In Uttar Pradesh State, arsenic contamination of groundwater was first recog-
nized in 2003. According to recent studies, arsenic in groundwater above 50 μg/l is 
now identified in 31 out of 70 districts (Namrata et al. 2015). For providing safe 
water to the affected communities, the initial strategy adopted in 2006 and 2007 was 
to install deep tube wells by tapping a deeper third layer beyond 70–100 m below 
ground level, which was found to be arsenic-free. Under this strategy, 475 affected 
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habitations of Ballia and Lakhimpur Kheri districts were provided with hand pumps 
on deep tube wells (UPJN 2018).

The above approach was however discontinued in 2008, following a decision 
from Government of India (MDWS 2011). Then the alternative mitigation strategies 
left were: (a) use shallow wells as sanitary wells for providing arsenic safe water, 
which also is not a safe source as discovered by later testing in Bahraich district, (b) 
install community-based filters and provide home-based filters with proper com-
munity orientation for arranging backwashing and proper disposal of filtered arse-
nic which is highly concentrated in nature, (c) providing surface water source by 
lifting water from rivers such as Ganga and Ghagra, which is highly capital inten-
sive and long term mitigation measure, and (d) community awareness. After plan-
ning was made for sanitary wells in 492 habitations, threat of occurrence of arsenic 
in shallow aquifers put a halt on this mitigation measure too (MDWS 2011). 
Meanwhile, UNICEF advocated the efficacy of approach of treatment of arsenic 
contaminated water in the absence of alternate mitigation measure and supported a 
pilot project for providing community-based arsenic removal filters at seven loca-
tions in Lakhimpur Kheri, Bahraich, Gorakhpur and Ballia districts (MDWS 2011). 
Subsequently, the State government approved installation of 310 such community-
based filters in Ballia and 500 more in Gorakhpur, Bahraich and Lakhimpur Kheri 
districts. Seven piped water supply schemes in district Ballia and five piped water 
supply schemes in district Lakhimpur Kheri utilizing surface water from rivers, 
lakes or ponds, which are free from arsenic contamination, have also been approved 
by the state government (UPJN 2018). Besides UNICEF, WaterAid has also contrib-
uted to the mitigation efforts especially through awareness generation and commu-
nity management models for ARPs (MDWS 2011).

In the worst affected Bahraich district in Uttar Pradesh, the University of 
Miyazaki from Japan, together with Japan International Cooperation Agency (JICA) 
and the government of Uttar Pradesh, implemented an arsenic mitigation project 
during the period 2008–2012 (Jaiswal et  al. 2010). The integrated mitigation 
approach implemented in the project included awareness-raising of villagers, instal-
lation of ten alternative water supply units (three filters for dug wells to treat the 
fecal coliform bacteria and seven arsenic removal plants) and healthcare for arsenic-
osis patients (Yano et al. 2012). For monitoring the progress of all mitigation inter-
ventions in the State and providing further guidance, a Central Team was set-up in 
2011 to study the problem in its totality and suggest to the State Government a clear 
roadmap for surveillance of arsenic related problems and provide arsenic free drink-
ing water to the populations of Ballia and other affected districts (MDWS 2011).

In Assam State, the mitigation plan encompasses several components, namely, 
extensive awareness generation in the arsenic endemic areas, tapping of alternate 
surface sources wherever feasible, promotion of rainwater harvesting system, use of 
domestic arsenic removal filters, hand pump attached community-based arsenic 
removal units, promotion of traditional ponds, and upgradation of existing dug 
wells to sanitary ring wells (APHED 2018).

Apart from the specific interventions adopted in the States, the centrally spon-
sored scheme National Rural Drinking Water Program (NRDWP), launched in 2009 
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and modified in 2012, aims at providing adequate and safe drinking water to the 
rural population of India. According to NRDWP guidelines, every rural citizen 
should have access to a basic minimum service level of 40 lpcd of safe drinking 
water, including inhabitants in the arsenic affected areas. This program has enabled 
the provision of significant additional resources to the sector and created an envi-
ronment for the development of infrastructure and capacity for safe drinking water 
supply in rural areas, including arsenic-affected ones (MDWS 2017). With respect 
to water quality concerns, and hence arsenic mitigation, the Ministry of Drinking 
Water and Sanitation has asked all the States to commission surface water-based 
piped water supply schemes in all water quality affected habitations as a long-term 
sustainable solution. However, since commissioning of Piped Water Supply projects 
may take 3–5 years to complete and the rural people cannot be put to risk of con-
suming contaminated water during this period, all States were advised to install 
community water purification plants in reported arsenic affected habitations by 
March 2017 (MDWS 2017).

6  �Sustainability of Arsenic Mitigation Interventions in India: 
Some Reflections

In this section, sustainability of the interventions described above is examined using 
the conceptual framework defined earlier, evaluating these in terms of social equity, 
cultural acceptability, environmental sustainability and economic efficiency. The 
reflections are based primarily upon evidence collected from the field through dif-
ferent methodological tools as described before, namely, first-hand ethnographic 
studies in arsenic-affected local communities, interviews and discussions with rep-
resentatives of the government at Central and State levels and some of the non-
governmental organizations active in the areas of study, and communication with 
scientists active in research on the issue.

6.1  �Environmental Sustainability

Environmental sustainability entails a position whereby the arsenic mitigation inter-
ventions should have minimal negative impact on the environment in the short- as 
well as long terms. The policies and approaches adopted in the affected states of 
West Bengal and Uttar Pradesh, and also promoted under the NRDWP by the 
Central government, as examined above, show preference for ARPs, either as the 
‘only feasible solution’ or ‘immediate relief’.

The ARPs, whether as community-level units or domestic filters, are based on 
complex chemical processes which produce arsenic-rich sludge on a day-to-day 
basis. Even regeneration of activated alumina and ion exchange resins used in the 
treatment units result in semi-liquid wastes that may be too arsenic-rich for simple 
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disposal (Ghosh and Singh 2009; Mandal et al. 2016). According to the concept of 
Integrated Water Resources Management (IWRM), the basic components of the 
ecosystem, namely, groundwater, surface water, land and other natural resources, 
are closely interconnected and hence can deeply impact each other (GWP 2000). 
Therefore, while the drinking water may become arsenic-safe after treatment, the 
implications of the treatment process for the environment may be enormous. 
Because of inadequate attention to proper disposal of the sludge and other waste 
generated, arsenic keeps leaching back into soil, which may further get washed 
down into groundwater, and also directly contaminate surface water resources. 
Thus, ultimately drinking water supplies and water for other uses such as irrigation 
and animal husbandry in the affected communities get contaminated. This can also 
lead to poisoning of aquatic organisms such as fishes and of dairy products, thereby 
making arsenic an even greater public health and environmental threat (Mandal 
et al. 2016). This gigantic problem has unfortunately not yet been made an integral 
part of arsenic mitigation policies (Singh et al. 2008a; Singh 2012b).

None of the other three strategies, namely, surface water supply, supply of 
groundwater with acceptable arsenic levels and rainwater harvesting appear to pos-
sess such large-scale qualitative impacts on the environment. However, the strategy 
for drinking water supply based on surface water, as prioritized in Bihar and also 
promoted in Assam, and identified as the long-term solution within the NRDWP 
framework, can pose limitations of environmental sustainability in quantitative 
terms. About one-fifth of the country’s population is estimated to be exposed to 
arsenic-contaminated drinking water. If each of these persons should be served 
through a piped water system progressively based on surface water sources as envis-
aged in the NRDWP, then such systems could soon become unsustainable. The 
water available in rivers, dams and lakes is limited, and due to several changes in the 
built environment of their catchments and over-abstraction of water, their water 
volume over the years has been progressively declining. This in turn leads to 
destruction of the aquatic ecosystems, with further negative impact on the terrestrial 
ecosystems nearby. Ultimately even the water needs of the innumerable dependent 
communities may remain unfulfilled on a long term. Several examples exist in the 
country where rivers and lakes have dried up due to over-abstraction of water and 
lowered catchment flows (Singh et al. 2016; Singh 2012a; Saleth 2011).

Similarly, supply of groundwater from deeper aquifers through deep tube wells, 
as promoted in West Bengal and Bihar, poses limitations from environmental sus-
tainability perspective. For example, wasteful over-withdrawal and usage of larger 
quantities of precious arsenic-safe groundwater reserves for various domestic pur-
poses besides drinking such as washing and bathing as observed in affected villages 
in West Bengal, can lead to substantial lowering of the water table in the long term, 
particularly if adequate attention to groundwater recharge is not paid (Saleth 2011). 
Furthermore, qualitatively, as discovered in Ballia district of Uttar Pradesh, absence 
of adequate capping between arsenic-containing shallow aquifer and arsenic-safe 
deep aquifer can lead to leaching of arsenic, converting an arsenic-safe source into 
a contaminated one (MDWS 2011). Use of contaminated water from this source can 
lead to not only public health issues but also environmental issues when considered 
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in the long-term perspective. Such a concern has also been raised in the context of 
West Bengal (Chakraborti et al. 2001).

From the above observations, it is obvious that currently most of the different 
arsenic mitigation technologies suffer from one or another limitation especially 
when considered from the long-term environmental perspective, either qualita-
tively or quantitatively. These in turn have spill-over effects on other water use 
sectors besides drinking water. For environmental sustainability, it is important 
that technologies be aligned to local environmental conditions since they are part 
of the repertoire that help local communities adapt to the specific environmental 
stresses (Singh 2016b). It is also obvious that most of the technological solutions 
implemented for arsenic mitigation have been designed by ‘experts’ from outside 
as blanket ‘one-fit-all’ options and not been specifically tailored to ‘fit’ into the 
local milieu, developed ‘jointly’ with the local users (Singh 2008). Rainwater har-
vesting is the only technological option that local communities in the Gangetic 
basin have been traditionally associated with; but even in this case, the new ver-
sion of rooftop rainwater harvesting does not integrate the perspective and knowl-
edge of the local users. This has resulted in failure of this mitigation option 
(Kumar et al. 2016).

6.2  �Social Equity

Social equity in the context of arsenic mitigation is rooted in the question of ‘acces-
sibility’ to arsenic-safe drinking water sources. None of the policies and approaches 
presented above for arsenic mitigation have considered and incorporated the social 
realities of the arsenic-affected communities for which mitigation interventions are 
implemented. Policies and programs are based on ‘headcounts’, and a common 
assumption underlying installation of mitigation technologies is that once made 
available within a habitation, it will be used equitably by all targeted beneficiaries. 
Thus, program guidelines may contain details about identifying appropriate ‘public’ 
points in vicinity of the user community, but no monitoring is included in the pro-
gram guidelines for verifying all beneficiaries have equitable right of access to miti-
gation technologies (Singh 2006a).

Physical proximity is just one of the factors determining the effectiveness of or 
accessibility to mitigation technologies. For example, given a choice between a con-
taminated hand pump at home and fetching water from a safe source at some dis-
tance, villagers interviewed in West Bengal during this study expressed inability to 
at least ‘always’ fetch water from a safe source. This was true for women who have 
several other domestic chores to attend to as well as men who ‘work’ outside home 
on a daily basis. This was further linked to three conditions: ‘sensitivity’ towards the 
outcome of arsenic exposure, the availability of help at home to procure water, and 
the daily water demand (i.e., the number of household members). Where the sensi-
tivity was high enough (as expressed by the users themselves), efforts to fetch safe 
water from the mitigation intervention was prioritized despite other bottlenecks. It 
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was observed that the sensitivity varied considerably across similar educational 
backgrounds (Singh et al. 2009; Singh 2006a).

Besides physical accessibility, social accessibility is an important concern in 
Indian villages, since social heterogeneities prevalent in the recipient communities 
influence the question of ‘access’ to the publicly placed arsenic mitigation tech-
nologies (Singh et  al. 2005). A safe drinking water source may be physically 
located close to home, but it may not be accessible equally to all residents due to 
social rules of access to public resources prevalent in the community. In general, 
the principles of caste and social dominance define rules for sharing resources, 
including space and water. Castes are ranked, endogamous (in-marrying) groups, 
in which membership is determined by birth. Each caste is part of a local system of 
interdependent groups, linked through economic, ritual and social relationships 
(Beteille 1996). Caste-based principles in user communities stipulate that public 
spaces in the village are accessible to and usable by only those castes that reside in 
the immediate vicinity; and decision-making regarding such access and use often 
rests with the dominant elite. The dominant elite is often a caste that is highly 
placed in caste hierarchy, and enjoys numerical preponderance and sizeable owner-
ship of village land (Srinivas 1959). Thus, castes lower down in the hierarchy may 
not be able to fetch water from arsenic-safe sources located in a social space identi-
fied as belonging to the dominant elite (Srinivas 1959; Singh 2006a).

Social patterns based on the principle of dominance also have an important bear-
ing on inter-ethnic situations in mixed villages regarding access to and management 
of spaces and resources in the village by other ethnic groups like the tribals and in 
predominantly Hindu villages by other religious groups like Muslims and Christians 
(Singh et al. 2008b). In West Bengal, religion was found to be a basis for lack of 
social access to community-based arsenic removal units. In a sample of 35 units 
studied, at least eight instances were recorded where despite the target group being 
originally heterogeneous, the actual users of the unit belong only to the dominant 
religious segment. In one instance in Nadia district where the target group had equal 
distribution of followers from two different religions, initial conflicts over access to 
the unit led to the settlement of a time schedule chart whereby both the user factions 
could enjoy equitable access (Singh et al. 2008b).

The question of social accessibility may also arise in case of the piped water sup-
ply networks because despite the connections provided, water may fail to be deliv-
ered to all the villages/hamlets, and the tail-end villages are most common to suffer. 
This may happen because of unattended broken taps, misuse of the treated water for 
purposes like washing animals and cleaning of utensils, and much water wastage in 
the communities closer to the head or in the middle section of the network. They 
may even pilfer water for irrigation or disrupt the connections towards the lower end 
of the system, so that either the pressure drops too much or no water remains in the 
system. This was reported as a significant problem by villagers at the tail end of the 
first piped water supply scheme based on Ganga river in Bhojpur district of Bihar 
(Kumar et al. 2016).

Gender can also be an important factor influencing social equity in access of the 
mitigation technologies. Focus group discussions in two villages in Bihar revealed 
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that women from upper castes such as Brahmin and Rajput are not expected to fetch 
water from public points. Therefore, even if arsenic-safe water is made available 
through interventions at public points, their utilization by upper caste households in 
general and by their women in particular may remain limited. Treated water from 
such public points will need to be procured by men or children, which may imply 
that for cooking and even for self-consumption, women may continue to use water 
from their contaminated domestic hand pumps.2

Another concern in social sustainability is the aspect of user participation in 
management and maintenance of the mitigation interventions, which also has a gen-
der dimension. In West Bengal under an Indo-Canadian Project, arsenic removal 
units have been installed with community participation. Here management commit-
tees consist of men and women or sometimes only women (Singh et al. 2009). In 
reality, however, it was found that even where women are listed as members, the 
actual responsibilities with respect to activities such as collection of monthly con-
tributions, organizing the timings of use, etc., are actually shouldered by men. 
Further, not all targeted households are interested in participating, as time and 
finances may be involved. With a lower level of sensitivity to arsenic, participation 
may be avoided, even if time and money are available (Singh 2016a).

Regarding the maintenance of arsenic removal units at community level, regular 
backwashing and periodic change of the filter media are essential in many of the 
designs installed. Though women have been especially motivated and even trained 
to engage in technical maintenance of the units, their participation was found to be 
low. Backwashing of the media is considered by women to be a time-consuming 
and cumbersome task and therefore they instead expect men, who are traditionally 
looked upon as responsible for technology maintenance, to take up this task. 
Similar views were encountered in relation to the maintenance of the domestic 
filters, the use and management of which is more strictly seen as related to women 
(Singh 2012b).

6.3  �Cultural Acceptability

The relationship between society and natural resources may be comprehended as 
“environmental orientations”, within which ideological constructs about water for 
different uses are defined in any community (Singh 2006b). Cultural acceptability 
of water for drinking and cooking in West Bengal and Bihar is strongly built upon 
four different physical properties, namely, color, smell, taste and freshness (Singh 
et al. 2009). Good quality water for these purposes is expected to be colorless, odor-
less, sweet and fresh and these qualities, in turn, are seen as closely related to the 
local concepts of purity, health and hygiene. Freshly drawn water is regarded as 
pure as well as safe on health grounds. In fact, these properties are also the grounds 

2 Source: Field Data (2016).
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on which arsenic contaminated water continues to be used widely for drinking and 
cooking, since arsenic imparts no smell, taste or odor to the water (Singh 2012b; 
Singh et al. 2009).

The water provided by the arsenic mitigation interventions must be culturally 
‘acceptable’, fulfilling the above-mentioned criteria. However, the cultural con-
structs described above fail to be recognized and included within the scope of 
arsenic mitigation interventions, whether at policy/program level or as technolo-
gies. Wherever the arsenic mitigation options have failed to deliver the four water 
qualities stated above, their acceptability has suffered. With respect to surface 
water supply provided in rural areas of two affected districts in West Bengal, 
observations made in 15 villages revealed that though women find the technology 
easy to operate, they have not adopted the tap water for drinking and cooking. 
They exhibit a preference for water from deep tube wells. The most commonly 
cited reason is the difference in taste and odor due to “chlorine treatment of the 
water before supply”. Also, the piped water supplied is said to be sometimes dirty 
and muddy and therefore unhygienic. Consequently, the piped water which is sup-
plied as arsenic-safe water for drinking ends up being used commonly for wash-
ing, cleaning and bathing. Regarding the domestic filter, the reservations about 
taste and odor persist. Besides, the entire procedure is perceived by women as an 
alien ‘add-on’ procedure to their existing cultural practices of domestic water 
management as a result of which, even when adopted at first, it fails to become 
sustainable at household level (Singh et al. 2008a, 2009).

In Bihar, rooftop rainwater harvesting alternative promoted by UNICEF also has 
been rejected on cultural grounds (Kumar et al. 2016; Singh et al. 2012). Though 
rainwater is widely recognized as the purest form of water, freshness and cleanli-
ness of the collected rainwater is a problem. Observations made in some of the vil-
lages showed that children are averse to using the roof-top rainwater for drinking. In 
fact, in one of the primary schools, the village health worker herself refused to drink 
water from the rainwater harvesting tank on the grounds of freshness and cleanli-
ness and thereby the implicit health risks. The children preferred to drink water 
from the nearby hand pump which is contaminated with arsenic (Kumar et al. 2016; 
Singh et al. 2012).

Piped water supply based on Ganga river has however proved to be a success in 
terms of cultural acceptability (Kumar et al. 2016). Since Ganga water is widely 
regarded as holy, and the treatment process adopted at the first supply plant installed 
in Bihar has been found to produce water with which complaints of odor, color or 
taste are not associated, there is large-scale adoption of this water for drinking in the 
supplied villages. Similarly, deep tube well water in West Bengal was found to have 
high cultural acceptability since women find this water colorless, odorless and 
sweet, besides providing the advantage of making the cooked rice ‘white’ and keep-
ing it fresh for a longer time in the hot and humid climate. These advantages are 
reportedly missing when using water from the domestic hand pump or from 
the ARPs (Singh 2012b).
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Another cultural factor that affects sustainability of the mitigation interven-
tions is the alignment of the new technology with the traditional or local forms 
already in use since long. The arsenic removal technologies, irrespective of their 
chemical process, form and size, suffer a huge disadvantage on this ground. Most 
of these represent complex, alien technologies for the masses which is beyond the 
capacity of the communities to use and manage despite training. Even monitoring 
of the water quality is not easy despite training of personnel from the community 
(Singh 2012b).

On cultural acceptability grounds, dug wells may have a better acceptability in 
Bihar as reflected at a focus group discussion conducted by the authors in one of the 
affected villages where even presently, dug wells fitted with hand pump are used.3 
Similarly, use of ponds for drawing water for drinking and cooking was observed in 
West Bengal during this study, which attests the continuing value of this rainwater 
harvesting-based traditional water source in rural Bengal. Ponds provided with 
water treatment system and supply points may thus be developed as a culturally 
acceptable solution for arsenic mitigation in West Bengal (Singh 2012b). However, 
at present, the arsenic mitigation policy and approaches in India do not have in place 
the possibility of including user perspectives in designing and implementing mitiga-
tion strategies in affected communities. The user participation generally comes at a 
later stage after the selection of technology and its implementation has started 
(Singh 2008).

6.4  �Economic Efficiency

Economic efficiency can be examined from the perspective of affordability which 
can be an important issue in some cases, in turn impacting the economic sustain-
ability of the mitigation interventions. Piped water supply schemes are an attrac-
tive intervention that may appear to be a solution for all drinking water challenges 
in quality-affected habitations. However, these schemes are expensive to install, 
whether single village-based or multi-village, and even expensive to maintain, 
more so if the users are not motivated and engaged effectively from the beginning. 
In one case in Bhojpur district in Bihar, it was found that transfer of running costs 
for operating a tube well-based village piped water scheme from the agency to the 
community after its completion led to its total failure. Since regular electricity sup-
ply was a problem, a diesel-operated motor was installed to run the tube well. 
However, the village is numerically dominated by poor peasants who were not 
capable of contributing to the diesel costs from the beginning. Even the few 
wealthier families could not find it affordable to bear the cost for the entire village 
on a long-term basis. Consequently, the water supply scheme failed to be operated 
to supply safe water to the villagers, even after laying down of the entire piped 
water network (Singh 2012b).

3 Source: Field Data (2012).
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Another instance of a problem of affordability was noted in Bihar regarding 
private efforts to supply arsenic-safe water to affected communities which has 
been recently started on small scale by private entrepreneurs.4 These entrepre-
neurs deliver safe water to the community on a daily basis at a price which 
becomes difficult for the poorer households to afford. One woman from a village, 
which so far has received no agency-based mitigation intervention but is served 
by a private entrepreneur, expressed her inability to afford the cost of the safe 
water bottles on a monthly basis. This woman has been herself diagnosed with 
arsenicosis, and her daughter too shows some of the symptoms of the disease, but 
they continue to drink the contaminated water from their domestic hand pump 
despite the awareness and willingness to switch to safer sources.5

In most other instances, it was found that the monthly charges for community-
based arsenic removal units appeared to be low enough to be affordable for all. But 
social and cultural factors discussed earlier impact the motivation of intended users 
to contribute financially (Singh et al. 2009).

7  �Discussion and the Way Forward

In this section, a brief analysis of the reflections on the sustainability of arsenic miti-
gation interventions is presented. This is followed by an attempt to define a more 
effective way forward. From the reflections above, it is evident that problems of 
sustainability exist with all the current strategies. A number of factors embedded 
within environmental, social, cultural and economic contexts influence the process, 
resulting in one or more of the following consequences at the community scale: (a) 
a given intervention fails to be equitably accessible, with at least some intended 
users left out; (b) the intervention fails to be adopted wholly or partly, particularly 
with respect to use for drinking and cooking; (c) it becomes dysfunctional because 
of problems of maintenance (which can be rooted in the complexity and alienness 
of the technology) or the cost; (d) fails to serve the purpose of safe water provision 
in a holistic manner due to “slipping back” in quality or causing contamination in 
the environment that can “backflow” into community’s water and natural resources. 
Also, none of these are able to provide protection against arsenic contamination 
beyond drinking water.

Considering the basic nature of the four different mitigation strategies mentioned 
before, it is more than obvious that the arsenic treatment technologies appear to be 
the least sustainable, as these may be confronted with sustainability challenges from 
environmental, social, cultural as well as economic perspectives. The strategy of 
surface water supply from rivers and lakes through piped water schemes is ostensi-
bly sustainable due to lesser cultural and quality-based environmental challenges, 
but when scrutinized from social, quantity-based environmental or economic per-

4 Source: Field Data (2016).
5 Source: Field Data (2016).
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spectives, the sustainability may fail to be upheld. The sustainability of the arsenic-
safe groundwater-based supply alternative may also be challenged by environmental 
constraints primarily because groundwater availability in the country is not only 
limited but progressively declining, and there may be risk of contamination at a later 
stage. Besides, there may be the possibility of economic or even social challenges. 
The rainwater harvesting alternative holds tremendous scope of environmental sus-
tainability, but social, cultural or even economic challenges may exist and these 
would need to be addressed at the outset.

On the basis of perspectives obtained from different stakeholders ranging from 
users to agencies and the scientific community and the analysis presented above, it 
is obvious that for sustainable arsenic mitigation, environmental sustainability is the 
most basic concern that must be upheld in order to ensure that arsenic mitigation 
interventions can lead to safe water access to affected communities on a long-term 
basis, preferably also considering the water used within agriculture and other liveli-
hood sectors. An intervention that does not contribute to environmental sustainabil-
ity in qualitative and quantitative terms cannot be upheld for long, even if other 
conditions, namely, social, cultural and economic sustainability are fulfilled. For 
this, first and foremost, a long-term policy perspective is required. Even if any mea-
sure for immediate relief should be adopted, the environmental costs should be ana-
lysed and addressed adequately before implementation. Second, considering the 
qualitative and quantitative challenges posed by the current mitigation interven-
tions, it can be argued that an environmentally sustainable and holistic way forward 
for arsenic mitigation would require reduction or halting of the groundwater extrac-
tion, simultaneously allowing the aquifer and water tables to regenerate sufficiently, 
which in turn would help dilution of arsenic levels. Finally, towards this end, 
‘nature-based’ solutions – i.e., “actions which are inspired by, supported by or cop-
ied from nature” (WWAP/UN-Water 2018) can offer the best possibilities. A matrix 
of criteria that emerges from the analysis and discussion presented in this chapter is 
summarized in Table 6.1. This set of criteria must be considered in order to design 
and implement sustainable arsenic mitigation in India and elsewhere.

In light of this, rainwater harvesting is a potential sustainable solution which can 
provide quantitative as well as qualitative advantages over any of the alternatives 
analyzed above. Rainwater is the purest form of water and research in the arid and 
semi-arid zones of Rajasthan and Gujarat shows that where the average annual 
rainfall is low, ranging from as little as 100 mm to about 700 mm, and where salinity 
of groundwater has been a huge problem since centuries, the traditional wisdom of 
rainwater harvesting has sustainably provided sweet water to communities for 
drinking as well as agriculture (Agarwal and Narain 1997; Singh 2016b). Even in 
the Thar Desert and the Rann of Kutch communities have survived over generations 
through rainwater harvested and used for drinking through ponds and shallow wells. 
Groundwater from deep aquifers, which is saline, was not used for drinking pur-
poses (Singh 2016b). On the contrary, after government introduced piped water 
schemes based on groundwater supply, fluorosis is becoming rampant in these 
States due to newly discovered fluoride contamination of groundwater (Annadurai 
et al. 2014). Rajasthan alone accounts for 51% of fluoride and 42% of saline affected 
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areas in the country (Reddy 2010). The cultural practices of the local communities 
in these areas provide living examples of how the arsenic menace can be managed 
more sustainably through rainwater harvesting (Agarwal and Narain 1997; Singh 
and Singh 2017a, b).

In Bihar, the average annual rainfall is 1224 mm, 84% of which is received dur-
ing the monsoon season, while in West Bengal, the figure is 1439 mm (Mondal et al. 
2015). Only a part of this rainfall is preserved and made available for use through 
dams and other kinds of storage structures. Majority of it is lost as surface runoff 
that finally flows into the sea or ocean. A substantial part of this runoff can be pre-
served at the level of local catchments in the arsenic-affected communities through 
different kinds of rainwater harvesting structures, including traditional village 
ponds (called ‘pukur’ in West Bengal) as well as through the Ahar-Pyne system 
where the monsoon rainfall is collected as surface run-off within a series of embank-
ments from upper to lower catchments that are interconnected through a network of 
drainage channels. The water reservoir so created by the embankment is called ahar 
while the drainage channels carrying the water to or away from it are called pynes. 
Apart from other functions such as irrigation and flood control, the system helps 
sustainably fulfil drinking water needs of the local communities through groundwa-
ter recharge (Agarwal and Narain 1997; Koul et al. 2012; Singh and Singh 2018).

Uses of surface water sources and adoption of rainwater harvesting practices 
have been recommended for arsenic mitigation since long (Ghosh and Singh 2009; 
Giri et al. 2011; Planning Commission 2007). Also, rainwater harvesting has been 
recognized as one of the solutions for arsenic and other water quality problems in 
drinking water within the NRDWP framework (MDWS 2017). However, it has not 

Table 6.1  Matrix of criteria for sustainable arsenic mitigation

Evaluation 
criterion

Component
Approaches and 
policies Technological solutions User participation

Environmental 
sustainability

Long-term approach 
rooted in ‘nature-
based’ solutions

Locally-viable ‘nature-
based’ technologies e.g. 
rainwater harvesting, use 
of surface water

Adapted to the local 
context of environment, 
resources, climate etc.

Social equity Monitoring of 
equitable access and 
use of the facilities

Equitable, in terms of 
‘social access’ of the 
mitigation technology, 
and not only ‘physical 
access’

‘Inclusive’ management 
of arsenic-safe water 
delivery at local level – 
involving both genders, 
all classes and ethnic 
groups

Cultural 
acceptability

Decentralized 
approach with local 
communities as 
‘partners’ in the 
mitigation process

‘Appropriate’, ‘simple’, 
‘user-friendly’ technology 
rooted in local science, 
local resources, and 
respecting cultural norms 
and values

Inclusion of user 
perspective in design, 
location and management

Economic 
efficiency

High 
cost-effectiveness

Low cost in installation 
and maintenance

Affordable by the poorest
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yet been systematically adopted in policy and practice as the most significant and 
sustainable way forward that offers a bundle of environmental benefits over others 
in the context of arsenic mitigation. Not only it provides arsenic-free drinking water 
but also has the potential of addressing the problem of arsenic in the food chain, 
because harvested rainwater can be used for recharging groundwater (which can 
contribute to reducing the arsenic concentration) and can also be directly used for 
irrigating agricultural fields. It also takes care of the problem of over-withdrawal of 
groundwater which can further intensify the arsenic problem. Besides, it offers the 
benefit of building climate resilience by enhancing water storage in a climate 
change-induced drought regime.

However, it is to be noted that interventions based on rainwater harvesting will 
need to be adapted to local contexts in order to enhance their sustainability from 
cultural, social and economic perspectives. Since rainwater harvesting has been a 
tradition in most of the arsenic affected areas, though in different forms, there is 
need to rejuvenate the traditional practices, sensitize masses about the need and 
benefits, and ‘re-build’ their skills and capacities to create and manage these 
resources. There is also need to provide communities with options for microbial 
protection which may be a limitation with the harvested rainwater collected in dif-
ferent kinds of structures ranging from household tanks to community-level ponds. 
On the whole, there will need to sensitize and mobilize the concerned communities 
for adopting community- and/or household-based rainwater harvesting practices, 
with substantial time allocated for this phase before community participation is ini-
tiated or individual households are invited to install rainwater harvesting based sys-
tems. There may be need to help communities design appropriate structures and 
systems that match the given geological, hydrological and cultural contexts, besides 
solving any financial issues that may arise. On the whole, it can be said that while 
rainfall in the country is substantial at more than 3000 billion cubic meters per year, 
only about 5% gets stored in dams and reservoirs, and another small part retained as 
river water flows (Bhattacharyya et al. 2015). The rest flows away into the Arabian 
Sea, Indian Ocean and Bay of Bengal and therefore becomes a lost resource. 
Decentralized use and management of this rainwater offers a sustainable prospect 
for tackling the problem of arsenic contamination in drinking water, enabling 
women, men and children in the affected communities enjoy their rights to water, 
health, work and overall development. Arsenic mitigation policy in the country 
should therefore incorporate rainwater harvesting as the most feasible and sustain-
able alternative.
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Chapter 7
Arsenic Contamination of Soil in Relation 
to Water in Northeastern South Africa

André C. Horn and Marubini R. Ramudzuli

Abstract  Little is known about the arsenic contamination of soil in relation to 
water in South Africa. In fact, there is a gap in knowledge about the topic as far as 
Africa as a whole is concerned. This chapter addresses the limited information on 
the presence and threat of arsenic in South Africa’s environment. The focus of this 
chapter is on soil (and indirectly water) contamination in the former Venda tribal 
area in northeastern South Africa where for many decades the apartheid government 
used arsenic-based dip solutions to treat East Coast Fever among cattle. Soil sam-
ples taken at 5-m, 20-m and 100-m at a depth of 300-mm from 10 old dip tanks 
revealed 11 readings above 2.0 mg/kg and 2 readings above 30 mg/kg. We found 
that these old contaminated dip sites were not rehabilitated and that houses are now 
being built as close as 50-m from the centers of contamination. It is clear that the 
problem of arsenic contamination of soil and water in South Africa, a water scarce 
country, deserve more attention from researchers and the various levels of 
government.

1  �Introduction

Arsenic (As) as a chemical compound was discovered in the eighth century, but it 
was not until the grand-scale commercial production of arsenic trioxide (As2O3) 
from 1850 onwards, that the danger inherent to this substance became clear (Piracha 
et al. 2016). Arsenic is a natural hard metal found most of the time in low levels in 
the environment (Musingarimi et al. 2010). It is viewed as one of the most toxic 
natural elements found on earth (Smith et  al. 1998; USEPA 1999; Singh 2017). 
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Chronic exposure to arsenic-contaminated materials such as soil, water, food, and 
atmospheric gasses may lead to arsenicosis, a chronic illness that produces skin 
disorders, gangrene and various forms of cancer (Ryan et al. 2001; UNICEF 2008; 
Roychowdhury 2010). The ingestion of, and exposure to, arsenic also may cause 
cardiovascular and respiratory diseases and neurological malfunctioning (Korte and 
Fernando 1991). According to the World Health Organization (WHO 1981), the 
fatal human dose for ingested arsenic is between 70 and 180 mg.

An explanation and discussion of arsenic in the environment should involve 
four interactive strata: (1) arsenic compounds, (2) chemical configurations, (3) 
source materials, and (4) contact/transfer media (see Fig. 7.1). The first stratum of 
the arsenic complexity is the differentiation between the compounds organic arse-
nic, inorganic arsenic, and arsine gas. Of these three, arsine gas is the most toxic 
compound (Sami and Druzynski 2003). According to the World Health Organization 
(WHO 2000), organic arsenic and inorganic arsenic include a trivalent assemblage 
and a pentavalent assemblage. In both organic and inorganic compounds, the triva-
lent assemblage is more toxic than the pentavalent assemblage. The second stra-
tum of the arsenic complexity consists mainly of two different chemical composites, 
namely arsenite (AsO3

3) and arsenate (AsO4
3−), with arsenite being more toxic 

than arsenate (Smith et al. 1998). In the third stratum of arsenic complexity, three 
main groups of arsenic source materials, namely geogenic arsenic materials, arse-
nic materials of anthropogenic origin, and atmospheric source materials (see, 
amongst others, ATSDR 2000), are taken into consideration. Geogenic arsenic 
material is usually found with background geological materials (soil and rocks) 
and is specifically associated with minerals such as antinomy, copper, gold, iron, 
lead, nickel, silver and uranium (Sami and Druzynski 2003). Arsenic in the envi-

Fig. 7.1  Arsenic strata
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ronment that is the result of anthropogenic activities is amongst others related to 
mining, the treatment of wood, the pharmaceutical and glass industries, fertilizers 
and pesticides (Piracha et al. 2016). Atmospheric source materials can be of both 
natural origin (e.g., volcanic activity) and anthropogenic origin (see below). At the 
core of the arsenic, complexity are interactive contact/transfer mediums such as 
air, water, soil, and flora.

Because of the mobility of arsenic, the direct and indirect interaction of its com-
pounds, chemical configurations, source material, and contact/transfer mediums 
are so complex that one of the mediums cannot be researched in isolation. This 
chapter presents a case study of soil contamination in a particular region in South 
Africa, but is, at the same time sensitive to the entire complexity of arsenic in the 
environment.

2  �Global Locations of High Arsenic Concentrations

Supported by a considerable volume of sources, Mukherjee et al. (2006) identified 
42 main arsenic contamination locations across the globe. Most of the evidence 
concerning high levels of soil and water arsenic contamination relates to Asian 
countries such as Bangladesh, Cambodia, China, India, Japan, Myanmar, Nepal, 
Pakistan, Sri Lanka, Thailand and Vietnam (see, for example, Guha Mazumder 
et al. 2010; Roychowdhury 2010; Singh et al. 2016). High concentrations of arsenic 
(largely due to geogenic events and anthropogenic activities) also have been 
reported in European countries such as Bulgaria, the Czech Republic, Finland, 
Germany, Greece, Hungary, Romania, Spain, Sweden, and Switzerland. Further 
concentrations of arsenic-related to one medium or another have been detected in 
Australasia (Australia, New Zealand and Tasmania), Central America (Mexico), 
the Middle East, North America (Alaska, Canada and the USA), South America 
(Argentina, Chile, Brazil), and the United Kingdom (Nordstrom 2002; Sarkar et al. 
2007; Singh 2017).

Ahoulé et al. (2015) and Singh (2017) referred to the limited amount of research 
on arsenic contamination in Africa. Mukherjee et al. (2006) mentioned only two 
important arsenic locations in Africa: Egypt and Ghana. In both these countries, 
the detected arsenic is of natural origin. Fatoki et  al. (2013) referred to a few 
reports on arsenic contamination in Botswana, Burkina Faso, Ghana, Nigeria, the 
Rift Valley of Ethiopia, and South Africa. Singh (2017) mentioned that only 15 
countries in Africa have so far been identified as having challenges of arsenic con-
tamination. In this regard, Ahoulé et al. (2015) referred to specific work conducted 
by researchers.1 

1 Higy and Cordey (2011) (Benin); Huntsman-Mapila et al. (2006), and Mladenov et al. (2013) 
(Botswana); Smedley et al. (2007), Somé et al. (2012), Nzihou et al. (2013), and Ouédraogo and 
Amyot (2013) (Burkina Faso); Abdel-Moati (1990) (Egypt); Reimann et al. (2003), Rango et al. 
(2010, 2013), and Dsikowitzky et  al. (2013) (Ethiopia); Amonoo-Neizer and Amekor (1993), 
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Although Ahoulé et  al. (2015) refer to several research efforts conducted in 
Africa,2 Fatoki et al. (2013) believe that the lack of information on arsenic contami-
nation in Africa is, firstly, the result of limited research on the topic related to the 
continent and, secondly, the lack of international attention to reports on arsenic 
contamination on the continent.

The presence of arsenic in the South African environment is, in the first place, 
related to the residues of geogenic source materials (Hammerbeck 1998) and vari-
ous types of anthropogenic actions (see below). Large parts of the South African 
environment is geologically dominated by the Karoo Supergroup and the 
Witwatersrand Basin that have been distorted by, amongst others, geological events, 
meteoric incidents, climate variations, and the change of sea levels over an extended 
period. The crust material is rich in minerals, including, cobalt, copper, gold, lead, 
manganese, nickel, platinum, silver, uranium and zinc, as well as coal that, together 
with anthropogenic actions, are directly or indirectly associated with arsenic in the 
environment. Secondly, anthropogenic activities such as the burning of coal and fly 
ash, stockpiling of residual material from gold mines on waste heaps, fossil fuel 
power plants, the production of fossil fuel petroleum products, the timber industry, 
and the use of pesticides, insecticides and stock dips further contribute to the pres-
ence arsenic in the South African environment (see, for example, Botes et al. 2007; 
McCarthy 2011; Niyobuhungiro et al. 2013).

Despite the limited evidence on South African waters mentioned by Ahoulé et al. 
(2015), authors such as Sami and Druzynski (2003), Dzoma et al. (2010), Ogola 
et al. (2011), and Akinsoji et al. (2013) indicated the presence of arsenic of more 
than 0.05 mg/L in South Africa’s waters. Such occurrences are five times the maxi-
mum safe permissible value (SMPV) for drinking water recommended by the World 
Health Organization (WHO 2012).

Based on data collected over many years by the South African Department of 
Water Affairs and Forestry (DWAF), Kempster et  al. (2007) reported on several 
readings of arsenic above 1 mg/L. At the same time, Kempster et al. (2007) high-
light the lack of a formal national monitoring programme of arsenic levels in South 
Africa’s water resources.

Despite the relationship between arsenic in soil and water, this topic – with refer-
ence to South Africa – has received only little attention from researchers (see Dzoma 
et al. 2010; Ogola et al. 2011), and it is to this matter that the attention of this con-
tribution now shifts.

Smedley (1996), Smedley et al. (1996), Serfor-Armah et al. (2006), Asante et al. (2007), Baumah 
et al. (2008), Kortatsi et al. (2008a, b), Akabzaa et al. (2009a, b), Rossiter et al. (2010), Akabzaa 
and Yidana (2012), Bhattacharya et al. (2012), and Kusimi and Kusimi (2012) (Ghana); Pritchard 
et al. (2007, 2008) and Mkandawire (2008) (Malawi); El Hachimi et al. (2005, 2007) (Morocco); 
Asubiojo et al. (1997) and Gbadebo (2005) (Nigeria); Dzoma et al. (2010), Ogola et al. (2011), and 
Akinsoji et al. (2013) (South Africa); Bowell et al. (1995), Taylor et al. (2005), and Kassenga and 
Mato (2009) (Tanzania); Rezaie-Boroon et  al. (2011) (Togo); and Jannalagadda and Nenzou 
(1996) (Zimbabwe).
2 See footnote 1.
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3  Arsenic in the Soils of NE South Africa: A Case Study

The general occurrence of low levels of arsenic in soil is a natural occurrence. 
According to the WHO (1981), arsenic concentrations in uncontaminated soil are in 
the range of 0.2–40 mg/kg. Stock dipping in the past that caused arsenic contamina-
tion received attention in Australia, New Zealand and the southern states of the USA 
(McLaren et al. 1997; Mukherjee et al. 2006; Sarkar et al. 2007; Piracha et al. 2016). 
Here, we report on arsenic contamination of soil related to past cattle dipping pro-
cesses in the Vhembe district (Limpopo province, South Africa). This study has also 
been reported on in other, different formats by us (see Ramudzuli 2014; Ramudzuli 
and Horn 2014).

3.1  �The Study Area and Its People

Venda was the ethnic ‘homeland’ of the Venda people during the South African 
apartheid era (1948–1994), but remained under the overarching governance of the 
Republic of South Africa during this period (Horn 1998). In 1979, Venda decided to 
accept the offer from the South African government to become an ‘independent’ 
homeland (Horn 1998). In 1994, after the first democratic election in South Africa 
that included all the country’s people, Venda, the study area, became part of the 
country at large as the Vhembe district of the Limpopo province, the northernmost 
of the nine provinces of South Africa (Fig. 7.2).

Traditionally, cattle farming occupied a central role in Venda society. 
Notwithstanding their monetary value, cattle pulled ploughs, sledges and wagons, 
and carried baggage. More importantly, cattle ownership defined the economic and 
social status of its owner. Consequently, lobola (payment for a bride), was tradition-
ally determined in ‘cattle currency’ (Ramudzuli 2014).

3.2  �East Coast Fever

Towards the end of the South African War in (1898–1902), there was a shortage of 
cattle in southern Africa (Norval et al. 1992). This shortage resulted in the importa-
tion of cattle from Australia and India. On the way, cattle were offloaded at the 
harbor of Mombasa (Kenya), an endemic area of a cattle disease known as East 
Coast Fever (ECF) (Cranefield 1991). On arrival in South Africa, this at the time 
unknown disease quickly spread through the cattle herds in entire Southern Africa 
(Cranefield 1991).Therefore, from around 1900 to the 1960s, Southern Africa was 
in the grip of ECF (Norval et al. 1992). The veterinarian Arnold Theiler discovered 
in 1910 that ECF is a cattle disease caused by an intracellular protozoan of the genus 
Theileria parva transmitted by ticks of the species Rhipicephalus appendiculatus 
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(brown ear tick) (Theiler 1971; Davies 2004). Ordinance No. 38 of 1904 (NASA 
LC442/05 1904; NASA TAB-A341/15 n.d.) resulted in an attempt to curb the dis-
ease in parts of South Africa using arsenic-based animal dipping compounds, 
already introduced in South Africa in 1893 (Norval et al. 1992).

The Disease of Stock Act 14 of 1911, as well as the Dipping Tanks (Advances) 
Act 20 of 1911, facilitated the implementation of a limited dipping program (Marole 
1967). Thereafter, the Pretoria Conference of 1929 introduced a countrywide ECF 
Control Programme of regular cattle dipping with the use of mainly arsenic oxide 
(As2O5) and trioxide (As2O3) compounds (Ramudzuli and Horn 2014). The pro-
gramme expected white (European) commercial farmers, assisted by state subsi-
dies, to administer their dipping, whereas the Native Affairs Department (NAD) 
carried the responsibility to provide the service to black African communal areas 
such as the later Venda homeland (Mbeki 1964; Beinart 2003). The distribution of 
the brown ear tick in South Africa determined the location and building of thou-
sands of dip tanks (Fig. 7.3).

According to Fletcher (2000) and Turton (2004), plunge dipping was a common 
method of tick control. The first plunge dip tank in Venda (Fig. 7.4) was built in 
1915 (Marole 1967; Nemudzivhadi 1985). In spite of these attempts, approximately 
1.4 million ECF affected cattle died in South Africa between 1902 and 1945.

Fig. 7.2  Study area (Venda) in Limpopo province, South Africa
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At the time of the eradication of ECF in South Africa around 1954, when com-
pulsory cattle-dipping and cattle-control restrictions were lifted in the private 
agricultural sector, it became clear that the populace in the tribal areas (home-
lands) did not have the required resources to continue cattle dipping on their own 
(Tomlinson 1955). As a result, the compulsory dipping program continued in 
these areas under new provisions of the Animal Disease and Parasite Act 13 of 
1956, in order to control other tick-borne diseases and to provide a general state-
led veterinary service to these communities. Initially the NAD, in cooperation 
with the respective tribal councils, was responsible for the erection and mainte-
nance of cattle-dipping tanks in the tribal areas. The Native Affairs Department’s 
Division of Veterinary Services in liaison with Native Affairs Commissioners and 
tribal chiefs and territorial councils provided technical services (NASA TAB-
A341/15 n.d.; Linington 1949; P.J. Sefara, InterVet consultant, personal commu-
nication, 4 August 2011). Ten million cattle were dipped every 7–14 days (Norval 
1983).

Around 1960, ECF was eradicated in Southern Africa, including Basuthuland/
Lesotho, but compulsory cattle dipping with arsenic-based cattle dipping com-

Fig. 7.3  Distribution of the brown ear tick in South Africa. (Reproduced from South Africa 1983)
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pounds continued in South Africa’s homelands. There were two reasons for this 
practice: Firstly, the South African government felt obliged to provide veterinary 
services to the black African homelands; and secondly, some of the black African 
tribal areas such as that of the Venda, Shangaan, and Swazi people bordered on the 
Kruger National Park (KNP). Because of the danger of diseases such as Foot and 
Mouth Disease (FMD), Corridor Disease, Anthrax, and Tuberculosis carried by 
game (J. Nethengwe, Vhembe District Veterinary Section, personal communica-
tion, 13 December 2013), the area next to the KNP was divided into an infected 
zone, a protection (buffer) zone and an FMD surveillance zone, almost parallel to 
the border of the KNP (Fig. 7.5). Although the diseases indicated above are not 
treatable through dipping, the compulsory scheduled dipping events provided 
excellent opportunities to observe the cattle for possible symptoms.

After claiming independence from South Africa in 1979, Venda established its 
own Directorate of Veterinary Service residing under the Venda Department of 
Agriculture and Forestry. However, seconded officials from the South African 
Government were still overseeing the application of the service (The Republic of 
Venda 1979). Dipping took place once a week during summer and fortnightly dur-
ing winter (N.E. Mafhara, Limpopo Province Department of Agriculture, Veterinary 
Division, personal communication, 2 July 2004). Although declared illegal in 
1983, the unofficial use of stocked arsenic dipping solutions continued for some 
time (Norval et al. 1992).

Dipping under the supervision of local officials assisted by officials seconded by 
the national government of South Africa continued until 1994 when the post-
apartheid government took over the government of the country. Since then, the 

Fig. 7.4  The second author (MR Ramudzuli) standing at the ruins of the first dip tank built in 
Venda in 1915. (Reproduced from Ramudzuli 2014)
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‘100%’ (composite) dipping program was scaled-down. Eventually, the official 
dipping system in Venda (now the Vhembe district of the Limpopo province) col-
lapsed (M.  Mafhara, Limpopo Province Department of Agriculture, Veterinary 
Division, personal communication, 13 June 2015).

New outbreaks of FMD since 2001 resulted in a re-evaluation of the direct and 
indirect role of cattle dipping to control cattle diseases (J. Nethengwe, Vhembe 
District Veterinary Section, personal communication, 13 December 2013). 
Although the gradual introduction of a new government-driven dipping programme 
through the Veterinary Section of the National Department of Agriculture (NDA), 
it is estimated that only 50% of the dip tanks in Vhembe is still operational 
(J. Nethengwe, Vhembe District Veterinary Section, personal communication, 5 
March 2015).

Even though the post-apartheid South African government has not as yet pub-
lished a new policy on stock dipping, it has established a national task team to draft 
a new policy (Mampane 2004, 2011). In the meantime, the Animal Diseases Act 35 
of 1984 remains enacted, although the Animal Diseases Regulations under this Act 
was amended as recently as 2014.3

3 See: Animal Diseases Act 35 of 1984, Animal Diseases Regulations as published by Government 
Notice No. R. 2026 (1984) and amended by Animal Diseases Regulations: Amended, by 
Government Notice No. R. 865 (2014).

Fig. 7.5  Cattle disease control zones in South Africa
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4  �ECF and the Contamination of Soil

The second author, Ramudzuli, supervised by the first author of this contribution, 
collected soil samples from 10 dip sites in the Vhembe district in South Africa (for 
detail see Ramudzuli 2014). The dip sites were selected based on the dates of con-
struction of the various dip tanks, soil characteristics, and eco-regions. The dip 
tanks were situated at the villages of Khubvi, Mukula, Rambuda, Sambandou, 
Thengwe, Tshandama, Tshifudi, Tshikuwi, Tshituni and Tshivhulani (Table 7.1).

The level of arsenic concentration was measured at distances of 5-m, 20-m and 
100-m from the respective dip tanks (Fig. 7.6). The 5-m collection site enclosed 
the splash area (point 1 on Fig. 7.6) and was usually close to the poison trench 
where solution waste accumulated when the tanks were cleaned. The 20-m dis-
tance covered a draining pen in which the cattle were huddled whilst still wet with 
dip solution (point 2 on Fig. 7.6). The 100-m distance (point 3 on the figure) cov-
ered a radius around the tanks from where the cattle dispersed and served as the 
control point.

Single, linear point soil samples following the contours of the terrain were taken 
at a depth of 300-mm and placed in clean, labeled plastic bags. The packaged soil 
samples were chemically analyzed for arsenic by an accredited soil laboratory of 

Table 7.1  Location of dip tanks selected based on ecological and soil characteristics of 
surroundings. (Reproduced from Ramudzuli and Horn 2014)

Site Latitude Longitude
Date 
built Eco-regions and soil characteristics

Established before 1948
Tshivhulani 22°55.35′ 

S
30°30.12′ 
E

Early 
1920s

ER 2.01 (Central Highland): Deep red clays 
predominate

Khubvi 22°49.52′ 
S

30°34.03′ 
E

1923 ER 2.01 (Central Highland): Heavily 
weathered, compacted red clay

Rambuda 22°47.05′ 
S

30°27.06′ 
E

1940 ER 5.04 (North-Eastern area): Red loam with 
a high level of organic matter

Tshikuwi 22°53.83′ 
S

29°58.91′ 
E

1940 ER 5.03 (Western area): Heavily weathered, 
compacted red loam

Tshituni 22°56.82′ 
S

30°02.57′ 
E

1940 ER 5.03 (Western area): Gravelly with traces 
of brown clay

Established from 1948
Sambandou 24°49.59′ 

S
30°39.33′ 
E

1948 ER 5.04 (North-Eastern area): Sandy loam 
with a very high level of organic matter

Tshifudi 22°48.24′ 
S

30°43.27′ 
E

1948 ER 2.01 (Central Highland): Sandy loam with 
prevalent organic matter

Makula 22°51.00′ 
S

30°36.59′ 
E

1948 ER 2.01 (Central Highland): Weathered, 
compacted red clay

Thengwe 22°49.59′ 
S

30°32.58′ 
E

1950 ER 5.04 (North-Eastern area): Sandy with 
little organic matter

Tshandama 22°30.07′ 
S

30°45.05′ 
E

1950 ER 5.04 (North-Eastern area): Sandy with 
little organic matter
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the Agricultural Research Council (ARC) of South Africa (Ramudzuli 2014). The 
analysis performed involved a scan of an ammonium EDTA extract. An ammonium 
EDTA solution was added to soil samples, and the solution was filtered to isolate the 
chemicals. The findings are reported in Table 7.2.

The two highest As readings were at Sambandou (46.76  mg/kg at 5-m) and 
Tshivhulani (30.18 mg/kg at 5-m). The highest mean As values for the three dis-
tances was 18.24 mg/kg at Sambandou and 10.13 mg/kg at Tshivulani. Readings 
above 0.2 mg/kg occurred at Tshifudi, Khubvi, Rambuda, and Mukula at the 5-m 
distance, at Sambandou, Khubvi, Rambuda, Mukula, and Tshifudi at the 20-m dis-
tance, and at Rambuda, Khubvi and Sambandou at the 100-m distance. The decline 
of contamination values varied. The values of Sambandou (−39.88  mg/kg) and 
Tshivhulani (−29.99 mg/kg) revealed big differences between the 5 and 20-m sam-
pled points. Results further indicated a rapid decrease in the arsenic concentration 
values between 5-m sample points and 100-m sample points, with the exception of 
Rambuda. The explanation of the increased level of contamination at 100-m at 

Fig. 7.6  Sampling points of soil at 5-m (1), 20-m (2), and 100-m (3) distances from dip tanks. 
(Reproduced from Ramudzuli and Horn 2014)
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Rambandou may be related to the drip of dip solution from the treated cattle, which 
congregate in the unpaved drip yard before they are dispersed, and the overland 
flow of dip solution and overflow of dip sites as during flooding (Ramudzuli and 
Horn 2014).

To explain the differences in As concentrations between various dip sites, three 
factors were taken into account: soil properties, the presence of organic matter, 
and locational influences. In the case of the highest reported reading at Sambandou 
(46.76 mg/kg at 5-m), the soil property is a sandy loam with a high level of organic 
matter. At Tshivulani (30.18 mg/kg at 5-m), the soil is a deep red clay, but it should 
also be taken into account that the dip tank is located in a topographical depres-
sion. A reading of 3.85 mg/kg was obtained from Tshifudi at a 5-m distance where 
the soil is a sandy loam with prevalent organic matter. The fourth highest reading 
at a distance of 5-m from the dip tank occurred at Khubvi (3.65 mg/kg) where the 
soil is a heavily weathered, compacted red clay. However, a clear explanation of 
the environmental circumstances for the variations between the measurements at 
these four sites is not possible with the information available.

Table 7.2  Arsenic levels and soil qualities at sample points

Dip sites

As concentration (mg/kg) Change

Comments5-m 20-m 100-m Mean
5 to 
20-m

20 to 
100-m

Sambandou 46.76 6.88 1.09 18.24 −39.88 −5.79 Sandy loam with very 
high level of organic 
matter

Tshivhulani 30.18 0.19 0.01 10.13 −29.99 −0.18 Predominating deep red 
clays

Tshifudi 3.85 0.23 0.15 1.41 −3.62 −0.08 Sandy loam with 
prevalent organic matter

Khubvi 3.65 3.69 3.60 3.65 +0.08 −0.09 Heavily weathered, 
compacted red clay

Rambuda 3.53 3.63 3.70 3.62 +0.10 +0.07 Red loam with high level 
of organic matter.

Mukula 2.30 1.20 0.08 1.20 −1.10 −1.12 Weathered compacted 
red clay; steep slope.

Thengwe 0.14 0.07 0.09 1.19 −0.07 +0.02 Sandy with little organic 
matter

Tshikuwi 0.08 0.12 0.02 0.07 +0.04 −0.10 Heavily weathered, 
compacted red loam

Tshituni 0.02 0.06 0.01 0.06 +0.40 −0.05 Gravelly with traces of 
brown clay

Tshandama 0.00(2) 0.00(3) 0.00(2) 0.00(2) +0.00(1) −0.00(1) Sandy with little organic 
matter

Mean 9.05 1.46 0.88 3.96 −7.44 −0.73

Notes: In the ‘Change’ columns the symbol ‘−’ indicates a decreasing and the symbol ‘+’ indicates 
an increasing arsenic levels between sampling points
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Arsenic in soil is an accumulative and non-degradable substance and presents a 
danger to humans and animals (Smith et al. 1998; Ramudzuli and Horn 2014). The 
real danger of arsenic in the soils of the study area that resulted from cattle dipping 
with arsenic-containing liquids is the direct contact with contaminated dipping 
tanks and dipping remnants, and the use of polluted surface water and 
groundwater.

In 2018, we revisited the sites where we conducted our original research and 
came to the following conclusions:

	1.	 Several contaminated dip sites are still in use at present and cattle often have 
immediate access to surface water, such as streams and ponds, after dipping.

	2.	 Old dilapidated sites have not been disinfected and properly fenced-off.
	3.	 The design of dipping sites, such as those in Rambuda constructed in 1940, is 

still dangerous for humans and animals. The poison hole at Rambuda is situated 
approximately 20-m away, at a level lower than the dip tank, and is connected to 
the tank by a narrow furrow.

	4.	 Present day human activities increase the danger of contact with the old dip sites. 
Khubvi tank is now situated in the middle of a maize field. The Rambuda site is 
utilized for mud brick making. Continuous ploughing and brick making may 
shift the soil downslope, and thereby assist in the migration of arsenic. Moreover, 
houses have been built next to some unenclosed dip sites (see Fig. 7.7). At a 
larger scale, the proximity of old dip tanks to rivers and streams in the study area 
poses great concern (see Fig. 7.8).

Fig. 7.7  Houses built next to an unenclosed dip tank at Tshandama
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5  �Conclusion

According to the available literature, South Africa is not a main arsenic contamina-
tion location in the world. This chapter reflected upon a number of reasons that 
may spearhead a different mindset. We have evaluated the geology4 and human 
activities associated with the presence of arsenic in the local environment in South 
Africa. However, the case study presented in this chapter focused on soil contami-
nation caused by past cattle dipping with arsenic-based solutions to treat East 
Coast Fever in the country, and the continued use of stockpiled arsenic-based solu-
tions for cattle dipping even after the use of it became illegal in 1983. We collected 
30 soil samples at 10 cattle dipping sites at a depth of 300-mm in the former Venda 
homeland of South Africa and tested the samples for the presence of arsenic rem-
nants. Only two samples contained levels of arsenic exceeding median readings in 

4 More detail on arsenic related geological formations in Northeast South Africa includes the 
Mount Dowe Group of the Beitbridge Complex; the Nzhelele, Sibasa and Tshifhefhe Formation of 
the Soutpansberg Group; the Schiel Complex; the Phalaborwa Complex; the Rooiwater Complex, 
and the Gravelotte Group (Kempster et al. 2007). The location of these formations are closely con-
nected with the South African greenstone belt starting at the border with Swaziland, reaching 
northwards to the study area and then turns westwards, covering both sides of the Limpopo river 
towards the Beitbridge linking South Africa and Zimbabwe.

Fig. 7.8  Map showing the proximity of rivers and streams to historical cattle dip sites in 
Northeastern South Africa
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the United States of America and Australasia where stock dipping is also the cause 
of concerning levels of arsenic in soil. However, the uncoordinated planning and 
development of post-apartheid South Africa’s former ‘homeland’ areas is a serious 
concern. For example, the rehabilitation or enclosure of old arsenic contaminated 
dip tank sites in these areas have not received the required attention. At a larger 
scale, South Africa is prone to high levels of arsenic contamination in the future 
because of the reasons mentioned above. South Africa is a water scares country, 
and its water requires proper protection. The arsenic contamination of water is 
researched from many angles with different intentions. However, the close link 
between arsenic in soil and arsenic in water, and the reciprocal impact of arsenic 
in these two mediums remains an under-researched topic in South Africa and 
Africa in general.
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Chapter 8
Arsenic Contamination of India’s 
Groundwater: A Review and Critical 
Analysis

Aslesha Kaur Dhillon

Abstract  Over the past years, the extent and magnitude of arsenic contamination 
of India’s groundwater has been growing in enormous proportions. However, 
there has not been any integrated and holistic approach, or any concrete action 
taken to combat the issues and threats of arsenic contamination, specifically by the 
Indian Government. This paper aims to critically analyze the scope of arsenic 
contamination in India and the efforts taken by the Central Government of India 
to address this issue. First, this paper will introduce arsenic, examine its transpor-
tation and distribution in the environment and the human population, and discuss 
the impact of arsenic exposure on humans. Second, the paper will discuss the 
scope of arsenic contamination in India and how it is screened and identified. 
Third, this paper will critically review the water governance structure of India. 
Fourth, this paper will discuss the challenges in mitigating and combating arsenic 
contamination of groundwater in India. Finally, the paper will conclude by pro-
viding recommendations for risk-mitigation and local management of groundwa-
ter arsenic contamination.

1  �Introduction

Groundwater is used for domestic purposes in India by 80% of the rural population 
and 50% of the urban population (Ministry of Water Resources 2014). While the 
majority of the ground-water in the country is potable, water quality issues arise 
from geogenic activity such as salinity, nitrate, iron, fluoride and arsenic (Ministry 
of Water Resources 2014). In India, the area and population of arsenic endemic 
states are 529,674 km2 and 359 million (approximately), respectively (Chakraborti 
et  al. 2016b). The Indian Government’s Parliamentary Committee report on the 
occurrence of high arsenic content in groundwater found that more than 70 million 
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people in over 90 districts are at risk of arsenic contamination because of its pres-
ence in groundwater above WHO’s guideline value of 0.01 mg/L (10 μg/L) (Ministry 
of Water Resources 2014).

The geogenic contamination of groundwater through arsenic is spatially assorted 
and confined to specific regions. In India, arsenic affected states are mainly located 
in the Ganga Brahmaputra Plain (Chakraborti et al. 2016b). Chronic arsenic expo-
sure and inorganic arsenic are responsible for myriad illnesses, and can cause vari-
ous health effects such as dermal, cardiovascular, respiratory, gastrointestinal, 
endocrinological, neurological, reproductive developmental, cancerous and cutane-
ous effects (Chakraborti et al. 2017). The appearance of skin lesions are a critical 
warning signal as they indicate severe internal damage (Chakraborti 2011). Studies 
have shown in Punjab, chronic exposure to arsenic through its presence in the 
groundwater has likely increased mortality rates and, cardiovascular diseases and 
cancers of liver, lungs and bladder (Singh 2016a). This has also been linked to infant 
mortality and it has compromised motor and intellectual function in children 
(Singh  2016a). At this time, no known medicine can cure arsenic toxicity 
(Chakraborti et  al. 2018). Only a few preventive measures such as consuming 
arsenic-safe water and nutritious foods, including vitamins are recommended 
(Chakraborti et al. 2018).

Arsenic contamination of groundwater and the corresponding health effects were 
first reported in 1976  in Chandigarh and some villages in Punjab and Haryana 
(Datta and Kaul 1976). Subsequently, in 1983, cases of arsenic contamination and 
arsenicosis emerged in West Bengal (Garai et al. 1984). The School of Environmental 
Studies (SOES), Jadavpur University, Kolkata, India brought this issue in focus 
through organizing the International Conference on Arsenic (Chakraborti et  al. 
2018). Elevated levels of arsenic in the groundwater were discovered by SOES in 
Madhya Pradesh (now Chhattisgarh) in 1999, Bihar and Uttar Pradesh in 2003, in 
Jharkhand in 2004 and along the Allahabad-Kanpur track in 2009 (Chakraborti 
et  al. 2018). Moreover, this was also reported in Assam and Manipur, in the 
Brahmaputra Plains between the years 2004 and 2006 (Chakraborti et  al. 2018). 
According to Mishra et al. (2016) the following districts have arsenic-contaminated 
groundwater above the WHO standard of 10  μg/L: 25 of 75 districts of Uttar 
Pradesh; 14 of 19 districts of West Bengal; 14 of 22 districts of Haryana; 22 of 38 
districts of Bihar; 3 of 24 districts of Jharkhand; 2 of 27 districts of Chhattisgarh; 3 
of 33 districts of Rajasthan; and 1 of 11 districts of Delhi.

Over the past years, India’s groundwater arsenic contamination has been grow-
ing at an exponential rate. The Indian government has not taken any holistic or 
integrated approach in mitigating and combating the challenges and threats of arse-
nic contamination. The aim of this paper is to conduct a critical analysis on the 
scope of arsenic contamination in India and the Central Government of India’s 
efforts in addressing this issue. First, the paper will introduce arsenic and discuss 
how it spreads within the environment and human population. It will also examine 
the impact of arsenic exposure on human health. Second, the paper will assess the 
extent of arsenic contamination across various states of India and its screening and 
identification methodology. Third, the paper will critically analyze the water 
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governance structure of India through reviewing its policies and institutions. 
Fourth, the paper will discuss the key challenges in addressing this issue. Finally, 
this paper will provide risk-mitigation, local management and, partnerships and 
advocacy recommendations to effectively address arsenic contamination of India’s 
groundwater.

2  �What is Arsenic?

Arsenic is a metalloid and its compounds occur in crystalline, powder, amorphous 
or vitreous forms (Gomez-Caminero et al. 2001). It is a natural component of the 
Earth’s crust, present at an average concentration of 2 mg/kg (Gomez-Caminero 
et al. 2001). Arsenic is typically found in trace quantities in rock, soil, water and air. 
However, in certain areas, arsenic can be found in higher concentration because of 
natural conditions and/or anthropogenic activities such as metal mining and smelt-
ing, fossil fuel combustion and pesticide use (Tchounwou et al. 2012).

2.1  �Natural Sources of Arsenic

The natural source of arsenic is found abundantly in the earth’s crust as it is present 
in more than 200 different mineral species. The most common form of arsenic is 
called arsenopyrite. It is estimated that one-third of the arsenic present in the envi-
ronment is originated naturally, usually through volcanic action and low-temperature 
volatilization – which means arsenic containing vapor generated from solid or liq-
uid forms of arsenic salts (Tchounwou et al. 2012). While organic arsenic which 
contains carbon is usually found in marine organisms, it is also sometimes found in 
territorial species (Tchounwou et al. 2012).

The greatest range and highest concentrations of arsenic in natural conditions are 
found in groundwater. This is because of two reasons: first, the strong impact of the 
water-rock interactions and second, aquifers have a higher tendency to favor arsenic 
mobilization in physical and geochemical conditions, especially in reducing condi-
tions (Sharma et al. 2014). Thus, most of the arsenicosis cases reported globally are 
because of arsenic’s exposure through groundwater and not surface water. Moreover, 
large parts of India, Bangladesh, Taiwan and Vietnam rely on arsenic contaminated 
groundwater for drinking purposes and irrigation of staple crops and vegetables 
(Sharma et al. 2014).
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2.2  �Anthropogenic Sources of Arsenic

Arsenic trioxide is a by-product of metal smelting operations and is used to com-
mercially produce elemental arsenic. It is estimated that 70% of the world arsenic 
production is used in timber treatment, 22% in agricultural chemicals and the 
remaining in the glass, metallic alloys and pharmaceuticals (Tchounwou et  al. 
2012). The main industrial processes that are responsible for arsenic contamination 
are metal smelting, burning of fossil fuels and mining (Mandal and Suzuki 2002). 
Another source of arsenic contamination is the use of arsenic in the preservation of 
timber. Moreover, pesticides that contain arsenic have contaminated agricultural 
lands (Singh et al. 2015b).

2.3  �Transportation and Distribution of Arsenic 
in the Environment and Human Population

2.3.1  �Environment

Arsenic’s transportation and distribution in the environment is a complex process 
because of the various chemical forms arsenic may be present in, and its different 
forms are constantly cycled through the soil, water and air (Gomez-Caminero et al. 
2001). The main sources of arsenic in the atmosphere are high temperatures pro-
cesses such as the coal-fired power plants, volcanic activity and burning vegetation 
(Gomez-Caminero et al. 2001). Arsenic trioxide is the most dominant form of arse-
nic released into the atmosphere, and it readily adheres onto the surface of the par-
ticles. These particles are distributed through wind, and they fall back on the ground 
because of either rainfall or their own weight (Gomez-Caminero et al. 2001).

Low temperature biological and natural reactions that involve microbes also 
release arsenic into the environment. Microbes that react with arsenic in solid and 
sediments generate arsine gas or other volatile arsenic compounds (Gomez-
Caminero et al. 2001). However, once arsine gets oxygenated by reacting to air, it is 
converted back into non-volatile forms of arsenic and settles back on the ground 
(Gomez-Caminero et al. 2001). If arsenic is present in well-oxygenated water and 
sediments, mostly all arsenic is present in the stable form of arsenate, but some 
arsenate and arsenite forms are interchangeable and less stable contingent on the 
biological and chemical conditions.

Additionally, selected chemical forms of arsenic adhere strongly to organic and 
clay matter, and this further impacts how they behave or react in the environment 
(Gomez-Caminero et al. 2001). While, arsenic can potentially be released through 
sediments and water, this is also contingent to the biological and chemical condi-
tions. Soil and weathered rock that has arsenic can also be transported in the envi-
ronment through wind or water erosion. However, as arsenic compounds usually 
adhere strongly to soils, water percolation is only able to move the arsenic a short 
distance within the soil (Gomez-Caminero et al. 2001).
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2.3.2  �Human Population

Amongst the human population, contamination of drinking water is the main source 
of arsenic. However, populations that are not exposed to high concentration of arse-
nic in their drinking water can consume arsenic through food that was grown in 
arsenic-contaminated soil or irrigated with arsenic contaminated water (Singh et al. 
2015b).

In most South-Asian countries such as India, Bangladesh, Nepal and Pakistan, 
groundwater is used for irrigation. Due to lax regulations and implementations, irri-
gation units are installed in shallow depths; and thus, farmers use arsenic-
contaminated water for agriculture irrigation. As a result, arsenic has entered 
people’s food chain and livestock. Chakrabarti et al. (2018), conducted an analysis 
in North 24-Parganas, West Bengal, India of 597 irrigation tube wells, where they 
found 6.4 tons of arsenic dumped in the crop fields. Also, approximately 19% of the 
samples exceeded the 100 μg/L−1 standard of irrigation water set by the Food and 
Agriculture Organization (FAO). This study also found that 76% of the arsenic pres-
ent in the crops was inorganic, and domestic animals were also vulnerable to arsenic 
as they consumed arsenic contaminated straw and water. In India, elevated levels of 
arsenic within the range of 13 and 800 μg/kg−1 were found in the following food 
materials: luffa, lentils, brinjal, maize, cucumber, wheat, gourd, rice husk, ladyfin-
ger, rice and green gram (Chakrabarti et al. 2018).

2.4  �Impact of Arsenic on Human Health

Humans can consume arsenic through two ways: first, arsenic contaminated water 
and second, arsenic contaminated food. The immediate symptoms of acute arsenic 
poisoning include diarrhea, abdominal pain and vomiting that can be followed by 
muscle cramping, tingling of the limbs, numbness and in lesions and formation of 
hard patches on the soles of the feet and hands (WHO 2010). There are specific 
dermal effects that have been attributed to chronic arsenic toxicity, such as melano-
sis (pigmentation) followed by keratosis and hyperkeratosis (Bhowmicka et  al. 
2018). According to Mazumder (2008), arsenic keratosis appears as diffuse thicken-
ing either alone or in combination with nodules symmetrically distributed, on the 
palms of the hands and soles of the feet.

Further, high concentrations of arsenic can cause several disorders that can be 
both carcinogenic and non-carcinogenic. These can occur in the respiratory system, 
cardiovascular system, digestive system, reproductive system, endocrine system, 
neurological system, hematopoietic system and renal system (Singh et al. 2015b). 
According to a study conducted by Mazumder et al. (2000), where they examined 
7683 participants in arsenic contaminated areas of West Bengal, India, persistent 
exposure and consumption of arsenic through drinking water caused many respira-
tory complications amongst humans such as shortness of breath, cough, bronchitis 
and wheezing. Likewise, Ahmed et  al. (2017) found that prolonged exposure of 
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arsenic amongst children resulted in inflammation of airways and alteration of liver 
function. Moreover, studies have found that arsenic exposure can induce hyperten-
sion and increase the risk of diabetes (Mazumder et al. 2012; Rahman et al. 1998, 
1999).

The consumption of inorganic arsenic through drinking-water has been shown to 
cause cancer in humans (WHO 2010). The International Agency for Research on 
Cancer (IARC) has classified arsenic and its compounds as carcinogenic to humans 
(Group 1) (IARC 2004). On the basis of a number of studies in various countries 
such as Taiwan, Bangladesh, India, USA, Chile and others, the IARC concluded 
that chronic exposure to arsenic can cause cancer in skin, urinary bladder and lungs. 
A study conducted by Saha (2003), in the arsenic contaminated areas of West 
Bengal, India, found 5.14% incident rates for malignancy, wherein 4.34% of the 
cases were regarding skin malignancy and 0.78% about internal malignancy.

Chronic arsenic exposure can also have an adverse impact on pregnancy. 
Milton et al. (2005), conducted a study where they found arsenic in the tube well 
water in the range from undetectable to 1710 μg/L and reported excess risks for 
spontaneous abortion and stillbirths among the 533 women participants in 
Bangladesh. Ahamed et al. (2006a) also found spontaneous abortions, stillbirths 
and premature births in women living in high arsenic affected areas in Bangladesh, 
where the range of arsenic was between 201 and 1200 μg/L. Studies have also 
shown that there is a strong connection between arsenic exposure and infant mor-
tality (Rahman et al. 2007).

Currently, there is no effective treatment for arsenic toxicity (Bhowmicka et al. 
2018). Prevention from arsenic exposure is the only assured way to limit the effects 
of arsenic poisoning. Humans are exposed to arsenic through various ways as dis-
cussed above and demonstrated through the figure below (see Fig. 8.1). The intake 
of micronutrients such as vitamin E, C, A, zinc, selenium and folic acid have proven 
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Fig. 8.1  Pathway of arsenic to human body (Shakoor et al. 2017)
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to be effective in relieving the symptoms of arsenicosis, particularly skin lesions 
and helping in fast-tracking the natural secretion of arsenic from the body (UN 
Children Fund 2010). UNICEF’s Arsenic Primer Study notes that it is critical to 
ensure that these vitamins are not over-prescribed as they can lead to toxic dosages, 
and mostly these compounds require time between 6 and 12 months to be effective, 
with recurrence rates being high (UN Children Fund 2010). It is important to find 
alternate solutions and therapies that work in a short period of time and have mini-
mum side-effects.

3  �Scope of Arsenic Contamination in India

As discussed above, arsenic occurs naturally in the environment and it is converted 
into inorganic arsenic compounds when it combines with other elements such as 
oxygen, chlorine and Sulphur. It is widely used in agriculture, electronics, medi-
cine, metallurgy, livestock feed and chemical warfare agents. As a contaminant, 
arsenic is substantial with respect to its toxic nature and its extreme diverse signs of 
poisoning. The major source of arsenic ingestion in the human system is drinking 
water. According to the Bureau of Indian Standards (BIS) 2012, the permissible 
limit of arsenic in groundwater is 0.01 mg/L. In the absence of an alternate source, 
the permissible limit is 0.05  mg/L.  WHO’s provisional guideline for arsenic in 
drinking water is 10 μg/L (0.01 mg/L) (WHO 2011). While significant concentra-
tions of arsenic in ground water are reported throughout India, the Ganga-
Brahmaputra Plains are most largely affected.

The Central Ground Water Board (CGWB) (2015) noted that, “the aquifers in the 
alluvial plains embedded within the Late Quarternary deposits are also reported to 
be affected, with a few exceptions where the Hard rock aquifers are also affected as 
in Chhattisgarh and Karnataka states.” The Central Ground Water Board Authority 
of India’s survey found high concentration of arsenic above the relaxed limit of 
0.05 mg/L in groundwater in 86 districts of 10 states, namely, West Bengal, Assam, 
Bihar, Jharkhand, Uttar Pradesh, Punjab, Haryana, Chhattisgarh, Karnataka and 
Manipur. The concentration of arsenic in groundwater is marked by a wide spatial 
variability. With respect to the depth, the contaminated water is usually confined 
within 100 m in the alluvial aquifers. Furthermore, a recent survey by CGWB has 
shown concentrations of arsenic in excess of 0.01 mg/L from additional 11 states 
and the occurrence of arsenic in these regions are reported from only limited sam-
ples (Ministry of Water Resources, RD, and GR 2015). The Ministry of Water 
Resources (2015) has noted:

“While there have been suggestions that the groundwater arsenic contamination is pre-
dominantly restricted to the alluvial aquifers of the Ganges delta that consists of sediments 
transported from the sulfide-rich mineralized areas of Bihar and other surrounding areas of 
the basin of deposition; recent studies have however revealed that the ‘vast tract of Indo-
Gangetic alluvium extending further to the west and the Brahmaputra alluvium have ele-
vated concentrations of Arsenic in wells placed in the late Quaternary and Holocene 
aquifers.”
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There have been reports of arsenic concentration greater than 50 ppb within the 
North-eastern states of India. Thus, millions of people are at serious risk of being 
poisoned from arsenic. Furthermore, arsenic levels in various parts of Assam, 
Manipur, Tripura and Arunachal Pradesh were reported to be above 300 parts per 
billion (ppb) in 2007 (Ministry of Water Resources 2015). According to a 3-year 
survey conducted by the Assam State PHE Department in collaboration with 
UNICEF, Jorhat district was found to be one of the worst arsenic hit areas amongst 
the 17 districts in the state with high groundwater arsenic contamination (Chakraborti 
et al. 2016b). Titabor, a subdivision of the Jorhat district is reported to have lethal 
levels of arsenic in its groundwater (Ministry of Water Resources 2015). The fol-
lowing part will examine the extent of arsenic contamination in the most affected 
states of India to better understand the enormity of this issue.

3.1  �West Bengal

In West Bengal, 79 blocks in 8 districts had arsenic above the permissible limit of 
0.05 mg/L in their groundwater (Kunar 2009; Chaurasia et al. 2012). Chakraborti 
et al. (2009) conducted a study over 20 years and analyzed water samples from 140 
to 150 tube wells in all the 19 districts of West Bengal for arsenic. They found that 
48.1% had arsenic above the permissible limit of WHO of 10 μg/L, 23.8% had arse-
nic above the Indian Government limit of 50 μg/L and 3.3% had arsenic above 
300 μg/L (Chakraborti et al. 2009). Based on the arsenic concentration, this study 
divided West Bengal into three zones, namely, highly affected, mildly affected and 
unaffected zones. The highly affected zone included nine districts along the eastern 
side of the Bhagirathi river i.e. Maldah, Murshidabad, Nadia, North-24 Parganas, 
South-24 Parganas, Bardhaman, Howrah, Hooghly and Kolkata. Some tube wells in 
this zone reported arsenic above 300  μg/L.  Moreover, 95% of the blocks in 
Murshidabad, Nadia, North-24-Parganas, South-24 Parganas and Maldah are 
affected with arsenic contamination. The districts mildly affected with arsenic con-
centrations mostly below 50  μg/L include Koch Bihar, Jalpaiguri, Darjeeling, 
Dinajpur-North and Dinajpur-South. While 16.2 million people live in the highly 
affected areas of arsenic contamination (Chaurasia et al. 2012), more than 26 mil-
lion people are actually at risk of consuming arsenic-contaminated water. Therefore, 
the arsenic contamination of water is a huge public health crisis and a national and 
international concern. Thus, several international aid agencies such as the WHO and 
UNICEF are providing support and assistance to the state government for analyzing 
the magnitude of this problem and finding potential measures to mitigate it 
(Bhowmicka et al. 2018).
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3.2  �Bihar

Bihar is divided into two physiographic units by the Ganga River, namely the North 
and South Ganga Plains (Singh 2015). Bihar has a two-tier aquifer system that is 
formed through its geological stratification into the Holocene newer alluvium and 
the Pleistocene older alluvium (Saha 2009). A 15 to 32-m-thick aquitard divides the 
deeper aquifer systems and the shallow aquifer systems (Singh 2015). It is interest-
ing to note that the shallow aquifer was contaminated by arsenic, but on contrary the 
deeper aquifer was not contaminated by arsenic.

In Bihar, groundwater arsenic contamination first appeared in two villages, 
Semaria Ojhapatti and Barisban in the Bhojpur district in the Middle Ganga Plain, 
in 2002. This area is located in the flood-prone belt of Sone-Ganga inter-fluvial 
region. The Central Ground Water Board and Public Health Engineering Department 
have conducted investigations and found arsenic contamination as high as 
0.178  mg/L in the nearby villages, thereby impacting the hand pumps that are 
located at 20–40  m below ground-level (Ministry of Water Resources 2015). 
Chakraborti et al. (2016a) conducted a study to investigate the extent and severity of 
arsenic contamination in five blocks of Patna District, Bihar. They collected 1365 
hand tube well water samples and found that 61% of the samples had arsenic above 
10 μg/L, 44% of the samples had arsenic above 50 μg/L and the maximum concen-
tration of 1466 μg/L. The study also found that all the biological samples collected 
had arsenic above the normal levels, and 69 out of 712 people screened had arsenic 
skin lesions (Chakraborti et al. 2016a).

In Bihar, 17 out of 37 districts and 87 of 532 blocks have been studied to inves-
tigate the extent of arsenic contamination in groundwater. While only three com-
munity blocks were safe from arsenic contamination (Ghosh et  al. 2009), 12 
community blocks had arsenic below the WHO standard of 10 μg/L (Gupta et al. 
2014; Singh 2015). Though, ten community blocks had arsenic above the WHO 
guideline standard, they were below or equal to the BIS standard of 50 μg/L (Singh 
2015). Meanwhile, 62 community blocks had arsenic contamination above the BIS 
standard of 50 μg/L (Singh 2015; Ghosh et  al. 2009; Nickson et  al. 2007; Saha 
2009; Singh and Choudhary 2010). Approximately 13 million people live in these 
community blocks that are contaminated by arsenic (Singh 2015). It is important to 
note that these districts are predominantly distributed along the course of the Ganga 
River, with the exception of Darbhanga, Purnea and Kishangarj (Ministry of Water 
Resources 2015).

3.3  �Uttar Pradesh

In the state of Uttar Pradesh (UP), the first case of groundwater arsenic contamina-
tion was reported in 2003 during a survey of 25 villages in the Ballia district 
(Ministry of Water Resources 2015). It was suspected that arsenic would be found 
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in UP because of the presence of the Holocene sediments of the active river systems, 
like in West Bengal and Bangladesh (Scharp et al. 2018). This was confirmed in the 
Ballia District and then used to focus further testing in selected “arsenic risk” blocks 
(Scharp et al. 2018).

Arsenic contaminated tube well water was identified in 20 out of 70 districts 
through a study conducted by the UP government with assistance of UNICEF 
(Yasunori et al. 2012). However, this study was only performed on the government 
tube wells and did not include the numerous privately-owned tube wells. Ahamed 
et  al. (2006b) conducted a 2-year survey to examine arsenic contamination of 
groundwater in three districts of UP namely, Ballia, Varanasi and Gazipur. This 
study analyzed water samples from 4780 tube wells and found that 46.5% had arse-
nic concentration above 10 μg/L, 26.7% had arsenic concentration above 50 μg/L 
and 10% had arsenic concentration above 300 μg/L. The maximum arsenic levels 
observed by this study were 3192 μg/L. Critically, this study noted that older tube 
wells had a greater chance of arsenic contamination (Ahamed et al. 2006b).

3.4  �Jharkhand

In the state of Jharkhand, the first case of arsenic contamination was reported in the 
Sahibganj district in 2003–04 but was only confirmed by CGWB through a detailed 
investigation in 2006–07.

Mukherjee et  al. (2006) surveyed four blocks in Jharkhand i.e. Shahibganj, 
Mandaro, Taljhari, and Rajmahal from the Shahibganj district and discovered that 
the while, all blocks had arsenic concentration above 10 μg/L, Shahibganj block had 
arsenic concentration above 50 μg/L. They analyzed 1024 water samples from 17 
villages and found that 30% of the samples had arsenic above 10 μg/L and 19.4% 
has arsenic above 50 μg/L. Nayak et al. (2008) also conducted a detailed study in the 
district of Sahibganj in Jharkhand and found that 178 tube wells in three villages 
were highly contaminated by arsenic. Specifically, 91% of the tube wells had arsenic 
concentration above 10 μg/L, 79.8% above 50 μg/L and 42% above 300 μg/L. In 
these three villages of the district of Sahibganj, this study found that out of 522 
people examined, 71 people were reported with arsenical skin lesions, and out of the 
40 children examined, nine were also reported with arsenical skin lesions. 
Additionally, this study noted various ‘clinical and electrophysiological neurological 
features and abnormal quantitative sensory perception threshold’ (Nayak et al. 2008).

3.5  �Manipur

Manipur is one of the seven North-Eastern Hill states of Indi and has severe arsenic 
contamination of its groundwater, specifically in its valley districts. Manipur has 
nine districts, and four of them are located in the Manipur Valley which constitutes 
only 10% of the State’s land but is home to 59% of the people. In 2004–05, CGWB 
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reported arsenic in four samples of Thoubal and Bishnupur districts (Scharp et al. 
2018). Chakraborti et al. (2008), analyzed water samples from 628 tube wells out of 
expected total of 2014 tube wells and found that 63.3% contained arsenic concentra-
tion above 10 μg/L, 23.2% had arsenic concentration between 10 and 50 μg/L and 
40% had arsenic concentration above 50 μg/L. This study also found that in Manipur 
there was no co-relation between the depth of the tube well and arsenic contamina-
tion as opposed to other arsenic affected states of India in the Ganga–Meghna–
Brahmaputra (GMB) Plain. Since the state water supply primarily depends only on 
surface water, the wells have been abandoned and their water is not being used for 
drinking, cooking or agricultural processes (Ministry of Water Resources 2015).

3.6  �Punjab

According to Thakur et al. (2016), a study conducted in 2007 reported arsenic con-
tamination in the alluvial aquifers of Punjab between 3.5 and 688 μg/L. This study 
found that in southwestern Punjab, 11% of the aquifers had arsenic between 10 and 
25 μg/L, 54% had arsenic concentration between 25 and 50 μg/L and 35% had arse-
nic concentration above 50 μg/L (Thakur et al. 2016).

Singh et  al. (2015a), also reported that arsenic concentration above 10  μg/L 
appear in various places along the Muktsar-Malout belt in Talwandi Sabo area that 
is located in the southern-western parts of Punjab. Singh et al. (2015a) also found 
that arsenic contamination was more dominant in the newer alluvium. Moreover, 
most of the districts contaminated by arsenic are situated along two rivers that origi-
nate from the Himalayas, Ravi and Beas.

The Department of Water Supply and Sanitation of the Government of Punjab 
reported in 2012 that five districts had arsenic concentration above the permissible 
limit. Namely, Amritsar District had arsenic concentration of 0.099 mg/L, Taran 
Taran had arsenic concentration of 0.083 mg/L, Firozepur District had arsenic con-
centration of 0.055  mg/L, Gurdaspur District had arsenic concentration of 
0.058 mg/L and Rupnagar District had arsenic concentration of 0.091 mg/L. The 
CGWB also reported that the ground water in 13 out of 22 districts in Punjab were 
contaminated with arsenic within the range of 0.01–0.39 mg/L. The following dis-
tricts according to CGWB had arsenic above the permissible limit of 0.05 mg/L: 
Amritsar, Taran Taran, Mansa, Kapurthala, Fazilka and Rupnagar district (Ministry 
of Water Resources 2015).

3.7  �Karnataka

The Department of Mines and Geology of the Government of Karnataka has 
reported the presence of arsenic in ground water in two districts, namely Yadgir (old 
Gulburga) and Raichur (Ministry of Water Resources 2015). It is theorized that gold 
mining and associated activities are a contributing factor to arsenic contamination 
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(Kozhisseri 2008; Bhattacharya and Lodh 2018). Moreover, studies conducted by 
UNICEF and the Government of Karnataka found the water well supplies of many 
villages contaminated by arsenic, above the WHO guideline of 10 μg/L (Government 
of Karnataka 2008, 2010).

In a study conducted by Chakraborti et al. (2012), 181 individuals of Kiradalli 
Tanda village were screened for arsenical symptoms and 58.6% i.e. 106 of the total 
individuals had at least one skin lesions caused bychronic arsenic toxicity. In this 
study, 94.5% of these individuals volunteered skin and hair samples for analysis, 
and it was found that 100% of the samples had elevated levels of arsenic (Chakraborti 
et al. 2012).

4  �Methods to Measure Arsenic Contamination Levels 
in Water Sources

There are two methods to measure the amount of arsenic contamination in water: 
the laboratory chemical analysis and field test kit. The measure of the field test is 
more qualitative and the choice of method for analysis is contingent on specific 
criteria, which includes the precession of the measurement required (Talbi et al. 
2005).

There are two kinds of field tests, first, the one that provides a ‘yes or no’ answer 
and second provides a range of concentration. The field test that provides a ‘yes or 
no’ is not beneficial to conduct further analysis or aide the implementation and miti-
gation measures. Moreover, quality control is required to ensure the reliability of 
analysis within a specific laboratory and also to ensure consistency of the measure-
ment between different laboratories (Talbi et al. 2005). In India, West Bengal is the 
only site where arsenic is screened through entirely using laboratory spectrometer 
analysis; thus, reducing the risk of a misclassifying a sample of water as contami-
nated. It is important to note that there is a higher risk of well misclassification when 
using field tests, and this risk can be reduced through using multiple tests (Talbi 
et al. 2005). However, field testing may be sufficient for the preliminary screening 
tests of arsenic contamination.

A World Bank Report found that for the purpose of testing whether the water 
source exceeds a standard of 10 or 50 ppb, a field test kit does not really need to be 
able to distinguish between 200 and 300 ppb to further identify if the water is con-
taminated (Talbi et al. 2005). The report also found that in India, surveys have used 
field test in a semi-quantitative way to categorize well groundwater as above or 
below the national standard of 50 ppb. Furthermore, it was noted that the field tests 
prove to be very reliable when testing if the arsenic is well above or below the 
national limit, and found that the field kits are likely to have errors in the 25–100 ppb 
range (Talbi et al. 2005).

A. K. Dhillon



189

5  �India’s Water Governance

India’s water sector is witnessing challenging times. With increasing scarcity and 
pollution of water, there are significant challenges that plague this sector. In order 
to address the challenges of the Indian water sector and to ensure water security, it 
is critical to bring a paradigm shift in water management. Water governance is criti-
cal in addressing the challenge of arsenic contamination at the central level. 
Therefore, this section will review the main central institutions responsible for 
managing water in India.

5.1  �Water: A Human Right

The General Comment No. 15 of the Committee on Economic, Social and Cultural 
Rights (2002) defined the right of water as:

“The right of everyone to sufficient, safe, acceptable, physically accessible and affordable 
water for personal and domestic uses.”

The General Comment No. 15 (2002) also noted that the right to water is critical 
and indispensable for leading a dignified life. Moreover, in 2010 and through the 
Resolution 64/292 the United Nations General Assembly also officially recognized 
the ‘right to safe and clean drinking water and sanitation as a human right that is 
essential for the full enjoyment of life and all human rights’ (United Nations 
Resolution 64/292, 2010). For instance, the right to water and sanitation is a pre-
requisite to enjoy other human rights such as the right to food, the right to health 
and life, and the right to housing.

In India, the human right to water and sanitation is not explicitly mentioned in 
its constitution. However, both the state courts and the Supreme Court have inter-
preted article 21 of the Indian Constitution i.e. the right to life as inclusive of the 
right to safe and clean drinking water, and sanitation (Catarina de Albuquerque 
2014). Furthermore, Article 39 (b) of the Directive Principles of State Policy 
(DPSP) acknowledges the principle of equal access to the material resources of the 
community and mandates that “the State shall, in particular, direct its policy 
towards securing that the ownership and control of the material resources of the 
community are so distributed as best to sub serve the common good” (Catarina de 
Albuquerque 2014).

The recognition of water as a human right is critical for the following reasons: 
first, it ensures that the necessary standards are established so that countries can be 
held accountable; second, it provides clarity for the role of states in providing access 
to water; and third, it prioritizes access to water for the vulnerable and marginalized 
people without access (Singh 2016b, c).
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5.2  �India’s Water Governance Structure

Arsenic contamination of groundwater is a multi-dimensional problem and cannot 
be treated as a silo. This is a huge issue that has been prevalent in the country for the 
past four decades, across 96 districts in 12 states with enormous impact on the 
health of human and animal populations in those regions. Currently, there are seven 
ministries and several organizations at the central level that are responsible for han-
dling this issue, exclusive of the state governments and their agencies, namely: 
Ministry of Drinking Water & Sanitation, Ministry of Water Resources, Ministry of 
Health & Family Welfare, Department of Agricultural Research and Education, 
Ministry of Science & Technology, Department of Agriculture and Cooperation, 
Department of Animal Husbandry, Central Ground Water Board, Central Ground 
Water Authority, Water Quality Assessment Authority, Council of Scientific & 
Industrial Research, and Indian Council of Agricultural Research.

The legal and governance structure of India to manage groundwater is a com-
plex, multilayered framework of constitutional and statutory provisions at both the 
central and state levels. While groundwater is part of the jurisdiction of the states, 
the central government had issued a model groundwater bill in 1970, which has 
been revised and circulated many times (Garduño et al. 2011).

However, only selected states have formally adopted this bill. World Bank’s 
study on India’s groundwater governance found two main legal drawbacks namely, 
water being assumed to follow the right to land and the absence of groundwater 
legislation at the central level (Garduño et al. 2011). These legal drawbacks were 
addressed through case law affirming the human right to water and the govern-
ment’s right and obligation to protect ground water under the right of life stated in 
the Indian Constitution (Garduño et  al. 2011). India’s Planning Commission’s 
Groundwater Expert Group have argued that the priority should be on enforcing and 
implementing existing measures as the current legislative framework is reasonably 
strong for effective groundwater management.

One of the main policy affecting groundwater management are the 1998 National 
Water Policy (NWP) and the 2002 amended version (Ministry of Water Resources 
2012). While these policies were a result of intense political discourse, they cannot 
be legally enforced because they have no statutory status. Nevertheless, state gov-
ernments can find them valuable for developing their own water policies. 
Furthermore, the governance framework for groundwater protection is very com-
plex because while, the Water Act of 1974 and the Environmental Protection Act of 
1986 address main pollution issues in India, there are at least 13 other related poli-
cies and acts that address this issue (Garduño et al. 2011).

In India, water is managed under two separate categories, namely surface water 
and groundwater. The Central Water Commission (CWC) is responsible for govern-
ing surface water, while the Central Ground Water Board (CGWB) is responsible 
for groundwater. The following section will critically review both the CWC and 
CGWB.
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5.2.1  �Central Water Commission (CWC)

In 1945, the Central Waterways, Irrigation and Navigation Commission was estab-
lished. In 1974, the water sector was separated and the CWC became an individual 
entity. Today, the CWC is the technical division of the Ministry of Water Resources 
and is responsible for matters relating to flood control, irrigation and multipurpose 
projects. The CWC’s scope of work also includes the planning, development and 
management of the surface water resources of the entire country.

The commission has significant challenges with respect to its mandate and means 
of implementation. The responsibility of the commission is restricted to only sur-
face water resources, and it fails to include other components of water resources in 
the hydrological cycle, specifically groundwater. Since water is interconnected, it is 
imperative that the governing agencies work in a holistic and comprehensive man-
ner. A case in point: the river water quality monitoring function of CWC overlies 
and duplicates to a certain extent the work of the Central Pollution Control Board 
(CPCB) (Talbi et al. 2005). Further, the hydro-meteorological data collection over-
lays the role of the India Meteorological Department (IMD) and the hydrological 
research and studies actually lie within the function of the National Institute of 
Hydrology (NIH) (Talbi et al. 2005).

Furthermore, the CWC does not focus or produce any expertise on issues relat-
ing to the socio-economic impact of water and the environment. Further, it does 
not have sufficient knowledge on efficient irrigation management and water utili-
zation. A significant function of the CWC is to provide training to in-service engi-
neers from the central and state organizations in diverse aspects of water resource 
development. However, the CWC only focuses on the engineering side of water 
projects and does not provide a whole understanding and training in water man-
agement (Talbi et al. 2005). The CWC in its current form is only able to address a 
small percentage of the water management issues, with several significant compo-
nents of the hydrological cycle and its processes remain untouched (Talbi et al. 
2005). Furthermore, the commission’s current focus is on the supply-side manage-
ment of water, and as it is primarily staffed with engineers, it fails to include any 
knowledge of any other discipline that interacts with water resource management 
(Talbi et al. 2005).

5.2.2  �Central Ground Water Board (CGWB)

The CGWB was created in 1950 and is responsible for exploring and developing 
the groundwater resources of the country. During the commencement, the board 
was part of the agriculture division, however in 1971, under the Ministry of Water 
Resources it became its own entity. Initially, the mandate of the CGWB was very 
specific wherein they had to drill exploration wells to assess groundwater 
resources and further instruct the method and time to harness the resource through 
drilling. Gradually, the CGWB took on more responsibility to monitor the 
groundwater resources and ultimately became the top national organization that 
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deals with groundwater resources in the country. The CGWB also supports the 
State Groundwater Boards (SGBs) who are responsible for these activities on the 
state level.

The exhaustive data on India’s groundwater that was generated through years 
of field studies is one of the biggest contributions of the CGWB. Nevertheless, the 
scope of the CGWB’s work on groundwater is limited because of the lack of 
cooperation and institutional will between the central and state governments. 
Further, the deployment of outdated equipment also severely limits the work of 
the board and its focus on the supply side solutions (Talbi et al. 2005).

Hydrologically, the two categories of water, i.e. surface water and groundwater, 
are interconnected and cannot be governed as silos. Thus, it is important to create a 
shift in the institutional framework of the CGWB and CWC to ensure a more holis-
tic and comprehensive water management framework.

5.3  �National Water Commission: A Viable Option?

The Government of India set up the Mihir Shah Committee, a seven-member com-
mittee headed by Dr. Mihir Shah, to provide recommendations for the reform of the 
country’s water sector. The Committee created a report called, A 21st Century 
Institutional Architecture for India’s Water Reforms (Committee on Restructuring 
the CWC and CGWB 2016). The report noted that infrastructure projects related to 
water resources should be enhanced through enabling technology, assessment, plan-
ning and monitoring capabilities. The projects should be deployed effectively 
through a demand-based approach and a partnership between the central and state 
governments. The Mihir Shah report further noted that the water resource gover-
nance requires a high-level organization that is forward-looking, transdisciplinary, 
strategic and responsive in its skill set. Furthermore, the report asked for a more 
action-oriented organization and not just a data collection and analysis organization. 
The report proposed to establish the National Water Commission (NWC) to replace 
CWC and the CGWB and become the highest organization managing and govern-
ing issues of water policy, data, and governance.

The structure proposed by the Committee for the NWC is as follows: first, they 
proposed that the NWC should be an adjunct office of the Ministry of Water 
Resources and function with essential accountability and full autonomy. Second, 
the committee proposed that the NWC should be led by the chief national water 
commissioner, a senior administrator who has a solid tenure and extensive back-
ground in the public and development administration, and finally have representa-
tives of the hydrology (present chair, the CWC), hydrogeology (present chair, the 
CGWB), hydrometeorology, river ecology, ecological economics, agronomy (with 
focus on soil and water) and participatory resource planning & management. Third, 
the NWC must have an extensive presence in all the regional and major river basins 
of India. Fourth, the committee proposed that the NWC should enable and con-
struct an architecture of partnerships with educational and research-based institu-
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tions and practitioners in the water sector, specifically in areas where internal 
expertise is lacking. The proposed responsibilities and mandate of the NWC by the 
committee are divided into several divisions for effective implementation, namely: 
Irrigation reform, river rejuvenation, aquifer mapping and participatory groundwa-
ter management programme, water security division, urban and industrial water 
management division, water quality division, data management and transparency 
division and the knowledge management system and capacity building division 
(Committee on Restructuring the CWC and CGWB 2016).

The main assumption of the report was that a centralized institution could pro-
mote integrated water resources management planning at the basin level for both 
surface and groundwater. However, lack of coordination and data sharing are not 
the reasons for the shortage of integrated planning at the ground level; but it is the 
inability of the concerned state departments, that control the water resource, to 
foresee how the future development of the water resource will impact its quality, 
supply and demand. Thus, can the two central agencies CWC and CGWB be held 
responsible for the poor state of affairs in the water sector? This report also fails to 
identify a significant problem that the state level water agencies such as the water 
resources department, water supply department, watershed management agency, 
and state pollution control board, do not have the incentive and the will to perform 
effectively because of the inherent problems in the institutional design (Water 
Policy 2017). These problems include: sectoral, disintegrated supply-side approach 
to water management, inadequate water resource monitoring and assessment, a 
centralized approach of institutions and lack of well-defined water rights (Water 
Policy 2017).

Furthermore, the report recommends participatory aquifer mapping versus 
groundwater management. The two main reasons for the over-exploitation of aqui-
fers are the absence of well-defined water rights in groundwater and the inefficient 
pricing of electricity that is supplied through the farm sector (Water Policy 2017). 
Lack of data and insufficient information regarding the groundwater levels and its 
flows, do not mitigate the fact that the resources are depleting and getting contami-
nated at a rapid speed, something farmers and official agencies are well aware of 
(Kumar et al. 2016). Participatory aquifer mapping is not a solution to the ongoing 
challenges. Certainly, investing more resources in refining the current assessment 
methodology does not cause any harm, but the information needed to take concrete 
and action-oriented steps is already prevalent. The actions needed are institutional 
in nature, and the lack of political will from the state governments to implement 
those actions is the main determent. This lack of will is clearly demonstrated through 
the lack of enforcement of groundwater legislations in various states, with the 
Maharashtra Groundwater Development and Management Act (Bombay High 
Court 2009) being a prime example.

Precedence form developed countries such as the US and Australia, in addressing 
groundwater management challenges clearly demonstrates that the solution is in 
creating more robust institutions, working on practical implementation and have 
interventions that clearly define water rights of every citizen. It is imperative that 
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these institutions are supported through an appropriate legal framework that is able 
to define, recognize and enforce the water rights of every citizen.

This paper finds that the NWC can provide a top-down approach and the required 
strategic, political, technical and governance guidance for the water sector in India. 
However, it is also critical that each individual state takes more responsibility in 
reforming their institutions and taking the required bottom-up steps to ensure more 
efficiency in water policy, management and governance.

5.4  �Water Governance: Women, Communities and Civil 
Society

The Ministerial Declaration adopted during the International Conference on 
Freshwater (2001) stated that:

“Water resources management should be based on a participatory approach. Both women 
and men should be involved and have an equal voice in managing the sustainable use of 
water resources and sharing the benefits. The role of women in water-related areas needs to 
be strengthened and their participation broadened.”

The rural water supply program in India has been designed and enforced within the 
capacity of the international and national policy frameworks. The National Water 
Policy (Ministry of Water Resources 2012) prioritized safe drinking water facilities 
in rural areas, and the National Policy on Empowerment of Women also stressed 
that women in rural areas need access to safe drinking water to households (Singh 
2006b). These policies are formed by the national and state level ministries and 
departments that are accountable for the management of the country’s water, rural 
development and women’s development (Singh 2006b). The most extensive pro-
gram was the ‘Accelerated Rural Water Supply Program (ARWSP), launched in 
1972–73. The aim of this program was to assist states in enforcing and implement-
ing schemes that supplied safe drinking water to villages. In 1986 this program was 
transformed into a technology mission and called Rajiv Gandhi National Drinking 
Water Mission’ (RGNDWM) (Singh 2006a). The main agencies responsible for 
implementing this program at the local level included the Ministry of Rural 
Development, the Department of Social Welfare, the Department of Public Health 
Engineering (PHED) and the Panchayati Raj Institutions (PRI).

It is important to note that the principal beneficiaries of the ARWSP were consid-
ered to be women because it was assumed that providing access to safe drinking 
water would reduce their burden of water-fetching and enable better health and 
improve socioeconomic opportunities (Singh 2006a). Moreover, the participation 
and role of women has improved as they are increasingly becoming members of the 
PRIs and participating in the decision-making process.

The ARWSP program defines access to safe water in accordance with its cover-
age and has the following provisions: the daily requirement of water for human 
beings is 40 L per capita; for every 250 people, there should be one hand-pump or 
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stand-post; and independent habitations that don’t have any potable sources can 
have one source provided that the population is less than 250 and there are either 20 
households or 100 people. If the provisions mentioned above are not fulfilled, then 
the habitations are not considered covered. According to this program, areas that 
have a water source but have water quality issues, is considered a ‘no safe source’ 
habitation. To address the issues of water quality under the ARWSP, states can 
install treatment plants for arsenic removal, defluoridation and iron removal, orga-
nize awareness camps and create water testing laboratories (Singh 2006a).

Most of the water supply programs are designed by bureaucratic organizations 
that follow a blanket approach and use common international and national design 
frameworks, the same maintenance, management and financing systems regardless 
of the local social and economic conditions (Smet and van-Wijk 2002). Moreover, 
Singh (2006a) conducted a first-hand ethnographic study in selected rural areas of 
the following states in India: Madhya Pradesh, West Bengal, Bihar and Jharkhand. 
This study found that while improved supply sources of water were provided to 
various rural areas in India under the ARWSP, women in particular did not wholly 
adopt the new source and abandon the traditional sources. According to the Planning 
Commission (2002), approximately 3.5 million hand-pumps in 100,000 piped water 
schemes have been installed in villages. Singh (2006a) found that majority of the 
women had not adopted the new source for the most important purpose i.e. drinking. 
It is critical to assess the level and nature of the use of the technology being exported 
to the affected rural areas. Singh (2006a) found in their study that the new technolo-
gies provided were not able to meet the needs and aspirations of women, who are 
the decision makers in selecting the source water and thus, the technologies. 
Consequently, the assumed advantages of implementing new water technologies 
and sources such as better health and enhanced socio-economic opportunities are 
not fully achieved.

Therefore, it is imperative that the local people participate in the water gover-
nance process through forming local committees and groups regarding water qual-
ity management, irrigation and watershed. The civil society and non-governmental 
organizations (NGO) can prove to be a huge asset in this respect. A case in point: An 
NGO initiated program, funded by a Canadian agency, installed 182 arsenic removal 
plants in arsenic affected areas of West Bengal. This program found that improved 
participation of women as members of water quality management committees, at 
the local level, was critical to the sustainable use and management of the arsenic 
removal plants (Singh 2006a).

6  �Challenges in Mitigating Arsenic Contamination in India

High arsenic contamination in groundwater is of great concern because it impacts 
human, animals, soil and plant ecosystem and has caused over 100,000 deaths and 
at least 200,000 confirmed cases of illness. The ‘Occurrence of High Arsenic 
Content in Ground Water’ report noted that at least 96 districts in 12 states had been 
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affected by groundwater arsenic contamination. Over 70.4 million people are 
affected by this issue in only 35 districts. Furthermore, abnormalities have been 
detected in at least 40% of animals living in arsenic contaminated areas. It is star-
tling to find that in spite of the severity of this issue and its rapid growth over the last 
three decades, no concrete action has been taken by the central government to coor-
dinate activities or address the challenges faced because of arsenic contamination. 
Though, in 2010, the National Institute of Hydrology (NIH) and the Central Ground 
Water Board (CGWB) created a vision document called Mitigation and Remedy of 
Ground Water arsenic menace in India; no concerted action is really visible to 
implement the vision. There is no reference to arsenic contamination in the ‘National 
Water Policy 2012’ and there is no separate budgetary allocation that addresses 
arsenic concerns or any water quality issue. It is important to note that while the 
‘National Rural Drinking Water Programme’ under the Ministry of Drinking Water 
& Sanitation received funding for water quality, it’s critical that this program allo-
cates a separate budget for water quality concerns and clearly distributes them for 
specific issues such as arsenic contamination.

6.1  �Arsenic Data Collection Challenges

Despite the fact that the first case of arsenic contamination was reported more than 
five decades ago, the government does not have comprehensive data about the 
affected states and districts, and more importantly the number of people affected 
by this issue. Moreover, there are different numbers and data reported by the vari-
ous ministries and departments of the Indian Government. While the Ministry of 
Water Resources, River Development and Ganga Rejuvenation (M/o WR, RD & 
GR) have reported arsenic contamination exceeding the permissible limits in 86 
districts in 10 states, the Department of Agricultural Research and Education 
(DARE) has reported on 71 districts in 9 states with arsenic contamination above 
permissible limits. Moreover, the Department of Science and Technology (DST) 
has reported a different list of affected states and districts. The ‘Occurrence of 
High Arsenic Content in Ground Water’ report states that 96 districts in 12 states 
suffer from groundwater arsenic contamination. The Council of Scientific and 
Industrial Research (CSIR) has noted that 70.4 million people are affected from 
arsenic contamination in only 36 districts, and this number will be significantly 
higher once people in all 96 districts are accounted for. The discrepancy of the data 
presented above clearly demonstrates the lack of will by the central government to 
collect reliable data on the extent of arsenic contamination and the people affected 
by it. Reliable and accurate data are critical to provide effective policy solutions to 
issues of public health, water quality management, agriculture, food security, irri-
gation and other purposes.
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6.2  �Source of Arsenic and Mitigation Challenges

The Indian Council of Agricultural Research (ICAR) found that more than 90% of 
arsenic contaminated water is used for irrigation purposes. According to the vision 
document of the NIH and CGWB, the major exposure pathway of arsenic was the 
water-soil-crop-food transfer. Naturally, exposure to arsenic from food and water 
increases the health risk of arsenic exposure.

No real effort has been made by the central government to actually find the root 
cause of arsenic in groundwater that can further help the mitigation process. The 
Ministry of WR, RD & GR have noted that elevated level of arsenic in groundwa-
ter is caused largely by natural geogenic processes and partly due to anthropogenic 
activities such as the use of fertilizers, burning of fossil fuels, and mining activity. 
UNICEF and the Ministry of Water Resources have noted that the sediments in the 
Ganga Brahmaputra plain contain arsenic compounds. However, there is still more 
clarity needed to understand the release of the arsenic process in groundwater 
because it is contingent on various physio-chemical conditions, hydro-geological 
characteristics of aquifers, the presence of arsenic compounds in sediments and 
the dynamic nature of aquifers. Therefore, it is critical for the government to con-
duct a time-bound study that establishes the sources of arsenic to mobilize the 
mitigation process with respect to groundwater arsenic contamination.

The Water Quality Assessment Authority (WQAA) was created in 2001 to 
address “any environmental issue concerning surface and groundwater quality and 
reviewing the status of quality of natural water resources.” It is important to note 
that initially WQAA’s mandate excluded quality issues that arose from geogenic 
activities, but it was later revised and included. While this institution has not 
achieved much in its 16 years since inception, it can play a critical role in monitor-
ing and assessing the water quality of both surface and ground water in a compre-
hensive and holistic manner. To ensure this, the government of India must provide 
the necessary budgetary allocations to provide the institution with sophisticated 
equipment and trained professionals.

6.3  �Central Leadership Challenges

Arsenic contamination is a multi-dimensional problem and cannot be treated as a 
silo. This is a huge issue that has been prevalent in the country for the past four 
decades, yet the Government of India has failed to create a strong institution or 
policy at the central level to deal with this issue. It is often argued that water is a 
state issue and therefore the central government is not entirely responsible for 
addressing this issue. However, this is a threat faced by at least 96 districts across 
12 states with enormous impact on the health of human and animal populations in 
those regions. Therefore, the central government must act on an urgent basis. 
Currently, there are seven ministries and several central organizations at the central 
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level that are responsible for handling this issue, exclusive of the state govern-
ments and their agencies. However, as noted before, these organizations have 
failed to coordinate their efforts and implement a strong policy to address this 
issue. This paper recommends that a specific body should be created at the central 
level to coordinate all efforts on arsenic contamination in groundwater. Further, 
this agency and all the other ministries mentioned above should ensure that a cohe-
sive policy framework, effective mitigation program and an efficient coordination 
mechanism is in place to address all arsenic-related issues and concerns.

7  �Recommendations

Long-term actions are needed to reduce arsenic exposure from anthropogenic 
activities such as mining, metal smelting and refining, burning fossil fuels, use of 
pesticides and timber treatment. Specifically, urgent action is needed to reduce the 
consumption of arsenic from drinking water and food in areas with a high level of 
arsenic due to geological factors. The following section of the paper will first pro-
vide recommendations for risk-mitigation, then for the water, health and agricul-
ture sectors and finally stress on the importance of partnerships and advocacy.

7.1  �Risk-Mitigation Recommendations

It is imperative that governments ensure that alternate source of drinking water 
are provided to local population where the arsenic concentration in the groundwa-
ter is higher than 10 μg/L by taking the following steps: rainwater collection (but 
ensure preventative measures are in place to avoid microbial contamination and 
breeding of mosquitoes); install surface based pipe water system; installing 
domestic or centralized arsenic removal systems and ensure the appropriate dis-
posal of arsenic; and painting hand pumps to highlight the difference between 
high arsenic and low arsenic water source (Talbi et al. 2005). Further, it is impor-
tant to note that, arsenic contaminated water does not have severe health effects if 
used on skin, so it can still be safely used for laundry, bathing and handwashing 
purposes (WHO 2010). It is also critical to make both the public and health pro-
fessionals aware of the negative impacts of arsenic consumption and the methods 
to avoid it (WHO 2010).

7.2  �Local Management Recommendations

The local management recommendations put grave emphasis on the local leader-
ship to manage arsenic presence within the following three sectors: health, water 
and agriculture.
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The following are the recommendations for the water sector. First, provide the 
already identified arsenic contaminated regions with the required financial and 
technical support to provide an alternate source of safe drinking water. Second, a 
strong arsenic monitoring system should be established and maintained at the 
local level. This should be done by registering all water sources in the area and 
also paint the status of whether the water source has been checked or not e.g. 
unpainted for unchecked, red for arsenic contaminated and green for safe. Based 
on this information, determine the areas of safe water for the people and also in 
this process create more public awareness on this issue. Third, it is imperative to 
strengthen the water quality monitoring capacity in both the private and public 
sectors to ensure that the chemical and biological quality standards are consistent. 
Fourth, the local governments should regulate the indiscriminate use of deep 
groundwater (UN Children Fund 2010).

This paper provides the following recommendations in the health sector. First, 
local medical and health organisations should establish an arsenicosis patient regis-
try to enable early identification of such patients. This should be supported through 
a robust surveillance program managed by the local authorities. Second, the district 
hospitals should have the required resources and expertise to manage arsenicosis 
patients in most affected areas (UN Children Fund 2010). Third, there should be 
constant communication between the hospitals and authorities wherein they must 
report any new case of arsenic contamination and share the location of the patient. 
This is to ensure that new water points can be targeted to those villages. Forth, the 
local health authorities should create more awareness about the health risks of arse-
nic exposure. Fifth, invest in the training, screening facilities and the required equip-
ment in the local hospitals. Finally, promote school-based education about arsenic 
to increase the awareness of this issue and ensure that factually correct information 
is being disseminated in the public (UN Children Fund 2010).

The following are the recommendations for the agriculture sector. First, optimize 
the combined usage of surface water and groundwater to minimize the exposure of 
the crops to arsenic and ensure that the sustainability of groundwater for domestic 
water supply is not compromised. Second, monitor and regulate agriculture prac-
tices to prevent arsenic contamination from fertilizers in the groundwater and also 
to prevent arsenic contamination in people from food sources. This can be done 
through promoting and developing agriculture practices such as arsenic resistant 
varieties, using only surface water for irrigation purposes, and practicing raised-bed 
cultivation. Finally, create more awareness about the linkages of arsenic and agri-
culture amongst the relevant stakeholders.

7.3  �Partnerships and Advocacy

Arsenic exposure and contamination is a multi-sectoral problem that involves a 
number of different stakeholders. While national, state and local governments have 
the overall responsibility for arsenic mitigation, other relevant stakeholders can play 
a significant supportive role. UNICEF’s Arsenic Primer Report has noted that 
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countries where arsenic mitigation programs have been going on for a long period 
of time demonstrate that involving key stakeholders and developing strong partner-
ships are critical to the success of the program (Scharp et al. 2018). Some of these 
potential stakeholders include: the central and state government water resource and 
supply ministries and departments; central and state government health ministries 
and departments; water resource agencies, technical departments of academic insti-
tutions and think tanks i.e. in the field of civil engineering, chemistry, environmental 
science, hydrogeology, water policy, public health, and medicine; international and 
United Nations agencies such as UNICEF, WHO, Water and Sanitation Programme, 
UNDP, World Bank; and other international and local NGOs such as WaterAid 
(Scharp et al. 2018).

Advocacy is a critical step to encourage and promote action by the respective 
government authorities and other stakeholders, including the civil society, relevant 
international organizations, funding agencies and UN agencies. It is imperative to 
effectively present the relevant information to different audiences such as local 
communities, water professional, health professional, government officials, the pri-
vate sector and relevant people. According to UNICEF, successful advocacy in arse-
nic mitigation programs includes raising awareness through international, national 
and local conferences and media events, producing articles in local media outlets, 
briefing local educators, leaders, medical and water professional, and developing 
local working groups with representatives from the government, civil society and 
other relevant organizations (Scharp et al. 2018).

8  �Conclusion

Arsenic contamination of groundwater in India and Bangladesh and its devastating 
impact on human health is reported to be one of the biggest natural groundwater 
catastrophes in the world. This paper has provided a comprehensive overview of the 
scope of arsenic contamination in India and the efforts taken by the Central 
Government of India to combat it. While the main source of arsenic is natural geo-
genic activities, anthropogenic activities such as metal smelting, fossil fuel combus-
tion and mining also contribute to the problem significantly. According to the 
Government of India, over 96 districts in 12 states have reported arsenic over the 
permissible limit of 0.01 mg/L.

The paper concludes that arsenic contamination is a multi-dimensional problem 
and cannot be treated as a silo. The government of India has failed to create any 
central solution or policy or an institution to address this enormous groundwater and 
health catastrophe. Furthermore, there is a clear discrepancy of the data presented 
by various governmental ministries on the extent and scope of arsenic contamina-
tion in India. This clearly demonstrates the lack of will by the central government to 
collect reliable data on the extent of arsenic contamination and the people affected 
by it. Moreover, reliable and accurate data are critical to provide effective policy 
solutions to issues of public health, water quality management, agriculture, food 
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security, irrigation and other related purposes. This paper recommends that a spe-
cific body should be created at the central level to coordinate all efforts on arsenic 
contamination in groundwater.

The first part of the paper critically analyzes India’s efforts to combat arsenic 
contamination and clearly stresses on the importance of leadership and support of 
the Central Government in ensuring that a cohesive policy framework, effective 
mitigation program and an efficient coordination mechanism are in place to address 
all arsenic-related issues and concerns. However, when critically examining the 
water governance structure and institutions of India, the paper concludes that while 
leadership and support at the center is critical to address this grave issue, it is not the 
only solution. Thus, the paper highlights and stresses on the roles of the local and 
state governments, and institutions in effectively implementing, mitigating and 
coordinating solutions to combat arsenic contamination. Finally, the paper provides 
recommendations for risk-mitigation; local management of water, health and agri-
culture sectors and stresses on the importance of partnerships and advocacy to deal 
with arsenic contamination at the local level.
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Chapter 9
Biosorption of Arsenic: An Emerging  
Eco-technology of Arsenic Detoxification 
in Drinking Water

Jatindra N. Bhakta and Md M. Ali

Abstract  Arsenic (As) contamination of drinking water and its severe human 
health impacts have been a global concern during the last few decades. In order to 
control the problem of As in drinking water, various chemical based treatment 
methods, such as coagulation, ion-exchange, adsorption, and reverse osmosis, are 
used in removing As from water. Most of these methods are not eco-friendly and 
have several limitations (high material cost, high energy requirements, generation 
of sludge, etc.) in large-scale practical applications. To overcome these limitations, 
several studies considered various biological agents as potential low-cost and eco-
friendly sound biosorbents in treating As-contaminated water. It has been found that 
a wide range of biomass such as algae, fungi, bacteria, plant parts, fruit wastes, and 
agricultural wastes are low-cost, recyclable, no sludge generating and highly effec-
tive biosorbents in removing arsenic from water. Thus, biosorption has emerged as 
an eco-friendly and cost-effective technique in arsenic remediation. The present 
chapter provides a review of recent literature on As biosorption technologies. The 
utilization of various biosorbents including their optimum treatment conditions also 
is extensively summarized to get a better concept about the future scope of As reme-
diation using biosorption method.

1  �Introduction

Arsenic (As), a colorless and odorless element found in air, water, and soil in trace 
quantities (Matschullat 2000; Prashant et al. 2009; Bhakta et al. 2016, 2017), is one 
of the priority hazardous pollutants posing severe environmental and human health 
hazardous impacts worldwide. According to the International Agency for Research 
on Cancer, As and its compounds are Group 1 carcinogen to human beings (Bhakta 
et al. 2016; Bhakta and Munekage 2009; IARC 1987).
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Arsenic contamination of precious water resources especially groundwater has 
emerged as a significant public health concern mostly in the developing countries 
(Chakrabarti et al. 2018; Bhakta et al. 2016; Mamun et al. 2009; Ranjan et al. 2009). 
Both natural process (i.e., deposition of As-containing minerals) and anthropogenic 
activities (such as, industrial discharge of fertilizers and pesticides) are responsible 
for causing As contamination in surface and groundwater resources (Campos 2002; 
Bohrer et al. 2006). Interestingly, most of the As related environmental problems 
arise due to the mobilization of arsenic under natural conditions rather than the 
anthropogenic sources (Chakraborty et  al. 2015). About 245 species of arsenic-
enriched minerals have been identified. However, arsenic disulphide or realgar 
(As2S2), arsenopyrite or ferrous arsenic sulphide (FeAsS) and orpiment or arsenic 
trisulphide (As2S3) are considered as the main mineral sources of As (Hossain 2006, 
Jiang et al. 2013). The As carrying main ores are iron arsenate, iron sulphate and 
calcareous soil as calcareous arsenolite. Anthropogenic sources of As are mainly 
from different industrial wastes arises from fertilizer, insecticides, herbicides, coal, 
oil, cement, smelting, mine tailing, ore processing, metal extraction, metal purifica-
tion, glass, chemicals, textiles, leather, petroleum refineries, acid mines, alloys, and 
catalysts industries (Ioannis and Anastasios 2002; Jackson et al. 2012).

Arsenic seldom occurs in a free state and is largely found in combination with 
iron, sulphur, and oxygen (Jain and Ali 2000; Kamala et al. 2005; Kumari et al. 
2005). It is commonly found in −III, 0, +III and +V oxidation states in the environ-
ment, whereas in groundwater it predominantly exists in two oxidation states as 
arsenite (As III) or arsenate (As V). Due to more mobility and solubility in water, 
As(III) is 25–60 times more toxic than As(V). The most important factors which 
control speciation of As are redox potential and pH (Ratna et al. 2004; Chiban et al. 
2012). It can be mobilized in ground and surface waters at pH values 6.5–8.5 under 
both oxidizing and reducing conditions (Baeyens et al. 2007). Trivalent As is found 
more than pentavalent As in reducing groundwater conditions (Bard et al. 1985). At 
neutral and slightly acidic conditions As(III) exists as non-dissociated and at pH 
higher than eight considerable amount of anionic species is found. In the case of 
As(V), it is almost completely disassociated as it is present in the form of monova-
lent, divalent, and trivalent anions (Ali and Aboul-Enein 2002).

Concentrations of As in natural waters and food samples are identified as a global 
problem and often referred to as a 21st-century calamity (Anamika 2014; 
Shanmugapriya et al. 2015). Worldwide more than 296 million people in over 100 
countries have been affected by As contamination in groundwater; among them 
India, Bangladesh, China, Chile, Mexico, Taiwan, Poland, Argentina, Hungary, and 
the USA are the most affected (Mohan and Pittman 2007; Uluozlu et  al. 2010; 
Mudhoo et al. 2011; Chakrabarti et al. 2018). The most devastating arsenic calamity 
has been reported in Bangladesh and West Bengal in India, where most of the popu-
lation are dependent on groundwater as the primary drinking water source 
(Chowdhury et al. 2000). Around 70 million people in India, 57 million people in 
Bangladesh, 60 million people in Pakistan are estimated to be in danger with 
arsenic-contaminated drinking water (Bhakta et  al. 2016; Sanjrani et  al. 2017; 
Chakrabarti et al. 2018).
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The World Health Organization has revised the provisional guideline value of As 
concentration in drinking water and changed the limit from 50 to 10 μg/L. However, 
this limit has not been adopted or implemented by all countries. For example, in 
India and Bangladesh due to the unavailability of the safe alternative source of water 
the former guideline of 50 μg/L is still in use (WHO 1993; Kumar and Puri 2012; 
Abhinav et  al. 2017). Prolonged intake of As-contaminated drinking water can 
increase health risks like dermal (Dermatitis, Melanosis, Vesiculation), gastrointes-
tinal (abdominal pain, nausea, dehydration, dysphagia),cardiovascular (hypoten-
sion, heart failure, irregular heartbeat), neurological (neuritis, hyperpyrexia, 
paralysis), renal (hematuria, leukocyturia, glycosuria), reproductive abnormalities 
and cancers of various organs (Mukherjee et al. 2003; Ghosh et al. 2007; Saqib et al. 
2013; Chakrabarti et al. 2018). Arsenic has been classified as a group one carcino-
genic substance by the World Health Organization. It is known to be toxic to all 
living organisms (Halem et al. 2009; Singh et al. 2015). Chronic exposure to exces-
sive arsenic results in changes in skin pigments and hyperkeratosis, ulcerations of 
the skin, and quickens the risk of cancer of various organs including skin, kidney, 
liver, and bladder (Farmer and Johnson 1990; Alam et al. 2002).

On account of the above, therefore, the decontamination of As is the utmost pri-
ority to provide safe drinking water to the common people in affected areas. 
Scientists are continuously trying to develop practically feasible techniques to 
remove As from the aqueous phase. Recently, the focus has been to use easily avail-
able and low-cost biological materials or biosorbents. However, comprehensive lit-
erature useful to gain detailed knowledge about the adsorption characteristics of 
different biosorbents is not widely available. Therefore, the objective of the present 
review is to draw a brief account on the application of different biosorbents in treat-
ing As contaminated water along with the other conventional As removal 
techniques.

2  �Conventional Arsenic Removal Techniques

Prior discussion on As biosorption, a brief concept concerning some existing con-
ventional aqueous As removal techniques have been summarized herein. The con-
ventional technologies applied for As removal are mainly based on the process of 
coagulations, ion-exchange reactions, adsorption and reverse osmosis (DeMarco 
et al. 2003; Urík et al. 2009). Most of these As removing techniques are also capable 
of removing other undesirable compounds like color, odor, turbidity, bacteria, hard-
ness, phosphate, nitrate, fluoride, manganese, etc. (Johnston and Heijnen 2001; 
Singh 2007). Previously, the most common technique for As removal was coagula-
tion with metal salts or lime softening (Duarte et al. 2009). The permissible limit for 
As in drinking water was reduced to 10 μg/L, although the former limit of 50 μg/L 
has been retained in India, Pakistan, Bangladesh on the basis of treatment perfor-
mance and analytically achievability (WHO 2011). These methods were able to 
reduce As the level in drinking water close to the former WHO guideline of 

9  Biosorption of Arsenic: An Emerging Eco-technology of Arsenic Detoxification…



210

50 μg/L. Therefore, various advanced technologies were introduced to remove As 
and reduce it to trace levels. Although these technologies are most effective in labo-
ratory or pilot studies, their large scale implementation is still not feasible especially 
in the developing countries (Nicomel et al. 2016).

2.1  �Oxidation

Oxidation process involves the conversion of soluble arsenite to arsenate (Table 9.1). 
Therefore, oxidation alone does not remove As; it requires some other techniques 
such as coagulation, adsorption, and ion exchange for completing the As decon-
tamination process (Johnston and Heijnen 2001). Arsenite can be directly oxidized 
by various chemical agents like atmospheric oxygen, hypochlorite, ozone, perman-
ganate, hydrogen peroxide, etc. Among them, oxidation of arsenite by oxygen is a 
very slow process to complete than the other chemicals (Ahmed 2001). However, 
consideration of interfering substances present in water is very important in the 
selection of proper oxidant as these substances greatly affect the oxidation process 
(Singh et al. 2015).

2.2  �Coagulation and Precipitation

Coagulation and precipitation are the most common methods used in As removal 
(Table 9.1). The positive charge on the coagulants neutralizes the negative charge 
present on the colloidal particles and flocculates it. Due to the inexpensive nature 
and relative ease of operation, iron and aluminum-based coagulants are mostly used 
(Andrianisa et al. 2008; Dadwal and Mishra 2017). Dissolved As is transformed into 
insoluble solid by the chemicals and later on processed for precipitation. In another 
way, soluble As species can be co-precipitated by incorporation into a metal hydrox-
ide (Mondal et al. 2013). The efficiency of different coagulants varies as a function 
of pH. In removing As, Al2(SO4)3 and FeCl3 found to be effective below the pH of 
7.6. Arsenate is more efficiently removed by coagulants compared to arsenite 
(Cheng et al. 1994; Garelick et al. 2005). The major disadvantage of this process is 
the production of As-contaminated sludge in large amounts. Sludge management is 
required to prevent the consequence of secondary pollutant (Singh et al. 2015).
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2.3  �Ion Exchange

Ion exchange is a commonly used water treatment process (Table 9.1). This includes 
a physical or chemical process where ions are held electrostatically on the surface 
of a solid phase and exchanged for ions of a similar charge in a solution (Table 9.1). 
It is a reversible interchange as there is no permanent change of structure of solid is 
noticed. The solids used here are typically a synthetic anion exchange resin. For 
removal of As, usually a chlorine loaded ion exchange resin is placed in the vessel 
(Chiban et  al. 2012). In this process, the presence of sulphate, competition with 
other anions, contact times, the presence of total dissolved solids are some impor-
tant factors in determining the efficiency of As treatment. Below pH 7, sulphates do 
not influence the As(V) sorption by ferrihydrite (Jackson and Miller 2000). 
Application of ion exchange in the removal of As is primarily limited to small to 
medium scale due to its higher treatment cost compared to other conventional treat-
ment technologies. This process is also less attractive due to its low As selectivity in 
the presence of other competing anions (Tsuji 2002).

2.4  �Membrane Filtration

Membrane filtration is a very useful high throughput process for treating water 
(Table 9.1). Membranes are composed of synthetic materials with pores which act 
as selective barriers. It does not allow some elements in water, such as microorgan-
isms, particulates, natural organic materials, to pass through (Shih 2005; Uddin 
et al. 2007). A driving force in terms of the pressure difference between the feed and 
the permeate side is required for the transformation of water through the membrane 
(Bruggen et al. 2003). There are two types of pressure oriented membrane filtra-
tions: low-pressure membrane processes, i.e. ultrafiltration and microfiltration, and 
high-pressure membrane processes, i.e. nanofiltration and reverse osmosis. 
Membranes having pore sizes between 0.1 and 10 μm are not sufficient to remove 
As (Shon et al. 2013). Therefore, coagulation and flocculation are required prior to 
membrane filtration. The pH of the water and the presence of other ions of water are 
the main factors determining the efficiency of this process. Arsenite is difficult to be 
removed by this process as it has neutral charge in the 4–10 pH range. In this pH 
range, arsenate is negatively charged and has the ability to bind with surface com-
plexion and resulting in high As removal. Therefore, complete oxidation of arsenite 
to arsenate is required to achieve high As removal efficiency (Shih 2005; Nicomel 
et al. 2016).
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2.5  �Sorption

Sorption is a mass transfer process in which a substance travels from an aqueous 
phase to a solid phase and brings itself to the solid phase by physical or chemical 
interactions(Table 9.1). In physical adsorption, Van der Waals forces are observed 
whereas in chemical adsorption no rearrangements of the ions are found. Most of 
the adsorbents are required to have a large surface area, and generally, they are 
extremely porous substances (Petersen et al. 2005). The efficiency of this technique 
depends on various factors such as contact time, pH, temperature, and chemical 
properties of adsorbate and adsorbent. Various types of activated carbons are suit-
able for adsorption, but due to their high cost they are not utilized in large-scale 
(Chiban et  al. 2012). Many low-cost adsorbents like zeolite, calcium peroxide 
nanoparticles, magnetite nanoparticles, chitosan beads, and other activated carbons 
are used as in the removal of As (Mohan and Pittman 2007; Jovanovic et al. 2011). 
Various studies showed that iron-based adsorption is very effective in As remedia-
tion. This is due to the high affinity between iron and inorganic arsenic (Gupta et al. 
2012). Iron, by acting as a sorbent, co-precipitant or by behaving as a reductant, can 
remove As from water (Mondal et al. 2013). Most commonly applied adsorbents are 
metal oxides, polymer resins and activated carbon. Although, in recent years, an 
intensive investigation has been going on for unconventional adsorbent materials, 
such as, biological materials and process residues, which have some unique advan-
tages compared to that of the conventional adsorbents (Islam et al. 2007).

3  �Arsenic Biosorption as Emerging Detoxification 
Technology

3.1  �Biosorbent

Biosorption is a process by which one biological medium uptakes some substances 
(Fomina and Gadd 2014). It is also a well-known process for removing various met-
als from the aqueous phase. Heavy metal sorption by biological materials from 
water is done through metabolically mediated and/or physico-chemical pathways of 
uptake (Ahalya et al. 2003). It is a process which generally utilizes inexpensive dead 
biomass to sequester toxic heavy metals (Kratochvil and Volesky 1998). Biosorption 
is an effective tool in removing metal ions from contaminated solutions at very low 
cost and environment-friendly manner (Sulaymon et  al. 2013). Biosorption is 
mainly used to treat wastewater where more than one type of metal ions are present. 
The removal of one metal ion may be influenced by the presence of other metal ions 
in the treatment system.

Biosorption process utilizes natural materials such as agricultural wastes, micro-
organisms (bacteria, algae, fungi, etc.), fruits, and vegetables as biosorbents 
(Table  9.2). These biosorbents have a high potential for heavy metal(loid)s 
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decontamination in water, such as As removing bacteria (Bhakta et al. 2017). Metal 
adsorbent properties of these biosorbents are assigned to the presence of phosphate, 
sulfate, carboxylic, amino, amide and hydroxyl groups, which are commonly found 
in the cell wall (Veglio and Beolchini 1997). The efficiency of biosorption depends 
on the substrate and involves the processes of coordination, complexation, ion 
exchange, adsorption and inorganic micro precipitation (Volesky 1995). Several 
types of research use various kinds of biosorbents in treating As contaminated water 
(Table 9.2). For example—banana peel (Memon et al. 2008) and rice polish (Hasan 
et al. 2009) was employed to remove As(III and V). Sumalatha et al. (2017a), Irem 
et  al. (2017) and Nashine and Tembhurkar (2016) applied Turbinaria vulgaris, 
orange waste and coconut fiber as biosorbents of As. Chitosan prepared from shrimp 
shells showed good As removal efficiency (92.458 mg/g) (Jaafarzadeh et al. 2014). 
Recently, some other biosorbents, such as different fungal biomass (Gonzalez et al. 
2017), modified orange peel waste (Meng et al. 2017), lettuce flour (Vieira et al. 
2018), Cucumis pubescens peels (Gazi et al. 2018), soyabeen (Gaur et al. 2018), and 
watermelon rind (Shakoor et al. 2018), have also been effectively tested.

3.2  �Advantages of Biosorption

Several advantages of biosorption method, over the conventional methods, have 
been identified (Spinti et al. 1995; Ramachandra et al. 2005; Norton et al. 2004; 
Volesky 2007; Kumar and Oommen 2012; Nandal et  al. 2014; Agyapong et  al. 
2015), and are listed below:

	1.	 Cost effective: biosorbents are usually derived from abundant or waste materials 
which are readily available at a very low cost.

	2.	 Recyclable: biosorbents can be reused after the metal is recycled.
	3.	 Supplementation: no additional substances are required in biosorption 

process.
	4.	 Zero sludge generation: no secondary problems associated as there is no sludge 

generated in the biosorption process compared to other techniques.
	5.	 Competitive performance: biosorption is capable of high performance com-

pared to the other technique in an efficient and economical way.
	6.	 Short operational time: it is a very quick method; most of the biosorbents are 

capable of removing As in a short time.

3.3  �Factors Affecting the Biosorption of Arsenic

Biosorption of any metal depends on some important factors, such as temperature, 
pH, biomass dose, contact time and initial concentration of the metal, that influence 
the efficiency of the biosorption process. To achieve the optimum removal 
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condition, knowledge of these factors is very important, and thus, they are reviewed 
below in relation to As removal.

3.3.1  �Temperature

Temperature plays an important role in the biosorption process of As. However, 
there are different opinions obtained from different experiments on the influence of 
temperature in As biosorption process. Most of the biosorbents have optimum 
adsorbing capacity in the temperature range of 20–40 °C (Table 9.2). According to 
a review by Ahalya et al. (2003), no significant change is noticed in sorption effi-
ciency with an increase or decrease in temperature. In some cases, As biosorption is 
initially increased with increasing temperature, whereas at high temperature, the 
biosorption process may be slow down due to the breaking down of arsenic ions 
bond on the surface of the biosorbent (Khormaei et al. 2007). The sorption medium 
temperature is very important for energy-dependent mechanism in this process. 
Most of the experiments revealed that biosorption has been effective in nearly room 
temperature condition (Memon et al. 2008; Rodriguez et al. 2013; Haris et al. 2017)

3.3.2  �pH

The pH is the most important parameter in the biosorption process (Table 9.2) as it 
affects the solution chemistry of the metals, governs the activity of the functional 
groups in the biomass, and introduces the competition of metallic ions (Friss and 
Myers-Keth 1986; Galun et al. 1987). The optimum water pH for maximum removal 
of As may vary in different biosorbents (Table 9.2) since diverse biosorbents contain 
a wide range of biocomponents/biomolecules, which may regulate pH of the water 
solution.

The pH dependence of metal sorption was influenced by two factors: the distri-
bution of metal ions in the solution phase, and the overall charge of the sorbent 
(Srivastava et al. 2006; Kamsonlian et al. 2012). The chemical species of As and pH 
of solvent are important in removing As from water. Arsenic exists in both monova-
lent and divalent anionic species in the pH range of 2–9. The As(III) removal is 
favourable in the pH ranged from 6 to 9, whereas pH ranged from 2 to 6 is suitable 
for As(V) removal (Budinova et al. 2009). The positively charged groups of amino 
acids of the biosorbents can hold the negatively charged monovalent As species 
(Nigam et al. 2013). An intensive study, considering the various types of biosor-
bents and their favourable pH for maximum removal of As from water, should be 
conducted to identify the best biosorbents for As removal.
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3.3.3  �Biomass Dose

Biomass dose is another important factor in As removal process of biosorbent. The 
optimum dose of various biomass for maximum removal of As is different in 
(Table  9.2). For lower values of biomass concentrations, the specific uptake or 
uptake capacity per biomass is higher because more pores and surface area are 
exposed to available metals; with an increase in the biomass dose, the total removal 
of As increases (Kamsonlian et al. 2012), which is attributed to the increased per-
centage of surface area and the availability of more functional biosorption sites 
(Rajeswari and Agrawal 2014). However, after a certain dose, there will be no sig-
nificant increase in As removal because overlapping biomass hinders availability of 
active biosorption sites. In fact, it is a common phenomenon that metal uptake 
capacity is inversely correlated with increasing biosorbent beyond a certain optimal 
dosage. Therefore, beyond the optimum dosage, a drop in removal capacity is 
noticed due to the saturation of pores at the surface of the biosorbent (Sumathi and 
Alagumuthu 2014). Depending upon the initial metal concentration, the biosorbant 
dose may vary from 0.1 to 40 mg/L (Mamisahebei et al. 2007; Kamsonlian et al. 
2013).

3.3.4  �Contact Time

The time of contact between adsorbent and metal ions has significant importance in 
the treatment of metals contaminated water. The contact time for optimum removal 
of As is varied with various biosorbents, because various biosorbents have different 
types of biomolecules for binding As (Table 9.2). During the initial stage, a rapid As 
uptake can occur. However, the uptake capacity became slow and stabilized after a 
specific period of time when equilibrium is achieved. This happens due to the accu-
mulation of As species and saturation of filled active sites (Borah et al. 2009). The 
variation of contact time has been observed in different studies. The equilibrium can 
be achieved as fast as in 15 min (Baig et al. 2010; Khaskheli et al. 2014). In most of 
the earlier works contact time of 1 h was enough to achieve maximum adsorption. 
In some cases, the process takes a long time of 24 h depending on the saturation 
capacity of the biosorbents (Godboley and Dhoble 2011; Rodriguez et al. 2013).

3.3.5  �Initial Arsenic Concentration

The initial concentration of As in solution is one of the most important factors influ-
encing the sorption process of biosorbent. The maximum sorption capacity may 
vary in different biosorbents under specific initial As concentration (Table  9.2). 
Arsenic sorption efficiency is usually high at higher As concentrations due to the 
presence of an adequate number of As ions in highly concentrated solutions. (Mehta 
and Gaur 2001; Godboley and Dhoble 2011; Saqib et al. 2013). So far, a wide series 
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of initial As concentration ranging from 100 μg/L to 800 mg/L has been effectively 
tested (Mumtazuddin and Azad 2012, Murugan and Subramanian 2004).

3.4  �Biosorption Mechanism

Biosorbent process involves a vast array of biomolecules. It is a difficult task to 
know which compounds and which mechanisms are exactly playing a crucial role in 
the binding and removal process of As in treating the As-contaminated water. The 
As removal of biosorbent is dependent on the constituents of biosorbents used along 
with various environmental factors. The main three processes—physical, chemical 
and biological are commonly involved in biosorption of all kinds of metal(loid)s. 
Biosorption of As by living plants occurs in two-stage processes, rapid and slow. 
However, plant materials adsorb As in three steps: surface adsorption either physi-
cal or chemical, diffusion of particles and fixation (Fig. 9.1). There are two types of 
biosorption mechanisms, metabolism-dependent, and metabolism-independent. 
Transportation across the cell membrane and intracellular precipitation and accu-
mulation are found in metabolism-dependent biosorption. In metabolism-
independent biosorption, the process involves precipitation, ion exchange, physical 
and chemical adsorption and complexation (Srivastava and Dwivedi 2016). 
Biosorption mechanisms are rapidly reversible and are not dependent on cell metab-
olism (Hoffman et al. 2004). It is also well known that various functional groups 
such as; COOH−, HN4

−, PO4
−, etc. are involved in the As binding process of biosor-

bents (Fig. 9.1) (Rana and Bhakta 2017).

Fig. 9.1  Arsenic removal 
mechanisms of biosorbents
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4  �Conclusions and Future Prospect

The current review explored literature and critically presented the As removing bio-
sorbents and biosorption process by comparing with conventional techniques for the 
treatment of As-contaminated water. Different types of biosorbents (biomass) for 
example—leaf, stem, root, and fruits of plants, vegetables, etc. and various aspects 
of biosorption techniques including advantages and limitations have been critically 
evaluated in the present work. It has been illustrated herein that biosorption process 
of As decontamination in water is significantly emerging area due to its cost-
effective and eco-friendly properties. Various influencing parameters for maximum 
As removal process of various types of biosorbents have been discussed, which 
indicates the need to identify the optimum conditions of important process param-
eters for different biosorbents. Study concerning the As binding biomolecules pres-
ent in biosorbent has not yet been performed. Therefore, it is not possible to explain 
the exact As removal mechanism of biosorbents. Thus, vigorous research to identify 
the most potential biosorbent from a vast array of natural bioresources having As 
affinity, optimization of its maximum As removing process parameters and elucida-
tion of biomolecule constituents driven As binding mechanisms is inevitable in this 
respect to find out a novel low-cost and eco-friendly practical solution for severe As 
contamination problem.

However, several studies have evident that some of the biosorbents, such as bio-
masses of a number of plants, Xanthoria parietina, Inonotus hispidus, Acacia nilot-
ica, Xanthoria parietina, Zea mays, Colpomenia sinuosa, Leucaena leucocephala, 
Citrus paradise, Sugarcane bagasse, orange peel, Turbinaria vulgaris and 
Sargassum glaucescens, etc. are genuinely capable of removing As in substantial 
quantities from contaminated water. These biosorbents are low cost easily available, 
therefore can be adopted by the arsenic affected/exposed communities especially in 
developing countries where alternative treatment technologies are durable to imple-
ment. Moreover, it can be concluded that the above-mentioned biosorbents based As 
sorption process could be employed as an economically and environmentally fea-
sible eco-technology for decontamination of As in water, and hence it has signifi-
cant prospects in this regard.
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Chapter 10
Assessing and Mapping Human Health 
Risks Due to Arsenic and Socioeconomic 
Correlates for Proactive Arsenic Mitigation

Sushant K. Singh and Robert W. Taylor

Abstract  This study provides an environmental management approach to a global 
public health challenge of groundwater arsenic contamination. The studied arsenic-
exposed population lives in three villages (Suarmarwa, Rampur Diara, and Bhawani 
Tola) within the Maner block of Patna district, in the middle-Ganga Plain in the 
Bihar state, India. The health risks due to the consumption of arsenic contaminated 
water were derived through quantifying the hazard quotient (HQ) and cancer risks 
followed by calculating the relative risks and odds ratio of visible arsenicosis and 
other diseases symptoms. A hotspots and coldspots map of the HQ was produced 
using Arc Geographic Information System for targeting the most vulnerable popula-
tion for arsenic mitigation. In the study area, the arsenic concentrations in drinking 
water exceeded the limits set by the World Health Organization and the Bureau of 
Indian Standards. The HQ and cancer risks for children in all the three villages were 
high and very high, respectively. However, the hotspots of HQ were confined to 
Bhawani Tola. Suarmarwa experienced relatively higher risks of arsenicosis and 
other health challenges because of the poor socioeconomic and demographic condi-
tions of the inhabitants. Therefore, since Suarmarwa is the most vulnerable village, 
it should be given priority in arsenic mitigation and health intervention programs. 
The HQ mapping could be an important decision-making tool for identifying the 
most vulnerable population for prioritizing arsenic mitigation and other health inter-
vention activities.
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1  �Introduction

Geogenic groundwater arsenic contamination, a major global public health chal-
lenge, affects nearly 300 million people in more than 100 countries (Murcott 2012; 
Chakraborti et al. 2016; Chakraborti et al. 2017b). The impacts of arsenic hazards 
on human health are aggravated by socioeconomic and demographic conditions of 
the population exposed (Curry et  al. 2000; Singh and Vedwan 2015). Usually, 
underprivileged inhabitants are the foremost victims and the most vulnerable to 
elevated levels of arsenic in drinking water and in the food materials (Curry et al. 
2000; Singh 2015a; Singh and Vedwan 2015). Among all the arsenic contaminated 
countries, India and Bangladesh have been reported to be the worst affected regions 
where over 100 million people are potentially at risk due to elevated levels of arse-
nic in groundwater (Singh 2015a; Chakraborti et al. 2016, 2017a; Singh and Stern 
2017).

The World Health Organization (WHO) has set the drinking water standard for 
arsenic at 10 μg/L, five times lower than the previous standard of 50 μg/L (WHO 
2011). Though this reduced level is recommended based on the socioeconomic con-
ditions of the exposed regions, most of the developing countries, including India 
and Bangladesh, still follow the older standard of 50  μg/L (WHO 2011; Singh 
2015a; Singh and Vedwan 2015). Considering the highly carcinogenic effects of 
arsenic on human beings, the United States Environmental Protection Agency 
(USEPA) has categorized arsenic as a group “A” human carcinogen (USEPA 1999; 
IRIS-USEPA 2015). Arsenicosis, a diseases caused by arsenic, may occur at various 
concentrations, depending on the duration of exposure, age, gender, nutrition level, 
and even on the genetic predisposition of the person (WHO 1981; Flanagan et al. 
2012; Singh et al. 2014; Quansah et al. 2015). Poor socioeconomic conditions and 
malnutrition significantly contribute to developing various arsenicosis symptoms 
(Flanagan et al. 2012; Quansah et al. 2015). Among all the age groups, children are 
the most vulnerable group and are at risk to the accumulation of heavy metals as 
they need more energy and water per body weight than adults (Schrey et al. 2000). 
At higher levels, arsenic can cause various immediate symptoms of acute arsenic 
poisoning such as vomiting, abdominal pain and diarrhea, followed by numbness 
and tingling of the extremities, muscle cramping and even death in extreme cases 
(Flanagan et al. 2012; Quansah et al. 2015). In addition, prolonged exposure to arse-
nic through drinking water and food can induce skin pigmentation, skin lesions, 
keratosis (hard patches on the palms and soles of the feet) and skin cancer (Flanagan 
et al. 2012; Quansah et al. 2015). Besides skin cancer, long-term exposure to ele-
vated levels of arsenic may also cause cancers of the bladder and lungs, develop-
mental defects, neurotoxicity, diabetes, pulmonary disease, and cardiovascular 
diseases including heart attack (Flanagan et  al. 2012; Quansah et  al. 2015; 
Chakraborti et al. 2017b). Adverse pregnancy outcomes, infant mortality, deleteri-
ous impacts on children’s cognitive development, cognitive impairment in adults, 
and even DNA damage have also been reported in arsenic contaminated areas 
(Flanagan et  al. 2012; Dutta et  al. 2015; Quansah et  al. 2015; Liu et  al. 2017; 
Chakraborti et al. 2017b).
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Deriving the Hazard Quotient (HQ) or Hazard Index (HI) of a chemical pollutant 
help estimating the potential for non-carcinogenic and carcinogenic health risks due 
to prolonged exposure to a particular contaminant, in this case, arsenic (IRIS-
USEPA 2015). Various studies have reported the HQ/HI assessment in the arsenic 
contaminated areas as a health risk assessment tool. For example, the HQ/HI values 
have been derived for the arsenic-exposed communities due to water (Singh and 
Ghosh 2012; Singh et al. 2014), food materials (Singh and Ghosh 2012; Singh et al. 
2014; Liang et al. 2016), and animal milk consumption (Kazi et al. 2016). All these 
studies report the HQ/HI values but lack in spatial modeling of the derived HQ/HI 
values. A recent study presented a composite vulnerability index and Geographic 
Information System (GIS)-based vulnerability maps for the arsenic contaminated 
areas and the communities living in those areas (Singh and Vedwan 2015). This map 
could be helpful for policy-makers to prioritize areas for arsenic-mitigation pro-
grams and predict the probability of success of an arsenic-mitigation policy in an 
area. Similarly, quantifying and mapping the HQ/HI and the cancer risks due to the 
consumption of arsenic contaminated water would help health professionals to pri-
oritize the at-risk areas, select communities for epidemiological studies, and for 
policymakers to prioritize arsenic mitigation policies. Health surveys in arsenic 
contaminated areas would help identify people exposed to elevated levels of arsenic, 
and those who are susceptible to other diseases, contributing to their overall vulner-
ability (Singh and Vedwan 2015).

In line of the above research gaps and insights, this study aims to (a) derive HQ 
and cancer risks due to arsenic exposure and develop a spatial HQ model; (b) con-
duct socioeconomic, demographic and health assessments in the surveyed villages; 
and (c) assess relationships between socioeconomic and demographic factors with 
arsenic-induced symptoms and other diseases.

2  �The Study Area-Bihar State of India

The study area, Bihar state of India, sits within the arsenic-contaminated region 
comprising the Bangladesh, Nepal, and the Indian states of West Bengal, Jharkhand, 
and Uttar Pradesh. The state still follows the WHO old standards, set in 1963, of 
50 μg/L of arsenic for drinking water (Yamamura 2001; Singh and Vedwan 2015). 
However, the Bureau of Indian Standards (BIS) has set an acceptable limit of 
10 μg/L of arsenic in treated drinking water (BIS 2012). Groundwater arsenic con-
tamination in Bihar was first detected in 2002 in the Bhojpur district (Chakraborti 
et al. 2003), followed by Patna, Vaishali, and Bhagalpur districts in 2004 (Ghosh 
et al. 2009), and has now been investigated and detected in more than 50% of the 
districts in the state (Singh et al. 2014). The remaining districts have either not been 
investigated, or studies from these districts are not yet reported in the mainstream 
scientific literature. There exists a wide spatial distribution of arsenic contamination 
in groundwater in the region with arsenic levels of greater than 1000 μg/L, 20 times 
higher than the BIS standards, in four major districts, all within 10 km of the River 
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Ganga (Ghosh et  al. 2009; Singh and Vedwan 2015). Approximately 12 million 
inhabitants have been reported as at-risk in the Bihar state (Singh et al. 2014; Singh 
2015a; Singh and Vedwan 2015). However, the total exposed population and the 
consequences of exposure are still unknown. Previous studies have addressed health 
impacts due to consuming arsenic-contaminated water and food (Chakraborti et al. 
2003; Singh 2011; Singh and Ghosh 2011, 2012; Singh et al. 2014). Only a few 
studies have addressed the demographic and socioeconomic conditions in the arse-
nic contaminated areas in the region (Singh and Ghosh 2012; Singh et al. 2014; 
Singh and Vedwan 2015). Moreover, household-level socioeconomic and demo-
graphic surveys in this region are limited (Singh 2015a). Easily interpretable pre-
sentation of results in statistical models or GIS maps for policy-makers is lacking 
(Singh and Vedwan 2015). Therefore, we conducted household-level socioeco-
nomic and demographic surveys in three villages, Suarmarwa, Rampur Diara, and 
Bhawani Tola, in the Maner block of Patna district of Bihar, India (Fig. 10.1). Maner 
block is one of the highly arsenic affected blocks in Bihar (SOES 2004; Singh 2011, 
2015a, b; Singh and Ghosh 2012; Chakraborti et al. 2016).

3  �Materials and Methods

3.1  �Water Samples Collection and Arsenic Testing

A detailed method of water samples collection and arsenic testing is described in 
Singh et al. (2016). In brief, groundwater samples were collected from 57 sources 
in Suarmarwa, 50 sources in Rampur Diara, and 50 sources in Bhawani Tola (total 
157). All the samples were analyzed using arsenic field test-kits (FTK) developed 
by the National Chemical Laboratory (NCL), Pune, India (Singh 2015a; Singh et al. 
2016). A detailed report on arsenic in the studied villages are presented elsewhere 
(Singh et al. 2016). In this study, the arsenic concentration data is used for deriving 
the HQ/HI and cancer risks.

3.2  �Health Risk Assessment

3.2.1  �HQ/HI and Cancer Risk Assessment Due to the Consumption 
of Arsenic

Arsenic-related cancer risks to children and adults in the study area and HQ values 
were calculated by applying the USEPA’s method (USEPA 1999). Applying this 
method to arsenic-affected communities requires arsenic concentration data, per 
capita consumption of water, the average body weight of children and adults, 
potency factor and the reference dose for arsenic (USEPA 1999; Singh and Ghosh 
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Fig. 10.1  The three study villages, Suarmarwa, Rampur Diara, and Bhawani Tola, in Maner block 
of Patna city, Bihar state India
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2012; Singh et al. 2014). General expressions of the equations used to derive cancer 
risk (Eqs. 10.1–10.3) and HQ (Eq. 10.4) are:

	
Average total dose As Ingestionratewatermg

L

day
( ) = ×









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(10.1)

where Aswater is the arsenic concentration in drinking water in units of mg/L.
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mg kg day
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(10.2)

where ATD is the average total dose from Eq. (10.1).

	 Cancer risk Chronic daily intake Potency factor= × 	 (10.3)

The potency factor or slope factor is defined as “the result of the application of a 
low-dose extrapolation procedure to estimate cancer health risk due to consumption 
of carcinogenic substance” by the USEPA’s Integrated Risk Information Systems 
(USEPA-IRIS) (USEPA 1999; IRIS-USEPA 2015). The potency factor or slope fac-
tor for arsenic through oral route is 1.5 and the unit is (mg/kg)/day (USEPA 1999; 
IRIS-USEPA 2015).

HazardQuotient HQ Chronic daily intake Referencedose for arse( ) = × nnic
	

(10.4)

The USEPA-IRIS derived oral reference dose of arsenic for health risk assessment 
and it is defined as “an estimate of a daily exposure to the human population, includ-
ing sensitive subgroups, that is likely to be without an appreciable risk of deleteri-
ous effects during a lifetime” (USEPA 1999; IRIS-USEPA 2015). The unit 
measurement of the reference dose is mg/kg body weight/day (IRIS-USEPA 2015).

3.2.2  �Socioeconomic, Demographic and Health Surveys

A detailed survey administration procedure is described in Singh (2015a). In brief, 
340 households, 111 in Suarmarwa, 119 in Rampur Diara, and 110 in Bhawani Tola, 
comprising about 2500 adults were surveyed using a random stratified sampling 
technique (Singh 2015a). The survey elicited information on population demo-
graphics, socioeconomic factors, water and sanitation status, and health status. 
Information on health status was noted based on observations, photographic docu-
mentation with the individuals’ consent, and symptoms reported by the respondents. 
Indicators of signs and symptoms of arsenicosis include persistent itching, skin pig-
mentation and cracking (WHO 1981). The respondents reported symptoms of 
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diseases other than arsenicosis and observable symptoms were recorded. However, 
no clinical investigations were performed to identify the underlying causes.

3.3  �Statistical Analysis

Survey data was recorded using Microsoft Excel spreadsheet version 2010 and then 
transferred into SPSS for statistical analysis (IBM 2012). A bivariate analysis was 
executed to derive correlations between the variables. Relative risks (RR) and odds 
ratio (OR) of arsenicosis and other diseases symptoms were derived for the sur-
veyed villages using the Risk Estimate tool in SPSS. Generic equations to calculate 
relative risks and odds ratio are presented below:

	
Relative Risks =

π
π

1

2 	
(10.5)

	

Odds Ratio =
−( )
−( )

π π
π π

1 1

2 2

1

1

/

/
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The RR is the ratio of probabilities of events will occur, event 1 (π1) vs. event 2 (π2) 
(Warner 2012; Agresti 2013). Odds of an event, in this case odds of arsenicosis or 
other diseases, are the probability that an event will occur to the probability it will 
not occur, and OR is the ratio of two odds of different events (π1 and π2) (Warner 
2012; Agresti 2013).

3.4  �GIS Mapping and Data Analysis

Arc Geographic Information Systems (ArcGIS) Desktop version 10.4.1 was used to 
create maps and for hotspot analysis (ESRI 2012). Geographic coordinates for 88 of 157 
water sources were collected using a RICOH Caplio 500 SE Global Positioning System 
(GPS) Enabled Digital Camera (Singh 2015a; Singh et al. 2016). However, because of 
poor satellite signals, we could not record the coordinates for 69 sources (Singh 2015a; 
Singh et al. 2016). So only 88 water samples were used for all GIS mapping and analy-
sis. Other information such as arsenic concentration and elevation of the water sources 
was entered into the attribute table. This data was used to generate a contoured surface 
of arsenic concentrations within the wells. The Hot Spot Analysis Tool in ArcGIS was 
used to create a map of statistically significant spatial clusters of “hotspots” (high val-
ues) and “coldspots” (low values). This tool uses the Getis-Ord Gi∗ statistic and pro-
duces z-scores and p-values. A positive z-score represents a hotspot and a negative 
z-score represents a coldspot (ESRI 2012). The p-values are the probability of obtaining 
the expected results at 90%, 95%, and 99% significance levels.
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4  �Results and Discussion

4.1  �Groundwater Arsenic Contamination in the Surveyed 
Villages

The NCL-FTK tested results for the groundwater samples revealed that 60% of the 
drinking water sources in Bhawani Tola had arsenic greater than the WHO limit of 
10 μg/L, followed by 34% in Rampur Diara and 32% in Suarmarwa (Table 10.1) 
(Singh et al. 2016).

Out of 157 groundwater samples, 22 samples, randomly collected from Rampur 
Diara and Bhawani Tola villages, were analyzed using Atomic Absorption 
Spectrophotometry. The maximum recorded arsenic concentration was 300 and 
250 μg/L in Rampur Diara and Bhawani Tola groundwater samples, respectively 
(Singh et al. 2016).

4.2  �Hazard Quotient and Cancer Risks Assessment 
and Mapping

The HQ/HI estimation revealed that the average HQ values in all the three villages 
were high at the HQ scale established by the USEPA, with the average highest value 
(37) in Bhawani Tola (Table 10.2). The calculated HQ values were greater for chil-
dren than adults in the three surveyed villages (Table 10.2), which is in line with the 
previous studies in the same geographical region (Singh and Ghosh 2012; Singh 
et al. 2014).

The very high cancer risk values for children and adults in the three studied vil-
lages indicate the vulnerability of the communities for developing cancer due to 
exposure to arsenic-contaminated water (Table 10.2). Out of 1000 inhabitants, 4 
children and 1 adult in Suarmarwa, 5 children and 2 adults in Rampur Diara, and 11 
children and 4 adults in Bhawani Tola could develop cancer with continued con-
sumption of arsenic-laced drinking water (Table  10.2) (Singh and Ghosh 2012; 
Singh et al. 2014). The higher HQ values suggest that the residents of the surveyed 

Table 10.1  Groundwater arsenic contamination in three villages in the Bihar state of India

Arsenic
Villages (Water sources)
Suarmarwa (57) (%) Rampur Diara (50) (%) Bhawani Tola (50) (%)

BDL 68 62 36
10 μg/L 0 4 4
11–50 μg/L 23 22 20
≥51 μg/L 9 12 40

BDL Below the detection limit of NCL-FTK
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villages might also experience more significant adverse but non-carcinogenic health 
issues (Table 10.2) (Singh and Ghosh 2012; Singh et al. 2014).

The hotspot analysis revealed that hotspots of HQ for adults were confined to 
Bhawani Tola (Fig. 10.2). There were no coldspots in Bhawani Tola. However, the 
coldspots in Rampur Diara and Suarmarwa were widely distributed (Fig. 10.2).

Sixty-five percent (65%) of the hotspots were statistically significant (GiP 
between <0.001 and 0.0665) and 46% coldspots were statistically significant in all 
cases (Fig. 10.2). The hotspots analysis produced approximately 15% places with 
GiZ score ranging between 0.0897 and 0.8103, which were statistically not signifi-
cant and more prevalent in Suarmarwa and Rampur Diara than Bhawani Tola 
(Fig. 10.2). The hotspots HQ map suggests that the adults in Bhawani Tola are sus-
ceptible to arsenic-induced cancers, and requires further investigation prior to 
implementing arsenic-mitigation interventions (Fig. 10.2).

4.3  �Socioeconomic and Demographic Characteristics 
of the Communities

Majority of the respondents in all the three surveyed villages were married male, 
older than 40  years (Fig.  10.3a–c). Respondents’ age (p  =  0.049) and gender 
(p < 0.001) across the three surveyed villages were significantly different. The par-
ticipation of women was the minimum in Rampur Diara village. Whereas the 

Table 10.2  Chronic risk and cancer risk due to arsenic-contaminated drinking water in three 
villages in the Bihar state of India

Name of 
village

HQ Chronic risk level 
(HQ): US EPA, 
1999a

Average Cancer 
risk/1000 inhabitants

Cancer risk: 
US EPA, 1999bMin Max Avg.

Suarmarwa 
(children)

0 90 13 High 4 Very high

Rampur Diara 
(children)

0 70 17 High 5 Very high

Bhawani Tola 
(children)

0 90 37 High 11 Very high

Suarmarwa 
(adults)

0 32 5 High 1 Very high

Rampur Diara 
(adults)

0 25 6 High 2 Very high

Bhawani Tola 
(adults)

0 32 13 High 4 Very high

aHQ/HI: <0.1 = Negligible; ≥0.1 < 1 = Low; ≥1 < 4 = Medium; and ≥4 = High
bCancer risk: <1 person/1000,000 inhabitants  =  Very low; >1 person/1000,000 and <1 per-
son/100,000 inhabitants = Low; >1 person/100,000 inhabitants and <1 person/10,000 inhabit-
ants = Medium; >1 person/10,000 and <1 person/1000 inhabitants = High; and >1 person/1000 
inhabitants = Very high
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participation of married individuals was highest in Bhawani Tola and significantly 
different (p  =  0.015) from the other two villages. The highest number of single 
respondents was in Rampur Diara. Respondents’ caste1 was also significantly dif-
ferent (<0.001) in the three surveyed villages. In Suarmarwa, backward caste (BC) 
(77%) was prevalent over the scheduled caste (SC) (33%) (Fig. 10.3d). However, in 
Rampur Diara and Bhawani Tola villages, the population was dominated by the 
forward caste (FC) over the backward caste and scheduled caste populations 
(Fig. 10.3d). The education level of respondents in the three villages was catego-
rized into four as illiterate, primary education, secondary education or college edu-
cation. Fifty percent of the respondents from the Suarmarwa village were illiterate 
(people who cannot read or write), 41% of the respondents had primary education, 
and 9% of the respondents had secondary-level or college education (Fig. 10.3e). 
The respondents of Rampur Diara and Bhawani Tola villages had similar patterns in 
education level, with most respondents having a primary education, followed by a 

1 The caste system is a rigid social hierarchy in Hinduism, introduced by Manu more than 
1000 years BC, where the forward castes (upper caste) are at the top, followed by the backward 
castes, and scheduled castes and tribes at the bottom of the social stratification.

Fig. 10.2  Hotspots of HQ with GiZ and GiP values for Adults in three surveyed villages 
(Suarmarwa, Rampur Diara, and Bhawani Tola) in the Bihar state of India. (GiZ represents the 
standard deviation, i.e. z-score of the spatially clustered hotspots, or coldspots and p values repre-
sent significance levels)
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Fig. 10.3  Socioeconomic and demographic characteristics of the communities surveyed in three 
villages (Suarmarwa, Rampur Diara, and Bhawani Tola) in the Bihar state of India (a–j). (a) Age 
group of the respondents; (b) Gender of the respondents; (c) Marital status of the respondents; (d) 
Caste of the respondents; (e) Education level of the respondents; (f) Household size; (g) Occupation 
of the respondents; (h) Income group of the respondents; (i) Housing structure of the respondents; 
(j) Agricultural landholdings of the respondents
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secondary and a college education. Only 11% and 15% population in Rampur Diara 
and Bhawani Tola, respectively, were illiterate (Fig. 10.3e). The literacy was also 
significantly different (p < 0.001) across the three surveyed villages.

The average family size in the study area was six people per household 
(Fig. 10.3f), which is higher than the average household size of the state (5.5 per 
household) and the country (4.8 per household) (Census-India 2011). The occupa-
tion of the respondents across the three surveyed villages was significantly different 
(p < 0.001). The majority of the population of Suarmarwa village was unemployed, 
or they worked as daily wage laborers (Fig. 10.3g). In Rampur Diara and Bhawani 
Tola village, the majority of the respondents were involved in agricultural activities, 
running a business for their livelihood, or employed in some other job (Fig. 10.3g). 
Suarmarwa had the highest population (27%) below the poverty line (BPL) 
(Fig. 10.3h). In all the three villages the majority of the population was just above 
the poverty line (APL), with income ranging in rupees (Rs.) between Rs.500 (~$9) 
and Rs.10,000 (~$170) per month (Fig. 10.3h). The gross monthly income across 
the three surveyed villages was significantly different (p < 0.001).

Bhawani Tola had the highest population (74%) living in poorer housing struc-
tures (thatched roof and straw made roof houses), followed by Suarmarwa village 
(48%) (Fig. 10.3i). Suarmarwa, which is dominated by the lower caste group, has a 
52% population with agricultural landholdings. Rampur Diara and Bhawani Tola 
had 34% and 45%, respectively, of their populations with agricultural landholdings 
(Fig. 10.3j). Housing structures and the agricultural landholdings were also signifi-
cantly different (p = 0.001 and 0.024) across the three surveyed villages. This fur-
ther indicates that having or not having agricultural land could be a better indicator 
of vulnerable communities in those areas where the majority of the population 
belongs to backward and scheduled castes.

Fig. 10.3  (continued)
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4.4  �Health Surveys

4.4.1  �Arsenicosis

The occurrence of arsenicosis symptoms in the three surveyed villages was signifi-
cantly different (p = 0.039) with the highest (10.8%) in Suarmarwa, followed by 
Rampur Diara (5.2%) and the lowest in Bhawani Tola (2.7%). The RR of arsenico-
sis was 2 times more likely to occur in Suarmarwa than Rampur Diara (p = 0.095), 
and 4 times in Suarmarwa than in Bhawani Tola (p = 0.015) (Table 10.3). The likeli-
hood of occurrence of arsenicosis in Rampur Diara was 1.9 times greater than in 
Bhawani Tola (p = 0.272) (Table 10.3).

Although we found higher arsenic levels in Bhawani Tola (Table 10.1), the lower 
occurrence of arsenicosis symptoms in this village could be because of healthier 
food consumption by the higher income residents of this village. The other possibil-
ity could be that the residents use deep boring tube wells for drinking purposes, 
which are arsenic-free in most cases. Moreover, comparatively higher income in 
Bhawani Tola supports this hypothesis that with higher income people tend to eat 
better and nutritious foods and can afford installing expensive deep boring tube 
wells (Fig. 10.4h).

Based on the cross-tabs analysis, it appeared that except for agricultural land-
holdings, the cases of arsenicosis were not different when compared across the 
other socioeconomic factors (Fig. 10.4a–o). Males reported to have more arsenico-
sis symptoms than females (Fig. 10.4a) as testified in other studies (Ahmad et al. 
1999; Hadi and Parveen 2004). We hypothesize that males are more at risk of 
arsenicosis than females because they tend to spend more time outside their house 
and drink water from arsenic contaminated sources in the villages. Individuals of 
age group 29–39 years had more arsenicosis symptoms followed by the individuals 
of the age group of 18–28 years and older than 62 years, which is in line with a simi-
lar finding in Bangladesh (Hadi and Parveen 2004).

Married people showed more arsenicosis symptoms than single individuals 
(Fig.  10.4c). Scheduled caste individuals were found to have more arsenicosis 
symptoms than BC and FC respondents (Fig. 10.4d). Illiterate and the individuals 
with only primary education were found to have arsenicosis symptoms than the 
respondents who had a secondary level or a college education (Fig. 10.4e). Similar 
findings were reported in another study (Hadi and Parveen 2004). Households with 

Table 10.3  Relative risks (RR) of arsenicosis and Odds ratio (OR) in three surveyed villages 
(Suarmarwa, Rampur Diara, and Bhawani Tola) in the Bihar state of India

Relative risks (RR) and 
odds ratio (OR)

Suarmarwa vs. 
Rampur Diara

Suarmarwa vs. 
Bhawani Tola

Rampur Diara vs. 
Bhawani Tola

RR of arsenicosis
(95% CI)

2.072
(0.806–5.329)

3.964
(1.150–13.662)a

1.913
(0.490–7.461)

OR of arsenicosis
(95% CI)

0.454
(0.164–1.256)

0.231
(0.063–0.844)a

0.509
(0.124–2.089)

aSignificant at α = 0.05

10  Assessing and Mapping Human Health Risks Due to Arsenic and Socioeconomic…



Fig. 10.4  Socioeconomic and demographic characteristics, lifestyle and risk of arsenicosis of com-
munities in three villages (Suarmarwa, Rampur Diara, and Bhawani Tola) in the Bihar state of India 
(a–o). (a) Gender and arsenicosis; (b) Age group and arsenicosis; (c) Marital status and arsenicosis; 
(d) Caste and arsenicosis; (e) Education and arsenicosis; (f) Household size and arsenicosis; (g) 
Employment and arsenicosis; (h) Income group and arsenicosis; (i) Agricultural landholdings and 
arsenicosis; (j) Housing status and arsenicosis; (k) Distance to water source and arsenicosis; (l) 
Time spent to collect water and arsenicosis; (m) Places for defecation and arsenicosis; (n) Materials 
used for hand washing after defecation and arsenicosis; (o) Arsenic awareness and arsenicosis
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Fig. 10.4  (continued)
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an average family size of 5–10 people showed more arsenicosis symptoms than 
households with less than five members in a family (Fig. 10.4f). Arsenicosis symp-
toms were almost similar among the entire employment category (Fig.  10.4g). 
Collectively, BPL and lower APL had the highest arsenicosis symptoms, however 
not significantly different across the income group (Fig. 10.4h). Other study has 
also reported that arsenicosis is more prevalent among the low-income group (Hadi 
and Parveen 2004). Arsenicosis symptoms were more prevalent among the indi-
viduals living in the thatched roof or Kachcha house2 (Fig. 10.4j). People who trav-
eled less and spent less time to collect water had more arsenicosis symptoms 
(Fig. 10.4k, l). A bivariate analysis was performed to see whether socioeconomic-
demographic variables (age, income, caste, housing status) and sanitation habits 
(place for defecation and materials used to wash hands after defecation) are corre-
lated with the occurrence of arsenicosis symptoms in the villages. Only sanitation 
habits (place for defecation) was inversely correlated with arsenicosis symptoms 
(R2 = −0.125). It further explains that the inhabitants who use a toilet for defecation 
were less likely to have arsenicosis symptoms than the inhabitants who defecate in 
open fields. It is vital mentioning here that most of the arsenic affected communities 
in India and in Bangladesh live in a very unhygienic environment and have the least 
access to clean water, sanitation and hygiene facilities. Likewise, the individuals 
who use soil to wash their hands after the defecation had arsenicosis symptoms than 
who use soap or ashes (Fig. 10.4m, n). Incidence of arsenicosis was higher among 
respondents with no awareness or low awareness than respondents with arsenic 
awareness (Fig. 10.4o). A detailed report on arsenic awareness in the study can be 
found elsewhere (Singh et al. 2018).

While evaluating the expenses on the arsenicosis treatment, we found that only 
nine people in Suarmarwa, four in Rampur Diara, and three in Bhawani Tola spend 
up to Rs.1000 per month. Three people from Suarmarwa reported that they spend 
over Rs.1000 on arsenicosis treatment. The expenses on arsenicosis treatment across 
the three villages were significantly different from each other (p = 0.033).

Although a direct link between arsenicosis signs and symptoms and the con-
sumption of arsenic contaminated water can only be established by epidemiological 
studies, we discovered a higher incidence of skin discoloration (both black and 
white patches) (Figs. 10.5, 10.6, 10.7), cracked skin (Fig. 10.8), fragile and discol-
ored nails (Fig. 10.9), and persistent itching among inhabitants who were drinking 
water contaminated with 40–70 μg/L of arsenic.

4.4.2  �Health Issues Reported by Respondents in the Study Area

Suarmarwa scored the highest population (70%) with symptoms of various dis-
eases, followed by Rampur Diara (24%) and Bhawani Tola (13%) (Table 10.4). The 
Chi-Square test indicates that the occurrence of other symptoms among the three 
surveyed villages was different (p < 0.001). A list of other symptoms and diseases 

2 Kachcha houses are the houses with temporary roofs made with cemented floor and/or wall.
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Fig. 10.6  Persistent white 
patches on the ankle of a 
10-year-old girl in Rampur 
Diara village, Bihar state 
of India. (Photograph by 
Sushant Singh, 2013)

Fig. 10.7  Persistent white 
patches on the back of a 
15-year-old boy in Rampur 
Diara village, Bihar state 
of India. (Photograph by 
Sushant Singh, 2013)

Fig. 10.5  Skin 
discoloration (white 
patches) on hands (both 
sides) and feet of an 
elderly woman in Rampur 
Diara village, Bihar state 
of India. (Photograph by 
Sushant Singh, 2013)
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Fig. 10.8  Persistent white 
lines at the bottom of the 
middle and ring fingers of 
a 14-year-old girl in 
Rampur Diara village, 
Bihar state of India. 
(Photograph by Sushant 
Singh, 2013)

Fig. 10.9  Fragile 
fingernails with black spots 
on a 25-year-old woman in 
Rampur Diara village, 
Bihar state of India. 
(Photograph by Sushant 
Singh, 2013)

is presented in Table 10.4. These are self-reported diseases symptoms, which we 
verified by observing the victims. However, we performed no clinical tests.

The RR of other disease symptoms was 3 times and 5.5 times more likely to 
occur in Suarmarwa than in Rampur Diara (p < 0.001) and Bhawani Tola (p < 0.001), 
respectively (Table 10.5). And the likelihood of occurrence of other disease symp-
toms in Rampur Diara was 1.8 times greater than in Bhawani Tola (p  =  0.027) 
(Table 10.5).

In contrast to arsenicosis related symptoms, the chi-square test revealed that the 
symptoms for other diseases were higher in male than in female respondents 
(Fig. 10.10a). Individuals of age above 51 years had more non-arsenicosis symptoms 
than the younger respondents (Fig. 10.10b). Unmarried individuals had more non-
arsenicosis symptoms than married individuals (Fig. 10.10c). Among the three caste 
group, a higher number of individuals in the SC and BC than in the FC had health 
issues; in addition, the number of individuals with health issues between the three 
castes was significantly different (p  <  0.000) (Fig.  10.10d). Like arsenicosis, the 
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Table 10.4  A village wise list of health issues reported by respondents in three villages 
(Suarmarwa, Rampur Diara, and Bhawani Tola) in the Bihar state of India

Sl. No. Diseases Suarmarwa Rampur Diara Bhawani Tola

1 Stomach problem 11 2 2
2 Wound 3 0 0
3 Uterus problem 1 0 0
4 Body itching 9 4 3
5 Asthma 5 1 1
6 Cold 15 1 0
7 Fever 21 4 1
8 Pregnancy related problems 4 0 0
9 Sciatica 4 1 0
10 Skin disease 5 2 0
11 Hemorrhoids (Piles) 4 0 1
12 Pain in hands 1 1 0
13 Headache 3 2 1
14 Ear problem 1 0 0
15 Pneumonia 3 2 0
16 Intestine problem 1 0 0
17 Chest pain 4 1 0
18 Filaria 2 0 0
19 Dental problems 3 0 0
20 Jaundice 3 1 0
21 Diarrhea 2 0 0
22 Hydrocele 1 0 0
23 Sterilization 1 0 0
24 Appendicitis 2 0 0
25 Typhoid 2 1 0
26 Handicap 4 1 1
27 Atopic dermatitis (Eczema) 3 0 1
28 Body aches 1 1 0
29 Cracked heels 1 0 0
30 Eye problems 1 0 0
31 Tuberculosis 2 2 0
32 Cancer 1 0 0
33 Dysentery 1 0 0
34 Pain in legs 3 0 3
35 Tumors on body 1 1 0
36 Leg fracture 0 0 0
37 Gastric problem 1 0 0
38 Hernia 1 0 0
39 Hemophilia 0 1 0
40 Throat problem 0 1 0
41 Back pain 0 3 1

(continued)
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Table 10.4  (continued)

Sl. No. Diseases Suarmarwa Rampur Diara Bhawani Tola

42 Diabetes 0 2 3
43 Sickness 0 1 0
44 Thyroid 0 1 0
45 White patches on the body 0 2 0
46 Paralysis 0 3 0
47 Blood impurity 0 0 1

Table 10.5  Relative other diseases risks and Odds ratio in three villages (Suarmarwa, Rampur 
Diara, and Bhawani Tola) in the Bihar state of India

Relative risks (RR) and 
odds ratio (OR)

Suarmarwa vs. 
Rampur Diara

Suarmarwa vs. 
Bhawani Tola

Rampur Diara vs. 
Bhawani Tola

RR of other diseases
(95% CI)

2.993
(2.106–4.253)a

5.521
(3.335–9.140)a

1.845
(1.022–3.3329)b

OR of other diseases
(95% CI)

0.130
(0.072–0.235)a

0.062
(0.031–0.123)a

0.475
(0.234–0.964)b

aSignificant at α = 0.01
bSignificant at α = 0.05

symptoms of non-arsenicosis diseases were more prevalent among illiterate, or peo-
ple with minimal education and they were significantly different from each other 
(p < 0.000) (Fig. 10.10e). The incidences of symptoms of non-arsenicosis diseases 
across the household size were similar to the incidence of arsenicosis related symp-
toms (Fig. 10.10f). It was evident that more people with no employment or who were 
manual workers including farming reported more health issues than people employed 
in jobs that require higher education, and the difference was statistically significant 
(p  =  0.0041) (Fig.  10.10g). The BPL and the LAPL individuals had more non-
arsenicosis symptoms than the UAPL, but the difference between the income groups 
was not statistically significant (Fig. 10.10h). Although the frequency of symptoms 
of diseases unrelated to arsenic toxicity was higher among individuals with landhold-
ings, it was not significantly different from individuals with no landholdings 
(p = 0.182) (Fig. 10.10i). The non-arsenicosis symptoms across the housing struc-
tures were significantly different (p = 0.0074) with the highest symptoms in straw 
made roofed houses followed by a thatched roof, Kachcha, and pucca houses3 
(Fig. 10.10j). The individuals who traveled more than 50 m and spent greater than 
10 minutes to collect water suffer from non-arsenicosis health issues more than those 
who have easy access to water sources and the difference was statistically significant 
(p < 0.000) (Fig. 10.10k, l). The individuals with poor sanitation facilities or habits 
suffer from diseases unrelated to arsenicosis more than those who use the toilet for 
defecation and wash their hands with soap or ash. The symptoms of non-arsenicosis 
diseases among individuals’ sanitation behaviors were significantly different 
(p < 0.00 and p = 0.002) (Fig. 10.10m, n). People who were less aware of arsenic 

3 Pucca houses are the houses with cemented flooring, walls, and roof.
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Fig. 10.10  Socioeconomic and demographic characteristics and non-arsenic related diseases of 
communities in three villages (Suarmarwa, Rampur Diara, and Bhawani Tola) in the Bihar state of 
India (a–o). (a) Gender and other diseases; (b) Age group and other diseases; (c) Marital status and 
other diseases; (d) Age group and other diseases; (e) Education and other diseases; (f) Household 
Fig. 10.10  (continued) size and other diseases; (g) Employment and other diseases; (h) Income 
group and other diseases; (i) Agricultural landholdings and other diseases; (j) Housing status and 
other diseases; (k) Distance to water source and other diseases; (l) Arsenic awareness and other 
diseases; (m) Places for defecation and other diseases; (n) Materials used for hand washing after 
defecation other diseases; (o) Arsenic awareness and other diseases
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Fig. 10.10  (continued)
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found to be more affected by non-arsenic related diseases, and the difference was 
statistically significant across the awareness levels (p = 0.019) (Fig. 10.10o).

We also observed that up to seven households in Rampur Diara village relied on 
dirty water from an unhygienic open dug well infested with insects. The households 
filter the water through cotton cloths prior to using for drinking and cooking pur-
poses. The households using this dirty water are exposed to water-borne diseases 
that cannot be avoided by filtering through cotton cloths. For example, we found a 
10-month-old child with persistent rashes and black patches on the backside of his 
leg, which the parents report started at 3 months (Fig. 10.11).

We suspect that there are other similar hidden pockets of households living under 
extremely unhygienic conditions with no alternative options for potable water 
sources. Being marginalized communities, they consider themselves an ‘isolated 
community’ with a world-view of an ‘isolate.’ The communities live in an uncertain 
world dominated by environmental issues and social instability and accept whatever 
they experience as their destiny or their bad luck (Douglas and Wildavsky 1983).

The incidence of non-arsenicosis symptoms in the communities are inversely cor-
related with Caste (R2 = −0.190, p < 0.01), occupation (R2 = −0.183, p < 0.01), hous-
ing status (R2 = −0.187, p < 0.01), place for defecation (R2 = −0.217, p < 0.01), and 
materials used to wash hands after defecation (R2 = −0.172, p < 0.01), and positively 
correlated with age group (R2  =  0.134, p  <  0.05). That the results indicate older 
inhabitants have a greater likelihood of experiencing non-arsenic related diseases.

While evaluating the medical expenses for non-arsenic related diseases, we found 
that nearly 36% of the surveyed population spend money, and 27% of them spend 
over Rs.5000 (~$90). Among the three villages, Suarmarwa has the highest popula-
tion (78 of 336 individual/households) spending on treatments for non-arsenic related 
diseases and the spending was significantly different (p < 0.000) across the surveyed 
villages. Expenses for the treatment of arsenicosis and other diseases were signifi-
cantly different among the respondents across the three villages; they were higher in 
Suarmarwa than in Rampur Diara and Bhawani Tola villages.

Fig. 10.11  Persistent 
black rashes and patches 
on the backside of the leg 
of a 10-month-old child in 
Rampur Diara village, 
Bihar state of India. 
(Photograph by Sushant 
Singh, 2013)
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5  �Conclusion

The three surveyed villages, Suarmarwa, Rampur Diara and Bhawani Tola, in the 
Bihar state of India witness moderate to high levels of arsenic contamination in their 
drinking water sources that put the exposed communities at high cancer risk. The 
arsenic-exposed communities could develop cancer and non-carcinogenic symp-
toms if they continue consuming the arsenic contaminated water. Symptoms known 
to be associated with arsenicosis were documented in the three surveyed villages, 
and it was higher in the Suarmarwa village because of the poor socioeconomic con-
ditions of the respondents in this village. It was evident that not having agricultural 
landholdings could be a better indicator of vulnerable communities in those villages 
where the majority of the population belongs to backward and scheduled castes. 
The HQ hotspots were confined in the Bhawani Tola village and needed immediate 
investigations of the health status of the communities in this village for arsenic miti-
gation interventions. Various health symptoms that might be linked to arsenic expo-
sure such as skin and eye problems, pregnancy-related including sterilization, 
cancer, and diabetes were also identified in the surveyed villages and further clinical 
investigation is needed to confirm if they are due to arsenic toxicity. Poor sanitation 
and hygiene practices may increase the incidence of arsenicosis. Therefore, proper 
sanitation and hygiene practices should be encouraged in the arsenic-affected areas. 
Elderly people and lower caste groups are also more susceptible to non-arsenicosis 
health problems. Arsenicosis symptoms and symptoms of other diseases were more 
prevalent in Suarmarwa than in Rampur Diara and Bhawani Tola. The poor socio-
economic and demographic conditions of the communities in these villages make 
them vulnerable to arsenicosis and other diseases.

Arsenic-induced health issues are multidimensional challenges where the socio-
economic and demographic conditions play a vital role. Therefore, an in-depth epi-
demiological investigation is an urgent necessity, and health interventions should be 
designed by incorporating the communities’ socioeconomic and demographic char-
acteristics. Performing a cost-effectiveness analysis and developing socioeconomic 
models of arsenic mitigation would help in identifying the sustainable arsenic miti-
gation technologies in the target areas (Singh 2017a, b; Singh et al. 2017). HQ map-
ping can be useful for pre-planning such interventions and for targeting the most 
vulnerable communities. Arsenic-free water and nutritious food should be provided 
at a subsidized rate for the poor communities. Moreover, spreading arsenic aware-
ness (Singh et al. 2018) would be required and information technology tools (Singh 
2017b) can be used to cover a larger population in less time. This way, a healthy 
community in arsenic-risk society can be established.
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Arsenic-Contaminated Drinking Water 
and the Associated Health Effects 
in the Shahpur Block of Bihar: A Case 
Study From Five Villages
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Abstract  The current paper estimates the arsenic-contaminated drinking water and 
its associated effects on human health. The result is based on a primary survey of 
173 households from five arsenic contaminated villages from Shahpur block in the 
Bhojpur district from Bihar state, India. A field test kit was used to test the concen-
tration levels of arsenic in households’ drinking water. The results of the water tests 
revealed that more than 60% of the drinking water has excess arsenic concentration 
levels (more than 0.01 mg/L of WHO standards). The incidence rate due to arsenic-
osis (arsenic poisoning) was more among females than males. From the survey, it 
was also found that skin-lesions and other health issues due to arsenic induced-
problems were more acute among children and women compared to men. More 
than half of the respondents (51%) did not hear about arsenic poisoning, and around 
13.29% of the surveyed respondents know the serious health issues due to arsenic-
contaminated drinking water.
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1  �Introduction

Drinking contaminated water is one of the most direct routes of exposure to pollut-
ants in water. Naturally occurring metals such as arsenic, lead, nitrate, and fluoride 
contaminate groundwater (MoWR 2015). Arsenic in drinking water, and the associ-
ated health effects, is a major problem of global concern (Kapaj et al. 2006; Thakur 
et al. 2013; Chakraborti et al. 2017). Around 296 million people residing in more 
than 100 countries are suffering due to geogenic arsenic contamination of ground-
water (Chakraborti et al. 2018). If we consider the people in India, Bangladesh, and 
Pakistan altogether, more than 187 million inhabitants are exposed to excess arsenic 
in drinking water (Hossain et al. 2013; Chakraborti et al. 2018). Inorganic arsenic 
of geological origin is recognized as the main form of arsenic in groundwater 
(MoWR 2014). The extensive problem of arsenic contamination of groundwater 
prevails in Argentina, Bangladesh, Chile, China, India, Nepal, Pakistan, Taiwan, 
and parts of Latin American countries, parts of Eastern Europe and the United 
States of America (Ravenscroft et al. 2009; WHO 2012; Murcott 2012). The mean 
level of arsenic in the continental crusts is 1–2  mg/L and in indigenous rocks 
1.5–3  mg/L, whereas, in sedimentary rocks, it is in the range of 1.7–400  mg/L 
(MoWR 2010b). Volcanic action has arsenic-containing vapour which contributes 
about one-third of the natural source of arsenic, and two third comes from anthro-
pogenic sources (MoWR 2010a). Geogenic sources for arsenic occur through geo-
thermal or volcanic activities or through weathering of rocks and minerals (Smedley 
and Kinniburgh 2002). Biogenic sources of arsenic include plants and agricultural 
organisms or micro-aquatic biota, while anthropogenic sources of arsenic occur due 
to human activities (Smedley and Kinniburgh 2002).

The impact of arsenic poisoning is severe in many developing countries. India, 
Bangladesh, and Taiwan are among the most affected developing countries. Around 
60 districts of Bangladesh have more than 0.05 mg/L of arsenic in drinking water 
(which is higher than the recommended limit BIS Bangladesh), and the situation is 
devastating. More than 12 states from India reported arsenic in drinking water. The 
arsenic prone area is located in the flood-prone belt of Sone-Ganga interfluvial 
region and is mainly distributed in the river Ganga and Brahmaputra region (MoWR 
2014). Among those States, West Bengal, Bihar, Assam, and Uttar Pradesh are 
severely affected. Darbhanga, Purnea, and Kishanganj districts are exceptions 
because they are not affected by arsenic and are scattered and isolated places show-
ing no distinct root of connection to one another (MoWR 2015). A study by Central 
Ground Water Board (CGWB) in India identified that the districts lying in the area 
of Ganga and other tributaries originating from the Himalaya shifted over a period 
of time and became arsenic contaminated (MoWR 2014).

Bihar is rich in groundwater resources. In 2002, two villages (Barisban and 
Semaria Ojhapatti) of Bhojpur district of Bihar, in the middle Ganga plain, reported 
more than 0.05 mg/L arsenic contamination (Chakraborti et al. 2003). As of 2017, 
out of 38 districts of Bihar, more than 1600 habitations of 67 blocks from 15 dis-
tricts with a total population of more than ten million have been reported to have 
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arsenic groundwater contamination above 0.05 mg/L (MoWR 2010a, b; Thakur and 
Gupta 2016). Ghosh et  al. (2007, 2012) pointed out the spreading of arsenic in 
drinking water and estimated that in 2011, 18 districts had arsenic more than 
0.05  mg/L, and around 24% of the population was directly consuming drinking 
water with an arsenic level higher than 0.01 mg/L. Saha (2009) in his study found 
that the southern bank of the river Ganga is more arsenic prone than the northern 
bank of river Ganga and affected more than 40% of the Bihar’s population. It is 
estimated that more than 13.85 million people out of around 50 million total popula-
tion in the area could be under the threat of arsenic contamination above 0.01 mg/L, 
and out of those at risk, for 6.96 million people the level of arsenic could be above 
0.05 mg/L (Thakur and Gupta 2016).

High arsenic in drinking water over the long run has been associated with many 
diseases such as skin lesions (Argos et al. 2011; Pierce et al. 2011) and arsenicosis. 
Human health and arsenic-induced diseases in Bihar and West Bengal are raising 
public health concern in India, where 30 million people living in the area are poten-
tially at risk of health problems (Hossain et al. 2013) and more than 100 million 
people are affected in India and Bangladesh as per World Health Organization 
(WHO) guidelines of a limit of 0.01 mg/L in drinking water (Hossain et al. 2013; 
Chakraborti et  al. 2009, 2010). Previous research indicates that over ten million 
people in northern Bihar Gangetic plane are drinking water containing arsenic more 
than 0.01 mg/L (Thakur and Gupta 2014). High level of arsenic in drinking water 
over prolonged period has also been associated with skin lesions (Ahsan et al. 2006; 
Chakraborti et al. 2003; Argos et al. 2011; Pierce et al. 2011; Lindberg et al. 2008), 
Melanosis and hyperkeratosis (Guha Mazumdar 2003, 2008), reproductive effects 
(Hopenhayn et al. 2003a, b), cardiovascular disease (Chen et al. 2013; Wu et al. 
2012) and diabetes (Pan et al. 2013). Besides various health effects, arsenic con-
taminated water also leads to economic costs such as medical cost, loss of wage, and 
reduction in productivity and efficiency of the affected people (Roy 2008; Khan 
et al. 2014; Pitt et al. 2015; Mahanta et al. 2016).

With the above-given background, this chapter examines the arsenic-contaminated 
drinking water and the associated health effects on the inhabitants drinking the 
arsenic-containing water in the region of Bihar. Following the introduction, the 
chapter is organized in the following way. Section 2 deals with the literature on 
arsenic-induced health effects due to arsenic in drinking water globally. Section 3 is 
on the methodology used in the chapter. Section 4 presents results and discussions. 
Section 5 concludes the findings.

2  �Literature Review

Arsenic in drinking water and the associated health effects have been extensively 
researched in both developed and developing countries. Various studies examined 
the relationship between arsenic concentration in drinking water and its associated 
impact on human health (Canter 1997; Smith et  al. 2000; Rahman et  al. 2006; 
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Santra et  al. 2013). The literature mainly discussed on issues such as technical 
(Smedley and Kinniburgh 2002; Saha et al. 2007; Amanambu and Egbinola 2015), 
mitigation and adaptation issues (MoWR 2010b; Gani and Scrimgeour 2014; 
MoWR 2015; Singh et al. 2016 b, 2017, 2018), food chain contamination (Brammer 
and Ravenscroft 2009; Bhattacharya et al. 2012; Huq et al. 2006; Santra et al. 2013; 
Jackson et al. 2012), health and economic cost (Ahmad et al. 2005; Pitt et al. 2015; 
Roy 2008; Maddison et al. 2005; Mahanta et al. 2016), and health impacts (Smith 
et al. 2000; Argos et al. 2011; James et al. 2015; Chakraborti et al. 2016a, 2017, 
2018).

The positive association between arsenic in drinking water and cancer has been 
established by many researchers (Smith et  al. 2000; Morales et  al. 2000; Heck 
et al. 2009; Pan et al. 2013). If high concentrations of arsenic in drinking water 
continue for more years, arsenic gangrene and cancer are likely to appear (Clarke 
2001; Rahman et al. 2005; Chakraborti et al. 2010, 2015). The clinical manifesta-
tion of arsenic also includes different forms of cancer such as skin cancer (Luster 
and Simeonova 2004; Rossman et al. 2004; Col et al. 1999; Guo et al. 1998), blad-
der cancer (Morales et al. 2000; Steinmaus et al. 2003; Bates et al. 2004), lung 
cancer (Hopenhayn-Rich et al. 1998; Chen et al. 2004; Chiu et al. 2004; Xia and 
Liu 2004; Wu et al. 2004; Marshall et al. 2007; Heck et al. 2009), as well as other 
non-cancer forms (Ahmed et al. 2006; Guha Mazumdar 2003; Tseng et al. 2005; 
James et al. 2015).

Chakraborti et al. (2016a) studied the arsenic-induced health problems in the 
Shahpur block and found that the population is at higher risk. In their study in a 
rural population of Darbhanga district of Bihar, Abhinav et  al. (2016) found a 
strong correlation between arsenic level in groundwater and the arsenic in blood 
samples. Chakraborti et al. (2016b) studied arsenic-induced health problems in 
the Patna districts and found that cases of Arsenicosis and other skin lesions are 
increasing in the area. Singh and Ghosh (2011) reported the entry of arsenic into 
the food chain and its disturbance. Thakur and Gupta (2014) studied the arsenic in 
groundwater and its health effects in two blocks of Bihar and found that arsenic 
cases are more among children and women compared to men. Singh and Ghosh 
(2012) reported that children in the Maner block of Bihar are suffering due to 
arsenic in drinking water. Recently, chemical analysis of drinking water and 
health and vulnerability issues due to the consumption of arsenic-contaminated 
drinking water has been studied in Bihar (Singh et  al. 2014, 2016a; Singh and 
Choudhary 2011).

Geogenic contamination of arsenic is a threat to the population and hinders 
sustainable development. Mitigating arsenic health impacts through community 
level has been studied by Bhatia et al. (2016), while Bose et al. (2016) suggested 
the need for sustainable development through mitigation. Singh et al. (2017, 2018) 
developed sustainable arsenic mitigation technologies and prediction algorithms 
for arsenic mitigation in the middle Ganga plains of India. There is a need for more 
study about arsenic in drinking water and the associated health issues in Bihar, and 
in the current paper, we report a study of five arsenic contaminated villages from 
Shahpur block in the Bhojpur district from Bihar state.
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3  �Methodology

3.1  �Study Area Description

The state of Bihar consists of 38 districts. Each district is further divided into subdi-
visions and several blocks, and blocks are further divided into Gram Panchayats 
(GPs) and GPs have several villages (Census 2011). GPs are the smallest elected 
administrative representation in the state of Bihar. Shahpur was chosen for our study 
area for two reasons: it is among the most arsenic concentrated blocks, and the arse-
nic was first identified from this block. Shahpur block contains 10 GPs and 86 vil-
lages with a total population of 2, 12,170 (Census 2011). From the 38 districts, the 
drinking water of 15 districts, 65 blocks and around 900 habitations contain greater 
than 0.05 mg/L arsenic (Thakur and Gupta 2016). Figure 11.1 shows the districts in 
Bihar with more than 0.05 mg/L concentration of arsenic in drinking water.

3.2  �Water Sample Collection and Instrumentation

We collected water samples from 173 surveyed households from their hand tube 
wells. Arsenic concentration in the water samples was tested using a field test kit at 
the time of the survey. The kits were manufactured by Prerana Laboratories which 

Fig. 11.1  Districts in the Bihar state of India where arsenic concentration in drinking water is 
more than 0.05 mg/L

11  Arsenic-Contaminated Drinking Water and the Associated Health Effects…



262

is recognized by both BIS and WHO. The field test kit provides results from 0 to 
0.5 mg/L, and arsenic levels higher than 0.5 mg/L cannot be accurately determined 
using the test kit. The results were confirmed using a few samples (10%), which 
were tested by the State Arsenic Test Laboratory and the results were similar to 
those published by earlier work (Rahman et  al. 2005; Thakur and Gupta 2014, 
2016). Our results were used to identify the concentration of arsenic in the water 
samples and the affected population. The surveyed study area is given in Table 11.1.

The present study was also conducted to collect primary data through a 
questionnaire-based survey from February to April 2014. The questionnaire was 
divided into three sections – the first section aimed at collating demographic infor-
mation and details of the households. The second section was based on information 
related to various health issues including health cost and other medical expenditure. 
In this section, we collected the cost of visits to doctors, diagnostic and medication 
cost, and the cost of hospitalization. The third section was dedicated to various 
socio-economic issues. It was difficult to identify patients with arsenicosis without 
the aid of trained medical practitioners and to obtain that was beyond the scope of 
this study. Therefore, the present study relied on the symptoms of primary, second-
ary and tertiary diseases induced due to arsenic in drinking water, as described by 
the WHO (2012), Thakur and Gupta (2016), and Chakraborti et al. (2003, 2016a, b).

4  �Results and Discussion

4.1  �Households in the Study Area

The primary survey of 173 households comprises 1472 individuals out of that 814 
were males (55.29%), and 658 (44.71%) females. The mean age of the respondent 
is 44 years and the average years of schooling are 5.46 years. Around 31.1% of the 
surveyed population was illiterate. Majority of the households were male-headed. 
The average household’s size was 8.5 which is higher than the national and state 

Table 11.1  Arsenic concentration in water samples from the surveyed villages from Shahpur 
block in the Bhojpur district of Bihar state in India

SI GPs Village
Habitation 
(Tola)

Water samples 
tested

Arsenic concentration level 
(in mg/L)
Maximum Minimum

1 Semariya Gosaipur Gosaipur 21 0.3 0
2 Dudhghat Dudhghat 19 0.5 0
3 Bhaisaha Bhaisaha 9 0.05 0.01
4 Semariya Ojha 

Patti
Semariya Ojha 
Patti

61 0.5 0

5 Bariswan Bariswan Bariswan 63 0.3 0
6 Total household survey 173 0.5 0

Source: Field Survey 2014–15
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average. Sex ratio among low-income households is higher than higher income 
households. Nearly half of the households are involved in the farming activity, and 
the rest of the households have more than one occupation. The main source of 
drinking water is through hand pump well, and more than 90% of the households 
have access to drinking water. Majority of households are Hindu while more than 
half of them have a joint family. Arsenic and iron problem is prevalent among 
households drinking sources, and few of the households are facing various water-
borne health issues. Table 11.2 provides information on the summary of the sur-
veyed household.

4.2  �Water Sample Test Results

The results of the water sample test revealed Dudhghat village of Semariya GPs 
have the highest arsenic concentration than the other villages (Table  11.3). In 
Dudhghat, 10.53% of the water samples contain more than 0.3 mg/L arsenic and 
more than 57% of the water samples contain higher than 0.1 mg/L arsenic in drink-
ing water. In the Gosaipur village, around 71% of the water samples tested for 
arsenic concentration were found to be safe for drinking, and 9.52% of the samples 
contain higher than 0.1 mg/L arsenic. Bariswan and Bhaisaha villages have an arse-
nic concentration in the range of less than 0.3 mg/L. Despite of so many programmes 
available by the government, the arsenic concentration level in Semariya Ojha Patti 
village1 is still poor and more than 50% of the households still drink water that 
contains more than 0.05 mg/L of arsenic. If we see the concentration level of all the 
villages together, results revealed around 36% of the water samples do not contain 
arsenic, around 10% of the water samples contain between 0.051 and 0.105 mg/L 
arsenic, 16% have between 0.101 and 0.3 mg/L and 2.89% of the tested water sam-
ples contain more than 0.3  mg/L arsenic. The results of the water samples test 

1 The first incidence of arsenic in drinking water in Bihar was found in Semariya Ojha Patti village 
of Shahpur block from Bhojpur district (Chakraborti et al. 2003).

Table 11.2  Summary of the surveyed household

Variables Mean Standard deviation

Arsenic in drinking water (in µg/L) 64.87 106.16
Age of the respondent (in years) 54.29 13.66
Household size (in number) 8.56 4.1
Respondent education (in years of schooling) 5.51 5.11
Agriculture as a primary source (in binary) 0.43 0.49
Household income (in INR monthly) 23,277.46 14,843.89
Household expenditure (in INR monthly) 10,947.25 8081.97
Household health expenditure (in INR 
monthly)

1748.19 9009.8

Source: Field Survey 2014–15
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support earlier reported results by others (Chakraborti et  al. 2016a; Thakur and 
Gupta 2014, 2016). More details on the levels of arsenic in household drinking 
water are shown in Table 11.3.

4.3  �Health Issues

From the survey, 60 (out of 173) households have either primary, secondary or ter-
tiary health problems. Primary health problems include black spots on the body, 
conjunctivitis, gastroenteritis, and inflammation of the respiratory tract, while sec-
ondary health problems include white black spots on the body, hyper-keratosis, non-
pitting edema, peripheral neuropathy, and liver and kidney disorders. Some of the 
tertiary problems we found during our survey include gangrene and urinary bladder 
cancer. Figure 11.2 presents arsenic-induced health issues in the study area.

4.4  �Patients with Skin Lesions

From the survey, we found that many inhabitants were suffering from skin lesions 
due to excess concentration of arsenic in their drinking water. Around 2.19% of 
cases of surveyed male, 2.9% of surveyed female, and 3.04% of surveyed children 
are suffering from skin lesions. The incidence of skin lesions found to be higher 
among children than adult male and female. In Dudhghat village of Semariya GPs, 
a group of children who consume highly arsenic contaminated drinking water 
(higher than 0.1 mg/L) have skin lesions. From the survey, we found that people 
were heard about arsenic but were not aware of the health-related effects due to 
excess arsenic in drinking water. From our survey, we found that only 13.29% of the 

Table 11.3  Arsenic concentration levels in drinking water in the study villages. (Values shown are 
in percentage)

Study 
villages

Arsenic concentration levels (in mg/L)
Total 
number of 
samples

Below 
detectable 
limit (BDL)

0.001 to 
≤0.01

0.011 to 
≤0.05

0.051 to 
≤0.1

0.101 to 
≤0.3

0.301 
to ≤0.5

Gosaipur 71.43 4.76 4.76 9.52 9.52 0.00 21
Dudhghat 21.05 5.26 10.53 5.26 47.36 10.53 19
Bhaisaha 0.00 33.33 66.67 0.00 0.00 0.00 9
Semariya 
Ojha patti

31.15 11.48 6.56 21.31 26.23 3.28 61

Bariswan 38.1 33.34 22.21 3.17 3.17 0.00 63
All villages 35.84 19.07 15.60 10.40 16.20 2.89 173
Total 
(samples)

62 33 27 18 28 5 173

Source: Field Survey 2014–15
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respondent were aware of the health effects due to arsenic while around 49% of the 
respondent heard about arsenic.

4.5  �Other Issues

Survey reveals that households are suffering not only due to health issues but vari-
ous other social and economic issues such as unable to get married, discrimination, 
and divorce or separation and social exclusion are the prominent issues amongst the 
affected individuals and households. Although from the survey, it was found that 
only 1% among the surveyed population in Shahpur block facing problem-related to 
the skin which leads to the issues in their marriages. An unmarried female poorly 
reported skin problems, and thus the number of respondents with marriage issues 
related to their skin problems could be more. Poor households suffer socially due to 
the lack of adequate information on the arsenic caused health issues. From the field 
observations, it was found that cases with the suicidal tendency and depression due 
to skin lesion problems are prevalent among the affected individuals.

5  �Conclusion

Arsenic contamination of groundwater in India and particularly in Bihar state is 
reportedly increasing at an alarming rate after each new survey has been done. 
Arsenic is a human carcinogen, and excess dosage of arsenic in drinking water is 
considered as a human health hazard and can be fatal. From the analysis of the water 
sample from the study area, it was revealed that the arsenic concentration in drink-
ing water is more severe in the Semariya Ojha Patti GPs than the Bariswan GPs 
from Shahpur block. Around 46% of the tested samples of the study area contain 

30

66.6

3.4

Arsenic-induced Health Issues

Primary Health Issues
Secondary Health Issues
Tertiary Health Issues

Fig. 11.2  Arsenic-induced health issues in the study area (in percentages)
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excess arsenic over 0.01 mg/L. In the surveyed villages, Dudhghat and Semariya 
have an excessive amount of arsenic in drinking water. Around 10.53% of the sam-
ples contain an excess of more than 0.3 mg/L concentration levels, and more than 
57% of the water samples contain an excess of 0.1  mg/L arsenic in Dudhghat. 
Although Bariswan and Bhaisaha have excess contamination levels in drinking 
water but the extent of contamination levels found to be lesser than other surveyed 
villages. In Gosaipur, around 29% of the samples were found excess concentration 
in the water.

As discussed earlier, excess concentration leads to health effects and various 
other issues. Majority of inhabitants who suffer health issues are in the form of skin 
lesions. The incidence rate of skin lesions among children found to be higher than 
the adults. Many children have skin lesions in Dudhghat where arsenic concentra-
tion level is higher than the other areas. We also found from the survey that, house-
holds have other problems besides health issues such as social problems, 
discrimination, suicidal tendency, depression, and social exclusion besides eco-
nomic problems.

Lack of awareness and an alternative source of drinking water is common in the 
study area. Half of the respondents (51%) were not aware of the arsenic menace 
although they heard about arsenic. The increasing incidence of skin lesions among 
children make the group more vulnerable, and it leads to a disturbance on inter and 
intra-generation (Thakur and Gupta 2016). Drinking water is essential for a human 
to survive it needs urgent attention from the Government to work on sustainable 
management of water through various channels. The state of Bihar has adequate 
water resources, and proper management of water resources may help to reduce the 
problem. Otherwise, in the future problem will be more severe.
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Chapter 12
Arsenic Contamination of Drinking Water 
and Mitigation in Pakistan: A Case 
of Indus River Basin

Unaib Rabbani and Zafar Fatmi

Abstract  Most of the arsenic-exposed population of the globe reside in South Asia. 
Over 100 million people living around the basin of the Ganges River in Bangladesh 
and West Bengal in India alone are exposed to arsenic through underground drink-
ing water, and have received much attention. Millions in Pakistan also are exposed 
to arsenic through underground drinking water along the basin of Indus River. 
However, it has not raised eyebrows for health workers and policymakers in 
Pakistan. This chapter reviews the available evidence on arsenic exposure to the 
population in Pakistan through the Indus River, its severity and association with 
disease, and prediction of long-term consequences. It also dwells on the inadequate 
measures so far undertaken for the mitigation and control of the impending disaster. 
With the growing population in Pakistan, water is becoming scarce; and conse-
quently, an increasing number of people are resorting to underground water. The 
future health consequences of arsenic exposure through drinking water could be 
enormous and could have detrimental impacts on the overall development of the 
population. This chapter begins with the situation analyses of arsenic exposure and 
toxicity by reviewing the published and unpublished evidence for the quality of 
water and its health consequences. It takes into account of the available literature, 
and the example of Bangladesh when discussing the health consequences as the 
Indus River shares the same Himalayas origin as the rivers in Bangladesh. It then 
outlines the arsenic mitigation efforts so far undertaken in Pakistan. It further dis-
cusses the policies and strategies for arsenic affected areas (mainly along the bank 
of river) of Pakistan where the mitigation efforts would be most effective in terms 
of population benefits. In discussing this, it structures a framework for policies and 
strategies for action for low resource countries for arsenic mitigation.
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1  �Arsenic Contamination of the Indus Basin in Pakistan

1.1  �Indus Basin

The Indus river is one of the longest rivers in the world with a length of about 
2000 miles (3200 km) (Inam et al. 2007). The basin of the Indus River covers a large 
population and area. It has the total drainage area of 1,165,000 km2, out of which 
712,000 km2 is in Pakistan (Nasir and Akbar 2012). The Indus river arises from 
Tibetan Plateau in western China then passes through Himalayan valleys. After 
crossing Kashmir region it enters and traverses through Pakistan and finally meets 
the Arabian Sea. (Inam et al. 2007). There is seasonal and spatial variation in the 
flow of principal rivers of Indus system as they are snow-fed (Ahmad 1993). Like 
other large river in South Asia, i.e., Ganges and Brahmaputra, Indus also has its 
origin in the Himalayas (Fig. 12.1).

Pakistan, with its total population of 208.7 million, is situated in the north-
western part of the South Asian subcontinent (Pakistan Bureau of Statistics 2017). 
Total land area of Pakistan is about 796,096 km2, which also features a diversified 
terrain and topography. Agriculture is the largest working sector in Pakistan, 
employing about 42% of the total workforce and contributing about 20% of the total 
gross domestic product (GDP) (Farooq and Wasti 2017). Underground water is the 
major source of drinking water, providing for about 63% of the population for 
household use (Pakistan Bureau of Statistics 2016). Additionally, groundwater is 

Fig. 12.1  Map of Indus Basin. (Reproduced with permission from Johnston and Smakhtin (2014))
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also used for irrigation purposes, which is more common in Sindh and Punjab prov-
inces (Bhutta and Alam 2006).

After reports from Bangladesh and India about arsenic (As) contamination of 
groundwater resources, preliminary and national survey for arsenic contamination 
of water sources showed unsafe levels of As in the groundwater sources (Ahmed 
et  al. 2004). A large proportion of the population in Pakistan who depends on 
groundwater for drinking and domestic use may have been thus potentially exposed 
to unsafe levels of arsenic. It is therefore necessary to assess the problem and 
develop strategies for mitigation of arsenic in the country to identify a way forward 
for protecting the health of the population.

1.2  �Arsenic in Underground Water in Pakistan

The issue of arsenic contamination in Pakistan brought to surface after reports of 
widespread arsenic (As) contamination in neighboring countries such as India and 
Bangladesh. Several organizations have done an assessment about water quality for 
arsenic contamination including; Pakistan Council for Research in Water Resources 
(PCRWR), United Nations Children’s Emergency Fund (UNICEF), and Aga Khan 
University. In addition, Sindh Health and Educational Development Society and 
Human Resource Development Society carried out awareness-raising and dissemi-
nation of information about arsenic in the communities.

The initial assessment of the arsenic contamination of water was carried out in 
six districts of Punjab by PCRWR with assistance from UNICEF in 1999. It identi-
fied that about 14% of the drinking water samples had arsenic levels above the 
World Health Organization’s (WHO) guideline of 10 ppb (Ahmed et al. 2004). A 
national survey for arsenic in drinking water was carried out in 2001. A total of 35 
of 104 districts from all the four provinces viz. Punjab, Sindh, Khayber Pakhtunkhwa 
(KPK), and Balochistan, were included in the survey. Overall 9% of the 8712 sam-
ples had arsenic concentration more than 10 ppb. Punjab and Sindh were the most 
affected provinces with 12.2%, and 11.0% of the drinking water samples had arse-
nic concentrations more than 10 ppb, respectively (Ahmed et al. 2004). The national 
survey was followed by blanket testing (all water sources in selected sub-districts) 
of arsenic in water sources in high-risk districts of Punjab and Sindh provinces. The 
districts of Dadu, Khairpur, Nawabshah and Tharparkar in Sindh province and 
Multan, Rahim Yar Khan, and Bahawalpur in Punjab province were included in the 
survey. About 21% in Sindh (n = 20,158) and 14% of drinking water samples in 
Punjab (n = 11,975) were contaminated with arsenic at a level above 10 ppb (Ahmed 
et al. 2004).

Studies from districts of Sindh province estimated 2–64% prevalence in Khairpur 
district, 30% in Matiari and 57% in Thatta district (Arain et al. 2007; Fatmi et al. 
2009; Rubab et al. 2014). The studies conducted in districts of Punjab showed a 
prevalence range between 32% and 100% (Ali et al. 2015; Arshad and Imran 2017; 
Malana and Khosa 2010; Qurat ul et al. 2017; Rasool et al. 2017). Only one study 
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was conducted in the province of KPK in the district of Peshawar where 11 out of 
13 samples reported arsenic concentration in drinking water to exceed 10 ppb (Ishaq 
et al. 2013). All these studies were small-scale with small sample size and confined 
to specific geographical areas. Given these limitations, these studies cannot be used 
to draw a comprehensive picture of arsenic contamination in Pakistan. However, 
these are useful for the identification of high-risk areas in the country. A recent 
study with a larger sample (n  =  1184) size from all over Pakistan, showed that 
66.3% of the tested samples were contaminated with arsenic and that the Indus plain 
was a high-risk area (Podgorski et al. 2017). They estimated about 50–60 million 
people in Pakistan are at risk of arsenic exposure. The study raised concern among 
authorities. However, there was disagreement regarding its findings due to its meth-
odological limitations (Niazi 2017; Rabbani et al. 2017). Table 12.1 summarises the 
studies conducted to assess the arsenic contamination of water sources.

Various studies across the world have shown a relationship between arsenic con-
centration in groundwater and the distance from the river (Berg et al. 2007; Hoang 
et al. 2010). Areas located near the bank of rivers are the ones that are highly affected 
by the arsenic contamination. Similar pattern of arsenic distribution exists in 
Pakistan. Results from the national survey showed that districts located near the 
river Indus had higher arsenic concentrations in Punjab and Sindh provinces. 
Another study from Khairpur also reported the similar distribution of arsenic con-
tamination (Fatmi et al. 2009). Further analysis by Rabbani et al. found that wells 
located within 18 km from the bank of river Indus in district Khairpur had a higher 
concentration of arsenic than distant wells (Rabbani et al. 2016).

2  �Evidence of Arsenic Exposure and Its Health Impact 
Studies

2.1  �Arsenic Exposure Related Studies in Pakistan

Initial surveys conducted in Pakistan showed widespread arsenic contamination. 
There was a need to assess exposure and health effects in the population. In this 
regard, UNICEF invited department of Community Health Sciences, Aga Khan 
University Karachi to design and conduct a study to assess the health burden of 
arsenic contamination of underground water in one of the heavily affected dis-
tricts of Sindh, Pakistan. Therefore, a cross-sectional multi-stage stratified clus-
ter random sampling survey was conducted in district Khairpur in the province 
of Sindh in 2006 by Fatmi et al. (2009), which aimed to determine the prevalence 
of arsenicosis, relation between arsenic levels in underground drinking water and 
frequency of manifestation on skin (arsenicosis), and the role of nutrition on 
arsenicosis prevalence. In this study, a total of 3874 individuals were examined 
and interviewed; and a total of 2517 water samples and 505 urine samples were 
tested on Atomic Absorption Spectrophotometer (AAS) for arsenic levels. 
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Table 12.1  Summary of studies conducted to assess the arsenic contamination of water sources in 
Pakistan

Author 
(year) Site (province) N Prevalencea Comments

Shakoor 
et al. (2018)

Punjab 123 75 Small sample size

Podgorski 
et al. (2017)

Pakistan 1184 66.3 Large sample size covering large 
geographical area.
Overestimation of exposed population due 
to methodological limitation.

Qurat ul 
et al. (2017)

Rahim Yar 
Khan Punjab 
(Punjab)

51 32.5 Small sample size

Arshad and 
Imran 
(2017)

Kasur, 35 100 Small sample size
Selected villages onlyIslamabad 18 0

Rawalpindi 15 0
Bhawalpur 18 72

Rasool et al. 
(2017)

Mailsi 
(Punjab)

44 100 Small sample size

Rasool et al. 
(2015)

Mailsi 
(Punjab)

52 86 Small sample size

Ali et al. 
(2015)

Thar (Sindh) 3 59.5 ± 1.88 Only three aquifers were sampled during 
different quarters throughout the year.

Brahman 
et al. (2014)

Thar (Sindh) ~150 BDL in fresh 
samples
194–683 μg/L 
in stored 
water

Fresh and stored rainwater samples during 
two consecutive monsoon seasons and at 
different periods were tested for As 
concentrations. As levels increased over 
time in the stored water.

Sultana 
et al. (2014)

Lahore 
(Punjab)

30 87 Small sample size

Rubab et al. 
(2014)

Thatta (Sindh) 37 37 Small sample size

Ishaq et al. 
(2013)

Peshawar 
(KPK)

13 85 Small sample size

Malana and 
Khosa 
(2010)

DG Khan 
(Punjab)

32 18 Small sample size

Fatmi et al. 
(2009)

Khairpur 
(Sindh)

2517 12 An epidemiological study from Sindh to 
assess the burden of arsenicosis in the 
community.
Wide variations in arsenic levels with 
distance from the bank of the river.

Arain et al. 
(2007)

Matiari and 
Khairpur 
(Sindh)

94 47 Small sample size

aPercentage of wells with arsenic concentrations more than 10 ppb
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Approximately 12% of water samples showed arsenic level above 10 ppb, and 
2.2% above 50 ppb. Rabbani et al. (2016) in their study used geographical infor-
mation system (GIS) data and techniques, in which they developed risk maps of 
district Khairpur Sindh and estimated the population at risk of arsenic exposure. 
In the study, authors used village-level maps provided by the revenue department 
of district Khairpur, population data from district census report and Global 
Positioning System (GPS) coordinates of water sources. All this information was 
used for spatial analysis. Results showed that the majority of the wells located 
near the bank of the river Indus were contaminated with higher arsenic levels 
while those away from riverbank were generally safe. It was identified that a 
band of about 18  km along the river Indus was the high-risk area where the 
majority of the wells were arsenic contaminated. Based on this information, 
authors extrapolated result to the whole length of river Indus and estimated that 
about 13–16 million people in Pakistan were exposed to arsenic-contaminated 
water, including 6 million women and 5.6 million children under 15 years of age 
(Rabbani et al. 2016).

Some studies also assessed the intake of arsenic through water and food 
sources. Average daily dose was reported in some studies from Punjab (0.036–
12 μg/kg/day) (Rasool et al. 2017; Shakoor et al. 2015), Sindh (5.7 μg/kg/day) 
(Ahmed et al. 2014; Arain et al. 2009; Shah et al. 2011) and KPK (0–0.0056 μg/
kg/day) provinces (Muhammad et al. 2010). The exposure dose in Punjab and 
Sindh were higher than the US environmental protection agency reference dose 
(RfD), i.e., 0.3 μg/kg/day (U.S. Environmental Protection Agency 1991). The 
level of arsenic in drinking water was positively correlated with urinary arsenic 
concentration, and this is a more sensitive indicator of higher arsenic exposure. 
The median urinary concentration in Punjab has been reported to be as high as 
118  ppb (Bibi et  al. 2015; Sughis et  al. 2014) while in Sindh this value is 
28.5  ppb (range: 0.1–848) (Ahmed et  al. 2014). Another indicator of arsenic 
exposure is scalp hair levels which also has a strong positive relation with arse-
nic in drinking water (Kazi et al. 2011). Higher levels of arsenic in scalp hair 
samples have been reported in various studies in Pakistan (Baig et  al. 2011, 
2016; Kazi et al. 2011; Shah et al. 2011). Few studies have also assessed the 
arsenic levels in nail and blood in Pakistan. All of these studies are limited by 
the scope and scale as most of them were done in selected areas and a particular 
group of the population. Therefore, these values should be considered as an 
indicator of exposure, but may not represent the exposure of the population. 
Presence of arsenic in the water and soil can also lead to bioaccumulation in the 
food chain. Thus, studies have shown higher levels of arsenic in vegetables and 
fishes as well in Pakistan (Nawaz et al. 2010; Rehman et al. 2016; Shah et al. 
2011; Waheed et al. 2013). Although few studies were conducted but these sug-
gest that millions of people in Pakistan are exposed to arsenic. Major source of 
exposure is through the contaminated groundwater as well as food. These peo-
ple have the potential risk of developing adverse health effects due to arsenic 
exposure.
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2.2  �Health Effect Studies

The science about the adverse health impacts of arsenic is still unfolding, and it 
seems to involve every organ system of the body. Arsenic exposure leads to skin and 
non-skin health effects. Arsenicosis is the disorder of skin—characterized by hyper-
pigmentation and hardening of the skin of palms and soles on both sides (symmetri-
cal) (Kadono et al. 2002). These skin lesions may culminate in cancers of the skin. 
Besides skin, arsenic exposure has been associated with cardiovascular diseases, 
hypertension, diabetes mellitus, decreased lung functions, gastrointestinal distur-
bances, liver disorders including enlargement, tenderness, jaundice, ascites and 
elevated liver enzymes, and internal cancers including liver and bladder (Ahsan 
et al. 2006; Brown and Ross 2002; Chakrabarti et al. 2018; Khan et al. 2003; Nafees 
et  al. 2011; Smith et  al. 1992). The spectrum of these disorders depends on the 
exposure dose, i.e., concentration in the source and exposure duration (Nafees et al. 
2011; Yoshida et al. 2004). Literature on assessment of health impact due to arsenic 
exposure is scarce in Pakistan.

Initial epidemiological investigations of arsenicosis carried out by the Institute of 
Public Health Punjab, reported a lower prevalence of definitive and borderline 
arsenicosis 11 and 130 per 100,000 respectively (Ahmed et al. 2004). This study, 
however, did not find any association between groundwater arsenic concentrations 
and dermatological lesions. A later study was also conducted in northern Punjab 
where the prevalence of clinical arsenicosis was found to be 92 per 100,000 while 
that of borderline cases was 242 per 100,000 individuals of the population (Ahmed 
et al. 2004). Fatmi et al. (2009) in Sindh conducted a more detailed study in which 
3874 individuals were examined and interviewed, 2517 water samples and 505 
urine samples were tested on Atomic Absorption Spectrophotometer (AAS) for 
arsenic levels besides testing of water samples for arsenic contamination. The bur-
den of arsenicosis was reported to be higher in Sindh. The study disclosed that the 
numbers of definitive cases of arsenicosis and suspected cases were 3.4 per 1000, 
and 13 per 1000 population (among ≥15 years of age) in district Khairpur, respec-
tively. The mean arsenic level of water (17.2 ppb) and urine (56.4 ppb) were signifi-
cantly high in arsenicosis cases compared to mean arsenic level of water (5.5 ppb) 
and urine (38.5 ppb) in normal individuals. Arsenicosis was significantly higher in 
malnourished, BMI  <  18.5  kg/m2 (25.3/1000) than adequately nourished, 
BMI > 18.5 kg/m2 (10.5/1000) individuals, indicating higher susceptibility of mal-
nourished people to health effects of arsenic (Fatmi et al. 2009). This prevalence 
was higher 13.5% among households exposed to a higher arsenic concentration 
>50 ppb (Fatmi et al. 2013). A study also reported a decrement of lung functions 
with exposure to arsenic (Nafees et al. 2011). Changes in the lung functions start 
even before skin manifestations. Arsenic exposure has been linked to the reduced 
activity of antioxidative enzymes (Bibi et al. 2015). Some case-control studies have 
reported higher levels of arsenic in biological samples of cancer and hypertension 
patients compared to controls (Afridi et al. 2014; Arain et al. 2015b; Wadhwa et al. 
2011, 2013). Another study reported higher levels of N-acetyle β glucosaminidase 
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(NAG), a biomarker of proximal tubular damage in kidney, among people exposed 
to high levels of arsenic (Arain et al. 2015a).

Although the literature on health effects due to arsenic exposure in Pakistan is 
scanty but the available studies suggest that people are suffering from adverse health 
effects resulting from arsenic exposure. No epidemiological studies were conducted 
to attribute arsenic exposure to non-communicable diseases; therefore, this side of 
the picture is still veiled. The scenario will be worse in the future if this exposure is 
continued and may result in a rise in cancerous and other chronic disorders 
(Fig. 12.2).

3  �Arsenic Mitigation in Pakistan

Since 1999 when a first preliminary survey for arsenic contamination of groundwa-
ter sources was conducted, a number of activities were carried out by different 
stakeholder for arsenic mitigation in Pakistan. These included; assessment of water 
quality, advocacy and social mobilization, development of mitigation plan and pre-
vention of exposure (Ahmed et al. 2004). However, these activities were not con-
certed and lacked sustainability. Therefore no tangible outcomes were observed 
(Islam-ul-Haque and Nasir 2015). Next few paragraphs will present the status of 
arsenic-related intervention so far conducted in Pakistan.

Formal efforts of arsenic mitigation started in 1999 with the first arsenic survey 
conducted by PCRWR with support from UNICEF (Ahmed et al. 2004). This was 
later up-scaled to a national arsenic survey in 2001. This time the Public Health 
Engineering Department (PHED) and Local Government and Rural Development 
were involved and they surveyed one third (34 of 104) of the districts in Pakistan 
(Ahmed et al. 2004). These surveys were later followed by capacity building for 
mitigation of arsenic. UNICEF team visited Bangladesh to learn from their experi-
ences, and this experience was applied in Punjab by local government and Non-
Governmental Organizations (NGOs) in Sindh. Local governments in Sindh and 

Fig. 12.2  Skin manifestations of arsenic. (Reproduced with permission from Fatmi et al. (2009))
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Punjab organized provincial level seminars to publically disseminate the informa-
tion with government officials, NGOs, and media about arsenic contamination sta-
tus in Pakistan and developed provincial mitigation frameworks. Capacity building 
activities included training of officials, NGOs and local representatives regarding 
arsenic exposure, its effects on human health, water sampling, use of arsenic field 
testing kits, collection and analysis of data and identification of alternate safer 
water source for consumption. This training, however, did not include the training 
of health care providers regarding the identification and diagnosis of arsenicosis. 
Social mobilization and advocacy started after the surveys. However these activi-
ties were mostly one-time effort and not sustained to change community knowl-
edge and behaviors (Islam-ul-Haque 2015). At the community level, various NGOs 
in Sindh (SAFWCO and SHED) and Punjab (HDRS) started disseminating infor-
mation about the arsenic exposure and its hazards and marking safe and contami-
nated wells for identification and use. Later in 2004, blanket testing of all water 
sources was carried out in high-risk districts of Sindh and Punjab (Findings 
described earlier in the text).

Epidemiological studies were conducted to assess the burden of health effects 
due to arsenic exposure. In this respect, the first epidemiological study was con-
ducted in seven districts of Punjab in 2002–03 by Institute of Public health, Lahore 
and sponsored by UNICEF. In Sindh, UNICEF invited department of Community 
Health Sciences, Aga Khan University Karachi to design and conduct a study to 
assess the health burden of arsenic contamination of underground water in one of 
the heavily affected districts of Sindh, Pakistan. Therefore, a more precise cross-
sectional multi-stage stratified cluster random sampling survey was conducted by 
Dr Fatmi and his team in 2006 in district Khairpur of Sindh province, which had the 
objectives to determine the prevalence of arsenicosis, relation between arsenic lev-
els in underground drinking water and frequency of manifestation on skin (arsenico-
sis), and role of nutrition on arsenicosis prevalence (Fatmi et al. 2009).

Dr. Fatmi and his team from the Department of Community Health Sciences, 
Aga Khan University with the support of UNICEF developed capacity building 
project. Main objectives of the project were at a primary level, to train master train-
ers on arsenic and utilize these master trainers to train health professionals at the 
secondary level and also to develop training/awareness material on arsenic. In this 
regard, training material (training/evaluation modules) for primary and secondary 
level training on arsenic mitigation was developed (Fatmi et al. 2008). In the devel-
opment of manual, help was taken from the field guide for detection, management 
and surveillance of Arsenicosis prepared by South East Asian Regional Office, 
WHO and the Chinese manual for diagnosis of Arsenicosis. An extensive review of 
the literature and expert consultations with dermatologists including Chinese 
research experts were undertaken. This was followed up by a visit to China where 
meetings/interviews with arsenicosis patients were held in order to examine clinical 
variation in the presentation of the disease, which may be geographically and/or 
genetically influenced (Fatmi et  al. 2008). This material was utilized in arsenic 
workshops to train master trainers at primary training workshop and health profes-
sionals at secondary level training workshops. Twenty master trainers and 100 
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health professionals (60 doctors and 40 paramedics) from seven highly affected 
districts of Sindh were trained on arsenic mitigation in the primary and secondary 
level training workshops. For the awareness of affected communities and local 
health care providers, team translated English version of training manual of “diag-
nosis and management of arsenicosis in Pakistan” into local languages (Urdu/
Sindhi) and also developed arsenic awareness brochure in English/Urdu/Sindhi lan-
guages. Provincial framework for arsenic mitigation was developed in arsenic 
workshops. This project resulted in the development of training and evaluation 
modules for master trainers, 20 master trainers, 100 arsenic trained health care pro-
viders, training material, health education material for communities and a provin-
cial framework for arsenic mitigation in Sindh.

Arsenic removal technology across the world ranges from municipal levels 
plants to home-based units. Arsenic removal methods are based on chemical pro-
cesses such as oxidation-reduction, precipitation, adsorption and ion exchange, 
solid-liquid separation, physical exclusion, and coagulation (Nicomel et al. 2015). 
Available technologies are based on these processes and include; air oxidation, 
chemical oxidation, alum coagulation, ion coagulation, sorption techniques using 
activated alumna, iron coated sand or ion exchange resins, membrane technolo-
gies such as nano-filtration, reverse osmosis and electrodialysis (Nicomel et al. 
2015). These methods are effective in the removal of arsenic from the drinking 
water but require technical expertise, high operational costs, and energy. Given 
the socio-economic status of the population affected by arsenic in Pakistan, these 
methods are not feasible. PCRWR in collaboration with UNICEF started research 
to locally developed technology for arsenic filtration and treatment. In this regard 
clay-pitcher, plastic gravity flow, and ceramic cartridge arsenic removal filters 
were developed  (Fig. 12.3). These low-cost arsenic removal technologies were 
developed keeping in view the socio-economic profile of the rural and urban pop-
ulation in Pakistan (Government of Pakistan 2007). These technologies were 
evaluated for a period of 6 months. The evaluation was done on the parameters 
like the composition of pre and post-filtered water, the life of arsenic removal 

Fig. 12.3  Arsenic removal filters developed by PCRWR. (Government of Pakistan 2007)
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media, flow rates, trace element distribution, microbiological effectiveness, and 
estimated cost. Evaluation results found that clay pitcher was most effective 
among the three technologies. On the ground, however, there was a limited pro-
duction of clay pitchers, and no promotion in the communities was carried to 
implement in the communities while gravity flow arsenic removal cartridge filter 
was not available for community use (Islam-ul-Haque 2015). Community-based 
arsenic removal tanks were installed with UNICEF support, but out of 25 units, 
only two were found functional after 1 year in Rahim Yar Khan district of Punjab 
(Islam-ul-Haque 2015). Reasons for failure were; non-availability of filter media, 
lack of community capacity to test water and non-willingness, no mechanism for 
monitoring and testing from program office and no monitoring of project and 
promotion (Islam-ul-Haque 2015). UNICEF in Rajanpur Punjab provided a sachet 
containing chemical coagulants and disinfectants. However, no follow-up was 
done to assess its community acceptance and feasibility.

First formal arsenic mitigation plan, the National Action Plan for Arsenic 
Mitigation (NAPAM) 2007–2011 (Government of Pakistan 2007), was developed to 
protect the population from hazardous health effects of arsenic exposure. An inquiry 
of NAPAM 2007–2011 is given in the following paragraphs.

Given the widespread arsenic contamination of water sources, Pakistan needed a 
comprehensive mitigation plan to prevent arsenic exposure and avoid health conse-
quences resulting from its long-term exposure. The central body that led to the 
development was the Ministry of Science and Technology, Government of Pakistan. 
UNICEF was the leading partner in arsenic mitigation efforts and policy develop-
ment in Pakistan. Other stakeholders included; PCRWR, the governments of Sindh 
and Punjab, Public Health Engineering department, local government, Ministry of 
the environment, departments of health and NGOs. Development of NAPAM 
involved a series of seminar-cum workshops at the provincial and national level. 
Components suggested to be included in the policy in these workshops were; provi-
sion of alternate water supply, water testing and treatment technologies, advocacy, 
developing an institutional framework, monitoring, and surveillance of water 
sources, capacity building, and research and development. A number of objectives 
were set in NAPAM. Major components of NAPAM included; screening of water 
sources, health effect assessment, and development of diagnosis and management 
protocols, provision of safe drinking water, arsenic removal technologies, institu-
tional framework, and social mobilization.

According to plan screening of the whole Indus basin was to be completed within 
2 years of plan development; however, no progress was made in this regard. Health 
effects assessment remained confined to a few studies only. Diagnosis and manage-
ment protocols were developed and translated into local languages but could not be 
implemented on a large scale. Similarly, no progress was made in the provision of 
alternate water supply. In highly affected areas surface water was to be treated as 
alternate source, but no treatment plants were established to serve the population. 
Deep wells as alternate source were part of the plan. However, no systematic 
attempts were made to dig deep wells according to local geography. Arsenic removal 
technologies developed locally were not produced at a mass scale to bring costs 
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down. Maintenance facilities for arsenic removal technologies and filter media were 
not made easily available in the areas worse hit by arsenic contamination. Behavior 
change communication strategies were not sustained to change community behav-
iors and improve the acceptability of the technologies. Provision of potable water 
through tankers was also kept as a strategy, which was not feasible economically as 
well as road infrastructure is not available in rural areas. Monitoring and surveil-
lance of water sources could not be carried out, however plan was to establish lab 
facilities at tehsil levels. This should have been done in a stepwise manner by capac-
ity building of locals and provision of basic equipment for water monitoring in 
high-risk areas and then subsequently into other areas. Involvement of the private 
sector and NGOs was not clearly defined. It is important to effectively involve the 
private sector to reach maximum population affected by arsenic contamination. No 
mechanism of coordination among various stakeholders was defined clearly to 
make the process smooth. Monitoring and evaluation framework for the action plan 
was given. However, no indicators were developed and included to track the prog-
ress of plan. Similarly, no protocol was given for the evaluation of the plan.

3.1  �Complacency Regarding Mitigation Efforts

Despite nearly two decades since UNICEF led the investigation of water sources 
and identified arsenic as a public health problem in Pakistan, and millions of people 
are at risk of chronic effects of arsenic exposure, no systematic effort has been done 
to mitigate the adverse effects. This chronic exposure to arsenic will result in future 
losses to the nation in the form of disability and premature deaths and direct costs 
of health care. There is a number of reasons that Pakistan failed to control the prob-
lem of arsenic contamination and protect people from exposure.

The first and most important among the causes of failure is the lack of ownership 
of arsenic mitigation by the governments. It was UNICEF, which started mitigation 
activities and provided financial and technical support. But later governments did 
not fulfill their commitments to finance and continue mitigation efforts. Activities 
suggested in NAPAM were not made part of the annual development plans (ADP) 
(Islam-ul-Haque and Nasir 2015). Provincial governments also did not make any 
tangible efforts for the implementation of NAPAM. Arsenic mitigation activities 
remained confined to papers and small-scale projects by NGOs. Provinces did not 
functionalize steering committees, and no actual mobilization of resources was 
done at the provincial level. Various factors play behind this lack of political interest 
in developing countries. These include; lack of tangible outcome, extra work, and 
competition with other problems and differing motivation of various stakeholders 
(Summerill et al. 2010a, b). Historically governments in Pakistan had a tendency to 
spend more on structures such as roads, which are more visible compared to health 
and other social domains, which often take longer to give visible outcomes. Poor 
human resource management in terms of an adequate number of personnel and 
skills lead to overburdening of existing staff. Budgetary allocation for health is low 
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in most of the developing countries due to which additional programs in the health 
sector are not given propriety. Additionally, in Pakistan, this is also due to political 
instability in the country and discontinuation of old policies by new government 
regimens. Local government system had provided infrastructure to reach the com-
munities effectively and engage them in arsenic mitigation efforts. However, this 
opportunity was never utilized for arsenic mitigation in Pakistan. This lack of politi-
cal ownership led to stagnant progress in arsenic mitigation.

Financial support has been identified as one factor affecting the sustainability of 
the arsenic mitigation program (Rahman and Paul 2013). Since this program was 
donor-driven, after the withdrawal of donor funding, activities came to a halt. 
NAPAM was not implemented in its true spirit as suggested in the implementation 
plan, and national steering committee did not continue its function.

Screening of water sources was not continued and expanded therefore a large 
proportion of the population remained unidentified as risk exposed group 
(Islam-ul-Haque and Nasir 2015). Similarly provision of alternate water supply to 
the identified exposed population was not done. There was a lack of coordination 
between various governmental departments, which hindered the arrangements of 
alternative water sources. Behavior change communication activities initiated ear-
lier were one-time activity and therefore could not bring changes in the population 
regarding arsenic.

Arsenic-based removal technologies (ART) installed at community levels were 
not maintained, and people returned to the untreated water. Lack of financial 
resources and political interest led to the discontinuation of research at PCRWR. On 
the other hand inability of the affected population to pay for the removal media and 
maintenance of the units also contributed to the abandoning of ARTs. Additionally, 
spare parts and removal media used in ARTs were also not available in the local 
markets rendering it difficult for users to continue use of units (Islam-ul-Haque 
2015).

Although Pakistan made rapid progress in arsenic mitigation initially during 
which assessment of water sources, capacity building and research and develop-
ment were carried out. However, this progress lasted only a few years after which 
things became stagnant. Lack of political commitment, dependence on foreign aid 
and lack of financial resources lead to the discontinuation of arsenic mitigation 
efforts in Pakistan (Authors’ observations).

3.2  �Future Prospects for Pakistan

In order to protect the health of the population from hazardous health consequences 
of arsenic exposure, Pakistan needs to take immediate actions. Successes and fail-
ures of Bangladesh in arsenic mitigation provide lessons for other low-income 
countries like Pakistan.

The first and most important requirement for addressing any issue is political 
commitment. Government and policymakers need to show and practice commit-
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ment to the protection of the population. In Pakistan, rapid progress was made for 
arsenic mitigation after initial surveys, and NAPAM was also developed. However, 
this lasted only for 5–6  years after which progress came to a halt. Donor aid is 
important for low resource countries like Pakistan, but over-reliance on donors for 
financial and other resources results in non-sustainability (Alymkulova and 
Seipulnik 2005). For example, Sono filters were introduced in Bangladesh with the 
help of donors. However, the project lacked networking among stakeholders, and 
adequate need assessment was not done before the launch of the project (Kundu 
et al. 2016). UNICEF led the arsenic mitigation in Pakistan by providing financial 
and technical support to the government and private institutions. But as soon as it 
withdrew support, the work on arsenic mitigation stopped. There is a need for com-
mitment from the governments of the affected countries to allocate resources for 
arsenic mitigation with technical support from international organizations and mini-
mal dependence on foreign aid. This will not only result in sustainability but also a 
local capacity building, which will further complement sustainability. A study 
reported that institutional weakness and lack of stakeholder accountability were 
hindering factors in the sustainability of arsenic mitigation in Bangladesh (Khan 
and Yang 2014). An institutional framework should be developed for progressing 
arsenic mitigation, and accountability should be ensured such as suggested by 
Islam-ul-Haque and Nasir (2015).

Human and cultural factors affecting sustainability and community buy-in of 
interventions need to be considered while developing an arsenic mitigation plan. 
Human and cultural factors challenging sustainability of mitigation program 
include; community readiness, engagement, support, knowledge, resources, accep-
tance, and participation (Kot et al. 2014; Rahman and Paul 2013). Further sustain-
ability of any intervention for arsenic mitigation depends on cost, trust, geographical 
access and knowledge about the health effects of arsenic (Etmannski and Darton 
2014; Singh et al. 2018). Advocacy and social mobilization for arsenic mitigation 
through various media is another issue that needs to be considered by policymakers 
and researchers in Pakistan. Effectively communicating evidence on arsenic con-
tamination and health effects in the population to the political leaders is important 
to bring problem on policy agenda. Similarly, behavior change communication is 
important for disseminating knowledge and changing the behavior of the population 
regarding arsenic and gaining the trust of the communities regarding interventions 
(Singh et al. 2018). Electronic media can be used to bring a problem to the surface 
so that it gains population attention and also improve the knowledge of the popula-
tion regarding arsenic exposure and health effects. This will create demand-side call 
for action. Studies from Bangladesh showed that using educators from or outside of 
the community is equally effective in improving knowledge of community regard-
ing arsenic (George et  al. 2013). However, this may not translate into behavior 
change and needs parallel actions such as well testing and support for alternate 
water source by the government to facilitate change (Madajewicz et al. 2007). This 
is necessary to sustain such efforts as knowledge fades with time and people tend to 
return to contaminated wells (Balasubramanya et al. 2014; Bennear et al. 2013). 
While designing any health education campaign, it is important to consider local 
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context because areas may vary in socio-demographics, water contamination levels, 
and available water sources. Identifying and involving local activists and leaders is 
important for social mobilization and implementation of arsenic mitigation. Such 
mobilization will result in local ownership of mitigation efforts and sustainability. 
Lack of strong social network around and intervention may result in failure of inter-
vention at the community level (Kundu et al. 2016). It is important to generate local 
resources so that dependence on government and NGOs is minimized because com-
plete dependence will result in an inability to maintain technology use or mainte-
nance of new wells (Bhattacharya et al. 2017).

Arsenic mitigation cannot be carried out in isolation, as this requires the involve-
ment of various departments from within the government such as water boards, 
municipal corporations, irrigation department, local governments, health depart-
ment, and research institutions. In order to carry out activities effectively, it is neces-
sary to have proper collaboration and coordination among the various stakeholders. 
This will help to streamline activities towards a common goal and prevent waste of 
efforts and resources. Role of the private sector and local NGOs are also important in 
resource-constrained countries like Pakistan where the government cannot reach all 
areas. Partnerships with the private sector and NGOs should be designed in such a 
way that there is a clear demarcation of roles and responsibilities of each of the party. 
Proper mechanisms of monitoring and evaluation of the private sector should be 
developed to ensure accountability. It is important to streamline the activities of all 
agencies working on arsenic mitigation to avoid duplication of efforts. In many parts 
of Bangladesh failure resulted from a lack of coordination among different stake-
holders (Milton et al. 2012). There was unplanned installation of new wells by differ-
ent agencies where sustainability was not considered (Bhattacharya et al. 2017).

It is important for the sustainability of a program that it should be led by local 
leaders. Bangladesh was able to sustain its arsenic mitigation program partly because 
of leadership by local people (Jakariya et al. 2003). In Pakistan, UNICEF initiated 
local capacity building. A team was sent to Bangladesh to learn their experiences of 
arsenic mitigation and then implement these in Pakistan. In order to effectively uti-
lize such experience, there should be a mechanism through which those who have 
experience in arsenic mitigation should transfer this knowledge. Second order learn-
ing is also important to run programs and bring innovations to sustain activities 
(Kundu et al. 2016). Experts from within and outside the country should carry out 
training of the local people in arsenic mitigation. Similarly, identification and train-
ing of people from communities for water sampling, testing, and health education 
should be implemented. This will provide a network of local people who can monitor 
water quality and provide continued health education to the community regarding 
arsenic. A study from Bangladesh showed improved knowledge of people after the 
implementation of health educators from the community (George et  al. 2013). 
However, these workers should be monitored, and periodical refresher training 
should be provided to enhance knowledge and skills. The health department needs to 
develop and implement guidelines for the identification, diagnosis, and management 
of arsenicosis. Health care workers should be trained on these guidelines. Arsenic 
sources, exposures and health effects should be included in medical curricula.
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In NAPAM 2007–11, a budget was proposed to carry out planned activities. This 
also described the proportion of budget from federal, provincial and donor agencies. 
However, this commitment of financial resource allocations was not fulfilled, and no 
implementation of NAPAM was done. In order to run the arsenic mitigation program, 
the government needs to prioritize the issue and allocate proper resource for imple-
mentation. In addition to money allocation, there is a need to place a governance 
mechanism to protect the leakage of resources and improve financial efficiency.

3.3  �Intervention Options for Pakistan

In order to protect the population from arsenic exposure and its health effects, there 
is a need to work on the provision of safe water and addressing the health effects of 
exposed population. There are various interventions to protect from arsenic expo-
sure of population through drinking water. Some interventions are short-term and 
required for worst arsenic hit areas immediately while other interventions are sus-
tainable and useable in the long run.

3.3.1  �Short Term

Short-term interventions should target populations, which are at the highest risks of 
arsenic toxicity. For these populations immediate action would be to provide with 
acceptable and affordable arsenic removal technologies at community and house-
hold levels, switching to deep wells and treatment of surface water.

Arsenic removal technologies  While selecting any technology, it is necessary to 
consider long-term sustainability, operation/maintenance requirement, engagement 
of stakeholder and socio-economic status of the community (Bhattacharya et  al. 
2017). In addition to arsenic removal technologies developed by PCRWR in 
Pakistan, there are other similar technologies developed in India and Bangladesh 
and found effective. These can be modified and adopted in Pakistan. Ion exchange 
and membrane purification methods are hi-tech, require more costs and well-trained 
personnel to operate therefore these methods are not suitable for Pakistan (Luqman 
et  al. 2016). Oxidation and precipitation methods are better options for Pakistan 
(Luqman et al. 2013).

Coagulation and flocculation  This involves co-precipitation and subsequent coagu-
lation. This process uses a locally available material such as alum, iron sulfate and 
iron chloride. This system has relatively low cost and simple in operation. However 
needs pre-oxidation and has low arsenic removal capability (Ahmed et al. 2005).

Jerry can system  In this system, there is a adsorption followed by precipitation 
and sedimentation. It has a capacity of 50 L. Lifetime cost is 35,000 PKR and yields 
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73,000 L of water (Luqman et al. 2016). This system can be adopted in rural areas 
because of its cost-effectiveness.

Arsenic removal using bottom ash  This uses coal ash, which is easily available 
from coal power plants and combustion units. This ash is combined with Fe(OH)3. 
Life time cost is 8400 PKR and yields 73,000  L (Berkeley Arsenic Alleviation 
Group 2007). Initial and total costs of this system are low which make this system 
affordable for poor rural communities.

Solar distillation  This method uses sunlight for evaporation of water and subse-
quent condensation. This is eco-friendly technology, and it can provide arsenic-free 
water at a very low cost (Pearce and Denkenberger 2006).

Gravity flows arsenic removal technology  In this system, two plastic pitchers are 
placed over one another. There is a layer of silver coated sand on which different arse-
nic removal media can be used. Compared to other methods, it is more costly (156,000 
PKR for 73,000 L), but mass production will bring the costs downs (Tahir 2004).

Kanchan arsenic filters  This system uses iron nails, brick chips, fine and coarse 
sand, and gravel filters. It can filter water at a rate of 15–20 L/h (Ngai et al. 2007). 
The cost for 80,000  L filtered water is approximately 4500 PKR.  This is also a 
cheaper option for arsenic removal at the household level.

Successful implementation of these technologies depends upon strong advocacy, 
sustained behavior change communication strategy, ownership by communities and 
government and availability of materials required for operations in the local mar-
kets. Most of the arsenic-exposed people are often rural poor, and may not be able 
to pay for the installation of such units. In this regard, the government can provide 
arsenic removal units at subsidized costs. Further production of these units and 
materials locally at a mass level should be encouraged to bring costs further down. 
Another important consideration for arsenic removal technologies is the disposal of 
exhausted/concentrated media. Improper disposal may lead to contamination of 
nearby water sources. Regeneration of adsorption media is a feasible option even in 
distant localities, where local trained persons can regenrate used adsorption media 
(Jiang et al. 2012).

Well switching  Well switching is another strategy for the provision of arsenic-free 
water in short terms (Van Geen et al. 2002). The first option is to switch to safer 
wells. In this regard, the first step is to mark safe and unsafe wells with green and 
red colors respectively in a locality so that the community knows which well to use 
for drinking purpose. The second step is to promote well sharing within communi-
ties. An alternative option for areas where no safe wells are available is to dig deep 
wells. Studies have shown that deeper wells have low arsenic concentrations and are 
safer for use. However, while implementing well switching it is important to con-
sider the following point;
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•	 Considering local geological and hydrogeological features.
•	 Site approval by authorities.
•	 Regulated withdrawal as massive withdrawal may lead to movement of shallow 

water with high arsenic concentrations to the deep water and contaminate it.
•	 Continuous monitoring of new wells for arsenic and other parameters.

This needs active involvement of communities in the process of technical sup-
port from the government and/or NGOs. Effective behavior change communication 
strategy is essential to raise the awareness of communities about arsenic and chang-
ing behaviors for well sharing and switching (Balasubramanya et al. 2014; Bennear 
et al. 2013).

Water treatment options  In areas where deep wells cannot be used as an alter-
nate source of water, surface water such as river, ponds and harvested rain water 
may be treated to make fit for human use. In this regard, establishing water treat-
ment plants with rapid sand filtration and chlorination facilities is needed in prior-
ity areas that are the worst arsenic hit. The public health engineering departments, 
local governments, and municipal corporations should work in coordination for 
the provision of treated surface water. For domestic use, the package -type slow 
sand filters are low-cost technology for medium size settlements in arsenic 
affected areas. They are efficient in the removal of turbidity and microorganisms; 
however, if the bacterial contamination is very high, there may be a need for chlo-
rination (Ahmed et al. 2005).

3.3.2  �Long Term

In areas of arsenic contamination long-term options to protect harmful exposure of 
population include; piped water supply, monitoring of water sources and data man-
agement and social mobilization and advocacy. The section that follows provides an 
account of these options.

Piped water supply  There is a need to provide a piped water supply from arsenic 
free sources. In this regard, the government needs to allocate resources and develop 
infrastructure to ensure a continuous supply in the long run to the communities 
affected by arsenic contamination. This supply could be in the form of house con-
nections, yard connections or standpost depending on the availability of the 
resources and affordability of the communities. Standposts have been found to be 
the most cost-effective options compared to new hand pumps and arsenic treatment 
units (Singh 2017a).

Micro-watershed management system  Through this system, rainwater can be 
stored and treated to be provided to the communities to meet their household 
requirements. For this purpose, surveys should be conducted to identify appropriate 
locations for storage, based on rain patterns. Unequal distribution of rain throughout 
the year requires larger storage capacities to provide continuous water supply.
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Soil and sub-surface soil investigation  There is a need to continuously assess the 
quality parameters of soil as this affects the arsenic content in the water. This will 
provide data to be used in the further planning of well digging and agriculture.

Institutional arrangements  A clear policy guideline and framework should be 
available to carry out arsenic mitigation activities. This should be supported with the 
capacity building of personnel at all the levels such as field-testing, geographical 
data analysis and interpretation and diagnosis and management of arsenicosis. 
There should be clear guidelines on a partnership with NGOs and the private sector 
to maximize the benefits of arsenic mitigation and reach the population most vul-
nerable to the health effects of arsenic.

Research and information  There is a need to research to develop new effective 
and affordable technologies for arsenic removal and assess the feasibility in the 
communities. Further research is needed in the area of epidemiological studies to 
assess the burden of health effects due to arsenic exposure. There should be a sys-
tem of regular data on surveillance of water sources and physical and chemical 
features of the soil. This data should be used for the planning and management of 
water sources.

Social mobilization and advocacy  Active involvement of communities is central 
to the success of any intervention. There is a need to mobilize communities through 
effective and sustained behavior change communication strategies. Heath education 
regarding arsenic exposure and prevention through various media should be pro-
vided to the communities. Although these interventions are effective in preventing 
arsenic exposure in the short and long run but these need to be supplemented with 
continuous political commitment, adequate financial resources and institutional 
framework for arsenic mitigation. These interventions can be supplemented with 
the use of information and computer technology such as the development of arsenic-
related database available to the researchers, policy makers and the general popula-
tion (Singh 2017b).

4  �Conclusion

Pakistan is an agrarian country with almost two-third of its population using ground-
water for drinking and irrigation purposes. Various large and small-scale studies 
have reported widespread contamination of groundwater sources across its length. 
Millions of people are potentially exposed to unsafe levels of arsenic through drink-
ing water and are at risk of developing adverse health effects due to continued expo-
sure. Pakistan made some progress initially with the support of local and international 
partners. Nationwide surveys were carried out to assess the extent of contamination, 
which was followed by the development of the National Action Plan for Arsenic 
Mitigation. Arsenic mitigation efforts failed in Pakistan, and a number of factors 
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played in the failure such as lack of political commitment and ownership by local 
leadership, dependence on foreign aid, lack of sustainability of mitigation efforts. 
Continued exposure of the population to unsafe levels of arsenic may cost Pakistan 
huge economic and health burden in the future. Low-cost arsenic removal technolo-
gies with the availability of raw material in the local markets, well switching and 
treatment of surface water can be considered in short-term. While piped water sup-
ply, micro-water shade management system, soil investigations research and infor-
mation systems are an option in long-term planning for arsenic mitigation. These 
interventions should be paralleled with continuous social mobilization and advo-
cacy and political commitment.
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