
Chapter 17
On Performance: From Hardware
up to Distributed Systems

Igor Schagaev, Hao Cai and Simon Monkman

Abstract Nothing is easy nowadays: frequency of processors increased thousand
times, system performance as a whole sometimes tripled. Complexity of the system
became uncontrollable with zillions of processes and elements to juggle increased
unconsciously, leaving for us some comfort but at an astronomical cost. What it
means? We are doing something seriously wrong and doing it consistently and
persistently. Thus, authors of this work have decided to put together our own dis-
cussions and estimations we did since 2002 up to now. We show that system per-
formance depends on user, hardware, and software, structure or architecture of a
system and its topology.We propose to see performance analysis a bit wider, thinking
systematically what various zones of computer or distributed system can bring or
contribute, including the role of processor, structure of system software and over-
valued parallelization (try to eat and dance at the same time—it might be fun). We
have introduced a kind of virtual architecture through which see instruction execution
considering what is in there for us andwhat system requires for itself. The observation
is rather pessimistic. We have briefly demonstrated what simplest architecture if
carefully designed can give regarding performance, reliability and energy efficiency
AT THE SAME TIME! Regarding distributed systems, we show that Amdahl Law is
also very overoptimistic mostly serves to promote parallel architectures and dis-
tributed systems. Simple model that we have explained for kids from British primary
school and even did field study with them so-called “fence model”made clear that the
limit of performance or simply overall reasonably good design is unachievable until
we start rethinking the whole architecture and its main element interaction—human,
hardware and system software together, pursuing three nonfunctional requirements,
performance, reliability, and energy efficiency in concert.

As it was presented and argued in [1–6] any system should be considered from the
first sketch down to maintenance using the following nonfunctional requirements:

Performance;
Reliability;
Efficiency (cost, energy).

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_17

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_17

We call it PRE-requirements. When a system can trade P for R or E and vice versa
we call this system PRE-smart system. This chapter is about “P”—performance.

Any system is evaluated in terms of performance, considering performance of
elements and system as a whole. Good systems exceed performance of their
components, or equal production of component performance; badly design system
in terms of overall performance is much less than production or sum of perfor-
mances of its components. Regretfully, computer systems are poorly designed if we
accept this classification. This chapter is about performance and ways to analyze it.
We also will model computer system from the position of performance and seeking
the ways to improve it, considering use and system performance aspect.

17.1 System Level

Suppose one element has performance Pi; then system of n elements if we can add
performance will have maximum performance as n*Pi, i.e., linear growth is assumed.
Unfortunately, one has to take into account that external interaction zone (Fig. 17.1)
and task structure reduce our expectations about unlimited performance growth.

ACTIVE
ZONE (AZ)

EXTERNAL
INTERACTION
ZONE (EIZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

Fig. 17.1 System level of distributed computing

222 17 On Performance: From Hardware up to Distributed Systems

Then performance growth is defined as a function of number of elements and
EIZ:

Ps ¼ fðEIZ; nÞ ð17:1Þ

where EIZ stands for external interacting zone, n—number of “performers” con-
sidered only by performance, not the organization.

Thus, structure of EIZ and its dynamic features (ability to connect transparently
arbitrary number of elements with heavy information exchange requests) will
impact on system performance of both: system level of performance and element
level of performance (Fig. 17.2).

One has to address EIZ features as well as properties of program structure to
achieve reasonable gain in performance. System performance-wise program
structure itself impact is crucial, as well as ability program to split into independent
elements. This ability, in turn, is limited; this causes substantial amount of traffic
through EIZ and, therefore, kills performance gain.

17.2 Information Processing Aspect

On the information processing level, consider a system as a black box with input
x and output y, with arbitrary function F, Fig. 17.3, top box.

A function or a task of this box in Fig. 17.3 is to get a result y from an input
x within allocated time and, if necessary, alter appearance of x in the time slot
expected.

Contrasting with mathematical assumptions, for information processing, in
principle, input and output timing is loosely dependent, input x might have its own
duration while readiness of output y has its own duration, both might overlap, see
Fig. 17.4.

A special interest might be in resolving the following cases: how form of x
defines (is connected) with function and form of y. Comparative study of durations
x and y might be interesting research for embedded systems especially.

P E
R

FO
R

M
AN

C
E

NUMBER OF ELEMENTS

Fig. 17.2 performance
versus system structure

17.1 System Level 223

Function F

First
appearance

of x

First
appearance

of y

Function F

Fig. 17.3 System as a black box, with arbitrary function F

DELIVERING x

PROCESSING y

Fig. 17.4 Input appearance might be overlapped with outcome

224 17 On Performance: From Hardware up to Distributed Systems

17.3 Information Systems Task-Wise Hardware Involved
Performance

Information system is a combination of three wares: userware, software, and
hardware, UW, SW, and HW, respectively (Fig. 17.5).

Thus information processing system might be described in terms of performance
of all three: UW, SW, and HW, as they all are involved in information processing.
It means that in the long-run performance and efficiency of the system depends on
userware, software, and hardware performance.

Their combination might have very peculiar form and mix. In terms of Fig. 17.5,
userware, software, and hardware might be connected to perform task as shown in
Fig. 17.6.

For real-time systems (and embedded systems especially), or general applica-
tions, computer systems over 30 years user features were ignored in terms of
overall system performance; it is great regret, we now press much more buttons and
click more clicks than 20 years ago achieving very disputable advantage, if any.

This is a subject of special study in UW-SW-HW systems. Here, we spend some
more time and analyze details of HW only. However, SW, especially system
software (further SSW) has serious impact on performance of hardware, it will be
also shown further.

Performance is about task completion in time allocated. The same principle of
task allocation and analysis might be applied further down, to the whole system

INFORMATION PROCESSING SYSTEM

USERWARE SOFTWARE HARDWARE

Fig. 17.5 Information
system components

INFORMATION PROCESSING SYSTEM

USERWARE

SOFTWARE HARDWARE

yx

Fig. 17.6 Information
system box: x + time = y as
three components, S, H, U

17.3 Information Systems Task-Wise Hardware Involved Performance 225

hierarchy, for any component—UW, SSW, HW, and business management.
Leaving efficiency of management discussion to business schools, we will consider
mostly SSW-HW model.

17.4 SSW-HW Performance Model

Task of user (userware tasks, further (UWT)) splits down at the level of HW as a
series of micro-tasks (instructions, microinstructions). Program tasks are sur-
rounded by another group of micro-tasks that define the system software
(SSW) involvement on execution of the user program, secure a completion, and
system resource monitoring.

Thus, userware tasks UWT are accompanied by another group of micro-tasks
defined by the system software (system software tasks, further SSWT) (Fig. 17.7).

This total amount of hardware workload in number of instructions Wux to per-
form user task x can be expressed as in Eq. 17.2 where i, j indexes stand for number
of hardware instructions required to complete supportive actions (system software
need) and user ones (1):

Wux ¼
Xm

j¼1

hjðsswtÞþ
Xn

i¼1

hiðuwtÞ ð17:2Þ

Indexes m and n stand for a system software and user software instructions exe-
cution time. Assuming that all hardware instructions have similar execution time
(for RISC systems it is essential design condition), one might introduce an effi-
ciency of measure as it is shown below, Eq. 17.3:

Eux ¼
Pn

i¼1 hiðuwtÞPm
j¼1 hjðsswtÞþ

Pn
i¼1 hiðuwtÞ

ð17:3Þ

Further, we will dig deeper on performance and efficiency in terms of hardware
impact on performance of the system but here note existing relation of efficiency
and performance.

…UWT SSWT UWT SSWT UWT

Fig. 17.7 User and system
task sequences

226 17 On Performance: From Hardware up to Distributed Systems

Definition 1 Efficiency Eux of computer system is measured by number of
instructions required to perform to the total number of instructions performed by
computer system.

Naturally, efficiency Eux ! 1, while m ! 0, and, no matter what frequency a
processor is if m ! n, Eux ! 0.

Regretfully, it is a case for current state of the art in computer systems and
especially embedded computer systems. What it means for embedded systems
especially?

For various systems, it means that

• Application of Java, or use of modified standard operating system, unavoidably
reduces efficiency and, above all, runs out our computer batteries for nothing;

• For military systems, an availability and reactiveness is substantially lower than
it could be;

• For office systems, nowadays, the employees are sitting and waiting for
Windows or Cisco service more than they actually work.

Leaving further comments about efficiency for system software research and PhD
projects, let’s concentrate on implementation of hardware instructions in terms of
time.

17.5 Hardware Performance

One of the simplest information processing systems is a simple turing machine—
(http://ideonexus.com/2009/02/05/javascript-turing-machine/); it demonstrates in
principle almost minimum of hardware required to perform information processing.
Turing machine usually is drawn similar to mine (Fig. 17.8).

Head is moving left and right accordingly instructions stored on the tape and
modifies content of the tape. Surprisingly, if an algorithm for problem exists, it is
very possible to calculate it and complete.

Turning machine was invented as a model well before Von Neumann’s archi-
tecture. The latter one assumes that programs and data are placed on the same tape
and head Q might perform instructions. More details about this machine might be

i j k l …

Q

Fig. 17.8 A-la turing for
performance evaluation

17.4 SSW-HW Performance Model 227

http://ideonexus.com/2009/02/05/javascript-turing-machine/

found in http://plato.stanford.edu/entries/turing-machine/. What is missing in turing
or Von Neumann architectures is an answer how and when algorithm and data were
placed into the memory (tape in Turing machine). Besides, arrow on the figure is
assumed to connect but not explained how this communication is executed.

17.5.1 Hardware Zones

Thus, from information processing point of view, we have even from this simple
picture involvement of three zones (Fig. 17.9):

• active zone,
• interface zone, and
• passive zone.

Active zone (AZ) includes schemes that change information (processors, convert-
ers). Interface zone (IZ) includes schemes that transfer information from external
source or between AZ and PZ (internal source). Finally, passive zone (PZ) includes
schemes that save or store information.

What is missing in the previous picture? To make any information processing
model useful, we have to introduce input and output options for information.
Each AZ, PZ, and IZ might be active in terms of data flow control (so far not
processing) flags—demand of service, interruption request, message writing/
sending requests, etc. Let us have a look at Fig. 17.10.

All arrows might be different in speed, and use various frequencies and band-
widths, bit size (8, 12, 24, 36, 48, 64, 128) procedures of control, and data delivery
(parallel, sequential). This is still not self-explanatory how we deal with information
exchange. More realistic figure is presented in Fig. 17.11.

Level of information interaction AZ, PZ, or IZ actually defines structure of the
system similar to Flynn diagram (find what is it, dear reader, it might be useful).

In terms of input and output examples of implementation of each zone, one
might suggest the following:

AZ inputs and outputs iAZ and oAZ:

• register content exchange between processors,
• signal write or read to interrupt processor execution,
• mutual exclusion efficiency of multiprocessor communication, and

INTERFACE
ZONE

PASSIVE
ZONE

ACTIVE
ZONE

Fig. 17.9 Hardware
segments of CA of
information processing

228 17 On Performance: From Hardware up to Distributed Systems

http://plato.stanford.edu/entries/turing-machine/

• Direct writing of processor status word down to syndrome register when syn-
drome register is external for AZ—flags N, Z, V, and C all might be sent out.

PZ inputs and outputs iPZ oPZ:

• data or control lines from internal bus,
• data path for memory to upload in AZ,
• writing of the result of instruction to output buffers using bus,
• direct access to memory, and
• dual-port memory.

As a small challenge, we invite a reader to present own examples for IZ input and
outputs.

INTERFACE
ZONE

PASSIVE
ZONE

ACTIVE
ZONE

INFORMATION INPUTS

Fig. 17.10 Hardware segments of CA including information exchange options

INTERFACE
ZONE

PASSIVE
ZONE

ACTIVE
ZONE

INFORMATION INPUTS

Fig. 17.11 Separation of input and output options for each zone

17.5 Hardware Performance 229

17.5.2 Hardware Performance—Instruction Execution

Hardware instruction is implemented using different blocks (zones) that in com-
bination enable to processing.

An example of information tracing through instruction execution is presented in
Fig. 17.13 and serves for further understanding of performance evaluation.

Data might be loaded:

– from external source straight to AZ (instruction type A),
– unloaded from AZ to external source (instruction type B),
– loaded directly to the passive zone (instruction type D), and
– unloaded from PZ to the external source (instruction type C).

Information might be

– processed and loaded to passive zone (instruction type H),
– retrieved from PZ into AZ to be processed (instruction type K), or
– processed in AZ and unloaded to PZ.

In fact, interface zone is involved in almost any information transfer internal or
external, and in both directions inbound and outbound. It means that the perfor-
mance of IZ contributes to overall performance of information processing. Special
and most promising architecture will be discussed further that limit the role of IZ on
overall performance of the computer system.

Other types of instruction not shown might combine the proposed types of
instructions.

Let us elaborate a bit what Fig. 17.12 illustrates. Information can come exter-
nally through interfacing zone IZ and stored in active zone for further processing—
A-type instruction.

From active zone (Arithmetic unit or logic unit or several of them), information
through interfacing zone can be transferred out—B-type of instruction.

Well-known good old days direct memory access (DMA)—C-type instruc-
tions—are about disabled active zone and read data directly from passive zone
(including registers and all types of memory).

The same way information might be loaded into passive zone—D-type
instructions—and this is very useful for embedded systems.

In turn, self-isolated instructions, E-type, are about using only active zone and
keeping results inside it—sometimes not even addressable at the level of registers—
accumulators, signs, or working register.

When instruction processes data, the result can be transferred down to passive
zone through interfacing zone—F-type.

Opposite data move: G-instruction are required to deliver data for further
processing.

Well away from RISC architectures, instructions can have several cycles of data
processing and include result transfer down to passive zone: H-type of instructions.

230 17 On Performance: From Hardware up to Distributed Systems

Last century architectures which are still procrastinated electronic technology by
orthodox instruction sets include two types of instructions, I-type and K-type. These
two assume that data is taken from passive zone and delivered to active zone, where
sometimes after several cycles of processing go back to passive zone (for I-type).

K-type serves the purpose to grab data from passive zone and process, saving
results inside active zone for immediate further use.

Please note that passive zone is not starting any instruction; instruction is either
initiated by external zone or by active zone. There are some natural questions we
might ask here:

AZ

IZ

(a) (b) (c) (d)

(e) (f)

(i) (j)

(g) (h)

AZ

IZ

PZ

AZ

IZ

PZ

AZ

IZ

PZ

IZ

PZ

AZ

IZ

PZ

AZAZ

IZ

PZ

IZ

PZ

AZ

AZ

IZ

PZ

AZ

IZ

PZ

Fig. 17.12 Types of instructions

17.5 Hardware Performance 231

Why we need to have a look on these types? why we need to know instruction
formats at all?

The answer is simple:
Assuming sequential execution of the instructions, one can estimate an overall

performance of hardware for particular tasks and task mix. Each zone has its own
specific features in terms of performance and interaction with other zones.

Thus passive zone includes several sources of memory (Flash, SRAM, DRAM)
that have different control schemes and timing diagrams, and while involved in
instruction execution cause a lot of uncertainties. Interfacing zone might be different
in control protocols, width, performance, and reliability.

Two examples of instruction execution using all three zones are shown in
Fig. 17.13.

Hiy is loaded from external source, saved in passive zone PZ, and retrieved into
AZ to be executed; when results are ready, they are delivered back to IZe, where
index e stands for external.

Another type of instruction shown describes the load of HIy to AZ, executed in
several iterations (or just one) and saved back in PZ.

Data might be processed by instruction when data come from external source
directly to the active zone and after processing goes directly to PZ, or when data
follow reversed order, from passive zone to active zone for processing and then to
external destination.

Data go directly to passive zone—well-known direct access to memory, or when
data are dread by external source—direct reading from memory.

Finally, there is a group of instructions in modern hardware that is assigned for
reading or writing from or to external source and when data retrieved and processed
in active zone.

Passive zone is not starting any instructions either initiated by external zone or
by active zone.

AZ

IZ

PZ

AZ

IZ

PZ

Hiy

Fig. 17.13 Complex processor instruction from the previous century

232 17 On Performance: From Hardware up to Distributed Systems

In turn, active zone might consist of (even within a mobile telephone) several
information processing units for parallel execution of tasks or specific sequence of
instructions such as data coding and signal processing. Detailed description of the
zones, and their involvement in instruction execution, therefore, might help to
estimate the performance of embedded device.

17.5.3 Performance Estimation—Instruction Timing

To do performance estimation of embedded and any other computer system, we
have to assume following points:

• Mix of instructions with weight of all types of instructions defining the system
performance.

• Time required to perform any instruction—it is worth to separate AZ, IZ, and PZ
when instruction is executed.

• Note that instructions that use IZ (external) part are not defined in completion
time.

Thus, a mixture of presented types of instructions with taken into account an
amount of each of them is a good reflection of overall hardware performance.

In other words, hardware performance might be calculated by summarized
length of the instructions required to process user task. Let us consider what is AZ
and others in terms of overheads:

Tinstruction execution ¼ TzþTizþTpz ð17:4Þ

Obviously, the shorter the cycle of instruction, the better the instructions of A, B, C,
D, E, F, and G types that are preferable. It is possible to calculate what difference
one might face if use H, I, and K types of instructions, but it is clear that 10−9, 10−5,
and 10−6 do not fit together well.

It is worth to analyze active zone performance in terms of instruction execution
phases:

• Loading,
• Decoding an instruction,
• Preparation of operands,
• Execution of the instruction, and
• Loading back modified operand

Loading means that instruction from memory goes to the load register in parallel
with increment of program counter (inside processor) and goes through decoding
scheme that activates requires activation operands and execution device ALU.

Decoding means that instruction (loaded from memory) is placed in the internal
register (not always addressable) inside processor and by special timing diagram

17.5 Hardware Performance 233

section all hardware links activated: for ALU, operand’s addresses and signs (such
as N, Z, V, C).

Preparation of operands means that input ports are activated and buffers for
instruction data are enabled. For big instructions, it means that instruction execution
will be postponed until all memory cycles required to upload operands in processor
are complete.

Execution of instruction assumes that ALU (or combination of them) are ready
and perform instruction from operation field (ADD, SUB, etc.) in assumption that
required operands are ready and delivered from memory (or registers) to internal
buffers.

Thus, performance of active zone might be estimated as

PerfAZ ¼ 1
TAZ

ð17:5Þ

while
Taz = Tloading + Tdecoding + Tpreparation of operands + Texecution + Tloading back

Pretty much the same one might do with passive and interfacing zones.
Let us have a look for illustrative purposes how instruction is executed by

recoverable processor (ReP) made by ITACS Ltd. and prototyped with partial
support by grant of FP6 www.onbass.org (Fig. 17.14).

At first from instruction register through control unit via control bus microin-
struction goes to either AU or LU. At the same time, microinstruction about

!Instruction
Register

Control
Unit

Register
File

Rbuf(R*) AU

3-state
3-state

MUX

MUX

Control Bus Data Bus

Data outData in

Hardware for Error Detection (P1)

Hardware for Error Recovery (P2)

Hardware for Data Manipulation (P3)

Check
GNR

Check

Check

LU

Fig. 17.14 REP structure

234 17 On Performance: From Hardware up to Distributed Systems

operands of instruction goes to register file and chosen operands go via three-state
buffers down to either AU or LU. When all signals are arrived and timing diagram
cycle is competed, information processed and arrived at the last right three-state
buffer.

When confirmation from checking schemes arrives, i.e., no errors are detected,
the right three-state buffer will release information to deliver either back to register
file or through interfacing zone out of processor to the memory or bus.

The picture of prototype of ReP (Fig. 17.15) might be useful to analyze from the
performance point of view and organization of embedded system.

Clear visible active zone and passive zone as well as board traces define per-
formance of ReP. Interesting bit of this design is limitation of instructions com-
plexity; only simple instruction to get or put data from and to outside world, store
and read data from active zone, and process data inside active zone are allowed.

Thus, when we need fast calculation, processor is performing it with maximum
frequency, without waiting of memory of IZ. In turn, clear read/write instructions
limit slow down from interaction with external world.

Fig. 17.15 Prototype of ReP

17.5 Hardware Performance 235

17.5.4 Standard Performance Tests

When we need to have a standard performance estimation, one might use SPECint.
SPECint is designed to measure processor speed and compare various hardware.

There is a special company to look after this:
SPEC = Standard Performance Eval. Corp., their website is www.spec.org

What is widely known at the moment is SPECint2006.
SPECint2006 includes 12 tests (all in C/C++)—perlbench, gcc, bzip2, …,

xalancbmk.
One can create performance comparison of embedded devices of processor

overall 12 tests. Then, designed system might be 12-dimensional evaluation of the
known system. Therefore, application segment relative performance might be
known. For more details about standard performance, see

http://www.spec.org/cpu2006/results/cint2006.html.

17.5.5 Real Processor Hardware Comparison

The performance of processor is reduced if instruction uses intensively data traffics
between memory and active zone. Today, a top-of-the-line x86 microprocessor runs
at 3–4 GHz, while the memory runs at 100–500 MHz.

The time to execute an instruction inside a CPU is almost negligible in contrast
with access memory time. In other words, the performance of architecture depends
on memory traffics.

Proposed recently by ITACS performance of ReP is evaluated by the compar-
isons with 80 � 88 architecture and MIPs’ instruction architecture.

Simple instructions dominate this list and are responsible for 96% of the
instructions executed. These percentages are the average of the five SPECint92
programs [7].

Various mixes of instruction cover different applications. However, we can
evaluate the CPU performance based on the average case as illustrated in
Table 17.1. Within this evaluation, we assume loading data and storing data into
memory takes equal time.

The execution time comparison between 80 � 86 and ReP is shown in
Table 17.2.

MIPs dynamic instruction mix for five SPECint2000 programs (gap, gcc, gzip,
mcf, and perl) is presented in [7]. The execution time comparison between MIPs
and ReP is shown in Table 17.3.

Table 17.4 compares the performance of MIPs and ReP.
Modern embedded systems need efficient cost–performance ratio and very often

minimize power consumption. One of the design options is as it was mentioned
above the design as much as possible and therefore reduce the hardware overheads.

236 17 On Performance: From Hardware up to Distributed Systems

http://www.spec.org/cpu2006/results/cint2006.html

Table 17.1 Comparative ratio of memory use for ReP and 80 � 86

No. 80 � 86 instruction ReP instructions Integer average (%
total executed) (%)Instructions Memory traffic Instructions Memory traffic

1 Load 2L LD Ri, Rj 2L/2 22

2 Conditional
branch

1L XOR Mask,
Rj

1L/2 20

CBR Ri, Rj 1L/2

3 Compare 1L CND, Ri, Rj 1L/2 16

4 Store 1L, 1S ST Ri, Rj (1L + 1S)/2 12

5 Add 1L ADD Ri, Rj 1L/2 8

6 And 1L AND Ri, Rj 1L/2 6

7 Sub 1L SUB Ri, Rj 1L/2 5

8 Move 1L MV Ri, Rj 1L/2 4

9 Call 1L MV Ri, Rj 1L/2 1

CBR Ri, Rj 1L/2

10 Return 1L MV Ri, Rj 1L/2 1

CBR Ri, Rj 1L/2

Total 96

Table 17.3 Comparative ratio of memory use for MIPs and ReP

MIPs instruction ReP instructions Integer average (%)

Instruction Memory traffic Instruction Memory traffic

Load 2L LOAD 2L/2 26

Add 1L ADD 1L/2 19

Cond branch 1L Compare 1L/2 12

XOR 1L/2

CBR 1L/2

Store 1L, 1S STORE (1L+1S)/2 10

Or 1L OR 1L/2 9

Compare 1L Compare 1L/2 5

And 1L AND 1L/2 4

Sub 1L SUB 1L/2 3

Xor 1L XOR 1L/2 3
(continued)

Table 17.2 Comparison of execution time for 80 � 86 and ReP

Processor and instruction mix Ratio

80 � 86 22%* 2L+20%*1L+16*1L +12*2L +8*1L +6*1L +5*1L +4*1L +2*1L ¼1.66

ReP 22%* L+20%*1L+(16*1L +12*2L +8*1L +6*1L +5*1L +4*1L)/2 +2*1L

17.5 Hardware Performance 237

Thus, complex instructions of most processors for embedded systems are
implemented by a sequence of simple instructions. For embedded systems, there is
therefore developed set of performance evaluation, so-called embedded
benchmarks.

17.5.6 Embedded Benchmarks

Benchmarks for embedded computing systems vary accordingly applications due to
RT, HRT, PW, and CW performance requirements where RT stands for real time,
HRT means hard real time, PW is power-wise and CW is cost-wise performance
requirements, respectively.

That is why material presented above is important. There is one a bit more
known benchmark developed by Embedded Microprocessor Benchmark
Consortium (EEMBC). It has five categories: automotive/industrial, consumer,
networking, office automation, and telecommunications.

Selecting Table 17.5 what this benchmark is (taken from Hennessy book rec-
ommended earlier), full site consists of 34 kernels in five classes.

Table 17.4 Comparative performance of MIPs and ReP

Processor and instruction mix Ratio

MIPs 26%* 2L+19%*1L+12*1L +10*2L +9*1L +5*1L +4*1L +6*1L +8*1L ¼1.67

ReP 26%* L +(19*1L +36L +10*2L +18*1L +6*1L)/2 +5*1L

Table 17.3 (continued)

MIPs instruction ReP instructions Integer average (%)

Instruction Memory traffic Instruction Memory traffic

Load imm 1L LOAD 2L/2 2

Shift 1L SHIFT 1L/2 2

Cond move 1L COMPARE 1L/2 1

XOR 1L/2

CBR 1L/2

MOVE 1L/2

Jump 1L MV 1L/2 1

CBR 1L/2

Call 1L MV 1L/2 1

CBR 1L/2

Return 1L MV 1L/2 1

CBR 1L/2

Total 99

238 17 On Performance: From Hardware up to Distributed Systems

17.6 Relative Performance Gain—Amdahl’s “Law”

Relative gain in performance usually called “Amdahl’s law”. Well, law in terms of
science, not society, is “a regularity in the material world” (Shorter Oxford English
Dictionary, 6e, Vol 1). Thus, naming simple proportion of performance after
improvement Pai with performance before improvement Pbi is, to put it politely, too
ambitious.

Speedup ¼ Pai

Pbi
ð17:6Þ

But this proportion is useful to evaluate success of the modification of processor
structure after re-iterative design. What is interesting here is that arithmetic
expectation of linear growth of performance by improving element performance
(Figs. 17.1 and 17.2) has nothing near to the real situation.

17.6.1 Distributed Computing

In the late 1960s, an idea for the parallelization of computer program using dis-
tributed computing paradigm instead of single-processor scheme was proposed [8].

It was declared that parallelization of tasks and programs and use of available
distributed hardware for support of parallel execution is the most feasible way to
boost system performance.

Later, Sun [9] introduced “system fallacies” of distributed computing
(Table 17.6). Omitting topologic factors and paying attention to Fallacy 2, 3, and 7,
we discover that these fallacies fit into the area of parallel, closely connected
computers with multiprocessors—in fact, all modern computers.

Table 17.5 EEMBC benchmark suite

Benchmark type This
type

Example benchmark

Automotive/
industrial

16 Six microbenchmarks (arithmetic operations, pointer chasing,
memory performance, matrix arithmetic, table lookup, bit
manipulation), five automobile control benchmarks, and five
filters or FFT benchmarks

Consumer 5 Five multimedia benchmarks (JPEG compress/decompress,
filtering, and RGB conversions)

Networking 3 Shortest-path calculation, IP routing, and packet flow operations

Office automation 4 Graphics and text benchmarks (Bezier curve calculation,
dithering, image rotation, text processing)

Telecommunication 6 Filtering and DSP benchmarks (autocorrelation, FFT, decoder,
and encoder)

17.6 Relative Performance Gain—Amdahl’s “Law” 239

If we look harder, these fallacies might be not strong enough and some of the
declared features described became obsolete.

Besides, again, when definition includes eight other elements that are not con-
nected or have vague relation to each other, it seems odd or at least inconsistent.

If we follow Sun definition, we are not including Internet into the distributed
computing even as a supportive hardware infrastructure. Anyway, we’ve proposed
our own définition of distributed computing:

Definition 2 Distributed computing is a paradigm that assumes an execution of
functionally connected tasks as a single process over distributed media and
resources.

Clearly, a joint collaborative work of thousands of processors at once might
bring substantial profit for both loosely connected tasks (when they share HW
resources, but not logically connected, such as Google cluster), or closely tight
models that include of several thousands of DE.

But in the second case, it is much harder to get the gain from distributed
computing, and it is not a surprise.

Amdahl described drawbacks of distributed computing in the late 1960s [8],
highlighting that even small parts of a program must be parallelized to reach their
full potential. This way linear growth of speedup is not possible at all.

In other words, if 1 is a length of a sequential program and we have managed to
parallelize p fraction of it, then sequential part is shrinking down to 1 − p, while
parallel part requires p/n time where n stands for number of processors, (3) and
Fig. 17.16.

S ¼ 1
1� pþ p=n

ð17:7Þ

17.6.2 Real Performance and Amdahl “Law”

The proportion Eq. 17.7 is useful to evaluate a success of the modification of
processor structure in re-iterative design. What is interesting here is that the
expectation of linear growth of performance by improving element performance
(Figs. 17.1 and 17.2) has nothing near to the real situation.

Table 17.6 Sun fallacies of
distributed computing

1 The network (distributed system) is reliable
2 Latency is zero
3 Bandwidth is infinite
4 The network is secure
5 Topology doesn’t change
6 There is one administrator
7 Transport cost is zero
8 The network is homogeneous

240 17 On Performance: From Hardware up to Distributed Systems

It means that if we make super parallel execution of 80% of a program, we still
have to complete another 20% sequentially. The number of speedups versus number
of processors as a family of functions is presented in Fig. 17.16 taken from [8]

17.6.3 A Fine-Tuning of Parallel Speedup Model

The theory behind computational work in parallel has some limitations that reduce
the advantages of parallelization. Usually, the goal in large-scale computation is to
get as much work done as possible in the shortest time within the budget.

Furthermore, the system can be considered good and well-designed when it is
able to get a big job done in less time, or a bigger job done in the same amount of
time without any problem; in other words, a system should be a scalable.

Therefore, the power of a computational system can be represented as the
amount of computational work done, divided by the total time it takes to do it. It is
important to emphasize that usually the aim is to increase power per unit cost, or
more importantly nowadays, cost–benefit, and in this regard physics and economics
conspire to limit the raw power of individual single-processor systems available to
perform any particular piece.

Fig. 17.16 System speedup by Amdahl [8]

17.6 Relative Performance Gain—Amdahl’s “Law” 241

It is agreed within the research community that the cost–benefit scaling of
increasingly power single-processor systems is usually nonlinear and very poor. For
instance, one processor that is twice as fast might cost four times as much, yielding
only half the cost–benefit per pound.

Physics sets its own limit as well—a so-called “thermal barrier” [5]—an amount
of heat that material is capable to dissipate is limited making endless increase of
frequency of operation impossible.

These two arguments are usually applied to justify alternative solutions and
development of parallel designs. There are some drawbacks though, as Amdahl
pointed out, and they are serious.

Let us rewrite Amdahl ratio in terms of time: T(N) will be the time necessary to
finish the task on N processors. The speedup S(N) is expressed by the ratio
(Eq. 17.8):

SðNÞ ¼ Tð1Þ
TðNÞ ¼

Tsþ Tp
Tsþ Tp=N

ð17:8Þ

In many cases, the time T(1) possesses, as represented above, both the serial part Ts
and the parallelable part Tp.

Unfortunately, Amdahl ratio ignores a role of runtime system tasks (see first
section of this chapter) that must be considered when a parallel execution is
assumed.

A more detailed analysis of parallel speedup would include two more parameters
of interest, namely,

– Ts—the original single-processor serial time;
– Tis—the average additional serial time spent performing, for example,

inter-processor communication (IPCs), see Fig. 17.1, where it is introduced as
EIZ, setup, and so forth in parallelized tasks. It is important to note that this time
can depend on N in a variety of ways; nonetheless, the simplest assumption is
that each system has to spend this much time one after the other, so that the
additional serial time is, for example, N*Tis;

– Tp—the original single-processor parallelable time;
– Tip—the average additional time spent by each processor performing just the

setup and work that it does in parallel; this may as well include idle times, which
is also very important and should be accounted for separately.

The most important element that contributes to Tis is the time required for
communication between the parallel subtasks. This communication time is always
there—even in the simplest parallel models where identical jobs are farmed out and
run in parallel on a cluster of networked computers, the remote jobs must begin and
be controlled with message passing over the system.

In systems with more complex jobs, partial results developed on each CPU may
have to be sent to all other CPUs in the distributed computing system for the
calculation to proceed, which can be very costly in scaled time. The (average)

242 17 On Performance: From Hardware up to Distributed Systems

additional serial time (Tis) plays an extremely important role in defining the
speedup scaling of a given calculation.

Most computer systems process information sequentially. Lines of code in a
computer program get translated into assembly language by the compiler, and the
latter gets decoded into microcode in the processor. Everything and every step
along the way is done sequentially. For example, a flowchart processing usually
includes multiplication or comparison of two digits; it starts with the first digit, and
then the second digit is introduced and the working register is set to 0.

To explain what is real and what is not and why Amdahl rule is mostly mis-
leading, we have developed a simple model—so-called “fence making model”,
illustrated in Fig. 17.17 and following expert recommendations [10].

17.6.4 Parallel Versus Sequential: A Fence Model

Our task is to make a fence with N planks and two horizontal rails; each plank needs
two nails and has to be “preprocessed”. Two rails have to be placed at the
assembling site. Each plank needs to be placed at site and finally nailed. We also
need hammers and nails and sequence and instruction to operate.

Task requirements: number of planks N; number of rows—2. Each plank needs
to be nailed half-way through before placement for final processing and assembling
a fence.

N Planks

Fig. 17.17 Fence model of processing

17.6 Relative Performance Gain—Amdahl’s “Law” 243

There are two principally different options to make this fence:

(A) by distributing tasks;
(B) by making all tasks on site sequentially.

In case (A), distributing task scheme assumes the existence of agents–workers and
distributers and their abilities to act:

– N workers for plank processing are available and ready;
– a distributor of the nails is in place;
– a distributer of the hammers is in place;
– a distributer of the planks is in place;
– a distributer of rails is in place;
– a collector of the fence segments initially is and placing the planks;
– nailing the planks at two rows are performed by workers;
– collecting the hammers is performed; and
– garbage collector is in place and completes the task execution.

Case (B), in turn, assumes that the same worker is doing all actions, like “a jack for
all trade”, has one hammer, bucket of nails, and does the following:

– takes nails;
– planks where they are;
– half-nail planks;
– places them on the rails;
– nails them all;
– place fence where necessary, collect garbage.

Let us consider the process of making the fence from N planks in more details for
both cases, assuming that nails, hammers, planks, and rails are ready and placed in
the local warehouse (storage and executed by “a system officer”, while workers
execute user task). Sequences are presented in Table 17.7.

Our task now is about giving elementary time slot te and constant coefficients
equal for both variants of fence processing to prepare two variants of the fence
completion as a sequence of steps for A and B cases. This will illustrate a gain from
distribution of works.

We need to compare these cases as well as explain what is possible to prepare in
preprocessing and what is possible only during operation. One might find useful to
make a table of all works mentioned and using own experience and case estimate a
concrete gain for concrete case.

Now we have to answer the following questions:
When distributed computing is efficient in comparison with sequential;
What impact system software makes on parallelization of task and efficiency of a

system.
It is clear that planks are data, nails and hammers are programs to process data

on site, and distributer is runtime system.

244 17 On Performance: From Hardware up to Distributed Systems

Let us leave an arithmetic exercise with various values of parameters from job
descriptions above to good master students.

Our estimation indicates that overheads of runtime system for distributed exe-
cution might achieve almost 60% of user task cost (time). We add in denominator
of (5) a coefficient k, a relative value of system software overheads per user task
(Eq. 17.9):

y ¼ 1
ð1� pÞþ kþ p

x

; x ¼ f1; 2; . . .; 10g; p ¼ f0:85g; k ¼ f0; 0:1; 0:4g ð17:9Þ

Following Eq. 17.9, the graph of Fig. 17.16 presents three curves in three colors:
green, blue, and red k = 0, 0.1, 04, respectively. The top one stands for known
“pure” Amdahl ratio (k = 0).

Figure 17.18 shows that for extremely good runtime system, one can double
performance with 4 cores. It is still too optimistic statement, especially recalling
Multics 85% and Window 65% of total workload time.

Table 17.7 Parallel versus sequential execution in more details

Parallel operation Sequential operation

Distributor Distributor

Gets pack of planks Activate worker

Distribute planks Check garbage left

Distribute rails

Distribute nails

Distribute hammers

Distribute planks along rails

Activate N workers start

Collect hammers and left garbage

Place two rails in assembling area

Clean garbage

Worker Worker

Receive planks Gets packs of planks

Receive nails Gets buckers of nails

Receive hammer Gets a hammer

Preprocess plank (two nails nailed half-way
through)

Places (distribute) planks to the
assembling area

Spread planks along rails (fine-tuning) Places rails in assembling area

Nail plank (two nails) to the rails at the final
assembling

Preprocess N planks (two nails per each)

Prepare to final assembling Places (distribute) planks along the rails

Nails N planks Assemble fence Clean
garbage

17.6 Relative Performance Gain—Amdahl’s “Law” 245

17.7 Conclusion

• Hierarchy of performance models is proposed from the point of view of in-
formation processing.

• Shown that calculation of efficiency of computer system should include a role of
user and system software as well as hardware.

• Model of hardware from the point of view of information processing is
proposed.

• Calculation of performance of embedded system hardware is presented.
• Comparative study of proposed embedded architecture with most known

architectures is presented.
• Role of complexity of instruction set on performance is briefly discussed.
• Brief description of what kind of benchmarks is used for performance evaluation

of new and existing systems is presented.
• In details, using fence manufacture model shown that Amdahl Law is overop-

timistic at an order of magnitude. It requires to consider the role of system
software and algorithms ability of parallel computing.

Fig. 17.18 System software role in distributed computing

246 17 On Performance: From Hardware up to Distributed Systems

References

1. Schagaev I (1990) Yet another classification of redundancy. In: IMEKO 7th symposium
technical diagnostics, 17–19 Sept 1990, Helsinki, pp 485–491

2. Schagaev I (1990) Instruction sets and their role for computer architectures (in Russian).
Electronics Publication

3. Sogomonyan ES, Schagaev IV (1988) Hardware and software of fail-safe computing systems.
Automat I Telemech 2:3–39

4. Schagaev I (2001) CASSA—concept of active system safety for aviation. In: IFAC automatic
control in aerospace 2001 a proceedings of the 15th IFACS symposium Bologna/Forli, Italy,
2–7 September 2001

5. Blaeser L, Monkman S, Schagaev I (2014) Evolving systems. In: Resilient computer system
design. Springer. ISBN 978-3-319-15069-7

6. Schagaev I. Active system control design of system resilience. https://doi.org/10.1007/978-3-
319-46813-6. ISBN 978-3-319-46812-9

7. Hennesy J, Patterson D (2003) Computer architecture: a quantitative approach. Morgan
Kaufmann Publishers Inc., San Francisco. ©2003 ISBN:1558607242

8. Amdahl GM (1967) Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the April 18–20, 1967, spring joint computer
conference, AFIPS ‘67 (Spring), pp 483–485. https://doi.org/10.1145/1465482.1465560

9. https://blogs.oracle.com/jag/resource/Fallacies.html
10. www.doityourself.com/stry/buildwoodfences

References 247

http://dx.doi.org/10.1007/978-3-319-46813-6
http://dx.doi.org/10.1007/978-3-319-46813-6
http://dx.doi.org/10.1145/1465482.1465560
https://blogs.oracle.com/jag/resource/Fallacies.html
http://www.doityourself.com/stry/buildwoodfences

	17 On Performance: From Hardware up to Distributed Systems
	Abstract
	17.1 System Level
	17.2 Information Processing Aspect
	17.3 Information Systems Task-Wise Hardware Involved Performance
	17.4 SSW-HW Performance Model
	17.5 Hardware Performance
	17.5.1 Hardware Zones
	17.5.2 Hardware Performance—Instruction Execution
	17.5.3 Performance Estimation—Instruction Timing
	17.5.4 Standard Performance Tests
	17.5.5 Real Processor Hardware Comparison
	17.5.6 Embedded Benchmarks

	17.6 Relative Performance Gain—Amdahl’s “Law”
	17.6.1 Distributed Computing
	17.6.2 Real Performance and Amdahl “Law”
	17.6.3 A Fine-Tuning of Parallel Speedup Model
	17.6.4 Parallel Versus Sequential: A Fence Model

	17.7 Conclusion
	References

