
Igor Schagaev · Eugene Zouev ·
Kaegi Thomas

Software Design
for Resilient
Computer
Systems
 Second Edition

Software Design for Resilient Computer Systems

Igor Schagaev • Eugene Zouev •

Kaegi Thomas

Software Design for Resilient
Computer Systems
Second Edition

123

Igor Schagaev
IT-ACS Ltd
Stevenage, UK

Eugene Zouev
Department of Informatics
Technopolis
Innopolis, Kazan, Russia

Kaegi Thomas
IT-ACS Ltd
Stevenage, UK

ISBN 978-3-030-21243-8 ISBN 978-3-030-21244-5 (eBook)
https://doi.org/10.1007/978-3-030-21244-5

1st edition: © Springer International Publishing Switzerland 2016
2nd edition: © Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-21244-5

Preface

What I consider to be the strongest point of this work, indeed its main advantage is
the extension of the winning strategy of military pilots to a multimodal complex: “If
your action leads to the unexpected, step back and play anew.” To recognize that
there is a hierarchy of response options and then choose the least obvious sequence,
yet the one leading to survival is a human miracle. To apply this consistently to an
array of systems run by different algorithms is new engineering. Contrary to our
experiences with autonomous and semi-autonomous multimodular systems, we can
avoid creating irreconcilable paradoxes (shutdowns or tonal failures.) In fact, they
can be resisted if our causational design logic is augmented (or replaced) with an
interactive-transformation-interactive approach. This changes our thinking from
compensating for some top-down hierarchy of (event) causes to enabling response
“negotiation” across and between all system modules. One way to view the
Resilient System Theory is to recognize that it can resist unacceptable outcomes by
negotiating multiple options to resolve multiple conflicts at multiple levels. The
introduction of “system resilience” requires nonlinear logic and redistributed
capacity for flexible coordination and re-coordination of internal regime conditions
and parameters. From this perspective, the survival of a multimodal complex is
achieved not by insisting on the maximum recovery from losses in or of its key
component(s) but on achieving a total system response and behavior with at least
minimally optimal integration and recovery under a variety of disorienting, dis-
abling, or dysfunctional conditions. The resilience theory of Prof. Schagaev and his
colleagues promises to integrate this conceptual framework into a radically pur-
poseful engineering-design framework. Boris Gorbis Los Angeles.

Stevenage, UK Igor Schagaev
Kazan, Russia Eugene Zouev

Kaegi Thomas

v

Introduction for Second Edition

When in 1989 an anonymous reviewer commented on my short paper that “this
classification should be extended to description of distributed systems,” (Yet
another approach to classification of redundancy, CIM IMEKO Symposium 1990,
Helsinki, pp. 117–124) I was really excited, because people in the research com-
munity were thinking much deeper and wider than myself (- I had just defended my
Ph.D.).

Further, fault tolerance was migrating to dependability (Jean Claude Laprie was
an indisputable authority and expert in this domain, see more www.springer.com/
gb/book/9783709191729, which later emerged as the concept of resilience.

In principle, all these new properties had concrete reasoning and meaning behind
them: when something erroneous happens, any system of our design should be able
to cope with the problem. Options vary, as well as circumstances and area of
application, thus:

– If it stops the error propagating and freezes in a safe state, it is fail-stop, or
fail-safe;

– If it can cope with permanent faults inside the system, it is a fault-tolerant
system;

– When it continues with reduced functionality, it is graceful degradation;
– If it is designed with attention having been paid to reliability, availability, and

maintenance or serviceability, it is dependable system;
– If it is capable of tolerating obstacles caused by internal and external factors and

can spring back, recover, and continue, then a system can be considered as
resilient.

There are two major ways to achieve any of the properties mentioned above: at
system level or at local level (technological). Obviously, any reasonable combi-
nation of both levels is also welcome. We do not want to repeat our papers and
books (https://www.springer.com/gb/book/9783319150680, https://www.springer.
com/gb/book/9783319468129) but to incorporate into the second edition any sig-
nificant progress that has emerged.

vii

http://www.springer.com/gb/book/9783709191729
http://www.springer.com/gb/book/9783709191729
https://www.springer.com/gb/book/9783319150680
https://www.springer.com/gb/book/9783319468129
https://www.springer.com/gb/book/9783319468129

Speaking about ICT systems, especially safety-critical and real-time ones, we
might think about the implementation of resilience from the system level down
through to hardware and systems software. In addition, we need to consider that
each of the parts will both interact with and support each other.

Non-Functional Requirements (NFRs) of each part of the system were consid-
ered, such as:

– Performance;
– Reliability;
– Efficiency (mostly energy efficient).

Therefore, the systems that we design should be PRE-smart and provide these
properties throughout the life cycle.

Neither our books to date—have appeared as complete. These books have been
used in China, Switzerland, Russia, and USA (mostly Masters and Ph.D. students),
and we have received substantial feedback, such as:

• While reliability of hardware and availability at the system level are explained
and fine, there are no sections, or chapters about performance, especially where
parallel and distributed systems are concerned;

• How to apply (as mentioned in the above review) the classification and prop-
erties of resilience for and within distributed systems;

• How real-time and safety-critical applications should be treated considering the
system resilience: rules for system and for packages—have they changed?

It was especially satisfying when we discovered that these segments are being
updated by researchers around the globe, providing excellent contributions to the
content.

Thus, our book became an evolving system in itself, aggregating our further
efforts with the efforts and results of our colleagues from China, Switzerland, UK,
and Russia. Our book has therefore become itself resilient, benefiting from the
contributions from the following:

Performance chapter (including element-level performance and parallel design)
was prepared and included using materials and having contributions from:

– Professor Hao Kai, Shantou University, China;
– Simon Monkman, IT-ACS Ltd researcher.

System software chapters were part of substantial efforts from:

– Professor Eugeny Zuev and his team in Technopolis, Kazan, Russia.

In turn, requested in 1989 consideration of system level of resilience for dis-
tributed systems were developed as two chapters: system level and algorithmic
implementation prepared by me and Stephen Farrell. In these chapters, we have
introduced a concept of desperation (for transactions within distributed systems)
and show that our existing and new results, even patented: https://www.ipo.gov.uk/
p-ipsum/Case/PublicationNumber/GB2448351 can be extremely useful making the

viii Introduction for Second Edition

https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2448351
https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2448351

whole network really resilient and achieving by far better service for applications,
especially when critical level of their use was assumed.

The structure of the book now looks like figure below illustrates:

FAULT TOLERANCE

Theory and
Concept

Generalized
Algorithm of

Fault Tolerance
(GAFT)

GAFT Extension
Active Safety

System

SYSTEM SOFTWARE FOR
FAULT TOLERANCE

SSW Functions
and Features

SSW Recovery
Preparation

Recovery
Algorithms

Testing,
Checking and
HW Support

Recovery
Algorithms
Analysis

Resilience and
Desperation:

Distributed Systems

Resilience and
Desperation:

Implementation

FUTURE: RESILIENCE OF
DISTRIBUTED SYSTEMS

Proposed
Run Time
System

Structure

Proposed
Language Support

Recovery
Implementation

of Language
Support
Analysis

FT Hardware
ERRIC

Hardware
and System
Performance

Hardware
Comparison

Hardware
Reliability

PROPOSED SYSTEM
SOFTWARE AND HARDWARE

Introduction for Second Edition ix

Contents

1 Introduction . 1
References . 5

2 Hardware Faults . 7
2.1 Introduction . 7
2.2 Single Event Effects and Other Deviations 9
2.3 Conclusion . 10
References . 10

3 Fault Tolerance: Theory and Concepts . 11
3.1 Introduction to Reliability Theory . 11
3.2 Connection Between Reliability and Fault Tolerance 13
3.3 Models for Fault Tolerance . 18
3.4 Chapter Conclusion . 22
References . 22

4 Generalized Algorithm of Fault Tolerance (GAFT) 25
4.1 The Generalized Algorithm of Fault Tolerance 26
4.2 Definition of Fault Tolerance by GAFT 30
4.3 Example of Possible GAFT Implementation 31
4.4 GAFT Properties: Performance, Reliability, Coverage 33
4.5 Reliability Evaluation for Fault Tolerance 37
4.6 Hardware Redundancy and Reliability 38

4.6.1 Hardware Redundancy: Reliability Analysis 39
4.7 Conceptual Summary . 44
References . 46

5 GAFT Generalization: A Principle and Model of Active System
Safety . 47
5.1 GAFT Extension: The Method of Active System Safety 49
5.2 GAFT Derivation: A Principle of Active System Safety 49

xi

5.3 Dependency Matrix . 50
5.4 Recovery Matrix . 52
5.5 PASS Tracing Algorithm . 53

5.5.1 Forward Tracing Algorithm 53
5.5.2 Backward Tracing Algorithm. 55

5.6 Chapter Summary . 56
References . 57

6 System Software Support for Hardware Deficiency: Functions
and Features . 59
6.1 System Software Life Cycle Versus Fault Tolerance 66
6.2 System Software Phases . 67
References . 68

7 Testing, Checking, and Hardware Syndrome 71
7.1 Hardware-Checking Process . 72
7.2 Analysis of Checking Process . 75

7.2.1 The System Model . 76
7.2.2 Diagnostic Process Algorithm 77
7.2.3 Procedure T1 . 79
7.2.4 Extension of the Diagnostic Procedure 81
7.2.5 Testing of Time-Sharing Systems 83
7.2.6 FT Scheduling . 87

7.3 System Monitoring of Checking Process: A Syndrome 88
7.3.1 Access and Location of the Syndrome 92
7.3.2 Memory Configuration . 94
7.3.3 Interfacing Zone: The Syndrome as Memory

Configuration Mechanism . 96
7.3.4 Graceful Degradation Approach

and Implementation . 97
7.3.5 Reconfiguration of Other Hardware Devices 100

7.4 Software Support for Hardware Reconfiguration 101
7.4.1 Software Support for Degradation 101
7.4.2 Hardware Condition Monitor 103
7.4.3 Hardware Condition Monitor—System Software

Support . 105
7.5 Hardware Reconfiguration Outlook . 108
7.6 Summary . 108
References . 109

8 Recovery Preparation . 111
8.1 Runtime System Support for Fault Tolerance

and Reconfigurability . 111
8.2 Overview of Existing Backward Recovery Techniques 114

xii Contents

8.2.1 Uncoordinated Recovery Points 117
8.2.2 Coordinated Recovery Points 117
8.2.3 Message Logging-Based Rollback Recovery 119
8.2.4 Other Approaches . 120
8.2.5 Implementation Aspects . 121

8.3 Recovery at the Level of Procedures 122
8.4 Hardware Support for Recovery Point Creation 123
8.5 Variable Recovery Point Creation . 125

8.5.1 Efficiency Analysis . 126
8.6 Implementation Aspects . 128
8.7 Ultrareliable Storage . 131

8.7.1 Physical Storage Media . 131
8.7.2 Flash Properties and Limitations 132
8.7.3 Analysis and Design Considerations 133
8.7.4 Implementation Aspects . 134

8.8 Summary . 136
References . 137

9 Recovery: Searching and Monitoring of Correct
Software States . 141
9.1 Recovery as a Process . 141
9.2 Modified Linear Algorithm . 143

9.2.1 Characteristics of Modified Linear Recovery
Algorithm. 144

9.2.2 MLR Execution in Case of Permanent Faults 146
9.2.3 The MLR Algorithm in Case of Several Successive

Faults in Case of Permanent Faults 149
9.2.4 Hardware Support for the MLR Algorithm 150

9.3 Summary . 151
References . 151

10 Recovery Algorithms: An Analysis . 153
10.1 Comparison of MLR and Two Other Recovery Algorithms

of the Same Family . 153
10.2 Computational Model . 153
10.3 Linear Recovery Algorithm . 155
10.4 Dichotomous Recovery Algorithm . 159
10.5 Modified Linear Recovery . 160
10.6 Conclusion on Comparison of Recovery Algorithms 162
10.7 Summary . 164
References . 164

Contents xiii

11 Programming Languages for Safety-Critical Systems 165
Eugene Zouev
11.1 Oberon-07 as the Single Development Tool 165
11.2 System Software for ERRIC: The Stack

of Development Tools . 166
11.3 Low Level: The Assembly Language 167
11.4 System Level: The ERRIC Language 171
11.5 Application Level: The COMPOSITA Language 173
11.6 Summary . 174
References . 174

12 Proposed Runtime System Structure with Support
of Resilient Concurrency . 177
12.1 Runtime System Structure . 177
12.2 Concurrency Support for Resilient Computing 179

12.2.1 Problem of Concurrency . 179
12.2.2 Why It Is Needed . 180
12.2.3 The Matter of Concurrency 181
12.2.4 Known Solutions and Derived Principles

to Follow . 182
12.3 Communication of Sequential Processes: Principles

of Synchronization . 183
12.4 Parallelism and Concurrency Versus GLM 186
12.5 Parallelism and Concurrency: Further Models 188
12.6 Concurrency Handling: Language and Runtime System

Aspects . 189
12.7 Concurrency: Further Steps: Fault-Tolerant Interactors 190
12.8 Conclusion . 191
Appendix: The Main Algebraic Books on Process Algebra Are 191
References . 192

13 Proposed Runtime System Versus Existing Approaches 193
13.1 What Is Available? . 193
References . 195

14 Hardware: The ERRIC Architecture . 197
14.1 Processor Architecture . 197
14.2 Instruction Set . 202
References . 205

15 Architecture Comparison and Evaluation . 207
15.1 Processor Architecture Overview . 208
References . 212

xiv Contents

16 ERRIC Reliability . 215
16.1 ERRIC Reliability Analysis . 215
16.2 Digging a Bit Deeper in Estimation of Efficiency

of Reliability Solutions . 218
References . 219

17 On Performance: From Hardware up to Distributed Systems 221
Igor Schagaev, Hao Cai and Simon Monkman
17.1 System Level . 222
17.2 Information Processing Aspect . 223
17.3 Information Systems Task-Wise Hardware Involved

Performance . 225
17.4 SSW-HW Performance Model . 226
17.5 Hardware Performance . 227

17.5.1 Hardware Zones . 228
17.5.2 Hardware Performance—Instruction Execution 230
17.5.3 Performance Estimation—Instruction Timing 233
17.5.4 Standard Performance Tests 236
17.5.5 Real Processor Hardware Comparison 236
17.5.6 Embedded Benchmarks . 238

17.6 Relative Performance Gain—Amdahl’s “Law” 239
17.6.1 Distributed Computing . 239
17.6.2 Real Performance and Amdahl “Law” 240
17.6.3 A Fine-Tuning of Parallel Speedup Model 241
17.6.4 Parallel Versus Sequential: A Fence Model 243

17.7 Conclusion . 246
References . 247

18 Distributed Systems: Maximizing Resilience 249
Igor Schagaev
18.1 Introduction . 249
18.2 Reconfigurability of DCS . 251

18.2.1 Redundancy of Distributed System:
A Description . 253

18.3 Resilience and Recoverability in Networked System 255
18.3.1 Implementation Steps . 257
18.3.2 Treat Propagation: Tracing and Handling

Algorithms . 258
18.4 Recoverability Costs . 262

18.4.1 Checking and Recovery: An Efficiency
of Implementation . 265

18.5 Summary and Conclusions . 266
References . 266

Contents xv

19 Distributed Systems: Resilience, Desperation 267
Igor Schagaev and Stephen Farrell
19.1 Introduction . 267
19.2 On Desperation . 268
19.3 Desperation in Networking . 269

19.3.1 How Desperation Grows . 270
19.4 Researching Desperation . 273
19.5 Graph Theory Elements for Desperation Model 275
19.6 Desperation—Proposed Algorithms for Handling 277
19.7 Comparative Analysis of Proposed Algorithm and A* 279

19.7.1 Briefly About A* . 282
19.8 Result of Comparative Simulation . 283
19.9 We Have More: A Vector Heuristic . 283
19.10 Router Level of Desperation Control 287

19.10.1 Router Level—Inside Job . 288
19.11 Aftermath—Instead of Conclusion . 290
References . 292

20 ERRIC Machine Code Simulator . 293
Aleksey Gospodchikov, Sergey Koziakov, Danila Romanov
and Eugene Zouev
20.1 Overall Description . 293
20.2 Basic Usage . 293
20.3 Simulator GUI . 295
20.4 Simulator Internal Structure . 297
20.5 Interpreter: The Implementation . 297

20.5.1 Design Decisions and Caveats 297
20.5.2 Extensibility . 298
20.5.3 Machine Code File Formats 298

Appendix 1: Internal Structure of ERRIC Interpreter
and API Description . 299
Appendix 2: Practical Introduction and Developer’s
Guide . 302

Index . 305

xvi Contents

About the Authors

Dr. Igor Schagaev is a Professor and Director of
IT-ACS Ltd (UK). He is a Fellow of the Institute of
Analyst and Programmers (UK), Fellow of British
Computer Society (UK). His career has started as an
Electromechanical Engineer at the Smolensk Aviation
Factory, USSR, a Senior Programmer and Design
Engineer at the Institute of Advanced Computations,
Central Bureau, Smolensk Branch, and a Senior Design
Engineer and System Programmer for Avionics.
Completed Ph.D. in Russian Academy of Science
(Institute of Control Science) and involvement in
projects of hardware and software for submarines,
satellites, and aircrafts enabled Igor to absorb an
experience which he shared with British Aerosystems
in 1994 and Boeing in 98–99. In 1994, Igor has
established ATLAB Ltd. Bristol that in 2006 was now
transformed into IT-ACS Ltd. He has published seven
books in three languages, over 70 papers, since 2006
holds international patent on New Active System
Control and supportive mathematical models. He has
been honored with several industry awards, achieve-
ments, and grants.

xvii

Prof. Eugene Zouev is currently a Professor in
Innopolis University, Russia. Eugene has graduated
and defended his Ph.D. in Moscow State University
(1976 and 1999, respectively). He was involved in
many research and industrial projects in system
software, programming languages and their compilers.

Among his achievements were full ISO-compliant
C++ compiler (2000, Moscow, Russia), Zonnon lan-
guage compiler for .NET (ETH Zurich 2000–2006)
with and under supervision of Prof. Niklaus Wirth
(Turing Award) and Prof. J. Gutknecht, and many other
projects.

His involvement in EU funded project (ONBASS
2004-09) became a next step in research and develop-
ment summarized to some extent in this book.

Dr. Kaegi Thomas received his Ph.D. in 2012 in ETH
Zurich in the area of system software for embedded
systems (under supervision of Prof. Schagaev). He is
currently a Senior Researcher at Ergon Informatics,
Switzerland.

xviii About the Authors

Chapter 1
Introduction

Abstract The chapter introduces what design principles and application require-
ments we need to pursue achieving resilient functioning of computer system.
Principle of simplicity, reliability, reconfigurability, scalability, and redundancy are
briefly discussed. Shown that implementation of principles with architecture might
include system software modification as well as redevelopment of basis hardware
blocks—processing area, storage area, and interfacing area of computer system.

Nowadays, computer systems are applied in diverse and important areas such as
banking, military, aviation, intensive health care, industrial control, space explo-
ration, etc. All these areas demand highest possible reliability of functional oper-
ation, i.e., availability. Availability is defined as the readiness to provide a correct
service whereas reliability is the continuity of correct service [1].

The methods to increase reliability of a system are either based on increasing the
reliability of individual hardware components or the introduction of fault tolerance
in the overall system design and its basic parts.

For safety-critical systems, i.e., systems whose failure have disastrous conse-
quences and possibly lead to human harm, the two main features such as fault
tolerance (FT) and real-time capability (RT) are always implicitly required and
should be reflected in hardware (HW), software in general, and, in particular,
system software (SSW).

In turn, the design, development, and implementation are mutually dependent
processes to achieve FT and RT and should be implemented taking all possible
hardware and system software resources into consideration.

The design of fault-tolerant systems itself assumes that the required functionality
of the applications is already known at design time, as well as potential faults and
the behavior of faulty elements.

This work presents a conceptual approach to the design of an efficient onboard
real-time system for safety-critical applications with high performance, reliability,
and low power consumption.

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_1

As an illustration, a design of an aircraft onboard system will be used through
the whole document. This type of system depicts a typical example of a
safety-critical system where no faults and errors in the system can be tolerated.

We are using the standard taxonomy in dependable computing which is sum-
marized in [1]. An error is thus a deviation from the correct system service state.
The cause of such an error is called a fault and can emerge system internally or
system externally.

The requirements of such an onboard system are challenging as they are almost
self-contradictory: the required performance and reliability infer at first glance the
need for significant power, size, weight, and maintenance.

At the same time, all of them are severely limited. In terms of functionality,
onboard real-time systems usually implement control theory algorithms, require
well-developed logic and math calculations, real-time data extraction from various
external devices during operation, perform matrix calculations, and do a complete
prognostic of the system behavior before an event impact such as an internal flight
control system error or an external plane problem becomes dangerous.

There is no doubt that the requirements of RT safety-critical systems must be
addressed in both—hardware design and system software design.

The conceptual challenges and requirements might be grouped as shown in
Figure 1.1.

GLL on Figure 1.1 stands for Graph Logic Language and will be introduced in a
special section; HW and SW stand for hardware and software, respectively.

The standard redundancy theory for fault-tolerant system design was introduced
in the late 80s [2], applied for econometrics [3] and further developed in [4–6].

Fig. 1.1 Principles and challenges of research in FT systems

2 1 Introduction

In Sect. 3.1, a short introduction to the redundancy theory related to computer
science is presented. The redundancy theory acts as the basic theoretical guide we
have to follow to get a fault-tolerant system with highest reliability.

However, when designing a fault-tolerant system, other non-computer science
related factors set constraints on the design of such FT systems, for example,
required reliability, which is tightly connected with redundancy of the system and
should be proven using reliability and redundancy theories.

Also, other non-technological factors play a role in the design of FT systems,
especially economics: It is simply not affordable to design and build the system
with highest possible reliability and availability; therefore, trade-offs must be made
in the design and maintenance as this is also a significant cost factor of the overall
system cost.

The central blue box of Fig. 1.1 presents the main principles we follow
throughout our designs and therefore this book:

Reliability. Highest reliability of a safety-critical system is the ultimate goal of
this book and must therefore always be kept in mind.

Simplicity. We believe that the principle of simplicity must be followed in the
design and implementation of SW and HW to achieve the desired reliability and
reconfigurability level of HW and SW. This statement can be easily justified with
the argument that complex systems in themselves are hard to manage and it is
therefore even harder to reach the desired reliability level to make them suitable for
fault-tolerant systems. Consequently, it is important to use only essential redun-
dancy in the system to keep the complexity level low.

Redundancy. Making individual hardware components more reliable is out of
the question for most projects, as the implications also in manufacturing techniques
are severe. We therefore use in this book redundancies of different kinds to improve
the system reliability, a solution which is also in practice often used.

Reconfigurability. Reconfigurability allows the system to adapt twofold: First
to recover from a permanent fault (graceful degradation) and second by adjusting
itself to the requirements of the running application, which helps to keep the system
generic, i.e., suitable for multiple purposes.

Scalability. Keep scalability in mind when designing a system so that it can be
extended, if the requirements change. In this work, scalability does not have highest
priority and might be first sacrificed if one of the other principles is violated.

These principles are well established and especially simplicity and scalability
proved their efficiency through a number of well-known projects and developments
at ETH Zurich [7–15].

These main principles we apply to two different fields: Hardware and System
Software.

In hardware, the above principles are applied at the system level and to the
individual components of the hardware platform. For this, we partition the hardware
in three parts: the Active Zone, the Interface Zone, and the Passive Zone. Each of
these zones has different properties and need therefore different redundancy
mechanism to tolerate faults. We do not include here internal and external devices.

1 Introduction 3

Active Zone. The active zone consists of the arithmetic unit and the logic unit,
both separated for better fault isolation and easier implementation of hardware tests.

Interface Zone. This zone includes all communication components, such as the
processor bus, memory bus, etc. The interface zone must be protected from external
radiation and needs therefore mechanisms to detect and recover from faults.
A configurable bus allows the reconfiguration of the hardware to exclude failed
hardware components and go into a degraded state, or replaces the failed compo-
nent with a working one.

Passive Zone. These include basically the storage systems, such as memory that
do not act by themselves but are used by controllers or other data processing
devices. Here again, the hardware should be able to detect faults and recover from
them, but as they are passive systems, the actual fault tolerance must be imple-
mented in conjunction with the interface zone, i.e., the bus.

In software, we distinguish the following parts:
Semantic. The Graph Logic Model (GLM) [16] and Graph Logic Language

(GLL) [17] are an interesting attempt for the description of system dependencies,
and thus provide a framework for the design and development of the required fault
tolerance in HW and SSW. The GLL and GLM are however still in their early
phases, and are at the time of writing still subject for further research.

Structure. The programming language is of importance to support safety-critical
features. Especially code safety can benefit from a strong types of language without
direct assembler support, to force the programmer to write safe code. Another
aspect here is the support for recovery points as recovery point creation can directly
exploit language features (memory space partitioning, etc.).

Runtime. The main part of this work covers runtime system aspects. In addition
to standard runtime system tasks such as resource management, scheduling, and
inter-process communication, a runtime system supporting fault tolerance must
cover additional tasks such as hardware and software state monitoring to act upon
failing components or detected faults. Especially to support recovery from faults,
additional features such as recovery points, recovery itself, and recovery monitoring
are needed.

The modern requirements for hardware and system software for FT RT systems
are as follows:

In hardware:

– High Performance—32 bit, 1–4Ghz,
– Highest possible reliability and availability,
– Means to detect and handle faults and errors (fault tolerance),
– “Zero” maintenance over the operational life span (for satellites, aircrafts, etc.),
– Intelligent power design with backup battery for fault tolerance during

operation,
– Mechanical and vibration resistance,
– Graceful mechanical degradation, and
– Feasibility.

4 1 Introduction

In system software:

– Extremely high reliability of software and supportive schemes for hardware fault
tolerance,

– High performance and real-time scheduling with assumption of HW faults,
– Fault-tolerant concurrency monitoring,
– Language support of hardware deficiency,
– Control and monitoring of system reconfiguration in case of hardware fault,
– Program, system, and object (using applications) reconfigurability,
– Supportive mechanisms for system recovery, and
– Support for degraded hardware mode, where only the core applications are

executed.

The achievable reliability of the FT RT system depends on the available tech-
nologies and the use of hardware and system software solutions. The performance
also depends on existing technologies and, in particular, on the efficiency of the
algorithmic solutions used for the implementation of fault tolerance.

Finally, power consumption is another overarching limit, which affects the
FT RT architecture. This, in turn, demands minimum redundancy use along with
limiting the processor frequency and voltage at the lowest feasible rate. Here, a
solution might be the use of multiple frequency capable hardware, where the
processor and other hardware components are able to operate at reduced (when
necessary to save power) and full (when performance is crucial) speed.

References

1. Laprie J-C et al (2004) Basic concepts and taxonomy of dependable and secure computing,
IEEE Trans Dependable Secur Comput 1(1):11–33

2. Sogomonian E, Schagaev I (1988) Hardware and software fault tolerance of computer
systems. Avtomatika i Telemekhanika, pp 3–39. 2

3. Pliaskota S, Schagaev I (1995) Economic effectiveness of fault tolerance. Autom Remote
Control 7. 2

4. Schagaev I (1989) Instructions retry in microprocessor recovery algorithms. In: IMEKO—
FTSD symposium. 2

5. Pliaskota S, Schagaev I (2001) Life cycle economic efficiency analysis. In: IEEE TESADI-01
6. Schagaev I (2008) Reliability of malfunction tolerance. In: International Multiconference on

Computer Science and Information Technology, IMCSIT, pp 733–737
7. Wirth N, Gutknecht J (1992) Project Oberon: the design of an operating system and compiler.

Addison-Wesley, New York
8. Johannes M (2002) The active object system—design and multiprocessor implementation.

ETH Zurich, Zurich. 4, 82, 109, 173
9. Mossenbock H, Wirth N (1991) The programming language Oberon-2. Technical report,

Johannes Kepler Universitat Linz
10. Reiser M, Wirth N (1992) Programming in Oberon: steps beyond Pascal and Modula.

Addison-Wesley, Wokingham
11. Wirth N (1977) Modula: a language for modular multiprogramming. Softw: Pract Experience

7(1):1–35

1 Introduction 5

12. Wirth N (1985) Programming in Modula-2. Springer, New York
13. Wirth N (1971) The programming language Pascal. Acta Informatica 35–63
14. Wirth N (1977) The use of Modula. Softw—Pract Experience 7
15. Kaegi-Trachsel T, Gutknecht J (2008) Minos—the design and implementation of an

embedded real-time operating system with a perspective of fault tolerance. In: International
multiconference on IMCSIT 2008, pp 649–656, 20–22 October 2008

16. Schagaev I et al (2007) Applying the principle of active safety to aviation. In: European
Conference for Aerospace Sciences (EUCASS)

17. Schagaev I et al (2010) ERA: evolving reconfigurable architecture. In: International
conference on 11th ACIS, pp 215–220

6 1 Introduction

Chapter 2
Hardware Faults

Abstract This chapter explains hardware faults, their origins, dependency on
technology used, and some known solutions of fault toleration using error correc-
tion codes and redundancy hardware schemes. Shown that with growing density of
hardware there is a risk of multiple temporary fault which grows at order of
magnitude prime concern for designers of new computer systems for safety-critical
application. Hardware faults occur due to natural phenomena such as ionized
radiation, variations in the manufacturing process, vibrations, etc. We present in this
chapter a short introduction to hardware faults, show the typical fault types and
patterns, and also give examples of how to deal with these faults.

2.1 Introduction

Transient faults are a huge concern in silicon-based electronic components such as
SRAM, DRAM, microprocessors, and FPGA. Those are devices that have a
well-documented history of transient faults mainly caused by energetic particles.

An important obstacle for safety-critical systems to achieve maximum reliability
is represented by the susceptibility of those systems to faults produced by radiation.
In addition, as manufacturing technologies evolve, the effects of ionizing radiation
become a primary concern.

Due to the reduction in size of the transistors and the reduction in critical charge
of logic circuits, the susceptibility of technologies to information corruption is
increasing [1–3]. A concrete example for this is given in Fig. 2.1 [1], indicating that
the malfunction rate (soft error rate) is massively increasing in processor logic for
decreasing manufacturing sizes.

Collisions of particles with sensitive regions of the semiconductor can change
stored information in ROM/RAM and lead to logic errors, for example, in processor
circuits. In this context, Single Event Upsets (SEU) are effects induced by the strike
of a single energetic particle (ion, proton, electron, neutron, etc.) in the
semiconductor.

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_2

The charged particle passes through the semiconductor material leaving an
ionized track behind leaving sufficient energy in the circuit to have an effect on a
localized area of the electronic device.

Single event upsets can occur either through the impact of primary particles
(e.g., direct ionization from galactic cosmic rays or solar particles) or by the sec-
ondary particles generated after the strike (indirect ionization). It affects many
different types of devices, designed using various technologies resulting in data
corruption, high current conditions, and transient disturbances. If such single event
upsets are not handled well, unwanted functional interrupts and catastrophic failures
could take place.

However, single event upset is not fully representative anymore. The number of
multiple bits affected by a single event was relatively small using previous silicon
technologies. Modern technologies are much more vulnerable and single event can
affect multiple bits, so-called Multiple Bits Upsets (MBU). The single event rate
affecting multiple bits is expected to increase in the coming years [2].

Traditionally, two different types of techniques have been used to mitigate
upsets: fault avoidance and fault tolerance techniques. Fault avoidance techniques,
usually at the device level such as silicon on insulator or hardened memory cells,
usually involve IC process changes. These techniques have drawbacks in terms of
cost, chip area, and speed of operation.

Several low-level fault-tolerant techniques for memories and processor registers
have been used to mitigate upsets: error detection codes and error correction codes.
Hamming codes [4] have been largely employed to detect and correct single-bit
upsets. However, these techniques are vulnerable to the increasing multiple bit
upset ratio.

Reed–Solomon codes [5] can correct a large number of multiple faults but are not
suitable for hardware implementation in terms of design complexity, additional
memory required (area), and inherent latency (performance).

At a higher level, circuit-level mitigation techniques with some amount of re-
dundancy, such as N-modular redundancy and voting [6], are frequently used.

Fig. 2.1 Comparison of the
SRAM bit soft error rate
(malfunctions) [8]

8 2 Hardware Faults

Triple modular redundancy [7] is a very simple solution and perhaps the most
implemented approach in RT safety-critical applications. However, the area and
therefore also the power consumption penalty is large (higher than 200%).

Since the malfunction sensitivity of sequential and combinational logic is
increasing dramatically [1, 2] and the multiple bit upset ratio of SRAM is also
rising, the previous mechanisms by themselves will not provide the necessary
reliability for safety-critical systems.

2.2 Single Event Effects and Other Deviations

Semiconductor devices experience single event upsets in two major forms: in the
form of destructive effects which result in permanent degradation or even complete
failure of the device and therefore also affecting functionality (permanent fault), and
in the form of nondestructive effects, causing no permanent damage (malfunctions).

However, in this sense when something irregular affects the system the question
must be answered which of the two cases it is. How to deal with this deviation is the
part of the HW/SSW design.

In terms of events, the most common are single event upsets and multiple cell
upsets, which both belong to the single event category.

Single-Bit Upset is a single event upset or single-bit upset, meaning, one event
produces a single-bit error. This type of error is very common in SRAM.

Multiple Cell Upset is a multiple bit upset for one event regardless of the
location of the multiple bits. For example, an FPGA where one routing bit gets an
impact from a high energetic particle, affecting several memory positions. Hence,
multiple cell upsets involve both upsets, the ones that can be corrected by error
correction codes and those which cannot with reasonable overhead.

Multiple Bit Upset is a subset of multiple cell upsets. It is a multiple bit upset for
one event that affects several bits in the same word. This type of deviation cannot be
corrected by error correction codes with reasonable overhead. However, it is pos-
sible to partially avoid multiple bit upsets by using specific layout design of
memory cells.

Growing density of logic elements of wafer technology, miniaturization of
manufacturing processes, and high clock speeds will inevitably increase rate of
so-called intermittent faults.

Inevitable variations in the manufacturing process will induce these faults at
higher rate; moreover, impact of these faults will be lasting up to several seconds
[2], increasing complexity of recovery. In contrast to external faults such as radi-
ation, intermittent faults are triggered by internal events such as voltage, temper-
ature, and timing variations.

Figure 2.2 illustrates such an intermittent fault.

2.1 Introduction 9

2.3 Conclusion

This short introduction is by no means comprehensive, but illustrates that not all
faults can be treated at the hardware level, especially the more complex fault types.
Examples of these faults are multiple bit upsets and intermittent faults.

Both of mentioned types of faults are expected to occur more often in the future
with decreasing hardware structure sizes and growing demand of higher frequencies
of operation.

It is, therefore, obvious that software must assist the hardware in the fault
detection and recovery process.

References

1. Baumann R (2005) Soft errors in advanced computer systems. IEEE Des Test Comput 22
(3):258–266

2. Constantinescu C (2008) Intermittent faults and effects on reliability of integrated circuits. In:
RAMS 2008. Annual, pp 370–374, Jan 2008

3. Wells P, Chakraborty K, Sohi GS (2007) Adapting to intermittent faults in future multicore
systems. In: 16th international conference on parallel architecture and compilation techniques,
PACT, p 431, Sept 2007

4. Hamming R (1950) Error detection and error correction codes. Bell Syst Tech J XXVI(9):147–
160

5. Reed I, Solomon G (1960) Polynomial codes over certain finite fields. J Soc Ind Appl Math 8
(2):300–304

6. Takaesu K, Yoshida T (2004) Construction of a fault-tolerant voter for n-modular redundancy.
Electron Commun Jpn (Part II: Electron) 87(12):62–71

7. Birolini A (2004) Reliability engineering theory and practice, 8th edn. Springer
8. Schagaev I, Castano V (2015) Resilient computer system design. Springer. ISBN

978-3-319-15069-7

Fig. 2.2 Residue-induced
intermittent fault in a DRAM
chip [8]

10 2 Hardware Faults

Chapter 3
Fault Tolerance: Theory and Concepts

Abstract This chapter briefly introduces how reliability of the system might be
considered in combination with fault tolerance. Having introduced hardware faults
in the previous chapter, we present in this chapter the elements of theory of fault
tolerance and reliability and show how the hardware components of a computing
system can be made more resilient to hardware faults. We then introduce the
mathematical definition of reliability and show how to calculate the reliability of a
system according to the topology of its components. Then we describe the con-
nection between reliability and fault tolerance, i.e., we show how applying different
types of redundancy, implemented in software and hardware, increases the relia-
bility of a system. Also, some design advices are given.

3.1 Introduction to Reliability Theory

In addition to the just shown problems of faults, the HW system design for RT FT
applications becomes more difficult due to the limited power envelope and
requirements such as extremely reliable RT data storage, survivable packaging,
possible data retrieval at any time, and a variable number of external influences
such as radiation or vibration.

This results in difficult challenges in terms of power dissipation, heat manage-
ment, mechanical resilience, and of course malfunction tolerance. Given the
requirement of zero maintenance for onboard computer hardware and system
software, the design and reliability of the FT system is extremely challenging.

There are two different known theoretical approaches to meet the abovemen-
tioned reliability requirements and specifications:

1. By developing extremely reliable devices with a substantially higher Mean Time
To Failure (MTTF) and substantially higher than expected lifetime of the
monitored object. In case of aviation application, an airplane control flight
system should have a substantially higher availability and lifetime than the
airplane itself. Birolini [1] introduced a comprehensive theoretical approach

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_3

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_3

based on the application of reliability engineering throughout the system to
reach this goal.

2. By the design of fault-tolerant computer systems, with deliberate introduction of
redundancy in the system along with active mechanisms for fault detection and
reconfiguration to achieve continuous operation (in the sense of the application).

Developing reliable devices for system without use of redundancy for replacement
of faulty element may be described as a sequential reliability diagram shown in
Fig. 3.1. In this case, the whole system fails if one of the components fails.

The introduction of time into the reliability function of the system, here denoted
as Rs(t), is defined as the probability that the system will perform satisfactory from
time zero to time t, given that the operation started successfully at time zero. This is
a monotonically decreasing function with set initial value as 1.

The Poisson distribution is well suited to model rare events such as failing
components and suits therefore well for our model.

f ðk; kÞ ¼ e�kkj

j!
ð3:1Þ

The general Poisson distribution shown above describes the probability of getting
k events in a given time period. The distribution itself is determined by the value k
and the number of events that are expected in a given time interval.

k is also the mean value and the variance of the Poisson distribution. The notion
of time can be introduced by replacing k with kt.

The reliability of a component s is defined as the probability of having no failure
over a period of time. It is thus a function of time R(t) defined as a Poisson
distribution with constant failure rate k. We get R(t) by setting k of Eq. 3.1 to 0.

RðtÞ ¼ e�kt ð3:2Þ

Applied to Fig. 3.1, this results in the system reliability being the product of its
individual component reliabilities, assuming that their organization as a serial
(cumulative) structure. Note that for this structure, Rs(t) can be simplified as
follows:

RsðtÞ ¼
Yn

i¼1

RiðtÞ ¼ e
�

Pn

j¼1
kj

� �
t ð3:3Þ

Fig. 3.1 Reliability of a system with sequential elements

12 3 Fault Tolerance: Theory and Concepts

Furthermore, the Mission Time Function MT(r) gives the time at which the system
reliability falls below the given threshold reliability level r. Accordingly, this yields
the following definitions:

R MTðrÞ½ � ¼ r ð3:4Þ

MT RðtÞ½ � ¼ t ð3:5Þ

The failure rate of a sequential independent element system is equal to the sum of
the failure rates of its elements. In the case of a constant failure rate across all
elements, the MTTF of the whole system is calculated as follows:

MTTSs ¼ 1=ks ð3:6Þ

Note that this equation highlights the fact that the reliability of a system is directly
impacted (in practice often dominated) by the reliability of its least reliable
component.

In the context of reliability, fault tolerance is considered as one of the ways to
achieve a required level of reliability, i.e., the probability P that the variable R(t) is
greater or equal to the value of r.

This approach is based on achieving the required level of reliability by the
deliberate introduction of redundancy into the system. The sole purpose of intro-
ducing this artificial redundancy is to tolerate possible faults. This approach has
been successfully applied since the original work of von Neumann [2] and Pierce
[3].

3.2 Connection Between Reliability and Fault Tolerance

Note that introducing redundancy also inevitably involves some additional com-
ponents and complexity and it is therefore imperative that:

The reliability benefit accruing from the redundancy scheme must far exceed the
decrease in reliability due to the actual implementation of the redundancy mech-
anism itself.

The degradation of reliability by the introduction of redundancy can be modeled
in terms of space, with the total space split into “good” and “bad” subspaces, where
all redundancy solutions that provide a substantial improvement in reliability
belong to the “good” subspace and all other solutions belong to the “bad” subspace.

Then using mathematics, we typically try to connect or exchange and trade-off
between these space over time; all based on the ultimate constraints imposed by the
natural laws of physics. The different possible redundancy solutions might not
cover the same fault types, thus the selection criteria also involve selecting the
solutions according to their fault type coverage.

3.1 Introduction to Reliability Theory 13

Reliability is concerned with the duration of normal life of an ordinary nonre-
dundant unit, whereas fault tolerance enables the possibility of “life after death”. It
is assumed that there is a mechanism available that can just in time, when the fault
is detected, repair the unit immediately and completely. Furthermore, the system
repair is fast enough that an external observer of the operational system doesn’t
even see that the fault has occurred and has been repaired.

In other words, fault tolerance assumes that fault manifestation; fault identifi-
cation, if necessary; reconfiguration; and recovery are transparent to the system.
After the appearance of a permanent fault, a fault-tolerant system will be dynam-
ically restored and thought “as good as new” in operational terms, except for the
fact that some of the redundancy has been used up and this may limit the possi-
bilities for future repairs.

The classic parallel generalization of the standard redundancy model [1]
describes a system of n statistically identical elements in active redundancy, when k
elements are required to perform the system function and the remaining n − k
elements are in reserve. The function of the system is considered as successful if
during a certain time frame at least k elements of the system were available.

For a simpler example such as a 1 out of 2 system shown in Fig. 3.2, the system
function is complete if at least one of the elements is known to be working cor-
rectly. The second element is redundant and only introduced for reliability purposes
when the first unit is known to be faulty.

For the system in Fig. 3.2, the following reliability function can be derived:

Rs ¼ R1ðtÞþR2ðtÞ � R1ðtÞR2ðtÞ ð3:7Þ

Thus, it’s obvious that redundancy even for this classic case could improve the
reliability of the system considerably. Note that the redundant elements need not
necessarily correspond to identical elements, but could also correspond to addi-
tional hardware used to detect and treat malfunctions.

The hardware fault tolerance and performance, as already mentioned, are limited
by available technologies and the implemented hardware and system software
solutions. This results in a system design process with constraints in terms of
applied approaches to the above-discussed case with n elements, whereas the
maximum reliability is achieved if all elements have equal reliability (Fig. 3.3).

Therefore, the new functionality of the system software which is required to
make a system fault-tolerant and real-time capable is, above all, the support for
equal reliability of the main components of the hardware architecture (left box of

Fig. 3.2 Parallel system
structure

14 3 Fault Tolerance: Theory and Concepts

Fig. 1.1) by means of system software, so that in the end no “weak” component of
the system reduces the reliability (right box of Fig. 1.1).

Fault tolerance as a new feature of a system requires additional overhead in both
software and hardware. This area of research became visible in the early 60s [3].
Several attempts and efforts were done to explore ways how to design and classify
fault-tolerant systems. Classifications of measures that implement hardware fault
tolerance were presented in [4–6]. But even after these significant contributions a
general question has not been answered:

Do we know enough to define the system behavior and predict its behavior from our
classification in presence of faults?

In other words, fault tolerance, as a theory might be valued using following
statement:

The power of any theory is in predictions and our ability to apply them.
The usefulness of the predictions depends here on timing, relevance, and

practicality. Structural analysis of variants how to implement system software
support of hardware deficiencies uses the classification of redundancy types and
schemes of its application to achieve fault tolerance. The classification developed

Fig. 3.3 Maximum
reliability of RT FT system

3.2 Connection Between Reliability and Fault Tolerance 15

here is a refinement of many previous results from [4–10] and is, in fact, a further
development of [9, 10].

The two top boxes of Fig. 3.4 present the way we think, while the lower box
presents the way we implement fault tolerance. In general, three different redun-
dancy types exist, namely, structural (S), informational (I), and time
(T) redundancy.

Every concrete implementation of system redundancy uses at least one of these
three redundancy types, often more than one and can be implemented in pure
hardware (HW()), pure software (SW()), or a combination of both (HW(), SW()).

As an example, software-based information redundancy is abbreviated as SW(I).
We use additional quantifiers together with the redundancy type to further specify
the used redundancy as shown in Table 3.1.

Fig. 3.4 Redundancy types and their implementation variants

Table 3.1 Redundancy classifiers

Quantifier Example Description

SW(I) No quantifier means general, not further specified redundancy. SW
(I), for example, just indicates general software information
redundancy

d SW(dI) Additional used software-based redundancy

number HW(2S) The number indicates duplication (2) or triplication (3) of a system
if used as a prefix for the redundancy type. The original system and
the copies are identical, n instead of a discreet number is used to
mark repetition until success in case of time redundancy

indices HW(S1,
S2)

Indices are used to mark a duplicated system implementation/
hardware components

16 3 Fault Tolerance: Theory and Concepts

Note that the current notation does not include the implementation level. HW
(2S) just indicates duplication, but not whether the whole system is duplicated or
just parts of it, such as, for example, duplicated memory.

Obviously, any redundancy (hardware and software) needs additional structural
redundancy for its implementation. Instruction repetition HW(nT), for example,
needs additional hardware registers to store the internal state for the instruction
rollback.

We call this redundancy supportive redundancy, i.e., redundancy needed for the
implementation of the main redundancy technique. For the sake of clarity, we
usually omit this supportive redundancy. In cases where it is not clear whether an
applied redundancy type is supportive or not, more than one redundancy type can
be used.

Software-based hardware checks that are performed in idle time of the system
are such an example, indicated by SW(∂S, ∂T).

Tables 3.2 and 3.3 show some concrete examples of hardware-, and
software-based redundancy. The reader, using own experience, can extend this list
of examples.

Note that the fault tolerance of a computer system is not considered as a system
feature. Throughout the whole work, we will consider it as a process.

Table 3.2 Examples of hardware-based redundancy

Redundancy
type

Description

HW(2S) Structural (material) redundancy of hardware such as a duplicated memory
subsystem

HW(S1, S2) A duplicated fault-tolerant computer system with principally nonidentical
parts

HW(dI) Redundant information bit, for example, an additional parity bit per data
word in hardware memory for error detection

HW(nT) Special hardware to repeat or delay computing to avoid the influence of a
malfunction

HW(dT) Special hardware to delay execution (like in a timing diagram) to avoid
malfunctions

Table 3.3 Examples of hardware-based redundancy

Redundancy
type

Description

SW(2T) Double repetition of the same program on the same hardware, generally used
to check the correctness of the results

SW(dI) Informational redundancy of the program, for instance, a backup file, which
can be used to restart and recover the program state

SW(S1, S2) Two different programs, realizing the same functionality in diverse ways. For
example, N-version programming [6]

3.2 Connection Between Reliability and Fault Tolerance 17

The introduction of static redundancy in hardware and system software (HW/
SSW) might be prohibitively expensive; therefore, it is much better to introduce a
process that implements fault tolerance assuming dynamic interaction of existing
redundancy types between elements, as it is illustrated in Fig. 3.4.

The main components of the system (hardware and system software) are
themselves sources of possible internal hardware faults. At the same time, using
various redundancy types, fault tolerance of the computer system can be achieved
both by design and by operation. Thus, the elements of the problem become the
elements of the solution.

For the implementation of fault tolerance as a process, literature usually con-
siders a three-step fault-handling algorithm: detection—location—reconfiguration
[11] which was extended and broadened to a more general scheme. This algorithm
should be applied for each part of the system, i.e., system software and hardware.
The implementation of the algorithm requires the use of the above introduced three
different redundancy types (Fig. 3.4) and will be further discussed with necessary
details.

In fact, a fault tolerance can be considered as three basic blocks that determine a
new feature: the system model, the model of faults that need to be tolerated, and the
fault tolerance model. This includes both processes: the design and the imple-
mentation of the FT system. In the next section, the fault tolerance process models
are described in more detail.

3.3 Models for Fault Tolerance

Say M is the known model of the system to perform a given function F. To this
model, we introduce a new feature that was not defined before: extreme reliability.
To express the existence of reliability in the system, the predicates P and Q are
introduced to determine the state of the model with regard to the new quality. P and
Q also define the direction of the time arrow (see Fig. 3.5).

To analyze ways how to achieve a required reliability level with performance
and power consumption constraints, we offer a combination of the following three
models:

– The model of an object Mo or Msystem, in this case, the computer system.
– The model of the faults Mfault that an RT FT system should tolerate.
– The model (scheme) MFT or new structure that implements fault tolerance.

The system model, fault model, and fault tolerance model are mutually dependent
as it is shown at the bottom of Fig. 3.5. Note that in the here presented approach,
the development and manufacturing cost of a solution is not considered.

Mfault is a description of all possible faults a system must tolerate. In binary
logic, a typical permanent fault manifests as “stuck at zero” or “stuck at one”.
Behavioral faults such as Byzantine faults (malfunctions) and hidden faults
(so-called latent faults) that exist in the hardware over a long period of time do not

18 3 Fault Tolerance: Theory and Concepts

ease the life of a system engineer of fault-tolerant systems: all described faults
should be tolerated within a limited and specified period of time.

This period actually determines the availability of the system. Fault types differ
by their impact, as well as the way they are handled.

Thus, the fault model has its own hierarchy, including single bit, element,
behavioral, and subsystem faults. One has to accept that the fault type is varying
and some action hierarchy to tolerate them is also required. All faults types should
be tolerated as there are no such systems called half- or semi-fault tolerant.

The so-called fault encapsulation approach to fault handling can help: due to
deliberate design solutions it is possible to ensure that severe faults in the system
will manifest themselves as simpler to handle faults from the system’s point of view
therefore making the fault handling practically possible to implement. This
approach will be further developed and applied here.

RT FT system applications assume long operational life; however,
fault-handling schemes are needed much more often toward the end of the device
life cycle. The appropriate techniques for tolerating faults of various types are
presented in Table 3.4. To tolerate malfunctions, time redundancy in hardware
(e.g., instruction re-execution) might be effectively used and implemented. System
software support is also needed as the hardware cannot cover all possible faults.

It is obvious that faults occurring at the bit level (stuck zero, stuck one, and
similar) should be efficiently handled ASAP (as soon as possible) and ALAP (as
local as possible), i.e., at the same or nearest level.

The term “level” in our case means the level in the hardware hierarchy on which
the fault should be handled. In other words, when a “stuck to zero” permanent fault
has happened in the register file with no corrective schemes available, the whole
register file has to be replaced, if no other possible reconfigurations were
predefined.

Fig. 3.5 New feature of
fault-tolerant system—
reliability

3.3 Models for Fault Tolerance 19

In turn, when only one register file is integrated into the chip and no other
reconfigurations are defined then the whole chip has to be replaced, etc. Pursuing
these two principles allows limiting the fault spreading and its impact to a higher
level either in the chip or the system as a whole.

Example: To tolerate bit-flip faults, hardware and system software information
redundancies might be used, as well as hardware structural support. In this sense,
parity checking in registers, supported and implemented concurrently by hardware,
is described as HW(∂I). HW(∂S) and HW(∂T) are needed as supportive
redundancies.

HW(∂S) describes the additional parity line and comparison logic, and HW(∂T)
describes the additional time needed to update the parity line and executing the
comparison. However, the main type of redundancy used in this approach is
information.

Up to the best knowledge of the authors, there have been no representative
statistics which characterize the exact distribution of faults for computer systems.
The distribution of faults depends on the operational environment, for example,
temperature, vibration, and radiation exposure.

Even so, it is a well-known fact that the ratio of malfunction to permanent faults
can be up to 103–106. The upper bound belongs to aerospace and aviation, prin-
cipally due to malfunctions, i.e., errors induced by alpha particles.

In this sense, Figs. 3.4 and 3.5 are transformed into Fig. 3.6 which presents
various faults in the system and various possible solutions. Mfault illustrates the fact
that the fault types are not separated. For example, Byzantine faults of the system
might be “stuck at zero” faults of the hardware that were spread throughout the
system.

Table 3.4 Classification of HW faults in FT computer systems

Type of
Fault

Description Impact

Byzantine An arbitrary behavior of a part of a
device, hardware, or a program

The entire system is affected

Subsystem
faults

An arbitrary behavior of a subsystem
of the processor temporally or
permanently

The entire system is affected

Open fault Resistance on either a line or a block
occurs due to a bad connection

The value associated with the line or
the block is modified

Bridging
fault

Crossing lines, the number of lines
crossed varies

The value associated with the line or
the block is modified to a different
value

Stuck at 0,
Stuck at 1

The result value is fixed to 0 or 1 The result value is stuck to 0 or 1

Bit-flip
fault

The result value is fixed to 0 or 1 The bit is modified

20 3 Fault Tolerance: Theory and Concepts

The latency of faults thus becomes crucial in determining the reliability of the
system. Consequently, different faults require different actions and mechanisms to
tolerate them.

The system model of Fig. 3.6 has overlapped SSW and HW ellipses to represent
the duality of the system: hardware and system software. Both of them must be
involved to implement fault tolerance and real-time features.

Overlapped HW and SSW ellipses indicate that hardware and system software
functions might be applied to tolerate exactly the same hardware faults. Some faults
might also be tolerated by hardware or software only. Mft is “a conceptual deliv-
erer” of reliability for the RT FT system. It has to be effective during the whole
operational lifetime of the computer itself.

As hardware degrades over time, the fault tolerance mechanisms are more likely
to be used toward the end of the life cycle.

We assume that fault-tolerant systems are designed with the assumption that new
types of faults do not appear during the operational lifetime of the system, i.e., the
system must be designed to be fault tolerant for the set of faults and their types
known at design time. All these solutions require careful analysis due to their
impact on the system reliability.

In contrast to the usual assumption in reliability modeling, one has to assume
that a fault might exist in the system over an arbitrarily long period of time (latent
fault) and its detection and elimination is not possible “at once”. Consequently, one
should accept that fault tolerance is a process, which we present in the next chapter.

Using Dijkstra’s approach of defining a function as a process described by its
algorithm, fault tolerance is considered as a function that is described and imple-
mented by an algorithm as well.

There are several options to achieve fault tolerance assuming the use of HW and
SSW using various types of redundancy mentioned above. However, the use of
certain redundancy types might cause system performance degradation which is

Fig. 3.6 Fault tolerance of
computer system

3.3 Models for Fault Tolerance 21

especially true for software measures [12, 13]. Thus, further analysis of perfor-
mance/reliability degradation should be taken into account.

The introduced system redundancy might be used in a way to cover only certain
fault types a system can tolerate and thus in terms of fault coverage degrades the
system, but in terms of performance works without difference to the
non-fault-tolerant version.

Software-based redundancy might preserve the same type of fault coverage but
with more time redundancy—delays (recovery time degrades, availability degrades)
[14], but the fault coverage might not, thus the system degrades in terms of
reliability.

3.4 Chapter Conclusion

In this chapter, we introduced the standard reliability theory and showed how to
calculate the reliability of hardware components, assuming Poisson distributed
faults. Based on this, we showed how to calculate the mean time to failure of such
components.

Next, we showed that a component or a system can be made more reliable by
introducing deliberate redundancy for tolerating faults.

We classify redundancy in time, structure, and information, implemented either
in software or hardware. Every concrete redundancy measure, such as duplication,
CRC, etc. can be described using the introduced classification (but not vice versa).

Treating fault tolerance as a process consisting of the basic steps of detection,
location, and elimination of fault, involving hardware and software in cooperation,
proved to be the far superior approach than considering fault tolerance as a static
feature.

We then showed that only by thoroughly analyzing the interconnecting model of
system, model of fault, and model of toleration of this fault using redundancy
becomes possible to derive the “best” fault-tolerant system which fulfills the given
application requirements in a given cost envelope.

References

1. Birolini A (2007) Reliability engineering theory and practice. Springer
2. Von Neumann J (1956) Probabilistic logics and synthesis of reliable organisms from

unreliable components. In: Shannon C, McCarthy J (eds) Automata studies. Princeton
University Press, pp 43–98

3. Pierce WH (1965) Failure-tolerant computer design. Academic Press Inc., New York
4. Laprie J-C (1984) Dependability modeling and evaluation of software and hardware systems.

In: Fehlertolerierende Rechensysteme, 2. GI/NTG/GMR- Fachtagung, London, UK. Springer,
pp 202–215

22 3 Fault Tolerance: Theory and Concepts

5. Avizienis A, Gilley GC, Mathur FP, Rennels DA, Rohr JA, Rubin DK (1971, November) The
star (self-testing and repairing) computer: an investigation of the theory and practice of
fault-tolerant computer design. IEEE Trans Comput C 20(11):1312–1321

6. Avizienis A (1971) FT computing: an overview. Computer 4(1):5–8
7. Avizienis A (1967) Design of fault-tolerant computers. In: AFIPS conference proceedings, vol

31. Thompson Books, pp 733–743
8. Laprie JC (1992) Dependability: basic concepts and terminology. Springer, Luxemburg
9. Avizienis A, Laprie J-C (1986) Dependable computing: from concepts to design diversity. In:

Proceedings of the IEEE, vol 74, pp 629–638
10. Schagaev I (1990) Yet another approach to classification of redundancy. In: FTSD-FTCS

congress on technical diagnostic, Varna
11. Schagaev I et al (2001) Redundancy classification and its applications for fault tolerant

computer design. In: IEEE TESADI-01
12. Sogomonyan E, Shagaev I (1988) Hardware and software for fault-tolerant computing

systems. Autom Remote Control 49:129–151
13. McCluskey E et al (2002) Control-flow checking by software signatures. IEEE Trans Reliab

51(1):111–122
14. Kulkarni V, Nicola V, Trivedi KS (1990) Effects of check pointing and queuing on program

performance

References 23

Chapter 4
Generalized Algorithm of Fault
Tolerance (GAFT)

Abstract Fault tolerance so far was considered as a property of a system. In fact
and instead, we introduce a Generalized Algorithm of Fault Tolerance (GAFT) that
considers property of fault tolerance as a system process. GAFT implementation
analysis—if we want to make it rigorous—should be using classification of re-
dundancy types. Various redundancy types have different “power” of use at various
steps of GAFT. Properties of GAFT implementation impact on overall performance
of the system, coverage of faults, and ability of reconfiguration. Clear that sepa-
ration of malfunctions from permanent fault simply must be implemented and
reliability gain is analyzed. A ratio of malfunctions to permanent faults is achieving
105−7 and simple exclusion from working configuration a malfunctioned element is
no longer feasible. Further, we have to consider GAFT extension in terms of
generalization and application for support of system safety of complex systems. Our
algorithms of searching correct state, “guilty” element, and analysis of potential
damages become powerful extension of GAFT for challenging applications like
avionic systems, aircraft as a whole. In Chap. 3, we showed that fault tolerance
should be treated as a process. In this chapter, we elaborate further this process into
a clearly defined algorithm and develop a framework to the design of fault-tolerant
systems, the generalized algorithm of fault tolerance—GAFT.We also introduce a
theoretical model to quantify the impact of the additional redundancy to the reli-
ability of the whole system and derive an answer to the question of how much
added redundancy leads to the system with highest reliability. A question that
GAFT cannot answer is how the real source of a detected fault can be identified, as
the fault manifestation might have occurred in another hardware element and spread
in the system due to nonexistent fault containment. We will show an algorithm that
based on the dependencies of the elements of a system can identify the possible
fault sources and also predict which elements an identified fault might have
affected. We now start in a first step by further elaborating the process of fault
tolerance.

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_4

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_4

4.1 The Generalized Algorithm of Fault Tolerance

The traditional process of monitoring faults as an algorithm is generalized using
approaches of [1, 2]. An extension of the algorithm of fault tolerance called the
generalized algorithm of fault tolerance (GAFT) [3–5] is illustrated in Fig. 4.1 and
explained below in more detail.

The primary function of fault monitoring assumes several steps such as follows:

– Detecting faults,
– Identifying faults,
– Identifying faulty component,
– Hardware reconfiguration to achieve a repairable state, and
– Recovery of a correct state(s) for the system and user software.

The process of fault tolerance considers the interaction between HW/SW ele-
ments and requires the physics of the fault itself to be presented somehow in the
structure of the algorithm. From the system viewpoint, the nature of hardware faults
is different; a hardware fault is considered as either a permanent fault or a temporary
fault (malfunction).

When fault type determination becomes more complex the complexity of
implementation of processing system grows as well.

This is especially true for multicore systems (MIMD) or processors that support
vector (SIMD) instructions. Pipelined processor implementations make a consid-
erable increase in the implementation complexity also. In principle, an asyn-
chronous hardware fault checking solution can lead to spreading faults within the
whole system and can make recovery therefore unjustifiably complex.

In practice, the complexity of GAFT implementations depends on the com-
plexity of the system, its faults, and the fault tolerance models. Of course, hardware
support for fault tolerance is the fastest way to achieve reliability and with careful
design, there should be little or no performance degradation.

Fig. 4.1 GAFT

26 4 Generalized Algorithm of Fault Tolerance (GAFT)

In turn, a combination of HW and SSW implementation should be quite effective
depending on the variety of tolerated faults and the acceptable level of performance
degradation. It is clear that GAFT should deal with malfunctions first because they
are easier to recover than permanent faults.

The closer the fault type detection is to the start of the algorithm of fault tol-
erance, the faster the algorithm completes in the case of malfunctions. Taking into
account that the ratio of malfunctions to permanent faults is roughly 104–105 a
differentiation based on fault types will obviously provide an improvement of FT
efficiency. The algorithm of fault tolerance is shown in Fig. 4.1.

GAFT is initiated by external events, such as fault detection, periodic testing, or
maintenance. Fault detection can be performed synchronously or asynchronously
using hardware or software redundancy. Further, this chapter discusses GAFT
implementation and activation by hardware and system software in more detail.

An example of asynchronous hardware redundancy is HW(∂I)—redundant data
bits to check data errors. In the first step, the errors are detected and in a second
step, the redundancy information is used to recover the system.

An example of synchronous hardware redundancy would be HW(∂T)—special
hardware delay schemes to stabilize signals and avoid malfunctions.

Other redundancy examples may also be used for the same purpose including,
for example, SW (∂S, ∂T)—execution of SW-based test programs to validate
hardware integrity performed during idle time (then SW(∂T) = 0 from the system
point of view) or SW(∂I)—informational redundancy of the program.

Hardware faults detected by hardware or software invoke specific
fault-dependent actions and initiate the execution of a diagnosing program to
identify the fault type and to locate a specific faulty chip. If the fault is permanent,
the component that contains the fault is excluded from the system by a special step
of GAFT called hardware reconfiguration.

As long as the hardware design supports this and there are still redundant
resources available, the system is reconfigured into a properly working state. If no
redundant resources are available, the faulty component can still be excluded from
the system as long as it is not essential, and the system continues processing in a
degraded state.

Hardware fault tolerance from permanent faults requires redundant hardware
components HW(S1, S1) and is unavoidable for FT RT systems. Hardware recon-
figuration must also be performed synchronously and invisible, if possible, to the
system function to support continuous operation. If, due to already performed
reconfiguration, it is no longer possible to further reconfigure the system, the faulty
component might also be disabled, and the processing could continue working as
long as no crucial component such as the processor or the memory is affected.

Analog to the hardware recovery, the software must also be recovered, i.e.,
proving that the fault did not affect the software state or excluding the effects of the
fault if it had an impact. It is also necessary to make the system aware of a new
possible hardware topology, in the case that an HW component failed and could not
be recovered.

4.1 The Generalized Algorithm of Fault Tolerance 27

In addition, the system must create recovery points that can then be used to roll
back program execution to eliminate the effects of the fault and resume
communication.

We believe that this step of recovery point creation is also part of GAFT as a
separate (concurrent) process to the standard GAFT process. Recovery point cre-
ation can either be triggered by an interrupt (for example, timer) or triggered by
software. Figure 4.2 shows an adapted version of GAFT that explicitly includes the
two steps such as software reconfiguration and recovery point creation.

Now, for every step in GAFT, some kind of redundancy is needed. Table 4.1
presents a framework of how to design the individual steps. Table 4.2 presents
concrete examples of implementation.

Incomplete checking and uncertainty in the pattern of fault behavior are attrib-
uted possible hardware fault latency. In this case, even prearranged recovery points
(RP) created during program execution might be damaged, as they may already
contain corrupted data. This might be caused by a hardware fault (permanent or
malfunction) and its consequences.

Thus, even several steps of recovery would not be enough to achieve a correct
(at least consistent) state of hardware and software to continue the execution. A
special phase of GAFT (step H in GAFT Table 4.1) is used to locate the correct RP,
or to create a new correct state based on trusted historical application data, which is
in case of a flight control system, the stored data in the Flight Data Memory. In the
worst case, the system could be rebooted and reinitialized.

Note that the state of the software might even in the case of hardware mal-
function be damaged, which means that the step H in GAFT (Table 4.1) is required

PERIODICALLY DO

Create recovery point
END

IF error is detected THEN
Determine the type of fault;
IF the fault is permanent THEN

Locate the faulty component;
Reconfigure the hardware by excluding the faulty unit;

END;
IF the fault affected the software

Locate correct state from which possible to continue;
Recover the system from preliminary stored correct

state;
IF hardware has been reconfigured THEN
Reconfigure software;
END;

END;
END;

Fig. 4.2 Generalization of GAFT

28 4 Generalized Algorithm of Fault Tolerance (GAFT)

for both: malfunctions and permanent hardware faults. If it is possible to prove that
the software state was not affected by the fault or the recovery was successful, then
the processing is resumed.

According to Table 4.1, a system is fault tolerant if it completely implements
GAFT, i.e., all steps of GAFT. Every individual step can of course be implemented
in various ways with different properties. Thus, fault-tolerant systems may differ in
the following:

– GAFT steps execution time,
– Used redundancy types, and
– Tolerated fault types.

Table 4.1 enables the comparison, classification, and analysis of various solu-
tions for fault-tolerant computer system implementations.

Note also that reliability, power consumption, cost, and maintenance as
requirements are usually predefined in the development of safety-critical, embed-
ded, and RT systems.

It is therefore important to define the level of required redundancy, dependent on
the application, as a basis to design the system as “as reliable as possible” system
which is usually much too expensive to develop. GAFT and redundancy

Table 4.1 Template for the analysis of GAFT implementations

Step Description Redundancy types

HW
(I)

HW
(S)

HW
(T)

SW
(I)

SW
(S)

SW
(T)

0 PERIODICALLY DO Create
recovery point END

A IF error is detected THEN

B Determine the fault type

C IF fault is permanent THEN

D Locate faulty element

E Reconfigure hardware

END

F IF hardware has been
reconfigured OR software is
affected

G Locate faulty software states

H Recover software

I IF hardware has been
reconfigured THEN

J Reconfigure software

END

END

K CONTINUE

4.1 The Generalized Algorithm of Fault Tolerance 29

classification together allow comparative studies of the proposed project design
solutions in terms of applied redundancy types.

This provides a firm foundation for evaluating and choosing the most effective
and efficient solution for the implementation of FT RT system from the many
alternative approaches.

4.2 Definition of Fault Tolerance by GAFT

So far the classic term fault tolerance was used without an actual definition.
Clearly, it needs to be differentiated from terms such as graceful degradation and
fail-stop. Avizienis and Laprie [6, 7] proposed that a system is called fault tolerant
(FTS) if it can recover itself to full performance or at least continue with sufficient
specified functions and required features to fulfill all crucial tasks. The set of crucial
tasks is obviously application dependent.

Table 4.2 Example of GAFT implementations

Step Description Redundancy types

HW
(I)

HW
(S)

HW
(T)

SW
(I)

SW
(S)

SW
(T)

0 PERIODICALLY DO 7 7

Create recovery point END

A IF error is detected THEN 2 1, 3,
9

1, 2 8 6,9 6

ELSE

B Determine the fault type 2 1, 3,
9

1 8 6,9 6

C IF fault is permanent THEN

D Locate Faulty Element 2 1, 3 1 8

E Reconfigure Hardware 10 10

END

F IF hardware has been
reconfigured OR software is
affected

3 8 6 5,6

G Locate faulty software states 7 7

H Recover software 9 7,9 7

I IF hardware has been
reconfigured THEN

J Reconfigure software 10 10

END

END

K CONTINUE

30 4 Generalized Algorithm of Fault Tolerance (GAFT)

If the system can recover itself and continue working in a degraded mode after
the occurrence of a fault, it is called a Gracefully Degradable System (GDS) [8]. In
turn, if a system can stop itself correctly in an acceptable state once a fault has been
detected, it is called a Fail-Stop System (FSS) [9].

The definition of fault-tolerant systems proposed for RT systems in [1] is more
rigorous and uses an algorithmic definition of the feature: A system is called fault
tolerant if and only if it implements GAFT.

In other words:
An RT system is called fault tolerant if it provides the full application functionality,
executes GAFT (including recovery) when necessary within a clearly specified
timeframe (between sequential data transmissions or tasks) transparently for the
applications.

Applied to the example of an airplane flight system, this would mean that if the
system can recover itself within defined time (between sequential data inputs, in
practice about 125 ms) in failure-free mode (or with recovery that is transparent for
the application) then this system is called fault tolerant.

4.3 Example of Possible GAFT Implementation

For every step in GAFT, at least one redundancy-handling mechanism is required to
make the system fault tolerant. In this chapter, we give an example of a possible
concept that illustrates the process. Note that one redundancy scheme can cover
more than one step in GAFT, as one redundancy feature might provide means to
detect faults, but also treat faults. Triplicate memory would be one example.

Table 4.2 shows the complete GAFT with used redundancy types to implement
each algorithm step for our example application of a flight control system. The
numbers in the redundancy columns correspond to the redundancy types applied in
each step. These numbers, in turn, are briefly described in Table 4.3 to illustrate the
functionality.

Of course, not all fault types can be covered by each of these redundancy
mechanisms. We concentrate here on the HW faults presented in Sect. 4.3.4. Refer
to [8] for a more detailed classification of possible faults not only in HW but also in
SW and during the design phase.

Table 4.2 shows that the various applied redundancy mechanisms are used in
single or across several steps of the GAFT algorithm. The numbers in the redun-
dancy-type fields correspond to the redundancy mechanisms presented in Table 4.3.
All mechanisms combined result in a system that implements all steps of GAFT and
is, therefore, fault tolerant.

Not all components, however, are in this example equally strong fault tolerant.
For example, the processor and the memory subsystem are massively covered by
checking schemes, but other systems such I/O devices are only covered from faults

4.2 Definition of Fault Tolerance by GAFT 31

by periodic activation of hardware checking schemes and SW input validation. It is,
therefore, possible that these devices introduce faults in software, which must be
handled solely by SW without hardware support.

Table 4.3 FT features

Nr. Name Redundancy
type

Description

1 HW checking HW(dS, dT) Each hardware component such as processor,
memory, and controllers has built-in
checking schemes to detect faults

2 Processor
instruction
re-execution

HW(dI, dT) The processor itself has measures to detect
faults during execution and can abort and
restart the currently running instruction

3 Triplicated memory HW(3S) The memory chips are triplicated and a voter
compares the output of the three memory
chips. If a deviation is detected, the majority
voting is used to identify the faulty chip and
the faulty value is rewritten. Read after write
ensures the proper storing of the data

4 Duplicated storage
device

HW(2S) Storage devices such as flash cards or hard
disks are duplicated. Note that this feature
does only provide fault detection but not
recovery

5 Duplicated program
run and input
validation

SW(2T) The same program is run twice with the same
input data set. The output of both programs is
then compared. Prior to running the program,
the input data are validated to conform to a
certain pattern and range

6 Checkpoints SW(dT, dS) Periodically executed checking functions for
checking software and hardware,
implemented in pure software

7 Recovery points SW(dT, dI) Recovery points are points in time when the
complete system state is consistently stored
on a permanent storage device such as flash
disks or hard disks. They are either triggered
by software or an external interrupt

8 CRC SW(I) The data stored to the external storage device
are protected by a CRC-32. This allows the
identification of incorrect data but no
recovery

9 Watchdog HW(S) As an ultimate resort, a watchdog is used to
restart parts of, or the whole system.
Hardware-based watchdogs can typically on
restart the whole system at once

10 Reconfiguration
facilities

SW(S), HW
(S1, S2)

If the hardware failed, the software can
reconfigure the hardware to exclude faulty
components. In addition, the software can
start alternative software version which needs
less resources to adapt to the new hardware
configuration

32 4 Generalized Algorithm of Fault Tolerance (GAFT)

In our case, input validation is used to detect faulty data, which is rejected to
prevent the faults from entering the system. If such an error is detected, the self-test
procedure of the input data hardware device has to run to diagnose the fault type
(transient or permanent).

The numbers used in the table are explained in Table 4.3. Table 4.3 shows all
used redundancy mechanisms in our example above with a short description. Not
every aspect of such a flight control system can be covered by GAFT, for example,
real-time aspects are not present.

Thus, GAFT covers only the redundancy part of a possible implementation and
other techniques, such as scheduling strategies are used to guarantee real-time
constraints.

The combination of the two features: fault tolerance and real-time in one system
is very challenging as they work against each other: real time requires tasks to have
finished processing before their individual deadlines; in turn, fault tolerance,
especially implemented using redundancies HW(T) and SW(T), requires additional
time to complete GAFT.

Fault tolerance implementation using time redundancy therefore is hardly pos-
sible for real-time systems. For extremely time-critical tasks, application of HW(T)
and SW(T) for fault tolerance should therefore be omitted.

The combination of duplicated storage devices (HW(2S)) and CRC-32 (SW(i))
is a typical example of combining two redundancies which on their own can only
detect faults of a storage subsystem. The duplicated storage is used to detect faults,
whereas the SW-based CRC-32 is used to identify the correct data, which is then
used to correct the faulty instance.

4.4 GAFT Properties: Performance, Reliability, Coverage

As already mentioned above and shown in Fig. 4.1 and Table 4.1, the three con-
nected processes checking and testing, preparation for recovery and recovery might
be implemented by and within SSW and HW at the design phase and runtime phase
of the whole system life cycle.

Obviously, different implementations of the three processes differ in terms of
fault coverage, achievable reliability, availability, and cost. Different implementa-
tions of GAFT vary in terms of used redundancy types. This, therefore, changes the
time to complete GAFT.

The runtime phase T of the system life cycle in terms of time redundancy fault
tolerance can be considered at different levels of granularity that are related to the
scope of the program being executed. We differentiate the following five levels:
instruction, procedure, module, task, and system (not shown) as shown in Fig. 4.3.

The instruction-level scheme assumes that when a fault appears, its influence is
eliminated within the instruction execution, using hardware redundancy for fault
detection, fault location, and fault recovery.

4.3 Example of Possible GAFT Implementation 33

At this level, only hardware-based redundancy HW(I, S, T) can be used as
software support would need too much time. Small time redundancy T is used as
supportive redundancy for less than instruction time to achieve fault tolerance, or as
redundancy HW(2T) in case of instruction repetition by the processor.

In another example, triplicate memory with voter, the voter masks the faults of
one memory element while accessing the memory and thus the fault is tolerated
within one instruction. The techniques such as microinstruction or instruction
repetition can be used here as well to provide instruction-level fault correction
within the processor.

We call this method of recovery a “good” Fault-Tolerant Computing System
(FCTS) as the fault checking, detection, and recovery are done completely trans-
parent to the software [9]. In case of permanent faults, the system can reconfigure
itself and continue processing without application intervention.

Note that not all faults are detectable and recoverable within the instruction level,
thus the other levels of recovery are still required and should be considered as well
in design of fault-tolerant systems.

For the procedure level of recovery, a hardware fault and its influence is tol-
erated and eliminated within the scope of a procedure. For example, techniques
such as recovery blocks, wrongly known as recovery points [10], can be considered
as a procedure-level scheme.

In contrast to the recovery on the instruction level, the software state space must
be in this case conserved and regenerated to recover from a fault. For this scheme,
the state of the system that is required to save and recover is much larger than in the
instruction-level approach and a significant software overhead is expected to
implement fault tolerance at this level. We call a system that uses only this
mechanism therefore a “medium” FCTS.

Fig. 4.3 System recovery times according to the used scheme

34 4 Generalized Algorithm of Fault Tolerance (GAFT)

For the module level of recovery, a fault and its influence is tolerated within a
module execution. For example, module restart or run of a simplified alternative
module might be used to avoid system restart, reboot, etc. The same comments
apply as for the procedure case, except that time and program overheads for
achieving fault tolerance are even higher as the state space is likely to be much
larger.

Redundancy on the module level might be considered as SW(S, I, T) where S
stands for extra software element to perform hardware checking (if hardware
schemes are unavailable) and prepare recovery point before module run. Other
redundancies I and T define the required extra information to form a recovery point
for the module and time required to generate it.

It was already shown in the late 80s that the process of checking and recovery
can be implemented in parallel [3, 4], thus T ! 0 from the system point of view, so
it could also be treated as a supportive redundancy.

The task-level scheme eliminates a hardware fault and its influence by a task
restart after the hardware reconfiguration. Here, redundancy is obviously required
much greater than in previously described schemes.

Finally, the system state may be recovered by a reboot and task repetition. Due
to the high recovery time, we call such a system a “weak” FCTS.

Recovery on the level of the system is implicitly available on all systems, as
rebooting the system in case of an error basically performs recovery. This corre-
sponds to turning on a system on and must, therefore, be supported in any case. We
consider this as the “last resort” if all other measures fail.

The initialization of these GAFT scheme implementations might also require
some time especially on the higher recovery levels or depends on hardware signals
from checking schemes.

The time impact of implementing GAFT at each of these levels is different, as
well as delays caused by their use. Current embedded system practice indicates the
following orders of magnitudes for timing:

– Nanoseconds for the instruction level,
– Microseconds to milliseconds for the procedure level,
– Hundreds of milliseconds to seconds for the module level, and
– Seconds to tens of seconds at the task level.

The different schemes have different overheads, capabilities for tolerating vari-
ous fault classes, power consumption overheads, and system costs. For the
instruction-level scheme, the required hardware support (such as duplicate or
triplicate hardware modules) could result in serious power consumption overheads,
size, and cost.

However, not all hardware subsystems need necessarily be designed in this way.
For example, a cost–benefit analysis (where “cost” infers financial, power con-
sumption, chip area, and time delays) might indicate that it is worth having the
processor and system RAM protected at this level, but not the other subsystems.

4.4 GAFT Properties: Performance, Reliability, Coverage 35

The procedure-level scheme requires much less hardware support but, of course,
has a larger timing and software-coding overhead. For the module and the task-level
schemes, extra hardware and system software support for fault tolerance is actually
incomplete as any permanent hardware fault of a crucial HW component would
cause the system to stop working and the GAFT would fail.

The final effort of fault actions to achieve fault tolerance here becomes rebooting
the system to perform the recovery; but again, even with complete system reboot
without hardware redundancy specially dedicated to replace faulty components, the
system can only be resilient to malfunctions (transient faults), not hard faults.

Depending on the implementation level, the systems differ in the required time
frame to achieve fault tolerance (see the thick lines in Fig. 4.3). Note that several
schemes can also be applied in combination, as one scheme alone might not cover
all fault types.

Ideally, all possible levels should be considered for implementation within a
safety-critical system due to large latencies of faults: presence of external impact
inside the system can have a range of up to several seconds (see Sect. 4.2.2). Such a
fault can wrongly be identified as a permanent fault on the instruction level but
correctly handled as a malfunction on higher levels.

Consider the extreme case where the vast majority of malfunctions can be
recovered within the instruction execution and faults that have happened within one
instruction execution are invisible for other instructions (and the software). Then,
only malfunctions with impact time longer than one instruction need to be detected
and recovered by higher levels, for example, at the procedure level. This means that
the vast majority of hardware faults is becoming invisible for the system software
and system software support of hardware deficiency is used rather rarely, which
corresponds to a system according to the left curve in Fig. 4.3.

At the other extreme, the system could tolerate the vast majority of malfunctions
at the task level. The operating system or even user support might be needed to
tolerate hardware faults.

From the user’s point of view, even Microsoft Windows systems might be
considered as fault tolerant as long as an application that was scheduled was
completed and the results are delivered in time, although maintenance hardware or
even a system engineers was involved to fix the fault “in time”. Most Windows
systems assume that system rebooting and restart of the applications are acceptable
ways of operation.

Practical experience in the real-time safety-critical systems domain shows the
opposite as the most critical reliability requirements are an MTTF of 10–25 years
and system availability A(t) of A(t) > 0.99 over the whole system life cycle.

36 4 Generalized Algorithm of Fault Tolerance (GAFT)

4.5 Reliability Evaluation for Fault Tolerance

From the classic reliability point of view, any extra redundancy of hardware reduces
the absolute reliability of the system [11]. At the same time, the reliability of the
system might be increased if the introduced redundancy is able to tolerate faults of
the main part of the system by means of GAFT and itself contributes less in the
system fault ratio.

Thus, part of the problem, the decreasing reliability of the system caused by
hardware redundancy at some point becomes part of a solution. GAFT imple-
mentation breaks down to three processes: P1 for checking and testing, P2 for
preparation for recovery, and P3 for recovery and recovery monitoring.

Clearly, there are design trade-offs to be made to achieve the optimum opera-
tional reliability and redundancy types used as we have already shown.

The reliability analysis [12], introduced in Sect. 4.3.1, shows a reliability value
for each element (hardware redundancy) and assumes a Poisson failure rate k. This
allows to calculate the overall reliability as a function of time for the whole system,
if the structure of the system is known.

The hardware redundancy used at various steps of GAFT degrades in reliability
over time; thus, the achievable performance and reliability and their degradation
within the life cycle of the RT system are dependent on each other.

Therefore, an analysis of the surface shape and evaluation of performance and
reliability degradation caused by the used redundancies should be performed for
every fault-tolerant system. Figure 4.4 presents qualitatively a slope where a
fault-tolerant system should be located, between the plane of requirements and
curves of reliability and performance degradation.

Furthermore, the introduction of the cost to implement each proposed solution
allows to summarize the system overheads required to implement fault tolerance.

There is no doubt that a quantitative evaluation of reliability, performance, and
cost overheads within one framework might be extremely efficient for justification
of the design decisions and comparison of different approaches in implementation
of fault tolerance. There is a correspondence between reliability of FT systems and
steps of GAFT related to the malfunction tolerance shown in Fig. 4.4.

Two dimensions: reliability and performance correspond to requirements of the
system with controlled degradation over time. This figure illustrates that it is not
possible to minimize for cost and maximize all other goals and a trade-off has to be
made.

4.5 Reliability Evaluation for Fault Tolerance 37

4.6 Hardware Redundancy and Reliability

Consider a system with a given reliability which is prone to transient and permanent
faults (Fig. 4.5, left graph). If additional hardware is added to detect transient faults,
the introduced redundancy to achieve fault detection reduces the absolute reliability
of the system as more hardware is used that is prone to faults.

At the same time, if the introduced redundancy is not only used to detect
transient faults but also to tolerate them, the reliability of the system increases
(Fig. 4.5, right graph). Thus, part of the problem—the decreasing reliability of
hardware caused by redundancy at some point (after introduction of recoverability
process P3) becomes part of a solution. Note that the system is however still prone
to permanent faults.

Figure 4.5 illustrates reliability degradation in presence of malfunction and
permanent faults and gain for the system assuming permanent fault ration k = 10−5,
coefficient of malfunction to permanent fault ratio k = {0, 1000}, and redundancy
of hardware d = 0.12. The data applied are natural based on our own design of
processor with malfunction tolerance [13], while ratio introduced deliberately lower
than real, in real practice as ratio of malfunction to permanent faults, varies from
105 to 107.

Clear that analysis of effect of redundancy on the reliability of a system is worth
to clarify a bit more. Note that malfunction tolerance as mentioned before can be

Fig. 4.4 Trade-offs to be made in fault-tolerant system design: time-, performance-, and
reliability-wise

38 4 Generalized Algorithm of Fault Tolerance (GAFT)

implemented using hardware or system software or their combinations. Thus, re-
liability gain might be achieved by combination of both methods.

4.6.1 Hardware Redundancy: Reliability Analysis

We introduce a reliability value for each hardware component and assume a
Poisson failure rate k to calculate the overall reliability of the whole system, as it
was introduced in previous chapters.

If time redundancy is used to implement one or more steps of GAFT, we can use
the overhead of the redundancy solution to give an estimation of the performance
degradation caused by the introduced redundancy.

If the additional required cost to develop and manufacture a fault tolerance
feature is taken into consideration as well, it is possible to quantitatively evaluate
and compare different approaches to implement fault tolerance.

Next, we derive a model to analyze the achievable reliability of possible pro-
cessor and memory structures and to predict how long and at what availability level
such a solution can operate [9].

We denote the permanent fault rate of a processor without redundancy as kpfl and
the transient fault rate as kifl. The probability of operation without fault within the
time frame [0, T] is determined by

Fig. 4.5 Efficiency of a system with faults and checking schemes

4.6 Hardware Redundancy and Reliability 39

Pnf tð Þ ¼ e� kpfl þ kiflð Þt ð4:1Þ

The mean time to failure here is

MTTFnf ¼ 1
kpfl þ kifl

ð4:2Þ

If we assume that transient faults happen k times more often than permanent
faults, we get

P1 tð Þ ¼ e� 1þ kð Þkpflð Þt ð4:3Þ

MTTF1 ¼ 1
1þ kð Þkpfl ð4:4Þ

As already shown above, k can be as high as 103–105 especially for space-borne
systems.

If a system or processor is capable to (a) identify transient faults and (b) recover
from them, additional hardware for both of these two features is required, which of
course changes the reliability of the system.

Thus, it follows that

Pft tð Þ ¼ e� 1þ di þ drð Þ 1þ kð Þkpflt ð4:5Þ

MTTFft ¼ 1
1þ di þ drð Þ 1þ kð Þkpfl ð4:6Þ

where di reflects the additional hardware required for fault identification and dr the
required hardware for recovery. It is clear that the smaller di and dr are, the higher
the reliability that can be achieved for a processor or memory subsystem.

However, the purpose of the newly introduced hardware is the identification and
toleration of transient faults is not fully achievable, we have to assume that the
system can detect and recover from a part of the transient faults. True, the absolute
number of faults and consequently also the permanent-to-transient fault ratio
becomes lower.

The system cannot, however, detect and recover all faults, thus we introduce a as
an indication of how successful the recovery is. a reflects the reduction of k using
fault tolerance mechanisms and must therefore be in the range of (0–1):

Pft tð Þ ¼ e� 1þ di þ drð Þ 1þ akð Þkpflt ð4:7Þ

MTTFft ¼ 1
1þ di þ drð Þ 1þ akð Þkpfl ð4:8Þ

40 4 Generalized Algorithm of Fault Tolerance (GAFT)

What is still missing in the reliability analysis is the rate of successful recovery
a, i.e., the chance that a fault is detected successfully and the system can recover
fully from the fault. Obviously, as mentioned above, a must be in the range of (0–
1), dependent on the fault coverage c. For a, we thus introduce Eq. 4.9 with SF
being the so-called success function:

a ¼ 1� c � SF ð4:9Þ

This success function SF defines the recovery rate. A duplicated system can
detect all possible malfunctions and if self-checking is implemented, it can also
recover from them.

Thus, a success function should meet the following constraints, with x being the
amount of used redundancy:

– The recovery rate must be in the range of 0–1;
– If no redundancy is used x = 0, the chance for recovery is 0, and therefore

SF ! 0. If duplication is used x = 1, the recovery is in approximation 1, and
therefore SF ! 1;

– If more redundancy than duplication is used (x > 1), the system gets less
efficient.

The function SF = x1−x (shown on Fig. 4.6) satisfies these conditions and seems
therefore appropriate for a success function initial introduction.

The power part of this function (x1−x) is some kind of penalty function that
reflects the third condition the success function has to satisfy, i.e., the inefficiency of
more than duplication, when x > 1.

Fig. 4.6 Recovery success function

4.6 Hardware Redundancy and Reliability 41

In other words, the efficiency of the fault-tolerant system declines when the used
redundancy exceeds 100%.

If we introduce just defined success function in Eq. 4.9, we get the following
equation for a:

a ¼ 1� cxb 1�xð Þ ð4:10Þ

It is worth to point out that recovery might be achieved with less than 100%
redundancy used, as it is shown in Fig. 4.6.

The well-known Hamming code, for example, provides recovery from a single
fault with redundancy 12–13%—depending on which logic schemes and technol-
ogy were used for implementation. ERRIC (Evolving Recoverable Reduced
Instruction Computer [13] is fully recoverable from malfunctions in arithmetic and
logic units with 11.8–12.5% of hardware redundancy involved.

To introduce this boost of checking and recovery success in Eq. 4.10, we
introduce a variable b, with range {0.125, 0.25, 0.5, 0.75}. Then, success of re-
covery becomes dependent on redundancy used—lower family of functions in
Fig. 4.7. Left-shift function belongs to b = 0.125.

The fault coverage itself depends on the amount of used redundancy; however,
this fact has not been integrated into the presented formula and will be briefly
analyzed further.

Fig. 4.7 Recovery success function

42 4 Generalized Algorithm of Fault Tolerance (GAFT)

One has to consider as further research how to split redundancy x into xd which
is the amount of redundancy used for fault detection and xr which is the amount of
redundancy used for recovery.

If a is inserted into equation for mean time to failure MTTFft, we get the
following:

MTTFft ¼ 1
1þ dc þ drð Þ 1þ 1� cxb 1�xð Þð Þkð Þkpf ð4:11Þ

When we need to compare the MTTF for two systems, one with redundancy and
one without an improvement in the order of magnitude (Efficiency E, Eq. 4.12), it is
proved that the solution with redundancy introduced into the system for checking
and recovery purposes is better than the system without redundancy.

E ¼ MTTFft

MTTFnf
ð4:12Þ

Simplified, we get the following equation for efficiency of redundancy use for
reliability gain:

E ¼ 1þ k
1þ dc þ drð Þ 1þ 1� cxb 1�xð Þð Þkð Þ

Figure 4.7 (upper family of functions) shows efficiency for different values of
b and x, assuming k = 100. For convenience of illustration, permanent fault ratio is
set at 10−3.

Another important variable of recovery success in fault-tolerant systems is
coverage of fault, denoted further as c. Figure 4.8 illustrates an impact of coverage
on efficiency of a system design, using c as a variable with 0.5, 0.75, 0.98.

Fig. 4.8 Impact of coverage of fault on reliability gain

4.6 Hardware Redundancy and Reliability 43

Naturally, the more we know about faults and able to recover from them with
less cost the better.

In the used example, the chosen transient fault to permanent fault ratio k is 5,
i.e., transient faults happen five times more often than permanent faults.

Note that even in this conservative case (in practice, k is in the range of 103 to
105) a significant improvement or reliability and overall efficiency of the system can
be shown. A larger k results also in a higher reliability gain.

We did not separate redundancy for checking and redundancy for recovery—it is
subject to further research. Nevertheless, the key outcomes are the following:

– Design of fault-tolerant systems should be revisited: malfunctions must be tol-
erated at the element level, leaving permanent fault handling to the system level;

– There is an optimum in redundancy level spent on fault tolerance which is less
than 100% and dependent on the anticipated fault coverage level. A duplicated
system is therefore not the most efficient solution;

– Fault coverage defines the efficiency of a concrete fault tolerance
implementation;

– The processes of checking and recovery might be realized concurrently with the
main hardware function, with literally no time delay (time redundancy).

One might argue that the introduced success function does not appropriately
model the real world. A system with, for example, 2% redundancy spent on the
detection and recovery is hardly implementable. In reality, a real success function
might start from say 0.12, where a minimum redundancy level is required to get an
implementable fault-tolerant system.

However, further research is required to define the exact minimum of redun-
dancy, which is needed to implement a system in real life and also to refine the
actual shape of the success function.

The fault coverage is also dependent on the amount of redundancy used in the
system that should be integrated into the analysis.

Another aspect that we did not cover in this analysis is manufacturing. With
adapted manufacturing techniques and conscious placement of the individual
hardware elements such as arithmetic unit, registers, etc. the fault coverage can be
increased and the fault effect on the system lowered.

As there are many open questions, an estimation presented here should be
considered as indicative and not absolute.

4.7 Conceptual Summary

In this chapter, we introduced GAFT, which describes in an algorithmic form a
sequence of required steps to make a system fault tolerant. We then introduced
GAFT in tabular form (template), useful to design a fault-tolerant system and prove
that every step of GAFT is implemented by the chosen design. A specific

44 4 Generalized Algorithm of Fault Tolerance (GAFT)

redundancy means such as implementation by hardware redundancy re-execution of
all processor instructions is able to cover multiple steps of GAFT simultaneously.

The template also identifies which redundancy type is used for the implemen-
tation of every GAFT step. We then illustrated the use of the template with an
example. Further, we showed that although a complete GAFT implementation
results in a fault-tolerant system, the different solutions vary in different aspects:
performance, reliability, coverage, and cost. The usage scenario of the system
defines the envelope of performance, reliability, and degradation of the system over
time, which must be met by the fault tolerance solution within given cost limits.

Different redundancy schemes have different properties, depending on which
level (instruction, procedure, module, tasks, and system) they are implemented. We
show that as a general guideline, faults should be tolerated as fast and local as
possible (ASAP and ALAP), favoring therefore the instruction level for the
majority of malfunctions.

We extensively covered the three main processes of GAFT. For testing and
checking, we showed that the combination of hardware- and software-based
checking is the most efficient approach:

• Hardware-based checking process works well for covering short time
malfunctions;

• Software-based checking of hardware for latent malfunctions and permanent
errors.

However, for multiple bit and latent transient faults, software must be involved
in addition to the hardware, as a pure hardware solution might be prohibitively
expensive and inefficient. We also conclude that permanent errors should be han-
dled by software as they involve hardware reconfiguration which needs software
support.

A designer of a fault-tolerant system might be tempted to add as much redun-
dancy to the system as possible, thinking that the system is more reliable the more
redundancy is used. With a carefully designed reliability evaluation we were able to
prove that this approach is wrong as the newly introduced redundancy leads to a
decrease in reliability. In fact, we were able to prove that there exists an optimum in
redundancy that should be used for a system, which is in fact less than duplication.
This result has actually a fundamental importance for system design: so far, there
were known approaches in structural and engineering of reliable design and anal-
ysis widely applying duplicated, tripled, and quadrupled systems. Mechanical copy
of results from mechanical engineering was wrong—in the electronic design, this
principle is unjustified and makes computer systems absolutely not necessary
redundant and less reliable!

As chapter shows when element of fault-tolerant system is able to tolerate own
malfunctions while system level is dealing with permanent faults of hardware by
reconfiguration the system becomes at the order of magnitude more reliable.
Redundancy of element required to achieve malfunction tolerance at the level of
element was proved to be 12%—much less than duplication of the whole system.

4.7 Conceptual Summary 45

Thus our approach should be used for both: making standard computers mal-
function tolerant, while special purpose system fault tolerant using malfunction
tolerant hardware elements.

References

1. Avizienis A, Gilley G, Mathur FP, Rennels D, Rohr J, Rubin D (1971) The star (self-testing
and repairing) computer: an investigation of the theory and practice of fault-tolerant computer
design. IEEE Trans Comput 20(11):1312–1321

2. DeAngelis D, Lauro J (1976) Software recovery in the fault-tolerant space borne computer.
FTCS-6 26

3. Schagaev I (1986) Algorithms of computation recovery. Automat Remote Control 7
4. Schagaev I (1987) Algorithms for restoring a computing process. Automat Remote Control 48

(4)
5. Schagaev I et al (2001) Redundancy classification and its applications for fault tolerant

computer design. In IEEE proceedings of man system cybernetics, Arizona Tucson
6. Avizienis A (1985) Architectures of fault tolerant computing systems, 1975. FTCS-5. In 5th

international symposium, pp 3–16
7. Laprie J-C (1984) Dependability modeling and evaluation of software and hardware systems.

In: Fehlertolerierende Rechensysteme, 2. GI/NTG/GMR- Fachtagung, pp 202–215, Springer,
London

8. Laprie J-C et al. Basic concepts and taxonomy of dependable and secure computing. IEEE
Trans Dependable Secure Comput 1(1):11–33

9. Schagaev I (2008) Reliability of malfunction tolerance. In International multi-conference on
computer science and information technology. IMCSIT 2008, pp 733–737

10. O’Brian F (1976) Rollback point insertion strategies. In Digest of papers 6th international
symposium on fault-tolerant computing, 1976, FTCS-6

11. Vilenkin S, Schagaev I (1998) Operating system for fault tolerant SIMD computers
Programmirovanie, (No. 3)

12. Birolini A (2014) Reliability engineering theory and practice, 7th edn, Springer, London
13. Castano V, Schagaev I (2015) Resilient computer system design. Springer, London ISBN

978- 3-319-15068-0

46 4 Generalized Algorithm of Fault Tolerance (GAFT)

Chapter 5
GAFT Generalization: A Principle
and Model of Active System Safety

Abstract Fault tolerance so far was considered as a property of a system. In fact
and instead, we introduce a Generalized Algorithm of Fault Tolerance (GAFT) that
considers fault tolerance as a system process. There is no doubt we have to analyze
GAFT implementation using redundancy types of computer systems. Properties of
GAFT implementation impact on overall performance of the system, coverage of
faults, and ability of reconfiguration.

It is clear that separation of malfunctions from permanent fault simply must be
implemented and reliability gain is analyzed. A ratio of malfunctions to permanent
faults is achieving 105−7 and simple exclusion from working configuration a mal-
functioned element is no longer feasible.

In this chapter, we consider GAFT extension in terms of generalization and
application for support of system safety of complex systems. Our algorithms of
searching correct state, “guilty” element, and analysis of potential damages become
powerful extension of GAFT for challenging applications like avionic systems,
aircraft as a whole.

Until now, we were introducing the GAFT as the algorithm of achieving
property of fault tolerance in a system as a process. What we did not yet cover is
how to figure out a system approach or method of finding which hardware or
software components are affected by a fault. We want to tackle this problem in this
chapter.

The Method of Active System Safety (MASS) [1] provides a mathematical
approach for the diagnosis and prognosis of faults in real time during system
execution. It is based on the description of a system (of objects) and the depen-
dencies between components and elements of the system represented as a matrix.

Every entry in the dependency matrix represents a dependency of one element to
another. Represented as a graph, dependencies are just directed edges between
elements. Two elements a and b can also be mutual dependent on each other which
is represented by two edges with opposite direction between these elements.

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_5

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_5

Each edge has an assigned weight, corresponding to the probability that “ele-
ment a has an influence on element b.” Note that influence and dependence might
not be symmetrical.

Every element in the system is described by a pattern function that compares the
received (monitored) data with predicted data. During system operation when a
discrepancy is detected between real and the predicted (expected) data, within a
given threshold, the MASS performs the following steps:

– Using the dependency matrix, starting from the “suspected” element, all pos-
sible scenarios, i.e., the full graph of all dependencies the suspected element has,
are evaluated and their probability is calculated. Probabilities along the paths are
cumulatively multiplied. The resulting scenarios are then ranked according to
likeliness using a predefined threshold;

– The structure of the dependency matrix and all probabilities are assumed to be
constant during the graph unfolding;

– The resulting graph with the suspected root element is then treated as a fault tree
and evaluated either automatically or by a human to find the real reason for the
detected anomaly.

Hidden faults, faults that do not immediately result in errors but are triggered later
in time, must be given special attention. The introduced fault latency occurs
because the manifested discrepancy between the real and the expected outcome of
an element (i.e., program output) might be either wrong due to wrong behavior of a
suspected element itself or due to faulty elements the suspected element depends
on.

In other words, an element which shows faulty behavior is not necessarily faulty,
and the real source could also be another element that influences the first element.
We therefore introduce a search algorithm that recursively goes through all
dependencies starting with the suspected one.

The algorithm uses the assigned probabilities on the dependencies to calculate
the likeliness that an element is the source of the fault resulting in a list of possible
sources and their likelihood. Every element of this list is then checked to efficiently
find the real cause.

We propose to use the dependency matrix as data structure to store all element
dependencies. Fault tree schemes used for description of a system for diagnostic
purposes do not look like reasonable alternative to the dependency matrix for
several reasons:

– Fault trees need more space and more effort to create them manually.
– Fault tree is static by design and for each entry—new case of fault we have to

have new fault tree formation.
– Application of fault tree in real time of system operation is impossible.

We have proposed a dependency matrix with introduced GAFT. This matrix is then
used to derive the fault tree and all dependencies in real time [1].

Furthermore, MASS assumes concurrent processing of present and incoming
information about system elements to update the dependency matrix after each

48 5 GAFT Generalization: A Principle and Model of Active System…

iteration of analysis. Therefore, MASS executes the following algorithm, intro-
duced below as a special section.

5.1 GAFT Extension: The Method of Active System Safety

Method of active system safety assumes existence of internal knowledge about an
object in the form of dependency matrix.

• Formation of initial dependency matrix for a node using expert opinion;
• Assigning for each link between elements a direction and weight (probability);
• Formation of a list of possible recovery actions for every element;
• Set threshold ɛ to analyze and terminate dependencies;
• Set threshold q to analyze and terminate backward search;
• Repeat: During application execution, validate the program output according to

application dependent rules;
• If discrepancy is detected, then

– Use dependency matrix to build a dependency graph using the suspected
element as root node. Multiply probability along edges and stop when the
probability is smaller than ɛ;

– Form a sorted list of all scenarios according to the probability;
– Start backward search of all possible faulty elements that are predecessors of

the suspected element;
– Continue until multiplicative probabilities of dependencies are bigger than q;
– Form list of possible reasons of fault manifestation;
– Choose further actions from list of recovery;
– Use new node data and already existing data to update the dependency

matrix.

This sequence allows controlling an object in case of deviation of behavior and
recovering its condition or performing graceful degradation when full recovery is
impossible.

5.2 GAFT Derivation: A Principle of Active System Safety

This section introduces the Principle of Active System Safety (PASS) as logic
derivative of GAFT. In this approach, all key elements of a system (hardware and
software behavior) are modeled as a set of interconnected elements with depen-
dencies reflecting the impact on each other from the recovery point of view.

Schagaev et al. [1] applied the principle of Active Safety to aviation. In their
approach, information about the proper functioning of an airplane component is
monitored in real time and compared to a list of fault symptoms.

5 GAFT Generalization: A Principle and Model of Active System… 49

The idea is then that deviations from the expected behavior can be used to detect
malfunctions in these aircraft components in real time of operation. This principle
can easily be applied to other systems such as a computing system. In this case, the
malfunctions are not detected in aircraft components, but hardware components.

Applied to a software system, the “components” are tasks, which communicate
with each other and thus depend on each other and also depend on the hardware
they use. In fact, MASS and PASS could be considered as an extension of
system-level generalization of GAFT.

The questions that arise are the following:

– How can the component that is responsible for a deviation be found?
– How can the fault type (permanent fault or malfunction) be determined?

True, the location of faults and faulty element(s) from the set of their manifestations
is one of the fundamental problems of complex technical systems [2].

The complexity of the problem can be illustrated by the fact that literature often
uses simplifying assumptions that eases the analysis of the problem and allows to
introduce solutions which fit the assumptions but unfortunately not the real world.

Solutions to the fault localization problem, for example, are in literature based on
very strong assumptions about the system and a priori information about the set of
possible faults and the fault modes [3]. Often faults are considered as so-called
simple faults, i.e., single non-repeatable ones or mutually independent ones.

However, the miniaturization and imperfection in current technologies and
manufacturing processes force us to face the situation where multiple faults of
elements must be considered if we are willing to make practically useful solutions,
based on type of fault detection and further malfunction analysis and toleration.

The interdependence between impacts is reflected in the matrix of mutual
dependence, the so-called Dependency Matrix that uses a directed graph to repre-
sent this information.

The alternative way to react to the object’s condition, composed of the condition
of all its elements, is defined in the Recovery Matrix. When a particular fault
occurs, the Recovery Matrix allows to analyze and describe “what the system is
going to do.” There is a close relationship between the nodes of the Dependency
Matrix and those of the Recovery Matrix.

Figure 5.1 illustrates how the three features behave in relation to each other.
Each particular condition of the node might in some way be related to the collected
parameters. In turn, a trend can be detected if the data of several nodes are taken
together [1].

5.3 Dependency Matrix

The Dependency Matrix D defines dependencies between elements of the system.
A node of the dependency graph corresponding to its dependency matrix represents
every element.

50 5 GAFT Generalization: A Principle and Model of Active System…

A simple example of a dependency graph is shown in Fig. 5.2 and its corre-
sponding dependency matrix D in Table 5.1 as a two-dimensional square matrix of
k columns and rows. Such a dependency matrix can cover k elements.

The assigned probability reflects the probability that a fault in one element
affects another element which depends on the first. In other words, for elements i
and j, two probabilities pji and pij are defined.

Fig. 5.1 Dependencies of data and elements

0.5

0.2 0.3
0.6

0.01

0.8

0.1 0.02

1 3
4

2 5

Fig. 5.2 Dependency graph
example

5.3 Dependency Matrix 51

If pji is the probability that element j induces a fault in element i, one cannot
conclude, in general, that pij = pji as element i might depend on element j but not
vice versa.

The sum of all probabilities of element i is also not necessarily 1 as the
dependencies to other elements are independent of each other.

An even simpler version of the dependency matrix contains a 1 in location i, j if
element ei depends on element ej, else 0.

However, this version of the matrix is usually not used as it is too limited in
power. It is possible to apply statistical analysis to the dependency matrix in order
to adjust the element dependence probabilities with newly discovered ones and
possibly excluding existing ones that have become obsolete [4].

Thus, every element dependency should be updated autonomously after each
detected error.

Such a dependency matrix is a powerful tool used in two algorithms:

1. The search for possible consequence a fault in one element can have on others.
2. Determination of which element originally caused the fault.

In the first case, the dependency matrix is used to make a prognosis of how the fault
spreads in the system.

Therefore, if a fault is detected in element i, it is possible to derive the set of
elements that still can be trusted and the set of elements that might be affected by
the fault. In the second case, the dependency matrix is used to derive the set of
elements which might have caused the fault in element i and the set of elements
which did not cause the fault as element i does not depend on them, neither directly
nor indirectly.

5.4 Recovery Matrix

The Recovery Matrix RM defines the actions to the detected or suspected faults and
has the same dimensions (N�N) as matrix D. Each cell of RM contains two entries:
first, the program or program entry point that is executed when the respective
element and second, the rules used to decide whether an attempt to recovery is
made.

Table 5.1 Dependency
matrix example

1 2 3 4 5

1 1 0.3 0 0 0

2 0.2 1 0 0 0.5

3 0.8 0.6 1 0 0

4 0 0 0 1 0.02

5 0 0 0 0.1 1

52 5 GAFT Generalization: A Principle and Model of Active System…

A recovery attempt might not necessarily lead to a fault-free system. A recovery
procedure is therefore considered to be successful if the probability of recovery Pji
is high.

In other words, Pji � 1 − Pji.

5.5 PASS Tracing Algorithm

Having introduced the method of active safety, the question arises now how to turn
this process into useful algorithms for detecting possible consequences and possible
problem sources in case of errors. We assume that the probability on the edges of
every node in the dependency graph is �1.

Starting from a suspected node, the PASS algorithm evaluates the possible paths
and ranks them according to their possible consequences in terms of safety (risk and
potential damage). The tracing for every path continues until the multiplicative
probability along it is less than the threshold ɛ, where the value of ɛ is statically set
using engineering expertise.

The value ɛ does not change during the lifetime of a system. For every found
path, the elements along the path are added to the set of potentially unsafe con-
sequences. The algorithm uses two distinctive processes, namely, Forward Tracing
and Backward Tracing [4]. Both of these processes are applied to the Dependency
Matrix.

5.5.1 Forward Tracing Algorithm

The forward tracing algorithm is used to find all possible consequences of a fault in
the suspected element i on the other elements in the system. This algorithm has two
termination conditions: First, the algorithm stops if every node in the dependency
graph (described by a matrix (N�N) with n elements) has been visited and
processed.

Cycles in the graph must be given special attention in the implementation of the
algorithm for this condition to hold. The second condition is the probability of the
analyzed path. The algorithm stops if the probability is less than ɛ.

We define the probability of the paths from the suspected node di to node dj asQ
(pi,j). If multiple paths lead from node di to node dj, all possible

Q
(pi,j) are ranked

and the nodes along the paths are included into the set of suspected nodes.
Figure 5.3 describes the forward tracing algorithm in more detail.

Initially, every node in the graph is considered as not affected by the fault and
the result set Ds is initialized to the empty set (not shown in the code). For the
suspected node, the probability is initialized to ɛ; all nodes of the graph are put into
a priority queue Q. We assume that the queue has a function called GetMax, which

5.4 Recovery Matrix 53

returns the element with highest probability and removes it from the queue. This
node is then updated with the function “increase” by the adjacent nodes.

Initially, the first tracing node s is the active node. Inside the tracing loop, for
every node, the probabilities for all possible paths are calculated. The highest
probability for the traces defines the start for the next step of the algorithm; the node
along the highest probable trace is assigned as active and deleted from the queue.
Therefore, the probabilities of all the adjacent nodes (minor to major (i.e., high
risk)) with active node are calculated.

To avoid looping during tracing analysis, the adjacent nodes that have already
been visited are excluded from further tracing (line 17) during each particular
analysis of the matrix. When a loop is detected, a production

Q
(pi,j) is calculated

excluding the last probability. All the remaining nodes will be traced; probabilities
along their paths (from starting node) are updated (line 20, 21).

As already mentioned, tracing terminates when the probabilities
Q
(pi,j) of

reaching the remaining nodes are less than ɛ. To summarize, starting from the
“suspected” element all possible paths and their probabilities are traced, their
cumulative probabilities are calculated, and their sequences are ranked according to
their relative probabilities.

Relating to standard algorithm and data structure theory, this algorithm is
basically a modified version of a breadth-first search.

Fig. 5.3 Forward tracing algorithm

54 5 GAFT Generalization: A Principle and Model of Active System…

5.5.2 Backward Tracing Algorithm

The backward tracing algorithm is used to determine which elements originally
might have caused a fault in the suspected element s. This is required for two
reasons: at first, not all elements might have good quality of sensors or precise
models and a fault of an element might not be manifested as a data corruption or
corrupted behavior at another node.

Second, recovery, if possible, should be started not from manifested element but
from the faulty element—i.e., the reason, treating the reason not just the symptoms.
Reverse tracing of dependency matrix allows finding the elements, which are likely
to be the cause of the faults manifested by the suspected element.

The Backward Tracing Algorithm is described in pseudocode in Fig. 5.4 and is
in essence equal to the forward algorithm except that all edges are traversed in the
opposite direction.

If the result of the reverse algorithm shows that there was no fault propagation,
then the suspected event is logged, but no further actions are taken.

If recovery actions are executed, these should be logged to the system log, for
later traceability of occurred events. The PASS algorithm itself is triggered either

Fig. 5.4 Backward tracing algorithm

5.5 PASS Tracing Algorithm 55

externally, or by a signal from an element, which is part of the model, indicating
that there is a discrepancy in behavior of one or more elements.

5.6 Chapter Summary

In this chapter, we presented the model of active system safety, which applied to
fault-tolerant systems serves as an extension to GAFT, i.e., it shows how to deal
with latent faults that stay for a long time in the system until they manifest
somewhere. To identify the true source of a fault, we propose therefore to map all
elements of the system and its dependencies to a dependency matrix.

Faults can only be spread in the system along element dependencies; therefore,
the shown tracing algorithms can trace a fault manifestation (error) to the true
source of the fault. The appropriate recovery actions are stored in the recovery
matrix, which is then executed to recover the system, i.e., eliminate the fault. In
reverse direction, we showed that the tracing algorithm can also be used to derive
the set of elements that might have been affected by the fault and run diagnostic
routines to ensure the integrity of the elements.

Conclusion for Part I, Chaps. 1–5

– In Part I, we introduced the topic of hardware faults and showed that
safety-critical systems, especially in high altitude, are prone to faults by external
events and that the number of these elements is expected to rise in the future.
Based on this finding, we using the standard reliability theory show how reli-
ability and fault tolerance are connected, i.e., the deliberate introduction of
redundancy increases reliability if the reliability benefit resulting from the re-
dundancy scheme use exceeds the decrease in reliability due to the actual
implementation of the redundancy scheme itself.

– We then presented our fault tolerance model, where we showed that the three
models: system, fault, and fault tolerance are connected and only the thorough
analysis of the system and the expected faults lead to the efficient fault tolerance
solution. GAFT serves as a model and guide for the implementation of fault
tolerance and defines all required steps to make a system fault tolerant.

– GAFT in a tabular form which serves as a template for the implementation of a
fault tolerance solution. We defined that a system is fault tolerant when it
implements every step of GAFT. We will further go into details about possible
implementations in Part II of this work. Different fault tolerance solutions have
different properties in performance, reliability, fault coverage, and cost and are
constraint by the requirements of the usages scenario of the system.

– In our reliability evaluation of hardware redundancy, we clearly showed that
there exists a optimum in achievable reliability gain using redundancy which is
in fact less than duplication. Therefore, the usual approach to flight control
systems in airplanes (Airbus, Boeing), i.e., massive redundancy using triplicated
or even quadruplicated systems does not result in the most reliable solution.

56 5 GAFT Generalization: A Principle and Model of Active System…

– As an extension to GAFT, we then introduced the principle of active safety,
which is able by modeling the dependencies of the hardware elements and using
the introduced tracing algorithms to derive in case of latent faults the originating
element of a fault and in reverse order the elements that might be affected by a
fault.

– In essence, we introduced in Part I of this work the field of fault tolerance and
give the user a guideline to the design of fault-tolerant systems.

References

1. Schagaev I et al (2007) Applying the principle of active safety to aviation. In: European
conference for aerospace sciences (EUCASS)

2. Schagaev I (1989) Computing process recovery algorithms. Avtomat Telemekh (4)
3. Schagaev I (1998) Concept of dynamic safety for aviation. In: Proceedings of ISSC, pp 448–

453, Seattle
4. Schagaev I et al (2007) Method and apparatus for active system safety, UK Patent GB

0707057.6

5.6 Chapter Summary 57

Chapter 6
System Software Support for Hardware
Deficiency: Functions and Features

Abstract This chapter explains what is required to be changed or modified at the
level of system software (runtime system, languages) to address new properties of
computer system fault tolerance, resilience, and reliability. From the first principles,
we think through the system design attempting to reflect new system properties “as
early as possible”.

The rapidly developing area of IT applications in safety-critical real-time embedded
systems, up to now, was equipped by standard modifications of existing software
(Win CE [1], VxWorks [2], Linux, …) or for safety-critical applications designed
OS, such as Integrity OS [3].

Interestingly, no commercial fault-tolerant operating system is available on the
market. Integrity OS, for example, which is certified to be used in airborne appli-
cations (DO-178B, SKPP, EAL6+ High Robustness, according to their homepage
“the highest security level ever achieved for an operating system”), focuses as the
name implies on the integrity of the OS and its applications, i.e., memory protec-
tion, guaranteed resources (memory, CPU), and as they call it highest reliability by
guaranteeing system resources even in case of malfunctions.

The OS is responsible for isolating misbehaving applications due to malfunc-
tions, but provides no further means of fault tolerance. The OS itself is thus prone to
malfunction and can according to our definition (GAFT) not be called fault tolerant
as it only provides application fault isolation.

None of these OS has been theoretically analyzed to answer the question what
system software can and must do to meet real-time constraints, while still providing
fault tolerance features of the system. This lack of theory is reflected in the mis-
leading variety of solutions, huge overheads, and nearly impossible or prohibitively
expensive maintenance. Therefore, the aim of this research is

To design a new concept and its theoretical framework for further development of system
software for safety critical real time embedded systems, assuming possible hardware
deficiencies.

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_6

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_6

In fact, we should answer one question: What is system software able to do and
should do to fulfill the two requirements—real-time processing and fault tolerance.
To achieve this goal, one has to present constructive design principles to follow and
apply at all steps.

A number of principles will be introduced on the way of further development,
but the first principle of the system development here is simplicity. The rational
behind this is obvious: complex system even without fault tolerance is hard to
manage and understand, thus making the fault tolerant even harder. Simple systems,
i.e., systems that use a simpler architecture but are still able to meet the system
requirements are easier to implement, control, and make fault tolerant.

However, the newly developed system software will need some extra features,
thus it will not be absolutely simple (not simpler than simple). But again, new
features should be designed and developed with the same approach—simplicity,
better say, maximum possible simplicity.

From all possible options to support the new features of the system (will be
specified further), we will choose the simplest and the most promising choices. This
means that if we have some options to realize a new feature at the language, OS or
application program levels, we will always choose if possible the language level.
This allows the omission of complex dynamics and uncertainty during program
execution. At the same time, if a new feature requires runtime support, this support
will be provided by the OS, again, by the simplest way.

Therefore, the additional overhead by the runtime support will be as minimal as
possible. It is expected that performance and other additional overhead caused by
the support of new features will not be significant and can be in the first consid-
eration ignored. We call this principle essential redundancy.

In this work, system software is considered as the combination of a program-
ming language and an operating system with runtime support for all languages
features. System software for embedded systems usually provides some RT
features.

Regarding RT, we will focus on the optimization of already existing system
software specifications, efficiency analysis of existing solutions, and where possible
the reduction of complexity in these solutions. The logic behind the research for
new features is shown in Fig. 6.1 as a comparison of RT and FT.

(A possible realization with required features is shown in Fig. 6.1 with the
following meaning of capital letters: HW—Hardware, OS—Operating System, AP
—Application Program.)

Next, we present some comments on real-time and fault tolerance features and
the supportive means by the operating system. Assume that a program requires RT
access to program data.

To guarantee the required real-time constraints, it is important to exclude file
structures, as these do, in general, not allow direct and equal (in time) access to the
data. Instead, simpler data structures with guaranteed design equality to access each
data element or record should be introduced.

60 6 System Software Support for Hardware Deficiency…

Clearly, RT as new feature requires modification of almost all elements in
Fig. 6.1. RT and FT are synthetic, not elementary feature of computer systems, and
possible implementations can be located at different layers in system hierarchy.

Some well-known solutions exist for achieving RT in a computing system, such
as limiting the use of data constructs, deliberate introduction of time-limit program
control structures, exclusion of complex instructions from the processor architec-
ture, limitation of pipelining, strong extension of timer schemes, etc.

The ellipses in the middle of Fig. 6.1 represent possible implementations of new
features. As a general rule, the top-down principle should be applied, i.e., every new
feature should be implemented at the top level of the system hierarchy if possible.
This rule does also imply that implementations of new features like S1, which is
implemented on the application level, are excluded from this research.

Instead, we concentrate on new features implemented at the top layers of the
presented hierarchy, assuming that the resulting dynamic system behavior will be
under full control.

Let’s take language features as an example. A programming language can be
described by means of control structures, presentation of data types, and the real-
ization of sequential and conditional expressions. For example, typical data struc-
tures are arrays, strings, files, and records (Fig. 6.2).

If hard real time is required, file data structures should be excluded from the set
of possible data structures in RT applications because files do not guarantee equal
access time over all files and all file data.

Fig. 6.1 System presentation and implementation hierarchy

6 System Software Support for Hardware Deficiency… 61

New data structures with new features might also be developed. For RT appli-
cations, the language control structures might also be modified to provide a higher
level of control and timing conformance during program execution.

A programming language can be described by means of control structures,
presentation of data types, and the realization of sequential and conditional
expressions. For example, typical data structures are arrays, strings, files, and
records as above.

Implementation of the property limits or excludes some of currently “conven-
tional” solutions or structures: files as data structure are no longer applicable and,
for example, should be replaced by new array structure. The best-fit idea so far was
suggested by Dr. Felix Friedrich ETH Zurich [4].

Implementation of this language data construct and support for it at the hardware
level enables us to activate (and power) only sections of memory that will be in
current use, thus providing when necessary energy-smart functioning.

At the same time, we are able to reconfigure data and duplicate data segments
when we feel it is required for reliability purposes.

Above all access, with fine-tuning of addresses—smaller domain on Fig. 6.3
makes performance of program with this data structure an order of magnitude faster
than even assembler code in conventional system.

Then development of data structures for evolving architectures would now seem
to lay in extension of array structures with different data types of elements, where
each element of data sequence is accompanied by type specifier providing enor-
mous flexibility and even dynamic modification by the application or runtime
system and hardware conditions during program operation.

For fault-tolerant systems, where external events cause internal malfunctions
and/or necessitate reconfiguration for PRE requirements of applications, we have to
avoid hangs of the program and other uncertainties of the system. Thus, language
control operators and their interpretations through hardware instructions (as well as
operators themselves) should be organized with the following objectives:

Fig. 6.2 Modification of data structure limited by application domain

62 6 System Software Support for Hardware Deficiency…

(a) Minimization of the state space that needs to be saved before each instruction’s
execution;

(b) Simplest possible graphs of predicates, addresses, and data for program;
(c) Control of execution when hardware state changes during repetitive operators.

Clearly, even using a kind of standard program schemes, we have to control
potential changes of control, condition of the data dependency graphs of the pro-
gram (Fig. 6.4). Size of plane of i-th layer defines amount of states and parameters
we have to save to provide an ability to return to the state of program.

Fig. 6.3 Arrays with domain extraction [4]

Fig. 6.4 Control, data, predicate model of program

6 System Software Support for Hardware Deficiency… 63

Also, if possible, control structures should be simplified as much as possible due
to the strict timing requirements and as small as possible overheads. One promising
feature would be the nWhile [5] introduced by T. Takaoka. Thanks to Takaoka
[with his idea of new nWhile loop we can introduce various conditions of loop
execution inside the body of a loop, Fig. 6.5.

Introducing a pre-condition P and post-condition Q for this structure, Takaoka
suggested to use several assignment statements S1, S2, S3, … Sn in S which affect
the condition B, and therefore P1, P2, P3, … Pn that held immediately before S1,
S2, S3, … Sn under pre-condition P.

What does it gives us in terms of fault tolerance and even system evolvability?
Actually, a lot. It enables us to write a program using loop operators as usual, but
during compilation of the program one is able to introduce other S2–Sn conditions

Fig. 6.5 Semantics of a control loop for evolving system

64 6 System Software Support for Hardware Deficiency…

that might be connected with computer state changes including hardware faults,
time-outs, or other interruptions, including interaction with other processes.

Then, if of the loop “hangs” due to problems within hardware an arrival of
another signal able to break loop execution might become visible—hardware state
change reflects immediately within the control construction and we are not using
“brute force” of conventional waiting or wasting resources of another type.

FT as a new feature of embedded systems, implemented on the level of system
software should be analyzed in some detail. First, let us consider fault tolerance as a
sequence of steps as introduced by GAFT in chapter.

When we defined FT as GAFT it became possible to investigate how system
software should be involved to realize this algorithm. Then, all required features
and mechanisms of system software to support fault tolerance of embedded systems
can be derived from GAFT.

There are several processes and functions in the system software to provide fault
tolerance, Fig. 6.6.

Research in the area of program recovery after a hardware fault has occurred is
known for 40 years. Google search shows millions of related links, including some
even from Microsoft. But none have been found that is concerned with the actual
semantics of checking and recovery at the system software at programming lan-
guage level and runtime system level.

Regretfully, checking and recovery sometimes are used as synonyms. Checking
is the process of analyzing the hardware state to prove an existence (or absence) of
faults from predefined classes. In turn, recovery is the process of preparation and
storing of several states of the hardware aimed at being able to recover from any
predefined and arranged state or states.

Both processes, including recovery schemes, are important and unavoidable
elements of GAFT. Their combination improves the actual reliability of RT FT
systems and the efficiency of solutions taken at least at the model level.

Various schemes for program recovery after a hardware fault were introduced
and described in [6]. Several methods of correct recovery searching with supporting
hardware are described in [7, 8] including scheme of recovery point formation;
algorithms of recovery and their efficiency, and management and efficient sup-
portive schemes.

It is worth to mention that recovery points might be arranged at the level of tasks
(that are mutually dependent either with data or control or both, or interrelated by
conversations). These recovery algorithms become much more complex and almost
prohibitively slow for RT applications. This kind of system recovery might be a

Fig. 6.6 Processes and functions for system software to implement FT

6 System Software Support for Hardware Deficiency… 65

subject of special research at a later date, taking into account complexity of the task
dependency organization.

6.1 System Software Life Cycle Versus Fault Tolerance

The system life cycle of an FT system can be split into two phases: first, the
development phase (design and implementation) and second the operational phase
(deployment, operating use, and maintenance).

The first, and in terms of an FT system almost most important part is the design
phase. In this phase, the application scenario is thoroughly analyzed and the system
requirements are derived. In general, this conforms to the standard project devel-
opment process [9], but in our case, we would like to focus on the fault-tolerant
aspects.

Every scenario where a system is deployed has different requirements in terms of
reliability, availability, and lifetime of the system. A satellite system, for example,
has highest demands in all three properties: highest reliability as maintenance is
almost impossible or extremely expensive, highest availability as satellite services
are typically crucial (e.g., GPS system) for the users, and a long lifetime as they
cannot easily be replaced.

It is obvious that these extreme requirements can only be met with a rigorous
design and implementation phase. However, the higher the required level of reli-
ability and availability, the higher is also the cost. In fact, the cost for the design and
implementation of a dependable system rises exponentially with the degree of
required dependence.

It is thus very important not to design a system that is as reliable as possible, as
such a system would be extremely expensive, but to derive from the applications
and the usage scenarios of such a system the required level of reliability.

As shown above, fault tolerance is the main method of increasing the depend-
ability of a system, it is therefore necessary to keep during all phases of software
development (specification, design, implementation, testing, deployment, and
maintenance) fault tolerance in mind.

An example: humans are not perfect, this is a well-known fact. Therefore, a
system does always have some internal faults, for example, software implementa-
tion bugs that are also not identifiable with verification tools. Individual applica-
tions should therefore be programmed in a defensive way, which allows a software
component, for example, to detect invalid data or invalid software behavior that
does not correspond to its specification.

Even though this might be an obvious way of how to write programs, it is
nevertheless a method of fault tolerance. And it is only of use, if this principle is
used in all applications and of course the runtime system itself.

System testing needs another word of explanation. In the standard development
process, using automatic test cases or manual testing by an engineer tests the
software and hardware. Testing of fault tolerance proves to be a challenge due to

66 6 System Software Support for Hardware Deficiency…

inability to repeat the same impact, for example, of alpha particles and the need to
use a special purposes build radiation facilities.

To test the software, the use of a simulator often proves to be far cheaper and
much more efficient as specific faults can be modeled in software. In this case, real
radiation tests are only used to test the hardware and to verify the chosen fault
models.

The second life cycle phase, namely, the operational phase of a safety-critical
system is in principal similar to a standard embedded system with one big differ-
ence, where maintenance of a standard embedded system in case of failure is
usually possible although costly, and the situation typically changes for
safety-critical systems.

If one of these systems fails, the consequences can be the loss of human lives
(failure of a flight control system in an airplane) or physical maintenance might not
even be possible (satellite system). Therefore, maintenance, especially physical
maintenance cannot be considered as a part of life cycle for this kind of systems.

The maintenance interval of a system is usually derived from the life span of
such a system, in other words, from the MTTF of such a system, which can often
not clearly be derived. An optimal solution would be a system that has the power of
self-diagnosis up to the level where it can predict its failure in the near future. In this
case, it could inform the operator which in turn could initiate the maintenance
procedure before the system fails. This would lower maintenance cost significantly.

6.2 System Software Phases

System software consists of the operating system and all other hardware-related
software, which provides services to user programs. It is thus responsible for
abstracting and managing hardware resources and gives application software con-
trolled access to these resources. Some examples are interruption handlers, memory
management, device drivers, scheduler, garbage collector, etc.

These traditional system software components are already extensively explained
in literature [10–12]; therefore, we do not go into too much details about these
functionalities, but introduce here instead some new system software concepts
which are required in the field of fault-tolerant computing.

As already shown, hardware is suspect to malfunctions and failures despite all
efforts on the hardware side. Responsible of managing faulty hardware should be
the operating system itself as application programs have no direct access to the
hardware and usually lack information to deal with hardware errors. Thus, the
hardware state (see Chap. 7) must be represented in the system software or even in
the programming language. We state here that a fault-tolerant system must,
according to GAFT, support the following three additional processes:

Checking. The system software must collaborate with the hardware to perform the
system checking, i.e., show that the hardware is fault free. Checking procedures can

6.1 System Software Life Cycle Versus Fault Tolerance 67

either be executed by the hardware itself, or more thoroughly but also slower by
software. It is up to the system software to perform the software-based checks and
react on detected faults. Task base checking (see Sect. 7.1) is an example of when
to perform the checks. As shown in Fig. 4.3, hardware-based checks, especially if
they are performed in parallel to the current instruction execution, are ideal in terms
of time overhead.

Reconfiguration. In case of permanent faults, it might also be necessary to
reconfigure the system to exclude a failed component from the currently used
working set. In that sense, the state of the software and hardware is directly
dependent as hardware faults are reflected in software. If a failed hardware com-
ponent is excluded from the working set, all the software components that use this
hardware component must be reconfigured accordingly (see Sect. 7.4).

Preparation for recovery. The system software is also responsible for taking
measures to react on faults. Thus, it is responsible for the preparation for recovery,
which consists of creating recovery points. A recovery point is a snapshot of the
whole or part of the system at a specific point in time. In case of a fault, the system
can rollback to the stored snapshot and continue processing. Of course, recovery is
only successful if the fault was not present in the system when the recovery point
was created. Various implementation schemes exist for creating recovery points
with various time and space constraints. See Chap. 8 for more details.

Recovery. If a fault is detected in the system, the recovery process is responsible
for the elimination of the fault impact in hardware and software. This process
depends therefore on the previous two processes for fault identification and elim-
ination. Thus, after using the checking schemes to identify the fault and eliminate
the fault impact, the software must in a second step be recovered to the last con-
sistent state using the recovery points. See Sect. 9.1 for more details.

References

1. Microsoft Corporation (2008) Windows embedded CE overview. World Wide Web
Electronic Publication

2. VxWorks (2008) Vxworks overview. World Wide Web Electronic Publication
3. Green Hills Software (2008) Integrity, the most advanced RTOS technology. Technical

report, Green Hills Software
4. Friedrich et al (2006) Array-structured object types for mathematical programming. In:

Lecture notes in computer science, vol 4228, pp 195–210. http://link.springer.com/book10.
1007/11860990

5. Takaoka T (1986) The semantics of new while loop. Comput J 29(1)
6. Russell D, Tiedeman M (1979) Multiprocess recovery using conversations. In: Digest of

papers FTCS-9, 9th international symposium
7. Schagaev I (1986) Algorithms of computation recovery. Autom Remote Control 7
8. Schagaev I (1987) Algorithms for restoring a computing process. Autom Remote Control 48

(4)

68 6 System Software Support for Hardware Deficiency…

http://springerlink.bibliotecabuap.elogim.com/book10.1007/11860990
http://springerlink.bibliotecabuap.elogim.com/book10.1007/11860990

9. Zehnder C (2001) Informatik-Projektentwicklung. vdf - Hochschulverlag AG an der ETH
Zurich, Zurich (in German)

10. Wirth N, Gutknecht J (1992) Project Oberon: the design of an operating system and compiler.
Addison-Wesley

11. Silberschatz A et al (2002) Operating system concepts. Wiley
12. Stallings W (2008) Operating systems: internals and design principles. Prentice Hall

References 69

Chapter 7
Testing, Checking, and Hardware
Syndrome

Abstract In previous chapters, we introduced the processes of checking and
testing, the first of the three main processes of Generalized Algorithm of Fault
Tolerance—GAFT. In this chapter, we further discuss the process of checking
hardware, at first software-based hardware-checking and at second hardware-based
checking. For the software-based hardware checking, we show what a
software-based test should include, when they are the preferred choice over
hardware-based checking schemes, and especially how such tests can be scheduled
in the system without interfering with ongoing real-time tasks. Further to support
handling of hardware-based checking, we introduce a new system condition
descriptor—so-called a syndrome, and illustrate how it can be used as a mechanism
to signal to the operating system the hardware condition, including manifestation of
detected error. We then show the steps the runtime system performs to eliminate the
fault and in case of permanent errors how the software can reconfigure the hardware
to exclude the faulty element. We also explain in which cases software has to adapt
to the new hardware topology. We start by explaining how software-based checks
can be used to detect hardware faults. Runtime systems use online or offline
scheduling mechanisms for task management of programs—own—system software
ones and user application ones. Since [1–4] it is expected that runtime system
provides a special session of tasks scheduling (offline or online during execution)
for the purposes of diagnostic of hardware conditions—recall Apple and Microsoft
system starting delays. Later for some systems that operate in domain of real-time
monitoring scheduling of tasks, critical in time of execution especially criticality of
hardware availability and efficiency of process scheduling become crucial. In turn,
testing itself becomes “hot” in terms of required time and coverage of hardware.
Thus in this chapter, we initially analyze simple sequences of testing of hardware
elements of computer systems. Further, we introduce a concept of transparent for
user application procedure of hardware testing. This enables to prove integrity of
computer system hardware, and guarantee it within a reasonable time, without delay
of service of execution of user tasks.

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_7

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_7

7.1 Hardware-Checking Process

Consider a sequence of tests and programs denoted as T and P in Fig. 7.1. The
initial test T is executed before a task execution and guarantees the hardware
consistency and integrity, i.e., it confirms that there is no hardware fault at that time
in the system.

However, if a permanent fault happens, for example, a “stuck bit”, the effect of
the fault is basically permanent. When a permanent fault occurs immediately after
the first test or during the program execution, it might be in principle invisible for
an arbitrary long time (latent period).

Therefore, a second sequential test is required right after the program execution
to guarantee that no permanent fault occurred since the last test. For periodic tasks
which are often used in control systems, we slightly adapt this scheme as shown in
Fig. 7.2.

But what happens if a malfunction occurs during the execution of program P?
The effect of the malfunction might not last until P finishes and T, therefore, cannot
detect the fault, leaving the malfunction undetected at all.

Malfunctions can be detected by double execution of the same program with
comparison C of the result and the result state space. Figure 7.3 illustrates this
scenario.

It is important to note that for periodic tasks, the persistent state of the program,
i.e., the program state which is used in the next computation as input data must also
be compared, as malfunctions might affect data which is no longer used in the
current computation but in the next.

Fig. 7.1 Ensuring of hardware integrity through program execution

Fig. 7.2 Regular sequence of program with test of hardware integrity to detect permanent faults

Fig. 7.3 Ensuring the hardware integrity to detect malfunction faults

72 7 Testing, Checking, and Hardware Syndrome

Permanent faults, however, cannot be detected with the comparison scheme
alone, as they might affect both executions of P. In other words, the scenario in
Fig. 7.2 can only detect permanent faults whereas the scenario in Fig. 7.3 can only
detect malfunctions.

The combined power to detect malfunctions and permanent faults is illustrated in
Fig. 7.4 where C is used to detect malfunctions and T to detect permanent faults.
Assuming that C triggers an error but T does not, it is clear that a malfunction
occurred. Another run of program P with comparison to the previous two runs can
identify the run where the malfunction occurred.

In the following analysis, we concentrate on the detection of permanent faults
only and use only T in the analysis. The detection of malfunctions can be con-
sidered as included in the following analysis if the double execution of P with
following C as a whole is treated as task P in the following analysis.

A testing phase is required initially at boot up time to guarantee the correctness
of the hardware and also a periodic test before and after the execution of a program.
The applied tests might vary in depth (coverage), type of faults and the set of the
tested hardware.

Every hardware component has typically at least one assigned test but might also
have more than one that could differ on the implementation level.

Software-based tests need a processor and memory for the test execution even if
a peripheral device is tested. In order to guarantee that faults in other hardware
components (that are not subject of the current test itself) do not have an influence
on the outcome of the test, the order of the tests must follow the principle of
growing core:

If a test of a hardware component ui has implicit dependencies on another hard-
ware component uj, the test of uj must be executed first.

If the resources needed by a task are known in advance, it is sufficient to run
after the execution only the testing procedures of the accessed hardware resources
(selective testing), again by using the principle of growing core.

This way, the system stays fully operational even in the case of present faults in
some hardware components that are not in use. Spare components can be used for
the relocation of programs that were running on faulty hardware components. Sure
the state of a system should be reflected somewhere for convenience of timely
decision if required.

Fig. 7.4 Program repetition and hardware test detect both types of faults

7.1 Hardware-Checking Process 73

Of course, it is also necessary, independently to this scenario, to test periodically
the hardware in full as; otherwise, faulty spare components are considered as fully
operational and might be used again in a subsequent reconfiguration process.

A full hardware test also allows the system software to monitor the current state
of the hardware as a whole and take appropriate actions if necessary. If no spare
components are available in the system, all programs depending on this component
must be obviously terminated. If no essential program is affected by this compo-
nent, the system can continue operating in a degraded mode.

For diagnostic and monitoring purposes, the results of the tests should be
available for the software or even external systems. We propose therefore to
organize the test results of hardware-based test in the so-called test syndromes (see
Sect. 7.3).

For every hardware component, for example, the register file, ALU, internal bus
or device controllers, the checking procedures present their result in the form of a
syndrome to the software, indicating in binary form the state of the device. By
grouping all syndromes together in one register, the software has a very effective
way to check the integrity of the system. In case of a nonzero syndrome, further
analysis of the hardware conditions is required, especially when the malfunction
duration is long.

Dependent on the used hardware-checking scheme, it is not only possible to
signal a fault to the runtime, but also provide more information to the runtime
system to ease recovery. If, for example, the testing schemes discover stuck bits in
memory, it is sufficient to recover programs that access the affected location and not
all programs that are using this memory module.

Device drivers could, for example, provide their own testing schemes for their
respective device. Especially for devices, one could think of having a combination
of hardware and software-based testing. I/O devices such as UARTs could effec-
tively be tested by cross connecting the input and output wires by very simple
additional hardware logic and sending various bit patterns over this loopback
connection.

Timely task completions in real-time systems is a key requirement; therefore, the
testing overheads should be reduced as much as possible when and where possible.

Figure 7.5 shows an example of three tasks with corresponding tests.
The assumption in this case is a time slice-based scheduler, which distributes

time slices to the running processes. In this example, the processes run to

Fig. 7.5 Tasks and tests combined

74 7 Testing, Checking, and Hardware Syndrome

completion and are called periodically by the scheduler. Three tasks are running,
each with its own test (the green boxes) at the end of the task execution.

The test only checks the condition of hardware resources the respective process
needs, which results in different test execution times. The task execution is only
considered as successful if the test at the end of the task is successful.

If the test failed, the task is re-executed by using the same input data set as in the
first try. Difficulties arise if the task performs I/O on hardware devices or com-
municates with other tasks, which we discuss in Chap. 8.

7.2 Analysis of Checking Process

Applications are nowadays so complex that they tend to saturate the computing
system they are running on, which limits diagnosis possibilities. Especially in
multiprocessor systems, a high interest arises to test some hardware units when
other hardware units execute tasks. This approach has been called the Sliding
Dropping Diagnosis (SDD) [5].

Multiprocessor architectures fit very well the scheme of concurrent software-
based checking. In principle, two SDD types can be distinguished, namely, syn-
chronous and asynchronous. An example: The CTSS Operating System for the
CRAY-1 [1] supports synchronous SDD with interruption of user task for testing
hardware. Periodically every 15 min, all tasks are interrupted and the diagnostic
routines are executed. These routines are “invisible” from the user tasks point of
view, as the entire system is stopped while the tests are executed.

The Synapse N+1 [2] fault-tolerant operating system serves as an example for
asynchronous SDD. The OS implements a self-loading algorithm to schedule tasks
for processors. The same algorithm can be applied for SDD too, as diagnostics
routines could be loaded as tasks and run on free processors. The actions required
for the implementation of the synchronous SDD mode are as follows:

– Unloading the current state of the currently running user process from some
hardware parts to load diagnostic routines (RAM in a multiprocessor OS is an
example of such a hardware unit).

– Loading and initialization of the diagnostic routines.
– Execution of the diagnostic process.
– Unloading the diagnostic routines and perform actions in case of found faults. If

high priority interrupts occur during testing, some temporary data might be
needed to continue the testing after processing the interrupt.

– Reloading of the user process to continue.

As asynchronous SDD does not interrupt running processes, but is allocated on free
processors; only steps 2–4 are required for asynchronous SDD. It is important to see
that the task unloading time is much higher than a task switch time, as the resources
occupied by this task must be released, which might also involve moving the code

7.1 Hardware-Checking Process 75

and data of this application to another part of the memory. The same applies of
course for reloading a task.

To further analyze the SDD timing constraints, a certain assumption about the
task times must be made. In general, two cases must be distinguished: The task
completion times are known, or the task completion times are unknown. In a
time-sharing OS as well as real-time OS, the task time may not be known in
advance. An SDD process that ends in checking all hardware units is called a
diagnostic cycle and requires time Tc to complete.

We will further discuss the following three cases:

• Tc time and all task completion times are known.
• Tc time is known but the task completion times are not known.
• Tc time is unlimited and all task completion times are not known.

7.2.1 The System Model

The system model, diagnosis algorithms, and all analysis in this chapter are done on
the basis of a multiprocessor system with a set of U identical processors (units).
A single processor system is included in this analysis as it corresponds to the special
case of

U ¼ u1f g

which would, of course, considerably simplify the analysis.
In addition, we assume that all scheduled tasks are independent, i.e., they have

no time, control or information dependencies. Further, the task switch time (not to
be mistaken with the task load and unload time in case of synchronous diagnosis) is
considered to be so short in contrast to the task execution time that it can be safely
ignored. We also suppose that at any given point in time a task is ready to be
executed.

The assumptions about the hardware are simple: All hardware units are con-
sidered to be equal (equal processors) and are processing units. Storage units are not
considered here as they are passive elements. Further, all involved hardware units
become free immediately after the task completion. The runtime automatically
assigns user application or diagnostic routine to a processor as soon as it becomes
free.

We define the required time for a single unit (processor) to complete the
asynchronous SDD as Tad and to complete the synchronous SDD as Tsd. As all
processors are considered equal, all Tad and Tsd are equal as well. Both diagnosis
modes share the common task of performing the actual test, whereas the syn-
chronous mode also involves unloading and reloading of the interrupted task.

Tsd is therefore calculated as follows:

76 7 Testing, Checking, and Hardware Syndrome

Tsd ¼ Tad þðTu þTrÞ ð7:1Þ

where Tu is the time of unloading, and Tr is the time of reloading the user task in
synchronous diagnostics. In order to have an upper bound on the checking overhead
at any given point in time, we propose here that at any given moment in time, the
diagnostic process can run on at most one processor.

Otherwise, as shown above, by accident, a simultaneous testing of all processors
would turn the system completely unresponsive. In this spirit, it is also necessary to
relax the strict order of the testing explained in Sect. 7.2, and allow the testing to be
done during task execution.

The recovery in this case would involve higher cost as the outcome of the last
task run cannot be trusted and must be repeated as well.

7.2.2 Diagnostic Process Algorithm

Suppose a computing system consists of n processes. If only synchronous SDD is
used, a loop embedded in the firmware or the task scheduler chooses the next unit,
which will be diagnosed by chance. The choosing overhead itself is considered as
negligible.

The real value of the asynchronous SDD depends on the sequence in which the
units are diagnosed. The most natural way to appoint a diagnostic process for a unit
is when the unit gets free. However, if a long-running task is assigned to a single
processor, it is not diagnosed for a long time. Therefore, in this special case, the
synchronous SDD are preferable.

On the other hand, time-critical tasks in a real-time system should not be
interrupted, and thus the asynchronous SDD should be applied. To decrease time
overheads but still provide completed testing, a combination of both diagnosis
modes seems to be ideal.

According to Blazewicz [3], even for the simple case of the problem P || Cmax
where a set of independent tasks is to be scheduled on identical processors without
preemption in order to minimize schedule length can be proved to be a problem of
complexity NP-hard [6]. Thus, our problem which imposes further restrictions on
the scheduling algorithm and is therefore is also NP-hard cannot be perfectly solved
in a real system with a high number of tasks. The use of an optimization algorithm
seems to be therefore the way to go.

In general, two main scheduling principles can be used: offline scheduling and
online scheduling. In offline scheduling, the whole schedule is computed during the
system design phase. In this case, the time efficiency of the used scheduler is of no
importance, and therefore, more complex algorithms can be used to calculate the
schedule. Chances to get a schedule that satisfies all constraints are higher, and it is
relatively easy to incorporate constraints such as deadlines or precedencies. During
program execution, the tasks are executed according to the precomputed schedule.

7.2 Analysis of Checking Process 77

In online scheduling, the decision when to run a task is done at runtime. The
scheduler has more work to perform at runtime and might find a proper schedule
that could be found with offline scheduling. In addition, it is also more difficult to
take all task constraints into account.

However, online schedulers are much more flexible to match requirements of
performance—or reliability—or energy-smart functioning. Under reliability “flag”,
we can consider an ability of the system to react on unforeseen or exceptional
situations. Dynamic allocation of new tasks for testing purposes introduced by just
standard user or us here tasks both at runtime is also only possible using online
scheduling. In this first example, we would like to use static scheduling, as this
better shows our approach.

Consider now case (a) of Sect. 7.2 where Tc and all task completion times are
known. Assume there exists a deadline for a maximum value of Tc.

In other words, in the time interval 0… Tc, all hardware units (processors) of the
set U must be diagnosed where Tc has a given upper bound. We now divide the set
of units U = {ui, …, un} into two subsets U1 and U2 taking the relation between the
user task finishing time Tcompl and Tc into account.

In a first step, we add every unit ui in U either U1 (ui 2 U1) if the completion time
ti of the task running on unit ui satisfies ti + Tad � Tc, or we add ui to U2 (ui 2 U2)
if ti + Tad > Tc. Obviously, it is impossible to test any unit in U2 asynchronously,
so this step seems logical.

But even if U2 = {}, it is not possible to reliably guarantee testing of all units in
U1 asynchronously. In fact, when a user task has finished on one unit while a testing
process is running on another processor, the scheduler will assign a new task to the
just released processor according to the constraint that only one diagnostic proce-
dure should run concurrently. This case is triggered if one task finishes while
another is diagnosed: tj − ti < Tad.

Even though both tasks finish before Tc − Tad, there is not enough time left to
test both in asynchronous mode. Therefore, the separation of units to two subset U1

and U2 is necessary but not sufficient.
We present below the procedure T1 that chooses a subset of units R for thef

synchronous SDD in accordance with Tc and the task completion times. The subset
R � U1 formed by procedure T1 is tested synchronously as well as all units from
subset U2. R[U2 is, therefore, tested synchronously.

To find a solution to the mode problem for every unit of the system, the user
should consider two extreme positions. The first concerns with the minimization of
the diagnostic time boundary, i.e., the length of the time span in which all units
should be diagnosed and the second deals with the minimization of the performance
overheads, i.e., the minimization of the number of required task load and unload
operations and having only one checking process running at the time. We propose
here a natural approach to this problem.

78 7 Testing, Checking, and Hardware Syndrome

7.2.3 Procedure T1

First, it is necessary to sort the units ui 2 U in increasing order according to their
completion time. This step is skipped in the algorithm as any standard sorting
algorithm could be applied. Keep in mind that all units (processors) are identical,
which means that Tad is constant for all units.

The most time-consuming part of the algorithm T1 (Fig. 7.6) is the sorting
which has an average complexity of O(nlog(n)) [7].

We discuss the introduced algorithm according to the example in Fig. 7.7. First,
we discuss case (1) where Tc and all task completion times are known. In this case,
it is heuristically checked if ti + 1 > ti + Tad. If this is the case (case a. of Fig. 7.7),
no testing process will be ongoing when the task ti ends, and therefore, the testing
process can immediately be started. This case corresponds to step 3 of procedure
T1, when unit uj = ui+1 is set to asynchronous testing mode.

Now, if this condition does not hold (case b. of Fig. 7.7), the task on unit
uj = ui+1 finishes while the unit ui is diagnosed. Remember that the task on unit uj

Fig. 7.6 Procedure T1

7.2 Analysis of Checking Process 79

cannot finish before the task on unit uj1 as all tasks are ordered according to their
finishing time.

If the task time including Tu + Tr of this task is still smaller than
Tcompl.i + (Tu + Tr) (line b2) then the idle time of this task is considered as too long
or in other words the performance impact would be too high, and thus a new user
task is assigned to uj.

Of course, the finishing time of uj has to be adapted as well. In the next step, the
just updated uj must be placed at the correct position in all units to restore the
ordering property.

For the cases where we still have no decision whether a test should be performed
synchronously or asynchronously, i.e., ti + Tad − (Tu + Tr) � ti + 1 < ti + Tad, the
decision is made easy.

If enough time is available to perform the testing asynchronously it is done so,
otherwise synchronously (step 5 of Fig. 7.6).

Even if ui+1 is scheduled for synchronous testing and has to be included in set R,
the time overheads will be less than with asynchronous testing but more waiting
takes place.

We just illustrated the algorithm on the example of two threads. The algorithm
T1 in Fig. 7.6, however, was extended to support n units. It is also explained below
why not the true completion times of the tasks are used but an approximation
instead.

A still unanswered question is when the synchronous diagnosis of R [U2,
should be performed. If possible, the tests for these units are executed within the
gaps between the asynchronous diagnosis of the units U1\R, when the gaps are
larger than Tsd. If not enough gaps are available; the synchronous diagnosis could

Fig. 7.7 Task example 1

80 7 Testing, Checking, and Hardware Syndrome

also be scheduled in gaps smaller than Tsd, as long as Tc is not exceeded. This
approach is especially useful if the difference between the gap and Tsd is small. If
this happens, then the problem is not able to schedule, and it is necessary to extend
Tc. Of course, a diagnosis cycle is over when all units are tested.

If one wants to minimize performance losses when Tc is not limited, every unit
except one gets a user task and the remaining one performs the asynchronous
testing.

Everything that was discussed above covered the first case where both the task
times and Tc are known in advance. We want to discuss now case (2) where Tc is
known but the task completing times are unknown. In this case, it is possible to test
all units of ti,j = 1…n if Tc � nTsd holds. This ensures that even in the case that all
tasks are diagnosed in the more time-consuming synchronous mode enough time is
available.

For case (2), the testing algorithm is as follows.
Tests are performed asynchronously as long as enough time is left to perform all

remaining tests synchronously, i.e., (n − i)Tsd < (Tc − T*) with T* as the current
time and i the number of the currently executed task.

In case (3) where Tc is not known and therefore unlimited and the task com-
pletion times are also not known, it is hard to optimize the system diagnosis due to
the lack of information. However, it is still possible to apply the here presented
approach.

Suppose that the system currently tests unit ui. Suppose now that unit uj com-
pletes a user task while ui is tested. By using the testing completion time which is
known, it is possible to find out whether it is worth waiting for the test to complete
or not.

Thus, if the remaining testing time for ui is less than (Tu + Tr), it is worth for uj
to wait for the completion of ui and then perform an asynchronous test. Of course, if
uj finishes and no testing is currently ongoing, uj can immediately initiate its
asynchronous testing. In other cases, uj has to be tested synchronously. The situ-
ation gets worse when all units of the system are supposed to be tested syn-
chronously, i.e., max(Tc) = NTsd.

Although the diagnosis period for the whole system in case (3) cannot be strictly
determined, the diagnosis process has a finite character, as over time, every task will
finish eventually and thus every unit will get the opportunity of to be tested
asynchronously.

One might also think of having tasks that are supposed to run permanently on
one CPU. For this purpose, it is sufficient to dedicate one CPU for this task and
periodically test it in the synchronous mode.

7.2.4 Extension of the Diagnostic Procedure

One of the constraints until now was the fact that all tasks are ready at t = 0, the
boot up time. In a real system, especially in control systems with specific task

7.2 Analysis of Checking Process 81

timings, this might not be always the case. We suggest therefore a modification of
the above algorithm to take this into account.

The main idea is to include a task ready time tri for every task in the system. The
task finishing time changes accordingly to ti = tri + tpi, i.e., the ready time (tri) + the
task processing time tpi of task number i.

In addition, we want to extend the task checking from the processor only to all
the hardware that is used by the task and introduce tadi, the asynchronous task
checking time for task number i.

Taking this change into account, we modify the procedure in Fig. 7.6.
First, we want to keep the real-time nature of the algorithm and sort the tasks

according to their finishing time (earliest deadline first). Except for the continuously
running tasks, which can be tested at any time, it is advisable to move the testing to
the end of a task processing to minimize recovery time in case of a fault. The
modified algorithm is shown in Fig. 7.8.

Fig. 7.8 Procedure T2

82 7 Testing, Checking, and Hardware Syndrome

The changes in the algorithm are twofold. First, the task checking time is no
longer constant, thus we replace kTad by the sum of the task checking times tsum.

Second, as not all tasks are ready at t = 0, it is possible that some processors are
free at some given time, which allows us to test the hardware used by tasks
asynchronously even if they are not currently running. This is possible due to the
nature of the applications in our case, namely, reoccurring periodic tasks in a closed
control system.

Case d0 in Fig. 7.9 shows the special case of a continuously running process.
This task is synchronously tested at a time where no other processor is being tested.

7.2.5 Testing of Time-Sharing Systems

In the above introduced algorithm T1 and T2 and the sketched scheduling algo-
rithm, task preemption was not allowed. In contrast to scheduling without pre-
emption where it can be shown that the problem to find a schedule with minimal
scheduling length is NP-hard, a static schedule with minimal length for systems that
allow preemption can be found in polynomial time [3]. For dynamic scheduling
with preemption, even O(1) schedulers are known and implemented [4, 8].

Consider the well-known Rate Monotonic (RM) scheduling where the task with
highest priority is executed. The priorities in are derived from their deadlines, which
correspond to their period. Thus wi = 1/pi with wi representing the priority of task
i and pi the period of task i. As the deadlines and therefore also the priorities do not
change during the lifetime of a system, this is a static algorithm.

Liu and Layland [9] proved that for a set of n periodic tasks with unique periods,
an RM schedule can always be found as long as the processor utilization U is
below.

Fig. 7.9 Task examples for extended testing

7.2 Analysis of Checking Process 83

U ¼
Xn
i¼1

ci
ti
� n

ffiffiffi
22

p
� 1

� �

Taking into account that limn!1 n
ffiffiffi
22

p � 1
� � ¼ ln2 � 0:6931 we see that every

problem is schedulable with this scheduler, as long as the system utilization is
below ln2. This does not necessarily mean that for a system with higher utilization no
feasible scheduling can be found with this algorithm, it just proves that for every
system with lower utilization than ln2, the rate monotonic scheduler finds a solution.

We now want to apply the above introduced principle of task and test to a system
with preemption, based on the static RM scheduler. We use here the same constraints
as applied for T2, i.e., the tasks are ready at an arbitrary time tri and every task has a
given running time ti = tri + tpi and an assigned hardware-checking time tadi.

We do not consider here any dependencies between tasks, or any task switch
times. We assume that the system provides a periodic time tick that calls the
scheduler. As the scheduling must be calculated for every time slot, we introduce
the remaining task processing time ri for every task and the deadline di for each
task. The current time is given by T*, the scheduler interval by dt.

The static algorithm that we show here calculates for every scheduler tick
whether a test for a specific task should be started or not. We further calculate only
a schedule for one Tc cycle, with the assumption that the Tc cycle corresponds to the
global period of a control loop system.

Under this assumption, we get Tc = max(di). The deadlines themselves must for
the sake of simplicity be a multiple of dt.

Performing an asynchronous or a synchronous test involves the same steps as
shown in Sect. 7.2, i.e., the used resources of a task still must be freed even if the
task is currently preempted.

Thus, it is preferable to test the resources in asynchronous mode. As tasks in
general have a smaller finishing time than their respective deadline (ti � di), the
main idea is to schedule their asynchronous test in the timeframe ti to dj.

Of course, ti + tadi � di must hold; otherwise, the task is not schedulable. In
case of synchronous test, even ti + tsdi � di is required. Therefore, we formulate
the following rule:

The test of task i is performed asynchronously, if it is possible to schedule it in the
timeframe ti to di as long as all other tasks can still meet their deadlines and only
one test is executed simultaneously. Otherwise, execute the test synchronously.

In order to keep the algorithm T3 (Fig. 7.10) short and understandable, we
separate the scheduling itself from the decision algorithm. By doing this, the task
finishing times are known and can thus be used for the sorting of the tasks.

Therefore, we first perform the scheduling according to the RM scheduler and
then sort the tasks according to two criteria, first according to the deadline of the

84 7 Testing, Checking, and Hardware Syndrome

tasks and in case of the same deadline according to the task finishing time derived
by the scheduling algorithm, both in increasing order.

These separate steps can of course be combined in one algorithm that works
incrementally and therefore much faster. However, we believe that for the sake of
understanding the algorithm, separating these steps is useful.

If Tc proves to be too short, for example, due to a very short system control loop, Tc
can also be extended to cover multiple loops of the control system with the disad-
vantages that more data must be stored for recovery and increased recovery time.

Figure 7.11 shows an example of tasks sorted according to the just given rules.
After the two (here not shown) first steps, all tasks are scheduled according to their

priorities and sorted. As preemption is allowed, the task times ti do not reflect the needed
processing time of a task, but the absolute time when a task will finish its processing.
Due to preemption, ti can be much longer than the pure processing time of task i.

For every task, it is now inserted its test in the schedule based on the rules given
above. Whenever a test is inserted, however, the remaining tasks on this processor
must be possibly shifted further in the timeline to get a large enough timeframe for
the test. As this shifting might violate the rules of the RM scheduler, the schedule
on all processors after the test insertion must be checked and updated.

If no time slot can be found to perform the testing asynchronously in the
timeframe ti to di the task test must be performed synchronously. A timeframe of

i = 1,R = u1 . . . ui, tlast = 0
while i ≤ n do

If (ti ≤ Tc − tadi)
ti possible candidate for asynchronous testing
if (tlast < ti) then

start test of task i asynchronously
R = R − {ui}
tlast = tlast + tadi

else
possible candidate for future asynch. testing
if tlast + tadi ≤ di then

starting time of asynch. testing of task i = tlast
tlast = tlast + tadi

else
search largest timeslot in tri to ti with no ongoing testing
schedule test

end
end

end
update scheduling;
i = i+ 1

end

Fig. 7.10 Procedure T3

7.2 Analysis of Checking Process 85

minimum length tsda is searched where no test is ongoing on other processors. If one
is found, a synchronous test is inserted, and the scheduling of all further tasks
adapted. If no timeframe is found, the largest frame is used to place the test. In this
case, two scenarios are possible:

1. If it is very important to have at no point in time two tests ongoing, the schedule
of the ongoing other tests could be moved to the past.

2. If this is not possible due to timing constraints, one could also move the test in front
of the task that belongs to the test. If still no space can be found, another test ongoing
on another processor could be moved further to the past to generate the space.

Figure 7.11 shows a possible schedule of some tasks with tests. The x-axis rep-
resents the timeline and the y-axis represents three processors (p1, p2, p3). The
dotted vertical bars represent the clock tick, which trigger an interrupt that calls the
scheduler. The scheduler reassigns the tasks for the next time slot according to the
pre-calculated schedule. Shown on the timeline are five tasks, task i to i + 4.

Also shown in the diagram are the deadlines for all the tasks, i.e., the point in
time where the task and its associated test must have finished. Task i has the
shortest deadline and fulfills it. No test is ongoing, and thus, the test is scheduled
right after task completion. More interesting is the case of task i + 1 and i + 2.

Although task i + 2 has completes before task i + 1, the test of task i + 1 is
scheduled first, as this task has the shorter deadline and would also miss it if the test
was delayed. The test for task i + 2 is scheduled right after the test for task i + 1.

In the timeframe between the completion of task i + 2 and its test, another task
could be executed if one is due. Illustrated is this by task i + 4 which is using
exactly this empty space for processing.

Fig. 7.11 Task examples with applied T3

86 7 Testing, Checking, and Hardware Syndrome

If background tasks are present in the system, i.e., tasks with a deadline of 1, one
synchronous tests should be scheduled for every Tc cycle at an arbitrary point in
time where no other test is running.

7.2.6 FT Scheduling

Scheduling in the event of faults is challenging, as the system must immediately
diagnose the fault and define further actions that depend on the diagnosis outcome.
As faults can happen at any point in time, and cannot be predicted, dynamic
scheduling is required to have the necessary flexibility in the system to react on the
fault.

Static scheduling would not allow interrupting the currently running tasks and
performing system diagnostic.

Before we introduce a scheduling algorithm that combines tasks and tests in the
event of faults, we introduce some general guidelines we want to follow. Note that
we assume a rate monotonic scheduling algorithm. This algorithm also includes the
steps of GAFT. To illustrate the whole process, we first want to describe the process
in words as it is shown below:

1. In case of a manifestation of fault, the process on the processor with the least
critical load (idle, or the task with lowest priority) is preempted and the diag-
nostic routines are loaded.

2. If the fault affects hardware that is not in use, ignore the fault if the preempted
process in Point 1 was a real-time task. If one processor does not run a
real-time-critical task, the system can use this processor to execute further
actions (Point 4). If the hardware is affected that is in use, continue at Point 4.
Otherwise, continue processing and delay the fault handling until later.

3. Perform GAFT steps B–E on one of the processors.
4. GAFT Steps F–J: Tasks that use the affected hardware and are running since the

last hardware check are considered as faulty, and recovery actions must be
undertaken (see Chap. 9, Sect. 9.1). If the remaining execution time is not
sufficient to execute recovered tasks before their respective deadline, consider
executing alternate versions, depending on their execution times.

5. Reschedule tasks. Continue processing.

Now, as seen above, the tests are scheduled by the scheduler and executed by one
of the processors. If a test found a fault in the system, the test invokes the fault
monitor, which then in turn informs the scheduler and performs the above described
actions. After doing this, the scheduler can reschedule the tasks and continue
processing. For a detailed description of the recovery, see Chap. 9, Sect. 9.1.

7.2 Analysis of Checking Process 87

7.3 System Monitoring of Checking Process: A Syndrome

In the last section, we discussed software-based tests. If the hardware itself has
built-in self-diagnosis capabilities, a mechanism is needed to inform the software
about detected faults. For this, we have mentioned earlier a scheme to present a
snapshot of a system for purposes of reconfiguration, diagnostics, performance or
energy saving, etc., we have introduced the syndrome.

Taking into account the conceptual importance of a syndrome, it is worth to
elaborate conceptual importance and its possible implementations.

As it was already mentioned in [10], a system flexibility assumes the presence of
hardware flexibility and system software flexibility.

System flexibility can be considered as several connected properties and sup-
porting features, as described in [10–13]. We list the following system requirements
that need to be reflected and handled by a syndrome:

• flexibility (of hardware and system software);
• resilience;
• scalability (task-wise, frequency-wise, technology-wise);
• performance-wise functioning;
• reliability-wise functioning;
• energy-smart functioning.

We aggregate these properties by the name of PRE-smart systems (performance-,
reliability-, energy-). We argue that all mentioned properties are required and
should be implemented within a computer system. Good point that it is possible: all
of them are based at some level on system reconfigurability.

System reconfigurability must be introduced at the design level and pursued
along at other levels, including maintenance, especially for critical applications.
System reconfigurability should also be considered, throughout the entire life cycle.

Therefore, system reconfigurability becomes not only a feature or property of a
system, but a process. This process serves the need of introduction and mainte-
nance of reconfigurability, including ways of changing configurations and ability to
reconfigure.

Therefore, efficient design and implementation of reconfigurability becomes a
task of utmost importance for the next generation of computer systems.

For example, during critical missions, reconfigurability should be executed
within real-time constraints, invisible for applications.

In turn, during regular operation, system reconfigurability should be used to
adapt the system to different requirements in terms of efficient performance, reli-
ability, and power consumption. We call this PRE-smart functioning as defined in
[11].

Reconfigurability for reliability should be implemented with supports the ability
of system to recover with minimum time overheads. Here it is worth to mention that
reconfiguration might have internal and external reasons. For instance, the system
might exclude or isolate some hardware elements from the configuration due to a

88 7 Testing, Checking, and Hardware Syndrome

transient/permanent hardware fault detected via checking schemes (external rea-
son). This isolation should be considered as a process and be “fine-tuned” by
minimizing the hardware loss.

Additionally, with energy saving in mind, the system could set up a simple
hardware configuration for particular task execution (internal reason). In
energy-saving functioning, reconfigurability has to provide a mechanism to dis-
connect or switch to a lower consumption mode all hardware elements that are not
required for the active program processes.

The term Syndrome is new Latin (origin 1535–45) and was originated from
Greek “Syndrome” where “Syn-” from combination, concurrence. For our pur-
poses, a Syndrome is not just passive, i.e., presenting “a snapshot status” of a
system but also active, a serving tool to control the system configuration. For us, a
Syndrome is

a group of related or coincident things, events, actions, signs and symptoms that
characterize a particular abnormal condition.

A Syndrome also might help to answer the questions that have been omitted in
the vast majority of research on fault tolerance and performance: “what provides the
fault tolerance of the system?” and “how big a performance, reliability,
energy-saving gain might be achieved?”

It is usually assumed that the hardware core logic is ultrareliable and guarantees
control of configuration and reconfiguration. Unfortunately, using homogeneous
redundancy limits the reliability gain—since techniques based on the same type of
redundancy are vulnerable to the same threats. Hybrid techniques based on
heterogeneous redundancy can be more effective.

Thus, even when memory or processor checking schemes detect error and
transfer information to the Syndrome, this information might not be useful if the
system does not include either one or both: “External elements” responsible for
exercising reconfiguration and making decisions on configuration/reconfiguration.
Reconfiguration might be initiated externally, by other system elements to create
best fit for task configuration, or, if necessary, by “Internal elements” that are
capable to initiate the required sequence of reconfiguration for internal purposes and
reasons—faults, errors, or power saving.

Indeed, in regular computing systems, when there are faults in the processing
logic, to expect that it is able to perform self-healing and then control and monitor
the configuration of the rest of the system looks like a part of fairy tale, not
engineering.

There is a solution though, as described below. To be able to absorb any
trustworthy information about the status of system elements we have to aggregate
all checking and status signals about the condition of registers, memory, AU, and
LU as well as control unit. This aggregating scheme is implementation of a
Syndrome concept.

Clear, reconfigurability of different hardware areas passive where information is
stored, interfacing and active zones are different. Therefore, a scheme of imple-
mentation of reconfigurability should separate the passive zone and active zone of
the proposed architecture.

7.3 System Monitoring of Checking Process: A Syndrome 89

A separation of the functions of processing (of data operation) and storing
(memory) enables to apply various checking, recovery, and reconfiguration solu-
tions and making system more flexible. The Syndrome acts as a control center for
three main functions including fault monitoring, reconfigurability, and recovery.

A syndrome is conceptually speaking can be considered as a real-time status for
every element of the system. However, its function is not only passive, presenting a
“snapshot-status”, but also active, serving as a control manager of the system.

In the following, we present how the concept of syndrome is implemented using
Embedded Reconfigurable Architecture (ERA) [11] as an example. From the
software point of view, the syndrome is represented as a set of special hardware
registers that shows the current hardware state (current configuration, detected
faults, power) and can, in case of detected faults, signal them to the software via
interrupts.

NB. Pictures of syndrome (Figs. 7.12, 7.13 and 7.14) for our proposed architecture
ERA [10] were prepared by Dr. Victor Castano and with his kind permission are
introduced here.

As an example platform to illustrate the syndrome, we use here the simulator of
the same processor architecture ERA with all its devices as it is implemented. See
Appendix A for more details about the simulator. The syndrome implementation in
hardware is currently ongoing but we still give in this section some implementation
guidelines.

The structure of the syndrome is subdivided into three different management
areas: fault management area, configuration management area, and power man-
agement area. The three management areas are each reflected by a hardware register
visible from software in memory mapped I/O. The respective registers for the
simulator are shown in Figs. 7.12, 7.13 and 7.14.

The fault management area reflects the hardware status of the different areas of a
computing system: processor, memory, and interfaces. A full “Zero” syndrome in
this area indicates that the hardware-checking schemes or any other actions (pro-
gram testing, external control) did not detect any fault in the system. When a fault in
a specific location of the system architecture is detected, the value of the bit

Fig. 7.12 Syndrome fault management

90 7 Testing, Checking, and Hardware Syndrome

corresponding to the area is set to “1”. The ROM group in our example consists of
two modules, and therefore, the syndrome of ROM condition has two positions
with zero when the ROM works correctly. In turn, the static RAM has four hard-
ware elements. For tests between program runs, it is possible to run tests of the
memory elements that were used in the last program run or will be involved in the
next execution.

The configuration area reflects the current memory configuration and power
status of all devices. In the simulator hardware configuration, four 32-bit memory
modules are attached to the memory controller. These four modules can be con-
figured in four banks according to the following table.

Memory Controller Bank Configuration

0 = Disabled
1 = Linear
2 = Duplicated
3 = Triplicated

Each of the four memory modules can be configured to be internally connected
to at most one of the banks. Dependent on the configuration selected for the bank,
the resulting memory configuration varies in available space, reliability, and power.
More details about this Performance-, Reliability-, and Energy (PRE)-smart systems
see [11].

Fig. 7.13 Syndrome power configuration

Fig. 7.14 Syndrome memory configuration

7.3 System Monitoring of Checking Process: A Syndrome 91

The ROM Bank entry has only one bit indicating duplication with voter (bit set
to 1) or linear (bit set to 0), as the simulator features only two memory modules. All
banks have fixed addresses in the memory space, with ROM bank 1 starting at
address 0 and bank 2 continuing adjacent to bank 1. At system boot up, the
processor starts executing code from address 0, which means that bank 0 must
always be populated with at least a single ROM module. The same applies for the
memory banks. Every bank has its own unique address, with all memory banks
being adjacent in the address space.

The power management area reflects the power status of the hardware compo-
nents. For every component (RAM, Devices, etc.), the power can be enabled or
disabled. If the power is disabled, the device is ideally also physically isolated, for
fault containment.

The power settings for every device (one bit per device in the register syndrome
power configuration) are as follows: 0 = Power Off; 1 = Power On. Note that the
power and memory bank configuration are tightly connected. A memory chip
module can only be used in one of the memory configurations if it is powered on.

The combination of those three areas: fault, configuration, and power manage-
ment determines the state and configuration of the system and every component.
However, the syndrome is only capable to signal faults but gives no details about
the fault type (malfunction, permanent fault). Therefore, additional diagnosis rou-
tines are required to distinguish the fault type. In case of a permanent fault, software
support is required to reconfigure the system, and the software can replicate the
syndrome in software to keep the current system state or to track changes.

Without doubt, the syndrome is one the most critical parts of the system. For
reliability purposes, we suggest using internal three copies of the three syndrome
registers connected to a voter. Without this replication, a bit flip in the faults area of
the syndrome would lead to wrongly initiated fault processing, or even worse,
undetected faults, whereas a bit flip in the configuration area would likely end up in
a catastrophic failure.

The same applies for misbehaving software. If an undetected fault affects the
software in a way that the processor accidentally writes a value in the configuration
section, the result could be a dead system. To prevent this, a special access pattern
is used, which we explain later in this chapter.

7.3.1 Access and Location of the Syndrome

Triplication of the syndrome registers involves more complexity in terms of logic.
In addition, the voters are vulnerable as well (unless we have triplicated voters as
well). Low-level hardening could be used for the syndrome registers and voters to
decrease the complexity but this would need an adapted manufacturing process and
would therefore result in much higher costs.

92 7 Testing, Checking, and Hardware Syndrome

As faults in hardware can either be detected by the hardware itself (mismatch
and voters) or software-based checks, both the hardware and software need access
to the syndrome registers.

Hardware checks. If the hardware detects a fault, the hardware updates the syn-
drome and raises an interrupt. The software can then handle the interrupt and further
diagnose the hardware. If multiple faults are detected, the principle of growing core
must be applied, mode details are presented in [10].

The same is valid if consecutive faults occur during fault handling. The syn-
drome interrupt should therefore be priority-based and reentrant. For instance, a
fault in a peripheral device must have a lower priority than a fault in the ALU.
When the software finished handling the fault, it must clear the handled syndrome
bit.

Software checks. Software-based hardware checks use specific hardware properties
for checking, i.e., clearly defined hardware behavior or software redundancy when
checking for faults in memory. Although these checks are initiated by software,
they can also trigger a hardware-checking scheme which then signals the fault via
interrupt and syndrome. An example for this is memory scrubbing that triggers a
latent fault (modified memory cell) on triplicated memory.

As the interrupt controller itself can also be affected by a fault, which could
result in a nonworking syndrome, interrupt, the software must periodically poll the
fault syndrome to check for faults.

The ERA instruction set (ISA) (see Table 14.1), which the simulator uses, does
not include special purpose instructions to access the syndrome. Using some of the
special registers instead of general purpose ones for the syndrome would contradict
the design principles of the instruction set.

Thus, the preferred way to operate and access the syndrome that avoids changing
the ISA is the use of the I/O memory lines to a reserved fixed location in the address
space.

In hardware, the syndrome scheme could be implemented in a triplicated
scheme, either connected upstream to the memory controller or in parallel.
Regardless of the triplicated implementation, only one syndrome register set is
visible to the software. An error in one of the syndrome registers is therefore
corrected by the hardware without software intervention.

However, it seems useful that the runtime is aware of errors in the syndrome
itself for monitoring purposes. In addition, the monitoring of all occurring errors
indicated by the syndrome provides useful information for a potential contingency
plan (e.g., setting the fault tolerance of the system to a higher level in case of recent
particle impacts).

Although both hardware- and software-based checks are required for full pos-
sible fault coverage, the hardware implemented schemes of detection fault and
signal to the rest of the system are clearly the superior approach.

The hardware never clears a bit in the fault syndrome on its own, as it cannot
know when the software finished handling the fault; therefore, the software must
clear all handled faults manually before it jumps back from the syndrome interrupt.

7.3 System Monitoring of Checking Process: A Syndrome 93

If the fault is still present in the system, the respective bit in the syndrome will
reappear, indicating that the recovery has failed which means that the software
either misinterpreted the fault and performed the wrong recovery actions or that the
fault is a permanent fault. Software access to the syndrome must be controlled in a
way that ensures that no misbehaving program can render the system unusable.

We suggest, therefore, use of an access pattern to unlock the syndrome for write
access:

1. Write the unlock constant (a fixed predefined bit pattern) and in the next
instruction the inverse of the unlock constant to a helper syndrome register to
enable write access.

2. Update the syndrome registers by writing the value and its inverse in two
consecutive instructions.

This access protection ensures that the syndrome is not accidentally modified by
software. The syndrome unlock command must be rewritten every time software
wants to write to the syndrome. If the software does not update the syndrome right
after the unlock command, the syndrome locks again, assuming the software failed.

7.3.2 Memory Configuration

The proposed memory scheme may be regarded as a collection of four memory
modules, 32-bit wide, with identical size of 4 Mb each. Using 32-bit memory
modules instead of often-used 16-bit memory modules increases reliability and
flexibility due to additional supported memory modes. The proposed scheme allows
12 different memory configurations as shown in Table 7.1.

The configurations in the table are sorted in decreasing order according to their
reliability with triplication + spare on top and four linear memory modules with no
fault tolerance at all on the bottom.

The flexibility of the memory controller allows the platform to adapt to different
application requirements. A flight control system, for example, requires highest
reliability, which is achieved by using duplication for ROM and triplication + spare
for RAM.

On the downside, the available resources for the program are much smaller, i.e.,
only one-fourth of the total amount of available memory. This also implies that only
the most critical programs should run on this system, all non-safety-critical pro-
grams should be moved to another system. The chosen configuration even allows
tolerating permanent faults by reconfiguring the memory configuration by
excluding the faulty unit and if possible including a spare one.

An example: If the current selected memory configuration is 1 according to
Table 7.1, then the system can reconfigure the system to exclude the faulty unit and
include the spare unit in the working configuration.

94 7 Testing, Checking, and Hardware Syndrome

The question arises why configuration 3 is useful. We anticipate here two
scenarios:

First, the software could use the linear space for scratch memory, i.e., nonre-
dundant memory where either faults do not matter or are protected by some soft-
ware schemes.

Second, the software could be used for checking the integrity of the memory
module. If a memory module is configured as a spare one, and not used over a long
time, the integrity of the module is uncertain. The software could, for example,
switch periodically from mode 1 to mode 3 and check the integrity of the spare
module, preferably in idle time of the system.

If no safety-critical applications run on the system, the memory configuration
can be set to mode 9 where maximum capacity is available but no HW fault
tolerance.

16-bit wide memory modules could also be used instead of 32-bit modules. In
this case, two memory modules must be combined to allow 32-bit memory access.

The possible configurations with four 16-bit modules are limited to duplication
only as triplication would need at least six memory modules.

If 16-bit modules are used, an emergency mode could be implemented, using
only one 16-bit module, mainly for signaling the need for maintenance. Or, if space
and speed (two memory accesses for loading one 32-bit word) are sufficient, this
mode will be useful to run the most critical applications.

Table 7.1 Possible memory configurations

Mode
number

Number of used
banks

Redundancy
mode

Number of used memory
modules

Usable size
(Mb)

1 1 Triplicated + 1
Spare

4 4

2 1 Triplicated 3 4

3 2 Triplicated + 1
Linear

4 8

4 1 Duplicated + 2
Spare

4 4

5 1 Duplicated + 1
Spare

3 4

6 2 Duplicated 4 8

7 3 Duplicated + 2
Linear

4 12

8 2 Duplicated + 1
Linear

3 8

9 4 Linear 4 16

10 3 Linear 3 12

11 2 Linear 2 8

12 1 Linear 1 4

7.3 System Monitoring of Checking Process: A Syndrome 95

7.3.3 Interfacing Zone: The Syndrome as Memory
Configuration Mechanism

Until now we just showed the properties and advantages of such a configurable
memory controller. What we did not explain is how such a controller could be
implemented while still providing interconnection and dynamic exclusion of faulty
components from the operational system.

For this, we suggest to use a so-called T-logic inter-connector, illustrated in
Fig. 7.15, an idealized concept of a hardware switch in the form of a “T” that can
connect or disconnect (for fault containment) from the memory controller by
“rotating”.

This logic is used in the hardware architecture to form a hardware configuration
scheme adjustable to the software or hardware requirements when a hardware
element itself detects faults and thus can’t be involved in further program execution
either on a temporary or permanent basis.

The four T-logic inter-connectors, one per memory module, are physically
contained in the T-logic Management Unit or TLMU, which is basically an
extended memory controller with reconfiguration support at runtime. Using the
TLMU enables the memory to be configured and reconfigured according to all
supported modes shown in (Table 7.1) and supports memory module isolation and
power management.

The syndrome acts as a control and monitoring unit for the TLMU. On the one
hand, the syndrome configures the TLMU, but on the other hand, it also shows the
current state, i.e., whether faults were detected.

ERA#processor#

Interfacing#zone###############################Interconnec7on#bus##

RAM# RAM#RAM# RAM#

Passive#zone#

Ac7ve#zone#

Idle#memory# Configured##memory#

T)logic#elements#

Fig. 7.15 Illustration of T-logic connector use

96 7 Testing, Checking, and Hardware Syndrome

One example of a possible memory configuration (Mode 4, Table 7.1) arranged
by “T”-logic is presented in Fig. 7.16. The example reflects a 32-bit configuration
with four modules of which two are used as spares (not connected) and two
duplicated.

7.3.4 Graceful Degradation Approach and Implementation

If one of the memory modules fails, the system can be reconfigured to exclude it
from the current configuration. Depending on the original configuration and the
need of the application, several degradation scenarios are possible. Please keep in
mind that a reconfiguration is only required to recover the system in case of a
permanent fault and not in case of a malfunction.

We present here two scenarios, the first starting from a triplicated system+spare
(Fig. 7.17) and the second starting from a duplicated system (Fig. 7.18). We then
use these scenarios to discuss in which cases further software intervention is
required.

Fig. 7.16 TLMU and syndrome as memory controllers

7.3 System Monitoring of Checking Process: A Syndrome 97

7.3.4.1 Degradation Phases of a Triplicated System

The most reliable configuration in terms of fault detection and transparent recovery
is triplication. As we have four memory modules available, we use the last one as
spare. The proposed degradation phases of the triplicated system are shown in
Fig. 7.17. Every box represents one possible configuration of the system. The four
numbers in the boxes represent the four memory modules and their current
configuration.

The position in the four numbers identifies the memory module and the value the
memory bank the module is attached to. x stands for failed, and s for spare chip. An
example: 1xx1 means that memory modules number 1 and 4 are connected to bank
1, and the memory modules 2 and 3 are failed or are at least disabled. Bank 1 is
duplicated, as two memory modules are attached to this bank.

By convention, we assume that bank 1 is always in use as ERRIC supports only
absolute addressing. In other words, if code is supposed to run directly from ROM,
all memory addresses must either be absolute or calculated relative to a base address
stored in one of the processor registers, as the addresses cannot be updated in the
ROM. For performance reasons, the former addressing approach is preferable, but

Fig. 7.17 Degradation phases of a triplicated memory system

98 7 Testing, Checking, and Hardware Syndrome

testing code or code, which has to be relocatable, could indeed use the second
approach.

The degradation phases are supported starting from “triplication+spare” state:

Phase 1 The initial state with full checking and triplication of every single bit. The
single state in this phase is the initial state and has maximum redundancy. Module 4
is used as a spare module.

Phase 2 Triplication of every single bit. A switch from Phase 1 to Phase 2 includes
the replacement of one memory module, with software intervention.

Phase 3 Duplication of every bit. A switch from Phase 1 to Phase 2 is simply done
by excluding the faulty element. This mode supports fault detection with hardware
read mismatch and recovery from malfunctions with software recovery points. In
case of 36-bit wide memory modules, recovery from malfunctions can be done by
using the additional 4 bits as checksum for the identification of the correct version.

Phase 4 No hardware fault tolerance. The software-based checking is required with
hardware watchdog to detect a dead system due to faults.

Phase 5 Failure. The system fail stops.

Fig. 7.18 Degradation phases of a duplicated memory system

7.3 System Monitoring of Checking Process: A Syndrome 99

The switch from Phase 1 to Phase 2 involves some software intervention to
prepare the module before it can be included in the working set. We discuss all
cases where additional software intervention is needed (red arrows in Fig. 7.17) in
Sect. 7.4.1.

7.3.4.2 Degradation Phases of a Duplicated System

The proposed degradation phases of a duplicated memory system as shown in
Fig. 7.18 pose some interesting aspects regarding software intervention which we
discuss in Sect. 7.4.

The discussed scenario uses bank 1 and bank 2, each having two modules in
duplicated mode.

Phase 1 States with full checking and duplication of every single bit. The single
state in this phase is the initial state and has maximum redundancy for 32 bit.

Phase 2 States in which at least 50% of the bits are replicated. The transition to one
of the four different states available in this phase is due to a failure in one of the
memory modules of Phase 1. Software-based checking is required to detect faults in
the nonredundant section.

Phase 3 No redundancy but full memory space available. This is the last mode in
which the software has the same memory space available as in Phase 1.

Phase 4 Degraded State. The software must adapt to the new situation of having
less memory space available either by running alternative, simpler program versions
that need less resources or by disabling some of the tasks completely.

Phase 5 Failure. The system has to fail stop.

The question arises whether Phase 3 of Fig. 7.18 is reasonable or whether Phase
3 of Fig. 7.17 plus one spare element should replace it.

This is actually up to the system designer, dependent on the memory needs and
the type of the applications. During degradation, it is assumed that the more
important software parts such as the runtime system and important user tasks are
located if possible in bank 1.

In Phase 2 as shown in Fig. 7.18, the system therefore keeps bank one dupli-
cated although this involves in some cases (all degradations indicated by red
arrows) software intervention.

7.3.5 Reconfiguration of Other Hardware Devices

We focused in this section on the memory reconfiguration aspect, but it is also
possible to reconfigure other devices. For duplicated ROM, as used in the simulator,

100 7 Testing, Checking, and Hardware Syndrome

the one and only degeneration scenario is going from duplication to nonredundant
mode.

However, as ROM is much less susceptible to ionized particles and longer
lasting than memory, this approach seems reasonable.

The reconfiguration of peripheral devices is currently limited on disabling and
isolating the device. In case of duplicated I/O controllers (two controllers attached
to the same external wires), reconfiguration could be done analog to the above
presented approach.

7.4 Software Support for Hardware Reconfiguration

Until now, we did not clearly define what software intervention comprises, but
showed how such a reconfiguration with degradation is applied to a system. In this
section, we discuss the needed software support for degradation and hardware
reconfiguration and show how the software itself can steer the reconfiguration
process.

7.4.1 Software Support for Degradation

In case of a detected hardware fault, the syndrome raises an interrupt and software
takes control of the reconfiguration process. The whole process is basically identical
if software-based schemes detect the fault, with the difference that no interrupt is
raised and the fault is not signaled via syndrome.

If the current memory configuration does not use a redundant mode,
software-based checking is the only possible approach. The following sequence
shows the general procedure of software support during hardware reconfiguration:

1. The hardware-checking scheme triggers the syndrome interrupt.
2. The syndrome interrupt handler then either initiates a hardware Built-In

Self-Test (BIST). The procedure of self-test for the device is software-based and
serves to distinguish the fault type. For a software-based test, writing different
memory patterns to the faulty memory address can be used to derive the fault
type.

3. The syndrome bit indicating the fault has to be cleared before doing that. If the
syndrome does, after the test, still show the fault, a memory module is faulty.
The affected memory address is still present in one of the processor registers and
based on the IRQ return address, the correct register number can be derived by
decoding the memory instruction that triggered the fault.

4. In general, all software-based testing procedures that test memory must not use
the stack (no procedure calls, no data pushed on the stack) until the proper
functioning of the used stack locations is ensured.

7.3 System Monitoring of Checking Process: A Syndrome 101

5. In case of a malfunction, the event is logged and the program execution
resumed. Logging the events is important as an accumulation of malfunctions in
a module or a specific memory location could hint to a permanent failure in the
near future.

6. In case of a permanent fault, the current memory configuration is extracted from
the syndrome, and the next degradation state is calculated according to the
application needs and predefined degradation tables.

7. The new calculated memory configuration is written to the syndrome registers
and the power of the faulty unit disabled. In some configuration transitions, the
software has to adapt to the new situation and recover after excluding the faulty
unit but before including the new one.

8. Software clears the handled fault in the syndrome and continues processing by
returning from the interrupt.

Some of the presented transitions in Sect. 7.3.4 need software intervention to fully
recover from a permanent fault and to establish a new working software state. We
show here a list of all situations where software support is needed.

Adding/Replacing a module of an already populated bank If a memory module
of a duplicated or triplicated memory mode is replaced by another module, the
memory content must be replicated to the new module before it is included in the
configuration. If this is not done, every memory access would yield an error.

A small loop in software, using only registers is sufficient to perform the copy
without modifying the memory during the copy operation. To have access to the
spare module, the software configures the syndrome to attach the spare module
temporarily to a free memory bank. After the copy operation, the spare module can
be included in the working set. These actions must be performed, for example,
when the system switches from Phase 1 to Phase 2 in Fig. 7.17.

Failed module of bank 1 Bank 1 contains by convention all runtime system data
structures and is therefore critical for system operation. If the memory module of
bank 1 fails, the software crashes ultimately.

The only way to treat this is by hard resetting the system either via a hardware
watchdog or a software initiated power cycle. The built-in self-test of the hardware
automatically identifies the failed module and configures another still working
module to bank 1. The runtime system can then restart all critical applications.

Failed module of another bank Assuming that the runtime system structures do
not cover more than one module, the runtime system can simply free all resources
used by all applications and restart them appropriately.

Instead of graceful degradation, the software can also decide to “regenerate”, i.e.,
going from a mode with less redundancy to a mode with higher redundancy. The
inclusion of a spare module corresponds to Point 1 in the list above; if an already
used module is moved to another bank, software has to release all data structures
residing on that module in case it is in nonredundant use and repopulate it with data
according to Point 1.

102 7 Testing, Checking, and Hardware Syndrome

Intentional change of the operating mode to a less redundant mode is of course
also possible and needs no special software measures. As soon as the module is
reconfigured to a free bank, the runtime system can start using it.

7.4.2 Hardware Condition Monitor

A hardware monitor, which is part of the runtime system, is responsible for keeping
track of the hardware state. The syndrome also can manage every hardware com-
ponent represented in syndrome configuration, the hardware monitor tracks the state
in more detail than the syndrome alone can provide.

It is also responsible for the execution of all software checking schemes and
performs the actual hardware reconfiguration.

Thus the hardware monitor must be accessible by the syndrome interrupt handler
as well as the runtime system.

This monitor should however not directly be accessible by applications; only
drivers, which are part of the runtime system can register checking procedures for
their respective hardware component.

When the system is turned on, the Built-In Self-Test procedures (BIST)
embedded in the system are executed.

These self-test runs are required for all devices, using the principle of growing
core, ensuring the integrity of all devices. If a failure is detected, the syndrome sets
the appropriate fault bits. The BIST is also responsible to initiate the system to a
predefined working state, i.e., the most reliable mode with all working available
resources.

When the BIST finishes and passes control to the runtime system, the runtime
passes control to the hardware monitor for the first mirroring the current state in
software and then reconfigures the system according to the need of the program.

As the syndrome might trigger an interrupt right after boot up, the syndrome
interrupt handler has to ensure that the stack pointer is valid and if not initialize it.

Every hardware component, which is managed by the syndrome, is in exactly
one state of Fig. 7.19. This state diagram shows also all possible transitions
between states, allowing the hardware monitor to reconfigure the system in a
consistent way.

In fact, all of the above presented cases in the degradation scenarios where
software intervention is required, are clearly identifiable in Fig. 7.19. Intervention is
only required if the state transition goes from Standby to one of the active cases
(marked in blue).

After boot up, all devices are either in state OFF or in one of the blue operation
modes. As the BIST automatically configures the most reliable possible memory
configuration, the initial states of all devices must be acquired by reading the
syndrome. Here is a short list of all possible states and a short description.

7.4 Software Support for Hardware Reconfiguration 103

OFF The device is currently not in use, powered off and isolated for fault
containment.
Standby The device is powered on but not yet in use, i.e., in case of memory not
yet assigned to a memory bank. In case of reconfiguration, all transitions go through
this state.
Active The device is in use in a nonredundant mode. In case of memory, the
memory module is assigned to a bank in linear nonredundant mode.
Duplicated The device acts in duplicated mode.
Triplicated The device acts in triplicated mode.
Suspected As soon as a fault in the hardware is detected, the state of the affected
hardware component is set to suspected and the testing procedures are initiated to
diagnose the fault. If a device is often in this state, this could be a hint that the
device might fail in the near future. For reliability purposes, it might therefore be
sensible to replace the component with a spare one.
Faulty Dependent on the analysis outcome, the state is then set either to Faulty if a
permanent fault was diagnosed or back to the previous state if it was only a
malfunction. A device in the state Faulty is powered off.

The state transition diagram of Fig. 7.19 is not directly applicable to all devices.
A memory bank, for example, should during the transition not go through standby
to make sure that the stored data in the attached memory modules are not lost.

OFF#

Stand)by#

Triplicated#
Duplicated#

Suspected#

Faulty#

Ac7ve#

Fig. 7.19 HW state diagram

104 7 Testing, Checking, and Hardware Syndrome

Periodical hardware checks should be performed on every single hardware
component despite its state. This ensures that no hidden faults can stay undetected
in the system and possibly spread. Thus, from any state exists a transition to the
so-called “suspected” state; also from Standby as currently not used devices must
also be tested regularly.

It is even possible to revive faulty components, as, for example, environmental
changes could allow a component to function correctly again.

7.4.3 Hardware Condition Monitor—System Software
Support

One of the distinguished features of our platform is reconfiguration ability. As
already explained, the system is able to reconfigure the system in the case of faults.
Different scenarios are anticipated for the reconfiguration:

1. hardware malfunction,
2. permanent hardware failure, and
3. software failure.

All these scenarios share the same basic functionality, namely, the reconfiguration
of software and hardware. In contrast to standard operating systems where all such
reconfiguration has to be performed by the applications themselves, we propose that
the runtime itself has the capability and responsibility of performing the
reconfiguration.

This way, applications don’t have to be fully aware of all possible reconfigu-
ration possibilities, which would increase application complexity and reconfigura-
tion significantly. In contrast, by moving the reconfiguration ability from the
application directly into the operating system, we decouple the actual application
functionality from the fault tolerance reconfigurability mechanism.

In order for this to work, all applications must provide additional metadata such
as the required services (dependencies), processor time requirements, memory
requirements, etc. Such metadata information could be added to each application
during runtime or preferably already at compilation time.

This way, the system is always aware of all requirements and dependencies of
the running applications. Here an example: An application is typically dependent on
other services or resources, such as a logging service. The application just needs to
know how to access the logger, but the actual implementation is of no importance to
the application.

Thus, a first logger could log over a serial connection to another computer, and a
second logger writes the log to disk. Now, the reconfiguration in this case could be
applied on different software levels:

7.4 Software Support for Hardware Reconfiguration 105

1. A common logger component preprocesses the log data and saves it on a device.
Two hardware configurations in this case drivers that have the same interface
and provide thus also the same service are present in the system. If now, for
example, the disk fails, the system could transparently replace the faulty disk
device by the serial device.

2. Two different logger components that provide the same service are present in the
system and thus if one fails, the other one could take over.

As shown by this small example, the reconfigurability feature can be applied on
different levels in the system with their respective advantages and disadvantages.
The implementation on a lower level in the software hierarchy results in less
dependencies and in general smaller components.

However, the first version shares a single point of failure, the preprocessing
component of which no alternative version is available. In that sense, version two
promises to be more reliable as it has no single point of failure. As a conclusion, it
can thus be stated that the granularity of the implementation of an alternative
version should be chosen on the lowest level as possible, as long as an alternative
version is available. Single points of failure must be omitted.

A Reconfiguration Monitor (RM) in the runtime is aware of the current and all
possible configurations in the system and is also responsible for executing the
reconfiguration. The RM can, based on the available metadata of every resource or
component, generate the map of all possible configurations.

The number of these configurations could theoretically be quite large in large
software systems as even for n instances of the same entity, n! possibilities exist to
satisfy the system.

However, in concrete systems, it is not expected to have much less possibilities.
The total number of configurations is shown in Eq. 7.2.

ctot ¼
Y j

i¼1

ni
ki

� �
ð7:2Þ

where j is the total number of distinct resource entity types, ni the number of
available entity alternatives of type i, and ki is the number of instances the system
requires to operate. The assumption here is that every implementation of one type is
only instantiated once and that the implementations are distinguishable from each
other.

This is reasonable as not all implementation of one type might be equally
powerful and efficient.

If all metadata information is already available at compilation and link time, in
other words, if the programming language is powerful enough to express all
dependencies and requirements at the language level, all possible reconfigurations
could be pre-calculated and stored in the boot image.

106 7 Testing, Checking, and Hardware Syndrome

If this is not possible, the system could either calculate during runtime all
possibilities or find new configurations on demand. The overhead of finding a new
configuration is low, as typically only a small number of reconfiguration entities are
affected.

Every software reconfiguration entity is in one of the state in Fig. 7.20. Upon
boot up, every reconfiguration entity is in the state Init, which means that the
module itself is already linked and ready for execution (The modules of all
applications might be linked already at link time and not at runtime). However,
what is missing in this state is a concrete working configuration of all reconfigu-
ration entities.

The reconfiguration monitor then finds the first working configuration for the
system and starts the initialization sequence. The reconfiguration entities must not
have circular dependencies, as this would complicate recovery considerably.

After the first reconfiguration, all reconfiguration entities that are currently in use
have the state Active, the ones that are not used are still in the state Init.

Now, if an alternative entity is needed, it is initialized, and set to Active, the one
that is being replaced is set to Standby. If the entity is no longer used, it is set to
Deletion and removed by the runtime system.

Upon boot up, the main processor and the main memory are initialized and
transferred to state Active.

This state is the standard state of a component that is actively participating in the
system. If no reconfigurability is available in the system, this would be the one and
only state of the hardware. Any active hardware component can and should have
checking schemes built-in which allows the hardware component to check itself.

The checking procedure could be either software or hardware initiated and
consists of hardware and/or software checking schemes.

In Chap. 8, we introduce some language constructs that support this hardware
reconfiguration, which is then in explained in detail in Chap. 9.

Ac#ve&

Stand,by&

Init& Dele#on&

Fig. 7.20 Software states as seen by runtime system

7.4 Software Support for Hardware Reconfiguration 107

7.5 Hardware Reconfiguration Outlook

Until now, we assumed a single processor system. The here introduced reconfig-
uration principles are extendable to cover multiprocessor systems or even multiple
systems.

Especially for multiprocessor systems, the single point of failures, the processor,
and T-logic LMU could be removed by using a TLMU per processor with its own
attached memory. If one of the processors fails, the other processor could recon-
figure the TLMU to disable and exclude the other processor from the working set.

If the two TLMUs are connected, the memories of the just disabled processor
could be reconfigured to be used by the working second processor, doubling in fact
the available resource of that processor.

From the current perspective, it is not feasible to apply this reconfiguration
principle further to multiple systems, as the high-speed interconnection between the
systems seems problematic. On a diagnostic level, i.e., one system diagnoses and
reconfigures another, this approach is very well applicable.

7.6 Summary

We showed that software-based checks can indeed be used to detect malfunctions
and permanent faults.

For malfunctions, however, the overhead is quite significant, as duplicate exe-
cution of the task is needed to detect discrepancies between the program runs.

For permanent faults, however, the software-based checking can be very useful,
under the assumption that the tests can reliably detect permanent faults.

This is most often the case, as software can check the predefined behavior of the
hardware.

Then we showed, for the detection of permanent faults, how to efficiently
schedule the tests with almost no interference with ongoing tasks.

We proposed to define tests on a tasks basis, where the tests include only the
hardware that the respective task used to minimize test execution time. Tests should
be performed according to the principle of growing core, where the most critical
systems are checked first.

We also introduced several algorithms (T1, T2) for real-time systems with
several CPUs and non-interruptible tasks and T3 for time-sharing systems.
Synchronous and asynchronous testing are used with asynchronous testing being
the preferred choice, as the test does not interfere with its task.

For background tasks, e.g., services that do not finish, we propose to schedule
the test regularly when there is no other test ongoing. We therefore proved that
testing hardware even with software-based tests can be done efficiently without, in
most cases, interfering with ongoing tasks by using processor idle time in a clever
way.

108 7 Testing, Checking, and Hardware Syndrome

For hardware-based checking, we introduced the syndrome a mean of config-
uring the hardware and signaling detected faults to the software. We discussed
possible hardware reconfiguration scenarios and analyzed in which cases software
has to adapt to the new topology.

Hardware-based checking scheme the so-called syndrome, a hardware controller
that can configure the hardware (power, memory topology) and signal detected
faults to the software. We showed which steps are necessary for the software to
execute in order to identify the fault type (malfunction and permanent error) and in
case of permanent error how software can reconfigure the hardware into a degraded
but still working state.

Based on concrete degradation scenarios, we showed that the software can
exclude faulty memory modules but has to adapt itself in two cases:

• First, if a memory module in a redundant mode is replaced by another one,
software has to repopulate the new module with the data of the working one.

• The second if the main module containing the runtime system data in linear
mode is replaced by another one, the whole system must be rebooted for
recovery.

For a possible hardware implementation of the reconfiguration mechanism, we
propose to use the T-logic embedded in a modified memory controller which also
includes the syndrome logic.

The benefit of such a system is twofold:

• As long as enough hardware elements, e.g., memory modules, are working, the
system can continue processing.

• Hardware can adapt to the requirements of the application: Highly reliable or
more space and more performance as the application has more space available
for processing.

References

1. Kirby W et al (1985) The NMFECC cray time-sharing system. Softw Pract Exper 15(1):87–
103

2. Serlin O (1984) Fault-tolerant systems in commercial applications. Computer C 7(8):19–30
3. Blazewicz J et al (2007) Handbook on scheduling, from theory to applications. Springer,

Berlin, Heidelberg
4. Ingo M (2002) Linux kernel archive. World Wide Web electronic publication, January 03,

2002
5. Bogdanov J, Schagaev I (1990) Sliding slotting diagnosis in multiprocessors. In: IMECO

congress proceedings, pp 141–150
6. Garey M, Johnson D (1979) Computers and in-tractability: a guide to the theory of

NP-completeness. W.H. Freeman and Company
7. Knuth D (1998) The art of computer programming 3. Sorting and searching, vol III.

Addison-Wesley Longman, Amsterdam

7.6 Summary 109

8. Johannes M (2002) The active object system-design and multiprocessor implementation. ETH
Zurich, Zurich

9. Liu CL, Layland J (1973) Scheduling algorithms for multiprogramming in a hard-real-time
environment. J ACM 20(1):46–61

10. Castano V, Schagaev I (2014) Resilient computer system design. Springer. ISBN
978-3-319-15069-7

11. Blaeser L, Monkman S, Schagaev I (2014) Evolving systems Worldcomp 2014. In:
Proceedings of the international conference on foundations of computer science FCS’14,
2014. CSREA Press. ISBN 1-60132-270-4

12. Monkman S, Schagaev I (2013) Redundancy + Reconfigurability = Recoverability
Electronics, 2, pp 212–233. ISSN 2079-9292. https://doi.org/10.3390/electronics2030212

13. Buhanova G, Schagaev I (2001) Comparative study of fault tolerant RAM structures. In:
Proceedings of IEEE dependendable system networks Conference, Guetebog, July 10, 2001.
https://www.academia.edu/7140850/

110 7 Testing, Checking, and Hardware Syndrome

http://dx.doi.org/10.3390/electronics2030212
https://www.academia.edu/7140850/

Chapter 8
Recovery Preparation

Abstract In the last section, we showed how hardware integrity of a computing
system can be efficiently ensured using hardware-checking schemes and system
software testing procedures and their sequences. However, to recover from faults, it
is necessary to eliminate the effects the error had on the computation, i.e., the
software code and data space. In GAFT, this corresponds to preparation for re-
covery. We now want to show how software has to be organized to be able own
recovery or in other words, we want to revise different strategies how software can,
after the detection of an error, ensure that the error did not affect the software state,
or if this cannot be ensured, what precautions software has to conduct to be able to
re-establish a correct software state. First, we revise the state of the art and then
introduce a new technology and show its power and limitations. In the next step, we
will show how hardware can assist software in the process of recovery preparation.
For all generic approaches to recovery preparation, so-called stable storage, a
nonvolatile, reliable, and fast storage is needed. If no direct hardware support is
available, stable storage must be implemented in software. We will present a
possible software implementation of such a stable storage.

8.1 Runtime System Support for Fault Tolerance
and Reconfigurability

The runtime system, often also called kernel of an operating system, provides
low-level software functionality such as threading, inter-process communication,
and memory management. These three tasks are the minimum functionality every
runtime system must provide; otherwise, an operating system cannot be imple-
mented [1]. Since we analyze design and develop of a single (not distributed),
embedded computer system with properties of fault tolerance, reconfigurability, etc.
and abilities of implementation of these properties at the level of hardware and
especially system software we do not pursue the analysis if distributed systems.
Some of aspects of implementation of fault tolerance in distributed systems are
covered in our previous work [2].

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_8

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_8

We argue that the first-level interrupt handler is also required to act in the kernel,
as the hardware typically switches into a privileged processor mode in case of an
interrupt.

For a fault-tolerant safety-critical operating system, GAFT is also part of the
runtime system, as already shown in Chap. 4. Specifically, the tasks fault detection,
system reconfiguration, preparation for recovery, and recovery become essential
parts of the runtime system. In this chapter, we focus on the task preparation for
recovery.

• We divide possible operating system architectures into three classes: Simple
unified memory architectures, microkernels, and monolithic kernels.

• Microkernel operating systems such as L4 [1] implement only the three classical
mechanisms in the runtime system itself and move everything else out of the
kernel, with the advantage that a failed software component be it a program or a
driver, does not influence the runtime system stability by design.

Unfortunately, the message-passing mechanism that is required by such systems
had in earlier times significant negative influence on the performance as many task
switches are required by such a system [1]. However, in recent developments, the
overhead could be lowered [3, 4] but is still significant.

Monolithic kernels such as Linux or Windows integrate the three low-level tasks
including all drivers in kernel space. Therefore, even a third-party driver can, in
these operating systems, corrupt the whole kernel space and lead to fatal crashes.
More than 80% of all Windows XP blue screens (traps) are caused by driver errors.

However, less context switches are required in such an operating system in
comparison to the microkernel approach, and thus a general improved performance
is observable. Applications usually run in distinct memory areas, i.e., they are
isolated from each other, but have the kernel mapped in the address space, protected
by the memory management unit (MMU).

Simple unified memory architectures use one memory space for runtime system,
applications, and data. Their big advantage is their simplicity, i.e., they are easily
understandable and manageable. Clear interfaces between parts of this architecture
with reduced number of waiting states in the scheme of interaction enable perfor-
mance gain that is unachievable on complex instruction computer systems (CICS).
Another advantage of RISC and simple unified memory architectures is the ability
to execute fix time instructions useful especially in real-time applications.
Arguments pros and cons about RISC and CISC architectures are not a subject of
this research, comprehensive analysis of these architectures might be found in [5],
and nothing new was discovered since then.

We do not discuss or consider her any applications based or design done using
Java due to limitations of them for real-time applications. In spite of further analysis
of language properties based on Oberon and Oberon-like languages [4, 6–13], we
do not consider application protection.

It is obvious that the first two approaches need a sophisticated MMU to support
flexible memory partitioning and are not suited for fairly simple systems.

112 8 Recovery Preparation

In the context of safety-critical systems, where no faults at all can be tolerated, it
is critical to eliminate all possible sources of failures and thus the additional
overhead of the microkernel approach can happily be traded against higher relia-
bility. All subsystems, such as hardware drivers, network stack, and file systems,
should be moved out of the kernel so that faults cannot spread in the system
(Fig. 8.1).

If the hardware platform provides a memory management unit (MMU), this unit
is used to implement process isolation either by having a distinct address space per
process or by having one shared address space and a capabilities mechanism [14].

If the platform does not have a memory management unit, the process isolation
relies solely on the programming language. It is possible to structure the language
in such a way that processes can only access their own modules and therefore not
unintentionally interfere with others. In addition, this clear separation allows sim-
plified process recovery, as the assigned memory space can simply be erased and
the process restarted.

If the programming language does not provide any means to implement process
isolation, a strict coding policy could be used instead. It is then up to the respon-
sibility of the programmer to implement proper isolation, which is unfortunately
error-prone and therefore not practical.

In our case, the anticipated ERRIC hardware platform does not support virtual
memory, which means that one large address space for all applications is used and
the language is responsible for implementing the isolation. As long as the memory
is not corrupt, this is perfectly sufficient, but in case of memory corruption,

Fig. 8.1 Monolithic kernel versus microkernel

8.1 Runtime System Support for Fault Tolerance and Reconfigurability 113

modified memory addresses could result in accessing memory outside of the
assigned memory address space. Various variants exist of handling these faults:

1. SW(T, S): Control flow checking by software signatures, introduced in [15] and
elaborated in [16]: The compiler introduces branch checks by using signatures
to validate the control flow. Although many faults are found by using this
technique, the overhead in size and time is significant (size: 25–60%, time: 16–
70%). Note that this approach does not rely on specialized hardware and con-
stitutes a pure software solution. Variants do also exist that involve an additional
hardware processor to calculate these signatures. Alternatively, duplicated
instructions or double program execution SW(2T) with output comparison [17–
19] could be used, also which high execution overhead of 40–200%

2. SW(T), SW(T, S): The use of multiple independent runs of the same or different
programs with output comparison, sequential or concurrent [20–22].

3. SW(T, I): Use hardware/software fault detection (checkpoints, syndrome)
together with recovery points to perform recovery.

In our context, a complex virtual memory addressing scheme is not desirable.
We therefore believe that the adaption of the language could help to support an
efficient implementation of recovery points.

In the next sections, the requirements to fault tolerance for each software
component of the runtime system are shown.

8.2 Overview of Existing Backward Recovery Techniques

Two different types of fundamentally recovery are possible: backward recovery and
forward recovery.

In the former case, the system uses previously stored system states to rollback
program execution and restore a consistent fault-free software state in case of a
failure.

In the latter case, the system is recovered by finding a new possible, consistent
state without using previously stored information. Forward recovery is always
application-dependent and needs, therefore, additional overheads. Backward re-
covery, in contrast, can be applied in both ways: application-dependent
semi-transparent and application transparent:

Semi-transparent The application programmer is responsible for storing the
application state in a consistent state for later rollback [23]. More recently, a
semi-automatic recovery process called Microreboot [24] was presented, which
does not require the application to create recovery points, but requires a specific
software architecture with stable storage such as a database.

Application transparent The programmer is not involved in the process of creating
recovery points, i.e., application need not be modified. In this case, the compiler

114 8 Recovery Preparation

and runtime system are responsible for the recovery point creation, which is part of
this research.

Using [20, 25, 26] as a guideline, we present here a short survey of possible
backward recovery mechanisms only, as this can be applied in a general way to any
program without application or programmer intervention.

A recovery point RP is at minimum the states of the participating processes [20,
26]. In other papers, the term checkpoint is used instead of recovery point. We
prefer, however, to use the term “recovery point” for stored information used the
recovery from faults and “checkpoint” the point in time when the hardware is
checked for faults.

Recovery points are always stored on a stable storage [27], which means that the
storage survives any system fault without corruption. Such a stable storage can
either be memory, a hard disk, or better flash disk or be located on a physically
separated device.

In the process of recovery point creation, the problem of inter-process consis-
tency must be taken into account because the rollback of a failed process can force
non-failed processes to rollback as well for the purpose of restoring program state
consistency.

Let us have an example: In a system, with two processes a and b, a sends
messages to process b. If b fails and has to rollback, it might rollback to a point in
time before the arrival of the last message of a.

To fix this inconsistency, process a has to rollback as well even though it did not
fail. This effect is called rollback propagation. If badly implemented, the rollback
propagation can continue up to the initial software state, which is called domino
effect [28, 29]. The domino effect often occurs if processes create their recovery
points independent of each other.

Figure 8.2 shows a simple example of the domino effect. Two threads P and Q
that communicate with message-passing run concurrently and create their respec-
tive recovery points as shown in the figure.

In case of a recovery, the system now tries to find a consistent state space which
does not exist in this example except for the initial state. The reason is simple: The
global state is only consistent if the threads receive only messages that were sent. If
RQ3 is rolled back, P receives a message from Q that Q never sent, and therefore P
must be rolled back as well. The process continues until the initial state is reached.

A rollback line [28] is defined as the most recent consistent set of process
recovery points. If the recovery points of all processes are consistent, the domino
effect cannot happen, as it is only necessary to recover the system up to the last

Q

PFig. 8.2 Example of domino
effect

8.2 Overview of Existing Backward Recovery Techniques 115

rollback line. Under the assumption that the system is a fail-stop system and faults
manifest themselves immediately, it’s just necessary to keep that last recovery line.
Every earlier recovery point can be freed.

The classic system model which is used when analyzing recovery points is a
fail-stop system [29], i.e., they either work according to specification or crash (stop
working) without corrupting data, especially memory.

Most of the work which has already been done in this field is based on
message-passing systems, which can either be distributed system with a network
interconnection, but also single multiprocessor systems where messages are passed
via shared memory or other local interconnection facility. In fact, the single
multi-process message-passing system is just a special case of a distributed message
passing, and thus the same algorithms can be applied.

The commonly used approaches for creating recovery points are either imple-
mented on the level of the system or on the level of tasks. The former is also called
global checkpointing [30, 31]. The global checkpointing assumes that the recovery
points are created when all other operations of the system stop, i.e., the whole
system operations are “frozen” for creating a recovery point of the whole system.
This approach has, of course, the huge disadvantage that the system must be
completely stopped while the snapshot is made. In this sense, recoverability action
reduces reliability—long-range preparation of recovery from future malfunctions or
permanent faults reduce point availability by adding to maintenance time and
reducing operational time.

Recovery points on the level of tasks have already been extensively covered in
literature and can be classified as follows:

Uncoordinated recovery points Every task creates a recovery point whenever it
suits the task [28];

Coordinated recovery points Chandy and Lamport [29] introduced coordinated
recovery points by saving a system-wide consistent state. Some processes [30] save
their state in a coordinated way;

Message logging In these systems, recovery points of threads are created inde-
pendently from each other. Logging all messages between threads retains consis-
tency between threads. In case of a failure, the threads are rolled back and the
communication is replayed and thus consistency restored.

The systems assume piecewise determinism [31], which requires that all deter-
minants [32], i.e., all non-deterministic event, can be identified and logged.
Typically, messages between threads and I/O data are determinants. Examples for
message logging systems are [33–37].

These mechanisms are all application transparent, as we have mentioned the
application-dependent techniques before. Recovery on the level of procedures is
covered in Sect. 8.3.

116 8 Recovery Preparation

8.2.1 Uncoordinated Recovery Points

Uncoordinated recovery points approach belongs to the first implemented recovery
techniques [28]. This technique sets no constraints on the creation of recovery
points with the advantage that the thread can initiate a recovery point creation when
the state space is small which results in small recovery points.

The implementation is also quite simple. The downside, however, is the sus-
ceptibility to the domino effect, which reduces the practicability of this approach
considerable. It might also happen that a thread creates an RP that is not part of the
global system state and wastes therefore processing time.

As the global consistent system state is in general not known, every thread must
maintain several RPs, which need to be garbage collected over time to regain space.

During recovery, it is necessary to determine a global consistent system state to
which the system is then recovered. When a thread sends messages to another, it
adds the current checkpoint number to the message. The receiver then stores this
number locally. In case of a rollback, these numbers are used to calculate a
dependency graph showing the latest global consistent state [38].

8.2.2 Coordinated Recovery Points

In contrast to the uncoordinated recovery points approach, threads are synchronized
if coordinated recovery points are used. The main idea is that if threads are syn-
chronized between each other, the state is always system-wide consistent.
Therefore, every thread needs to keep only one stored recovery point. One of the
earliest approaches [39] implements blocking recovery point coordination approach
that uses two-phase commit to force all threads to create a recovery point at the
same time.

Synchronization then is achieved by blocking all threads at the same time
(message broadcast). This accompanied by flushing of all communication channels
and creating the recovery points. The disadvantage of this approach is obvious:
While the recovery points are taken, the whole system is blocked and unable to
react to external events, i.e., become nonresponsive.

Between the recovery point creations, there is no additional overhead involved in
this approach and the total overhead is adjustable by the recovery point interval.

The non-blocking recovery point coordination approaches use other synchro-
nization mechanisms that do not force the system to stop. An early approach [29]
solves the problem of inconsistency by creating a recovery point prior to sending a
message to another thread.

Extension to that use markers that are sent from one thread that generated a
recovery point to all others. These generate their checkpoint and broadcast the
marker further. This is an example of a non-blocking recovery point approach, as
the threads do not immediately stop program execution but create the recovery

8.2 Overview of Existing Backward Recovery Techniques 117

point when they remove the RP message from the message queue. The message
queues must be reliable and FIFO for this to work.

Another approach sends the latest recovery point number together with the
actual message. If the latest RP number of the receiver is smaller than the received
number, the receiver generates a new recovery point [35].

In a distributed system, synchronized clocks can be used to synchronize the RP
creation. The systems generate their RPs at a specific predefined interval and wait
for a predefined interval (clock inaccuracy) before continuation [40]. In a dis-
tributed system, the communication properties (reordering, delay, reliability) play
an important role. We ignore these problems, as we don’t want to go into further
details about recovery points in distributed systems.

All introduced approaches force all threads to create a recovery point. In real
systems, however, threads or more specifically programs often exclusively com-
municate in related groups. The fact can be exploited as Koo and Toueg [41] did.
They introduced a checkpoint initiator that partitions the threads in groups that then
individually create their recovery points.

These groups can be further limited if the type of message is taken into con-
sideration. Only messages sent from one thread to the other introduce dependencies
between the threads, if they contain shared data. Janakiraman et al. [42] therefore
record a dependency only if a message containing shared memory that was mod-
ified since the last recovery point is sent from one thread to the other. This approach
progressed by introducing page stamps [43], resulting in further reduced
dependencies.

Communication-induced recovery pointing basically generates a recovery point
whenever inter-process communication occurs. A checkpoint needs to be generated
if modified data is sent to another thread. Incremental recovery pointing is often
used in this approach to limit recovery point size. Obviously, the number of per-
formed recovery points is linear to the number of occurring inter-process com-
munications, i.e., this approach is not well suited for communication-heavy
applications. An example of this approach is [42].

The coordinated recovery point approach has one significant drawback. When
programs heavily communicate with the outside world using input–output schemes
(I/O), this approach is not well suited, as I/O does not fit directly this scheme and
extra application-dependent efforts are required.

8.2.2.1 Limiting Checkpoint Size

The simplest approach to generating a recovery point is to store the whole memory
area the program has access to. However, this can be very expensive if the program
is large or needs a lot of data.

We present here two existing approaches of how to reduce the recovery point
size. Li [44] introduced a page-based approach that uses the memory management
unit of the computer to identify memory pages that were written to (copy on write)
since the last recovery point was taken.

118 8 Recovery Preparation

When the thread creates a new recovery point, it is sufficient to store just the
modified pages, resulting in much smaller recovery points. This approach has also
its drawback. Accessed data are often much smaller than the page size; the recovery
point still contains much unnecessary data.

Such recovery points that are not self-contained but rely on other previously
stored memory points are called incremental recovery points.

Another approach [45] uses programming language extensions to identify shared
data and synchronize access to it. Additional metadata (type, etc.) helps to further
improve the efficiency of that approach.

8.2.3 Message Logging-Based Rollback Recovery

In contrast to the recovery point approach, the message logging rollback recovery is
based on the idea that the execution of a program is deterministic as long as it does
not communicate with other threads or performs I/O. In other words, programs are
therefore assumed to be piecewise deterministic, i.e., programs are deterministic as
long as all determinants; events (internal or external) that affect the programs can be
identified and logged.

RPs of all threads must still be created and stored on stable storage, but messages
and I/O are stored as well. Thus, this approach is particularly suitable for I/O heavy
applications. One can consider the message log-based approach as an extension of
coordinated recovery points where inter-process messages do not trigger the re-
covery point creation but are stored for later use.

In contrast to the pure recovery point approach, message logging allows the
replay of the program execution after the last recovery line by replaying all stored
messages. The piecewise deterministic assumption must hold also while replaying
the messages, and thus any non-determinism must be avoided. One of the simplest
approaches just stores the number of executed instructions together with the mes-
sage, which allows, during recovery, the timely correct arrival of the message in the
system, avoiding therefore any non-determinism. A backup computer is used to
store the recovery points as well as the messages and controls the recovery in case
of a failure.

Message logging protocols can be partitioned into three categories: Protocols
with pessimistic logging, optimistic logging, and causal logging. We don’t go into
the depths of these approaches but just give the main idea, advantages, and
drawbacks.

Pessimistic logging requires that the message logging completed before the
message or determinant is delivered to the receiver (synchronous logging), which
leads to a performance impact in the failure-free case, as logging and message
processing cannot be executed in parallel.

The pessimistic approach assumes that failures can occur during message log-
ging but as messages are logged before message delivery, recovery is always
possible to the latest state and cannot lead to orphans, i.e., messages and related

8.2 Overview of Existing Backward Recovery Techniques 119

tasks unable to recover due to the logging failure. Further advantages are simple
recovery as failures do only affect the processes that fail and as no orphans can
occur, recovery always recreates the state just before the failure happened which is
extremely useful in real-life applications [46].

Garbage collection of old messages and recovery points is also easy as all
recovery point except the last can be recycled.

Optimistic logging stores messages mostly asynchronously (in parallel) to the
message delivery and are based on the optimistic assumption that the logging has
finished before a failure occurs. This approach is obviously not suitable for
safety-critical systems where it is assumed that failures occur anytime. In contrast to
the pessimistic approach, simplicity and speed in case of failure are traded to per-
formance in the failure-free case with considerable more complex failure handling.

To keep the logging performance impact small, the determinants are usually
stored in volatile memory (RAM) and periodically flushed to disk. In case of a
failure, the log in volatile memory is lost and a full message replay is not possible.
If the process sent a message to another thread during the not recoverable process
execution, the receiver of the message becomes an orphan and must be rolled back
as well to restore consistency.

Such a rollback might go beyond the last recovery point, which means that
several recovery points are needed. It’s obvious that this recovery considerable
complicates garbage collection of determinants and recovery points.

The necessary information to assert consistency is usually recorded together with
the determinants during failure-free operation.

Optimistic logging allows synchronous and asynchronous recovery; an example
of the former is [47] and for the latter is [31].

Causal logging approach attempts to combine the advantages of the pessimistic
and optimistic loggings [32, 35]. Logging is performed asynchronously (opti-
mistic), i.e., using volatile storage for message logging and persistent storage for the
recovery points and the message log. The volatile message log is flushed to stable
storage before a message is sent to the outside world (output commit). Orphans are
omitted by ensuring that all casual determinants are either stored on disks or are
local to the respective task.

Causality is defined by Lamport’s happened-before [48] relationship. The
locality of determinants is now achieved by piggybacking them on messages sent to
other threads. The advantages of causal logging are traded in for a more complex
recovery protocol.

8.2.4 Other Approaches

There are other approaches, which do not belong to the above presented categories.
Brown [49] uses dedicated machines that snoop the inter-process communication
and store the information to restart the tasks in case of a failure. This approach is

120 8 Recovery Preparation

particularly suitable for a distributed system connected over Ethernet, i.e., a dis-
tributed system with physically distinct partners.

8.2.5 Implementation Aspects

The main focus in research during the last centuries focused more on the theoretical
aspect of recovery point protocol than actual implementation. Especially in com-
mercial systems, recovery points are rarely used and if at all mostly based on shared
library implementations.

Classic Unix-based system that is often used for the implementation of recovery
points uses different processor modes to protect the kernel with its kernel data
structures from the application. In case of an implementation on the application
level (shared library), a recovery point contains user mode data structures only.

If the recovery point mechanism is directly implemented on the kernel level, it is
possible to store kernel data structures together with the user mode data, which
helps in recovery significantly, as the kernel resources occupied by the application
can be restored as well. This is especially useful if the application is heavily I/O
based. An example of kernel-level implementation is [26] and for a user mode,
implementation is [50].

Another approach replicates relevant process kernel structures in the application
and stores them together with the application data in a recovery point. In case of
recovery, the recovery process restores the application kernel structures and uses
this information to continue processing.

An approach of creating recovery points is presented in [15, 18, 51–53]. This
approach heavily relies on the memory management unit of the processor. When a
recovery point of a process is created, the system write protects all memory pages of
the specific process and concurrently starts saving the memory pages and continues
processing.

In case of a memory written by the application, the memory protection violation
handler copies the affected memory page to a separate buffer and removes the write
protection from the accessed page. The content of the new buffer is then stored to
disk instead of the original page. Using the dirty bit of the memory protection unit
or software-based dirty bit, this approach can be adapted to use incremental re-
covery points.

Another approach simply compares the content of a recovery point with the
current memory content and stores only the difference. However, the significant
comparison overhead together with the storage access time can jeopardize the
advantages of this approach.

In a probabilistic approach, hashes are calculated for all memory pages and
stored together with the recovery point on stable storage. Recalculating the
checksums can identify changes to the pages. Further comparison of current and
stored ones can be useful as it was presented in [51–54]. This approach requires less
computation than comparing the contents of the recovery points directly.

8.2 Overview of Existing Backward Recovery Techniques 121

8.3 Recovery at the Level of Procedures

As shown in the overview above, most of the current approaches to generating
recovery points are either located on the level of the system (one recovery point
covers the whole system) or on the level of tasks, which is the most frequently used
approach.

As shown in Sect. 8.2, the standard system model that is usually applied for
systems supporting recovery points is a fail-stop system where faults are eliminated
just by recovering the last consistent recovery point and resume processing. The
assumption in this case is that the checking schemes can detect faults either during
instruction execution or while accessing hardware devices and fail-stop.

Now, we present in this chapter our approach of generating recovery points:
Recovery points on the level of procedures. This approach tries to exploit language
features limiting the required space to save a current state of a program in every
recovery point.

Especially for the model of a fail-stop system, the fast recovery time due to the
small recovery points is tempting. If faults are masked, i.e., present but hidden in
the system, affect the program execution but are detected much later (not a fail-stop
system), recovery on the level of procedures might not be the right approach as
considerable time is required to find the last correct recovery point or no correct
recovery point at all might be present and the system must be restarted to recover.

Upon every procedure entrance, a recovery point is created which stores all
parameters, all write-accessed variables the stack and the base pointer, and the
current program counter.

This allows minimizing the footprint of each recovery point. The compiler
analyzes the program code and emits additional code in the procedure preamble to
create the recovery point. Keep in mind that temporary variables on the stack do not
need to be included in the recovery frame. The same is valid for the processor
registers, assuming parameter passing via stack and not registers. The actual storing
mechanism needs runtime support, especially if it is stored on external stable
storage.

A recovery block entry usually has the format shown in Table 8.1.
In the field address, the physical address of the source variable is stored. The

field size contains the size of the variable in number of bytes followed by the data
itself. For fixed-size variables such as basic types or statically allocated arrays, the
data size can be derived at compile time.

For storing these, one could actually omit the field size and store the data
immediately after the address. However, it is not possible to derive the size of
objects, or records at compile time, as also derived elements could be passed as an

Table 8.1 Recovery block
frame

Address Size Data

4 bytes 4 bytes n bytes

… … …

122 8 Recovery Preparation

argument in procedures. Therefore, the size of these variables must be derived at
runtime.

It is interesting to see that only structured languages allow the efficient creation
of recovery points, as the scope of a procedure or in other words the visible and
accessed variables can be clearly derived. Strong-type safety that was introduced
for reliability of programming might be helpful here as in supporting the scheme of
deriving the size of all variables. For example, pointer arithmetic in C prohibits the
efficient creation of recovery points, as the whole memory can be accessed and
modified and thus the entire memory must be saved. Pointer-free languages such as
Composita of Prof. Blaeser, briefly introduced in [55], might be immediate next
step in making new language for real-time, reconfigurable, and PRE-smart systems.

Various strategies [51, 54, 56] exist how to insert recovery points in a program.
This can either be done automatically by a compiler or manually by the pro-
grammer. It is quickly obvious that a compiler should do this, as this task is not
trivial for a programmer.

The insertion strategy is chosen according to the used system and applications
and is always a trade-off between the overhead in terms of time and space and the
anticipated recovery time. Frequently created recovery points typically need more
time and space to be created, but on the other hand in case of a failure the required
recovery time overhead is small. There are no doubts that hardware support might
reduce regular overheads of recovery point formation. One example of hardware
support is discussed in the next section.

In turn, using sparsely created recovery points typically leads to a smaller
overhead but requires more time to recover as more statements have to be executed
until the next recovery point is reached [3].

8.4 Hardware Support for Recovery Point Creation

In order to keep the system overhead low, it is proposed here to implement the
actual recovery storage procedure in hardware. We introduce therefore the recovery
point unit (RPU), which represents a hardware component that is capable to create a
recovery point on a nonvolatile medium.

It should thus be able to interpret the above introduced format of a recovery
point in memory and store it. To speed up the performance and to have a measure to
detect corrupt recovery points, the RPU should be able to calculate a checksum on
the fly of the just created recovery point and store it as well together with the
recovery point. This checksum helps to identify corrupt recovery points, which
cannot be used to recover a system.

The RPU should be placed directly on the CPU bus (Fig. 8.3) and should have
direct access to the memory in order to get maximum speed for the generation of
recovery points as well as during recovery.

8.3 Recovery at the Level of Procedures 123

If dual-port memory is used as system memory, the RPU can even have its own
connection to the memory and create a recovery point concurrently to processing
without performance impact.

On the other hand, the processor should also have accessed to this unit to
perform tests and instruct the unit to generate a recovery point. Direct access for the
RPU to the processor could also be allowed in order to store the full processor state
as well. To simplify the implementation, the software can also store the current
processor state (registers, program counter, etc.) to the memory and instruct the
RPU to include this memory area in the RP generation.

The RPU has two operation modes, one that generates the recovery point and the
checksum and one that only generates the checksum. The second mode is required
for diagnostic purposes and serves well for accelerating the search of a correct RP
(see Sect. 9.2.1 for details).

Of course, the checksum should be generated during the actual recovery point
creation. If required, the checksums could also be stored distinct from the recovery
point to prevent a fault from affecting the checksum and the recovery point at the
same time.

Fig. 8.3 Hardware design with RPU

124 8 Recovery Preparation

8.5 Variable Recovery Point Creation

The principle of recovery point (RP) tuning [54] might be best explained with an
example. Imagine a program Q with execution time Tq in which during compile and
link time n recovery points are inserted. Please note that recovery points are only
placed in specific locations, for example, procedure entrance.

In loops such as while, repeat until and for, no recovery points are placed, as it is
in general not statically known how many times such a loop will be executed.
Therefore, a consistent numbering of the recovery points as it is required as shown
later is difficult.

Creating recovery points is expensive; we propose therefore to dynamically
adjust the frequency of the recovery point creation. The basic principle is simple.
The normal malfunction rate Δkest (faults/time) of the system can be calculated or
estimated in advance as well as the maximum tolerable malfunction rate Δkmax.

If the current malfunction rate c is higher than the maximum rate, the system is
considered as faulty. We now split the possible malfunction intensities into n equal
intervals (Eq. 8.1).

Dk ¼ Dkmax � Dkest
n

ð8:1Þ

The theoretical minimum of Δkest is of course 0. Whenever a request for an RP
creation is sent to the operating system, it can decide whether a real recovery point
(RP) is created or just a fake one (FRP).

In case of a fake (not-created) recovery point, the call is simply returned to the
application that results in a minimal performance impact. To implement this feature,
the runtime keeps a table containing a mapping between the reliability modes and
the indexes of the recovery points that should start a real recovery point creation.

In other words, if the index i of the current recovery point does match the rule
given by the current reliability mode introduced by runtime system, the recovery
point is created; otherwise, a fake recovery point is created.

Figure 8.4 shows an example of such a rule, where the recovery point is only
created if i mod n = 0, i.e., every nth recovery point. This rule can of course be
adapted to the needs of the system and application.

The reliability mode is changed dynamically by the runtime system if a change
in the current fault rate is detected or if an additional safety-critical application is
started. The simplest scheme to adjust the current reliability index is by changing it
linearly depending on the current malfunction rate of the system.

Every fault is logged by the runtime and can therefore be used for fine-tuning. It
is assumed that the fault rate does not change in extremely short time, and that the
index is only changed after program termination, which eases recovery.

The current index is therefore calculated as follows:

8.5 Variable Recovery Point Creation 125

index ¼ Dkmax � Dkestð Þkc
n

ð8:2Þ

The constraints of this formula must of course also be taken into account. For
example, if the current malfunction rate Δkc is below Δkest, the lowest reliability
mode be chosen.

The formula above can be easily replaced by other functions, as needed.
However, to support this scheme of generating recovery points, the recovery

point mechanism itself must provide one important property: Even by omitting one
recovery point, the system must be able to fully restore the system state.

In other words, a recovery point must cover enough of the state space to cover
the omitted recovery point as well. For recovery points on the level of the system,
this property is automatically given and this approach is directly applicable. For
recovery on the level of tasks (uncoordinated and coordinated), this approach is also
applicable. For recovery on the level of procedures, this optimization cannot be
used as the individual recovery points vary in their data coverage.

8.5.1 Efficiency Analysis

The redundancy used in the creation of recovery points is threefold: Time redun-
dancy HW (T), SW (T) as the processor must prepare the recovery point frame and
the recovery point unit both need time to perform their tasks.

Structural redundancy HW(S), SW(S) for the RPU, the storage and the RP
management, and finally information redundancy SW(I), namely, the stored re-
covery point data as the main used redundancy. The checksum calculation unit in
HW could also be added to HW(S).

Consider a runtime that supports real and fake recovery points. Consider now a
hypothetical program P with two cases: (a) where all recovery points are created
independent of the RP index and (b) where the creation of the recovery points is

Fig. 8.4 Recovery point reliability mode

126 8 Recovery Preparation

dependent on kc. We assume that c changes slowly over time and is therefore
considered here as constant during one program run.

In terms of used memory, cases (a) and (b) are equal as the program itself does
not know whether a recovery point is real or not. Thus the program prepares every
recovery point. The needed memory for the recovery points is allocated in the user
programs’ memory space.

However, the allocation process itself is done by the runtime and not by the
application, as the runtime knows the system topology and can therefore better
place the memory area.

In terms of processor overhead, the time required for storing the data is omitted
in the case of fake recovery points. The processor for further program execution can
then use this time. Therefore, we are interested in the time saved by not storing the
recovery point.

In case (a), the maximum time overheads W’ given by the maximum mal-
function rate and execution time of the FT system:

W
0
t ¼ Wkmax ð8:3Þ

where Wkmax is the overhead of creating and storing recovery points during pro-
gram execution. Currently, we only consider one program execution. Wkmax con-
sists of the time required to generate the recovery point in software (Wc) and the
time to store it on stable storage (Ws) for all recovery points that are created during
one program run.

Wkmax ¼ Wc þWs ð8:4Þ

For case (b), the overhead for the recovery points W” is proportional to the
malfunction frequency taken from the system log and the resulting number of real
recovery points.

We assume that the fault rate does not significantly change during one program
run and that the rate of fake recovery points is only adapted between program runs.

Wki ¼ Wc þ liWs ð8:5Þ

Here,
li defines the percentage of the recovery points that are actually stored on stable

storage in case of active reliability mode i.
Therefore, (1−li)Ws defines the time that was saved during recovery. For n

program runs, we get

W 00
t ¼

Xn

t¼0

Wc þ
Xn

t¼0

liWs ð8:6Þ

Here, (8.6) defines the total overhead to create the RPs during n program runs. In
fact, the time we can save in n program iterations is

8.5 Variable Recovery Point Creation 127

W 00
t ¼

Xn

t¼0

ð1� liÞWs ð8:7Þ

The saved time is thus linearly depending on the recovery mode and the number
and size of the generated but not stored recovery points.

8.6 Implementation Aspects

In this section, we focus on some aspects that are important for the implementation
of recovery points. As already mentioned, the use of structured languages such as
Pascal or Oberon improves the efficiency as the strong-type safety of the system
allows to statically extract much more information than in other languages such as
C or even assembler.

We present here for every program language structure a possible recovery point
implementation strategy for recovery on the level of procedures and show the
limitations. In Oberon, modules act as formal entities to separate concerns.

Figure 8.5 shows two modules, M1 and M2, where M2 imports the module M1,
i.e., M2 gets access to the exported interface of M1.

As the basis for the discussion, we use Oberon-07 [57] as programming lan-
guage but remove two language features that simplify the implementation
considerably.

First feature removed is nested procedures as it is difficult to find the accessible
state space of a nested procedure at compile time. Nested procedures do not add
additional functionality to the language but simply provide a nonessential struc-
turing mechanism.

The second feature we remove is the export of read-only module variables.
Again, this helps the compiler to limit the state space and a procedure in a module
can access. Read-only variables can be simulated by wrapping them into exported
procedures.

Under these constraints, the only way of interaction between modules is by
accessing exported procedures. Generating a recovery point at cross-module

Fig. 8.5 Module imports

128 8 Recovery Preparation

procedure calls seems to be a natural implementation approach. If this approach is
not fine-grained enough, one could consider generating recovery points at every
procedure entrance.

1 Rec1 = POINTER TO Rec1Desc;
2 Rec1Desc = RECORD
3 i: INTEGER;
4 END;
5
6 Rec2Desc = RECORD (Rec1)
7 i: INTEGER;
8 END;
9
10 PROCEDURE Foo (i : INTEGER; VAR a : Rec1Desc ; b : Rec1) : INTEGER
11 VAR
12 int : INTEGER;
13 c: Rec2;

14 BEGIN
15 ….
16 END;

In the above example, all parameters i, a, and b of procedure Foo must be
included in the recovery point. The size of all basic types as well as records passed
as VAR parameters is already known at compile time, and thus the compiler can
directly emit the code for the recovery frame preparation.

The more complicated case that needs discussion here is pointers. First of all, a
pointer has a type, which means that this pointer can only point to objects of a
certain type or an extension of the pointer type. The actual size of an object is
accessible by its type tag.

However, the tricky part with pointers is that they can point to different objects
over the course of time or even to invalid locations such as NIL.

In addition, a pointer could point to a linked list of objects that are manipulated
in a procedure. The question that arises in this case is how to take these into
account.

Two strategies could be used:

First, for every assignment to a pointer type (procedure parameters of pointer type
are here also included), the assigned object must be included in a recovery pro-
cedure frame. On the implementation side, the compiler could add code to the type
tag that creates a new recovery point covering this object.

Whenever an object is assigned to a pointer, the compiler emits code that triggers
this code. Using flow analysis, it is also possible to find out if an object is
write-accessed or only read-accessed in the context of a procedure. In the latter
case, the object need not be stored. Obviously, this approach possibly results in a
huge number of recovery points.

8.6 Implementation Aspects 129

Second, saving the whole accessible memory space could lower the number of
recovery points. However, this approach is very time-consuming and therefore only
suitable if the recovery point interval is large.

Until now, module variables were not covered. However, all write-accessed
module variables must be stored as well and thus included in a recovery procedure
frame. Again, the accessed variables are marked and included by compiler control
flow analysis.

Using resource contexts (see Sect. 11.5), another way of creating recovery points
can be considered. As tasks in a resource group only have access to data in the same
resource group, a recovery point could be created when a message to another task is
sent or a message from another task is received. In this case, the whole memory area
occupied by the context as well as all message parameters (which may not be of
pointer type) is included in the recovery point. This results in a very simple re-
covery point implementation with a good trade-off between recovery point size and
frequency.

In the case of working tasks that perform long calculations without interaction
with other tasks, a system-generated timer could interrupt the currently ongoing
calculation and create an RP of the currently active context.

If an RPU (see Sect. 8.4) is present in the system, the recovery point storage
could even be done concurrently to the processing, as the language partitions the
memory space and ensures isolation.

One could argue that software isolation is not sufficient, as memory faults could
corrupt memory addresses and thus allow the software to access memory areas
outside the current resource context. A simple range check in the hardware memory
controller could solve this. To the application, only two registers are necessary, one
containing the current lower access boundary, and one the upper access boundary.
Memory accesses outside these boundaries trigger an exception.

Another key point in generating recovery points is the storage of input/output
data. Specifically, drivers that read or write from devices must store the data, so that
it can be replayed accurately. To support this feature, every driver can optionally
provide such a buffer. It is up to the programmer to decide whether it is necessary
and useful to provide these rollback buffers, as they might not be necessary
depending on the use of the device (e.g., logging) or the size of the data that is
required to be stored (e.g., disk accesses).

As an example, incoming sensor data might be important enough and small
enough to be stored for use after a recovery. Of course, the location of this sensor
data must be specially marked and protected, for example, by error detection and
correction codes, so that it is not erased during a recovery.

As accessing a hardware device is usually done via memory-mapped I/O, i.e.,
direct memory access, the compiler cannot automatically extract necessary recovery
means from the language and has thus to completely rely on the programmer.

Utmost care is required during the implementation of such memory-mapped I/O
to guarantee first the correct behavior of the driver and second the correct handling
of recovery point data.

130 8 Recovery Preparation

8.7 Ultrareliable Storage

If no additional hardware support for storing the recovery point data is available on
the target platform and cannot be added, the system has to fall back to a
software-implemented stable storage, i.e., the data are not copied by the hardware to
the stable storage, but the process is implemented in software and the data copied
by the processor.

The stable storage is also exposed to external radiation and must therefore
feature-built fault detection and correction mechanism.

A software implementation needs state variables to track the progress of the
operation. In case of a full system backup, the state of the software recovery point
mechanism is also stored on stable storage. In case of a recovery, the full state is
overwritten; therefore, it’s necessary to keep an inventory of the stored recovery
points on stable storage.

If only part of the system is included in the recovery point, the state might also
be kept in memory in addition to the inventory on stable storage.

However, code and data must be protected by some validation mechanism
(checksum) to guarantee the correctness of the code and data in memory. Corrupted
code can be reloaded from ROM, corrupted data restored from the stable storage
inventory.

For more details about the recovery process, refer to Chap. 9.
Here, we present the following requirements for software-based stable storage:

– Simple design,
– Very fast data storage and retrieval,
– Optimized for linear access,
– Transparent device recovery in case of faulty read or write operation,
– Small memory footprint, and
– Low complexity controller.

8.7.1 Physical Storage Media

We consider five options for the storage of recovery point information and discuss
shortly their advantages and disadvantages.

Hard disks are often used for stable storage in commercial systems. They are
cheap, provide huge capacity, and their linear read and write performance is rela-
tively fast. Their disadvantage is, however, that they are quite big, power hungry,
need a complex and fast controller on the host side (S-ATA), and are prone to
vibration and shock which disqualifies them for use in an embedded system.

Solid-State Disk Solid-state disks are designed as plug-in replacements for hard
disks and use the (S-ATA) protocol with its already explained disadvantage. In
contrast to hard disks, solid-state disks use an array of flash chips to store that actual

8.7 Ultrareliable Storage 131

data, resulting in extremely high read and write performance. In addition, they have
built-in fault handling of failing chips and automatic wear leveling (see next sec-
tion), which is welcome in this context.

However, the high implementation complexity of SSD disks (complex controller
and firmware) which caused several manufacturers to release new firmware ver-
sions to eliminate bugs, sets a question mark behind the reliability of these disks.

Compact Flash Compact flashcards [58] are also flash based, exist for a long time,
and are often used in industry as direct replacement for hard disks as they use the
P-ATA protocol which is a predecessor of S-ATA. They are physically quite small
and they have built-in support for wear leveling.

SD Card Secure Digital Cards (SD Cards) are widely used in consumer electronics
such as photo cameras, smartphones, etc. They are available in different sizes, some
of them very small. Transfer rates, however, are quite low, currently available SD
card do not exceed write speeds of 20 Mbytes/second.

Flash Chips Flash chips are available in different technologies, sizes, and speeds.
Solid-state disks use flash chips that support the Open NAND Flash Interface [59,
60] (ONFI) specification. These are the currently fastest chips on the markets
featuring write speeds up to 300 Mbytes per flash chip. Recently, Intel flash chips
were measured with a write speed of 156 Mbytes/s, which is faster than a hard disk.
In contrast to the other options, flash chips are not removable. In the next section,
we discuss the properties and limitations of flash chip in more detail.

Table 8.2 shows a more detailed comparison of the different storage options we
consider. All options except hard disks use flash chips to store the content. The
S-ATA-based options, i.e., hard disks and S-ATA, require a high complexity,
high-speed controller (1.5 Ghz) on the host side which is not desirable in this
context. SD cards and compact flash have too low write speed as storing the
recovery points must be performed as fast as possible.

ONFI-based flash disks, which are also used in solid-state disks seem to be the
currently best option to store recovery points as they have large capacity, high write
speed, short access time, and a low complexity controller (100 MHz). In addition,
they need low power, i.e., the max power consumption is according to the ONFI
specification only 0.165 W. The downside, however, is that flash has write limi-
tations that have to be taken into account when designing the stable storage
architecture.

8.7.2 Flash Properties and Limitations

Flash memory is organized in blocks (usually 512 bytes) and in erase units con-
sisting of a number of adjacent blocks (usually 32 or 64) [61]. Reads and writes are
performed block-wise, and writes must be made only to previously erased blocks.
Blocks can either be erased automatically or manually, where the former option is
more comfortable while the latter is faster.

132 8 Recovery Preparation

The number of erases per unit before “wearing out” is limited, typically to some
number between 10000 and 100000, in newer technologies even lower. In the
interest of longevity of the flash chip, the use of a “wear leveling” strategy is highly
advisable. Wear leveling means that erase cycles and write cycles are evenly dis-
tributed across the memory chip. Traditional file systems are unsuitable for flash
chips because they exhibit hot spots such as metadata fields that are frequently
updated.

8.7.3 Analysis and Design Considerations

As mentioned above, the use of a standard file system is unsuitable as it typically
exhibits hot spots. Much of the research [62] into overcoming this problem intro-
duces some virtual-to-physical block number mapping.

Two kinds of data structures are typically suggested for this purpose. Direct
maps map a logical block number (index i) to its physical sector number.
Unfortunately, such data structures have typically a footprint in the order of several
megabytes [63].

Inverse maps store in location i the virtual block number corresponding to sector
i. These maps are usually stored on the flash disk itself and are mainly used for
regenerating the direct map at boot time.

Table 8.2 Properties of stable storage

Hard disk Solid-state
disk

Compact
flash

SD card Flash
chip

Technology Magnetic
disk

Flash Flash Flash Flash

Capacity 2 TB 512 GB 64 GB 32 GB 16 GB

Pin count 7 7 50 9 52–
100

Interface S-ATA S-ATA P-ATA SD Card ONFi

Access time 10 ms (R/
W)

0.1 ms (R/
W)

0.1 ms 1 ms read, 20–
500 ms write

50 us

Transfer rate (MB/s) 130 500 70 20 160

Removable Yes Yes Yes Yes No

Host controller
complexity

High High Moderate Low Low

Device implementation
complexity

High Very high Moderate Low Low

Physical robustness Low High High High High

8.7 Ultrareliable Storage 133

However, after an unexpected reboot, it would take considerable time to rebuild
the direct and indirect maps, which are incompatible with the request of a fast
reboot time. Also, many of these algorithms are patented.

While algorithms based on virtual block mapping can greatly extend the lifetime
of flash memory, this comes at the price of increased complexity, of a large memory
footprint, and of a garbage collection mechanism for reclaiming invalid sectors. As
this is again incompatible with real-time constraints, it is not an option in our case.

Another approach is the use of a log-structured file system such as JFFS [64].
Log-structured file systems do not structurally separate metadata and payload data
but instead maintain a comprehensive log of all performed operations in chrono-
logical order.

While wear leveling is implicit in such systems, they still suffer from the garbage
collection problem, which again disqualifies them for use.

Therefore, we refrain from using such advanced storing schemata and propose a
simple circular buffer structure, where recovery points are stored linear on the flash,
aligned to flash blocks. Whenever a new erase unit is entered, an erase operation is
performed as a preparation for subsequent writing.

The obvious drawback of this scheme is internal fragmentation if the size of a
recovery point is not an exact multiple of the elementary block size. We consider
this as acceptable in particular because recovery points usually occupy a high
number of blocks, which results in a very low percentage of lost space.

8.7.4 Implementation Aspects

In addition to the recovery points, some metadata is recorded on the stable storage:
The Stable Storage (SS) header occupies n erase blocks and describes the current
contents of the stable storage. If only full system snapshots are supported, no header
at all is required, as the recovery points have fixed size.

The stable storage is partitioned in m buckets, aligned to erase blocks and the
recovery points are stored in increasing order in the buckets. The latest used bucket
is kept in memory to ensure fast access to the last stored recovery point and a
sequence number stored together with the recovery point ensures that the recovery
point history is recoverable if the memory is corrupted due to a fault.

If recovery points do not cover the whole system, i.e., task-based, the size of
each recovery point varies and the stable storage cannot be partitioned in fixed-size
buckets.

Instead, a header is introduced that contains a chronological list of stored re-
covery points. Such a header entry contains a global sequence number (analog to a
timestamp), and the start and end block where the recovery point is stored.

The same sequence number, a unique fingerprint, a state variable, and a
checksum calculated over the whole recovery point are stored with the actual
recovery point data. The recovery points are again aligned to erase blocks, and the
index of the latest stored recovery point is kept in memory for fast access.

134 8 Recovery Preparation

In both variants, the software must check whether there is enough space free on
the stable storage. If not, additional space is freed by deleting (erasing) the oldest
recovery point entries on the stable storage. The same is done for the recovery point
index entries if no free space is left for an index.

Note that at least two erase pages are needed for the index, as the smallest entity
that can be erased is an erase block. The index size must be chosen according to the
recovery strategy, based on the expected recovery point size.

The recovery point entries are stored in a log-based way, and thus it is likely that
index entries pointing to already overwritten recovery points are present.

Whenever a recovery point is read, the software therefore validates the recovery
point by checking the fingerprint, the sequence number and the checksum over the
whole recovery point. This simple design guarantees equal distribution of writes
across the whole flash and therefore maximum mean time to failure.

Figure 8.6 shows the implementation of stable storage as a layered modular
system.

Fig. 8.6 Stable storage
implementation

8.7 Ultrareliable Storage 135

Recovery Point Generation This module implements a recovery point algorithm.

Stable Storage This module provides an API for accessing the stable storage, i.e.,
reading and writing recovery points, but also administrative tasks such as clearing
and initializing stable storage, get the list of stored recovery points, etc. Usually, the
recovery points are initialized at system boot up, not by clearing the stable storage,
but by finding the last used recovery point and continuing with the next sequence
number. In the state variable of the first recovery point, a flag is set to mark this
recovery point as the first after boot up, so that the recovery process can recognize
this recovery point as the first valid one.

SSReplication This layer partly implements the error detection and correction
algorithms. In detail, the module is responsible for computing the CRC-32 for each
block. The CRC-32 is automatically generated during write operations and auto-
matically checked during read operations. All read/write operations are performed
concurrently on two distinct flash chips.

At each read operation, data integrity is checked automatically. If a faulty
CRC-32 is detected, the healthy copy is used to fix the data by merely rewriting the
faulty block and an error indication is returned. If one of the flash chips fails
permanently, the system still continues to record data on the health card, and a log
message plus an appropriate status code are generated to indicate the failure.

SSVolumes This module implements a disk volume object that represents a logical
volume, in our case the whole flash chip, and extends its functionality with the
ability of erasing erase units on the flash disk. In case of a malfunctioning flash
chip, both the controller and the chip are automatically reset and the failed operation
is retried.

If it fails again, an error code is returned to indicate the failure. The abstraction
as a volume allows to transparently replace the flash chips with another device.

Flash Interface/Flash Driver These two modules implement the ONFI flash
standard, an interface for reading, writing, and erasing blocks, and some admin-
istrative support such as reading chip information, etc. For ease of implementation,
the block-abstracted mode of ONFI [60] is used.

To summarize, this simple implementation of a possible stable storage mecha-
nism optimally deals with the limitations of current flash cards and provides reliable
and fast data access.

8.8 Summary

• We revised existing methods of system preparation for recovery;
• These methods can be considered pursuing two distinct approaches: forward

error recovery and backward error recovery.
• The first approach resets software to a clearly defined state in the future.

136 8 Recovery Preparation

• The processing continues then from this state. We showed that this approach is
not generic and highly application-dependent.

• Backward error recovery, however, is generic as its main principle is to create
recovery points containing the state of the system or at least parts of it which
software can restore to eliminate the effects of the faults.

• For recovery preparation, we revised and compared existing approaches,
introduced recovery on the level of procedures and analyzed the advantages and
disadvantages of this approach. We then showed a generic approach of hardware
support for creating recovery points and explained a method of adapting the
current recovery point creation rate to the current fault rate.

• Schemes of possible “embedding” of recovery procedures into runtime system
were also described, showing flexibility of system software support of
recoverability.

• We also analyzed hardware system and technological supports of recovery
processes that have to be implemented for safety-critical systems. We presented
an approach of a highly reliable software-based stable storage together with a
possible implementation.

• We distinct commercial and real-time systems in terms of requirements and
implementation of reliable functioning at the level of architecture, system
software and hardware elements involved.

References

1. Liedtke J (1995) On micro-kernel construction. In: Proceedings of the fifteenth ACM
symposium on operating systems principles, SOSP ’95. ACM, New York, NY, USA, pp 237–
250

2. Monkman S, Schagaev I (2013) Redundancy + reconfigurability = recoverability. Electronics
2:212–233. ISSN 2079-9292, https://doi.org/10.3390/electronics2030212

3. Haeberlen A et al (2000) Stub-code performance is becoming important. In: Proceedings of
1st conference on industrial experiences with systems software, vol 1. USENIX Association,
Berkeley, CA, USA, p 4

4. Wirth N, Gutknecht J (1992) Project Oberon: the design of an operating system and compiler.
Addison-Wesley, Wokingham

5. Шагаев И., Берштейн А. Исследования систем команд их влияние на архитектуру
современных ЭВМ. Зарубежная радиоэлектроника, 1989 N7, 8

6. Johannes M (2002) The active object system—design and multiprocessor implementation.
ETH Zurich, Zurich

7. Mossenbock H, Wirth N (1991) The programming language oberon-2. Technical report,
Johannes Kepler Universitat Linz

8. Martin R, Wirth N (1992) Programming in Oberon: steps beyond Pascal and Modula.
Addison-Wesley, Wokingham

9. Wirth N (1977) Modula: a language for modular multiprogramming. Softw: Pract Experience
7(1):1–35

10. Wirth N (1985) Programming in Modula-2. Springer, New York
11. Wirth N (1971) The programming language Pascal. Acta Informatica 35–63
12. Wirth N (1977) The use of Modula. Softw—Pract Experience 7

8.8 Summary 137

http://dx.doi.org/10.3390/electronics2030212

13. Kaegi-Trachsel T, Gutknecht J (2008) Minos—the design and implementation of an
embedded real-time operating system with a perspective of fault tolerance. International
Multiconference on IMCSIT 2008, 20–22 October 2008, pp 649–656

14. Fabry RS (1974) Capability-based addressing. Commun ACM 17:403–412
15. Schagaev I (1990) Using software recovery facilities for determining the type of hardware

faults. Autom and Remote Control 51(3)
16. McCluskey E et al (2002) Control-flow checking by software signatures. IEEE Trans Reliab

51(1):111–122
17. Schagaev I (1989) Computing process recovery algorithms. Avtomat Telemekh 4
18. Oh N, Mitra S, McCluskey (2002) Error detection by diverse data and duplicated instructions.

IEEE Trans Comput 51(2):180–199
19. McCluskey E et al (2002) Error detection by duplicated instructions in superscalarprocessors.

IEEE Trans Reliab 51(1):63–75
20. Sogomonyan E, Schagaev I (1988) Hardware and software for fault-tolerant computing

systems. Autom Remote Control 49:129–151
21. McCluskey E et al (2000) Dependable computing and online testing in adaptive and

configurable systems. IEEE Des Test Comput 17(1):29–41
22. Mukherjee S et al (2002) Detailed design and evaluation of redundant multi-threading

alternatives. In: 29th annual international symposium on computer architecture, pp 99–110
23. Dal Cin M et al (1993) Fault tolerance in distributed shared memory multiprocessors. In:

Parallel computer architectures: theory, hardware, software, applications. Springer, London,
pp 31–48

24. Candea G, Kawamoto S, Fujiki Y, Greg Friedman G, Fox A (2004) Microreboot: a technique
for cheap recovery. In: Proceedings of the 6th conference on symposium on operating systems
design & implementation, vol 6. USENIX Association, Berkeley, CA, USA, p 6

25. Deconinck G et al (1993) Survey of backward error recovery techniques for multicomputers
based on checkpointing and rollback. Int J Model Simul 18:262–265

26. Elnozahy E et al (2002) A survey of rollback-recovery protocols in message-passing systems
27. Lampson BW (1981) Atomic transactions. In: Distributed systems—architecture and

implementation, an advanced course. Springer, London, pp 246–265
28. Randell B (1975) System structure for software fault tolerance. IEEE Trans Softw Eng 1:

220–232
29. Lamport L et al (1985) Distributed snapshots: determining global states of distributed

systems. ACM Trans Comput Syst 3:63–75
30. Attig N, Sander V (1993) Automatic checkpointing of NQS batch jobs on CRAY unicos

systems. In: Proceedings of the cray user group meeting, pp 250–255
31. Strom R, Yemini S (1985) Optimistic recovery in distributed systems. ACM Trans Comput

Syst 3:204–226
32. Lorenzo A, Keith M (1996) Trade-offs in implementing causal message logging protocols. In:

15th ACM symposium on principles of distributed computing, PODC ’96. ACM, New York,
NY, USA, pp 58–67

33. Borg A, Baumbach J, Glazer S (1983) A message system supporting fault tolerance. In:
Proceedings of the ninth ACM symposium on operating systems principles, SOSP ’83. ACM,
New York, NY, USA, pp 90–99

34. Strom R, Bacon D, Yemini S (1988) Volatile logging in n-fault-tolerant distributed systems.
In: Digest of papers eighteenth international symposium on fault-tolerant computing,
FTCS-18, pp 44–49

35. Elnozahy E, Zwaenepoel W (1992) Manetho: transparent roll back-recovery with low
overhead, limited rollback, and fast output commit. IEEE Trans Comput 41(5):526–531

36. Johnson D, Zwaenepoel W (1987) Sender-based message logging. In: Digest of papers: 17
annual international symposium on fault-tolerant computing. IEEE Computer Society,
pp 14–19

138 8 Recovery Preparation

37. Smith S, Johnson D (1996) Minimizing time stamp size for completely asynchronous
optimistic recovery with minimal rollback. In: Proceedings of the 15th symposium on reliable
distributed systems, SRDS ’96. IEEE Computer Society, Washington, DC, USA, p 66

38. Bhargava B, Lian S, Leu P (1990) Experimental evaluation of concurrent checkpointing and
rollback-recovery algorithms. In: Proceedings of sixth international conference on data
engineering, pp 182–189

39. Tamir Y, Squin C (1984) Error recovery in multicomputers using global checkpoints. In:
International conference on parallel processing, pp 32–41

40. Tong Z, Kain R, Tsai W (1992) Rollback recovery in distributed systems using loosely
synchronized clocks. IEEE Trans Parallel Distrib Syst 3:246–251

41. Koo R, Toueg S (1987) Checkpointing and rollback-recovery for distributed systems. IEEE
Trans Softw Eng 23–31

42. Janakiraman G, Tamir Y (1994) Coordinated checkpointing-rollback error recovery for
distributed shared memory multicomputers. In: Proceedings 13th symposium on reliable
distributed systems, pp 42–51

43. Janssens B, Fuchs WK (1994) Reducing inter-processor dependence in recoverable
distributed shared memory. In: Proceedings of reliable distributed systems, pp 34–41

44. Li K (1986) Shared virtual memory on loosely coupled multiprocessors. PhD thesis, New
Haven, CT, USA. AAI8728365

45. Bershad B, Zekauskas M (1991) Midway: shared memory parallel programming with entry
consistency for distributed memory multiprocessors. Technical report

46. Huang Y, Wang Y (1995) Why optimistic message logging has not been used in
telecommunications systems. In: FTCS-25, pp 459–463

47. Johnson BD (1990) Distributed system fault tolerance using message logging and
checkpointing. PhD thesis, Houston, TX, USA. AAI9110983

48. Lamport L (1978) Time, clocks, and the ordering of events in a distributed system.
Commun ACM 21:558–565

49. Brown L, Wu J (1995) Snooping fault-tolerant distributed shared memories. J Syst Softw
29:149–165

50. Plank J (1993) Efficient checkpointing on MIMD architectures. PhD thesis, Princeton, NJ,
USA, 1993. UMI Order No. GAX93-16087

51. Schagaev I. Algorithms of computation recovery. Automation and Remote Control, 7, 1986.
26, 36, 65, 122

52. Schagaev I (1987) Algorithms for restoring a computing process. Autom Remote Control 48
(4). 26, 65, 122, 141, 149

53. Schagaev I (1989) Instructions retry in microprocessor recovery algorithms. In: IMEKO—
FTSD symposium. 2

54. Schagaev I (1986) Relationship between the formation of program recovery points and
equipment reliability indices. Autom Remote Control 47:124

55. Blaeser L, Monkman S, Schagaev I (2014) Evolving systems Worldcomp 2014. In:
Proceedings of the international conference on foundations of computer science FCS’14.
CSREA Press, ISBN: 1-60132-270-4

56. O’Brian F (1976) Rollback point insertion strategies. In: Digest of papers 6th international
symposium fault-tolerant computing, FTCS-6

57. Wirth N (2008) Oberon-07 language report. Technical report, ETH Zurich
58. Compact Flash Association (2007) Cf+ and compact flash specification revision 4.1.

Technical report
59. ONFi Workgroup (2011) Open NAND flash interface specification 3.0. Technical report,

ONFI Workgroup
60. ONFi Workgroup (2009) Open NAND flash interface specification: block abstracted NAND.

Technical report, ONFi Workgroup
61. SanDisk Corporation (2002) Host design considerations: NAND MMC and SD-based

products. Technical report, SanDisk Corporation

References 139

62. Gal E, Toledo S (2005) Algorithms and data structures for flash memories. ACM Comput
Surv 37(2):138–163

63. Chang L, Kuo T (2004) An efficient management scheme for large-scale flash memory
storage systems. Technical report

64. Woodhouse D (2001) JOFFs: the journaling flash file system. Technical report, Red Hat, Inc

140 8 Recovery Preparation

Chapter 9
Recovery: Searching and Monitoring
of Correct Software States

Abstract The last of the three GAFT processes is called recovery and recovery
monitoring. After the detection of an error and possible reconfiguration, the last step
is recovering the software, which means that the effect of the error on the software
must be eliminated. In line with the previous chapters and [1–6], the recovery
consists of restoring the last recovery point and continuing the processing. But is
this really sufficient? What if latent faults exist in the system and manifest them-
selves in the system but trigger some detection schemes an arbitrary time later?
Assuming this reasonable and unpleasant sequence of events, it becomes clear that
just restoring data and program from the last stored recovery point is not enough.
We have to admit that we do not have any guarantee that fault is now eliminated:
even when hardware is restored or even reconfigured—we have erroneous states of
software recorded in recovery points. Thus, we have to consider the recovery
process itself and analyze which classic algorithms are applicable and fit the pur-
pose of efficient recovery. We introduce and analyze three recovery algorithms that
are able to ensure successful recovery by iteratively go through all stored recovery
points.

9.1 Recovery as a Process

If a fault is detected in the system, appropriate recovery actions must be executed to
eliminate the fault and to recover the software.

The software recovery process consists of the following actions:

• interrupt processing,
• identify the found fault,
• eliminate the found fault,
• check the integrity of the system, and
• recover software.

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_9

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_9

First, a diagnosis procedure signals a fault via an interrupt or a system call. The
system must immediately stop processing data and handle the fault to prevent the
fault from spreading in the system.

If the fault identification mechanism that found the fault is not powerful enough
to diagnose the fault type, it is necessary to run further diagnostic routines, starting
from repeating of instruction [4, 5]. In specific, every hardware driver must provide
a diagnosis procedure that identifies the fault type. If the checking is fully
hardware-based, this software procedure might only read the fault registers
(Sect. 7.3), if it is software-based, it might run some more sophisticated tests. Based
on the found result, the checking procedure eliminates the fault. The assumption
here is that every device driver provides a catalogue of fault elimination mecha-
nisms, for example, “power off” and “power on” the faulty device and rerun the test
to show the absence of faults.

If the device is still faulty, it should be excluded from the current working set
and turned off (Sect. 7.4). The hardware itself should now be fault-free again;
however, software might have been affected by the fault. Dependent on which level
the checking is performed (instruction, procedure, task, etc.) the software is
recovered differently.

Recovery on the instruction level As the fault was detected during the instruction
execution, no software recovery is necessary. However, in the case of permanent
faults, a hardware reconfiguration is still required to eliminate the fault.

Recovery on the procedure level and above In this case, it is assumed that faults
are detected in the time frame of procedure execution. It is therefore sufficient to
perform a rollback based on the last stored recovery point. In fact, a rollback is the
inverse function of creating a recovery point, with the difference that the data is not
copied from the memory and stored on the recovery point storage, but the data is
read from this storage and copied back to the memory.

Prior to that, recalculating the checksum and comparing it to the stored one must
ensure the consistency of the recovery point. If the comparison succeeds, the re-
covery point is considered as valid; otherwise, it is discarded, and the previous
recovery point is used for recovery.

In fact, recovery on the level of procedures does not differ from recovery on a
higher level. First, the content of the recovery point is restored, then the stack and
base pointer, and as the last step, the processing is resumed by jumping to the
restored instruction pointer.

From an implementation perspective, the code, which is executed to restore the
recovery point, should be executed from ROM, using a reserved memory area for
temporary data so that recovered data cannot overwrite data of the recovery process
itself. In case of Oberon using module variables only (no heap data structures)
would be sufficient.

However, the recovery process still needs its own private stack. Simulating a
private heap in a statically allocated buffer would be of course also possible, but not
elegant and unnecessary complicated.

142 9 Recovery: Searching and Monitoring …

The procedure described here reflects only the general part of how to restore a
recovery point. In case of coordinated recovery points or message passing systems,
additional steps might be necessary.

In the next chapters, we give more details about one specific approach that
includes new language extensions.

9.2 Modified Linear Algorithm

The system model used in the previous chapter was based on the assumption of
having a fail-stop system. Recovery procedure includes two phases: (a) restoring of
system state from the last consistent recovery line and (b) resuming processing.

However, in real life, faults might stay latent in the system for a long time until
they trigger an error, which also implies that the last recovery line still contains the
latent fault. Optimizations such as reducing the required storage by only keeping
the last recovery line can thus lead to a non-recoverable system that must be
restarted.

What happens if we change the system model from a fail-stop system to a system
where faults can stay undetected for a long time in the system? In this case, a
method is required to find the exact appearance of the fault in the system, i.e., the
last recovery point that was not affected by the fault.

We present here an approach of how to cope with faults existed in the system
undetected an arbitrary period of time. Our approach and implementation algorithm
called Modified Linear Recovery (MLR). This section is based on the papers [7–10]
and adapted to our needs.

Using an ordered set of recovery points (Fig. 9.1), we split the program exe-
cution into pieces of exactly the same execution length.

Let RP be the set of recovery points that is generated during the program
execution. By ordering the set RP, we achieve sequential consistency, which means
that if all non-determinants are equal, for any RPi and RPj (i < j) the computing
process passes after the recovery of RPi through all subsequent states RPi + 1,
RPi + 2, …, up to RPj and on.

As in Sect. 8.4, a checksum CSi is calculated for every RPi analog to the
probabilistic approach introduced in the previous chapter.

Generating the set of checksums CS concurrently with RP effectively saves time
for generation of the recovery point and also for looking up a correct RPk from
which the task can be continued. Using the method of Modified Linear Recovery
(MLR) when the type of hardware faults is known is possible to even recover from
multiple sequential faults. To solve this problem we must answer the following
questions:

• Does redundancy used for recovery (recovery points) is sufficient to determine
the type of a fault and therefore be involved in checking and recovery?

9.1 Recovery as a Process 143

• Is it possible to determine a correct recovery point when a permanent fault
(failure) has occurred?

• Does the MLR algorithm remain valid for the case of successively occurring
faults?

9.2.1 Characteristics of Modified Linear Recovery
Algorithm

The purpose of the modified linear recovery algorithm is the detection and elimi-
nation of hardware faults during operation, followed by a search for the last correct
program state to recover the system. The procedure for the search is explained
further down.

Concurrent to ongoing tasks, recovery points are generated together with their
fingerprints, the checksums. Recovery is in essence done in a two-step approach.
First, the system is recovered to the state of the last recovery point RPi, and the
processing is resumed. If the test procedures that identified the error in the first
place do no longer detect the error, the system is considered as restored.

Fig. 9.1 Ordered steps of recovery points and iteration of recovery

144 9 Recovery: Searching and Monitoring …

If, however, the testing procedures still detect the error, the fault in the system is
a long-lasting fault. Thus, the system is recovered to RPi

’ and the processing is
resumed. When the program reaches RPi, i.e., the point in the program execution
when RPi was created, the recovery point mechanism creates a new recovery point
RPi’ and the checksum CSi’. The checksums CSi and CSi’ are now compared. In
case of CSi = CSi’, the fault is still present, in case of CSi 6¼ CSi’ the program
calculations changed, i.e., the fault is eliminated.

This procedure is executed recursively until the system is recovered or restarted
if recovery completely failed. During recovery, no new recovery points RPs are
created, of course.

Let us assume that a malfunction occurred at time ta and that the duration (m) of
its immediate effect on the computing process exceeds the execution time of one or
more program segments between the recovery points:

Dm[xtf ð9:1Þ

Here x (x > 1) is the number of program fragments, and tf is the execution time of
each fragment. In case of timely even distributed recovery points, tf is constant.
During the interval Δm (Fig. 9.1), both the task and the generation of the RPs are
executed by faulty hardware.

During interval R, starting at the point in time the effect of the malfunction ends,
to the time the malfunction is detected by some check or test facilities, the program
is executed on correctly working hardware but with incorrect data that was modified
by the malfunction. Obviously, the recovery points that are generated during this
time contain also incorrect data.

Is it possible now to find the last correct RP? There is an answer actually. At
every iteration of the recovery procedure, the recovery depth is increased by one
step or segment, the program executed and the resulting checksums CS and CS’
compared. Obviously, CS and CS’ match in the interval R—it is indicated by the
letters m (match) in Fig. 9.1 on the right. Of special interest is the interval Δm.

During the generation of the recovery points, the content of some of the RPs
might have been influenced directly by the effect of the malfunction on the program
execution and by the use of incorrect data affected by the malfunction.

During recovery, the program, which was affected by the malfunction (period
Δm), is now run on properly working hardware (either tested or checked by
hardware schemes). Therefore, the program is repeated under different conditions
with incorrect data on correctly operating hardware. Consequently, the pairs CS and
CS’ will not match in the interval Δm, as indicated in Fig. 9.1 by the letters mm
(mismatch).

When the system is recovered to the last recovery point before the malfunction
occurred and the program segment executed, the resulting checksums CS and CS’
match, since the hardware and software that was used during the real data pro-
cessing and during the recovery were in the same state. The task has thus been
recovered and can be continued [3, 7, 8, 11].

9.2 Modified Linear Algorithm 145

In the optimal case, an RP includes the CPU registers and the affected memory
areas such as the program code and data sections, the stack, the heap, and the
relevant operating system data structures. If operating system structures and CPU
registers are not included in the RP, the RP and the respective CS cover exactly the
application, which might lead to unsuccessful recovery as the fault affected kernel
data structures (i.e., I/O data).

Special care must be taken when choosing the checksum generator. A simple
modulo 2 adder, for example, can detect any single fault in the program or data and
will result in different CS.

However, for multiple faults, this is no longer guaranteed. CRCs or Hamming
codes provide a better fault coverage and easy hardware implementation. Details
about CRC analysis can be found in [12], for Hamming codes in [13, 14].

Cryptographic hash values are the alternative, which are specifically designed for
collision avoidance and do not rely on specific error patterns. The downside,
however, is that it’s not possible to make any guarantees about fault coverage, and
their implementation in hardware is complex and expensive.

If, as proposed in [15], analysed in [16] and developed in [7, 8], the RPs cover
only current program data, a malfunction corrupting the program code or execution
might not result in different RP, CS pairs. Such CS generation impairs the diag-
nostic power properties of checksum comparison, i.e., it may not be possible to
recognize the type of the fault and to determine the correct RP.

If a fault already exists at boot up time, the RP and CS and the comparison of the
CSs of the first and following runs allow to identify such a fault as a permanent fault
since the fault will never disappear. When fault exists ate the boot up time the RP
and CS identify such fault as permanent.

9.2.2 MLR Execution in Case of Permanent Faults

The detection of malfunctions and permanent faults uses the same techniques. In
both cases, the checking circuit or checking process identifies the fault and the
effect of the fault is seen in corrupted data or program code and also misbehaving
program execution. This results eventually in the generation of one or more RPs
that include corrupt data and program state. However, recovery depends on the fault
type as explained Sect. 4.4.

Thus, the MLR algorithm can in the case of permanent faults not directly be
applied. The system must eliminate the permanent fault first or go into a degraded
state, by excluding the faulty component. The MLR algorithm can therefore only
correctly restore the system state if the fault type is known.

If we assume that in case of a permanent fault the faulty unit is replaced with a
fault-free one, resulting in the elimination of the permanent fault, then the MLR
algorithm successfully recovers the system.

146 9 Recovery: Searching and Monitoring …

However, if the fault detection mechanism identified the wrong unit as the faulty
one, then the MLR algorithm results in a loop as the still present faulty unit in the
system triggers the fault again after recovery.

Algorithms that eliminate permanent hardware faults usually consist of three
successively executed phases (denoted by A, B, and C, respectively): A: determi-
nation of the fault type, B: elimination of permanent hardware faults (hardware
reconfiguration), and C: recovery of the correct program state and continuation of
the computing process. These three phases are of course a subset of GAFT.

From GAFT, we know that the permanent hardware fault elimination depends
on the results of the fault type detection. During fault type detection, the program
segment or instruction is rerun, during which the checking logic or test program
identified the error.

For the recovery of the correct program state, we recommend to use the MLR
algorithm which requires less time to establish the last correct program state than
other known algorithms of the same family. The time required to execute a full
recovery is the sum of the time required to perform the three steps fault type
detection, permanent hardware fault elimination, and recovery of the correct pro-
gram state. As no computation is performed while the system recovers, the mini-
mization of the time required for full recovery is very important to reach maximum
availability and to keep the system response time as short as possible.

Let us now examine the recovery process when the MLR algorithm is used for
the fault type determination. Assume that a given system has a hardware failure
which has been identified by the checking logic or checking procedures in the
program segment j.

As long as the permanent fault is not eliminated, the computing process even if
recovered by the current correct RP will remain corrupted. At the same time, if the
fault affected the system operation during the first generation of an RP, then, CS and
CS’ will match in reruns of the next program segment due to the fault being
permanent. If a program fragment preceding the occurrence of a fault is rerun, a
non-eliminated fault will corrupt the result of the computation and CS and CS’ will
not match. The same checksum mismatch will occur when the recovery depth is
further incremented.

Let us now consider a program execution with n program segments. Depending
on the time of the failure manifestation, the match–mismatch sequences have the
form, shown in Figs. 9.2, 9.3 and 9.4.

By examining the sequence patterns, it is possible to decide whether the fault is a
malfunction or a permanent fault. The first (rightmost) mm in the sequences of
Figs. 9.2 and 9.3, which may be preceded by one or more m’s, corresponds to an
RP generated before the failure has been manifested.

This RP contains, therefore, the last correct state of the process. For the cases
shown in Figs. 9.2 and 9.3, the process can be recovered and continued from this
RP after the hardware failure is fixed. If no mismatch is observed during all n
recovery steps (Fig. 9.4), the failure occurred before the leftmost RP was created.

If earlier recovery points exist, the recovery process simply continues, if after all
n recovery steps the first RP is reached, then the only way to recover is to reboot the

9.2 Modified Linear Algorithm 147

Fig. 9.2 Permanent HW fault elimination, case (a)

Fig. 9.3 Permanent HW fault elimination, case (b)

148 9 Recovery: Searching and Monitoring …

system and use the BIST (Built-In Self-Test) procedures to thoroughly analyze the
system at boot up time.

The different match/mismatch sequences lead to the following conclusion:

1. The type of fault (malfunction or permanent fault) can be determined from the
form of the CS match/mismatch sequence.

2. If during recovery in the first step, a match is detected, then the fault still exists
and the fault type is a permanent fault otherwise a malfunction has the com-
putation changed.

3. The execution time of A and B is minimal since phase A is used simultaneously
for finding the correct state of the computing process and for the elimination of
any corruptions due to the fault.

9.2.3 The MLR Algorithm in Case of Several Successive
Faults in Case of Permanent Faults

The MLR algorithm is not restricted to single faults and allows to find the correct
state of a process also in case of several successive faults. Consider the example
shown in Fig. 9.5 which represents a case of two successive faults (malfunctions) e1
and e2.

Fig. 9.4 Permanent HW fault elimination, case (c)

9.2 Modified Linear Algorithm 149

When the MLR algorithm is applied to this scenario, we get the sequence m…
mm…m…mm…, again by comparing the respective CSi and CSi’.

By analyzing the CS and CS’ match and mismatch sequences, we can identify
the different stages of the MLR algorithm.

To eliminate the detected fault e2 the recovery is recursively done, starting from
the last recovery point until the first … m mm … transition is found. The program
execution is then resumed, as the fault e2 is now eliminated.

The detection of e1 can happen anytime, even after the detection of e2. In the
given example the detection of e1 occurs after the elimination of e2 and triggers a
new recovery process.

As e2 is already completely eliminated, the CSi and CSi’ second match–mis-
match sequence does no longer exist and therefore the CSi and CSi’ comparisons
match. The MLR process can thus successfully recover from e1.

In other words, several successively occurring faults do not affect the correctness
of the MLR algorithm as long as the fault manifestation do not overlap in time, i.e.,
at least one recovery point exists between the fault manifestations.

If no recovery point was generated between the two fault manifestations,
recovery is also successful, but the two faults are no longer distinguishable. From
the system point of view, it just recovered from one fault.

9.2.4 Hardware Support for the MLR Algorithm

A possible implementation with hardware support of the MLR algorithm must
fulfill the following requirements:

– Any hardware-based checking means must be maskable. This is needed for the
generation of an RP and its CS in the program segment where the fault is
detected.

Fig. 9.5 Permanent HW fault elimination, case (c)

150 9 Recovery: Searching and Monitoring …

– The software needs direct access to the hardware checksum register to read the
current checksum value.

– The checksum and recovery point device must provide two operating modes:
First, the standard mode, which creates the recovery points and its checksum
and seconds a recovery mode, which generates only the checksum. The oper-
ating mode is configurable by the software.

– The checksum generator should have its own dedicated connection to the stable
storage.

– For performance reasons, the stable storage should be directly attached to the
computer so that the processor has direct access for maximum speed during RP
generation and recovery.

– The RP and its associated CS should be generated concurrently to speed up the
RP generation.

9.3 Summary

We presented a short conceptual description of the general recovery procedure
required to achieve resilience, fault tolerance, and reliability.

We then introduced the modified linear recovery algorithm that as we showed is
able to decide whether the recovery was successful or whether the error is still
present in the system by comparing the content of recovery points or their
checksum.

We also showed that the modified linear recovery algorithm could even be used
to distinguish the fault type, i.e., permanent fault or malfunction. Thus, it covers in
fact part of the testing and checking process as well.

Multiple faults do not interfere the modified linear recovery algorithm during
recovery, and the MLR algorithm is able to detect them as separate faults.

The MLR algorithm has one strict requirement, which is repeatability of pro-
gram on hardware.

References

1. Sogomonian E, Schagaev I (1988) Hardware and software fault tolerance of computer
systems. Avtom I Telemekhanika, 3–39

2. Schagaev I (1989) Computing process recovery algorithms. Avtomat Telemekh (4)
3. Schagaev I (1990) Using software recovery methods for determining the type of hardware

faults. Autom Remote Control 51(3)
4. Schagaev I (2008) Reliability of malfunction tolerance. In: International multi-conference on

computer science and information technology, 2008. IMCSIT 2008, October 2008, pp 733–
737

5. Schagaev I et al (2010) ERA: evolving reconfigurable architecture. In: 11th ACIS
International Conference, June 2010, pp 215–220

9.2 Modified Linear Algorithm 151

6. Castano V, Schagaev I (2015) Resilient computer system design. Springer. ISBN
978-3-319150-68-0

7. Schagaev I (1986) Algorithms of computation recovery. Autom Remote Control 7:26, 36, 65,
122

8. Schagaev I (1987) Algorithms for restoring a computing process. Autom Remote Control 48
(4):26, 65, 122, 141, 149

9. Schagaev I (1989) Instructions retry in microprocessor recovery algorithms. In: IMEKO—
FTSD symposium

10. Schagaev I (1990) Yet another approach to classification of redundancy. In: IBID
11. Schagaev I (1986) Relationship between the formation of program recovery points and

equipment reliability indices. Autom Remote Control 47
12. Kowalk W (2006) CRC cyclic redundancy check. Technical report. Universität Oldenburg

Fachbereich Informatik 05.09.06
13. Hamming R (1950) Error detection and error correction codes. Bell Syst Tech J XXVI:147–

160
14. Moon T (2005) Error correction coding. Wiley, New Jersey
15. Schagaev I (1986, December) Using data redundancy for program rollback. Autom Remote

Control 47(7), Part 2:1009–1016
16. Schagaev I., Viktorova V., Comparative analysis of the efficiency of computation-process

recovery algorithms. Automation and Remote Control, 51(1), 1990

152 9 Recovery: Searching and Monitoring …

Chapter 10
Recovery Algorithms: An Analysis

Abstract Discovered algorithm of modified linear recovery seems to be effective
in terms of power of detection of fault and correct state of the system. At the same
time, classic algorithms well presented in literature binary search and linear search
can also be applied for the same purpose. Thus, we have to consider the recovery
process itself and analyze which classic algorithms are applicable and fit the pur-
pose of efficient recovery. We introduce and analyze three recovery algorithms that
are able to ensure successful recovery by iteratively go through all stored recovery
points.

10.1 Comparison of MLR and Two Other Recovery
Algorithms of the Same Family

Two other algorithms, namely, the linear recovery algorithm and the dichotomous
recovery algorithm [1–4], are part of the same family of the recovery algorithms as
the MLR algorithm.

We quickly introduce these algorithms and then compare their efficiency to the
MLR (based on [3–5] and adapted for our needs). We do this by assuming a
Poisson error rate and compare the three algorithms with increasing recovery depth.

For all three algorithms, we partition the program execution in segments and
create a recovery point after each segment. The difference between the three
algorithms lies in fact in the way the recovery is performed. We give more details
during the analysis.

10.2 Computational Model

The execution model for the three algorithms is basically the same we used in the
analysis of the MLR algorithm.

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_10

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_10

The computation process consists of the sequential execution of program seg-
ments where a recovery point is made after the execution of every segment. The
actual successful segment execution time is considered as a random process.

Even though a program segment in case of no failure is executed in time t with T
as the mean segment execution time, the randomness is required as occurring
malfunctions or permanent faults and resulting recovery operations need additional
time, depending on the executed recovery steps.

We assume that the checking intervals and the intervals between two recovery
points are the same, as it is possible to combine hardware testing and recovery point
creation into one step [2, 4]. Despite this change, the computation model is the same
as the one used in the MLR approach explained above.

We now want to compare the three recovery algorithms (linear, dichotomous,
and our modified linear) by their mean execution time to execute program segment
k. We also want to take into account the possible latencies of the hardware
malfunctions.

In the analysis of the MLR algorithm, we included malfunctions and permanent
faults. In this chapter, we assume that only malfunctions can be recovered suc-
cessfully, and these also only if the influence of any occurring malfunction has
stopped before any recovery actions are initiated.

Permanent faults always lead to unsuccessful recovery. We also assume that no
additional errors occur during recovery. The following events might happen during
the execution of a program segment:

– Hc: No malfunction occurred during the execution of the segment and it has
been successfully executed in the first run.

– Hm: A malfunction occurred during the execution of a program segment, the
segment has been correctly identified, and is successfully finished after recovery
step m. The number of total recovery steps is M.

– Hpf: A malfunction occurred during the execution of a program segment, the
segment has been correctly identified but all K recovery steps did not result in
successful recovery. Recovery is achieved after reconfiguration and program
restart.

– Hm(L): A malfunction occurred during the execution of a segment but the latent
malfunction caused the failed segment to be incorrectly identified.

– Hpf(L): A malfunction occurred during the execution of a program segment, but
the latent fault caused the failed element to be incorrectly identified and all K
iterations did not result in successful recovery. Recovery is only achieved after
reconfiguration and program restart.

The fault distribution during the execution of a segment is assumed to have a
Poisson distribution with the parameter k = k1 + k2, with k1 as the rate of mal-
functions and k2 as the rate of permanent faults [6, 7].

154 10 Recovery Algorithms: An Analysis

10.3 Linear Recovery Algorithm

The linear recovery method is based on linear search and is described in detail in
[2–7]. We give here just a short summary of the algorithm. If the checking logic
detects a malfunction at the end of segment J, the computation is interrupted,
RP (j − 1) is recovered and the processing resumed.

If during the repeated execution the checking logic does not detect the mal-
function again, the recovery is assumed to be successful and the system continues
by executing segment (J + 1).

If the malfunction is detected again, the interrupted process is resumed from RP
(J − 2), etc., until a correct RP is reached which has been established without
including information corrupted by the malfunction.

The difference to the MLR lies in the way recovery is performed. MLR uses the
checksums to identify changes in the execution, whereas the linear approach always
re-executes all code fragments until the end of execution when the checking logic
signaled the fault.

The probability that one of the events Hc, Hm, Hm(L), Hpf, or Hpf(L) occurs is
estimated with the aid of Sect. 3.1 and adopted from [7, 8].

The probability of having no malfunction in the interval (0, t) is

P0ðk; tÞ ¼ e�kt

The probability of having no malfunction at time t provided no malfunction was
present at t = 0 is

P00 k; l; tð Þ ¼ l
kþ l

þ k
kþ l

e� kþlð Þt

We use this model to define how malfunctions occur and stay in the system. The
random times at which malfunctions occur and random times during which mal-
functions stay in the system as latent faults are assumed to have an exponential
distribution with the parameters k and l, respectively.

The probability of having no malfunction at time t but at least one malfunction
before time t is

P00 k; l; t1; tð Þ ¼ P00 k; l; tð Þ � e�kt1P00 k; l; t � t1ð Þ

By using these equations, we can derive the following expressions for the
probability of the above introduced events Hc, Hm, Hpf, Hm(L), and Hpf(L). We
name these probabilities Pc, Pm, Ppf, Pm(L), and Ppf (L), respectively.

Since the above events cover all events of our model, we have

10.3 Linear Recovery Algorithm 155

Pc þ
XM
m¼1

Pm þPpf þ
XM
m¼1

PmðLÞþPplðLÞ ¼ 1

We define now Pkm, Pkpf, Pkm(L), and Pkpf (L) as the conditional probabilities of
the above events when a malfunction occurs in segment k.

We do not cover all scenarios with k � 3, since for k = 1, 2, 3, the recovery
times are in a similar range for all three algorithms.

By analog to the above equation, we derive

Pc þ
XM
m¼1

Pkm þPkpf þ
XM
m¼1

PkmðLÞþPkpf ðLÞ ¼ 1

The probability of successful program execution in the first run (event Hc) is

Pc ¼ e�kT ð10:1Þ

We individually calculate the probabilities for successful recovery execution for
latent and non-latent malfunctions, first without latency, and failure detection at the
end of the segment where the fault appeared (k = J).

The probability of successful recovery of the ongoing task in the case of
non-latent malfunctions and recovery depth m (event Hkm) is

Pkm ¼ akP00 k1; l; T; tbegm
� �

P0 k2; tbegm
� ��

�
Xm�1

i¼1

PkiP00 k1; l;Dt
m

i

� �� �
P0 k2;Dt

m

i

� �� �
P0 k; trbmð Þ ð10:2Þ

In case of recovery depth m, the task is repeated m times, assuming the last time
starting from RP(k-m). Here ak is the probability of detecting the malfunction at the
end of segment k, m = 1, 2, …, k.

The required time for recovery is found as follows: the time when recovery step
m starts,

tbegm ¼ TPm�1 þ di � d

the time required by recovery step m,

trbm ¼ mðT þ dÞ

the time difference between start and stop of step i

Dt
m
i

� �
¼ tbegm � TPi � di þ d

156 10 Recovery Algorithms: An Analysis

where T is the program segment execution time, d is the time when an RP was
created, d1 is the recovery start time, TP

m is the total recovery time with depth m,
derived as

TPm ¼ m
mþ 1
2

þ 1
� �

T þ dð Þ T þ dð Þþmdi � md ð10:3Þ

The first product in Eq. (10.2) defines the probability that no malfunction
occurred at the beginning of recovery step m. From that, we subtract the probability
of successful recovery during the previous steps. The coefficient of the expression
in square brackets represents the probability that no malfunction occurs during the
execution of recovery step m.

The probability of event Hkpf (successful or all k steps and successful recovery
only after reboot) is given by

Pkpf ¼ ak 1� e�ikT
� ��Xnk

m¼1

Pkm ð10:4Þ

For the recovery of latent malfunctions, the latency period of the malfunction
must be shorter than the recovery depth m. If the RP with depth m is recovered, the
recovery is only successful if the latent malfunction has latency periods in the range
of 1, 2, …, m − 1. The latency period l determines the additional segments that are
executed before the malfunction is identified (J = k + l).

The conditional probability of Pkm(l) is defined by

PkmðlÞ ¼ P Hkm ; latency period ¼ l½ Þ
¼ ð1� akP00 k1; l; T ; tbegmðlÞ

� �
P0 k2; tbegmðlÞ

� ��

�
Xm�1

i¼1

PkiðlÞP00 k1; l;Dt
m

i

� �� �
P0 k2;Dt

m

i

� �� �
P0 k; trbmð Þ

ð10:5Þ

with m = 2, 3, …, N, where N is the total number of segments.
In case of latent malfunctions, the recovery times (tbegm(l)) the time when

recovery step m starts, TPm(l) the total recovery time with m steps) are defined by

tbegmðlÞ ¼ TPm�1ðlÞþ di � d

TPmðlÞ ¼ TPml Ti þ dð Þ

We assume now that the latency period of a malfunction has a geometric dis-
tribution, which is the usual assumption in reliability theory. In this case, the

10.3 Linear Recovery Algorithm 157

probability of successful recovery (with depth m) of a task when a latent mal-
function with latency l occurs in segment k is given by Equation

PkmðlÞ ¼ �a 1� �að Þl�iPkmðlÞ ð10:6Þ

Coefficient �a is the mean probability of detecting the malfunction during the
segment execution.

�a ¼ 1
N

XN
i¼1

ai

The probability of event Hkm (L), i.e., the successful recovery of a program
affected by a latent malfunction in segment k after m recovery steps, is

PkmðlÞ ¼
Xm�1

i¼1

að1� aÞl�iPkmðlÞ ð10:7Þ

In case of latent malfunction, the mean total recovery time for depth m is

TPmðlÞ ¼
Xm�1

i¼1

að1� aÞl�iTPmðlÞ

The probability of system restart and task reload (event Hkpf (L)) is

Pkpf ðLÞ ¼ 1� akð Þð1� ekTÞ
Xkþ�l

m¼2

PkmðLÞ ð10:8Þ

where the mean length of the latency period is

�l ¼
XN�K�1

l¼1

�að1� �aÞl�il

If we combine all these equations into one, we can derive the mean time T of the
successful execution of segment k:

T ¼ PcT þ
Xk
m¼1

PkmTPm þ
Xkþ l

m¼2

PkmðLÞTPmðLÞ ð10:9Þ

We will use T throughout the analysis and comparison of the three recovery
algorithms [2–7].

158 10 Recovery Algorithms: An Analysis

10.4 Dichotomous Recovery Algorithm

The dichotomous recovery algorithm is the second algorithm we consider in this
analysis. In fact, the only difference to the linear algorithm is the way the recovery
steps are selected. The recovery steps are no longer linearly executed, but the first
recovery step is the one with number i, and

i ¼ J
2

� 	

If the system could not be recovered (the checking logic still detects the fault
after the execution of segment J), it continues with RPi and

i ¼ J
2
þ J

4

� 	

etc., until a correct RP is found.
This algorithm applies therefore the pattern of a binary search to find the

appropriate recovery step.
We derive now the probabilities of the events Hc, Hkm, Hkpf, Hkm(L), and Hkpf(L)

for the dichotomous recovery. We derive Pc (the probability of event Hc) as in the
case of linear recovery from Eq. 10.2. Pkm (the probability of event Hkm) is cal-
culated by using Eq. 10.3 but by deriving new times for the execution of recovery
step m and the total recovery time for depth m:

trbm ¼ k 1� 1
2m

� �� 	
T þ dð Þ ð10:10Þ

TPm ¼
Xm
i¼1

K 1� 1
2i

� �� 	
ðT þ dÞþmd1 � md ð10:11Þ

where m = 1, 2, …, log2kd e.
The latency period coverage must be adapted for the dichotomous case. A latent

malfunction with a latency period l can only be recovered by a rerun procedure if
the following equation holds for m:

J 1� 1
2m

� �
ð10:12Þ

By rearranging the equation above, we get minimum depth m which is required
for a malfunction with latency l

10.4 Dichotomous Recovery Algorithm 159

m ¼ log2
J

J � 1

� �� 	
þ 1 ð10:13Þ

where m = 1, 2, 3, …, Log2Nd e.
The probability Pkm (l) can be derived from Eqs. 9.5, 9.10 and 9.11.
The probability of recovery in step m and the mean total recovery time for depth

m in the case of a latent malfunction are

PkmðLÞ ¼
Xlmax
i¼1

�a 1� �að Þl�1PkmðlÞ ð10:14Þ

TPmðLÞ ¼
Xlmax
i¼1

�a 1� �að Þl�1TPmðlÞ ð10:15Þ

where lmax ¼ J 1� 1
2m

� �� 1

 �

.
The probability of unsuccessful recovery with resulting restart for the two fault

types and the mean time of successful termination of the program segment k are
found analog to Eqs. 10.4, 10.8 and 10.9.

If a malfunction occurs in segment k, the maximum possible recovery depth is
log2kd e without latency and log2ðkþ�l

 �
, otherwise [7, 8].

10.5 Modified Linear Recovery

We already described the modified linear recovery algorithm in the previous
chapter. The difference of the MLR to the other two described algorithms lies in the
condition used to indicate successful recovery.

Unlike the other two cases, in which recovery is considered to be successful if
the checking logic does after recovery no longer detect the fault, success in case of
MLR is determined by comparing the original and the new RP and the respective
checksum.

The probability of successful recovery with recovery depth m and non-latent
malfunction (event Hkm) is given by

Pkm ¼ akP00 k1; l; T ; tbegm
� �

P0 k; trbmð ÞP0 k; trbmð Þ �
Xm�1

i¼1

PkiG ð10:16Þ

160 10 Recovery Algorithms: An Analysis

with

G ¼
P00 k1; l;Dt

m
i

� �� �
P0 k2;Dt

m
i

� �� �
P0 k; trbmð Þ if TPi\tbegm

P0ðk;Dt0 m
i

� �
if TPi � tbegm

8>><
>>:

The total time needed to perform a recovery with depth m is

TPm ¼ T þ d1 þðmþ 1Þ T þ d0ð Þ þmðT þ dÞ ð10:17Þ

where d′ is the time needed to create a new RP and to compare the content of the
new and former RP (d′ � d if checksums are used).

The recovery times (Eq. 10.3) are determined as follows:

Tbegm ¼ T þ di þmðT þ d0Þ ð10:18Þ

Trbm ¼ T þ d0 þmðT þ dÞ

Denote Dt0 m
n

� �
the time difference between the termination of recovery step

m and i:

Dt0 m
n

� �
¼ TPm � TPi

The probability of successful recovery with depth m in the case of a latent
malfunction with latency period l is

PkmðlÞ ¼ 1� akð ÞP00 k1; l; T ; tbegmðlÞ
� �

P0 k2; tbegmðlÞ
� �

P0 k; trbmð Þ �
Xm�1

i¼lþ 2

PkiðlÞG

ð10:19Þ

with m = 2, …, N and

tbegmðlÞ ¼ tbegm þ l T þ dð Þ ð10:20Þ

The probability of successful recovery with depth m is determined in case of a
latent malfunction from Eq. 10.7.

The probability of a system restart in case of non-latent and latent malfunctions
and the mean time of successful termination are found as in the case of linear
recovery from Eqs. 10.4, 10.8, 10.9, respectively.

10.5 Modified Linear Recovery 161

10.6 Conclusion on Comparison of Recovery Algorithms

We compared the linear, dichotomous, and modified linear recovery algorithms
using the mean time T that is required to successfully execute the segment in which
the malfunction occurred.

We have analyzed the mean time as a function of the time until the malfunction
occurred, beginning at program start and the part of non-latent malfunctions
occurring in a segment and the distance, in segments, from the program start to the
malfunction position.

The success and time of successful recovery depend on the available checking
facilities but mainly on its fault coverage, which indirectly determines the parameter
ak. The higher the fault coverage, the greater the ak, and the smaller the number of
steps (segments) needed to recover the affected task.

Figure 10.1 shows how the time of successful execution of segment k is affected
by the fault coverage. The MLR algorithm has least mean time T, independent of
the fault coverage.

If we compare the linear and the dichotomous algorithm, we see that in case of
low fault coverage, the dichotomous algorithm is better, whereas the linear algo-
rithm is better in case of high fault coverage. This is easily justifiable by the fact that
in case of low fault coverage the required recovery depth is higher and the
dichotomous algorithm basically skips the first unsuccessful recovery steps of the
linear algorithm. The opposite is true for high fault coverage.

Fig. 10.1 Recovery time as a function of ak

162 10 Recovery Algorithms: An Analysis

The recovery depth is small, and thus, the linear algorithm is better. For
Fig. 10.1, we used the following values:

malfunction rate [1/sec] k1 = 0.0000027, k2= 0.0000003, k = 0.000003; permanent
fault/malfunction ratio S = 0.1; segment execution time [sec] T = 3; Time
parameters [sec] d = 0.5; d1 = 1.0, d′ = 0.5; number of program segments from the
start [segments] k = 10.

We analyzed the recovery times of all three algorithms as a function k, as shown
in Fig. 10.2. It is clear from this graph that the MLR algorithm has the shortest
recovery time, independent of k.

Figure 10.2 was drawn using the following values: malfunction rate [1/sec]
k = 0.000036, k1 = 0.000004, k2= 0.00004; fault/malfunction ration S = 0.1;
segment execution time [sec] T = 3; time parameters [sec] d = 0.5, d1 = 0.2,
d’ = 0.5; part of non-latent faults ak= 0.8.

This short analysis clearly shows that the modified linear recovery algorithm is
the most efficient of the three compared algorithms, as it requires the least mean
time to successfully recover a process.

100.6%

101.0%

101.4%

101.8%

102.2%

102.6%

6% 8% 10% 12% 14% 16% 18% 20% K%

MLR%
Dichotomous%
Linear%

Fig. 10.2 T as a function of k

10.6 Conclusion on Comparison of Recovery Algorithms 163

10.7 Summary

• For recovery, we presented the modified linear recovery algorithm, an algorithm
that allows the determination of the fault type and is able to find the last correct
recovery point, even in the case of latent faults. If two subsequent faults occur,
the modified linear algorithm does still work.

• We compared the linear modified algorithm with two other algorithms (linear
and dichotomous) of the same family. All mentioned algorithms differ in the
way the recursive recovery steps are performed.

• It was shown that the modified linear recovery algorithm has fastest recovery
time.

• Above all, it was shown that the modified linear recovery efficiency is sub-
stantially higher than two classic algorithms mentioned; modified linear re-
covery algorithm does not use any model or knowledge about the type of
hardware fault, making it unique in terms of applicability.

References

1. Sogomonian E, Schagaev I (1988) Hardware and software fault tolerance of computer systems.
Avtomatika i Telemekhanika 3–39

2. Schagaev I. Computing process recovery algorithms. Avtomat. Telemekh., (No. 4), 1989
3. Schagaev I (1990) Using software recovery methods for determining the type of hardware

faults. Automat Remote Control 51(3)
4. Schagaev I. Algorithms of computation recovery. Automation and Remote Control, 7, 1986.

26, 36, 65, 122
5. Schagaev I (1987) Algorithms for restoring a computing process. Automat Remote Control 48

(4), 26, 65, 122, 141, 149
6. Schagaev I (1986) Using data redundancy for program rollback. Automat Remote Control 47

(7) Part 2, 1009–1016
7. Schagaev I, Viktorova V (1990) Comparative analysis of the efficiency of computation-process

recovery algorithms. Automat Remote Control 51(1)
8. Koren I, Su SYH (1986) Analysis of a class of recovery procedures IEEE Trans Comput C-35

(8) 703–712

164 10 Recovery Algorithms: An Analysis

Chapter 11
Programming Languages
for Safety-Critical Systems

Eugene Zouev

Abstract In previous chapters, we introduced the three main processes required to
implement generalized algorithm of fault tolerance (GAFT), namely—testing and
checking, second recovery preparation, and third and finally recovery and recovery
monitoring. We described what every of these steps incorporates, gave possible
solutions, and analyzed them. In the Chap. 7, we introduced syndrome for testing
and checking; here we introduce programming language models for the two other
mentioned processes. What we now want to do is to synthesize the introduced
concepts into system software tools—programming languages and their compilers.
We will discuss possible project solutions related to the overall architecture of
software tools and introduce the major components of the architecture.

11.1 Oberon-07 as the Single Development Tool

Initially, the Oberon-07 programming language [1] was considered as the basis for
the programming language extensions, and embedded reliable reduced instruction
computer (ERRIC) [2, 3] serves as the target hardware platform. The strong type
safety of Oberon together with the simplicity of the language seemed to be quite
suitable for safety-critical systems.

Oberon-07 was developed during the ONBASS project [4] and successfully used
for the implementation of the MINOS [5] operating system. Its goal of simplicity of
the language together with strong type safety and built-in safety features such as
automatic array range checks are in line with the requirements of a safety-critical
system.

However, during the implementation in a slightly more complex, more flexible
setup than ONBASS, it became more and more obvious that the programming
model of Oberon-07 does not provide all required functionalities.

First of all, MINOS is heavily based on a plugin concept, which means that all
required functionalities such as drivers or application components can be plugged

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_11

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_11

into the system as required. The only possible way to implement plug-ins in
Oberon-07 is by using records containing procedure variables that pass the object
“SELF” as the first parameter.

One can consider this as a simple way of object orientation. Unfortunately, this
proved to be clumsy and error prone as an implementation of such a plugin does not
have to necessarily implement all procedures or can even assign NIL to procedure
variables, which results in NIL pointer exceptions during runtime.

This “manual” way of assembling objects also prohibits a proper analysis of the
program by the compiler and the runtime system, as the concrete instance of such
an object is assembled at runtime by the software.

A second downside of MINOS is the lack of efficient multitasking. Although the
implemented tasking scheme based on periodic tasks allows the execution of
multiple tasks quasi-simultaneously, the processor usage is suboptimal, as there is
no way to wait for asynchronous events, such as interrupts without using
time-consuming polling. This is mainly imposed by the simple scheme of using just
one stack and the necessity of a task to run to completion.

Support for reconfiguration of hardware and efficient recovery points as
described in the previous chapters are not given. Reconfigurability is only sup-
ported on the application level and recovery point is supported only on the system
level. Recovery points on the level of procedures would also be possible, as it was
already shown earlier it is a very efficient approach [6–9].

11.2 System Software for ERRIC: The Stack
of Development Tools

The obvious conclusion from the considerations presented above could be reflecting
within the language features that would meet requirements typical for developing
safety-critical systems like reliability, reconfigurability, multitasking, etc. However,
the set of requirements that a single language should satisfy seems to be too big and
even contradictory.

Also, the variety of tasks and problems that the ERRIC software should support
is quite wide: from the very basic low-level software like memory management or
concurrency support up to high-level application systems. Therefore, we need
separate tools for implementing different kinds of software.

Thus, instead of having a “single monster language for everything” with a big
number of different and contradictory features, we came to the solution of a set of
different languages each of which is suitable for a particular kind of ERRIC software.

The picture below illustrates the conceptual solution taken for the ERRIC
development tools (all language names are still codenames) (Fig. 11.1).

Each language from the stack implements a limited set of features that are
critically important just to the corresponding domain—therefore, all of them were

166 11 Programming Languages for Safety-Critical Systems

made quite compact, concise, and easy to use. Together, they cover all needs for
implementing a wide spectrum of software for ERRIC-based machines.

The following sections provide a quick description of each language from the
picture above.

11.3 Low Level: The Assembly Language

Conventionally, the purpose of the assembly language is to provide full access to all
program-controlled hardware parts of a processor. The ERRIC assembly language
supports direct access to registers and allows constructing sequences of instructions
from the instruction set.

The language introduces simple mnemonics for instructions that typically has the
form of assignment and looks familiar to developers. The set of assembly
instructions directly correspond to ERRIC machine instructions. The overall syntax
of assembly programs is quite simple.

In general, an assembly program can represent any kind of actions that are
possible for ERRIC processors. At the same time, the assembly language does not
assume any checks for correctness of the instruction sequence. The developer is
fully responsible for code correctness and reliability.

The primary aim of the assembly language is to support developing system-level
software components that are critical by some important characteristics (efficiency,
memory consumption, etc.), for example, runtime support, device drivers, etc.

Application Level:
The COMPOSITA Language

System Level:
The ERRIC Language

Low Level:
The Assembler Language

Hardware Level:
The ERRICchip/simulator

Fig. 11.1 The stack of development tools for ERRIC

11.2 System Software for ERRIC: The Stack of Development Tools 167

The key part of the assembly language syntax is presented below in the form of
BNF productions:

Listing 11.1 Assembly language syntax

AssemblyProgram
: { { Label } (Code | Data) }

Code
: { AssemblyStatement }

Label
: < Identifier >

Data
: data Literal { , Literal } end

AssemblyStatement
// statement Example Mnemnonics
 : skip // NOP
 | stop // STOP
| trace // TRACE

 | format (8 | 16 | 32) // format of next instructions
| Register := *Register // Rj := *Ri LD

 | Register := Literal // Rj := Const LDA
 | *Register := Register // *Rj := Ri ST
| Register := Register // Rj := Ri MOV
| Register += Register // Rj += Ri ADD
| Register -= Register // Rj -= Ri SUB
| Register >>= Register // Rj >>= Ri ASR
| Register <<= Register // Rj <<= Ri ASL
| Register |= Register // Rj |= Ri OR
| Register &= Register // Rj &= Ri AND
| Register ^= Register // Rj ^= Ri XOR
| Register <= Register // Rj <= Ri LSL
| Register >= Register // Rj >= Ri LSR
| Register ?= Register // Rj ?= Ri CND

 | if Register goto Register // if Ri goto Rj CBR

Register : R0 | R1 | … | R30 | R31

As an example of the assembly language code, let’s consider the following
simple sorting routine that accepts an array of integers together with its size, and
sorts the array elements in ascending order. The routine (written in the ERRIC
system language, see Sect. 11.4 below) is given just as an illustration: the next
listing demonstrates the equivalent program written in the assembly language.

168 11 Programming Languages for Safety-Critical Systems

Listing 11.2 A sorting routine

routine Sort(a: [int], size: int) do
for i in 1..size loop

for j in 0..i reverse loop
if a[j-1] < a[j] then

int w := a[j-1]
a[j-1] := a[j]
a[j] := w

end
end

end
end Sort

Listing 11.3 The sorting program written in the assembly language

// i: R1; j: R2; intermediate values: R3, R4, R5
R15 := Size; // ‘Size’ labels the data block below
R15 := *R15;
R16 := Array; // ‘Array’ labels the data block below
trace R15,R16;
R1 := 1; // i := 1

<LoopOuter>
R3 := Size;
R3 := *R3; // R3: Size
R4 := 1;
R3 -= R4;
R3 ?= R1; // Compare Size-1 and i
R4 &= R3; // Extract > sign using R4=1 as mask for >
R3 := OutOuter;
if R4 goto R3; // if i>Size goto OutOuter

// Organize inner loop
R2 := R1; NOP; // j := i

<LoopInner>
R3 := 0; // w := 0
R3 ?= R2; // Compare j with 0
R4 := 4; // Mask for equality
R3 &= R4; // Extract equality sign
R4 := OutInner;
if R3 goto R4; // if j=0 exit the inner loop

11.3 Low Level: The Assembly Language 169

// Otherwise, compare two array elements
// to decide if we need to exchange them.
// R10: address of j-th element
// R11: a[j]
// R12: a[j-1]
R10 := Array;
R10 += R2; // array base address+j
R11 := *R10; // R11 := a[j]
R12 := R10;
R13 := 1;
R12 -= R13; // a+j-1
R12 := *R12; // R12 := a[j-1]

R3 := R12; // w := a[j-1]
R3 ?= R11; // Compare a[j-1] and a[j]
R4 := 5; // Mask for >=
R4 &= R3; // Extract > and = signs
R3 := OutExchange;
if R4 goto R3; // if a[j-1] >= a[j] do not perform exchange

// Otherwise, perform exchange
R3 := R10;
R4 := 1;
R3 -= R4; // R5: address of (j-1)th element

*R3 := R11; // a[j-1] := a[j]
*R10:= R12; // a[j] := a[j-1]

<OutExchange>
// Decreasing j (inner loop)
R3 := 1;
R2 -= R3; // j := j-1
R4 := LoopInner;
if R3 goto R4; // goto LoopInner

<OutInner>
// Increasing i (outer loop)
R3 := 1;
R1 += R3; // i := i+1
R4 := LoopOuter;
if R3 goto R4; // goto LoopOuter
NOP;

170 11 Programming Languages for Safety-Critical Systems

<OutOuter>
R15 := Size;
R15 := *R15;
R16 := Array;
trace R15,R16;
stop; nop;

<Size>
data 20 end

<Array>
data

537, 242, 114, 436, 337, 296, 285, 655, 639, 436,
912, 520, 624, 551, 600, 741, 612, 943, 871, 735

end

11.4 System Level: The ERRIC Language

The ERRIC language (the name is not fixed yet) is designed and implemented as a
kind of intermediate programming level between low-level hardware-oriented
assembly language and the higher level machine-neutral application language.

The language includes some low-level ERRIC specifics (it even has the full
assembly language as its subset).

At the same time, the language supports a set of usual higher level constructs
like the notion of type (with compile-time type checks), procedural mechanism,
control flow statements (conditionals and loops), etc.

This allows developers to write fast, efficient, highly optimized programs using
familiar higher level programming paradigms. In this sense, the ERRIC language
occupies the niche similar to Oberon and C languages.

Major features of the ERRIC language are as follows:

• Simple, clear, and unambiguous syntax that looks familiar to developers.
• Simple semantics; possibility to develop extremely efficient software.
• Flexible program structure with a variety of building blocks: modules, routines,

data, and standalone code snippets.
• Simple, compact but powerful type system.

The language type system includes hardware-supported types (byte, short, and
integer), enumeration types (as an extension of byte/short/integer), arrays, and
structures (records).

Also, the special routine type is included as a safe way to add flexibility to the
procedural mechanism.

11.3 Low Level: The Assembly Language 171

The language supports strong typing paradigm, where type consistency of
program entities is checked on compile-type. This enables much higher program
reliability comparatively with dynamically typed languages.

Strong typing in the ERRIC language is a bit harder than in many other lan-
guages: it prohibits any kinds of implicit-type conversions; only a limited set of
explicitly specified-type conversions are allowed. Such a restriction also improves
program reliability.

• No error-prone “pointer” types still with flexible and safe access to data and
code (routines). Null-safety design: uninitialized variables cannot appear in
ERRIC programs.
Both features actually serve the same purpose as strong typing: they make
programs much more reliable preventing unexpected program behavior on
runtime.

• Support for direct access to some hardware components.
In general, the entire assembly language as a subset of the ERRIC language.
That is, the construct “assembly statement” is the legal kind of the ERRIC’s
“statement” notion. Also, there are means for specifying special lower level
conditions for some program components. In particular, it is possible to specify
registers as return values.

The features mentioned above can be illustrated by the following schematic
example:

routine Example(a, b, c: integer): R9, R10 do
// Routine local declarations and statements
// performing some calculations
...
asm

R9 := someResult1
R10 := someResult2

end
end

The routine from this code snippet states that the call to it will (or can) update the
registers, whose names were mentioned after the colon delimiter. The body of the
routine contains two assembly statements explicitly accessing registers (assigning
some values to them).

• The language introduces a limited number of statements: assignments, routine
calls, control statements (conditionals and loops), and simple expression syntax
supporting all kinds of machine instructions.

• Basic support for multitasking and interprocessor communication with the
synchronization mechanism.

172 11 Programming Languages for Safety-Critical Systems

Some features either are being implemented as optional ones or are still under
discussion:

• Lightweight version of exceptions and exception handling.
• Dynamic memory allocation and automatic memory management for dynami-

cally allocated program entities.
• Object orientation with single inheritance.

The point of concern related to the features mentioned above is that the full
implementation of them can slowdown programs significantly.

Support of the notion of exception allows flexible reactions on various kinds of
unexpected program behavior, which is quite useful in case of systems that com-
municate with an outer world actively.

However, typical semantics of exception handling assumes significant overhead
that might be not acceptable. Similar reasons apply to automatic memory man-
agement (garbage collecting).

Proper object orientation helps developers to clearly structure their programs and
implement them in a modern way.

However, from a safety-critical point of view, this feature is not essential and can
also be omitted if the additional overhead of an object-oriented language is not
acceptable.

The ERRIC compiler translates the source code into semantically equivalent
assembly code (see Sects. 11.3 and 11.4), that is, to be further processed by the
assembler getting the executable binary code.

The resulting binary code can be loaded to memory and executed directly on the
ERRIC processor. Another option is to pass the binary to the ERRIC Simulator (see
Chap. 20) to execute it in a model environment.

The ERRIC compiler now (Spring 2019) is being developed by S. Malyutkin
and E. Zouev (Innopolis University, Russia).

11.5 Application Level: The COMPOSITA Language

The specification of the original COMPOSITA language together with rationale and
discussion about its key concepts and features is given in [10]. The language
supports a rich and flexible program structure that allows building complex
application software. Following [11] and [4], the language model can be charac-
terized as follows:

• Hierarchical composition;
Each component can be hierarchically composed, by containing an arbitrary
assembly of component instances. The contained sub-components are fully
encapsulated by the surrounding super-component.

11.4 System Level: The ERRIC Language 173

• Interface connections;
An arbitrary network of components can be built by connecting the required
interfaces of components to corresponding offered interfaces of other compo-
nents. A component only constructs the network of its sub-components.

• Communication-based interactions;
Components can interact via interfaces by message communications. An indi-
vidual communication channel is maintained between a component, which
offers an interface, and each component, which uses the interface. The language
establishes an agent-based model with self-active objects (components), and
protocol-structured communications.

The language semantics supports powerful means and constructs for organizing
concurrent execution.

The version of COMPOSITA for ERRIC has some extensions and modifications
that serve for better use of the processor’s architecture specifics.

11.6 Summary

In this Chapter, we discussed the system tools for creating software for ERRIC-
based computers. The major architectural idea is to design a composition of three
programming languages supporting the development of various kinds of software—
from system low-level code up to complex applications.

Together, these languages (and corresponding system tools like compilers)
provide support for the three main GAFT processes (P1 testing and checking, P2,
recovery preparation, P3 recovery). We resume here what features we introduced
and to which step of GAFT they belong.

Each language is introduced by discussing its major concepts and features; a few
examples illustrating some key aspects of their design are provided.

An obvious next step of the entire project evolution would be a prototype
implementation of the compilers. Hopefully, they can be checked as a
proof-of-concept even before a real ERRIC processor appears: the ERRIC
instruction code software simulator can run ERRIC programs in the interpretation
mode. Refer to Chap. 20 for more detailed information about the simulator.

References

1. Wirth N (2008) Oberon-07 language report. Technical report, ETH Zurich
2. Schagaev I (2008) Reliability of malfunction tolerance. In: International multi-conference on

computer science and information technology, IMCSIT 2008, pp 733–737
3. Castano V, Schagaev I (2015) Resilient computer system design. Springer, New York. ISBN

978-3-319-15069-7
4. https://cordis.europa.eu/project/rcn/72840/reporting/en

174 11 Programming Languages for Safety-Critical Systems

https://cordis.europa.eu/project/rcn/72840/reporting/en

5. Kaegi-Trachsel T, Gutknecht J (2008) Minos—the design and implementation of an
embedded real-time operating system with a perspective of fault tolerance. In: International
multi-conference on IMCSIT 2008, pp 649–656, 20–22

6. Schagaev I (1986) Algorithms of computation recovery. Autom Remote Control 7:26–36
7. Schagaev I (1987) Algorithms for restoring a computing process. Autom Remote Control

48:530–538
8. Schagaev I (1989) Instructions retry in microprocessor recovery algorithms. In:

IMEKO FTSD symposium
9. Schagaev I (1989) Yet another approach to classification of redundancy. In: Proceedings of

FTSD Prague, Czeschoslovakia, pp 485–490
10. Bläser L (2007) A component language for pointer-free concurrent programming and its

application to simulation. Dissertattion, ETH No. 17480
11. Bläser L (2006) A component language for structured parallel programming. In: Joint

modular languages conference (JMLC) 2006, Oxford, UK. Lecture Notes in Computer
Science 4228, September 2006. Springer

12. Schagaev I, Sogomonyan E (1988) Hardware and software for fault-tolerant computing
systems. Automation remote control 49:129–151

13. Blaeser L, Minkman S, Schagaev I Evolving systems 12. http://worldcomp-proceedings.com/
proc/proc2014/fcs/FCS_Papers.pdf

14. Reali P (2004) Active Oberon language report. Technical report, ETH Zurich
15. Mossenbock Wirth N (1991) The programming language Oberon-2. Technical report,

Johannes Kepler Universitat Linz
16. Wirth N, Gutknecht J (1992) Project Oberon: the design of an operating system and compiler.

Wesley, New York
17. Johannes M (2002) The active object system—design and multiprocessor implementation.

ETH Zurich, Zurich

References 175

http://worldcomp-proceedings.com/proc/proc2014/fcs/FCS_Papers.pdf
http://worldcomp-proceedings.com/proc/proc2014/fcs/FCS_Papers.pdf

Chapter 12
Proposed Runtime System Structure
with Support of Resilient Concurrency

Abstract This chapter is some kind of summary of Chaps. 6, 7 in terms of
implementation of principles described there at the level of the runtime system.
Here, we summarize new functions and features of runtime system that simply must
be implemented during the design of fault-tolerant and resilient systems. Special
attention was given to concurrency monitoring in the presence of potential threats
and degradation. While it is clear which part of system software has to deal with
this, the whole problem of concurrency never was addressed proper—here we
present our attempt.

12.1 Runtime System Structure

The runtime itself is built in a strictly hierarchical manner and runs completely in its
own resource. Some of them, such as memory management are well known and
need no further explanation. Figure 12.1 illustrates the structure of the runtime
system, while each box is briefly explained when necessary.

FT Interrupt Handler: The interrupt handler serves as the lowest level component
that interacts and handles all hardware interrupt requests including the syndrome
interrupt and forwards the request to the appropriate handler. The interrupt handler
is fault tolerant in that it is part of the syndrome management.

Main Monitor: The lowest level module has no dependencies at all and consists of
the main system monitor, which is responsible for the coordination of all other
modules, such as the initialization of resources, timer services (not shown), inter-
rupt handling, and all the remaining depicted functions.

Resource Management: This module is responsible for resource management, i.e.,
memory allocation, device driver management, and their associated resources, etc.

Reconfiguration Monitor: This module keeps track of the current software con-
figuration, i.e., the current resources configuration and can in case of faults initiate
and perform the software configuration. For each of the available resources, it also
keeps track of its state, according to Sect. 7.4.3.

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_12

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_12

Hardware Monitor: The hardware monitor tracks the current state of each hard-
ware component (see Sect. 7.4.2) and is also responsible for managing the
syndrome.

In case of a permanent fault, this module reconfigures the hardware to a new
fault-free state and informs the reconfiguration monitor about the new hardware
topology.

FT Scheduler: The FT scheduler is responsible for scheduling tasks and tests as
described in Sect. 7.2. It manages all activities and is responsible for scheduling
hardware tests according to the SSD policy.

Module loader: The module loader is optional and is responsible for allocating and
linking the modules at runtime. For a production system, depending on the linking
strategy, the module loader might not be necessary.

System Diagnostics: This module manages all hardware and software checks that
are currently present in the system and interacts with the FT scheduler. In case of a
fault, this module is responsible for selecting the appropriate tests for diagnosing
the fault (software failure, malfunction, permanent fault, etc.) and notifies the
software and hardware monitoring services of any required changes.

Testing Procedure: The runtime system itself also provides a built-in testing
mechanism to ensure the integrity of the runtime itself and manages also the tests of
the other

Fault Log: All faults are logged in the fault log for traceability and to support the
hardware monitor. High fault frequency in a specific hardware component might
indicate a faulty component or a near future failure of a specific component.

Fig. 12.1 Proposed structure of runtime system

178 12 Proposed Runtime System Structure …

Applications: All application run in their own respective activity and communicate
with the runtime system module over messages.

12.2 Concurrency Support for Resilient Computing

Two monitors as above FT Interrupt Handler and Main Monitor deal with
interruptions and resource handling, including reconfiguration of architecture and
software structure when required.

12.2.1 Problem of Concurrency

Real world is represented in our imagination and later developments either algo-
rithmically or heuristically. The algorithmic representation used to use one or
several logics of Aristotle, Boolean, sequential, concurrent, k-logic.

Technological support of the one that was chosen manifests itself via hardware
implementations.

From the other side, flexibility implementation by the software of world prob-
lems is required. These requirements define the design of system software: lan-
guages and operating systems.

Elements of hardware might be specified in terms of required performance and
reliability. At the same time, every hardware technology has its own limits: either
maximum possible frequency is approaching or, actually, implementation problems
for brand new approaches such as quantum—computing trick with Shreddinger’
paradox. Here, we have to be very careful what is achievable and what is for
funding and hardly possible: nature does not accept cheating;

Thus one can see a semantic gap between physical possibility and limitations of
hardware and required flexibility of software to make problems represented by
algorithms doable.

Clear, someone has to pay for this gap, and pay dearly: physical limits of calcu-
lations are not even discussed seriously, our personal observations show that modern
home computers easily take 0.5 KW to do the simplest work such as typing!

Current situation looks even more surprising and confusing: 1–5 GHz hardware
nowadays is required to cope with simple problems and demands from concurrency
approach is flourishing by reinventing the wheel: concurrent programming and
concurrent architectures are “blue chips” now in research domain for scientists and
engineers: more than 10 Mln entries one might find using simple Google search.

We lost the sense of reality and historical perspective: Cray has never achieved
any industrially sensitive results, but it was one of the most expensive and one of
the best among supercomputer systems for several decades… If best engineers
failed then, why we naively believe that the new generation of scientists and
engineers can reincarnate an idea and concept?

12.1 Runtime System Structure 179

One of the reasons for lack of progress in multiprocessor systems was the
inefficiency of parallelism of the programs—see Chap. 17 of this book and ERA
paper [1, 2].

Another reason was the inefficiency of synchronization of processes within the
system. Hopefully, this chapter will not cause extra skepticism from the past but
some observation of the known drawbacks in concurrency and attract researchers to
develop along proposed concept for possible improvement in the future resilient
systems.

12.2.2 Why It Is Needed

Concurrency of the computer system is required due to several hardware subsys-
tems operation at the same time and at some points compete for resources and
sooner or later they compete for any of resources.

Resources are defined in [1, 2] and, namely, for computer systems they are
structure, information, and time.

Some examples of concurrency presence are

• multiprocessor system (processes within various parts of hardware);
• databases, especially distributed ones;
• I/O devices interactions;
• router servicing of packets system.

In terms of computer hierarchy, concurrency of computing might occur and be
supported at levels of

– machine instruction,
– high-level language statement,
– module, and
– program.

So far, there is no introduction at the language level of special operators for con-
currency of processes, while in the structure of runtime system two main monitors
as above are dealing with a concurrency of processes.

At the instruction of hardware, there are known concurrency instructions that
were implemented since the late 50s of the past century. Two further figures—taken
from [3] describe concurrency levels of presentation and appearance in the system
and system main elements and layers (Figs. 12.2 and 12.3).

There is no doubt that amount of entries related to concurrency in the web and
intensity of research and development is high. The point is through—quite a few—
are dealing with algebra representations, and very few, if any, address the real
problems or requirements—PRE: Performance-, Reliability-, Energy–efficiency of
concurrency handling.

180 12 Proposed Runtime System Structure …

12.2.3 The Matter of Concurrency

Let us have a look at what is a matter of concurrency for processes that have the
duration and mostly independent—Dijkstra called them “cooperating sequential
processes” [4, 5].

Fig. 12.2 Hardware concurrency [3]

Fig. 12.3 System software concurrency in languages compilers and algorithms [3]

12.2 Concurrency Support for Resilient Computing 181

Where individual processes appear that will compete (concur) in the future for
any of the concurrency problem to solve. As Dijkstra said:

Two processes are said to be loosely connected if they are completely inde-
pendent of each other, except for periods of communication.

Essentially, this specification disallows assumptions based on relative speeds of
processes.

Imagine we have two processes run off of the same clock; this is known and it
works. one can exploit the fact that the clock is the same and frequency is set.

It is possible to use it efficiently—as it works with SIMD structure. At the same
time, assuming changing the clock frequency for one or both processes might ruin
the synchronization completely.

Processes that run off of the same clock can actually be viewed as having
implicit communication via the clock, and instead, a solution is required that allows
a combination of processes to work together regardless of how they are
implemented.

This alienation of the synchronization technology from synchronization concepts
is crucial for the success of any concurrency handling and has to be analyzed in full
details.

Thus, the next steps are about known solutions and extracting the set of prin-
ciples that must be pursued in the system design when concurrency appears to be
solved.

Without synchronization of loosely tied processes, first, computers were waiting
for the completion of printer task, then perform memory reading (from a magnetic
device called DRAM), and only then perform calculations.

Thus, the slowest device was defining the overall performance of the whole
system. Well, this is not right as we described above—time is not a resource to play
with making concurrency working.

12.2.4 Known Solutions and Derived Principles to Follow

Well-known scheme of round-robin resource sharing as above was one of the first
implemented.

It is still in action on small local area networks and distributed computer systems
(including multiprocessor systems).

In this solution time is used as a shareable resource, time allocated for syn-
chronization/concurrency resolution is divided into slots, the number of equal slots
are defined by the number of processes requested the slot of communication.

This scheme is “equal rights” scheme, where all processes are allowed the same
amount of time and wait their turn next time around when all slots were given.

Interestingly, concurrency is a drawback of parallelization—(explanations fur-
ther follow) and both were designed to maximize the performance of the system.

182 12 Proposed Runtime System Structure …

Thus, the major drawback of round-robin synchronization is waiting time for
each process—the whole round to be wasted.

Another drawback of round-robin synchronization is wastage of critical
resource: no matter whether the process is in need or not the resource (slot of time)
is allocated and therefore ALL processes that requested synchronization will wait.
Timing of executing the right to have a slot of communication becomes costly for
all the rest. It is clear that it is worth trying to separate concerns—personal interests
and system interests are not always matching each other.

This round-robin approach was criticized, since Dijkstra as if time as a resource
is in shortage one SHOULD NOT USE time as a resource to arrange coexistence of
processes, their communication, and completion.

It means that WHILE and similar waiting constructions should be used very
carefully when it concerns a synchronization. Our personal opinion is that these
types of construction should be prohibited from concurrency management schemes.

Below some principles of concurrency handling are presented as they were
developed by computing society to achieve some decency in solving a synchro-
nization problem.

12.3 Communication of Sequential Processes: Principles
of Synchronization

For successful communication (in philosophy—an interaction) of processes, the
system must provide race free condition; in other words, no matter which process
comes first this time rule of entering into interaction session must not depend upon
ordering of execution;

Processes interests are different in their own time and interacting time, thus there
is a reason to separate behavior of the processes as a thing for itself and thing for us
(more detail see E. Kant, Critic of pure reason) [6]. A section of the interaction of a
process with others using resources of the system was called a critical section.

Critical section, therefore, had to have the following required properties,
Fig. 12.4:

Figure 12.4 presents only obligatory conditions. Above them, one might intro-
duce desirable properties of synchronization system as we have mentioned
PRE-smartness, for example. Thus, good concurrency system solution should be
(Fig. 12.5):

Let us consider several known solutions—well, fundamental ones, and check
how these rules—obligatory and desirable are implemented.

The first known solution of a problem of mutual exclusion for processes that
match the requirements above was done—to my best knowledge by Dekker [3, 6],
Fig. 12.6.

12.2 Concurrency Support for Resilient Computing 183

The basic idea behind the implementation of Dekker’s algorithm is that a process
enters the critical section—further (CS) straight away when the other process is not
competing for CS.

When both processes are simultaneously interested in accessing CS, the tie is
broken by allowing the process which accessed CS least recently to succeed.

The algorithm uses three binary variables, cl, c2, and turn.
For better readability, we rename the first two variables, respectively, as state [l]

and state [2].
Also, we define turn as “other”, that may take value either 1 or 2, while status

out as 0, and status of competing as 1.
The status bits are initialized to “out”. The formal, pseudocode of mutual

exclusion is presented in Fig. 12.7. Another few hundreds of versions of the similar
code are everywhere starting from Wikipedia and ending every second Ph.D. on the
subject in the world and, therefore there is no need to refer to any authorship here—
this is public domain knowledge.

mutual exclusion must be implemented - only one process must be permitted
to be within critical section;

conflict resolution for simultaneous requests, with one process to go through
into the critical section; also called liveliness - if several processes request
and entry one of them get access

independence from processes demand from outside critical section

deadlock free - no process to block each other

starvation free - bounding - system does not let a process to wait forever;
each process will get its time in critical section

Fig. 12.4 Synchronization rules

efficient; in other words do not consume substantial resources from the system
or processes to arrange a process of waiting

progress: no process is forced to wait for an available resource -- otherwise
very wasteful at a time;

do not implement busy wait - i.e. endless knocking the closed door is
forbidden;

Fig. 12.5 Synchronization rules—desirable

184 12 Proposed Runtime System Structure …

Please note that in both variants of mutual exclusion: Figs. 12.6 and 12.7 we
have to assume un-interrupting execution of tests of global variable and setting of
own variables.

This is supported by hardware instruction usually called “test and set” intro-
duced in early 50s hardware architectures.

Mutual exclusion is implemented here because entering of the critical section is
taking place if and only if:

• either other process does not want to enter, or
• other process wants to enter, but it is not its turn.

A property called progress is achieved: both processes cannot wait forever at a
while loop.

The process gets access to the critical section immediately if other processes do
not want to enter, or other processes (matching turn) will eventually finish.

Starvation free property is also fulfilled as one process after entering the waiting
phase will wait at most one critical section.

C2=0?

Turn =1?

Turn =2?

C1:=1

C1:=0

Critical section 1:,
turn := 2, c1:=1
Noncritical 1

Y

N

Y

Y

C1=0?

Turn =2?

Turn =1?

C2:=1

C2:=0

Critical section 2:,
turn := 1, c2:=1
Noncritical 2

Y

Y

Y

Fig. 12.6 Synchronization by Dekker for two processes

12.3 Communication of Sequential Processes: Principles of Synchronization 185

12.4 Parallelism and Concurrency Versus GLM

Using Arnold Rosenberg paper [3] and ERA paper [2], one might find that quite a
lot of mess we have found in discussing of concurrency and parallelism. Thus, if
one will use Intel official link:

http://software.intel.com/en-us/articles/how-to-sound-like-a-parallel-programming-
expert-part-1-introducing-concurrency-and-parallelism/

he might end up that concurrency and parallelism are synonyms. To clarify this
situation and preserve others from confusion, our model presented below called the
graph-logic model (Fig. 12.8) can be used clarifying this matter.

Every meta-program structure might be described using GLM (Graph Logic
Model) that provides a scheme to redevelop existing programs into their maximum
parallel and minimum concurrent form, limited only by available hardware
resources.

Note that GLM might be applied for any graph of the program or process model.
GLM uses logical operators from the set {AND, OR, XOR} for every program

or hardware scheme that it describes.
These operators are allocated for the input and output of each vertex.
A vertex might be an operator, instruction, or state. Vertex a in the example of

Fig. 12.8 may be described thus as

Fig. 12.7 Graph-logic model, helps to separate concurrency and parallelism

186 12 Proposed Runtime System Structure …

http://software.intel.com/en-us/articles/how-to-sound-like-a-parallel-programming-expert-part-1-introducing-concurrency-and-parallelism/
http://software.intel.com/en-us/articles/how-to-sound-like-a-parallel-programming-expert-part-1-introducing-concurrency-and-parallelism/

a : OR� ðab; cdÞ; ANDþðbb; dcÞ ð12:1Þ

here “−” stands for every logical operator of an output link and “+” for every input
link, while a, c, b, d are weights or priorities assigned for the link.

Until now research in parallelism was mostly targeted at finding parallel bran-
ches of programs and independent data elements.

However, expecting pure parallelism is hardly feasible: what is initiated as
parallel segments end up ultimately in concurrent mode, competing for a resource
such as a socket, printer, data concentrator, etc.

The rare exception, such as graphic processors with high numbers of SIMD like
processors just proves the rule.

The simple notation as in Eq. 12.1 of Fig. 12.8 can be used as a first step in the
formation of the graph logic language to describe program structures and hardware
structures consistently in terms of coexisting concurrency and parallelism.

GLM explicitly separates parallel and concurrent elements in the system
description by introducing logic operators in the program graph for incoming and
outgoing ends of edges.

Thus, the application of the logic operator XOR (exclusive OR) on an input or
output of an edge defines ALL possible concurrencies in the program graphs.

In turn, all possible parallelism in the control graph are defined by finding all
outgoing or incoming edges explicitly described by the AND.

Fig. 12.8 Graph-logic
model, helps to separate
concurrency and parallelism

12.4 Parallelism and Concurrency Versus GLM 187

12.5 Parallelism and Concurrency: Further Models

Let us start from simple structure—program as Janov’s schemata and analyze not
want we want or dream but what we actually have algorithmically and how can we
implement these algorithmic solutions concurrently, if we can and… what is the
gain?

In other words, do we have any performance improvement, at least theoretically?
The simplest case here is when we are having a sequence of independent

problems that we are able to rearrange into parallel calculation process:

A1; . . .;Anf g

and each of them is, say, has time to complete Ta.
Suppose we are able to split them to run in parallel. Sooner or later, they will

compete for resource whatever it is and step into the phase when the resource is not
accessible enough for everybody.

Then “negotiation phase” is required to provide a resource for everybody by
following the principles presented above including recommended principles as
well.

When monitoring of resource management and sharing is using the time to split
processes we afraid we are losing the plot:

concurrency was invented to save system time not to waste it

Here there is a question no 1:
Do we have (if we have any) a concurrency monitoring algorithm that is shortest

in terms of time? how to find it? how to prove it?
The eventuality of reaching a critical section for each process declared above

(see conditions of concurrency solutions) is not an option worth to consider:

• it means that concurrent processes might be almost prohibitively delayed by…
scheme of concurrency!

• it does not mean ith process will starve to death as it is written in the most papers
about solutions of concurrent processes.

• it does mean that a goal to achieve any reasonable growth of performance by
parallelization of programs and their further execution (in our case, it is pro-
cesses A1–An) might be deadly ruined by the scheme of concurrency!

• what is actually possible to do? what kind of resource one needs to be able to
create for effective concurrence management schemes? good questions…

188 12 Proposed Runtime System Structure …

12.6 Concurrency Handling: Language and Runtime
System Aspects

At the same time, there is no great breakthrough in use of all this hardware and
software to cope with the problems of concurrency and parallelization in the most
effective way.

Each structure of the computer system can be considered from the three key
redundancies point of view—structure, time, and information. Algorithm and its
meta-representation such as this one on Fig. 12.9 is representing predicates, control,
and data dependencies.

All of them are mapped on hardware and all of them are required to be
(a) parallelized as much as possible and (b) made concurrent as less as possible.

Thus, the blue star of ith layer and green box of the same layer are potential
concurrency-handling-need points. Making them efficiently following through
further is a direct impact on the performance and reliability of the whole system
(Fig. 12.9).

Fig. 12.9 CDP: all three graphs are sources of concurrency implications

12.6 Concurrency Handling: Language and Runtime System Aspects 189

12.7 Concurrency: Further Steps: Fault-Tolerant
Interactors

This section is dealing with the description of principle of fault tolerance for
semaphores that extend a condition proposed by Dijkstra during NATO school
presentations about losing process out of the critical section.

Real problem of safety-critical systems is exactly opposite—dealing with pro-
cess behavior when this process is in its critical section.

An approach is obvious—integer semaphore (not Boolean) must be applied and
recovery points such as in 1987 organized for each process entering into the critical
section.

Also—if you read carefully Dijkstra assumptions, his synchronization assumes
that noncritical section behavior of a process is not important. And this is a pretty
naïve assumption, but reconfigurability of hardware was reasonably described in [7,
8] and in runtime system description section there is no room for further analysis of
this statement.

But! and this but is big: the behavior of a process in critical section CANNOT be
ignored. The assumption that eventually process will leave its critical section is not
strong enough: synchronization is about to maximize performance, to kick out a
process out of CS by a timer—10 million years later—is not a solution—see the
statement about time is not an option.

The question if system resilience and functions of runtime systems monitors
come unanswered:

What if a process that own critical section at the moment “died” or “hang up”
in there for an unlimited time? All other processes will wait and die eventually.
What can we do?

That is how an idea of faul-tolerant semaphore came to life.
Thus, the fault-tolerant semaphore means that any change of process condition

due to internal fault must automatically lead to

• release a critical section and
• release all system resources that were used.

Further, it implements fault-tolerant semaphore—if we are using the algorithm of
Fig. 12.7 we will require a change of variable “turn” by reducing the number of
processes that will be permitted to apply for access to the critical section after the
fault of a process has happened. Thus, for N scheduled processes monitor of
interruptions should reduce the number of “applicants” to N–1.

To avoid fast degradation of the system due to reconfigurability of hardware in
this case one has to (eventually, when the workload is not critical) to check the
health of a process that was self-declared dead. This is because, for example of
natural radiation impact after which malfunctions in the real-time systems now lasts
up to for 200–350 ms. Book [7], papers [2, 3, 8] and some chapters of this book
might explain details of reconfiguration handling.

190 12 Proposed Runtime System Structure …

This is known the duty of run time system—to deals with synchronization.
Implementation of the proposed approach and, specifically fault-tolerant sema-
phores will improve the performance of synchronization of the system and, at the
same time, make system resilient—no matter which process fails.

To our best knowledge, nobody neither proposed or implemented anything
similar and this is a subject of further modernization of any runtime system for
resilient computer systems.

12.8 Conclusion

• Structure of the runtime system for resilient compute is presented and explained.
• The concurrency problems of computing are outlined.
• Requirement for efficient concurrency handling are clarified.
• Shown similarities of concurrency problems for hardware and system software.
• A graph-logic model introduced explicitly separating concurrency and

parallelism.
• Control–data–predicates scheme explicitly shows a concurrency points in a

program.
• A concept of faul-tolerant semaphores for resilient computer systems is

presented.
• Tuning of known concurrency algorithms for new semaphores are explained.

Appendix: The Main Algebraic Books on Process Algebra
Are

Milner R. (1989): Communication and Concurrency, Prentice Hall
Hoare C.A.R. (1985): Communicating Sequential Processes, Prentice Hall
Hennessy M (1988): Algebraic Theory of Processes, MIT Press
Baeten J.C.M. & Weijland W.P. (1990): Process Algebra, Cambridge University
Press.
In turn, applications of the ACP approach explained and well-presented in
R. Milner R. (1990): Operational and algebraic semantics of concurrent processes,
in J. van Leeuwen, editor: Handbook of Theoretical Computer Science, Chapter 19,
Elsevier Science Publishers B.V. (North-Holland), pp. 1201–1242.

12.7 Concurrency: Further Steps: Fault-Tolerant Interactors 191

References

1. Schagaev I (2008) Reliability of malfunction tolerance. In: Proceedings of 2008 IMCSIT.
https://doi.org/10.1109/imcsit.2008.4747323

2. Schagaev I, Kaegi-Trachsel T, Gutknecht J (2010) ERA: Evolving Reconfigurable
Architecture. In: 2010 11th ACIS international conference. https://doi.org/10.1109/snpd.
2010.40

3. Rosenberg AL. Thoughts on parallelism and concurrency in compiling curricula. J ACM
Comput Surv (CSUR), NY, USA. https://doi.org/10.1145/210376.210399

4. Dijkstra E (1965) Solution of a problem in concurrent programming control. Commun ACM 8
(9):569

5. Dijkstra E (1965) Cooperating sequential processes. Techniche Hogeschool, Eindhoven.
Reprinted in: Genuys F (ed) (1968) Programming languages. Academic Press, pp 43–112

6. Kant E (2001) Critic of pure reason. Everyman. ISBN 0 460 87358 X
7. Castano V, Schagaev I. Resilient computer system design. Springer, Berlin. https://doi.org/10.

1007/978-3-319-15069-7
8. Monkman S, Schagaev I (2013) Redundancy+reconfigurability=recoverability. Electronics 2

(3), 212–233. https://doi.org/10.3390/electronics2030212

192 12 Proposed Runtime System Structure …

http://dx.doi.org/10.1109/imcsit.2008.4747323
http://dx.doi.org/10.1109/snpd.2010.40
http://dx.doi.org/10.1109/snpd.2010.40
http://dx.doi.org/10.1145/210376.210399
http://dx.doi.org/10.1007/978-3-319-15069-7
http://dx.doi.org/10.1007/978-3-319-15069-7
http://dx.doi.org/10.3390/electronics2030212

Chapter 13
Proposed Runtime System Versus
Existing Approaches

Abstract In this chapter, we briefly compare our approach of a fault-tolerant
operating system with existing approaches. We use our own definition of fault
tolerance as a process that is required to support the implementation of all steps of
GAFT.

13.1 What Is Available?

Integrity OS: Integrity OS [1] is a commercial product by Green Hills Software. It
is the only Operating System available on the market, which is certified as Criteria
Evaluation Assurance Level (EAL) 6+. However, as the name of the OS indicates,
the focus lies on the integrity of the OS and the applications running on the OS, i.e.,
the tamper proof of the applications running on that platform.

However, as high as its certification level is, there is no fault tolerance in case of
malfunctions or permanent errors built in except for restart in case of a failed
application.

L4 Se: L4 Se [2] is a member of the L4 microkernel family and is the only
Operating System known to be formally verified and tested and thus certified by
EAL 7. The focus of this operating system lies on the correctness of the Operating
System implementation and the used compiler.

Although its certification level allows it to be used in safety-critical applications,
it has no built in means to deal with external radiation induces faults except for
restarting processes in case of failures. The microkernel model supports fault
containment as all processes and even drivers run in their own address space. The
support of a complex MMU is, of course, a strict requirement for these systems.

L4ReAnimator: L4ReAnimator [3] is a framework on the basis of L4 Re that uses
the Fiasco.OC [4] microkernel implementation as the basis. Fiasco.OC supports
so-called capabilities, which indirectly reference objects and act as communication
channels. As no single component in the system knows all capabilities, only the
application that uses the capability can detect failures.

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_13

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_13

Thus, the applications are responsible for reobtaining the capabilities they need.
A capability fault handler, which is raised in case of a failed capability can restore
the state of a capability, e.g., based on a stored checkpoint.

However, recovery is application specific and is therefore semi-transparent. In
case of used resources such as frame buffers, an additional cleanup handler is
required.

Minix 3: Minix 3 [5] is another microkernel operation system that claims to be fault
tolerant. However, the fault tolerance in this operating system is limited to fault
containment by isolated processes and component restart in case of failure.
A reincarnation server restarts the failed component and notifies applications about
the restart. The state of the component is lost after the restart, thus the application
programmer interaction is required to resume processing.

CuriOS: CuriOS [6] is a capability-based client–server operating system that stores
client-related state space, so-called Server State Regions, on the server in distinct
memory areas which are only accessible by the server if it serves a request by a
client. In case of an error on the server (C++ exception), the client-related state
space is still available an thus the server can transparently resume operation. This
model is designed for misbehaving drivers or other software related errors, but
cannot help in case of hardware malfunctions or permanent error that corrupt the
state space.

EROS: EROS [7] is also a capability-based Operating System that employs
checked recovery points of the whole system to recover from faults. Fault detection
is based on failures of tasks, and recovery is done by reloading the last global
snapshot.

The assumption, in this case, is that the last recovery point is consistent.
Recovery from permanent faults is not supported, nor reconfiguration of the
hardware. The recovery point consistency checks, as we see it, just ensure the
consistency of the recovery point but not of the system at the point of the recovery
point creation.

Table 13.1 lists the main steps of GAFT and states which of the steps are
implemented by the above introduced operating systems. This table clearly shows
that from a GAFT point of view no OS except for ERA implements all steps.

Especially, the steps Fault-type determination and Hardware reconfiguration are
not natively supported by any OS except ERA. For recovery, most of the OS just
restart a failed component and component failure is usually detected by assertions,
exceptions or watchdogs.

Obviously, masked faults or malfunctions that do not trigger one of the before
mentioned schemes are not detected. Only L4ReAnimator supports a checkpointing
scheme, which can recover the system to an earlier state. Overall, the ERA concept
seems superior in terms of fault tolerance to the other approaches.

The other operating systems, especially the microkernel-based ones have better
fault containment than ERA and can also deal with malicious programs.

194 13 Proposed Runtime System Versus Existing Approaches

However, this could be built into ERA by using a simple, memory boundary
based memory management unit that would be by far simpler than the fully fledged
MMU which is required for the microkernel approach.

References

1. Green Hills Software. Integrity, the most advanced RTOS technology. Technical report, Green
Hills Software, 2008. 61, 191

2. Klein G et al (2009) sel4: formal verification of an os kernel. Technical report. 191
3. Dirk Vogt D, Döbel B, Lackorzynski A (2010) Stay strong, stay safe: enhancing reliability of a

secure operating system. In: Proceedings of the workshop on isolation and integration for
dependable systems (IIDS 2010), Paris, France, April 2010, New York, NY, USA. ACM. 192

4. Lackorzynski A, Warg A, (2009) Taming subsystems: capabilities as universal resource access
control in l4. In: Proceedings of the second workshop on isolation and integration in embedded
systems, IIES ’09, New York, NY, USA. ACM, pp 25–30. 192

5. Tanenbaum A (2006) Reorganizing Unix for reliability. In: Proceedings of 11th Asia-Pacific,
pp 81–94. 192

6. David F et al (2008) Curios: improving reliability through operating system structure. In:
OSDI’08, Berkeley, CA, USENIX Association, pp 59–72. 192

7. Shapiro J (1999) EROS: a capability system. PhD thesis, University of Pennsylvania. 192

Table 13.1 Comparison of existing FT approaches to ours

FT OS feature ERA Minix 3 CuriOS Integrity
OS

L4ReAnimator

Error detection Yes Yes
(component
failure)

Yes
(component
failure)

Yes, task
failure

Yes, capability and task
failure

Fault-type
determination

Yes No No No No

Hardware
reconfiguration

Yes No No No No

Location of
faulty software
states

Yes No No No No, last recovery point is
assumed to be correct, or
application restart

Automatic
software
reconfiguration

Yes No No No Semi-transparent,
application intervention
required

Software
recovery

Yes Yes, restart Yes, restart Yes,
restart

Yes, restart or recovery
point

13.1 What Is Available? 195

Chapter 14
Hardware: The ERRIC Architecture

Abstract There is no doubt, system software support of computer resilience is
incomplete when hardware does not have essential properties required to implement
it. Luckily, hardware with required support of recoverability and fault detection is
available and described in full details in [1–3]. Here, we briefly describe available
hardware with attention to implementation support of PRE properties (performance
reliability and energy) requirements.

14.1 Processor Architecture

The main principle used in the design of the ERRIC processor is simplicity. The
instruction set as well as the implementation of the processor is reduced to the
absolute minimum required to support general-purpose computing.

This allows the careful controllable introduction of redundancy features that
allow the processor to detect malfunctions during the execution of the instruction
itself, abort the current instruction, and re-execute it transparently to software.

In addition, no pipelining or caches are used which greatly simplifies the pro-
cessor design which in turn simplifies the implementation of any fault-tolerant
features.

Antola [4] proved that the overheads necessary to make a CPU fully fault
tolerance might easily exceed 100% which in fact corresponds to at least dupli-
cation. Thus, to this huge overhead, we strive to keep the redundancy level needed
to achieve fault tolerance as low as possible.

In comparison to other architectures such as CISC processors, ERRIC differs in
the following features: one addressing mode, hardwired design (no microcode),
regular instruction set, and few and simple instructions.

The difference of ERRIC to RISC processors is not as big as to CISC processors,
but, for example, the number of instructions is still smaller and the instruction
complexity lower (no multiply, etc.).

Figure 14.1 shows a simplified version of the instruction execution of the
ERRIC processor. The execution steps correspond to the ones in other RISC

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_14

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_14

processors, with the exception that no pipelining is used and therefore all steps of
one instruction are executed in one processor cycle and specially used memory
controller.

We briefly discuss the steps involved in the execution of one instruction.
Fetch Instruction This step loads an instruction from main memory and stores it

in the processor internal instruction register (IR). As every instruction is only 16-bit
wide (see Sect. 14.2), this step is needed every second instruction, if the instruction
is not a jump instruction.

Decode Instruction It decodes the instruction.
Execute Instruction It executes the instruction, i.e., calculates the result of

the instruction.
Store Result The instruction execution might have affected register content,

processor flags, and other processor state which is updated and written back in this
last step.

At first, it could be argued that the proposed ISA does not have enough
instructions to perform most of the operations that such a small ISA would result in
higher compilation effort/time, and that the resulting programs would need more
space.

Fig. 14.1 ERRIC instruction
execution—simple version

198 14 Hardware: The ERRIC Architecture

However, complicated functions are best handled by the compiler instead of
having specialized instructions within the ISA dedicated to very particular tasks.
The program size of applications compiled for ERRIC is indeed often larger than
the same application compiled for other architectures.

The 16-bit instructions help to keep code size small, but the lack of direct
immediate support in instructions increases code size significantly. The lack of
some often used instructions, such as multiplications, also increases code size, as
the corresponding library calls need additional setup code. However, we consider
this as acceptable to keep the processor architecture simple.

The processor has a large register file with 32 32-bit wide general-purpose
registers. All normal instructions expect exactly two input registers and save the
result of the operation in the second register, therefore always overwriting the
second operand content. Memory access is only possible for 32 bit at a time and has
to be aligned.

The ERRIC processor has an internal state (F1, F2), which is required by the
special memory controller. The main philosophy of the ERRIC architecture is to
keep it simple, which is not only applied to the processor but also to the memory
controller. The processor and memory controller are designed not to stall the
processor due to pending memory operation.

This is achieved by interleaving instruction fetch and memory operations. All
ERRIC instructions are 16-bit wide; an instruction fetch operation therefore always
loads two instructions from memory and stores them in a processor internal
instruction register (IR).

In sequential instruction execution, the compiler can schedule memory
instructions in every second instruction slot where no instruction has to be loaded
by the processor. This concept is illustrated in Fig. 14.2, which shows an extended
version of Fig. 14.1 that includes memory operations.

In state F1, the processor fetches an instruction from memory, and the memory
unit is therefore busy in this cycle and cannot execute a memory operation at the
same time. If the processor is in state F2 (not in state F1), the processor can execute
a memory instruction. The compiler is responsible to schedule the instruction in
proper order.

If the executed instruction is a branch, the processor switches automatically to
the F1 state as the memory controller can only load 32-bit aligned addresses. Jump
destination locations must therefore also be 32-bit aligned. All these requirements
force the compiler to fill gaps with NOP operations.

The main structure of the processor architecture is shown in Fig. 14.3. The
instructions are fetched from memory into the instruction register and decoded by
the control unit, which also manages the execution of each instruction.

The operands for each executed instruction are fetched from either the register
file or memory, multiplexed into the Arithmetic and Logic Unit (ALU) for oper-
ation. The output data from the ALU go either to memory through the data bus or is
written back to the register file. The current value and type of the data might also
indicate an address for branch instructions.

14.1 Processor Architecture 199

The simplified architecture presented in Fig. 14.3 allows implementation of
GAFT at instruction level. As before the three processes are essential for the
guaranteed and successful execution of each instruction.

Two processes P1 and P2 (blue and red) cope with fault checking and recovering
of malfunctions, respectively.

Fig. 14.2 ERRIC instruction execution—extended version

200 14 Hardware: The ERRIC Architecture

P1 is initialized at the start of the instruction execution; P2 is required and
initiated when fault has been detected, but it is essential that the pre-modified state
is stored at the start of execution of every instruction. P1 and P3 can operate
concurrently.

P1 and P2 have an influence on each other: the higher the fault detection cov-
erage achieved by P1, the more successful recovery should be.

When data is written into the register file, the check generator (marked in blue in
Figs. 14.3 and 14.4) generates the checking information for the 32-bit data stored
into the register file; this information allows the stored data to be verified later on.

The checking schemes (marked in blue in Fig. 14.3) check the data integrity
when data are read out from the Register File and when it is possible, correct the
data before the ALU operation takes place.

In order to implement the fault recovery process P2, an extra Register Buffer
Rbuf(R*) is introduced (marked in red in Figs. 14.3 and 14.4). The register buffer
keeps record of the modifying state of the CPU.

When a fault is detected during instruction execution, it allows the processor to
restore to the initial state before the execution of the instruction enabling the
instruction to be repeated and therefore to tolerate the malfunctions within the
instruction level.

The extra Register Rbuf(R*), the checking schemes, and the reverse instruction
sequencer combined allow the implementation of the two processes P1 and P2
without any perceptible time overheads. Note that this current version covers SEU
only and must be modified in case of MEU.

Fig. 14.3 Malfunction tolerance in the active area

14.1 Processor Architecture 201

14.2 Instruction Set

All the requirements to the processor which are described in (reference) can only be
achieved using an ultra-reduced instruction set, consisting of only 16 instructions
where only two of them are memory instructions (load/store).

This allows to save the state of the processor before each instruction execution,
and, if a fault is detected, to cancel the instruction and re-execute it on the same
processor. Furthermore, such an instruction set generally requires less hardware,
which increases the reliability of a single processor.

The processor has 32 general-purpose registers. They have a width of 32 bits and
are equal, i.e., all registers can be used for every instruction. The instructions are
designed as two register instructions, where the second register is used to store the
result.

The compiler designer has to keep in mind that the content of the second register
is overwritten. Memory access is 32-bit only and has to be aligned to 32-bit.

Every instruction is encoded into 16 bits (see Fig. 14.5). The two highest bits
(bits 14, 15) indicate the format of the operation, which can be 8, 16, or 32 bits.

Not all instructions support a format other than 32 bits, but if they do, they only
use the specified amount of bits in their operand registers and ignore the others.

Bits 10–13 contain the instruction opcode.
Bits 5–9 identify the first operand (register) and bits 0–4 the second operand.

Fig. 14.4 Check generator and checking scheme

202 14 Hardware: The ERRIC Architecture

The first and second operands can be any of the 32 general-purpose registers.
Constants cannot be directly encoded in the instructions.

Opcode 0 is a special case and is used for four different instructions. Depending
on the format, it can indicate a STOP, a NOP, a debug TRACE or RETI, which is
used to exit an interrupt handler.

Another special case is the instruction LDA, which loads a constant to the
specified register. The constant is loaded from the next aligned 32 bits after the
active program counter. The program counter then skips the constant and continues
the program execution directly after the constant.

In general, placing two instructions into one 32-bit word increases code density
and performance. The processor executes the left instruction first and can then,
without accessing the memory, directly execute the second one.

Note that the program counter has the same value for both of these instructions.
This can be a problem because it is obviously not possible to jump to an instruction
on the right side, as it has no unique address and is not 32-bit aligned.

A compiler has to make sure that NOPs are inserted at the correct places to
prevent these cases if instruction reordering fails to fill the gap.

All arithmetic operations treat the value in the operand as signed values. There is
no method to execute unsigned operations. Except for the conditional jump
instruction, every operation accepts the same register for both arguments.

Table 14.1 lists all available instructions together with a short description of
their effect. It also shows the assembler representation used throughout this report.

While most entries are self-explanatory, the result of the compare instruction
CND requires more information. Similar to other platforms, it checks for three
conditions and saves them as flags in the first three bits of the result register:

Bit 0 : R1[R2
Bit 1 : R1\R2
Bit 2 : R1 ¼ R2

Using an appropriate constant mask and the bit instructions, the result for every
possible comparison operation can be extracted from the flags and saved as a
Boolean value, or used as an argument in a conditional jump:

15 14 13 10 9 5 4 0

Instruction Operand1 Operand2Format

Fig. 14.5 Instruction format

14.2 Instruction Set 203

Table 14.1 Available instructions

Instr. name Format code Instr. code Opl Op2 Description

NOP 01 0000 Ignored Ignored Execute no action except increasing
the PC

STOP 00 0000 0 0 Stop instruction execution

TRACE 00 0000 Ri > 0 Rj > 0 Output Ri to debugger. Operandi or
Operand2 must be > 0

RETI 11 0000 Return from interrupt (Address in
ii31)

LD 11 0001 Ri Rj Load 32-bit memory at address Ri
into register Rj(Rj: = *Ri)

LDA 11 0010 ignored Rj Load the value from the next 32-bit
word (rel. to PC) and store it in Rj
{Rj: = constant). Operand 1 is
ignored

ST 11 0011 Ri Rj Store content of register Ri to the
memory at address Rj(*Rj: = Ri)

MOV XX 0100 Ri Rj Move content of register Ri to
register Rj(Rj: = Ri)

ADD XX 0101 Ri Rj Arithmetically add the content of Ri
to the content of Rj and store the
result in Rj (Rj: = Rj + Ri)

SUB XX 0110 Ri Rj Arithmetically subtract the content of
Ri to the content of Rj and store the
result in Rj (Rj: = Rj - Ri)

ASR XX 0111 Ri Rj Shift the content of register Ri
arithmetically one bit to the right and
store the result in Rj

ASL XX 1000 Ri Rj Shift the content of register Ri
arithmetically one bit to the left and
store the result in Rj

OR XX 1001 Ri Rj Perform a bitwise logical OR of
register Ri with register Rj and store
the result in Rj

AND XX 1010 Ri Rj Perform a bitwise logical AND of
register Ri with register Rj and store
the result in Rj

XOR XX 1011 Ri Rj Perform a bitwise logical XOR of
register Ri with register Rj and store
the result in Rj

LSL XX 1100 Ri Rj Shift the content of register Ri
logically one bit to the right and store
the result in Rj

LSR XX 1101 Ri Rj Shift the content of register Ri
logically one bit to the left and store
the result in Rj

CND XX 1110 Ri Rj Arithmetic comparison of Ri with Rj
and store the result in Rj

CBR XX 1111 Ri Rj Jump to address in Rj if Ri is non
zero and save PC in Ri

204 14 Hardware: The ERRIC Architecture

Relation BitMask
\ 010
� 110
[001
� 101
¼ 100
6¼ 011

References

1. Schagaev I (2008) Reliability of malfunction tolerance. In: International multi-conference on
computer science and information technology, IMCSIT 2008, Oct 20–22, pp 733–737

2. Blaeser L, Monkman S, Schagaev I (2014) Evolving systems. In: Proceedings of World
Comp’14, USA, July 14. https://www.academia.edu/7685575/Evolving_systems_World
Comp_2014

3. Castano V, Schagaev I Resilient computer system design. Springer ISBN 978-3-319-15069-7
4. Antola A, Er enyi I, Scarabottolo N (1986) Transient fault management in systems based on the

AMD2900 microprocessors. Microprocess Microprog 17(4):205–217

14.2 Instruction Set 205

https://www.academia.edu/7685575/Evolving_systems_WorldComp_2014
https://www.academia.edu/7685575/Evolving_systems_WorldComp_2014

Chapter 15
Architecture Comparison
and Evaluation

Abstract Currently, there are several processor architectures on the market,
dominated by the x86 architecture on the desktop and the ARM in embedded
devices and should therefore be included in an architectural comparison. Thus
without even brief analysis, how resilient computing “fit” these available archi-
tectures and why we need to develop our own ERRIC, our implementation and
application would be incomplete. The core of the analysis of instruction set and
impact on computer architecture was presented in Schagaev et al. (Instruction set
and their impact on modern computer architecture, 1989, [1]). Since then nothing
much has been changed in architecture, few system architectures were lost in the
market competition (not the worst one, to be honest), leaving SPARC, Intel, and
ARM with lion shares of the market. The SPARC processor is included in this
comparison, as it is heavily used in space, especially the fault-tolerant version
LEON3 (LEON3-FT SPARC V8-RTAX—Data Sheet and User’s manual, 2009,
[2]). In order to have a consistent comparison, we only compare the 32-bit versions
of the respective processors, although 64-bit versions are available for the x86 and
SPARC architecture. Both the SPARC and the ARM processors are RISC based
and are thus quite similar in the instruction set, whereas the x86 architecture is
CISC based and provides a multitude of instructions in comparison to the other
architectures. The x86 is also the only architecture that allows using memory
locations directly in instructions (register memory architecture), whereas RISC
machines (load and store architecture) must first load the argument into a register.
This enormous number of instructions leads to the curious situation that the
instruction decoder of the Intel Atom CPU needs as much space as a complete
ARM Cortex-A5 (Nachwuchs fr die die cortex-a-familie, 2009, [3]).

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_15

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_15

15.1 Processor Architecture Overview

Table 15.1 gives an architectural overview of the mentioned architectures. The
overview and analysis are inspired and adapted from the architectural comparison in
[4]. All information to compile the table were acquired from various documents
[1, 4–9].

Table 15.1 Processor architecture comparison

ERRIC x86 SPARC v8 ARM7TDMI
(ARMv5-TE)

ARM7TDMI
thumb

Date
announced

2006 1978 1987 1985 1995

Architecture
family

Reduced
RISC

CISC RISC RISC RISC

Integer
registers

32 � 32 bits 8 � 32 bits 31 � 32 bits 15 � 32 bits 8 � 32
bits + SR, LR

Floating-point
registers

0 Optional
8 � 32 bits or
8 � 64 bits
(8 � 80 bits
internal)

32 � 32 bits
or 16 � 64
bits or
8 � 128 bits

Optional
32 � 32 bits
or 16 � 64
bits

Optional
32 � 32 bits
or 16 � 64
bits

Vector registers 0 Optional
8 � 64 bits or
8 � 128 bits

0 Optional
32 � 32 bits
or 16 � 64
bits

0

Address space 32 bits, flat 32 bits, flat or
segmented

32 bits, flat 32 bits, flat 32 bits, flat

Instruction size
(bytes)

2 1–15 4 4 2

Multiprocessor
capable

No Yes Yes Yes No

Processor
modes

1 3 operation
modes

2 7 7

Data aligned Yes No Yes Yes Yes

Memory
management
unit

No Yes Optional Optional Optional

Memory
addressing
modes

1 7 2 (reg
ind + disp,
reg ind.
indexed)

6 6

Memory
addressing
sizes

32-bit 8, 16, 32 bit 8, 16, 32, 64
bit

8, 16, 32 bit 8, 16, 32 bit

Number of
instructions

16 138 Integer
and logic 92
floating-point
total: 332

72 53 37

(continued)

208 15 Architecture Comparison and Evaluation

The CPU architecture summary given in Table 15.1 clearly illustrates the sim-
plicity of the ERRIC processor architecture with its 16 instructions, which is by a
large margin smaller than the other architectures.

However, the simplicity is not for free. It comes at the cost of less powerful
instructions in comparison to the other instruction sets and results thus in longer
code. With longer code, we mean that the number of instructions is higher, not
necessarily the code size, as the instructions are only 16-bit wide.

The load from memory serves as a typical example, where in case of array
accesses the absolute memory address must be explicitly calculated and stored in a
register prior to the memory access, where, for example, in the SPARC architecture
the offset to the base address can be stored in a distinct register and then added on
the fly in the load instruction itself. The ARM even allows encoding an offset to a
base address given in a register directly in the instruction itself.

The ARM Thumb instruction set is a subset of the standard 32-bit ARM in-
struction set. It is intended for resource-constraint environments, where only a
16-bit data bus is available and it increases the code density.

The Thumb mode does not change the ARM architecture at all; in specific, the
address space is still 32-bit and all registers are 32-bit wide. However, only registers
R0–R7 are directly accessible, and R8–R16 are hidden. The stack register (SR) and
the link register (LR) are accessed by some instructions.

Interestingly, exceptions (interrupts) always trigger a processor switch to the
32-bit ARM mode prior to executing the exception handler. This supports the
statement by Hennessy [4, 5] that the 16-bit mode is not supposed to be a full
architecture, but “they [the instructions] are enough to encode most procedures.”

In contrast to this, we say that the ERRIC instruction set, although it is even
more constraint than the Thumb instruction set, is intended to be used as a full
instruction set, generic enough to encode all language features.

Table 15.1 (continued)

ERRIC x86 SPARC v8 ARM7TDMI
(ARMv5-TE)

ARM7TDMI
thumb

I/O Memory
mapped

Instructions,
memory
mapped

Memory
mapped

Memory
mapped

Memory
mapped

Pipeline length No pipeline Atom: 16 Core
i7/Core
2: 14
Pentium4: 20–
31

Leon 3: 7
SPARC64 V:
15
UltraSPARC
T2: 8

3 3

Specialities Very simple
instructions,
built-in fault
tolerance

Instructions of
variable size,
grown
instruction set,
memory
operands

Register
window,
delayed
control
transfer

Conditional
instruction
execution

32-bit ARM
instructions
partly
required.
Solved with
Thumb 2
mode

15.1 Processor Architecture Overview 209

Compared to the ARM, the ERRIC has less than half the number of instructions,
making it much simpler. On the downside, more elaborate instructions must be
emulated such as relative memory accesses or procedure calls.

Especially, the latter is very efficiently implemented on the ARM by the “load
multiple” and “store multiple” instructions that allow to efficiently putting all
procedure arguments on the stack. ERRIC on the other hand has to store all
arguments individually on the stack.

Table 15.2 shows the various data addressing modes supported by the various
architectures.

Although some SPARC does not directly provide an absolute addressing mode,
the register + register mode with a nullified second register is used to emulate this.
The SPARC architecture even provides a register which is always nullified, thus the
absolute addressing does not incur any performance penalty.

The x86 addressing modes are more powerful than the RISC ones; thus, instead
of extending the above table, the x86 addressing modes are summarized in
Fig. 15.1.

The offset part of a memory address can be either a static displacement or
through an address computation made up of one or more elements in Fig. 15.1.

Table 15.2 Supported addressing modes

Data addressing mode ERRIC x86 SPARC v8 ARM ARM thumb

Register X X (X) X X

Register + offset (displacement or based) – X X X X

Register + register (indexed) – X X X X

Register + scaled register (scaled) – X – X –

Register + offset and update register – – – X –

Register + register and update register – – – X –

Fig. 15.1 x86 addressing modes

210 15 Architecture Comparison and Evaluation

The resulting offset is called effective address and can constitute of either pos-
itive or negative values except for the scaling factor.

The ERRIC architecture provides only direct memory addressing which results
in longer code as the addresses must be explicitly computed before the data can be
loaded. Table 15.3 compares the offsets sizes that are directly encoded in the
instruction. If not mentioned differently, the offset is always relative to the current
instruction pointer.

The ERRIC architecture does not allow encoding the offset in an instruction but
must always be given as an absolute address in a register. Thus, it requires an
additional “load constant” instruction, which requires another 8 bytes
(Load + NOP + 4 Byte constant). In terms of code safety, absolute jumps are
preferable as calculated jumps (relative) are more susceptible to faults than absolute
jumps.

Table 15.4 compares the instructions required in each architecture to perform
basic RISC operations such as load, stores, etc. A sequence of instructions is given

Table 15.3 Offset size of encoded instructions

Offset size encoded in
instructions (in bits)

ERRIC x86 SPARC
v8

ARM ARM
thumb

Unconditional jump/call 0 8–32 signed, rel. or
absolute, direct or indirect

30 24 11

Conditional branch 0 8–32 signed 19 24 8

Table 15.4 Comparison of selected instructions

Instruction ERRIC x86 SPARC v8 ARM ARM
thumb

Load word LD MOV LD LDR LDR

Load byte
signed

– MOVSX LDSB LDRSB LDRSB

Load byte
unsigned

LD,
LDA,
AND;a

MOV LDUB LDRB LDRB

Store word ST MOV ST STR STR

Store byte –
b MOV STB STRB STRB

Add ADD ADD ADD ADD ADD

Add (trap if
overflow)

– ADD, INTO ADDcc, TVS ADDS,
SWIVS

ADD,
BVC +4
SWI

Sub SUB SUB SUB SUB SUB

Sub (trap if
overflow)

– SUB, INTO SUBcc, TVS SUBS,
SWIVS

SUB,
BVC +4
SWI

Multiply – MUL; IMUL MULX MUL MUL

Divide – DIV; IDIV DIVX – –

(continued)

15.1 Processor Architecture Overview 211

if an instruction is not available in the instruction set. A “–” means that more than a
short instruction sequence is required to simulate the specific functionality, typically
a longer sequence of inline code or a library call. As the ERRIC architecture does
not include a floating-point unit, we omit here all floating-point instructions, as all
of them are emulated in software.

References

1. Schagaev et al (1989) Instruction set and their impact on modern computer architecture.
Zarubeznya Electronica, No 7:8 (In Russian)

2. LEON3-FT SPARC V8 - RTAX - Data Sheet and User’s manual. Aeroflex Gaisler AB,
Goeteborg, Sweden, 1.1.0.8 edition, June 2009

3. Verlag H (2009) ARM: Nachwuchs fr die die cortex-a-familie. World Wide Web electronic
publication, October 2009

Table 15.4 (continued)

Instruction ERRIC x86 SPARC v8 ARM ARM
thumb

AND AND AND AND AND AND

OR OR OR OR ORR ORR

XOR XOR XOR XOR EOR EOR

NOT NOT

Shift logical
left

SLLc SHL SLL LSL LSL

Shift logical
right

SLRc SHR SRL LSR LSR

Shift
arithmetic
right

SARc SAR SRA

Compare CND CMP SUBcc rO, CMP CMP

Conditional
branch

CBR JG; JNLE; JGE; JNL; JL;
JNGE; JLE; JNG; JNO; JNS;
JO; JS

BR_Z, BPcc (<,
> , � , � , = ,
#)

B B

Call CBR CALL CALL BL BL

Trap CBR INT n TIcc, SIR SWI SWI

Return from
interrupt

RETI IRET DONE; RETRY;
RETURN

MOVS
pc, rl4

–
d

NOP NOP NOP SETHI r0, 0 MOV
r0, r0

MOV r0,
r0

aIf the 8-bit data is aligned, the sequence LD, LDA, and AND can be used; otherwise, an LD and an
appropriate number of shift operations must be used
bFor storing an 8-bit value, the destination address must be loaded, the appropriate bits cleared using a bit
mask, the argument shifted, and then written back to memory. In other words, omit using 8-bit values
cOnly one bit
dInterrupt is always handled in 32-bit mode. Thus, a pure 16-bit Thumb CPU without 32-bit mode is not
supported

212 15 Architecture Comparison and Evaluation

4. Hennessy J, Patterson D (2002) Computer architecture: a quantitative approach, 3rd edn.
Morgan Kaufmann

5. Hennessy J, Patterson D (1996) Computer architecture, a quantitative approach, 2nd edn.
Morgan Kaufmann Publishers, Inc.

6. Intel Corporation. Intel 64 and 32 architectures software developers manual,vol.1: Basic
architecture. Technical Report 253665–032US, 2009

7. Intel Corporation. Intel pxa255 processor developer’s manual. Technical Report. Order number
278693-002, Intel Corporation, January 2004

8. Limited ARM (2005) ARM architecture reference manual. Technical report, ARM Limited
9. SPARC International (1992)The SPARC architecture Manual–Version 8. Prentice Hall

References 213

Chapter 16
ERRIC Reliability

Abstract The key property of our design is resilience. So far we mostly covered
system software methods and schemes to achieve or support it. Previous Chaps. 14
and 15 explained briefly what hardware (processor) should possess (including
reduction on functions and limited in architecture options) to be able to implement
resilience in the most efficient way. Here, we intend to analyze what we have
achieved in hardware design in terms of malfunction tolerance—attempting to use
heavy artillery of system software as less as possible, making dirty work of fault
detection and determination (malfunction or permanent for hardware).

16.1 ERRIC Reliability Analysis

Having introduced the reliability analysis of malfunction tolerance in Sect. 4.6.1,
we apply it here to the current ERRIC processor prototype. Current estimations
show a fault coverage of 100% for single-bit upsets (faults that affect one bit in the
current operation).

We do not consider multiple faults although it is expected that with growths of
die density, the amount of multiple faults will be higher than the amount of single
faults. This is subject to future work.

The actual implementation of the ERRIC processor shows that hardware over-
heads in the range of 12% for checking and 3% for recovery [1, 2].

Using these two values, we can estimate the Mean Time To Failure (MTTF) of
this system and also the reliability as a function of time.

The MTTFnf and reliability over time (Pnf(t)) of ERRIC without fault tolerance
are given by Eq. 4.4 and Eq. 4.3, respectively. For the MTTFft and Pft(t) of ERRIC,
we can apply Eq. 4.8 and Eq. 4.7, respectively. We do not use Eq. 4.11 as this
equation is not directly applicable to a concrete system.

We recapitulate the equation pairs here reflecting them with figures:

Pmf ¼ e�ð1þ kÞkpf1 t ð16:1Þ

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_16

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_16

and

MTTFmf ¼ 1
ð1þ kÞkpf1

ð16:2Þ

Figure 16.1 illustrates that impact of malfunctions k assumes 100 here, while in
reliability the malfunction rate is in the order of 5 higher than the ratio of permanent
faults.

Permanent fault is assumed at rate 10−5, k as above = 100.
Assuming that redundancy in the system is introduced for detection of fault

denoted as d, and recovery denoted as r, we claim that implemented checking
process and recovery process reduce impact of malfunction on the processor
reliability.

Clear a share of tolerable malfunction (success of detection and recovery) should
be taken into account; we denote a and it stands for success of malfunction
toleration.

Pmft ¼ e� 1¼dþ rð Þ 1þ akð Þkpf1 ð16:3Þ

and

MTTF2 ¼ 1
1þ dþ rð Þ 1þ akð Þkpf1

ð16:4Þ

Redundancy for checking (detection) d varies in various hardware schemes, and the
maximum redundancy to provide checking is 100%, or d = 1, when duplication of
the hardware is used to compare outputs.

Maximum power of fault detection is a privilege of duplication. Assuming the
same coefficient k of malfunction/permanent fault ratio, resulting reliability with the
implementation of fault tolerance proposed for ERRIC is shown in Fig. 16.2.

Fig. 16.1 Probability of system operation in the presence of malfunctions

216 16 ERRIC Reliability

This figure was made with the following parameters and assumptions:

– Redundancy for checking and recovery varies from 0.12 (for ERRIC) up to 1
(i.e., 100% for duplication schemes);

– Coefficient of malfunction to permanent fault varies from 0 to 1000, where 0
means that all malfunctions are tolerated, while 1000 means that malfunctions
exist and impact on the hardware.

– Impact of redundancy d is obvious and decreases reliability further (see
Fig. 16.1).

Note that when redundancy is used to make malfunctions tolerated, we see sub-
stantial gain in reliability—right curve in Fig. 16.2. Provided, of cause if we use
redundancy wisely.

The resulting efficiency is calculated by dividing the fault-tolerant MTTFft by the
non-fault-tolerant MTTFnf. For a concrete estimation, we use the values in
Table 16.1, comparing ERRIC with ARM and Intel processors [3–5].

Note that the failure rate is only required for the reliability estimation (Fig. 16.1),
but not for the resulting efficiency comparison.

The last line of the table above shows a resulting efficiency of roughly 8700, i.e.,
the fault-tolerant ERRIC is 8700 times more reliable (longer MTTF) than the
non-FT version of ARM processor.

Fig. 16.2 Reliabilitywith and without malfunction

Table 16.1 Complexity of
redundancy required for fault
tolerance

FT ERRIC ARM

Complexity overhead d 0 1

Redundancy for checking di 12 0

Redundancy for recovery dr 0.03 0

Malfunction reduction a 0 1

Ratio transient fault—permanent fault k 104 104

Failure rate k 10−7 10−7

Resulting efficiency �8700 0.5

16.1 ERRIC Reliability Analysis 217

The reliability of the ARM [5] is calculated under the assumption that twice the
number of transistors is used in an ARM processor in comparison to ERRIC which
is reflected in the complexity overhead d, which is applied to Eqs. 16.3 and 16.4,
i.e., using d instead of di and dr.

This estimation is conservative as an ARM processor due to its much more
complex instructions set and implementation (pipelines, cache, etc.) needs probably
more than twice the number of transistors (latest estimation of ARM and ERRIC
complexity enables us to talk about 6:1 [evsy 14]).

It’s obvious that ERRIC has by far the highest MTTF due to its ability to recover
from malfunctions.

Calculating the efficiency of ERRIC and comparing it to ARM are only half the
story. We also should create experiments and provide analytic estimation of the
performance of ERRIC over time. There is no doubt that our next and nearest goal,
in the analysis of evolving process of reliability and performance of resilient
computer system, is to use ERRIC as an example.

16.2 Digging a Bit Deeper in Estimation of Efficiency
of Reliability Solutions

Let us add some more realism for the estimation of efficiency as presented below
(Eq. 16.5):

E ¼ 1þ kð Þ
ð1þ ckð1� xbð1�xÞÞ 1þ xð Þ ð16:5Þ

Comparing the efficiency of solutions for malfunction tolerance of two processor
models Eq. 16.5 means that if we “kill” malfunctions with coverage c = 1, and
with minimum redundancy (x ! 0), then resulting system will be almost k times
more reliable as all malfunctions are tolerated, and this is reasonable.

In turn, recoverability of hardware requires redundancy, defined for Eq. 16.5 as
b. Clearly, when b is approximately 10–15%—similar to as ERRIC design—the
overall reliability gain is higher, when b ! 1, …, 0.95, the gain decreases
(Fig. 16.3).

Comparing the estimated reliability gain, one can see that the potential of this
architecture is huge, especially and primarily for resilient computer systems.

Additionally, proposed processor is 5–6 smaller in power consumption than
ARM or Intel current models. Therefore, in combination with system software
described in previous chapters, we made a substantial progress in this area on
resilient computer technology and system software.

218 16 ERRIC Reliability

References

1. Blaeser L, Monkman S, Schagaev I (2014) Evolving systems. In: Proceedings of the World
Comp’14, USA, July 14. https://www.academia.edu/7685575/Evolving_systems_-_WorldComp_
2014

2. Castano V, Schagaev I. Resilient computer system design. Springer. ISBN 978-3-319-15069-7
3. Intel Corporation (2009) Intel 64 and 32 architectures software developers manual, vol 1: basic

architecture. Technical report 253665-032US
4. Intel Corporation (2004) Intel pxa255 processor developer’s manual. Technical report. Order

number 278693-002, Intel Corporation, January 2004
5. ARM Limited (2005) ARM architecture reference manual. Technical report, ARM Limited

Fig. 16.3 ERRIC comparative reliability with and without fault tolerance

References 219

https://www.academia.edu/7685575/Evolving_systems_-_WorldComp_2014
https://www.academia.edu/7685575/Evolving_systems_-_WorldComp_2014

Chapter 17
On Performance: From Hardware
up to Distributed Systems

Igor Schagaev, Hao Cai and Simon Monkman

Abstract Nothing is easy nowadays: frequency of processors increased thousand
times, system performance as a whole sometimes tripled. Complexity of the system
became uncontrollable with zillions of processes and elements to juggle increased
unconsciously, leaving for us some comfort but at an astronomical cost. What it
means? We are doing something seriously wrong and doing it consistently and
persistently. Thus, authors of this work have decided to put together our own dis-
cussions and estimations we did since 2002 up to now. We show that system per-
formance depends on user, hardware, and software, structure or architecture of a
system and its topology.We propose to see performance analysis a bit wider, thinking
systematically what various zones of computer or distributed system can bring or
contribute, including the role of processor, structure of system software and over-
valued parallelization (try to eat and dance at the same time—it might be fun). We
have introduced a kind of virtual architecture through which see instruction execution
considering what is in there for us andwhat system requires for itself. The observation
is rather pessimistic. We have briefly demonstrated what simplest architecture if
carefully designed can give regarding performance, reliability and energy efficiency
AT THE SAME TIME! Regarding distributed systems, we show that Amdahl Law is
also very overoptimistic mostly serves to promote parallel architectures and dis-
tributed systems. Simple model that we have explained for kids from British primary
school and even did field study with them so-called “fence model”made clear that the
limit of performance or simply overall reasonably good design is unachievable until
we start rethinking the whole architecture and its main element interaction—human,
hardware and system software together, pursuing three nonfunctional requirements,
performance, reliability, and energy efficiency in concert.

As it was presented and argued in [1–6] any system should be considered from the
first sketch down to maintenance using the following nonfunctional requirements:

Performance;
Reliability;
Efficiency (cost, energy).

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_17

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_17

We call it PRE-requirements. When a system can trade P for R or E and vice versa
we call this system PRE-smart system. This chapter is about “P”—performance.

Any system is evaluated in terms of performance, considering performance of
elements and system as a whole. Good systems exceed performance of their
components, or equal production of component performance; badly design system
in terms of overall performance is much less than production or sum of perfor-
mances of its components. Regretfully, computer systems are poorly designed if we
accept this classification. This chapter is about performance and ways to analyze it.
We also will model computer system from the position of performance and seeking
the ways to improve it, considering use and system performance aspect.

17.1 System Level

Suppose one element has performance Pi; then system of n elements if we can add
performance will have maximum performance as n*Pi, i.e., linear growth is assumed.
Unfortunately, one has to take into account that external interaction zone (Fig. 17.1)
and task structure reduce our expectations about unlimited performance growth.

ACTIVE
ZONE (AZ)

EXTERNAL
INTERACTION
ZONE (EIZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

ACTIVE
ZONE (AZ)

Fig. 17.1 System level of distributed computing

222 17 On Performance: From Hardware up to Distributed Systems

Then performance growth is defined as a function of number of elements and
EIZ:

Ps ¼ fðEIZ; nÞ ð17:1Þ

where EIZ stands for external interacting zone, n—number of “performers” con-
sidered only by performance, not the organization.

Thus, structure of EIZ and its dynamic features (ability to connect transparently
arbitrary number of elements with heavy information exchange requests) will
impact on system performance of both: system level of performance and element
level of performance (Fig. 17.2).

One has to address EIZ features as well as properties of program structure to
achieve reasonable gain in performance. System performance-wise program
structure itself impact is crucial, as well as ability program to split into independent
elements. This ability, in turn, is limited; this causes substantial amount of traffic
through EIZ and, therefore, kills performance gain.

17.2 Information Processing Aspect

On the information processing level, consider a system as a black box with input
x and output y, with arbitrary function F, Fig. 17.3, top box.

A function or a task of this box in Fig. 17.3 is to get a result y from an input
x within allocated time and, if necessary, alter appearance of x in the time slot
expected.

Contrasting with mathematical assumptions, for information processing, in
principle, input and output timing is loosely dependent, input x might have its own
duration while readiness of output y has its own duration, both might overlap, see
Fig. 17.4.

A special interest might be in resolving the following cases: how form of x
defines (is connected) with function and form of y. Comparative study of durations
x and y might be interesting research for embedded systems especially.

P E
R

FO
R

M
AN

C
E

NUMBER OF ELEMENTS

Fig. 17.2 performance
versus system structure

17.1 System Level 223

Function F

First
appearance

of x

First
appearance

of y

Function F

Fig. 17.3 System as a black box, with arbitrary function F

DELIVERING x

PROCESSING y

Fig. 17.4 Input appearance might be overlapped with outcome

224 17 On Performance: From Hardware up to Distributed Systems

17.3 Information Systems Task-Wise Hardware Involved
Performance

Information system is a combination of three wares: userware, software, and
hardware, UW, SW, and HW, respectively (Fig. 17.5).

Thus information processing system might be described in terms of performance
of all three: UW, SW, and HW, as they all are involved in information processing.
It means that in the long-run performance and efficiency of the system depends on
userware, software, and hardware performance.

Their combination might have very peculiar form and mix. In terms of Fig. 17.5,
userware, software, and hardware might be connected to perform task as shown in
Fig. 17.6.

For real-time systems (and embedded systems especially), or general applica-
tions, computer systems over 30 years user features were ignored in terms of
overall system performance; it is great regret, we now press much more buttons and
click more clicks than 20 years ago achieving very disputable advantage, if any.

This is a subject of special study in UW-SW-HW systems. Here, we spend some
more time and analyze details of HW only. However, SW, especially system
software (further SSW) has serious impact on performance of hardware, it will be
also shown further.

Performance is about task completion in time allocated. The same principle of
task allocation and analysis might be applied further down, to the whole system

INFORMATION PROCESSING SYSTEM

USERWARE SOFTWARE HARDWARE

Fig. 17.5 Information
system components

INFORMATION PROCESSING SYSTEM

USERWARE

SOFTWARE HARDWARE

yx

Fig. 17.6 Information
system box: x + time = y as
three components, S, H, U

17.3 Information Systems Task-Wise Hardware Involved Performance 225

hierarchy, for any component—UW, SSW, HW, and business management.
Leaving efficiency of management discussion to business schools, we will consider
mostly SSW-HW model.

17.4 SSW-HW Performance Model

Task of user (userware tasks, further (UWT)) splits down at the level of HW as a
series of micro-tasks (instructions, microinstructions). Program tasks are sur-
rounded by another group of micro-tasks that define the system software
(SSW) involvement on execution of the user program, secure a completion, and
system resource monitoring.

Thus, userware tasks UWT are accompanied by another group of micro-tasks
defined by the system software (system software tasks, further SSWT) (Fig. 17.7).

This total amount of hardware workload in number of instructions Wux to per-
form user task x can be expressed as in Eq. 17.2 where i, j indexes stand for number
of hardware instructions required to complete supportive actions (system software
need) and user ones (1):

Wux ¼
Xm

j¼1

hjðsswtÞþ
Xn

i¼1

hiðuwtÞ ð17:2Þ

Indexes m and n stand for a system software and user software instructions exe-
cution time. Assuming that all hardware instructions have similar execution time
(for RISC systems it is essential design condition), one might introduce an effi-
ciency of measure as it is shown below, Eq. 17.3:

Eux ¼
Pn

i¼1 hiðuwtÞPm
j¼1 hjðsswtÞþ

Pn
i¼1 hiðuwtÞ

ð17:3Þ

Further, we will dig deeper on performance and efficiency in terms of hardware
impact on performance of the system but here note existing relation of efficiency
and performance.

…UWT SSWT UWT SSWT UWT

Fig. 17.7 User and system
task sequences

226 17 On Performance: From Hardware up to Distributed Systems

Definition 1 Efficiency Eux of computer system is measured by number of
instructions required to perform to the total number of instructions performed by
computer system.

Naturally, efficiency Eux ! 1, while m ! 0, and, no matter what frequency a
processor is if m ! n, Eux ! 0.

Regretfully, it is a case for current state of the art in computer systems and
especially embedded computer systems. What it means for embedded systems
especially?

For various systems, it means that

• Application of Java, or use of modified standard operating system, unavoidably
reduces efficiency and, above all, runs out our computer batteries for nothing;

• For military systems, an availability and reactiveness is substantially lower than
it could be;

• For office systems, nowadays, the employees are sitting and waiting for
Windows or Cisco service more than they actually work.

Leaving further comments about efficiency for system software research and PhD
projects, let’s concentrate on implementation of hardware instructions in terms of
time.

17.5 Hardware Performance

One of the simplest information processing systems is a simple turing machine—
(http://ideonexus.com/2009/02/05/javascript-turing-machine/); it demonstrates in
principle almost minimum of hardware required to perform information processing.
Turing machine usually is drawn similar to mine (Fig. 17.8).

Head is moving left and right accordingly instructions stored on the tape and
modifies content of the tape. Surprisingly, if an algorithm for problem exists, it is
very possible to calculate it and complete.

Turning machine was invented as a model well before Von Neumann’s archi-
tecture. The latter one assumes that programs and data are placed on the same tape
and head Q might perform instructions. More details about this machine might be

i j k l …

Q

Fig. 17.8 A-la turing for
performance evaluation

17.4 SSW-HW Performance Model 227

http://ideonexus.com/2009/02/05/javascript-turing-machine/

found in http://plato.stanford.edu/entries/turing-machine/. What is missing in turing
or Von Neumann architectures is an answer how and when algorithm and data were
placed into the memory (tape in Turing machine). Besides, arrow on the figure is
assumed to connect but not explained how this communication is executed.

17.5.1 Hardware Zones

Thus, from information processing point of view, we have even from this simple
picture involvement of three zones (Fig. 17.9):

• active zone,
• interface zone, and
• passive zone.

Active zone (AZ) includes schemes that change information (processors, convert-
ers). Interface zone (IZ) includes schemes that transfer information from external
source or between AZ and PZ (internal source). Finally, passive zone (PZ) includes
schemes that save or store information.

What is missing in the previous picture? To make any information processing
model useful, we have to introduce input and output options for information.
Each AZ, PZ, and IZ might be active in terms of data flow control (so far not
processing) flags—demand of service, interruption request, message writing/
sending requests, etc. Let us have a look at Fig. 17.10.

All arrows might be different in speed, and use various frequencies and band-
widths, bit size (8, 12, 24, 36, 48, 64, 128) procedures of control, and data delivery
(parallel, sequential). This is still not self-explanatory how we deal with information
exchange. More realistic figure is presented in Fig. 17.11.

Level of information interaction AZ, PZ, or IZ actually defines structure of the
system similar to Flynn diagram (find what is it, dear reader, it might be useful).

In terms of input and output examples of implementation of each zone, one
might suggest the following:

AZ inputs and outputs iAZ and oAZ:

• register content exchange between processors,
• signal write or read to interrupt processor execution,
• mutual exclusion efficiency of multiprocessor communication, and

INTERFACE
ZONE

PASSIVE
ZONE

ACTIVE
ZONE

Fig. 17.9 Hardware
segments of CA of
information processing

228 17 On Performance: From Hardware up to Distributed Systems

http://plato.stanford.edu/entries/turing-machine/

• Direct writing of processor status word down to syndrome register when syn-
drome register is external for AZ—flags N, Z, V, and C all might be sent out.

PZ inputs and outputs iPZ oPZ:

• data or control lines from internal bus,
• data path for memory to upload in AZ,
• writing of the result of instruction to output buffers using bus,
• direct access to memory, and
• dual-port memory.

As a small challenge, we invite a reader to present own examples for IZ input and
outputs.

INTERFACE
ZONE

PASSIVE
ZONE

ACTIVE
ZONE

INFORMATION INPUTS

Fig. 17.10 Hardware segments of CA including information exchange options

INTERFACE
ZONE

PASSIVE
ZONE

ACTIVE
ZONE

INFORMATION INPUTS

Fig. 17.11 Separation of input and output options for each zone

17.5 Hardware Performance 229

17.5.2 Hardware Performance—Instruction Execution

Hardware instruction is implemented using different blocks (zones) that in com-
bination enable to processing.

An example of information tracing through instruction execution is presented in
Fig. 17.13 and serves for further understanding of performance evaluation.

Data might be loaded:

– from external source straight to AZ (instruction type A),
– unloaded from AZ to external source (instruction type B),
– loaded directly to the passive zone (instruction type D), and
– unloaded from PZ to the external source (instruction type C).

Information might be

– processed and loaded to passive zone (instruction type H),
– retrieved from PZ into AZ to be processed (instruction type K), or
– processed in AZ and unloaded to PZ.

In fact, interface zone is involved in almost any information transfer internal or
external, and in both directions inbound and outbound. It means that the perfor-
mance of IZ contributes to overall performance of information processing. Special
and most promising architecture will be discussed further that limit the role of IZ on
overall performance of the computer system.

Other types of instruction not shown might combine the proposed types of
instructions.

Let us elaborate a bit what Fig. 17.12 illustrates. Information can come exter-
nally through interfacing zone IZ and stored in active zone for further processing—
A-type instruction.

From active zone (Arithmetic unit or logic unit or several of them), information
through interfacing zone can be transferred out—B-type of instruction.

Well-known good old days direct memory access (DMA)—C-type instruc-
tions—are about disabled active zone and read data directly from passive zone
(including registers and all types of memory).

The same way information might be loaded into passive zone—D-type
instructions—and this is very useful for embedded systems.

In turn, self-isolated instructions, E-type, are about using only active zone and
keeping results inside it—sometimes not even addressable at the level of registers—
accumulators, signs, or working register.

When instruction processes data, the result can be transferred down to passive
zone through interfacing zone—F-type.

Opposite data move: G-instruction are required to deliver data for further
processing.

Well away from RISC architectures, instructions can have several cycles of data
processing and include result transfer down to passive zone: H-type of instructions.

230 17 On Performance: From Hardware up to Distributed Systems

Last century architectures which are still procrastinated electronic technology by
orthodox instruction sets include two types of instructions, I-type and K-type. These
two assume that data is taken from passive zone and delivered to active zone, where
sometimes after several cycles of processing go back to passive zone (for I-type).

K-type serves the purpose to grab data from passive zone and process, saving
results inside active zone for immediate further use.

Please note that passive zone is not starting any instruction; instruction is either
initiated by external zone or by active zone. There are some natural questions we
might ask here:

AZ

IZ

(a) (b) (c) (d)

(e) (f)

(i) (j)

(g) (h)

AZ

IZ

PZ

AZ

IZ

PZ

AZ

IZ

PZ

IZ

PZ

AZ

IZ

PZ

AZAZ

IZ

PZ

IZ

PZ

AZ

AZ

IZ

PZ

AZ

IZ

PZ

Fig. 17.12 Types of instructions

17.5 Hardware Performance 231

Why we need to have a look on these types? why we need to know instruction
formats at all?

The answer is simple:
Assuming sequential execution of the instructions, one can estimate an overall

performance of hardware for particular tasks and task mix. Each zone has its own
specific features in terms of performance and interaction with other zones.

Thus passive zone includes several sources of memory (Flash, SRAM, DRAM)
that have different control schemes and timing diagrams, and while involved in
instruction execution cause a lot of uncertainties. Interfacing zone might be different
in control protocols, width, performance, and reliability.

Two examples of instruction execution using all three zones are shown in
Fig. 17.13.

Hiy is loaded from external source, saved in passive zone PZ, and retrieved into
AZ to be executed; when results are ready, they are delivered back to IZe, where
index e stands for external.

Another type of instruction shown describes the load of HIy to AZ, executed in
several iterations (or just one) and saved back in PZ.

Data might be processed by instruction when data come from external source
directly to the active zone and after processing goes directly to PZ, or when data
follow reversed order, from passive zone to active zone for processing and then to
external destination.

Data go directly to passive zone—well-known direct access to memory, or when
data are dread by external source—direct reading from memory.

Finally, there is a group of instructions in modern hardware that is assigned for
reading or writing from or to external source and when data retrieved and processed
in active zone.

Passive zone is not starting any instructions either initiated by external zone or
by active zone.

AZ

IZ

PZ

AZ

IZ

PZ

Hiy

Fig. 17.13 Complex processor instruction from the previous century

232 17 On Performance: From Hardware up to Distributed Systems

In turn, active zone might consist of (even within a mobile telephone) several
information processing units for parallel execution of tasks or specific sequence of
instructions such as data coding and signal processing. Detailed description of the
zones, and their involvement in instruction execution, therefore, might help to
estimate the performance of embedded device.

17.5.3 Performance Estimation—Instruction Timing

To do performance estimation of embedded and any other computer system, we
have to assume following points:

• Mix of instructions with weight of all types of instructions defining the system
performance.

• Time required to perform any instruction—it is worth to separate AZ, IZ, and PZ
when instruction is executed.

• Note that instructions that use IZ (external) part are not defined in completion
time.

Thus, a mixture of presented types of instructions with taken into account an
amount of each of them is a good reflection of overall hardware performance.

In other words, hardware performance might be calculated by summarized
length of the instructions required to process user task. Let us consider what is AZ
and others in terms of overheads:

Tinstruction execution ¼ TzþTizþTpz ð17:4Þ

Obviously, the shorter the cycle of instruction, the better the instructions of A, B, C,
D, E, F, and G types that are preferable. It is possible to calculate what difference
one might face if use H, I, and K types of instructions, but it is clear that 10−9, 10−5,
and 10−6 do not fit together well.

It is worth to analyze active zone performance in terms of instruction execution
phases:

• Loading,
• Decoding an instruction,
• Preparation of operands,
• Execution of the instruction, and
• Loading back modified operand

Loading means that instruction from memory goes to the load register in parallel
with increment of program counter (inside processor) and goes through decoding
scheme that activates requires activation operands and execution device ALU.

Decoding means that instruction (loaded from memory) is placed in the internal
register (not always addressable) inside processor and by special timing diagram

17.5 Hardware Performance 233

section all hardware links activated: for ALU, operand’s addresses and signs (such
as N, Z, V, C).

Preparation of operands means that input ports are activated and buffers for
instruction data are enabled. For big instructions, it means that instruction execution
will be postponed until all memory cycles required to upload operands in processor
are complete.

Execution of instruction assumes that ALU (or combination of them) are ready
and perform instruction from operation field (ADD, SUB, etc.) in assumption that
required operands are ready and delivered from memory (or registers) to internal
buffers.

Thus, performance of active zone might be estimated as

PerfAZ ¼ 1
TAZ

ð17:5Þ

while
Taz = Tloading + Tdecoding + Tpreparation of operands + Texecution + Tloading back

Pretty much the same one might do with passive and interfacing zones.
Let us have a look for illustrative purposes how instruction is executed by

recoverable processor (ReP) made by ITACS Ltd. and prototyped with partial
support by grant of FP6 www.onbass.org (Fig. 17.14).

At first from instruction register through control unit via control bus microin-
struction goes to either AU or LU. At the same time, microinstruction about

!Instruction
Register

Control
Unit

Register
File

Rbuf(R*) AU

3-state
3-state

MUX

MUX

Control Bus Data Bus

Data outData in

Hardware for Error Detection (P1)

Hardware for Error Recovery (P2)

Hardware for Data Manipulation (P3)

Check
GNR

Check

Check

LU

Fig. 17.14 REP structure

234 17 On Performance: From Hardware up to Distributed Systems

operands of instruction goes to register file and chosen operands go via three-state
buffers down to either AU or LU. When all signals are arrived and timing diagram
cycle is competed, information processed and arrived at the last right three-state
buffer.

When confirmation from checking schemes arrives, i.e., no errors are detected,
the right three-state buffer will release information to deliver either back to register
file or through interfacing zone out of processor to the memory or bus.

The picture of prototype of ReP (Fig. 17.15) might be useful to analyze from the
performance point of view and organization of embedded system.

Clear visible active zone and passive zone as well as board traces define per-
formance of ReP. Interesting bit of this design is limitation of instructions com-
plexity; only simple instruction to get or put data from and to outside world, store
and read data from active zone, and process data inside active zone are allowed.

Thus, when we need fast calculation, processor is performing it with maximum
frequency, without waiting of memory of IZ. In turn, clear read/write instructions
limit slow down from interaction with external world.

Fig. 17.15 Prototype of ReP

17.5 Hardware Performance 235

17.5.4 Standard Performance Tests

When we need to have a standard performance estimation, one might use SPECint.
SPECint is designed to measure processor speed and compare various hardware.

There is a special company to look after this:
SPEC = Standard Performance Eval. Corp., their website is www.spec.org

What is widely known at the moment is SPECint2006.
SPECint2006 includes 12 tests (all in C/C++)—perlbench, gcc, bzip2, …,

xalancbmk.
One can create performance comparison of embedded devices of processor

overall 12 tests. Then, designed system might be 12-dimensional evaluation of the
known system. Therefore, application segment relative performance might be
known. For more details about standard performance, see

http://www.spec.org/cpu2006/results/cint2006.html.

17.5.5 Real Processor Hardware Comparison

The performance of processor is reduced if instruction uses intensively data traffics
between memory and active zone. Today, a top-of-the-line x86 microprocessor runs
at 3–4 GHz, while the memory runs at 100–500 MHz.

The time to execute an instruction inside a CPU is almost negligible in contrast
with access memory time. In other words, the performance of architecture depends
on memory traffics.

Proposed recently by ITACS performance of ReP is evaluated by the compar-
isons with 80 � 88 architecture and MIPs’ instruction architecture.

Simple instructions dominate this list and are responsible for 96% of the
instructions executed. These percentages are the average of the five SPECint92
programs [7].

Various mixes of instruction cover different applications. However, we can
evaluate the CPU performance based on the average case as illustrated in
Table 17.1. Within this evaluation, we assume loading data and storing data into
memory takes equal time.

The execution time comparison between 80 � 86 and ReP is shown in
Table 17.2.

MIPs dynamic instruction mix for five SPECint2000 programs (gap, gcc, gzip,
mcf, and perl) is presented in [7]. The execution time comparison between MIPs
and ReP is shown in Table 17.3.

Table 17.4 compares the performance of MIPs and ReP.
Modern embedded systems need efficient cost–performance ratio and very often

minimize power consumption. One of the design options is as it was mentioned
above the design as much as possible and therefore reduce the hardware overheads.

236 17 On Performance: From Hardware up to Distributed Systems

http://www.spec.org/cpu2006/results/cint2006.html

Table 17.1 Comparative ratio of memory use for ReP and 80 � 86

No. 80 � 86 instruction ReP instructions Integer average (%
total executed) (%)Instructions Memory traffic Instructions Memory traffic

1 Load 2L LD Ri, Rj 2L/2 22

2 Conditional
branch

1L XOR Mask,
Rj

1L/2 20

CBR Ri, Rj 1L/2

3 Compare 1L CND, Ri, Rj 1L/2 16

4 Store 1L, 1S ST Ri, Rj (1L + 1S)/2 12

5 Add 1L ADD Ri, Rj 1L/2 8

6 And 1L AND Ri, Rj 1L/2 6

7 Sub 1L SUB Ri, Rj 1L/2 5

8 Move 1L MV Ri, Rj 1L/2 4

9 Call 1L MV Ri, Rj 1L/2 1

CBR Ri, Rj 1L/2

10 Return 1L MV Ri, Rj 1L/2 1

CBR Ri, Rj 1L/2

Total 96

Table 17.3 Comparative ratio of memory use for MIPs and ReP

MIPs instruction ReP instructions Integer average (%)

Instruction Memory traffic Instruction Memory traffic

Load 2L LOAD 2L/2 26

Add 1L ADD 1L/2 19

Cond branch 1L Compare 1L/2 12

XOR 1L/2

CBR 1L/2

Store 1L, 1S STORE (1L+1S)/2 10

Or 1L OR 1L/2 9

Compare 1L Compare 1L/2 5

And 1L AND 1L/2 4

Sub 1L SUB 1L/2 3

Xor 1L XOR 1L/2 3
(continued)

Table 17.2 Comparison of execution time for 80 � 86 and ReP

Processor and instruction mix Ratio

80 � 86 22%* 2L+20%*1L+16*1L +12*2L +8*1L +6*1L +5*1L +4*1L +2*1L ¼1.66

ReP 22%* L+20%*1L+(16*1L +12*2L +8*1L +6*1L +5*1L +4*1L)/2 +2*1L

17.5 Hardware Performance 237

Thus, complex instructions of most processors for embedded systems are
implemented by a sequence of simple instructions. For embedded systems, there is
therefore developed set of performance evaluation, so-called embedded
benchmarks.

17.5.6 Embedded Benchmarks

Benchmarks for embedded computing systems vary accordingly applications due to
RT, HRT, PW, and CW performance requirements where RT stands for real time,
HRT means hard real time, PW is power-wise and CW is cost-wise performance
requirements, respectively.

That is why material presented above is important. There is one a bit more
known benchmark developed by Embedded Microprocessor Benchmark
Consortium (EEMBC). It has five categories: automotive/industrial, consumer,
networking, office automation, and telecommunications.

Selecting Table 17.5 what this benchmark is (taken from Hennessy book rec-
ommended earlier), full site consists of 34 kernels in five classes.

Table 17.4 Comparative performance of MIPs and ReP

Processor and instruction mix Ratio

MIPs 26%* 2L+19%*1L+12*1L +10*2L +9*1L +5*1L +4*1L +6*1L +8*1L ¼1.67

ReP 26%* L +(19*1L +36L +10*2L +18*1L +6*1L)/2 +5*1L

Table 17.3 (continued)

MIPs instruction ReP instructions Integer average (%)

Instruction Memory traffic Instruction Memory traffic

Load imm 1L LOAD 2L/2 2

Shift 1L SHIFT 1L/2 2

Cond move 1L COMPARE 1L/2 1

XOR 1L/2

CBR 1L/2

MOVE 1L/2

Jump 1L MV 1L/2 1

CBR 1L/2

Call 1L MV 1L/2 1

CBR 1L/2

Return 1L MV 1L/2 1

CBR 1L/2

Total 99

238 17 On Performance: From Hardware up to Distributed Systems

17.6 Relative Performance Gain—Amdahl’s “Law”

Relative gain in performance usually called “Amdahl’s law”. Well, law in terms of
science, not society, is “a regularity in the material world” (Shorter Oxford English
Dictionary, 6e, Vol 1). Thus, naming simple proportion of performance after
improvement Pai with performance before improvement Pbi is, to put it politely, too
ambitious.

Speedup ¼ Pai

Pbi
ð17:6Þ

But this proportion is useful to evaluate success of the modification of processor
structure after re-iterative design. What is interesting here is that arithmetic
expectation of linear growth of performance by improving element performance
(Figs. 17.1 and 17.2) has nothing near to the real situation.

17.6.1 Distributed Computing

In the late 1960s, an idea for the parallelization of computer program using dis-
tributed computing paradigm instead of single-processor scheme was proposed [8].

It was declared that parallelization of tasks and programs and use of available
distributed hardware for support of parallel execution is the most feasible way to
boost system performance.

Later, Sun [9] introduced “system fallacies” of distributed computing
(Table 17.6). Omitting topologic factors and paying attention to Fallacy 2, 3, and 7,
we discover that these fallacies fit into the area of parallel, closely connected
computers with multiprocessors—in fact, all modern computers.

Table 17.5 EEMBC benchmark suite

Benchmark type This
type

Example benchmark

Automotive/
industrial

16 Six microbenchmarks (arithmetic operations, pointer chasing,
memory performance, matrix arithmetic, table lookup, bit
manipulation), five automobile control benchmarks, and five
filters or FFT benchmarks

Consumer 5 Five multimedia benchmarks (JPEG compress/decompress,
filtering, and RGB conversions)

Networking 3 Shortest-path calculation, IP routing, and packet flow operations

Office automation 4 Graphics and text benchmarks (Bezier curve calculation,
dithering, image rotation, text processing)

Telecommunication 6 Filtering and DSP benchmarks (autocorrelation, FFT, decoder,
and encoder)

17.6 Relative Performance Gain—Amdahl’s “Law” 239

If we look harder, these fallacies might be not strong enough and some of the
declared features described became obsolete.

Besides, again, when definition includes eight other elements that are not con-
nected or have vague relation to each other, it seems odd or at least inconsistent.

If we follow Sun definition, we are not including Internet into the distributed
computing even as a supportive hardware infrastructure. Anyway, we’ve proposed
our own définition of distributed computing:

Definition 2 Distributed computing is a paradigm that assumes an execution of
functionally connected tasks as a single process over distributed media and
resources.

Clearly, a joint collaborative work of thousands of processors at once might
bring substantial profit for both loosely connected tasks (when they share HW
resources, but not logically connected, such as Google cluster), or closely tight
models that include of several thousands of DE.

But in the second case, it is much harder to get the gain from distributed
computing, and it is not a surprise.

Amdahl described drawbacks of distributed computing in the late 1960s [8],
highlighting that even small parts of a program must be parallelized to reach their
full potential. This way linear growth of speedup is not possible at all.

In other words, if 1 is a length of a sequential program and we have managed to
parallelize p fraction of it, then sequential part is shrinking down to 1 − p, while
parallel part requires p/n time where n stands for number of processors, (3) and
Fig. 17.16.

S ¼ 1
1� pþ p=n

ð17:7Þ

17.6.2 Real Performance and Amdahl “Law”

The proportion Eq. 17.7 is useful to evaluate a success of the modification of
processor structure in re-iterative design. What is interesting here is that the
expectation of linear growth of performance by improving element performance
(Figs. 17.1 and 17.2) has nothing near to the real situation.

Table 17.6 Sun fallacies of
distributed computing

1 The network (distributed system) is reliable
2 Latency is zero
3 Bandwidth is infinite
4 The network is secure
5 Topology doesn’t change
6 There is one administrator
7 Transport cost is zero
8 The network is homogeneous

240 17 On Performance: From Hardware up to Distributed Systems

It means that if we make super parallel execution of 80% of a program, we still
have to complete another 20% sequentially. The number of speedups versus number
of processors as a family of functions is presented in Fig. 17.16 taken from [8]

17.6.3 A Fine-Tuning of Parallel Speedup Model

The theory behind computational work in parallel has some limitations that reduce
the advantages of parallelization. Usually, the goal in large-scale computation is to
get as much work done as possible in the shortest time within the budget.

Furthermore, the system can be considered good and well-designed when it is
able to get a big job done in less time, or a bigger job done in the same amount of
time without any problem; in other words, a system should be a scalable.

Therefore, the power of a computational system can be represented as the
amount of computational work done, divided by the total time it takes to do it. It is
important to emphasize that usually the aim is to increase power per unit cost, or
more importantly nowadays, cost–benefit, and in this regard physics and economics
conspire to limit the raw power of individual single-processor systems available to
perform any particular piece.

Fig. 17.16 System speedup by Amdahl [8]

17.6 Relative Performance Gain—Amdahl’s “Law” 241

It is agreed within the research community that the cost–benefit scaling of
increasingly power single-processor systems is usually nonlinear and very poor. For
instance, one processor that is twice as fast might cost four times as much, yielding
only half the cost–benefit per pound.

Physics sets its own limit as well—a so-called “thermal barrier” [5]—an amount
of heat that material is capable to dissipate is limited making endless increase of
frequency of operation impossible.

These two arguments are usually applied to justify alternative solutions and
development of parallel designs. There are some drawbacks though, as Amdahl
pointed out, and they are serious.

Let us rewrite Amdahl ratio in terms of time: T(N) will be the time necessary to
finish the task on N processors. The speedup S(N) is expressed by the ratio
(Eq. 17.8):

SðNÞ ¼ Tð1Þ
TðNÞ ¼

Tsþ Tp
Tsþ Tp=N

ð17:8Þ

In many cases, the time T(1) possesses, as represented above, both the serial part Ts
and the parallelable part Tp.

Unfortunately, Amdahl ratio ignores a role of runtime system tasks (see first
section of this chapter) that must be considered when a parallel execution is
assumed.

A more detailed analysis of parallel speedup would include two more parameters
of interest, namely,

– Ts—the original single-processor serial time;
– Tis—the average additional serial time spent performing, for example,

inter-processor communication (IPCs), see Fig. 17.1, where it is introduced as
EIZ, setup, and so forth in parallelized tasks. It is important to note that this time
can depend on N in a variety of ways; nonetheless, the simplest assumption is
that each system has to spend this much time one after the other, so that the
additional serial time is, for example, N*Tis;

– Tp—the original single-processor parallelable time;
– Tip—the average additional time spent by each processor performing just the

setup and work that it does in parallel; this may as well include idle times, which
is also very important and should be accounted for separately.

The most important element that contributes to Tis is the time required for
communication between the parallel subtasks. This communication time is always
there—even in the simplest parallel models where identical jobs are farmed out and
run in parallel on a cluster of networked computers, the remote jobs must begin and
be controlled with message passing over the system.

In systems with more complex jobs, partial results developed on each CPU may
have to be sent to all other CPUs in the distributed computing system for the
calculation to proceed, which can be very costly in scaled time. The (average)

242 17 On Performance: From Hardware up to Distributed Systems

additional serial time (Tis) plays an extremely important role in defining the
speedup scaling of a given calculation.

Most computer systems process information sequentially. Lines of code in a
computer program get translated into assembly language by the compiler, and the
latter gets decoded into microcode in the processor. Everything and every step
along the way is done sequentially. For example, a flowchart processing usually
includes multiplication or comparison of two digits; it starts with the first digit, and
then the second digit is introduced and the working register is set to 0.

To explain what is real and what is not and why Amdahl rule is mostly mis-
leading, we have developed a simple model—so-called “fence making model”,
illustrated in Fig. 17.17 and following expert recommendations [10].

17.6.4 Parallel Versus Sequential: A Fence Model

Our task is to make a fence with N planks and two horizontal rails; each plank needs
two nails and has to be “preprocessed”. Two rails have to be placed at the
assembling site. Each plank needs to be placed at site and finally nailed. We also
need hammers and nails and sequence and instruction to operate.

Task requirements: number of planks N; number of rows—2. Each plank needs
to be nailed half-way through before placement for final processing and assembling
a fence.

N Planks

Fig. 17.17 Fence model of processing

17.6 Relative Performance Gain—Amdahl’s “Law” 243

There are two principally different options to make this fence:

(A) by distributing tasks;
(B) by making all tasks on site sequentially.

In case (A), distributing task scheme assumes the existence of agents–workers and
distributers and their abilities to act:

– N workers for plank processing are available and ready;
– a distributor of the nails is in place;
– a distributer of the hammers is in place;
– a distributer of the planks is in place;
– a distributer of rails is in place;
– a collector of the fence segments initially is and placing the planks;
– nailing the planks at two rows are performed by workers;
– collecting the hammers is performed; and
– garbage collector is in place and completes the task execution.

Case (B), in turn, assumes that the same worker is doing all actions, like “a jack for
all trade”, has one hammer, bucket of nails, and does the following:

– takes nails;
– planks where they are;
– half-nail planks;
– places them on the rails;
– nails them all;
– place fence where necessary, collect garbage.

Let us consider the process of making the fence from N planks in more details for
both cases, assuming that nails, hammers, planks, and rails are ready and placed in
the local warehouse (storage and executed by “a system officer”, while workers
execute user task). Sequences are presented in Table 17.7.

Our task now is about giving elementary time slot te and constant coefficients
equal for both variants of fence processing to prepare two variants of the fence
completion as a sequence of steps for A and B cases. This will illustrate a gain from
distribution of works.

We need to compare these cases as well as explain what is possible to prepare in
preprocessing and what is possible only during operation. One might find useful to
make a table of all works mentioned and using own experience and case estimate a
concrete gain for concrete case.

Now we have to answer the following questions:
When distributed computing is efficient in comparison with sequential;
What impact system software makes on parallelization of task and efficiency of a

system.
It is clear that planks are data, nails and hammers are programs to process data

on site, and distributer is runtime system.

244 17 On Performance: From Hardware up to Distributed Systems

Let us leave an arithmetic exercise with various values of parameters from job
descriptions above to good master students.

Our estimation indicates that overheads of runtime system for distributed exe-
cution might achieve almost 60% of user task cost (time). We add in denominator
of (5) a coefficient k, a relative value of system software overheads per user task
(Eq. 17.9):

y ¼ 1
ð1� pÞþ kþ p

x

; x ¼ f1; 2; . . .; 10g; p ¼ f0:85g; k ¼ f0; 0:1; 0:4g ð17:9Þ

Following Eq. 17.9, the graph of Fig. 17.16 presents three curves in three colors:
green, blue, and red k = 0, 0.1, 04, respectively. The top one stands for known
“pure” Amdahl ratio (k = 0).

Figure 17.18 shows that for extremely good runtime system, one can double
performance with 4 cores. It is still too optimistic statement, especially recalling
Multics 85% and Window 65% of total workload time.

Table 17.7 Parallel versus sequential execution in more details

Parallel operation Sequential operation

Distributor Distributor

Gets pack of planks Activate worker

Distribute planks Check garbage left

Distribute rails

Distribute nails

Distribute hammers

Distribute planks along rails

Activate N workers start

Collect hammers and left garbage

Place two rails in assembling area

Clean garbage

Worker Worker

Receive planks Gets packs of planks

Receive nails Gets buckers of nails

Receive hammer Gets a hammer

Preprocess plank (two nails nailed half-way
through)

Places (distribute) planks to the
assembling area

Spread planks along rails (fine-tuning) Places rails in assembling area

Nail plank (two nails) to the rails at the final
assembling

Preprocess N planks (two nails per each)

Prepare to final assembling Places (distribute) planks along the rails

Nails N planks Assemble fence Clean
garbage

17.6 Relative Performance Gain—Amdahl’s “Law” 245

17.7 Conclusion

• Hierarchy of performance models is proposed from the point of view of in-
formation processing.

• Shown that calculation of efficiency of computer system should include a role of
user and system software as well as hardware.

• Model of hardware from the point of view of information processing is
proposed.

• Calculation of performance of embedded system hardware is presented.
• Comparative study of proposed embedded architecture with most known

architectures is presented.
• Role of complexity of instruction set on performance is briefly discussed.
• Brief description of what kind of benchmarks is used for performance evaluation

of new and existing systems is presented.
• In details, using fence manufacture model shown that Amdahl Law is overop-

timistic at an order of magnitude. It requires to consider the role of system
software and algorithms ability of parallel computing.

Fig. 17.18 System software role in distributed computing

246 17 On Performance: From Hardware up to Distributed Systems

References

1. Schagaev I (1990) Yet another classification of redundancy. In: IMEKO 7th symposium
technical diagnostics, 17–19 Sept 1990, Helsinki, pp 485–491

2. Schagaev I (1990) Instruction sets and their role for computer architectures (in Russian).
Electronics Publication

3. Sogomonyan ES, Schagaev IV (1988) Hardware and software of fail-safe computing systems.
Automat I Telemech 2:3–39

4. Schagaev I (2001) CASSA—concept of active system safety for aviation. In: IFAC automatic
control in aerospace 2001 a proceedings of the 15th IFACS symposium Bologna/Forli, Italy,
2–7 September 2001

5. Blaeser L, Monkman S, Schagaev I (2014) Evolving systems. In: Resilient computer system
design. Springer. ISBN 978-3-319-15069-7

6. Schagaev I. Active system control design of system resilience. https://doi.org/10.1007/978-3-
319-46813-6. ISBN 978-3-319-46812-9

7. Hennesy J, Patterson D (2003) Computer architecture: a quantitative approach. Morgan
Kaufmann Publishers Inc., San Francisco. ©2003 ISBN:1558607242

8. Amdahl GM (1967) Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the April 18–20, 1967, spring joint computer
conference, AFIPS ‘67 (Spring), pp 483–485. https://doi.org/10.1145/1465482.1465560

9. https://blogs.oracle.com/jag/resource/Fallacies.html
10. www.doityourself.com/stry/buildwoodfences

References 247

http://dx.doi.org/10.1007/978-3-319-46813-6
http://dx.doi.org/10.1007/978-3-319-46813-6
http://dx.doi.org/10.1145/1465482.1465560
https://blogs.oracle.com/jag/resource/Fallacies.html
http://www.doityourself.com/stry/buildwoodfences

Chapter 18
Distributed Systems: Maximizing
Resilience

Igor Schagaev

Abstract We claim that system redundancy (natural or artificial, deliberately
introduced) should be applied for the purposes of Performance, Reliability and
Energy efficiency or “PRE-smartness”. A process of an algorithm of application of
available redundancy for PRE-smartness is proposed showing that it is further
extension generalized algorithm of fault tolerance, when property of fault detection
is replaced as property of PRE-smartness. We present a system level implemen-
tation steps of PRE-smartness. Using ITACS LTD forward and backward tracing
algorithms applied for distributed computer system we demonstrate that efficiency
(reliability as a whole, especially availability; performance of detection and re-
covery) grow up to the level when real-time applications of distributed system
grows substantially. Ans estimation of reliability gain is modeled and demonstrated
suggesting a policy of implementation of PRE-smartness as a permanent on-going
process required for the system successful functioning.

18.1 Introduction

Desperation management is one of the concepts we use in everyday life for effective
handling of our conditions using available resources. Obviously, organization,
hierarchy and structure of these resources within any system, not only in our body
or brain (knowledge IS the resource!) can either help or complicate their utilization.

For networked computers or distribute computer systems further (DCS) as a
whole we can consider as resources the following (we are not pretending to make a
federal level of classification here):

– topology of the system
– elements—nodes (routers, switches etc.)
– rules—algorithms of behavior control for of the system as a whole
– routing algorithms
– network protocols

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_18

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_18

Using available resources efficiently is not easy: our designs are limited by market
domination of existing systems, technological limitations and created sometimes
artificially demand of, frankly speaking, completely non-necessary applications. At
the same time, we have to ask ourselves:

• What else is possible to add in our systems? and
• How to address real problems to assist human beings and living using

technologies?

Considering that DCS consists of over 3 billion computers and dozens of billions of
controllers, all connected, the challenge in handling this world for good is astro-
nomical. Surprisingly, some hints how to address these challenges were already a
subject of R&D efforts of scientists from ETH Zurich and IT-ACS Ltd, their papers
[1, 2], books [3–5], interviews [6], and keynote speeches (the latest is: [7]). In short,
we can summarize challenges as combination of essential non-functional require-
ments (NFR) for the DCS and stand-alone future CS in terms of as Performance-,
Reliability- and Energy-efficiency.

Thus, widening application area for ICT (information and computer technology)
force us to think about computers, distributed computer systems and structures from
a perspective of resources, available redundancy, then see their applications in
terms of improvements and efficiency of a system as declared in [1–7], considering
three strongly dependent requirements:

• performance
• reliability
• energy efficiency (power consumption)

When the system is considered to be used by various applications which have
various demands and these demands also vary from application to application we
simply must think about design of the system with capabilities of trading available
resources for different purposes. Trading resources here means that, for example, if
applications requested maximum performance then the system should use its
resources for that and even borrow from resources previously allocated for
reliability.

There is no doubt that implementation of these non-functional requirements
needs some redundancy in the software and hardware [3–5]. Note that redundancy
is already a property, and its efficient use is a goal to satisfy mentioned NFR of ICT,
primarily in DCS domain. It is worth to mention here also, that handling redun-
dancy for various purposes, addressing various and changeable requirements
becomes actually a process.

Since late 60’s up to early 80’s of last century researchers were questioned
themselves on how to design computers systems for the future, making them
reliable, resilient, power efficient and powerful. 50 years on and we still have the
same questions. The discussion now is more focused on properties and features
required for next generation of computer systems, especially distributed computer
systems (DCS), that includes networking and clustered computers.

250 18 Distributed Systems: Maximizing Resilience

Thus: performance, reliability, and low power consumption as NFR become
altogether a serious challenge. By applying of DCS redundancy (of both types
natural and deliberately introduced), serving a property of reconfigurability these
challenges are resolvable.

The Internet expanded enormously and still growing in terms of data transfer and
various types of data flows, to name a few: emails, voice and video. The referred
applications are not safety critical and not even really hard real-time ones.
Nowadays, computer and networks are considered through so called Quality of
Service (QoS) requiremens and try to develop mechanisms to provide satisfactory
communications for different combination or sub-domains of QoS. This is actually
completely and perfectly wrong. According to various sources, more than four
billions of IP addresses are assigned permanently, this number which is growing
exponentially puts a lot of strain in the internetwork (Internet). These resources
simply must be used and exploited for good and be flexible, not fixed. Thus, a
reconfigurability of DCS should be used with intelligence, smartness, and flexibility
for all mentioned PRE-requirements.

18.2 Reconfigurability of DCS

Modern communication networks are formed using wired or wireless media, using
distinct signal carriers (fiber, copper, and air). Problems arise due to the complexity
of data and its requirements with regards to timely data delivery and integrity over a
very complex interconnected networks (Internet) [8, 9].

Computer networking encompasses all zones of information processing. This
capability makes them faster and technologically sound. Note that, the zones of any
computer architecture or computer system differ semantically in terms of infor-
mation processing, namely active, passive and interfacing zones. Below is pre-
sented a definition for each of these zones [1–5]:

(a) Active zone—this is the zone where the information is transformed and is
known at the moment in the form of CISC (complex instruction set computers),
RISC (reduced instruction set computers), SIMD (single instruction multiple
data), and MIMD (multiple instruction multiple data) [10].

(b) Passive zones—this is zone is known in the form of dynamic and static
memory, such as DDR SDR and flash memory.

(c) Interfacing zone—this zone is in charge of transferring data from one zone to
another.

Interfacing zone for DCS computers becomes overdeveloped complex and ineffi-
cient. Problems we are facing today in terms of networking are caused by the fact
that historically computers technology was not considering potential work within
the DCS framework.

18.1 Introduction 251

Therefore, effective ways and procedures to deal with DCS in both levels: at the
level of element—all zones introduced, and at the level of system. Solutions should
be for sure scale-independent as DCS growth now in fact is uncontrollable. Dealing
with all zones and dynamically applied NFR of PRE-smartness might provide a
smooth exchange or transfer of information along the DCS as a whole. This is
crucial, as our lives became too dependent on the communication devices and
networks.

Distributed computing trend is shifting toward distributed databases, this
approach which uses distributable large-scale tasks exploiting connected computer
systems (networks) is called cloud computing [8, 9].

DCS to be robust, resilient and effective requires tuning or optimization of
network topology and its backbones—nodes—read computers as elements of this
network. These tuning should be performed at the application software, system
software, and topology level. In addition, the computer´s internal structure should
be set the most efficient way to execute requested operation and supported
dynamically during operation.

There was no substantial progress in this area, instead, there were a considerable
investment for “Cloud Computing”, “Internet of Things” which do not address the
problems of DCS organization, on the contrary.

Real-time, safety critical, active control systems, health monitoring, etc., all
require special attention in terms of investment and more research to improve (or
change) hardware, system software, application software, system and user data with
aim to make billions of connected computer systems applied more efficiently with
increased reliability and performance [1–4].

All real-time safety-critical applications (active control systems, military, health
monitoring, air-traffic control, banking, etc.) should merge and exploit the advan-
tages offered by DCS.

Therefore, to maximize advantage of DCS on should either to:

• Modify the existing networking schemes to match challenging areas, or
• Build a special purposes safety-critical system for common applications and

make them as a key part of a network.

Otherwise, the DCS domain and market will be organized in different clusters and
clustering is leading to industry segmentation [8–10].

The most important point here is:

• The network should have properties to absorb and support merging process; this
way market clustering and technology segmentation can be avoided.

• Network unique feature is redundancy at every level of implementation. It
should be exploited efficiently. Efficiency, as always, requires some analysis
considering networks reconfiguration for various purposes, like for instance,
performance enhancement, reliability or power efficiency.

252 18 Distributed Systems: Maximizing Resilience

18.2.1 Redundancy of Distributed System: A Description

Important categories to describe redundancy are: structure, information and time
[11]. According to [5], a structural redundancy can be measured using graph or
graph-logic notation, as represented below:

dS : dV ; dEh i: ð18:1Þ

where dS represent structural redundancy, whereas dV and dE represents extra
vertices and edges added in the structure to aid in the implementation of recon-
figurability. Therefore, PRE-goal can measure quantitatively as redundancy using
the following expression:

dR ¼ dT ; dS; dIh i ð18:2Þ

The cost associated to each of any redundancy type used and defining the steps of
an algorithm implemented with aim to improve performance even in its most
simplified version as depicted by Fig. 18.1. Steps of algorithm A-G may be

Fig. 18.1 Performance gain
steps

18.2 Reconfigurability of Dcs 253

associated with application of redundancy types to improve (or achieve) perfor-
mance of Active zone, Passive zone and Interfacing zone of network computer
architecture, using different redundancy types Table 18.1.

Using this framework, one might quantify the impact on each solution along the
redundancy type used. The similar scheme might be applied for the improvement
efficiency of energy consumption. Note here that when system software based on
Java or any other interpretative language will always consume more volume of
hardware to store and execute (interpretation of text and execution), and, consume
more energy.

Two main reasons for this: it requires more hardware (memory) and more time
for processing. It is possible to save more energy by special purpose-built system
software including run time systems and language support [1–7]. Also, using
voluntarily advances in memory technology—such as flash-based memory adds
extra energy waste as activation of one memory cell in flash is equivalent to
applying power for bulk of 64 K.

On the top of that, all previously proved solutions for reliability of hardware
goes down to drain as Hamming code and models of single bit faults are no longer
valid as damaged area of hardware after the same alpha particle impact exceeds 64
K bit [3–5]. Here again, the principles of PRE-smart design must be applied to DCS
as a whole, and, as mentioned previously, redundancy and reconfigurability must be
implemented wisely [1–4].

Next generation of DCS should be PRE-smart systems with redundancy and
reconfiguration features embedded for performance, reliability and energy-wise
purposes. This approach would reduce market segmentation for computers drasti-
cally and networks as a whole.

Table 18.1 Redundancy types to gain performance

Redundancy: Hardware (HW), Software (SW)

HW(i) HW(s) HW(t) SW(i) SW(s) SW(t)

254 18 Distributed Systems: Maximizing Resilience

18.3 Resilience and Recoverability in Networked System

Previous section focused on clarification of PRE-smart design for computer sys-
tems, the same approach can be applied to networks, and make the latter more
suitable for real-time and safety-critical applications. First of all, is important to
establish the difference between a computer system and Distributed Computer
System (DCS), and this can be summarized in the following [3–5]:

(a) Redundancy in networks is already a fact
(b) Latency of thread impact for network cannot be avoided
(c) The propagation of thread impact for network is flooding-like

Clear that DCS to be PRE-smart and fit new requirements of RT and safety-critical
applications and should deal with (b) and point (c) above. Two concept or prin-
ciples here might be useful, they are: ASAP and ALAP: stop a threat as soon as
possible (ASAP), and handle it as local as possible (ALAP). Also, as it is described
in full details in [3–5] malfunctions should be handled hierarchically, from hard-
ware up to system level support of software recovery and system, reconfiguration.

In turn, reconfiguration of hardware in DCS is essential when permanent fault
took place. Again, ALAP concept should prevail over other design solutions as
wasting of hardware resources in volume is not feasible. All these arguments and
analysis are published in two books [2–4] and here we just summarize elements that
fit the purpose of making DCS fit for new applications.

Thinking about point (a) above we can see that Recoverability can be achieved in
DCS applying scheme of application redundancy (Fig. 18.1). Let us consider in a
bit more details how it can be implemented in DCS. Figure 18.2 presents a
hypothetic segment of network topology with incoming and internal connections.
Incoming and out-coming edges are represented with arrows.

By looking at Fig. 18.2. one might conclude that structural redundancy of the
topology is considerable and the application of the above topology for real-time and
safety-critical applications is straightforward.

Note here that any thread appeared inside the segment might cause serious
troubles because it might propagate very rapidly and cause irreversible damage to
the elements or the structure of DCS as a whole.

Note that here threads signify faults which could be permanent or just mal-
functions of software or hardware components [1–5].

Also, a recoverability for networks requires more efforts and extending of GAFT
introduced in [12], and further developed and explained in [1–7, 8, 9]. These
actions, specifically, are:

(a) Find where threads propagate
(b) Make an estimation of the damages
(c) Stop propagation
(d) Find the source of the threads

18.3 Resilience and Recoverability in Networked System 255

(e) Exclude or block the source of the threads
(f) Restore the best-fit configuration of hardware
(g) Restore best-fit of configuration of system software
(h) Restore best-fit of configuration of application software

Moreover, making DCS fit for RT and safety-critical applications one should follow
the same procedures established in the GAFT framework with a little bit of extra
work:

(a) Analyze possible damages along with estimation of potential consequences for
network topology as well as elements,

(b) The speed of thread propagation in the network is a factor that delineates the
complexity of recovery procedures,

(c) Different segments of the network might have different importance for the
network as a whole, for instance a gateway host and a simple internal router
have different roles in the network.

Therefore, the consequences of damages resulting from threads might be different,
occasionally substantial and exponential dangerous if the problem it is not treated in
an effective manner. Restarting and segmental switching are solutions which are

1 2

4

5

8

11

10

6

7

3

9

Fig. 18.2 Connected computer topology (a fragment)

256 18 Distributed Systems: Maximizing Resilience

being applied so far but they did not comply with requirements for real-time and
safety-critical applications.

Effective recovery is based on evaluating of the impact on the DCS and its
elements, applying a concept ASAP and ALAP (better from the design phase of
DCS). For DCS and its model we analyze the interdependencies of elements in
terms of thread propagation using a graph Fig. 18.2 where the elements (routers,
switches) are the vertices and edges are the links that connect the vertices.

The strength of the dependence between the vertexes is defined by the thickness
of the edges. It is also important to stress that dependencies among vertexes are not
symmetrical, this means that vertex 10 might have higher impact on vertex 7 than
vertex 7 might have on 10. In this case, dependencies in terms of problem prop-
agation might be presented as square non-symmetrical matrix where the indices
represent the vertices and the dependencies are represented by contents, this is
illustrated [4, 5, 8, 9] in Fig. 18.2.

The propagation of thread in the network can be defined as a vector P of
predicates {pi} that represents the condition for each vertex [4]:

P ¼ p1 m1 v1 d1ðtÞð Þð Þð Þ; p2 m2 v2 d2ðtÞð Þð Þð Þ; . . .; pk mk vk dkðtÞð Þð Þð Þf g ð18:3Þ

where m1…mk represents the models of vertexes in terms of vulnerability to thread,
v1…vk are vertices and d1…dk are data related to each vertex conditions. This data
can be gathered using various methods such as testing, and online-checking.

For networked systems it is important to evaluate flood-like thread propagation,
for instance all the vertexes to the initial point, which can be named vertex 1 need to
consider adjacency with 2, 6, 9th vertexes, vertex 11 need to consider adjacency to
vertex 3 and 10th and so on. The initiation of recovery process might have various
reasons, but it becomes an essential part of extended GAFT [1–7].

18.3.1 Implementation Steps

The framework assumes two algorithms involved in the recoverability procedures
of connected computer systems (networked systems), namely Forwarding tracing
and Backward tracing. How this works? When a thread is identified, via symptoms
noted through changes in the behavior of elements, the tracing algorithms searches
the Dependency Matrix related to the threat propagation through the system with
the aim to identify the consequences or the problems, starting from the vertex where
the thread was primarily identified [1–5, 10].

Example of thread dependency graph in the matrix form is presented by
Table 18.2.

Executing the tracing forwarding algorithm involves the calculation of a
cumulative probability along all the possible paths until a termination threshold e is
reached. This threshold is defined empirically and should be considered as a con-
stant for a particular network configuration [3, 4, 10].

18.3 Resilience and Recoverability in Networked System 257

The other termination conditions with regards to search of thread propagation is
to check all dependent vertexes. There is no doubt that only tracing of all elements
provide a 100% cover for threat checking. Unfortunately, this termination condition
is not viable as it becomes network scale-dependent. It is important to note that the
probability matrix associated with Fig. 18.2 is not Markovian because the sum of
probabilities on the edges at each node may not be equal to 1.

18.3.2 Treat Propagation: Tracing and Handling
Algorithms

The threat propagation from one element to another through the edges, according to
Tracing algorithm is defined as П (pi, j). Here, (pi, j) represents the probability of
threat propagation from node i to node j through the corresponding edge. Note that
the treat might spread through a series of other nodes.

Therefore, when there are several paths leading from node i to node j all possible
cumulative distributions are ranked and all the nodes along the paths are included in
the group of suspected nodes.

Table 18.2 Thread dependency for DCS Fig. 18.1

258 18 Distributed Systems: Maximizing Resilience

The Fig. 18.3 presents Forward Tracing Algorithm where pseudocode demon-
strates how it works. It starts from the vertex where the threat manifests, in this case
from vertex i, and the impact is analyzed and evaluated by searching from d1 to all
directly or indirectly connect nodes.

The final result of the search is the “consequence” caused by the threat propa-
gation and is presented in the form of a ranked list of the elements suspected to be
affected.

As all the paths from one node to another are evaluated only the edge with the
highest probability of is tracked at each node. Note that each node is only included
once in any path to guarantee termination in a graph which has loops [3, 4].

The Forwarding Tracing algorithm does solve the problem of threat elimination
from DCS. It is important to note that the manifestation of a threat in one vertex and
the detection of this threat consequences across another vertexes has an arbitrary
duration (the duration varies). Also, while consequences are finally spotted, the

Fig. 18.3 Forward tracing algorithm to determine area of thread propagation

18.3 Resilience and Recoverability in Networked System 259

threat propagation continues. Therefore, the role of forwarding tracing algorithm is
to localize damages, and where is possible block the threat propagation.

So far we have not mentioned how to deal with the reason or source of threat the
another algorithm was developed to perform Backward Tracing, Fig. 18.4. The
latter performs a searching of the reasons (for example, where, when and why a
threat appeared in DCS).

When Backward Tracing algorithm has completed the entire area of the damage
caused by the threat became known and defined. This eases recovery and optimize
the reconfiguration processes. This algorithm detects the source or reasons for the
potential order of manifested threats and caused consequences for each vertex
included. The threat propagation might be manifesting as inconsistency of data or
behavior at another node [4, 5, 10].

In one sentence—It is essential to start the recovery process from the vertex
where the threat appeared, so the treatment will start from the reasons not just the
symptoms.

Backward Tracing of the dependency matrix enables us to identify a suspected
element or elements.

Fig. 18.4 Backward tracing algorithm to determine the source of threat

260 18 Distributed Systems: Maximizing Resilience

When a DCS failure has detected, the only action known and applied so far is a
system restart. This is a common practice in networked system monitoring. In
contracts to it presented here Backward Tracing Algorithm enables the DCS re-
covery limited by the “area of damages”.

A combination of both algorithms forms the area of damages enabling network
management procedures substantially reduced the cost of recovery for DCS as a
whole. Note that for FTA and BTA engineering thresholds ef and eb can be set
differently and have different values.

Figures 18.5 and 18.6 visualize how both algorithms work, they were kindly
given by IT-ACS Ltd. from the materials of the patent [10] and materials of IPO
case against Russian Government attempt to endorse it [13].

Recovery procedures from a list of legitimate and relevant events should be
applied automatically, or in highly sensitive cases under supervision of maintenance
engineers. For reliability, security, and maintenance efficiency purposes it is also
important to record and save the results of recovery procedures [4, 13].

The checking procedure of a threat on DCS might be activated by various
reasons:

• A signal indicating that there is an inconsistency in data
• Detected deviation in system or element behavior in one or more vertexes.
• Maintenance team
• Maintenance automatic procedures

Fig. 18.5 Visualization of forward tracing algorithm

18.3 Resilience and Recoverability in Networked System 261

Therefore, when an element is included in a list of suspects, a sequence of
well-oriented actions should be put in place to interpret the unusual behavior or
event and prevent further propagation of the thread that can catastrophic damage to
the whole system [4, 5]. This scheme of detection–reconfiguration-recovery is
named Threat Monitor and operates on the dependency matrix of the DCS.

For the purpose of quality and integrity of networked systems—maintenance
procedures should be organized in a way to check the condition at every vertex of
the system, providing 100% coverage.

18.4 Recoverability Costs

Recoverability to work well in networked systems needs the deployment of many
new processes, starting from management to online checking of the networked
system conditions and application of algorithms of Forwarding and Backward
Tracing. In the case of online checking, this is a real-time process running over a
networked system’s main elements and links, system software and application
software [4, 13].

The goal of checking within networked system is to detect the degradation or
changes in the behavior of the elements and, initialization, as a result, therefore,

Fig. 18.6 Visualization of backward tracing algorithm

262 18 Distributed Systems: Maximizing Resilience

enabling the recovery of the suspected elements and subsequent conservation of the
networked system with regards to its reliability, availability, and consequent
extension of RT applicability as a whole [1, 3–5].

When full recovery cannot be achieved, preventive measures can reduce the
level of danger, risk, and allows graceful degradation of services running on net-
worked systems.

For networked systems the Process of Checking (PC) reliability and consequent
availability degradation, and the execution of Forward and Backward Tracing are
independent in principle. Therefore, they can be considered as sequential as well in
parallel. The PC (Process of Checking) which can also be regarded as Process of
Maintenance (PM), can be started any time when required, possible or convenient
[4, 5].

The aim is to perform PC well in advance when current mission reliability of
networked system is higher than threshold reliability defined and in such a manner
that when critical applications are running the networked system does not reach the
predefined threshold reliability. Note that the combination of processes of checking
and the recovery have an impact on the reliability of a networked system as a
whole. The gradient associated to the reliability change is a function of the quality
of checking, success of recovery and the quality of maintenance [4, 5].

The Process of Maintenance should also include the execution of both (Forward
and Backward) Tracing algorithms with harder conditions and reconfiguration of
networked systems if necessary. According to [4, 5] it would be interesting to shift
networked system in real-time maintenance with preventive measures against
threats. This approach enables to increase mission reliability and availability of
networked systems.

Recoverability could be measured using comparisons of standard networked
system against a system with RT maintenance implementation. For the analysis and
evaluation of the impact of recoverability implementation on networked system let
us follow the notation on [4, 5] and assume:

(a) A constant failure rates
(b) Maintenance is not ideal and coverage is less than 100%
(c) Minimum acceptable reliability threshold is introduced as before.

There are other assumptions related to checking process that need to be considered.
For instance, the mission reliability function with introduced recoverability and
online checking for networked systems is grounded on the following assumptions:

(a) The coverage is not 100%. The coverage is 100a%, 0 < a < 1, and this
parameter is assumed to be constant during al preventive maintenance actions.

(b) Preventive maintenance should be instantaneous and might not have a negative
impact on the networked system.

(c) The MR0 which represents the threshold of acceptable mission reliability is
provided.

(d) TPM represents a function of several variables, such as a, k and MR0.

18.4 Recoverability Costs 263

Therefore, the mission reliability for networked System can be calculated using the
following expressions:

MRðtÞ ¼ ane
�kðt�

Pn

i¼0

TPMðiÞÞ
;
Xn

i¼1

TPMðiÞ\t ð18:4Þ

MR
Xn

i¼1

TPMðiÞ
 !

¼ MR0 ð18:5Þ

The reliability curve derived from the above expression is shown in Fig. 18.7, if
one considers that maintenance is performed when the networked system reaches
the threshold of mission reliability, for instance when MR(t) = MR0.

The solid curve represents the mission reliability curve, whereas the dashed line
is the threshold defined by requirements of networked systems operations, and the
dot-and-dash line indicates the ideal reliability state for a networked system. The
latest system states are measured and analyzed when the checking period arrives.
The confidence on the system grows and consequently the reliability curve if after
each online- checking no faults are detected (the system is free of faults) [3–5].

Maintenance should always be carried out when the reliability of the networked
system reaches the threshold, for that one can use existing network monitoring
schemes and tools. The rate of mission reliability degradation is directly linked to
the gain of recoverability implementation in networked systems. When there is lack
of preventive maintenance for long periods of time the reliability of networked
system reduces drastically to the lower threshold R0 [3, 5, 14].

Fig. 18.7 Mission reliability for a CC system with incomplete coverage

264 18 Distributed Systems: Maximizing Resilience

18.4.1 Checking and Recovery: An Efficiency
of Implementation

As mentioned previously, checking and recovery actions might be scheduled
independently from the other processes inside the DCS; see Fig. 18.8.

In addition, Fig. 18.8 shows an example of mission reliability function for
networked systems where periodic preventive maintenance is done but the coverage
of checking is not complete.

Real-time online checking and recovery should be part of the monitoring pro-
cess. As mentioned previously online checking is a process executed in real-time
where the main elements in the system are checked in real-time. This includes
hardware (vertices and edges) and software. The main goal of online checking is
detection of changes in behavior or degradation, and if necessary recovery of the
suspected element(s). This will certainly improve the system’s mission reliability,
performance, and availability.

Again, is worth to emphasize that is very important to carry out checking and
preventive maintenance well in advance in order to provide the networked system
with highest mission reliability in real-time. The mission reliability function for
DCS and other networked systems with real-time maintenance needs to be calcu-
lated with realistic assumption about coverage of real-time maintenance is limited,
so coverage is a100 as it was described in [3–5] and further elaborated in [14].

Fig. 18.8 Periodic maintenance initiated for DCS within complete coverage

18.4 Recoverability Costs 265

18.5 Summary and Conclusions

Distributed systems can use existing resources much more efficiently.
We show that system natural or deliberately introduced redundancy can be used

for reconfigurability.
Reconfigurability can serve for performance, reliability and energy-efficiency

and if widely used be even traded for all three mentioned properties.
An extended generalized algorithm of threat handling using introduced resources

is proposed and explained.
Distributed computer systems require own algorithms of threat handling that

consider property of “distributiveness”, two of them: forward and backward tracing
ones are explained and evaluated.

Both algorithms are proven to be the most efficient to define damaged areas as
soon as possible (ASAP) and as local as possible (ALAP).

A system availability applying described algorithms is estimated, showing great
improvement of real-timeness.

References

1. Blaeser L, Monkman S, Schagaev I Vision on reconfigurable systems, chapter 10
2. Schagaev I, Monkman S (2013) Redundancy + Reconfigurability = Recoverability.

Electronics 2:212–233. https://doi.org/10.3390/electronics2030212
3. Castano V, Schagaev I Resilient computer system design. https://doi.org/10.1007/978-3-319-

15069-7
4. Schagaev I, Kaegi-Trachsel T Software design for resilient computer systems. https://doi.org/

10.1007/978-3-319-29465-0
5. Schagaev I, Kirk B Active system control. https://doi.org/10.1007/978-3-319-29465-0
6. https://faculti.net/system-software-support-of-hardware-efficiency/
7. https://www.academia.edu/34010977/IAP_Symposium_2017
8. Leon-Garsia A et al Communication networks. McGraw Hill, ISBN-0-07-246352
9. https://www.bitpipe.com/tlist/Internet-Architecture-Board.html

10. Flynn MJ et al (1996) Parallel architectures. ACM Comput Surv 28(1)
11. Schagaev I (1990) Yet another approach to classification of redundancy. In: CIM IMEKO

symposium 1990, Helsinki, pp 117–124
12. Schagaev I, Sogomonoyan E (1988) Hardware and software for a fault tolerant computing

system. Automat Remote Control 49(2), Part 1, Pergamon Press
13. http://it-acs.co.uk/files/Patent%20breach%20failed.pdf
14. http://it-acs.co.uk/files/Grant_for_a_patent.PDF

266 18 Distributed Systems: Maximizing Resilience

http://dx.doi.org/10.3390/electronics2030212
http://dx.doi.org/10.1007/978-3-319-15069-7
http://dx.doi.org/10.1007/978-3-319-15069-7
http://dx.doi.org/10.1007/978-3-319-29465-0
http://dx.doi.org/10.1007/978-3-319-29465-0
http://dx.doi.org/10.1007/978-3-319-29465-0
https://faculti.net/system-software-support-of-hardware-efficiency/
https://www.academia.edu/34010977/IAP_Symposium_2017
https://www.bitpipe.com/tlist/Internet-Architecture-Board.html
http://it-acs.co.uk/files/Patent%20breach%20failed.pdf
http://it-acs.co.uk/files/Grant_for_a_patent.PDF

Chapter 19
Distributed Systems: Resilience,
Desperation

Igor Schagaev and Stephen Farrell

Abstract Major drawbacks of existing distributed systems, including networking
are discussed. To cope with them we introduce a new design concept of perfor-
mance-, reliability-, energy- smart system, applied for distributed system and net-
working. Our approach of distributed system handling was called a desperation
control, which introduce and explain. It assumes introduction of new routing al-
gorithms for routing and for package handling inside routers. We claim that state of
a system as a whole as well as state of a package should be considered and treated
in concert varying ways of package handlings. Shown that proposed approach at
order of magnitude boosts performance and reliability of network making it suitable
for real-time packages and widening applications for really important applications:
existing technologies and billions of devices should serve and make people better.
Using elements of graph theory, we analyze and compare proposed algorithms with
known, explaining our advantages. Weighted costs of each segment of package
path, combined with vector heuristic introduced and enriched by graph-logic
extension for each routing table makes proposed concept the best so far from all
known. Resilience of distributed computer systems as well as networking therefore
becomes improved, extending application domain to the really important applica-
tions like safety critical, military, banking, health real-time monitoring, transport
and similar.

19.1 Introduction

Computer system resilience we have introduced in [1]. But this book does not cover
one important and even booming segment of computer systems—distributed
computer systems and network computer systems. Clear, that having thousands of
manufacturers and overcrowded society of applications to argue about unified
hardware design is a kind of naïve. But following our mantra through all our works:
ICT must be PRE-smart—read: Performance, Reliability and Energy efficient and
smart. “Smartness” here means an ability to trade resources available for achieving
requested functionality in spite of all odds: read resilience of the system is

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_19

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_19

considered as an essential requirement for both—stand alone and distributed
computer system and, therefore and must be provided.

Distributed systems, networks, Internet declared as already resilient ones.
Indeed—these systems can cope with traffic jamming, even recover, to some extent
after subsystems collapse. Simple timeouts and refreshed tables of routing (every
200 ms) do the work.

Unfortunately, this solution cannot match requirements of new applications such
as safety critical, real time, health monitoring and other applications with high
demands of guarantee of service.

That is why we turned to an idea of desperation management—similar to human
physiology actions. It is natural—if our applications require from ICT systems a
certain flexibility this should be reflected in package handling and structure
organization.

For this reason, we turn to analyze human desperation at first, seeking further
how it might correspond with distributed system behavior.

19.2 On Desperation

In our life we instinctively define a desperation as:
A fear of impossibility to achieve wanted or desired (D1)
Desperation also is implicitly reflected in various descriptions of our desires.

Regarding desires we are willing to know more to reduce fear and frustration:

• “knowing more worrying less”—every language has the same proverb or similar
• “better safe than sorry”, etc.
• “I am happy to run extra mile for it”—means actions for reducing panic

The definition (D1) is general, but it is useful and even explicit for everyday life,
social communication, literature and art. At the same time, for analytic purposes we
should add that desperation should be measured and what is even better—quan-
tified. Where to start? An analysis and further measure as we explained in [1–3]
should be exercised using three following prime categories that applied for
description of an object or phenomena:

• time (t)
• structure (s)
• information (i)

All three categories usually in research are represented by independent variables as
described in elements of theory of redundancy elsewhere [4–6], since our papers in
Automatic and Remote control about for fault tolerant computer systems design
[1–3]. This might be considered as starting point, to see how to quantify
desperation.

268 19 Distributed Systems: Resilience, Desperation

Then, from informal discussion of desperation as a word from the literature and
art domain we will be able to define and apply it formally for analysis of complex
technological objects like computers, distributed systems and Internet, to name a
few.

In theory of redundancy mentioned and developed in [1–7] for the purpose of
system improvement we also were considering an efficiency of system using three
categories mentioned above: time, structure and information. The aim was as
mentioned above is making systems smarter in terms of performance, reliability
and energy (or cost), using available time, structure and information. This frame-
work let us see and enables to making evolvable systems.

This was called PRE-smart [5, 7] system, and further thought through as
evolvable systems [6, 7]. References presented indicate just starting point in this
direction of research.

In principle, networking is nothing new in terms of computer science, because a
foundation of distributed computing and distributed computer systems (DCS) were
developed over 60 years ago [8–10]. Differences or advances in performance of
links and nodes did not change logic and concepts of synchronization,
a-synchronization and ordering of messaging in the network [9–12].

Queuing theory and works of Kleinrock were dealing with this since 20th
mid-century [11]. At the same time, a desperation concept was not addressed as it
should. The main reason for this, we guess, was an absence of real-time-ness
requirements for packages and/or sequence of packages.

19.3 Desperation in Networking

In networking, when we deal with real time-ness of messaging we suggest to move
from generic definitions above or using formulas with all three independent vari-
ables (s, i, t) down to addressing “time” as a prime parameter. The idea here is about
seeking what information we can have or use to see measurable gain. Thus, for real
time-ness of networking in terms of probabilities we might say:

Desperation is a probability of non-reaching a destination within scheduled time
(D2)

Naturally, in DCS a desperation depends on the following parameters,
Table 19.1.

Table 19.1 Parameters for desperation estimation

Name Meaning

L The length of a journey, given as distance between source and destination

TRT Time frame (or constraints) to be “within scheduled time”

Tcost Current cost, or “local time” for the process,—in other words, how much time spent
or which length is covered by process—at any particular moment

Here: L: The “length of a journey” is a kind of estimated length of paths between source and
destination

19.2 On Desperation 269

Note that it is not always known precisely. This is because, again, the structure
of Internet is defined globally and hierarchically, while at the local level we are
facing the fact that routing information is limited by the size of routing tables.
Above all, principle design of the whole network as asynchronous system, with no
decision core makes impossible to obtain the precise value of paths. Updating
distances for each routing table executed by networking protocol that serves just
this—refreshing periodically values of distances between nodes and distributing
them to the relevant “customers”—routers.

Therefore, one of the first questions is about how we know the whole distance
between source and destination. Considering network as a graph deciding about
handling a package it is worth to have the whole distance as well as awareness
about the size and structure of the whole network.

Further in special section we will consider some elements of graph theory that
might be applied for implementation of desperation control.

TRT: Time frame is predefined time slot within which a package should or must
reach a destination. We denote is as TRT—time constraints (“real time-ness”) for a
chosen process;

Note that during a package journey we can treat TRT not as a given limit or
requirement but as a parameter that reduces its value along the package passing
through network.

Then TRT is a function of current time for package journey: TRT(t)

Tcost: Introduced “The current cost of the journey” is how much time we have spent
so far. Clear, the more we waste time in traffic or queuing the less chances is left to
reach the destination timely.

Naturally, when we perform well and pass through the main path having suffi-
cient time reserve (in terms of TRT) we should not worry much or be desperate.
Thus:

Desperation ¼ P
Xn

i¼1

di; TRT ;
Xn

j¼1

dj;

 !

ð19:1Þ

Here the first sum represents the whole distance between source and destination;
TRT—time constraints (“real time-ness”) for a chosen process;
The second sum presents the current cost of journey for a process j.

19.3.1 How Desperation Grows

As long as journey of the package continues we are facing, amongst all others, two
big questions to answer:

• How desperation grows, and
• How to handle it

270 19 Distributed Systems: Resilience, Desperation

When desperation property is introduced in DCS or any other system actually, other
very interesting questions remain and still unanswered:

– Are we desperate at the starting point?
– Is it enough to known only shortest distances and total time constraint

introduced?
– Is it good to know inside the package the time constraint and how to deal with it?
– How desperate we are when a package time inequality—below—stands?

Let us consider desperation graphically, Fig. 19.1 illustrates two cases of successful
and late package. Constraints are introduced by Yc—time given for a package,
while Xt is time that package spent in the network.

Clear, that for the case a case when a distance covered by a package to its
destination took more time than permitted by constraint Yc the package is late;

Thus for the package a a distance covered is shorter than required within con-
straints and this package fail to be delivered in real time, failing real-time-ness
property or requirement.

In turn, for the package b a distance covered and time spent is less than limit and
this package complies the time constrains;

Normal delivery of a package is when between a current distance of a packages and
time constraint given we can be either below or match a linear dependency such as

y ¼ kx; ð19:2Þ

where kx at Xt satisfies:

kXt\Yc ð19:3Þ

Yc here is a defined time limit for a package, Xt a distance to a destination, k is a
coefficient such as

Fig. 19.1 Desperation of a package

19.3 Desperation in Networking 271

k ¼ Xt=Yc ð19:4Þ

The biggest difference between real-time traffic packages and regular is that for
the first ones the timing is strict: a package must be delivered within allocated
period of time and before the predefined moment of time;

It is also clear that within this category of real-time packages the importance of
them might differ as well.

Thus, for video or audio messaging the loss of some packages (if they are not
clustered) might be almost invisible, while for control of an unmanned aircraft, a
health-monitoring system or nuclear reactor control system, military or financial
messages cannot be lost in principle. Desperation and real-time-ness should be
analyzed along the DCS traffic as a whole.

There are two views to think about real time traffic:

– global and
– local

Global assumes that we know not only time for package within which it should be
delivered but delays which each router and line along the package path contributes.
Assuming “a global view” we are capable to estimate all delays and having this
information can make decision “globally”.

Thus, “globally” speaking, when our packages are highly unlikely are able to
reach a destination before deadline we should be discarding them well before the
real moment of deadline comes. It saves a lot of space and time for others and
“smooth” traffic as a whole for the whole DCS or Internet. Or,—especially for
real-time messaging we should make all our efforts to accelerate packages along the
paths available.

Our approach assumes a creation of a “weighted” contribution for each segment
of a package path and estimate it according the whole journey;

Let’s say a segment j share of total delay is a division of time spent within this
segment divided by total time allowed for messaging from the source to destination:

j-th share ¼ tjthPn
1 ti

ð19:5Þ

Then we are able to analyze the situations such as: “are we really late even if we
are late at this one, particular, but maybe insignificant segment?” It is interesting,
there is no doubt, but requires some global knowledge, awareness about updated
traffic information involved.

Also, probably we should consider all agents involved. Sender with its computer
drivers involved, as well as all along routers with their programs, including in and
output drivers and policies of reservation and making pull decisions.

272 19 Distributed Systems: Resilience, Desperation

19.4 Researching Desperation

Some good research questions here are worth to consider:

– Probability of reaching the destination in terms of time remains, how it
changes?

– How an internal state of each router and its organization impact on perfor-
mance of network for real-time routing?

– Is it right to have a decision to hold or pull based on the level of time left?
– Should be better service (priority higher) when the threshold gets closer?
– How about steepness of a curve of success reaching a destination in time?

Regretfully, this global view is over-optimistic, as delays due to traffic vary.
Additionally, hardware malfunctions and path restrictions also contribute in
uncertainty of delivery time. We consider this “global” view in a bit more details
further.

In turn, the “Local view”, or local approach is based on the interaction of
elements inside the router represented such routing tables, queues, operating sys-
tem, memory, processing power as well as hardware interruption schemes.

Every router—it is worth to remind—has to deal with packages of various types,
i.e. mixed traffic of: normal, regular and real-time packages.

There are several potential questions that might have research interest:

– What we know at the level of router? (see examples above, extended)
– Do we know the distance covered and how much time left? (at least ruffled?)
– A distance covered?
– Time left?
– Time spent?

Answering these questions, we note: for real-time packages we have limitations that
we are aware of: time given time spent at each segment.

Sure, we have to create a policy of pulling out packages that are approaching
their deadline (of presence in the router we are talking about). The closer to the
threshold the more urgent pull actions should be exercised.

This is what exactly has been called by as level of desperation or desperation
policy.

Instinctively, an algorithm at the local (router) level to deal with real-time
packages is obvious, Fig. 19.2.

In combination with a parameter of the package known as TTL (time to live),
that describes maximum permitted either time (is milliseconds) or in numbers
(number of hops permitted) time, for each package we can create a simple formula
that combines three parameters:

– Resource available
– Resource used
– Resource required

19.4 Researching Desperation 273

Note that these variables are not summed up like

Resource available ¼ Resource required � Resource used ð19:6Þ

This is simply because “Resource used” is a derivative of TTL and “Resource
required” is defined by type of package during formation of package, while
“Resource available” is an internal property of a router. Note that TTL for real-time
packages should be set much tighter than for normal package.

In other words, if we have more time to deal with a package without “a stress”
the level of desperation is low:

Resource available � Resource required � Resource used ð19:7Þ

Then, the closer we are approaching the equality the higher level of desperation:

Resource available�Resource required � Resource used ð19:8Þ

And when

Resource available\Resource required � Resource used ð19:9Þ

We are, obviously, already late. We might introduce a “probability” of
unsuccessful/successful delivery of package as

Pi ¼ 1�
Pn

i¼1 xi
D

ð19:10Þ

where xi is a cost of i-th segment; D—“a diameter” of network, or full distance of
package transaction in it. This probability, in other words, indicates that the longer
we travel the less chances to be on time.

Equation 19.11, in turn, defines a workload for i-th package delivery in time
required from the network in terms of relative cost:

Begin: get all real time packages inside the router queues (might be several queues)

- calculate a derivative – how fast each package is approaching its limit of stay in
the router (it is possible to do very fast with 4-7Ghz processors in the routers)

- create the list of packages with order to pull out accordingly the “desperation”

- execute the most emergent ones

- return to the Begin

Fig. 19.2 Algorithm of desperation control

274 19 Distributed Systems: Resilience, Desperation

Pis ¼
Pn

i¼1 xi
D

ð19:11Þ

And, as above, irregularity should satisfy:

Xn

i¼1

xi\resource required ð19:12Þ

There is an engineering suggestion that might be useful in handling of desper-
ation level up to the last moment of package handling—so-called “epsilon” eRa.
This “epsilon” can be used as estimate of speed approaching the equality of
resource required and available, and when we see that almost nothing left: resources
available dRa ! 0 it is required to evaluate relative speed of its consumption, then

dRa

Ra
! eRa

means nothing else but relative “share” of the package requirements along the total
cost of the journey. Physically speaking it means that if almost nothing left dRa !
0 but we are at the very end of the journey Ra ! 0 it is worth to have for this case
and engineering threshold to consider for the last push priority and policy.

Additionally, as a subject of special further research it is worth to analyze a
question like:—“what if we arrive too early…”. This is important as the load of
inside a node package Shandling might grow enormously. The importance of it
grows—because we might create a queue inside the router and a problem of sorting
packagers to put them in order ease their handling at the destination side. This, in
turn, causes or might cause internal delays along the path of package.

19.5 Graph Theory Elements for Desperation Model

Well, division of the cost of the link on the weight of the total journey is good in
terms of analysis of contribution of this link—share of it in the whole distance
between chosen nodes or vertices.

It is also useful to consider this distance thinking about graph cardinality—i.e.
how many nodes or vertices are in the graph as a whole. Internet as a graph model is
pretty rich in number of connections and astronomical in number of terminals
connected 2Bn+.

For the purpose of this research the structure of the Internet is sufficiently
described in [9, 12, 13] indicating several layers of nodes. Each layer has different
importance; further down Internet becomes a tree-like graph. New trends though
change this established picture because each mobile terminal (device) now receives
an option to become also router for others.

19.4 Researching Desperation 275

Saying this all gives us some argumentation that cardinal number and diameter
of graph are good terms to discuss the role of number of nodes and cost (or weight)
of path when we introduce different type of packages. Any estimation in particular,
pre-estimation (before sending a package) provide information for evaluation of
package travel success in presence of time constraints.

When we speak about directed and weighted graph The diameter of a graph G, is
the maximum distance between two vertices or nodes. It usually denoted as Diam
(G) [14].

Also, it is worth to consider how far a source node distant from any other
vertices. For this, in graph theory a term eccentricity is used. The eccentricity of a
vertex is the maximum distance from it to any other vertex.

Note here that packages are treated by routing algorithms and routers in terms of
pursuing Hamiltonian property of the journey. Hamiltonian property of any path in
graph also known when implemented as Hamiltonian path.

Tracing of the path in the graph for routing assumes that package is not repeating
any of path and visits each vertex exactly once. Thus, for any node we can think
about Hamiltonian cycle any of two nodes—sender receiver we A Hamiltonian
cycle (or Hamiltonian circuit) is a Hamiltonian path that is a cycle. This is con-
venient to analyze when we seek a maximum length of routing for corporate
networks which have known structure and costs of the links.

What we have said here about a distance on the graph, eccentricity, Hamiltonian
paths or cycle and diameter it is worth to illustrate it on example. Figure 19.3 and
Table 19.2 present a planar directed graph with weighted edges. Table 19.2
accompanies this graph presents all mentioned properties and distances.

Fig. 19.3 Sample of the graph for cost-wise routing

276 19 Distributed Systems: Resilience, Desperation

19.6 Desperation—Proposed Algorithms for Handling

In the algorithms of forward tracing and backward tracing (see for more details UK
patent [15], papers [5–7] books [1–3] we have introduced on-going probabilistic
reasoning to justify next step forward and next step backward. This enables us:

• to choose most likely further flow of events, predicting the future
• discover the most likely reason what went wrong (through backward tracing)

Both actions made possible preventing of unpleasant consequences and finding the
way to change the structure and element(s) of the system.

In our books [1–3] and patent [15] we were considering an idea of introduction a
realistic engineering constraints (with ef and eb) of possible further propagations of
fault in the system.

Note here that an anomaly detected at one node (element) might cause serious
consequences for other nodes adjacent to the first we start considering. Equations
along the paths were based on multiplication of probabilities along the lists of
adjacent nodes:

Table 19.2 Graph
description in terms of
distances and shares

Name Value Comments

a-b 4 Distance source-destination

a-c 2 Distance source-destination

a-d 7 Distance source-destination

a-e 5 Distance source-destination

b-f 7 Distance source-destination

c-f 8 Distance source-destination

d-c 5 Distance source-destination

d-f 3 Distance source-destination

e-d 4 Distance source-destination

e-f 6 Distance source-destination

Hamiltonian cycle

Diameter

(a-b)/Diam Share of edge within a network

(a-c)/Diam Share of edge within a network

(a-d)/Diam Share of edge within a network

(a-e)/Diam Share of edge within a network

(b-f)/Diam Share of edge within a network

(c-f)/Diam Share of edge within a network

(d-c)/Diam Share of edge within a network

(d-f)/Diam Share of edge within a network

(e-d)/Diam Share of edge within a network

(e-f)/Diam Share of edge within a network

19.6 Desperation—Proposed Algorithms for Handling 277

Variety of lists for possible propagation of a problem and possible reasons are
based on a type of problem faced. For example, in case of leakage, water propagates
along the system almost everywhere, in case of fire as well, while in case of
shot-cut, due to energy discharge damage is limited by neighborhood nodes.

Thus graph model of a system was enriched by logic operators for each
incoming and outcoming link. In this work, instead of fault propagation we are
trying to apply the same principle for algorithms and methods of system description
(graph, graph logic model (GLM) [16] to monitor “a level of desperation” for
packages traveled across network.

Indeed, these days at router level various packages are handled differently, using
the content of routing tables. Group of various algorithms introduced for that in [8–
12] are applied sometimes even in combination to address the requirements of
different types of packages. This all has been known as Quality of Service (QoS).
Amount of reading about such algorithms exceeds (11.5 Million) and grows (see
again previous chapters); surprisingly all of them are based on either Dijkstra or A*
algorithms but scrutinized “to fit” QoS demanded by type of package.

Mentioned algorithms use routing tables. Routing tables, in turn, are using the
protocol of network management protocol (NMP), that updates distance each
200 ms.

Modern routing is based on adding-on analysis of possible traces, paths and
selection of the most relevant or suitable. Both Dijkstra’s and A* algorithms form a
basis for modern routing. Cisco [13] and other algorithms [12] does not have
sufficient difference with Dijkstra and A* to be mentioned or considered.

In these circumstances introducing a level of urgency for service (or level of
desperation as we call it) into routing of packages especially for real-time packages
instead of known routing algorithms might be useful. This is simply because:

“those who need the most should be treated first”
But before to dive into details we should clarify what a difference of desperation

in generic terms is with the one we are trying to be explicitly defined for the
purposes of package handling. It is clear that the less time left the more effective
service should be provided.

Sure, it is possible to think and introduce inside the router something like integer
semaphores amongst all arrived packages with claims to be served and accessing it
through critical section or we can call “service zone” instead of “waiting zone”. We
might, for example, provide for all queuing packages “a right to be served”, fol-
lowing the rules of P, V semaphores [17] or even fault tolerant semaphores and [7].
When package (or process) is required to be served it requests to get through
“critical section”—P, V semaphores (“NATO book” Jenui Ed., [17]. This solution
is universal and it works. But number of voters is varying and complexity of voting
scheme becomes too high at the router level and overall performance of it, therefore
will be unavoidably poor.

Naturally, to implement “level of desperation”-driven service we need to eval-
uate timing for each package through the whole journey. At the same time, at the
router level we do not know so far how many paths along the graph of network a
package should take to reach its destination.

278 19 Distributed Systems: Resilience, Desperation

We might see in practice that some packages from so-called real-time ones sent
arrived “almost” to their destination and thus can sit for a while in a queue before
the last jump. Other packages in the middle of their journey might need “emergency
treatment” and served first making their passing as smooth as possible.

We easily can generate different situations and suggest another dozen of algo-
rithms [18–20] to address examples presented. But this is not practical—a perfor-
mance [21] of the system as a whole requires thinning of service routines and
relieve more time and space for user data (packages).

One of the solutions proposed here is to merge algorithm of forward tracing
using weighted relative cost of the links with standard routing table existing in each
router. An introducing the relative weight of path defined inside the routing table
for chosen package.

Indeed, the size of Internet in numbers of nodes exceed 7 billion nodes, there-
fore, considering Internet as a set of nodes we can get a cardinal of this set—i.e. a
number of elements in the set. Surprisingly, due to hierarchical organization
between the most distant nodes there are no more than 20–25 routers, (from our
examples using Ping we observed 11–14 routers). Additionally—assuming “round
the Earth” distance of tracing one might for each router “weight” the share of this
router in the path of a package di/D where di is a distance known from internal
routing table and D is a “diameter” of an Internet.

19.7 Comparative Analysis of Proposed Algorithm and A*

Here we present an experiment and simulation of desperation control algorithm as
described with known widely used in networking as Dijkstra and further modifi-
cation as A* algorithm.

Let us repeat a Fig. 19.3, expanding it to our convenience as Fig. 19.4.
Dijkstra algorithm is based on need of expanding a horizon if visibility at each

iteration of interaction with neighbors, gaining distances for steps to the further
destinations. Knowledge about the network obtained at each step contacting
neighbors. What we see, sitting at node a? the distances 5, 7, 2, 4, to our direct
neighbors: nodes e, d, c, b. What we chose knowing these numbers? Obviously, a
link with cost 2, to the node c.

Taking first step and considering that next searching of distance will be produced
from the node c we create further list of distance from c, taking into account (reading
backward) a distance accumulated from starting point—node a. If we aiming node
f as our final destination we have to consider two distances—to node f directly—cost
8 and to node b, cost 3 with further unknown length written usually as:

(b, 3, ∞)

Because a distance to b is shorter than distance of straight f step—(costs 8) it is
possible to appoint as next marked node from where we will seek next step a node b:

b ! f : 5.

19.6 Desperation—Proposed Algorithms for Handling 279

Thus we have two alternatives to reach from the node a destination f

a ! c ! f, total cost 2 + 8 = 10 and
a ! c! b ! f, total cost 2 + 3+5 = 10

Dijkstra idea is about to move on and not stop when you have reached a destination.
A horizon, expanded by your journey, at each and every step should be considered in
both way—forward and backward: while node b is appointed as leading its back-
ward link cost should be included in a joint table, giving us as a surprising example:

a ! b ! f, with total cost 4 + 5 = 9;

This was not visible when we have chose the cheapest cost at the first iteration.
Thus, Dijkstra insists on visiting all nodes and creating a full link cost table

when we have full and updated knowledge gained at each iteration. It is pretty good
rule: expanding your own horizon to your neighbors is as well expanding theirs and
when you have full knowledge of table you might see the first cheapest step
advantage was short lived and lined up.

Much wider spread in networking a routing algorithm called A*, that we briefly
describe further. Dijkstra algorithm is a core to understand the steps required in
discovering routes, thus one can consider A* as modification of Dijkstra algorithm.

In turn, our Desperation Control Algorithm (DCA) is using a diameter of a graph
or longest path as a parameter to estimate chances to reach a chosen destination. Let
us assume that longest path between source and destination is known:

Fig. 19.4 An example of graph with cost of links

280 19 Distributed Systems: Resilience, Desperation

a ! e ! f := 11

Then, relative weights to each link we have:

a ! c ! f : (2/11) � (8/11) = 0.1322..
a ! d ! f : (7/11) � (3/11) = 0.173…
a ! b ! f : (4/11) � (5/11) = 0.1625

A-la “probabilistically speaking” and giving a threshold of success, say, 0.15 we
might choose two bottom paths from this example.

Here, by the way it is worth to make some comment that only initially looks like
a deviation.

We extract a bit of text about efficiency of design of embedded systems having
technological constraints from [2]:

The on-board system options to implement both: fault tolerance and perfor-
mance are limited by technologies. Power consumption is also a crucially limiting
factor for any practical design of these systems.

Thus, we have generalized case of system design with constraints. The use of
redundancy, therefore is very limited and no matter which scheme of design we
choose, a maximum reliability can only be achieved if and only if the reliabilities of
all elements of onboard systems are equal. Figure 19.5 illustrates about maximum
reliability/performance design flow with constraints.

What does it mean for our algorithm with desperation control along paths? We
are facing the same classic case—since ancient Greece problem of maximizing the
rectangular size having a limited length of a line given: the ancient Greece legend
says that King was giving privileges by giving his knights a rope: arguing get the
land as much as the rope gives you. Clear that regarding rectangular the best option
was a square. Having more options his generals could be of cause using a circle.

This scheme gives us some navigation for movement along the paths of the
graph:

To preserve a probability of success for timely delivery along several paths we
should seek the paths that “contribute” to the whole journey relatively similar
weight.

Thus, if we have a distance between source and destination in number of nodes,
say 6 then we should choose from available options at each node the path that as
close as possible to L/6.

There is no doubt that it is not always possible and feasible but attempting it at
each router will guarantee smoothness of traffic for critical packages in the long run.

Additionally, this concept might be supported by internal procedures and pro-
grams each router involved [18]. Thus, early arrived might be slightly delayed,
while late one should be served ASAP; this at router contribution will smooth traffic
in combination with proposed above optimisation. What are the options? Let us
briefly highlight what actually router does.

19.7 Comparative Analysis of Proposed Algorithm and A* 281

19.7.1 Briefly About A*

Before presenting the result of comparative simulation for A* and our proposed
“desperation” algorithm we should briefly explain what A* means and how it
works. When walking along the graph searching a shortest path to destination is
good to know how much efforts were spent and how much is also required. All

System

complexity

 is constant

Reliability of
the system
 is limited

Number of elements in the system is n

Performance
of the system

 is limited

Achieving maximum reliability/performance with constraints

Max (Pi) (Pi)n provided Pi = const, i =1, …n

Fig. 19.5 Design of a system with constrains

282 19 Distributed Systems: Resilience, Desperation

efforts are also useful to know. We have been describing similar parameters for our
“desperation” approach. A* uses so-called cost plus heuristics function f that
includes for each node the past cost function g(x) and future cost function which is
acceptable estimate also called “heuristic estimate”.

g(x) is dealing with past cost of the walk for the node x from a destination, while
h(x) is dealing with an estimation—we stress here, an acceptable value—of future
costs to the destination. A* therefore estimates each and every node (x) of the graph
using a function:

f ðxÞ ¼ gðxÞþ hðxÞ ð19:13Þ

At each iteration “g” part of this function is updated and all potential “clients”
are analyzed in terms of least cost. Further formal details of this algorithm can be
found in [12].

19.8 Result of Comparative Simulation

Further simulation of network using the same principle with generated 20 nodes
100 links graph demonstrate that probability of weighted links gives very good
advantage in comparison with A*. Initial setting of weights and heuristics is pre-
sented in Fig. 19.6 (Table 19.3).

The way A* works is demonstrated by red node marking at each iteration, until it
reaches a destination node. For this particular layout we observe 22 iterations at cost
of each defined by an amount of adjacent links to the current active node.

Let us consider now how Desperation Control Algorithm works on the same
layout. Immediately it becomes visible that amount of iterations shrinks and,
therefore an estimation of path finding that network is doing after every 200 ms
synchronization of links length (using network service protocol) becomes several
times shorter: QED (Table 19.4).

19.9 We Have More: A Vector Heuristic

Using a diameter of graph that we consider a matrix and adjusting weights rela-
tively as di/L with multiplication along the paths and balancing as above attempting
to find almost equal contribution of each path to the journey to destination. At the
same time, we were using a heuristic that gave us estimation how long journey we
still have ahead. But this is not the whole story.

Network can be considered as a matrix and in this sense, we are having
two-dimensional space with heuristic at each path that give us an indication “how

19.7 Comparative Analysis of Proposed Algorithm and A* 283

much is left”. But having matrix we are facing borders that might be in close
proximity and in this sense heuristic as a number does not help us much and always.

Thus, Stephen Farrell has suggested to read heuristics as a vector and at each
step of path finding or routing search about destination we have to consider two
values that might navigate us toward destination more efficient way, provided of
cause—that “global heuristic” is also vector.

In other words, sitting in one corner of the network and having a direction to the
destination indicated and adjusted at every step we can move along keeping the
direction and watching—using local vector heuristic at each step. This enables us
finding much more efficient routing by all means. Figure 19.7 and comments for
each illustrates how it works.

But this all was and is about network level. How about inside job?

Fig. 19.6 Initial setting for A* and Desperation Control Algorithms

284 19 Distributed Systems: Resilience, Desperation

Table 19.4 Desperation control algorithm for path finding

Table 19.3 Evolving process of A* path finding

19.9 We Have More: A Vector Heuristic 285

d

s

d

s

d

s

DCA with VH select destination and
choose only links that have TWO
Heuristic values over coordinates Y
and X that are not zero or negative.

First three links are chosen with
probabilities over them and
direction match initial heuristic.

Follow-up steps with further
estimation of cumulative
probabilities (desperation control)
over chose links. Again at each step
Hx and Hy ≠ 0 or negative

d

s

d

s

Follow-up step with selection of
cumulative probabilities (desperation
control) over chose links. Again at
each step Hx and Hy ≠ 0 or negative

From preferable candidate further
four links are chosen to evaluate
using cumulative probabilities
(desperation control) over chose
links. Again, at each step Hx and Hy
≠ 0 or negative

(a)

(b)

(c)

(d)

(e)

Fig. 19.7 a Initial state s—source, d—destination. b First three selections along the direction.
c Selected only links with min overall desperation and Hx, Hy 6¼ 0. d Selected only links with min
overall desperation and Hx, Hy 6¼ 0. e Selected only links with min overall desperation and Hx,
Hy 6¼ 0. f Destination has been achieved, and Hx, Hy 6¼ 0, check the rest inputs. g Destination has
been achieved, all inputs has been checked

286 19 Distributed Systems: Resilience, Desperation

19.10 Router Level of Desperation Control

Let us summarize features of routers might use for desperation control. Routers
consist of basic components like network interfaces, processing modules, buffering
modules (memory), and an internal interconnection unit (switch fabric or bus).
Inbound network interfaces receive packets and forward them to the processing
modules where they will be processed and stored in buffering modules.

Further packages will be forwarded to the outbound interface, to the destination
through the process of path determination.

The major tasks of a router are to determine path from routing table, mainte-
nance, and reachability propagation (route processing).

Both internet protocol: IPv4 and IPv6 still require package processing, packet
forwarding, and some router special services. Searching for a route in the routing
table the longest prefix that matches the destination address of the packet is one of
heaviest function of routing. Nowadays 7Bn IP addresses, in turn, even
cluster-organized and hierarchical making routing tables quite large, and processing
of them is time consuming.

In classless inter-domain routing (CIDR) [19, 20] a block of same class
addresses is arranged as a single routing table entry. When a packet arrives, a
routing table lookup is performed by the router using the packet’s IP destination
address. This process returns the best-matching routing table entry, which identifies
to the router the IP address of the next hop for the specific packet and from which
interface to forward the packet out.

d

s

d

s

Destination has been reached. Still,
other Hx, Hy cumulative
probabilities (desperation control)
over chosen links should be
evaluated. Again, at each step Hx
and Hy ≠ 0 or negative

Job done. DCA with VH works.

(f)

(g)

Fig. 19.7 (continued)

19.10 Router Level of Desperation Control 287

These brief description of basic router duties highlights that a package inside
might be reorganized, delayed, queued at the input and at the output with absolutely
different reasons.

19.10.1 Router Level—Inside Job

Every package awaiting processing inside a router can be described by states 1, 2,
3… n, Fig. 19.8a. The number of “states” allowed depends on a type of a package.
For example:

• Packages with emails might wait, two hundred milliseconds of delay for this
type of messaging is not critical;

• Real-time messaging requires “smooth delivery”, when some packages might be
even dropped but the rest should be delivered in the strict time slot (video- and
audio messaging);

• Safety-critical messaging and related packages (when the Internet is applied in
real-time applications) vary in the level of restrictions and urgency.

Thus we can consider forced us to think about handling of “states” allowed for each
type of package. Changing of states for a package might depend on time this
package queued in the router. Clear that various type of packages can be given
different number of states per package. Instinctively we simply must keep the delay
for a package with high demand as short as possible and process package that is
reaching its critical limit ASAP. Processing here means:

• receiving
• routing
• pulling out from incoming queue
• pushing in allocated output queue

This kind of monitoring in terms “who sits here long enough” introduces a policy to
handle queues accordingly “the level of desperation”, for each and every package.

For a hard real time we simply must have the shortest queuing and fastest service
from input to output, when priority is high, but not really real-time type of traffic,
the queueing might be a little bit longer, and finally when a package is standard the
waiting time might be much longer, Fig. 19.8a illustrates qualitatively behavior of
router in terms of different type packages.

What kind of support the principle of desperation control requires from a router?
It is fairly simple:

A priority within a class or even across different classes of packages should be
considered and treated as variables.

This changing should depend on time of package presence within a queue and
“history of the package”. Thus, “High priority” package in any queue should be

288 19 Distributed Systems: Resilience, Desperation

1 32

1 32 N-2 NN-1

Real-time package

1 32 N-k

High priority package

Regular package

1 32 N-2 NN-1

P

1

L
N

Delay caused by sitting in an queue increase
a probability of fail for RT package

Knowing the shape of a curve P(L) and current state of desperation for i-thpackages Pi(t)
it is possible to create an algorithm of desperation handling (ADH) elevating a package
from, say, to , etc.PN-2 P2

1

t

DL

Delay caused by i-throuter for a package

iq oqRPi

Structure of Package delay:
iq -incoming queue delay
Rpi -routing processing for i-thpackage
oq -outcoming queue delay

DL - desperation level for a package

(a)

(b)

(c)

Fig. 19.8 a Various lengths of queues for different types of packages. b Handling level of
package desperation at router level. c Illustration of desperation level for a package

19.10 Router Level of Desperation Control 289

processed even before real-time package if the priority and timing for this package
become critical.

Router queues are organized so far as Fig. 19.8a qualitatively illustrates. The
theory of this kind of queues is well developed by Kleinrock [11]. This theory
estimates the position in a queue for the process with different states.

What is not considered in [11] is that what is proposed here: queued element
(package in a queue) in real world should change its priority:—from very low to
highest possible. Our desperation principle is just about it. Priority for RT packages
is growing as long as its time left to destination is shrinking; Eq. 19.14 defined a
so-to-say “a probability” of loss is growing (in other words, desperation goes
beyond the chart).

In terms of implementation we might consider that packages should be described
by two priorities—a static as given initially and dynamic—that is changing along
the package journey in the network and a good router should handle and deal with
both of them. We can write it symbolically:

While P "; L ! 0 ð19:14Þ

In plain English: when desperation of the package grows a position in the queue
should be changed toward the output, leaving the queue (Fig. 19.8b).

As it was mentioned already, an “inside job” should be seriously revised to assist
implementation of a principle of desperation control at the router level. Let us check
what is possible here.

We need to elaborate this rule a bit further and see how to see it and implement
it: Fig. 19.8c.

DL stands for desperation level of a package for the whole journey. Inside an i-th
router delay for this package consists of input queueing delay Iq, processing delay
(routing processing) RPi and Output queueing delay Oq. All three might and should
be revised in structure and overheads accordingly desperation level of a package.

Note that routing delay RPi is squeezed as shown in previous sections of this
work. Further delays Iq and Oq should be managed as Fig. 19.8b shows—moving a
packages across the queuing accordingly desperation level.

Obviously that performance gain is scaled at order of magnitude, but for explicit
results the whole structure of desperation control scheme should be analyzed using
network simulation tool.

19.11 Aftermath—Instead of Conclusion

• We have shown how “level of desperation” works. We have shown also that
desperation control in combination with vector heuristic perform by far better
than known routing algorithms.

290 19 Distributed Systems: Resilience, Desperation

• We suggest to consider that priority of a message (that might include several
packets) should be treated as variable. This variable can change both ways:
decrease or grow along the journey of a package through the network,
depending the network and package states.

• Our approach assumes that:

(A) Introduced limit of permitted processing time for each message is known
(B) Combining with overheads caused by state of internal router priority state

message
knowledge about own progress

Thus, our result in one sentence is:
The proposed new schemes and algorithms increase efficiency of package

handling and overall resilience, real-timeness, elasticity and reliability of
network.

This is kind of system level solution. What else can be done here? Well, in [1–7]
we have proposed a Graph Logic Model that enabled to see monitor incoming and
outcoming conditions for every vertex of graph. It is potentially very useful for
routing as well.

GLM unique features that fit for restructuring of routing table are:

• GLM-upgraded routing table can be adjusted, reflecting change of load and
traffic

• Instead of cost of the link GLM introduces “probabilities” of the link (relative
weight of the link in the network), this enables to estimate much faster the
success of the journey

• Logic operator for each incoming and outcoming links should be modifiable.

Thus, when the system is overloaded that becomes visible by refusing to accept
further incoming traffic—(a good example here is a so-called “denial of service”)
GLM logic operator (for incoming link) can be modified from XOR down to NOP,
and when traffic changes, can return back. For this purposes GLM introduces XOR
(to accept all from this particular direction and nobody else) or NOP (nothing from
this direction is welcomed) operators at the input and outputs of a node. At the node
level the condition to process incoming and output flows might change and routing
table outcome operators accordingly can accept all or several types (AND, OR)
outcomes.

These all combined can handle different packages in various types of network
load and conditions by the most efficient way.

This combination creates a kind of framework for network handling, considering
both: types of packages and router conditions.

19.11 Aftermath—Instead of Conclusion 291

References

1. Castano V, Schagaev I. Resilient computer system design. https://doi.org/10.1007/978-3-319-
15069-7

2. Schagaev I, Kaegi-Trachsel T. Software design for resilient computer systems. https://doi.org/
10.1007/978-3-319-29465-0

3. Schagaev I, Kirk B. Active system control. https://doi.org/10.1007/978-3-319-29465-0
4. Schagaev I (1990) Yet another approach to classification of redundancy. In: CIM IMEKO

symposium, Helsinki, pp 117–124
5. Schagaev I, Monkman S (2013) Redundancy + Reconfigurability = Recoverability.

Electronics 2:212–233. https://doi.org/10.3390/electronics2030212
6. Schagaev I, Sogomonoyan E (1988) Hardware and software for a fault tolerant computing

system. In: Automation and remote control, vol 49, no 2, part 1. Pergamon Press, 10 July
1988

7. Blaeser L, Monkman S, Schagaev I. Vision on reconfigurable systems, Chapter 10, [1]
8. Brockmeyer E, Halstrom HL, Jensen A (1948) The life and works of A. K. Erlang, 2nd edn.

Danish Academy of Technical Science
9. Jackson JR (1957) Networks of waiting lines. Oper Res 5:518–521

10. Morse PM (1958) Queues, inventories and maintenance. Wiley, New York
11. Kleinrock L (1964) Communication nets: stochastic message flow and design. McGraw-Hill,

p 220. ISBN 978-0486611051
12. Leon-Garsia A et al. Communication networks. McGraw Hill. ISBN-0-07-246352
13. https://www.bitpipe.com/tlist/Internet-Architecture-Board.html
14. Chartrand G, Lesniak L (2005) Graphs and digraphs, 4th edn. Chapman &Hall/CRC. ISBN

1-58488-390-1
15. http://it-acs.co.uk/files/Grant_for_a_patent.PDF
16. Schagaev I https://www.academia.edu/7685617/Control_Operators_vs_Graph_Logic_

Model_-_WorldComp_2014_Presentation_and_Paper
17. Dijkstra EW (1968) Cooperating sequential processes. In: Hansen PB (ed) The origin of

concurrent programming. Springer, New York, NY
18. Azan et al. System software support for router reliability. In: 30th IFAC workshop on

real-time programming and 4th international workshop on real-time software (WRTP/
RTS’09)

19. Fuller V, Li T, Yu J, Varadhan K (1993) Classless inter-domain routing, IETF RFC 1519
20. http://www.cisco.com/c/en/us/td/docs/routers/10000/10008/configuration/guides/qos/
21. Schagaev I et al. On performance of distributed computer systems. In: WorldComp16, 28 July

2016. https://www.academia.edu/25248500/On_Performance_of_Distributed_Computer_
Systems

292 19 Distributed Systems: Resilience, Desperation

http://dx.doi.org/10.1007/978-3-319-15069-7
http://dx.doi.org/10.1007/978-3-319-15069-7
http://dx.doi.org/10.1007/978-3-319-29465-0
http://dx.doi.org/10.1007/978-3-319-29465-0
http://dx.doi.org/10.1007/978-3-319-29465-0
http://dx.doi.org/10.3390/electronics2030212
https://www.bitpipe.com/tlist/Internet-Architecture-Board.html
http://it-acs.co.uk/files/Grant_for_a_patent.PDF
https://www.academia.edu/7685617/Control_Operators_vs_Graph_Logic_Model_-_WorldComp_2014_Presentation_and_Paper
https://www.academia.edu/7685617/Control_Operators_vs_Graph_Logic_Model_-_WorldComp_2014_Presentation_and_Paper
http://www.cisco.com/c/en/us/td/docs/routers/10000/10008/configuration/guides/qos/
https://www.academia.edu/25248500/On_Performance_of_Distributed_Computer_Systems
https://www.academia.edu/25248500/On_Performance_of_Distributed_Computer_Systems

Chapter 20
ERRIC Machine Code Simulator

Aleksey Gospodchikov, Sergey Koziakov, Danila Romanov
and Eugene Zouev

Abstract The architecture and implementation of the ERRIC instruction code
software simulator is presented. The main property of the simulator is providing a
tool for developing real ERRIC-based software even before a real ERRIC processor
appears, or to develop software without a processor at hand. The overall structure of
the software tool is described, and the key data structures and algorithms of the
simulator are explained and discussed.

20.1 Overall Description

The principal architecture of the ERRIC code simulator is presented below,
Fig. 20.1.

As Fig. 20.1 shows the developed software system consists of:

• an interpreter library capable of running machine code compatible with ERRIC
command set

• a console and graphical clients that use the library to run executable files and
show the results.

Together, they form the ERRIC Machine Code Simulator.

20.2 Basic Usage

The interpreter library is capable of interpreting a certain version of ERRIC
machine code, the details of which were introduced in the Chap. 14, Sect. 14.2. The
interpreter works primarily with self-contained structures, allowing for great flex-
ibility, such as the option of simulating multi-core processors. The library also
allows the user to read executable files in order to fill the structures to execute.

The console client executes the given executable from the start until the end on a
single-processor machine and creates a memory dump after the execution.

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5_20

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21244-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-21244-5_20

The graphical client is more sophisticated—it allows the code to be executed not
only from start to finish, but also step-by-step (e.g., for debugging purposes). It also
shows the changes in memory and registers in real time during step-by-step exe-
cution. The special option provides the original assembler version for each
instruction.

Both clients provide similar options: the user can change the amount of memory
allocated for the virtual CPU and choose the file to execute.

An example of code that simulator can run is program that calculates the n-th
Fibonacci number. The corresponding code snippet written in the system-level
language (see Chap. 11) is shown in Listing 20.1, source code in assembly language
is shown in Listing 20.2, and machine code produced from it can be seen in the next
section.

Listing 20.1: Pseudocode for the Fibonacci algorithm

const DesiredNumber = 10
int n1 := 0
int n2 := 1
int t := 0
int curr := 1

loop
 t := n1 + n2
 n1 := n2
 n2 := t
 curr++
while
 curr < DesiredNumber
end
return n2

Fig. 20.1 Architecture of ERRIC simulator

294 20 ERRIC Machine Code Simulator

Listing 20.2: Assembly source code for the Fibonacci routine

<DesiredNumber>
 DATA 10 # Desired Fibonacci number index

 R1 := 0
 R2 := 1
 R4 := 1 # Increment
 R5 := 1 # Index of current Fibonacci number

<Loop>
 R3 := 0
 R3 += R1
 R3 += R2 # R3 now contains next Fibonacci number
 R1 := R2
 R2 := R3 # Shift numbers
 R5 += R4 # Increment counter
 R6 := DesiredNumber
 R6 := *R6
 R6 ?= R5 # Compare desired number and current Fibonacci number
 R7 := 2 # Binary mask
 R6 &= R7 # leave only the second bit
 R8 := Loop

if R6 goto R8 # if R6 > R5 then second bit of R6 is 1
 # then we need to jump
 *R29 := R2 # Push Fibonacci number to the stack
 R8 := 2
 R29 += R8 # And don't forget to increment the stack pointer

20.3 Simulator GUI

An example of writing a user interface for an interpreter library, besides one sup-
plied with it, is a simple GUI that fully utilizes almost every available library
function.

This graphical interface allows the user to load an arbitrary ERRIC binary file
and execute the code from it on a single ERRIC processor, either completely, from
start to finish, or step-by-step.

The interface also makes it simple to check individual memory words and the
states of the registers during the course of the program’s execution.

The top bar allows loading an ERRIC binary file via File->Open, and run it via
the Run... submenu.

In the middle of the GUI is the memory map—it shows every word in the
memory of the processor. It is automatically updated during the step-by-step exe-
cution, and it reflects the final state after completing execution.

To the right of the memory map is the information about registers—it shows all
32 registers and is similar to the memory map—Table 20.1.

20.2 Basic Usage 295

Below the registers information, there are two buttons to execute the code, the
filename of the opened binary file and the memory size field, which allows the user
to resize the available memory.

Doing so will restart the execution and reset the memory and the registers back
to normal.

The execution follows the process expected by the emulator—it can run as long
as there are no changes in the status codes. When an error occurs or the STOP
instruction is encountered, the GUI shows the associated message (either an error
message describing the problem or a notification that a STOP instruction was
encountered).

If an error is encountered, the user can get all the needed information from the
memory map and the registers, the PC register in particular.

Table 20.1 Memory map during execution

296 20 ERRIC Machine Code Simulator

20.4 Simulator Internal Structure

Main data structure of the interpreter is erric_t, which describes the single virtual
CPU based on ERRIC architecture, with its registers, memory, a status code
describing the current status of the CPU and other auxiliary components, Fig. 20.2.

This structure is passed to most, if not all, functions available in the interpreter
library. Therefore, the functions do not need to store any state regarding the
structure, and thus can be used to simulate multi-core processors by working with
multiple ERRIC CPUs, either asynchronously or by running them in turn.

For more detailed description and explanation on usage of the library, refer to
Appendix 2.

20.5 Interpreter: The Implementation

20.5.1 Design Decisions and Caveats

• The project started with incomplete requirements and lack of full information on
ERRIC architecture (previously called ERA). Because of this, some design
decisions and assumptions may not match the current architecture. In particular,
the RETI instruction is not supported yet.

• The original machine specification utilizes nearly all of the space for instruc-
tions, meaning that it is difficult to add additional machine commands.

struct erric_t {
// common registers

 lword_t *registers;

// machine memory
 word_t *memory;

// size of the memory (in words)
 uint32_t memory_size;

// instruction register
 word_t IR;

// Status code field, checked after every instruction
 sword_t status_code;
};

Fig. 20.2 Main data structure of the interpreter

20.4 Simulator Internal Structure 297

• The interpreter library provides only one automatic way of properly filling the
erric_t structure needed for execution—by reading from an executable file.
Functions to simplify filling the structure or to fill it from memory were con-
sidered, but not implemented to achieve the maximum flexibility.

First caveat one may encounter is differences between listed ERRIC architecture
and the one implemented within the simulator. However, the interpreter library is
easily modifiable to accommodate for any revision of ERRIC. Please refer to the
Appendix 2 for the internal description of the library.

Another important aspect to keep in mind is that software was developed and
tested primarily on little-endian machines, since big-endian machines are not par-
ticularly popular now.

However, to make reading memory dumps and manual debugging easier, it was
decided to simulate Big Endianness for virtual ERRIC machine. This introduces
some difficulties to understand code snippets, which, however, helps make this code
endianness-independent.

20.5.2 Extensibility

As mentioned before, the machine code interpreter is implemented as a library. This
allows other developers to build various kinds of user interfaces that may provide
additional features independently of the library or use the library to execute ERRIC
machine instructions directly.

One of the executable format files was also designed with extensibility in mind -
assembly compilers and interpreters can take advantage of the empty space possible
by the format to insert additional data needed for them.

The library is open-source, meaning that anyone can contribute to its develop-
ment and expand the functionality.

20.5.3 Machine Code File Formats

During the implementation process, capability for interpreter library to read and
understand different file formats was added, along with two of those file formats—
simpler one and flexible one.

The formats specify the following information in the file header:

• File format version
• How much data (i.e. not code) is there, or where it starts and where it ends
• How much code is there (right after data block), or where it starts and where it

ends

298 20 ERRIC Machine Code Simulator

This allows adding new file formats, with, maybe, some extra debug information, in
the future.

Using file formats opens the possibilities for extending both architecture and
interpreter in the future, while allowing for keeping backwards compatibility.
Formats described in more details in Appendix 1.

As mentioned before, the simulator supports two different file formats, but it is
capable of recognizing up to 256 formats in the current design and can be safely
extended to 65,535 different types.

Appendix 1: Internal Structure of ERRIC Interpreter
and API Description

A.1 The Main Structure

The erric_t structure is the primary component of the library, Fig. 20.3: it rep-
resents a single CPU running the ERRIC architecture and contains the memory
chunk and the registers for the processor:

Using the structure, the memory of the ERRIC machine can be accessed through
erric_t->memory word array, and registers via erric_t->registers.

struct erric_t {
// common registers

 lword_t *registers;

// machine memory
 word_t *memory;

// size of the memory (in words)
 uint32_t memory_size;

// instruction register
 word_t IR;

// Status code field, checked after every instruction
 sword_t status_code;
};

Fig. 20.3 ERRIC_t structure

20.5 Interpreter: The Implementation 299

A.2 Functions, Operators and Instruction Execution

Main functions and simulated operators are not directly bound to a particular
instance of erric_t; rather, they operate on the single copy of the erric_t structure
that is passed to them via parameter. There are also some helper functions, like
those that unify similar instructions in one code block to remove redundant code.

All execution functions first call parse_instruction() routine, that fetches and
decodes instruction pointed to by the PC register. Then, the instruction represented
by the instruction_t structure, Fig. 20.4, format is passed to the execute()
function, which executes it using attached operator function.

Apparently, this structure closely resembles one of the ERRIC instruction,
described in specifications.

format_t enumeration type represents instruction format, as described in the
ERRIC specification. They are named after their function in mathematical opera-
tions. Note that due to 10 format being reserved, only 3 formats are listed
(Fig. 20.5).

A.3 Source Files and Their Contents

erric_types.h describes data types used throughout the ERRIC interpreter.
erric_t structure, defined in erric_struct.h, represents the ERRIC machine

(as explained above). Its main parts are memory, registers, and machine status code.
*_operators.h files describe operators that ERRIC CPU can perform, and their

helper functions.
erric_interpreter.c contains mapping from operation instructions to the

function that executes given instruction, and also functions to fetch instruction in
instruction_t structure and parse the instruction.

erric_util.h contains helper functions, for example functions that can make
memory access easier.

struct instruction_t
{
 enum format_t format;
 sword_t code;

 sword_t i;
 sword_t j;
};

Fig. 20.4 Instruction routine

300 20 ERRIC Machine Code Simulator

A.4 Executable File Formats

Both formats that are supported for the moment, start with the unsigned 8-bit
integer version number and are big-endian (bytes are read from left to right).

Version 0: small and simple, but inflexible. File consists of:

• Version (8-bit unsigned integer), followed by 8-bit padding
• Global/static data length in words (32-bit unsigned integer)
• Global/static data fixed-size section
• Code and code data fixed-size section

In this case, we simply read as many words as specified in Data Length section, and
then read the rest as a Code. This method has few possibilities to break, but doesn’t
allow the user to place the sections in an arbitrary order while also being poorly
adaptable and not allowing additional metadata to be inserted into the file.

File structure example (version 0, Table 20.2).
Please notice that data and code are nonsensical, and are here just for example.
Version 1: more comprehensive and much more flexible version, even allowing

for compiler/debug metadata:

• Version number (8-bit unsigned integer), followed by 8-bit padding
• Global/static data start position relative to the beginning of the file in bytes

(32-bit unsigned integer)
• Global/static data length in words (32-bit unsigned integer)
• Code start position relative to the beginning of the file in bytes (32-bit unsigned

integer)
• Code length in words (32-bit unsigned integer)
• Global/static data fixed-size section, code and code data fixed-size section in any

order

This version is very flexible. Sections can be put anywhere and in any order.
Additional elements, such as additional headers and meta-information, can be put in

enum format_t {
F_8_BIT,
F_16_BIT,
F_32_BIT,

};

Fig. 20.5 Format types

Table 20.2 File structure
example

2 bytes Version + Padding 00 00

4 bytes data length 00 00 00 02

4 bytes static data FF F2 FF F4

6 bytes code AD DC 56 69 F7 B1

Appendix 1: Internal Structure of ERRIC Interpreter and API Description 301

empty spaces within the file, allowing for greater flexibility. This version is also a
bit more fragile and difficult to understand.

File structure example (version 1, Table 20.3).
Notice that data and code are nonsensical, and are here just for example.

Appendix 2: Practical Introduction and Developer’s Guide

The following part will describe how to use the interpreter library for those who
wish to use it in their projects.

The interpreter library consists of a structure representing a single CPU running
the ERRIC architecture, as well as a number of functions that statelessly operate on
an instance of the function.

This allows the library to be flexible and to support different execution methods,
such as multiprocessor hardware setups. The structure of the library is implemented
in a way that makes easily understanding and use by all kinds of users: for those
who want to simply use the interpreter and for those who want to call individual
functions for specific purposes.

In order to use all of the main features of the emulator, the erric_interpreter.h
header file needs to be included. Files *_operators.h allow the user to call par-
ticular functions manually.

Initialization

In order to work with the library, an erric_t structure is required. The creation of
the structure instance can be done in two ways:

1. By the call init_erric(). The function creates the structure with the default
memory size of 65536 words, or

2. By the call init_erric_m(uint32_t _mem_size). The function allows the user
to specify the size of the memory needed.

The memory size is defined only during the creation and is not changeable while
using the library. This was done to make sure that the hardware can be properly

Table 20.3 File structure
Version 1

2 bytes Version + Padding 01 00

4 bytes data start 00 00 00 20

4 bytes data length 00 00 00 02

4 bytes code start 00 00 00 18

4 bytes code length 00 00 00 03

6 bytes ignored 13 37 10 01 DE AD

6 bytes code AD DC 56 69 F7 B1

2 bytes ignored 00

4 bytes static data FF F2 FF F4

302 20 ERRIC Machine Code Simulator

simulated, since the software might behave differently under different memory
sizes, Fig. 20.6.

Freeing

After completing working with the particular instance of the erric_t structure, the
memory taken by it should be freed by using the
free_erric(struct erric_t*erric): (Fig. 20.7).

Memory setup
After the structure for the processor has been created, its memory should be filled
with needed data and code, which can be done either by loading a file with

read_file(char *filename, struct erric_t *erric)

or by setting it up manually, Fig. 20.8.

{
 struct erric_t* default = init_erric();
 struct erric_t* sized = init_erric_m(1024);
}

Fig. 20.6 The memory size structure

{
 struct erric_t* erric = init_erric();
 // ...
 free_erric(erric);

}

Fig. 20.7 The memory release

{
 struct erric_t * erric = init_erric();

read_file(filename, erric);
 // ...
 free_erric(erric);
}

Fig. 20.8 The memory setup

Appendix 2: Practical Introduction and Developer’s Guide 303

Function will automatically detect and load file version specified within the file.
The only way to set the memory up by hand is to directly modify the memory

and register arrays—refer to the reference for the ERRIC hardware documentation
to determine the needed registers and instruction codes.

Execution

The library offers 2 functions to execute the code—step(struct erric_t* erric)
and execute(struct erric_t* erric), Fig. 20.9. The step() function exe-
cutes the instruction pointed to by the Program Counter register and directly returns
the status code returned by the instruction. The execute() function executes
instructions one-by-one, starting from PC until it encounters any erroneous status
code. The final status code can be accessed by erric_t->status_code field.

{
 struct erric_t* erric = init_erric();
 read_file(filename, erric);
 step(erric);
 execute(erric);
 free_erric(erric);
}

Fig. 20.9 Execution struct

304 20 ERRIC Machine Code Simulator

Index

A
A*- algorithm, analysis of algorithms,

278–280, 282–284
Access and location of the syndrome, 92
Active, 104
Active zone, 4
Algorithms, 2, 18, 21, 25–27, 31, 47–49,

52–57, 65, 71, 75–77, 79–85, 87, 108,
116, 134, 136, 141, 143, 144, 146, 147,
149–151, 153, 154, 156, 158, 160,
162–164, 179, 181, 191, 246, 249, 257,
258, 261–263, 266, 267, 276–279, 284,
290, 291, 293

Amdahl Law, 221, 239, 240, 246
Analysis of checking process, 75
API description, 299
Application transparent, 114
ARM, 207, 209, 210, 217, 218
Assembly language, 167

B
Backward recovery techniques, 114
Backward tracing algorithm, 55, 249, 260–262

C
Causal logging, 120
Checking, 20, 26, 28, 31, 33–35, 37, 39,

41–45, 65, 67, 68, 71, 72, 74–78,
82–84, 88–90, 93, 95, 99–101, 103,
107–109, 111, 114, 122, 135, 142, 143,
146, 147, 150, 151, 154, 155, 159, 160,
162, 165, 174, 200–202, 215–217, 235,
257, 258, 261–265

Communication of sequential processes, 183
COMPOSITA language, 173

Computational model, 153
Computer architecture, 207, 251, 254
Concurrency, 5, 166, 177, 179–183, 186–191
Concurrency support for resilient computing,

179
Coordinated recovery points, 116, 117

D
Decode instruction, 198
Definition of fault tolerance, 30, 193
Degradation phases of a duplicated system, 100
Degradation phases of a triplicated system, 98
Dependency matrix, 50
Desperation, 268
Desperation analysis and handling, 269, 279
Desperation in networking, 269
Diagnostic procedure, 81
Diagnostic process algorithm, 77
Dichotomic recovery algorithm, 153, 154, 159,

162, 164
Dichotomous recovery algorithm, 159
Distributed computing, 239
Distributed systems, 111, 116, 118, 121, 221,

249, 253, 267–269
Duplicated, 104

E
Efficiency analysis, 126
Efficiency of recovery algorithms, 5, 153
Embedded Reliable Reduced Instruction

Computer (ERRIC), 42, 98, 113,
165–168, 171–174, 197–200, 207,
209–212, 215–219, 293–295, 297–300,
302, 304

EROS, 194

© Springer Nature Switzerland AG 2020
I. Schagaev et al., Software Design for Resilient Computer Systems,
https://doi.org/10.1007/978-3-030-21244-5

305

https://doi.org/10.1007/978-3-030-21244-5

ERRIC architecture, 197
ERRIC language, 171
ERRIC reliability, 215
ERRIC reliability analysis, 215
Executable file formats, 301
Execute instruction, 198
Execution, 304
Extensibility, 298

F
Fault log, 178
Fault tolerance, 1, 4, 5, 8, 11, 13–18, 21, 22,

25–27, 30, 33–37, 39, 40, 44, 45, 47, 56,
57, 59, 60, 64–66, 71, 89, 93–95, 105,
111, 114, 151, 165, 190, 193, 194, 197,
215, 216, 219, 249, 281

Fault tolerant interactors, 190
Fault-tolerant operating systems, 59, 75, 193
Fault tolerant semaphores, 190, 191, 278
Faulty, 104
Fence model, 243
Fetch instruction, 198
Flash interface / flash driver, 136
Flash properties, 132
Forward tracing algorithm, 53, 54, 259, 261
Freeing, 303
FT interrupt handler, 177
FT scheduler, 178
FT scheduling, 87
Functions, Operators and Instruction execution,

300

G
GAFT derivation, 49
GAFT properties, 33
Generalized algorithm of fault tolerance,

25–31, 33, 35–37, 39, 44, 45, 47–50,
56, 57, 59, 65, 67, 71, 87, 111, 112, 141,
147, 165, 174, 193, 194, 200, 249,
255–257

Graceful degradation, 3, 30, 49, 97, 102, 263
Graph-logic model for concurrency and

parallelism, 186, 187
Graph theory, 267, 270, 275, 276

H
Hardware-checking, 32, 35, 71, 72, 84, 90,

101, 111
Hardware-checking process, 72
Hardware checks, 93
Hardware condition monitor, 103, 105
Hardware faults, 5, 7, 11, 14, 15, 18, 21,

26–29, 34–36, 56, 65, 68, 71, 72, 89, 99,
101, 143, 144, 147, 164

Hardware monitor, 178
Hardware performance, 225, 227, 230, 233
Hardware reconfiguration, 108
Hardware recovery support, 123
Hardware redundancy, 39
Hardware redundancy and reliability, 38
Hardware redundancy for checking, 37, 44,

216, 217
Hardware redundancy for recovery, 33
Hardware redundancy for recovery preparation,

37
Hardware support for recovery, 123
Hardware support for recovery point creation,

123
Hardware support for system recovery, 5
Hardware support for the MLR algorithm, 150
Hardware syndrome, 71
Hardware zones, 228
Heuristic algorithms, vector heuristics, 267,

283, 284, 290

I
Implementation aspects, 121, 128, 134
Implementation steps, 257
Information processing, 223, 225, 227, 228,

230, 233, 246, 251
Information redundancy, 16, 20, 126
Initialization, 302
Instruction levels of error detection, 33, 142
Instruction set, 93, 167, 197, 202, 207, 209,

212, 231, 246, 251
Integrity OS, 193
Intel 86’, 207
Interface zone, 4
Interfacing zone, 96
Internal structure of ERRIC Interpreter, 299

L
L4ReAnimator, 193
L4 Se, 193
Language concurrency support, 5
Language properties for supporting fault

tolerance, 4
Language support of recovery, 5
Language support of system fault tolerance

memory monitoring, 90
message passing, 112, 115, 116, 143, 242
recovery preparation, 111, 137, 165, 174
recovery process, 10, 68, 114, 121, 131,

136, 141, 142, 147, 150, 201, 216, 257,
260

Library, 121, 199, 212, 293, 295, 297–299,
302, 304

Limiting checkpoint size, 118

306 Index

Linear recovery algorithm, 153, 155, 160

M
Machine code file formats, 298
Main monitor, 177
Malfunction (transient) faults, 7, 36, 38–40, 44,

45, 72
Matter of concurrency, 181
Memory configuration, 94
Memory configuration mechanism, 96
Memory setup, 303
Message logging, 116
Message logging-based rollback recovery, 119
Method of active system safety, 47–50
Minix 3, 194
MLR algorithm, 149
MLR execution, 146
Models of fault tolerance, 18, 56
Modified linear algorithm, 143
Modified linear recovery, 160
Modified linear recovery algorithm, 144, 151,

160, 162–164
Module loader, 178

O
Oberon, 112, 128, 142, 165, 166, 171
Optimistic logging, 120

P
Parallelism, 180, 186–188, 191
Parallelism and concurrency vs GLM, 186
Parallel speedup model, 241
Passive zone, 4
PASS tracing algorithm, 53
Performance of distributed system, 249, 267
Performance-reliability-efficiency, 180, 221,

249, 250, 266
Performance-reliability-energy smartness

(PRE-smartness), 249
Permanent hardware faults, 29, 36, 89, 147
Pessimistic logging, 119
Physical storage media, 131
Preparation for recovery, 33, 68, 111, 112, 136
Principle of active system safety, 49
Principles of synchronization, 183
Problem of concurrency, 179
Procedure level of recovery, 34
Procedure T1, 79
Processor architecture, 197, 208
Programming language, 165

R
Real processor hardware, 236

Real-time system, 1, 2, 33, 74, 77, 108, 137,
190, 225

Reconfigurability, 1, 3, 5, 88–90, 105–107,
111, 166, 190, 251, 253, 254, 266

Reconfigurability, redundancy, 1, 251, 253,
254, 266

Reconfiguration, 68
Reconfiguration monitor, 177
Reconfiguration of other hardware devices, 100
Recoverability, 255
Recoverability costs, 262
Recovery, 4, 9, 10, 14, 22, 26–29, 31, 33–36,

40–44, 49, 50, 52, 53, 55, 56, 65, 68, 74,
77, 82, 85, 87, 90, 94, 98, 99, 107, 109,
111–132, 134–137, 141–147, 149–151,
153–166, 174, 194, 201, 215–217, 249,
255–257, 260–263, 265

Recovery algorithms, 65, 141, 144, 151,
153–155, 158, 159, 162–164

Recovery as a process, 141
Recovery at the level of procedures, 122
Recovery efficiency, 164
Recovery levels, 35
Recovery matrix, 52
Recovery of malfunctions, 41, 99, 116, 127,

145, 154–157, 160, 161, 216
Recovery of multiple faults, 151
Recovery on the instruction level, 142
Recovery on the procedure level, 142
Recovery pf permanent faults, 94, 116, 142,

144, 149, 154, 194
Recovery point generation, 136
Recovery points, 4, 28, 34, 35, 49, 65, 68, 99,

114–132, 134–137, 141–145, 147, 150,
151, 153, 154, 164, 166, 190, 194

Recovery preparation, 37, 111, 137, 165, 174
Recovery process, 10, 68, 114, 121, 131, 136,

137, 141, 142, 147, 150, 153, 201, 216,
257, 260

Recovery techniques, 114, 117
Redundancy, 1–3, 5, 7–9, 11–22, 25, 27–31,

33–39, 41–45, 47, 56, 60, 89, 93, 99,
100, 102, 126, 143, 189, 197, 216–218,
249–255, 266, 268, 269, 281

Redundancy analysis, 39, 44
Redundancy classification, 30
Relative performance gain, 239
Reliability, 1–5, 7, 9, 11–15, 18, 19, 21, 22, 25,

26, 29, 33, 36–41, 43–45, 47, 56, 59, 62,
65, 66, 78, 88, 89, 91, 92, 94, 104, 113,
116, 118, 123, 125–127, 132, 151, 157,
166, 167, 172, 179, 180, 189, 197, 202,
215–219, 221, 232, 249–252, 254, 261,
263–267, 269, 281, 291

Index 307

Reliability analysis, 39
Reliability gain, 25, 39, 43, 44, 47, 56, 89, 218,

249
Reliability of fault-tolerant systems, 3, 19, 37,

38, 45
Reliability theory, 11, 22, 56, 157
Researching desperation, 273
Resilence, 255
Resilience, desperation, 267
Resilience of computer architecture, 207
Resilient computer architecture, 207
Resilient computing, 179, 207
Resource management, 177
Router level - inside job, 288
Router level of desperation support, 287, 289,

290
Runtime, 4
Runtime system concurrency support, 177
Runtime system function for fault tolerance and

resilience, 111
Run time systems
Runtime systems, 4, 62, 66, 71, 74, 100, 102,

103, 107, 109, 111, 112, 114, 115, 125,
166, 177–180, 189, 191, 193, 254

Runtime system structure, 177
Runtime system support of recovery, 112, 115,

125, 126

S
Safety critical systems, 165
Scalability, 1, 3, 88
Semantic, 4
Semi-transparent, 114
Simplicity, 1, 3, 60, 84, 112, 120, 165, 197,

209
Simulator GUI, 295
Simulator internal structure, 297
Single development tool, 165
Single event effect, 9
Software checks, 93
Software-hardware model of performance, 225
Software simulator, 174, 293
Software support for degradation, 101
Software support for hardware reconfiguration,

101
Software support of recovery, 137
Source files, 300
SPARC, 207, 209, 210
SSReplication, 136
SSVolumes, 136

SSW-HW performance model, 226
Stable storage, 136
Standard performance tests, 236
Standby, 104
Store result, 198
Structural redundancy, 17, 126, 253, 255
Structure, 4
Suspected, 104
Synchronization rules, 184
System cost of recoverability, 261
System diagnostics, 178
System level model, 291
System model, 76
System monitoring of checking process, 88
System real-time and fault-tolerant features, 21,

33
System recovery, 5, 34, 65
System recovery process, 68
System reliability of malfunction-tolerant

systems, 46
System resilience, 190, 267
System software for ERRIC, 166
System software life cycle versus fault

tolerance, 66
System software phases, 67
System software support, 105
System software support for hardware

deficiency, 15, 36, 59
System state syndrome, 92

T
Testing, 27, 33, 37, 45, 66, 71, 73–75, 77–83,

85, 90, 99, 101, 104, 108, 111, 145, 151,
154, 165, 174, 178, 257

Testing of hardware, 71
Testing of time-sharing systems, 83
Testing procedure, 178
Test scheduling procedures, 71
Time redundancy, 19, 22, 33, 34, 39, 44, 126
Tracing and handling algorithms, 258
Triplicated, 104

U
Ultrareliable storage, 131
Uncoordinated recovery points, 116, 117

V
Variable recovery point creation, 125
Vector heuristic, 283

308 Index

	Preface
	Introduction for Second Edition
	Contents
	About the Authors
	1 Introduction
	Abstract
	References

	2 Hardware Faults
	Abstract
	2.1 Introduction
	2.2 Single Event Effects and Other Deviations
	2.3 Conclusion
	References

	3 Fault Tolerance: Theory and Concepts
	Abstract
	3.1 Introduction to Reliability Theory
	3.2 Connection Between Reliability and Fault Tolerance
	3.3 Models for Fault Tolerance
	3.4 Chapter Conclusion
	References

	4 Generalized Algorithm of Fault Tolerance (GAFT)
	Abstract
	4.1 The Generalized Algorithm of Fault Tolerance
	4.2 Definition of Fault Tolerance by GAFT
	4.3 Example of Possible GAFT Implementation
	4.4 GAFT Properties: Performance, Reliability, Coverage
	4.5 Reliability Evaluation for Fault Tolerance
	4.6 Hardware Redundancy and Reliability
	4.6.1 Hardware Redundancy: Reliability Analysis

	4.7 Conceptual Summary
	References

	5 GAFT Generalization: A Principle and Model of Active System Safety
	Abstract
	5.1 GAFT Extension: The Method of Active System Safety
	5.2 GAFT Derivation: A Principle of Active System Safety
	5.3 Dependency Matrix
	5.4 Recovery Matrix
	5.5 PASS Tracing Algorithm
	5.5.1 Forward Tracing Algorithm
	5.5.2 Backward Tracing Algorithm

	5.6 Chapter Summary
	References

	6 System Software Support for Hardware Deficiency: Functions and Features
	Abstract
	6.1 System Software Life Cycle Versus Fault Tolerance
	6.2 System Software Phases
	References

	7 Testing, Checking, and Hardware Syndrome
	Abstract
	7.1 Hardware-Checking Process
	7.2 Analysis of Checking Process
	7.2.1 The System Model
	7.2.2 Diagnostic Process Algorithm
	7.2.3 Procedure T1
	7.2.4 Extension of the Diagnostic Procedure
	7.2.5 Testing of Time-Sharing Systems
	7.2.6 FT Scheduling

	7.3 System Monitoring of Checking Process: A Syndrome
	7.3.1 Access and Location of the Syndrome
	7.3.2 Memory Configuration
	7.3.3 Interfacing Zone: The Syndrome as Memory Configuration Mechanism
	7.3.4 Graceful Degradation Approach and Implementation
	7.3.4.1 Degradation Phases of a Triplicated System
	7.3.4.2 Degradation Phases of a Duplicated System

	7.3.5 Reconfiguration of Other Hardware Devices

	7.4 Software Support for Hardware Reconfiguration
	7.4.1 Software Support for Degradation
	7.4.2 Hardware Condition Monitor
	7.4.3 Hardware Condition Monitor—System Software Support

	7.5 Hardware Reconfiguration Outlook
	7.6 Summary
	References

	8 Recovery Preparation
	Abstract
	8.1 Runtime System Support for Fault Tolerance and Reconfigurability
	8.2 Overview of Existing Backward Recovery Techniques
	8.2.1 Uncoordinated Recovery Points
	8.2.2 Coordinated Recovery Points
	8.2.2.1 Limiting Checkpoint Size

	8.2.3 Message Logging-Based Rollback Recovery
	8.2.4 Other Approaches
	8.2.5 Implementation Aspects

	8.3 Recovery at the Level of Procedures
	8.4 Hardware Support for Recovery Point Creation
	8.5 Variable Recovery Point Creation
	8.5.1 Efficiency Analysis

	8.6 Implementation Aspects
	8.7 Ultrareliable Storage
	8.7.1 Physical Storage Media
	8.7.2 Flash Properties and Limitations
	8.7.3 Analysis and Design Considerations
	8.7.4 Implementation Aspects

	8.8 Summary
	References

	9 Recovery: Searching and Monitoring of Correct Software States
	Abstract
	9.1 Recovery as a Process
	9.2 Modified Linear Algorithm
	9.2.1 Characteristics of Modified Linear Recovery Algorithm
	9.2.2 MLR Execution in Case of Permanent Faults
	9.2.3 The MLR Algorithm in Case of Several Successive Faults in Case of Permanent Faults
	9.2.4 Hardware Support for the MLR Algorithm

	9.3 Summary
	References

	10 Recovery Algorithms: An Analysis
	Abstract
	10.1 Comparison of MLR and Two Other Recovery Algorithms of the Same Family
	10.2 Computational Model
	10.3 Linear Recovery Algorithm
	10.4 Dichotomous Recovery Algorithm
	10.5 Modified Linear Recovery
	10.6 Conclusion on Comparison of Recovery Algorithms
	10.7 Summary
	References

	11 Programming Languages for Safety-Critical Systems
	Abstract
	11.1 Oberon-07 as the Single Development Tool
	11.2 System Software for ERRIC: The Stack of Development Tools
	11.3 Low Level: The Assembly Language
	11.4 System Level: The ERRIC Language
	11.5 Application Level: The COMPOSITA Language
	11.6 Summary
	References

	12 Proposed Runtime System Structure with Support of Resilient Concurrency
	Abstract
	12.1 Runtime System Structure
	12.2 Concurrency Support for Resilient Computing
	12.2.1 Problem of Concurrency
	12.2.2 Why It Is Needed
	12.2.3 The Matter of Concurrency
	12.2.4 Known Solutions and Derived Principles to Follow

	12.3 Communication of Sequential Processes: Principles of Synchronization
	12.4 Parallelism and Concurrency Versus GLM
	12.5 Parallelism and Concurrency: Further Models
	12.6 Concurrency Handling: Language and Runtime System Aspects
	12.7 Concurrency: Further Steps: Fault-Tolerant Interactors
	12.8 Conclusion
	Appendix: The Main Algebraic Books on Process Algebra Are
	References

	13 Proposed Runtime System Versus Existing Approaches
	Abstract
	13.1 What Is Available?
	References

	14 Hardware: The ERRIC Architecture
	Abstract
	14.1 Processor Architecture
	14.2 Instruction Set
	References

	15 Architecture Comparison and Evaluation
	Abstract
	15.1 Processor Architecture Overview
	References

	16 ERRIC Reliability
	Abstract
	16.1 ERRIC Reliability Analysis
	16.2 Digging a Bit Deeper in Estimation of Efficiency of Reliability Solutions
	References

	17 On Performance: From Hardware up to Distributed Systems
	Abstract
	17.1 System Level
	17.2 Information Processing Aspect
	17.3 Information Systems Task-Wise Hardware Involved Performance
	17.4 SSW-HW Performance Model
	17.5 Hardware Performance
	17.5.1 Hardware Zones
	17.5.2 Hardware Performance—Instruction Execution
	17.5.3 Performance Estimation—Instruction Timing
	17.5.4 Standard Performance Tests
	17.5.5 Real Processor Hardware Comparison
	17.5.6 Embedded Benchmarks

	17.6 Relative Performance Gain—Amdahl’s “Law”
	17.6.1 Distributed Computing
	17.6.2 Real Performance and Amdahl “Law”
	17.6.3 A Fine-Tuning of Parallel Speedup Model
	17.6.4 Parallel Versus Sequential: A Fence Model

	17.7 Conclusion
	References

	18 Distributed Systems: Maximizing Resilience
	Abstract
	18.1 Introduction
	18.2 Reconfigurability of DCS
	18.2.1 Redundancy of Distributed System: A Description

	18.3 Resilience and Recoverability in Networked System
	18.3.1 Implementation Steps
	18.3.2 Treat Propagation: Tracing and Handling Algorithms

	18.4 Recoverability Costs
	18.4.1 Checking and Recovery: An Efficiency of Implementation

	18.5 Summary and Conclusions
	References

	19 Distributed Systems: Resilience, Desperation
	Abstract
	19.1 Introduction
	19.2 On Desperation
	19.3 Desperation in Networking
	19.3.1 How Desperation Grows

	19.4 Researching Desperation
	19.5 Graph Theory Elements for Desperation Model
	19.6 Desperation—Proposed Algorithms for Handling
	19.7 Comparative Analysis of Proposed Algorithm and A*
	19.7.1 Briefly About A*

	19.8 Result of Comparative Simulation
	19.9 We Have More: A Vector Heuristic
	19.10 Router Level of Desperation Control
	19.10.1 Router Level—Inside Job

	19.11 Aftermath—Instead of Conclusion
	References

	20 ERRIC Machine Code Simulator
	Abstract
	20.1 Overall Description
	20.2 Basic Usage
	20.3 Simulator GUI
	20.4 Simulator Internal Structure
	20.5 Interpreter: The Implementation
	20.5.1 Design Decisions and Caveats
	20.5.2 Extensibility
	20.5.3 Machine Code File Formats

	Appendix 1: Internal Structure of ERRIC Interpreter and API Description
	A.1 The Main Structure
	A.2 Functions, Operators and Instruction Execution
	A.3 Source Files and Their Contents
	A.4 Executable File Formats

	Appendix 2: Practical Introduction and Developer’s Guide

	Index

