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Foreword by Dan Crisan

Climate change and the related challenges facing humanity have emerged as major
societal priorities in recent times. The scientific community has responded strongly
to these challenges, and, in particular, mathematicians are heavily involved in
leading the research agenda particularly through the new area of Mathematics:
Mathematics of Planet Earth. Similar to Mathematical Biology and Mathematical
Finance, Mathematics of Planet Earth is defined not through its subject matter, but
through its area of application. Its applications are directed toward the planetary
issues that we face today: climate change, quantification of uncertainty, moving to
an economy of sustainability, preservation of biodiversity, natural hazards, financial
and social systems, adaptation to change, and many others. Such issues give rise
to an abundance of challenging scientist problems with a strong multidisciplinary
characteristics.

Recent initiatives within the international mathematics community are
answering the need for interdisciplinary quantitative scientists to tackle diverse
Planet Earth challenges. The Society for Industrial and Applied Mathematics
(SIAM) has a Mathematics of Planet Earth activity group (www.siam.org/
activity/mpe); the second SIAM MPE conference took place in September 2018
(www.siam.org/Conferences/CM/Main/mpe18). The Mathematics of Climate
Network (mcrn.hubzero.org) coordinates with the researchers across the USA,
while a research network in MPE has been established in the Netherlands
(mathplanetearth.nl). The European Geophysical Union (EGU) has established
an annual MPE theme in their General Assembly. Many other activities in this area
take place all around the globe.

The book “Towards Mathematics, Computers and Environment: A Disasters Per-
spective” is a great addition to the scientific effort and the literature on Mathematics
of Planet Earth. The topics covered are of exceptional importance. Examples include
pollutant dispersion modeling, real-time monitoring and early warning of convective
weather, modeling and simulation of surface water flooding, time series modeling
for landslides and floods, and Bayesian analysis of disaster damage. The book will
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interest a wide audience, including students, young researchers, and established
scientists as well as emergency response and civil defense personnel, policymakers,
and other stakeholders.

London, UK Dan Crisan
October 2018



Foreword by Carlos Nobre

Earth System Science is a relatively new field of science. It encompasses the
complex interactions of natural and social systems with a view of unicity and
integrality of the Planet and all living species, including Homo sapiens. It emerged
more distinctly in the 1990s. Although one might say that the naturalists of the
eighteenth and nineteenth centuries really saw the Earth and its biotic and abiotic
environment as an indivisible whole, modern science of the twentieth century sliced
knowledge on a number of building blocks, the scientific disciplines, which grew
continuously apart. The 1987 UN’s Brundtland Report on Sustainable Development
created the political environment for seeking seeing the Earth and all its inhabitants
and a whole, that is, the full integration of natural and social systems, given
continuously more clout to inter- and transdisciplinarity in science.

One critical area of Earth System Science is “natural disasters.” More and
more, we have been able to develop quantitative understanding of the mech-
anisms underlying disasters, particularly the triggering mechanisms associated
to hydrometeorological and climatic hazards. Progress is slower in developing
quantitative models of social systems. That is particularly relevant for developing
early warning systems for natural disasters based on uncovering predictability
potential by utilizing disaster-specific environmental models. For instance, that is
the case of quantitatively modeling human vulnerability to disasters. This area is
receiving worldwide attention, and a few “predictors” are emerging. That is the case
of years of schooling of women: the higher the schooling, the smaller the number of
fatalities.

This book is an original contribution to demonstrate the potential of quantitative
models to improve our understanding of natural hazards and improve predictability
of natural disasters. It equally highlights important scientific development of disaster
and Earth System Science in Latin America.

São José dos Campos, Brazil Carlos Nobre
October 2018
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Preface

This book covers relevant, timely topics that offer a glimpse of the current state of
the art of disaster prevention research, with an emphasis on challenges within Latin
America.

Professors, researchers, and students from both mathematical and environmental
sciences, civil defense coordinators, policymakers, and stakeholders could all
benefit from this book.

This book brings carefully selected, fully peer-reviewed scientific works pre-
sented at three multidisciplinary scientific events:

1. Brazilian Colloquium on Mathematics, Thematic Session “Natural disasters:
the presence of mathematics—from understanding to prevention” that took
place from July 26 to 31, 2015, at the Brazilian Institute of Pure and Applied
Mathematics (IMPA), Rio de Janeiro, Brazil

2. “International Workshop on Mathematics of Climate Change and Natural Dis-
asters” that took place from August 29 to September 2, 2017, at the Brazilian
Institute of Space Research, São José dos Campos, Brazil

3. Brazilian National Congress of Applied and Computational Mathematics, The-
matic Session “Mathematics for Disaster Risk Reduction”, that took place from
September 19 to 23, 2017, at the Federal University of São Paulo, organized by
the Brazilian Society of Applied and Computational Mathematics (SBMAC)

The 12 book chapters that comprise this volume were selected among the works
submitted for presentation in those events and some invited authors. Each chapter is
being reviewed by two referees at two rounds.

All these selected chapters highlight the increasing importance of both physical
and empirical modeling approaches. In this book, the tools from mathematics, statis-
tics, and computing are presented in a cross-disciplinary way to give the researchers
and policymakers a better understanding of how natural phenomena occur and what
could be done to prepare communities and societies for the impacts of disasters.

It is worth observing that the thematic of this book is motivated by the actions
behind the Biennium of Mathematics in Brazil (2017–2018), which focus on
incentivizing the study and popularization of Mathematics in Brazil. To face this
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x Preface

context, dealing with issues related to environmental disaster risks in a mathematical
point of view was one of the main characteristics of the contributions in this work.

São José dos Campos, Brazil Leonardo Bacelar Lima Santos
São José dos Campos, Brazil Rogério Galante Negri
Campinas, Brazil Tiago José de Carvalho
November 2018
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Introduction

We live in uncertain times. The global climate is undergoing a scenario of change
and extreme weather, and climatic events are expected to increase in frequency and
intensity. Precipitation patterns are changing; temperatures are rising. The need to
understand the causes and mitigate against the potential effects is urgent.

Global environmental changes have caused an unprecedented rise in extreme
climate events in Latin America where extreme droughts are perhaps the most costly
natural extreme faced. Since 2005 until 2015, this region has experienced a huge
number of record-breaking droughts unparalleled in severity with an estimated cost
in excess of $13 billion (USD) from agricultural and livestock losses, according to
the Food and Agriculture Organization of the United Nations. Further catastrophic
effects of this include annual wildfires which become much more severe, and an
effect of this is a huge increase in carbon emissions, further fuelling the cycle.
Infrastructure is also affected as a huge percentage of electricity generation comes
from hydroelectric sources; hence, the extreme droughts can cause power shortages.
Landslides on populated slopes are particularly common in Latin America and
have devastating consequences. In 2010 landslides and floods near Rio de Janerio,
which resulted in over 500 deaths, 14,000 people were left homeless and had
a loss of income of $408 million (USD). Significant research is required to
improve predictive capabilities and provide advanced warnings which allow for
mitigation through evacuation, saving lives and substantial capital through the
reduction of material damage to infrastructure and helping safeguard the interests
and development of the most vulnerable members of society.

This volume “Towards Mathematics, Computers and Environment: A Disasters
Perspective” covers relevant timely topics that offer a glimpse of the current state of
art of disaster prevention research, with an emphasis on challenges within Latin
America. This text is aimed at interdisciplinary researchers from Mathematical
and Environmental Sciences, civil defense coordinators, policymakers, and stake-
holders. This book brings carefully selected fully peer-reviewed scientific works.
The chapters highlight the increasing importance of both physical and data-driven
modeling approaches.

xiii



xiv Introduction

Predictability and forecasts are of the utmost importance for climate models,
and the current state of the art applies various well-studied techniques for this task.
The systems of partial differential equations (PDEs) are posed that account for
atmospheric movement and other advected species which can include water, trace
chemicals, and aerosols. A numerical discretization of the underlying PDE model
is itself formed of various components, advection schemes, linear algebra packages,
spectral transformations, etc.

It is especially important to develop a rigorous understanding of these extremely
complicated processes, not least to allow for reproducibility of results. Because of
the huge undertaking that goes into building these models, many different choices
are made in terms of a numerical model, various parameterizations, and different
“physics” that enter into the models. In this light, it has been observed that different
comprehensive climate models give vastly different answers when solving the same
problem with the same forcing. Some of the nuances that must be studied are
included in the first chapters of this book, dealing with ocean-atmosphere coupling,
Rossby waves, and conservation of physical quantities and multiscale methods for
advected quantities.

Given the huge variances in length and time scales and, in many cases, a
fundamental lack of understanding in the physical causes of these events one turns
to data-driven approaches. With the surge in activity in machine learning and the
huge advances that have been made in data acquisition, these modeling approaches
are becoming very successful. It is even possible to combine the two philosophies,
which seem at a first glance to be so incompatible, through smart data assimilation
strategies, making use of machine learning algorithms allowing us to reach toward
the holy grail of disaster monitoring, a complete physics driven, data-informed
disaster prediction model.

Reading, UK Tristan Pryer
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An Overview of the El Niño, La Niña,
and the Southern Oscillation Phenomena:
Theory, Observations, and Modeling
Links

Léo Siqueira, Enver Ramírez, and Rosio Camayo

1 Overview

The term El Niño, La Niña, and the Southern Oscillation, collectively ENSO, refers
to the large-scale ocean–atmosphere phenomenon linked to an occasional warming
(cooling) during El Niño (La Niña) in sea-surface temperatures (SST) across the
central and east-central equatorial Pacific (Fig. 1). It directly affects the equatorial
central and eastern Pacific region with signatures in and over the western Pacific and
Indian Ocean [31]. However, impacts of ENSO are experienced on a global scale [4,
45] through remote connections (teleconnections) with prominent implications over
diverse human activities, like energy generation, agriculture, infrastructure, public
health, transport, among others [31, 33, 35]. A typical pattern for El Niño (La Niña)
consists in an abnormal warming (cooling) of the SST along the coast of Peru which
is extended westward and forms an anomalous warm (cold) tongue shown in Fig. 1.

During an El Niño (La Niña) episode, changes in the oceanic heat content of
upper layers is also observed with a shallowing (deepening) to the west and a
deepening (shallowing) to the east. Regarding its temporal characteristics, ENSO
is a naturally occurring phenomenon and displays irregular interannual variations
(Fig. 3), with peak power between 3 and 7 years in SST, as highlighted in Fig. 2.
However, its variability can also be found in other variables, e.g., sea level
height, convective rainfall, surface air pressure, and atmospheric circulation. In
the atmosphere, El Niño (La Niña) episodes are associated with the anomalous
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2 L. Siqueira et al.

Fig. 1 Composite tropical Pacific SST anomalies (◦C) displaying the typical patterns associated
with the anomalous peak warming for strong (≥1.5) El Niño (a) and La Niña (b); Colored areas
denote regions significant at the 95% level and contours show pressure departures in millibars.
Colored stars show the approximate location of Darwin (red) and Tahiti (blue) from which pressure
differences are used to calculate the Southern Oscillation Index in Fig. 3. Box in (b) shows the
region (NINO3.4) where the largest SST variability occurs on ENSO timescales, typically used
for ENSO monitoring. Asymmetry between the location of the maximum anomaly with El Niño
peaking farther east and La Niña peaking more toward central Pacific is also noted

weakening (strengthening) of the climatological large-scale pressure gradients over
the tropical region, typically measured as the normalized observed sea level pressure
differences between Tahiti (eastern tropical Pacific) and Darwin, Australia (Fig. 1a).
In general, the state of the Southern Oscillation is represented by a smoothed
time series of the Southern Oscillation Index (SOI) which corresponds very well
with changes in SST across the east-central tropical Pacific (NINO3.4 index). The
negative phase of the SOI depicts below-normal air pressure at Tahiti and above-
normal air pressure at Darwin (Fig. 1a). Extended periods of negative (positive)
SOI values coincide with anomalous warm (cold) ocean waters across the eastern
tropical Pacific indicative of El Niño (La Niña) episodes as shown in Figs. 1a and 3.
The weakening (strengthening) of the large-scale pressure gradients enables a zonal
shift of the strong atmospheric convection, which is frequently located over the
western Pacific and maritime continent, to the east (west) of this region during El
Niño (La Niña). This in turn affects the position of the heating sources and the
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Fig. 2 Multitaper power spectral density of the observed NINO3.4 index, area averaged SST over
[170◦W:120◦W;7◦S:7◦N]. Shaded gray area shows an estimate of the confidence interval of the
spectrum generated using a jack-knifing procedure of [46]

energy partition between the tropical internal modes and the teleconnections related
barotropic (external) modes [9, 36].

Concerning the irregularity of ENSO (Fig. 3), both east-central equatorial Pacific
SST (NINO3.4) and SOI undergo oscillatory behavior as the system transits
between above-normal sea level pressure differences (La Niña), below-normal
sea level pressure differences (El Niño), and no significant pressure differences
anomalies (neutral years). Major El Niño events recorded since the beginning of
the last century are 1904/1905, 1913/1915, 1925/1926, 1940/1941, 1957/1958,
1972/1973, 1982/1983, 1986/1988, 1994/1995, 1997/1998 (strongest in last
century), 2002/2003, 2004/2005, 2006/2007, 2009/2010, 2014/2016. Since the
beginning of the observational record, ENSO frequency has changed from around
12 years to more frequently occurrences during the last part of the record. However,
it must be acknowledged that the record length is far too small to be conclusive. In
addition, extended El Niño episodes like 1913/1915, 1986/1988, 1991/1995, and
2014/2016 are cases that deserve more attention from the scientific community as
well as the decadal like occurrences, types of variability that are also manifested in
the ENSO spectrum (Fig. 2).

Although ENSO is a prominent variability that dominates the interannual
timescale, it is able to interact with relatively higher [13] and lower [41] frequency
variability. This in turn leads to local and regional changes that span from clouds and
precipitation records to tropical–extratropical teleconnections of planetary scale.
ENSO atmospheric teleconnections typically involve both the so-called tropical and
tropical–extratropical “atmospheric bridges.” The former occurs via modulation of
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Fig. 3 Southern Oscillation Index (SOI; solid gray line), a measure of the atmospheric seesaw,
derived from the normalized pressure difference between Tahiti (eastern Pacific) and Darwin
(Australia) depicted by the blue and red stars in Fig. 1a, respectively. NINO3.4 index—area
averaged SST over [170◦W:120◦W;7◦S:7◦N]—depicted by gray box in Fig. 1b. Positive (red)
values show El Niño events, i.e., anomalous warming, while negative (blue) values show La Niña
events, i.e., anomalous cooling. Strongest events recorded through both SOI and NINO3.4 index
are indicated by arrows

the Walker circulation, with a time lag ranging from 3 to 6 months, producing
changes in atmospheric subsidence, cloud cover, and evaporation over remote
ocean basins such as the tropical North Atlantic [44], Indian Ocean [51], and
South China Sea [50]. The tropical–extratropical bridge, on the other hand, is
associated with ENSO-related upper-level atmospheric vorticity anomalies forcing
large-scale atmospheric Rossby waves that propagate into the extratropics. The
changes in deep convection due to ENSO lead to changes in atmospheric heating,
low-level convergence, and upper-level divergence in the equatorial Pacific that
are very effective at exciting the “Pacific-North American” pattern (PNA; [14])
and “Pacific-South American” pattern (PSA; [19]) in the Northern and Southern
Hemispheres, respectively. These waves propagate into the extratropics establishing
teleconnection patterns within 2–6 weeks and follow great circle routes that initially
extend poleward and eastward, being eventually refracted away from the poles and
return to the tropics [15, 48].

These teleconnections have a broad impact on the intensity and occurrence of
extreme events over other parts of the globe. For example, temperature extremes
are marked by an increase during El Niño over India, Southeast Asia, Australia,
and Southern Africa, while temperatures become cooler over southeastern North
America, and vice versa during La Niña [48]. Despite the fact that the remote
influence of ENSO on precipitation is much less coherent than in the case of
temperatures, outstanding heavy rains occurred in California, Ecuador, and Northern
Peru during the strong 1982/1983 and 1997/1998 El Niño events. Furthermore,
ENSO has been linked to the modulation of the Antarctic dipole pattern producing
changes in sea ice concentration around West Antarctica through Rossby wave trains
emanating from the tropical Pacific [32]. Although the above examples illustrate
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some of the extent of ENSO impacts, these mostly are not stationary and of low
predictability, except perhaps over Indonesia, eastern Australia, and Eastern Africa.
The recent 2015/2016 El Niño was one of the strongest El Niño in history (Fig. 3);
however, the precipitation anomalies considerably differed from the expectation
associated with previous strong El Niño events not bringing heavy rains to Peru or
Ecuador, and actually being opposite in sign compared to typical El Niño conditions
in California [23, 37]. On the other hand, the unusual extent and duration of the
melting in West Antarctica was likely favored by the strong 2014/2016 El Niño
unlike the strong 1982/1983 and 1997/1998 episodes.

The theory for ENSO has been widely explored along the past 40 years by a large
body of observational and theoretical work, with modeling attempts approaching
a mature stage during the late 1980s, to the point where predictions were being
made on a regular basis in the 1990s. Despite improvements in observations and
coupled ocean–atmosphere models in recent decades, ENSO predictability and
longer lead-time forecast skill remains limited. There have been different views and
theories formulated about ENSO and some were eventually discarded, but despite
that there is still lack of consensus between modelers and observers about what
are the essential mechanisms for ENSO. Recent studies also suggest that there
exists El Niño (La Niña) diversity regarding the parameters related to its amplitude,
trigger mechanisms, spatial patterns, and life cycle [7] as well as its impacts on the
globe. More recently, flavors of El Niño/La Niña characterizing two modes through
which the ENSO is manifested have been obtained [7, 45], namely the Canonical
El Niño/La Niña (central and eastern Pacific anomaly) and the El Niño/La Niña
Modoki (central Pacific anomaly). A new, but old flavor, El Niño Costero (far eastern
Pacific anomaly) with scientific registers back to the nineteenth century is being
revisited and also claiming for its place into this classification [43]. The extended El
Niño that happened earlier in the twenty-first century might suggest that our indices
to measure when an extreme phase of the ENSO cycle is occurring appear to need
reexamination. Perhaps, aware of this problem it has been suggested that a practical
definition of El Niño is, therefore, more a matter of convenience for its users than
strictly a scientific result [47].

2 Simplified but Realistic ENSO Models

A wide range of models of different complexity have been used in ENSO research
and prediction. They range from very simple models (known as “toy models”) that
attempt to recreate the very basic physics of the phenomena to sophisticated coupled
ocean–atmosphere general circulation models (GCMs) that integrate our knowledge
about global scale ocean and atmosphere dynamics. Statistical models based only
on data have also shown that ENSO dynamics can be inferred to a surprisingly good
degree using linear inverse models (LIMs).
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From a historical perspective, a set of intermediate complexity models (ICMs)
that combine simple physical models of the ocean and atmosphere into a coupled
model for the equatorial Pacific were the first to capture the essential features of
ENSO [1, 3, 5, 18, 53].

The paradigm of the ICMs consists of a shallow-water 1 1
2 layer reduced-gravity

model of mean depth H1.5, where the shallow (mixed) layer of relatively warm (and
less dense) water overlies a much deeper layer of cold water in an ocean basin of
length L. The two layers are separated by a sharp vertical temperature gradient
(thermocline), and it is assumed that there is no motion in the deep layer. The idea
is to approximate the thermal (and density) structure of the ocean in the simplest
form possible. This simple ocean model is coupled to a simplified Gill-type [11]
steady-state linear atmospheric model. In this type of model, the atmosphere is
assumed to be in instantaneous equilibrium with the oceanic evolution since the
timescale for atmospheric adjustment is fast (a few days) compared with the ocean
timescales (months) and the ENSO cycle. One of the key distinctions between
ICMs models and more elaborate models such as GCMs is that the former do not
attempt to model the background flows of the system. Rather, perturbation equations
are constructed such that all quantities computed are anomalies, and if necessary,
observed background climatologies are used for the mean flows.

Dimensional analysis based on scales of variability of the system (e.g., zonal
length scaled by the basin width L, meridional width scaled by the oceanic radius of
deformation, neglecting meridional damping and meridional wind stress) indicates
that the following “long wave” approximation (i.e., no ∂tv = 0 term) can be used,
which in dimensionless variables becomes

(δ∂t + εm)um − yvm + ∂xh = τx, (1a)

yum + ∂yh = 0, (1b)

(δ∂t + εm)h + ∂xum + ∂yvm = 0, (1c)

εsus − yvs = δsτ
x, (2a)

εsvs + yus = 0, (2b)

where um and vm represent horizontal velocities (vertical-mean currents), h is
the thickness perturbation, and εm is a fairly long oceanic damping (combining
Rayleigh friction and thermal damping) coefficient. The vertical-mean component
is governed by linearized shallow-water dynamics (1). Equation (2) represents the
frictional balance of the Ekman layer and (us, vs) are the contribution of vertical-
shear currents associated with the fixed-depth surface layer. Furthermore, τx is
the zonal wind stress (meridional wind stress is neglected) and the parameter δ

measures the ratio of the timescale of oceanic adjustment (in the zonal direction) by
wave dynamics to the timescale of SST change by coupled feedback and damping
processes.

In these Eq. (1), the fast-wave (or fast-dynamics) limit is obtained as δ → 0, for
which the wave dynamics timescales are fast compared to the coupled timescales
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affecting SST, and the fast-SST limit as δ → ∞. The modes that result from
the fast-wave limit are not very realistic, whereas those of the fast-SST limit, for
which the adjustment of surface temperatures is much faster than the dynamic
adjustment, leads to more realistic unstable and damped coupled modes. The latter
is therefore the basis of the delayed oscillator model discussed in Sect. 3. In fact, in
order to somehow explain the irregularity of ENSO some previous studies [28, 29]
suggest that ENSO is actually a mixed mode instability located within both limits
in parameter space, containing features of the fast-SST and fast-wave limits with
continuous transition between the two.

In this class of model, the Ekman layer is shallower than the layer represented
by (1) and the difference in flow between the mixed layer and the lower layer is
controlled by a steady state Eq. (2) representing a heavily damped shear (Ekman)
flow. In Eq. (2), δs is the surface layer coefficient, i.e., the ratio of the timescale of
SST change by vertical-mean current and thermocline feedbacks to the timescale
of SST change by coupled current perturbations associated with the active surface
layer. This parameter governs the strength of feedbacks due to vertical-shear
currents and upwelling created by viscous transfer between the surface layer and
the rest of the thermocline.

In addition, a fully nonlinear SST Eq. (3) is also included, since SST is a key
interfacial variable, in which temperature variations are determined by vertical
mixing, horizontal advection, and surface heat fluxes

∂tT + u∂xT + v∂yT + H(w)w(T − Tsub)/H1.5 + εT (T − T0) = 0, (3)

where u and v are horizontal velocities in the mixed layer, w the vertical velocity
just below the mixed layer, T is the temperature of the equatorial surface, Tsub is
the below thermocline ocean temperature approximated as a tanh function, T0 is
the radiation equilibrium temperature toward which the model tends in the absence
of motion, εT is a constant representing Newtonian cooling by surface fluxes, and
H(w) = 1/2(tanh(w/Δw) + 1) is a continuous approximation to the Heaviside
function used to switch between upwelling and downwelling. It is worth noting that
SST variations, in this formulation (3), affect neither the pressure gradients nor the
dynamics of the system.

From the atmospheric model (Gill’s model) the following non-local relation
between the zonal wind stress and equatorial SST can be derived [17, 18]:

τx = μA(T ; x, y). (4)

In Eq. (4), A(T ; x, y) is a non-local function that relates the equatorial SST (T )
to the zonal wind stress τx , and μ is a measure of the coupling strength coefficient.
A formal derivation of (1)–(4) can be obtained from basic principles, but this would
fall beyond the scope of this overview. It is worth noting that in this model, the
nonlinearity enters through the thermodynamic Eq. (3) for the ocean. Furthermore,
this coupled model does not contain high frequency internal variability in the
atmosphere, in contrast with the real coupled ocean–atmosphere system, since it
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considers a steady-state Gill-type atmosphere. Therefore, intraseasonal variability
is explicitly neglected, although the response of the Gill-type atmosphere is an
atmospheric Kelvin and long Rossby waves.

Equations (1)–(4) are, essentially, a stripped-down version of the [53] interme-
diate model (ZC). The major breakthrough in ENSO research introduced by this
anomaly model was to produce sustained variability that is reasonably similar to
ENSO. In this model, the recurrent warm and cold events of irregularly varying
amplitude show realistic spatial structure and seasonal cycle as well as a period of
about 3–4 years.

The ZC model was designed specifically to capture the interannual variability of
large spatial scales of motion in the ocean. In this anomaly model, the major physical
processes at work include a positive feedback between the large-scale ocean
(downwelling) and atmosphere (convergence and latent heat release) leading to an
ocean heating anomaly and further downwelling and deepening of the thermocline.
The disequilibrium is carried by the ocean wave dynamics as eastward propagating
equatorial Kelvin waves and westward propagating slightly off-equatorial Rossby
waves. In the central and eastern parts of the basin the Kelvin waves grow unstable
if they have large wavelengths and are slow enough to stay within the coupling
region so that the coupling process feedbacks on the perturbation. The perturbations
of the thermocline also produce negative off-equator depth anomalies (that is, a
shallowing signal of the thermocline) in the central part of the basin that excite
westward propagating Rossby waves. These Rossby waves eventually are reflected
off the western boundary (no-net flow

∫
udy = 0 required) as large-scale equatorial

Kelvin waves (long wave approximation) that move back to the east and eventually
arrive to the eastern part of the basin months later, shallow the thermocline there,
and cause cooling of the SST. This in turn implies in a break of the warm conditions
as a result of the positive feedback of the thermocline deepening and the SST. Then
the coupled feedback starts to operate with a different sign to amplify the negative
temperature anomaly leading to a La Niña state. The equilibration of temperature
anomalies is usually modeled through nonlinear effects, mainly in the model’s SST
Eq. (3), which limits the amplitude of the resulting oscillation. The ZC model then
shows the recurrence of warm and cold events, deriving solely from self-interactions
of the coupled system since there is no external forcing. The period of the oscillation
is basically determined by a systematic time delay between dynamical changes in
the eastern part of the basin and associated large-scale fluctuations in the equatorial
wind stress. It is worth noting that by making a long wave approximation in the
ocean dynamics, typically one ensures the dominance of Kelvin and long Rossby
waves; however, other modes can be asymptotically found [34, 39]. By ensuring
the dominance of Kelvin and long Rossby waves, one is assuming that all the
energy associated with reflected Rossby waves goes into the largest Kelvin modes.
Therefore, reflection becomes too efficient as it happens in the ZC model and is
further enhanced by the use of unrealistic solid boundaries in this model.



El Niño, La Niña Overview 9

3 Low Order Models: Delay Equations, Discharge–Recharge
Theory, and Unification by the Two-Strip Model

After the ZC model and other concurrent efforts showed success in simulating
ENSO, the understanding of equatorial wave dynamics was further refined pro-
viding conceptual models that account for important aspects of the ICMs results
[2, 3, 17, 42]. Jin [17] formulated the two-strip model, a reduced model for ENSO
capable of capturing the essential dynamics, based on the shallow-water response.
For a matter of convenience, we start with the linearized shallow-water equations
including dissipation and using the long wave approximation (i.e., ∂tv = 0).
Furthermore, we only consider the zonal wind stress F = τx since it is the anomaly
of this parameter that starts the destabilization process

∂tu − yv+∂xh + rou = F, (5a)

yu + ∂yh = 0, (5b)

∂th + ∂xu+∂yv + roh = 0. (5c)

Then a single equation for the thermocline h is attained by taking the y derivative
of (5a), multiplying the result by y, and eventually subtracting (5a) from the
resulting equation

(yuy − u)t − y2vy + yhxy + royuy − hx − rou = yFy − F. (6)

Using (5b) and (5c) we can fully re-write (6) as a function of h

y2(∂th + roh) +
(

2

y
∂y − ∂2

y

)

(∂th + roh) − ∂xh = y∂yF − F, (7)

with boundary conditions

x = 0 :
∫ ∞

−∞
1

y

∂h

∂y
dy = 0, (8a)

x = 1 : ∂h

∂y
= 0. (8b)

By looking at the thermocline structure associated with equatorial Rossby waves
[17], it is reasonable to assume that h has a parabolic structure near to the equator
h(x, y, t) = he(x, t)+y2Δh(x, t). Taking h(x, 1, t) = (hn+he)/2, where hn is the
departure of the thermocline at the northern domain, and thinking in terms of Taylor
expansion for y near to the equator, we have ∂yh ≈ yΔh(x, t) = y(hn − he)/2.
Furthermore, using (5b) we obtain u = −(hn − he). Finally, substituting h in (7)
and evaluating it at y = 0 and y = yn gives the two-strip model
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(∂t + ro)(he − hn) + ∂xhe = F
∣
∣
∣
y=0

, (9a)

(∂t + ro)(hn) − 1

y2
n

∂xhn = ∂y

(
F
y

) ∣
∣
∣
y=yn

. (9b)

At y = 0 the free wave solution for the zonally unbounded domain is a Kelvin
wave with wavenumber k. Similarly, at y = yn the free wave solution for hn is a
Rossby wave with wavenumber −k/h2

n. Thus, [17] obtained an elegant simplified
model where the two modes of the ENSO are found. However, it is not only the
wave dispersion that enables the system destabilization, but the wave reflection at
the longitudinal borders. This condition is represented through

hn(1, t) = rEhe(1, t), (10a)

he(0, t) = rWhn(0, t). (10b)

The basin width was normalized to 1, so that hn(1, t), he(1, t) are evaluated at
the eastern boundary and hn(0, t), he(0, t) at the western boundary; rE , rW are a
measure of the allowed mass flux in each border and accounts for the reflection of
the waves. In fact, at the eastern boundary, the zonal velocity is given by uE =
he(1, t) − hn(1, t) = (1 − rE)he(1, t), where rE ∈ [0, 1]. In the extreme case
rE = 1 it results that uE = 0. The western boundary, however, is not fully reflective
so that energy leaks due to the open local topography, consequently rW < 1 and
the conservative choice of rW = 3/5 is an appropriated value under the two-strip
approximation with h = 0 for y ≥ 2yn. Thus, rE and rW monitor the mass exchange
between the tropical Pacific and the adjacent regions.

The dispersion relation of the oceanic adjustment modes (eigenvectors of the
forced problem) is

σj = −r0 + ln
rErW (1 + y2

n) − rE

(1 + y2
n) − rE

+ i
2πj

1 + y2
n

, (11a)

hn = Hne(σj t+(σj +r0)xy2
n), (11b)

he = Hne(σj t−(σj +r0)x) + hn

1 + y2
n

, (11c)

where j = {· · · ,−2,−1, 0,+1,+2, · · · }. The logarithmic term in (11a) is always
negative, representing the damping associated with leakage to the west of the basin.
For j = 0 the stationary mode of the ocean adjustment is obtained and the mean
value of h over the whole basin is a solution of (9) for r0 = 0. This mode can be
thought as an approximation of the main dispersive mode of the full spectrum of
the oceanic adjustment. For higher j ’s, the oscillatory modes are equivalent to the
ocean basin modes.
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Within this context, the long wave approximation forced by the wind stress, i.e.,
a model appropriate for the oceanic component, can be conveniently transformed
to the two-strip model. Rossby and Kelvin waves are contained into (9) and both
modes are milestone for the ENSO theory. Inclusion of the boundary conditions
allows to obtain a higher degree of realism. In addition, the slow thermodynamic
adjustment governing the equatorial temperature perturbations can be described by

∂tT + �v · ∇T − αh + u3
a/h = 0. (12)

Neglecting the effect of the wind (u3
a/h = 0) and using the advective part as a

local damping CT (x), the temperature can be written as

∂tTe + CT (x)Te − α(x)Te = 0, (13)

where α(x) represents the effect of the thermocline variations (through background
upwelling) on the temperature (thermocline feedback). Additional simplifications
are employed in which the area average SST over the region with the highest
variation during the ENSO development is considered and following the Gill

atmosphere model [11], F = μA(Te)e− ε2y2

2 , where

A(Te) = A0Tef (x), (14)

with f (x) being a fixed pattern and A0 its amplitude without damping. The two-
strip model can be integrated following the characteristic curves corresponding to
the Kelvin and Rossby waves are given by

x − x0 = t − t0, (15a)

x − x0 = − t − t0

y2
n

, (15b)

where (x0, y0) represents an arbitrary point inside the domain. Thus, by integrating
from the eastern to the western border (9b) along (15b) and then integrating along
the reverse path along (15a) and neglecting the damping, the following delay
ordinary differential equations are obtained:

heW (t) = rW rEheW (t − 1 − y2
n)

+ μA0rW (rETeE(t − 1 − xP ) − θTeE(t − y2
nxP )),

(16a)

heE(t) = rW rEheE(t − 1 − y2
n)

− μA0(θrWTeE(t − 1 − y2
nxP ) − TeE(t − 1 + xP )),

(16b)

d

dt
TeE = − CT ETeE + αEheE, (16c)
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where xP is a fixed point over the area of the wind response, TeE , CT E , and αE are
mean over the eastern half of the basin (region with largest thermal amplitude during
ENSO). When the effect of the eastern boundary reflection is neglected (rE = 0),
then (16b) and (16c) give

d

dt
TeE = −CT ETeE +μA0αE(TeE(t −1+xP )−θrWTeE(t −1−y2

nxP )), (17)

showing the influence of local damping and remote signal due to propagation
of Kelvin and Rossby waves on the average eastern basin temperature TeE . The
delay time 1 − xP is the relatively fast effect due to the Kelvin wave; thus, it
can be neglected on long timescales. However, it provides a local amplification
of temperature perturbations by the thermocline feedback through a forced Kelvin
wave response. The delay feedback 1 + y2

nxP is the time taken for the Rossby wave
to travel from the center of the wind response near xP to the western boundary
plus the time it takes the reflected Kelvin wave to cross the basin. In arriving to the
eastern part of the basin, it provides a delayed negative feedback for the temperature
perturbation (since rW > 0).

Based on other ad hoc approximations the delayed-action oscillator was derived
independently by [42] and [3]. In these studies, delay differential equations with
local feedback in a basin with closed boundaries provided a convenient, and
successful, paradigm for explaining interannual ENSO variability

d

dt
T (t) = aT (t) − bT (t − d) − cT 3(t). (18)

Here T is the temperature disturbance and a represents the growth rate of T in
the eastern Pacific and corresponds to μA0αE − CT E in (17), b is a measure of the
delayed (t − d) negative feedback corresponding to (1 + y2

nxP ) in (17). The third
term mimics the negative feedback mechanisms (nonlinear damping) that limit the
growth of perturbations by letting small anomalies to grow fast in a linear damping
regime, while large anomalies are strongly damped. A dimensionless equation can
be obtained by scaling time by 1/a and the temperature by

√
a/c so that

d

dt̃
T̃ (t̃ ) = −αT̃ (t̃ − τ) + T̃ (t̃ ) − T̃ 3(t̃), (19)

where T̃ represents the eastern equatorial SST anomalies, α = b/a, τ = ad is the
dimensionless delay time, 0 < α < 1, and τ > 0. The first term on the right-hand
side of (19) mimics the negative feedback by ocean adjustment processes, while the
second term reflects the positive feedback mechanisms from air–sea coupling. The
delay timescale τ represents the time taken by forced upwelling Rossby waves to
reach the western boundary, reflect as a Kelvin wave, and reach the eastern Pacific.
The above delayed oscillator equation has three equilibria T̄ = 0,±√

1 − α, the
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inner solution and one warm and one cold outer solutions. Considering infinitesimal
perturbations about these equilibria by setting T̃ = T̄ + T ′ and linearizing

d

dt
T ′(t) = T ′(t)(1 − 3T̄ 2) − αT ′(t − τ). (20)

A normal mode analysis of (20) with T ′ = T̂ eσ t , where the complex frequency
σ = σr + iσi , gives a transcendental algebraic equation

σ = 1 − 3T̄ 2 − αe−στ , (21)

which can be solved for the frequency σ as function of the two nondimensional
parameters α and τ . It turns out that the inner solution is always unstable with a
non-oscillatory exponential growth, while the two outer solutions (warm and cold)
may become oscillatory unstable depending on the parameters (α, τ ). The system
exhibits bounded oscillatory dynamics [42] if an outer steady state is unstable which
appear for larger values of the negative feedback α, and for larger values of the
delay time τ . The typical period of the unstable modes is about 2–3 times the
Rossby delay time τ . The period, which is substantially shorter than the observed
ENSO period, is not a robust outcome of this model and is one of the two main
conceptual difficulties in the acceptance of the delayed oscillator theory. Another
key element that fostered the debate regarding the central role of ocean wave
dynamics is that western boundary reflections are considerably more intricate than
formulated in the delayed oscillator theory for ENSO. Regarding the first issue [6]
argued that multiple Kelvin waves coming off the western boundary are required to
eliminate the perturbation growth in the east, while [20, 38, 49] argue, in contrast
to [6], that off-equatorial Rossby waves (higher modes) forced by off-equatorial
wind anomalies play a considerable role and explain the slower observed timescale
due to their slower propagation speeds. The delayed oscillator engendered many
other conceptual models based on one or another type of delayed-action equation,
namely the western Pacific, advection, and unified oscillators each highlighting
certain physical mechanisms involved in ENSO.

Concerning the second issue, [16, 17] proposed a different approach to derive
the so-called recharge/discharge oscillator for ENSO. In this view, the details of
western boundary reflections are of secondary importance and the slow timescale
is associated with near equatorial balance between the wind stress curl and the
depth-integrated meridional transport in the ocean (Sverdrup balance). The recharge
oscillator assumes that differences in thermocline depth tilt between the equatorial
eastern and western Pacific are largely in a Sverdrup balance with the equatorial
wind stress force

hE = hW + [τ ], (22)

where hW denotes the thermocline depth anomaly in the western Pacific, hE is
the thermocline depth anomaly in the equatorial eastern Pacific, and [τ ] is the
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zonally integrated wind stress across the basin along the equator. In this view,
the equatorial wave propagation process is relatively fast for establishing this
thermocline slope that extends to the off-equatorial region as a result of the
broadness of the atmospheric wind system. The Coriolis force becomes important
off the equatorial band, and therefore there will be Sverdrup transport, which causes
mass or, equivalently, heat content to converge toward the equator depending on
wind forcing. Despite that the thermocline tilt along the equator is set up quickly
to balance the equatorial wind stress as expressed by (22), the thermocline depth in
the west takes time to adjust to the zonal integrated meridional transport, which is
related to both the wind stress and its curl off the equatorial band

d

dt
hW = −rhW − α[τ ], (23)

where the first term of the right-hand side represents ocean adjustment processes
that are assumed to act at a constant rate r and collectively represents the damping
of the upper ocean system through mixing, and the equatorial energy loss to the
boundary layer currents at the east and west sides of the ocean basin. The second
term represents the Sverdrup transport across the basin and the minus sign in front
of α comes from the fact that a large positive wind stress is expected to depress the
western thermocline depth anomaly [52]. As mentioned before, the variation of SST
during ENSO is largely confined within the central to eastern equatorial Pacific and
is described by

d

dt
TE = −cTE + γ hE + δsτE. (24)

The first term on the right describes the local damping by surface fluxes, the
second term reflects the thermocline downwelling, and the third term represents the
advective feedback (Ekman pumping), possibly leading to additional downwelling.
The set of equations can be closed by assuming that there is an overall westerly
(easterly) wind anomaly for a positive (negative) SST anomaly averaged over the
entire basin of the equatorial band, but a much weaker westerly (easterly) wind
anomaly averaged over the eastern half of the basin

[τ ] = bTE; τE = bETE, (25)

where b and bE are coupling coefficients, and the feedback from Ekman pumping
can be ignored, so δsbE = 0. Finally, the model reduces to a coupled set of ordinary
differential equations

d

dt
TE = −cTE + γ (hW + bTE), (26a)

d

dt
hW = −rhw − αbTE. (26b)
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The recharge oscillator and the delayed-action oscillator share the same ocean
dynamics (low-frequency forced modes) and depend on two similar parameters:
the damping r in (26b) and the Rossby wave propagation time in (19); and a free
parameter describing how strongly the conditions in the west influence the SST
in the east. Therefore, it is not possible to distinguish the two theories based on
observations or model experiments. A major advantage of the recharge paradigm is
that its essential process, interior Sverdrup flow, is easier to deal with measurements
compared to western boundary reflections, so that monitoring of the low-frequency
convergence of heat content can be tackled [26]. However, the challenges for both
paradigms are similar. The delayed oscillator is criticized because Rossby waves
may propagate through the Indonesian archipelago, while in the recharge oscillator
the interior mass convergence may be returned poleward in western boundary
currents or may pass through Indonesia just as the low-frequency Rossby waves.
Put simply, there is little to be gained from separating these two views.

4 Summary and Discussion

Conceptual models of ENSO have played an important role in providing a basic
dynamical framework for its cycle. Within this framework, the main simplified
model abstractions involve a subtle trait where the internal uncoupled and fast
intrinsic atmospheric variability is neglected—the atmosphere is rapidly adjustable
to the ocean. Furthermore, in the earlier models (discussed in previous sections)
the parameters weighting the proposed physical processes for growth and decay
remain constant in time, placing the system in an unstable dynamical regime.
However, analysis of observations later revealed that the relative importance of
different physical processes may vary between events and no two ENSO episodes
are completely alike.

The diversity of ENSO events and the observed asymmetries in its onset gave rise
to the hypothesis that the system may not necessarily be in the unstable regime but
could be a stable system driven by noise—the emergence of the stochastic forcing
paradigm [22, 27, 30]. This stochastic view naturally makes use of scales-separation
to divide the tropical dynamical system into fast and slow timescales. In this case,
the slow timescale derives from the relaxation time of the equatorial ocean basin
(modified by the atmospheric coupling), while the fast timescale is originated from
the life cycle of (random) atmospheric convective disturbances. ENSO is therefore
considered to behave like a stochastic oscillator, and linear stability analysis of
coupled models (stochastic optimals) reveals that they are particularly susceptible
to external (uncorrelated) forcing with specific large-scale atmospheric patterns.
If variability from the fast (random) component “projects” significantly onto the
pattern of susceptibility, then it can perturb the coupled system and convert the
original regular oscillation to an irregular one. There are uncertainties about these
patterns since they somewhat vary between different coupled models. However,
once perturbed the system may rapidly (1–2 weeks) develop a very characteristic
response which in some coupled models strongly resembles a westerly wind burst
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(WWB; [21] and the references therein). In fact, this is supported by previous studies
that show that every El Niño event during the past 50 years was accompanied by
WWB activity [8, 10]. WWBs are linked to either paired or individual tropical
cyclones, cold surges from midlatitudes, convective phase of the Madden–Julian
oscillation [24, 25], or even a combination of them. The type of noisy WWB forcing
of ENSO may fall into two categories: (a) an effectively white noise, in time domain,
projected on the stochastic optimals or (b) stationary in time (seasonally dependent),
in which case stochasticity is somehow correlated to a slow scale variability and
thus produce multiplicative stochastic noise. Yet, caution must be taken since there
are different definitions in use for WWBs between atmospheric scientists and
oceanographers as reported in [54]. In considering ENSO as a stochastically forced
system, the lack of atmospheric variability is alleviated in the earlier simplified
models for ENSO. However, perhaps the most fundamental controversy regarding
the role of atmospheric stochastic perturbations is in what dynamical regime the
coupled system lies since there may be many indistinguishable behaviors between a
system that is marginally stable and one that is slightly unstable. Nevertheless, this
debate of stochastic forcing versus unstable dynamics has important implications for
its predictability. The predictability of ENSO is more limited, in the order of a few
months, if ENSO is a stable mode triggered by stochastic forcing than if ENSO is a
self-sustained mode, for which useful ENSO predictions beyond a couple of years
may be possible [40]. Furthermore, the dominance of one type of stochastic forcing
also has implications for predictability [12]. This uncertainty renders its prediction a
continuously challenging task since the real ENSO seems to operate near the critical
boundary in “parameter space” (class of model) so that the dynamical regime may
shift from one to the other. The lack of a long and reliable observed data set is one
of the reasons for not being able to arrive at a statistically robust answer to this
controversy so far.
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Observation, Theory, and Numerical
Modeling: Atmospheric Teleconnections
Leading to Generalized Frosts over
Southeast South America

Gabriela V. Müller, Guillermo Berri, and Marilia de Abreu Gregorio

1 Introduction

Natural phenomena, such flooding, landslides, droughts, frosts, among others, are
responsible for significant social, economic, and environmental damages and losses,
which are more recurrent and have increasingly intense impacts. In particular,
frosts are extreme events that directly and significantly affect human and economic
activities, causing impacts and damages in various sectors. Frosts in extratropical
latitudes of South America are frequent since its climate regime is characterized by
incursions of air masses of polar origin, especially during the winter. They are very
important in the center-northeast of Argentina, a region called Pampa Húmeda (Wet
Pampa), an extended plain of more than 750,000 km2. It is considered one of the
world regions where the impacts are greater due to the type of production and the
number of inhabitants that live there [23, 29]. In order to give proper representation
to the frequent frost phenomenon that in occasions cover extended regions, [28]
defined a criterion for identifying generalized frosts (GF) events, by considering the
days on which a surface temperature below 0 ◦C is recorded at more than 75% of
the meteorological stations in the Wet Pampa.
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The processes that involve the development of this extremely cold condition are
associated with complex interaction mechanisms in different atmospheric scales
[32, 33]. Remote forcing, such as anomalous convection in the tropical region,
can act as a trigger mechanism for Rossby waves generation that propagate to the
extratropics, giving rise to the tropic–extratropic teleconnections [2, 12]. However,
the wave propagation pattern will depend on the structure of the basic state, as well
as the remote forcing [1]. The term teleconnection means remote connection and its
study is a good example of the linkage between observations, theory, and numerical
model results. In this work we present the linkage by means of the study of GF
events in the Wet Pampa.

2 Theory of Rossby Waves

The identification of teleconnections and the analysis of their effect on the horizontal
structure of the atmospheric circulation can be useful to understand the occurrence
of anomalous events in various regions of the planet. It provides an overview of the
atmospheric circulation in which a local forcing acts in such a way that influences
remote regions. Such local forcing may be a heat source ([2, 10–12, 18, 35, 42],
among others), or an orographic obstacle ([5, 7, 9, 12, 39], among others), which
acts as wave generators that propagate in the atmosphere. One way to analyze the
propagation of waves in the terrestrial sphere is by means of the theory of Rossby
waves in a barotropic atmosphere.

2.1 Barotropic Equations

The simplest context for the study of Rossby waves is by considering a shallow layer
of incompressible fluid on a rotating earth, with a simple geometry. By ignoring
the effects of the earth sphericity and allowing the change with latitude of the
vertical component of the earth rotation, the dynamics can be described by the two-
dimensional rotating Euler equations:

dvH

dt
+ f k̂ × vH = − 1

ρ0
∇p (1a)

∇ · vH = 0 (1b)

where
d

dt
is the total time derivative operator that applied to each scalar component

A of the vector vH is
d

dt
A =

d

dt
A + (v · ∇)A, f is the Coriolis parameter, k̂ is the

unit vertical vector, ∇p is the pressure gradient, and vH the horizontal component
of the fluid flow.
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Equation (1a) represents the fluid motion set by an external pressure gradient,
while Eq. (1b) represents the incompressibility of the fluid. Based on the theory
developed by Rossby [36, 37], the variation of the Coriolis parameter with latitude
can be approximated by expanding the latitudinal dependence of f in a Taylor series
about a reference latitude φ0 and retaining only the first two terms to yield

f = f0 + βy (2)

where β ≡ (df/dy)φ0
= 2Ωcosφ0/a and y = 0 at φ0. This approximation is usually

referred to as the midlatitude β-plane approximation.

2.2 Barotropic Vorticity Equation

By imposing incompressibility, the family of sound waves is removed from the set
of possible solutions, yet the Coriolis parameter provides a restoring mechanism
leading to the nontrivial, the so-called Rossby wave solution. To promptly set
equations for describing the Rossby waves, the non-divergence condition
∇ · vH = 0 allows us to describe the problem in stream-function formulation ψ ,
with vH = k̂ × ∇ψ .

Thus, taking the curl of Eq. (1a), the non-linear, the non-divergent barotropic
Rossby waves are described by Charney [6], Pedlosky [34] as:

∂ζ

∂t
+ J (ψ, ζ ) + β

∂ψ

∂x
= 0 (3)

where ζ = ∇2ψ = k̂ · (∇ × vH ), and β is the meridional derivative of the Coriolis
parameter.

The non-linear contribution in Eq. (3) is clearly due to the Jacobian

J (ψ, ζ ) = [∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
] (4)

which represents the advection of the relative vorticity ζ since vH = k̂ × ∇ψ .
When the advective contribution is linearized by approximating J (ψ, ζ ) ≈

Ū (y)
∂

∂x
ζ with a time invariable westerly flow with meridional shear Ū (y), we

obtain the following wave equation:

∂ζ

∂t
+ Ū (y)

∂ζ

∂x
+ β

∂ψ

∂x
= 0 (5)
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Equation (5) is in terms of the stream function ψ that can be expressed as:

ψ ′ = ψ0e(i(kx+ly−σ t)) (6)

so that the relative vorticity results in terms of the perturbation stream function as
ζ ′=∇2ψ ′(since ζ0=0). Thus the solution allows to obtain the following frequency:

σ = kŪ − β+k

k2 + l2
(7)

where the generalized β+ parameter, the meridional gradient of absolute vorticity,
is given by:

β+ = β − ∂2Ū

∂y2 (8)

On the other hand, the wave activity in the plane propagates with the group
velocity whose components are obtained by deriving the frequency with respect
to the wave numbers k and l:

cg = (ug, vg) = (∂σ/∂k, ∂σ/∂l) = (c, 0) +
(

2β+

K2

)

cos(α)K̂ (9)

where c = σ/k is the eastward phase velocity, K̂ is the unit vector normal to the
trough and ridge axis with an eastward positive component, and α is the angle the
vector forms with the eastward direction. In addition, the total stationary Rossby
wave number Ks is obtained by making σ = 0 in Eq. (7):

Ks =
√

β+

Ū
(10)

Therefore, the development of stationary Rossby waves is possible only in a
westerly flow (Ū > 0) as long as β+ is always positive. From Eqs. (9) and (10),
the group velocity for stationarity condition:

cgs = 2Ū cos αK̂ (11)

Thus for the stationary Rossby waves, the energy propagates perpendicular to
the axis of the ridges and troughs with velocity equal to 2Ū cos α. In sum, this
theory describes how an initial vorticity source in a barotropic atmosphere with a
stationary zonal flow is able to generate a series of ridges and troughs whose energy
is dispersed with a group velocity given by Eq. (11). The resulting wave trains are
linked to the observed teleconnection patterns ([12, 16], among others). In particular,
the Southern Hemisphere offers a unique environment to test the propagation of
these waves in observed atmospheric circulation patterns, due to the equivalent
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barotropic structure of the atmosphere and the prevalent zonal structure of the time
mean flow [19]. According to [17] a useful diagnostic tool for representing the mean
background state in which the transients are embedded is the calculation of Ks given
by Eq. (10) which is the total wave number at which a barotropic Rossby wave is
stationary at a particular location and in a given background zonal flow (Ū ).

3 Local Forcings of Rossby Waves

Rossby waves are a type of atmospheric motion due to the conservation of absolute
vorticity and the variation of the Coriolis parameter with latitude, the so-called β-
effect. This synoptic scale wave motion in the horizontal plane is characterized
by the alternation of regions of cyclonic and anticyclonic vorticity as the wave
propagates, and the restoring force of this wave is the Coriolis force. One of
the factors favoring Rossby waves generation is tropical diabatic heating, which
is balanced by vertical upward motion and upper-level divergence resulting in a
disturbance of the relative vorticity field. Hoskins et al. [12] used a barotropic model
to study the atmospheric response to a thermal forcing and found the influence of
tropical heating and upper-level divergence on the generation of Rossby waves that
propagate along extratropical curved pathways in the form of wave trains associated
with teleconnections. The forcing for the Rossby waves in a divergent field can be
inferred by means of the barotropic vorticity equation:

∂ξ

∂t
+ v · ∇ξ = −ξD (12)

where ξ = f + ζ is the absolute vorticity, f the planetary vorticity, ζ the relative
vorticity, v the wind vector, and D = ∂u/∂x + ∂v/∂y is the horizontal divergence.
The left-hand side of the equation describes the Rossby wave propagation, while
the right-hand side represents the forcing. However, as ξ is relatively small in
the tropics, the heating anomalies in the tropics would be ineffective to produce
Rossby waves, which does not match the observed teleconnection patterns. In order
to analyze in more detail the barotropic vorticity equation, the wind vector can be
expressed as the sum of a rotational (vψ ) and a divergent (vχ ) component, in terms
of a stream function ψ and a velocity potential χ , respectively, as follows:

vψ = k × ∇ψ (13)

vχ = ∇χ (14)

Therefore, the relative vorticity can be written as ζ = ∇2ψ and the divergence as
D = ∇2χ . By replacing v as vψ+vχ , the barotropic vorticity equation becomes:

∂ξ

∂t
+ vψ · ∇ξ = −ξD − vχ · ∇ξ (15)
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In this way, the left-hand side of the equation involves the rotational part and
the right-hand side the divergent part of the wind. Sardeshmukh and Hoskins[38]
discussed this equation and identified the right-hand side terms as Rossby waves
sources by the divergent wind, S, as follows:

S = −ξD − vχ · ∇ξ (16)

Thus, the forcing for Rossby waves will be greater in areas where the divergence,
the divergent wind, the absolute vorticity, or its gradient is larger. This may take
place in the Southern Hemisphere regions southward of the equator where the
upper-level divergence associated with deep convection is larger and there are
large vorticity gradients associated with the subtropical jet. The previous equation
indicates that Rossby waves can be excited by tropical diabatic heating even though
ξ may be small in regions where the heating takes place, since the divergent flow
will be larger there. Towards the subtropics the gradient of ξ is larger, contributing
to higher values of S. We can rewrite the previous equation as:

S = S1 + S2 (17)

where S1 = -ξD is the term of vortex stretching that represents the generation of
vorticity by divergence and S2 = -vχ · ∇ξ is the advection of absolute vorticity
by the divergent flow. Lu and Kim[20] used these expressions to evaluate the role
of tropical and extratropical heating in the generation of Rossby waves in the
Northern Hemisphere. Sardeshmukh and Hoskins[38] highlighted the importance
of the advection term of absolute vorticity by the divergent flow in their study of the
atmospheric response to tropical divergence over the western Pacific Ocean. The
local forcings are applied in the experiments described in Sect. 6 using the model
presented in the following section.

4 Model IGCM

The baroclinic model IGCM (Intermediate Global Circulation Model—Center for
Global Atmospheric Modeling, University of Reading) was used in several studies,
like [2, 5, 15, 21]. Although the model is dry and does not include any physical
process linked to the phase change of water vapor, many aspects of the atmospheric
dynamics can be reproduced, from synoptic scale systems [13] to large-scale
perturbations [43]. IGCM is a baroclinic model that runs on a global domain, with
a T42 spectral truncation of the zonal wave number, and includes horizontal and
vertical diffusion and Newtonian cooling [15]. The large-scale dynamics of the
atmosphere can be interpreted in qualitative terms by means of the linear theory of
waves because there is a good agreement between IGCM results and those obtained
with the barotropic [2].
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The model is global and is formulated on a sphere with a multi-level vertical
coordinate. In the horizontal, it uses a spectral representation and in the vertical
a finite difference scheme with a semi-implicit method in which the terms of lin-
earized gravity waves are time averages so that the faster movements are smoothed
for the time integration. Blackburn [3] included an alternative vertical scheme based
on that used by the ECMWF [41] that preserves the angular momentum since the
original finite difference scheme did not.

The horizontal equations of motion are expressed in the form of vorticity and
divergence, which is convenient when using spectral techniques and semi-implicit
time schemes. The equations of motion are formulated in dimensionless form, on a
rotating sphere, assuming a hydrostatic and adiabatic perfect gas, without viscosity:

∂ξ

∂t
= 1

1 − μ2

∂Iv

∂λ
− ∂Iu

∂μ
(18)

∂D

∂t
= 1

1 − μ2

∂Iv

∂λ
− ∂Iu

∂μ
− ∇2

(
U2 + V 2

2(1 − μ2)
+ φ + T lnp∗

)

(19)

∂T ′

∂t
= −1

1 − μ2

∂

∂λ
(UT ′) − ∂

∂μ
(V T ′) + DT ′ − σ́

∂T

∂σ
+ k

T ω

p
(20)

∂lnp∗
∂t

= −V · ∇lnp∗ − D − ∂σ́

∂σ
(21)

∂φ

∂lnσ
= −T (22)

With Iu and Iv defined as follows:

Iu = V ξ − σ́
∂U

∂σ
− T ′ ∂lnp∗

∂λ
(23)

Iv = Uξ − σ́
∂V

∂σ
− T ′(1 − μ2)

∂lnp∗
∂λ

(24)

where ξ is the absolute vorticity, D the divergence, T = T (σ)+T ′ the temperature,
p∗ the surface pressure, φ the geopotential, σ is the vertical coordinate pressure, ω

is the vertical velocity, λ is the longitude, and μ = sinθ , where θ is the latitude. The
horizontal advection operator is

V · ∇ = U

1 − μ2

(
∂

∂λ

)

+ V

(
∂

∂μ

)

(25)

The velocity potential χ and the stream function ψ are introduced in this form:

U = −
(

1 − μ2
) ∂ψ

∂μ
+ ∂χ

∂λ
(26)
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V = ∂ψ

∂λ
+

(
1 − μ2

) ∂χ

∂μ
(27)

ξ = 2μ + 1

1 − μ2

∂V

∂λ
− ∂U

∂μ
= 2μ + ∇2ψ (28)

D = 1

1 − μ2

∂U

∂λ
+ ∂V

∂μ
= ∇2χ (29)

The vorticity ξ , the divergence D, and the temperature T at each level, as well as
the logarithm of the surface pressure p∗, are expressed as a series of the form:

A =
M∑

m=−M

N∑

n=|m|
Am

n Ym
n (μ, λ) (30)

where A represents any of those variables and λ is the longitude, μ the sine of the
latitude, Am

n is a complex coefficient, Ym
n = P m

n (μ)eimλ is a spherical harmonic,
where P m

n a standard Legendre function, m is the zonal wave number, n − m is
the number of zeros between the north and south poles, n is the total wave number,
and N ,M are the truncation wave numbers defined as the largest number of wave
retained in the spectral series.

The model employs jagged triangular truncation of the total wave number 42,
which allows an independent representation of the position in the sphere. It can be
executed in a wide range of horizontal and vertical resolutions. It has 12 vertical
equally spaced levels which are chosen so that the resolution everywhere is lower
than 105 hPa, with higher resolution near the tropopause. The model equations are
integrated using a spectral transformation method as described in detail by Bourke
[4].

Equation (18) is expressed in spherical coordinates, but the conservation of
absolute vorticity ξ = ζ + f can be written in Cartesian coordinates as:

dξ

dt
= −V · ∇ξ (31)

So that:

∂ζ

∂t
= u

∂

∂x
(ζ + f ) + v

∂

∂y
(ζ + f ) (32)

= u
∂

∂x
(ζ + f ) + v

∂ζ

∂y
+ v

∂f

∂y
(33)

Replacing in Eq. (31),
∂f

∂y
= β, u = −∂ψ

∂y
, v = ∂ψ

∂x
, we obtain Eq. (3).
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5 Preferential Paths of Rossby Waves Propagation

The wave theory provides a simple and useful interpretation of global Rossby wave
propagation. This theory describes how an initial vorticity source in a barotropic
atmosphere with a stationary zonal flow (Eq. (5)) is able to generate a series of ridges
and troughs whose energy is dispersed with a group velocity given by (Eq. (11)). The
resulting wave trains are linked to the observed teleconnection patterns ([12, 16],
among others). In particular, the Southern Hemisphere offers a unique environment
to test the propagation of these waves in observed atmospheric patterns, due to the
equivalent barotropic structure of the atmosphere and the prevalent zonal structure
of the time mean flow [19]. The following questions arise, which are the preferential
paths of wave propagation, and where are the waves originated?

A useful diagnostic tool for representing the mean background state in which
the transients are embedded is the calculation of Ks given by Eq. (10) which is the
total wave number at which a barotropic Rossby wave is stationary at a particular
location and in a given background zonal flow (Ū ) [17]. According to this theory,
the characteristics of the Rossby wave propagation in a given basic state may
be determined by the analysis of Ks . Hoskins and Ambrizzi [11], among others,
showed that the distribution of Ks can be used to infer the location of critical lines
and waveguides for stationary Rossby waves. For example, zonally oriented regions
of relative high values of Ks bounded by lower values to the north and south (usually
associated with strong jet streams) indicate favorable locations for guiding Rossby
waves.

Based on the large-scale physical mechanisms associated with GF, manifested
through teleconnection patterns given by stationary Rossby waves, [24] used Ks to
give a qualitative picture of the effects of the basic state flow within the westerly
duct on the subtropical and polar wave propagation. This was a first assessment of
the impact of the GF basic flow on the dynamical structure relevant for the Rossby
wave dispersion. Using this theoretical concept, the distribution of the stationary
wave number (Ks) in the Southern Hemisphere is obtained for the two opposite
basic states given by the composition of winters with maximum and minimum
frequency of GF occurrence in the Wet Pampa. To understand the large-scale
atmospheric circulation associated with these cold episodes, [30] identified years of
extreme frequency of frost occurrence, during the period 1961–1990. A maximum
(minimum) frequency of GF occurrence is considered when the number of frosts is
one standard deviation (σ ) above (below) the mean value during the austral winter
(JJA), i.e., GF +σ and GF −σ , respectively.

From these fields it is possible to determine preferential wave propagation paths
that reach South America. The distribution of Ks emphasizes the importance of
the jets as efficient waveguides, with a good agreement between their positions
and the bands of local Ks maxima, with zonal orientation. Nevertheless, there are
differences between both analyzed basic states, which explain in part why there
are winters with GF +σ and GF −σ , as shown by Müller and Ambrizzi [24]. The
geographic distribution of Ks is shown in Fig. 1a, b with the zero wind contours,
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Fig. 1 Stationary wave number Ks at 250 hPa, corresponding to (a) GF +σ and (b) GF −σ (from
[24])

Ū = 0, in thick color lines, while those corresponding to zero Ks (i.e., β+ = 0) in
dotted lines. The equatorial belt is dominated by a sector where the propagation
is inhibited due to the presence of a transition from westerly to easterly flow,
which forms a “critical line” for the propagation of stationary Rossby waves. This
region is marked with thicker lines in Fig. 1a, b indicating high wave number values
(Ks ≥ 20).

A local maximum of Ks in the region of maximum zonal winds, i.e., along the
subtropical jet (see Fig. 2a, b), shows wave numbers 6 and 7 in both winter groups.
This region also contains uniform values of Ks meridionally limited by smaller ones.
In the polar side of the subtropical jet the presence of Ks = 0 (the black shaded
region) inhibits the propagation of Rossby waves through it because, according to
the wave theory, they must deviate before reaching this region, so that the Ks = 0
line acts as a waveguide boundary. An interesting feature of this last case is the
difference in the longitudinal extension of Ks for GF +σ with respect to GF −σ .
In Fig. 1a this region extends very near to the South American continent. However,
the Ks pattern for the GF −σ winters (Fig. 1b) shows a shorter extension of the
waveguide duct, besides of a region of zero Ks between 35◦S and 40◦S in the west
of Argentina, which coincides with the main entrance region of weather systems
over South America ([8, 40], among others). This feature is not seen in the GF +σ

winters and it may have some influence on the Rossby waves propagation paths and,
therefore, in the frost events.
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Fig. 2 Mean zonal wind component (ms−1) at 250 hPa for the austral winters, corresponding to
(a) GF +σ and (b) GF −σ (from [24])

Another characteristic of both basic states can be seen in Fig. 2a, b that shows
regions of maximum mean zonal wind of winters with GF +σ and GF −σ . The
main basic state feature for GF +σ winters (Fig. 2a) shows maximum values of
mean zonal 250 hPa wind around 30◦S extending from the Indian Ocean to the
Pacific Ocean. The core maximum is around 50 ms−1 and is located over the
eastern Indian Ocean, being displaced 60◦ to the west of the climatological reference
mean (winter JJA 1961–1990). The 35 ms−1 contour reaches the South American
continent with a second nucleus extending southeastward from southern South
Africa. An outstanding characteristic is the magnitude of zonal wind gradient over
the southwestern Indian Ocean. The zonal wind maxima at high latitudes, between
20 and 25 ms−1, are located along the 60◦S and the polar jet position is also
different from that of the climatology with a “tongue” towards South America with
a longitudinal extension that brings it closer to the continent [24]. In the case of
GF −σ winters (Fig. 2b) the subtropical jet is divided in two zones, one from the
Atlantic Ocean up to South Africa and other from the Indian Ocean up to the central
Pacific Ocean. In this last case, the subtropical jet has two maxima around 30◦S,
one to the southwest of Australia and the other one at approximately the dateline
with a secondary maximum to the south of it.

However, the propagation of Rossby waves depends not only on the basic state
in which they are, but also on the generating source of these waves [1]. In this
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sense, [23, 24, 31] performed numerical experiments with the multi-level baroclinic
general circulation model IGCM, which is an appropriate tool to study the physical
mechanisms of wave propagation since the response can be directly attributed to the
generating source.

6 Source Regions of Rossby Waves

In order to test the generation of extratropical wave patterns which favor the
development of extreme cold events over the southeast of South America, numerical
simulations using IGCM were carried out. Müller [23, 24, 31] simulated with the
IGCM the Rossby wave pattern responsible for the teleconnection, with two basic
states given by the composition of winters with GF +σ and GF −σ in the Wet
Pampa.

The model IGCM is run in two steps according to [23, 24, 31]. The first one
consists of the buildup of the initial basic state, with which the model reaches the
steady state, using geopotential heights, zonal and meridional wind, and temperature
at 12 vertical sigma levels. The second step consists of the perturbation of the model
by introducing a thermal forcing. The heating source has an elliptical horizontal
structure and a fixed position in latitude and longitude. The vertical heating profile
follows a cosine function with the maximum amplitude at 400 hPa corresponding
to a 5 ◦C/day and decaying to zero at the surface and the top of the model. This
value is equivalent to a latent heat release associated with 10 mm of precipitation.
Although one may question the realism of this heating source, its role here is purely
of acting as a Rossby wavemaker [24, 31]. The combination of observed tropical
convection and a specific basic state can create the appropriate environment to
guide Rossby waves triggered by the tropical forcing towards South America [31].
In particular, stationary Rossby waves may be one important mechanism linking
anomalous tropical convection with the extreme cold events in the Wet Pampas [31].
The theory of Rossby wave propagation supports the obtained result by means of ray
tracing computation (derived from Eq. (10)), by placing the forcing in the position of
the anomalous tropical convection [25], so that they act as a thermal forcing proxy
for the model. The areas of anomalous convection and, consequently, the position
of the heat source, are identified with the observed outgoing longwave radiation
(OLR) compositions of the extreme GF +σ and GF −σ winters.[31] found, during
GF +σ winters, two main regions of anomalous tropical convection in the Southern
Hemisphere located over the Indian and the western Pacific Oceans, respectively,
with significant values. On the other hand, during GF −σ winters there were no
significant OLR regions that could act as sources of Rossby waves [31].

Numerical simulations with the IGCM model were performed by Müller et al.
[31], considering the position of the forcing according to the observations in both
basic states. The result of the experiment with the GF +σ basic state and the heat
source located over the western Pacific Ocean shows a pattern of wind anomalies
with an arc-shaped trajectory of Rossby waves, which initially goes to the South
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Fig. 3 (a) Composites of observed meridional wind field anomalies at 250 hPa for GF +σ .
Positive (negative) contours are in solid (dotted) lines at 1.5 ms−1 intervals (from [30]). (b)
Meridional wind component anomalies (ms−1) at 250 hPa for day 14 of integration, corresponding
to the simulation of GF +σ basic state (from [24])

Pole and then turns towards the equator. This wave train reaches South America in
its central part and creates southerly wind anomalies across the southern tip of the
continent. However, when analyzing the experiment with the basic state GF −σ , the
obtained pattern does not correspond to the preferred paths that the waves follow
during the winter in the Southern Hemisphere. In this case it is possible to observe
two waves trains that bifurcate from their region of origin [31].

Depending on the phase with which the waves enter the South American
continent, they can favor the southerly cold and dry air advection by anomalous
winds at low levels, over the whole southern extreme of the continent, leading to
frosts occurrence in the Wet Pampa region [31]. However, the pattern obtained with
the numerical experiments and the forcings located over the Indian Ocean and the
western Pacific Oceans, respectively, are not able to explain the observed anomalies
in the mass and wind fields as reported by Müller et al. [30]. These authors have
shown that for GF +σ winters, the synoptic scale waves spread over the South
Pacific Ocean along the subpolar and the subtropical jets (Fig. 3a).
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This behavior is clearly observed during the days previous to the event. When
the waves are closer to the Andes Mountains they extend meridionally and form an
NW–SE oriented arc, shifting progressively towards the NE leeward to the Andes.
Once the waves have crossed the Andes Mountains, they spread towards the North
in such a way that is consistent with the concept of Rossby wave dispersion on a
sphere [14].

In order to obtain the results observed in [30], new numerical IGCM experiments
were designed that allowed further understanding of the role played by the remote
forcing as source of Rossby waves finally responsible for the GF events. Müller and
Ambrizzi [24] performed new simulations with the same two basic states of GF +σ

and GF −σ , considering the regions where the propagation of these waves is favored
by Ks and where the zonal wind maxima are, i.e., the jets location. In a particular
numerical simulations performed for GF +σ (Fig. 3b), the patterns are consistent
with the observed ones (Fig. 3a). From the results obtained by Müller and Ambrizzi
[24], a conceptual model is proposed which arises from the observations, the theory,
and the numerical modeling.

7 Conceptual Model

In a basic state that favors the occurrence of GF +σ , Rossby waves are generated
over the tropical Indian Ocean in a mean flow characterized by a meridional gradient
of zonal wind (indicated with arrows in Fig. 4). The upper-level divergent motion
(dashed arrow), probably generated by a tropical source (red circle), generates
perturbations in the subtropics by interfering with the positive meridional gradient
of absolute vorticity region that will finally become the source of Rossby waves.
This source region is upstream of the Australian subtropical jet and upstream the
region where the meridional gradient of absolute vorticity is negative (stripped area).
According to the linear wave theory, this region will reflect the waves, not allowing
their propagation through it, so that waveguide ducts are created to the north and
the south of the region. In this way, the generated Rossby waves (represented
by the sequence of positive—full lines—and negative—dashed lines—meridional
wind anomaly regions) propagate along the subtropical and polar waveguides (thick
arrows). Near the South American continent the phases of both wave trains coincide
over the region where the propagation inhibition disappears, merging into one
single pattern. The deep ridge over the western part of the continent produces
strong cold air advection by southerly winds (thick arrows), extending through
the whole troposphere, before the occurrence of a GF event. Hence, the cold air
starts crossing the Andes mountain range, initially where the heights are lower,
i.e., in southern South America, generating anticyclonic vorticity. The advection
of anticyclonic vorticity feeds the continental anticyclone and the maritime cyclone
situated downstream over the Atlantic Ocean. The increase of the pressure gradient
over the area creates a strong southerly wind component between the high and
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Fig. 4 Conceptual model of the physical mechanisms that favor a maximum frequency of GF
occurrence during austral winters and the more persistent GF events. The Rossby wave train
of meridional wind anomalies in solid (dashed) lines represents positive (negative) values. The
combination of colors means that the results were obtained by: observations (pink), theory (black),
and model (blue). The H and L symbols indicate the position of the low level anticyclone and
cyclone, respectively. See text for details (from [24])

low pressure systems, bringing cold polar air to the region which finally leads to
a significant drop of surface temperature over the eastern part of the continent.

The above described mechanism is also valid for explaining the conditions of
the GF persistence as shown by Müller and Berri [26, 27] who grouped them based
on the number of consecutive days during which the frost conditions persisted in
the region. The persistence of the GF phenomenon depends on whether there is
one or two wave trains approaching the South American continent and, in the last
case, on how they merge. However, the former is not the only element that will
define the GF persistence. It is at this point that linearity is diluted in the chaotic
nature of any physical system and its mathematical treatment must take into account
non-linear solutions such as the advection of cold air coming from the south in a
sustained way, for a certain period of time, and at different levels of the atmosphere.
In addition, there are other intervening factors in different scales of the atmospheric
motion that should be taken into account such as the influence of the mountain
range, the subsidence of the northerly flow resulting from a transverse circulation to
the jet, and the confluence (diffluence) of the flow in the entry (exit) region of the
subtropical jet ([26, 27], among others).



34 G. V. Müller et al.

8 Conclusions

Extreme cold events have a strong impact in central-southern South America due
to their spatial extension, and they are especially important when they become
persistent and frequent. The impact of generalized frosts (GF) in midlatitude regions
such as the Wet Pampa is more related to frost frequency and persistence with which
they occur than to its intensity, in particular when they take place during cold and
prolonged winters [27]. The atmospheric circulation features associated with the
frequency of frosts occurrence in the Wet Pampa region have been explored [22–
25, 30, 31] and, on the other hand, the dynamic conditions that favor the persistence
of these events were studied by Müller and Berri [26, 27]. The results of these
studies were obtained by relating observations, linear theory, and modeling, so it
was possible to formulate a conceptual scheme (Fig. 4) to explain the teleconnection
mechanisms that act in particular during the austral winters of maximum frequency
of GF occurrence, in coincidence with those that explain the more persistent events.
In this case, other scales of atmospheric motion intervene with the large scale that
finally define the persistence of the GF event. Since the interaction between different
scales of motion is mainly responsible for the energy exchanges in the atmosphere,
new analyses were performed [32, 33], although it is necessary to profound the
studies in order to further the understanding of non-linear GF phenomena.
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Balances in the Atmosphere and Ocean:
Implications for Forecasting and
Reliability

Enver Ramírez, Léo Siqueira, and Rosio Camayo

1 Introduction

The spectrum of wavy motions, at the hydrostatic limit, falls in two classes: the
vortical modes and the inertia-gravity waves. Vortical modes have mass and velocity
fields close to geostrophy (quasi-geostrophic) and are mostly rotational with a slight
divergence, whereas inertia-gravity waves (IGW) are largely divergent. Although
IGWs are locally significant, in general they are radiated out from the origin region
at speeds of hundreds of meters per second. Rotational modes are slower than
IGWs and obey potential vorticity (PV) conservation principles. The application
of rotational modes to the large-scale atmosphere and ocean was first explored by
Rossby [42], from where they are also known as Rossby waves (RWs). Rossby
waves are vortical modes that include geophysical effects (Earth’s rotation).

Despite that for large-scale atmospheric flow, when both Rossby and Froude
numbers are small, RWs and IGWs are clearly separated [12, 24, 25], they do not
evolve completely independent from one another (rotational modes may have a
slight divergence). Observational evidence of the dominance of quasi-geostrophic
RWs has been subject of great scientific interest, as they were first identified in
early studies of atmospheric planetary wave dynamics [42, 43]. It has inspired the
development of efficient methods for numerical prediction and weather forecasting.
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The propagation of RWs due to localized forcing is responsible for a major
portion of the remotely forced variability around the planet, or teleconnections,
associated with upper-air wave train-like patterns. Variations of tropical convection
on intraseasonal to interannual time scales are a primary source of extratropical
seasonal climate variability via the excitation of stationary RWs trains (e.g.,
[17]). The most well-known large-scale climate patterns associated with tropical
convective anomalies, forced by interannual variability of the El Niño-Southern
Oscillation in the equatorial central Pacific, are linked to the so-called Pacific-North
American [15] and the Pacific-South American [19] patterns, in the Northern and
Southern Hemispheres, respectively. On intraseasonal time scales, the Madden–
Julian oscillation (MJO) and its induced convective heating has been recognized
to significantly perturb geopotential height in the extratropics through RW telecon-
nections to the tropics in both modeling and observational studies [11, 18, 29]. The
extratropical impacts induced by these RW trains can affect the local climate through
a diverse set of phenomena including synoptic weather disturbances, jet stream
meanderings, blocking events, and temperature extremes in the Euro-Atlantic region
and in South America [6, 8, 41], the North Atlantic oscillation (e.g., [3, 9, 23]), U.S.
West Coast precipitation events [14], extreme rainfall events in southeastern Brazil
[2], among other impacts.

In short, previous studies suggest the existence of a variety of RWs, and
interactions, with an abundance of impacts around the planet. The behavior of RWs
can be studied from the theoretical viewpoint and by employing simple models and
analytic techniques which make use of vorticity equation models or ray tracing to
isolate the effects of RWs to the exclusion of all other processes.

2 Theoretical Analysis of Rossby Waves

2.1 Barotropic Equations

If we consider a shallow layer of incompressible and inviscid fluid flow on the
rotating planet, then the dynamics can be described by the two-dimensional rotating
Euler equations [25]

d

dt
vH + f k̂ × vH = − 1

ρ0
∇p, (1a)

∇ · vH = 0, (1b)

where d
dt

is the total time derivative operator and when applied to each scalar
component A of the vector vH is given by d

dt
A = ∂

∂t
A + (v · ∇)A, f is the Coriolis

parameter, k̂ is the unit vertical vector, ∇p is the pressure gradient, and vH the
horizontal component of the fluid flow. Equation (1a) represents the fluid motion set
by an external pressure gradient, while (1b) represents the incompressibility of the
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flow. The geophysical extension is given by the Coriolis parameter, which represents
the effects introduced by the rotation and the curvature of the reference system.
Furthermore, under the beta-plane approximation for the Coriolis parameter:

f = f0 + βy, (2)

a linear tangent plane is considered for f and a rectangular coordinate system can
be used.

2.2 Barotropic Vorticity Equation

RW can be inferred by considering the two-dimensional Euler flow (1). By
requesting the incompressibility condition, the family of sound waves is removed
from the set of possible solutions, yet the Coriolis parameter provides a restoring
mechanism leading to the nontrivial, the so-called RW solution. To promptly set
the equations describing RWs, the non-divergence condition ∇ · vH = 0 allows us
to describe the problem in stream-function formulation ψ related to the winds by
vH = k̂ × ∇ψ . Thus, taking the curl of (1), the nonlinear, non-divergent Barotropic
Rossby waves are described by

∂ζ

∂t
+ J (ψ, ζ ) + β

∂ψ

∂x
= 0, (3)

where ψ is a stream function for the flow, ζ = ∇2ψ = k̂ · (∇ × vH) is the relative
vorticity, β the meridional derivative of the Coriolis parameter f , and ζ + f is the
absolute vorticity. The nonlinear contribution in (3) is clearly due to the Jacobian

J (ψ, ζ ) =
[
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x

]

(4)

which represents the advection of the relative vorticity ζ .

2.3 Rossby Waves

Assuming a basic zonal flow satisfying (3), a plane wave solution was proposed by
Rossby [42]

ψ = Re

[
A0ei(kx+ly−σ t+φ)

]
= A0 cos θ, (5)
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where K = (k, l) is the wavenumber vector, σ the frequency of the oscillation,
θ = kx + ly − σ t + φ the wave phase, and A0 its amplitude. Thus, the following
relations can be easily obtained:

∇2ψ =
(
k2 + l2

)
Re

[
A0ei(kx+ly−σ t+φ)

]
(6a)

∂tψ = −σ Re

[
A0ei(kx+ly−σ t+φ)

]
(6b)

∂xψ = k Re

[
A0ei(kx+ly−σ t+φ)

]
. (6c)

From the linearization of (3) and considering both the relations in (6) and that the
flow consists of a time-independent component (basic state) plus a perturbation, the
simplified Rossby wave dispersion is obtained

σ = − βk

k2 + l2
. (7)

It becomes clear from (7) that the physical restoring mechanism for the Rossby
wave is the Coriolis parameter variation β. In the simplest case of barotropic flow
on the β-plane, the potential vorticity is the absolute vorticity, βy + ζ . Suppose that
some initial perturbation displaces a material line η along a line of constant latitude
to a perturbed position at η(t = 0), as in Fig. 1. The conservation of potential
vorticity, in either hemispheres, then leads to the production of positive (negative)
relative vorticity for a southward (northward) displacement. The perturbation
vorticity field and its associated velocity field then advects the chain of fluid parcels
southward west of the vorticity maximum and northward west of the vorticity
minimum. Thus, the fluid parcels oscillate back and forth about their equilibrium
latitude, and the phase of the wave propagates westward. The key ingredient is
therefore a basic state potential vorticity gradient, such as that provided by the
change of f with latitude.

Fig. 1 Schematics of a two-dimensional Rossby wave mechanism. A chain of fluid parcels is
initially displaced to the solid line η(t = 0), leading to the production of relative vorticity. Colored
circles show the velocity field and the material line evolves into the dashed gray line η(t > 0). The
fluid parcels oscillate back and forth about their equilibrium latitude (dotted straight line), and the
phase of the wave propagates westward
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Similar effects can be achieved by topography, where the topographic slope
assumes the role of the β parameter and the resulting pattern is a topographic Rossby
wave.

2.4 Rossby Wave as an Exact Solution to the Barotropic
Vorticity Equation

For a geostrophically balanced flow, horizontally non-divergent, it results that as
a consequence of vg = k̂ × ∇ψ , the horizontal velocity is parallel to the stream-
function (i.e., perpendicular to the stream-function gradient). Therefore, a solution
made of only one Rossby wave is an exact solution of the nonlinear equation, as
a single Rossby wave cannot advect itself. Thus, the Jacobian contribution is null,
J (ψ, ζ ) = 0, and the nonlinear equation reduces to the linear equation.

Physically, the Jacobian represents interaction between modes of the system,
this means that a unique Rossby wave cannot interact with itself. However if more
than one Rossby wave coexists, the velocities generated by one of the participating
Rossby wave may advect the stream-function lines of the others, the field is modified
and new waves can be created, the younger waves may interact with the older modes
creating further new waves and eventually the field is completely distorted.

As any Rossby mode is a possible solution of the nonlinear Eq. (3), what
ultimately determines how many modes are initially in the system is their initial
energy distribution. For the general nonlinear case, the evolution of the system
from this initial state is determined from both the initial mode distribution and the
available nonlinear terms. These effects shall be discussed in the following sections.

2.5 Potential Vorticity Equation

A more complete set of equations for the potential vorticity conservation must
consider the contribution of the planetary vorticity f as well as a contribution due to
the oscillations of the free surface height of the fluid flow. These effects, for instance,
are represented by df /dt = β (∂ψ/∂x) and Fψ , where F = (L/LR)2 and LR the
Rossby radius of deformation radius, defined in terms of the mean thickness H̄0, the
gravity g, and the Coriolis parameter f

LR =
√

gH̄0

f
. (8)

In practice, the re-inclusion of the free surface height oscillations restores the
system gravitational adjustment and in the case of stratification, the buoyancy
adjustment. In both cases, gravity waves are allowed in the system. In addition,
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the free surface oscillation on a barotropic fluid flow allows for external waves, in
this case the Lamb waves. This also implies that higher order divergence is present
in the system.

Thus, with the aforementioned considerations, the potential vorticity q = ζ −
Fψ + f shall be conserved, following

(
∂

∂t
+ v · ∇

)

q = 0. (9)

3 Nonlinear Resonant Interactions in the Barotropic Case

3.1 Archetypal Model and Space-Time Scales Involved

In the previous sections, the nonlinear terms, due to the Jacobian in (3), allow the
coupling between the wave modes. Here, the wind field of one of the waves can
advect the stream-function of the others and the distortion of the stream-function
is conductive to modification in the wind field. In turn, the modified wind field
may interact with the stream-function of the advecting wave and, consequently a
nonlinear coupling is established.

To better understand this process, consider either (3) or (9). As J (ψ, ζ −Fψ) =
J (ψ, ζ ), ∂f

∂t
= 0, and ∂f

∂y
= β, then the archetypal equation for dispersive Rossby

waves results in

∂

∂t
(ζ − Fψ) + J (ψ, ζ ) + β

∂ψ

∂x
= 0. (10)

In order to perform a dimensional analysis in (10), one must identify the scales
involved. Thus, for a spatially isotropic phenomenon Lx = Ly = L resulting that
only L defines the typical spatial scale (c.f. [35, 36]), now if U is the characteristic
velocity, then L/U is the characteristic advective time. In addition, as long as β

is essential for the existence of Rossby waves, 1/(βL) defines the characteristic
Rossby wave period. The dimensional timescale t can be defined using either of the
above time scales t = (βL)−1 t̃ = (L/U)t∗, from where the relationship between
the dimensionless timescale parameters is given by

t̃ = (βL2/U)t∗ = β∗t∗. (11)

Thus, using (t̃ , t∗) a multi-time scale treatment can also be used. The convention
used in this overview is that the frequency associated to t̃ is O[1] and consequently,
the frequency associated with t∗ is O[1/β∗]. The fast time variable is therefore
represented by t̃ , whereas t∗ represents the slow time variable. The reader can find
further references on multi-time scale in [21, 27, 33, 36]. However, at this point and
under the single-time scale consideration, the dimensionless archetypal model for
barotropic dispersive Rossby wave is
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∂

∂t̃
(ζ − Fψ) + 1

β∗
J (ψ, ζ ) + ∂ψ

∂x
= 0. (12)

3.2 Weakly Nonlinearity: Searching for Approximate Solutions

For a rapidly rotating Rossby wave, (βL)−1 must be small and in the limit
β∗ = (βL2/U) � 1, the characteristic Rossby wave period (βL)−1 is shorter than
the advective time period (L/U ). Consequently, the nonlinear term is smaller than
the other terms, and to a good first approximation, the linear solutions are dominant.
However, nonlinear interactions will still occur, as 1/β∗ is arbitrarily small but finite.
Physically, 1/β∗ can be thought as a parameter relating the Rossby period and the
advective period, but also, it must be said that it relates the relative vorticity gradient
to the planetary vorticity gradient, such that:

1

β∗
= Rossby period

Advective period
= Relative vort. gradient

Planetary vort. gradient
. (13)

Now, since (12) is expressed in terms of the small parameter 1/β∗, the answer
may, in principle, be expanded in the same way (this is known as an asymptotic
expansion). For the present case this is given by

ψ(�x, t̃, β∗) = ψ0(�x, t̃) + 1

β∗
ψ1(�x, t̃) + 1

β2∗
ψ2(�x, t̃) + · · · + O

[
1

βn∗

]

. (14)

The first term of this asymptotic expansion is the linear eigenmodes, characterizing
the dominant role of them. Furthermore, the expansion (14) may be thought as
successive and finer corrections to the streamlines (ψ) considering the interpretation
of the right-hand side in (13). This expansion also serves for the other variables of
the system since both ζ = ∇2ψ (vorticity) and v = k̂ × ∇ψ (winds).

3.3 Sequence of Easier to Solve Problems

The contribution of each new term in (14) is parameterized by the small number
1/β∗. Thus, by plugging (14) into (12) and associating equal powers of 1/β∗, a
sequence of balanced problems is obtained. In general, one goes from a hard to solve
mathematical problem to a sequence of relatively simpler problems and in order to
obtain the solution, each term of the sequence {ψj(�x, t̃)} for j = {0, 1, 2, . . . , n}
must be found. The lowest order O[1] balanced problem is simply the linear
equation for Rossby waves
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∂

∂t̃

(
∇2ψ0 − Fψ0

)
+ ∂ψ0

∂x
= 0 (15)

with solutions similar to that described by Eq. (5) in Sect. 2.3. The fact that ψ0
satisfies (15) confirms that the leading order terms of the sequence are the linear
modes of the barotropic vorticity equation.

The next problem to be solved is the O[1/β∗] and it can be shown that

∂

∂t̃

(
∇2ψ1 − Fψ1

)
+ ∂ψ1

∂x
= J

(
∇2ψ0, ψ0

)
. (16)

A very important point to note here is that (16) is a linear, forced problem. The
left-hand side of the problem is precisely the linear Rossby wave equation, similar
to (15), whereas the right-hand side is the Jacobian formed by the solutions of the
O[1] problem. Consequently, the nonlinear terms computed from the O[1] problem
are the forcing for the small O[1/β∗] contributions. Here we stress that the analytic
solutions for ψ0 are already know from (15), then the forcing term for the O[1/β∗]
is in principle computable. Instead of solving a hard problem, we solve a sequence
of less complex to solve problems.

Employing the plane wave solution in (5) for two different waves labeled m and
n, and considering that a Rossby wave cannot advect itself, the two waves have a
non-null contribution from the Jacobian to the forcing of the problem (16)

∂

∂t̃

(
∇2ψ1 − Fψ1

)
+ ∂ψ1

∂x

=
∑

m

∑

n

AmAn

2

(
K2

m − K2
n

)
(knlm − kmln)

(
cos(θm + θn) − cos(θm−θn)

2

)

,

(17)

where trigonometric identities to transform the product of sine and cosine into a
sum were used to replace the sin θ functions resulting from the derivatives of the
Jacobian operator to the cos θ functions displayed in (17).

It shall also be noted that in addition to the constraint that the waves m and
n must be different for the interaction to occur, two more conditions are evident
for the forcing to be different from zero: K2

m �= K2
n and knlm − kmln �= 0. The

second condition means that (km, lm) must not be parallel to (kn, ln). By avoiding
the above described situations, the forcing of ψ1 then oscillates with a phase equal
to the sum and differences of the modes m and n. Furthermore, as (17) is a linear
forced problem, each forcing term can be computed separately and then linear
superposition of the resulting ψ1 can be used to form the O[1/β∗] solution.
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For the sake of consistency, we define the interaction coefficient

Nmn =
(
K2

m − K2
n

)
(knlm − kmln)

2
(18)

and each forcing can be considered separately since the problem is linear. Rather
than studying the

∑
m

∑
n, we restrict our attention to only a set of two waves.

Since the wave phase θ = kx + ly − σ t + φ, we have

θm ± θn = (km ± kn)x + (lm ± ln)y − (σm ± σn)t̃ + (φm ± φn). (19)

Therefore, the horizontal structure of the forcing is described by Kmn = Km ± Kn

and the frequency by ωmn = σm ± σn. The forcing can then be Fourier
expanded using ei(kmnx+lmny−ωmnt̃+φmn), ψ1 is also Fourier expanded ψ1 =
Apei(kpx+lpy−σpt̃+θp) to yield

dAp

dt̃
= 1

2
AmAn

( Nmn

K2
p + F

)
ei(σp−ωmn)t̃ = Fsei(σp−ωmn)t̃ , (20)

where Fs = 1
2AmAn

(
Nmn

K2
p+F

)
is the forcing amplitude. Solutions can be written as

Ap =
{

Fs
ei(σp−ωmn)t̃

(σp−ωmn)
, for (σp − ωmn) �= 0

Fs t̃, for (σp − ωmn) = 0

}

. (21)

Thus, whenever the forcing frequency does not coincide with the frequency of
the mode ψ1 (i.e., σp �= ωmn), the amplitude Ap oscillates with time. However, if
the forcing frequency coincides with that of the ψ1 (i.e., σp = ωmn), resonance
occurs and the amplitude of ψ1 grows with time and in the limit t̃ → t∗, the
amplitude Ap grows and eventually ψ1 becomes comparable to ψ0. In such a case,
the expansion (14) should be no longer valid.

The condition for resonance to occur without invalidating (14) is known as the
solvability condition (see [21]), so that if any growth occurs, it should be warranted
to be sub-linear

lim
t̃→+∞

(ψ1(�x, t̃)

|t̃ + 1|
)

= 0. (22)

3.4 Topographic Resonance in the Barotropic Flow

The notion of topographic instability of a flow otherwise stable was developed
by work as earlier as [4, 5, 13, 32]. Let’s consider a purely steady, meridionally
sheared, zonal flow Ū (y) driven by an external source, which in terms of vorticity
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is given by Q(y). Instead of having a free surface Fψ , the flow is subject to a
bottom topography ηB . Furthermore, because of the externally forced nature of the
flow a Rayleigh type dissipation is included −r∇2ψ . Under such a condition, the
barotropic vorticity (9) is given by

( ∂

∂t
+ v · ∇

)
(∇2ψ + f + ηB) = −r∇2ψ + Q(y), (23)

where v = k̂ × ∇ψ , ∂tf = ∂xf = 0, and ∂yf = β. In the absence of topography,
the purely steady zonal flow Ū (y) driven by Q(y) is warranted if

− r
dŪ

dy
= Q(y). (24)

Thus, the stream function of the problem including both, the steady and transient
contributions, is given by

ψ = −
∫

Ū (y)dy + εφ, (25)

and the vorticity may be written accordingly as

∇2ψ = − d

dy
Ū(y) + ε∇2φ = Q(y)

r
+ ε∇2φ. (26)

Inserting (26) in (23) results in

( ∂

∂t
+ Ū

∂

∂x

)
∇2φ + ∂φ

∂x

(
β − d2Ū

dy2

)
+ εJ (φ,∇2φ) + J (φ, ηB)

= −r∇2φ − Ū

ε

∂ηB

∂x
. (27)

Although nothing was said for the topography up to this point, it is the interaction
of the zonal gradient of the topography and the steady mean flow that introduces a
strong forcing O[ε−1] for the transient wavy motion (27). In addition, to ensure
dominance of the normal-mode solutions for the leading order homogeneous
problem, the stationary condition might be asked which results immediately in the
topographic dependent stationary Rossby wave number KST

KST =
√

β††

Ū
, (28)

where

β†† = β + ∂ηB

∂y
− d2Ū

dy2
. (29)
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In simple arguments, the bottom slope modifies β, which is a way that topography
induces Rossby waves. Although certain heavy simplifications are required to
proceed with the analytical treatment, the physical mechanisms for topographic
resonance are likely to transcend these limitations [32]. The first of such heavy
simplifications toward an analytic treatment is the consideration of the topography’s
shape. When studying the same flow but contained in a channel, [32] used a
topography shape given by

ηB = h0
eikx

2
sin ly + C.C., (30)

where C.C. stands for the complex conjugated of the preceding term. Resonance
might occur for values of k, l, Ū , and β that enables stationary normal-mode
solutions. In their study, [32] considered the simplest case for Ū being independent
of y and the criteria for stationarity leading to near resonance conditions is achieved
when

Ū = β

k2 + l2 + Δ, with Δ � 1. (31)

Although the reference time scale used is the advective L/Ū , its development
is a product of the nonlinear interactions occurring on the longer time scale
L/(ŪΔ1/2ε), which defines the slow time scale as estimated by Charney and Devore
[4]

τ = (Δ1/2ε) t. (32)

Taking into consideration the near resonance condition, the independence of Ū with
respect to y, and the slow evolution scale τ , it is possible to obtain a representative
equation

[

Δ1/2ε
∂

∂τ
+

(
β

(
k2 + l2

) + Δ

)
∂

∂x

]

∇2φ + β
∂φ

∂x
+ εJ

(
φ,∇2φ

)

+ J (φ, ηB) + r∇2φ = −ε−1
(

β
(
k2 + l2

) + Δ

)
∂ηB

∂x
.

(33)

Considering r = O[ε2] and with the aid of the asymptotic expansion for φ

φ = φ0 + εφ1 + ε2φ2 + · · · . (34)

The leading order problem O[1] of the expansion is subjected to

β

(k2 + l2)

∂

∂x

(

∇2φ0 + (k2 + l2)φ0

)

= 0 (35)
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whose solution is given by

φ0 = A(τ )
eikx

2
sin ly. (36)

The topography imprinting over the leading order transient stream function φ0 is
clearly noted. We note that A(τ ) represents the slow amplitude evolution that has to
be determined.

4 Increasing Complexity Through Vertical Interactions

4.1 The Barotropic–Baroclinic Interactions

In the tropics, the near field response to a localized heating anomaly is preferentially
in terms of baroclinic modes, and the peak response to the tropical heating is
associated with the first baroclinic mode. This mode is characterized by a single
phase change between lower and upper levels in the flow fields; the second
baroclinic structure is associated with two phase changes in the vertical, while
the third baroclinic mode shows three phase changes and so on [7, 37, 44].
Despite that tropical baroclinic structures tend to stay trapped in latitude, they are
efficient in radiating energy upward having an important role for the upper layers
budget. Tropical baroclinic modes are usually described by the equatorial β-plane
dynamics [28]. Highly damped shallow-water models [10, 28, 45] can actually give
a reasonable first approximation to the low-level near wind field response.

The external or barotropic structures, on the other hand, are associated with
the far field response to the tropical heating. The barotropic signal dominates the
teleconnections far from the source in mid- and high-latitudes. The barotropic
modes are less meridionally trapped, but are vertically confined [7, 44]. Thus,
purely barotropic models have been extensively used to study the teleconnection
response at midlatitudes [1, 17]. Earlier studies have emphasized the study of
barotropic–baroclinic structures as a way to understand the tropical–extratropical
interactions. However, the localized heating anomaly does not directly force a
barotropic signal as aforementioned. Moreover, it has been suggested that tropical
heating is inefficient to promote the vertical mode interactions. Then, vertical and
horizontal mean shear flows have been introduced as a mechanism to promote the
energy exchange.

Figure 2 displays observational evidence of an equatorial RW shown by pairs of
twin cyclonic vortices forming an equatorial (baroclinic) wave train in the 850 hPa
tropical winds for 7 October 2002. It exemplifies a case of long equatorial RW
for which the zonal spatial scale (about 100◦ of longitude) is much larger than the
meridional scale, with the former typically ranging from about 4000 to 10,000 km.
The meridional distance scale of this wave is much shorter, about 20◦ of latitude, as
the centers are located roughly 10◦ either side of the equator. The far field response
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Fig. 2 Observational evidence of equatorial Rossby waves shown by pairs of twin cyclonic
vortices (C) forming an equatorial wave train (baroclinic) in the 850 hPa tropical winds (m/s) for
7 October 2002 from the NCEP-NCAR Reanalysis Project—Climate Data Assimilation System
I. Shading shows the rainfall field in mm/day. The figure shows one of the longest wavelengths
possible, for which the zonal spatial scale (about 100◦ of longitude) is much larger than the
meridional scale. The meridional distance scale of this wave is much shorter, about 20◦ of latitude,
as the centers are located roughly 10◦ either side of the equator. The far field response is comprised
by midlatitude (barotropic) wave trains

is comprised by midlatitude (barotropic) wave trains. In the following sections,
we introduce the baroclinic vorticity equation, focusing on the new mechanisms
that distinguish it from the barotropic case and immediately move to discuss basic
models for the barotropic–baroclinic interactions.

4.2 General Baroclinic Vorticity

Similarly to the barotropic case, an equation for the baroclinic vorticity can be
obtained. Thus, following [22], the baroclinic perturbation vorticity equation is
given by

∂ζ
′

∂t
= −v

′ · ∇(ζ̄ + f ) − v · ∇ζ
′ − (v

′ · ∇ζ
′
)
′ +

[
(f + ζ )

∂ω

∂p

]′

−
(
k̂ · ∇ω × ∂ �v

∂p

)′
+ ν, (37)

where ω = dp/dt is the vertical velocity in pressure coordinates. The first three
terms on the right-hand side represent the transport of vorticity, similar to those
obtained for the barotropic case, and include the physical restoring mechanism for
the RWs, evident if the β-plane approximation is used.



50 E. Ramírez et al.

The fourth term represents the effects of the convergence or divergence in the
baroclinic vortex and corresponds to a rate of change of the vorticity related to the
stretching/shrinking of the vortex filaments. The fifth term represents the generation
of vorticity related to the tilting of the vertical structures by a vertically non-uniform
wind field, whereas the last term represents other source/sink terms not considered
in the equation. In this term, production of vorticity by the horizontal tilt of isobaric
(equal pressure) with respect to isentropic (equal density) surfaces is included, also
dissipation of vorticity by interactions with the lower atmospheric layers (e.g., the
atmospheric boundary layer) is represented, or even the effects of the latent heat
release or radiative forcing in producing vorticity can be considered. Here, we
note that in Eq. (37) new mechanisms that are not present in the barotropic case
appear and in the following sections we will discuss in a simplified framework the
interactions between the barotropic and baroclinic structures.

4.3 Two-Layer Equatorial β-Plane and Barotropic Vorticity

Let us consider, under the equatorial β-plane approximation, a basic two-layer
model for the barotropic–baroclinic interactions. The barotropic or external mode
represented by variables without phase changes along the vertical is given by
(v0, p0), whereas the first baroclinic or internal mode (one phase change along the
vertical) is represented by (v1, p1). Thus, following [26] the two-layer equatorial
β-plane equations are given by

( ∂

∂t
+ v0 · ∇

)
v0 + yk̂ × v0 + v1∇ · v1 + (v1 · ∇)v1 = −∇p0, (38a)

∇ · v0 = 0, (38b)
( ∂

∂t
+ v0 · ∇

)
v1 + yk̂ × v1 + (v1 · ∇)v0 = −∇p1, (38c)

( ∂

∂t
+ v0 · ∇

)
p1 + ∇ · v1 = 0, (38d)

where all variables are two-dimensional (x, y) and all vector differentiation is
carried out in the horizontal. We note that the common transport operator in (38)
advects the flow using the barotropic wind v0. Here, the role of tropical heating,
radiative damping, and boundary layer drag is omitted in order to solely highlight
the interactions through the dynamics.

The link with the barotropic dynamics in (3) is achieved by the use of the stream-
function formulation, where ζ = ∇2ψ = k̂ · (∇ × v0). Then, the barotropic part of
system (i.e., 38a–b) is written as

∂ζ

∂t
+ J (ψ, ζ ) + ∂ψ

∂x
+ ∇ ·

(

−∂v1u1

∂y
+ ∂v1v1

∂x

)

= 0. (39)
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It must be noted that due to the coupling between external–internal structures, a
new term ∇ · (−∂y(v1u1)+∂x(v1v1)) appears in (39) compared to (3). Furthermore,
since here there is a single baroclinic structure (v1, p1), the equatorial β-plane wave
theory of [28] can be applied and consequently, a family of waves (Kelvin, Rossby,
mixed Rossby-gravity, and inertia-gravity) is being represented.

The baroclinic waves contained in (38c–d) must have an evanescent character for
y values tending to the equatorial Rossby deformation radius

√
C/β, a necessary

condition for the equatorial wave trapping. Moreover, as discussed in [35, 38–40]
nonlinear interactions are allowed for equatorial waves. Therefore, it is necessary to
verify whether these interactions might also be relevant for the barotropic–baroclinic
interactions.

4.4 The Barotropic–Baroclinic Interactions in the Two-Layers
Model

In order to gain insight into the interaction between midlatitude barotropic RWs and
equatorial baroclinic RWs, [26] developed a set of simplified dynamic equations in
the presence of mean shear. In their work, the zonal spatial scales of the equatorial
baroclinic RWs are much larger than the meridional scales (i.e., Lx � Ly), therefore
constituting the use of anisotropic scalings to (38). Furthermore, [26] gave a
special attention to the selection of barotropic modes with significant midlatitude
projection, i.e., those with smaller meridional index. After a suitable weakly
nonlinear asymptotic expansion, a reduced model was obtained

∂τA − D∂3
xA + B∂xA + A∂xB = 0, (40a)

∂τB − ∂3
xB + A∂xA = 0, (40b)

with A describing the baroclinic flow, B the barotropic flow, τ = εt the long
time variable, and ε = 0.1. The reduced model (40) comprises a set of coupled
Korteweg–de Vries (KdV)-like equations occurring through the interaction of
resonant wave trains at long wavelengths, considered in many aspects as novel
equations in the applied mathematics literature.

A subsequent separation of zonal mean (B̄, Ā) and transient fluctuation (B ′, A′)
of both barotropic and baroclinic flows allowed to obtain equations for the transient
barotropic–baroclinic interactions

∂τ

( ∫
B ′2

2
dx

)
= −∂τ

( ∫
A′2

2
dx

)
(41a)

= 1

2

∫
(A′)2∂xB

′dx + 1

2

∫
Ā(A′∂xB

′ − B ′∂xA
′)dx. (41b)
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From (41), a non-trivial energy flow between transient waves is noted. The first
term on the right-hand side (A′)2∂xB

′ represents the interaction of baroclinic–
barotropic transient waves, while the role of mean baroclinic shear (Ā) to stimulate
the energy flow between the barotropic–baroclinic transient modes is highlighted in
the second term Ā(A′∂xB

′ −B ′∂xA
′). Accordingly, the role of (vertical and general

horizontal) shears for the barotropic–baroclinic interactions has been pointed by
several researchers [16, 20, 45–47]. Majda and Biello [26] interpret the transient
interaction term as a type of westerly wind burst (WWB) mechanism, as the
gradients of the barotropic wave locally remove energy from itself and deposit into
the baroclinic wave. An interesting discussion on the vertical structure of the WWB
being either barotropic (related to synoptic transients) or baroclinic (related to the
MJO) is presented in [48].

In addition, [35] studied possible interactions of a general family of ultra-
long equatorial waves (i.e., ultra-long version of the [28] family) with the general
family of classical equatorial waves. They found that resonant interactions between
anisotropic equatorial waves and classical (isotropic) equatorial waves are possible,
which extend the range of possible interactions. Thus, the study of [26] might be
extended, involving other wave interactions even within their ultra-long framework.
In the tropics, general lateral forcing by extratropical waves is believed to be a
mechanism for the excitation of variability including low frequency variability at
the intraseasonal [48] or even at the interannual [30] time scales. [31] studied the
important role of midlatitude waves entering the equatorial region for the moisture
budget.

Raupp [37] developed a similar study, but using as the starting point the dry
(adiabatic) primitive equations and applying isotropic scalings. Primitive equations
allow the coupling between the momentum equations and the thermodynamics,
whereas the isotropic scalings retain the family of horizontal modes for each fixed
vertical structure. They obtained an asymptotic reduced model that governs the
weakly nonlinear amplitude of the waves in a given resonant triad (a closed system
formed by the interactions of three waves). The reduced equations describe the
evolution of the coupled amplitude (energy) of the triad members. Consequently,
it determines the ways by which the triad members interact. Thus, in addition to
the interaction of modes of a given vertical structure, interactions between vertical
modes are also possible, and by using a more complex set of equations, interactions
with the thermodynamic and even with water phase changes are also possible.

5 Scale Interactions

The rotating shallow water equations give us a simplified model for the large-
scale atmospheric circulation. In the appropriate regime and far from the equatorial
region, it gives a convenient scale separation between the vortical and the IGW
modes. Traditionally, the balance problem is related to the dynamics of the slow
modes that evolve and emerge even in the presence of unbalanced initial data
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[12, 24, 25]. Balanced modes contribute to the predictability and the fast modes
are generally filtered or controlled. However, geophysical vortical motions are also
able to generate IGWs and although the source of IGWs by RWs is weak, it can be
accumulated to a significant amount over sufficiently long time scales [12]. So, in
this section a brief discussion about a few mechanisms that allow scale interactions
are presented.

5.1 Fast Wave Average Framework

Using the multi-time scale procedure on a family of weakly coupled nonlinear oscil-
lators, [25] derived a fast wave average framework that was used to explicitly show
that the slow scale variability (amplitude modulation) of the modes is dependent on
the nonlinear interactions. The inviscid rotating shallow water equations (42) in the
quasi-geostrophic limit (i.e., for ε → 0) are written as

dv
dt

+ ε−1f k̂ × v = −ε−1∇h, (42a)

dh

dt
+ ε−1(1 + εh)∇ · v = 0. (42b)

Furthermore, because of the parameter dependency in ε, it is suggested that the
solution of (42) may, in principle, be also formulated as a function of ε, i.e., �φε .
With �φε = (vε, rhε)T given by

�φε = �φ0(t̃ , t) + ε �φ1(t̃ , t) + O(ε2) + · · · , (43)

where t̃ = t/ε is the fast time scale and t the slow time scale. The initial condition
is given by �φε|t=0

= �φ. Moreover, we make use of L to represent the linear operator
and N the nonlinear operator. We note that far from the equatorial region, it is
possible to apply Fourier transform to both zonal and meridional directions, leading
to a skew-symmetric linear operator (L + LT ∗ = 0) and the eigenvalues are purely
imaginary

(
L − iωI

)( �v
rh

)

=
(

0
0

)

, (44)

from which follows:

iω
(
ω2 − f 2 − k2 − l2

)
= 0. (45)

The slow geostrophic mode (ωS ) corresponds to the solution with ω = 0 in (45),

whereas the eastward/westward inertia-gravity waves when ω = ±(f 2 + k2 + l2)
1/2
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represent the fast inertia-gravity waves (ωF ). Here is important to note that in the
tropical region, the trapping behavior of the equatorial wave guide prevents the
utilization of the Fourier decomposition in the meridional direction. This leads to
a different problem, in which the fast and slow equatorial modes are connected [34–
36].

Going back to our problem, we note that from the sequence of easier to solve
problems we get that

∂ �φ1

∂t̃
+ L( �φ1) = −

(
∂ �φ0

∂t
+ N

( �φ0, �φ0
)
)

. (46)

To solve (46), the Duhamel formula can be used and to ensure that (43) must be
valid for a long time (solvability condition) it is requested that �φ1et̃L must be also
bounded for the skew-symmetric, norm preserving L operator. Thus, it is possible to
obtain an equation for the slow amplitude evolution A of the leading order modes,
with �φ0(t̃ , t) = e−Lt̃A(t). Consequently, the fast wave average framework results
in

dA
dt

+ lim
t̃→∞

1

t̃

∫ t̃

0
esL N (e−sLA, e−sLA) ds = 0. (47)

As discussed, the leading order modes for the linear operator L are made of RWs
and IGWs. Thus, the averaged equations are valid for both modes. To understand
the dynamics of the framework, it is necessary to explore the nonlinear operator,
which can also be written as

N ≡ N ( �φ0, �φ0). (48)

Furthermore, as v0 must also include both the fast IGW and slow RWs, i.e.,
�φ0 = �φ0

F + �φ0
S = AF e−LF t̃ + ASe−LS t̃ = AF e−LF t̃ + AS ; LS t̃ = iωS t̃ = 0.

Then,

N = N ( �φ0
F , �φ0

F ) + N ( �φ0
F , �φ0

S) + N ( �φ0
S , �φ0

F ) + N ( �φ0
S , �φ0

S), (49)

corresponding to the interactions between fast waves, fast and slow waves, slow
and fast waves, and between slow waves, respectively. The framework (47) can be
written in the form of a coupled ordinary differential equations, one representing
the slow modes and the other representing the fast modes. In addition, the resonance
conditions prevent some of the interactions

d

dt
AF + CF;F

F N (AF ,AF ) + CF;S
F N (AF ,AS) = 0, (50a)

d

dt
AS + CF;F

S N (AF ,AF ) + CS;S
S N (AS ,AS) = 0, (50b)
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where the set of interaction coefficients {CF;F
F , CF;S

F , CF;F
S , CS;S

S } represents
different combinations that have a non-null contribution for the mode interactions
involving geostrophic and inertia-gravity waves. In the interaction coefficients, the
superscript represents a combination of two of the interacting modes, while the
subscript represents the mode that is being affected by the nonlinear interaction.
In (50), it is possible to see that a necessary condition to have the evolution of
geostrophic mode totally independent of the inertia-gravity wave is that CF;F

S = 0.
This criteria is related to the conservation of vorticity.

6 Summary

In the tropics, the internal or near field response to localized heat sources occurs
in terms of baroclinic modes, while the far field response is related to barotropic
modes. The far field response has a strong projection on mid- and high-latitudes. In
this overview, we start the study of Rossby waves by analyzing the properties of the
barotropic equations. By using the incompressible bidimensional Euler equations,
the non-divergence condition allows to describe the problem using the stream-
function formulation and a nonlinear equation for the stream function is obtained.

The linearized version of the barotropic vorticity equation has RWs as solutions.
However, it was shown that a single RW is an exact solution of the nonlinear
barotropic vorticity equation. This peculiarity occurs because a single RW is not able
to advect itself since the wind is parallel to the stream-function isolines. However,
if more than one wave participates, the wind field of one wave may advect the
streamlines of the other and the initial field is distorted, then newer RWs can be
created. Approximate solutions for the nonlinear barotropic vorticity equation for
the weakly nonlinear case can also be obtained. In this limit, the advective timescale
(L/U ) is larger than the timescale related to the RW ((βL)−1). This is used to
build a parameter that measures the strength of the nonlinearity 1/β∗ = U/βL2.
In the weakly nonlinear case 1/β∗ � 1, the solutions for the stream function can
be viewed as successive corrections for the relative vorticity gradient. In this case, a
sequence of easier to solve problems is obtained, allowing the distinction between
oscillatory and resonant conditions.

Resonant conditions are also important for the case of interaction with the
topography in the presence of an externally forced shear. The zonal gradient of the
topography introduces a strong forcing of O[ε−1] to the transient wavy motion. The
simplified treatment of the topography shape allows mathematical tractability and
clearly shows that the topography is able to generate a downstream RW following
its shape.

Although the nonlinear barotropic vorticity description provides interesting
insights, it is necessary to consider vertical mode interactions in order to further
understand the tropical–extratropical interactions. Thus, an increasing complexity
can be achieved by using a two-layer equatorial β-plane model. The two-layer
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model is a simplified composition that allows to include both the barotropic
and baroclinic descriptions, which can thus be used as a model for tropical–
extratropical interactions. Baroclinic modes are meridionally trapped but radiates
upward, whereas barotropic modes are vertical confined but can leave the tropics,
dominating the tropical–extratropical teleconnections.

The barotropic description in a multilayer model includes new nonlinear terms
that represent the effects of the baroclinic structures. The archetypal model used in
the nonlinear interactions for the barotropic case in the two-layer model suggests
that for J (ψ, ζ ) = J (ψ, ζ − Fψ), F = (L/LR)2 cannot vary in space; one
condition that may violate this constraint is the existence of mechanisms that modify
the phase speed of IGWs.

The baroclinic description of the flow is also modified by the presence of
barotropic waves as well as by the presence of a basic state. A reduced model can
be obtained in terms of a set of coupled Korteweg–de Vries (KdV)-like equations,
in which non-trivial terms allow the energy exchange between the barotropic and
baroclinic flows. In this description, the role of the mean baroclinic shear Ā in
controlling the energy flow between the transient barotropic B

′
and baroclinic A

′

disturbances was verified. Finally, tropical heating is believed to be inefficient to
promote vertical interactions; therefore, shears are to be important for the exchange.

In the midlatitudes, the basic balance relationship is geostrophy, where RWs are
of primary concern at the expense of fast oscillations, although a balance between
stringent and permissive control of the fast modes can allow improvements to
weather forecasting.

In the tropics, a substantial fraction of the large-scale variability can also be
explained by the equatorially trapped waves. However, even at the quasi-geostrophic
limit, in the equatorial area the fast and slow modes are connected by the mixed
Rossby-gravity wave and there is not a clear scale separation. Furthermore, as it
was discussed much of the skill of seasonal forecast for different regions of the
globe originates in the tropics. Therefore, there can be little doubt that a better
representation of the fast modes and its importance to the evolution of slow modes,
in the light of scale interactions, is key to improve reliability of seasonal forecast.
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Pollutant Dispersion Modeling via
Mathematical Homogenization
and Integral Transform-Based
Multilayer Methods

Camila P. da Costa, Leslie D. Pérez-Fernández, and Julián Bravo-Castillero

1 Introduction

Dispersion of pollutants in the atmosphere is modeled via boundary/initial-value
problems for advection–diffusion equations with variable coefficients. Various inte-
gral transform-based methods were developed to provide (semi-)analytical solutions
to such models, for instance, the advection–diffusion multilayer method (ADMM—
see [10, 25]), the generalized integral advection–diffusion multilayer technique
(GIADMT—see [11, 12]), the generalized integral transform technique (GITT—
see [14, 15]), the generalized integral Laplace transform technique (GILTT—see
[24, 26]), and the classical integral transform technique (CITT—see [33]).

The ADMM and the GIADMT are based on the piecewise-constant approxi-
mation of the continuous wind velocity profile and eddy diffusivity coefficients in
the vertical direction z ∈ [0, h], here with uniform stepsize Δz, where h is the
height of the planetary boundary layer (PLB), and the application of the Laplace
transform. Such an approximation is the local average of the variable coefficients
over each sublayer of thickness Δz. Then, the original problem with continuous
coefficients is approximated by a problem with stepwise coefficients. Note that the
finer such a stepwise approximation is, the more precise the results are, but the more
the computational effort is required. In fact, the ADMM was developed to solve
two-dimensional problems, whereas the GIADMT is its generalization to three-
dimensional problems. Specifically, the GIADMT is the combination of the GITT
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and the ADMM in which the ADMM is employed to obtain the coefficients of the
Fourier series expansion of the pollutant concentration in the crosswind longitudinal
direction arising from the application of the GITT (also, see [13, 40]).

In addition, it was reported in [27] that the ADMM (and, consequently, the
GIADMT) produces estimations of pollutant concentrations which are as accurate
as other integral transform-based methods such as the GILTT but with remarkably
less computational cost. This last feature is essential in real-life situations such
as industrial/natural disasters which require swift and accurate estimations of
the ground-level distribution and concentration of the pollutants escaped to the
atmosphere. Therefore, the availability of fast and precise estimations in operative
conditions is required to prevent, or at least diminish, the impact of pollution
emergencies on both health and economy.

In this contribution, in order to accelerate the availability of results with
minimum loss of accuracy, both the purely applied ADMM and its realization as part
of the GIADMT are combined with mathematical homogenization [3, 4, 35, 38].
Roughly speaking, homogenization of heterogeneous media is based on both the
hypothesis of separation of structural scales and the continuum hypothesis, that is,
the structure of the medium (here, the PBL) is characterized by a small geometrical
parameter ε defined as the ratio of the characteristic lengths of both the continuous
microscale and macroscale (here, ε = Δz/h) so macroscopic or effective properties
can be provided for the heterogeneous medium (as long as the boundary conditions
are uniform). With such assumptions, the hypothesis of equivalent homogeneity is
valid, that is, there is an ideal homogeneous medium which is equivalent to the
heterogeneous one in the sense that the constant physical properties of the former
are the effective properties of the latter. From the mathematical point of view, the
hypothesis of equivalent homogeneity is valid if the difference of the solutions of
the original boundary-value problem with variable coefficients and the so-called
homogenized problem with constant coefficients, which model the heterogeneous
and related homogeneous media, respectively, is of order of a power of the ε with
respect to the norm of the function space in which such solutions are sought.
In other words, the solution of the original problem converges to the solution of
the homogenized problem as ε → 0+, which, in this case, corresponds also to
the coincidence of the original and the ADMM problems. Here, homogenization
estimates of the effective wind velocity profile and eddy diffusivity coefficients are
provided from the ADMM problem in the Laplace space for unstable atmospheric
conditions.

Here, we focus on two- and three-dimensional steady-state models and consider
various parameterizations of the wind velocity profile and eddy diffusivity coeffi-
cients for unstable atmospheric conditions. Then, homogenization estimates of the
effective wind velocity profile and eddy diffusivity coefficients are provided from
the multilayer problem in the Laplace space. Several computational experiments are
performed to compare, for both computational cost and precision, the direct appli-
cation of the multilayer methods with that of their combination with mathematical
homogenization and to experimental data. In all the computational experiments, it
is observed that the runtimes of the proposed approach combining mathematical
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homogenization with multilayer methods are several orders of magnitude smaller
that of the direct application of the multilayer methods with little loss of accuracy.

This work is organized as follows: Sect. 2 contains the derivation of the original
three-dimensional problem, the formulation of its crosswind longitudinally inte-
grated two-dimensional approximated version and other related two-dimensional
problems, and some comments on the parameterizations of the coefficients for the
mean wind vertical profile and the crosswind eddy diffusivity; Sect. 3 is devoted
to describe the solution process via the ADMM of the generic two-dimensional
problem formulated in Sect. 2, whereas the approximate solution provided by its
combination with mathematical homogenization is presented and mathematically
justified in Sect. 4; results from various simulations are presented and discussed in
Sect. 5; and some concluding remarks are given in Sect. 6.

2 Formulation of Various Relevant Problems

2.1 Derivation of the Original Three-Dimensional Problem

Let Oxyz be a fixed Cartesian coordinate system such that the pollutant source is
located at coordinates (0, 0,Hs), Hs ∈ R

∗+. In this setting, air pollution modeling
is based on the principle of mass conservation for one pollutant species with
concentration c(x, y, z, t) [36, 41]:

∂c

∂t
+ u · ∇c − DΔc = S, (1)

where (x, y, z) ∈ R+ ×[−Ly,Ly]× [0, h] are the space variables with Ly, h ∈ R
∗+

and Hs ∈ (0, h), t ∈ R
∗+ is the time variable, u is the wind velocity vector field, D

is the molecular diffusivity, and S is the pollutant source.
An initial simplification of conservation law (1) follows by assuming Reynolds

decompositions for both the wind velocity field and the pollutant concentration, that
is, u = u+ δu and c = c+ δc, where (·) and δ(·) represent the mean and fluctuating
(turbulent) parts, respectively. Such decompositions are justified by the existence
of the so-called spectral gap, which is the lack of variation at temporal or spatial
mesoscales and separates macroscale mean motions from microscale turbulent ones
(see Sections 2.2 and 2.3 of [36] for further details). Also, it is assumed [36, 41]
that turbulence satisfies an ergodic hypothesis [5], that is, it is homogeneous and
stationary, both statistically, so 〈(·)〉 = (·) and 〈δ(·)〉 = 0, where 〈·〉 stands for
Reynolds average operator [36]. Also, turbulent motions smaller that the mesoscale,
as the ones considered here, generally satisfy the conditions [7] for the so-called
incompressibility approximation [22, 36], which produces the so-called continuity
equation for turbulent fluctuations ∇ · δu = 0, implying that δu · ∇δc = ∇ · (δcδu).
With such considerations, and by averaging conservation law (1), it follows that
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∂c

∂t
+ u · ∇c + ∇ · 〈δcδu〉 − DΔc = 〈S〉, (2)

where 〈δcδu〉 introduces three new unknowns representing the turbulent atmo-
spheric diffusion eddies, so closure is needed. Usually, closure is achieved via the
so-called K-theory, or gradient-transport theory [36, 41] which relies on the so-
called Fickian (or first-order local) constitutive law 〈δcδu〉 = −K∇c, where K is
the second-rank tensor field of turbulent diffusion. Other types of local and non-
local closures can be considered (see, for instance, Chapter 6 of [36], and [13, 42],
respectively) but this falls out of the scope of this work and will be considered in
future studies.

In addition, it is possible to neglect term DΔc in the averaged law (2) as the
dispersion effects of molecular diffusion are several orders of magnitude smaller
than the ones corresponding to the turbulent diffusion eddies [36, 41]. With such
considerations, and by assuming that the pollutant is nonreactive, so 〈S〉 = S,
conservation law (2) becomes

∂c

∂t
+ u · ∇c − ∇ · (K∇c) = S. (3)

Further simplifications of law (3) are considered. For instance, K is assumed
to be a diagonal tensor with nonzero components Kx , Ky , and Kz [41] as cross-
diagonal diffusion terms are usually insignificant [22]. In addition, it is considered
that the x-axis is aligned with the wind direction, so that u = (u, 0, 0), and, in
consequence, the turbulent diffusion along the x-axis is negligible in comparison to
the corresponding advective transport:

∣
∣
∣
∣u

∂c

∂x

∣
∣
∣
∣ �

∣
∣
∣
∣

∂

∂x

[

Kx

∂c

∂x

]∣
∣
∣
∣ . (4)

Also, in the presence of a single pollutant source in steady-state emission regime
and atmospheric conditions we have that ∂c̄/∂t = 0, and the source term S can
be treated as a boundary condition. With such considerations, conservation law (3)
simplifies to the following steady-state advection–diffusion equation:

u
∂c

∂x
− ∂

∂y

[

Ky

∂c

∂y

]

− ∂

∂z

[

Kz

∂c

∂z

]

= 0, (5)

which is complemented with the boundary condition accounting for location and
emission rate of the pollutant source:

uc|x=0 = Qδ(z − Hs)δ(y), (6)

where Q ∈ R
∗+ is the emission rate of the pollutant source and δ(·) is Dirac’s delta

function, and total reflexion conditions [41]:
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Ky

∂c

∂y

∣
∣
∣
∣
y=±Ly

= Kz

∂c

∂z

∣
∣
∣
∣
z=0,h

= 0. (7)

A final assumption is that the dominant atmospheric heterogeneity occurs in the
vertical direction, so the mean wind velocity u and the crosswind eddy diffusivities
Ky and Kz depend only on the vertical coordinate z ∈ [0, h]. Thus, the three-
dimensional steady-state pollutant dispersion problem is formally stated as follows:

Given the data Ly, h,Q ∈ R
∗+, Hs ∈ (0, h), and u,Ky,Kz ∈ C ([0, h]), find

c ∈ H 1(R+ × [−Ly,Ly] × [0, h]) such that

u(z)
∂c

∂x
−Ky(z)

∂2c

∂y2 − ∂

∂z

[

Kz(z)
∂c

∂z

]

= 0, (x, y, z) ∈ R
∗+

× (−Ly,Ly) × (0, h), (8)

∂c

∂y

∣
∣
∣
∣
y=−Ly

= ∂c

∂y

∣
∣
∣
∣
y=Ly

= 0, (x, z) ∈ R
∗+ × (0, h), (9)

Kz(0)
∂c

∂z

∣
∣
∣
∣
z=0

= Kz(h)
∂c

∂z

∣
∣
∣
∣
z=h

= 0, (x, y) ∈ R
∗+ × (−Ly,Ly), (10)

u(z)c(0, y, z) − Qδ(z − Hs)δ(y) = 0, (y, z) ∈ (−Ly,Ly) × (0, h),

(11)

where C (·) is the space of continuous functions, and H 1(·) is the space of square-
integrable functions with square-integrable first-order derivatives.

2.2 Related Two-Dimensional Problems

A widely used approach to approximate the solution of problem (8)–(11) is to solve
the related two-dimensional problem obtained by performing crosswind horizontal
integration. Such a problem is stated as follows:

First, denote the crosswind horizontally averaged pollutant concentration by

cy(x, z) = ∫ Ly

−Ly
c(x, y, z)dy. Then, given h,Q ∈ R

∗+, Hs ∈ (0, h), and u,Kz ∈
C ([0, h]), find cy ∈ H 1(R+ × [0, h]) such that

u(z)
∂cy

∂x
− ∂

∂z

[

Kz(z)
∂cy

∂z

]

= 0, (x, z) ∈ R
∗+ × (0, h), (12)

Kz(0)
∂cy

∂z

∣
∣
∣
∣
z=0

= Kz(h)
∂cy

∂z

∣
∣
∣
∣
z=h

= 0, x ∈ R
∗+, (13)

u(z)cy(0, z) − Qδ(z − Hs) = 0, z ∈ (0, h). (14)
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In this contribution, the solution cy(x, z) of the two-dimensional approximated
problem (12)–(14) is sought (in fact, approximated) via the ADMM. An alternative
approach to estimate the solution of the original three-dimensional problem (8)–
(11) is given by the GIADMT, which employees separation of variables with a
Fourier series in the crosswind horizontal direction (instead of averaging) and
applies the ADMM to a sequence of two-dimensional problems in order to obtain
the coefficients of the series. Explicitly, the solution of the original problem (8)–(11)
is sought as

c(x, y, z) =
∞∑

j=0

Cj (x, z)
√

Ly

cos
jπy

Ly

. (15)

The orthonormal basis
{
cos(jπy/Ly)/

√
Ly

}
j∈{0}⋃

N
of the Fourier series (15) was

obtained by solving the related Sturm–Liouville problems (see, for instance, [29]),
and the corresponding coefficient Cj (x, z), j ∈ {0}⋃

N, is the solution of the
following two-dimensional problem:

Given the data Ly, h,Q ∈ R
∗+, Hs ∈ (0, h), and u,Ky,Kz ∈ C ([0, h]), find

Cj ∈ H 1(R+ × [0, h]), j ∈ {0}⋃
N, such that

u(z)
∂Cj

∂x
+ j2π2

L2
y

Ky(z)Cj (x, z) − ∂

∂z

[

Kz(z)
∂Cj

∂z

]

= 0, (x, z) ∈ R
∗+ × (0, h),

(16)

Kz(0)
∂Cj

∂z

∣
∣
∣
∣
z=0

= Kz(h)
∂Cj

∂z

∣
∣
∣
∣
z=h

= 0, x ∈ R
∗+, (17)

u(z)Cj (0, z) − Q
√

Ly

δ(z − Hs) = 0, z ∈ (0, h). (18)

Problem (16)–(18) is also solved approximately via the ADMM, which completes
the GIADMT approach.

In summary, we consider two direct approaches to estimate the solution of
the original three-dimensional problem (8)–(11), namely the ADMM solution of
the crosswind horizontally averaged two-dimensional problem (12)–(14), and its
GIADMT solution (15) which in turn depends on the ADMM solution of a sequence
of two-dimensional problems. The ADMM approach is detailed in Sect. 3.

In order to apply the ADMM in a unified way to both two-dimensional
problems (12)–(14) and (16)–(18), notation is simplified by dropping symbol (·),
so u ≡ u, c ≡ c, and cy ≡ cy , and also diffusivities are denoted as k ≡ j2π2Ky/L

2
y

and K ≡ Kz, respectively. Then, consider the following generic problem which
contains problems (12)–(14) and (16)–(18) as particular cases:

Let a ∈ {0, 1} be a parameter representing the ADMM or the GIADMT
approach. Then, given the data Ly, h,Q ∈ R

∗+, Hs ∈ (0, h), and u, k,K ∈
C ([0, h]), find C ∈ H 1(R+ × [0, h]), such that
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u(z)
∂C

∂x
+ ak(z)C(x, z) − ∂

∂z

[

K(z)
∂C

∂z

]

= 0, (x, z) ∈ R
∗+ × (0, h), (19)

K(0)
∂C

∂z

∣
∣
∣
∣
z=0

= K(h)
∂C

∂z

∣
∣
∣
∣
z=h

= 0, x ∈ R
∗+, (20)

u(z)C(0, z) − Q

L
a/2
y

δ(z − Hs) = 0, z ∈ (0, h), (21)

where problems (12)–(14) and (16)–(18) are obtained for a = 0 and a = 1,
respectively, that is, C = cy for a = 0 and C = Cj for a = 1. Next, we comment the
specificities of the relations between the boundary conditions, the parameterizations
of the coefficients, and the ADMM.

2.3 Some Comments on the Parameterizations
of the Coefficients

Note that boundary conditions (20) are satisfied if K(0) = K(h) = 0, which
indeed is the case of many parameterizations such as the ones in [16, 34, 39].
However, for vertical diffusion to occur, K(z) must be nonzero at ground level,
that is, K(0) �= 0, as also noted in [18]. This feature is also desirable from the
mathematical point of view in order to obtain regular Sturm–Liouville problems
arising from the direct application of the Laplace transform to problem (19)–(21).
This irregularity is overcome in a natural way by the ADMM by taking the local
average of K(z) in each sublayer of the PBL. Therefore, the ADMM allows using
the following parameterizations of K(z) for unstable atmospheric conditions:

• Parameterization of [30]:

K(z)

w∗h
=

(
κ|L|
h

)4/3
z

|L|
(

1 + 16
z

|L|
)−1/2

(22)

• Parameterization of [34]:

K(z)

w∗h
= κ

z

h

(
1 − z

h

)
(23)

• Parameterization of [16]:

K(z)

w∗h
= 0.22

(
1 − e−4z/h − 0.0003e8z/h

) ( z

h

)1/3 (
1 − z

h

)1/3
(24)
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• Parameterization of [39]:

K(z)

w∗h
=

(
κ|L|
h

)4/3
z

|L|
(

1 − z

h

)(

1 + 22
z

|L|
)1/4

(25)

• Parameterization of [17]:

K(z)

w∗h
= κ5/2

10

(
κ|L|
h

)−1/2 (
1 − e−4z/h − 0.0003e8z/h

)4/3
, (26)

where κ ∼ 0.4 is von Kármán’s constant, L < 0 is Monin–Obukhov’s length for
unstable atmospheric conditions, and w∗ is the convective velocity scale.

Interestingly, the related issues do not affect the crosswind horizontal eddy
diffusivity k(z), so the following adaptation of its parameterization from [16], which
takes into account the notation introduced before problem (19)–(21), can be readily
used:

k(z)

w∗h
= j2π2

L2
y

0.12

(

0.75 +
(

z

|L|
)−2/3 (

1 + z

|L|
)2

)1/2

. (27)

On the other hand, usual power-law [30] and logarithmic [6, 30] mean wind
velocity profiles become null and negatively unbounded at z = 0, respectively. For
the power-law case, boundary condition (21) is satisfied allowing nonzero pollutant
concentration at the base of the pollutant source, that is, c(0, 0) �= 0, which is a
physical nonsense. Whereas, for the logarithmic case, u(z) → −∞ as z → 0+,
which leads to a “∞ = 0” contradiction if c(0, 0) �= 0; so, boundary condition (14)
is satisfied only if either c(0, 0) = 0 (physically possible) or u(z)c(0, z) → 0+
as z → 0+, but this implies that c(0, z) → 0−, that is, c(0, z) < 0 (physical
nonsense). On the other hand, if boundary condition (14) is written as c(0, z) =
Qδ(z − Hs)/u(z), it leads to a “0/0” indeterminate form for the power-law case at
z = 0, which in fact converges to c(0, 0) = 0 as z → 0+ because δ(−Hs) = 0 and
u(z) is nonzero in the neighborhood of z = 0, whereas, for the logarithmic case,
c(0, z) → 0− as z → 0+, which is still nonsensical. Again, these situations are
overcome naturally by the ADMM by approximating u(z) by its local average in
each sublayer of the PLB, which allows using the following parameterizations of
u(z) for unstable conditions [30]:

• Power-law profile:

u(z) = u1

(
z

z1

)p

, (28)

with wind velocity u1 at height z = z1, and turbulence intensity p [23].
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• Logarithmic profile:

u(z) =
⎧
⎨

⎩

u∗
κ

[

ln

(
z

z0

)

− Ψm

(
z

|L|
)]

, z ≤ zb

u(zb), z > zb

, (29)

with friction velocity u∗, roughness length z0 > 0, zb = min{|L|, 0.1h}, and
stability function Ψm(z/|L|)

Ψm

(
z

|L|
)

= ln P

(
z

|L|
)

− 2 arctan A

(
z

|L|
)

, (30)

where A(z/|L|) = (1 + 16z/|L|)1/4 [32] and

P

(
z

|L|
)

= eπ/2

8

(

1 + A

(
z

|L|
)

+ A2
(

z

|L|
)

+ A3
(

z

|L|
))

. (31)

Finally, note that all these issues can be avoided if the domain of original problem
is defined above the roughness length, that is, for z ∈ [z0, h]. The physical and
mathematical implications of such a restriction will be addressed elsewhere. Next,
the ADMM is applied to problem (19)–(21) in detail.

3 Application of the ADMM

Let {zn} ⊂ [0, h], with zn = nΔz and n = 0, N , be a uniform partition of [0, h]
with stepsize Δz, which represents the vertical dimension of the PBL. In each
sublayer (zn−1, zn), n = 1, N , of thickness Δz of the PBL, consider the stepwise
approximations of u(z), k(z), and K(z) given by

αn = 1

Δz

∫ zn

zn−1

α(z)dz, (32)

where α = u, k,K . Then, denoting Cn(x, z) = C(x, z) for z ∈ (zn−1, zn), n =
1, N , the ADMM problem related to the generic problem (19)–(21) is

un

∂Cn

∂x
+ aknCn(x, z) − Kn

∂2Cn

∂z2 = 0, (x, z) ∈ R
∗+ × (zn−1, zn), n = 1, N

(33)

Cn(x, zn) = Cn+1(x, zn), x ∈ R
∗+, n = 1, N − 1 (34)

Kn

∂Cn

∂z

∣
∣
∣
∣
z=zn

= Kn+1
∂Cn+1

∂z

∣
∣
∣
∣
z=zn

, x ∈ R
∗+, n = 1, N − 1 (35)
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∂C1

∂z

∣
∣
∣
∣
z=0

= ∂CN

∂z

∣
∣
∣
∣
z=h

= 0, x ∈ R
∗+ (36)

Cn(0, z) = Q

unL
a/2
y

δ(z − Hs)δnn, z ∈ (zn−1, zn), n = 1, N,

(37)

where continuity conditions (34) and (35) guarantee sufficient smoothness to the
generic pollutant concentration C(x, z) by imposing continuity at the interior
partition points z = zn, n = 1, N − 1, to C(x, z) and the related vertical turbulent
flux K(z)∂C/∂z, respectively. Also, δnn in boundary condition (37) is Kronecker’s
delta, so n = n indicates that Hs ∈ (zn−1, zn), that is, the layer which the pollutant
source is located at.

By applying the Laplace transform L [·] with respect to variable x to the ADMM
problem (33)–(37), it follows that, for each s ∈ C,

d2ζn

dz2 − R2
n(s)ζn(s, z) = − Q

KnL
a/2
y

δ(z − Hs)δnn, z ∈ (zn−1, zn), n = 1, N

(38)

ζn(s, zn) = ζn+1(s, zn), n = 1, N − 1 (39)

Kn

dζn

dz

∣
∣
∣
∣
z=zn

= Kn+1
dζn+1

dz

∣
∣
∣
∣
z=zn

, n = 1, N − 1 (40)

dζ1

dz

∣
∣
∣
∣
z=0

= dζN

dz

∣
∣
∣
∣
z=h

= 0, (41)

where ζn(s, z) = L [Cn(x, z)] and R2
n(s) = (uns + akn)/Kn.

The solution ζn(s, z) of the ADMM problem in the Laplace space (38)–(41) for
z ∈ (zn−1, zn), n = 1, N , is

ζn(s, z) = Ane
Rn(s)z + Bne

−Rn(s)z − Q sinh {Rn(s)(z − Hs)}
KnRn(s)L

a/2
y

H(z − Hs)δnn,

(42)
where H(·) is Heaviside’s unit step function. In solution (42), constant coefficients
An and Bn, n = 1, N , are obtained by solving the system of linear algebraic
equations resulting by substituting (42) into conditions (39)–(41). Then, the solution
of the ADMM problem (33)–(37) follows by applying the inverse Laplace transform
L −1[·] to solution (42). It is worth noting that the complexity of solution (42)
requires the numerical inversion of the Laplace transform, so the final solution
is regarded as semi-analytical. Typically, the inversion algorithm of choice is the
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Gaussian quadrature scheme, but here the more robust fixed-Talbot algorithm [1] is
employed (also, see [28]). Thus, for z ∈ (zn−1, zn), n = 1, N , the solution of the
ADMM problem (33)–(37) is

Cn(x, z) = r

M

[
1

2
ζn(r, z)e

rx +
M−1∑

k=1

Re{exS(θk)ζn (S(θk), z) (1 + iω(θk))}
]

,

(43)

where parameter r ∈ R
∗+ is fixed (so, naming this version of Talbot algorithm [37]),

i = √−1, and S(θk) = rθk(cot(θk)+ i), ω(θk) = θk + (θk cot(θk)− 1) cot(θk), and
θk = kπ/M ∈ (−π, π) (for further details, see [1]).

Finally, note that, for more general situations, other inversion algorithms of the
Laplace transform [2] can be considered in order to improve the computational
efficiency. For instance, a Fourier series-based inversion algorithm proved to be
more efficient computationally when linear counter-gradient non-local closure is
considered in the averaged conservation law (2) [13].

4 The Homogenization Estimate

The so-called homogenized problem related to the ADMM problem in the Laplace
space (38)–(41) is

d2ζ

dz2 − R̂2(s)ζ (s, z) = − Q

K̂L
a/2
y

δ(z − Hs), z ∈ (0, h) (44)

dζ

dz

∣
∣
∣
∣
∣
z=0

= dζ

dz

∣
∣
∣
∣
∣
z=h

= 0, (45)

where R̂2(s) =
(
ûs + ak̂

)
/K̂ , ζ (s, z) is both the volume average of ζ(s, z) and

the Laplace transform of the homogenization estimate C(x, z) of the solution of
the ADMM problem (33)–(37), and the effective coefficients û, k̂, and K̂ are given
by the arithmetic averages of u(z) and k(z), and the harmonic average and K(z),
respectively, that is, with α = u, k,

α̂ = 1

h

∫ h

0
α(z)dz ≈ Δz

h

N∑

n=1

αn, K̂−1 = 1

h

∫ h

0

dz

K(z)
≈ Δz

h

N∑

n=1

K−1
n . (46)
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The mathematical justification of the homogenized problem in the Laplace
space (44)–(46) is as follows. First, note that, for every s ∈ C and every N ∈ N, the
ADMM problem in the Laplace space (38)–(41) can be written as

− d

dz

[

K̃(z)
dζ

dz

]

+ (ũ(z)s + ak̃(z))ζ(s, z) = Q

L
a/2
y

δ(z − Hs), z ∈ (0, h)\Γ
(47)

�ζ(s, z)�z=zn
= 0,

�

K̃(z)
dζ

dz

�

z=zn

= 0, zn ∈ Γ (48)

dζ

dz

∣
∣
∣
∣
z=0

= dζ

dz

∣
∣
∣
∣
z=h

= 0, (49)

where Γ = {zn}n=1,N−1, Hs �= zn, n = 0, N , and K̃(z) = Kn, ũ(z) = un, k̃(z) =
kn for z ∈ (zn−1, zn), n = 1, N . Also, �·� denotes the jump operator around the
discontinuity points z = zn of K̃(z) and ũ(z), and the derivatives are understood in
the generalized sense (see, for instance, Chapter 1 of [3]). Existence of a generalized
solution ζ(z) of problem (47)–(49) can be proved via a maximum principle (for
instance, Lemma 1.1, page 95, of [31]). Note that, as h = NΔz, the geometric
parameter describing the separation of scales is ε = 1/N , so N → ∞ is equivalent
to ε → 0+, that is, the limit which mathematical homogenization is based on. By
Lemma 4.1, page 63, of [38], it follows that if there exist K̂, k̂, û ∈ R

∗+ and ζ (z) ∈
H 1 ([0, h]) such that K̃−1(z) → K̂−1, k̃(z) → k̂, ũ(z) → û, and ζ(z) → ζ (z) as
N → ∞, then ζ (z) solves Eq. (44) and K̃(z)∂ζ/∂z → K̂∂ζ̄ /∂z as N → ∞, which
is applied here to obtain the boundary conditions (45). On the other hand, for the
advection-free case, in [19] a formula is proved, via a Green’s function approach

and averaging theorems, whose one-dimensional version is K̂ =
〈
K̃−1(z)

〉−1
, with

〈·〉 = h−1
∫ h

0 (·)dz, which is the second formula in (46). Moreover, if the domain

is ε-periodic, Theorem 2.6, page 33, of [9] guarantees that K̃−1(ξ) →
〈
K̃−1(ξ)

〉

Ω
,

k̃(ξ ) → 〈k̃(ξ )〉Ω , and ũ(ξ) → 〈ũ(ξ)〉Ω as N → ∞, with 〈·〉Ω = |Ω|−1
∫
Ω

(·)dξ

defined locally over the period Ω � ξ = z/ε. As the local average coincides with
the average over the whole domain in this case, it is possible to identify 〈·〉 with

〈·〉Ω , which leads to take K̂ =
〈
K̃−1(z)

〉−1
, k̂ = 〈k̃(z)〉, and û = 〈ũ(z)〉, which in

the one-dimensional case become formulas (46) for the effective coefficients.
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Then, the solution of the homogenized problem in the Laplace space (44)–(46) is

ζ (s, z) = Q

K̂R̂(s)L
a/2
y

[
cosh

{
R̂(s)z

}
cosh

{
R̂(s)(h−Hs)

}

sinh
{
R̂(s)h

} (50)

− sinh
{
R̂(s)(z − Hs)

}
H(z − Hs)

]

,

and the homogenization estimate of the solution of the ADMM problem (33)–
(37) follows by applying the inverse Laplace transform to (51). Again, due to the
complexity of solution (51), the numerical inversion of the Laplace transform is
required, so the final estimate is regarded as semi-analytical. As above, the fixed-
Talbot inversion algorithm of [1] is employed. Thus, the homogenization estimate
of the solution of the ADMM problem (33)–(37) is

C(x, z) = r

M

[
1

2
ζ (r, z)erx +

M−1∑

k=1

Re{exS(θk)ζ (S(θk), z) (1 + iω(θk))}
]

.

(51)

5 Results and Discussion

5.1 Two-Dimensional Case

In order to evaluate the performance in both accuracy and computational effort of
the approach combining the ADMM and mathematical homogenization (Eq. (51)),
simulations involving the five parameterizations of the mean vertical eddy diffusiv-
ity K(z) (Eqs. (22)–(26)) and the two parameterizations of the mean wind velocity
profile u(z) (Eqs. (28) and (29)) were carried out in comparison with the direct
application of the ADMM (Eq. (43)) and to the observations of the Copenhagen
experiment [20]. The experiment consisted of the release without buoyancy of
tracer sulfur hexafluoride in northern Copenhagen, Denmark, from a tower of height
Hs = 115 m with emission rate Q = 100 g/s. The tracer was collected at ground-level
sampling units located at three crosswind arcs positioned 2–6 km from the source
location. The relevant meteorological parameters considered in the computational
simulations are summarized in Table 1. For the simulations, Fortran codes (Visual
Fortran 6.1) for Eqs. (43) and (51) were implemented and run in a Dell Inspiron
1440 computer (Intel Core 2 Duo P8700 @ 2.53 GHz, 4 GB RAM, 32-bits OS). The
parameters used for the numerical inversion algorithm of the Laplace transform are
M = 100 and r = 2M/21x. Table 2 shows the simulations runtimes. Remarkably,
the direct application of the ADMM (Eq. (43)) took about 8–9 min, whereas the
combination of the ADMM with mathematical homogenization (Eq. (51)—labeled
A + H) took no more than 0.3 s.
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Table 1 Copenhagen
experiment dataset [20]

Exp. u1(m/s) u∗(m/s) L(m) w∗(m/s) h(m)

1 2.1 0.37 −46 1.8 1980

2 4.9 0.74 −384 1.8 1920

3 2.4 0.39 −108 1.3 1120

4 2.5 0.39 −173 0.7 390

5 3.1 0.46 −577 0.7 820

6 7.2 1.07 −569 2.0 1300

7 4.1 0.65 −136 2.2 1850

8 4.2 0.70 −72 2.2 810

9 5.1 0.77 −382 1.9 2090

Table 2 Simulations
runtimes (s)

u(z) Eq. (28) Eq. (29)

K(z) ADMM A + H ADMM A + H

Eq. (22) 480 0.20 488 0.23

Eq. (23) 531 0.28 507 0.27

Eq. (24) 482 0.27 489 0.25

Eq. (25) 483 0.25 479 0.20

Eq. (26) 533 0.25 481 0.23

Simulations results are presented in Fig. 1, where red and black curves and mark-
ers correspond to the ADMM solution (43) and the homogenization estimate (51),
respectively. The two columns on the left correspond to the power-law wind velocity
profile (Eq. (28)) with turbulence exponent p = 0.07 and z1 = 10 m, whereas
the two columns on the right correspond to the logarithmic wind velocity profile
(Eq. (29)) with roughness length z0 = 0.6 m, and the lines correspond to the five
parameterizations of the eddy diffusivity (Eqs. (22)–(26)), respectively. The hori-
zontal profiles of the source-normalized near ground-level pollutant concentration
(C/Q) in the first and third columns were obtained for z = 10 m for the eighth
Copenhagen experiment, whereas scatter diagrams depicting source-normalized
predicted (cp/Q) versus observed (co/Q) concentration values are in the second
and fourth columns, respectively, with the factor of two indicated by the gray lines.

An initial inspection of Fig. 1 indicates overall good agreement between the
two semi-analytical approaches. The greatest discrepancy is observed in the first
and last lines, which correspond to parameterizations (22) and (26) of the mean
vertical eddy diffusivity K(z), respectively. In these cases, the comparison to the
experimental data in the scatter diagrams, which exhibit several points outside the
lines representing the factor of two, suggests that such a behavior is a consequence
of the particular parameterizations, as it is not observed for the other three
parameterizations of K(z) (Eqs. (23)–(25)).

In order to evaluate the accuracy of the results of the proposed approach in
comparison with those of the ADMM and to the experimental data, the performance
of both approaches is quantified via the statistical indexes proposed by [21].
Tables 3, 4, 5, 6 and 7 present the statistical indexes employed to evaluate
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Fig. 1 Comparison of results of the ADMM solution (Eq. (43)) and the homogenization estimate
(Eq. (51)—labeled A + H) from computational simulations in comparison to the data of the
Copenhagen experiment for five eddy diffusivity parameterizations (Eqs. (22)–(26)) and two wind
velocity profile parameterizations (Eqs. (28) and (29))

Table 3 Normalized mean
square error (NMSE)

u(z) Eq. (28) Eq. (29)

K(z) ADMM A + H ADMM A + H

Eq. (22) 0.59 0.61 0.39 0.46

Eq. (23) 0.05 0.14 0.07 0.09

Eq. (24) 0.05 0.16 0.06 0.10

Eq. (25) 0.07 0.18 0.07 0.10

Eq. (26) 0.29 0.38 0.33 0.32

Table 4 Correlation
coefficient (COR)

u(z) Eq. (28) Eq. (29)

K(z) ADMM A + H ADMM A + H

Eq. (22) 0.39 0.59 0.33 0.49

Eq. (23) 0.90 0.85 0.90 0.84

Eq. (24) 0.92 0.86 0.91 0.84

Eq. (25) 0.89 0.84 0.87 0.85

Eq. (26) 0.53 0.54 0.42 0.40
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Table 5 Factor of two (FA2) u(z) Eq. (28) Eq. (29)

K(z) ADMM A + H ADMM A + H

Eq. (22) 0.52 0.65 0.78 0.78

Eq. (23) 1.00 0.87 1.00 0.87

Eq. (24) 1.00 0.87 1.00 0.87

Eq. (25) 0.96 0.87 0.96 0.96

Eq. (26) 0.70 0.70 0.65 0.74

Table 6 Fractional bias (FB) u(z) Eq. (28) Eq. (29)

K(z) ADMM A + H ADMM A + H

Eq. (22) −0.55 −0.60 −0.28 −0.42

Eq. (23) −0.03 −0.24 0.01 −0.10

Eq. (24) −0.06 −0.29 0.07 −0.14

Eq. (25) −0.12 −0.30 0.01 0.10

Eq. (26) −0.24 −0.43 −0.01 −0.21

Table 7 Fractional standard
deviation (FS)

u(z) Eq. (28) Eq. (29)

K(z) ADMM A + H ADMM A + H

Eq. (22) −0.24 −0.38 −0.06 −0.29

Eq. (23) 0.07 −0.14 0.21 0.01

Eq. (24) 0.01 −0.14 0.24 0.15

Eq. (25) 0.06 −0.15 0.19 0.14

Eq. (26) −0.09 −0.07 −0.01 0.01

the accuracy of the proposed approach, namely: the normalized mean square
error (NMSE—Table 3), the correlation coefficient (COR—Table 4), the factor
of two (FA2—Table 5), the fractional bias (FB—Table 6), and the fractional
standard deviation (FS—Table 7), which are calculated via the following formulas,
where the overline indicates the arithmetic average and σ denotes the standard
deviation:

NMSE = (cp − co)2

cpco

, (52)

COR = (co − c̄o)(cp − c̄p)

σoσp

, (53)

FA2 = (percent of)
cp

co

∈ [0.5, 2], (54)

FB = c̄o − c̄p

0.5(c̄o + c̄p)
, (55)

FS = σo − σp

0.5(σo + σp)
. (56)
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Table 8 Accuracy: this work
versus results of [8]

Method NMSE COR FA2 FB FS

Double GITT 0.04 0.91 1.00 0.06 0.19

GILTT 0.09 0.85 1.00 0.11 0.13

ADMM 0.06 0.91 1.00 0.07 0.24

A + H 0.10 0.84 0.87 −0.14 0.15

Analysis of the data in Tables 3, 4, 5, 6 and 7 leads to the conclusion that the
proposed approach yields results with little loss of accuracy. Remarkably, in the case
corresponding to the parameterization (22) of K(z), the proposed approach yields
results that are better than those of the ADMM, which suggests that the combination
of the ADMM with mathematical homogenization leads to improved estimations of
the pollutant concentration when parameterizations are not accurate.

In addition, the accuracy of the proposed approach is compared to that of
other methods by means of the statistical indexes (52)–(56) for the Copenhagen
experiment data. Table 8 shows the comparison of the proposed approach to the
ADMM and to two other integral transform-based methods, namely: the GITT
(generalized integral transform technique) and the GILTT, with data taken from [8].
The situation corresponds to parameterizations (24) of K(z) and (29) of u(z). Note
that the accuracy of the ADMM is similar to that of the double GITT, whereas
the GILTT and the proposed approach exhibit similar accuracies. Again, the results
provided by the proposed approach are more than acceptable, that is, the loss of
accuracy is negligible, also considering the remarkably small computational cost.

5.2 Three-Dimensional Case

Now, in order to evaluate the performance in both accuracy and computational effort
of the combination of the GIADMT and mathematical homogenization (Eqs. (15)
and (51)), simulations involving the five parameterizations of the mean vertical eddy
diffusivity K(z) (Eqs. (22)–(26)), the mean crosswind longitudinal eddy diffusivity
k(z) (27), and the two parameterizations of the mean wind velocity profile u(z)

(Eqs. (28) and (29)) were carried out in comparison with the direct application of
the GIADMT (Eq. (43)) and to the observations of the Copenhagen experiment
[20]. All the relevant computational parameters are the same as in the previous
section. Also, accuracy is evaluated via the statistical indexes (52)–(56), which
are presented in Tables 9, 10, 11, 12 and 13. In addition, simulations runtimes of
both approaches are presented in Table 14. In Tables 9, 10, 11, 12, 13 and 14, the
proposed approach combining the GIADMT with mathematical homogenization is
labeled G + H. Simulations results are illustrated in Figs. 2 and 3.
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Table 9 Normalized mean
square error (NMSE)

u(z) Eq. (28) Eq. (29)

K(z) GIADMT G + H GIADMT G + H

Eq. (22) 0.35 0.21 0.44 0.20

Eq. (23) 0.23 0.21 0.25 0.20

Eq. (24) 0.21 0.18 0.24 0.17

Eq. (25) 0.17 0.16 0.20 0.16

Eq. (26) 0.36 0.19 0.57 0.31

Table 10 Correlation
coefficient (COR)

u(z) Eq. (28) Eq. (29)

K(z) GIADMT G + H GIADMT G + H

Eq. (22) 0.62 0.81 0.53 0.78

Eq. (23) 0.84 0.82 0.85 0.83

Eq. (24) 0.86 0.83 0.86 0.84

Eq. (25) 0.88 0.84 0.88 0.85

Eq. (26) 0.68 0.79 0.60 0.70

Table 11 Factor of two
(FA2)

u(z) Eq. (28) Eq. (29)

K(z) GIADMT G + H GIADMT G + H

Eq. (22) 0.74 0.78 0.52 0.78

Eq. (23) 0.83 0.83 0.83 0.83

Eq. (24) 0.83 0.96 0.83 0.87

Eq. (25) 0.87 0.91 0.83 0.87

Eq. (26) 0.70 0.83 0.61 0.78

Table 12 Fractional bias
(FB)

u(z) Eq. (28) Eq. (29)

K(z) GIADMT G + H GIADMT G + H

Eq. (22) −0.15 −0.24 0.05 −0.12

Eq. (23) 0.21 0.06 0.26 0.12

Eq. (24) 0.22 0.02 0.27 0.08

Eq. (25) 0.17 −0.01 0.23 0.07

Eq. (26) 0.16 −0.05 0.33 0.11

Table 13 Fractional
standard deviation (FS)

u(z) Eq. (28) Eq. (29)

K(z) GIADMT G + H GIADMT G + H

Eq. (22) 0.02 −0.04 0.16 0.11

Eq. (23) 0.06 −0.04 0.14 0.05

Eq. (24) 0.11 −0.04 0.20 0.05

Eq. (25) 0.11 −0.03 0.19 0.06

Eq. (26) 0.17 0.25 0.28 0.37
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Table 14 Simulations
runtimes (s)

u(z) Eq. (28) Eq. (29)

K(z) GIADMT G + H GIADMT G + H

Eq. (22) 3041 3 3243 4

Eq. (23) 3249 3 3555 3

Eq. (24) 3147 3 3403 3

Eq. (25) 3167 3 3397 3

Eq. (26) 3006 3 3284 4

Analysis of the data in Tables 9, 10, 11, 12 and 13 also leads to the conclusion
that the proposed approach yields results with little loss of accuracy. In several cases,
the proposed approach yields results that are better than those of the GIADMT,
which suggests that its combination with mathematical homogenization leads to
improved estimations of the pollutant concentration when parameterizations are not
accurate. Finally, Table 14 shows the remarkable fact that the direct application of
the GIADMT takes more than 50 min, whereas its combination with mathematical
homogenization takes only about 3–4 s.

Figures 2 and 3 show contour plots of the proposed approach and scatter dia-
grams comparing it with the GIADMT approach for the power-law and logarithmic
wind profiles (28) and (29), respectively, considering all the parameterizations of
the vertical eddy diffusivity (22)–(26). Again, the greatest discrepancy is observed
in the first and last lines, which correspond to parameterizations (22) and (26) of the
mean vertical eddy diffusivity K(z), respectively. In these cases, the comparison to
the experimental data in the scatter diagrams, which exhibit several points outside
the lines representing the factor of two.

6 Concluding Remarks

In this contribution, a mathematical homogenization approach was employed in
combination with multilayer Laplace transform-based methods in order to accel-
erate the availability of results with minimum loss of accuracy. To the best of our
knowledge, this approach using mathematical homogenization represents a novelty
in air pollution modeling. Several computational simulations and statistical tests
were performed for various parameterizations of mean wind velocity profile and
vertical eddy diffusivity for unstable atmospheric conditions, in order to compare
the new approach to the direct application of the multilayer methods for accuracy
and computational time. The runtimes of the computational simulations of the
proposed approach took less than one-third of a second and 3–4 s in the two-
and three-dimensional cases, respectively, whereas the direct application of the
ADMM and the GIADMT, which are the most computationally efficient among the
integral transform-based methods, took about 8–9 min and 50–60 min, respectively.
Moreover, the results of the proposed approach exhibited little loss of accuracy
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Fig. 2 Combination of the GIADMT solution (43) and the homogenization estimate (51) (left)
and comparison of both approaches to the data of the Copenhagen experiment (right) for the eddy
diffusivity parameterizations (22)–(26) and wind velocity profile power-law parameterization (28)
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Fig. 3 Combination of the GIADMT solution (43) and the homogenization estimate (51) (left)
and comparison of both approaches to the data of the Copenhagen experiment (right) for the eddy
diffusivity parameterizations (22)–(26) and wind velocity profile logarithmic parameterization (29)
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when compared with the results of the multilayer methods and to the Copenhagen
experiment data. The results presented here are encouraging and suggest that
mathematical homogenization can become a useful and powerful tool for solving
pollutant dispersion models analytically.
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Data Mining Approaches
to the Real-Time Monitoring and Early
Warning of Convective Weather Using
Lightning Data

Stephan Stephany, Cesar Strauss, Alan James Peixoto Calheiros, Glauston
Roberto Teixeira de Lima, João Victor Cal Garcia, and Alex Sandro Aguiar
Pessoa

1 Introduction

Predicting severe weather events plays an important role in the socio-economic
development of a country. The ability of issuing short and medium-term warnings
is relevant, in order to mitigate the hazards of heavy precipitation, strong winds,
lightning, floods, and landslides. As a consequence, agriculture, telecommuni-
cations, transportation, and energy industries suffer frequent economic losses.
Above everything, loss of human lives is the most important concern. Long-term
predictions belong to climatology and are out of the scope of this work. Throughout
the text, predictions generated by a numerical weather prediction (NWP) model are
usually referred as forecasts, following its standard name.

Short-term approaches for severe weather prediction (up to 6 h) may provide
immediate warnings, as shown, for instance, by real-time thunderstorm nowcasting
[3]. An ensemble of techniques is necessary in order to give a fast feedback to the
civil defense about the storms occurrence and severity. Such techniques are based
on different datasets, mostly related to weather radar and satellite measurements,
and high-resolution NWP models. Detailing the environmental condition, storm
initiation, and severity are basic requirements to improve the quality and efficiency
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of the convective nowcasting. Forecasting spatio-temporal patterns of meteorolog-
ical variables helps to define the convective activity over a specific area where the
thunderstorm will develop, since thunderstorms develop stronger and longer in high
shear and instability conditions [28].

Once the thunderstorm is already acting over a specific area, weather satellite
and radar images are more efficient to characterize the storm evolution for a very
short-term forecasting (up to 2 h). Studies using geostationary satellite data defined
important parameters to predict the intensity of thunderstorms [1, 24, 35, 36, 38].
Recent studies were applied to estimate the lightning initiation using both satellite
and radar data [12, 25]. Karagiannidis et al. [15], for instance, presented a lightning
activity nowcasting tool based on satellite and lightning network data with a good
accuracy (80%), but with a significant false alarm rate (40%).

In [2], the tracking of convective cells was proposed by means of lightning
data from the German-developed LINET European lightning detection network.
This kind of data can be used for tracking flash rates along time, being important
to identify the lightning jump (rapid increase in total lightning activity) which is
correlated with the start of severe weather at the ground [39]. Such information is
useful for nowcasting lightning activity and severe weather events occurrence over
a risk area [5]. Nonetheless, a good performance of these extrapolation techniques
was only observed over a very short-term prediction.

Furthermore, weather radar can provide volumetric information about the pre-
cipitation and wind field, which is useful to perform the tracking and forecasting
of rainy systems with high electrical activity. A review of different nowcasting
methods using radar is described by Pierce et al. [34]. Besides that, the coupling
of radar and satellite information with lightning data provides additional parameters
that improves the tracking and prediction of lightning activity [20, 21, 27, 45, 57]
as well. As observed before, a synergy between different sensors provides data that
enrich the analysis helping to improve the prediction of lightning strikes [23].

Medium-term approaches for weather prediction (typically from 6 to 72 h)
depend primarily on NWP model forecasts. Nevertheless, the convective process
is still a challenge for NWP models, mainly because of the lack of observational
data or computing power (high spatio-temporal resolution) necessary to describe
the process. Rainfall or strong winds associated with convective events are difficult
to predict if such conditions were not attended. The numerical model itself may
inaccurately simulate some meteorological variables, what is called model biases.
Therefore, each NWP model presents its own biases that depends on forecast
time. A great effort has been done to improve the NWP models skills using
data assimilation. Sun [50] revised some techniques applied to convective-scale
data assimilation using weather radar. Wang et al. [56] showed a significant
improvement on the convection forecasting using the assimilation of lightning and
radar reflectivity. Vendrasco et al. [54] used three-dimensional variational data
assimilation (3DVAR) technique to assimilate radar information on the weather
research and forecasting (WRF) model [44]. They found an improvement on the
precipitation forecasting using radar data assimilation with large-scale analysis
constraint. However, considering current NWP models employed in Brazil, the skill
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for predicting rainfall is still poor, less than 30% for weak and less than 10% for
heavy rainfall associated with convective events for 36 h forecasts.

Accurate weather monitoring and prediction requires the prompt analysis of huge
amounts of data, generated by different sensors and by NWP models, making the
application of automatic tools a necessary and current trend in meteorological cen-
ters [34]. Considering this scenario, this work proposes some alternative methods
to enhance such monitoring and prediction using lightning data. Such methods
are intended to complement standard approaches based on satellite and ground-
based weather radar images, besides NWP models. They were developed by the
National Institute for Space Research (INPE), and proposed to be used in Brazil,
but may apply to other developing countries that lack a complete weather radar
coverage, but have lightning detection networks, which demand lower acquisition
and maintenance costs than the weather radar ones. These methods follow a data
mining approach, which can be thought of as obtaining useful information from
available data in the considered scope. It embeds a variety of statistical, pattern-
recognition, and machine learning algorithms. In the case of weather monitoring,
the methods shown here allow better visualization and analysis of the spatio-
temporal evolution of lightning occurrences, identification of lightning clusters, and
estimation of the associated rainfall. Weather prediction is tackled with machine
learning algorithms applied to NWP model data.

The first method presented here for weather monitoring was shown in Strauss et
al. [48]. It is a method based on kernel density estimation to process lightning data
(EDDA, atmospheric discharge density estimator, in Portuguese). Assuming that
cloud-to-ground (CG) lightning can be correlated to convective activity, Gaussian
kernel density estimation is applied to generate a field of occurrence of CG lightning
for consecutive periods of time. Instead of visualizing individual discharges, which
are sparse in space and time, a smooth field is estimated making easy to visualize
clusters of CG lightning occurrences. This is a well-known technique [45, 53] and
was implemented by the EDDA software. Considering that lightning data acquired
from a detection network is available in minutes, the lightning field of occurrence
yielded by EDDA allows to depict in near real-time where convective activity is
developing, providing an ancillary tool to the meteorologists.

Another weather monitoring method employs the same kernel density estimation
approach to perform a spatio-temporal clustering using a temporal sliding-window
[47, 49]. It was implemented by the EDDA-G software (G stands for clustering),
providing a list of CG lightning clusters that is periodically updated. This list
includes the coordinates of the cluster centroid, the number of CG lightning
occurrences, the area covered by these CG discharges, among other attributes. It can
be used to trigger a high-resolution numerical model in order to perform nowcasting
for a longer period. A third method based on kernel density estimation of lightning
data performs the estimation of convective rainfall, by means of a temporal sliding-
window and a fitting function, as implemented by the EDDA-CHUVA software
(“chuva” means rain in Portuguese). This estimation of the precipitated mass allows
to evaluate possible impacts related to flooding or landslides.
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In addition to the three weather monitoring methods, two weather prediction
methods are also proposed. Data mining algorithms can be trained using NWP
model data and lightning data yielding specific data mining models. These models
can then be used to predict the occurrence of convective activity from NWP model
forecasts. Such predictions may complement the forecasts themselves, helping
meteorologists to improve the accuracy of early warnings and forecastings. Both
weather prediction methods employ machine learning algorithms, the first is based
in the rough set theory, while the second is an artificial neural network. They
sweep the forecasts generated by a NWP model and classify the values of the
meteorological variables for each pixel of the considered area as presenting or not
convective activity. The output of such classifiers is a map depicting pixels that may
present convective activity for that given NWP model forecast.

It is important to stress that the current chapter constitutes a short survey
on former works of the authors at INPE using data mining methods applied to
meteorological data [8, 9, 18, 19, 32, 33, 47–49]. Therefore, the methods shown
here are a brief summary of these former works, being intended to constitute
ancillary tools for weather monitoring and forecasting. As already mentioned, they
are intended to be used mainly in developing countries exploiting low cost lightning
detection networks, but may be useful in any country. The research initiated from
these former works is still underway and will continue.

The following sections are briefly described as follows: Section 2 covers some
methods formerly proposed by the authors for monitoring convective activity by
means of lightning data, including the generation of fields of density of occurrence
of lightning, the spatio-temporal clustering of lightning, and the estimation of the
convective rainfall mass from such data. Section 3 shows two machine learning
methods to predict convective activity from numerical model forecasts, one employs
a rough set based classifier, while the other is a neural network. Final remarks appear
in Sect. 4, followed by the references.

2 Methods for Monitoring Convective Activity

This section describes the methods proposed in the scope of near real-time monitor-
ing of convective activity by means of the lightning occurrences: (1) visualization
of these events using Gaussian kernel density estimation, which is performed
by the EDDA software, (2) the spatio-temporal clustering of such occurrences,
implemented by the EDDA-G software, and (3) the mapping of the number of
occurrences to the rainfall mass by a fitting function, as implemented by the EDDA-
CHUVA software.
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2.1 Gaussian Kernel Density Estimation

The kernel density estimation is used to generate a field of density of occurrence
of CG lightning from a set of lightning data composed of individual strokes for
the defined time interval and area. The visualization of this field allows to identify
electrically active cells that are associated with convective events. The kernel
estimator yields the density of lightning events at a grid point x that results from
a set of events at points xi [41, 42]. The probability density f̂ (x) is then given by

f̂ (x) = 1

nh2

n∑

i=1

K

(
d(x, xi)

h

)

(1)

where

x is the grid point coordinates (latitude, longitude),
xi is the i-th lightning stroke coordinate,
n is the number of lightning occurrences,
d(x, xi) is the Euclidean distance between x and xi,
h is the defined window width,
K(r) is the kernel function, and r the normalized distance d(x, xi)/h.

Here, the kernel function is given by the 2D Gaussian with zero mean and unity
standard deviation

K(r) = 1

2π
exp

(

−1

2
r2

)

(2)

The window width h can be calculated automatically in order to minimize the
estimation error [42], but is empirically set in consonance of the scale of the
convective event associated with the lightning [48]. The resulting field of density
of occurrence is convenient since it deals better with lightning data, which is very
sparse in space and time. However, electrically active cells may not persist from one
time interval to the next. The choice of a convenient time interval is another issue
concerning the adjustment of the density field to the scale of the observed event.
The EDDA software allows to choose the parameters that define the resulting field
like the time interval, window width, etc.

An integrated lightning detector network is composed of sensors that detect the
spherical electromagnetic wave emitted by each lightning stroke. The position of
the stroke is obtained by triangulation from the times of arrival of the wave at each
sensor, recorded using a GPS time reference. Some type of sensors also detect the
azimuth of the stroke, allowing to calculate the position more accurately. Lightning
strokes are classified as being cloud-to-ground, ground-to-cloud, intracloud, cloud-
to-cloud, and cloud-to-air. Current Brazilian lightning detection networks detect
only ground-to-cloud and cloud-to-cloud lightning. In particular, this work employs
lightning data acquired by the RINDAT network that stands for (in Portuguese)
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national integrated network for detection of atmospheric discharges [29]. The ELAT
(Atmospheric Electricity Group) of INPE (Brazilian Institute for Space Research)
supplies lightning data to CPTEC/INPE (Center for Weather Prediction and Cli-
matic Studies). Only cloud-to-ground lightning was considered in the monitoring
and prediction of convective activity, based on a statistical correlation between this
type of lightning and convective activity [17]. However, the proposed approaches
would be enhanced with the use of intracloud lightning data, since this type of
lightning precedes storms and its detection may be used as storm early warning.
In addition, the ratio between intracloud to cloud-to-ground lightning may be used
to classify the convective storm type [16]. RINDAT provides data recording in text
files each lightning stroke in the UALF format (Universal ASCII Lightning Format).
Each record corresponds to an individual stroke and shows its latitude, longitude,
time of occurrence, polarity, multiplicity (in case of flashes composed of multiple
strokes), and type (only cloud-to-cloud or cloud-to-ground).

2.2 Spatio-Temporal Clustering Based on Sliding-Window

Electrically active cells can be detected, identified, and tracked by the spatio-
temporal clustering of lightning strokes, which allows the monitoring of their
evolution along time. It is also possible to determine all lightning stroke occurrences
of a given cluster and to obtain cluster parameters as the number of strokes, position
of the cluster centroid, estimated area, or stroke rate. Clustering is defined as the
process of grouping data in classes or clusters [11]. Similar objects are grouped
together according to some criteria. In this case, lightning strokes are grouped
using their positions and times of occurrence. The proposed clustering method is
based on a temporal sliding-window, similarly to sliding-windows employed for
data flow control in computer networks. A fixed-width temporal window slides in
discrete time intervals with constant rate screening incoming lightning data. The
resulting clusters correspond to the electrically active cells, which are associated
with intense lightning. The clustering process is performed at every timestep of the
sliding-window and must identify and keep track of all clusters for the considered
area. Eventually, from one timestep to the next, clusters may merge, split into new
ones, or disappear. The advance of the sliding-window was selected as half timestep,
thus refreshing all strokes after two advances of the sliding-window. This behavior
appears in an example shown in Fig. 1, which depicts four different clusters evolving
from one timestep to the next.

A spatio-temporal clustering of lightning strokes was implemented in the EDDA-
G software, which employs as clustering algorithm the 2D kernel-based DENCLUE
2.0 [14]. This algorithm finds local maxima of the density field by using an
optimized gradient climbing algorithm, where the starting seed of the search is the
position of a single lightning stroke. The location of the local maximum found by
this search is then recorded as an attribute of this lightning stroke. The search is
repeated several times, each time starting the search at the position of a different
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Fig. 1 Lightning stroke
clusters evolving from one
timestep to the next: cluster
#1 persists, while cluster #2 is
split into two giving raise to
cluster #4, while cluster #3 is
new (extracted from [47])

lightning stroke. After all lightning strokes are used as seeds, the clustering can
be done. If two local maxima associated with two lightning strokes are close
together, then the lightning strokes are assigned to the same electrically active
cell. Multi-scale results can be obtained by varying the window width that governs
the smoothing of the density field. EDDA-G outputs a text list of clusters and
corresponding parameters. The EDDA software of the preceding section allows to
visualize the field of density of occurrence of lightning strokes, while the EDDA-
G software allows to extract parameters that help to evaluate the magnitude of the
convective activity associated with the electrically active cells.

An example of the use of the EDDA and EDDA-G softwares appears in Fig. 2
for a thunderstorm occurred in January 16th 2010 20:10 UTC in the State of
São Paulo. This figure shows a map with the convective and stratiform structures
derived from radar reflectivity according to the Steiner criteria. The density of
occurrence of CG lightning was generated by the EDDA software and a threshold
of 1 stroke/degree2/minute was applied to obtain contour lines corresponding to
the electrically active cells. Clustering was performed by the EDDA-G software
allowing to obtain different contour lines, corresponding to smaller cells that express
more precisely their area.

2.3 Estimation of Convective Rainfall Mass from Lightning
Data

As already mentioned, it is possible to estimate convective rainfall mass from
the number of CG lightning strokes in places without weather radar coverage,
as proposed in [8, 9], and implemented by the EDDA-CHUVA software, which
estimates the mass of convective rainfall from the number of occurrences of
CG lightning given by the RINDAT network. A former standard approach is the
Tapia model [51], based on a constant rainfall–lightning ratio (RLR) to map both
quantities, but the choice of a suitable RLR value may be difficult due to its high
variability.

The approach formerly proposed by the authors is based on a temporal sliding-
window that screens the occurrences of CG lightning strokes for the given area.



Fig. 2 Radar reflectivity (dBZ) of a thunderstorm occurred in January 16th 2010 20:10 UTC
in the State of São Paulo (top), the corresponding electrically active cells detected solely by
the EDDA software, using kernel density estimation (middle), and by the EDDA-G software,
that performs clustering (bottom). Gray shades correspond to stratiform precipitation and black
shades, to convective precipitation. Contour lines show electrically active cells for a given density
threshold, while circles refer to the 150 km range of the Bauru and São Roque weather radars
(extracted from [47])
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The assumption that convective activity is correlated to electrically active cells is
made. A WRLR (windowed-RLR) function is derived in the training phase by fitting
a set of data points. Each point is given by the rainfall mass and the number of
CG strokes for the time interval corresponding to the window width. Rainfall is
estimated from weather radar data using a suitable Z-R relationship, which maps
the reflectivity Z (i.e., the energy backscattered by hydrometeors) to the rainfall rate
(in mm/h). Outliers corresponding to data points with very high precipitated mass
were removed using the Tukey–Kramer method [52]. Obviously, since the WRLR
function is derived in an area with radar coverage, it would be worth to estimate
rainfall from lightning strokes in areas with a similar climate. It can happen to have
data points with the same number of strokes, but with different values of rainfall
mass. This is dealt with by considering the average rainfall mass for these data
points.

Obviously, the correlation between lightning and convective precipitation is more
significant than it is to stratiform precipitation [43]. Stratiform rainfall was filtered
out using the criterion proposed in [46]. In the considered weather radar grid, this
criterion marks a grid point as presenting convective rainfall if (1) it has reflectivity
of at least 40 dBZ or (2) if it presents a significant gradient of reflectivity, above a
certain threshold for a circle around it, and also all grid points inside the circle.
Values of the threshold and the radius of the circle depend on the background
intensity.

An example of such fitting function follows. Data points were derived for the
entire year of 2009 in an area under the coverage of two Brazilian S-band weather
radars located in the State of Sao Paulo (Brazil) at the cities of Bauru and Presidente
Prudente. This area was divided into 32 squares with 50 km sides that are within
the useful range of 150 km of both radars. The set of data points used to derive the
fitting function is composed of the data points obtained for the 32 squares by the
temporal sliding-window. Figure 3 shows the set of data points and the particular
fitting function, which is described in Eq. 3.

WRLR(N) = 941.3 × N 0.3878 − 182.1 (3)

Fitting curves were derived for a set of weather radars for each season of the
year considering 50 km × 50 km squares. These curves were then mapped to a grid
of squares of the same size covering Brazil by specific constants (K’s). Each K
is given by the ratio of the amount of convective rainfall in the considered square
and the one in the square over the weather radar. Outside weather radar coverage,
rainfall masses were estimated from a network of pluviometers, with the addition
of satellite rainfall estimates in areas of low density of pluviometers. The amount
of convective rainfall was inferred from an assumed ratio between convective and
stratiform rainfall masses. The EDDA-CHUVA software also supplies an estimate
of the spatial distribution of convective rainfall that is based on the distribution of
CG lightning itself, but using a coarser spatial resolution (5 km), since lightning and
convective rainfall are not exactly coincident in space and time. As an example, a
particular thunderstorm occurred in 22th April 2010 over the Presidente Prudente
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Fig. 3 Scatterplot of the data points employed in the training phase and the corresponding WRLR
fitting function (extracted from [8])

Fig. 4 Estimates of convective rainfall mass given by weather radar (solid line) and by the EDDA-
CHUVA software (dashed line) for the thunderstorm occurred in 22nd April 2010 in Presidente
Prudente. Top image shows the curve for 30 min accumulated rainfall mass, and bottom image, the
cumulative rainfall mass, both in UTC time (extracted from [8])

weather radar was considered. Figure 4 compares the estimated rainfall by that
weather radar and the EDDA-CHUVA software for a 50 km × 50 km square over
the radar along the 32 h of such storm. The software yielded estimates of rainfall
every 30 min that are closer to those obtained from the radar.
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3 Machine Learning Methods for Predicting Convective
Activity

Numerical models are able to perform accurate forecasts, but the ability of
predicting convective activity still needs to be improved. The methods shown here
were formerly proposed by the authors. They employ numerical model forecasts,
but predicts the occurrence of convective activity using data mining models. Data
mining algorithms are trained with pre-processed meteorological data, yielding data
mining models, which in turn are used to predict such occurrences. In this scope,
two classifiers were proposed for the prediction of convective activity: one based
on the rough set theory (RST) and an artificial neural network. These classifiers are
machine learning algorithms presented in former works of the authors.

It is assumed that the numerical model simulates adequately most of the
atmospheric variables and that some patterns can be derived from the values of
these variables as being associated with the presence of convective activity. In the
same way, another set of patterns can be derived, associated with the absence of
convective activity. The training phase employs analysis and forecast model data.
Analysis model data is obtained by a data assimilation process that updates model
variables using observational data, which is available for a much lower number of
points than those of the model. Forecast model data is obtained by executing the
model from the most recent analysis, i.e., using it as the set of initial conditions.
The resulting database contains model data for several months or years, typically
for every 6 h of simulated time (6, 12, 18, and 24 UTC). Model data for each
output comprehend the values of hundreds of meteorological variables for each
pixel of the model grid, covering the selected area. Many variables are calculated
for several levels of atmospheric pressure. The resulting database is a collection of
instances/samples. Each one is given by the values of the meteorological variables
at a defined pixel and defined time. In the jargon of machine learning, these are the
information attributes. However, in order to perform the training of the classifier,
each instance must have a decision attribute, which characterizes that instance as
presenting convective activity or not. The information attributes are numerical, and
the decision attribute was taken as categorical, as being SCA (severe convective
activity) or NSCA (non-SCA). The latter encompasses moderate, weak, and absent
convective activity. Depending on the chosen classifier, information attributes can
be taken as categorical, or the decision attribute, as numerical.

A key point is how to assign the decision attribute to each instance, since such
task would require observational data that is not available outside the coverage
of weather radars. In this approach, an instance is labeled as SCA or NSCA
according to the value of the density of occurrence of CG lightning strokes in
the corresponding pixel and for the strokes computed for that pixel during an
interval centered at the time of the instance. A convenient threshold of density is
chosen to separate both classes (SCA and NSCA). The EDDA software presented
in Sect. 2.1 generates the density of occurrence of lightning using RINDAT data.
Another option is to employ weather radar data if available, which would enhance
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the accuracy of the method since the weather radar measures the reflectivity of the
convective rainfall. Rainfall expresses better the time and location of a convective
cell than the associated lightning strokes, since there is a discrepancy in space
and time between the rainfall and the lightning of a cell. This method is intended
for regional atmospheric models, more specifically the ETA model [26] that is
employed operationally at CPTEC/INPE. However, it could be applied to any
other regional model. A set of 26 or 56 model variables was selected by a group
of meteorologist, but according to the chosen classifier, attribute reduction was
performed, in order to use less variables and to reduce the algorithmic complexity
of the problem. The coordinates of the model grid point corresponding to the pixel
and the time were not taken as information attributes.

In the training phase, the chosen algorithm “learns” the patterns associated with
both SCA and NSCA events, while in the test phase, it will classify each instance by
matching it against these two sets of patterns. Therefore, lightning data is required
only during the training phase, and model forecasts will be screened for matching
patterns. Another issue in the training phase is to ensure a balance between the
number of SCA and NSCA instances, since the former are seldom in comparison to
the latter. All SCA instances can be considered, while the double of NSCA instances
is randomly selected. This avoids a training that results in a classifier with a bias to
classify every instance as being NSCA. The performance of the classifier is given by
its ability of correctly classify SCA instances as being so (true positives or TP), and
the same for the NSCA ones (true negatives or TN). False positives (FP) correspond
to NSCA instances incorrectly classified as being SCA, and the opposite, give raise
to the false negatives (FN). The latter are more harmful, since they represent a SCA
event that goes undetected. The training process can be repeated as new data is
made available in order to enhance the accuracy of the classifier, since increasing
the number of instances of the database tends to improve the training performance.
Sazonal or regional aspects can be tackled with specific training sets.

The results can be evaluated by means of a confusion matrix, which contains in
its diagonal the number of instances correctly classified for each class, while out of
diagonal numbers are misclassified instances. Each instance refers to a specific grid
point of a weather forecast for the considered area. There are also some standard
metrics for the evaluation of classifiers. A very common pair of metrics is given by
the probability of detection (POD) and FAR (false alarm ratio). Also known as hit
ratio, POD is defined as TP/(TP + FN) and FAR as FP/(TP + FP).

The following sections describe the two classifiers that were proposed for the
prediction of convective activity using model data, the first one based on the rough
set theory (RST) and the second one, an artificial neural network.

3.1 Rough Set Theory Classifier

The first classifier presented here is based on the rough sets theory (RST), which
emerged in the 1980s to deal with uncertain, incomplete, or vague information
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[30, 31]. It has a good mathematical formalism, and it is easy to use, since it
does not require additional information such as the probability distribution, a priori
probability, or pertinence degree. However, free RST software is not available. RST
is an extension of the set theory and has the implicit feature of compressing the
dataset. Such compression is due to the definition of equivalence classes based
on indiscernibility relations and to the elimination of redundant or meaningless
attributes. A central concept in RST is attribute reduction, which generates reducts.
A reduct is any subset of attributes that preserves the indiscernibility of the elements
for the considered classes, allowing to perform the same classification that would be
obtained with the full set of attributes. RST can preprocess data obtaining reducts
for other machine learning techniques. The typical high dimensionality of current
databases precludes the use of greedy methods embedded in RST to find optimal or
suboptimal reducts in the search space, requiring the use of stochastic methods.

In [32, 33], three alternative metaheuristics were proposed to calculate the reduc-
tions, with good results. Two are well-known metaheuristics: variable neighborhood
search (VNS) and variable neighborhood descent (VND), and the third is new one
called decrescent cardinality search (DCS). VNS generates a random candidate
solution (or reduct) with any cardinality and at each iteration explores its neigh-
borhood searching for new solutions that are then evaluated. VND is an extension
of VNS, where the search for solutions is performed following a deterministic
approach. DCS is a modified version of VNS that explores the search space accept-
ing only lower cardinality reducts. It enforces randomly a cardinality reduction at
each iteration before performing a local search. These metaheuristics were applied
to benchmark classification problems, but were later applied to the prediction of
convective activity [32], jointly with the random partition of the training set. Such
partition allows to split the set of training data into smaller training sets, expecting
that different patterns associated with SCA and NSCA events will be identified
in each partition. Tests were performed using data from the ETA regional model,
with a 20 km resolution. A pre-selection of attributes guided by meteorological
expertise resulted in the choice of 58 ETA variables, 9 at surface level and 7 others
at multiple levels (7 selected levels). Depending on the choice of the metaheuristic,
the dimensionality of the resulting reducts was between 12 and 17, corresponding
to the number of attributes employed for the training of the RST classifier.

In particular, as shown in [32], instead of considering only classes SCA and
NSCA, convective activity events were divided into three classes, SCA (severe),
MCA (moderate), and NSCA (weak/null). Table 1 shows classification results for
the best and worst executions (out of 10 executions), expressed by three confusion
matrices resulting of tests with 24, 48, and 72 h forecasts of the ETA model for
a square with one-degree side in the State of São Paulo, embedding the cities
of Bauru and Presidente Prudente. Each column shows the predicted number of
instances as being of the column-class, while each line shows the actual number of
instances of the line-class. In short, in the best execution, around 2/3 of the MCA
and SCA instances were correctly predicted, and 99% of the NSCA ones. POD/FAR
values for the tests with 24, 48, and 72 h forecasts were, respectively, 0.680/0.162,
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Table 1 Confusion matrices for the best (3 first lines) and worst (3 last lines) executions obtained
by the RST-based classifier for tests using 24, 48, and 72 h forecasts of the ETA 20 km model
(extracted from [32])

Predicted (24 h) Predicted (48 h) Predicted (72 h)

NSCA MCA SCA NSCA MCA SCA NSCA MCA SCA

Actual

NSCA 7218 77 3 7080 91 2 6951 68 3

MCA 233 561 27 244 514 26 248 545 23

SCA 27 46 155 49 39 158 65 28 142

Actual

NSCA 7201 85 12 7080 90 3 6926 92 4

MCA 303 488 30 332 425 27 326 465 25

SCA 53 36 139 71 39 136 83 24 128

0.642/0.151, and 0.604/0.155. Concerning the worst execution, POD/FAR values
for the 24, 48, and 72 h forecast were, respectively, 0.772/0.390, 0.819/0.447, and
0.815/0.455.

3.2 Neural Network Classifier

The second classifier presented here is a neural network. Neural networks have
a widespread employ in diverse areas of research [13, 37]. The classification
performance of any neural network depends strongly on its architecture. After
attempting to use an ad hoc algorithm based on the frequency of occurrence of
values of pairs of variables [18], a neural network was conceived in [19] exploiting
a specific architecture. Differently from the case of the RST classifier, a second pre-
selection of attributes was performed using meteorological expertise, which resulted
in the choice of only 26 ETA variables. The proposed network architecture connects
each of the 325 possible pairs that result in the combination of the 26 inputs to a
particular neuron in the sole hidden layer. The net input for each hidden neuron
is then given by the values of its two input values multiplied by the respective
weights plus its bias. This architecture that partially connects input nodes and hidden
neurons was chosen in order to seek the information contained in pairs of variables.
The nonlinear mapping is provided by the bipolar sigmoid activation function in
the hidden layer. The resulting 325 hidden layer activations are then multiplied
by the respective weights and summed up to provide the network output using a
linear activation function. However, weights are adjusted differently for each class,
resulting in two outputs, one that expresses the pertinence to class SCA and the
other to the class NSCA, as shown in Fig. 5.

Tests were also performed using data from the ETA regional model, with a 20 km
resolution, as presented in [19]. Some partial results of these tests are shown in
Table 2, with the classification performance expressed by two confusion matrices
(one for the training and another for the test) for a square with one-degree side in
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Fig. 5 Training architecture of the proposed neural network with the 650 input nodes given by the
pairs of the 26 ETA variables Vi ’s, the 325 hidden layer nodes NH(i)’s, and 2 outputs O1 and O2.
The WHI ’s and WOH ’s denote the weights and the BHI ’s, the biases with unity input

Table 2 Training and test confusion matrices obtained by the neural network classifier for the
ETA 20 km model for a 48 h forecast

Predicted Predicted Predicted Predicted

NSCA SCA NSCA SCA

Actual

NSCA training 506 44 498/520 30/52

SCA training 25 250 20/39 236/255

NSCA test 44 2 42/45 1/4

SCA test 2 21 0/4 19/23

Left matrix shows average values for 20 executions, while right matrix shows minimum/maximum
values for these executions

the State of São Paulo, embedding the cities of Bauru and Presidente Prudente. As
in the preceding table, each column shows the predicted number of instances as
being of the column-class, while each line shows the actual number of instances of
the line-class. That table shows that most instances were correctly classified in this
two-class scheme. A 2:1 sampling between NSCA and SCA instances was applied,
in order to eliminate the bias towards NSCA classifications in the training, since
these are more numerous. It can be seen in the test results that 44 of the 46 NSCA
instances were correctly predicted, as well as 21 of the 23 SCA ones, considering the
average of 20 executions of the classifier. This result corresponds to a POD/FAR of
0.909/0.149 in the training and 0.913/0.087 in the test. The total number of instances
employed in the training and test for the results shown in Table 2 was 41,415 of the
NSCA class and 1,029 of the SCA class.
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4 Final Remarks

As already mentioned before, this book chapter constitutes a short survey on
former works of the authors using data mining techniques applied to meteorological
data. The methods proposed for monitoring convective activity were passed to
two Brazilian governmental institutes, CPTEC/INPE and CEMADEN, the National
Center for Monitoring and Early Warning of Natural Disasters. The methods
proposed for predicting convective activity are currently undergoing tests using
another regional model used by CPTEC, the BRAMS model with a 5 km resolution
[7]. The results that appear in the references [9, 19, 33, 49] show that such methods
are potentially good in the proposed tasks, but only the operational implementations
at these institutes will confirm their usefulness.

Besides, some of those methods shown before are able to be implemented to
support other techniques, improving the nowcasting system operating on CPTEC.
The EDDA-CHUVA can provide rainfall field estimation to the Hydroestimator
Tracking and Nowcaster (Hydrotrack), a nowcasting method based on precipitation
input [4]. In addition, the ForTraCC (Forecasting and Tracking of Cloud Cluster)
[55] can assimilate the EDDA-G outputs to nowcasting the lightning activity,
including the monitoring of lightning jump. With the recent launch of GOES-
16 (geostationary operational environmental satellites) Lightning Mapper (GLM,
[10]), optical total lightning measurements will be provided continually. The
coupling of EDDA-G to ForTraCC can be used to track and extrapolate the
lightning filed from GLM data, as proposed in a similar approach using proxy
data [40].

Furthermore, fields campaigns over Brazil, like the CHUVA (Cloud processes
of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing
modeling) experiment [22] (or another experiment, the SOS-CHUVA) provides a
richness of data allowing the application of new methods based on machine learning,
as well as to carry out detailed lightning structure studies [6], in order to improve
the thunderstorm nowcasting.

Finally, the use of multi-sensorial data seems to be a current trend in meteorology,
as well as the correspondent information extraction by means of data mining
techniques like the ones presented or cited in this work. The standard aim of data
mining is to extract implicit, previously unknown, and potentially useful patterns
from data, which in this case are associated with the occurrence of severe weather.
The task of issuing weather forecasts and early warnings of severe events requires a
complex and timely analysis of data from weather satellites and radars, in addition to
NWP models and lightning data. Such task can be alleviated by the implementation
of these automatic techniques in the operational environment of weather forecast.
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Responses to Land-Uses and Land-Cover
Changes in a Brazilian Watershed

Lidiane dos Santos Lima, Paulo Cesar Colonna Rosman, Julia Celia Mercedes
Strauch, Nelson Ferreira Fernandes, and Letícia de Carvalho Giannella

1 Introduction

Over the years, the land-use/land-cover (LULC) is undergoing significant changes
due to the fast growth of population density. Thus, continuous urbanization together
with the cited changes is a major challenge for the management of water resources
[17]. In this context, the hydrology and hydrological cycle of a watershed can be
altered considerably due to land-uses and land-cover changes (LULCC), agricultural
practices, economics, cultural alternations, among other factors [6]. The hydrologi-
cal changes can be noticed in the evaporation, evapotranspiration of the ecosystem,
soil infiltration capacity, surface and subsurface flux regime, peak flow and water
quantity and quality, etc. [10]. Therefore, to plan and manage water resources in
the medium and long term, it is fundamental to understand in a broader and more
detailed way the effects of LULCC on the flow in watersheds and subwatersheds
[12].

Many studies show that LULCC directly affect the availability and flow of water
in the hydrological cycle in a watershed [16, 20, 25, 30, 33, 34]. The researches cited
are based on assessments of impacts on water resources. Increased urbanization is
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often associated with increases in maximum flows and decreases in minimum flows,
and this impact of LULCC varies according to climatic conditions [20].

According to [30], LULCC in the Songkhram Watershed, Thailand, were
responsible for the increase of 5.30–6.35% in the flow of the scenario considered.
In the study by Kim et al. [20] in the Hoeya Watershed, Korea, flow increased in
spring and winter, but decreased in summer and fall LULCC increased maximum
flows in the rainy season, but decreased minimum flows in the dry periods. Thus, the
authors concluded that LULCC may aggravate the problems of increasing seasonal
variability in the flow due to climate change. At the Loess Plateau in China, urban
sprawl accounted for 5.46% of all factors influencing LULCC in the region [33].
In a coastal watershed, Eight mile Creek, Alabama, local residential growth will
continue into the near future [25]. The mathematical models showed that, due to
urbanization, the maximum flows increased from 1966 to 2011 and from 2011 to
2022. In the Olifants Watershed in South Africa, [16] showed that LULCC in the
region resulted in a 46.97% increase in surface runoff, with urbanization as the
predominant factor for this. For the Tekeze Dam Watershed in Ethiopia, LULCC
were also significant. The increase of exposed soil and agricultural areas resulted in
an increase in the average annual flow rate of 6.02%.

As shown by all the authors described above, urbanization and other forms
of LULCC may result in detrimental effects on the hydrology of a watershed.
These effects may increase the number of hydrological incidents and/or disasters,
e.g., floods. When precipitation rates are higher than infiltration capacity, the soil
behaves like an impermeable surface [2]. As asserted by Noori et al. [25], the
impacts of LULCC at maximum outflows may be associated mainly to low intensity
but frequent precipitation events; thus, small flood events are more sensitive to
urbanization than large events. To study and evaluate how LULCC occur in a region,
as well as how these changes affect the flow of surface runoff, it is necessary to
conduct research through field observations and/or mathematical modeling. The
first method is onerous and usually has local and non-transferable results. Thus,
modeling is a more viable and commonly used method to perform environmental
diagnostics and prognoses of the region of interest [25]. However, it should be
noted that the fieldwork is very valuable, because as such, it is possible to carry
out calibration and validation of the mathematical models.

In the studies described above it is possible to observe some limitations, e.g., the
prognosis of LULC because of models based on simple regressions. These types
of constraints directly impact the outcome of the hydrological response because
these limitations can introduce uncertainties in the assessments. To minimize this
problem, the present research proposes that the prediction of LULC should be
made with a dynamic model based on neural networks. Meteorological scenarios
with complete hydrological cycles were chosen to represent excess and scarcity
of precipitation in the region. Through all the above, the general objective of this
research is to map and predict the integrated impacts of climate and LULCC on the
flow of a watershed of interest for scenarios of precipitation excess and scarcity. The
specific objectives are: (1) to map the pattern of LULCC in the past and present of a
watershed; (2) to predict LULCC in the future of the watershed through the LULC
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model; (3) to estimate the impacts on watershed discharges for each pluviometric
scenario in the past, present, and future through the hydrological model; and (4)
to analyze the estimated hydrological impacts for each subwatershed in the past,
present, and future.

2 Methodology

2.1 Application Area

The Araruama Lagoon Watershed is at the coastal lowlands region in the state
of Rio de Janeiro and covers the administrative limits of Saquarema, Rio Bonito,
Araruama, Iguaba Grande, São Pedro da Aldeia, Cabo Frio, and Arraial do Cabo
(Fig. 1). Its meteorological characteristics are peculiar presenting the lowest rainfall
volume of the state and registering two types of microclimates, tropical in the west
and semi-arid in the east, in a small extent. In the meteorological data recorded in
the region, evaporation presents higher values than precipitation resulting in a water
deficit, that is, a negative water balance for the most part of the watershed. In the
climatology of the region, the average annual rainfall is in the range of 750 and 900
mm and average annual evaporation between 890 and 1370 mm. In the watershed in
question is located the Araruama Lagoon, which is a permanent hypersaline lagoon
with an average salinity of 52, this characteristic is due to the semi-arid climate
previously mentioned [5, 7]. The connection of this lagoon with the sea is carried
out through the Itajuru Channel, which during the years has been suffering constant
shoaling, which makes it difficult for the internal waters of the lagoon to circulate
and renew.

The total drainage area of the Araruama Lagoon Watershed is 430 km2, with
fresh water contributing to 2.3 m3 of average volume. Its hydrographic system
is composed of small subwatersheds and almost all its rivers show intermittent
behavior. The most significant rivers that drain into the lagoon are, from west to
east: Moças’ River, Mataruna River, Salgado River, and Ubá River (Fig. 1) [7].

2.2 Land-Use and Land-Cover (LULC) Modeling

Currently the most commonly used instruments for remote sensing and combined
image analysis are obtained through satellites orbiting the Earth. The data obtained
by remote sensing tend to be more economical due to the possibility of phenomena
monitoring in extensive and remote areas of the planet [15]. In conjunction with
the use of remote sensing data, geographic information systems (GIS) are used
to relate the environment and human activities. The products that result from the
satellite data processed in the GIS can be LULC maps, as well as information
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Fig. 1 Location of the Araruama Lagoon Watershed, application area considered in modeling, and
its main rivers, from the lagoon system of the microregion of the lakes in state of Rio de Janeiro,
Brazil (adapted from [21])

submitted to statistical and analytical procedures. Another relevant point to highlight
is the quality and accessibility of data, including the availability of these images at
reasonable resolution.

Through the data from the LULC’s dynamics diagnosis, it is possible to predict
future scenarios. To develop these prognoses, the modeling tool has been widely
used for both management and environmental research [31]. The modeling of the
LULC’s dynamics must begin with a theoretical understanding of human behavior,
through its interaction with different forms of land-use, as well as understanding
how the land is distributed in the territory. These models began their development
in the 1960s and since then their popularity and research have been growing
significantly [18]. This growth is because changes in LULC are one of the most
important ways man can directly and indirectly affect the environment in which he
is inserted.

2.2.1 Land Change Modeler (LCM)

The LCM module of the TerrSet program aims to analyze and predict LULCC,
as well as to improve the understanding of the system in its phenomena and
effects, including influencing factors such as roads, slope, altitude, anthropogenic
interferences, among others [14]. With this amplified understanding there is the
possibility of achieving better support in regard to the planning and elaboration
of public and private policies. In the context of LULC future projection, the model
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is an effective tool to predict these changes in different scenarios, based on the
trend pattern of the changes previously occurred. The performance of LCM will be
through neural network and/or logistic regression, its accuracy is dependent on the
variables that influence LULCC [3, 14, 28].

The input data for the model is composed of two LULC maps, one less recent and
one more recent with the same LULC classes. These maps are analyzed presenting
a quantitative evaluation of the changes that occurred between the chosen period.
The analysis is explained through a comparative graph and maps of the losses and
gains by LULC’s classes and change of the contribution by class in several units
as: hectare (ha), square kilometer (km2), % of area, among others. The transition
potential modeling creates maps with an acceptable degree of accuracy to perform
the effective modeling by grouping a set of submodels and exploring the influence
of explanatory variables, which may be either dynamic or static in time [14].

The transition structure of the submodels presents a relation of all the transitions,
from the smallest to the largest, that occur between time t1 and t2. This modeling
can be performed by both logistic regression and multi-layer perceptron neural
network (MLP). The MLP neural network can model nonlinear relationships and
the most robust LULCC models. The LULC’s restrictions or incentives factors limit
or expand the transformations to a region of interest giving it a degree of adequacy
to change [28]. In this way it is possible to forecast trends for LULC, and finally to
generate maps of possible future changes.

2.3 Hydrological Modeling

Over the years, many computational models have been developed to simulate the
hydrology of watersheds. Thus, hydrological models are considered efficient tools
of great importance for researching the complex hydrological processes that affect
surface and subsurface hydrology of watershed. With the understanding of these
processes, it is possible to evaluate the LULCC’s impacts, agricultural activities,
water resources management, among others [19].

2.3.1 Soil and Water Assessment Tool (SWAT)

For the trend simulations the SWAT model was chosen. This option was because
the model has great acceptance in the academy, is widely used in urban regions
and watersheds, and has several publications available. SWAT is a mathematical
model created in 1996 and is being continuously developed since then by the
Agricultural Research Service and Texas A&M University. The main function of
the model is to analyze the impacts to the practice of agriculture in different types
of soils and the patterns of the use of it on the surface and underground water
flow, sediment production, and water quality in long periods. The SWAT model
has been widely used worldwide to predict the nutrient flow discharge and loading
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from watersheds of various sizes, for the development of maximum daily total load,
simulating hydrology, sediments, nutrients, and pollutant load for basin scale studies
dealing with the quantity and quality of water. Simulation scenarios can be useful
for assessing the ecological status of the environment, considering climatic factors,
soil, and water use. In general, the SWAT application to assess diffuse pollution has
presented scientifically interesting results [24].

SWAT requires specific information on water, soil properties, topography, veg-
etation, and soil management practices in the watershed. Physically the process
is associated with water movement, sediment movement, plant growth, nutrient
cycling, which are directly modeled by SWAT, using this input data. The SWAT
is a continuous model in time and usually works in daily time interval. One of its
advantages is the possibility of making simulations for short or long time series.
It considers the watershed divided into sub-basins based on relief, soils, LULC
and thereby preserves the spatially distributed parameters of the entire basin and
the homogeneous characteristics within the basin. The input data for each sub-
basin can be grouped or organized according to the following categories: climatic,
hydrologic response units (HRUs), ponds/wetlands, groundwater, main watercourse,
and sub-basin drainage. To generate the HRUs in each sub-basin, a sensitivity level
is adopted, eliminating the LULC’s classes with an area smaller than the established
value. SWAT controls the creation of HRUs based on the distribution of the different
soil types and on the selected soil uses [13].

2.4 Model Calibration and Validation

SWAT calibration can be done automatically and/or manually. Manual calibration is
performed by trial and error, while automatic can be performed by the SWAT-CUP1

software that provides calibration, validation, and analysis of results’ uncertainties
generated by SWAT simulations [1]. The SWAT simulated data were initially
calibrated in the SWAT-CUP, but they were not fully satisfactory and were therefore
supplemented by manual calibration. After the complete calibration phase, the
model was validated. In the validation a time series other than calibration was used,
showing that the model can reproduce the series. After the simulation, calibration,
and validation procedure, the results in the three stages were submitted to statistical
analyses as described by Moriasi et al. [23]: Nash and Sutcliffe coefficient (NSE),
normalized standard error (RSR), correlation coefficient (R2), and percent bias
(PBIAS) in addition to the visual analysis of the graphs generated by the time series.

1https://swat.tamu.edu/software/swat-cup/.

https://swat.tamu.edu/software/swat-cup/
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Biophysical
factors

Social
factors

Mapping
LULC

LULC Past
(1985)

LULC Present
(2015)

Hydrological Behavior
Soil and Water Assessment Tool (SWAT)

Spatial Data

Digital Elevation
Model (DEM)

LULC Map
(Past, Present and Future)

Daily Rainfall
(Environmental Scenario)

Daily Relative
Humidity Data

Daily Min and Max
temperature

Soil Map
Daily Solar Radiation

Data

Simulation of
Flow QDaily Wind Speed

Data

LULC
Dynamics
Modeling

LULC Future
(2030)

Economic
factors

Meteorological data

Fig. 2 Methodology framework used in this research

2.5 Research Methodology

The potential hydrological impacts of a watershed in response to LULCC were
analyzed for the past (1985), present (2015), and future (2030) pluviometric scarcity
and excess scenarios. The methodological framework used in the present research
is illustrated in Fig. 2.

2.5.1 Data Preparation

The data used in the setup of SWAT hydrological model are described in Table 1.
The input parameters are necessary to represent the watersheds’ characteristics
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Table 1 Data used in the SWAT model

Data Source
Spatial/temporal
resolution

Number/period Description

Elevation
(DEM)

ASTER GDEM
version 2

30 m – USGS earth-
explorera

Soil map [9] 1:250.000 2003 GeoPortal
EMBRAPAb

LULC map [22] 1:150.000 1985; 2015; 2030 –

Meteorological
data

Climate forecast
system reanalysis
(CFSR)

– 6 stations/ 1990;
2005

Global
weather data
for SWATc

ahttps://earthexplorer.usgs.gov
bhttp://mapoteca.cnps.embrapa.br
chttps://globalweather.tamu.edu/

with quality and, consequently, to generate satisfactory results in the hydrological
modeling. Secondary data from previous studies and primary data provided by
Lagos de São Jão Intermunicipal Consortium (CILSJ) and the Fluminense Federal
University (UFF) were used in the present research. The parameters adopted were
divided into topographic data, LULC maps, soil map, and meteorological data.

2.5.2 Historical, Current, and Future (LULC)

The LULC maps used for the years 1985, 2015, and 2030 were obtained through the
study of [22] carried out in the Araruama Lagoon Watershed as shown in Fig. 3a,
b, and c. The distribution and summary of the LULCC statistics are illustrated and
described in Fig. 3d and Table 2. Observing the changes from 1985 to 2015 the
classes that showed the greatest gains in their areas were: medium density urban
area, bare soil and disabled salines, and high-density urban area with an increase
of 117.1%, 95.5%, and 44.2%, respectively. On the other hand, the classes that
presented the highest losses in this period were: salines, low density urban area,
and sand and dunes with decrease of 81.2%, 45.2%, and 20.0% in their respective
areas. In Fig. 3 it is possible to verify that water is the class of greater area in the
analyzed 45 years. The LULC simulated map for the future (2030) was modeled
considering the past patterns of 1985 and 2015 in addition to the legal constraints
imposed by the environmental conservation units currently in effect in the Araruama
Lagoon Watershed: Environmental Protection Area (EPA) Serra de Sapiatiba, EPA
Massambaba, EPA Pau Brasil, and Costa do Sol State Park (SP) (Fig. 3).

https://earthexplorer.usgs.gov
http://mapoteca.cnps.embrapa.br
https://globalweather.tamu.edu/
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Fig. 3 LULCC for 1985 (a), 2015 (b), and 2030 (c) and distribution of areas in km2 by classes
LULCC (d) in Araruama Lagoon Watershed (adapted from [22])

2.6 Setting Scenarios

In this research, six different scenarios were considered (Table 3) to evaluate the
impacts on the flow of the main tributaries of each subwatershed to the past, present,
and future LULC in years with excess and scarcity of precipitation. The choice of
representative years of excess (2005) and scarcity (1990) was determined by the
analysis of the meteorological time series (Fig. 4).

3 Results and Discussion

The results concerning the influence, anthropic, and environmental in the subwa-
tersheds flows were simulated by SWAT for the past (1985), present (2015), and
future (2030). The subwatersheds considered in the simulation were: Moças’ River,
Mataruna River, Salgado River, and Ubá River, illustrated in Fig. 1. The physical
and hydrological characteristics of each subwatershed, according to the hydrological
model, are described in Table 4 for scenarios of scarcity and excess of precipitation.
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Table 3 Environmental scenarios considered in hydrological modeling

Environmental scenario Description

1. Precipitation scarcity in past LULC 1985s and hydrological simulation considering
precipitation scarcity 1990s

2. Precipitation scarcity in present LULC 2015s and hydrological simulation considering
precipitation scarcity 1990s

3. Precipitation scarcity in future LULC 2030s and hydrological simulation considering
precipitation scarcity 1990s

4. Precipitation excess in past LULC 1985s and hydrological simulation considering
precipitation excess 2005s

5. Precipitation excess in present LULC 2015s and hydrological simulation considering
precipitation excess 2005s

6. Precipitation excess in future LULC 2030s and hydrological simulation considering
precipitation excess 2005s

Fig. 4 Annual accumulated values of precipitation, evaporation, minimum and maximum precip-
itation for the Araruama Lagoon watershed, RJ, from 1982 to 2013. The years chosen to represent
the pluviometric scarcity (1990) and the pluviometric excess (2005)

3.1 Model Calibration and Validation

For SWAT model calibration was necessary that the initial calibration was per-
formed in a region adjacent to the area of application of Araruama Lagoon
Watershed, which was the Silva Jardim Watershed. The region in question was
chosen because it is the region closest to the application area with time series
data available in [4]. The model was calibrated for the flows from 1983 to 1997
and validated from 1998 to 2010. After calibration and validation, the statistical
analyses showed that the magnitude of the data (NSE) calibrated and validated
in relation to the observed data presented a result classified as “good,” as well as
the normalized standard error (RSR). Percent bias (PBIAS), the simulated data
were classified as “very good” (Table 5). Finally, the correlation coefficient, R2,
presented an uncalibrated value of 0.45, calibrated of 0.81, and validated of 0.91.
The validated value approached 1, indicating that the data approached the trend line,
and consequently with little dispersion.
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Fig. 5 LULCC for past (1985) (a), present (2015) (b), and future (2030) (c) and distribution of
areas in km2 by classes LULCC (d) in the simulated subwatersheds (adapted from [22])

3.2 LULCC

Figure 5a, b and c shows in detail the subwatersheds’ LULC maps considered in
hydrological modeling for the past, present, and future represented by the years
1985, 2015, and 2030, respectively. In Fig. 5d it is possible to observe the total
distribution of subwatersheds areas (km2) per LULCC’s class in the 45 years
analyzed. As described by Teixeira [32] and confirmed in the mapping carried out
in this research, during the development of the lake’s region, in the more interior
areas, where the subwatersheds are located, pasture was the dominant constituent of
LULCC’s class in this region. Another important point to highlight is the increase
in the population density represented by the decrease of low density urban areas
class and the consequent and gradual increase of medium density urban areas class.
This behavior is verified by Nunes [26], who emphasizes that since the 1990s the
oil activity has played a significant role in the regional economy. This resulted not
only in the injection of direct resources, but also indirect and secondary, increasing
the population density in the region.

As shown in Fig. 3, the classifications and projections considered for the past
(1985), present (2015), and future (2030) were obtained by Lima [22]. Figure 6
shows in detail each subwatershed considered in the modeling and their respective
LULCC over the analyzed years. The Moças’ River subwatershed presents the
greater part of its area belonging to the administrative limits of Saquarema;
Mataruna and Salgado entirely in the administrative limits of Araruama; and Ubá in
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Fig. 6 Distribution of areas in km2 by classes LULCC (d) in the simulated subwatersheds: Moças’
River (a), Mataruna River (b), Salgado River (c), e Ubá River (d) for the periods of past (1985),
present (2015), and future (2030)

Iguaba Grande (Fig. 1). As observed in Fig. 5d, the patterns of each subwatershed
tend to have the following classes as dominants in the analyzed 45 years: pasture,
low and medium density urban areas, and forest. This trend was also described
by previous bibliographical references [7, 11]. Bidegain and Bizerril [7] in their
study identified that the most significant classes are pasture, urban areas (population
density), and saline. It should be noted that in the present study the modeling areas
do not contain salines that are very significant in Araruama Lagoon watershed scale,
as shown in Fig. 3 due to their regional economic importance, mainly before and
during the 1990s.

Another LULC class that deserves attention is the forest. From 1900, scientists
began to identify degradation of said class. The spaces of forest began to give way
to sugarcane, coffee, orange groves, and finally livestock. When comparing maps
of the past (1985), present (2015), and future (2030) it is possible to observe that
even mathematically the class did not have significant changes, their presence was
observed in different places. A plausible justification for this fact is the reforestation
with Eucalyptus spp that cf. described by de Athayde Bohrer et al. [11] is present
in the region along the RJ-106 highway, São Pedro da Aldeia and in smaller non-
mappable areas.

Urban areas, both in the diagnosis (past and present) and prognosis period
(future), were a class of significant changes in the four modeled subwatersheds.
As found by [11], the largest urban concentrations are spatially distributed near
the municipal headquarters in the surroundings of Araruama Lagoon, along the
highways RJ-106, RJ-102, and RJ-140 and finally in the coastal zones. The rapid
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Fig. 7 Diagnosis (1980–2010) and population density (pop./km2) prognosis (2011–2030) by
administrative limits, Saquarema, Araruama, and Iguaba Grande—RJ (Source: CENSO 1980,
1991, 2000, and 2010)

Fig. 8 LULCC’s persistence map between the years of 1985 and 2030 to subwatersheds modeled

urban expansion is clearly seen in the evolution of the LULC mapping and in
the population data provided by IBGE, as well as in the projections for the
municipalities of Saquarema, Araruama, and Iguaba Grande in 2030 (Fig. 7).

During the 45 years analyzed, 59.0% of the total area of the subwatersheds
underwent alteration in its LULC according to Fig. 8. The pasture and forest were
the classes that persisted most during the years analyzed with 25% and 9% of their
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areas, respectively. The changes helped to characterize and diagnose the LULC’s
transformations from 1985 to 2015 and to propose the future scenario for the year
of 2030, considering that the conditions of infrastructural development and spatial
restrictions remained the same for the current ones.

3.3 Impacts of Climate and LULCC on Streamflow

Quantifying the effect of LULCC on the hydrological behavior of a watershed is
still a problem today. These changes can directly affect the hydrological processes
of the region of interest through changes in evapotranspiration, rainfall interception,
streamflow generation, water recharge, and soil moisture dynamics [35]. An alter-
native methodology that has been widely used is the temporal trend analysis based
on the relation between the streamflow and precipitation for large watersheds. One
of the great advantages of this method is that it can be applied in watersheds that
have undergone LULCC without the necessity of a control watershed [8]. Another
widely applied methodology for this purpose is the use of hydrological models, thus
estimating the effects of changes local on different temporal scales. However, it
should be noted that there are significant uncertainties associated with this method
[27].

As described by Sanchez et al. [29] hydrological disasters classified by the
Brazilian Classification and Codification of Disasters (Cobrade) in Rio de Janeiro
state presented 497 records between the years of 1991 and 2012. Of the state reg-
istries cited, 13 were attested, in the Araruama Lagoon watershed, most frequently
in the months of November to February of the analyzed period. The excessive
population increase in the region of interest promoted a consequent increase in the
waterproofing of the earth, which caused a greater volume of surface drainage; thus,
municipalities with greater population density are more susceptible to flooding. It
should be noted that due to the inexpressiveness of the municipality of Rio Bonito
for the drainage of the hydrographic basin of interest, the data referring to it, with
respect to hydrological disasters, were disregarded.

In the present research the hydrological responses to different conditions and
changes of LULC in the past, present, and future were studied for maximum
streamflows in the four hydrographic subwatersheds modeled in scenarios of
pluviometric excess and scarcity. The results of the hydrological modeling, through
the exposure of precipitation data, mean flows distributed in the months of the
year in the scenarios of pluviometric scarcity and excess for each subwatershed
are shown in Fig. 9. As described in item 3.2, the subwatersheds modeled presented
significant changes in LULC during the analyzed 45 years and these alterations had
effects on the maximum surface runoff flows of each subwatershed.

The impacts of the LULCC in the Moças River subwatershed showed that for the
scenario of past precipitation scarcity to the present, it presented a mean decrease
in its flow of 4% and for the present to the future of 5%. For the pluviometric
excess scenario from 1985 to 2015, the reduction was cushioned by 2% and



120 L. dos Santos Lima et al.

Fig. 9 Simulated streamflow to the scenario of scarcity and excess precipitation to LULCC of the
past, present, and future for the Moças, Mataruna, Salgado e Ubá River subwatersheds
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Fig. 10 Percentage variation of the past to present and future streamflow in the scenarios of
precipitation scarcity and excess

from 2015 to 2030 by 4%. For Mataruna River subwatershed, the flow changes
were more significant both during the period of scarcity and during the period of
excessive precipitation. In the first scenario from the past to the present there was
an increase of 75% and from the present to the future 32%. In the second scenario
the percentages were 21% and 12%, respectively. The Salgado River subwatershed
for the first 30 years analyzed presented an average annual reduction in its flow of
11%, in the prognosis the flow had an increase of 141% for the year of pluviometric
scarcity. The Ubá River subwatershed presented the same hydrological behavior as
the Salgado with reduction from the past to the present and increase of flow from
the present to the future with percentage values of 13% and 160%, respectively
(Fig. 10).

Figure 10 shows that, in general, the hydrological behavior of the subwatersheds
is similar, emphasizing that for the pluviometric scarcity scenario, the percentage
changes in flow are more significant. The reduction in the flows of subwatersheds,
in some situations, mainly in Moças River subwatershed, was similarly found by
Shrestha et al. [30] in Thailand. One possible way to reduce the flow rate is to
increase evapotranspiration. On the other hand, the significant increase in flow rates,
mainly from the present to the future, can be explained by the population density
indicated by both the CENSO projections and the LULC prognosis. The conversion
of non-urbanized areas into urban areas tends to increase the maximum flow which
can cause flooding in areas near the margin of the rivers analyzed. As found in
previous studies, e.g. [35], LULCC can exert influences on the flow of a system,
resulting in an increase or decrease in its value depending on the nature of the
change.

As found by Noori et al. [25] even if there is the same degree of urbanization
in different areas of the watershed, its contribution to the streamflow depends
on its location within the watershed. It should be noted that, in addition, other
characteristics that need to be considered are topography and soil type which play
an important role in the floods of a region. In this way, mapping and understanding
the effects of urbanization on hydrological processes is essential for urban planning.
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4 Conclusions

Sustainable planning and management of water resources can be more consistently
accomplished when the capacity to predict LULC impacts is developed by reflecting
the pressures of population densities and their local changes. This establishes a
scientific challenge to understand the processes involved in these changes, as well
as to formulate relationships and conceptualizations at different scales, making the
predicted model of hydrological responses of a watershed to LULCC and climate
more and more reliable. Thus, the present research fulfilled its objective of mapping
and predicting the integrated impacts of climate and LULCC in the streamflow of a
watershed of interest for scenarios of precipitation excess and scarcity.

The subwatersheds analyzed showed significant changes in their LULC over the
simulated 45 years. As shown, 59.0% of the total area of the model domain suffered
some type of change, which directly impacted the simulated results of the maximum
streamflows of all subwatersheds. An LULCC that deserves to be highlighted is
the gradual increase in medium population density area for the modeled regions,
justifying some of the changes found in the modeled flows. It should be emphasized
that the entire watershed also presented the same trend of population density
increase. As the region has already registered hydrological disasters, knowledge
of this hydrological tendency is important for urban planning and water resource
management in order to mitigate such disasters.

It is important to point out, however, that during the analysis of the simulated
data, some limitations of the research were identified, even though they did not
compromise the research, these limitations show that there are gaps in the existence
and availability of an environmental and socioeconomic basis, which would make
more feasible and accurate the calibration and validation of hydrological models
and LULCC models that will more actively assist in decision making.

From the above, some recommendations can be suggested, such as:

• Continuous monitoring of hydrometeorological, geological, and geotechnical
conditions that allow to anticipate the occurrences of natural disasters, especially,
hydrological. In this way, managers and decision makers will be able to mitigate
the human and material damages resulting from such disasters [29].

• Another point to be addressed is the relationship between the hydrological disas-
ter and the sustainability of multi-scalar urban drainage. The understanding of the
complexity of the relationships between natural ecosystems, urban, and society
is fundamental so that the control of floods in urban areas is reconceptualized
technically and managerially. Thus, sustainable urban drainage can contribute
to the control of runoff through structural and non-structural methodologies that
reduce the exposure of the population vulnerable to local hydrological disasters
[36].

The results of the present research can be used by several sectors and agents,
e.g., LULC planners, decision makers, public administrators, among others with the
purpose of promoting actions that allow the natural hydrological disaster mitigation
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and/or control, considering environmental and social aspects. The identification
and mapping of the main drivers of LULC and climatological changes contributes
methodologically to quantify the hydrological effects in a watershed as response to
these changes, considering the seasonality and the recurrence of these events. Thus,
the present study is a contribution to the production of the knowledge needed to
manage natural hydrological disasters in a watershed, providing subsidies so that
communities can become resilient and sustainable.
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Computational Modeling and Simulation
of Surface Waterflood in Mountainous
Urban Watersheds with the MOHID
Platform: Case Study Nova Friburgo,
Brazil

Wagner R. Telles, Diego N. Brandão, Jader Lugon Jr.,
Pedro P. G. W. Rodrigues, and Antônio J. Silva Neto

1 Introduction

Historically, civilizations have always sought to establish themselves in regions
of floodplain because they allow for the best development of agriculture with its
fertile soil, in addition to the abundant presence of water, indispensable for the
maintenance of life. A classical example is the Egyptian civilization that prospered
along the Nile River, where they found a fertile ground for growing crops. Other
benefits of such location consist in allowing navigation, transportation and, later in
human history, the industrial process [1].

These areas suffer a natural flooding process, though, with disorderly urban
growth, this process may lead to disasters of vast proportions. Cities have some
aggravating factors in this process, such as the increasing presence of buildings, and
the large percentage of impervious areas, which prevent the flow and infiltration
of water to the deeper soil layers, this meaning the surface runoff surpasses the
drainage capacity.

W. R. Telles
Universidade Federal Fluminense, Santo Antônio de Pádua, Rio de Janeiro, Brazil
e-mail: wtelles@id.uff.br

D. N. Brandão (�)
Centro Federal de Educação Tecnologica Celso Suckow da Fonseca, Rio de Janeiro, Rio de
Janeiro, Brazil
e-mail: diego.brandao@cefet-rj.br; diego.brandao@eic.cefet-rj.br

J. Lugon Jr.
Instituto Federal Fluminense, Macaé, Brazil
e-mail: jader@iff.edu.br

P. P. G. W. Rodrigues · A. J. Silva Neto
Instituto Politécnico, Universidade do Estado do Rio de Janeiro UERJ, Nova Friburgo, Brazil
e-mail: pwatts@iprj.uerj.br; ajsneto@iprj.uerj.br

© Springer Nature Switzerland AG 2019
L. Bacelar Lima Santos et al. (eds.), Towards Mathematics, Computers and Environment:
A Disasters Perspective, https://doi.org/10.1007/978-3-030-21205-6_7

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21205-6_7&domain=pdf
mailto:wtelles@id.uff.br
mailto:diego.brandao@cefet-rj.br
mailto:diego.brandao@eic.cefet-rj.br
mailto:jader@iff.edu.br
mailto:pwatts@iprj.uerj.br
mailto:ajsneto@iprj.uerj.br
https://doi.org/10.1007/978-3-030-21205-6_7


126 W. R. Telles et al.

According to Wang et al. [2], floodings have become one of the most significant
natural hazards in urban areas. Data from Emergency Events Database (EM-DAT)
created by the World Health Organization (WHO) show that only in Latin America
floods made about 5036 fatal victims in the period from 2008 to June 2018 [3].

In mountainous cities, these events can be even more dangerous, due to the high
water velocity, besides the vast amount of slopes sediments transported. An example
was the disaster that occurred in the mountainous region of the State of Rio de
Janeiro in Brazil in 2011, with about 900 fatal cases [3]. This number represents
almost 18% of all victims in Latin America, and such event can be considered
the most significant natural disaster caused by the urban flood in the region in the
aforementioned period.

Figure 1 presents some Latin America disasters that took place in recent
years. Another consideration is about the economic losses resulting from such
disasters, exceeding billions of dollars [4]. Recent research shows that training local
population to use systems capable of predicting this phenomenon reduces disaster
risk [5].

In this context, mathematical models can help in the development of computa-
tional approaches that are capable of simulating the hydrological disasters caused
by waterflood.

Due to the limit in the number of pages of the present work, we do not intend
to carry out a systematic review on the research area, but we want merely to

Fig. 1 Examples of Latin America floods
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demonstrate its research potential. For more details, there is a vast literature about
flood [2, 6–15].

This chapter aims to present an introduction on the mathematical modeling
involved in the problem of the urban flood, for it presents a classical model with
differential equations, that can describe the behavior of water flow in a water body,
as well as its computational representation. The use of the MOHID (MOdelagem
HIDrodinâmica-Hydrological Modeling) platform allows simulating of a real case
study obtaining high qualitative results.

2 Math Modeling and Proposed Problem Solution

Mathematical models have the capacity to simulate events that cause the elevation of
water levels in the drainage channels of a river basin [16], which has as consequence,
the production of flood waves that affect and provide risks to the population.

More specifically, studies involving flow in rivers and channels can be modeled
by equations ranging from this one-dimensional formations with the Saint Venant
equations to three-dimensional formulations with the Navier–Stokes equations,
where the latter are approximate for incompressible fluids and with free surface
[17]. In this chapter, emphasis is given to the modeling of flood waves using the
equations of Saint Venant.

According to Liggett[18], considering the high number of variables that are
involved in the characterization of flows in rivers, as well as the complex geometry
of the channels, the application of the equations of Saint Venant is conditioned to
the adoption of some simplifications based on the conservation principles, which
are [19]:

• One-dimensional and incompressible flow;
• Speed is uniform in each cross section, varies only in the longitudinal direction;
• Vertical accelerations are not considered;
• Average depth of the bottom is small enough;
• Friction losses not present significant differences in relation to the permanent

flows, allowing the use of the Manning equation;
• Erosion and sediment deposition in the bottom are neglected;
• Longitudinal axis of the canal can be represented by linear sections with low

slope.

Based on the considerations described above, the equations of Saint Venant are
formally described, based on the equation of continuity and motion, as [20]:

∂A

∂t
+ ∂Q

∂x
= q (1)

∂Q

∂t
+ ∂

∂x

(
β.Q2

A

)

+ g · A
∂h

∂x
+ g · n2

R4/3

|Q|Q
A

= 0 (2)
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where x is a spatial variable (m); t the time variable (s); Q is a discharge channel
(m3/s); A is a cross-sectional area (m2); q is a side contribution (m3/s); β is the
Boussinesq number (−); g is an acceleration of gravity (m/s2); h is an elevation
of the water surface above the assumed datum (m); n is the coefficient that relates
all the elements that oppose channel resistance to flow, also known as Manning’s
roughness coefficient (s/m1/3).

Considering as forces acting on a small control volume, in Eq. (2), called the
dynamic equation, the first term is related to the local acceleration of the water
without control volume due to the variation of velocity over time, while the second
concerns the advection of momentum into a control volume due to the change of
velocity along the channel; the third term represents a force associated with the
pressure variation between the control and volume control levels due to the channel
depth variation and, finally, the last term represents frictional force with the bottom
and the river banks, which tends to slow the flow [21].

Other classical equations found in the literature can also be deduced from the
Saint Venant equations, taking into account the preponderant terms related to the
problem to be treated, namely: inertia, pressure, gravity, and friction. Taking only
the gravitational and frictional forces, and taking into account that h = Z + H ,
where Z is the channel bottom elevation and H is the channel water column depth,
Eq. (2), it can be written as:

Q = 1

n
R1/2 · s1/2 · A (3)

where s is the longitudinal bed slope, defined as:

s =
(

−∂Z

∂x

)

(4)

Equation (3), together with Eq. (1), is called the kinematic wave model. On
the other hand, if in addition to friction and gravitational forces, we also take the
hydrostatic force, then along with Eq. (1) we have the diffusive wave model, given
by:

∂H

∂x
+ S − s = 0 (5)

where S is the slope friction, defined as:

S = n2

R4/3

|Q|Q
A2 (6)

It should be noted that one of the most relevant parameters in the Saint Venant
equations is the Manning coefficient, which, according to [22], is related to the
physical characteristics of the channel, such as surface roughness and irregularities,
background vegetation, sinuosity, erosion, and sedimentation leading to changes in



Computational Modeling and Simulation of Surface Waterflood 129

cross-sectional features, obstructions such as bridge or garbage piles, suspended
material, and bottom loading.

According to Porto [23], the equations of Saint Venant described by Eqs. (1)
and (2) applied to nonpermanent flows require analytical or numerical techniques
developed for their solution, in addition to a significant amount of hydraulic data
channel, especially when applied to natural waterways.

In this chapter, the Saint Venant equations are solved numerically using the
MOHID platform, which has the numerical algorithms based on a finite volumes
approach, constituting a flow oriented strategy that facilitates the coupling of
different processes and allows the conservation of mass and movement [24].

For more details on the numerical solution methodology of the Saint Venant
equations, the interested reader should consult [24].

3 MOHID (Modelagem Hidrodinâmica: Hydrological
Modeling) Platform

MOHID water modeling system is a platform that simulates hydraulic and hydrolog-
ical processes occurring in water bodies and soils, including river basins, estuaries,
seas, and oceans. Its development began in 1985, by a team of collaborating
technicians from the Marine and Environmental Technology Research Center
(MARETEC), belonging to Instituto Superior Técnico (IST) and to the Engineering
School of the Technical University of Lisbon, with the company Hidromod Ltda
[25].

The basis of the programming used for the construction of the initial versions
of the MOHID platform is FORTRAN 77 programming language, being developed
based on a two-dimensional flow forced by the tide used in the study of estuaries
and coastal zones, being solved through the classic method of finite differences.
Over the years, this platform has been updated and improved due to its application
in many researches and engineering projects [26].

In its current stage, this platform is based on the ANSI FORTRAN 95 pro-
gramming language, which allows for an independence from the operating system
(Windows, Linux, Unix, etc.) with which you want to run the model as well as
an easy implementation of the code in any environment [27]. In addition, this
programming is object oriented, allowing the modeling of different physical and
biogeochemical processes that occur in different systems [28]. The latest update
of this MOHID platform, called MOHID Studio 2016, version 3.0.0.1860, was
released in June 2016 and runs on 64 bits in the Windows Vista, 7, 8, 10, or
server version and is available for download for free on the company Action Mod-
ulers Consulting & Technology: http://www.actionmodulers.com/products/mstudio/
products-mohidstudio2015.shtml.

http://www.actionmodulers.com/products/mstudio/products-mohidstudio2015.shtml
http://www.actionmodulers.com/products/mstudio/products-mohidstudio2015.shtml
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Fig. 2 Block diagram of MOHID platform

Basically, the MOHID platform is divided into two large blocks: MOHID GIS
environment and MOHID GUI environment, which communicate with each other.
Figure 2 shows the block diagram of MOHID platform.

The GIS environment is a geographic information system that allows the user
to manipulate and manage the data of the time and space variables required or
produced by the numerical programs of the MOHID platform [29]. It is in this
environment that the computational meshes are created in which the simulations
are applied [30], based on a file of topographic data of the region of interest, in the
XYZ Points format.

With these files containing the computational meshes, the construction of the
Digital Hydrologically Correct Terrain Model is started, where the first step is
the construction of a mesh with regular or variable spacing, which is used to
make an interpolation process with the topography data. In this process, for each
cell in the space grid is assigned an altitude value according to the information
contained in the XYZ Points file. This process of interpolation gives rise to a
digital terrain file, which must be submitted to a process of removal of the possible
depressions that may contain. This process allows the digital terrain to resemble the
real physical environment, thus avoiding the emergence/disappearance of channels
in the drainage network or, also, inappropriate storage places [31]. This process is
performed in an iterative manner, where each cell of the file containing the digital
model is analyzed, taking into consideration neighboring cells, in order to avoid that
depressions that do not exist in the physical medium can appear in the digital file
[32].

With the digital model of the terrain prepared, it is necessary a process of
construction of the files referring to the slope of the cells, the direction of the flow,
drainage area, drainage network, and delimitation of the hydrographic basins of
interest. The delineation of the basin can be performed by determining the capacity
to conduct the drainage channel conduction network [33]. Subsequently, the profile
of the transverse networks of drainage networks is defined, when it is possible to
construct the tracing of two distinct routes, relating it to the number of tributaries or
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Fig. 3 MOHID GIS environment

to a drained area. The delimitation of the basin can be accomplished by determining
an exit point (cell) in the drainage network—considered to be the exudation of
the basin—or by the minimum area from which the process of formation of the
drainage channels begins [34]. Subsequently, the user can construct the profile of
the transversal sections of the drainage networks in two different ways, that is,
relating them to the number of tributaries or the drained area, containing different
geometries. Figure 3 shows the MOHID GIS environment.

Subsequently, after the entire process of preparing the files made in the MOHID
GIS environment, it is possible to use the MOHID GUI environment to perform
simulations linked to the events of interest. In this environment, the following
numerical tools are present: MOHID Water (modeling of hydrodynamic processes,
simulation of dispersion phenomena, wave propagation, sediment transport, water
quality/biogeochemical processes in the water column and exchanges with the
bottom), MOHID Land (hydrographic basin model), MOHID River Network
(hydrographic network simulation) and MOHID Soil (water flow through porous
media), which are available in the MOHID GUI [29, 30, 35].

For the simulation of the events of flood waves, the numerical tool MOHID Land
is used, being the surface runoff and drainage network modeled by the Saint Venant
equations, which were described in Sect. 2. This tool also necessarily requires a file
of the digital terrain model, its drainage network, and precipitation data of the region
of interest. In addition, for a simulation to be performed, the user must construct a
working environment (Solution), a domain (Domain) and choose the phenomena
that he wants to include in the simulation. In the middle range of the screen, there
is a list with several files, in which the user will configure the parameters of interest
and intervals of time. Figure 4 shows the MOHID GUI.
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Fig. 4 MOHID GUI environment

4 Case Study: Nova Friburgo, Rio de Janeiro, Brazil

The city of Nova Friburgo is located in the Mountainous Region of the State of
Rio de Janeiro, Brazil, and covers an area of approximately 933 km2, under the
geographical coordinates of the south parallels 22◦11′and 22◦24′ and the meridians
of 42◦37′ and 42◦27′ (as described in [36]).

Its territorial area contains three main hydrographic basins: the Rio Grande
watershed, the Bengalas river basin, and the Macaé river basin [37]. Particular
emphasis is given to the catchment area of the Bengalas river, which covers the
urban area of the city and is divided into four sub-basins: the D’Antas stream basin,
the Cônego river basin, the Santo Antônio river basin, and the Bengalas river basin
[37].

Among these sub-basins, the basins of the river Cônego and the river Santo
Antonio stand out as the most important, since the confluence of these rivers
occurs near the center of the city, giving rise to the Bengalas river. Therefore,
an investigative analysis of these two basins becomes substantial importance with
regard to the monitoring of eventual floods [38]. Figure 5 shows the geographical
location of the city of Nova Friburgo, as well as the watersheds of the river Cônego
and the river Santo Antônio.

According to the Nova Friburgo Rainforest Plan (PAPNF), finalized in 2007 and
made available by the Municipality, the Cônego river is formed by the Caledônia
river, it has its source located in the Serra da Boa Vista in Pico do Caledônia,
near to the border with the municipality of Cachoeiras de Macacu, containing an
extension of 10.6 km to the junction with the Santo Antônio river and drained area
of approximately 29.1 km2. In addition, there is intense urbanization of the banks
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Fig. 5 Nova Friburgo city location containing the Bengalas, Cônego, and Santo Antônio rivers
hydrographic basins. Source: IBGE

and the reduction of the width of its bed near the confluence with the Santo Antônio
river. The canal is still uncoated, occupying the banks in some stretches [37].

On the other hand, the river Santo Antônio is born in the district of Mury, also
near the border with the municipality of Cachoeiras de Macacu and follows to the
confluence with the river Cônego, already in the center of the city of Nova Friburgo,
totaling an extension of 16.2 km and its basin presents an area of 57.2 km2. Part of
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its banks is uncoated—but with good maintenance conditions—and part covered in
stone mortar and concrete in the stretches where there is occupation [37].

5 Application and Results

This section presents the processes for the acquisition of experimental precipitation
data and water levels in the watersheds of the Cônego and Santo Antônio rivers,
for the month of January 2011, as well as the process of construction of the digital
terrain model of the region of interest and computational simulations related to the
drainage networks of each basin and consequent flood waves.

5.1 Experimental Data Acquisition

In order to analyze the applicability of the mathematical modeling, as well as
the feasibility of using the MOHID platform in the simulation of flood events, it
was considered the precipitation event that occurred in the municipality of Nova
Friburgo in January 2011, and its respective flood waves caused by the elevations of
water levels in the drainage networks of the Cônego and Santo Antônio river basins.
This month was marked by a major natural disaster, leading to death a substantial
number of inhabitants, approximately one thousand, as well as serious economic
and social consequences.

Telles et al. [31, 38] also carried out the simulation involving the event of January
2011. However, in the referred work, the authors considered only the period from
January 11 to 13, the moment of the tragedy’s peak, unlike the simulations carried
out in this chapter, in which considered every day of the month in question.

The precipitation measurements (mm) and water levels (m) of the rivers during
the month of interest were obtained directly from the INEA website (http://inea.
infoper.net/inea/), based on the telemetric stations of Olaria and Ypu, located in the
Cônego and Santo Antônio rivers, respectively, whose coordinates are described
in Table 1, and with 15-min intervals between measurements. As there is no
information on the magnitude of the errors present in these measurements, for
this work, it was considered that the instruments and the form of measurement are
reliable to the point that the errors do not significantly influence the experimental
data collected [33].

Table 1 Coordinates of telemetric stations at Cônego and Santo Antônio rivers basins

Station Latitude Longitude Monitored River

Olaria 22◦18′31, 83"S 42◦32′31, 96"W Cônego

Ypu 22◦17′45, 09"S 42◦31′35, 41"W Santo Antônio

http://inea.infoper.net/inea/
http://inea.infoper.net/inea/
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Fig. 6 Precipitation intensity measurements in the period from January, 1st 2011 at 0:00 to
February, 1st of the same year at Olaria station
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Fig. 7 Precipitation intensity measurements in the period from January, 1st 2011 at 0:00 to
February, 1st of the same year at Ypu station

Figures 6 and 7 show the amounts of precipitation in the basins of the Cônego
and Santo Antônio rivers from 0:00 h on January 1st, 2011 to 00:00 h on February
1st of the same year, at the Olaria and Ypu stations, which are measured in
millimeters at 15-min intervals.

Based on these figures, the intensity of precipitation occurred in the period from
0:00 h on January 11 to 0:00 h on January 13, when the tragedy occurred in 2011.
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5.2 The Construction of the Digital Model Terrain

For the simulation of the flood events that occurred in the period that includes
the tragedy of 2011 in the Mountain Region of the State of Rio de Janeiro on the
MOHID platform, it is necessary to construct a digital model of the terrain so that,
based on the topographic profile of the region of interest, it is possible to reproduce
the elevation of the water table in the drainage network, due to the rainfall occurring
in the basin.

While Telles et al. [31, 34] used topographic data from 1: 50,000 Planialtimetric
Letters, provided by the Brazilian Institute of Geography and Statistics (IBGE)
and provided by the city hall of Nova Friburgo, the results presented in this
section are based on the use of data from topography obtained from the site of the
Geomorphometric Database of Brazil, referring to the TOPODATA project (http://
www.dsr.inpe.br/topodata/index.php).

Launched for the first time in August 2008, the TOPODATA project allows the
user to access the digital elevation model and basic local derivations of any region
located within the Brazilian territory, based on Shuttle Radar Topography Mission
(SRTM) data provided by United States Geological Survey (USGS) on the World
Wide Web [39]. The data adopted in this chapter, downloaded free of charge in the
ASCII format (.txt) directly from the TOPODATA project site, use WGS 84 datum
and are the result of a re-sampling of the SRTM data covering the Brazilian territory,
provided by the National Research Institute (INPE), generating a digital model of
terrain with 30 m resolution [40]. In the MOHID GIS environment, the import and
conversion of the ASCII (.txt) file into the XYZ Points format was performed,
which is the basis for the environment to perform the construction process of the
Hydrologically Correct Digital Terrain Model to be used, in later, by the MOHID
Land tool in the process of simulating full wave events of interest.

As the MOHID Land tool is a spatially distributed and variable regime model,
its application involves the conversion of all input data into a computational grid or
in an evolutionary way in time [29]. Thus, a computational mesh was constructed
for the Cônego river basin, containing 5760 cells, and could be interpreted as
an array with 80 rows and 72 columns. As for the Santo Antônio river basin,
the computational grid consisted of 13,650 cells, distributed in 130 rows by 105
columns. In both meshes, a regular spacing of 0.001◦ decimal was adopted for the
cells.

Afterwards, based on the computational meshes and topography data obtained
from the TOPODATA project site, the digital models of the hydrologically correct
terrains were constructed, giving rise to the files referring to the slope of the cells,
flow direction, drainage area, drainage network, and delimitation of the watersheds
through the construction of the delimiting polygon of the basins of the Cônego and
Santo Antônio rivers. Finally, the cross sections were constructed for each of the
drainage channels, which have main water courses, Cônego and Santo Antonio
rivers, as well as their monitoring stations, whose coordinates were described in
Table 1. The profiles of the transversal sections constructed are based on the Nova

http://www.dsr.inpe.br/topodata/index.php
http://www.dsr.inpe.br/topodata/index.php
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Fig. 8 Digital Model Terrain and delimiter polygon containing the drainage network for the
Cônego river basin built by the MOHID GIS environment

Friburgo Pluvial Water Plan, finalized in 2007, and made available by the City Hall
of that city [37]. Figures 8 and 9 show the digital terrain models, the delimiting
polygon, the drainage network, and the monitoring stations related to the basins of
interest. Such processes are described in detail in [31, 34].

5.3 Results Obtained for the Events of Interest

In this section the results of the hydraulic behavior model of the Cônego and Santo
Antônio rivers, which compose the Bengalas river basin, located in the municipality
of Nova Friburgo—RJ, are presented through the analysis of precipitation events
and consequent elevation of the water table of the drainage network occurred in this
municipality in January 2011, including the heavy rains that caused the tragedy in
the mountainous region.

The results were obtained on an Acer computer, with an Intel Core i5-7200U of
2.50 GHz and 8 GB of RAM. As far as the execution time of the direct problem is
concerned, it took approximately 5 min to carry out the simulations in the basins of
interest.

Basically, to perform a simulation using the MOHID Land tool, it is necessary to
file the hydrologically correct terrain digital model and the drainage network of the
region of interest whose constructions are described in Sect. 5.1. The experimental
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Fig. 9 Digital Model Terrain and delimiter polygon containing the drainage network for the Santo
Antônio river basin built by the MOHID GIS environment

data of precipitation used in these simulations, measured in millimeters, are
characterized in Sect. 5.1.

The configurations used in the MOHID platform have as reference the parameters
adopted by Telles et al. [38] only for the period from January 11 to January
13 of that year, with particular emphasis given to basin and channel roughness
coefficients, which were assumed 0.035 s/m1/3 and 0.030 s/m1/3, respectively. For
the other parameters contemplated in the MOHID platform, such as minimum
channel slope, hydraulic conductivity, numerical schemes used, among others, an
impermeable basin was consecrated, except for the initial water level of the drainage
network when starting the simulation, which was considered constant throughout
the drainage canal bed, adopting a value of 0.30 m for the Cônego river basin and
0.80 m for the Santo Antônio river basin. Finally, for the time discretization, a time
interval of t = 10 s was used. In Figures 10, 11, 12, and 13 the profiles of the water
table and flood maps in the respective drainage networks of the basins of interest
are shown. Based on these figures, it can be verified that the behavior of water
levels during the month of January 2011 can be divided into three distinct periods,
namely:

• First period (from January 1 to January 10)—low water levels in the drainage
network;

• Second period (from January 11 to January 13)—interval of time in which the
tragedy occurred in the mountainous region, with high levels of the water table
in the drainage network;



Computational Modeling and Simulation of Surface Waterflood 139

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

1 3 5 7 9 11 13 15
Days (January)

Experimental

MOHID
L

ev
el

 (
m

)

17 19 21 23 25 27 29 31

Fig. 10 Water depth profile during the 2011 January event at the drainage network at the Santo
Antônio river basin obtained using the MOHID platform and real experimental data

Fig. 11 Flood map during the 2011 January event at the Santo Antônio river basin obtained using
the MOHID platform
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Fig. 12 Water depth profile during the 2011 January event at the drainage network at the Cônego
river basin obtained using the MOHID platform and real experimental data

Fig. 13 Flood map during the 2011 January event at the Cônego river basin obtained using the
MOHID platform
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• Third period (from January 14 to January 31)—post-tragedy period, showing a
median elevation of water levels in the drainage network.

Despite the distinct profiles in these three periods, there was a good fit between
the experimental data and the numerical results obtained by the MOHID platform
for the Olaria (Cônego) and Ypu (Santo Antônio) stations, regarding the time at
which the flood waves occurred, where the sum of the squared residuals between
the experimental data and those obtained by the MOHID platform was 28.8 and
66.23, respectively.

6 Conclusions

The objective of this chapter was to describe the computational modeling and con-
sequent simulation of drainage flows in watersheds, which allows the understanding
of the reasons that lead to the elevation of the water depth in the drainage network of
these basins using the MOHID platform and the MOHID Land numerical tool. As
a case study, the modeling, as well as the analysis of precipitation events occurred
in the watersheds of the Cônego and Santo Antônio rivers located in the city of
Nova Friburgo, State of Rio de Janeiro, for the period from January 1, 2011 to 31 of
January of the same year, the period in which the greatest natural tragedy occurred
in Brazil, more precisely in the Mountainous Region of the State of Rio de Janeiro.

The results obtained here were compared with experimental data from the
website of the State Environmental Institute (INEA), where it was concluded
that the approach based on the MOHID platform allowed a good fit between the
experimental data and the calculated from the model. This result shows MOHID
is a promising tool both from the environmental and social point of view since it
allows its use in assisting the decision-making process in flood events and forecasts
on the impacts and damages that the water level elevation may cause.
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Applied Time Series—Natural Disasters
Perspective of Use: Landslide and Flood

Alessandra C. Corsi, Filipe A. M. Falcetta, Marcela P. P. Guimarães,
and Eduardo S. de Macedo

1 Introduction

Societies, around the world, are continually living under the impact of the most
varied of natural disasters. Natural disasters have affected more and more countries
in the world, and Brazil is not immune to these events. To improve the forecasting
and the prediction we use time series analyses for landslide and flooding.

Time series are collections of data recorded at a specified time [7, 10, 12].
According to the Pham [29], time series are ordered sequences of values of a
variable at equally spaced time intervals.

Time series can be applied to understand the observed data and to fit a model to
forecasting and monitoring.

Historically, time series methods were applied to problems in the physical and
environmental sciences.

The Emergency Events Database (EM-DAT) from the Centre for Research on the
Epidemiology of Disasters (CRED) data show that flooding caused the majority of
disasters between 1994 and 2013, accounting for 43% of all recorded events and
affecting nearly 2.5 billion people. Storms were the second most frequent type of
disaster, killing more than 259,000 people and costing nearly 1 trillion dollars in
recorded damages. This makes rainfalls the most expensive type of disaster during
the past two decades, and the second most costly in terms of lives lost. Earthquakes
(including tsunamis) killed more people than all other types of disaster put together,
claiming nearly 750,000 lives between 1994 and 2013. Tsunamis were the most
deadly sub-type of earthquake, with an average of 79 deaths for every 1000 people
affected, compared to four deaths per 1000 for ground movements [19].
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Nunes [28] has studied the impacts of 863 natural disasters which occurred in the
last five decades in South America, phenomena such as earthquakes and volcanisms
resulted in twice as many deaths as hydro meteorological events. But events such as
flooding, droughts and landslides affected a major number of people.

In the last decades were registered several events related to mass movement and
floods in the country as in Santa Catarina in the year 2008, Alagoas and Pernambuco
in 2010, and mountainous region of Rio de Janeiro in 2011. Such events caused
losses and damages in the sectors of infrastructure, social, and productive, with
a cost of around 15 billion reais, estimated by World Brank [39]. From 1988 to
2018, 3509 people were killed in Brazil, according to the Landslide Deaths Database
developed by the Institute of Technological Research of the State of São Paulo (IPT).

In this chapter, we will present a review of the time series analysis applied to
geological and hydrological problems, such as landslide and flooding. We illustrated
the use of time series in two study cases applied to landslide and flooding.

2 Study Cases

Now, we presented the use of time series to forecasting landslide and the other the
use of rainfall time series applied to flooding.

2.1 Time Series Applied to Landslides

Time series applied to landslide study can use several data types, like rainfall,
landslide inventory, GPS, digital photogrammetry, water level, displacement data,
and others.

Landslides are a worldwide natural hazard causing thousands of fatalities and
severe monetary losses every year. They often occur as cascading effects in case
of natural disasters such as earthquakes or hydrological extreme events (e.g.,
typhoons).

Landslide occurrence is affected by many factors, including geological condi-
tions, rainfall, and others.

Landslides are recognized as dynamic and significantly hazardous phenomena.
Time series observations could be used to improve the understanding of a landslide
complex behavior and aid assessment of its geometry and kinematics [30].

Several works were developed in the world and in Brazil from the 1970s,
correlating rainfall and landslide. Figure 1 shows the distribution of some these
papers in the world.

The pioneer in this area was [26] when investigating the correlations between
rainfalls and landslides in Hong Kong.

Lumb [26] analyzed the recurrence of slope failures in residual soils of Hong
Kong (period 1950–1973), and he described various factors which contribute to the
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instability. It is postulated that the prime cause of the failures is direct infiltration
of rainwater into the superficial zones of the slopes, producing a loss of effective
cohesion following the saturation of the soil.

Lumb [26] established some useful correlations between the number and severity
of rainfall events and the daily, and 15-day antecedent rainfalls. Prevention of slips
implies protection against excessive infiltration. Several authors have continued the
Lumb studies in Hong Kong, such as Brand et al. [9], Brand [8], Kay and Chen [25],
Zhou et al. [41], Dai and Lee [14], among others.

Correlation studies between rainfall and landslides were also developed in
Europe, such as Corominas and Moya [13] in Spain, Flageollet et al. [22] in France,
Quinta Ferreira et al. [31] in Portugal, and Canuti et al. [11] in Italy are some
examples.

Ávila-Parra and Martín Vide [6], Filun [21], and Angulo [2] were some studies
developed in Chile.

Ávila Parra and Martín Vide [6] studied the spatial distribution of extreme
precipitation risk between the fifth and eleventh regions of the Chilean mainland.
To achieve that, probable maximum values of daily precipitation for different
return periods are calculated, analyzing the maximum amounts of rainfall in 24 h
in 46 rainfall stations with records between 1980 and 2010. The methodological
approach has been the adjustment of the data employing different probability laws,
especially Gumbel Max and Weibull, and the calculation of maximum values and
returns periods. The results show a significant spatial variation of the maximum
precipitations, the highest ones being located in the Andean foothills, decreasing
gradually to pass the intermediate depression and increasing again in the Costa
range. And the highest estimated daily precipitation occurs at Valparaíso, Maule,
and Bío-Bío regions, with values equal to or greater than 200 mm in 50 years.



148 A. C. Corsi et al.

Filun [21] studied historical precipitation records associated with landslide
processes on urbanized slopes of the city of Talcahuano in central-southern Chile.
He found that the precipitation concentrated in a shorter period than 4 h represents
the critical threshold of destabilization, with intensities on the order of 26.5 mm.

Angulo [2] studied the Copiapó river basin, in the southern portion of Chile,
where he analyzed the maximum precipitation ratios and debris flows. He examined
historical records of rainfall from 1940 to 2015. For the basin, the debris flows
develop on steep slopes between 15 and 25◦ and maximum precipitation of 22 mm
in 24, 48, and 72 h.

In Colombia, several studies were developed by Aristizábal and Gómez [3],
Moreno et al. [27], Aristizábal et al. [4, 5] among others.

Moreno et al. [27] studied the relationship between rain and reported landslides
in the department of Antioquia from 1929 to 1999. Their analysis indicated that
the cumulative precipitation (15 days or more) influences the amount of subsequent
3-day rainfall that is needed to initiate ground movement.

Aristizábal and Gómez [3] compare the disaster inventory and rainfall data in the
period 1880–2007, identifying its close relationship, with a bimodal tendency and
peaks in May and October. Of every ten events that occur in the valley, 8 are of
hydrometeorological origin, essentially mass movements, and floods.

Aristizábal et al. [4] propose the existence of four representative regions of
antecedent rainfall for mass movements, called regions A, B, C, and D, for the
Aburrá valley, based on the thresholds defined by Moreno et al. [27]. In region
A, characterized by low levels of rainfall, 25% of events occur, which allows
us to suppose that these events are associated with conditions different from the
previous rain, such as anthropic intervention. In region B there are few movements
in mass and correspond to conditions of low humidity in the ground and isolated
downpours, which possibly do not reach to unleash landslide. Region C corresponds
to a cumulative rainfall of 15 days between 70 and 150 mm, where 20% of the events
occur, and finally region D, which corresponds to a cumulative 15-day rainfall of
150 mm, where the 55% of occasions.

Aristizábal et al. [5] analyzed critical rainfall thresholds for landslides forecasting
in the Aburrá Valley. Their results show that the primary determinant for the
occurrence of mass movements in the Aburrá Valley is the antecedent rainfall. In
Aburrá Valley mass movements used in the analysis occurred for antecedent rainfall
over 60 mm for 30 days, 160 mm for 60 days, and 200 mm for 90 days.

In Brazil, the correlation studies between rainfall and landslides had begun in the
1970s, with the efforts of [1, 15–18, 20, 23, 24, 33–38, 40].

Among the works developed in Brazil, it is worth highlighting the pioneering
work of [23]. Guidicini and Iwasa [23] in this paper established a precipitation
threshold necessary for landslides deflagration. For this purpose, they used time
series analysis of heavy rainfall events between 1928 and 1976. They selected
nine areas in different regions of Brazil to study the correlation between rainfall
and landslide (Caraguatatuba/SP, Baixada Santista/SP, Highway Imigrantes/SP,
Highway Anchieta/SP, Serra de Maranguape/CE, Rio de Janeiro/RJ, Serra das
Araras/RJ, South State of Minas Gerais/MG, Vale do Tubarão/SC). In their first
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analysis, they considered the precipitation levels of the events together with the
standards of the days immediately before the events, that is, the sum of continued
rains. When they analyzed together landslide occurrences and the rainfall data, the
landslides are likely to occur when precipitation records are between 8 and 17% of
the mean annual precipitation. The remaining events, those do not cause slides, have
precipitation records up to 12% of the mean annual rainfall.

The work developed by Tatizana [35, 36] will be presented in detail in the case
study, since until now the correlation established in these works is used by the Civil
Defense of the municipality of Cubatão, located in the state of São Paulo, Brazil.

This case study addresses the use of rainfall and landslide time series to
obtain rainfall thresholds that could result in landslides or debris flow. The rainfall
thresholds are important to monitor and prevent accidents in urban areas and
highways. This type of data is very useful to Civil Defense. They used rainfall
thresholds during the operation of the Preventive Plan for Landslide in the State
of São Paulo.

Tatizana et al. [35] performed a correlation analysis between rainfall and
landslides in Serra do Mar, located in the Cubatão municipality (Brazil) (Fig. 2).
The methodology used consisted of an analysis of the high rainfall events and the
landslides by using retro-analysis.

Tatizana et al. [35] obtained the rainfall time series at the Curva da Onça station.
The selected rainfall events were those with values greater than 100 mm in 1 day,
150 mm in 2 days, or 200 mm in 3 days. The total numbers of events found were 35
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since 1956. They collected the hourly data for the previous 7 days and 1 day after
for those events, obtained landslide data from several sources, such as newspaper
archives, City Hall, Dersa—Desenvolvimento Rodoviário S/A, industries, technical
works, field mapping, and verbal information.

The authors plotted the data in dispersion diagrams with accumulations of 8, 4, 3,
and 2 days. The 4-day accumulated diagram showed the best dispersion. However,
those simple correlations were not satisfactory to explain all the cases. They plotted
the events again in diagrams of accumulated rainfall and the hourly intensity over
time. They associated all of those events with heavy rainfall and the highest rainfall
accumulated in 4 days (Fig. 3).
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Tatizana et al. [35] plotted the events in a graphic where the axes x and y

represent the accumulated in 4 days and the hourly intensity. They drew a curve
that separated events with landslides from those without landslides. A geometric
tracing curve was evident (Eq. (1)).

I (Ac) = k × Ac−b (1)

I = hourly intensity (mm/h) Ac = accumulated rainfall in 4 previous days (mm)
K and b = constants of the geometric relation (they vary with the geotechnical
characteristics of the slopes and the climatic conditions).

Tatizana et al. [35, 36] determined the parameters k and b by the least squares
numerical method (Eq. (2)):

I (Ac) = k × Ac−0.933 (2)

Equation (2) was called induced landslide envelopment because the major parts
of those records were related to the occurrence of landslides in highways or land-
slides in slums. Heavy rainfall values beyond the induced landslides envelopment
can generate few landslides, generalized landslides, or debris flow.

Tatizana et al. [35] traced the envelopment curves for sparse landslides, general-
ized landslides, and debris flow (Table 1).

Tatizana et al. [35] established a dimensionless index denominated CPC (critical
precipitation coefficient) which measures the landslide susceptibility according to
the precipitation evolution.

CPC = li/ lci (3)

li = hourly intensity (mm/h) recorded at hour i; Ici = critical hourly intensity for the
occurrence of induced landslides; As: Aci = accumulated rainfall of the previous 4
days (mm).

So,

CPC = (li/2603) × Aci−0.933 (4)

Table 2 shows the relationship between CPC and landslide envelopment.
Tatizana et al. [36] analyzed the event occurred on January 22nd/23rd 1985 for

five sectors of Serra do Mar (Fig. 4), in the Cubatão municipality. For those sectors,

Table 1 Landslide
envelopment

Landslide envelopment Equation

Induced landslide I (Ac) = 2603 × Aci−0.933

Sparse landslide I (Ac) = 3579 × Aci−0.933

Generalized landslide I (Ac) = 5466 × Aci−0.933

Debris flow I (Ac) = 10646 × Aci−0.933
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Table 2 Relation between
CPC and landslide
envelopment

CPC Landslide envelopment

1.0 Induced landslide

1.4 Sparse landslide

2.1 Generalized landslide
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Table 3 CPC sectors equations

Sector Equation

Eletropaulo+bairros cota CPC = li/3467 × Aci−0.933

Refinaria+sub-setor onça CPC = li/2603 × Aci−0.933

Perequê CPC = li/2357 × Aci−0.933

Copebrás+ultrafértil CPC = li/2033 × Aci−0.933

Sub-setor paranapiacaba+ultrafértil CPC = li/3945 × Aci−0.933

they determined the equation used to monitor those areas (Table 3). Cubatão Civil
Defense used those equations to monitor the Industrial Areas.

According to the Resolução CMIL 17–610 [32], the Contingency Plan for the
Serra do Mar in the Cubaão Industrial region aims to provide the participating
entities with instruments of action for the prevention and minimization of impacts
caused by possible floods and/or landslides on the Serra do Mar slopes, according
to the area covered in Fig. 1, which is divided into sectors for the operationalization
of the Plan.
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The monitoring criteria were defined based on rainfall parameters, meteorologi-
cal, and field surveys.

For the Cubatão industrial region, located near the Serra do Mar, we expected
localized and generalized landslides and debris flow (Figs. 5 and 6). As previously
discussed from the works of Tatizana et al. (1987), Civil Defense used to monitor
the area the critical precipitation coefficient (CPC). The analysis of this parameter
(CPC), associated with the information of the meteorological forecast, and the
accumulated values of rainfall in 84 h, and information about landslide occurrences
obtained in field surveys, allows the triggering of preventive or corrective actions
associated with different states of contingency plan operation. The plan operates
with four states: I—State Observation, II—State Attention, III—Critical State, and
IV—State Emergency (Resolução CMIL 17–610) [32].

Civil Defense used a network of rain gauges to monitor the rain which is part of
the monitoring network of the Department of Water and Electric Power of the São
Paulo State (DAEE).

Fig. 5 Generalized landslide in the Serra do Mar, Cubatão, Brazil, by IPT
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Fig. 6 Debris flow events occurred in 1994, basin Pedras river, by IPT

2.2 Time Series Applied to Flood

Hydrology is the Geoscience that studies phenomena allowing to determine tempo-
ral and spatial distribution of water resources, under attributes of quantity, quality,
and their interaction with society. The intensities of these are space-temporally
variable, as a result of climatic, geomorphological, and land use variability;
therefore, they can be considered functions of time, space or both, at different
geographic scales.

Hydrological processes, such as precipitation, evapotranspiration, and surface
runoff, are considered stochastic—governed by probabilistic laws—since they are
formed by arbitrary components that overlap their regularities. For instance, flood
characteristics of a certain river basin can be considered random, since not all the
causes of the phenomenon can be determined.

As the simultaneous usage of deterministic and stochastic approaches becomes
increasingly more common, we may observe a trend of reducing the aleatoriety of
hydrological processes; the study of time series is relevant to this trend, where the
variability of the occurrence is recorded from sequential time/space measurements
of the corresponding hydrological variable.

The approach onto time series in hydrology considers that all series are represen-
tative, stationary (i.e., it doesn’t have any trend), and homogenous. This is important
because the hydrological studies must allow us to extract from the sample data the
probability that such a variable will equal or exceed a certain reference value which
has not yet been observed.
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The estimation of the recurrence probability of the studied phenomena becomes
more challenging when it is possible to observe a seasonality of measurements and,
eventually, trends resulting from regional variations induced by anthropic action.

Hydrological data are considered random variables with seasonal variations that
could be irregular, enabling the occurrence of extremes.

Thus, the hydrological variables are always associated with occurrence probabil-
ity, and the recurrence interval of hydrological phenomena could be evaluated using
theoretical statistics. The recurrence interval or return period is defined as the inverse
of the probability that the event will be exceeded in any 1 year. This parameter is
essential for drainage works evaluation, and it is determined by statistical analysis
of hydrometric time series of, for instance, precipitation, water level, or discharges.

If an extreme hydrologic event, as an extreme rainfall, for instance, is equalled
or exceeded on average once in every 100 years, it can be said that the recurrence
interval will be 100 years. It does not mean that the event will occur only once in a
period of 100 years, but it is possible to infer that this event has a 1% probability of
being equalled or exceeded every subsequent year.

The empirical probability distribution could be used in order to determine the
probability of a maximum annual rainfall event. For this, the daily maximum rainfall
for every hydrological year is sorted in the descending order and the exceedance
empirical probability of each event could be obtained using the Weibull distribution
formula.

P = m

N + 1
(5)

N is the sample size (number of analyzed annual events) and m is the rainfall
order (m = 1 for the higher rainfall of the time series and m = N for the lower
one).

In order to illustrate the concept, Table 4 below shows the empirical probability
of maximum annual daily rainfall for the pluviometric data in the city of Lençóis
Paulista, state of São Paulo (southeast of Brazil—Fig. 7), between the years 1972
and 2016.

The mainly disadvantage the using the empirical probability is the impossibility
of extrapolate the estimation for recurrence intervals higher than the sample size. For
doing this, data must be fitted in continuous probability distributions which assume
the extreme value theory as a preliminary hypothesis on their premises. Thus, in
extreme hydrological event studies, the most used probability distributions are Log-
Normal, Log-Pearson type III, and Gumbel.

Log-Normal distribution is an asymmetric generalization of Normal distribution,
considering a modification of the random variable Y = ln X. The density function
of this distribution is defined as below:

f (x) = 1

σy

√
2φ

e
− (Y−μy)2

2σ2
y (6)

for x > 0.
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Table 4 Maximum annual daily rainfall sorted in the descending order and empirical probability
associated

Maximum daily Recurrence interval
Year rainfall (mm) Order Empirical probability =1/p(years)

2001 143.8 1 0.02 41.0

2003 118.1 2 0.05 20.5

1975 117.5 3 0.07 13.7

2013 113.3 4 0.10 10.3

1989 110.2 5 0.12 8.2

1996 103.3 6 0.15 6.8

2002 103.0 7 0.17 5.9

1987 102.9 8 0.20 5.1

2015 102.5 9 0.22 4.6

1982 95.7 10 0.24 4.1

1983 90.7 11 0.27 3.7

1977 90.6 12 0.29 3.4

1998 89.2 13 0.32 3.2

1991 88.8 14 0.34 2.9

1985 85.7 15 0.37 2.7

1994 84.3 16 0.39 2.6

1980 83.0 17 0.41 2.4

2014 82.9 18 0.44 2.3

1995 82.8 19 0.46 2.2

1999 81.2 20 0.49 2.1

1976 80.7 21 0.51 2.0

1990 78.0 22 0.54 1.9

1973 75.0 23 0.56 1.8

2011 74.2 24 0.59 1.7

2005 73.3 25 0.61 1.6

1986 70.8 26 0.63 1.6

1997 70.3 27 0.66 1.5

1993 69.1 28 0.68 1.5

1988 66.0 29 0.71 1.4

1981 65.7 30 0.73 1.4

1984 64.9 31 0.76 1.3

2007 64.6 32 0.78 1.3

2006 64.2 33 0.80 1.2

2000 63.0 34 0.83 1.2

1978 61.6 35 0.85 1.2

2008 60.5 36 0.88 1.1

1974 58.0 37 0.90 1.1

1992 57.0 38 0.93 1.1

2004 53.2 39 0.95 1.1

1979 47.9740 0.98 1.0
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Fig. 7 Localization of Lençóis Paulista

The Log-Normal parameters are μy and σy, respectively, the average and the
standard deviation of the variable Y = ln X, determined using the expressions
below:

μy =
∑n

i=1 Yi

n
(7)

σy =
√∑n

i=1 ×(Yi − σy)2

n − 1
(8)

The Log-Pearson type III distribution is an asymmetric generalization of Pearson
type III distribution, with a variable change similar to Log-Normal, Y = ln X. The
density function of this distribution is, then:

f (x) = λβ(Y − ε)β−1e−λ(Y−ε)

(β − 1)! (9)

when ln x ≥ ε.
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The parameters β, λ, and ε could be determined using the expressions below:

β =
(

2

γy

)2

(10)

γy is the asymmetry coefficient

λ = σy√
β

(11)

ε = μy − σy

√
β (12)

Lastly, the Gumbel distribution, also called the generalized extreme value
distribution type-I, has its probability density function defined as below:

f (x) = 1

α
e

[

− x−u
α

−e(
x−u
α )

]

(13)

with −∞ < x < +∞
The probability distribution function assumes the formula below:

F(x) = e−e( x−u
a )

(14)

Parameters α and u could be determined using the expressions below:

α =
√

6σx

φ
(15)

u = μx − 0.5772α (16)

In order to use the probabilities distribution to estimate the recurrence interval of
daily rainfall, the time series length must be at least 30-year long.

As an example, Fig. 8 shows the annual maximum daily rainfall of Lençóis
Paulista time series fitting using the Gumbel distribution.

Using the rainfall extremes statistical analysis, it is possible to plot a graph
correlating the recurrence interval (in years) with the probable maximum daily
rainfall (in mm). This graph is presented in Fig. 9.

It could be noted that, for the selected five extreme daily rainfall events that
occurred in Lençóis Paulista in 2011 and 2016, the recurrence intervals estimated
by the statistical extrapolation using Gumbel distribution vary between 6 years and
over 10,000 years, for the 260 mm daily rainfall that occurred on January 13th, 2016.
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3 Conclusion

The study of time series is important because, from past events observation, it could
be possible to predict future behavior of climatic variables, reducing the probability
of occurrence of disasters, by directing the recurrence of extreme events, and could
be used to evaluate costs and, upon that, define priorities of action in municipal
policies and/or urban planning.

In addition, data observations over such long data interval allowed the Civil
Defense to monitor landslide and flood risk areas and the evolution of the process
during an extreme event.

Obtaining time series of past landslides is an excellent opportunity to predict
landslides and reduce its impact on society.

Therefore, in scenarios of climatic uncertainties, knowing the climatic time series
allows a strategic gain in the capacity of resilience in extreme events (like floods or
droughts) and in the planning of water resources.
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Bayesian Analysis of the Disaster Damage
in Brazil

Camila Bertini Martins, Viviana Aguilar Muñoz, André Yoshizumi Gomes,
Ricardo Manhães Savii, and Carolina Locatelli Colla

1 Introduction

Disaster risk reduction (DRR) is a priority action for sustainable development, due
to the disaster impacts on all societies; its study and understanding are a matter
to several knowledge areas. Among the exact sciences, the statistical sciences
play an important role in that sense. One of the implementation means of the
sustainable development goals (SDG) [22] is to intensify our efforts to strengthen
statistical capacities in developing countries. In fact, those goals and their targets
must be followed up and reviewed by using a set of global indicators approved by a
Statistical Commission and complemented by regional and national indicators [23].

Data is another sensible aspect of DRR and SDG strategies. The 2030 Agenda
refers to data requirements needed to help with the measurement of SDGs progress,
which will be paramount to decision-making: top quality, accessible, timely, and
reliable, disjointed in relevant characteristics of national contexts. In the same way,
the Sendai Framework [21] promotes collection, analysis, management and use of
relevant, reliable and real-time access data to help global, regional, and national
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DRR programs. The disaster loss databases on detailed scale and relevant non-
aggregated data are some useful supports to research disaster risk patterns, causes,
and effects, as well as to strengthen disaster risk modeling, assessment, mapping,
monitoring, and multi-hazard early warning systems [21]. The Sendai Framework
also highlighted the importance of development and dissemination of science-based
methodologies and tools to record and share related databases.

Statistical methodologies and tools play a relevant role for the organization
and analysis of those data. The international, regional, and bilateral support to
strengthen countries statistical capacity for DRR is one of the eight indicators of
the Sendai Global Target F: it substantially enhances international cooperation to
developing countries through adequate and sustainable support to complement their
national actions for implementation of this framework by 2030. The development
of all standards and metadata, methodologies, training and technical support, and
technical material guidance for follow-up and operationalization of the Sendai
indicators are relevant for DRR [24].

The exploratory statistical analysis of these data helps, first and foremost,
in identifying variables and patterns that may be related to risk attributes, both
qualitative and quantitative, and in simulating possible scenarios of risk. An example
of spatial pattern could be the recurrent distribution of floods in certain territories;
a time pattern may be their recurrence in the same month or season along many
decades. On the other hand, disaster frequency may indicate levels of territory
susceptibility and levels of population vulnerability.

This chapter presents a Bayesian inference statistical methodology applied to a
disaster database to identify some impact patterns of natural phenomena in Brazil,
in terms of their typology, frequency, and regional distribution (South, Southeast,
Central West, North, and Northeast region). It is a diagnostic study that intends
to help researches on socioeconomic component and disaster risk modeling. The
systematic registry and organization of disaster occurrences, as well as the statistical
processing of long-term data, allow the identification of disaster background causes
in the country, as they may directly support monitoring and warning systems and,
indirectly, the development of public policies to adapt to climate change and DRR.

This work is not intended to be an exhaustive study; it is also not the first work
that presents a diagnosis of the distribution of risk and disaster patterns in Brazil.
The focus of this work is to highlight the importance of investing in the exploration
of statistical tools that are suitable for complex analysis of occurrence and disaster
impact data, particularly in the Bayesian framework. It is important to draw attention
to the importance of developing methodologies for statistical modeling capable of
achieving results with the minimum of uncertainties in more detailed studies on risk
and disasters.
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2 Material and Methods

2.1 Field of Study

Brazil is one of the largest countries in the world, with more than eight million
km2 of land extension. In this territory, there is a great diversity of natural
phenomena (i.e., hydrological, geological, meteorological, etc.) that can cause harm.
Furthermore, according to the most up-to-date estimate projections by the national
census authority [15], today, Brazil is the sixth most populous country worldwide,
with more than 208 million of people. This geographical complexity is a prominent
condition to understand the root causes of risks and disasters in this country, because
its territory is especially susceptible to climate changes [6] and its population
is notably vulnerable to the impact of climate-associated phenomena [12]. It is
important to keep in mind that risk equation involves integrating natural and social
forces; therefore, risk and disaster analysis must consider both natural hazards and
social vulnerabilities [24].

To ease risk and disasters research at national level, it is advisable to consider
some territorial zoning in sets of homogeneous regions, either physical or social.
As a prior approach to achieve the objectives of this work, it was used, as a
geographical reference, the officially recognized regional division of Brazil [15]:
North, Northeast, Central West, South, and Southeast regions; note that each region
is a group of several states (Fig. 1). Despite being a merely academic division (the
regions do not have political autonomy), because it considers geographic, social,
and economic factors, it is useful for statistical evaluations, public management,
and economic and socio-environmental research.

2.1.1 Disaster Database

Disaster records for the 2003–2016 period were used as input data for this study.
These data were obtained from the S2ID (Integrated Disaster Information System)
database of the Secretaria Nacional de Proteção e Defesa Civil - SEDEC [4]. Those
data are available to download from the SEDEC website; the records are arranged in
a spreadsheet by date of occurrence, cities/state affected, and type of event or natural
phenomena according to the Cobrade: Brazilian Code of Disasters [8]. Cobrade
comprises geological, hydrological, meteorological, climatological, biological, and
technological disasters. A spreadsheet with a total of 28,011 records was down-
loaded from the S2ID database; 51 of those were excluded from the studies because
they did not belong to Cobrade. Then, 27,960 records were considered for this work,
and they relate to the same number of documents about disasters caused by natural
phenomena in Brazil between 2003 and 2016.
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Fig. 1 Regional division of Brazil. North States: Acre (AC), Amapá (AP), Amazonas (AM), Pará
(PA), Rondônia (RO), Roraima (RR); Northeast States: Alagoas (AL), Bahia (BA), Ceará (CE),
Maranhão (MA), Paraíba (PB), Pernambuco (PE), Piauí (PI), Rio Grande do Norte (RN), Sergipe
(SE); Central West: Distrito Federal (DF), Goiás (GO), Mato Grosso (MT), Mato Grosso do Sul
(MS); Southeast States: Espírito Santo (ES), Minas Gerais (MG), Rio de Janeiro (RJ), São Paulo
(SP); South: Paraná (PR), Rio Grande do Sul (RS), Santa Catarina (SC)

The S2ID database was established in 2012 by the national government [7]
and nowadays, it is the national system officially recognized for supplying federal
resources to cities and states affected by disasters [5]. The files accessed in the
Historic Series queries, S2ID database, contain the main information on the Federal
Emergency Situations and State of Calamity carried out by SEDEC. It is important
to realize that the information registered on S2ID documents refers to Brazilian
cities; however, as this is a country diagnostic study, those documents were grouped
by states and regions.
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2.2 Statistical Inference

Whenever it comes to quantitative analysis, many fields of science use Statistics for
assertive and data-driven solutions. A most common interest in real-life problems
is to properly assess some unknown quantities, as well as any “uncertainty”
concerning this assessment. One could, for example, study the probability of raining
in a particular forest, or the mean number of wildfires in some dry regions. We
collected a sample of the experiment in study and, after observing it, derived
conclusions about these unknown quantities. Since we have only one realization
(sample) from many other that are theoretically possible, we must also account for
this “randomness” sample in measuring our unknown quantity—or parameter—of
interest. This is a very well-known area of statistics called inference.

Statistical inference is all about studying some parameters of interest based on
a random sample from an allegedly infinite population. The probability of each
sample drawn from all possible population outcomes is very likely to depend on our
parameter of interest and can be expressed by analytical devices called probability
distributions. An unobserved sample point will always have some probability
distribution behind it, and it is also called as a random variable—let us depict it by
an upper-case X. An observed sample point is no longer random (now we know its
value) and it is denoted by a lower-case x. A variable can be classified into discrete,
when its range of possible values is enumerable (generally integers), or continuous
when it is not (every real number in range).

Let X be a random variable with probability distribution depending on θ ,
where θ is our parameter of interest. A probability distribution depends on one or
more parameters and is well defined by any of the two following formulations: a
probability density function (or a probability mass function when our variable is
discrete) represented by p(x|θ), which yields probabilities for continuous ranges of
possible values of X (or even for point values if X is discrete), and a cumulative
distribution function, the probability of a value lower than or equal to x, denoted by
F(x|θ).

As an example, let X denote the number of disasters in some regions. For one to
properly investigate X, it makes sense to know more about how it is probabilistically
distributed in that specific region. Since we are interested in a counting variable
(thus, discrete), a very common probability distribution to explain such class of
variables is the Poisson distribution, which depends on a parameter θ—the mean
number of disasters in that region (which is unknown)—and has a probability mass
function given by

p(x|θ) = P [X = x|θ ] = θxe−θ

x! (1)

and cumulative distribution function denoted by

F(x|θ) = P [X ≤ x|θ ] =
x∑

k=0

θke−θ

k! . (2)
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The Poisson probability distribution is defined by only one parameter—the
population mean (several distributions are indexed by two or more parameters). A
random variable X with Poisson distribution is indexed by X ∼ Poisson(θ), where
θ is the population mean.

Now, let X1, X2, . . . , Xn be a random sample of size n drawn from X. In our
example, X1, X2, . . . , Xn stand for the yearly number of disasters in a given region
collected for n years—Xi is the number of disasters at year i (i = 1, 2, . . . , n). If we
can properly use the sample data to “guess” the value of θ in a reliable way, then we
will be able to make probabilistic relevant statements about how disaster frequency
behaves in that region—a common procedure called estimation.

The next step is to convert the sample data into relevant information to estimate
θ ; and two basic assumptions about our sample are essential to carry this on:

1. the data points must be independent from each other, or equivalently; the
occurrence of some value for Xi can not impact the probabilities of possible
values of Xj (i �= j ). Usually, this is not the case for time-dependent sampling
such as our example—temporal dependence matters, after all—but for the
moment, let us assume independence for the sake of simplicity (see Section 4
for citations of time-dependent inference approaches);

2. all sample points (which are random variables) came from the same population;
therefore, having the same probability distribution.

If X1, X2, . . . , Xn are independent random variables, it is possible to derive a
joint probability distribution for all the sample data by multiplying their probability
density (or mass) functions, in an analogous way of calculating joint probabilities
of independent events in probability theory. Then, the joint probability density
(mass) function is defined by p(x|θ) = ∏n

i=1 p(xi |θ) and can be used to derive
probabilities of possible samples of size n.

This quantity can also be seen as a function of θ , in which its interpretation
changes drastically. Now, this function shows how much a value of θ is “likely” to
be the true θ under the sample information. In other words, it shows which values
of θ would give our sample a high probability of occurrence (since we managed to
collect it anyway). When interpreted in this way, it is denoted by L(θ |x) and called
as a likelihood function of θ . If X ∼ Poisson(θ), the likelihood function of θ for a
given sample x = (x1, x2, . . . , xn) is

L(θ |x) =
n∏

i=1

p(xi |θ) = θ
∑n

i=1 xi e−nθ

∏n
i=1 xi ! . (3)

A very common estimation procedure is to find the value of θ that maximizes
the likelihood function or, in other words, the one θ that optimizes our sample
probability of occurrence. This estimator of θ is known as its maximum likelihood
estimator and composes an integral part of the classical inference context. One main
issue of it, though, is that we cannot include any subjective statement about θ in
its estimation—it is solely carried out based on the sampled data. In fact, the θ
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parameter is a fixed, immutable point determined by Nature and no prior beliefs
about it are allowed to support its estimation in the classic inferential procedure. On
the other hand, Bayesian inference [2, 16, 18] presents an entirely different approach
for the problem of inference about θ , by interpreting it as some measurable quantity
via probability distributions. This context allows us to combine some prior belief
about θ into the defined-by-data likelihood to assist the inferential process.

2.3 Bayesian Inference

2.3.1 Basic Concepts

The Bayesian methodology consists in specifying some probability distributions for
the observed variables conditioned to one (or more) unknown parameter(s), denoted
by θ for simplification purposes and constructing its likelihood function L(θ |x)

based on sample data. It is assumed that θ is also a random variable with some
prior probability function p(θ) defined before sample collection. The inference
about the parameter is based on the posterior probability distribution obtained by
the application of the well-known Bayes’ theorem [18],

p(θ |x) = L(θ |x)p(θ)
∫
Θ

L(θ |x)p(θ)

= L(θ |x)p(θ)

p(x)
, (4)

where Θ denotes the parametric space (the set of all possible values) of θ and p(x) is
the normalizing constant of p(θ |x), (since p(θ |x) is a probability density and must
be integrable to one) called the marginal distribution or predictive distribution of X
[14]. Note that L(θ |x) is actually a function of the sample, which explains why the
Bayes’ theorem applies. From (4), p(θ |x) is proportional to the multiplication of the
likelihood and the prior function,

p(θ |x) ∝ L(θ |x)p(θ). (5)

Bayes’ theorem is one of the few results of Mathematics that proposes to
characterize learning with experience. In Bayesian inference, each problem is
unique and θ is a quantity of interest taken with different levels of knowledge that
depends on the problem in hand and on who analyzes it. Then, for Bayesian, the
probability distribution that captures this variability is based on a prior information
and is subjective by nature [18].

One of the most important questions in Bayesian inference concerns prior
distributions, which represents the knowledge about an uncertain parameter θ before
observing the results of a new experiment. Being aware of which information is
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going into the prior distribution and the properties of the resulting posterior are
crucial when setting up a prior distribution for a specific problem. An important
note is that the prior distribution does not need to carry any information about θ at
all, representing in this fashion our ignorance about its behavior. Examples of non-
informative priors involve flat distributions for θ (such as Normal with σ 2

θ > 106)
and functional forms designed to intentionally maximize our ignorance (or entropy)
about θ for a given dataset.

These priors are included in the class of objective priors, in a sense that their
impact on the posterior distribution does not depend on individual and subjective
beliefs, thus leading to “objective” results. On the other hand, there are situations in
which may be desirable to add some prior knowledge onto the elicitation of the prior
distribution. Objective informative priors are given when knowledge about θ comes
from a quantifiable source, like historical data. When such information, however,
comes from an expert observation, we are dealing with subjective information, since
it is not quantifiable in any unique and well-defined way and brings to surface a class
of prior distributions called subjective priors.

One problem in the implementation of Bayesian methodologies is the ana-
lytical intractability. The class of conjugate priors aims to get over this issue
by formulating a prior distribution which has the same functional form of the
posterior distribution, when combined with the data information expressed through
the likelihood function. It deserves special attention when we want to sequentially
update our inference about θ as a new data that becomes available over time.

If X ∼ Poisson(θ), we could consider a Gamma(α, β) prior distribution for θ ,
which depends on parameters α and β and has the following form:

p(θ |α, β) = βα

Γ (α)
θα−1e−βθ , (6)

where Γ (α) is the Gamma function applied on α. When combined with the Poisson
likelihood given in (3), the posterior probability density of θ is given by

p(θ |x) ∝ L(θ |x)p(θ |α, β)

= θ
∑n

i=1 xi e−nθ

∏n
i=1 xi !

βα

Γ (α)
θα−1e−βθ

∝ θ
∑n

i=1 xi+α−1e−(n+β)θ ,

where constant quantities in θ were omitted (a useful practice when calculating
posterior distributions). It turns out that the remaining expression is proportional to
a Gamma distribution with parameters

∑n
i=1 xi + α and n + β. This is an example

of a conjugate prior: if X ∼ Poisson(θ) and θ ∼ Gamma (α, β), then θ |X ∼
Gamma (

∑n
i=1 xi + α, n + β). Further details about conjugate priors are given

in [16] and [18].
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Posterior distributions can be used to provide point estimates or interval estimates
(such as the highest posterior density ones [16]) of the parameter of interest,
hypothesis testing, or to predict the value of future observations. It provides a unified
set of Bayesian solutions to the conventional problems of scientific inference. The
choice of the Bayesian point estimates of θ depends on the form of the posterior
distribution, as well as the objectives of its use. The most used estimates are the
posterior mode, posterior mean, and posterior median:

• Posterior mode: θ̂ such that max
θ∈Θ

p(θ |x);

• Posterior mean: θ̂ = E[θ |x];
• Posterior median: θ̂ such that P [θ ≥ θ̂ ] ≥ 1/2 and P [θ ≤ θ̂ ] ≥ 1/2.

Bayesian approach can be used to sequentially update the information about
the parameter as new data become available. Suppose we formulate a prior for the
parameter θ and observe a random sample x1. Then the posterior is

p(θ |x1) ∝ L(θ |x1)p(θ).

If a new sample x2 is observed, we can use the previous posterior as the new
prior and derive a new posterior,

p(θ |x2) ∝ L(θ |x2)p(θ |x1).

This “sequential updating” process can continue indefinitely in the Bayesian setup.
The Bayesian operation is often difficult to execute and requires the use of

numerical methods and the approximate Monte Carlo simulation method via
Markov Chains. All results presented from this point on were produced with the
statistical software R, version 3.3.3 [10].

2.3.2 Bayesian Inference for Rate of Disasters Occurrence

Then, let X be a random variable related to the number of disasters occurring in a
given period. We have that X given θ has a Poisson distribution with parameter θ ,
the disaster occurrence rate in the selected period. Consider x = (x1, x2, . . . , xn) an
observed random sample of the random variable X. With likelihood function given
by (3) and prior function for θ given by (6), that is, a Gamma(α, β) conjugate prior,
the posterior distribution of θ is θ |X ∼ Gamma(

∑n
i=1 xi +α, n+β), with posterior

mean given by

E[θ |X] =
∑n

i=1 xi + α

n + β
. (7)
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Fig. 2 Illustration of prior distribution, likelihood function, and posterior distribution, considering
simulated data

and posterior variance

V ar[θ |X] =
∑n

i=1 xi + α

(n + β)2
. (8)

Figure 2 represents the described Bayesian framework for some simulated data.
It shows the comparison of the prior distribution with the posterior distribution to
assess to what extent the experimental information can alter the initial belief.

2.3.3 Bayesian Prediction

Professionals from a multitude of fields often need to make some realistic statements
about the likely outcome of a future “experiment of interest” based on the distribu-
tion of previously conducted related experiments. In the Bayesian framework, given
an observed quantity X related to an unobserved parameter θ through a posterior
distribution p1(θ |x), our interest relies on making inference about another random
quantity Y related to X and θ through p2(Y |θ,X).

After observing a random sample x = {x1, x2, . . . , xn}, why not just predict
some new observation xn+1 by plugging into the distribution of X some posterior
point estimate θ̂? It turns out that we must account for the uncertainty about θ in
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our prediction, otherwise, new observations would have underestimated variability.
Since this uncertainty about θ is reflected on its posterior, averaging the distribution
of xn+1 over it would yield

p(xn+1|x) =
∫

p(xn+1|θ)p(θ |x)dθ. (9)

If X follows a Poisson distribution with parameter θ having a Gamma(α, β)

conjugate prior, it was shown that θ |X ∼ Gamma
(∑n

i=1 xi + α; n + β
)
. If we

are interested in making inference about some unobserved value xn+1 from the
same population of {x1, x2, . . . , xn} and θ -conditionally independent from them,
the predictive distribution is given by

p(xn+1|x) =
∫ ∞

−∞
p(xn+1|θ)p(θ |x)dθ

=
∫ ∞

−∞
θxn+1e−θ

xn+1!
(n + β)

∑n
i=1 xi+α

Γ
(∑n

i=1 xi + α
)θ

∑n
i=1 xi+α−1e−(n+β)θdθ

= (n + β)
∑n

i=1 xi+α

Γ
(∑n

i=1 xi + α
)
xn+1!

∫ ∞

−∞
θ

∑n+1
i=1 xi+α−1e−(n+β+1)θ dθ

= (n + β)
∑n

i=1 xi+α

Γ
(∑n

i=1 xi + α
)
xn+1!

Γ
(∑n+1

i=1 xi + α
)

(n + β + 1)
∑n+1

i=1 xi+α
,

since θ
∑n+1

i=1 xi+α−1e−(n+β+1)θ is proportional to Gamma
(∑n+1

i=1 xi+ α; n+β+1
)

.

Note that (9) is completely general, in that p can be any density or even an
extremely complex model, and θ can represent one, two, or even thousands of
unknown parameters. In practice, this can be a difficult calculation. So, most of the
time, we simulate values from the predictive density, rather than getting the exact
analytical solution:

1. Draw a sample from the posterior density of θ , p(θ |x).
2. Then plug it into p(xn+1|θ) and draw an xn+1 observation from it.
3. Repeat steps 1 and 2 many times (at least 1000). Since a different value of θ

is used in each time, we automatically restore the uncertainty missing when we
plug in just a single value of θ .

2.3.4 Mixture of Distributions

An alternative way to evaluate the distribution of the number of disasters in each
Brazilian state can be made possible after the idea of mixture of distributions, which
is described by [17]. If p0(x), p1(x), . . . , pk(x) is a sequence of either all discrete
probability mass functions or all probability density functions, and ω0, ω1, . . . , ωk
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are a sequence of weights satisfying ωi > 0 and
∑k

i=1 ωi = 1, then
∑k

i=1 ωipi(x)

is also a probability mass/density function, which is called a mixture of distributions.
As an example, consider just one state of Brazil for some period of J years,

and that we want to study its mean number of disasters θ , θ ∈ Θ . For the j -
th year (j = 1, . . . , J ), let Xj be a random variable representing the number of
occurred disasters at year j , with probability density function given by p(xj |θ).
The likelihood function for the j -th year is Lj (θ |xj ) = ∏nj

i=1 p(xij |θ) = p(xj |θ),
since we have only one observation for each year in this case (nj = 1).

Under the Bayesian context, we derive the prior distribution of θ , p(θ), and
the posterior distribution of θ for each year given their respective data, pj (θ |xj ).
Therefore, for the chosen state, the posterior distribution of θ is given by the mixture
of J posterior distributions of θ . Then, the mixture of posterior distributions is given
by

pM(θ |x) =
J∑

j=1

ωjpj (θ |xj ) (10)

where ωj is the weight of the j -th year.

3 Results

The Brazilian country has 5570 municipalities, from which 75% of them (4168)
have declared an emergency situation at least once during the study period; for the
remaining 25%, data is not available. Among the first 75%, some cities stand out for
the number of times where an emergency situation was declared in Ceara State (CE):
Irauçuba (28 occurrences), Caridade (27), Tauá, (27), and Pedra Branca (26); in
Pernambuco State (PE): Lagoa Grande (26), and Santa Cruz (26). The most affected
states of the country in the same period were Paraíba (PB) and Rio Grande do Sul
(RS), with 3286 and 3215 emergency situations reported, respectively.

The map of Fig. 3 shows the spatial distribution of disasters in Brazil between
2003 and 2016. The map revels that six states (RR, AP, AC, RO, TO, GO) and
Distrito Federal (DF), each one, had less than 200 emergency situations declared, a
very low number if compared to the others. PB and RS are the most affected states,
registering more than 3000 occurrences, and six other states (BA, CE, MG, SC, PE,
PI) had between 2000 and 3000 occurrences in the same period. There are many
factors that can explain these numbers, like frequency, magnitude, or intensity of
hazardous events or the exposure level of municipalities to them, but this type of
analysis is out of scope from this study.

It is advisable to approach risk and disaster research by classifying the territory in
homogeneous regions of environmental determinants such as topography, climate,
geological substrate, soils, hydrology, or vegetation because of their correlation with
natural threats. In spite of that, another useful approach is by identifying the impacts
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Fig. 3 Spatial distribution of disasters in Brazil. It refers to S2ID data from 2003 to 2016

and the level of hazards damage on the population; this information is related to
the spatial distribution of natural phenomena that can cause damage, but also can
reflect social asymmetries that are predominant in each social-physical region. For
example, Fig. 3 shows that the greater frequencies of disaster occurrences are in
the set of the most densely populated states, instead of those exposed to multi-
hazards. However, this study does not consider if there is or not a civil defense
in the municipalities responsible for generating S2ID documents.

Figure 4 shows a predominance of the flood event in much of the territory in the
Northern Region: (AC, AM, AP, and PA states); dryness is spread to all Brazilian
Regions: North (RO, RR, TO), Northeast (BA, CE, MA, PB, PE, PI), Central West
(MS), Southeast (MG and RJ), and South (PR and RS); drought stands out in AL,
SE, and RN states of Northeast; higher frequency of flash floods predominates in
GO (Central West-CO), SP and ES (Southeast), and SC (South); MT and CO stand
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Fig. 4 Spatial distribution of disaster occurrences by cause typology in Brazil. It refers to S2ID
data from 2003 to 2016

out due to intense frequency of rainfalls. A small portion of Federal District (DF)
records is related to wildfires.

Although the spatial distribution of the number of occurrences is not related
with the regional division of Brazil (Fig. 1), the typology has some correlation:
the Northern region is more susceptible to floods; Central West region is more
susceptible to intense rainfall and flash floods; Northeast is more susceptible to
dryness and drought; Southeast and South regions cope with multiple hazards,
standing out among those flooding, dryness, and flash floods.

Dryness and drought were the two more frequent types of threat that generate
impacts in the country (2003 to 2012), encompassing 56 and 14% (respectively)
over all records used for the study. On the other hand, 2013 was the year with the
highest number of disaster occurrences reported on Brazilian S2ID database (Fig. 5),
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Fig. 5 Temporal distribution of the number of disasters per year, Brazil, 2003–2016

Table 1 Series of the number of disasters (dryness and droughts) for the State of Alagoas, Brazil
(2003–2016)

State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

AL 123 0 26 14 33 65 51 34 0 36 97 43 74 81

3743 in total; among those, the most frequent event was dryness (64%), followed by
drought (23%). Those results are in agreement with the previous Brazilian studies:
dryness and droughts, which are directly related to the reduction of rainfall and
to the water deficit, respectively, were the most frequent types of hazard in Brazil
period 1991–2012, and are considered the major national problems related to natural
threats in this country, like documented on the Atlas Nacional de Desastres Naturais.

To perform our analysis in the Bayesian framework, we only considered the
dryness or drought data of Alagoas, Northeast Region, in the study period (Table 1),
as the procedure is analogous to the other states. Figure 6 illustrates the sequential
updating procedure to derive Bayesian inference and shows how the posterior
distribution evolves across the years (it “walks” over the θ axis) as more data is
available to update it. In this context, the prior for θ in 2003 is a conjugate, non-
informative one (Gamma with α = 0.5 and β = 0.0001, resulting in a large
variance) and the data from 2003 (Poisson with parameter θ ) combines to form the
posterior distribution of θ in 2003, also a Gamma distribution. For the subsequent
years, the posterior from the previous year is used as the prior distribution and
combined with the current year data to form the updated posterior distribution of
θ (note that these posterior distributions are always Gamma).

It is noticeable how little the posterior evolves at the last years; in fact, it has
already absorbed so much past information, especially the 2004–2012 period, that
makes new data struggle to change our belief about θ , regardless of how impactful
they are. The posterior distribution of θ in 2015 tells us that having 60 or more
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Fig. 6 Updating procedure per year, Alagoas, Brazil, 2003–2015

disasters in Alagoas is highly unlikely (almost zero probability), even though 97
disasters were reported in 2013, just 2 years before.

For comparison purposes, Fig. 7 shows the mixed posterior distribution of θ

considering the period from 2003 to 2015 (2016 was left out to compare predictions
from both approaches). Instead of sequential updating, here all the year samples
are being observed at the same time. The weight of each sample is proportional
to how fresh is the data: newer data has more weight (as its information is more
up-to-date), which declines proportionally for older data. Since we have a 13-year
time series for analysis (2003–2015), the most recent year of 2015 has a weight of
13/(1 + 2 + . . . + 13) = 13/91. The year of 2014 has a weight of 12/91 and so on
until 2003, with a weight of 1/91. In this way, information loses value as it grows
too old and no longer reflects the current reality.

The likelihood of each year is combined with a non-informative prior distribution
that is the same for all years (again, Gamma(0.5, 0.0001)). Then, the calculated
posteriors for each year are combined with the described weights, leading to a
mixed posterior distribution that considers all the different information gathered
at the period of 2003–2015, giving more weight to recent events. As 2013 showed
97 disasters, this is why low values (<50) are still predominant, but higher values
(>80) are somehow feasible as well. Table 2 compares both posterior distributions
and leads to the same conclusion: even though location measures are similar for
both, the 95% HPD credibility interval includes a much wider range of values.
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Fig. 7 Mixture of posterior distributions of θ , Alagoas, Brazil, 2003–2015

Table 2 Summary of posterior distributions of θ , Alagoas, Brazil, 2003–2015

Posterior Median Mean 95% HPD Interval

Sequential updating 45.9 45.9 [42.2, 49.6]
Mixture 43.0 48.1 [4.7 10−8; 101.7]

After calculating the posterior for the year 2015 in both ways (sequential
updating and mixing), Fig. 8 shows the predictive distributions attempting to predict
the number of disasters in 2016, in the state of Alagoas. It is clear to see that the
predictive distribution obtained by the sequentially updated posterior fails to capture
the true number of disasters in that state in 2016 (81), as it is located in a region of
lower counts and lacks the needed variability to, at least, consider the true 2016
number as possible—a very informative distribution indeed as it has low variance,
but misses its target entirely (P [X2016 ≥ 81| θ ] = 0). The predictive given by the
mixed posterior, in contrast, is much less informative as it has greater variance, but
that is exactly a trait of Alagoas series: high variability. The “mixed” predictive
distribution carried this trait on and, as a result, was able to capture the true value of
2016 with some degree of certainty (P [X2016 ≥ 81| θ ] = 0.17).
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Fig. 8 Predictive distribution of x (number of disasters—dryness and droughts) for 2016, Alagoas,
Brazil

4 Discussion and Conclusion

This work aimed to summarize some spatio-temporal data of disasters in Brazil
while proposing a comprehensive, didactic methodology to study their behavior
over time. Among the main results that we observed, in agreement with previous
studies [9], it is important to highlight dryness and drought among the natural
hazards that cause the most disasters in Brazil. These phenomena corresponded to
51.3% of the documents reviewed in [9] and to 70% of the documents analyzed in
this book chapter.

According to [9], the number of disasters in Brazil increases over time, but these
numbers alone are not strong enough to assure that disasters are really happening
more often. The increase in the number of occurrences recorded in S2ID can be
related to several variables; it is not necessarily due to the increase of disasters
or intensification of climate change effects, but it may also be related to the new
risk management policies established by the Brazilian government as a result of
the national system restructuring [7], in which competent official institutions are
required to record the damage to the municipality for declaration of emergency or
state of public calamity. It is possible to spot a rise in the numbers for the last 7 years
of the study period (2003–2016) compared to the earlier ones, but as much as it can
represent an actual rise, an improvement of data collection and upkeep is a feasible
hypothesis as well.
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We presented a Bayesian approach for inference about the number of disasters in
Brazil, picking the 2003–2015 period to construct our posterior model and using
it to make predictions for 2016. The mixture of distributions is a very simple
and intuitive procedure, as it managed to derive some fairly assertive conclusions
regarding the prediction year when the traditional sequential update could not. The
resulting mixed posterior distribution of θ revealed itself as a much better summary
of θ—being non-unimodal and asymmetrical, it is safe to say that it succeeded to
capture the variability trait from the series of Alagoas.

There are more sophisticated, suitable ways to extract information from the time
series. Some elementary readings in time series model construction are given by [3]
and [20], while [1] presents some ways to deal with time series modeling in a
Bayesian framework; and a very broad paperwork on Bayesian dynamic models
can be found in [11]. To sum it up, some disaster related works include [19], who
proposes a generalized Pareto distribution to model rare event occurrences for small
samples, and [13] developed a social vulnerability index adaptation for Brazilian
reality.

To present a didactic way of data analysis, we limited our study only to the
number of disasters, region, and year. Weather and social/geographic exposure-
related features would be very interesting to enrich our study, though we are still
in the development of a more appropriate national database for making it possible.
This is a very important matter, since it would allow us to understand, among other
things, some causes of disaster occurrences and their impact on the population. Such
a source of information would enable statistical studies to plan and foresight against
disasters, followed by risk management to lower population exposure and would
improve their response time in face of an occurrence.

Acknowledgements The authors would like to thank to Federal University of São Paulo—
UNIFESP, to CNPq—Brazil, to National Early Warning and Monitoring Center of Natural
Disasters (CEMADEN) and to the Thematic Committee Mathematics & Disasters of the Brazilian
Society of Applied (SBMAC), by its research support.

References

1. Barber, D., Cemgil, A.T., Chiappa, S.: Bayesian Time Series Models. Cambridge University
Press, Cambridge Books Online (2011)

2. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer Series in Statistics.
Springer, Berlin (1985)

3. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting And Control. Holden-Day
Series in Time Series Analysis and Digital Processing. Holden-Day, San Francisco (1976)

4. Brasil: Sistema Integrado de Informações sobre Desastres, S2ID. Available via DIALOG.
https://s2id.mi.gov.br/. Accessed 15 May 2017

5. Brasil: Ministério da Integraçc̃o Nacional. Gabinete do Ministro, Portaria N. 215,
de 4 de Abril de 2017. Diário Oficial da União, n. 67. Available via DIA-
LOG. http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=06/04/2017&jornal=1&
pagina=40&totalArquivos=72. Accessed 17 Apr 2018

https://s2id.mi.gov.br/
http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=06/04/2017&jornal=1&pagina=40&totalArquivos=72
http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=06/04/2017&jornal=1&pagina=40&totalArquivos=72


182 C. B. Martins et al.

6. Brasil: Ministério da Ciência, Tecnologia e Inovação. Modelagem climática e
vulnerabilidades Setoriais á mudança do clima no Brasil. Secretaria de Políticas e
Programas de Pesquisa e Desenvolvimento. Coordenação-Geral de Mudanças Globais
de Clima. Ministério da Ciência, Tecnologia e Inovação, Brasília (2016). Available via
DIALOG. https://www.researchgate.net/profile/Wanderson_Silva7/publication/305084250_
Modelagem_Climatica_e_Vulnerabilidades_Setoriais_a_Mudanca_do_Clima_no_Brasil/
links/57818a7a08ae5f367d393b12/Modelagem-Climatica-e-Vulnerabilidades-Setoriais-a-
Mudanca-do-Clima-no-Brasil.pdf. Accessed 17 Apr 2018

7. Brasil: Ministério da Integração Nacional. Instrução Normativa N. 01, de 24 de Agosto
de 2012. Available via DIALOG. http://www.mi.gov.br/c/document_library/get_file?uuid=
822a4d42-970b-4e80-93f8-daee395a52d1&groupId=301094. Accessed 17 Apr 2018

8. Brasil: Ministério da Integração Nacional. Instrução Normativa N. 01, de 24 de Agosto
de 2012. Anexo 1: Classificação e Codificação Brasileira de Desastres (Cobrade).
Available via DIALOG. http://www.integracao.gov.br/documents/3958478/0/Anexo+V+-+
Cobrade_com+simbologia.pdf/d7d8bb0b-07f3-4572-a6ca-738daa95feb0. Accessed 17 Apr
2018

9. Centro Universitário de Estudos e Pesquisas Sobre Desastres, CEPED. Atlas Brasileiro de
Desastres Naturais 1991 a 2012. 2. ed. rev. ampl. Florianópolis: CEPED UFSC (2013).
Available via DIALOG. https://s2id.mi.gov.br/paginas/atlas/. Accessed 17 Apr 2018

10. Core Team, R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria (2016). Available via DIALOG. https://www.R-project.
org/. Accessed 17 Apr 2018

11. Damien, P., Dellaportas, P., Polson, N.G., Stephens, D.A.: Bayesian Theory and Applications.
Oxford University Press, Oxford (2015)

12. Debortoli, N.S., Camarinha, P.I.M., Rodrigues, R.R., Marengo, J.A.: Índice de vulnerabilidade
aos desastres naturais no Brasil, no contexto de mudana̧as climáticas. Cap. 7 em: MCTI
Modelagem climática e vulnerabilidades setoriais á mudança do clima no Brasil. MCTI,
Brasília, pp. 321–385 (2016)

13. de Loyola Hummell, B.M., Cutter, S.L., Emrich, C.T.: Social vulnerability to natural hazards
in Brazil. Int. J. Disaster Risk Sci. 7, 111–122 (2016)

14. Ibrahim, J.G., Chen M.-H., Sinha, D.: Bayesian Survival Analysis. Springer Series in Statistics,
2nd edn. Springer, Berlin (2005)

15. Instituto Brasileiro de Geografia e Estatística – IBGE. Sinopse do Censo Demográfico
2010. Ministério do Planejamento, Orçamento e Gestão. Rio de Janeiro (2011). Available
via DIALOG. https://biblioteca.ibge.gov.br/visualizacao/livros/liv49230.pdf. Accessed 17 Apr
2018

16. Migon, H.S., Gamerman, D., Louzada, F.: Statistical Inference: An Integrated Approach, 2nd
edn. Taylor & Francis, Boca Raton (2014)

17. Mood, A.M., Graybill, F.A., Boes, D.C.: III.4.3 Contagious distributions and truncated
distributions. In: Introduction to the Theory of Statistics, 3rd edn. McGraw-Hill, New York
(1974)

18. Paulino, C.D.M., Turkman, M.A.A., Murteira, B.: Estatística Bayesiana, 1st edn. Fundação
Calouste Gulbenkian, Lisboa (2003)

19. Pisarenko, V.F., Rodkin, M.V., Rukavishnikova, T.A.: Probability estimation of rare extreme
events in the case of small samples: technique and examples of analysis of earthquake catalogs.
Izv. Phys. Solid Earth 53, 805–818 (2017)

20. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications: With R Examples.
Springer Texts in Statistics. Springer, Berlin (2017)

21. United Nations Office for Disaster Risk Reduction, UNISDR: Sendai Framework for Disaster
Risk Reduction 2015–2030 (2015). Available via DIALOG. http://www.preventionweb.net/
files/43291_sendaiframeworkfordrren.pdf. Accessed 15 July 2017

https://www.researchgate.net/profile/Wanderson_Silva7/publication/305084250_Modelagem_Climatica_e_Vulnerabilidades_Setoriais_a_Mudanca_do_Clima_no_Brasil/links/57818a7a08ae5f367d393b12/Modelagem-Climatica-e-Vulnerabilidades-Setoriais-a-Mudanca-do-Clima-no-Brasil.pdf
https://www.researchgate.net/profile/Wanderson_Silva7/publication/305084250_Modelagem_Climatica_e_Vulnerabilidades_Setoriais_a_Mudanca_do_Clima_no_Brasil/links/57818a7a08ae5f367d393b12/Modelagem-Climatica-e-Vulnerabilidades-Setoriais-a-Mudanca-do-Clima-no-Brasil.pdf
https://www.researchgate.net/profile/Wanderson_Silva7/publication/305084250_Modelagem_Climatica_e_Vulnerabilidades_Setoriais_a_Mudanca_do_Clima_no_Brasil/links/57818a7a08ae5f367d393b12/Modelagem-Climatica-e-Vulnerabilidades-Setoriais-a-Mudanca-do-Clima-no-Brasil.pdf
https://www.researchgate.net/profile/Wanderson_Silva7/publication/305084250_Modelagem_Climatica_e_Vulnerabilidades_Setoriais_a_Mudanca_do_Clima_no_Brasil/links/57818a7a08ae5f367d393b12/Modelagem-Climatica-e-Vulnerabilidades-Setoriais-a-Mudanca-do-Clima-no-Brasil.pdf
http://www.mi.gov.br/c/document_library/get_file?uuid=822a4d42-970b-4e80-93f8-daee395a52d1&groupId=301094
http://www.mi.gov.br/c/document_library/get_file?uuid=822a4d42-970b-4e80-93f8-daee395a52d1&groupId=301094
http://www.integracao.gov.br/documents/3958478/0/Anexo+V+-+Cobrade_com+simbologia.pdf/d7d8bb0b-07f3-4572-a6ca-738daa95feb0
http://www.integracao.gov.br/documents/3958478/0/Anexo+V+-+Cobrade_com+simbologia.pdf/d7d8bb0b-07f3-4572-a6ca-738daa95feb0
https://s2id.mi.gov.br/paginas/atlas/
https://www.R-project.org/
https://www.R-project.org/
https://biblioteca.ibge.gov.br/visualizacao/livros/liv49230.pdf
http://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf
http://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf


Bayesian Analysis of the Disaster Damage in Brazil 183

22. United Nations, UN: Transforming our world: the 2030 Agenda for Sustainable Development.
Resolution adopted by the General Assembly on 25 September 2015. Seventieth session,
October 2015. Available via DIALOG. http://www.un.org/en/development/desa/population/
migration/generalassembly/docs/globalcompact/A_RES_70_1E.pdf. Accessed Cited 12 Apr
2018

23. United Nations, UN.: Report of the Inter-Agency and Expert Group on Sustainable Devel-
opment Goal Indicators. Economic and Social Council. E/CN.3/2016/2/Rev.1, Statistical
Commission, Forty-seventh session. March 2016. Available via DIALOG. https://unstats.un.
org/unsd/statcom/49th-session/documents/2018-2-SDG-IAEG-E.pdf. Accessed 12 Apr 2018

24. United Nations, UN.: Report of the open-ended intergovernmental expert working group
on indicators and terminology relating to disaster risk reduction. General Assembly.
A/71/644. Seventy session. December 2016. Agenda item 19 (c) sustainable development:
disaster risk reduction. Available via DIALOG. https://www.preventionweb.net/files/50683_
oiewgreportenglish.pdf. Accessed 17 Apr 2018

http://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1E.pdf
http://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1E.pdf
https://unstats.un.org/unsd/statcom/49th-session/documents/2018-2-SDG-IAEG-E.pdf
https://unstats.un.org/unsd/statcom/49th-session/documents/2018-2-SDG-IAEG-E.pdf
https://www.preventionweb.net/files/50683_oiewgreportenglish.pdf
https://www.preventionweb.net/files/50683_oiewgreportenglish.pdf


About Interfaces Between Machine
Learning, Complex Networks,
Survivability Analysis, and Disaster Risk
Reduction
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1 Introduction

1.1 Background and Motivation

Modern society heavily relies on critical infrastructure systems. They are essential to
support public interests and to keep health, security, and economic/social wellness.
Their disruption or depletion would cause expressive consequences to society.
Local and instantaneous failures or impairments could result in long-term effects
on people’s lives and severe damages to buildings and goods—characterizing
human, social, and economic impacts [6], over various time and social scales.
As these infrastructure systems are exposed to several kinds of risks, most of the
preventive/protection plans are related to the recovery from a disaster and continuity
of business.
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1.2 Disaster Risk Reduction (DRR) Management

To avoid losses, to increase profits, and to increase efficiency, planning and decision
making should work well. To be able to manage, a deep and specific knowledge
is necessary. For disaster risk management, we need to know the possible hazards,
how vulnerable the communities are, and what has been done to improve resilience.

The UNISDR [75] defines disaster risk management as the application of
disaster risk reduction policies and strategies to prevent new disaster risk, reduce
existing disaster risk, and manage residual risk, contributing to the strengthening of
resilience and reduction of disaster losses.

The disaster risk management can be performed by local and global governments,
non-governmental organizations, the private sector, and communities. Also, the
management can be applied both to either extensive (low intensity and high
frequency) and intensive (high intensity and low frequency) disasters.

1.3 Defining Risk

The understanding of risk is a key component for the management of critical
infrastructure systems. The word risk is widely discussed among authors who study
disasters. Historically, the words risk, fortune (chance), and hazards appeared in
related contexts. One of the first occurrences of such words appeared in manuscripts
on sailors that went to the sea, with no warranties that they would either arrive
at their destination or be able to go back to their origin. There was a need to
characterize the risk of going to the sea [61, 79]. Later, the word risk was used
for goods insurance and then risk and insurance became associated words.

The International Strategy for Disaster Reduction—ISDR, an UN office with
focus on the disaster risk reduction, defines risk as “the combination of the
probability of an event and its negative consequences” [75]. This concept is captured
through the following equation:

R = HV (1)

where R is disaster risk, H is hazard, and V is vulnerability.
Equation (1) explicitly indicates the role of both vulnerability (V ) and hazard (H )

on risk. This is in contrast to hazard-focused research and policy, which address
hazards but not vulnerabilities [20]. Disaster risk is a function of the magnitude,
potential occurrence, frequency, speed of onset, and spatial extent of a potentially
harmful natural event or process—the “hazard”—and also a function of people’s
susceptibility to loss, injury, or death [20]. Taken together, susceptibility to harm
and the process that creates and maintains that susceptibility to harm is referred to
as “vulnerability.” Vulnerability, in turn, may be counteracted either by individual
and local capacity for protective action (C) or by protective actions carried out by
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Table 1 Table of notation

Variable Description

R Risk

H Hazard (impact, i.e., negative consequences of an event)

V Vulnerability (exposure, i.e., probability of an event)

C Protective capacity

M Mitigation capacity

larger entities such as government (M , which stands for mitigation and prevention)
[20]. To make such factors explicit, Eq. (1) is rewritten as follows [83]:

R = H((V/C) − M) (2)

where R is disaster risk, V stands for vulnerability, C represents capacity for
personal protection, and M denotes larger-scale risk mitigation by preventive action
and social protection (see Table 1). It is important to note that mitigation is a widely
emergency management community term. In transportation, a different sector, the
mitigation word is actually synonym to adaptation.

1.4 Managing Risk

Next, we focus on strategies for risk management. One technical normative rec-
ommendation for risk management [59] defines risk management as “coordinated
activities to direct and control an organization concerning risks.” This is generic for
different organizations and accounts for different consequences, both positive and
negative. This normative recommendation states that the risk management must be
specific (each risk scenario would imply different management decisions), including
human and cultural factors, being transparent and inclusive, and being dynamic and
able to react to changes.

The United Nations International Strategy for Disaster Reduction, UNISDR [75],
defines disaster risk management as:

The systematic process of using administrative directives, organizations,
and operational skills and capacities to implement strategies, policies and
improved coping capacities in order to lessen the adverse impacts of hazards
and the possibility of disaster.

The people, society, or physical infrastructure at risk may be exposed to a same
hazard under different ways. The hazard is not exclusively related to economic
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conditions, but also to cultural, social, and environmental conditions, characteristics
of these elements. Also, for each exposed element, there are approaches that better
fit the study and management for risk reduction. When infrastructure systems are
specifically the object of study, mathematical modeling and optimization techniques
are useful to understand the problem and make projections.

1.5 Mathematical Risk Modeling

There are several approaches for mathematical analysis on critical infrastructures.
According to Jenelius [42], there is a special category of studies that use mathemat-
ical modeling and optimization techniques to identify best responses or worst-case
scenarios in critical infrastructures. Matisziw and Murray [51], for example, use
an integer programming formulation to identify the most severe disruptions in a
transport network of Ohio, USA, and Bell et al. [11] integrate a traffic model in a
game-theoretic framework to determine routing strategies in London, UK, under
the risk of antagonistic attacks [42]. In Brazil, Santos et al. [64, 65] presented
methodologies based on historical datasets to quantify spatial and temporal potential
impacts of disasters on urban mobility and transportation.

1.6 Chapter Goals

One of the goals of this chapter is to present mathematical models of risk in
light of the impact of countermeasures on risk scores. Note that the definitions
of risk presented in Eqs. (1) and (2) are typically coupled with a model that has
either predictive or explanatory power. Without such models, the risk score may
have limited applicability [28]. In fact, Eqs. (1) and (2), alone, do not capture
the fundamental relationships between risks and opportunities, and do not tell the
probability of a disaster given the implementation of specific countermeasures.
Different models have been proposed in the literature to capture the impact
of decisions on risk scores. Logistic [72] or multiple [22] regression, Bayesian
networks [28], and Markovian phased-recovery models [7] are examples of such
models.

Several concepts originally from areas such as Computer Science, Physics
and Mathematics, especially Machine Learning, Complex Systems, and Dynamic
Systems have been incorporated into the study of disaster risk reduction. Another
goal of this chapter is to identify interdisciplinary trends and opportunities for
collaboration on risk management among different communities.
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Fig. 1 Summarized structure of this chapter

1.7 Chapter Organization

The remainder of this chapter is organized as follows:

• in Sect. 2 we introduce basic terminology, and discuss the different interpreta-
tions of terms exploring the international literature and the definitions adopted
by the Brazilian Civil Defense authority;

• in Sect. 3 we present basic machine learning concepts, and an example of a case
study involving risk analysis;

• in Sect. 4 we discuss a specific type of vulnerabilities, namely topological
vulnerabilities, which are key for studies on critical infrastructures;

• finally, in Sect. 5 we introduce survivability models as a way to cope with some
of the challenges related to the modeling of risk.

The structure of this chapter is summarized in Fig. 1. The foundations of the
chapter are laid in Sect. 2, where basic concepts are introduced. The pillars built on
top of such foundations are tools such as machine learning and complex networks,
used for vulnerability forecasting and risk quantification and presented in Sects. 3
and 4, respectively. Finally, survivability models that can leverage such tools are
presented in Sect. 5.

2 Terminology and Background on Disasters Risk Reduction
and Management—and Some Mathematical
Interpretations

When critical infrastructures are affected by either natural or technological hazards,
disasters may take place, taking municipalities out of their normal functioning
status. There are many words in common for the disaster’s terminology and the
complex systems jargoons. It is common in science to borrow terms that make sense
from one area to another. Some interactions between different knowledge areas have
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been done with success. As an example, some concepts in this chapter, such as
adaptation, risk, and vulnerability date back to Darwin’s theory of evolution [23,
24, 29, 34, 41, 67].

The widespread word brought from physics to disaster’s risk management is
“resilience.” Currently there are campaigns and prizes for “resilient cities” all over
the world, aiming to promote preparedness actions and planning. In this case the
concept changed not only when it was adapted to the disaster’s field of knowledge,
but also inside this sector.

The list of terms below brings together both the terminology adopted by
the Brazilian Civil Defense authority, which is largely used in Brazil, and the
definitions from the United Nations International Strategy for Disaster Reduction
(UNISDR [75]).

• Emergency

– Brazilian Civil Defense:

1. Critical situation; dangerous event; accident
2. Case of urgency.

– UNISDR: Emergency management: The organization and management of
resources and responsibilities for addressing all aspects of emergencies, in
particular preparedness, response and initial recovery steps. Comment: A
crisis or emergency is a threatening condition that requires urgent action.
Effective emergency action can avoid the escalation of an event into a disaster.
Emergency management involves plans and institutional arrangements to
engage and guide the efforts of government, non-government, voluntary, and
private agencies in comprehensive and coordinated ways to respond to the
entire 14 spectrum of emergency needs. The expression “disaster manage-
ment” is sometimes used instead of emergency management. Emergency
services:

The set of specialized agencies that have specific responsibilities and objectives in
serving and protecting people and property in emergency situations.

Emergency services include agencies such as civil protection authorities,
police, fire, ambulance, paramedic and emergency medicine services, Red
Cross and Red Crescent societies, and specialized emergency units of electric-
ity, transportation, communications, and other related services organizations.

• Susceptibility

– The UNISDR terminology does not present a definition for this term. The
Brazilian Civil Defense mentions the susceptibility to erosion:

Greater or lesser tendency of the soil to undergo erosion. The susceptibility to
erosion depends on the slope and the characteristics of the terrain profile, the soil
granulometry and anthropic factors related to: removal of vegetation; concentration
of rainwater; exposure of susceptible land; inadequate execution of cuts and landfills.
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In general, the susceptibility is associated with a determinated space.
Saito [62] defines susceptibility as an inherent characteristic of the
environment, representing the fragility of the environment.

• Vulnerability

– Brazilian Civil Defense:

1. Condition intrinsic to the body or receiver system that, when interacting
with the magnitude of the event or accident, characterizes adverse effects,
which are measured according to the intensity of the potential damage.

2. Existing relationship between the magnitude of the hazard, if it happens,
and the intensity of the resulting damage.

3. Likelihood of a particular community or geographical area being affected
by a hazard or potential risk of disaster, established from technical studies.

4. It corresponds to the level of intrinsic insecurity from a disaster scenario to
an adverse event. Vulnerability is the opposite of security.

– UNISDR:

The conditions determined by physical, social, economic and environmental factors
or processes which increase the susceptibility of an individual, a community, assets
or systems to the impacts of hazards.

• Risk

– Brazilian Civil Defense:

1. Measurement of potential damages or economic losses in terms of statis-
tical probability of occurrence, intensity, or magnitude of the foreseeable
consequences.

2. Likelihood of occurrence of an accident or an adverse event related to the
intensity of the resulting damage/losses.

3. Probability of potential damage within a specified period of time and / or
operational cycles.

4. Factors established by systematic studies, which involve a significant
probability of occurrence of an accident or disaster.

5. Relationship between the likelihood of occurrence of an adverse event and
the level of vulnerability of the affected system.

– UNISDR: “The combination of the probability of an event and its negative
consequences.” Comment: This definition closely follows the definition of
the ISO/IEC Guide 73. The word risk has two distinctive connotations: in
popular usage the emphasis is usually placed on the concept of chance or
possibility, such as in “the risk of an accident,” whereas in technical settings
the emphasis is usually placed on the consequences, in terms of “potential
losses” for some particular cause, place, and period. It can be noted that
people do not necessarily share the same perceptions of the significance and
underlying causes of different risks.
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• Acceptable risk

– Brazilian Civil Defense: Very small risk, with limited consequences, associ-
ated with real or expressive benefits in a way that social groups would be
willing to accept it. The acceptability of the risk is based on scientific, social,
economic, and political information, including the benefits resulting from this
condition.

– UNISDR:

The level of potential losses that a society or community considers acceptable given
existing social, economic, political, cultural, technical and environmental conditions.
Comment: In engineering terms, acceptable risk is also used to assess and define the
structural and non-structural measures that are needed in order to reduce possible
harm to people, property, services and systems to a chosen tolerated level, according
to codes or “accepted practice”İ which are based on known probabilities of hazards
and other factors.

• Adaptation

– Brazilian Civil Defense: there is no mention to this term
– UNISDR:

The adjustment in natural or human systems in response to actual or expected
climatic stimuli or their effects, which moderates harm or exploits beneficial
opportunities. Comment: This definition addresses the concerns of climate change
and is sourced from the secretariat of the United Nations Framework Convention
on Climate Change (UNFCCC). The broader concept of adaptation also applies
to non-climatic factors such as soil erosion or surface subsidence. Adaptation can
occur in autonomous fashion, for example, through market changes, or as a result of
intentional adaptation policies and plans. Many disaster risk reduction measures can
directly contribute to better adaptation.

• Resilience

– Brazilian Civil Defense: Ability of an individual to deal with problems, over-
come obstacles, and resist to the pressure of adverse situations without going
into psychological outbreak. It also refers to decision-making when someone
faces a dilemma concerning the environment stress and the willingness to win.

– UNISDR:

The ability of a system, community or society exposed to hazards to resist, absorb,
accommodate to and recover from the effects of a hazard in a timely and efficient
manner, including through the preservation and restoration of its essential basic
structures and functions.

Resilience means the ability to “resile from” or “spring back from” a shock.
The resilience of a community in respect to potential hazard events is
determined by the degree to which the community has the necessary resources
and is capable of organizing itself both prior to and during times of need.
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3 Machine Learning in a Nutshell: Concepts
and a Case Study in Disaster Risk Reduction Scenarios

Recent improvements in computational power and the availability of massive
volumes of data produced in the big data era give rise to the increasing adoption
of machine learning (ML) solutions. ML can play an important role in monitoring
hazards. In particular, ML techniques have been employed in the analysis and
detection of earthquakes [8, 44, 63], floods [2, 9, 25, 55], forest fires [19, 22, 53, 72],
as well as forecasting future occurrences of such hazards.

According to Mitchell [54], a machine (or computer program) is said to learn
from experience X with concerning to some task T measured by a perfor-
mance measure P , if its performance in the task according to P improves
with experiences. The experience X is the training set that represents instances
collected independent and identically distributed (i.i.d.) from the domain, in order
to maximize the computer program performance. The task T is the operation
or problem expected to be solved by the computer program, such as classifying
new samples, finding clusters or patterns, predicting values, among others. The
performance measurement P , like accuracy, precision, error, etc., is a quantitative
metric which evaluates the algorithm performance and success in the resolution of
the task. Thus, the computer program is an algorithm that seeks for a mathematical
function capable of solving a task or problem considering previous data.

Formally, we have the set of i.i.d. samples X and according to the task to be
performed, the first l samples (0 ≤ l ≤ n) can contain labels {(x1, y1) , . . . , (xl, yl)}
and the remaining u samples are unlabeled, U = {xl+1, . . . , xu}. Labeled samples
are associated with the set Y = {y1, . . . , yl}, where yi ∈ {1, . . . , c} , i =
{1, 2, . . . , l}, with c representing the number of classes, and (l+u = n) representing
the total number of samples. A sample can be seen as a point in the dimensional
space that is a collection of features. Each sample xi is represented by a features
vector xi ∈ Rd where d is the vector dimension or number of features. Each
feature of xi quantitatively measured a characteristic of the sample. For example, in
a problem involving rain prediction, we can assume that each sample is represented
by a vector with the location coordinates latitude, longitude, and the rain measure.

Learning tasks (T ) are associated with some experience or learning paradigm.
Among many learning paradigms reported in the literature [17, 18, 21, 56, 74], the
most commonly addressed are presented below:

• Supervised learning: in this paradigm the algorithms learn from the input data
X and their associated labels Y . These algorithms acquire experience from the
dataset, where each sample is associated with a label, i.e., with l = n. The
objective is to construct an inductive or transductive model that describes the
dataset and predicts the class or a feature value of unseen samples;

• Semi-supervised learning: the algorithms employ only a small number of
labeled samples and a large amount of non-labeled data for the training, thus
seeking the construction of a function or model that requires less human effort
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to label the samples. The objective is to infer the missing labels {yl+1, . . . , yu}
corresponding to unlabeled samples {xl+1, . . . , xu}, where l � n;

• Unsupervised learning: in this paradigm the samples have no label, with l =
0, i.e., the algorithms acquire experience from datasets where samples have
no classes associated. The objective is to find patterns in the input datasets.
Clustering is the usual task, where input samples are divided into groups based on
their similarity, density, proximity, etc., since there is no prior knowledge about
the classes.

3.1 Usual Tasks of Machine Learning for Disaster Risk

Tasks are the formal description of ML paradigms about how to process the samples.
A particular task can be employed to solve many kinds of problems of disaster risk
monitoring and management. In this section, we make the connection between ML
and risk management. Below, we briefly describe three of these ML tasks:

• Classification: this is a supervised and semi-supervised learning task where,
given a number of c possible classes or labels, the ML algorithm seeks to
generalize and predict the label of samples not yet observed. One hypothetical
example of ML classification tasks applied to environmental problems is the
classification of deforestation areas in satellite images. The task defines one of
two possible classes (deforestation or not deforestation) for each pixel from a
satellite image. Based on the number of samples used for training, the algorithm
must be able to predict for a satellite image not previously observed, whose pixels
are deforested areas. The accuracy is the usual metric applied to evaluate the
correctness of the algorithm. It is important to realize that we are interested in
measure performance of proposed algorithms in a set of data not seen before. So,
to quantify performance measure, we need to use a test set of data which is not
contained in the training data applied into ML algorithm training step.

• Regression: it is a supervised task that tries to predict a future numerical value
given a set of samples. Usually, the samples are captured over time and the
values are related to some measurement. A good example of regression in the
environmental scenario is the rain prediction, where given a time series of past
rain measurements in a specific location, the algorithm will predict the expected
amount of rain in the future. The performance measures in this task try to
minimize the error among the predicted value and the real result. The mean
absolute deviation (MAD) and root mean square error (RMSE) are instances
of evaluation metrics, where lower values result in better predictive models.

• Clustering: this kind of ML task focuses on learning a probability density
function (in cases where samples domain is continuous) or a probability mass
function (otherwise) on the samples space in a way to learn the structure of
the data. Clustering problems, where the objective splits a set of samples in
k different groups, without any prior knowledge, is a good example of this
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kind of problems. In the environmental scenario, for example, we can consider
an approach of spatial clustering for detecting forest fire spots in satellite
images [40]. In this task, there are several metrics for evaluating the quality of
the separation, like Silhouette or Jaccard index, statistics like GAP or adjusted
Rand indexes, variation of information, among many others.

The interest in ML approaches arouses due to the advances in computational
technology and the vast amount of available information in the big data era.
Traditional methods are studies dependent on a specific area, with inflexible
models that cannot be easily generalized to other lands [22]. Another approach
is the proposal of numerical indexes that incorporate meteorological data in the
calculation. These indexes are employed for improving proactive capacity (e.g.,
public warnings) and mitigation capacity (e.g., defining guidelines for preventive
actions, prioritizing regions, etc.). Nevertheless, these indexes highly correlated with
the environmental characteristics and activity in specific regions where they were
proposed.

On the other hand, ML approaches have the advantage of flexibility: models can
be adapted to different lands and conditions. All kind of data sources, see Table 2,
are valuable information to be employed for identifying trends and patterns (like
Twitter, meteorological data, images, etc.), which can improve decision making. In
this way, the classical statistical analysis can fail when such vast and complex data
are presented [2, 22, 72]. Since there is an interest in developing automatic solutions,
a fast detection is one of the key elements for a successful hazard prediction [25].
Hence, ML tools are a suitable tool to analyze different data and extract high-level
information in a short time, for hazards monitoring.

However, traditional or ML methods face some drawbacks depending on the
problem domain, like when there are important limitations on the quality and
amount of available data, e.g., weather observations, disasters data, satellite images,
etc. Fortunately, some techniques and ML methods can help in bypassing these
problems. For instance, data augmentation [84] is the process of synthetically
creating samples based on existing data. Other alternatives are algorithms like
kNN or random forest, which have robust results when missing values or a small
amount of data. They work well on non-linear and categorical data and adapt to
the data structure taking into consideration the variance or the bias of samples.
Also, according to the domain knowledge, the data analyst can employ common
techniques for increasing the quality and instances. For example in time series data,
a linear interpolation works well for data with some trend but without seasonality;
for seasonal series is necessary a seasonal adjustment and the interpolation method;
techniques like sample or multiple imputations, last observation carried forward
(LOCF) or next observation carried backward (NOCB), and many others, can also
be useful.

The point is that each ML method or specific algorithm is better adapted to solve
some problems than others, which makes impossible to find a universally optimal
ML algorithm. It can be said that for each problem, there is a unique ML algorithm.
Therefore, the goal is to discover the most appropriate algorithm for a given domain
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Table 2 Machine learning tasks applied to disaster risk and management

Classification Fire Vega-Garcia et al. [76] presented a supervised and regression
method for predicting human-caused wildfire occurrence from
geographic information and historical human-caused fire
occurrences

Fire Mazzoni et al. [53] presented a method for detecting smoke in
satellite images at 1.1 km pixel level

Flood Abrahart and See [2] presented a method for short-term
forecasting of rainfall-runoff for a flood forecasting systems
from hydrological data

Flood Mojaddadi et al. [55] presented a method for identification and
prediction of the susceptible fluvial flood areas using
multi-sensor remote-sensing data and GIS

Regression Fire Stojanova et al. [72] reported a method for detecting fire
occurrences in the Slovenian forests using both satellite-based
and meteorological data

Fire Cortez and Morais [22] proposed a supervised and
semi-supervised approach for predicting the burned area of
small forest fires using meteorological data

Flood Banihabib [9] presented a method for determining flash flood
warning lead-time in a steep urbanized watershed using flood
hydrographs data

Flood de Lima et al. [25] reported a method for predicting river levels
and preventing hydrological disasters using pluviometric and
hydrological data

Clustering Fire Hsu et al. [40] reported an unsupervised approach for detecting
forest fire spots in satellite images

Fire Cheng and Wang [19] proposed a spatio-temporal clustering
approach to discover the cells (hot spots) with highest
probability of starting a fire, by using records of large forest
fires in Canada

Earthquake AYuen et al. [8] presented a global warning system for the
analysis and visualization of seismic data. The proposal is a
semi-supervised method for detecting earthquakes and alerting
the probability of tsunami according to live data and previous
events

Earthquake Sakaki et al. [63] presented an earthquake reporting system that
promptly detects the events and alerts to registered users. They
employed an unsupervised clustering approach and construct a
spatio-temporal model for detecting the center and trajectory of
event location from Twitter messages. The system has high
accuracy results, with a fast detection of earthquakes and alerts
to the population

and problem. For this reason, we have a large number and variety of ML methods
reported in the literature for solving disaster risk problems. In the next section, we
discuss about some of the main adopted ML algorithms.
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3.2 Machine Learning Based on Features Vector

Each of the problems described in Sect. 3.1 can be tackled using different algo-
rithms. The range of these type of algorithms goes from simple linear regression to
a robust ensemble of classifiers. Recalling that vector-based algorithms have as input
the set of vectors xi ∈ Rd , where each one represents a sample and d is the number
of features. In this section, we briefly describe four examples of vector-based ML
algorithms related to the previously mentioned problems.

3.2.1 Artificial Neural Networks

This is one of the most famous classes of machine learning algorithms. Artificial
neural networks (ANN) algorithms can be associated with different kinds of tasks
as classification, regression, and others. ANNs are inspired in biological neural
networks that constitute animal brains. They are based in a set of connected units
called artificial neurons [5, 16]. ANNs architectures frequently contain perceptron
or sigmoid neurons, organized in layers and use the standard learning algorithm
known as stochastic gradient descent for learning processes.

As defined by de Lima et al. [25], “an ANN is trained to learn the input-output
relationships through an iterative process in which the weight assigned to each
input attribute is adjusted to minimize the error between the ANN outputs and
the true outputs (the output observed values). Once the learning process has been
completed, it is expected that the ANN has good generalization ability and can
properly respond to new data.” ANN and derivations have been studied in different
disaster-type problems. For instance, Vega-Garcia et al. [76] trained an ANN for
predicting human-caused wildfire occurrence. Abrahart and See [2] did the same
but for classifying short-term forecasting of rainfall-runoff. On the other hand,
Banihabib [9] and de Lima et al. [25] trained an ANN in a regression task with
the purpose of obtaining a risk score for flood warnings.

3.2.2 Regression

The most intuitive regression algorithm is associated with a linear regression task,
which consists of estimating values based on the continuous variable(s) [26].
Regression tasks seek a relationship between independent and dependent variables
by fitting an unknown function that can be represented by some kind of equation
(linear, polynomial, logistic). Given a training dataset, the regression function can
be derived by minimizing the sum of squared difference of distance between the
data points and the predicted values [32]. Examples or regression methods are the
Gaussian linear or additive models, multivariate adaptive splines, M5 regression
tree models, logistic regression, and algorithms like ANNs, random forest, SVM,
and many others [15, 55, 71, 87].
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Works in disaster risk employ regression functions for understanding and approx-
imating the magnitude of some phenomenon. Stojanova et al. [72] used a logistic
regression function for detecting fire occurrences in the Slovenian forests. Biffis and
Chavez [15] employed a random forest regression in satellite images identifying
pixel-level of precipitation risk for maize culture in Mozambique. Sakaki et al. [63]
proposed a mixture method of regression and clustering for a very fast detection of
earthquakes, with a high precision of the epicenter and the trajectory. The authors
employed the real-time message interaction from Twitter, considering each Twitter
user as a sensor. In a comparative approach, Shortridge et al. [71] studied six
regression models for empirical rainfall-runoff predictions, evaluating the accuracy,
interpretability, among other performance measures. They highlighted some of the
strengths and limitations of the approaches and showed important issues to be
considered for regression models comparisons. Similarly, Cortez and Morais [22]
test the multiple regression method against ANN and SVM for approximating the
burned area of small forest fires. In this scenario, the regression method did not
achieve the best results. However, they did not run a statistical analysis to show a
significant difference among the several methods evaluated.

3.2.3 Support Vector Machine

Support vector machines (SVM) are an optimization learning technique that is
very important in the literature because it obtains results equivalent or superior
to other algorithms in different domains [22, 53, 55, 87]. The SVMs employ the
statistical learning theory (SLT) [38], which establishes a set of principles that must
be followed to obtain classifiers with good generalization capacity.

Let h be a classification function and H be the set of all classifiers (or functions)
that a ML technique can generate. The SLT establishes the mathematical conditions
to better choose a classifier ĥ. The purpose is to select a mathematical function
that most minimize the expected error for the classifier ĥ by separating the classes
according to the hyperplane equation,

h(X) = W.X + b , with W ∈ X, (3)

where W.X is the scalar product between the vectors W and X, W is the normal
vector of the hyperplane, and b/|W | corresponds to the distance of the hyperplane
in relation to the origin, with b ∈ �.

In relation to the type of ML paradigm, SVMs can be used for classification
and regression, employing linear or non-linear kernels. Linear SVMs employ
polynomial kernels and are good for linearly separable samples, i.e., the classes
of the samples can be separated into hyperplanes. On the other hand, when it is not
possible to divide the training dataset into hyperplanes, the non-linear strategy is
adopted. For achieving this purpose, the algorithm maps the training set from their
original space to a new space of larger dimension called feature space [38]. In this
way, the problem becomes again a linear hyperplane separation.
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3.2.4 K-Means Clustering

For density estimation, k-means is one of the most popular unsupervised
learning algorithms for clustering. This algorithm divides training set S =
{s1, s2, . . . , sn−1, sn} into k different clusters of samples where each cluster contains
the closest samples [85]. To accomplish this task, the algorithm is initialized with
k different centroids {c1, c2, . . . , ck} and continuously executes the following steps
until it converges:

1. Associate each sample si to one centroid cj based on minimum distance (which
can be measured using different distance metrics);

2. Following, each centroid cj is updated to the mean of all training samples
assigned to cluster j .

In environmental problems, Cheng and Wang [19] employed the K-Means
method in spatio-temporal clustering for discovering the spot regions with highest
probability of starting a fire. Hsu et al. [40] presented a similar detection approach
but clustering forest fire spots in satellite images. Also, AYuen et al. [8] employed
clustering for detecting earthquakes according to previous historical events.

3.2.5 Application in the Prevention of Disasters Related to Hydrological
Processes

Recently, de Lima et al. [25] proposed a methodology to highlight the power
of machine learning applied to environmental problems, especially when a quick
answer is necessary. The authors used an ANN model and applied it to an
operational scenario for rainfall prediction in advance of up to 2 h. The ANN used
at this approach is a standard multilayer perceptron (MLP) with 15 nodes as input
layer, which are fully connected to a single hidden layer. Finally, the hidden layer
is connected to the single output neuron and employs sigmoid as hidden activations
functions. The output neuron employs a linear function. The proposed ANN takes as
input rainfall and river level for eight specific positions along a watershed (including
river spring, where there is no level information), as depicted in Fig. 2, resulting in
15 input values. Once trained, the model is able to provide forecast for river levels,
in a window between 15 and 120 min.

The Nash–Sutcliffe model efficiency coefficient is used to assess the predictive
power of hydrological models. Such performance metric, denoted by P , was
proposed by Nash and Sutcliffe [57], and is one of the most used performance
metrics in hydrological problems. It is defined as one minus the mean squared
error between the predicted and observed values normalized by the variance of the
observed values during the period under investigation [46]. The index is given by
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Fig. 2 Case study site considered in de Lima et al. [25] work. Source: de Lima et al. [25]

P = 1 −
∑n

i=1

(
Oi − Õi

)2

∑n
i=1

(
Oi − O

)2 (4)

where n is the number of instances in the test set, Oi and Õi are, respectively, the
ith observed and predicted output values, and O is the average of the n observed
values.

The forecasting of river levels 2 h in advance is an important challenge. In a
monitoring scenario, forecasts in such a time window allow for preventive actions
during a flood episode. For predictions 15 min ahead, de Lima et al. [25] report a
Nash–Sutcliffe index of 0.9816 while for 120 min predictions the authors reported
an index equal to 0.8688, which indicates that the predictive power of the proposed
models is encouraging. A Nash–Sutcliffe index above 0.7 is already considered
good.
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3.3 Machine Learning Based on Complex Networks:
The Cutting-Edge Approach

Methods based on complex networks are currently the more active and cutting-edge
approaches in ML [21]. The data representation in complex networks inherently
presents some interesting properties. It has the ability to deal with local and global
characteristics of available data, identifying classes or groups independent of the
data distribution, and to represent sub-manifold in dimensional space [14, 21],
which translates into heterogeneous and nontrivial connections between nodes.
Moreover, dynamical or evolutionary process can be integrated into the network
structure due to the inclusion and removal of nodes and connections, the large-scale
network states, distribution of functions or topological properties, and diversity of
connections: the edges can have various physical meanings.

Datasets of different problem domains are not already represented in a network
format. In conventional ML methods (Sect. 3.2), the sample data X are described
such as an attribute-value table [54]. On the other hand in ML based on complex
networks, the input dataset must be a network, or graph, G.

In order to apply network-based ML for data analysis, it is necessary to transform
the original data into a network. The construction of a weighted sparse graph G

from X is an important step for network-based ML methods [14]. In the network
G, each sample xi ∈ X is associated with the node i and each weighted edge,
which connects the pair of nodes i and j , represents the similarity level between the
nodes.

The information of the labeled nodes and G are the input for the ML methods. In
supervised and semi-supervised tasks [13, 14], the objective is to predict the class
of the unlabeled nodes. Among different approaches reported in the literature [21],
we have the probabilistic methods, like the weighted vote relational neighbor
or network-only Bayes classifiers; harmonic functions, like the local and global
consistency method; minimum spanning tree and cuts, like the MinCut approach;
label propagation, random walk, particle competition, etc. In the case of unsuper-
vised learning, the clustering task can be considered as the problem of detecting
communities on networks. The communities follow the manifold assumption [14] or
the homophily principle of social networks [45, 77, 78], in which it is assumed that
nodes with greater similarity to each other belong to the same class and tend to be
part of the same group. The community detection corresponds to a network partition
problem. Many works have reported algorithms to address this task [31], such as
spectral methods, techniques based on modularity division, spectral decomposition,
and random walk.

In Sect. 3.2, we present the current state-of-the-art approaches for inductive
learning, i.e., methods that seek for deducting or inducing a mathematical function
that describes the analyzed data [54]. On the other hand, here we present transduc-
tive methods, which consider the topological structure of the data and are a recent
approach in ML [21]. In the transductive approach, the data is represented as nodes
and edges in a graph that can have several properties, like symmetry, weighting,
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irreflexivity, acyclicity, heterogeneity, multilayer, among others. Thus, graph-based
ML methods are in the knowledge border as a novel research area to be explored for
disaster risk and reduction problems.

4 Vulnerability on Complex Networks

Extreme weather and climatic events are expected to increase in frequency and
intensity and cause more social and economic impacts on several sectors, including
critical infrastructures like gas, oil and water networks, power grid, telecommunica-
tions, and transportation system.

Many countries, including Brazil, are signatories of the Sendai Framework
for Disaster Risk Reduction 2015–2030. One out of the seven global targets of
this document is addressed to “substantially reduce disaster damage to critical
infrastructure and disruption of basic services.”

Vulnerability is a key concept for disaster risk reduction (DRR). According to
Cheung [20], vulnerability means “the characteristics of a person or group and their
situation that influence their capacity to anticipate, cope with, resist and recover
from the impact of a natural hazard (an extreme natural event or process)” (see
Sect. 2). Measurement and mapping of vulnerability constitutes a subject of global
interest.

Critical infrastructures, such as a network-type structure, can be represented
(modeled) using a complex network approach. The complex networks approach may
offer a valuable perspective in the context of DRR on critical infrastructures. There
are a lot of topological measurements for complex networks [50], for example,
degree—number of connections of a node—and betweenness—number of shortest
paths those pass through a node. One measurement is particularly interesting in the
context of critical infrastructures: the topological vulnerability.

4.1 Timeline of Vulnerability on Complex Networks

Albert et al. [3] and Holme et al. [39] studied the response of complex networks
subject to attacks. They used the term “vulnerability,” but they did not account for
a pointwise index to quantify vulnerability, just a collective measurement [3] based
on network’s diameter and size of the largest cluster, and [39] based on the average
inverse geodesic length.

The first paper that considered the pointwise vulnerability index was Goldshtein
et al. [35]. In that paper, the authors cited two relevant previous works: Latora and
Marchiori [47, 48].

Table 3 summaries the origins of vulnerability studies on complex networks.
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Table 3 Timeline of the related works

Watts and Strogatz [82] and Barabasi and
Albert [10]

Seminal works on complex networks

Albert et al. [3] The authors discussed error and attack tolerance on
complex networks based on measures as diameter
and size of the largest cluster

Latora and Marchiori [47] The authors proposed the efficiency index on
complex networks

Holme et al. [39] The authors studied network vulnerability index
measured by the average inverse geodesic length

Latora and Marchiori [48]a The authors generalized the vulnerability index for
any performance measurement, and discussed that
idea under the context of a critical infrastructure as
a complex network

Goldshtein et al. [35] It was the first paper that defined a pointwise
vulnerability V(i)—based on the ideas from Latora
and Marchiori [47, 48]

aAn arxiv version, later published in Latora and Marchiori [49]

4.2 Using Complex Networks for (Topological) Vulnerability
Assessment

In the area of disaster risk management, the quantification of vulnerability is a
leading research topic [70]. Contributions towards a quantitative understanding of
vulnerabilities aim to (1) guide public policies on DRR, (2) clarify where the most
vulnerable elements are, and (3) understand what are the impacts related to the
vulnerabilities. Next, we introduce some basic terminologies and concepts related
to the assessment of vulnerabilities using a complex network approach.

The shortest path length dij between two nodes i and j is the smallest number of
links from i to j , across all the possible paths between i and j .

Definition 1 (Edge Efficiency) The efficiency eij in the communication between
nodes i and j is inversely proportional to their shortest path length, i.e., eij ∼ 1/dij .

Let’s consider a graph G = (V , L), where V is the set of |V | = N nodes and L

is the set of |L| = M edges or links. Let E be the average efficiency of G.

Definition 2 (Graph Efficiency) E is given by

E =

∑

i,j ∈V, i �=j

eij

N(N − 1)
(5)

Let Vk be the vulnerability associated with a node (or edge) k of a graph G.
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Definition 3 (Element Vulnerability) The vulnerability associated with element k

of graph G, Vk , is given by

Vk = E − E�
k

E
(6)

where E�
k is the efficiency of the graph considering the removal of element k.

Definition 4 (Global Vulnerability) The global vulnerability of a graph is the
greatest vulnerability of its elements.

The vulnerability of (associated with) an element on a graph should therefore
not be confused with the susceptibility of (associated with) the element to a
threat. According to Sect. 2, the susceptibility represents an inherent fragility of
the environment. The vulnerability of (associated with) an element on a graph can
be understood as the way a system reacts under a concrete threat. Although it is
a measurement associated with the element, assuming a possible value for each
element (a pointwise measurement), the vulnerability on complex networks brings
information about the dynamics throughout the whole network.

Figure 3 shows some complex network’s indexes: degree, betweenness, and
topological vulnerability. It is important to highlight that by using the vulnerability
index we can identify the most relevant elements easier than by using the other
indexes. Also, from the disaster risk reduction point of view, that index can be a
good proxy of potential impacts, by showing the elements that, if removed, could
cause the biggest impacts on the efficiency of the network.

Those maps were produced using the tool GIS4Graph, presented in Santos
et al. [66].

4.3 Recent Studies of Vulnerability on Complex Networks

Recently, Wang et al. [81] analyzed vulnerability on complex networks using a
performance based on the travel time between all pairs of nodes and the frequency
of the services evaluated on the shortest paths—combining the physical structure,
topologic character, and the social function of transport networks. Sun et al. [73]
proposed a weighted approach, using the number of affected travelers when a station
is attacked. Mattsson and Jenelius [52] presented a discussion of recent studies
about vulnerability and resilience of transport systems, including works employing
complex networks.

Other family of works analyzed vulnerability on complex networks using
different performance measurements, as Gleyze and Rousseaux [33], who used the
edge betweenness index, and, who used the accessibility index.

Finally, in Pregnolato et al. [58], a framework for assessing the disruption from
flood events to transport systems was presented, combining a high-resolution urban
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Fig. 3 Some complex network’s indexes: (a) degree, (b) betweenness centrality, and (c) topolog-
ical vulnerability. Maps produced using the open web tool GIS4Graph
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flood model with transport modeling and network analytics to assess the impacts of
extreme rainfall events.

None of those papers, however, analyzed the vulnerability index under the
DRR point of view.

Several papers were published following similar ideas, even without the complex
network approach, from the transportation literature, as Berdica [12], to the DRR
literature, as Eleuterio et al. [27] for floods, and Khademi et al. [44] for earthquakes.

Wang and Taylor [80] studied other key concept in disaster risk reduction—
resilience—under the complex networks approach. They discussed patterns and
limitations of resilience of urban human mobility to disasters.

There are several works applying complex networks approaches to risk assess-
ment [68], for many classes of services as illustrated in Fig. 4, like water supply
[86], gas [37], energy [6] supply, and telecommunications [60].

Fig. 4 Illustrative examples of networks supplies: (a) Water, (b) gas, (c) energy, and (d)
telecommunication. Source: Google Images
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In the following section, we introduce survivability models that can leverage
the aforementioned complex network concepts to guide recommendations on
investments.

5 Survivability of Critical Infrastructures

Background As our society evolves, more aspects of our daily lives depend on
large-scale infrastructures such as rail, road, gas, water, power, and telecommu-
nication networks, including the Internet, wired and wireless telephony. Criti-
cal infrastructures are widespread and are increasingly more interconnected and
interdependent. The more the networks become smarter, the more they rely on
information and communication technologies, also known as ICT. For this reason,
a failure in the ICT network or in the power network can cause disruptions in many
critical infrastructures.

Although smarter systems are, in concept, more robust than their traditional
counterparts, failures in the ICT infrastructure can cause disasters. A failure in a
signaling system of a railroad can cause human losses, problems in the dimensioning
of dams can cause floods, and power outages are another example of disasters that
can occur either due to failures in the physical system or due to cyberattacks.

Prior Art Traditional approaches to study the impact of failures and to understand
how the system behaves when faced with disruptions involve detailed simulations.
The result of these detailed simulations of systems is an accurate assessment of how
the system will behave under the considered configurations. In addition, traditional
solutions usually involve the full characterization of failure types and failure rates.
They combine together failure models and recovery models to yield the so-called
availability models.

Steady-state availability assessment consists in studying the system in steady
state, and assessing the fraction of time in which the system is functional. As an
example, metrics such as the system average interruption index, also known as
SAIDI, are largely used by the power systems community.

Limitations of Prior Art and Challenges Survivability is the ability to remain
alive or continue to exist. Traditional approaches for survivability assessment face
challenges related to (1) scalability, (2) stiff problems due to events that occur in
multiple time scales, and (3) sensitivity of the metrics of interest with respect to
system parameters.

Although system assessment through simulations is very precise, it falls short on
scalability. The high computational costs preclude the analysis of a large number
of configurations, and practitioners have to focus on the most likely or promising
setups. During the first stages of an exploratory analysis, it is worthwhile avoiding
the use of detailed simulations. Instead, a big-picture, bird’s-eye view analysis of
the problem may be required. The outcome of such analysis can always be subject
to more detailed investigation, for instance, through simulations at a second stage.
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In addition, failures are rare. The recovery of the system usually occurs at a
much faster time scale when compared against the time between failures. Therefore,
decoupling failure rates from repair rates is beneficial. Finally, steady-state metrics
are usually poorly sensitive to small changes in the system configuration. This is
due, in part, because failures are very rare.

Goal Our aim is to present metrics, models, and heuristics to explore the state
space in a principled, scalable, and effective way that can be used, for instance,
to guide equipment upgrades and investments. To achieve this goal, we rely on
survivability-related models which consider the behavior of the system from failure
up to recovery, i.e., the initial state of the system is assumed to be a failure state and
the focus is on the contingency plan. A survivability model is a reliability model,
conditioned to the fact that the initial state is a failure state, which is a result of a
failure event.

As an alternative to traditional simulation-based approaches, we focus on the use
of model-based solution to perform an approximate analysis of the system. Rather
than steady-state metrics, we consider transient metrics to assess how the system
behaves from failure up to recovery. We refer to such approach for the assessment of
transient metrics from failure up to repair as a model-based survivability approach.

Survivability is the ability of the system to recover service levels in a timely
manner after the occurrence of disasters. Survivability models consider how the
system behaves given that a disaster occurred. We refer to such models as GOOD
models, which are models that study the system given occurrence of disasters.
ROOD models, in contrast, consider random occurrences of disasters. Below we
specifically analyze water, gas, and power systems, considering as a common theme
the use of the model-based survivability approach for the analysis of such networks.

5.1 Water

In treatment systems, water moves through tanks which add different chemicals
to it before it is either disposed or consumed [43]. The main goal of water
supply companies is to reliably offer high quality water, whereas sewage facilities
must ensure that a predefined maximum amount of water can be taken from the
community sewage system and be cleaned and released with acceptable quality.

Our focus here is on wastewater management systems. Before being released,
water is cleaned through multiple physical and chemical steps. The supervisory
control and data analysis (SCADA) systems are used to remotely manage treatment
and distribution facilities in all phases of operation [69].

One of the challenges of such systems consists of the fact that it involves
both continuous and discrete state variables. The amount of water in each tank is
continuous, as water is a fluid, while the setting of valves and the occurrence of
failures is typically captured through discrete variables.
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Hybrid fluid/discrete systems have been subject of study for a few decades. For
the study of water systems, hybrid Petri networks have been used to model the
state of the water level at the tanks, as well as the state of different valves. In a
typical hybrid Petri net to characterize sewage systems, each tank is associated with
a continuous random variable, and tanks are connected via fluid transitions, which
represent how water flows between them. These transitions are governed by discrete
controllers, which can be used to model the ICT part of the system. A detailed
description of the model framework can be found in [7, 36].

Using a hybrid Petri net model, Avritzer et al. [7] concluded, as expected, that as
the intake rate increases, the probability of no flood decreases. At the same time, the
earlier a failure occurs, the larger the probability that no flood occurs. This happens
because earlier failures occur while the tank level is still not very high. Therefore,
chances are that a repair will take place before a flood. However, late failures favor
floods, as water levels will rise over time and it is more likely that there will be no
time for a repair before a flood occurs. If water levels tend to raise over time, late
failures are more dangerous than earlier ones.

5.2 Gas

The survivability evaluation of gas distribution is receiving increased attention due
to competitive challenges raised by novel features, such as demand-response control
applications, smart monitoring, and actuation devices, as well as novel industrial
organization of utilities [1, 30]. All such novel ICT features require additional
attention when assessing systems survivability. Demand-response applications shift
demand to reduce load during peak hours. Smart monitoring allows to quickly
find failures and assists users to adjust consumption. Finally, gas distribution was
traditionally executed by a centralized company, but is now being distributed among
multiple competing utilities. For such reasons, the complexity of gas distribution is
increasing, and its survivability requires additional attention.

Similar to the wastewater survivability model, the gas distribution survivability
model is also a hybrid model, as gas is treated as a fluid whereas failures and repairs
are analyzed using discrete variables. To model such systems, Avritzer et al. [7]
consider stochastic time Petri networks. A Petri network is a language which allows
us to capture system dynamics. In this case, it is used to model how the system
behaves from failure up to recovery. Recovery can go through stages, such as
failure detection and localization, pipe sectioning, pressure regulation, and repair
and network restoration. The detailed analysis of such a network is out of the scope
of this work, and is presented in [7].

A survivability-based model can be used to quantify the probability that gas
distribution users are not served after failures. Immediately after a failure, the
probability that users are not served increases. Afterwards, it decreases, and
eventually reaches zero after a repair takes place.
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5.3 Power

Power distribution grids are going through a paradigm shift. With the increased
use of ICT, some of the same features already mentioned when discussing gas
networks are also being used in power networks: demand-response applications,
smart monitoring, and automated recovery from failures. Next, we introduce a
model for power grid survivability.

As in the previous models, a power grid survivability model accounts for hybrid
nature of the quantities involved. A Markov model with rewards rates can be used
to capture how the system behaves from failure up to recovery. Different states
represent different stages of recovery in the phased-recovery process, and reward
rates capture the rate at which power is offered at each of the states.

Next, we consider a simple instance of a Markov model with rewards, where
immediately after failure we have three possibilities: either ICT is functioning and
there is enough backup energy to supply non-failed sections, which occurs with
probability pq, or ICT is functioning but there is no energy to supply non-failed
sections, which occurs with probability p(1 − q), or there is no communication,
which occurs with probability 1−p. In the first case, the system is amenable to auto-
mated recovery, whereas in the last case the system needs to go through intermediary
adjustments before being recovered. Additional states can be considered to account
for partially recovered systems. The final absorbing state corresponds to a fully
recovered system. Varying the value of the probability that ICT and backup power
are available immediately after a failure, which are given by p and q, respectively,
the model can be used to assess the impact of different investments.

The Markov model can be used to numerically investigate system behavior under
different sets of parameters. For instance, it can be used to compute the expected
accumulated energy not supplied, from failure up to repair. The accumulated energy
not supplied initially increases and then converges to its asymptotic value, after
repairs take place. The effect of demand-response can be taken into account, for
instance, by changing the rates between states, the state reward rates, or the state
space itself. Then, the proposed model allows to quantify the impact of demand-
response benefits. For further details, we refer the reader to [4, 7].

5.4 In a Few Words. . .

In this section, we presented tools to model the survivability of critical infrastruc-
tures such as water, gas, and power. We addressed challenges such as the fact
systems are hybrid, having continuous and discrete features, and are deployed
at large scale. The presented models (hybrid Petri nets and Markov models with
rewards) can be used to bridge practitioners and analysts through a clear and simple
language and an agreed set of parameters. Finally, we coped with the problem of
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dealing with different time scales by analyzing the systems from failures up to
repair.

6 Concluding Remarks

Why managing the risk? Instead of managing the impacts of a disaster, the
management of the risks fosters the efficiency of the processes, avoiding losses and
damages and increasing profits, in a way that eventually the decision making actions
will also be more efficient.

We are only able to manage the processes we know. It is important, therefore, to
understand the risks we are dealing with, their main causes, and main implications.
Knowing the risks is a complex task, which demands the understanding of root
causes, the large theoretical and multi-disciplinary background, and the net of
interactions between actors and events.

Considering the equations of risk, there are several publications on machine
learning for the “hazard” component, others on complex networks for the “vulner-
ability” component and also publications on survivability analysis which address
applications to risk analysis.

The complex systems theory is a branch among the approaches that lead to risk
understanding and efficient management. Some tools, as the machine learning, can
easy the organization of ideas and information. Varying infrastructure systems can
benefit from the use of these tools and from the understanding of complex systems
applied to disaster’s theory and practice.
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Digital Humanities and Big Microdata:
New Approaches for Demographic
Research

Pier Francesco De Maria, Leonardo Tomazeli Duarte,
Álvaro de Oliveira D’Antona, and Cristiano Torezzan

1 Introduction

Since the mid-twentieth century, quantitative research in Demography has benefited
itself from the increasing availability of unidentified microdata [21]. In contrast
to what we have available for the so-called big data, those data are constructed
and organized from periodic population surveys [11] and they carry a considerable
amount of information about the population at a given moment [37]. These char-
acteristics have led to these population microdata (whether they are administrative
records or traditional censuses) to be known as big microdata [28]. These data,
available for broad temporal and spatial spans [18, 19], may allow one to reassess
old demographic questions—in the light of new quantitative methods capable of
extracting previously unobservable knowledge.

Using this richness (of big data or microdata) and the greater availability of
techniques, new perspectives for studies in all fields of demographic knowledge
can be opened [4]. Especially in the case of census data, these are new methods to
analyze the so-considered most reliable data source of all [11]. It is important to note
that this volume of data is not easily manageable [4, 17], since it requires significant
computational capacity, as well as adequate treatment and preservation [16]. As
alternatives in order to use this data, it has been common to resort to new quantitative
techniques, which come from areas such as data mining and machine learning,
capable of interpreting the data and obtaining new results. The combination of
advanced data-processing and analysis techniques with big (micro)data can be
addressed to the field of Digital Humanities [17].
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Demography can use this approach to analyze its vast datasets, since this
combination allows not only to study new sources, but also to return to old datasets
with the aim of understanding them better [1]. This area has grown since at least
the 1980s, when surveys began to develop—more assiduously—seeking answers
in structured data [3]. With the expansion of technological and computational
capacities and the massive access to big data and big microdata, more complex
researches have gained space and feasibility, as well as been motivated by the
potential for an interdisciplinary dialog between the different areas of knowledge—
in our case, in both Humanities and Social Sciences. This development has begun
a fourth scientific paradigm, exploratory, data-intensive and data-driven, which has
modified the way we do science [17].

In the case of researches involving themes and data about population issues,
it is also possible to observe and delineate interfaces between Digital Humanities
and big microdata. Considering the relevance of the Digital Humanities approach—
especially in the field of Computing Humanities [22] and the recent deployment of
Digital Social Science [29]—for studies of large databases from population censuses
or sources such as mobile phone data [7, 25] or social networks [2, 38], it becomes
essential to consider these approaches to study demographic and interdisciplinary
issues.

Considering the potential of these intersections, we resort to a quantitative
approach (including machine learning and spatial analysis) in order to analyze big
microdata for demographic research. In this chapter, we give special attention to
two fields of Demography that can benefit from this range of data and the blend
of techniques. First, we show how population and environment (P&E) studies can
benefit from Digital Humanities and big microdata in order to discover risk areas
for disasters. Second, we discuss how the combination of internal migration and
municipal data can reappraise the analysis of migratory dynamic.

This chapter starts with a presentation about what are big microdata and Digital
Humanities, followed by a discussion concerning the relations between the formers
and demographic research. Thereafter, we explore how this intersection works in
two examples, one for each field mentioned above. From the analyses of those cases,
we evaluate the potentiality of combining Digital Humanities and big microdata in
order to improve demographic research with new features. Finally, we conclude this
chapter remarking some challenges about the current uses of Digital Humanities
with available big microdata.

2 Big Microdata, Digital Humanities, and Demography

During the decade of 2010, the concept of big data was widely used, with a lot
of visibility in the scientific environment and outside it [35], with countless and
varied definitions [17], without consensus on what, after all, should be “big data”
[5]. A very broad definition states big data as “wide range of large data sets almost
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impossible to manage and process by using traditional data management tools—
due to their size, but also their complexity” [15]. Part of this popularity is due to the
fact that these data, which run away from the conventional format of administrative
records and demographic censuses [18], have been increasingly available due to the
existence of computational methods capable of not only collecting them, but also
storing and processing them [11].

Big data has been an object of study not restricted to the academy, but which,
within research institutions and universities, has attracted the interest of several
areas, such as Engineering, Mathematics, Economics, and Social Sciences [15].
Concerning the Social Sciences, big data can yield relevant and valuable impacts,
since it helps us to: (1) understand issues related to society; (2) stimulate the
formulation of public policies more well-directed; and (3) review our ways of
observing, measuring, and interpreting human behaviors [8]. However, it is not since
the beginning of big data era that Social Sciences could use these rich sources, the
area lacked methods for the adequate treatment of these data [8].

This problem has been softened with the development and subsequent pop-
ularization of statistical software capable of handling large databases, such as
SAS R©, Python R©, and R R© [8]. Additionally, methods capable of handling big data
have been developed in areas such as network analysis, textual processing [8],
machine learning, and artificial intelligence [34]. However, there are not only these
technical and methodological improvements that have promoted the use of big data
in Humanities and Social Sciences. The information’s level of detail, on the one
hand, and the spatial granularity and the time interval of data collection, on the other
hand, are reasons behind the interest of social scientists in big data [33]. Finally, the
most important interface between big data and the Humanities and Social Sciences
is established when we understand that “Social Science provides important context
and theoretical insight to explain and understand big data” [33].

Although these elements evince the relevance of using big data in the Social
Sciences, it is important to emphasize that the state of the art in this area recognizes
that this is not a new issue, at least for population studies. Since before Demography
was a scientific field [31], national states already collect data on their populations
and organize them into administrative records; these can be considered the very
first Big Data–especially considering the period in which they were produced [1].
While the world have witnessed a revolution in the late twentieth century, usually
associated with the expansion of data mining [9], demographers point out that in
their area there has also been a microdata revolution [21]. In terms of the wide
availability of microdata for public use, it began approximately in the 1990s [20];
already in terms of microdata surveys, substantial growth had occurred in the late
1970s [13].

Since the census surveys have been systematized, both production and dissem-
ination of unidentified data have grown—gaining the name of big microdata [28].
These big microdata are “consistent large-scale microdata that extend over many
decades and span national boundaries with fine geographic detail [that] provide a
unique laboratory for studying demographic processes and for testing social and
economic models” [28, p. 293]. In addition, they meet the basic prerequisites to be
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considered as part of the data revolution, since this can be defined as “an explosion in
the volume of data, the speed with which data are produced, the number of producers
of data, the dissemination of data, and the range of things on which there are data
(. . . )” [30]. In this way, we can observe that the increasing spread of so-called big
microdata is not only part of the data revolution, but also a key part of it and, in our
understanding, it is part of big data.

In general, such microdata have the following characteristics: they are individu-
ally collected for the entire population, covering the main demographic themes, with
low levels of missing values and high level of structuring [28]. However, in order
to truly exploit the potential of these microdata, creative and innovative methods
must be used for their analysis [28], which involve the use of data mining, machine
learning, network analysis, and econometric techniques. At this intersection, the link
between Digital Humanities (the quantitative instrumental) and the big microdata
(the data source) begins to be better delineated. For this link to be clearer and more
visible, it is necessary to understand how to access, analyze, and preserve this data
[16], but also how to combine instances and variables in order to obtain meaningful
results [12].

This involves, in the first case, to apply methods for organization, standardiza-
tion, and data processing, and second, to use (among others) data mining techniques,
network analysis, machine learning, multicriteria decision support methods, and
geoprocessing. Demographic studies have greatly benefited from Digital Human-
ities, which also means seizing techniques to deal with the big data, on the one
hand, and to broaden the applications of this data in Demography, on the other hand.
Finally, the understanding and correct selection of data-processing techniques will
also have the potential to benefit studies with big microdata (which are traditionally
used by demographers), since the Digital Humanities approach allows us to look at
the same data from another prism.

In this age of information, data have been increasingly important in relation to
models, and both data-driven decisions (DDD) and data-analytic thinking have been
more successful than model-based analysis [27]. This paradigm shift [17] is not only
reflected in the data and methods available, but also in how we collect new data, such
as the demographic census [11]. With these ongoing transformations, demographic
researches may benefit from new, data-driven approaches to further explore the big
set of available microdata, not necessarily relying on theories to analyze the data.

Thus, what and how much can we gain from this “data avalanche”? A new data
source that needs creative strategies and techniques in order to properly be used [28].
If a first-tier demographer as Steven Ruggles invokes that we should be creative
and innovative in order to properly explore high-quality big microdata, we can
extend the techniques for big data to this domain. Therefore, there is an intersection
between big microdata and Digital Humanities that can be exploited.

So far, we showed the relevance of big microdata in Social Sciences and for
demographic research. Additionally, we argued that there is a link between big
microdata and Digital Humanities. However, how can we draw this connexion?
In order to answer this question, we should evaluate how to access, analyze, and
preserve these data [16]. In order to answer this kind of question, we must be willing
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to work on multidisciplinary teams and customize traditional big data methods to
respond to the specific interests of the Social Sciences. Some ways to fulfill this
task include (supervised and unsupervised) machine learning, econometric, spatial
and multiple-criteria decision (MCDA) analyses.

Two relevant issues are related to what Digital Humanities stand for and if
demographic researches fit in it. First, there is not a consensus about what Digital
Humanities stands for and more fuzziness exists around the Digital Social Sciences
concept [29]. Though the former considers the latter a different field, we propose
that both live together, once Social Sciences and Humanities are, most of the time,
integrated. By analyzing different techniques related to Digital Social Sciences,
Spiro [29] observes that a relevant intersection exists between them and Digital
Humanities. So, in this chapter, we are going to explore techniques that, elsewhere,
can be defined as Digital Social Sciences, but that, hereafter, we propose to be part
of the Digital Humanities.

Second, we should define how Demography can benefit itself by Digital Human-
ities and, consequently, how big microdata can be treated by these techniques. As
a first approach, we should remember how we did (and still do) traditional data
analysis: we prefer supervised models in order to process data. In the era of big
(micro)data, datasets are more relevant than models: it is more important to know
what is hidden in our data (structure, patterns, etc.) than how we discover that hidden
information. This shift promotes advances in terms of machine learning techniques,
with the aim of discovering unexpected relations and hidden patterns that traditional
techniques do not observe.

Thus, demographic researches can benefit themselves from the new, data-driven
approaches in order to deeper explore census-based big microdata. Hereafter, we
present two examples related to the use of techniques that can discover unexpected
patterns behind the data. First, we combine big microdata and spatial analysis in
order to associate environmental risk areas to specific sociodemographic patterns.
Second, we use data about internal migration in order to evaluate how evolved
the structure and the characteristics of the migratory network. For both cases, we
explore the sample census microdata for the Metropolitan Region of São Paulo
(MRSP). Data treatment and analysis will be conducted using SAS R© 9.4 (for the
construction of indexes), Weka R© 3.8 (for data mining), and Gephi R© 0.92 (for spatial
analysis).

In order to analyze population issues using new approaches, we choose the
Brazilian demographic census. The choice is supported by the variety of data
collected by the Brazilian Institute of Geography and Statistics (IBGE), and also
because the demographic census is still one of (if not the most) important sources
of data for developing countries [14]. In Brazil, the demographic census offers
“the widest possibilities for population studies—their quantification, composition,
structure and administrative political distribution (. . . )” ([26, p. 292], authors’
translation). Moreover, as stated by the United Nations [32], the collection of
census data is carried out for the whole population, for an uncountable number of
demographic, economic, and social themes. Thus, using these highly detailed data
is really important in order to implement complex analyses.
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3 Revisiting Demographic Issues: Two Examples

Our first example of combining Digital Humanities with big microdata is about
the identification of sociodemographic and economic vulnerabilities and their
relations to environmental risks. A possible research question would be: “Is there an
association between sociodemographic/economic vulnerability and environmental
risks?”. As a first approach, we have to discover which are the vulnerable area and
where they are located. After this, we can overlap these data with information about
areas subject to environmental risks. Lastly, we can evaluate if there is a spatial
pattern relating vulnerability to environmental risk. In order to solve this problem,
we can adopt a vulnerability index.

For this example, we opt for the “Family Vulnerability Index” (FVI), developed
and implemented using census data by Furtado [10]. The author develops an index
that approaches the idea of vulnerability as the “inability to respond adequately,
in a timely manner, to unexpected social or environmental events” ([10, p. 8],
authors’ translation). This index has six dimensions: (1) social vulnerability (SV);
(2) knowledge access (KA); (3) work access (WA); (4) resource scarcity (RS); (5)
youth development (YD); and (6) housing conditions (HC). Each dimension has a
set of indicators that, properly computed, give a final value between 0 (absence of
vulnerability) and 100 (extreme vulnerability). We can obtain the FVI computing
the average of the six dimensions. This final process is shown in Eq. (1).

FV I = 100 × SV + KA + WA + RS + YD + HC

6
, 0 ≤ FV I ≤ 100 (1)

For each one of the 633 weighting areas (WA) of MRSP, we compute the FVI,
using data from the census sample questionnaire. Additionally, we can explore data
about households environment, available from census for the whole population,
concerning the spatial presence of local afforestation and sewers, as well as the
occurrence of garbage on the street and/or open sewage. With these variables (six
from FVI and four from household environment), we can prepare a cluster analysis
using EM (expectation-maximization) algorithm1—first proposed by Dempster
et al. [6]—in order to discover: (1) the ideal number of clusters; (2) the centroid
for these groups; and (3) which weighting areas belong to each cluster.

The results of the analysis are shown both in Table 1 and Fig. 1, where one
observes that the 10 clusters are quite different from each other. As shown in
Table 1, approximately 10% of weighting area belongs to Cluster 1, with a very
high level of afforestation and sewers availability; moreover, the indexes of open
sewage and garbage are very low. These results are associated with lower degrees
of vulnerability in all the six dimensions of FVI. On the opposite side, less than

1We chose the EM algorithm, once we do not know neither how many clusters do we have in
our data nor the possible characteristics of each cluster. These issues weaken the use of a priori
methods like k-means, once they need a predetermined number of clusters.
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Table 1 Clusters’ centroids obtained by EM algorithm, MRSP (2010)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Have sewers 66.3 21.1 41.6 26.9 50.2 41.1 55.3 37.8 45.6 49.7

Afforestation 94.3 40.2 65.8 67.8 79.3 64.6 78.7 34.2 72.4 81.5

Sewage 0.7 45.1 17.8 9.6 4.9 4.8 7.5 9.0 1.9 0.9

Garbage 1.1 3.2 18.2 3.8 5.7 5.5 7.9 4.8 3.2 1.9

SV 15.1 20.2 19.3 20.0 19.0 19.7 17.4 19.4 18.6 17.3

KA 22.4 63.7 57.5 62.3 54.2 58.7 42.4 58.7 48.9 37.8

WA 8.5 22.1 18.8 21.9 17.7 19.2 13.3 19.2 15.2 11.8

RS 6.5 17.5 13.6 16.4 12.1 15.4 10.1 14.0 10.6 7.5

YD 3.6 6.8 6.9 8.3 6.1 7.6 5.7 6.3 6.2 4.6

HC 6.2 17.5 14.1 16.3 12.5 9.5 9.2 15.0 9.2 9.0

Instances 67 15 63 38 100 73 46 29 99 103

Percentage 10.6% 2.4% 10.0% 6.0% 15.8% 11.5% 7.3% 4.6% 15.6% 16.3%

Source: IBGE—Brazilian Demographic Census, 2010. Data processed and tabulated by the authors
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Fig. 1 Spatial distribution of clusters by weighting areas, MRSP (2010)
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3% belongs to Cluster 2, which has the worst results for the vulnerability index
dimension combined to lower degrees of afforestation and sewers availability. In
a similar way, we can interpret all the ten clusters, in order to observe differences
concerning those areas.

However, we still do not know where each cluster is located. Moreover, these
results do not give us a broad and comprehensive analysis about the relations
between: (1) the membership of each weighting area to a cluster and the gen-
eral cluster characteristics; and (2) the spatial location of each cluster and its
relation to environmental risk areas. In other words, the simple interpretation
of a cluster analysis output is not sufficient in order to understand the relation
between sociodemographic characteristics and spatial location, as well as their
nexus with environmental risks. Thus, it is clear the importance of overlapping
sociodemographic data—analyzed through a data-driven approach (as expectation-
maximization)—to data collected from other sources.

First of all, Fig. 1 helps us to distinguish each weighting area in terms of
cluster association. Cluster 1 is WA in the center of São Paulo, corresponding to
a more developed area, both social and economical, while Clusters 2, 4, and 8
are located in peripheral areas. In this sense, we observe that more vulnerable (in
social terms) is distributed far from the core of the MRSP. Main differences among
those three clusters are related to the environment: Clusters 2 and 8 have the worst
degree of afforestation, as Cluster 4 has a less developed sewers’ system with a
bit more of green areas. So, even if we observe some mathematical similarities
in terms of clusters’ centroids, the spatial distribution is an important issue to be
assessed.

The last step consists in overlapping the results of cluster analysis with available
data about environmental risks, with the aim to compare census-based big microdata
with results from other sources. An example of data comes from the project
“Brazilian megacities vulnerability to climatic changes: Metropolitan Region of
São Paulo,” developed by the National Institute for Space Research jointly to three
state university: UNICAMP, USP, and UNESP (see [24]). This project gathered data
about two kinds of environmental risks: flooding and landslides. Figure 2 is one of
the maps produced by the project, where we can observe the spatial distribution of
risk areas, considering proximity to water courses and declivity.

The combination of Figs. 1 and 2 suggests relations between socioeconomic
vulnerability and environmental risks. For example, weighting areas in Cluster 8
(low afforestation and sewers availability) tend to have a higher declivity (between
15◦ and 30◦), while areas in Cluster 2 (higher vulnerability associated with a very
low occurrence of sewers and a high rate of open-air sewage) are located in areas
with HAND values below 5.3m (indicating a higher risk of inundation). Curiously,
less vulnerable areas are also subject to environmental risks: Clusters 1 (São Paulo
core, with very good environment and socioeconomic indexes) and 10 (around this
core, also with good indexes) are nearby flooding risk areas.

With this example, we observed that, starting with a considerable amount of
unidentified big microdata (in the MRSP, a total of 1,216,611 cases), we can analyze
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Fig. 2 HAND (Height Above Nearest Drainage) model for the MRSP

patterns of vulnerability and their relations to environmental risks. This type of
analysis can be extended to the whole set of Brazilian big microdata (around 22
million cases for the 2010 census). A possible deployment may combine these
results in order to redefine clusters, using geo-referenced data for demographic
variables and/or density-based model for cluster analysis. Moreover, it can be
implemented through a multi-scalar model, combining data here presented with
other sources, to answer questions like: “Why more vulnerable people, from a
sociodemographic point-of-view, tend also to be more exposed to environmental
risks?”.

Our second example to enhance the use of big microdata by applying Digital
Humanities concerns the discovery of spatial patterns in internal migration. Con-
sidering the same research area of the first example, a possible question would
be: “What are the migration patterns within a metropolitan region?”. Limiting our
analyses to migration flows occurred in the MRSP, our approach can consider two
dimensions: (1) the structure of the migration network; and (2) the relevance of
each node of the structure. In this sense, we can combine a spatial analysis (more
visual) with network and nodes measures (more technical), both using Gephi R© 0.92.
Doing this for two years of census data (e.g., 2000 and 2010), we can compare the
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(a) Flows 1995-2000 (841 connections) (b) Flows 2005-2010 (816 connections)

Source: IBGE - Brazilian Demographic Censuses, 2000-2010
Note: Colors’ graphs are independents

Fig. 3 Evolution of intrametropolitan migration network in MRSP (2000–2010)

dynamics of intrametropolitan migration, and draw more complex, wider/broader
questions.

In order to explore this issue, we can analyze the individual dataset of census
data (using the sample questionnaire), selecting only those who migrated within
the 5 years prior to census date. Given that the MRSP has 39 municipalities, and
excluding cases of intra-municipal displacement, we have a set of n × (n − 1)

possible connections (i.e., 1.482 combinations), where each municipality can have
38 ingoing and 38 outgoing transactions. The migration network can be observed
in Fig. 3, where each node is geographically referenced using city hall coordinates.
Visually, both years have a dense network, representing an intense intrametropolitan
migration dynamic. We can observe that peripheral nodes have less linkages, while
the core is more dense and dynamic.

This is a first (visual and simple) approach in order to know more about the
intrametropolitan dynamic of migration in MRSP. The colors of each graph show
us that there are no more than 4 communities, so we have a clue about how the
municipalities are divided into groups. In order to deeply understand the existent
relations between the 39 municipalities, we can compute some general metrics
about the network that are presented in Table 2. Between 1995–2000 and 2005–
2010, though the average number of flows was stable, migratory volumes reduced
in approximately three thousand people.

In the last decade, occurred a slight reduction in the density of this network and
an increment in its modularity (i.e., it became a bit more sophisticated). Moreover,
analyzing the levels rather than the trends, we can perceive that the graph density
(i.e., how many combinations are made, out of the maximum possible) is stable,
but not so high, and the modularity is very low. Combining these measures, we can
deduct that the network is not so sophisticated, with a high number of flows with
few migrants and few expressive linkages.
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Table 2 Evolution of main
network metrics for
intrametropolitan migration
in MRSP

Measures 1995–2000 2005–2010

Average degree 21.56 20.92

Average weighted degree 15,023 12,067

Network diameter 2 2

Graph density 0.57 0.55

Modularity 0.12 0.15

Number of communities 4 4

Average path length 1.43 1.45

Source: IBGE—Brazilian Demographic Censuses,
2000–2010
Note: For measures, see Wasserman and Faust [36] and
Newman [23]
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Fig. 4 Relations between eigencentrality and clustering coefficient for the migration flows within
MRSP (1995–2000, 2005–2010)

We can complement our analysis with metrics related to the nodes of the network;
specifically, we can analyze the clustering and the eigencentrality coefficients. The
first one evaluates node A, that is, (for example) linked to node B, in terms of the
number of connections established by node B with all its possible neighbors. The
second one measures the importance of a node, in terms of network construction:
the higher the eigencentrality, the more relevant is the node for the whole network.
With these two measures—jointly evaluated in Fig. 4—we can evaluate the network
internal structure and its evolution.
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Figure 4 shows that there is an inverse relation between these measures:
municipalities with higher eigencentrality are less prone to have a clustered network.
However, it appears that, from the 1990s to the 2000s, the average eigencentrality
and clustering coefficients increased and reduced their variances. Combining this
knowledge with the previous information about density and degree reductions, we
infer that: (1) people are migrating or outside the capital of MRSP (São Paulo), or
they are moving outward the boundaries of the MRSP; (2) we should include the
whole Brazilian territory in order to understand migration; and (3) the network is
becoming (slightly and slowly) more complex, even with a loss of migrants.

With this second example, we observed that, even combining cases that can
explode the volume of data (e.g., with only 39 municipalities, we could have
had 1482 flows), network analysis is capable to treat these data. Like the first
example, we can extend the analysis to the whole range of available census-based
microdata: in this case, we could have more than 30 millions of combinations (even
if, discarding cases with no occurrences, we had more or less 300,000 unique flows).
The expansion of the data range can also bring up questions about the evolution
of internal migration, in a continental country like Brazil, that can be answered
with Digital Humanities too, employing techniques such as network analysis and
machine learning.

A possible deployment of this analysis may be done using the weighting
area instead of the municipalities. This kind of analysis would be very useful in
order to observe intra-urban flows, once it would make possible analyses about
local migration sources and targets. Moreover, if one adds sociodemographic
characteristics (or, e.g., a vulnerability index like in Fig. 1) to the analyses, a more
complex study about vulnerability and migration could be accomplished. However,
Brazilian census data, as they are collected and available nowadays, do not allow
us to analyze migration at an intra-municipal level at both origin and destination. A
possible path which can be followed is to analyze only destinations by weighting
area, once we know where each person that answered the sample questionnaire
currently lives, but we do not know, for the same spatial unit, where the person
lived before.

4 Potentialities and New Horizons for Demography

The main feature of the approaches presented in this chapter is the ability to operate
with very large census-based datasets (currently known as “big microdata”), which
makes general (national) and disaggregated (by municipalities) studies feasible, in
a potentially large time span. The treatment of uncountable variables (in order to
evaluate issues like environment, vulnerability, and migration) by municipalities
and, why not, for smaller areas (like weighting areas and censitary sectors) enables
demographers to reassess old questions and investigate new themes. Moreover,
big microdata, treated within the scope of Digital Humanities, can be used as a
complementary source for researches based on other surveys.
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On the one hand, there is a huge potential of reviewing consolidated theories
using data-driven analyses (like machine learning, multivariate, and network analy-
sis). Demographers of all specialties can come back to old censuses and investigate
the same questions of years ago, starting from a new perspective; this can bring
up reevaluations concerning what we know about population. On the other hand,
actual computing power allows us to expand boundaries of knowledge: researches
no longer need to be limited to spatial clippings that misidentify idiosyncrasies.
In this sense, demographic researches can be more comprehensive, including
more variables, spaces, and times, in order to deeper and broader understand
sociodemographic and related phenomena.

Census-based data are usually presented on a political-administrative basis, while
environmental data are disclosed in accordance with physical-geographical unities.
The use of these divisions does not adequately fit to the representation of phenomena
analyzed in Demography. Political-administrative and operational units are subject
to vary in size and shape from one region and/or year to another. Thus, it is almost
obligatory to spatially abstract in order to obtain more accurate analyses. Even
though the examples here presented, as way of illustration, analyze the MRSP
(one of the 10 world’s biggest metropolitan regions), we suggest that, in order to
adequately employ Digital Humanities on big microdata, researchers should not:
(1) start with an excessively specific spatial clipping; and (2) define too wide spatial
units of analysis.

Another front of deployment of demographic researches with big (micro)data and
Digital Humanities—already in progress in some countries—is the development of
administrative records in a more robust basis. Different from census data, those
one are collected all the time, for all the individuals that live in a specific region,
including a wider range of themes (not only demographic ones). Development in the
collection of those data, besides the richness of the data itself and their time span,
will not only increase sociodemographic, environmental, and economic researches
(as well as cross-thematic analyses). These data will be a complementary source
to understand census data and, in the long run, they may be a potential substitute
for demographic censuses as we know them, allowing researches with constantly
up-to-date information concerning population issues.

The solution to deal with so much (big micro)data is to adopt the tools provided
by Digital Humanities in order to ensure new (but not only) spatial analyses, as
well as panel studies (that may help in the development of causality researches).
The purpose of this combination is to promote data-driven analyses that reveal
spatial and social relations that, otherwise, would be hidden by data structure
itself. Moreover, this combination may allow, in the near future, multi-scalar,
multidimensional, and multilevel researches, unbiased by administrative and/or
political boundaries, using large volume of relevant data, coming from both censuses
and administrative records. Approaching demographic issues by the perspective of
Digital Humanities will better “prepare” researchers to the data avalanche of big
(micro)data, reshaping our comprehension about an uncountable number of social
themes and reassessing relations in areas like P&E.
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Modeling Social and Geopolitical
Disasters as Extreme Events: A Case
Study Considering the Complex
Dynamics of International Armed
Conflicts

Reinaldo Roberto Rosa, Joshi Neelakshi, Gabriel Augusto L. L. Pinheiro,
Paulo Henrique Barchi, and Elcio Hideiti Shiguemori

1 Introduction

In this chapter we address one of the great causes of a man-made disaster that can
reach planetary proportions. These are the armed conflicts, which throughout the
history of humanity have been the main cause of the great wars. A great war in
general involves a great destruction of social, cultural, and artistic heritages and, in
addition, a huge number of victims (e.g., the 2nd World War resulted in over 60
million deaths) [36]. In this way, great wars are extreme events because they induce
all those disasters that are inherent to armed conflicts which can reach geopolitical
proportions [3, 24] (See Appendix 1).

In a more general context than the one identified above, careful study involving
causes and effects of extreme events that result in disasters (natural or man-made)
is of paramount importance not only for society in general, but specifically for
many areas of science and technology. This is due to the fact that it is mainly
through science and technology that humanity will 1 day be able to predict, mitigate,
and even control or avoid the causes and effects of major disasters. Therefore, a
pragmatic study of armed conflicts, considering the great wars, must necessarily
involve a multidisciplinary approach with emphasis on at least the following
fundamental sciences: geopolitics, sociology, psychology, semiotics, mathematics,
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physics, and chemistry. However, for the modeling of extreme events, especially
within the context of social sciences, it is necessary to bring to the detailed study of
the phenomenon the modern approaches of computational mathematics, statistical
physics, and complex systems theory [27].

The concept of a complex system has evolved significantly over the past two
decades. There are many approaches in physics, biology, engineering, mathematics,
computer science, and in some interdisciplinary areas that mention, consider, and
define a complex system [9, 38], however without rigorously presenting an approach
that explicitly includes extreme events as a property of complexity [61, 64], and, even
more, addressing its causes in terms of endogenous, exogenous, or hybrid nature
[55]. That is, a concept that allows, at least partially, to identify and even measure
the degree of complexity based on processes that manifest crises, extreme events (as
shocks and disasters), and systemic phase transitions [65].

As will be seen throughout this chapter, complex systems far from the thermody-
namic equilibrium [46, 60] can be studied effectively through the non-homogeneous
energy transfer cascade model which is the main process describing turbulent-like
behavior [33, 47]. Its adequacy to the problem of armed conflicts in a complex
network allows to characterize and measure complexity in the so-called sociosphere
[40], a systemic concept already addressed by the general theory of systems (GTS)
[14, 60]. From the GTS the concept of sociosphere (a modern concept of biosphere)
is presented from the complex interaction that occurs between the human being
and the planet, giving rise to a region where conditions are such that our planet is
theoretically capable of sustaining life.

The Earth ecosphere, where the interaction between the living and nonliving
components takes place, is shaped and transformed by human activity. Thus, the
human being merges nature into society. More precisely, the sociosphere can be
considered as an inter-subjective ecosphere around our planet, defining the society-
nature system [22]. The term comprises the way of social mediation among agents
(human or social groups) takes place as economical and geopolitical processes.

The fact that such agents determine interactions that may be cooperative or
conflicting, balanced or out of equilibrium, permanent, or fleeting in relation to the
environment are some of the aspects that make the sociosphere a complex system
with the following properties: expressive number and diversity of agents, direct
and indirect connections, linear and nonlinear interactions, structurality, hierarchy,
and collective phenomena that can strengthen or weaken the permanence of the
system as a whole. In this scope a widely used concept for complex systems is as
follows: complex systems are those consisting of many different agents interacting
nonlinearly and it cannot be split into simpler subsystems without neglecting its
collective properties [9, 38]. Although complex systems as a whole are difficult to
model, the characterization of spatiotemporal complexity by scaling laws is highly
attractive and has many applications in the study of complex dynamics from many
systemic interacting elements [35, 61, 64].

In the next section we will describe spatiotemporal complexity based on the
concept of scaling laws when associated with a complex dynamics that can be
characterized by a multiplicative energy transfer cascade. In the rest of the text we
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will use this description as a basis for modeling the dynamics of endogenous and
exogenous armed conflicts.

2 Modeling Social Spatiotemporal Complexity

Formal complex systems are entities composed of well-defined components. The
integrability of the components acts together as to form a functioning whole
with spatiotemporal collective dynamics and responses to the environment. Some
properties that distinct complex systems have in common are the following: (i)
high density, (ii) diversity, (iii) nonlinear connectivity, (iv) collective behavior, (v)
structurality, (vi) thermodynamic permanence, (vii) far from equilibrium states,
and (viii) scaling hierarchy [53, 60]. As a practical example of complex systems
exhibiting such properties, in the spatiotemporal domain, are: (a) the bird flocks
[15], (b) the fish schools phenomena [50], and (c) the social crowds [23, 42]. In
these high density complex systems, even when the diversity is low (but never null),
their nonlinear interconnected nature leads to emergent behavior. From the property
of collective behavior emerges structurality whose permanence is susceptible
both to endogenous and exogenous stimuli. The structure is then dissipative
and its stability can be characterized from the variation of its thermodynamic
characteristics. This means that complex systems can trip across thresholds into
sudden transitions and they can react disproportionately to seemingly small triggers,
or transform as a result of influences from within the scaling hierarchy structure
itself (e.g. hysteresis and self-organization).

In general, the complex exchange of non-homogeneous information across
group agents may result in a spectrum of spatiotemporal patterns characterizing
collective behaviors. While complex collective patterns in animal groups are readily
identifiable by trained visual inspection, a mathematical method from raw stochastic
data is not yet well established. However, considering the previous definition of
complex systems, the possibility of measurement stochastic data brings information
on the scaling hierarchy and its autocorrelation function. This reduction of the
effective dimensionality of a complex system makes it possible to establish a
mathematical approach known as Kramers–Moyal (KM) treatment [10, 23].

The KM approach is based on the hypothesis that there are several large Markov–
Einstein time scales, which can be traced back to hydrodynamic-like memory
effects. Above this time scale spectra the process can be mapped to an Ornstein–
Uhlenbeck process [21] via the application of the developed extended structure
function method [23]. This is in agreement with the classical theory of overdamped
1/f β noise which characterizes, for example, Brownian motion, reaction–diffusion
pattern formation, and turbulence, from its power spectrum density (PSD). In this
context, complex dynamics such as non-homogeneous turbulence can be described
from multifractal singularity spectra [12, 33, 43, 63].

Between the two example of systems, uniform [15, 50] and highly non-uniform
[42], we identify the systems of social conflict that can be approximated by elements



236 R. R. Rosa et al.

containing only two distinct types: agents and reagents that, in practice, exchange
their roles collectively. This allows us to initiate a first modeling that can be effective
in the study of armed conflicts. Therefore, understanding the transfer energy cascade
following a scaling hierarchy from an agent–reagent system and the correspondent
non-homogeneous turbulent-like behavior becomes also essential for many social
complex systems [6, 7, 28, 42].

2.1 Multiplicative Cascade for Extreme Conflicts Events

When an effective observable, expressing the energy of the system, exceeds a certain
critical value, a sort of viscous character originating from agent–reagent sociological
frictions may appear. Moreover in such a scaling hierarchy the exchange of
information is limited only within a local region so that the transfer of the energy
in a group may become incoherent. Therefore, in a systemic approach, the complex
regimes of a social dynamical system may be similar to the turbulent motion of a
complex viscous fluid. Along this line it is possible to propose an analytic method
to characterize complexity from a systemic stochastic fluctuation which should be
sensitive, in the time domain, to the occurrence of extreme events. A such time
series can then be analyzed from their respective power spectrum density (PSD)
[10, 21, 33] (see Appendix 2).

To simplify the notation, the elements of our agent–reagent multiplicative
cascade are called simply agents. The diversity of agents is binomial. We use the
colors black and white. When the colors are opposite the agents are in conflict
(see Fig. 1a). We start the cascade from a non-homogeneous criterion containing
a conflicting pair (A1 × A2). The energy (or information) that characterizes the
conflict is distributed between the agents and is interpreted as a function of a
wave number K = 1/scale. In the cascade, as wave number falls over time, the
amount of agents increases in a binary proportion. Agents of lower levels are called
pro − agents (PA) (they allies when they have the same color). The energy of the
conflict will dissipate until a disaster state in which the maximum energy dissipation
will occur. This scenario is compatible with a non-homogeneous cascade type model
(see Fig. 1b). Hence, our approach is based on the so-called p-model mechanism
[37, 56] that allows us to create a non-homogeneous cascade in a way which is
entirely compatible with the fluctuations observed in stochastic time series.

2.2 P-Model for Social Conflicts

The P-model approach for non-homogenous turbulent-like cascade was proposed
by Meneveau and Sreenivasan [37]. It gives a new insight into the kinetic energy
dissipation in cascading process of eddies in the inertial range of a fully developed
turbulence, and it is based on the special case of weighted transfer.
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Fig. 1 The multiplicative cascade for non-homogeneous binomial turbulent-like process. (a) The
scaling hierarchy for social conflicts; (b) the respective expected power spectrum density pattern
showing the transition from the inertial range to the extreme event which is the response to the high
dissipative regime. The embedded picture shows the enstrophy as a function of the wave number

From a theoretical point of view, P-model is a generalized form of two-scale
cantor set with balanced distribution of length which shows multifractal properties
of one-dimensional sections of the dissipation field. The generalized form starts
from the classical view of eddy cascade before the inertial range of fully developed
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turbulence, where flux of energy (EK ) actually dissipates at Kolmogorov length
scale β from eddies of size LK . Then, each eddy of size LK is divided into two
equal parts, LK/2 expressed as LK1 and LK1 each; however, in each cascade step,
the flux of energy is distributed, as a probability, unequally in fraction of p1 and
p2 = 1 − p1 where p1 + p2 = 1. This process is iterated over fixed p1 until eddy
reaches to Kolmogorov scale β [5, 31, 41].

The p-model multiplicative cascade is given by

α = log2 p1 + (ω − 1) log2 p2

log2 l1 + (ω − 1) log2 l2
(1)

and

f (α) = (ω − 1) log2 (ω − 1) − ω log2 ω

log2 l1 + (ω − 1) log2 l2
(2)

Starting with a non-homogeneous energy distribution, one transfers a fraction
f (α) of the multifractal mass from one half to the other in a randomly chosen
direction [58]. This is equivalent to multiplying the originally uniform density field
on either side by factors. The same procedure is repeated M times, recursively at
ever smaller scales using fractions varying α on segments of length L/2n, where
the multiplicative weight ω is parameterized as 1 − (1 − 2p), resulting the discrete
array C(m) where m counts as time steps. This p-model algorithm procedure given
by Venema [1, 16] can produce time series where the variance is finite if you would
extrapolate its power spectrum to infinite large scales [49].

Time series, C(m = t), with M = 211, representing non-homogeneous turbulent
conflict is generated using the Venema algorithm [1], where the inputs are: the size
of the time series in number of points (M), the PSD power spectrum (βPSD), and
the value of p, which is the fractional distribution of energy in non-homogeneous
turbulent-like cascade [4, 18, 20, 26, 34]. The homogeneous dissipative process near
the thermodynamic equilibrium is recovered when (βPSD, p) = (−5/3, 0.5).

Deviations from the homogeneous cascade are compounded by abrupt changes
in the frequency and magnitude of social conflict. Such changes are called eXtreme
Events (XE) and their cause may be due to factors more internal than external.
When the level of conflict increases significantly due to internal interactions, the
extreme event is called endogenous (XEendo). When the external energy transfer or
abrupt dissipation is the main cause of XE, then it is called an extreme exogenous
event (XEexo). In the power law domain, events of the type XEendo and XEexo

belong to different classes of universality. In order to generate time series XEendo

and XEexo we will adopt the SDGA formalism [55] (see Appendix 2). Typical
endogenous and exogenous processes, combining p-model and SDGA, are obtained
for (βPSD ≈ −0.4, p = 0.25) and (βPSD ≈ −0.7, p = 0.25), respectively.
Figure 2 shows XE time series for different combinations of p and βPSD .

The cumulative energy of the process in the time domain is defined as normalized
average < C(τ) > where τ is a chosen window time interval along the signal. The
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Fig. 2 Two typical time series simulated from p-model fixing p = 0.25 and varying the value
of β. (a) A XEendo pattern from β = −0.39. (b) A XEexo pattern from β = −0.72. The
respective PSDs are shown using embedded smaller pictures. Figure (c) and (d) shows the
respective cumulative energy expressing the typical functional patterns for endogeny (log) and
exogeny (exponential)

trend of the cumulative energy over each τ = 250 time steps is shown in Fig. 5c
and d. It is noteworthy that the typical trends are nonlinear being logarithmic for
XEendo and exponential for XEexo.

3 Modeling Geopolitical Conflicts

Armed conflicts are, at some scale, associated with geopolitical factors (in their
broadest meaning, which involves aspects of rights and security directly related to
citizenship, culture, economics, and politics). In this way, as shown in Appendix 1,
armed conflicts are those involving threats, defenses, and attacks with the active or
passive use of weapons in a geopolitical domain.

In the geopolitical domain, the terrorist attacks are today one of the central
problems in our social environment [62]. It is notable in this context that the rate
per decade of international armed conflicts has increased more than 85% since
the severe event on September 11, 2011 [24, 36]. Since then terrorist attacks have
also been associated with other types of armed conflict involving geopolitical and
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economic interests where small and large nations stand out as strategic parts of the
complex and global armed sociological conflict (for simplicity, only international
armed conflicts). Therefore, in order to formalize the study of the dynamics
of international armed conflicts, the so-called Uppsala Conflict Data Program
(UCDP) has been prepared since 2002 in close collaboration with researchers at
the Department of Peace and Conflict Research at Uppsala University and the
Departments of Sociology and Political Science and Geomatics at the Norwegian
University of Science and Technology (NTNU) [24]. We will call here Armed
Conflicts (AC) only to those defined in the UCDP/PRIO Dataset Codebook [57].

The number of AC as terrorist attacks worldwide by year is shown in Fig. 3
[57, 59]. The data reveal an endogeny in the frequency of attacks from 1970 until
1992. A period of decline is evident beginning in the wake of the Cold War’s
end and lasting roughly a dozen years [54]. For the past decade, however, there
has been a exogenous rise in the number of terrorist attacks from just over a
thousand in 2004 to almost 17,000 in 2014. The trends indicate some meaningful
distinctions before and after the 9/11 Al-Qaeda attack. Since 9/11, these countries
have experienced significantly more armed conflicts than they had previously [54].
It is also noteworthy, from the inserted picture, the hyper exogenous character of the
September 11 attack.

Fig. 3 Endogeny (blue) and exogeny (red) patterns in the total number of conflicts per year from
terrorist attacks since 1970 until 2012. The exogenous pattern holds even when removing attacks
in Iraq and Afghanistan (dashed curve). The smaller picture shows the GTD total number of deaths
(D) per year from terrorist attacks against the USA state from 1970 until the Sep 11th 2001. This
includes all victims and attackers who died as a direct result of the incident [59]
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Fig. 4 The Agent-Conflict Network, ACN(SP3) with n = 3 containing 28 agents and 36
conflicts. The partial number of agents and conflicts for sub-cells are shown in the inserted table.
The embedded small picture on the left shows the details of the SP3 core configuration

3.1 A Prototype for Agents-Conflict Network (ACN)

In order to illustrate how, in practice, the non-homogeneous p-model is designed
for describing Geopolitical Conflicts, we introduce the simplest Agents-Conflict
Network (ACN) shown in Fig. 4. We assume that the network has a core with four
agents: a1,1, a2,1, a3,1, and a4,1. This set of agents is called the first conflict cell: C1.
In C1 the agents a1,1 and a2,1 are in conflict. Following the cascade model described
in Fig. 3, a3,1 is pro-agent a1,1 while a4,1 is pro-agent a2,1. Then, a3,1 and a4,1 are
in conflict too. In the simplest configuration each agent will be in conflict with two
new agents giving rise to cell C2 which will contain NC2 = NC1 + 2NC1 agents,
where NC1 is the number of agents in C1.

In a war of great proportions not all the agents involved (in general states)
are in conflict with all their enemies. Geographical and diplomatic limits impose
this restriction. Note that in the ACN prototype this happens naturally due to the
connection adopted in the circular topology.

This prototype is referred to here as the Conflict Core SP3 (SP3). In this
prototype, agent a1,1 is always a superpower state1 in conflict with some nation (or
faction) with status of state (but not a superpower) that is agent a2,1. A convenient
initial condition to non-homogeneous cascade is that pro-agents a3,1 and a4,1 are

1The concept is based on the global hegemony introduced by Lyman-Muller [19].
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Table 1 Tree pragmatic examples of SP3 conflict core

Event Date a1,1 a2,1 a3,1 a4,1 C(τ1 = 15) Deaths

NKB 10/09/17 USA NK Japan China 16 0

SMS 4/07/17 USA Syria EU Russia 08 25

WTC 9/11/01 USA Al-Qaeda EU ISIS 06 2996

also necessarily superpowers [39]. Three contemporary examples involving the
USA as the agent a1,1 are set forth in Table 1: North Korea Border (NKB), Shayrat
Missile Strike (SMS), and World trade Center (WTC). In this table, the acronyms
EU and ISIS are, respectively, for European Union and Islamic State of Iraq and
Syria, and τ1 is given in days.

The conflict between two agents is denoted as ci,j,n, where n denotes the cell
level Cn. Each agent ai,j is assigned a probability pi,j which measures its chance
of being active in the conflict (that is, ci,j,n �= 0 ).

The energy injected into the core SP3 is the source that materializes the conflicts:
c1,2,1, c2,3,1, c3,4,1, and c4,1,1 for a time interval τ1 = t1 − t0, where t0 is defined as
the initial conflict time. For a given τn it is possible to estimate the amplitude C(τn)

by counting the number of active and significant conflicts such that pi,j ≥ pc, where
pc is a certain critical probability as input to the model.

For the SP3 an extreme event occurs when C(τn) ≥ NCn + 4, where NCn is the
number of active agents contained in cell Cn. This criterion imposes on the model
the form of distribution of the injected energy. Let’s say for SP3 with n = 3 we
have all layer conflicts n = 3 disabled and all others activated which results then in
16 conflicts. In this case C(τ3) = 12 + 4 = 16. It is an extreme event where the
energy balance did not reach the outermost layer and there is no any extra external
energy source for this. Therefore characterizing in this case a typical XEendo. If
there were an complementary external energy injection, in the avalanche structure,
this enclave would be transferred to the N3 agents more quickly thus characterizing
a more abrupt and more intense event, then a typical case of XEexo.

3.2 The Prototype Simulation

In this section, we introduce a bidimensional cellular automata (CA) to simulate
the ACN prototype [2]. The 2DCA-ACN is a two-dimensional cellular space with
discrete time step where each cell holds one state from a finite state set that changes
following a local update rule which depends on the neighborhood state around
each cell at the previous time step [30]. At the core, the two black cells represent,
according to the notation used in Fig. 4, the agents a1,1 and a2,1 and the white
ones the respective pro-agents a3,1 and a4,1. The neighborhoods strategy is a Von
Neumann configuration [30] that is composed of the cell itself and the four cells
situated at north, south, east, and west. Moreover, the pressure in this conflict space
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Fig. 5 An example of 2DCA-ACN simulation setting the parameter P(A) = 0.5 as the initial value
to each activated cells. (a) Snapshots of the activated cells. (b) Evolution of the space conflict state
represented by four red levels at each time step. The corresponding state with the intensity of red,
in the ascending order, is given by: threats, strike, and war. The lighter color of the red levels does
not draw any state, hence shown an inactive cell and is defined as level 0

only tends to grow. For the simulations to be considered in this article, the AC
prototype is formed of only two-stage, that is Cc = 2: the initial state which
is described as the catalyst iteration of the conflict space, while the second is
characterized as a complete system, showing all allies of the two side of the conflict
space, with a total agents Na = 12 (the black and white cross-shaped area in Fig. 5)
and a maximum number of conflicts of Nc = 36. Not that, to be compatible with
the ACN topology, as a rule, there is no activation in the gray squares of the cellular
space conflict. The time step follows the Von Neumann rule and is thus recurrent
until the system converges to the maximum configuration of the second stage.

In this 2DCA-ACN, every cell holds a probability P(A) ∈ [0, 1] of conflict
with each neighborhood cell, a three-up-let state which is defined as (i) threats, (ii)
strike, (iii) war and a counter to save the number of conflicts (i, ii, iii) that occurred.
Through each state, we set as well an energy value E1, E2, and E3 to threats, strike,
and war, respectively such that E3 � E2 > E1. It is assumed that only cells with
threats or superior state can influence in the environment, we call this an active cell.
Otherwise, the cell is inactive and not assumes any value. At the initial time, the
configuration of the system is given by activating all cells located in the first stage,
setting their state as a threat, and keeping the other cells inactive (the gray cells of
the space conflict are always inactive). Furthermore, a cell cannot bring down your
state and the geopolitical conflicts only expand if a cell in the first stage turns up the
state to the second level.
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The chance of happens a conflict (η) in a cell by the joint probability of conflict
between the cell (i, j ) and your neighbors (i + α, j + β) is given by

P(η) =
∏

P(Ai+α,j+β) (3)

where α is the x-axis and β is the y-axis coordinates, which assume the following
indices: {(0, 0), (0,−1), (−1, 0), (0, 1), (1, 0), (1, 1)}. In this case, each cell is
independent so the state of the other cells does not influence in your own state.
Thereafter, we use a Bernoulli distribution to sample the probability P(η) and
decide if a conflict (threats, strike, war) get success or failure, in other words, if
the conflict will happen or not.

Moreover, if some conflict happened, the counter must be incremented to register
this action. In this way, the probability of P(A) must be up to date according to the
number of conflict in a cell, which is defined by:

P(A) = P(A) × F

z
(4)

where F counts for the amount of conflict in a cell and z = P(A) × F + P(A) is
the normalized probability.

The model was developed with the programming language Lua, a simple pseudo-
code of the conflicts procedure is detailed in Algorithm 1. In the procedure, the
parameter p represents all activated cells in the system at a specific time t. After
receiving the cells, a loop is used to iterate over each neighbor of the current cell p

for computing the joint probability (line 4). Worth to emphasize that the update of
parameters occurs at the same time in every activated cell and to calculate the new
value of counter and P(A) it is only necessary the previous values. Therefore, if x
is succeeded, the next step updates both the counter and the probability of conflict
(line 10, 11).

Algorithm 1 Cellular automaton to geopolitical conflicts
1: Set parameters;
2: Input: P(A)p: initial probability of conflict
3: procedure CONFLICT(p)
4: η ← P(A)t−1

p ;
5: for ∀q ∈ N(p) do � Neighbors of the current cell
6: if Statet−1

q is active then
7: η ← η ∗ P(A)t−1

q ;
8: end if
9: end for

10: Compute x ∼ Bernoulli(η);
11: Update Countert

p according x;
12: Update P(A)tp according x;
13: end procedure
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Figure 5 shows the output for a 2DCA-ACN. The space conflict is shown at time
= 10, 60, 70, 80, 160. The initial time is defined as the first stage for the agents:
{(1, 1), (1, 2), (2, 1), (2, 2)} and every agent assumes the parameter P(A) = 0.5.
While Fig. 5a shows the activated cells, Fig. 5b represents the state of each cell by
means of four red color levels, such that, the level 1 illustrates the initial conflict
state as a threat until the level 3 which is the conflict state war. Along the evolution
of the conflict space a mean energy of the state in each cell at time t is registered,
where the t is equivalent 15 days passed according to the UCDP data (see Sect. 4
and Appendix 1).

We find that the model is able to simulate both endogenous (XEendo) and
exogenous behavior (XEexo) according to a specific initial value in the parameter
probability of conflict P(A). Figure 6 (Up) illustrates an endogenous case by
initializing P(A) with random probability for every cell activated at some time t .
In general, the simulations showed that one can obtain similar results as well when
P(A) is defining, in average, with low probability. On the other hand, if P(A) admit
high probabilities ≈ 1, then an exogenous pattern XEexo occurs in the state conflict
space as shown in Fig. 6 (Bottom).

Fig. 6 Up: The average state of activated cells designing an endogenous behavior by simulating
the model with P(A) as a random probability. Bottom: The average state of activated cells
illustrating an exogenous case when P(A) = 0.95
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4 Building a World War Time Series

Looking through current international affairs and conflicts in the IACM dataset, we
have designed new scheme to understand conflict intensity based on causalities [25].
The counts of armed conflicts are performed each 15 days. International Armed
conflict data when plotted on log −C(τ)×τ scale distinct levels can be categorized
as:

(i) Level W (War): CW(τ) � 3σ (σ is the standard deviation of C(τ)). Using
the notation C(15) = D15 = ND : number of deaths in the interval τ = 15
days.

• stability: ND < 102 on log scale. It has almost no fluctuation, continuous
smooth unit vector.

• conflicts: 102 ≤ ND < 103 on log scale. This is interpreted as one of the
parties having conflicts with the other involved in the battle. But no use or
threats of any missiles or nuclear weapons.

• cold war: 103 ≤ ND < 104 on log scale. High production and large number
of nuclear weapons tests. There are high counts of threats (conflicts).

• warm war: ND ≥ 104 on log scale. High production and large number of
nuclear weapons tests. There are high counts of threats (conflicts). One of
the parties uses the missiles. Threats of use of nuclear weapons are high
(conflicts).

• war or hot war: ND ≥ 105 on log scale. Both parties use the missiles and
nuclear weapons.

(ii) Level S (Strike): CS(τ) ≥ 3σ using C(30) = NS for UCDP monthly counting
of armed attacks (strikes) (deaths are not computed in this index) [17]. The
time series is shown in Fig. 7.

(iii) Level T (Threats): CT (τ) � σ using C(τ)p−model = NT . This level can be
also called Level N from noise.

To inspect an international conflict as an extreme event, we are interested in
finding whether data is endogenous or requires some thrust and be categorized as
exogenous. To analyze endogenous and exogenous patterns in IACM, a complex
systems model has been built by inducing endogenous and exogenous P-model time
series as a noise. This is equivalent to the complex daily threats among the agents
and pro-agents in conflict involving international affairs conveyed by the official
media (see Fig. 8, Appendix 1). The main cause of this component of the signal is
political instability due to adverse regime. Actually from our understanding it works
as a non-homogeneous turbulent-like information cascade, the underlying process
which drives the energy until the state of extreme event [49–52]. War is a matter of
making decisions in a very complex system from where the underlying turbulent-
like fluctuations follow the patterns as shown in Fig. 3.
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Fig. 7 The C(t) times series for the interstate armed conflict model starting from the first World
War conflict and ending at the USA missiles launched on Syria on 6 April 2017. The time series
resolution is composed of 2592 points due to a 15 days sampling rate. (a) this model is based on
the exogenous noise component σXXe and (b) based on the endogenous noise component σDXe.
The respective PSDs are shown using embedded smaller pictures

Considering the three IAC counting components the model for the overall signal
is defined as follows:

C(τ) = ωDlogND + ωSlogNS + ωT logNT (5)

Figure 7 shows the global (endogenous and exogenous) time series generated
by Eq. (5). By consistency of conditional standard deviation, the set of weights are:
ωD = 10−1, ωS = 10−2, and ωT = 10−3.

The importance of this time series model, considering the results obtained
with the prototype that describes a possible underlying process discussed in the
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previous section, is to allow the application of forecasting tools for the study of a
possible armed conflict that can reach global proportions. In this direction, we are
already working on supervised learning methods in artificial intelligence, such as
the artificial neural networks (ANNs) and the support vector machine (SVM) which
are suitable for nonlinear time series prediction [8, 13, 29, 32].

5 Concluding Remarks

Data mining in the UCPD/PRIO dataset has inspired a more careful study on the
fluctuation patterns of interstate armed conflict (IAC). Our approach leads to a
multifractal p-model originally designed to simulate the highly intermittent spatial
fluctuations of the kinetic energy dissipation in non-homogeneous turbulent-like
dynamics. There exists a great potential for this approach through the exploration of
the features of complex systems that make them distinct (diversity, memory, cross-
scale interactions, sensitivity to environmental variability). The great challenge,
however, remains to find generalities in the model dynamics to improve understand-
ing and prediction. For example, the meaning of the evolution of the state conflict
space defined here.

Based on this challenge, in this work, a mathematical and computational
treatment has been proposed whose results show some consistency with the real
data. The cascade interpretation of energy for non-homogeneous turbulence besides
being consistent with the dynamics of complex social systems allowed to develop
a prototype of multi-agents for which a simulation with cellular automata was
performed. The simulation is validated from the main characteristics studied in this
approach to AIC that are the occurrence of extreme endogenous and exogenous
events from threats, attacks, and wars. An important question into this context,
considering the results, is: what are the real causes of exogenous extreme events?
That is, how should the high values of conflict probabilities of the model be
interpreted in real life?

The occurrence of a XEexo means that some important factor is not being
considered in the dynamics of the system. Therefore, possible causes of exogeny
are the following: existence and action of powerful and invisible terrorist cells;
infiltrators and heavily camouflaged agents, and, finally, the existence of clandestine
nuclear programs for high-destruction attacks. On the other hand, the most perverse
aspect of endogeny is the possibility of protocol conflicts, that is, those devised and
commissioned by undemocratic agreements between fake enemies.

Finally, from a practical point of view, we can say that geopolitical conflicts,
in special the IAC, have become more frequent and intense maybe due to the
increasing of exogeny in the conflict system. From the theoretical point of view,
this probable increasing exogenous dynamics could gradually suppress smaller
armed conflict and simultaneously forced the system to release tensions through
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increasingly severe and frequent systemic armed conflict. Is it a self-organized
criticality process that should be discussed within the geopolitical scope? Is it
possible that the superpowers, for perverse reasons, are interested in carrying out
a great protocol war? Exogenous behaviors are less likely since they can result
in extreme events that can lead to an armed conflict of world proportions (world
war) whose practical sociological results are of no interest to any of the agents
involved. In this case, the result would be a global disaster with low resilience thus
compromising the permanence of humanity on this planet. Anyway, no kind of war
is welcome for most. Thus, this type of study challenges the geopolitical systems to
create mechanisms of transparency that allow the population and the press to follow
closely the great decisions taken by the most powerful leaders. Only then we will
have the great power to prevent major social disasters.
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Appendix 1: The UCDP Data Base

The Uppsala Conflict Data Program (UCDP) database [57] provides one of the most
accurate and extensive information on armed conflicts including attributes like con-
flict intensity based on total number of battle-related deaths; number of conflicts (see
Fig. 8); conflict type; details of warring party including geopolitical information;
period with specific start and end date, etc. This database is updated annually and
considered well-used data-sources on global armed conflicts. Its definition of armed
conflict2 is becoming a standard in how conflicts are systematically defined and
studied. Conflict with minimum of D battle-related deaths per period τ and in
which one of the warring party is government of a state is recorded as an Interstate
Armed Conflict (IAC) [17]. UCDP DataBase (UDB) categorizes IAC in different
intensity levels based on the total battle-related causalities:

• Not active: D < 25 per year.
• Minor: D ≥ 25 per year but fewer than in the extreme event period.
• Intermediate: 25 � D < 1000 total accumulated of at least 1000 deaths, but

fewer than 1000 in any given year.
• War: D ≥ 1000 per year.

2Based on the UDB the IAC is here defined as: contested incompatibility that concerns government
and/or territory where there is a probability of using armed force between two parties, of which at
least one is the government of a state.
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Fig. 8 UCDP monthly counting of armed attacks which is used as the component NA in our time
series model

Appendix 2: Power Laws for Endogenous and Exogenous
Time Series

The systemic difference between endogeny and exogeny in abrupt events has been
interpreted as a scaling process by Sornette–Deschtres–Gilbert–Ageon (SDGA)
[55], where internal perturbations give rise to endogenous extreme events (XEendo)
which is characterized, as shown in Fig. 9a, by smoother average continuous
fluctuations that increases slowly and after reaching its highest peak and gradually
reduces by itself. Differently, an exogenous extreme event (XEexo) results from
a preponderant external perturbation and can be characterized by a sudden peak
followed by unexpected rapid drop in the fluctuations (Fig. 9b).

The SDGA model is based on the book sales rank. While the book’s selling rate,
which has a XEendo pattern, only relies on the advertising provided by the common
sales system (basically, the publisher’s advertising and, especially, the cascade of
information between the readers and likely readers), the sales rate of the book with
XEexo pattern counted on an unusual systemic outsider high cost advertisement via
a famous newspaper or TV broadcast interview.

According to the SDGA a time series can be modeled based on social epidemic
process where in the beginning, first (mother) agent notices the book in advertise-
ment or news or by chance and initiates buy at time ti . Subsequent (daughter)
generations of agents are build at different time t resulting in an epidemic that
can be modeled by a memory kernel φ(t − ti ). The net sale is the sum of 1/f

noise processes following a power law distribution that accounts for XEendo, and
impulsive distribution associated with XEexo. The time series can be described by
a conditional Poisson branching process given by
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Fig. 9 Typical time series for (a) XEendo and (b) XEexo, according to the SDGA scaling approach

λ(t) = R(t) +
∑

i/1≤t

μiφ(t − ti ) (6)

where μi is number of potential agents influenced by the agent i who bought earlier
at time ti . R(t) is the rate of sales initiated spontaneously without influence from
other previous agents.

For our generic complex systems scenario, the key idea in the SDGA approach
is the invariance of the epidemic model but as a non-homogeneous network of
potential daughter generations which can be considered through different values
of branching ratio. The ensemble average yields a branching ratio, n, that signifies
the average number of conflicts triggered by any mother Agent within her contact
network and rely upon the network topology and impact of the systemic dissipative
behavior. Authors considered the sub-critical regime n < 1 in order to ensure
stationarity which accounts for efficient coarse-grained nature of the complex
nonlinear dynamics. The exogenous response function is obtained from Laplace
transform of the Green function K(t) of the ensemble average.

According to Sornette [55] a bare propagator as φ(t − ti ) ∼ 1/t(1+θ) with
0 < θ < 1 corresponds to long-range memory process which provides information
on the conflicts propagation:

Cexo(t) ≡ K(t) ∼ 1/(t − tc)
1−θ . (7)
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It provides information about the average number of agents influenced by one
agent through any possible direct descent or ancestry. And thus average number of
conflicts triggered by one agent can be given as:

∞∫

0

K(t)dt = n/(1 − n). (8)

Continuous stochastic time series with spontaneous peaks indicates the lack
of exogenous shock. Such series can be interpreted as an interaction between
external factors over small-scale and enlarged effect of widespread cascade of
social influences. This mechanism can explain peak in endogenous time series.
Considering results for stochastic processes with finite variance and covariance for
average growth of processes prior and later to the peak and applying to λ(t) defined
in Eq. (5) one get:

Cendo(t) ∼ 1/|t − tc|1−2θ . (9)

Equations (7) and (9) agree with the prediction that XEexo should occur faster
with exponent 1 − θ compared to XEendo with exponent 1 − 2θ . Therefore, after
characterizing the power laws 1/(t − tc)

β with highest correlation coefficient [55],
the scaling interpretation presents two different universality classes characterizing
XEendo with β as 1 − 2θ ≈ 0.4 and XEexo with β as 1 − θ ≈ 0.7. These are
compatible values with Eqs. (7) and (9) with the choice of θ = 0.3 ± 0.1.
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