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Abstract In recent years, techniques from computational and real algebraic geom-
etry have been successfully used to address mathematical challenges in systems
biology. The algebraic theory of chemical reaction systems aims to understand their
dynamic behavior by taking advantage of the inherent algebraic structure in the
kinetic equations, and does not need a priori determination of the parameters, which
can be theoretically or practically impossible. This chapter gives a brief introduction
to general results based on the network structure. In particular, we describe a
general framework for biological systems, called MESSI systems, that describe
Modifications of type Enzyme-Substrate or Swap with Intermediates and include
many post-translational modification networks. We also outline recent methods to
address the important question of multistationarity, in particular in the study of
enzymatic cascades, and we point out some of the mathematical questions that arise
from this application.

1 Introduction

We start by introducing the cartoon mechanisms of two enzymatic signalign
pathways depicted in research articles.The important RAS signaling pathway in
Fig. 1 includes an extracellular ligand and a transmembrane receptor, which trigger
a cascade of protein-protein interactions and enzymatic reactions, then integrated
into key biological responses controlling cell proliferation, differentiation or death.
When this pathway is altered, it can drive to unhealthy cell proliferation [41].
Figure 2 presents a more precise description of the last part of the enzymatic
cascade.
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Fig. 1 The RAS signaling pathway, starting in the membrane of the cell

Fig. 2 Part of the RAS signaling pathway inside the cell, possibly with retroactivity

Fig. 3 EnvZ-OmpR bacterial model

Figure 3 depicts an osmolarity regulation network in bacteria, which is imple-
mented in part by the EnvZ/OmpR two-component system [49]. The sensor kinase
EnvZ (denoted by E in the diagram) autophosphorylates on a histidine residue (Ep)
and catalyzes the transfer of the phosphate group to the aspartate residue of the
response regulator OmpR (O), which then acts as an effector. In this mechanism,
when EnvZ is bounded to ATP (ET), it also catalyzes hydrolysis of the phosphory-
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lated OmpR-P (Op), which is a transcription factor that regulates the expression of
various protein pores. This unusual design keeps the limit concentration of OmpR-P
at a value that is independent of the positive initial concentrations.

When we first look at these biological mechanisms, it does not seem evident that
algebra and geometry can be used to analyze them. But we will argue in this chapter
that this is indeed the case and that we can contribute with these mathematical tools
to the understanding of questions in Systems Biology.

In particular, in the realm of biochemical reaction networks, that is, chemical
reaction networks in biochemistry, the usual mass-action kinetics modeling of the
evolution of the concentrations of the different chemical species along time (as RAS,
RAF, MEK, ERK, E, O, etc. above) yields an autonomous system of polynomial
ordinary differential equations dx

dt
= fκ(x) in the unknown vector of concentrations

x of the species as functions of time, for each choice of the (real positive) reaction
rate constants κ (see Definition 1). In fact, these equations are associated to a
labeled directed graph G of reactions. The monomial terms come from the labels
of the nodes of G by complexes in the given species, the coefficients depend on the
(positive) reaction rate constants κ that label the edges of G, and the total production
of each reaction (which is the difference of the labels of the target and source
nodes). The real polynomials fκ(x) carry a combinatorial structure inherited from
G and we will also think of κ as parameters and consider the family of differential
systems parametrized by them. Chemical Reaction Network Theory (CNRT) was
initiated by Horn and Jackson and subsequently by Feinberg and his students and
collaborators [22] and has seen a great development over the last years, when new
combinatorial and algebro-geometric techniques have been introduced. We refer the
reader to the survey article [16] for basic definitions, results and further references,
and we review here some advances developed after that article was published.

In Sect. 4 we recall the notion of MESSI systems we introduced in [42]. Many
post-translational modification networks are MESSI networks. For example: the
motifs in [23], sequential distributive multisite networks [52], sequential processive
multisite phosphorylation networks [12], phosphorylation cascades or the bacterial
EnvZ/OmpR network from [49] in Fig. 3. Our work is inspired by and extends some
results in several previous articles [24, 28, 29, 31, 39, 43, 48, 51]. MESSI is an
acronym for Modifications of type Enzyme-Substrate or Swap with Intermediates
(see Definition 2). Networks with an underlying MESSI structure include many
post-translational modification networks, as well as all linear systems arising from
mass-action kinetics (a.k.a. Laplacian dynamics [38]). We summarize some results
and algorithms based on this structure to predict conservation relations, persistence,
the capacity for multistationarity, and the description of regions of multistationarity.
Once the network has the capacity for multistationarity, the next main question is
how to predict parameters of, if possible, regions in parameter space which give rise
to multistationary systems, which are called multistationarity regions. In Sect. 5
we comment on several recent approaches to study multistationarity in chemical
reaction networks. Section 6 mentions the mostly unexplored question of the a priori
determination of the occurrence of oscillations in chemical reaction networks, in
particular, in enzymatic networks. We end the paper with two main open questions.
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2 Basics of Mass-Action Kinetics

In this section we set the basic terminology and the mathematical concepts men-
tioned in the introduction. In particular, we discuss the notion of multistationarity.

Two-component signal transduction systems enable bacteria to sense, respond,
and adapt to a wide range of environments, stressors, and growth conditions. Before
giving the precise Definition 1, we instantiate mass-action kinetics in a biological
example of a simple two-component mechanism. It relies on phosphotransfer
reactions. Upon receiving a signal, the hybrid histidine kinase HK can self-
phosphorylate. This is a hybrid histidine kinase with two phosphorylatable domains.
We denote the phosphorylation state of each site by p, if the site is phosphorylated,
and 0, if it is not; the four possible forms are HK00, HKp0, HK0p, HKpp. The
response regulator protein is denoted by RR when it is unphosphorylated and
RRp denotes the phosphorylated form. Given a vector of reaction rate constants
k = (k1, . . . , k6) ∈ R

6
>0, the (directed) graph of reaction equals:

HK00
k1−→ HKp0

k2−→ HK0p
k3−→ HKpp

HK0p + RR
k4−→ HK00 + RRp

HKpp + RR
k5−→ HKp0 + RRp

RRp
k6−→ RR,

where each of the ten nodes corresponds to a complex on the six chemical species,
that we number in the following order: HK00, HKp0, HK0p, HKpp, RR, RRp. Mass-
action kinetics specifies how the respective concentrations x1, . . . , x6 of these six
species evolve with time. The basic principle in this modeling is derived from
the idea that the rate of an elementary reaction is proportional to the probability
of collision of the reactants, which under an independence assumption equals the
product of their concentrations. We derive the following autonomous polynomial
dynamical system dxi

dt
= fi(x), i = 1, . . . , 6:

dx1

dt
= −k1 x1 + k4 x3x5,

dx2

dt
= k1 x1 − k2 x2 + k5 x4x5,

dx3

dt
= k2 x2 − k3 x3 − k4 x3x5,

dx4

dt
= k3 x3 − k5 x4x5,

dx5

dt
= −k4 x3x5 − k5 x4x5 + k6 x6,

dx6

dt
= k4 x3x5 + k5 x4x5 − k6 x6.

It is straightforward to check that the following linear dependencies hold and
generate all the linear dependencies among f1, . . . , f6:

f1 + f2 + f3 + f4 = f5 + f6 = 0,
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from which we deduce two linear conservation relations:

x1 + x2 + x3 + x4 = T1, x5 + x6 = T2.

Thus, trajectories lie in a 4-plane in 6-space. The total conservation constants T1, T2
are determined by the initial conditions (x1(0), . . . x6(0)).

Given a numbering of the species as above, we usually identify a complex on
these species with a nonnegative integer vector. For example, the complex y =
X3 +X5 is identified with the vector e3 + e5 = (0, 0, 1, 0, 1, 0) ∈ Z

6
≥0. The general

definition is as follows.

Definition of Chemical Reaction Networks and Mass-Action Kinetics

Definition 1 A chemical reaction network (on a finite set of s species, which
we assume ordered) is a finite labeled directed graph G = (V ,E, (κij )(i,j)∈E,

(yi)i=1,...,m), whose vertices V are labeled by complexes y1, . . . , ym ∈ Z
s
≥0 and

whose edges (i, j) ∈ E are labeled by positive real numbers i
κij→ j . We will also

say that G is a network.
Mass-action kinetics specified by the network G gives the following autonomous

system of ordinary differential equations in the concentrations x = (x1, x2, . . . , xs)

of the species as functions of time:

dx

dt
=

∑

(i,j)∈E

κij xyi (yj − yi) = fκ(x). (1)

Here, dx
dt

and yj − yi are column vectors.

Note that the coordinates f1, . . . , fs of fκ are polynomials in R[x1, . . . , xs] (to
ease the notation we omit the dependence of fi on κ). Many systems occurring in
population dynamics, for example the oscillatory Lotka-Volterra equations, can be
viewed as arising from a chemical reaction network as in (1), but for instance not the
“chaotic” Lorenz equations. A simple characterization of autonomous dynamical
systems arising from chemical reaction networks under mass-action kinetics has
been given by Hárs and Tóth. We refer to the book [20], which also contains an
introduction to the stochastic modeling of chemical kinetics.

Another direct consequence of the form of the equations in (1) is that for
any trajectory x(t), the vector dx

dt
lies for all t (in any interval I containing 0

where it is defined) in the so called stoichiometric subspace S, which is the linear
subspace generated by the differences {yj − yi | (i, j) ∈ E}. Using the shape of
the polynomials fi it can be seen that the positive orthant R

s
>0 and its closure

R
s
≥0 are forward-invariant for the dynamics. Then, any trajectory x(t) starting

at a nonnegative point x(0) lies for all t ∈ I ∩ R>0 in the closed polyhedron
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(x(0) + S) ∩R
s
≥0, which is called a stoichiometric compatibility class, or for short,

an S-class.
Denote by q the codimension of S. Given a basis �1, . . . , �q of linear forms in the

dual of S, let Ti = �i(x(0)), i = 0, . . . , q. The equations �1(x) = T1, . . . , �q(x) =
Tq of x(0) + S = ST give linear conservation relations and, as above, the constant
coefficient Ti of such a linear equation is called a total conservation constant.

The Steady State Variety and the Notion of Multistationarity

The steady state variety Vκ(f ) of the kinetic system (1) equals the nonnegative real
zeros of f1, . . . , fs :

Vκ(f ) = {x ∈ R
s
≥0 : f1(x) = · · · = fs(x) = 0}. (2)

An element of Vκ(f ) is called a steady state of the system and corresponds to
a constant trajectory in the nonnegative orthant. We say that system (1) exhibits
multistationarity if there exist at least two positive steady states with the same total
conservation constants, that is, in the same S-class. This is an important property
for chemical reaction networks modeling biological processes, since the ocurrence
of multistationarity allows for different responses of the cell under the same total
conservation constants, depending on the initial conditions.

In fact, our point of view will be the following. The underlying reaction network
(V ,E, (yi)i=1,...,m) defines a family of autonomous polynomial dynamical systems
depending on the positive parameters κ ∈ R

#E
>0. We say that it has the capacity

for multistationarity if there is a choice of reaction rate constants κ = (κij )(i,j)∈E

and total conservation constants T = (T1, . . . , Tq) for which the intersection of the
steady state variety Vκ(f ) with the positive points of linear variety ST consists of
more than one point (that is: there exist parameters κ and T such that there are at
least two points in the positive orthant lying in the intersection of the steady state
variety Vκ(f ) with the S-class defined by T ).

There are many results to decide the capacity for multistationarity of a given
chemical reaction network, starting with [14]. Most of them have been summarized
in Theorem 1.4 of [39]. In fact, these results give in general necessary and sufficient
conditions for the stronger condition that the map fκ is injective on the positive
points of all S-classes. There are several implementations of different algorithms,
starting with the pioneering algorithm implemented by Feinberg and his group in
the Chemical Reaction Network Toolbox. The link to the corresponding webpage
together with links to other algorithms can be found at https://reaction-networks.net/
wiki/Mathematics_of_Reaction_Networks#. We recall some of the tools to address
this question in Sects. 4 and 5.

In Fig. 4, there is a range of values of T for which there are three positive steady
states on the corresponding translate ST of S (i.e., in an S-class) for a fixed value

https://reaction-networks.net/wiki/Mathematics_of_Reaction_Networks#
https://reaction-networks.net/wiki/Mathematics_of_Reaction_Networks#
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Fig. 4 The green curve
represents the steady state
variety Vκ∗ (f ). The subspace
S = {� = 0} is a line. The
number of points of
intersection of the translates
ST = {� = T } of S with
Vκ∗ (f ) in the positive orthant
depends on the total
conservation constant T

{ = T }{ = 0}

Stoichiometric
compatibility class

Steady state variety Vk*( f )

Fig. 5 Only one parameter is
allowed to vary

κ∗ of positive rate constants. So, the chemical reaction network has the capacity for
multistationarity and κ∗ is a choice of multistationarity parameter.

We feature two kinds of multistationarity pictures from the literature. One way to
find the special values rendering these figures is by measurements in experiments or
by exhaustive (and lucky) simulations of the trajectories taking sample values in the
space of parameters and initial conditions. Instead, one can try to develop algebro-
geometric tools to analyze the mathematical models arising from biochemical
reaction networks, with the goal of making predictions from the structure of the
networks.

Figure 5 corresponds to a 2-site sequential phosphorylation and dephosphoryla-
tion that we describe in Sect. 3 below. This network has 15 parameters: 12 reaction
constants and 3 total conservation constants. In the picture, all the reaction rate
constants and two of the total conservation constants have been specialized and only
the total conservation constant Etot of one enzyme is varying. This is considered to
be the input variable (or stimulus) and it is represented on the x-axis. The number of
chemical species is equal to 9, but only one of the phosphorylated substrates s∗ at
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1 stable steady state

2 unstable + 1 stable steady states

1 unstable steady state

3 unstable steady states

a

b

Fig. 6 Only two of the parameters are allowed to vary

steady state is represented, which is consider the response of the system. It happens
that in this case any positive value of s∗ is one coordinate of a positive steady state
and different steady states in the same S-class have different s∗ coordinates. The
steady state s∗-coordinate is represented on the y-axis. For small or big values of
Etot, only one value of s∗ is possible, so this is a monostationary regime. In the
middle zone, there are three steady states, two stable and one unstable, so this is
the bistable regime (stability of steady states is determined by the negativity of
the real part of the eigenvalues of the Jacobian). This figure corresponds to a two
dimensional very particular “slice” of points originally in 24 = 15 + 9 variables,
where 14 variables have been specialized and 8 variables are not shown.

Figure 6 represents a two dimensional “slice”, but in parameter space, of another
mechanism that we do not specify, but in which only two of the parameters (a, b) are
allowed to vary. For each of the values of (a, b) outside the line segments separating
the regions, there are either one or three positive steady states, which could be
stable or unstable. In fact, in most biochemical networks these curves separating the
regions are far from being line segments; they are high order algebraic hypersurfaces
that separate different semialgebraic regions where the qualitative dynamics is the
same, in a high dimensional parameter space. Moreover, regions with interesting
behaviour could be small.

The separating hypersurfaces related to the question of multistationarity are
described by the union of the discriminant associated to the equations describing
Vκ(f ) and ST with respect to the x variables (which vanishes whenever there is
a point where the intersection of the steady state variety and the S-class is non-
transversal), and the union for any i ∈ {1, . . . , s} of the resultant describing the fact
that there is a common point with xi = 0. In each chamber (connected component)
of the complement of the union of these algebraic varieties, the number of real
roots is the same and moreover, for each of the real roots it holds that the sign
of each of the coordinates does not change as the parameters are moved, and
thus the number of real roots with a fixed sign (for instance, positive roots) is
constant along the chamber. We refer the reader to the book [26] for the notions of
discriminant and resultant, which are in general not linear. These polynomials in the
parameters can be computed effectively—in theory—via different computational
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algebraic geometry methods of elimination of variables, but standard computations
are not feasible when there are many variables. Even if one can compute these
equations, it is a very complicated task to describe then all the possible chambers
in the complement of its zero locus, or at least to find one representative in each
chamber. There are implementations by M. Safey El Din, which work very well in
small examples using his package RAGlib [47].

3 Two Important Families of Enzymatic Networks

In this section, we introduce common enzymatic mechanisms that will help us
exemplify and clarify the concepts we will introduce in Sect. 4.

Sequential Phosphorylations

The multisite n-phosphorylation system describes the site phosphorylation of a
protein (with n sites where a phosphate group can be absorbed or emitted) by
a pair of enzymes (a kinase and a phosphatase) in a sequential and distributive
mechanism. The Nobel Prize in Physiology or Medicine was awarded in 1992
to Edmond Fischer and Edwin Krebs “for their discoveries concerning reversible
protein phosphorylation as a biological regulatory mechanism.” The kinase and
the phosphatase speed up the transformation of other proteins without being
incorporated in the final products of the process, which is crucial in the regulation of
metabolism in the body. Multi-site phosphorylation plays important regulatory roles
in cell cycle regulation and inflammation pathways, and is implicated in multiple
disorders, including Alzheimer disease. Because of the important role played by
these systems in signal transduction networks inside the cell, there is a body of
work on the mathematics of phosphorylation systems (which belong to the more
general class of post-translational modification systems). We refer the reader to the
papers [33, 43, 50] and the references therein.

We now describe the special case of a sequential phosphorylation/dephosphory-
lation with n = 2 sites, which is also known as the dual futile cycle. There are
nine species: three substrates (the unphosphorylated substrate S0, the substrate with
one and two phosphorylated sites S1 and S2), two enzymes (the kinase E and the
phosphatase F ), and four intermediate species (ES0, ES1,FS2 and FS1). We give to
the twelve rate constants the usual names in the literature [52].
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We number the species and their concentrations as follows: x1, x2, x3 denote the
respective concentrations of S0, S1, S2; y1, y2, y3, y4 denote the respective concen-
trations of the intermediate species ES0, ES1, FS2, FS1, x4 is the concentration of
the kinase E, and x5 the concentration of the phosphatase F . The associated system
of ODE’s defined in (1) equals in this case:

dx1

dt
=−kon0x1x4 + koff0y1 + lcat0y4

dx4

dt
=−kon0x1x4−kon1x2x4 + (koff0 + kcat0 )y1

dx2

dt
=−kon1x2x4 + kcat0y1 + koff1y2 + (koff1 + kcat1 )y2

−lon0x2x5 + lcat1y3 + loff0y4
dx5

dt
=−lon0x2x5 − lon1x3x5 + (loff1 + lcat1 )y3

dx3

dt
=kcat1y2 − lon1x3x5 + loff1y3 + (loff0 + lcat0 )y4

dy1

dt
=kon0x1x4 − (koff0 + kcat0 )y1

dy3

dt
=lon1x3x5 − (loff1 + lcat1 )y3

dy2

dt
=kon1x2x4 − (koff1 + kcat1 )y2

dy4

dt
=lon0x2x5 − (loff0 + lcat0 )y4.

There are 3 independent linear conservation laws, for instance:

x1 + x2 + x3 + y1 + y2 + y3 + y4 =Stot

x4 + y1 + y2 =Etot

x5 + y3 + y4 =Ftot,

where Stot, Etot, Ftot are positive real numbers for any choice of initial condition in
the positive orthant. As we pointed out in Sect. 1, there are 12 + 3 = 15 parameters.
The n-site sequential mechanism is similar, with 3n + 3 variables, 6n reaction rate
constants and always 3 total conservation constants, so a total of 6n+ 3 parameters.

Phosphorylation Cascades

We have already encountered a coarse diagram of an enzymatic cascade in Fig. 2.
MAP kinase cascades are important signal transduction systems in molecular biol-
ogy for which there is also a body of mathematical work, see for instance [35, 41]
and the references therein. These cascades correspond to a network of enzymatic
reactions arranged in layers, where usually in each of them there is a futile cycle of
sequential phosphorylations and such that the fully phosphorylated substrate serves
as an enzyme for the next layer.

The simplest case of a cascade with the capacity of multistationarity [23] consists
of a cascade with two layers and a single phosphorylation/dephosphorylation at
each layer, with one phosphatase. It corresponds to the a labeled digraph, with 9
variables and 18 parameters, where each single phosphorylation follows the same
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mechanism as in our previous example, with an intermediate species. The nine
species are the substrates S0, S1 in the first layer, the substrates P0, P1 in the second
layer, four intermediate complexes, a kinase E and the same phosphatase F to
dephosphorylate the substrates in both layers. The forward enzyme in the second
layer is the phosphorylated substrate S1 from the first layer.

This mechanism is usually depicted as follows, hiding the reaction rate constants
and the intermediate species:

S0 S1

F

E

P0 P1

F

In this case, there are 4 linearly independent conservation relations. Denoting
with small letters the concentration of each of the species, these conservation
relations can be chosen as follows, as predicted in Theorem 3.2 in [42] (see (4)
below):

s0 + s1 + es0 + f s1 + s1p0 =Stot

p0 + p1 + s1p0 + fp1 =Ptot

e + es0 =Etot

f + f s1 + fp1 =Ftot,
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where Stot, PtotEtot, Ftot are positive real numbers for any choice of initial condition
in the positive orthant.

We can also consider cascades with any number n of layers. In this case,
the number of variables, the number of reaction rate constants and the number
of independent linear conservation relations (as well as the number of linear
conservation constants) grow linearly with n.

4 MESSI Systems

In this section we recall the notion of MESSI networks from [42], to describe a
common structure underlying the four examples above in their different variants
as well as many “popular” biological networks, that consist of Modifications
of type Enzyme-Substrate or Swap with Intermediates. The occurrence of this
structure allows us to prove general results for quite different mechanisms. The basic
ingredient of a MESSI structure is a partition of the set of species, which reflects
the different chemical behaviors. This grouping of the chemical species into disjoint
subsets is in accordance with the intuitive partition of the species according to their
function that biochemists have. We will denote the disjoint union of sets with the
symbol

⊔
.

Definition of a MESSI System

Definition 2 A MESSI network is a chemical reaction network satisfying the
following properties. First of all, there exists a partition of the set S of species

S = S(0)
⊔

S(1)
⊔

S(2)
⊔

· · ·
⊔

S(m), (3)

where m ≥ 1, S(0) is the subset of intermediate species and could be empty, and
all S(i) with i ≥ 1 are nonempty subsets, formed by what we call core species.
We requiere that the complexes and reactions satisfy the following conditions.
An intermediate species can only be part of a monomolecular complex consisting
only of this speces (called an intermediate complex). Non-intermediate complexes
are called core complexes and consist of one or otherwise two chemical species
belonging to different subsets of the partition. Denote by y →◦ y′ the existence of
an edge from complex y to complex y′ or a directed path of reactions from y to
y′ through intermediate complexes. We require that for any intermediate complex
y0, there exist core complexes y, y′ such that y →◦ y0 →◦ y′. If there are two
monomolecular core complexes y →◦ y′, then both should consist of a species in
the same S(α). We further ask that if there is a reaction between a monomolecular
and a bimolecular complex, the monomolecular complex is an intermediate, and
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that if y, y′ are bimolecular core complexes such that y →◦ y′, then there exist two
different core subsets S(α),S(β) in the partition, such that both y and y′ consist of a
species in each of them.

When endowed with mass-action kinetics, a MESSI network gives rise to a
MESSI system of polynomial autonomous ODE’s.

All the Networks We Mentioned Are MESSI

All the networks we mentioned in the text (plus many other common biochemical
networks) can be endowed with the structure of a MESSI system. We gave different
colors to the different subsets in a possible partition of the species.

For instance, in the cascade depicted in Fig. 2 in the Introduction, the intermedi-
ate species (complexes) are not displayed, but we presented with different colors a
possible partition of the core species that defines a MESSI structure. In the network
depicted in Fig. 3 the partition into a subset of intermediate species (in black), and
two subsets of core species (in red and blue) also defines a MESSI structure.

In the two-component system in Sect. 2, we could take S(0) = ∅, S(1) =
{HK00, HKp0, HK0p, HKpp}, and S(2) = {RR, RRp}.

In the example of the sequential phosphorilation in Sect. 3, we could take S(0) =
{ES0, ES1, FS2, FS1}, S(1) = {S0, S1, S2}; S(2) = {E}, and S(3) = F . It can be
checked that all conditions are satified. Note that if we consider the coarser partition
with the same set of intermediate species S(0), the same set S(1) of core species, and
just one other set {E,F } of core species, we also have a MESSI structure. In fact,
there is in general a poset of possible partitions (and in other examples there could
be non-comparable partitions).

On the other side, in the example of the cascade in Sect. 3, we can partition the
set of nine species as follows to define a MESSI structure in the 2-layer cascade:
S(0) consists of the four intermediate species {ES0, FS1, S1P0, FP1}, plus the core
subsets S(1) = {S0, S1}, S(2) = {P0, P1}, S(3) = {E}, and S(4) = {F }.

Conservation Laws

The first general results about MESSI systems is that we can describe enough
(explicit) conservation linear relations with positive coefficients. Given a parti-
tion (3) of the set S of variables into one intermediate subset and m ≥ 1 nonempty
core subsets defining a MESSI structure in a given network G, note that the
associated autonomous polynomial dynamical system defined in (1) is linear in the
variables of each S(i) union the subset Inti consisting of those intermediate species
y′ for which there exists a core complex y containing one species of S(i) such that
y →◦ y′ (for any fixed i = 1, . . . , m). The union of these subsets Inti equals S(0),
but they are in general not disjoint, because if in the recent notation y also contains
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a species in another S(j), then y′ also belongs to Intj . These intersections account
for several important properties of the systems.

Theorem 3.2 in [42] asserts that given a partition of S = {x1, . . . , xs} defining a
MESSI structure as in (3), the following linear forms �1, . . . , �m belong to the dual
of the stoichiometric subspace S:

�i(x) =
∑

xj ∈S(i)

xj +
∑

xj ∈Inti

xj , i = 1, . . . , m. (4)

We refer the reader to Section 3 in [42] for conditions ensuring that these are a basis
of conservation relations (and examples where this is not the case). We conclude
that all MESSI systems are conservative. Thus, all S-classes are compact, and all
trajectories are bounded and defined for any positive time. In fact, given a MESSI
network, if x is a trajectory of the associated mass-action kinetics dynamical system
ẋ(t) = f (x(t)), for all t in an open interval containing R≥0) with x(0) ∈ R

s
>0, let

(T1, . . . , Tm) = (�1(x(0)), . . . , �m(x(0)). Then, we have that for any t ≥ 0 it holds
that �i(x(t)) = Ti for any i. Then, all the coefficients of the linear form � = ∑m

i=1 �i

are positive and �(x(t)) = ∑m
i=1 Ti > 0.

The Associated Digraphs

In order to state some other general results for MESSI networks, we introduce three
associated digraphs G1,G2,GE associated with a given MESSI network G with
a vector of rate constants k. We refer the reader to Section 3 in [42] for complete
definitions, explanations and examples.

We eliminate all intermediate species to define G1, which naturally inherits a
MESSI structure: the species of G1 are the core species of G, its complexes are
the core complexes of G and there is an edge between two core complexes y, y′
precisely when y →◦ y′ in G. The rate constants of G1 are rational functions τ(κ)

with nonzero denominator over all positive κ , in such a way that when viewed with
mass action kinetics gives rise to a system of the form ẋ′ = f 1(x′), the steady
state variety Vτ (κ)(f 1) of the system defined by G1 is a projection of the steady
state variety Vκ(f ) of the original system. They have been explicitly defined in
display (15) of the Supplementary Material in [24], see displays (5.3) and (5.8)
in [6]. To define the digraph G2, we first consider for any i = 1, . . . , m the linear
network obtained by “hiding” in the rate constants the concentration of all species
xj /∈ S(i). For instance, an edge Xj + Xk → Xj1 + Xk1 with Xj ,Xj1 ∈ S(i1),
Xk,Xk1 ∈ S(i2), with rate constant c, gives raise to the following two edges in
G2: the edge Xj → Xj1 with rate constant cxj , and the edge Xk → Xk1 , with
rate constant cxk . Note that we get this way a multidigraph MG2 with possibly
repeated edges and loops. We then denote by G2 the digraph derived from MG2
after collapsing multiple edges into a single edge, with label equal to the sum of
the labels of the different edges. The nodes in each connected component of G2
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Fig. 7 The graphs G1, G◦
2 and GE for the phosphorylation cascade in Sect. 3

Fig. 8 The graphs G1, G◦
2 and GE for the EnvZ/OmpR two-component network in the Introduc-

tion

correspond to the species in one of the subsets S(i) of the partition if and only if this
partition is minimal (in the poset of partitions of S defining a MESSI structure on
G). The digraph G2 is linear (each node is labeled with a monomolecular complex
with a single species) and again, if we formally associate to it mass-action kinetics,
its steady state variety coincides with that of G1. Finally, we denote by G◦

2 the
multidigraph obtained from G2 after deleting all loops. On the other side, the nodes
of the digraph GE are the subsets S(1), . . . ,S(m) and there is an edge from S(i1) to
S(i2) with a label contaning as a factor the concentration of any species in S(i1).

The graphs G1,G
◦
2 and GE associated to two of the networks in the previous

sections are depicted in Figs. 7 and 8.

Persistence

A chemical reaction system (1) is persistent if any trajectory starting from a point
with positive coordinates stays at a positive distance from any point in the boundary,
or informally, if no species which is present can tend to be eliminated in the course
of the reaction. A steady state lying in the boundary of the nonnegative orthant (that
is, with some coordinates equal to zero) is called relevant if it lies in the intersection
of the boundary of the nonnegative orthant with a stoichiometric compatibility class
through a point in R

s
>0. As MESSI systems are conservative, Theorem 2 in [1]
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proves that a MESSI system is persistent when there are no relevant boundary steady
states.

Given a MESSI network G, we identify the following hypotheses:

(A) The associated digraph G2 is weakly reversible.
(B) The associated digraph GE has no directed cycles.

Hypothesis (A) means that for any pair of nodes in the same connected component,
there is a directed path from one to the other. For instance, in the two examples
considered in Figs. 7 and 8, hypothesis (A) is verified. Hypothesis (B) is also verified
in the case of the cascade network, but not in the EnvZ/OmpR two-component
network. However, even if they sound restrictive, there is a big range of signaling
pathways that satisfy both hypotheses.

Theorem 3.15 in [42] asserts that a MESSI network G which satisfies hypotheses
(A) and (B) does not have relevant boundary steady states, and is thus persistent.
Moreover, as MESSI systems are conservative, a version of Brouwer’s fixed point
theorem ensures the existence of a non-negative steady state in each S-class. So,
the abscence of relevant boundary steady states implies the existence of a positive
steady state in each S-class.

Explicit Parametrization of Vκ(f ) ∩ R
s
>0

We describe a big class of MESSI networks for which the steady state variety V is
rational. This is a very uncommon property for general algebraic varieties.

Explicit Rational Parametrizations

We want to describe the intersection Vκ(f ) ∩ ST in the positive orthant. The
steady state variety is defined in principle by s polynomial equations. Assume the
dimension of S (and thus of ST for any T ) equals s − q and can thus be defined by
q linear equations. This implies that there are (at most) s − q linearly independent
polynomials among f1, . . . , fs . A finite number of common solutions is expected,
but this might not be true.

One way to simplify the computation of the intersection is the following. As ST

are linear varieties, they can be parametrized by s − q parameters. One could then
parametrize ST solving for q variables in terms of the other ones and then replace
this in the equations of the steady state variety. This reduces the number of variables
from s to s − q, but the polynomials f1, . . . , fs are particular, with a monomial
structure that comes from G and we would in general destroy the sparsity.

Denote by V>0,κ (f ) = Vκ(f ) ∩ R
s
>0. One could then try to parametrize

V>0,κ (f ) but general algebraic varieties do not have rational parametrizations. This
is a very uncommon property for general algebraic varieties. However, rational
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parametrizations do exist for the positive points of the steady state variety in certain
enzymatic biochemical networks, as proved by Thomson and Gunawardena in [51].
We extended this result for many other networks of biological interest which are
MESSI. Theorem 4.1 in [42] proves the existence of an explicit and algorithmically
constructible rational parametrization of V>0,κ (f ) for any MESSI network G

satisfying conditions (A) and (B) above. Moreover, if the partition is minimal with
m subsets of core species, we have that dim V>0,κ (f ) = m = s − dim S.

Moreover, we identify conditions that ensure that this parametrization is mono-
mial, or equivalently, that V>0,κ (f ) can be cut out by binomial equations (that
is, polynomials with two terms) and, in this case, we give explicit binomials in
Theorem 4.8 in [42] for what we call s-toric MESSI systems. Again, the conditions
seem to be very restrictive, but there are plenty of interesting signaling pathways that
satisfy them; for instance the n-site phosphorilation networks and many enzymatic
cascades, as the ones we presented in Sect. 3. In the case of the n-sequential
phosphorylation network (which has 3n + 3 variables) we can parametrize the
positive steady state variety with 3 parameters for any value of n. To compute
the intersection Vκ(f ) ∩ ST (which equals V>0,κ (f ) ∩ ST due to the abscence of
relevant boundary steady states, as we pointed out before), we can write 3 of the
variables in terms of the remaining 3n variables from the 3 conservation relations
and replace them into 3n linearly independent fi (which exist in this case). We
could substitute the parametrization into the conservation relations and thus get 3
equations in 3 variables. This is what makes the n-site amenable to computations
even if in principle the number or variables tends to infinity with n. Note that if
instead we plug in a parametrization of ST into the equations of the steady state
variety, we get a system, that besides losing sparsity, consists of 3n equations in 3n

variables.
Recognizing the existence of a MESSI structure on a given network, checking the

hypotheses in all our results and finding the rational parametrization are algorithmic
and only depend on the structure and not on the particular parameters.

Deciding Multistationarity

The important biological mechanism of n sequential phospho-dephosphorylations
has the capacity for multistationarity for n = 2, that is, there can be up to 3 positive
steady states in Vκ(f )∩ST (for particular choices of the rate constants κ and positive
linear conservation constants T ). This system has been first studied by L. Wang and
E. Sontag in [52]. They proved that the maximal possible number of positive steady
states is 2n − 1 and identified parameters for which there are n + 1 positive steady
states for n even (and n for n odd). Note that n + 1 = 2n − 1 for n = 2. It has
been proved in [36] that the upper bound 2n − 1 is attained for n = 3, 4, and it is
probable that 2n − 1 is a sharp upper bound, but this has not been proven yet for
n ≥ 5. See also [33–35] for a discussion of other dynamical features (stability and
oscillations).
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In fact, the steady states of most popular MESSI systems (including all those
recalled above) present an s-toric structure, and we gave in this case a characteriza-
tion of the capacity for multistationarity, which lead to an algorithm based on tools
from oriented matroid theory. The main ideas in this approach, which go back to [14]
and several other papers, including articles in other applied areas, are collected and
clarified in the paper [39]. We give below a simple version of the multistationarity
results in Section 5 in [42], which is valid for other biochemical reaction networks
for which the positive steady states can be defined by binomials in a parametric
way and satisfying certain conditions (that we can ensure from the structure of the
network, see e.g. Proposition 5.6 in [42]). In particular, these binomials are of the
form pκ = a(κ)xα − b(κ)xβ , with α, β ∈ Z

s
≥0, and a, b polynomial functions on

the vector of rate constants κ ∈ R
r
>0 taking positive values over Rr

>0.
Given such a binomial pκ , consider the vector vpκ = α − β ∈ Z

s (note that
vpκ = −v−pκ , so indeed vpκ are integer vectors defined up to sign). Also, given
a matrix M of size m1 × m2 of rank m1, a subset J of indices of cardinality m1
determines a maximal minor of M , which we denote by MJ .

Deciding Mono/Multistationarity
Let G be a chemical reaction network. Denote by S⊥ a matrix whose rows define the
dual of the stoichiometric subspace S with rank(S⊥) = d. Assume that V>0,κ (f )

is cut out by s − d binomials pj,κ , j = 1, . . . , s − d, with exponents vpj,κ
which

form the columns of a matrix B. Assume moreover that rank(B) = s − d. Then, the
following statements are equivalent

1. Monostationarity: There is at most a single positive solution in V>0,κ (F ) ∩ ST ,
for any S-class intersecting the positive orthant, for any κ ∈ R

r
>0.

2. For all subsets J ⊆ {1, . . . , s} of cardinality d, the product

(−1)
∑

j∈J j det(S⊥
J ) det(B{1,...,s}\J )

either is zero or has the same sign as all other nonzero products, and at least one
such product is nonzero.

The previous result can be turned into an algorithm to decide if a network has
the capacity for multistationarity, together with an algorithm to produce vectors
of rate constants k for which multistationarity occurs (in case the network is not
monostationary).

5 Other Approaches to the Question of Multistationarity

The reader might have noticed that within a reasonable extension for a survey, we
cannot properly define and explain all concepts. This section will then be only a
pointer to some recent papers addressing the question of multistationarity, besides
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the articles and tools we have mentioned before. We also refer the reader to the
recent survey [13] and the references therein.

Craciun, Helton and Williams applied in [15] the homotopy invariance of degree
to determine the number of equilibria of biochemical reaction networks and how
this number depends on parameters in the model. Conradi, Feliu, Mincheva and
Wiuf give in [8] necessary and sufficient conditions for the multistationarity of
networks having a positive rational parametrization, in terms of the reaction rate
constants, also based on degree theory. This approach is very interesting since
they can describe open multistationarity regions in rate constant space. However,
it does not describe particular stoichiometric compatibility classes for which there
is multistationarity, as it is also the case with the methods based on signs as the result
we described about mono/multistationarity. The reason is that all these approaches
are related (in more explicit or hidden ways) to properties of a Jacobian, for
instance of an appropriate choice of the polynomials f1, . . . , fs and linear functions
�1 − T1, . . . , �q − Tq giving equations for ST with respect to the x variables,
and so the linear conservation constants T1, . . . , Tq do not appear. In [18] we
considered extensions and simplifications of this approach via critical functions, for
networks with special structure, in particular for special MESSI networks which are
commonly used in modeling enzymatic pathways. We also propose a method based
on the existence of triangular forms, relying on techniques from computational
algebra.

Sadeghimanesh and Feliu provide in [46] a new determinant criterion to decide
whether a network is multistationary, when the network obtained by removing
intermediates has a binomial steady state ideal. In this case, they characterize the
multistationarity structure of the network, i.e. which subsets of complexes are
responsible for multistationarity. In particular, they compute the multistationarity
structure of the n-site sequential distributive phosphorylation cycle for any n.

Together with Bihan and Giaroli, we incorporated in [6] a new tool from real
algebraic geometry based on the article [7] by Bihan, Santos, and Spaenlehauer.
The basic idea is the following. Given a sparse polynomial system, that is, with
exponents in a specified finite set of integer points A, if it is possible to find p

decorated simplices in a regular subdivision of A, then it is possible to scale the
coefficients of the given system in an explicit way to get at least p nondegenerate
positive real roots. This gives a lower bound on the number of positive roots. The
hypotheses of regularity of the subdivision means that it comes from a lifting of the
points in A after considering the projection of the domains of linearity of the lower
convex hull of the lifted points. This is what gives the necessary compatibility to
find a common open set in the space of coefficients where the p positive solutions
can be jointly continued. The meaning that a simplex is decorated is the following.
Let {a0, . . . , ad} ⊂ A denote the set of vertices of a maximal dimensional simplex
in dimension d. Given (Laurent) polynomials g1, . . . , gd with support A, consider
their subsums of monomials corresponding only to these exponents. So one gets a
system with d polynomials in d variables and d + 1 monomials of the form:
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d∑

j=0

ci
j xai = 0, i = 1, . . . , d.

This system has at most one positive root and it does have a (nondegenerate) positive
root exactly when the following linear system does:

ci
0 +

d∑

j=1

ci
j xi = 0, i = 1, . . . , d.

This condition is equivalent to an alternance of signs of the minors of the d ×(d +1)

real matrix with coefficients cij . The simplex is said to be decorated by a choice
of coefficients of the input polynomials when this is the case. It is interesting to
note that, differently from the case of complex roots with nonzero coordinates, it
is not always true that the lower bound in the case of positive solutions matches
the maximum number of positive real roots for any regular subdivision. A simple
example is the following. Assume A = {(0, 0), (1, 0), (1, 2), (2, 1)} are the vertices
of a paralellogram of Euclidean volume 2 in the plane. A sparse polynomial system
(g1 = g2 = 0) with this support can have 2 · 2 = 4 isolated complex solutions with
nonzero coordinates by Kouchnirenko’s theorem and 3 positive solutions (and this
number can be attained, see [5] and the references therein). But it is clear that the
support can only have three regular subdivisions: either nothing is subdivided or we
get any of the two subdivisions depicted in Fig. 9, so the maximum lower bound p

that one can obtain is 2. Nevertheless, this is up to now the only systematic way to
find conditions on jointly on all the parameters that ensure the existence of several
positive steady states, as for instance degree considerations are eventually based on
parity considerations. But the best advantage of this approach is that it allows us to
describe multistationarity regions in the space of all parameters, both reaction rate
constants and linear conservation constants. Remark however that our conditions
are only sufficient.

We refer the reader to Section 3 in [27] for a simple example explaining the
technical results in [6]. These tools allowed us to find in that article precise
multistationarity regions in enzyme cascades with any number n of layers of
Goldbeter-Koshland loops (with a single phosphorylation/dephosphorylation in
each layer), which are multistationary as soon as the two first phosphatases are the
same. Interestingly, the number of variables is of the order of 4n and the dimension

Fig. 9 The two proper
subdivisions of a circuit
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of the stoichiometric subspace S is of the order of 2n, so it is cut out by roughly
2n linear equations and parametrized by a similar number of variables. So, even
taking advantage of the parametrizations of the steady state variety and a translate
ST of S, we need to deal with of the order of 2n equations in 2n variables. When
the two layers with the same phosphatase are the last ones, it is possible to find
particular multstationarity reaction rate constants for the cascade following the
approach in [4]. Other papers based on the study of extrapolation of multistationarity
from that of simpler subnetworks are for instance [9, 37].

In ongoing work with Giaroli, Pérez Millán and Rickster [17], we are able to use
this setting to give a precise region in the space of all parameters for which the n-
sequential phospho/dephosphorylation mechanism can have n+ 1 for n even (and n

for n odd) positive steady states, assuming that only 1
4 of the intermediate complexes

are part of the reactions. In another recent work Conradi, Iosif, and Kahle [10] also
use tools from polyhedral geometry. They show that for reaction networks whose
positive steady states can be cut out by binomials, multistationarity is scale invariant
in the space of linear conservation constants (that is, if there is multistationarity for
some value of the linear concentration constants, then there is multistationarity on
the entire ray containing this value (possibly for different reaction rate constants).
They consider the chamber decomposition in linear conservation constant space,
which allows them to show that for values of these constants in one of the five
chambers the 2-site sequential phosphorylation network cannot be multistationary.

Other approaches use numeric or symbolic methods to detect points in different
chambers of the complement of the discriminant and the resultants that we
mentioned before, see for instance [30, 32]. The general mathematical problem is the
search of positive roots of sparse polynomial systems; see for instance [21] where
these techniques have been applied to a geometric problem.

Stability and Convergence

The important question of deciding stability of a given steady state x∗ of a chemical
reaction network with fixed constants k∗ can be formalized via Routh-Hurwitz
theorem by means of the satisfiability of certain polynomial inequalities which
correspond to minors of the Jacobian matrix at the point x∗, as a pattern of signs
of these minors corresponds to all eigenvalues of the Jacobian having negative real
part. However, this is a difficult question if the point x∗ is given implicitly and if one
tries to trace these inequalities as the parameters vary. So, only in few cases there is
a complete analysis (see for instance [33]).

Another important question is to ensure convergence of the trajectories. Note that
if a trajectory defined on the whole positive real line converges for t → +∞ to a
point p, then p is a steady state. A first question is to decide global convergence
in the presence of a single steady state in each S-class. We refer the reader to the
results (and the references) in [19] for diverse architectures of processive multisite
phoshorylation networks, which are based on previous work by Angeli, De Leenher
and Sontag [2].
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6 Oscillations

Another important biological feature is the possible occurrence of oscillations.
Oscillations have been observed experimentally in signaling networks formed by
phosphorylation and dephosphorylation, which seems to be the main mechanism
in the 24-hour period in eukaryotic circadian clocks (see for instance [11, 44]
and the references therein). Despite the many articles studying sequential phos-
pho/dephosphorylation networks, it is not currently known whether in the 2-site
sequential mechanism there could be trajectories which oscillate.

Instead, Suwanmajo and Krishnan showed recently in [50] that oscillations
occur intrinsically in the the dual-site phosphorylation and dephosphorylation
network, in which the mechanism for phosphorylation is processive while the
one for dephosphorylation is distributive (or vice-versa), arising from a Hopf
bifurcation. We also refer to the interesting paper [45], where the authors propose
a systematic analysis of the long-term dynamics of phosphorylations systems. They
describe bistability and oscillations when the network has nonzero levels of reaction
processivity. Processivity means that the intermediate complex does not dissociate
into substrate plus enzime after a phospho/dephosphorylation, but only after two
or more. Conradi, Mincheva, and Shiu showed in [11] for the mixed mechanism
in [50] that in the three-dimensional space of linear conservation constants, the
border between the existence of a stable or an unstable steady state is defined by
the vanishing of a single Hurwitz determinant, which consists generically of simple
Hopf bifurcations. Besides the Routh-Hurwitz criterion, their analysis relies on an
algebraic Hopf-bifurcation criterion due to Yang and a monomial parametrization
of the positive steady state variety. It would be very interesting to extend these kind
of analyses to other mechanisms, in particular, to other phosphorylation networks.

Rendall and Hell studied in [34, 35] the existence of parameters for which
Hopf bifurcations occur and generate periodic orbits in the case of (MAP kinase)
cascades. They also explain how geometric singular perturbation theory allows to
generalize results from simple models to more complex ones. Also Banaji presents
in [3] some results are presented on how oscillation is inherited by chemical reaction
networks (CRNs) when they are built in natural ways from smaller oscillatory
networks, showing a particularly nice result for fully open networks (where for
any species X, there are reactions 0 → X and X → 0), also based on regular
and singular perturbation theory. We also mention the pioneering work of Karin
Gatermann introducing algebraic and combinatorial techniques for the search of
Hopf bifurcations [25].
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7 Mathematical Challenges

In this section we enumerate some of the main open questions in this area.
They involve difficult mathematical questions and moreover, systems of biological
interest usually have a big number of variables and parameters.

1. Give general precise bounds for the number of positive solutions of (parametric
families of) sparse polynomial systems and apply them to find the number of
positive steady states: (a) develop tools to obtain better lower bounds for the
number of positive steady states; (b) develop tools to get good upper bounds for
the number of positive steady states. Moreover, find regions in parameter space
with the predicted number of positive steady states, or at least where lower/upper
bounds apply.

2. Predict or preclude oscillations from structure: how do (sustained) oscillations
arise in phosphorylation networks? Can we find “atoms of oscillation”? More-
over, describe “regions of oscillation” in parameter space.

Conclusion

We can use algebro-geometric notions and methods to analyze system biology
models. Algebraic and combinatorial methods allow us to predict (some) qualitative
dynamic behaviours of our models from the structure of the network, without
simulations and without measuring all the parameters a priori. We do have several
promising results, but in many cases they tend to be too complex to be understood or
computed. Answers to the above questions would require to develop a combination
of tools from dynamical systems, real algebraic geometry, computational and
numerical algebraic geometry, differential algebra, and biochemistry!
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