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Preface

The International Congress of Mathematicians (ICM), the most important meeting
of the international mathematical community, is coordinated every four years by
the International Mathematical Union (IMU). ICM 2018 took place in Rio de
Janeiro, Brazil, from August 1 to August 9, 2018. The first World Meeting for
Women in Mathematics - (WM)2 - was held in Rio de Janeiro on July 31, 2018,
as a satellite event of ICM 2018. Conceived by the IMU Committee for Women
in Mathematics (CWM), with a focus on Latin America, the World Meeting
for Women in Mathematics brought together over 300 mathematicians from 51
nations to celebrate women mathematicians and also to reflect on gender issues
in mathematics, challenges, initiatives, and perspectives for the future. The meeting
was complemented by the panel discussion organized by CWM on August 2, as
part of the ICM 2018 program. This volume, organized in coordination with the
Association for Women in Mathematics (AWM), records the first World Meeting
for Women in Mathematics and the CWM panel discussion in ICM 2018.

The first part of the volume is devoted to the World Meeting for Women in
Mathematics. It starts with a short report on the activities of the (WM)2, including
pictures that attest to the lively and friendly atmosphere of the meeting. Following
the report, survey research papers from four of the invited lecturers provide a
panoramic view of different fields in pure and applied mathematics. The first
paper, by Etienne de Klerk and Monique Laurent, is anchored in the keynote
lecture delivered by Laurent. It is a thorough survey on the generalized problem
of moments, a class of linear conic infinite dimensional optimization problems that
arise in many areas of applied mathematics. In the next article, Alicia Dickenstein
addresses biochemical reaction networks and how techniques from computational
and real algebraic geometry have been successfully applied in recent years to
analyze them. The paper by Stella Brassesco and Maria Eulália Vares builds on
the lecture given by Vares. It gives an introduction to the stochastic modeling
of metastability, a very frequent phenomenon in nature, which also finds many
applications in science and engineering. Part 1 then closes with the inviting note
by Maria J. Esteban, based on her public lecture at the World Meeting for Women
in Mathematics, entitled “How mathematics is changing the world.”
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viii Preface

The second part of the volume documents the CWM panel discussion at ICM
2018. The panel, “The gender gap in mathematical and natural sciences from a
historical perspective,” was chaired by Caroline Series, and featured contributions
from Marie-Francoise Roy (chair of CWM), June Barrow-Green, and Silvina Ponce-
Dawson. The paper by Helena Mihaljević and Marie-Françoise Roy traces the
footprints of women lecturers in the International Congress of Mathematicians since
its inception. In particular, it pictures the first two women to give plenary lectures at
an ICM, Emmy Noether in ICM 1932 in Zurich and Karen Uhlenbeck in ICM 1990
in Kyoto. (While this book was being prepared, we received the welcome news
that Karen Uhlenbeck was awarded the 2019 Abel Prize!) June Barrow-Green’s
essay investigates the historical context of the gender gap in mathematics, analyzing
challenges faced by women mathematicians during the last two hundred and fifty
years, and shedding light on some of the problems still encountered today. This part
closes with the paper by Silvina Ponce Dawson, which describes a series of actions
taken by the International Union of Pure and Applied Physics to reduce the gender
gap and increase diversity and inclusion in physics.

The organization of the (WM)2 was greatly inspired by the shining light of
Maryam Mirzakhani, the first woman mathematician to be awarded the Fields
Medal, at ICM 2014 in Seoul. As a tribute, the CWM created Remember Maryam
Mirzakhani, a memorial exhibition of 18 original posters portraying the late
mathematician. Inaugurated at the (WM)2, the exhibition remained open during
ICM 2018. Since then, it has been shown in several venues. Maryam Mirzakhani
will always be a beacon for women in mathematics, and we dedicate this volume to
her memory.

Rio de Janeiro, Brazil Carolina Araujo
March 2019
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2 I The First World Meeting for Women in Mathematics

Fig. P1 Poster of the World Meeting for Women in Mathematics



Report on Activities of the First World
Meeting for Women in Mathematics

Carolina Araujo

Abstract This is a short report of activities of the World Meeting for Women in
Mathematics, which took place in Rio de Janeiro, Brazil, on July 31, 2018, as a
satellite event of the ICM 2018.

1 Attendance

The first World Meeting for Women in Mathematics - (WM)2 - took place in
Rio de Janeiro, Brazil, on July 31, 2018, as a satellite event of the ICM 2018.
It had a total of 296 registered participants, mostly women, plus around 50
guest participants (accompanying people and participants of ICM 2018) (Fig. 1).
Registered participants came from 51 different countries, distributed as follows.

Fig. 1 Participants of the (WM)2

C. Araujo (�)
Instituto Nacional de Matemática Pura e, Aplicada (IMPA), Rio de Janeiro, RJ, Brazil
e-mail: caraujo@impa.br

© The Association for Women in Mathematics and the Author(s) 2019
C. Araujo et al. (eds.), World Women in Mathematics 2018, Association for Women
in Mathematics Series 20, https://doi.org/10.1007/978-3-030-21170-7
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4 C. Araujo

Algeria—6 Indonesia—8 Russia—1

Argentina—21 Iran—7 Senegal—2

Australia—2 Japan—2 Serbia—4

Belarus—1 Kyrgyzstan—1 Slovenia—1

Brazil—123 Mexico—5 South Africa—1

Burkina Faso—1 Moldova—2 South Korea—2

Cambodia—1 Montenegro—2 Spain—2

Cameroon—1 Morocco—1 Tanzania—1

Canada—3 Mozambique—1 Tunisia—2

Chile—8 Nepal—2 Turkey—5

Colombia—2 Netherlands—1 Ukraine—5

Congo—1 Nigeria—8 UK—1

Denmark—1 Pakistan—2 USA—11

Ecuador—1 Peru—2 Uruguay—1

France—11 Philippines—5 Uzbekistan—1

Ghana—2 Poland—1 Venezuela—1

India—17 Romania—1 Vietnam—1

2 Program at a Glance

7:00–9:00 Registration

9:00–9:20 World Premiere of the film “Journeys of Women in Mathematics”

9:25–10:10 Keynote Lecture: Monique Laurent “Convergence Analysis of Approximation
Hierarchies for Polynomial Optimization”

10:15–10:30 Memorial for Maryam Mirzakhani

10:35–11:20 Lecture: Alicia Dickenstein “Algebra and Geometry in the Study of Enzymatic
Cascades”

11:25–12:25 Group discussions

12:30–14:20 Lunch + Posters

14:25–15:10 Lecture: Salomé Martínez “Reaction-Diffusion Equations, Population and Gen-
der Dynamics”

15:15–16:00 Lecture: Maria Eulália Vares “Revisiting the Contact Process”

16:00–16:40 Coffee break

16:40–17:25 Public Lecture: Maria J. Esteban “Why Mathematics Is Changing the World”

17:30–18:45 Panel discussion “Networks of Women in Mathematics”

19:00 ICM opening cocktail reception
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Fig. 2 Left: The protagonists of the first part of the film “Journeys of Women in Mathematics.”
Right: Poster of the full length film

3 Journeys of Women in Mathematics

The program of (WM)2 opened with the world premiere of the film “Journeys of
Women in Mathematics.” The film was created by the IMU Committee for Women
in Mathematics, filmed and edited by Micro-Documentaries, and made possible by
a grant from the Simons Foundation. The first part of the film features Carolina
Araujo from Brazil, Neela Nataraj from India, and Aminatou Pecha from Cameroon
(Fig. 2). It describes their research, the mathematical aspirations, successes and
barriers faced by women in their region, all told in the words of the women
themselves.

The second part of the film was shot during (WM)2 and ICM 2018. It gives a
lively presentation of the atmosphere at the meeting, and features interviews of six
women in mathematics from Latin America: Alicia Dickenstein from Argentina,
Natalia García-Colín from Mexico, Salomé Martínez from Chile, Jaqueline Godoy
Mesquita from Brazil, Carolina Neira Jiménez from Colombia, and Maria Eulália
Vares from Brazil. The final full-length version of the film is available at the
following webpage.

https://www.mathunion.org/fileadmin/CWM/Videos/Simons_Foundation-
WM2_Conference-1363-02-T04_FINAL_Stitch.mp4.

4 Scientific Lectures

The scientific program of (WM)2 included five 45-minute plenary lectures: keynote
lecture by Monique Laurent (Netherlands), invited lectures by Alicia Dickenstein
(Argentina), Salomé Martínez (Chile) and Maria Eulália Vares (Brazil), and public
lecture by Maria J. Esteban (France). The lectures were aimed at a general audience
of mathematicians, providing panoramic views of different fields in pure and applied
mathematics.

https://www.mathunion.org/fileadmin/CWM/Videos/Simons_Foundation-WM2_Conference-1363-02-T04_FINAL_Stitch.mp4
https://www.mathunion.org/fileadmin/CWM/Videos/Simons_Foundation-WM2_Conference-1363-02-T04_FINAL_Stitch.mp4
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1. Monique Laurent “Convergence Analysis of Approximation Hierarchies for
Polynomial Optimization”
Abstract: We consider the polynomial optimization problem, which asks to
minimize a multivariate polynomial f over a compact semi-algebraic set K .
Equivalently, this is asking to find a measure with positive density function,
which minimizes the expected value of f over K . This is a hard problem, which
has spurred a booming research activity in the past two decades, starting with
seminal works by Lasserre and Parrilo in 2000 and onward. In a nutshell, results
from real algebraic geometry about positive polynomials and from functional
analysis about moments of measures are used to construct hierarchies of bounds
that converge to the global minimum of f over K . These bounds are based
on using sums-of-squares positivity certificates. While testing positivity of a
polynomial is a hard computational problem, the key fact is that there exist
efficient algorithms to search for sums of squares of polynomials.

In this lecture we will focus on hierarchies of upper bounds, that are obtained
by selecting sums-of-squares density functions with growing degrees d. We will
discuss several recent results about the convergence rate of these hierarchies.
For general convex bodies K we can show a convergence rate in O(1/d) and,
for simpler sets like the hypercube, we can show a stronger convergence rate
in O(1/d2). In addition this convergence analysis is tight, which relies on
establishing links to orthogonal polynomials and their extremal roots.

This lecture is based on joint work with Etienne de Klerk.
2. Alicia Dickenstein “Algebra and Geometry in the Study of Enzymatic Cascades”

Abstract: In recent years, techniques from computational and real algebraic
geometry have been successfully used to address mathematical challenges in
systems biology. The algebraic theory of chemical reaction systems aims to
understand their dynamic behavior by taking advantage of the inherent algebraic
structure in the kinetic equations, and does not need a priori determination of the
parameters, which can be theoretically or practically impossible.

I will give a gentle introduction to general results based on the network struc-
ture. In particular, I will describe a general framework for biological systems,
called MESSI systems, that describe Modifications of type Enzyme-Substrate
or Swap with Intermediates, and include many post-translational modification
networks. I will also outline recent methods to address the important question of
multistationarity, in particular in the study of enzymatic cascades, and will point
out some of the mathematical challenges that arise from this application.

3. Salomé Martínez “Reaction-Diffusion Equations, Population and Gender
Dynamics”
Abstract: Reaction-diffusion models have been widely used to study fundamental
questions in population dynamics. This type of partial differential equation pro-
vides a way to translate local assumptions regarding the movement, growth and
interactions of the individuals of a species, into global features of the population
giving us a theoretical framework for questions such as the persistence of a
species, invasions, coexistence of competing populations. Different mathematical
tools from nonlinear analysis and dynamical systems can be used to study the
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consequences of varying different population characteristics have in the long
term dynamics.

In this talk we will study competitive reaction-diffusion systems of the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= Lu + u(m(x) − u − bv) in Ω, t > 0,

∂u

∂t
= Mv + v(m(x) − cu − v) in Ω, t > 0,

∇ u

m
· n̂ = ∇v · n̂ = 0 on ∂Ω, t > 0,

with u, v representing the densities of two competing populations in an isolated
habitat Ω , a(x) the space dependent per-capita growth rate, b, c > 0 accounting
for competition coefficients, and L and M elliptic operators accounting for the
dispersal strategies of each species. In particular, we will discuss how the rela-
tionship between population dispersal and competition affects the persistence,
dispersal and coexistence of the species.

In this talk we will also explore some issues related to the persistence and
dispersal of women in STEM in an environment where they account for less than
17% of the population. I will share how we have been able to significantly grow
and thrive through the formation and strengthening of networks and alliances. In
particular, we will discuss the process that led to the creation of the Direction for
Diversity and Gender, the first in a Faculty of Sciences, Math, and Engineering
in Chile, which I currently lead.

4. Maria Eulália Vares “Revisiting the Contact Process”
Abstract: Introduced by T. Harris more than forty years ago, the classical contact
process is a simple stochastic model to describe the propagation of an infection
in a population, where the individuals sit on the vertices of a graph, also called
sites. It can be thought as a Markov process on the space of subsets of the
set of all sites, identifying the state “infected” or “healthy” of each individual.
Its description is simple and in the most natural examples the model shows
interesting features, like dynamical phase transition and metastability, which
have been precisely described. This process can be described through paths in a
random space-time graph, also called Harris system. Several variations have been
considered recently, including the case where the sites are given by the vertices of
a random graph, or the contact process with two types of individuals. In this talk
I would like to describe another variation, where one loses the Markov property
but for which the investigation of phase transition, thought in terms of percolation
properties, remains interesting. This is based on joint work with L.R. Fontes, D.
Marchetti, and T. Mountford. If time allows I would like to discuss features of
the metastable behavior of a contact process with two types of individuals, and
which is work done by my PhD student at UFRJ, Mariela P. Machado.
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5. Maria J. Esteban “Why Mathematics Is Changing the World”
Abstract: Mathematics has always been key to help understanding the world in
which we live. But it is becoming more and more one of the key technologies
to change and improve it, and to foster innovation. Mathematics is behind most
of the important recent technological developments. This is due to the increasing
complexity of the processes that need to be described and understood. The use
of sophisticated mathematics together with advanced algorithms lead to efficient
and robust methods to solve problems that would be out or reach otherwise. This
lecture will be devoted to the presentation of examples showing the strength of
the mathematical technologies behind this immense success.

5 Group Discussions

About 200 participants divided up into 15 small discussion groups. Each group
focused on one topic, and used a common language of their choice (one of Arabic,
English, French, Portuguese or Spanish). The discussions lasted for about one
hour, and were moderated by one or two people per group, who had previously
volunteered as facilitators. At the end of the discussion, each group was invited to
formulate a proposition or a question. The conclusions were presented during the
panel discussion at the end of the program (Fig. 3).

Fig. 3 Group discussions at the (WM)2
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The topics and the group facilitators (all languages included) were:

• Diversity in Mathematics (Eloah Oliveira Corrêa, Maria Isabel Cortez, Manjusha
Majumdar, Fatma Zohra Nouristrategies, Gabriela Araujo Pardo, Eliane Costa
Santos, Valdirene Rosa de Souza);

• Gender gap in mathematics (Zamurat Ayobami Adegboye);
• Strategies to encourage women to do research in mathematics (Karina Batistelli,

Eunice Mureithi, Neela Nataraj, Socorro Rangel, Selmane Schehrazad, Luz De
Teresa);

• Maternity and career (Adeniji Adenike);
• Mentoring early career (Mary Durojaye, Mercedes Siles Molina);
• Patriarchal practices in Academia (Fadipe-Joseph Olubunmi);
• Public policies to promote women in science (Yuliya Mishura, Fagueye Ndiaye,

Mythily Ramaswamy, Catherine Roberts);
• Strategies to stimulate undergraduate girls in mathematics (Mercy Gyamea

Amankwah, Cristina Lizana Araneda, Yuriko Baldin, Ogunrinde Roseline
Bosede, Jyoti U. Devkota, Walcy Santos);

• Female role models and how to highlight women’s contributions (Aruquia
Peixoto);

• The status of female researchers in the math community (Atinuke Adebanji,
Stefanella Boatto).

The propositions and questions elaborated by the discussion groups have been
synthesized by the organizers of the (WM)2 into the following four topics.

1. Strategies to stimulate girls to pursue undergraduate studies in mathematics.
The importance of starting to promote the gender balance in early stages of

education, and the key role played by teachers in this process were highlighted.
Proposed strategies include: to offer courses on popularization/applications of
mathematics in secondary school; to fight against the preconceived idea that
mathematics is a subject not suited for girls; to encourage girls to study math-
ematical sciences; to organize summer camps in mathematics either entirely for
girls or with a good gender balance; to stimulate, maintain and expand scientific
initiation programs for undergraduate and high school students. Teachers should
encourage and value the participation of women studying mathematics; be aware
of the cultural barriers that impair girls’ performance in mathematics, and help
them break those; diffuse the role of women as protagonists throughout the
history of mathematics; organize regular seminars where women’ s contributions
are discussed; and stimulate girls to be more vocal. It has been pointed out
that gender balance could be achieved with complementary and not competitive
interactions. The following question was posed: What is the ideal ratio of boys
to girls in programs designed to motivate girls in mathematics?
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2. Strategies to encourage women to do research in mathematics, to highlight
contributions by women, and to establish role models.

Three main aspects were discussed:

a. The need to increase the perception/visibility of women’s research work
in mathematics. Proposed strategies include: to cite the work of women
during classes and lectures; to encourage women to write more text books,
to participate in events, to propose projects and to participate in scientific
societies; to have more local seminars so women who have travel restrictions
can be up to date in their research fields; to provide more travel and research
grants, scholarships and childcare at scientific events.

b. The need to promote collaboration and to value work between women.
The importance of having mentoring networks for women mathematicians
(with senior mathematicians mentoring young researchers, young researchers
mentoring Ph.D students, and so on) was highlighted.

c. The need to create and strengthen support networks for women mathemati-
cians, as a way for women to develop courage and self-confidence. Role
models play a role in these support networks, as does sharing experiences
such as balancing family, career, research and responsibilities.

3. Public policies to promote women in science and to overcome the gender gap in
mathematics.

Different strategies were proposed to promote and retain women in science,
including: to use positive discrimination, that is, give preference to a woman
between two candidates at equal level competing for the same position; alterna-
tion between men and women in decision making positions; to include maternity
in women’s CV and take this into account when evaluating their applications,
acknowledging the greater impact of maternity in women’s career as compared to
men’s; to increase the number of nominations of females to scientific committees
and prize awards. The question of whether women have to fit in the patriarchal
model in order to survive in academia, with stereotyped roles and behaviours,
was discussed. The importance of the CWM led project “A Global Approach to
the Gender Gap in Mathematical and Natural Sciences”, which aims at a better
documentation of the gender gap in science, was highlighted.

4. Strategies to encourage diversity.
It was observed that in mathematics (and academia more generally), linear

trajectories in research are more valued, and usually better suited for men. The
importance of recognizing and valuing the diversity of identities and trajectories,
including those focused on aspects other than research, such as popularization
of mathematics, organizing events, teaching, etc, was noted. Social and ethnic
diversity in mathematics was also discussed, and the difficulty of experiencing
diversity in mathematics in practice was acknowledged. Some positive examples
were discussed, such as the ethno-mathematics studies in Mozambican culture,
the laboratory of mathematical teaching at UFBA (Federal University of Bahia,
Brazil) and the ethno-mathematics group at UNILAB and UFABC (Federal
University of ABC, Brazil).
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Fig. 4 Poster session at the (WM)2

6 Poster Presentations

The poster session was a very active part of the program, with the presentation of 57
research posters covering various areas of mathematics, as well as 14 mathematic
posters describing initiatives and statistics about women in mathematics worldwide.
The complete list of posters presented at (WM)2, including titles, authors and
abstracts, can be found in the following webpages (Fig. 4).

Mathematical posters:

https://impa.br/wp-content/uploads/2019/03/WM2-PS_Matematica.pdf.

Thematic posters about women in mathematics:

https://impa.br/wp-content/uploads/2019/03/WM2-PS_Mulheresnamatematica.
pdf.

7 Panel Discussion

The program of (WM)2 ended with a 75-minute panel discussion about “Networks
of Women in Mathematics”, moderated by Carolina Araujo. The panelists were:

• Christina Brech (Brazil)—Brazilian network
• Natalia Garcia (Mexico)—Latin American networks

https://impa.br/wp-content/uploads/2019/03/WM2-PS_Matematica.pdf
https://impa.br/wp-content/uploads/2019/03/WM2-PS_Mulheresnamatematica.pdf
https://impa.br/wp-content/uploads/2019/03/WM2-PS_Mulheresnamatematica.pdf
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Fig. 5 Panel discussion “Networks of Women in Mathematics”

• Magnhild Lien (USA)—Association for Women in Mathematics (AWM)
• Marie Françoise Ouedraogo (Burkina Faso)—African Women in Mathematics

(AWMA)
• Marie-Françoise Roy (France)—European Women in Mathematics (EWM)
• Riddhi Shah (India)—Indian Women in Mathematics (IWM)

panelists shared briefly the history of the networks of women mathematicians
in their regions, their challenges and most successful initiatives, making clear the
importance of networks to improve the situation of women in mathematics (Fig. 5).

Following the presentations, facilitators from the morning group discussions
presented their previously formulated propositions, and the program closed with
attendees voting by a large majority to celebrate women in mathematics on May 12,
starting in 2019.

8 Program Committee

• Georgia Benkart (University of Wisconsin, USA)—chair
• Leticia Brambila-Paz (CIMAT, Mexico)
• Carmen Cortázar (Pontificia Universidad Católica de Chile)
• Ingrid Daubechies (Duke University, USA)
• Lilliam Alvarez Diaz (Academia de Ciencias de Cuba)
• Pablo Ferrari (Universidad de Buenos Aires, Argentina)
• Ursula Hamenstädt (Universität Bonn, Germany)
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• Shihoko Ishii (University of Tokyo, Japan)
• Maria José Pacifico (UFRJ, Brazil)
• María Inés Platzeck (Universidad Nacional del Sur, Argentina)
• Cheryl E. Praeger (University of Western Australia)
• Claudia Sagastizábal (Visiting researcher, IMPA, Brazil)
• Bernd Sturmfels (UC Berkeley, USA)
• Keti Tenenblat (UNB, Brazil)
• Aissa Wade (AIMS, Senegal/Penn State, USA)

9 Organizing Committee

• Carolina Araujo (IMPA, Brazil)—corresponding person
• Gabriela Araujo (UNAM, Mexico)
• Yuriko Yamamoto Baldin (UFSCar, Brazil)
• Christina Brech (USP, Brazil)
• Anne Bronzi (UNICAMP, Brazil)
• Patricia Cirilo (UNIFESP, Brazil)
• Maria Isabel Cortez (Universidad de Santiago de Chile, Chile)
• Luciane Quoos Conte (UFRJ, Brazil)
• Lilliam Alvarez Diaz (Academia de Ciencias de Cuba, Cuba)
• Liliana Forzani (Universidad del Litoral, Argentina)
• Juliana Marta
• Lucía López de Medrano (UNAM, Mexico)
• Marie-Françoise Roy (Université de Rennes, France)
• Cecilia Salgado (UFRJ, Brazil)
• Caroline Series (University of Warwick, England)
• Betül Tanbay (Boğaziçi University, Turkey)

10 A Tribute to Maryam Mirzakhani

The whole mathematical community was deeply saddened by the untimely death
of Maryam Mirzakhani on July 14, 2017, at the age of forty. She was the first
woman mathematician to be awarded the Fields Medal, at ICM 2014 in Seoul. As a
tribute to her memory, CWM created Remember Maryam Mirzakhani, a memorial
exhibition with 18 original posters portraying Maryam Mirzakhani, two volumes
containing her mathematical work, one volume with articles about her, and a book
of condolences for attendees to sign. The exhibition was signed by Thaís Jordão
(curator) and Rafael Meireles Barroso (designer). The exhibition was inaugurated
at the (WM)2, and remained open during the ICM 2018. Since then, it has been
shown in several venues (Fig. 6).

The Memorial for Maryam Mirzakhani during the (WM)2 included a screening
of the film shown in ICM 2014 when she received the Fields medal, followed by the
following words by Betül Tanbay and one minute silence.
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Fig. 6 Remember Maryam Mirzakhani memorial exhibition at the (WM)2

Maryam Mizrakhani was born on May 12, 1977.
Her childhood was spent in Teheran during the Iran-Iraq war.
In an interview, Maryam said, “I was very lucky in many ways. The war ended when
I finished elementary school; I couldn’t have had the great opportunities that I had
if I had been born ten years earlier.”
Maryam went to Farzanegan, a high school for girls with exceptional talents. Her
outstanding mathematical ability became evident when she won gold medals in the
International Mathematical Olympiads in Hong Kong (1994) and in Canada (1995),
achieving a perfect score.
In 1995, Maryam joined the Sharif University of Technology in Teheran, where she
completed her Bachelor of Science (BS) in 1999. By then she had already published
three papers, of which two were in graph theory.
Maryam worked for her PhD at Harvard under Fields medallist Curtis McMullen
on hyperbolic surfaces. In 2004, she was awarded the Leonard M and Eleanor B
Blumenthal award for her thesis, which was judged as outstanding and brought her
a Clay fellowship at Princeton. Rising rapidly from assistant professor to professor,
in 2008 she moved with her husband Jan Vondrák, a computer scientist, to a chair
at Stanford.
Her daughter Anahita was born in 2011. Maryam has often been pictured with large
sheets of paper spread on the floor on which she would visualise her mathematics
of curved surfaces. Her daughter would remark that her mother was painting.
Maryam was an invited speaker at ICM 2010 in Hyderabad. She received innumer-
able awards and prizes for her mathematical work, and was awarded the Fields
Medal at ICM 2014 in Seoul.

In the words of Terence Tao:

Her greatest recent achievement has been her “magic wand” theorem with Alex Eskin,
which is basically the analogue of the famous measure classification and orbit closure
theorems of Marina Ratner, in the context of moduli spaces instead of unipotent flows on
homogeneous spaces. Ratner’s theorems are fundamentally important to any problem to
which a homogeneous dynamical system can be associated, as it gives a good description
of the equidistribution of any orbit of that system; and it seems the Eskin-Mirzakhani result
will play a similar role in problems associated instead to moduli spaces. The remarkable
proof of this result uses almost all of the latest techniques that had been developed for
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Fig. 7 Left: Dr Ashraf Daneshkhah making the proposition to celebrate women in mathematics
on May 12 (Marcos Arcoverde/ICM2018). Right: Voting at the closing of the meeting

homogeneous dynamics, and ingeniously adapts them to the more difficult setting of moduli
spaces, in a manner that had not been dreamed of being possible only a few years earlier.1

An application of these results is to the “illumination problem.” Imagine a room
with mirrored walls. If a candle is placed at some location in the room, will it
illuminate every other point in the room?
I have the feeling Maryam will be the candle illuminating every point in the space
of mathematicians.

In the words of Caroline Series:

With her infectious enthusiasm, she was always keen to discuss mathematics, always opti-
mistic about what could be done, modest and unassuming while projecting an unwavering
self-confidence. She had a reputation for tackling the most difficult questions with dogged
persistence.2

Allow me to add as a woman mathematician from her neighbourhood that
Maryam showed forever that excellence in mathematics is not a matter of gender
nor geography. Mathematics being a universal value, it belongs to us all.
Her region did not see much peace.
May she rest in peace.

On behalf of the Women’s Committee at the Iranian Mathematical Society, Dr
Ashraf Daneshkhah then presented to the participants a proposal that Maryam
Mirzakhani’s birthday - May 12 - be celebrated worldwide within the mathematical
community as “Women in Mathematics Day.” The program of the (WM)2 closed
with attendees voting by a large majority to celebrate women in mathematics on
May 12, starting in 2019 (Fig. 7).

Following this decision, there is currently an international initiative to celebrate
women in mathematics on May 12, coordinated by several organizations for
women in mathematics worldwide: African Women in Mathematics Association
(AWMA), Association for Women in Mathematics (AWM), Colectivo de Mujeres

1Terence Tao’s blog https://terrytao.wordpress.com.
2Series, Caroline. Maryam Mirzakhani and her work. Math. Today (Southend-on-Sea) 53 (2017),
no. 5, 192–194.

https://terrytao.wordpress.com
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Matemáticas de Chile, European Women in Mathematics (EWM), Indian Women
and Mathematics (IWM), and Women’s Committee of the Iranian Mathematical
Society (Fig. 8).

https://may12.womeninmaths.org.

Fig. 8 “Door”. Piece of Remember Maryam Mirzakhani memorial exhibition

https://may12.womeninmaths.org


A Survey of Semidefinite Programming
Approaches to the Generalized Problem
of Moments and Their Error Analysis

Etienne de Klerk and Monique Laurent

Abstract The generalized problem of moments is a conic linear optimization
problem over the convex cone of positive Borel measures with given support. It
has a large variety of applications, including global optimization of polynomials
and rational functions, option pricing in finance, constructing quadrature schemes
for numerical integration, and distributionally robust optimization. A usual solution
approach, due to J.B. Lasserre, is to approximate the convex cone of positive
Borel measures by finite dimensional outer and inner conic approximations. We
will review some results on these approximations, with a special focus on the
convergence rate of the hierarchies of upper and lower bounds for the general
problem of moments that are obtained from these inner and outer approximations.

1 Introduction

The classical problem of moments is to decide when a measure is determined
by a set of specified moments and variants of this problem were studied (in the
univariate case) by leading nineteenth and early twentieth century mathematicians,
like Hamburger, Stieltjes, Chebyshev, Hausdorff, and Markov. We refer to [1] for an
early reference and to the recent monograph [51] for a comprehensive treatment of
the moment problem.

The generalized problem of moments is to optimize a linear function over the
set of finite, positive Borel measures that satisfy certain moment-type conditions.
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More precisely, we consider continuous functions f0 and fi (i ∈ [m]) where [m] =
{1, . . . , m}, that are defined on a compact set K ⊂ R

n. The generalized problem of
moments (GPM) may now be defined as follows.1

Generalized Problem of Moments (GPM)

val := inf
μ∈M(K)+

{∫

K

f0(x)dμ(x) :
∫

K

fi(x)dμ(x) = bi ∀i ∈ [m]
}

, (1)

where

• M(K)+ denotes the convex cone of positive, finite, Borel measures (i.e., Radon
measures) supported on the set K2;

• The scalars bi ∈ R (i ∈ [m]) are given.

In this survey we will mostly consider the case where all fi’s are polynomials,
and will always assume K ⊆ R

n to be compact. Moreover, for some of the results,
we will also assume that K is a basic semi-algebraic set and we will sometimes
further restrict to simple sets like a hypercube, simplex or sphere.

The generalized problem of moments has a rich history; see, e.g., [1, 30, 51]
and references therein and [36] for a recent overview of many of its applications. In
the recent years modern optimization approaches have been investigated in depth, in
particular, by Lasserre (see [32], the monograph [33] and further references therein).
Among others, there is a well-understood duality theory, and hierarchies of inner
and outer approximations for the cone M(K)+ have been introduced that lead to
converging upper and lower bounds for the problem (1). In this survey we will
present these hierarchies and show how the corresponding bounds can be computed
using semidefinite programming. Since several overviews are already available on
general properties of these hierarchies (e.g., in [33, 34, 37, 38]), our main focus here
will be on recent results that describe their rate of convergence. We will review in
particular in more detail recent results on the upper bounds arising from the inner
approximations, and highlight some recent links made with orthogonal polynomials
and cubature rules for integration.

1We only deal with the GPM in a restricted setting; more general versions of the problem are
studied in, e.g., [54].
2Formally, we consider the usual Borel σ -algebra, say B, on R

n, i.e., the smallest (or coarsest)
σ -algebra that contains the open sets in R

n. A positive, finite Borel measure μ is a nonnegative-
valued set function on B, that is countably additive for disjoint sets in B. The support of μ is the
set, denoted Supp(μ), and defined as the smallest closed set S such that μ(Rn \ S) = 0.
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1.1 The Dual Problem of the GPM

The GPM is an infinite-dimensional conic linear program, and therefore it has an
associated dual problem. Formally we introduce a duality (or pairing) between the
following two vector spaces:

1. the space M(K) of all signed, finite, Borel measures supported on K ,
2. the space C(K) of continuous functions on K , endowed with the supremum norm

‖ · ‖∞.

The duality (pairing) in question is provided by the nondegenerate bilinear form
〈·, ·〉 : C(K) × M(K) → R, defined by

〈f,μ〉 =
∫

K

f (x)dμ(x) (f ∈ C(K), μ ∈ M(K)).

Thus the dual cone of M(K)+ w.r.t. this duality is the cone of continuous functions
that are nonnegative on K , and will be denoted by C(K)+ = (M(K)+)∗.

In our setting of compact K ⊂ R
n, M(K) is also the dual space of C(K), i.e.,

M(K) may be associated with the space of linear functionals defined on C(K).
In particular, due to the Riesz-Markov-Kakutani representation theorem (e.g. [56,
§1.10]), every linear functional on C(K) may be expressed as

f �→ 〈f,μ〉 for a suitable μ ∈ M(K).

As a result, we have the weak∗ topology on M(K) where the open sets are finite
intersections of elementary sets of the form

{μ ∈ M(K) | α < 〈f,μ〉 < β},

for given α, β ∈ R, and f ∈ C(K), and the unions of such finite intersections.
A sequence {μk} ⊂ M(K) converges in the weak∗ topology, say μk ⇀ μ, if,

and only if,

lim
k→∞〈f,μk〉 = 〈f,μ〉 ∀f ∈ C(K). (2)

As a consequence of (2), the cone M(K)+ is closed and the set of probability
measures in M(K) is closed.

By Alaoglu’s theorem, e.g. [2, Theorem III(2.9)], the following set (i.e., the unit
ball in M(K)) is compact in the weak∗ topology of M(K):

{μ ∈ M(K) | |〈f,μ〉| ≤ 1 ∀f ∈ C(K) with ‖f ‖∞ ≤ 1} . (3)

Hence the set of probability measures in M(K) is compact, since it is a closed
subset of the compact set in (3), and thus it provides a compact base in the weak∗
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topology for the cone M(K)+. This implies again that M(K)+ is closed in this
topology (using Lemma 7.3 in [2, Part IV]) and we will also use this fact to analyze
duality in the next section.

Dual Linear Optimization Problem of (1)

Using this duality setting, the dual conic linear program of (1) reads

val∗ := sup
y∈Rm

⎧
⎨

⎩

∑

i∈[m]
biyi : f0 −

∑

i∈[m]
yifi ∈ C(K)+

⎫
⎬

⎭
,

= sup
y∈Rm

⎧
⎨

⎩

∑

i∈[m]
biyi : f0(x) −

∑

i∈[m]
yifi(x) ≥ 0 ∀x ∈ K

⎫
⎬

⎭
. (4)

By the duality theory of conic linear optimization, one has the following duality
relations; see, e.g., [2, Section IV.7.2] or [33, Appendix C].

Theorem 1 Consider the GPM (1) and its dual (4). Assume (1) has a feasible
solution. One has val ≥ val∗ (weak duality), with equality val = val∗ (strong
duality) if the cone {(〈f0, μ〉, 〈f1, μ〉, . . . , 〈fm,μ〉) : μ ∈ M(K)+} is a closed
subset of Rm+1. If, in addition, val > −∞ then (1) has an optimal solution.

We mention another sufficient condition for strong duality, that is a consequence
of Theorem 1 in our setting.

Corollary 1 Assume (1) has a feasible solution, and there exist z0, z1, . . . , zm ∈ R

for which the function
∑m

i=0 zifi is strictly positive on K (i.e.,
∑m

i=0 zifi(x) > 0
for all x ∈ K). Then, val = val∗ holds and (1) has an optimal solution.

Hence, if in problem (1) we optimize over the probability measures (i.e., with
f1 ≡ 1, b1 = 1) then the assumptions in Corollary 1 are satisfied.

We indicate how Corollary 1 can be derived from Theorem 1. Consider the linear
map L : M(K) → R

m+1 defined by L(μ) = (〈f0, μ〉, . . . , 〈fm,μ〉), which is
continuous w.r.t. the weak* topology on M(K). First we claim Ker L ∩ M(K)+ =
{0}. Indeed, assume L(μ) = 0 for some μ ∈ M(K)+. Setting f = ∑m

i=0 zifi ,
L(μ) = 0 implies 〈f,μ〉 = 0 and thus μ = 0 since f is strictly positive on K .
Since the cone M(K)+ has a compact convex base in the weak∗ topology and the
linear map L is continuous, we can conclude that the image L(M(K)+) is closed
(using Lemma 7.3 in [2, Part IV]). Now we can conclude using Theorem 1.
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1.2 Atomic Solution of the GPM

If the GPM has an optimal solution, then it has a finite atomic optimal solution,
supported on at most m points (i.e., the weighted sum of at most m Dirac delta
measures). This is a classical result in the theory of moments; see, e.g., [48]
(univariate case), [29] (which shows an atomic measure with m + 1 atoms using
induction on m) and a modern exposition in [54] (which shows an atomic measure
with m atoms). The result may also be obtained as a consequence of the following,
dimension-free version of the Carathéodory theorem.

Theorem 2 (See, e.g., Theorem 9.2 in Chapter III of [2]) Let S be a convex
subset of a vector space such that, for every line L, the intersection S ∩ L is a
closed bounded interval. Then every extreme point of the intersection of S with m

hyperplanes can be expressed as a convex combination of at most m + 1 extreme
points of S.

Atomic Solution of the (GPM)

Theorem 3 If the GPM (1) has an optimal solution then it has one which is finite
atomic with at most m atoms, i.e., of the form μ∗ = ∑m

�=1 w�δx(�) where w� ≥ 0,
x(�) ∈ K , and δx(�) denotes the Dirac measure supported at x(�) (� ∈ [m]).

This result can be derived from Theorem 2 in the following way. By assumption,
the GPM has an optimal solution μ∗. Moreover, since it has one at an extreme point
we may assume that μ∗ is an extreme point of the feasibility region M(K)+ ∩
∩m

i=1Hi of the program (1), where Hi is the hyperplane 〈fi, μ〉 = bi . Then the
following set S = {μ ∈ M(K)+ : μ(K) = μ∗(K)} meets the condition of
Theorem 2, since the set of probability measures in M(K)+ is compact in the weak∗
topology, and any line in a topological vector space is closed (e.g. [2, p. 111]).
Moreover, the extreme points of S are precisely the scaled Dirac measures supported
by points in K (see, e.g., Section III.8 in [2]). In addition, μ∗ is an extreme point
of the set S ∩ ∩m

i=1Hi and thus, by Theorem 2, μ∗ is a conic combination of m + 1
Dirac measures supported at points x(�) ∈ K for � ∈ [m + 1]. Finally, as in [54],
consider the LP

min
m+1∑

�=1

w�f0(x
(�)) s.t. w� ≥ 0 (� ∈ [m + 1]),

m+1∑

�=1

w�fi(x
(�)) = bi (i ∈ [m])

whose optimal value is val. Then an optimal solution attained at an extreme point
provides an optimal solution of the GPM (1) which is atomic with at most m atoms.
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1.3 GPM in Terms of Moments

From now on we will assume the functions f0, f1, . . . , fm in the definition of the
GPM (1) are all polynomials and the set K is compact. Then the GPM may be
reformulated in terms of the moments of the variable measure μ. To be precise,
given a multi-index α = (α1, . . . , αn) ∈ N

n the moment of order α of a measure
μ ∈ M(K)+ is defined as

mμ
α(K) :=

∫

K

xαdμ(x).

Here we set xα = x
α1
1 · · · xαn

n . We may write the polynomials f0, f1, . . . , fm in
terms of the standard monomial basis as:

fi(x) =
∑

α∈Nn
d

fi,αxα ∀i = 0, . . . , m,

where the fi,α ∈ R are the coefficients in the monomial basis, and we assume the
maximum total degree of the polynomials f0, f1, . . . , fm to be at most d.

Throughout we let Nn
d = {α ∈ N

n : |α| ≤ d} denote the set of multi-indices,
with |α| = ∑n

i=1 αi , and R[x]d denotes the set of multivariate polynomials with
degree at most d.

GPM in Terms of Moments

We may now rewrite the GPM (1) in terms of moments:

inf
μ∈M(K)+

⎧
⎨

⎩

∑

α∈Nn
d

f0,αmμ
α (K) :

∑

α∈Nn
d

fi,αmμ
α (K) = bi ∀i ∈ [m]

⎫
⎬

⎭
.

Here d is the maximum degree of the polynomials f0, f1, . . . , fm.

Thus we may consider the set of all possible truncated moments sequences:

{(
mμ

α(K)
)

α∈Nn
d

: μ ∈ M(K)+
}

,

and describe the inner and outer approximations for M(K)+ in terms of this set.
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1.4 Inner and Outer Approximations

We will consider two types of approximations of the cone M(K)+, namely inner
and outer conic approximations.

Inner Approximations
The underlying idea, due to Lasserre [35], is to consider a subset of measures μ in
M(K)+ of the form

dμ = h · dμ0,

where h is a polynomial sum-of-squares density function, and μ0 ∈ M(K)+ is a
fixed reference measure with Supp(μ0) = K .

To obtain a finite dimensional subset of measures, we will limit the total degree
of h to some value 2r where r ∈ N is fixed. The cone of sum-of-squares polynomials
of total degree at most 2r will be denoted by 
r , hence


r =
{

k∑

i=1

p2
i : k ∈ N, pi ∈ R[x]r , i ∈ [k]

}

.

In this way one obtains the cones

Mr
μ0

:= {μ ∈ M(K)+ : dμ = h · dμ0, h ∈ 
r} (r = 1, 2, . . .) (5)

which provide a hierarchy of inner approximations for the set M(K)+:

Mr
μ0

⊆ Mr+1
μ0

⊆ M(K)+.

Outer Approximations
The dual GPM (4) involves the nonnegativity constraint

f0(x) −
m∑

i=1

yifi(x) ≥ 0 ∀x ∈ K,

which one may relax to a sufficient condition that guarantees the nonnegativity of
the polynomial f0 −∑m

i=1 yifi on K . Lasserre [31] suggested to use the following
sufficient condition in the case when K is a basic closed semi-algebraic set, i.e.,
when we have a description of K as the intersection of the level sets of polynomials
gj (j ∈ [k]):

K = {x ∈ R
n : gj (x) ≥ 0 ∀j ∈ [k]} .
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Namely, consider the condition

f0 −
m∑

i=1

yifi = σ0 +
k∑

j=1

σjgj ,

where each σj is a sum-of-squares polynomial and the degree of each term σjgj

(0 ≤ j ≤ k) is at most 2r , so that the degree of the right-hand-side polynomial is at
most 2r . Here we set g0 ≡ 1 for notational convenience. Thus we replace the cone
C(K)+ by a cone of the type:

Qr (g1, . . . , gk) :=
⎧
⎨

⎩
f : f = σ0 +

k∑

j=1

σjgj , σj ∈ 
rj , j = 0, 1, . . . , k

⎫
⎬

⎭
,

(6)

where we set rj := r − ⌈deg(gj )/2
⌉

for all j ∈ {0, . . . , k}.
The cone Qr (g1, . . . , gk) is known as the truncated quadratic module generated

by the polynomials g1, . . . , gk . By definition, its dual cone consists of the signed
measures μ supported on K such that

∫

K
f dμ ≥ 0 for all f ∈ Qr (g1, . . . , gk):

(Qr (g1, . . . , gk))
∗ =

{

μ ∈ M(K) :
∫

K

f (x)dμ(x) ≥ 0 ∀f ∈ Qr (g1, . . . , gk)

}

.

(7)

This provides a hierarchy of outer approximations for the cone M(K)+:

M(K)+ ⊆ (Qr+1(g1, . . . , gk))
∗ ⊆ (Qr (g1, . . . , gk))

∗.

We will also briefly consider the tighter outer approximations for the cone M(K)+
obtained by replacing the truncated quadratic module Qr (g1, . . . , gk) by the larger

cone Qr
(∏

j∈J gj : J ⊆ [k]
)

, thus the truncated quadratic module generated by all

pairwise products of the gj ’s (also known as the pre-ordering generated by the gj ’s).
Then we have

M(K)+ ⊆
⎛

⎝Qr

⎛

⎝
∏

j∈J

gj : J ⊆ [k]
⎞

⎠

⎞

⎠

∗
⊆ (Qr (g1, . . . , gk))

∗.

2 Examples of GPM

The GPM (1) has many applications. Below we will list some examples that are
directly relevant to this survey; additional examples in control theory, option pricing
in finance, and others, can be found in [32, 33, 36].
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Global Minimization of Polynomials on Compact Sets

Consider the global optimization problem:

val = min
x∈K

p(x) (8)

where p is a polynomial and K a compact set. This corresponds to the GPM (1)
with m = 1, f0 = p, f1 = 1 and b1 = 1, i.e.:

val = min
μ∈M(K)+

{∫

K

p(x)dμ(x) :
∫

K

dμ(x) = 1

}

.

In the following sections we will focus on deriving error bounds for this problem
when using the inner and outer approximations of M(K)+.

Global Minimization of Rational Functions on Compact Sets

We may generalize the previous example to rational objective functions. In
particular, we now consider the global optimization problem:

val = min
x∈K

p(x)

q(x)
, (9)

where p, q are polynomials such that q(x) > 0 ∀ x ∈ K , and K ⊆ R
n is compact.

This problem has applications in many areas, including signal recovery [5] and
finding minimal energy configurations of point charges in a field with polynomial
potential [53].

It is simple to see that we may reformulate this problem as the GPM with m = 1
and f0 = p, f1 = q, and b1 = 1, i.e.:

val = min
μ∈M(K)+

{∫

K

p(x)dμ(x) :
∫

K

q(x)dμ(x) = 1

}

.

Indeed, one may readily verify that if x∗ is a global minimizer of the rational
function p(x)/q(x) over K then an optimal solution of the GPM is given by
μ∗ = 1

q(x∗) δx∗ .
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Polynomial Cubature Rules

Positive cubature (also known as multivariate quadrature) rules for numerical
integration of a function f with respect to a measure μ0 over a set K take the form

∫

K

f (x)dμ0(x) ≈
N∑

�=1

w�f (x(�)),

where the points x(�) ∈ K and the weights w� ≥ 0 (� ∈ [N ]) are fixed. The points
(also known as the nodes of the cubature rule) and weights are typically chosen so
that the approximation is exact for polynomials up to a certain degree, say d.

The problem of finding the points x(�) ∈ K and weights w� (� ∈ [N ]) giving a
cubature rule exact at degree d may then be written as the following GPM:

val := inf
μ∈M(K)+

{∫

K

1dμ(x) :
∫

K

xαdμ(x) =
∫

K

xαdμ0(x) ∀α ∈ N
n
d

}

.

The key observation is that, by Theorem 3, this problem has an atomic solution
supported on at most N = |Nn

d | = (
n+d
d

)
points in K , say μ∗ = ∑N

�=1 w�δx(�) , and
this yields the cubature weights and points. This result is known as Tchakaloff’s
theorem [58]; see also [3, 57]. (In fact, our running assumption that K is compact
may be relaxed somewhat in Tchakaloff’s theorem—see, e.g. [46]).

Here we have chosen the constant polynomial 1 as objective function so that the
optimal value is val = μ0(K). Other choices of objective functions are possible as
discussed, e.g., in [49]. The GPM formulation of the cubature problem was used for
the numerical calculation of cubature schemes for various sets K in [49].

3 Semidefinite Programming Reformulations
of the Approximations

The inner and outer approximations of the cone M(K)+ discussed in Sect. 1.4
lead to upper and lower bounds for the GPM (1), which may be reformulated as
finite-dimensional, convex optimization problems, namely semidefinite program-
ming (SDP) problems. These are conic linear programs over the cone of positive
semidefinite matrices, formally defined as follows.

Semidefinite Programming (SDP) Problem

Assume we are given symmetric matrices A0, . . . , Am (all of the same size) and
scalars bi ∈ R (i ∈ [m]). The semidefinite programming problem in standard primal
form is then defined as
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p∗ := inf
X�0

{〈A0, X〉 : 〈Ai,X〉 = bi ∀i ∈ [m]} ,

where 〈·, ·〉 now denotes the trace inner product, i.e., the Euclidean inner product in
the space of symmetric matrices, and X � 0 means that X is a symmetric positive
semidefinite matrix (corresponding to the Löwner partial ordering of the symmetric
matrices).

The dual semidefinite program reads

d∗ := sup
y∈Rm

{
m∑

i=1

biyi : A0 −
m∑

i=1

yiAi � 0

}

.

Weak duality holds: p∗ ≥ d∗. Moreover, strong duality: p∗ = d∗ holds, e.g., if the
primal problem is bounded and admits a positive definite feasible solution X (or if
the dual is bounded and has a feasible solution y for which A0 −∑i yiAi is positive
definite) (see, e.g., [2, 4]).

Next we recall how one can test whether a polynomial can be written as a sum
of squares of polynomials using semidefinite programming. This well known fact
plays a key role for reformulating the inner and outer approximations of M(K)+
using semidefinite programs.

Checking Sums of Squares with SDP

Given an integer r ∈ N let [x]r = {xα : α ∈ N
n
r } consist of all monomials with

degree at most r , thus the monomial basis of R[x]r .

Proposition 1 For a given n-variate polynomial h, one has h ∈ 
r , if and only if
the following polynomial identity holds:

h(x) = [x]�r M[x]r
⎛

⎝=
∑

α,β∈Nn
r

Mα,βxα+β

⎞

⎠ ,

for some positive semidefinite matrix: M = (
Mα,β

)

α,β∈Nn
r

� 0. The above identity
can be equivalently written as

hγ =
∑

α,β∈Nn
r : α+β=γ

Mα,β ∀γ ∈ N
n
2r . (10)
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Example 1

To illustrate the above algorithmic procedure for finding sums of squares, consider
the following univariate polynomial

f (x) = 1 − 2x + 3x2 − 2x3 + x4.

In order to check whether f can be written as a sums of squares we have to check
the feasibility of the following semidefinite program, where the matrix variable M

is a 3 × 3 symmetric matrix (indexed by the monomials 1, x, x2):

1 − 2x + 3x2 − 2x3 + x4 = [x]�2 M[x]2, M � 0.

By equating coefficients in the polynomials at both sides of the above identity we
arrive at the following form for the matrix variable:

Ma =
⎛

⎝
1 −1 a

−1 3 − 2a −1
a −1 1

⎞

⎠ for some scalar a.

One can check that the matrix Ma is positive semidefinite if and only if a satisfies
−1/2 ≤ a ≤ 1. Hence, any value a in this interval provides a sum of squares
decomposition for the polynomial f . For instance, the values a = 1 and a = −1/2
provide, respectively, the following factorizations for the matrix Ma :

M1 =
⎛

⎜
⎝

1
−1
1

⎞

⎟
⎠

⎛

⎜
⎝

1
−1
1

⎞

⎟
⎠

�

and M−1/2 = 3

4

⎛

⎜
⎝

1
0

−1

⎞

⎟
⎠ .

⎛

⎜
⎝

1
0

−1

⎞

⎟
⎠

�

+ 1

4

⎛

⎜
⎝

1
−4
1

⎞

⎟
⎠

⎛

⎜
⎝

1
−4
1

⎞

⎟
⎠

�

,

which in turn correspond to the following two decompositions of the polynomial f ,
respectively, as a single square and as a sum of two squares:

f (x) = (1 − x + x2)2 and f (x) = 3

4
(x − x2)2 + 1

4
(x − 4x + x2)2.

Note that, for any scalar a such that −1/2 < a < 1, the matrix Ma is positive
definite and thus it provides a decomposition of the polynomial f as a sum of three
squares.
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Example 2

The Motzkin polynomial,

h(x1, x2) = x4
1x2

2 + x2
1x4

2 − 3x2
1x2

2 + 1, (11)

is nonnegative on R
2 with roots at (±1,±1) (see Fig. 1), but it is not a sum-

of-squares of polynomials. It is an instructive exercise to show that the Motzkin
polynomial does not satisfy the relations (10) for any M = (

Mα,β

)

α,β∈Nn
3

� 0. For

more details on the history of the Motzkin polynomial, see [47].

SDP Upper Bounds for GPM via the Inner Approximations
Recall that the inner approximations of the cone M(K)+ restrict the measures on K

to the subsets Mr
μ0

in (5), i.e. to those measures μ of the form dμ = h · dμ0, where
μ0 is a fixed reference measure with Supp(μ0) = K and h ∈ 
r is a sum-of-squares
polynomial density.

Replacing the cone M(K)+ in the GPM (1) by its subcone Mr
μ0

we obtain the
parameter

val
(r)
inner := inf

μ∈Mr
μ0

{∫

K

f0(x)dμ(x) :
∫

K

fi(x)dμ(x) = bi ∀i ∈ [m]
}

, (12)

which provides a hierarchy of upper bounds for GPM:

val ≤ val
(r+1)
inner ≤ val

(r)
inner .

Fig. 1 Plot of the Motzkin
polynomial
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According to the above discussion these parameters can be reformulated as
semidefinite programs involving the moments of the reference measure μ0. Indeed,
we may write the variable density function as h(x) = [x]Tr M[x]r with M � 0 and
arrive at the following semidefinite program (in standard primal form).

SDP Formulation for the Inner Approximations Based Upper Bounds

val
(r)
inner = inf

M

{〈A0,M〉 : 〈Ai,M〉 = bi ∀i ∈ [m], M = (Mα,β)α,β∈Nn
r

� 0
}
,

(13)
where we set

Ai =
∫

K

fi(x)[x]r [x]Tr dμ0(x) =
(∫

K

fi(x)xα+βdμ0(x)

)

α,β∈Nn
r

(0 ≤ i ≤ m).

Moreover, writing each polynomial fi in the monomial basis as fi = ∑
γ fi,γ xγ

one sees that the entries of the matrix Ai depend linearly on the moments of the
reference measure μ0, since

∫

K
fi(x)xα+βdμ0(x) =∑γ fi,γ m

μ0
α+β+γ (K).

To be able to compute the above SDP one needs the moments of the reference
measure μ0 to be known on the set K . This is a restrictive assumption, since even
computing volumes of polytopes is an NP-hard problem. One is therefore restricted
to specific choices of μ0 and K where the moments are known in closed form (or
can be derived). In Table 1 we therefore give an overview of some known moments
for the Euclidean ball and sphere, the hypercube, and the standard simplex. (See
[25] for an easy derivation of the moments on the ball and the sphere.) There we use
the Gamma function:

�(k) = (k − 1)!, �

(

k + 1

2

)

=
(

k − 1

2

)(

k − 1 − 1

2

)

· · · 1

2

√
π for k ∈ N.

Table 1 Examples of known moments for some choices of K ⊆ R
n: �n = {x ∈ R

n+ :∑n
i=1 xi =

1} is the standard simplex and Bn = {x ∈ R
n : ‖x‖ ≤ 1} is the unit Euclidean ball, in which case

μ0 is the Lebesgue measure, and Sn = {x ∈ R
n : ‖x‖ = 1} is the unit Euclidean sphere in which

case μ0 is the (Haar) surface measure on Sn

K m
μ0
α (K)

[0, 1]n ∏n
i=1

1
αi+1

�n
∏n

i=1 αi !
(
∑n

i=1 αi+n)!

Sn

{
2�(β1)···�(βn)
�(β1+...+βn)

if α ∈ (2N)n with βi = αi+1
2 for i ∈ [n]

0 otherwise

Bn

{
1

α1+...+αn+n
2�(β1)···�(βn)
�(β1+...+βn)

if α ∈ (2N)n with βi = αi+1
2 for i ∈ [n]

0 otherwise
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If K is an ellipsoid, one may obtain the moments of the Lebesgue measure on
K from the moments on the ball by an affine transformation of variables. Also, if
K is a polytope, one may obtain the moments of the Lebesgue measure through
triangulation of K , and subsequently using the formula for the simplex.

Example 2 (Continued)

As an example we illustrate the inner approximation hierarchy for the problem of
minimizing the Motzkin polynomial (11) on [−2, 2]2 with the Lebesgue measure
as reference measure. In Fig. 2, we plot the optimal density functions h ∈ 
r for
r = 6, 8, 10, 12. Note that, as r grows, the density functions become increasingly
better approximations of a convex combination of the four the Dirac delta measures,
centered at (±1,±1). The corresponding upper bounds are val

(6)
inner = 0.801069,

val
(8)
inner = 0.565553, val

(10)
inner = 0.507829, and val

(12)
inner = 0.406076. Note that

these upper bounds are monotonically decreasing with increasing r , and recall that
the minimum value of the Motzkin polynomial is zero.
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Fig. 2 Plots of the optimal density functions h ∈ 
r for r = 6, 8, 10, 12
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SDP Lower Bounds for GPM via the Outer Approximations
Here we assume that K is basic closed semi-algebraic, of the form

K = {x ∈ R
n : gj (x) ≥ 0 ∀j ∈ [k]}, where g1, . . . , gk ∈ R[x].

Recall that the dual cone of the truncated quadratic module generated by the
polynomials gj describing the set K provides an outer approximation of M(K)+;
we repeat its definition (7) for convenience:

(Qr (g1, . . . , gk)
)∗ =

{

μ ∈ M(K) :
∫

K

f dμ ≥ 0 ∀f ∈ Qr (g1, . . . , gk)

}

,

where the quadratic module Qr (g1, . . . , gk) was defined in (6).

Replacing the cone M(K)+ in the GPM (1) by the above outer approximations
we obtain the following parameters

val
(r)
outer := inf

μ∈(Qr (g1,...,gk))
∗

{∫

K

f0(x)dμ(x) :
∫

K

fi(x)dμ(x) = bi ∀i ∈ [m]
}

,

(14)

which provide a hierarchy of lower bounds for the GPM:

val
(r)
outer ≤ val

(r+1)
outer ≤ val.

Here too these parameters can be reformulated as semidefinite programs. Indeed
a signed measure μ lies in the cone (Qr (g1, . . . , gk))

∗ precisely when it satisfies the
condition

∫

K

gj (x)σj (x)dμ(x) ≥ 0 ∀ σj ∈ 
rj , ∀j ∈ {0, . . . , k}, (15)

where rj = r − �deg(gj )/2�. Using Proposition 1, we may represent each sum-of-
squares σj as

σj (x) = [x]�rj M(j)[x]rj

for some matrix M(j) � 0 (indexed by N
n
rj

). Hence we have

∫

K

gj (x)σj (x)dμ(x) =
∫

K

gj (x)[x]Trj M(j)[x]rj dμ(x) = 〈Bμ
j ,M(j)〉,

after setting

B
μ
j =

∫

K

gj (x)[x]rj [x]Trj dμ(x) =
(∫

K

gj (x)xα+βdμ(x)

)

α,β∈Nn
rj

.
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Hence the condition (15) can be rewritten as requiring, for each j ∈ {0, 1, . . . , k},

〈Bμ
j ,M(j)〉 ≥ 0 for all postive semidefinite matrices M(j) indexed by N

n
rj

,

which in turn is equivalent to B
μ
j � 0 (since the cone of positive semidefinite

matrices is self-dual). Summarizing, the condition (15) on the variable measure μ

can be rewritten as

B
μ
j =

(∫

K

gj (x)xα+βdμ(x)

)

α,β∈Nn
rj

� 0 ∀j ∈ {0, 1, . . . , k}.

Finally, observe that only the moments of μ are playing a role in the above
constraints. Therefore we may introduce new variables for these moments, say

yα =
∫

K

xαdμ(x) ∀α ∈ N
n
2r .

Writing the polynomials gj in the monomial basis as gj (x) =∑γ gj,γ xγ we arrive

at the following SDP reformulation for the parameter val
(r)
outer .

SDP Formulation for the Outer Approximations Based Lower Bounds

With rj = r − �deg(gj )/2� for j ∈ {0, 1, . . . , k} and d an upper bound on the
degrees of fi for i ∈ {0, 1, . . . , m} we have

val
(r)
outer = inf

(yα)α∈Nn
2r

{∑
α∈Nn

d
f0,αyα :∑α∈Nn

d
fi,αyα = bi ∀i ∈ [m], (16)

(∑
γ gj,γ yα+β+γ

)

α,β∈Nn
rj

� 0 ∀j ∈ {0, 1, . . . , k}
}
. (17)

Example 2 (Continued)

We now illustrate the hierarchy of outer approximations for the minimization of
the Motzkin polynomial (11) on K = [−2, 2]2. If we represent K by the linear
inequalities

−2 ≤ x1 ≤ 2, −2 ≤ x2 ≤ 2,

then the lower bounds on the zero minimum become

val
(3)
outer = −1.6858, val

(4)
outer = 0.
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In other words, one has convergence in a finite number of steps here, namely already
for r = 4. If one represents K by the quadratic inequalities

x2
1 ≤ 4, x2

2 ≤ 4,

then the convergence is even faster, since one then has val
(3)
outer = 0. It is therefore

interesting to note that the description of K plays an important role for the outer
approximations.

If, in the definition (14) of val
(r)
outer , instead of the truncated quadratic module

Qr (g1, . . . , gk) we use the larger quadratic module Qr (
∏

j∈J gj : J ⊆ [k])
generated by the pairwise products of the gj ’s, then we obtain a stronger bound

on val, which we denote by val
(r)

outer . Thus

val
(r)

outer = inf
μ∈(Qr (

∏
j∈J gj :J⊆[k]))∗

{∫

K

f0(x)dμ(x) :
∫

K

fi(x)dμ(x) = bi (i ∈ [m])
}

(18)

and clearly we have

val
(r)
outer ≤ val

(r)

outer ≤ val.

The parameter val
(r)

outer can also be reformulated as a semidefinite program,
analogous to the program (16)–(17), which however now involves 2k + 1 semidef-
inite constraints instead of k + 1 such constraints in (17) and thus its practical
implementation is feasible only for small values of k. On the other hand, as we

will see later in Sect. 5.2, the bounds val
(r)

outer admit a much sharper error analysis

than the bounds val
(r)
outer for the case of polynomial optimization.

4 Convergence Results for the Inner Approximation
Hierarchy

In the rest of the paper we are interested in the convergence of the respective lower
and upper SDP bounds on the optimal value of the GPM, as introduced in the
previous section. We will first consider in this section the upper bounds for the GPM
arising from the inner approximations, since much more is known about their rate of
convergence than for the lower bounds arising from the outer approximations. We
deal first with the special case of polynomial optimization and then indicate how
some of the results extend to the general GPM.
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4.1 The Special Case of Global Polynomial Optimization

Here we consider a special case of the GPM, namely global optimization of
polynomials on compact sets (i.e., problem (8)) and review the main known results
about the error analysis of the upper bounds val

(r)
inner . After that in the next section

we will explain how to extend this error analysis to the bounds for the general GPM
problem.

Thus we now consider the problem

val = min
x∈K

p(x), (19)

asking to find the minimum value of the polynomial p(x) = ∑
α∈Nn

d
pαxα over a

compact set K .
Recall the definition of the inner approximation based upper bound (12), which

can be rewritten here as

val
(r)
inner = min

h∈
r

{∫

K

p(x)h(x)dμ0(x) :
∫

K

h(x)dμ0(x) = 1

}

,

and its SDP reformulation from (13), which now reads

val
(r)
inner = min

{〈A0,M〉 : 〈A1,M〉 = 1, M = (Mα,β)α,β∈Nn
r

� 0
}
, (20)

with

A0 =
(∫

K

p(x)xα+βdμ0(x)

)

α,β∈Nn
r

, A1 =
(∫

K

xα+βdμ0(x)

)

α,β∈Nn
r

,

where as before μ0 is a fixed reference measure on K .
A first observation made in [35] is that this semidefinite program (20) can in fact

be reformulated as a generalized eigenvalue problem. Indeed, its dual semidefinite
program reads

max{λ : A0 − λA1 � 0},

whose optimal value gives again the parameter val
(r)
inner (since strong duality holds).

Hence val
(r)
inner is equal to the smallest generalized eigenvalue of the system

A0v = λA1v, v �= 0. (21)

Thus one may compute val
(r)
inner without having to solve an SDP problem.

In fact, if instead of the monomial basis {xα : α ∈ R
n
2r} we use a polynomial

basis {bα(x) : α ∈ N
n
2r} of R[x]2r that is orthonormal with respect to the reference
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measure μ0 (i.e., such that
∫

K
bαbβdμ0 = 1 if α = β and 0 otherwise), then in the

above semidefinite program (20) we may set A1 = I to be the identity matrix and

A0 =
(∫

K

p(x)bα(x)bβ(x)dμ0(x)

)

α,β∈Nn
2r

, (22)

whose entries now involve the ‘generalized’ moments
∫

K
bα(x)dμ0(x) of μ0. Then

the parameter val
(r)
inner can be computed as the smallest eigenvalue of the matrix A0:

val
(r)
inner = λmin(A0) where A0 is as in (22). (23)

This fact was observed in [14] and used there to establish a link with the roots
of the orthonormal polynomials, permitting to analyze the quality of the bounds
val

(r)
inner for the case of the hypercube K = [−1, 1]n, see below for details.

In Table 2 we list the known convergence rates of the parameters val
(r)
inner to the

optimal value val of problem (19), i.e., we review the known upper bounds for the
sequence {val

(r)
inner − val}, r = 1, 2, . . .

We will give some details on the proofs of each of the four results listed in
Table 2. After that we will mention an interesting connection with approximations
based on cubature rules.

Asymptotic Convergence
The first result in Table 2 states that limr→∞ val

(r)
inner = val if K is compact and

μ0 ∈ M(K)+. It is a direct consequence of the following result.

Theorem 4 (Lasserre [35]) Let K ⊆ R
n be compact, let μ0 be a fixed, finite,

positive Borel measure with Supp(μ0) = K . and let f be a continuous function on
R

n. Then, f is nonnegative on K if and only if

∫

K

g2f dμ0 ≥ 0 ∀g ∈ R[x].

Table 2 Known rates of convergence for the Lasserre hierarchy of upper bounds on val in (19)
based on inner approximations

K ⊆ R
n val

(r)
inner − val Measure μ0 Reference

Compact o(1) Positive finite Borel measure [35]

Compact, satisfies interior cone
condition

O
(

1√
r

)
Lebesgue measure [18]

Convex body O
(

1
r

)
Lebesgue measure [13]

Hypercube [−1, 1]n �
(

1
r2

) ∏n
i=1(1 − x2

i )−1/2dxi [14]

Unit sphere, p homogeneous O
(

1
r

)
Surface measure [21]
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The asymptotic convergence of the bounds val
(r)
inner to val holds more generally

for the minimization of a rational function p(x)/q(x) over K (assuming q(x) > 0
for all x ∈ K). Indeed, using the above theorem, we obtain

min
x∈K

p(x)

q(x)
= sup

t∈R
t s.t. p(x) ≥ tq(x) ∀x ∈ K

= sup
t∈R

t s.t.
∫

K

p(x)h(x)dμ0(x) ≥ t

∫

K

q(x)h(x)dμ0(x) ∀h ∈ 


= inf
h∈


∫

K

p(x)h(x)dμ0(x) s.t.
∫

K

q(x)h(x)dμ0(x) = 1.

Error Analysis When K Is Compact and Satisfies an Interior Cone Condition
The second result in Table 2 fixes the reference measure μ0 to the Lebesgue
measure, and restricts the set K to satisfy a so-called interior cone condition.

Definition 1 (Interior Cone Condition) A set K ⊆ R
n satisfies an interior cone

condition if there exist an angle θ ∈ (0, π/2) and a radius ρ > 0 such that, for every
x ∈ K , a unit vector ξ(x) exists such that

{x + λy : y ∈ R
n, ‖y‖ = 1, yT ξ(x) ≥ cos θ, λ ∈ [0, ρ]} ⊆ K.

For example, all full-dimensional convex sets satisfy the interior cone condition
for suitable parameters θ and ρ. This assumption is used in [18] to claim that the
intersection of any ball with the set K contains a positive fraction of the full ball, a
fact used in the error analysis.

The main ingredient of the proof is to approximate the Dirac delta supported on
a global minimizer by a Gaussian density of the form

G(x) = 1

(2πσ 2)n/2 exp

(−‖x − x∗‖2

2σ 2

)

, (24)

where x∗ is a minimizer of p on K , and σ 2 = �(1/r). Then we approximate the
Gaussian density G(x) by a sum-of-squares polynomial gr(x) with degree 2r . For
this we use the fact that the Taylor approximation of the exponential function e−t is
a sum of squares (since it is a univariate polynomial nonnegative on R).

Lemma 1 For any r ∈ N the univariate polynomial
∑2r

k=0
(−1)k

k! tk (in the variable
t ∈ R), defined as the Taylor expansion of the function t ∈ R �→ e−t truncated at
degree 2r , is a sum of squares of polynomials.

Based on this the polynomial

gr(x) = 1

(2πσ 2)n/2

2r∑

k=0

(−1)k

k!
(−‖x − x∗‖2

2σ 2

)k
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is indeed a sum of squares with degree 2r , which can be used (after scaling) as
feasible solution within the definition of the bound val

(r)
inner . We refer to [18] for the

details of the analysis.

Error Analysis When K Is a Convex Body
The third item in Table 2 assumes that K is now convex, compact and full-
dimensional, i.e., a convex body. The key idea is to use the following concentration
result for the Boltzman density (or Gibbs measure).3

Theorem 5 (Kalai-Vempala [28]) If p is a linear polynomial, K is a convex set,
T > 0 is a fixed ‘temperature’ parameter, and val = minx∈K p(x), then we have

∫

K
p(x)H(x)dx − val ≤ nT ,

where

H(x) = exp(−p(x)/T )
∫

K
exp(−p(x)/T )dx

is the Boltzman probability density supported on K .

The theorem still holds if p is convex, but not necessarily linear [13]. The proof of
the third item in Table 2 now proceeds as follows:

1. Construct a sum-of-squares polynomial approximation hr(x) of the Boltzman
density H(x) by again using the fact that the even degree truncated Taylor expan-
sion of e−t is a sum of squares (Lemma 1); namely, consider the polynomial

hr(x) =∑2r
k=0

(−1)k

k!
(−p(x)

T

)k

(up to scaling).

2. Use this construction to bound the difference between val
(r)
inner and the Boltzman

bound when choosing T = O(1/r).
3. Use the extension of the Kalai-Vempala result to get the required result for

convex polynomials p.
4. When p is nonconvex, the key ingredient is to reduce to the convex case by

constructing a convex (quadratic) polynomial p̂ that upper bounds p on K and
has the same minimizer on K , as indicated in the next lemma.

Lemma 2 Assume x∗ is a global minimizer of p over K . Then the following
polynomial

p̂(x) = p(x∗) + ∇p(x∗)T (x − x∗) + Cp‖x − x∗‖2

with Cp = maxx∈K ‖∇2p(x)‖2, is quadratic, convex, and separable. Moreover,
it satisfies: p(x) ≤ p̂(x) for all x ∈ K , and x∗ is a global minimizer of p̂ over K .

3This result is of independent interest in the study of simulated annealing algorithms.
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Then, in view of the inequality
∫

K

p̂hdμ0 ≥
∫

K

phdμ0 ∀h ∈ 
r, (25)

it follows that the error analysis in the non-convex case follows directly from the
error analysis in the convex case. The details of the proof are given in [13].

Error Analysis for the Hypercube K = [−1, 1]n
The fourth result in Table 2 deals with the hypercube K = [−1, 1]n. A first key idea
of the proof is that it suffices to show the O(1/r2) convergence rate for a univariate
quadratic polynomial. This follows from Lemma 2 above (and (25)), which implies
that it suffices to analyze the case of a quadratic, separable polynomial. Hence we
may further restrict to the case when K = [−1, 1] and p is a quadratic univariate
polynomial.

In the univariate case, the key idea is to use the eigenvalue reformulation of
the bound val

(r)
inner from (23). There, we use the polynomial basis {bk : k ∈ N}

consisting of the Chebyshev polynomials (of the first kind) which are orthonormal
with respect to the Chebyshev measure dμ0 on K = [−1, 1], indeed the measure
used in Table 2.

Then one may use a connection to the extremal roots of these orthonormal
polynomials. Namely, for the linear polynomial p(x) = x, the parameter val

(r)
inner

coincides with the smallest root of the orthonormal polynomial br+1 (with degree
r +1); this is a well known property of orthogonal polynomials, which follows from
the fact that the matrix A0 in (22) is tri-diagonal and the 3-terms recurrence for the
Chebyshev polynomials (see, e.g., [22, §1.3]). When p is a quadratic polynomial,
the matrix A0 in the eigenvalue problem (23) is now 5-diagonal and ‘almost’
Toepliz, properties that can be exploited to evaluate its smallest eigenvalue. See
[14] for details.

Error Analysis for the Unit Sphere
The last result in Table 2 deals with the minimization of a homogeneous polynomial
p over the unit sphere Sn = {x ∈ R

n : ∑n
i=1 x2

i = 1}, in which case Doherty and
Wehner [21] show a convergence rate in O(1/r). Their construction for a suitable
sum-of-squares polynomial density in 
r is in fact closely related to their analysis
of the outer approximation based lower bounds val

(r)
outer . Doherty and Wehner [21]

indeed show the following stronger result: val
(r)
inner − val

(r)
outer = O(1/r), to which

we will come back in Sect. 5.2 below.

Link with Positive Cubature Rules
There is an interesting link between positive cubature formulas and the upper bound

val
(r)
inner = min

h∈
r

{∫

K

phdμ0 :
∫

K

hdμ0 = 1

}

,

which was recently pointed out in [39] and is summarized in the next result.
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Theorem 6 (Martinez et al. [39]) Let x(1), . . . , x(N) ∈ K and weights w1 >

0, . . . , wN > 0 give a positive cubature rule on K for the measure μ0, that is
exact for polynomials of total degree at most d + 2r , where d > 0 and r > 0 are
given integers. Let p be a polynomial of degree d.

Then, if h is a polynomial nonnegative on K and of degree at most 2r , one has

∫

K

phdμ0 ≥ min
�∈[N ] p(x(�)).

In particular, the inner approximation bounds therefore satisfy

val
(r)
inner ≥ min

�∈[N ] p(x(�)).

The proof is an immediate consequence of the definitions, but this result has several
interesting implications.

• First of all, one may derive information about the rate of convergence for the
scheme min�∈[N ] p(x(�)) from the error bounds in Table 2. For example, if K is
a convex body, the implication is that min�∈[N ] p(x(�)) − val = O(1/r).

• Also, if a positive cubature rule is known for the pair (K,μ0), and the number
of points N meets the Tchakaloff bound N = (n+2r+d

2r+d

)
, then there is no point in

computing the parameter val
(r)
inner . Indeed, as

val
(r)
inner ≥ min

�∈[N ] p(x(�)) ≥ val,

the right-hand-side bound is stronger and can be computed more efficiently.
Having said that, positive cubature rules that meet the Tchakaloff bound are only
known in special cases, typically in low dimension and degree; see e.g. [6, 8, 57],
and the references therein.

• Theorem 6 also shows why the last convergence rate in Table 2 is tight for
K = [−1, 1]n. Indeed if we consider the univariate example p(x) = x and
the Chebyshev probability measure dμ0(x) = 1

π
√

1−x2
dx on K = [−1, 1], then

a positive cubature scheme is given by

x(�) = cos

(
2� − 1

2N
π

)

, w� = 1

N
∀� ∈ [N ],

and it is exact at degree 2N − 1. This is known as the Chebyshev-Gauss
quadrature, and the points are precisely the roots of the degree N Chebyshev
polynomial of the first kind. Thus, with N = r + 1, in this case we have

val
(r)
inner ≥ min

�∈[N] p(x(�)) = min
�∈[N] cos

(
(2� − 1)π

2N

)

= cos (−π/(2N)) = −1 + �

(
1

N2

)

.



A Survey of SDP Approaches to the GPM 41

This explains that the �(1/r2) result in Table 2 holds for p(x) = x. A different
proof of this result is given in [14], where it is shown that for this example one
actually has equality val

(r)
inner = cos (−π/(2N)).

• Finally, Theorem 6 shows that there is not much gain in using a set of densities
larger than 
r in the definition of the inner approximations Mr

μ0
since the

statement of the theorem holds for any nonnegative polynomial h on K . For
example, for the hypercube K = [−1, 1]n, if we use the larger set of densities
h ∈ Qr (

∏
j∈J (1 − x2

j ) : J ⊆ [k]) and the Chebyshev measure as reference
measure μ0 on [−1, 1]n, then we obtain upper bounds with convergence rate in
O(1/r2) [9]. This also follows from the later results in [14] where in addition it
is shown that this convergence result is tight for linear polynomials. By the above
discussion tightness also follows from Theorem 6.

Upper Bounds Using Grid Point Sets
Of course one may also obtain upper bounds on val, the minimum value taken by
a polynomial p over a compact set K , by evaluating p at any suitably selected set
of points in K . This corresponds to restricting the optimization over selected finite
atomic measures in the definition of val.

A first basic idea is to select the grid point sets consisting of all rational points
in K with denominator r for increasing values of r ∈ N. For the standard simplex
K = �n and the hypercube K = [0, 1]n this leads to upper bounds that satisfy:

min
x∈K,rx∈Nn

p(x) − min
x∈K

p(x) ≤ Cd

r

(

max
x∈K

p(x) − min
x∈K

p(x)

)

for all r ≥ d,

(26)

where Cd is a constant that depends only on the degree d of p; see [17] for K =
�n and [12] for K = [0, 1]n. A faster regime in O(1/r2) can be shown when
allowing a constant that depends on the polynomial p (see [19] for �n and [11] for
[0, 1]n). Note that the number of rational points with denominator r in the simplex
�n is

(
n+r−1

r

) = O(nr) and thus the computation time for these upper bounds is
polynomial in the dimension n for any fixed order r . On the other hand, there are
(r+1)n = O(rn) such grid points in the hypercube [0, 1]n and thus the computation
time of the upper bounds grows exponentially with the dimension n.

For a general convex body K some constructions are proposed recently in [44]
for suitable grid point sets (so-called meshed norming sets) Xd(ε) ⊆ K where
d ∈ N and ε > 0. Namely, whenever p has degree at most d, by minimizing p over
Xd(ε) one obtains an upper bound on the minimum of p over K satisfying

min
x∈Xd(ε)

p(x) − min
x∈K

p(x) ≤ ε

(

max
x∈K

p(x) − min
x∈K

p(x)

)

,
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where the computation involves |Xd(ε)| = O

((
d√
ε

)2n
)

point evaluations, thus

exponential in the dimension n for fixed precison ε.
In comparison, the computation of the upper bound val

(r)
outer relies on a semidef-

inite program involving a matrix of size
(
n+r
r

) = O(nr), which is polynomial in the
dimension n for any fixed order r .

4.2 The General Problem of Moments (GPM)

One may extend the results of the last section to the inner approximations for
the general GPM (1). In other words, we now consider the upper bounds (12)
obtained using the inner approximations of the cone M(K)+, which we repeat for
convenience:

val
(r)
inner = inf

h∈
r

{∫

K

f0(x)h(x)dμ0(x) :
∫

K

fi(x)h(x)dμ0(x) = bi ∀i ∈ [m]
}

.

A first observation is that this program may not have a feasible solution, even if the
GPM (1) does. For example, two constraints like

∫ 1

0
xdμ(x) = 0,

∫ 1

0
dμ(x) = 1

admit the Dirac measure μ = δ{0} as solution but they do not admit any solution of
the form dμ = hdx with h ∈ 
r for any r ∈ N. Thus any convergence result must
relax the equality constraints of the GPM (1) in some way, or involve additional
assumptions.

We now indicate how one may use the convergence results of the last section to
derive an error analysis for the inner approximations of the GPM when relaxing the
equality constraints.

Theorem 7 (De Klerk-Postek-Kuhn [20]) Assume that f0, . . . , fm are polynomi-
als, K is compact and the GPM (1) has an optimal solution. Let b0 := val denote
the optimal value of (1) and for any integer r ∈ N define the parameter

�(r) := min
h∈
r

max
i∈{0,1,...,m}

∣
∣
∣
∣

∫

K

fi(x)h(x)dμ0(x) − bi

∣
∣
∣
∣ .

Then the following assertions hold:

(1) lim
r→∞ �(r) = 0.

(2) �(r) = O
(

1
r1/4

)
if K satisfies an interior cone assumption and μ0 is the

Lebesgue measure;



A Survey of SDP Approaches to the GPM 43

(3) �(r) = O
(

1
r1/2

)
if K is a convex body and μ0 is the Lebesgue measure;

(4) �(r) = O
(

1
r

)
if K = [−1, 1]n and dμ0(x) =∏i (1 − x2

i )−1/2dxi .

We will derive this from the convergence results for global polynomial opti-
mization in Table 2. By assumption, problem (1) has an optimal solution and by
Theorem 3 we may assume it has an atomic optimal solution μ∗ = ∑

� λ�δx∗
�

with
λ� > 0 and x∗

� ∈ K . We now sketch the proof.

1. For each atom x∗
� of the optimal measure μ∗ consider the polynomial

p�(x) =
m∑

i=0

(
fi(x) − fi(x

∗
� )
)2

,

whose minimum value over K is equal to 0 (attained at x∗
� ).

2. We apply the error analysis of the previous section to the problem of minimizing
the polynomial p� over K . In particular, the asymptotic convergence of the upper
bounds implies that for any given ε > 0

∃r ∈ N ∃h� ∈ 
r s.t.
∫

K

p�(x)h�(x)dμ0(x) ≤ ε2,

∫

K

h�(x)dμ0(x) = 1

and, therefore,

∫

K

(fi(x) − fi(x
∗
� ))2h�(x)dμ0(x) ≤ ε2 ∀i ∈ {0, . . . , m}. (27)

3. Using the Jensen inequality, one obtains

∣
∣
∣
∣

∫

K

fi(x)h�(x)dμ0(x) − fi(x
∗
� )

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

K

(fi(x) − fi(x
∗
� ))h�(x)dμ0(x)

∣
∣
∣
∣ ≤ ε

for each i ∈ {0, . . . , m}.
4. We now consider the sum-of-squares density h :=∑� λ�h� ∈ 
r . Then we have

bi = ∫

K
fi(x)dμ∗(x) = ∑

� λ�fi(x
∗
� ) for each i ∈ {0, . . . , m}. Moreover, the

above argument shows that for any i ∈ {0, . . . , m}
∣
∣
∣
∣

∫

K
fi(x)h(x)dμ0(x) − bi

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∑

�

λ�

(∫

K
fi(x)h�(x)dμ0(x) − fi(x

∗
� )

)
∣
∣
∣
∣
∣
∣
≤ εμ∗(K)

with μ∗(K) = ∑
� λ�. This shows that �(r) ≤ εμ∗(K) and thus the desired

asymptotic result (1).
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5. The additional three claims (2)–(4) follow in the same way using the results in
Table 2. For instance, in case (1) when K satisfies an interior cone condition and
μ0 is the Lebesgue measure, we replace the estimate (27) by

∣
∣
∣
∣

∫

K

(fi(x) − fi(x
∗
� ))2h�(x)dμ0(x)

∣
∣
∣
∣ = O

(
1√
r

)

,

which leads to �(r) = O
(

1
r1/4

)
(since we ‘lose a square root’ when applying

Jensen inequality).

We may also use the relation with positive cubature rules discussed in the previ-
ous section (Theorem 6) to obtain the following cubature-based approximations for
the GPM (1).

Corollary 2 Assume the GPM (1) admits an optimal solution and let d denote the
maximum degree of the polynomials f0, . . . , fm. For any integer r ∈ N assume we
have a cubature rule for (K,μ0) that is exact for degree d + 2r , consisting of the
points x(�) ∈ K and weights w� > 0 for � ∈ [N ], and define the parameter

�
(r)
cub := min

ν
max

i∈{0,1,...,m}

∣
∣
∣
∣

∫

K

fi(x)dν − bi

∣
∣
∣
∣ ,

where in the outer minimization we minimize over all atomic measures ν whose
atoms all belong to the set {x(�) : � ∈ [N ]}. Then the following assertions hold:

(1) lim
r→∞ �

(r)
cub = 0;

(2) �
(r)
cub = O

(
1

r1/4

)
if K satisfies an interior cone assumption and μ0 is the

Lebesgue measure;

(3) �
(r)
cub = O

(
1√
r

)
if K is a convex body and μ0 is the Lebesgue measure;

1. �
(r)
cub = O

(
1
r

)
if K = [−1, 1]n and dμ0(x) =∏i (1 − x2

i )−1/2dxi .

This result follows from Theorem 7. Indeed, for any polynomial h ∈ 
r , the
polynomials fih have degree at most d + 2r so that using the cubature rule we
obtain

∫

K

fi(x)h(x)dμ0(x) =
N∑

�=1

w�fi(x
(�))h(x(�)) =

∫

K

fi(x)dν(x),

where ν is the atomic measure with atoms x(�) and weights α� := w�h(x(�)) for
� ∈ [N ]. Therefore, the parameter �

(r)
cub in Corollary 2 is upper bounded by the

parameter �(r) in Theorem 7. The claims (1)-(4) now follow directly from the
corresponding claims in Theorem 7.
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Note that, for any fixed r ∈ N, in order to find the best atomic measure ν in the
definition of �

(r)
cub we need to find the best weights α� (� ∈ [N ]) giving the measure

ν =∑N
�=1 α�δx(�) . This can be done by solving the following linear program:

�
(r)
cub = min

t,α�∈R
t s.t. α� ≥ 0 (� ∈ [N ]),

∣
∣
∣
∣
∣

N∑

�=1

α�fi(x
(�)) − bi

∣
∣
∣
∣
∣
≤ t ∀i ∈ {0, 1, . . . , m}.

(This is similar to an idea used in [49].)

5 Convergence Results for the Outer Approximations

In this last section we consider the convergence of the lower bounds for the GPM (1),
that are obtained by using outer approximations for the cone of positive measures.
We first mention properties dealing with asymptotic and finite convergence for the
general GPM and after that we mention some known results on the error analysis in
the special case of polynomial optimization.

Here we assume K is a compact semi-algebraic set, defined as before by

K = {x ∈ R
n : gj (x) ≥ 0 ∀j ∈ [k]},

where g1, . . . , gk ∈ R[x]. We will consider the following (Archimedean) condition:

∃r ∈ N ∃u ∈ Qr (g1, . . . , gk) s.t. the set {x ∈ R
n : u(x) ≥ 0} is compact. (28)

This condition clearly implies that K is compact. Moreover, it does not depend on
the set K but on the choice of the polynomials used to describe K . Note that it is
easy to modify the presentation of K so that the condition (28) holds. Indeed, if we
know the radius R of a ball containing K then, by adding to the description of K the
(redundant) polynomial constraint gk+1(x) := R2 −∑n

i=1 x2
i ≥ 0, we can ensure

that assumption (28) holds for this enriched presentation of K .
For convenience we recall the definition of the bounds val

(r)
outer from (14):

val
(r)
outer = inf

μ∈(Qr (g1,...,gk))
∗

{∫

K

f0(x)dμ(x) :
∫

K

fi(x)dμ(x) = bi ∀i ∈ [m]
}

,

where we refer to (6) and (7) for the definitions of the truncated quadratic module
Qr (g1, . . . , gk) and of its dual cone (Qr (g1, . . . , gk))

∗.

We also recall the stronger bounds val
(r)

outer , introduced in (18), and obtained by

replacing in the definition of val
(r)
outer the cone Qr (g1, . . . , gk) by the larger cone

Qr (
∏

j∈J gj : J ⊆ [k])), so that we have

val
(r)
outer ≤ val

(r)

outer ≤ val.
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5.1 Asymptotic and Finite Convergence

Here we present some results on the asymptotic and finite convergence of the lower
bounds on val obtained by considering outer approximations of the cone M(K)+.

Asymptotic Convergence
The parameters val

(r)
outer form a non-decreasing sequence of lower bounds for the

optimal value val of problem (1), which converge to it under assumption (28).
This asymptotic convergence result relies on the following representation result of
Putinar [45] for positive polynomials.

Theorem 8 (Putinar) Assume K is compact and assumption (28) holds. Any
polynomial f that is strictly positive on K (i.e., f (x) > 0 for all x ∈ K) belongs to
Qr (g1, . . . , gk) for some r ∈ N.

The following result can be found in [32, 33] for the general GPM and in [31]
for the case of global polynomial optimization.

Asymptotic Convergence for the Bounds val
(r)
outer

Theorem 9 Assume K is compact and assumption (28) holds. Then we have

val∗ ≤ limr→∞val
(r)
outer ≤ val,

with equality: val∗ = limr→∞val
(r)
outer = val if, in addition, there exists z ∈ R

m+1

such that
∑m

i=0 zifi(x) > 0 for all x ∈ K .

This result follows using Theorem 8. Observe that it suffices to show the
inequality: val∗ ≤ supr val

(r)
outer (as the rest follows using Corollary 1). For this

let ε > 0 and let y ∈ R
m be feasible for val∗, i.e., f0(x) − ∑m

i=1 yifi(x) ≥ 0

for all x ∈ K; we will show the inequality bT y ≤ supr val
(r)
outer + εμ(K).

Then, letting ε tend to 0 gives bT y ≤ supr val
(r)
outer and thus the desired result:

val∗ ≤ supr val
(r)
outer = limr→∞ val

(r)
outer .

As the polynomial f0 + ε − ∑
i yifi is strictly positive on K , it belongs to

Qr (g1, . . . , gk) for some r ∈ N in view of Theorem 8. Then, for any measure
μ feasible for val

(r)
outer , we have

∫

K
(f0 + ε − ∑

i yifi)dμ ≥ 0, which implies
bT y ≤ ∫

K
f0dμ + εμ(K) and thus the desired inequality:

bT y ≤ val
(r)
outer + εμ(K) ≤ sup

r
val

(r)
outer + εμ(K).
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When assuming only K compact (thus not assuming condition (28)), the
following representation result of Schmüdgen [50] permits to show the asymptotic

convergence of the stronger bounds val
(r)

outer to val (in the same way as Theorem 9
follows from Putinar’s theorem).

Theorem 10 (Schmüdgen) Assume K is compact. Any polynomial f that is
strictly positive on K (i.e., f (x) > 0 for all x ∈ K) belongs to Qr (

∏
j∈J gj :

J ⊆ [k]) for some r ∈ N.

Asymptotic Convergence for the Bounds val
(r)

outer

Theorem 11 Assume K is compact. Then we have

val∗ ≤ limr→∞val
(r)

outer ≤ val,

with equality: val∗ = limr→∞val
(r)

outer = val if, in addition, there exists z ∈ R
m+1

such that
∑m

i=0 zifi(x) > 0 for all x ∈ K .

Finite Convergence
A remarkable property of the lower bounds val

(r)
outer is that they often exhibit finite

convergence. Indeed, there is an easily checkable criterion, known as the flatness
condition, that permits to conclude that the bound is exact: val

(r)
outer = val, and

to extract an (atomic) optimal solution to the GPM. This is condition (29) below,
which permits to claim that a given truncated sequence is indeed the sequence of
moments of a positive measure; it goes back to work of Curto and Fialkow ([7], see
also [33, 37] for details). To expose it we use the SDP formulation (16)–(17) for the
parameter val

(r)
outer .

Finite Convergence

Theorem 12 (See [33, Theorem 4.1]) Set dK := max{�deg(gj /2� : j ∈ [k]} and
let r ∈ N such that 2r ≥ max{deg(fi) : i ∈ {0, . . . , m}} and r ≥ dK . Assume
the program (16)-(17) defining the parameter val

(r)
outer has an optimal solution y =

(yα)α∈Nn
2r

that satisfies the following (flatness) condition:

rankMs(y) = rankMs−dK
(y) for some integer s s.t. dK ≤ s ≤ r, (29)
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where

Ms(y) = (yα+β)α,β∈Nn
s

and Ms−dK
(y) = (yα+β)α,β∈Nn

s−dK
.

Then equality val
(r)
outer = val holds and the GPM problem (1) has an optimal

solution μ ∈ M(K)+ which is atomic and supported on rankMs(y) points in K .

Under the flatness condition (29) there is an algorithmic procedure to find the
atoms and weights of the optimal atomic measure (see, e.g., [33, 37] for details).

In addition, for the special case of the polynomial optimization problem (8),
Nie [42] shows that the flatness condition is a generic property, so that finite
convergence of the lower bounds val

(r)
outer to the minimum of a polynomial over

K holds generically.

Note that analogous results also hold for the stronger bounds val
(r)

outer on val.

5.2 Error Analysis for the Case of Polynomial Optimization

We now consider the special case of global polynomial optimization, i.e., problem
(8), which is the case of GPM with only one affine constraint, requiring that μ is a
probability measure on K:

val = min
x∈K

p(x) = min
μ∈M(K)+

∫

K

p(x)dμ(x) s.t.
∫

K

dμ(x) = 1.

Recall the definition of the bound val
(r)
outer from (14), which now reads

val
(r)
outer = inf

μ∈(Qr (g1,...,gk))
∗

{∫

K

p(x)dμ(x) :
∫

K

dμ(x) = 1

}

.

It can be reformulated via an SDP as in (16)–(17), whose dual SDP reads

sup
λ∈R

{λ : p − λ ∈ Qr (g1, . . . , gk)}. (30)

By weak duality val
(r)
outer is at least the optimal value of (30). Strong duality holds

for instance if the set K has a non-empty interior (since then the primal SDP is
strictly feasible), or if there is a ball constraint present in the description of the set
K (as shown in [27]). Then, val

(r)
outer is also given by the program (30), which is the

case, e.g., when K is a simplex, a hypercube, or a sphere.
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As we saw above, the bounds val
(r)
outer converge asymptotically to the minimum

value val taken by the polynomial p over the set K when condition (28) holds. We
now indicate some known results on the rate of convergence of these bounds.

For a polynomial p =∑α pαxα ∈ R[x]d , we set

Lp := max
α

|pα|α1! · · · αn!
|α|! .

Error Analysis for the Bounds val
(r)
outer

Theorem 13 ([43]) Assume K ⊆ (−1, 1)n. There exists a constant c > 0
(depending only on K) such that, for any polynomial p with degree d, we have

val − val
(r)
outer ≤ 6d3n2dLp

1
(
log r

c

)1/c
for all integers r ≥ c exp

(
(2d2nd)c

)
.

Note that this result displays a very slow convergence rate, which does not reflect
the good behaviour of the bounds often observed in practice.

On the other hand, a sharper error analysis holds for the stronger bounds val
(r)

outer ,
obtained by using the larger set Qr (

∏
j∈J gj : J ⊆ [k]) instead of Qr (g1, . . . , gk).

Error Analysis for the Bounds val
(r)

outer

Theorem 14 ([52]) Assume K ⊆ (−1, 1)n. There exists a constant c > 0
(depending only on K) such that, for any polynomial p with degree d, we have

val − val
(r)

outer ≤ cd4n2dLp

1

r1/c
for all integers r ≥ cdcncd .

We now recap some known sharper results for the case of polynomial opti-
mization over special sets K like the simplex, the hypercube and the sphere.
As motivation recall that this already captures well known hard combinatorial
optimization problems such as the maximum independence number in a graph.

Given a graph G = (V = [n], E) let α(G) denote the largest cardinality of an
independent set in G, i.e., of a set I ⊆ V that does not contain any edge of E.
In fact the parameter α(G) can be reformulated via polynomial optimization over
the simplex �n, the hypercube [0, 1]n, or the unit sphere Sn. Indeed the following
results are known:
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1

α(G)
= min

x∈�n

xT (In + AG)x, α(G) = max
x∈[0,1]n

∑

i∈V

xi −
∑

{i,j}∈E

xixj ,

2
√

2

3
√

3

√

1 − 1

α(G)
= max

y∈Rn,z∈Rm

⎧
⎨

⎩
2
∑

{i,j}∈E

zij yiyj : (y, z) ∈ Sn+m

⎫
⎬

⎭

(see [40, 41]). Here In is the identity matrix of size n, AG is the adjacency matrix of
G (with entries Aij = Aji = 1 if {i, j} ∈ E and 0 otherwise), E is the set of pairs
of distinct elements i, j ∈ V such that {i, j} �∈ E and m = |E|.
Error Analysis for the Sphere
We first consider the case of the sphere K = Sn = {x ∈ R

n : ∑n
i=1 x2

i = 1}.
Then an error analysis for the bounds val

(r)
outer is known when p is a homogeneous

polynomial.

First, one may reduce to the case when p has even degree. Indeed, as shown in
[21], if p has odd degree d then we have

max

{

p(x) :
n∑

i=1

x2
i = 1

}

= dd/2

(d + 1)(d+1)/2
max

{

xn+1p(x) :
n+1∑

i=1

x2
i = 1

}

.

Another useful observation is that, for a homogeneous polynomial q of even degree
d, q belongs to the truncated quadratic module of the sphere:

Qr

(

±
(

1 −
n∑

i=1

x2
i

))

= 
r +
(

1 −
n∑

i=1

x2
i

)

R[x]

if and only if the polynomial q(x)
(∑n

i=1 x2
i

)r
is a sum of squares of polynomials

(see [16]). Therefore, when p is a homogeneous polynomial of even degree d = 2a,
the parameter val

(r)
outer can be reformulated as

val
(r)
outer = min

{

t : t ∈ R, t

(
n∑

i=1

x2
i

)r

−
(

n∑

i=1

x2
i

)r−a

p(x) ∈ 
r

}

. (31)

Based on this, the following error bounds for the parameters val
(r)
outer are shown in

[21, 24] (for general polynomials) and in [17] (for even polynomials).
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Theorem 15 Let p be a homogeneous polynomial of even degree d.

(i) ([21, 24]) There exist constants Cn,d and rn,d (depending on n and d) such that

min
x∈Sn

p(x) − val
(r)
outer ≤ Cn,d

r
for all integers r ≥ rn,d .

(ii) ([17]) If p is an even polynomial (i.e., of the form p = ∑
α∈Nn

d/2
pαx2α), then

the above holds where the constant Cn,d depends only on d and rn,d = d.

We briefly discuss the approach in [21], which in fact provides an error analysis
for the larger range val

(r)
inner − val

(r)
outer .

For an integer a let MSym((Rn)⊗a) denote the set of matrices acting on (Rn)⊗a

that are maximally symmetric, which means the associated 2a-tensor is fully
symmetric (i.e., invariant under the action of the symmetric group Sym(2a)). Any
homogeneous polynomial p of degree 2a can be written as p(x) = (x⊗a)T Zpx⊗a

for a (unique) Zp ∈ MSym((Rn)⊗a). Then, defining the polynomial pr(x) =
(
∑

i x2
i )r−ap(x), the program (31) can be reformulated as

val
(r)
outer = min

{〈Zpr ,M〉 : M � 0, Tr(M) = 1, M ∈ MSym((Rn)⊗r )
}
.

Let M be an optimal solution to this program. As M � 0 the polynomial
(x⊗r )T Mx⊗r is a sum of squares. One can scale it to obtain h ∈ 
r which provides
a probability density function on Sn, i.e.,

∫

Sn
h(x)dμ0(x) = 1 (with μ0 the surface

measure on Sn), and thus val
(r)
inner ≤ ∫

Sn
h(x)dμ0. Using the orthogonal polynomial

basis with respect to μ0 (consisting of spherical harmonic polynomials), Doherty
and Wehner [21] show a de Finetti type result, which permits to upper bound the
range

∫

Sn
h(x)dμ0 − 〈Zpr ,M〉 and thus val

(r)
inner − val

(r)
outer .

Error Analysis for the Simplex and the Hypercube
For the simplex K = �n = {x ∈ R

n : xi ≥ 0 (i ∈ [n]), 1 −∑n
i=1 xi = 0} and the

hypercube K = [0, 1]n = {x ∈ R
n : xi ≥ 0, 1 − xi ≥ 0 (i ∈ [n])}, a refined error

analysis is known only for the stronger bounds val
(r)

outer , where we use the larger
quadratic module generated by all pairwise products of the constraints defining K .

Error Analysis for the Simplex

Theorem 16 ([17]) Assume K = �n and p is a homogeneous polynomial with
degree d. Then we have

min
x∈�n

p(x) − val
(r)

outer ≤ Cd

r

(

max
x∈�n

p(x) − min
x∈�n

p(x)

)

for all r ≥ d,

where Cd > 0 is an absolute constant depending only on d.
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Error Analysis for the Hypercube

Theorem 17 ([12]) Assume K = [0, 1]n. For any polynomial p with degree d we
have

min
x∈[0,1]n p(x) − val

(r)

outer ≤ nd

(
d + 1

3

)

Lp

1

r
for all r ≥ d.

The above results show that in Theorem 14 one may choose the unknown
constant to be c = 1 (roughly) if K is a hypercube or simplex. In both cases the
proof relies on showing this error analysis for a weaker bound, which is obtained by
using only nonnegative scalar multipliers (instead of sum-of-squares multipliers) in
the definition of the quadratic module. See [12, 17] for details.

6 Concluding Remarks

We conclude with a few remarks on available software and future research direc-
tions.

Software
The bounds based on the outer approximations (14) described here have been
implemented in the software Gloptipoly3 [26]. The software can in fact deal with a
more general version of the GPM (1) than presented here. Namely it can deal with
the problem

val = inf
μi∈M(Ki)+ ∀i∈{0}∪[m]

{∫

K0

f0(x)dμ0(x) :
∫

Ki

fi(x)dμi(x) = bi ∀i ∈ [m]
}

,

where we have a variable measure μi ∈ M(Ki)+ for each index i ∈ {0, . . . , m},
with Ki ⊆ R

n being basic closed semi-algebraic sets defined by (possibly different)
sets of polynomial inequalities.

Due to the sizes of the resulting semidefinite programs that are solved, appli-
cability is typically limited to n ≤ 20 variables and low order, say r ≤ 4. This
is due to the fact the matrix variables in the semidefinite programs are roughly of
order

(
n+r
r

)
. Solving larger instances requires exploiting additional structure (like

sparsity) leading to more economical semidefinite programs. We refer, e.g., to [33]
and references therein for further details.
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Error Bounds for the Inner Approximation Hierarchy
The known error bounds for the inner approximation, presented earlier in Table 2,
are for specific choices of the set K and reference measure μ0 ∈ M(K)+. More
work is required to understand the role of the reference measure in the convergence
analysis, and to extend the regime in O(1/r2) to more classes of sets K . In
particular, an obvious choice is whether one can sharpen the analysis of the the
convergence rate for the Euclidean unit sphere. As explained, such results would
also have implications for grid search on cubature points on the sphere. Cubature
on the sphere is a vast research topic (see, e.g., [8, Chapter 6]), even in the
special case of spherical t-designs [8, §6.5], where all cubature weights are equal
and positive. Moreover, the complexity of polynomial optimization on spheres is
not fully understood; indeed the problem is NP-hard, but allows polynomial-time
approximation schemes in special cases (see [10, 17]). Sharpening the analysis of
the inner approximations for polynomial optimization over spheres may help to gain
a more complete understanding.

Error Bounds for the Outer Approximation Hierarchy
The bounds based on the outer approximation presented here are more practically
suited for computation, in particular since they (sometimes) enjoy finite convergence
and permit to extract the global minimizers; moreover, as mentioned above, the
dedicated software Gloptipoly3 is available for this purpose. On the other hand,
the known results on the rate of convergence are somewhat disappointing (as
discussed in Sect. 5.2), and in general much weaker than those known for the
inner approximation. There is certainly room for a breakthrough here; new ideas are
needed to obtain convergence rates that match the performance observed in practice.
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and innovation programme under the Marie Skłodowska-Curie grant agreement 813211 (POEMA).
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Note Added in Proof Some of the above mentioned questions have been recently addressed.
In particular, the results in Table 2 for the inner approximation bounds have been sharpened.
Namely, the convergence rate in O(1/r2) has been extended for the sphere in [15] and for the
hypercube equipped with more measures in [55]. A sharper rate in O(log2 r/r2) for convex bodies
and in O(log r/r) for compact sets with an interior condition is shown in [55]. In addition, the
convergence rate O(1/r2) is shown in [23] for the outer approximation bounds in the case of the
unit sphere.
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Algebra and Geometry in the Study
of Enzymatic Cascades

Alicia Dickenstein

Abstract In recent years, techniques from computational and real algebraic geom-
etry have been successfully used to address mathematical challenges in systems
biology. The algebraic theory of chemical reaction systems aims to understand their
dynamic behavior by taking advantage of the inherent algebraic structure in the
kinetic equations, and does not need a priori determination of the parameters, which
can be theoretically or practically impossible. This chapter gives a brief introduction
to general results based on the network structure. In particular, we describe a
general framework for biological systems, called MESSI systems, that describe
Modifications of type Enzyme-Substrate or Swap with Intermediates and include
many post-translational modification networks. We also outline recent methods to
address the important question of multistationarity, in particular in the study of
enzymatic cascades, and we point out some of the mathematical questions that arise
from this application.

1 Introduction

We start by introducing the cartoon mechanisms of two enzymatic signalign
pathways depicted in research articles.The important RAS signaling pathway in
Fig. 1 includes an extracellular ligand and a transmembrane receptor, which trigger
a cascade of protein-protein interactions and enzymatic reactions, then integrated
into key biological responses controlling cell proliferation, differentiation or death.
When this pathway is altered, it can drive to unhealthy cell proliferation [41].
Figure 2 presents a more precise description of the last part of the enzymatic
cascade.
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Fig. 1 The RAS signaling pathway, starting in the membrane of the cell

Fig. 2 Part of the RAS signaling pathway inside the cell, possibly with retroactivity

Fig. 3 EnvZ-OmpR bacterial model

Figure 3 depicts an osmolarity regulation network in bacteria, which is imple-
mented in part by the EnvZ/OmpR two-component system [49]. The sensor kinase
EnvZ (denoted by E in the diagram) autophosphorylates on a histidine residue (Ep)
and catalyzes the transfer of the phosphate group to the aspartate residue of the
response regulator OmpR (O), which then acts as an effector. In this mechanism,
when EnvZ is bounded to ATP (ET), it also catalyzes hydrolysis of the phosphory-
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lated OmpR-P (Op), which is a transcription factor that regulates the expression of
various protein pores. This unusual design keeps the limit concentration of OmpR-P
at a value that is independent of the positive initial concentrations.

When we first look at these biological mechanisms, it does not seem evident that
algebra and geometry can be used to analyze them. But we will argue in this chapter
that this is indeed the case and that we can contribute with these mathematical tools
to the understanding of questions in Systems Biology.

In particular, in the realm of biochemical reaction networks, that is, chemical
reaction networks in biochemistry, the usual mass-action kinetics modeling of the
evolution of the concentrations of the different chemical species along time (as RAS,
RAF, MEK, ERK, E, O, etc. above) yields an autonomous system of polynomial
ordinary differential equations dx

dt
= fκ(x) in the unknown vector of concentrations

x of the species as functions of time, for each choice of the (real positive) reaction
rate constants κ (see Definition 1). In fact, these equations are associated to a
labeled directed graph G of reactions. The monomial terms come from the labels
of the nodes of G by complexes in the given species, the coefficients depend on the
(positive) reaction rate constants κ that label the edges of G, and the total production
of each reaction (which is the difference of the labels of the target and source
nodes). The real polynomials fκ(x) carry a combinatorial structure inherited from
G and we will also think of κ as parameters and consider the family of differential
systems parametrized by them. Chemical Reaction Network Theory (CNRT) was
initiated by Horn and Jackson and subsequently by Feinberg and his students and
collaborators [22] and has seen a great development over the last years, when new
combinatorial and algebro-geometric techniques have been introduced. We refer the
reader to the survey article [16] for basic definitions, results and further references,
and we review here some advances developed after that article was published.

In Sect. 4 we recall the notion of MESSI systems we introduced in [42]. Many
post-translational modification networks are MESSI networks. For example: the
motifs in [23], sequential distributive multisite networks [52], sequential processive
multisite phosphorylation networks [12], phosphorylation cascades or the bacterial
EnvZ/OmpR network from [49] in Fig. 3. Our work is inspired by and extends some
results in several previous articles [24, 28, 29, 31, 39, 43, 48, 51]. MESSI is an
acronym for Modifications of type Enzyme-Substrate or Swap with Intermediates
(see Definition 2). Networks with an underlying MESSI structure include many
post-translational modification networks, as well as all linear systems arising from
mass-action kinetics (a.k.a. Laplacian dynamics [38]). We summarize some results
and algorithms based on this structure to predict conservation relations, persistence,
the capacity for multistationarity, and the description of regions of multistationarity.
Once the network has the capacity for multistationarity, the next main question is
how to predict parameters of, if possible, regions in parameter space which give rise
to multistationary systems, which are called multistationarity regions. In Sect. 5
we comment on several recent approaches to study multistationarity in chemical
reaction networks. Section 6 mentions the mostly unexplored question of the a priori
determination of the occurrence of oscillations in chemical reaction networks, in
particular, in enzymatic networks. We end the paper with two main open questions.
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2 Basics of Mass-Action Kinetics

In this section we set the basic terminology and the mathematical concepts men-
tioned in the introduction. In particular, we discuss the notion of multistationarity.

Two-component signal transduction systems enable bacteria to sense, respond,
and adapt to a wide range of environments, stressors, and growth conditions. Before
giving the precise Definition 1, we instantiate mass-action kinetics in a biological
example of a simple two-component mechanism. It relies on phosphotransfer
reactions. Upon receiving a signal, the hybrid histidine kinase HK can self-
phosphorylate. This is a hybrid histidine kinase with two phosphorylatable domains.
We denote the phosphorylation state of each site by p, if the site is phosphorylated,
and 0, if it is not; the four possible forms are HK00, HKp0, HK0p, HKpp. The
response regulator protein is denoted by RR when it is unphosphorylated and
RRp denotes the phosphorylated form. Given a vector of reaction rate constants
k = (k1, . . . , k6) ∈ R

6
>0, the (directed) graph of reaction equals:

HK00
k1−→ HKp0

k2−→ HK0p
k3−→ HKpp

HK0p + RR
k4−→ HK00 + RRp

HKpp + RR
k5−→ HKp0 + RRp

RRp
k6−→ RR,

where each of the ten nodes corresponds to a complex on the six chemical species,
that we number in the following order: HK00, HKp0, HK0p, HKpp, RR, RRp. Mass-
action kinetics specifies how the respective concentrations x1, . . . , x6 of these six
species evolve with time. The basic principle in this modeling is derived from
the idea that the rate of an elementary reaction is proportional to the probability
of collision of the reactants, which under an independence assumption equals the
product of their concentrations. We derive the following autonomous polynomial
dynamical system dxi

dt
= fi(x), i = 1, . . . , 6:

dx1

dt
= −k1 x1 + k4 x3x5,

dx2

dt
= k1 x1 − k2 x2 + k5 x4x5,

dx3

dt
= k2 x2 − k3 x3 − k4 x3x5,

dx4

dt
= k3 x3 − k5 x4x5,

dx5

dt
= −k4 x3x5 − k5 x4x5 + k6 x6,

dx6

dt
= k4 x3x5 + k5 x4x5 − k6 x6.

It is straightforward to check that the following linear dependencies hold and
generate all the linear dependencies among f1, . . . , f6:

f1 + f2 + f3 + f4 = f5 + f6 = 0,
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from which we deduce two linear conservation relations:

x1 + x2 + x3 + x4 = T1, x5 + x6 = T2.

Thus, trajectories lie in a 4-plane in 6-space. The total conservation constants T1, T2
are determined by the initial conditions (x1(0), . . . x6(0)).

Given a numbering of the species as above, we usually identify a complex on
these species with a nonnegative integer vector. For example, the complex y =
X3 +X5 is identified with the vector e3 + e5 = (0, 0, 1, 0, 1, 0) ∈ Z

6
≥0. The general

definition is as follows.

Definition of Chemical Reaction Networks and Mass-Action Kinetics

Definition 1 A chemical reaction network (on a finite set of s species, which
we assume ordered) is a finite labeled directed graph G = (V ,E, (κij )(i,j)∈E,

(yi)i=1,...,m), whose vertices V are labeled by complexes y1, . . . , ym ∈ Z
s
≥0 and

whose edges (i, j) ∈ E are labeled by positive real numbers i
κij→ j . We will also

say that G is a network.
Mass-action kinetics specified by the network G gives the following autonomous

system of ordinary differential equations in the concentrations x = (x1, x2, . . . , xs)

of the species as functions of time:

dx

dt
=

∑

(i,j)∈E

κij xyi (yj − yi) = fκ(x). (1)

Here, dx
dt

and yj − yi are column vectors.

Note that the coordinates f1, . . . , fs of fκ are polynomials in R[x1, . . . , xs] (to
ease the notation we omit the dependence of fi on κ). Many systems occurring in
population dynamics, for example the oscillatory Lotka-Volterra equations, can be
viewed as arising from a chemical reaction network as in (1), but for instance not the
“chaotic” Lorenz equations. A simple characterization of autonomous dynamical
systems arising from chemical reaction networks under mass-action kinetics has
been given by Hárs and Tóth. We refer to the book [20], which also contains an
introduction to the stochastic modeling of chemical kinetics.

Another direct consequence of the form of the equations in (1) is that for
any trajectory x(t), the vector dx

dt
lies for all t (in any interval I containing 0

where it is defined) in the so called stoichiometric subspace S, which is the linear
subspace generated by the differences {yj − yi | (i, j) ∈ E}. Using the shape of
the polynomials fi it can be seen that the positive orthant R

s
>0 and its closure

R
s
≥0 are forward-invariant for the dynamics. Then, any trajectory x(t) starting

at a nonnegative point x(0) lies for all t ∈ I ∩ R>0 in the closed polyhedron
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(x(0) + S) ∩R
s
≥0, which is called a stoichiometric compatibility class, or for short,

an S-class.
Denote by q the codimension of S. Given a basis �1, . . . , �q of linear forms in the

dual of S, let Ti = �i(x(0)), i = 0, . . . , q. The equations �1(x) = T1, . . . , �q(x) =
Tq of x(0) + S = ST give linear conservation relations and, as above, the constant
coefficient Ti of such a linear equation is called a total conservation constant.

The Steady State Variety and the Notion of Multistationarity

The steady state variety Vκ(f ) of the kinetic system (1) equals the nonnegative real
zeros of f1, . . . , fs :

Vκ(f ) = {x ∈ R
s
≥0 : f1(x) = · · · = fs(x) = 0}. (2)

An element of Vκ(f ) is called a steady state of the system and corresponds to
a constant trajectory in the nonnegative orthant. We say that system (1) exhibits
multistationarity if there exist at least two positive steady states with the same total
conservation constants, that is, in the same S-class. This is an important property
for chemical reaction networks modeling biological processes, since the ocurrence
of multistationarity allows for different responses of the cell under the same total
conservation constants, depending on the initial conditions.

In fact, our point of view will be the following. The underlying reaction network
(V ,E, (yi)i=1,...,m) defines a family of autonomous polynomial dynamical systems
depending on the positive parameters κ ∈ R

#E
>0. We say that it has the capacity

for multistationarity if there is a choice of reaction rate constants κ = (κij )(i,j)∈E

and total conservation constants T = (T1, . . . , Tq) for which the intersection of the
steady state variety Vκ(f ) with the positive points of linear variety ST consists of
more than one point (that is: there exist parameters κ and T such that there are at
least two points in the positive orthant lying in the intersection of the steady state
variety Vκ(f ) with the S-class defined by T ).

There are many results to decide the capacity for multistationarity of a given
chemical reaction network, starting with [14]. Most of them have been summarized
in Theorem 1.4 of [39]. In fact, these results give in general necessary and sufficient
conditions for the stronger condition that the map fκ is injective on the positive
points of all S-classes. There are several implementations of different algorithms,
starting with the pioneering algorithm implemented by Feinberg and his group in
the Chemical Reaction Network Toolbox. The link to the corresponding webpage
together with links to other algorithms can be found at https://reaction-networks.net/
wiki/Mathematics_of_Reaction_Networks#. We recall some of the tools to address
this question in Sects. 4 and 5.

In Fig. 4, there is a range of values of T for which there are three positive steady
states on the corresponding translate ST of S (i.e., in an S-class) for a fixed value

https://reaction-networks.net/wiki/Mathematics_of_Reaction_Networks#
https://reaction-networks.net/wiki/Mathematics_of_Reaction_Networks#
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Fig. 4 The green curve
represents the steady state
variety Vκ∗ (f ). The subspace
S = {� = 0} is a line. The
number of points of
intersection of the translates
ST = {� = T } of S with
Vκ∗ (f ) in the positive orthant
depends on the total
conservation constant T

{ = T }{ = 0}

Stoichiometric
compatibility class

Steady state variety Vk*( f )

Fig. 5 Only one parameter is
allowed to vary

κ∗ of positive rate constants. So, the chemical reaction network has the capacity for
multistationarity and κ∗ is a choice of multistationarity parameter.

We feature two kinds of multistationarity pictures from the literature. One way to
find the special values rendering these figures is by measurements in experiments or
by exhaustive (and lucky) simulations of the trajectories taking sample values in the
space of parameters and initial conditions. Instead, one can try to develop algebro-
geometric tools to analyze the mathematical models arising from biochemical
reaction networks, with the goal of making predictions from the structure of the
networks.

Figure 5 corresponds to a 2-site sequential phosphorylation and dephosphoryla-
tion that we describe in Sect. 3 below. This network has 15 parameters: 12 reaction
constants and 3 total conservation constants. In the picture, all the reaction rate
constants and two of the total conservation constants have been specialized and only
the total conservation constant Etot of one enzyme is varying. This is considered to
be the input variable (or stimulus) and it is represented on the x-axis. The number of
chemical species is equal to 9, but only one of the phosphorylated substrates s∗ at
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1 stable steady state

2 unstable + 1 stable steady states

1 unstable steady state

3 unstable steady states

a

b

Fig. 6 Only two of the parameters are allowed to vary

steady state is represented, which is consider the response of the system. It happens
that in this case any positive value of s∗ is one coordinate of a positive steady state
and different steady states in the same S-class have different s∗ coordinates. The
steady state s∗-coordinate is represented on the y-axis. For small or big values of
Etot, only one value of s∗ is possible, so this is a monostationary regime. In the
middle zone, there are three steady states, two stable and one unstable, so this is
the bistable regime (stability of steady states is determined by the negativity of
the real part of the eigenvalues of the Jacobian). This figure corresponds to a two
dimensional very particular “slice” of points originally in 24 = 15 + 9 variables,
where 14 variables have been specialized and 8 variables are not shown.

Figure 6 represents a two dimensional “slice”, but in parameter space, of another
mechanism that we do not specify, but in which only two of the parameters (a, b) are
allowed to vary. For each of the values of (a, b) outside the line segments separating
the regions, there are either one or three positive steady states, which could be
stable or unstable. In fact, in most biochemical networks these curves separating the
regions are far from being line segments; they are high order algebraic hypersurfaces
that separate different semialgebraic regions where the qualitative dynamics is the
same, in a high dimensional parameter space. Moreover, regions with interesting
behaviour could be small.

The separating hypersurfaces related to the question of multistationarity are
described by the union of the discriminant associated to the equations describing
Vκ(f ) and ST with respect to the x variables (which vanishes whenever there is
a point where the intersection of the steady state variety and the S-class is non-
transversal), and the union for any i ∈ {1, . . . , s} of the resultant describing the fact
that there is a common point with xi = 0. In each chamber (connected component)
of the complement of the union of these algebraic varieties, the number of real
roots is the same and moreover, for each of the real roots it holds that the sign
of each of the coordinates does not change as the parameters are moved, and
thus the number of real roots with a fixed sign (for instance, positive roots) is
constant along the chamber. We refer the reader to the book [26] for the notions of
discriminant and resultant, which are in general not linear. These polynomials in the
parameters can be computed effectively—in theory—via different computational
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algebraic geometry methods of elimination of variables, but standard computations
are not feasible when there are many variables. Even if one can compute these
equations, it is a very complicated task to describe then all the possible chambers
in the complement of its zero locus, or at least to find one representative in each
chamber. There are implementations by M. Safey El Din, which work very well in
small examples using his package RAGlib [47].

3 Two Important Families of Enzymatic Networks

In this section, we introduce common enzymatic mechanisms that will help us
exemplify and clarify the concepts we will introduce in Sect. 4.

Sequential Phosphorylations

The multisite n-phosphorylation system describes the site phosphorylation of a
protein (with n sites where a phosphate group can be absorbed or emitted) by
a pair of enzymes (a kinase and a phosphatase) in a sequential and distributive
mechanism. The Nobel Prize in Physiology or Medicine was awarded in 1992
to Edmond Fischer and Edwin Krebs “for their discoveries concerning reversible
protein phosphorylation as a biological regulatory mechanism.” The kinase and
the phosphatase speed up the transformation of other proteins without being
incorporated in the final products of the process, which is crucial in the regulation of
metabolism in the body. Multi-site phosphorylation plays important regulatory roles
in cell cycle regulation and inflammation pathways, and is implicated in multiple
disorders, including Alzheimer disease. Because of the important role played by
these systems in signal transduction networks inside the cell, there is a body of
work on the mathematics of phosphorylation systems (which belong to the more
general class of post-translational modification systems). We refer the reader to the
papers [33, 43, 50] and the references therein.

We now describe the special case of a sequential phosphorylation/dephosphory-
lation with n = 2 sites, which is also known as the dual futile cycle. There are
nine species: three substrates (the unphosphorylated substrate S0, the substrate with
one and two phosphorylated sites S1 and S2), two enzymes (the kinase E and the
phosphatase F ), and four intermediate species (ES0, ES1,FS2 and FS1). We give to
the twelve rate constants the usual names in the literature [52].
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We number the species and their concentrations as follows: x1, x2, x3 denote the
respective concentrations of S0, S1, S2; y1, y2, y3, y4 denote the respective concen-
trations of the intermediate species ES0, ES1, FS2, FS1, x4 is the concentration of
the kinase E, and x5 the concentration of the phosphatase F . The associated system
of ODE’s defined in (1) equals in this case:

dx1

dt
=−kon0x1x4 + koff0y1 + lcat0y4

dx4

dt
=−kon0x1x4−kon1x2x4 + (koff0 + kcat0 )y1

dx2

dt
=−kon1x2x4 + kcat0y1 + koff1y2 + (koff1 + kcat1 )y2

−lon0x2x5 + lcat1y3 + loff0y4
dx5

dt
=−lon0x2x5 − lon1x3x5 + (loff1 + lcat1 )y3

dx3

dt
=kcat1y2 − lon1x3x5 + loff1y3 + (loff0 + lcat0 )y4

dy1

dt
=kon0x1x4 − (koff0 + kcat0 )y1

dy3

dt
=lon1x3x5 − (loff1 + lcat1 )y3

dy2

dt
=kon1x2x4 − (koff1 + kcat1 )y2

dy4

dt
=lon0x2x5 − (loff0 + lcat0 )y4.

There are 3 independent linear conservation laws, for instance:

x1 + x2 + x3 + y1 + y2 + y3 + y4 =Stot

x4 + y1 + y2 =Etot

x5 + y3 + y4 =Ftot,

where Stot, Etot, Ftot are positive real numbers for any choice of initial condition in
the positive orthant. As we pointed out in Sect. 1, there are 12 + 3 = 15 parameters.
The n-site sequential mechanism is similar, with 3n + 3 variables, 6n reaction rate
constants and always 3 total conservation constants, so a total of 6n+ 3 parameters.

Phosphorylation Cascades

We have already encountered a coarse diagram of an enzymatic cascade in Fig. 2.
MAP kinase cascades are important signal transduction systems in molecular biol-
ogy for which there is also a body of mathematical work, see for instance [35, 41]
and the references therein. These cascades correspond to a network of enzymatic
reactions arranged in layers, where usually in each of them there is a futile cycle of
sequential phosphorylations and such that the fully phosphorylated substrate serves
as an enzyme for the next layer.

The simplest case of a cascade with the capacity of multistationarity [23] consists
of a cascade with two layers and a single phosphorylation/dephosphorylation at
each layer, with one phosphatase. It corresponds to the a labeled digraph, with 9
variables and 18 parameters, where each single phosphorylation follows the same
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mechanism as in our previous example, with an intermediate species. The nine
species are the substrates S0, S1 in the first layer, the substrates P0, P1 in the second
layer, four intermediate complexes, a kinase E and the same phosphatase F to
dephosphorylate the substrates in both layers. The forward enzyme in the second
layer is the phosphorylated substrate S1 from the first layer.

This mechanism is usually depicted as follows, hiding the reaction rate constants
and the intermediate species:

S0 S1

F

E

P0 P1

F

In this case, there are 4 linearly independent conservation relations. Denoting
with small letters the concentration of each of the species, these conservation
relations can be chosen as follows, as predicted in Theorem 3.2 in [42] (see (4)
below):

s0 + s1 + es0 + f s1 + s1p0 =Stot

p0 + p1 + s1p0 + fp1 =Ptot

e + es0 =Etot

f + f s1 + fp1 =Ftot,
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where Stot, PtotEtot, Ftot are positive real numbers for any choice of initial condition
in the positive orthant.

We can also consider cascades with any number n of layers. In this case,
the number of variables, the number of reaction rate constants and the number
of independent linear conservation relations (as well as the number of linear
conservation constants) grow linearly with n.

4 MESSI Systems

In this section we recall the notion of MESSI networks from [42], to describe a
common structure underlying the four examples above in their different variants
as well as many “popular” biological networks, that consist of Modifications
of type Enzyme-Substrate or Swap with Intermediates. The occurrence of this
structure allows us to prove general results for quite different mechanisms. The basic
ingredient of a MESSI structure is a partition of the set of species, which reflects
the different chemical behaviors. This grouping of the chemical species into disjoint
subsets is in accordance with the intuitive partition of the species according to their
function that biochemists have. We will denote the disjoint union of sets with the
symbol

⊔
.

Definition of a MESSI System

Definition 2 A MESSI network is a chemical reaction network satisfying the
following properties. First of all, there exists a partition of the set S of species

S = S(0)
⊔

S(1)
⊔

S(2)
⊔

· · ·
⊔

S(m), (3)

where m ≥ 1, S(0) is the subset of intermediate species and could be empty, and
all S(i) with i ≥ 1 are nonempty subsets, formed by what we call core species.
We requiere that the complexes and reactions satisfy the following conditions.
An intermediate species can only be part of a monomolecular complex consisting
only of this speces (called an intermediate complex). Non-intermediate complexes
are called core complexes and consist of one or otherwise two chemical species
belonging to different subsets of the partition. Denote by y →◦ y′ the existence of
an edge from complex y to complex y′ or a directed path of reactions from y to
y′ through intermediate complexes. We require that for any intermediate complex
y0, there exist core complexes y, y′ such that y →◦ y0 →◦ y′. If there are two
monomolecular core complexes y →◦ y′, then both should consist of a species in
the same S(α). We further ask that if there is a reaction between a monomolecular
and a bimolecular complex, the monomolecular complex is an intermediate, and
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that if y, y′ are bimolecular core complexes such that y →◦ y′, then there exist two
different core subsets S(α),S(β) in the partition, such that both y and y′ consist of a
species in each of them.

When endowed with mass-action kinetics, a MESSI network gives rise to a
MESSI system of polynomial autonomous ODE’s.

All the Networks We Mentioned Are MESSI

All the networks we mentioned in the text (plus many other common biochemical
networks) can be endowed with the structure of a MESSI system. We gave different
colors to the different subsets in a possible partition of the species.

For instance, in the cascade depicted in Fig. 2 in the Introduction, the intermedi-
ate species (complexes) are not displayed, but we presented with different colors a
possible partition of the core species that defines a MESSI structure. In the network
depicted in Fig. 3 the partition into a subset of intermediate species (in black), and
two subsets of core species (in red and blue) also defines a MESSI structure.

In the two-component system in Sect. 2, we could take S(0) = ∅, S(1) =
{HK00, HKp0, HK0p, HKpp}, and S(2) = {RR, RRp}.

In the example of the sequential phosphorilation in Sect. 3, we could take S(0) =
{ES0, ES1, FS2, FS1}, S(1) = {S0, S1, S2}; S(2) = {E}, and S(3) = F . It can be
checked that all conditions are satified. Note that if we consider the coarser partition
with the same set of intermediate species S(0), the same set S(1) of core species, and
just one other set {E,F } of core species, we also have a MESSI structure. In fact,
there is in general a poset of possible partitions (and in other examples there could
be non-comparable partitions).

On the other side, in the example of the cascade in Sect. 3, we can partition the
set of nine species as follows to define a MESSI structure in the 2-layer cascade:
S(0) consists of the four intermediate species {ES0, FS1, S1P0, FP1}, plus the core
subsets S(1) = {S0, S1}, S(2) = {P0, P1}, S(3) = {E}, and S(4) = {F }.

Conservation Laws

The first general results about MESSI systems is that we can describe enough
(explicit) conservation linear relations with positive coefficients. Given a parti-
tion (3) of the set S of variables into one intermediate subset and m ≥ 1 nonempty
core subsets defining a MESSI structure in a given network G, note that the
associated autonomous polynomial dynamical system defined in (1) is linear in the
variables of each S(i) union the subset Inti consisting of those intermediate species
y′ for which there exists a core complex y containing one species of S(i) such that
y →◦ y′ (for any fixed i = 1, . . . , m). The union of these subsets Inti equals S(0),
but they are in general not disjoint, because if in the recent notation y also contains
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a species in another S(j), then y′ also belongs to Intj . These intersections account
for several important properties of the systems.

Theorem 3.2 in [42] asserts that given a partition of S = {x1, . . . , xs} defining a
MESSI structure as in (3), the following linear forms �1, . . . , �m belong to the dual
of the stoichiometric subspace S:

�i(x) =
∑

xj ∈S(i)

xj +
∑

xj ∈Inti

xj , i = 1, . . . , m. (4)

We refer the reader to Section 3 in [42] for conditions ensuring that these are a basis
of conservation relations (and examples where this is not the case). We conclude
that all MESSI systems are conservative. Thus, all S-classes are compact, and all
trajectories are bounded and defined for any positive time. In fact, given a MESSI
network, if x is a trajectory of the associated mass-action kinetics dynamical system
ẋ(t) = f (x(t)), for all t in an open interval containing R≥0) with x(0) ∈ R

s
>0, let

(T1, . . . , Tm) = (�1(x(0)), . . . , �m(x(0)). Then, we have that for any t ≥ 0 it holds
that �i(x(t)) = Ti for any i. Then, all the coefficients of the linear form � =∑m

i=1 �i

are positive and �(x(t)) =∑m
i=1 Ti > 0.

The Associated Digraphs

In order to state some other general results for MESSI networks, we introduce three
associated digraphs G1,G2,GE associated with a given MESSI network G with
a vector of rate constants k. We refer the reader to Section 3 in [42] for complete
definitions, explanations and examples.

We eliminate all intermediate species to define G1, which naturally inherits a
MESSI structure: the species of G1 are the core species of G, its complexes are
the core complexes of G and there is an edge between two core complexes y, y′
precisely when y →◦ y′ in G. The rate constants of G1 are rational functions τ(κ)

with nonzero denominator over all positive κ , in such a way that when viewed with
mass action kinetics gives rise to a system of the form ẋ′ = f 1(x′), the steady
state variety Vτ (κ)(f 1) of the system defined by G1 is a projection of the steady
state variety Vκ(f ) of the original system. They have been explicitly defined in
display (15) of the Supplementary Material in [24], see displays (5.3) and (5.8)
in [6]. To define the digraph G2, we first consider for any i = 1, . . . , m the linear
network obtained by “hiding” in the rate constants the concentration of all species
xj /∈ S(i). For instance, an edge Xj + Xk → Xj1 + Xk1 with Xj ,Xj1 ∈ S(i1),
Xk,Xk1 ∈ S(i2), with rate constant c, gives raise to the following two edges in
G2: the edge Xj → Xj1 with rate constant cxj , and the edge Xk → Xk1 , with
rate constant cxk . Note that we get this way a multidigraph MG2 with possibly
repeated edges and loops. We then denote by G2 the digraph derived from MG2
after collapsing multiple edges into a single edge, with label equal to the sum of
the labels of the different edges. The nodes in each connected component of G2
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Fig. 7 The graphs G1, G◦
2 and GE for the phosphorylation cascade in Sect. 3

Fig. 8 The graphs G1, G◦
2 and GE for the EnvZ/OmpR two-component network in the Introduc-

tion

correspond to the species in one of the subsets S(i) of the partition if and only if this
partition is minimal (in the poset of partitions of S defining a MESSI structure on
G). The digraph G2 is linear (each node is labeled with a monomolecular complex
with a single species) and again, if we formally associate to it mass-action kinetics,
its steady state variety coincides with that of G1. Finally, we denote by G◦

2 the
multidigraph obtained from G2 after deleting all loops. On the other side, the nodes
of the digraph GE are the subsets S(1), . . . ,S(m) and there is an edge from S(i1) to
S(i2) with a label contaning as a factor the concentration of any species in S(i1).

The graphs G1,G
◦
2 and GE associated to two of the networks in the previous

sections are depicted in Figs. 7 and 8.

Persistence

A chemical reaction system (1) is persistent if any trajectory starting from a point
with positive coordinates stays at a positive distance from any point in the boundary,
or informally, if no species which is present can tend to be eliminated in the course
of the reaction. A steady state lying in the boundary of the nonnegative orthant (that
is, with some coordinates equal to zero) is called relevant if it lies in the intersection
of the boundary of the nonnegative orthant with a stoichiometric compatibility class
through a point in R

s
>0. As MESSI systems are conservative, Theorem 2 in [1]
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proves that a MESSI system is persistent when there are no relevant boundary steady
states.

Given a MESSI network G, we identify the following hypotheses:

(A) The associated digraph G2 is weakly reversible.
(B) The associated digraph GE has no directed cycles.

Hypothesis (A) means that for any pair of nodes in the same connected component,
there is a directed path from one to the other. For instance, in the two examples
considered in Figs. 7 and 8, hypothesis (A) is verified. Hypothesis (B) is also verified
in the case of the cascade network, but not in the EnvZ/OmpR two-component
network. However, even if they sound restrictive, there is a big range of signaling
pathways that satisfy both hypotheses.

Theorem 3.15 in [42] asserts that a MESSI network G which satisfies hypotheses
(A) and (B) does not have relevant boundary steady states, and is thus persistent.
Moreover, as MESSI systems are conservative, a version of Brouwer’s fixed point
theorem ensures the existence of a non-negative steady state in each S-class. So,
the abscence of relevant boundary steady states implies the existence of a positive
steady state in each S-class.

Explicit Parametrization of Vκ(f ) ∩ R
s
>0

We describe a big class of MESSI networks for which the steady state variety V is
rational. This is a very uncommon property for general algebraic varieties.

Explicit Rational Parametrizations

We want to describe the intersection Vκ(f ) ∩ ST in the positive orthant. The
steady state variety is defined in principle by s polynomial equations. Assume the
dimension of S (and thus of ST for any T ) equals s − q and can thus be defined by
q linear equations. This implies that there are (at most) s − q linearly independent
polynomials among f1, . . . , fs . A finite number of common solutions is expected,
but this might not be true.

One way to simplify the computation of the intersection is the following. As ST

are linear varieties, they can be parametrized by s − q parameters. One could then
parametrize ST solving for q variables in terms of the other ones and then replace
this in the equations of the steady state variety. This reduces the number of variables
from s to s − q, but the polynomials f1, . . . , fs are particular, with a monomial
structure that comes from G and we would in general destroy the sparsity.

Denote by V>0,κ (f ) = Vκ(f ) ∩ R
s
>0. One could then try to parametrize

V>0,κ (f ) but general algebraic varieties do not have rational parametrizations. This
is a very uncommon property for general algebraic varieties. However, rational



Algebra and Geometry in the Study of Cascades 73

parametrizations do exist for the positive points of the steady state variety in certain
enzymatic biochemical networks, as proved by Thomson and Gunawardena in [51].
We extended this result for many other networks of biological interest which are
MESSI. Theorem 4.1 in [42] proves the existence of an explicit and algorithmically
constructible rational parametrization of V>0,κ (f ) for any MESSI network G

satisfying conditions (A) and (B) above. Moreover, if the partition is minimal with
m subsets of core species, we have that dim V>0,κ (f ) = m = s − dim S.

Moreover, we identify conditions that ensure that this parametrization is mono-
mial, or equivalently, that V>0,κ (f ) can be cut out by binomial equations (that
is, polynomials with two terms) and, in this case, we give explicit binomials in
Theorem 4.8 in [42] for what we call s-toric MESSI systems. Again, the conditions
seem to be very restrictive, but there are plenty of interesting signaling pathways that
satisfy them; for instance the n-site phosphorilation networks and many enzymatic
cascades, as the ones we presented in Sect. 3. In the case of the n-sequential
phosphorylation network (which has 3n + 3 variables) we can parametrize the
positive steady state variety with 3 parameters for any value of n. To compute
the intersection Vκ(f ) ∩ ST (which equals V>0,κ (f ) ∩ ST due to the abscence of
relevant boundary steady states, as we pointed out before), we can write 3 of the
variables in terms of the remaining 3n variables from the 3 conservation relations
and replace them into 3n linearly independent fi (which exist in this case). We
could substitute the parametrization into the conservation relations and thus get 3
equations in 3 variables. This is what makes the n-site amenable to computations
even if in principle the number or variables tends to infinity with n. Note that if
instead we plug in a parametrization of ST into the equations of the steady state
variety, we get a system, that besides losing sparsity, consists of 3n equations in 3n

variables.
Recognizing the existence of a MESSI structure on a given network, checking the

hypotheses in all our results and finding the rational parametrization are algorithmic
and only depend on the structure and not on the particular parameters.

Deciding Multistationarity

The important biological mechanism of n sequential phospho-dephosphorylations
has the capacity for multistationarity for n = 2, that is, there can be up to 3 positive
steady states in Vκ(f )∩ST (for particular choices of the rate constants κ and positive
linear conservation constants T ). This system has been first studied by L. Wang and
E. Sontag in [52]. They proved that the maximal possible number of positive steady
states is 2n − 1 and identified parameters for which there are n + 1 positive steady
states for n even (and n for n odd). Note that n + 1 = 2n − 1 for n = 2. It has
been proved in [36] that the upper bound 2n − 1 is attained for n = 3, 4, and it is
probable that 2n − 1 is a sharp upper bound, but this has not been proven yet for
n ≥ 5. See also [33–35] for a discussion of other dynamical features (stability and
oscillations).
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In fact, the steady states of most popular MESSI systems (including all those
recalled above) present an s-toric structure, and we gave in this case a characteriza-
tion of the capacity for multistationarity, which lead to an algorithm based on tools
from oriented matroid theory. The main ideas in this approach, which go back to [14]
and several other papers, including articles in other applied areas, are collected and
clarified in the paper [39]. We give below a simple version of the multistationarity
results in Section 5 in [42], which is valid for other biochemical reaction networks
for which the positive steady states can be defined by binomials in a parametric
way and satisfying certain conditions (that we can ensure from the structure of the
network, see e.g. Proposition 5.6 in [42]). In particular, these binomials are of the
form pκ = a(κ)xα − b(κ)xβ , with α, β ∈ Z

s
≥0, and a, b polynomial functions on

the vector of rate constants κ ∈ R
r
>0 taking positive values over Rr

>0.
Given such a binomial pκ , consider the vector vpκ = α − β ∈ Z

s (note that
vpκ = −v−pκ , so indeed vpκ are integer vectors defined up to sign). Also, given
a matrix M of size m1 × m2 of rank m1, a subset J of indices of cardinality m1
determines a maximal minor of M , which we denote by MJ .

Deciding Mono/Multistationarity
Let G be a chemical reaction network. Denote by S⊥ a matrix whose rows define the
dual of the stoichiometric subspace S with rank(S⊥) = d. Assume that V>0,κ (f )

is cut out by s − d binomials pj,κ , j = 1, . . . , s − d, with exponents vpj,κ
which

form the columns of a matrix B. Assume moreover that rank(B) = s − d. Then, the
following statements are equivalent

1. Monostationarity: There is at most a single positive solution in V>0,κ (F ) ∩ ST ,
for any S-class intersecting the positive orthant, for any κ ∈ R

r
>0.

2. For all subsets J ⊆ {1, . . . , s} of cardinality d, the product

(−1)
∑

j∈J j det(S⊥
J ) det(B{1,...,s}\J )

either is zero or has the same sign as all other nonzero products, and at least one
such product is nonzero.

The previous result can be turned into an algorithm to decide if a network has
the capacity for multistationarity, together with an algorithm to produce vectors
of rate constants k for which multistationarity occurs (in case the network is not
monostationary).

5 Other Approaches to the Question of Multistationarity

The reader might have noticed that within a reasonable extension for a survey, we
cannot properly define and explain all concepts. This section will then be only a
pointer to some recent papers addressing the question of multistationarity, besides
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the articles and tools we have mentioned before. We also refer the reader to the
recent survey [13] and the references therein.

Craciun, Helton and Williams applied in [15] the homotopy invariance of degree
to determine the number of equilibria of biochemical reaction networks and how
this number depends on parameters in the model. Conradi, Feliu, Mincheva and
Wiuf give in [8] necessary and sufficient conditions for the multistationarity of
networks having a positive rational parametrization, in terms of the reaction rate
constants, also based on degree theory. This approach is very interesting since
they can describe open multistationarity regions in rate constant space. However,
it does not describe particular stoichiometric compatibility classes for which there
is multistationarity, as it is also the case with the methods based on signs as the result
we described about mono/multistationarity. The reason is that all these approaches
are related (in more explicit or hidden ways) to properties of a Jacobian, for
instance of an appropriate choice of the polynomials f1, . . . , fs and linear functions
�1 − T1, . . . , �q − Tq giving equations for ST with respect to the x variables,
and so the linear conservation constants T1, . . . , Tq do not appear. In [18] we
considered extensions and simplifications of this approach via critical functions, for
networks with special structure, in particular for special MESSI networks which are
commonly used in modeling enzymatic pathways. We also propose a method based
on the existence of triangular forms, relying on techniques from computational
algebra.

Sadeghimanesh and Feliu provide in [46] a new determinant criterion to decide
whether a network is multistationary, when the network obtained by removing
intermediates has a binomial steady state ideal. In this case, they characterize the
multistationarity structure of the network, i.e. which subsets of complexes are
responsible for multistationarity. In particular, they compute the multistationarity
structure of the n-site sequential distributive phosphorylation cycle for any n.

Together with Bihan and Giaroli, we incorporated in [6] a new tool from real
algebraic geometry based on the article [7] by Bihan, Santos, and Spaenlehauer.
The basic idea is the following. Given a sparse polynomial system, that is, with
exponents in a specified finite set of integer points A, if it is possible to find p

decorated simplices in a regular subdivision of A, then it is possible to scale the
coefficients of the given system in an explicit way to get at least p nondegenerate
positive real roots. This gives a lower bound on the number of positive roots. The
hypotheses of regularity of the subdivision means that it comes from a lifting of the
points in A after considering the projection of the domains of linearity of the lower
convex hull of the lifted points. This is what gives the necessary compatibility to
find a common open set in the space of coefficients where the p positive solutions
can be jointly continued. The meaning that a simplex is decorated is the following.
Let {a0, . . . , ad} ⊂ A denote the set of vertices of a maximal dimensional simplex
in dimension d. Given (Laurent) polynomials g1, . . . , gd with support A, consider
their subsums of monomials corresponding only to these exponents. So one gets a
system with d polynomials in d variables and d + 1 monomials of the form:
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d∑

j=0

ci
j xai = 0, i = 1, . . . , d.

This system has at most one positive root and it does have a (nondegenerate) positive
root exactly when the following linear system does:

ci
0 +

d∑

j=1

ci
j xi = 0, i = 1, . . . , d.

This condition is equivalent to an alternance of signs of the minors of the d ×(d +1)

real matrix with coefficients cij . The simplex is said to be decorated by a choice
of coefficients of the input polynomials when this is the case. It is interesting to
note that, differently from the case of complex roots with nonzero coordinates, it
is not always true that the lower bound in the case of positive solutions matches
the maximum number of positive real roots for any regular subdivision. A simple
example is the following. Assume A = {(0, 0), (1, 0), (1, 2), (2, 1)} are the vertices
of a paralellogram of Euclidean volume 2 in the plane. A sparse polynomial system
(g1 = g2 = 0) with this support can have 2 · 2 = 4 isolated complex solutions with
nonzero coordinates by Kouchnirenko’s theorem and 3 positive solutions (and this
number can be attained, see [5] and the references therein). But it is clear that the
support can only have three regular subdivisions: either nothing is subdivided or we
get any of the two subdivisions depicted in Fig. 9, so the maximum lower bound p

that one can obtain is 2. Nevertheless, this is up to now the only systematic way to
find conditions on jointly on all the parameters that ensure the existence of several
positive steady states, as for instance degree considerations are eventually based on
parity considerations. But the best advantage of this approach is that it allows us to
describe multistationarity regions in the space of all parameters, both reaction rate
constants and linear conservation constants. Remark however that our conditions
are only sufficient.

We refer the reader to Section 3 in [27] for a simple example explaining the
technical results in [6]. These tools allowed us to find in that article precise
multistationarity regions in enzyme cascades with any number n of layers of
Goldbeter-Koshland loops (with a single phosphorylation/dephosphorylation in
each layer), which are multistationary as soon as the two first phosphatases are the
same. Interestingly, the number of variables is of the order of 4n and the dimension

Fig. 9 The two proper
subdivisions of a circuit
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of the stoichiometric subspace S is of the order of 2n, so it is cut out by roughly
2n linear equations and parametrized by a similar number of variables. So, even
taking advantage of the parametrizations of the steady state variety and a translate
ST of S, we need to deal with of the order of 2n equations in 2n variables. When
the two layers with the same phosphatase are the last ones, it is possible to find
particular multstationarity reaction rate constants for the cascade following the
approach in [4]. Other papers based on the study of extrapolation of multistationarity
from that of simpler subnetworks are for instance [9, 37].

In ongoing work with Giaroli, Pérez Millán and Rickster [17], we are able to use
this setting to give a precise region in the space of all parameters for which the n-
sequential phospho/dephosphorylation mechanism can have n+ 1 for n even (and n

for n odd) positive steady states, assuming that only 1
4 of the intermediate complexes

are part of the reactions. In another recent work Conradi, Iosif, and Kahle [10] also
use tools from polyhedral geometry. They show that for reaction networks whose
positive steady states can be cut out by binomials, multistationarity is scale invariant
in the space of linear conservation constants (that is, if there is multistationarity for
some value of the linear concentration constants, then there is multistationarity on
the entire ray containing this value (possibly for different reaction rate constants).
They consider the chamber decomposition in linear conservation constant space,
which allows them to show that for values of these constants in one of the five
chambers the 2-site sequential phosphorylation network cannot be multistationary.

Other approaches use numeric or symbolic methods to detect points in different
chambers of the complement of the discriminant and the resultants that we
mentioned before, see for instance [30, 32]. The general mathematical problem is the
search of positive roots of sparse polynomial systems; see for instance [21] where
these techniques have been applied to a geometric problem.

Stability and Convergence

The important question of deciding stability of a given steady state x∗ of a chemical
reaction network with fixed constants k∗ can be formalized via Routh-Hurwitz
theorem by means of the satisfiability of certain polynomial inequalities which
correspond to minors of the Jacobian matrix at the point x∗, as a pattern of signs
of these minors corresponds to all eigenvalues of the Jacobian having negative real
part. However, this is a difficult question if the point x∗ is given implicitly and if one
tries to trace these inequalities as the parameters vary. So, only in few cases there is
a complete analysis (see for instance [33]).

Another important question is to ensure convergence of the trajectories. Note that
if a trajectory defined on the whole positive real line converges for t → +∞ to a
point p, then p is a steady state. A first question is to decide global convergence
in the presence of a single steady state in each S-class. We refer the reader to the
results (and the references) in [19] for diverse architectures of processive multisite
phoshorylation networks, which are based on previous work by Angeli, De Leenher
and Sontag [2].
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6 Oscillations

Another important biological feature is the possible occurrence of oscillations.
Oscillations have been observed experimentally in signaling networks formed by
phosphorylation and dephosphorylation, which seems to be the main mechanism
in the 24-hour period in eukaryotic circadian clocks (see for instance [11, 44]
and the references therein). Despite the many articles studying sequential phos-
pho/dephosphorylation networks, it is not currently known whether in the 2-site
sequential mechanism there could be trajectories which oscillate.

Instead, Suwanmajo and Krishnan showed recently in [50] that oscillations
occur intrinsically in the the dual-site phosphorylation and dephosphorylation
network, in which the mechanism for phosphorylation is processive while the
one for dephosphorylation is distributive (or vice-versa), arising from a Hopf
bifurcation. We also refer to the interesting paper [45], where the authors propose
a systematic analysis of the long-term dynamics of phosphorylations systems. They
describe bistability and oscillations when the network has nonzero levels of reaction
processivity. Processivity means that the intermediate complex does not dissociate
into substrate plus enzime after a phospho/dephosphorylation, but only after two
or more. Conradi, Mincheva, and Shiu showed in [11] for the mixed mechanism
in [50] that in the three-dimensional space of linear conservation constants, the
border between the existence of a stable or an unstable steady state is defined by
the vanishing of a single Hurwitz determinant, which consists generically of simple
Hopf bifurcations. Besides the Routh-Hurwitz criterion, their analysis relies on an
algebraic Hopf-bifurcation criterion due to Yang and a monomial parametrization
of the positive steady state variety. It would be very interesting to extend these kind
of analyses to other mechanisms, in particular, to other phosphorylation networks.

Rendall and Hell studied in [34, 35] the existence of parameters for which
Hopf bifurcations occur and generate periodic orbits in the case of (MAP kinase)
cascades. They also explain how geometric singular perturbation theory allows to
generalize results from simple models to more complex ones. Also Banaji presents
in [3] some results are presented on how oscillation is inherited by chemical reaction
networks (CRNs) when they are built in natural ways from smaller oscillatory
networks, showing a particularly nice result for fully open networks (where for
any species X, there are reactions 0 → X and X → 0), also based on regular
and singular perturbation theory. We also mention the pioneering work of Karin
Gatermann introducing algebraic and combinatorial techniques for the search of
Hopf bifurcations [25].
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7 Mathematical Challenges

In this section we enumerate some of the main open questions in this area.
They involve difficult mathematical questions and moreover, systems of biological
interest usually have a big number of variables and parameters.

1. Give general precise bounds for the number of positive solutions of (parametric
families of) sparse polynomial systems and apply them to find the number of
positive steady states: (a) develop tools to obtain better lower bounds for the
number of positive steady states; (b) develop tools to get good upper bounds for
the number of positive steady states. Moreover, find regions in parameter space
with the predicted number of positive steady states, or at least where lower/upper
bounds apply.

2. Predict or preclude oscillations from structure: how do (sustained) oscillations
arise in phosphorylation networks? Can we find “atoms of oscillation”? More-
over, describe “regions of oscillation” in parameter space.

Conclusion

We can use algebro-geometric notions and methods to analyze system biology
models. Algebraic and combinatorial methods allow us to predict (some) qualitative
dynamic behaviours of our models from the structure of the network, without
simulations and without measuring all the parameters a priori. We do have several
promising results, but in many cases they tend to be too complex to be understood or
computed. Answers to the above questions would require to develop a combination
of tools from dynamical systems, real algebraic geometry, computational and
numerical algebraic geometry, differential algebra, and biochemistry!
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Metastability: A Brief Introduction
Through Three Examples

Stella Brassesco and Maria Eulalia Vares

Abstract Metastability is a very frequent phenomenon in nature. It also finds many
applications in science and engineering. A noticeable basic feature is the presence
of “quasi-equilibria states” and relatively sudden transitions between them. The goal
of this short expository note is to discuss some aspects of the stochastic modeling of
metastability, usually done through the consideration of special stochastic processes.
This includes a “pathwise approach” developed since the 1980s. Thought as an
invitation to the readership, three examples are quickly reviewed, starting with a
class of reaction-diffusion equations subject to a small stochastic noise, for which
the theory of large deviations has been a very useful tool, and further precision
achieved through the help of potential theoretical techniques. We present then brief
summaries of results on the Harris contact process on suitable finite graphs, and
a quick discussion of stochastic dynamics for the well-known Ising model. The
first can be thought as an oversimplified model for the propagation of an infection,
and the second has been used in the context of magnetization. From a probabilistic
analysis and technical viewpoint, the Ising model enjoys time-reversibility, which
provides useful tools, while the contact process is non-reversible.

1 Introduction

Metastability is a common phenomenon in nature, with plenty of examples in
physics, chemistry, and biology. Similar behavior may be also detected while
studying certain phenomena in economics and social sciences. The objects of
interest are systems that make transitions between quasi-equilibria states—which
look like, but are not true equilibria—to stable states. Here a common example that
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we may often encounter in usual life: A very cold bottle of beer in the freezer;
one takes it and the beer seems perfectly in the liquid phase, but all of a sudden it
freezes while we open the bottle. Perhaps this is not such a nice event for the person
who was about to drink the beer, but it gives an interesting common example of the
phenomenon we want to discuss. The transition that we observe from what seemed
in a normal liquid phase to the solid one is quite quick; once in the solid phase, we
see it slowly getting to liquid if subject to the proper temperature.

Metastability takes place in thermodynamic systems close to a first order phase
transition. We may consider starting with thermodynamic parameters that determine
a state with a unique phase X and suitably changing them to those corresponding to
a new phase Y . In some situations it may happen that the system does not undergo
the proper phase transition and it moves instead to a sort of “quasi-equilibrium”
situation with a phase X′ which is very close to X. It may remain in X′ for a large
period of time (in the proper time scale) until a quick and unexpected change brings
it to Y . Here X′ corresponds to what we call “metastable state”.

The classical examples include therefore supercooled liquids or vapours and
supersaturated vapours or solutions: a gas at temperature below its critical value can
exhibit both the liquid and the vapour phase. We start the experiment in the vapour
phase and compress it, keeping the temperature fixed; at large enough pressure
the thermodynamic equilibrium phase is the liquid phase, but under particular
experimental situations, the system remains in the vapour phase (metastable state).
This behaves essentially as a real thermodynamic equilibrium, but, either via an
external perturbation or a spontaneous fluctuation, a nucleus of the “stable” phase
appears and initiates a fast transition to the equilibrium liquid state.

One of the first explanations for metastability was given in the frame of the
classical van der Walls-Maxwell theory, which is not compatible with the usual
assumptions on the interactions between the components of the large system. There
have been various efforts to describe metastability within statistical mechanics,
and this might have motivated the attempt to reconcile van der Waals theory with
statistical mechanics, through the introduction of Kac potentials. Nevertheless,
it is by now very clear that metastability should be examined as a dynamical
phenomenon. The first rigorous proposal in this direction came with the work of
Lebowitz and Penrose (see [49]). They considered a deterministic dynamics given
by the Liouville equation for some Hamiltonian H , with an invariant probability
measure μ (the equilibrium) and proposed to describe metastable states through the
conditioned measure μR = μ(·|R) (given by μ(A|R) = μ(A ∩ R)/μ(R)), for R a
suitable subspace of the configuration space. Their choice for R was driven by three
characteristics:

(i) Only one thermodynamic phase is present.
(ii) The lifetime is large, i.e. it takes a long time to exit from R.

(iii) Once it escaped from R, the return time is much longer (very unlikely to
return).

Condition (ii) was expressed through a very small value of λ = dpt

dt
computed

at t = 0 and where pt is the probability of having escaped from R by time t , if
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starting from μR , while condition (iii) can be expressed through μ(R) being very
small. Lebowitz and Penrose applied this to discuss vapour-liquid transition in the
case of Kac potentials.

We will use stochastic models to give a more precise description of this
phenomenon, and try to answer some basic questions regarding the transition time,
a characterization of what could be called “metastable state”, and a description of
the typical escape from the metastable state. We develop these examples mostly
in the context of the so-called pathwise approach which was introduced in [18],
and is based on the behavior of the empirical averages along typical trajectories. It
is natural to think of Markov processes that, in spite of having a unique invariant
measure, behave in the above described fashion.

We shall focus on three examples:

(1) A class of reaction-diffusion equations subject to a stochastic noise.
(2) Harris contact process on suitable finite graphs.
(3) Kinetic Ising models.

This expository paper was motivated by a lecture given by one of the authors
during the 2018 World Meeting for Women in Mathematics. Nevertheless, the focus
here is in metastability, a subject that appeared only tangentially in the lecture,
focused on an extension of the contact process. This is by no means a detailed
survey, but basically an invitation for people outside the field.

2 Stochastic Perturbations of Differential Equations

Before introducing the class of stochastic partial differential equations of our first
example, let us recall some previous models in a finite dimensional setting, as they
could help to understand the general picture in a simpler and more intuitive situation.

One of the earliest examples of such models was proposed by H. A. Kramers in
[35] when studying the transition rates of chemical reactions. He considered, in one
dimension, the equations of motion of a particle under the effect of a potential U

with two wells, with local minima at the points a and b, separated by a barrier with
its maximum at c, and of a Brownian motion with diffusion coefficient depending
on the viscosity and the temperature. In a regime of large viscosity, the position of
the particle is found to evolve approximately according to the equation

dX(t) = −U ′(X(t)
)
dt + ε dB(t), (1)

with ε a small positive parameter.
Denote by τε the time needed by X(t) to overcome the potential barrier, that is,

to arrive at state b starting from a. The reasoning in [35] permits to conclude that,
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as the parameter ε → 0, and if U is smooth and U ′′ �= 0 at the critical points, the
expectation of τε satisfies, for some constant K > 0,

E τε ∼ K exp
(2
(
U(c) − U(a)

)

ε2

)
. (2)

Kramers also discusses the precise form of the prefactor K , which results to be a
constant given in terms of U ′′(a) and U ′′(c). In this one dimensional setting, the
proof that the quotient between both sides of (2) converges to 1 as ε → 0 follows
basically from Laplace’s method after considering the integrals obtained when
computing the expected hitting times as solutions to the corresponding differential
equations. The long time (in terms of the parameter ε) needed to pass from a to b,
expressed in (2), is one of the characteristics of metastability.

A similar equation is obtained as a continuous limit for a class of Markov chains
that arise when considering certain random dynamics associated to the Curie–Weiss
model. The latter is a system of N spins σi ∈ {−1, 1}, whose Hamiltonian at σ =
(σ1, σ2, · · · , σN) is

HN(σ) = − 1

N

N∑

i,j=1

σiσj − h

N∑

i=1

σi,

for h a constant external field that is supposed positive. As HN is a function only of
the mean magnetization mN(σ) := 1

N

∑N
i=1 σi ,

HN(σ) = −N
((

mN(σ)
)2 + h mN(σ)

)
,

the model is essentially one dimensional, the magnetization being the basic quantity.
Under the corresponding Gibbs measure μN with inverse temperature β, defined
by μN(σ) = exp

(− βHN(σ)
)
/ZN , where ZN is the normalization term, mN is

distributed in the set YN = {−1 + 2k
N

: k = 0, 1, · · · , N} according to

νN(m) = μN {σ : mN(σ) = m} =
(

N
N (m+1)/2

)
e β N(m2+h m)

ZN(m)
, m ∈ YN.

Stochastic dynamics can be associated to this system by considering Markov chains
in YN such that νN is its unique invariant measure. This can be done in several ways,
as discussed in [47, Sect. 4.3]. A particular example is presented in detail in [18],
where a precise birth and death discrete time chain ξn is considered. For β > 1 and
h sufficiently small, it behaves as N → ∞ as a random walk with reflecting barriers
at ±1 and a “drift” that is a discrete approximation of the derivative of a double
well function f , having a local minimum at x− ∈ (−1, 0), an absolute minimum at
x+ ∈ (0,+1) and a local maximum at x0 ∈ (x−, x+) . The behavior of this model,
where a microscopic dynamics was prescribed, is thus very similar to that of the
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process X(t) satisfying (1), and metastability is simple to analyse (see also [2] for
the relation between metastability and cut-off).

Indeed, for each N , define m− and m∗, both states in YN such that x− ∈
[m−,m− + 1

2N
), and x0 + 1

N1/4 ∈ [m∗,m∗ + 1
2N

) and consider TN the time needed
for the chain ξn starting at m− to arrive at m∗. Observe that TN is the time needed
to overcome the maximum when starting close to the location of the bottom of one
of the wells of f , or “tunnelling” time. The time TN is shown in [18] to satisfy that,
for each η > 0:

(i) P
(
eN(�f −η) < TN < eN(�f +η)

) −→
N→∞ 1, and (3)

(ii)
TN

E TN

L−→
N→∞ Exp(1), (4)

where �f = f (x0) − f (x−), Exp(1) denotes a unit mean exponential random
variable and the convergence in the last item refers to convergence in law. A
third statistical property of the chain ξn is the stability of the temporal means of
trajectories over long times RN (again, with respect to the small parameter 1/N in
this model), which, when starting from m− and before TN behave as if there were
only one well.

To state it precisely, let us consider the empirical process of time averages over
intervals of length R > 0:

AR(s) = 1

R

[s]+R∑

n=[s]+1

δξn,

where δx is the measure concentrated at x. For each Borel set B ⊂ [−1, 1] denote
AR(s;B) = AR(s)(B), that is the proportion of time that the chain spends in B

during the time interval
[[s] + 1, [s] + R

]
. Then, for suitable sequences RN → ∞

such that RN/eN�f → 0, for instance RN = eαN for α ∈ (0,�f ), and if D ⊂
[−1, 1] is an open set that contains m−, for each ρ > 0:

(iii) Pm−
(

inf
s<TN−RN

ARN
(s;D) > 1 − ρ, TN > RN

)
−→

N→∞ 1. (5)

The subindex in Px indicates that the initial condition is x.
A more complete analysis of the Curie–Weiss model can be obtained by

considering, instead of the magnetization chain, the full evolution of the spin system
through a spin flip dynamics for μN (see [36]).

In [18], the authors proposed the characterization of the phenomenon of metasta-
bility for systems with stochastic dynamics in terms of the three features (i), (ii)
and (iii) presented above. That approach, or “pathwise approach” was applied in
[29] to a class of processes given as solutions to stochastic differential equations
of the type (1) in dimension d > 1, where it is shown that they also exhibit the
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phenomenon of metastability as characterized by the properties corresponding to (i),
(ii) and (iii) above in that case. More precisely, consider X(t) the diffusion process
in R

d given as the solution in the Itô sense of the equation

dX(t) = −∇U
(
X(t)

)
dt + ε dB(t). (6)

The potential U : Rd → R is a C2 double well function having exactly three critical
points a, b and c with U(b) < U(a) < U(c) such that a and b are local minima
and c is a saddle point. Suppose furthermore that the determinant of the Hessian
matrix at the critical points does not vanish, that the standard conditions for the
equation (6) to have a unique strong solution hold, and that U increases sufficiently
fast as |x| → ∞. Under those assumptions, as ε → 0 (i), (ii) and (iii) hold for
Xt . The corresponding tunnelling time Tε is here the time needed to arrive at a
neighborhood of b starting from a. In particular, its expectation satisfies

ε2 log E Tε −→
ε→0

2
(
U(c) − U(a)

)
,

and the corresponding Rε in (iii) can be taken as Rε = exp(α/ε2), for any
0 < α < 2

(
U(c) − U(a)

)
. The main ingredient in the proofs in [29] are the

large deviations estimates of Freidlin and Wentzell, [28], which permit to obtain
asymptotic estimates for the exit times also in cases where the drift coefficient in (6)
has a much more complicated structure of critical points. Freidlin and Wentzell
theory yields asymptotic logarithmic equivalence for the tunnelling times, as stated
above. More recently, precise estimates of the type provided by Kramers including
the corresponding prefactor K as in (2), which is known as Eyring–Kramers
formula, were obtained for the expectation of the tunnelling times in this type of
models with the aid of potential theoretical tools. We refer to [9] or [10] for further
details and precise results on this approach.

Let us turn now to consider stochastic perturbations of the partial differential
equation

∂tu = �u − V ′(u), (7)

where � denotes the Laplacian and V ′ is the derivative of a double well polynomial.
The above is a well studied equation that appears in several contexts that have
in common the coexistence of two phases. It is for instance a phenomenological
model for the formation and evolution of interfaces in binary alloys. In that case,
u represents the relative concentration of one of the components. It is referred to
as well as Allen–Cahn equation in the literature, after [1], where this phenomenon
is studied. This type of reaction-diffusion equation appears also as the macroscopic
limit for a system of interacting spins obtained by superposing a spin flip dynamics
of the type considered in Sect. 4 (reaction term) and a fast stirring process (the
diffusion term), responsible for some sort of propagation of chaos property, with
the validity of a deterministic limit for the magnetization, the fluctuations being
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described by a suitable space-time Gaussian process. This family, usually called
“Glauber+Kawasaki process”, was introduced in [19]. In spite of partial results, the
metastability description, as pointed out in the notes at the end of Ch. 5 in [47]
appears not yet completely answered. (See e.g. [12, 26, 33], and [10].)

Let us recall the main features of the equation (7) in the case x ∈ [0, L]. It is
presented in [32] as an example of a dynamical system in an infinite dimensional
space, whose structure is analogous to that considered before in R

d .
To simplify the exposition, we consider Dirichlet boundary conditions u(0, t) =

u(L, t) = 0 and V (u) = u4

4 − u2

2 . The equation is known to have a bounded
continuous solution for each continuous initial condition ϕ. The notation u(x, t;ϕ)

is used when the initial condition is to be emphasized. One may think u(·, t;ϕ) as a
function of t taking values in some convenient subspace of C[0, L], and write (7) in
a form that resembles the form already considered in the finite dimensional situation:

∂tu = −δS(u)

δu
, (8)

where the “potential” now is the functional defined for ψ ∈ H 1[0, L] by

S(ψ) =
∫ L

0
{1

2
(ψ ′)2 + V (ψ)} dx,

and the derivative is a functional one. We refer to [14] and [32] for a detailed analysis
of the functional S and the resulting dynamical system given by (8). Its main features
can be summarized as follows:

• If Nπ < L ≤ (N + 1)π , then

The functional S has 2N + 1 critical points: ±m1,±m2, · · · ,±mN and 0.
They are the stationary solutions of (7).
Each ±mn has n nodes, and S(±m1) < S(±m2) < · · · < S(±mN) < 0 =
S(0). In particular, if L > π , m1 and −m1 are the two minimizers of S, and
the rest are saddle points.

• S
(
u(·, t)) is a decreasing function of t , and u(·, t) → m as t → ∞, for some

critical point m.
• The minima ±m1 are asymptotically stable in the sense of Lyapunov and their

domains of attraction D± are open sets, when considering the sup norm in
C[0, L].
We suppose that L > π in what follows; the general picture is thus similar to that

of the finite dimensional case: the dynamics is that of a gradient system under the
effect of a potential with two minima. It has several saddle points, which are located
in the separatrix of the domains of attraction of the minimizers.

It results then natural to consider the equations (7) under the effect of small noise,
to account for the internal fluctuations and for possible small neglected terms in
the derivation of the equations when obtained from phenomenological models. The
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perturbation given by an additive space time white noise Ẇ is an interesting first
instance, that was considered by W. Faris and G. Jona–Lasinio in the pioneering
paper [27]:

{
∂tu(x, t) = ∂xxu(x, t) − V ′(u(x, t)) + ε Ẇ ,

u(0, t) = u(L, t) = 0.
(9)

As remarked in [27], (9) can be seen as a dynamical model associated with the
energy functional S whose invariant measure is, at least formally, proportional to
exp
(− 2

ε2 S(u)
)
, what motivates the study of infinite dimensional diffusions.

To give a rigorous meaning to equation (9), an equivalent integral equation
is derived in terms of the integral operator (∂t − ∂xx)

−1. The term resulting
from applying this operator to Ẇ is a Gaussian process with continuous Hölder
covariance in both variables (x, t), having thus continuous paths with probability
one. A standard fixed point argument yields uniqueness and existence of the solution
as a process u(ε)(x, t;ϕ) for each ϕ ∈ C[0, L], with paths in C

([0, L] × [0, T ])
a.s. for a small T , result that can be extended to any T > 0 using the particular
features of the equation. It is seen to be a Markovian process over C[0, L]. The
detailed proofs are presented in [27], where large deviation estimates are obtained
for u(ε), as ε → 0. Those generalize the Wentzell and Friedlin estimates for small
perturbations of dynamical systems in R

d . The computation of the probabilities of
small deviations from the deterministic trajectories over finite time intervals are used
in [27] to study the tunnelling, that is, the event that a trajectory starting close to one
of the minimizers passes to be close to the other minimizer. In particular, estimations
for the time needed for that event are obtained, which suggest that the passage takes
place through a small neighborhood of the saddles with lower potential, that is,
±m2. In subsequent works the picture was indeed completed, to show that u(ε) has
a metastable behavior similar to the finite dimensional models considered in [29].
We need to introduce some definitions before stating the corresponding results and
references.

We suppose without further mention that the considered functions in C[0, L]
satisfy Dirichlet boundary conditions, and that the norm in this space is the sup
norm. For each ψ ∈ C[0, L] let Bc(ψ) denote the ball in that space centred at ψ

with radius c. Let Tε be the time of arrival at a neighborhood of −m1 by the process
u(ε):

Tε = inf{t ≥ 0 : u(ε)(·, t;ϕ) ∈ Bc(−m1)}.

It depends on the initial condition, which is (sometimes) included in the notation as
sub index in the corresponding probability.

Define the normalization term γε implicitly by

Pm1{Tε > γε} = 1

e
,



Metastability: A Brief Introduction Through Three Examples 91

and let � = S(m2) − S(m1). Then, metastability holds for the process u(ε), as
detailed below:

(i) Given any η > 0,

Pϕ

(
e
(

2 �−η

ε2

)

< Tε < e
(

2 �+η

ε2

))
→ 1 as ε → 0,

uniformly for ϕ ∈ Bc(m1), for sufficiently small c.

(ii) Em1
Tε

γε
→ 1 as ε → 0 and Pm1

(
Tε

γε
> t
)

→ e−t as ε → 0.

(iii) There exists a sequence Rε → ∞ and Rε

γε
→ 0 as ε → 0 such that for each

δ > 0 and f : C[0, L] → R a continuous and bounded function,

Pϕ

(
sup

0≤t≤Tε−2 Rε

∣
∣
∣

1

Rε

∫ t+Rε

t

f
(
u(ε)(·, s))− f (m1) ds

∣
∣
∣ > δ

)
→ 0 as ε → 0.

Item (i) follows from the large deviation estimates obtained in [27]. The
convergence of the normalized tunnelling time stated in (ii) is proved in [39] using
a coupling of trajectories starting at different points and the particular features of
S. The statement (iii) concerning the stability of the temporal averages is proved
in [11], where it is observed that the sequence Rε can be indeed taken as Rε =
exp(α/ε2), for 0 < α < 2

(
S(m2) − S(m1)

)
. As suggested by the previous results,

it is proved also that the tunnelling occurs trough a neighborhood of ±m2, which
are the saddles with lowest value of S.

Accurate estimates of the tunnelling times, that result similar to the Eyring–
Kramers formula, were deduced in [3] as a result of approximating the equation
by a system of coupled diffusions for which the potential approach can be used, and
yield the prefactor term.

More recently, motivated by reported behavior of climate models, small pertur-
bations of dynamical systems with non Gaussian Lévy noise have been considered,
both in a finite and infinite dimensions. The noise does not have exponential
moments in this case, and thus the large deviation estimates are not valid, and
different techniques are needed. The normalized exit times from neighborhood of
the attractors are seen to converge to an exponential random variable as well in
this case, but the magnitude of the expectation results to be of order ε−ρ , with
ρ > 0 depending on the precise characteristics of the Lévy noise, in contrast with
the exponentially long times of the Gaussian case. For more results concerning this
models, we refer to [20, 21] and [34], and the references therein.

3 Harris Contact Process

Introduced by Harris in [31], the contact process is a very simple stochastic model
for the propagation of an infection. Each vertex of a locally finite connected graph
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G = (V ,E)1 is identified with an individual, which can be infected or healthy. An
infected individual may infect, with rate λ, each of its healthy neighbors, or may
get healthy, with rate 1. This defines a Markov process on the state space of all
possible configurations ξ , where we set ξ(x) = 1 if x is infected and ξ(x) = 0 if x

is healthy. A configuration is naturally identified with the set of infected individuals.
In the most studied case, the graph is determined by the cubic lattice V = Z

d with
an edge e = {x, y} between vertices x and y if and only if ‖x − y‖1 = 1, where
‖ · ‖1 refers to the usual �1-norm in R

d . In this case we write Ed for the set of edges.
This process has been extensively studied also on more general graphs, including

long range interactions on Z
d , trees, or a class of random graphs. For the general

theory we refer to [37, Ch. VI] and [38, Part I], as the two classical general
references on the subject of interacting particle systems. Regarding dynamics on
random graphs, a monograph to be mentioned at this point is [23]. Other references
will be given below.

For the rigorous construction of the process, one may appeal to the standard
semigroup theory through an application of Hille-Yosida theorem, as in [37]. It
is nevertheless simpler and very useful to describe its construction via a “Harris
system”, as we do now. On a suitable probability space (�,A, P ) we take:

(a) {Ne : e ∈ E}, a system of i.i.d. Poisson processes of rate λ.
(b) {Nx : x ∈ V }, a system of i.i.d. Poisson processes of rate 1, assumed to be

independent of the system in (a).

Given these processes, that constitute what we name a Harris system, for times
0 ≤ s < t , and x, y ∈ V , a path γ from (x, s) to (y, t) is a càdlàg2 function from
[s, t] to V for which there exist times t0 = s < t1 < · · · < tk = t and sites
x0 = x, x1, . . . , xk−1 = y in Z

d such that γ (u) = xi for u ∈ [ti , ti+1) and

• Nxi
∩ [ti , ti+1] = ∅ for i = 0, . . . , k − 1;

• {xi, xi+1} ∈ E for i = 0, . . . , k − 2;
• ti ∈ N{xi−1,xi } for i = 1, . . . , k − 1.

For A ⊂ V , the contact process starting from the initial configuration A is
defined as

ξA
t = {y : there exists a path from (x, 0) to (y, t) for some x ∈ A}. (10)

(We omit the initial configuration from the notation when this is clear from the
context.) The big interest in this process has to do with the fact that it presents
a dynamical phase transition, i.e. its dynamical and ergodic behavior change
drastically as one varies the parameter λ. If (V ,E) = (Zd ,Ed), there exists a critical
value of the infection parameter λc(d) ∈ (0,∞) so that a non-trivial invariant

1V is the set of vertices and E denotes the set of unordered edges.
2Right continuous, with left limits.
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measure μλ exists if and only if λ > λc(d) (of course the Dirac point mass at
the empty configuration is always an invariant measure).

The contact process has various special properties, including monotonicity (in
the stochastic sense) in the initial configuration (also called attractiveness) and in the
rate λ. Indeed, the process has the following additivity property: ξA∪B

t = ξA
t ∪ ξB

t

for all A,B and t , which of course implies the attractiveness. The measure μλ is the
limit (in law) of ξZt as t → ∞. The process also enjoys the self-duality property:

P(ξA
t ∩ B �= ∅) = P(ξB

t ∩ A �= ∅), (11)

for all A,B ⊂ V and all t > 0. All these properties are easily verified if we consider
the construction via the Harris system. One has λc(d) = inf{λ : P(ξ

{0}
t �= ∅ ∀t) >

0} and

μλ{η : η(x) = 1 for some x ∈ B} = P(τB = ∞), (12)

for each finite set B, where

τB = inf{t : ξB
t = ∅} (setting inf ∅ = ∞). (13)

In particular

ρλ := μλ{ξ : ξ(0) = 1} = P(τ {0} = ∞). (14)

If λ > λc(d), the measures μλ and δ∅ are the unique extremal invariant
measures of the contact process on Z

d , and for any starting configuration the process
converges in law to a mixture of them. This is the so-called Complete Convergence
Theorem, proved by Durrett for d = 1 (see [22] or Chapter VI in [37]). The
proof relies on a renormalization (block) argument. It is easy to understand why
this theorem should be expected in this case: if we consider the two processes ξ

{0}
t

and ξZt , built on the same Harris system, we see that on the event {τ {0} = ∞} they
coincide inside a random interval [�t , rt ] such that rt /t → α > 0 and �t/t → −α

almost surely as t → ∞, and where α is a positive constant, i.e.

ξ
{0}
t (x) = ξZt (x) ∀x ∈ [�t , rt ].

To see why this is true, observe first that two paths that cross in our Harris system
must meet, because we are taking d = 1 and the infections are of nearest neighbor
character. This implies that on the event {τ {0} > t} we have

max ξ
{0}
t = max ξ

Z−
t =: rt and min ξ

{0}
t = min ξ

Z+
t =: �t ,

where Z− = {x ∈ Z : z ≤ 0} and Z+ = {x ∈ Z : z ≥ 0}. The subadditive ergodic
theorem provides the a.s. limit mentioned before. As we guess from the above
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considerations, for any initial non-empty configuration A, the law of ξA
t converges

to P(τA = ∞)μλ + P(τA < ∞)δ∅.
The Complete Convergence Theorem holds for any d ≥ 2. This follows from

dynamical renormalization methods developed in [6] (built also on [4], which
deals with unoriented percolation), which play a crucial role for the verification
of metastability as described below. As before, renormalization refers to a consider-
ation of (well-connected) space-time blocks, but now the blocks are randomly and
dynamically constructed, which yields more flexibility. The dynamical renormaliza-
tion developed in [6] provides a finite volume criteria (therefore continuous in λ) for
the existence of infinite paths or survival. In particular, this implies that the process
dies out at criticality, for any d ≥ 1.

If we restrict the contact process to a finite spatial box �n = [−n, n]d , i.e. restrict
the Harris system to corresponding subgraph with vertices in �n, we end up with a
finite Markov chain ξn and

T�n := inf{t : ξn,t = ∅} (15)

is a.s. finite, for any initial configuration, i.e. δ∅ is the unique invariant measure.
Nevertheless, the behavior of this finite volume contact process is very different
according to λ < λc(d) or λ > λc(d). Assuming, to fix ideas, that all individuals
are initially infected, in the subcritical case, T�n/ log n converges to a constant
in probability (see [16] and [24]). On the other hand, if λ > λc(d), the time of
extinction grows exponentially in n, i.e.

lim
n→∞

1

n
log E T�n = c, (16)

for a positive and finite constant c (see [25] and [41]). Moreover, for large n the
process undergoes metastability before its extinction, the metastable state being
approximated by the restriction of μλ to {0, 1}�n . This was formulated as follows:

Theorem 1 Assume λ > λc(d) and start with all individuals in �n infected at time
0. Then (writing simply Tn for T�n):

(i) The sequence Tn/E Tn converges in distribution to a unit mean exponential
random variable.

(ii) There exist Rn → ∞ with Rn/E Tn → 0 as n → ∞ so that for each ε > 0
and each f : {0, 1}�n which depends on finitely many coordinates,

lim
n→∞ P

(
sup

s<Tn−2Rn

|An
Rn

(s, f ) − μλ(f )| ≤ ε, Tn > Rn

)
= 1, (17)

where

An
R(s, f ) = 1

R

∫ s+R

s

f (ξn,u)du. (18)
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Part (i) simply says that the extinction time is asymptotically unpredictable, while
part (ii) says that the system “thermalizes” at a state close to μλ for large values
of n. Theorem 1 in the case d = 1 goes back to [18] and [52]. The proof of (i)
and the validity of (16) in the higher dimensional case are due to Mountford [40],
who developed, exploiting the Bezuidenhout–Grimmett renormalization, a totally
new way of looking at the regeneration property that is behind the result. This
is contained in the proposition below, which provided the main ingredient for the
loss of memory included in part (i) of Theorem 1, stating that with overwhelming
probability, and in a time scale much shorter than that in which the finite process
gets extinct, the process forgets its initial configuration. With suitable quantitative
estimates this was used in [56] to get (ii) for d ≥ 2.

Notation In the following we use 1 to denote the (initial) configuration with
everyone infected, ξ(x) = 1 for all x.

Proposition 1 (Regeneration [40]) There exist sequences {an} and {bn} both
tending to infinity, so that

(a) bn/an → ∞;
(b) supη∈{0,1}�n P (ξ

1
an

�= ξ
η
an

, T
η
n > an) → 0;

(c) P(T
1
n > bn) → 1.

It is known since [48] and [57] that the contact process on more general graphs
has a richer phase transition structure. One good example is the infinite d-ary
tree T

d (all vertices have degree d + 1). The process can survive globally, i.e.
P(τ {x} = ∞) > 0 and yet the infection does not return to site x infinitely often,
P(lim supt→∞ ξ

{x}
t = 1) = 0. This implies the existence of two different critical

parameters 0 < λ1 = λ1(T
d) < λ2 = λ2(T

d) < ∞ (which coincided in the case of
Z

d ):

λ1 = sup{λ : P(τ {x} < ∞) = 1},
λ2 = inf{λ : P(lim sup

t→∞
ξx
t = 1) > 0}.

It is also known that at λ1 the process dies out, and that at λ2 it survives only
globally. The type of Complete Convergence Theorem mentioned earlier holds
whenever λ > λ2 for T

d ; in particular, for λ > λ2 the process has only two
extremal invariant measures, as in the whole supercritical region for Z

d , a result
initially proven in [58]. See also [51] for a different proof and [50] for a description
of an even much richer ergodic behavior for the contact process on a more general
class of graphs.

It is natural to ask about the extension of the previous results on metastability to
the context of Td . Stacey [57] considered the restriction of the contact process to
T

d
n, the rooted d-ary tree of height n: the root has degree d, the leafs have degree 1,

other vertices have degree d + 1 (like a branching tree with d descendants stopped
at the nth generation). His results indicated a behavior similar to that of the contact
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process on �n. In particular, if λ < λ2, and if we start with everyone infected, the
extinction time TTd

n
is of order n, which is the exact analogue of the corresponding

result in �n i.e. TTd
n
/ log |Td

n| tends in probability to a suitable constant, as n → ∞.
The results in [57] for the case λ > λ2 were complemented in [17] and then in [42].
One of the related results in these papers is the following:

Theorem 2 ([17, 42]) Consider the contact process on T
d
n with λ > λ2 as before,

and start with all individuals in T
d
n infected at time 0. Then:

(a) There exists a finite, positive constant c so that limn→∞ 1
|Td

n | log E TTd
n

= c.

(b) As n → ∞, TTd
n
/E TTd

n
converges in distribution to a unit mean exponential

random variable.

Remark Investigating a larger class of finite random graphs with bounded degree,
Theorem 1.2 in [44] sheds new insight into the breaking point between the
logarithmic and exponential behaviors, as in parts (a) and (b) in Theorem 2. They
consider a sequence of random graphs for which the breaking point is λ1(T

d),
characterized as the limiting graph (in some sense) of the finite graphs under
consideration. This fits well to the result in Theorem 2, in which case the limiting
graph is the so called canopy tree, for which λ1 = λ2 = λ2(T)

There is very active research on the behavior of the contact process on a class
of (finite) random graphs (Vn,En). In the spirit of part (ii) of Theorem 1, in [43],
the authors study the empirical density of the process at times tn which are much
shorter than the typical extinction time TVn . Another interesting situation comes
from the consideration of the contact process on the preferential attachment graph
(see [5, 13]) and other finite graphs with power law degree distribution. In these
cases, the metastability manifests itself through the behavior of the extinction time
no matter how small the infection parameter λ > 0 is (i.e. λc = 0); see [15].

4 Kinetic Ising Model

A well known example of metastability that arises near a phase transition has to
do with ferromagnetic systems below the Curie critical temperature Tc and the
coexistence of two different phases for a null magnetic field. In a real ferromagnet
one frequently observes the well known hysteresis loop: if we start with a small field
h < 0 and slowly increase it to zero and to small positive values, the magnetization
naturally increases but remains negative, in a situation of apparent equilibrium. This
remains valid up to a certain value h∗, called coercive field, for which there is a
decay to a stable state with positive magnetization. Reversing the procedure one
observes the analogous behavior with reversed signs. Natural questions are: can one
describe this “metastable” magnetization? Can we say something about the time it
takes for the transition to stability?
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To discuss this in a mathematical precise form, one naturally considers stochastic
models for a ferromagnet. The simplest such example is the famous Ising model,
here considered on the two-dimensional lattice (Z2,E2), with E

2 as in the previous
section. In the Ising model, to each vertex x in the graph we associate a random
variable σx that can take only two values +1 or −1, simulating a spin with two
possible orientations.

Given a finite set � ⊂ Z
2 we consider an energy function H�,h(σ ) on the space

of all possible configurations 
� = {−1,+1}�. In order to model a ferromagnet,
the energy favors the alignment of spins at nearest neighbor vertices. We also assume
the existence of a (constant) magnetic field which also favors alignment in a given
direction. We consider two situations: (i) a fixed configuration σ̄ outside �; (ii)
periodic boundary conditions, i.e. � = [−N,N ]2 taken as a two dimensional
discrete torus. In the first case we write

H�,h,σ̄ (σ ) = −1

2

∑

x,y⊂�,
‖x−y‖1=1

σ(x)σ (y)− h

2

∑

x∈�

σ(x)− 1

2

∑

x∈�,y /∈�,
‖x−y‖1=1

σ(x)σ̄ (y), (19)

where σ̄ represents a boundary condition.3 In the periodic case, or when describing
something that applies to both cases, we simply write H�,h. The energy is
modulated by a parameter β > 0, so that 1/β represents the temperature, thus
defining the corresponding finite volume Gibbs measure:

μ�,β,h,σ̄ (σ ) = e−βH�,h,σ̄ (σ )

Z�,β,h,σ̄

, σ ∈ 
�,

with Z�,β,h,σ̄ the normalizing constant that turns μ�,β,h,σ̄ into a probability
measure on 
�. The interest of the Ising model comes from its simplicity and
the fact that it presents a phase transition when h = 0: there exists βc ∈ (0,∞)

so that for β > βc (low temperature) there are multiple infinite volume Gibbs
measures corresponding to the interaction energy described before; the pure phases
are represented by the extremal Gibbs measures.

This phase transition can also be formulated by ignoring external conditions, but
looking at what happens when we vary h. When β > βc there is a spontaneous
magnetization: the average value of the spin at the origin in the limit as N → ∞ is
a function m(β, h) that tends to m+(β) > 0 (−m+(β)) as h tends to zero through
positive (negative, respectively). This was originally obtained by Peierls (1936) and
the exact value of βc for the Ising model in Z

2 was obtained by Onsager (1944),
proving that m+(βc) = 0 in this case.

Metastability is a genuinely dynamical phenomenon. In order to describe it
within the same frame of the other examples, we fix a stochastic process that has
the above Gibbs measure μ�,β,h as its unique invariant measure. Usually called

3We write h/2 instead of h in (19) just to match with the notation in [30, 55].
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kinetic Ising models, there are plenty of choices, the simplest being the spin flip
Markov chains, i.e. the transitions are always of the type σ to σx , where

σx(y) =
{−σ(x) if y = x,

σ (y) if y �= x,

leading to an irreducible continuous time Markov chain on 
�, with infinitesimal
generator

Lf (σ) =
∑

x∈�

c(σ, σ x){f (σx) − f (σ)},

where c(σ, σ x) are the flip rates.
One example is the so-called Metropolis chain, with jump rates

c(σ, σ x) = e
−β
[
H�,h(σx)−H�,h(σ )

]

+ , σ ∈ 
�, x ∈ �,

where [a]+ = max{a, 0}. Since these rates satisfy

μ�,β,h(σ )c(σ, σ x) = μ�,β,h(σ
x)c(σ x, σ ),

μ�,β,h is the unique invariant probability measure for the chain (indeed the
dynamics under μ�,β,h is time reversible).

The pioneer work dealing with the pathwise description for metastability in the
context of kinetic Ising models came from Neves and Schonmann (see [45]). They
considered the situation of fixed N , with periodic boundary condition on �N , h >

0, and considered the low temperature limit β → ∞.4 The interesting range is
0 < h < 2. In this range, in [45, 46, 53] the authors give a precise description of
the critical droplet, the typical time and typical pattern of metastability in this case,
starting e.g. from the configuration with all spins down −1. Among other things,
they prove the analogue of Theorem 1. The intuition is simple: since β → ∞, and
we have a positive magnetic field, the finite volume Gibbs measure tends to δ+1
the Dirac point mass at the configuration σ(x) = 1 for all x which we denote by
+1. The “critical droplet” has a well defined shape: a rectangle of pluses with sides
L×(L − 1) with a +1 attached to one of the largest sides, where L = �2/h� (and of
course we need N suitably large), and for technical reasons assume that 2/h is not
an integer. The picture in this case is very similar to that of Wentzell-Freidlin regime
with a double well potential: before overcoming the barrier of a critical droplet the
process quickly returns to a neighborhood of −1 where it spends most time. Once a
square L × L is formed there is a quick approach to +1.

4This is not the situation described in the previous page where h → 0 and the volume must grow.
It is much simpler and opened the door to a huge amount of work in the mathematical description.
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Since [45], there has been a huge amount of work by several groups of
researchers, and we refer to the monographs [47] (Ch. 6 and 7, up to 2004) and
[10] (more recent), as well as to the introduction of [7] for reviews and more detailed
information. These works employ different techniques, including large deviations in
the spirit of Freidlin-Wentzell theory or tools from potential theory. In some cases a
great deal of sophisticated analysis is demanded. In some of these situations, like in
the example we just discussed, the metastable state is quite concentrated in a small
subset of the configuration space, but this is not the case in some other regimes, as
the one described below.

A fundamental contribution came with Schonmann and Shlosman. In [55] the
authors considered the infinite volume kinetic Ising model in the vicinity of the
phase-coexistence line, i.e. β > βc and very small magnetic field h > 0. Let μ−
and μ+ denote the two extremal Gibbs measures for the given β and h = 0, with
μ+(σ (x)) = m+(β) > 0. They investigated the approach to equilibrium for the
dynamics, with an initial measure that is stochastically smaller than μ− in the FKG
sense. A number �c ∈ (0,+∞) is determined so that for h > 0 small and t = e�/h

with � < �c the average values of local observables at time t are close to those of
a metastable state, near the minus phase μ− (in spite of the presence of a positive
magnetic field). On the other hand, if � > �c (and h > 0 small) the averages at
time t = e�/h are close to those in the plus phase μ+. The value of �c is determined
through a remarkable expression in terms of the equilibrium quantities:

�c = �c(β) = β(wβ)2

12m+(β)
, (20)

where wβ is the surface tension of a Wulff shape of volume one (see [55]) and
m+(β) is the spontaneous magnetization mentioned before.

In order to complete the metastability picture within the pathwise approach it
would be interesting to have a result similar to that in Theorem 1, describing an
asymptotically exponential tunnelling time. For this it is necessary to restrict the
process to a finite volume that suitably grows as h decreases. This matter has
been considered in [30] for the dynamics with fixed minus external condition and
�h ⊂ Z

2 with volume (cardinality) of order (C/h)2. The result is proven when
�h is obtained as the intersection with Z

2 of a Wulff shape of area (C/h)2 in
R

2 for C large enough. In this simpler context it is possible to define a suitable
metastable state, whose typical configurations have small plus-phase droplets in a
see of minus spins, and it is possible to verify that the transition to equilibrium
happens after an approximate exponential time. For a precise statement we refer to
[30]. The metastable state is defined in terms of a suitably restricted Gibbs measure,
i.e. μ�h,h,− conditioned on a convenient set R that does not allow for large plus-
phase contours. A crucial point consists in showing that the dynamics restricted
to R relaxes to a vicinity of the conditioned Gibbs measure in a time scale that is
much shorter than the one needed to exit. Here the crucial estimates come from
[8] (see also [7]). We should remark that the “escape” or “tunnelling” time Tβ,h

that plays the important role is not exactly the exit time from R; it involves a further
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randomization, depending on the time spent in another set S, which loosely speaking
indicates the existence of a suitably large plus-phase droplet. With these ingredients
one is able to obtain a result that resembles that in Theorem 1, i.e. there exists th so
that, for all t > 0

lim
h→0

P

(
Tβ,h

th
> t

)

= e−t (21)

and (see (20))

lim
h→0

h log(th) = 3�c.

Notice that in this restricted setup the “escape time” is much larger than that
suggested by the analysis of the infinite dynamics. It is not hard to understand why
this should be true; in infinite (or very large) volume, a plus-phase droplet can appear
anywhere and grow, reaching the origin in a shorter time. (See [30, 54, 55] for more
details.)

Acknowledgements M. E. Vares acknowledges support of CNPq (grant 305075/2016-0) and
FAPERJ (grant E-26/203.048/2016).

References

1. S. M. Allen and J. W. Cahn: A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening. Acta Metallurgica 27, 1085–1095 (1979)

2. J. Barrera, O. Bertoncini, R. Fernández: Abrupt convergence and escape behavior for birth and
death chains. J. Stat. Phys. 137 (4), 595–623 (2009)

3. F. Barret: Sharp asymptotics of metastable transition times for one dimensional spdes. Ann.
Inst. H. Poincaré Probab. Statist. 51 (1), 129–166 (2015)

4. D. J. Barsky, G. Grimmett, C. M. Newman: Percolation in half-spaces: equality of critical
probabilities and continuity of the percolation probability. Probab. Theory Relat. Fields 90 (1),
111–148 (1991)

5. N. Berger, C. Borgs, J. T. Chayes, A. Saberi: Asymptotic behavior and distributional limits of
preferential attachment graphs. Ann. Probab. 42, 1–40 (2014)

6. C. Bezuidenhout, G. Grimmett: The critical contact process dies out. Ann. Probab.18 (4), 1462–
1482 (1990)

7. A. Bianchi, A. Gaudillière: Metastable states, quasi-stationary distributions and soft measures.
Stochastic Process. Appl. 126 (6), 1622–1680 (2016)

8. A. Bianchi, A. Gaudillière, P. Milanesi: On soft capacities, quasi-stationary distributions and
the pathwise approach to metastability. arXiv:1807.11233

9. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein: Metastability in reversible diffusion
processes I: Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6, 399–424
(2004)

10. A. Bovier, F. den Hollander: Metastability: A potential theoretic approach. Springer (2015)
11. S. Brassesco: Some results on small random perturbations of an infinite dimensional dynamical

system. Stoch. Proc. Appl. 38, 33–53 (1991)



Metastability: A Brief Introduction Through Three Examples 101

12. S. Brassesco, E. Presutti, V. Sidoravicius, M. E. Vares: Ergodicity of a Glauber+Kawasaki
process with metastable states. Markov Proc. Relat. Fields 6 (2), 181–203 (2000)

13. V. H. Can. Metastability for the contact process on the preferential attachment graph. Internet
Math. 45pp. (2017)

14. N. Chafee and E. F. Infante: Bifurcation and stability for a nonlinear parabolic partial
differential equation. Bull. Am. Math. Soc.80, 49–52 (1974)

15. S. Chatterjee, R. Durrett: Contact process on random graphs with degree power law distribution
have critical value zero. Ann. Probab. 37, 2332–2356 (2009)

16. J. W. Chen: The contact process on a finite system in higher dimensions, Chinese J. Contemp.
Math. 15 13–20 (1994)

17. M. Cramston, T. Mountford, J.-C. Mourrat, D. Valesin: The contact process on finite homoge-
neous trees revisited. Alea 11 (1), 385–408 (2014)

18. M. Cassandro, A. Galves, E. Olivieri, M. E. Vares: Metastable behaviour of stochastic
dynamics: a pathwise approach. J. Stat. Phys. 35, 603–634 (1984)

19. A. De Masi, P. A. Ferrari, and J. L. Lebowitz: Reaction-diffusion equations for interacting
particle systems. J. Stat. Phys. 44, 589–644 (1986)

20. A. Debussche, M. Hoegele, and P. Imkeller: Asymptotic first exit times of the Chafee-Infante
equation with small heavy-tailed Lévy noise. Electron. Commun. Probab. 16, 213–225 (2011)

21. A. Debussche, M. Högele, and P. Imkeller: The Dynamics of Nonlinear Reaction-Diffusion
Equations with Small Lévy Noise, Lecture Notes in Mathematics 2085, Springer (2013)

22. R. Durrett: On the growth of one dimensional contact process. Ann. Probab. 8 (5), 890–907
(1980)

23. R. Durrett: Random Graph Dyamics. Cambridge Univ. Press, Cambridge (2007)
24. R. Durrett, X-F. Liu: The contact process on a finite set. Ann. Probab. 16 (3), 1158–1173 (1988)
25. R. Durrett, R. H. Schonmann: The contact process on a finite set II. Ann.Probab. 16 (4), 1570–

1583 (1988)
26. J. Farfan, C. Landim, K. Tsunoda: Static large deviations for a reaction-diffusion model.

arXiv:1606.07227 (2016)
27. W. G. Faris and G. Jona-Lasinio: Large fluctuations for a nonlinear heat equation with noise.

J. Phys. A 15, 3025–3055 (1982)
28. M. I. Freidlin and A. D. Wentzell: Random Perturbations of Dynamical Systems. Grundlehren

der mathematischen Wissenschaften. Springer, Berlin- Heidelberg (1998)
29. A. Galves, E. Olivieri, and M. E. Vares: Metastability for a class of dynamical systems subject

to small random perturbations. Ann. Probab. 15, 1288–1305 (1987)
30. A. Gaudillière, P. Milanesi, M. E. Vares. Asymptotic exponential law for the transition

time to equilibrium of the metastable kinetic Ising model with vanishing magnetic field.
arXiv:1809.07044

31. T. Harris: Contact interactions on a lattice. Ann. Probab. 2, 969–988 (1974)
32. D. Henry: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics

840, Berlin-Heidelberg-New York: Springer-Verlag., (1981)
33. A. Hinojosa: Exit time for a reaction diffusion model. Markov Processes and Related Filelds

10 (4), 705–744 (2005)
34. M. Högele and I. Pavlyukevich: Metastability in a class of hyperbolic dynamical systems

perturbed by heavy-tailed Lévy type noise. Stochastics and Dynamics 15(3) (2015)
35. H. A. Kramers: Brownian motion in a field of force and the diffusion model of chemical

reactions. Physica 7 (4), 284–304 (1940)
36. D. A. Levin, M. Luczak, and Y. Peres: Glauber dynamics for the Mean-field Ising Model:

cut-off, critical power law, and metastability. Probab. Theory Rel. Fields 146, 233–265 (2010)
37. T. M. Liggett: Interacting Particle Systems. Springer, New York (1985)
38. T. M. Liggett: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes.

Springer, Berlin (1999)
39. F. Martinelli, E. Olivieri, and E. Scoppola: Small random perturbations of finite and infinite-

dimensional dynamical systems: Unpredictability of exit times. Journal of Statistical Physics
55, 477–504 (1989)



102 S. Brassesco and M. E. Vares

40. T. S. Mountford: A metastable result for the finite multidimensional contact process. Can.
Math. Bull. 36 (2), 216–226 (1993)

41. T. S. Mountford: Existence of a constant for finite system extinction. J. Stat. Phys. 96 (5/6),
1331–1341 (1999)

42. T. Mountford, J.-C. Mourrat, D. Valesin, Q. Yao: Exponential extinction time of the contact
process on finite graphs. Stoch. Proc. Appl. 216, 1974–2013 (2016)

43. T. Mountford, D. Valesin, Q. Yao: Metastable densities for the contact process on power law
random graphs. Electron. J. Probab. 18, 1–36 (2013)

44. J.-C. Mourrat, D. Valesin: Phase transition of the contact process on random regular graphs.
Electron. J. Probab.21, 1–17 (2016)

45. E. J. Neves, R. H. Schonmann: Critical droplets and metastability for a Glauber dynamics at
very low temperatures. Commun. Math. Phys. 137, 209–230 (1991)

46. E. J. Neves, R. H. Schonmann: Behaviour of droplets for a class of Glauber dynamics at very
low temperatures. Probab. Theory Relat. Fields 91, 331–354 (1992)

47. E. Olivieri, M. E. Vares: Large deviations and metastability. Cambridge University Press (2005)
48. R. Pemantle: The contact process on trees. Ann. Probab. 20, 2089–2116 (1992)
49. O. Penrose, J. L. Lebowitz: Rigorous treatment of metastable states in the van der Waals-

Maxwell Theory. J. Stat. Phys. 3, 211–241 (1971)
50. M. Salzano: The contact process on graphs. PhD thesis, UCLA, (2000). (Reprinted Publicações

Matemáticas. IMPA, 2003.)
51. M. Salzano, R. Schonmann: A new proof that for the contact process on homogeneous trees

local survival implies complete convergence. Ann. Probab. 26, 1251–1258 (1998)
52. R. H. Schonmann: Metastability for the contact process. J. Stat. Phys. 41 (3/4), 445–484 (1985)
53. R. H. Schonmann: The pattern of escape from metastability of a stochastic Ising model.

Commun. Math. Phys. 147, 231–240 (1992)
54. R. H. Schonmann: Theorems and conjectures on the droplet driven relaxation of stochastic

Ising model. In Probability and Phase Transition, ed. G. Grimmett. NATO ASI Series.
Dordrecht, Kluwer, 265–301 (1994)

55. R. H. Schonmann, S. Shlosman: Wulff droplets and the metastable relaxation of kinetic Ising
models. Commun. Math. Phys.194 (2), 389–462 (1998)

56. A. Simonis: Metastability of the d-dimensional contact process. J. Stat. Phys. 83 (5/6), 1225–
1239 (1996)

57. M. Stacey: The existence of an intermediate phase for the contact process on tress. Ann. Probab.
24, 1711–1726 (1996)

58. Y. Zhang: The complete convergence theorem of the contact process on trees. Ann. Probab. 24,
1408–1443 (1996)



How Mathematics Is Changing the World

Maria J. Esteban

Abstract Mathematics was always, and is now more than ever, a key technology
for innovation. Not many people would understand this sentence, because there
is a wide-spread belief that Mathematics is not really useful except for teaching
purposes. But actually the above statement can be made without any problem,
because Mathematics is playing an increasing role in the development of new
technologies, and its influence is only going to increase in the future. In the talk
given in the WMWM meeting I tried to “prove” the above statements with examples.

1 The Message Behind the Talk Given at the WM2

There are three keywords to explain why Mathematics is so important for innova-
tion. And they are: Modeling, Simulation and Optimization (MSO).

Modeling means that using mathematical language, mathematical functions,
mathematical equations, it is possible to describe natural (physical, mechanical,
chemical, biological, . . . ) phenomena and their evolution. Once a phenomenon
is described by a given model, this model can be studied in order to understand
how it will develop in different conditions and under different influences. A large
class of possible situations can be taken into consideration. In each of those,
the phenomenon or process can be studied mathematically, but more often using
discretization and computational means. This is what is called Simulation. One
can simulate a given process, in a given situation, with the help of a model and a
computer (or many computers). Once this is done, one can also optimize over the
conditions under which the process takes place. That is, one can choose a criterion,
or several ones, to select the optimal result. This can consist in optimizing time, cost,
energy, etc. This last part of the full process is what is naturally called Optimization.
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Let us discuss Modeling in more detail. What is it? First, a given phenomenon
or process is detailed in a quantitative way, in the form of equations, or functions, or
mathematics objects and their relations. These equations can describe the behavior
of fluids, solids, waves, sound, heat, the deformation of a solid, the combustion of an
engine, or the evolution of an epidemic of some illness in a given medium. This is
what modeling can do for natural phenomena, to quantify the relations between the
different aspects of what one wants to describe: force, speed, deformation, intensity,
mass, energy, etc. But modeling can be also used to describe a process, like for
instance how to clean a blurred image or an old movie. Or how to organize a
network’s functioning in an optimal way. Or how to code information on internet
securely.

In the past, many physical and mechanical processes were dealt with “by hand”
and by building and using prototypes. Modeling allows us to overcome that costly
and lengthy process and becomes a way to accelerate the birth and development of
new technologies. In some cases it is not only a case of reducing the cost, or the
time needed to build a new object, a plane, a machine, a car. . . but in many cases
prototyping is more and more out of reach, or too dangerous, while modeling is
always possible. Other possible uses of modeling can help, for instance, to describe
the organization of a large set of objects or people, like the planes and the personnel
of a big transportation company. This is what is called logistics.

Modeling can be done in a deterministic way, using equations or functions
relating different variables, or it can be done using probabilistic or statistical
functions and concepts when there is some randomness in the underlying process.
Or using other concepts coming from various fields of Mathematics. The situation
will ask for one or another, and often various approaches are possible and different
groups will use different approaches to address the same question. When modeling
is done to describe a problem in a scientific field which is not Mathematics, like
Physics, or Biology for instance, this work is often done by specialists in that field,
or by them and mathematicians together. This is natural since in order to depict a
phenomenon well, one has to understand the underlying processes, and for that a
specialist is often needed. Also, the phenomena or processes one wants to model are
frequently too complex to be treated, and so one has to choose how to simplify the
modeling in a way that it still makes sense. This means that the important part of the
model has to be kept in it, and some other parts, the less relevant details, those that
will not play an important role in the result, at least not in a significant way, maybe
be forgotten, at least for some time. This again has to be decided by specialists who
know what is the most important part that has to be kept, and what can be neglected
in the first stage.

Note that modeling can involve continuous or discrete mathematics, and even if
in the past the natural mathematical fields most used in modeling were the so-called
applied mathematics ones, like differential equations, probability and statistics,
numerical analysis, etc, nowadays practically all fields of mathematics can help to
deal with applications, like algebra, geometry, topology, number theory, etc.
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Modeling can be used to solve problems in all kinds of societal and industrial
fields, in logistics, to organize the material and personnel organization of big
transportation companies; in manufacturing, to help designing machines and parts of
machines needing a sophisticated design; to help in building new efficient engines,
airplanes, cars, smartphones; imagining smart cities; supervising and controlling
pollution; to help in finding optimal therapies for cancer and other illnesses; or
designing the optimal shape of a bypass; in decision making using so-called
operations research theory, etc.

Then comes Simulation. What is this about? The models that one studies in most
situations are impossible to be solved in an analytical or exact way. Mathematics
can be used to prove that the problem under study has solutions or not, and if yes,
what kind of properties they enjoy. But if one wants to know the solutions more
concretely, and this is often of the utmost importance in applications, computers
have to be used to calculate approximate solutions. This means that the model has
to be discretized, approximating an infinite number of points or dimensions by a
finite number of them, and then trying to solve the problem in that discrete set-up.
This can be again done in many different ways, and mathematicians are endlessly
improving the properties of the algorithms they use to solve a particular equation
or system of equations, or model, this being done in order to obtain an ever better
approximation. Once one has the discrete model, it can be implemented and solved
with the help of computers. This is the meaning of simulation for a given problem, to
study it in an approximate way with the help of computers and so “see” the solution,
or the evolution of functions, etc, in a concrete way. The solutions of course will not
be exact, but, if the discretization and the algorithm used are good, they will give
a very good idea about the exact solutions that cannot be known. And in many
cases one can even measure how far from each other the exact and the approximate
solutions are.

The third methodology which helps to make Mathematics so useful for innova-
tion, industry and for the design and treatment of societal activities is Optimization.
And this goes together with the two previous ones. In the design of a model or
an algorithm many choices are made, about the constraints, about the relevant
parameters which characterize the situation in which the experiment or activity
takes place, etc. How to make those choices in an optimal manner is not known
a priori. Optimization means that one chooses, in the models, in the discretization,
in the algorithms, the values of the parameters or of the constraints that yield the
best result. Best in which sense? This will be based on some well-chosen criteria:
one can want to optimize energy, time, cost, quantity of material, money, etc. And
how is this achieved? The simulation can be done for different sets of values of
the parameters and then the results of the different computations compared. Then,
the best set of parameters is chosen in the end. But one can also use optimization
techniques that allow us to know a priori how to proceed to get optimal results.

These three aspects of how and why Mathematics is so important for applications
in the real world are the basis of the whole construction. But they can be
complemented with other branches of Science and computational methods involving
for instance Artificial Intelligence (AI) aspects, data analysis, statistical criteria, etc.
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We will conclude the paper by considering these branches. Apart from this aspect,
it is good to mention that many people, and not only mathematicians, can model,
simulate and optimize. Or use codes designed to do this. What a mathematician can
add is to make all the above with a certainty of obtaining good results, or at least
being able to measure the errors made in a simulation, or showing how to control
the instabilities that can arise from tiny variations in the data. Mathematicians prove
theorems, and not only of existence, stability, etc. They can also prove theorems
about the discretizations and algorithms that they devise in order to find approximate
solutions for a given model or problem. And those theorems can provide the users
with vital information about error estimates, speed of convergence of an algorithm,
stability, robustness, reliability, etc. Mathematicians can thus provide results which
are robust and guaranteed. And which go together with measures of the error or the
reliability. This is of course a big plus for a company, which wants to be sure that
their products will be good and competitive. Or their processes optimal and efficient.

Nowadays the use of Modeling, Simulation, Optimization (MSO) together with
machine learning and AI is becoming a must. And a new and very interesting
concept, very much liked by advanced industry, is that of digital twins. A digital
twin is a digital model for physical assets, processes and systems that can be used
for various purposes. It integrates MSO with artificial intelligence, machine learning
and software analytics with data to create living digital simulation models that
update and change continuously. Again mathematicians can, and should, play an
important role in the creation and maintenance of digital twins. And they have to do
it with engineers and other scientists, experts in the fields concerned with the model.
The integration of different kinds of expertise is a guarantee to enhance the success
of the twin’s results.

Many people use to say that Mathematics is the language of Science. And the
final report of the European Forward Look for Mathematics in Industry [1] said
that Mathematics is also the language of innovation. The above statements about
the possibilities of Mathematics and mathematicians to help solve real problems
and to help companies produce better technologies, and do it in a more competitive
and efficient way, is not just blah blah: they have recently been made more precise.
Indeed, there have been several independent studies proving and quantifying the
economic impact of Mathematics on the economy of three European countries.
The impact studies of Mathematics on the British [2], Dutch [3] and French [4]
economies and societies have shown incredible numbers, thus proving that investing
in Mathematics is really worth it! Let us conclude this text by pointing out that more
data and information relevant to the subject of this talk, and many more examples,
can be found in various documents available in the Reports section of the EU-
MATHS-IN website: http://www.eu-maths-in.eu/EUMATHSIN/reports/

http://www.eu-maths-in.eu/EUMATHSIN/reports/
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A Data Analysis of Women’s Trails
Among ICM Speakers

Helena Mihaljević and Marie-Françoise Roy

Abstract The International Congress of Mathematicians (ICM), inaugurated in
1897, is the greatest effort of the mathematical community to strengthen interna-
tional communication and connections across all mathematical fields. Meetings of
the ICM have historically hosted some of the most prominent mathematicians of
their time. Receiving an invitation to present a talk at an ICM signals the high
international reputation of the recipient, and is akin to entering a ‘hall of fame for
mathematics’. Women mathematicians attended the ICMs from the start. With the
invitation of Laura Pisati to present a lecture in 1908 in Rome and the plenary talk of
Emmy Noether in 1932 in Zurich, they entered the grand international stage of their
field. At the congress in 2014 in Seoul, Maryam Mirzakhani became the first woman
to be awarded the Fields Medal, the most prestigious award in mathematics. In this
article, we dive into assorted data sources to follow the footprints of women among
the ICM invited speakers, analyzing their demographics and topic distributions, and
providing glimpses into their diverse biographies.

1 The Hall of Fame for Mathematics

Ever since its inaugural gathering in 1897, the International Congress of Mathe-
maticians (ICM) has signified the greatest effort of the mathematical community
to establish international communication and connection across all mathematical
topics. Throughout their history, the congresses have hosted some of the most
prominent mathematicians of their time. Needless to say, receiving an invitation to
present a talk at an ICM is a matter of high international reputation, often compared
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with the entrance into a ‘hall of fame for mathematics’. In fact, it is no exaggeration
to state that an ICM invitation is often treated like the reception of a major research
award.

Women mathematicians attended the ICM from the start, not only as accompany-
ing persons but also participating on their own, e.g as professional mathematicians.
Nevertheless, female speakers remained very few. The share of women in selected
congresses has been addressed in some previous works. Fulvia Furinghetti studied
the presence and contribution of women to the discipline of mathematics education
in the first half of the twentieth century using data from two scientific journals, the
proceedings of the first International Congress on Mathematical Education (ICME)
in 1969 and the didactics sections of the ICM proceedings until 1966 [5]. She
describes the difficulties posed by differences in structure of the individual con-
gresses, the layout of the congress proceedings, or inconclusive and incomplete data
(e.g. regarding the distinction of ‘accompanying persons’). She provides numbers of
women among participants and contributors for ICMs until 1966 and gives insights
into biographies of women pioneers. The essays [16] by Cora Sadosky and [3] by
Bettye Anne Case and Anne M. Leggett from the collection ‘Complexities. Women
in Mathematics’ address the participation of women lecturers since 1974, focussing
mainly on the collective efforts of women in the 1970s and 1980s to overcome their
persistent underrepresentation as invited congress speakers. Both pieces arrive at
similar conclusions, namely, that the actions in the 1970s and 1980s have strongly
contributed to the diversification of the congress, yielding a significantly higher
chance for qualified women to be invited to speak.

While the mentioned research addresses the participation of women at individual
congresses or throughout certain periods, to our knowledge there is no global
exploratory analysis of the demographics of ICM speakers from its beginning until
today. In this contribution, we thus investigate data on all invited ICM speakers from
1897 to 2018. Using various data sources, in particular the list of all invited speakers
from Wikipedia, Wikidata pages of individual speakers, and the subdivision of
congress speakers into sections from the International Mathematical Union (IMU),
we are able to address the following questions regarding women’s participation:
How inclusive has the congress been throughout its history? What factors might
have positively influenced the share of women? Are there noteworthy differences
between women and men speakers regarding age, country of residence or research
areas?

We start out by describing pioneer contributions of women. We then outline the
development of women’s participation in the congresses over time, elaborating some
of the advances and setbacks. Finally, we investigate the distribution of women and
men speakers by countries of citizenship and sections of the delivered talk.

2 Data Basis and Methods

In February 2018, we programmatically extracted all names and ICM dates from
the Wikipedia website ‘List of International Congresses of Mathematicians Plenary
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and Invited Speakers’ [11], which resulted in a table containing 3,745 plenary and
invited speakers from 1897 until 2014. Using the hyperlinks contained therein,
we retrieved the gender, country of citizenship, date of birth and employer from
Wikidata, a free, human- and machine-readable knowledge database that serves
as a central storage for structured data of other Wikimedia projects, including
Wikipedia.1 We have found a Wikidata page for 82.6% of all listed speakers, and
77.5% of all unique individuals (various mathematicians gave multiple talks). A
Wikidata page existed for almost all women, namely 92.5%. The coverage shows
a certain trend: with exception of the large congresses in 1928 and 1932, the vast
majority of speakers from the early congresses (usually 90% or higher) has a page
in Wikidata, with decreasing trend over time.

For speakers invited to the ICM 2018 in Rio de Janeiro, we extracted their names,
country of citizenship and the ICM sections of their talks from the official ICM-2018
website. We used Python package gender-guesser,2 which has shown very reliable
results in a recent benchmark on name-based gender inference [17], to infer the
gender3 of the speakers using their forenames when this information was missing.
For speakers whose names are not highly correlated with only one gender (across
different countries and languages), and for which gender-guesser hence did not
produce a definite gender assignment, we filled this information manually, mainly
based on field knowledge and Internet research.

The International Mathematical Union (IMU) provided us with a file containing
speaker names, ICM date and place, and the name of the section of the correspond-
ing talk (see [7] for a search interface within the official IMU website). Due to
different name spellings in the datasets, we applied fuzzy string matching techniques
to combine the data sources and add the sections to our original data set. For many
speakers at the congress in 1950 the section was missing and hence needed to be
filled manually.

In addition, we added the date of birth and country of citizenship for all women
speakers in order to create a data basis which is as complete as possible and that
can be used for information and teaching purposes beyond this analysis. For this
purpose we have contacted those women in our list for whom information was
still missing. We have made the list of all speakers available at [12]. We noted
that there exist different countings of invited ICM speakers. For instance, the list
of speakers provided by the IMU [7] contains around 400 speakers more than the
list at Wikipedia [11], in particular for the congresses before 1950. This is mainly
due to the change of terminology over time and the respective counting schemes.
On the other hand, the list at Wikipedia contains speakers who were invited but
did not attend. Our analyses are based on the Wikipedia list [11] which applies
the post World War II terminology in which the one-hour speakers in the morning

1Every Wikipedia article is supposed to have a corresponding entry in Wikidata.
2https://pypi.org/project/gender-guesser/.
3For all authors we used a gender assignment provided by a third party (Wikidata or a web service)
which, for our dataset, resulted in a binary schema.

https://pypi.org/project/gender-guesser/
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sessions are called ‘Plenary Speakers’ and the usually more numerous speakers (in
the afternoon sessions) whose talks are included in the ICM published proceedings
are called ‘Invited Speakers”’ [11]. Usually, there were a lot more additional shorter
contributions that were not always part of the congress proceedings. Moreover, the
list of speakers from Wikipedia [11] does not reflect whether a speaker gave more
than one talk at a given congress. This, in fact, was not so rare; for example at the
congress in 1900 in Paris, Gösta Mittag-Leffler gave both a plenary talk and one in
the Analysis section. In order to take into account such multiple contributions, we
have expanded the data using the sections from the list supplied by the IMU [7].

3 Women Pioneers

The organizers of the congress in 1908 in Rome invited Laura Pisati, the first
woman to present a paper. Not much is known about her personal and professional
life, other than that Pisati was an active mathematics researcher and the author
of internationally recognized publications. In zbmath.org, we find a book and
three research articles listed in her author profile [19], two of them published in
the influential Rendiconti del Circolo Matematico di Palermo, the journal of the
Mathematical Circle of Palermo, of which she was a member. In 1905, she also
became a member of the German Mathematical Society [6, p.12]. According to
her membership information, Pisati was born in Ancona (date of birth not listed).
She graduated in mathematics from the University of Rome in 1905 [15]. Since
1897 she had worked as a teacher at the Technical School ‘Marianna Dionigi’ in
Roma (Scuola Tecnica ‘Marianna Dionigi’ di Roma), one of the the first secondary
schools for girls in Rome. She was engaged to Giovanni Giorgi, an Italian physicist
and electrical engineer. In 1900, Pisati had been entrusted with the supervision of
his thesis in Mathematics [9]. Sadly, she died young on March 30 1908, only a few
days before the 1908 congress in Rome and before her planned wedding to Giorgi.
Her paper ‘Saggio di una teoria sintetica delle funzioni di variabile complessa’ was
presented by a male colleague.

In the report on the sectional meetings of the congress [14], Laura Pisati appears
as the only speaker with first and last name listed, showing the singularity of
women’s presence in this circle at that time. Interestingly, Giorgi himself was an
invited speaker at three subsequent ICMs, in 1924 in Toronto, in 1928 in Bologna,
and in 1932 in Zurich. He cited Pisati’s work in his 1924 ICM contribution with the
words “See also some very striking results given by LAURA PISATI in her paper
Sulle operazioni funzionali non analitiche originate da integrali definiti. Rend. Cire.
Mat. Palermo, Tomo XXV (1908) pp. 272–282.” [4, p.45].

Four years later, in 1912, Hilda Hudson was the first woman to speak at an
ICM with a paper she presented in the Geometry section. Hudson, a member of
a family of distinguished mathematicians, worked mainly in the theory of Cremona
transformations, on which she had published various articles. Between 1910 and
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Fig. 1 Hilda Phoebe Hudson, the first woman who presented her work at an ICM, listed as an
accompanying participant at the ICM 1912 in Cambridge

1913, she was an Associate Research Fellow at the Newnham College4 [2]. As
pointed out in [5], Hilda Hudson is listed in the Proceedings of the congress in
1912 as an accompanying person to her father, Prof. William Henry Hoar Hudson,
showing how misleading the distinction between accompanying persons and ‘real’
participants was in that period (Fig. 1).

The 1932 congress in Zurich witnessed the first plenary talk by a woman,
given by Emmy Noether, who spoke about hypercomplex systems in their relations
with commutative algebra and number theory.5 Her invitation certainly marked a
milestone in the representation of women within the international mathematical
community. Noether had already attended previous congresses. At the age of 26
she accompanied her father, Max Noether, who spoke at the congress in 1908 in
Rome, where Pisati was supposed to present her work. Prior to her plenary lecture
in 1932, Emmy Noether gave a talk at the congress in Bologna four years earlier.
As the positive trend in the early years of the ICM did not persist, it was almost 60
years until Karen Uhlenbeck became the second woman to give a plenary talk at an
ICM under the title ‘Applications of non-linear analysis in topology’ Fig. 2.

In 2014 at the ICM in Seoul, Maryam Mirzakhani was awarded the Fields
Medal for “her outstanding contributions to the dynamics and geometry of Riemann
surfaces and their moduli spaces”.6 She is the only woman among the 60 mathe-
maticians who have received the Fields Medal, a prize conferred since 1936 to at
most four mathematicians at each congress under the age of 40. Mirzakhani was
diagnosed with breast cancer in 2013 and died on July 14, 2017, at the age of 40.

4Newnham College, founded in 1871, was the second women’s college to be established in
Cambridge. It acquired full university status in 1948, the year in which the first women were were
officially admitted to the University.
5Original title of the talk in German: “Hyperkomplexe Systeme in ihren Beziehungen zur
kommutativen Algebra und zur Zahlentheorie”.
6ICM laudation, http://www.icm2014.org/en/awards/prizes/f4.

http://www.icm2014.org/en/awards/prizes/f4
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Fig. 2 Left: Emmy Noether (front) on a steamboat trip during ICM-1932. (ETH-Library, Zurich).
Right: Karen Uhlenbeck in 1982, eight years before her plenary lecture in Kyoto (Oberwolfach
Photo Collection)

4 The History in Numbers: Advances and Setbacks

Out of 4,120 invited contributions from 1897 to 2018, 202 were presented or
authored by women, which amounts to only 5% of the total. Women’s participation
over time, however, did not grow steadily but, instead, shows multiple trends. As
presented in Fig. 3, a comparatively large number of women presented their research
at the congresses in 1928 at Bologna and in 1932 at Zurich. This reflects the overall
progressive societal and political spirit of the 1920s, which had also enhanced the
situation of women in science. In fact, the ICM in 1932 marks a pinnacle in the
history of ICMs regarding the role of women. Emmy Noether gave the first plenary
lecture by a woman; various women’s colleges and organizations of university
women sent delegates, among them the Bedford College for Women (London),
Hunter College (New York), the International Federation of University Women, and
the American Association of University Women.

ICMs were always affected by global political events. The first substantial tension
occurred in the aftermath of World War I, as mathematicians from Germany were
excluded during the ICMs in 1920 and 1924. The sole choice of Strasbourg as the
location for the congress in 1920 was a political statement in itself. Already in the
1920s, Italy, which experienced a golden era in both pure and applied mathematics
at the turn of the nineteenth century, showed the first signs of a deep crisis caused
by a spreading fascism [8]. The last congress before World War II that took place
in 1936 in Oslo was signified by different political agendas, in particular by the
German strategy to present ‘Aryan mathematics’. Italian mathematicians boycotted
the congress, Soviet mathematicians were denied the travel permission by their
political authorities. That only few women were invited to the congress in Oslo
seems not too surprising given the political situation at that time—the spread of
Fascism through Europe, persecution of Jewish mathematicians, and the worldwide
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Fig. 3 Upper panel: Bar height shows the percentage of women speakers per ICM, the numbers
inside correspond to the total numbers of invited women. Lower panel: total number of speakers
per year

economic depression—which in some aspects affected women mathematicians on
a larger scale. When the first congress after World War II took place in 1950 in
Cambridge (USA), the only woman lecturer was Mary Cartwright, at that time
Mistress of the Girton College.7

It took 60 years to reach a share of women among ICM speakers comparable
to that in 1932. Among the manifold reasons for this situation are undeniably the
impact of some historical and political developments. The aftermath of World War
II was characterized by a rollback in society as a whole. The 1950s experienced a
return to conservative gender roles, in which women were expected to take care of
the domestic sphere, leaving the work places to the men who were coming back
from the battlefields. These conceptions had impact on university education as well.
During the conservative post-war era in Germany, for instance, the share of female
students decreased significantly, and there was general agreement that men should
take precedence in accessing the limited study places. However, some countries
managed to overcome some of these barriers in women’s university education
and research faster than others. Partially, these general trends are also reflected in
country-based differences regarding the presence of women speakers at postwar
ICMs: in the 11 congresses between 1950 and 1990, of the 24 talks given by women,

7Girton College was the first women’s college to be established in Cambridge. It began in Hitchen
(about 24 miles from Cambridge) in 1869 before moving to Girton in 1873, when it acquired the
name Girton College. Like Newnham, it obtained full college status in 1948.
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almost all delivered by speakers from the United States, France, United Kingdom,
or Russia but none by speakers from Italy or Germany. By contrast, in the ten
congresses before World War II of a comparable total of 27 talks by women, three
of those speakers were from Germany and four from Italy.

The situation for women as active participants in ICMs changed in the 1990s
and has shown a certain level of stability ever since. In particular, the recent three
congresses have witnessed a hitherto unseen participation of women: of all lectures
delivered by women in the history of the congress, 80% took place since the meeting
in 1990 in Tokyo. The drastic change affects plenary sessions in particular: The
ICMs in 2002 in Beijing, 2010 in Hyderabad and 2018 in Rio de Janeiro collectively
accounted for ten of the total 18 plenary lectures by women since the premiere by
Emmy Noether in 1932.

Despite the overall progress towards gender equality in mathematics in the recent
decades, the increase of women speakers since 1990 cannot be interpreted simply
as a positive side effect of a global development. A closer look at the events
during the congresses shows that the increased invitation of women speakers is
also, and maybe above all, the result of interventions by groups and individuals
at various levels. As described in [3, 16], since 1974, organizations of women
such as the Association for Women in Mathematics (AWM) have set up events
during the congresses, often sparking discussions on what was often perceived
as a systematic omission of women as invited speakers. At various congresses
in the 1970s and 1980s resolutions were passed with the aim to increase the
number of lectures by women. At ICM-1974, concerns about the small number
of women speakers were raised during a discussion by the AWM. At the next
ICM in 1978, a public protest initiated by AWM members resulted in a widely
supported resolution to improve the situation of women in the future. Four women
were invited to the congress in Warsaw in 1983, but there were no protests or
reminders to keep improving the situation. It is probably no coincidence that in the
program announcement of ICM-1986, not a single woman was listed in traditional
mathematics research areas, suggesting that, as formulated by Sadosky in [16],
“when there are no reminders about women mathematicians, colleagues tend not
to remember us”. The program of the ICM-1986 was changed on short notice, again
through intervention, by presenting 25 qualified women candidates to the Executive
Committee. The informal panel discussion organized by AWM on the situation of
women in mathematics that took place during the congress in 1986 was at the origin
of the constitution of the European Women in Mathematics (EWM).

The engagement of Mary Ellen Rudin in her role as the head of the U.S. delegates
at the IMU General Assembly in 1986 is an illustrative example of what can change
when individuals in prominent positions pursue this topic. The president of the
ICM-1990 in Kyoto explicitly stated that the committees have followed Rudin’s
recommendation that subfields of mathematics, women, and mathematicians in
small countries should not be overlooked [18].

Since 2010, specific satellite meetings of the congresses have been organized
with the goal of highlighting the contributions and achievements, but also to address
concerns of women mathematicians: the International Conference of Women
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Mathematicians in 2010 in Hyderabad and the International Congress for Women
Mathematicians in 2014 in Seoul. In Rio de Janeiro, the World Meeting for
Women in Mathematics (WMˆ2) was set up as a satellite meeting combined with
a panel discussion on the gender gap in the mathematical and natural sciences, and
integrated into the ICM-2018 program and the ICM proceedings.

5 Any Difference?

Within the group of ICM speakers, men and women do show some differences
regarding certain demographic aspects. For instance, both women and men speakers
were around 44 years old when invited to give a lecture. However, before ICM-
1950, women speakers were on average 36 years old, 9 years younger than their
male colleagues. Since 1950, their average age has surpassed men’s by almost 5
years.

We have focused on two particular aspects: the country of citizenship and the
sections in which the speakers presented their research. The country of citizenship
is interesting demographic information for ICMs, in particular due to their regional
focus. The mathematical research fields, on the other hand, are known to show high
variance in the share of women [13].

5.1 Distribution by Countries

We have collected the country of citizenship for 3,038 out of 3,987 speakers, mostly
through their Wikidata pages. Further, we have undertaken additional manual efforts
in order to collect missing information for all women speakers by using their
websites, personal contacts or contacting them by e-mail.

Various countries listed in Wikidata do not exist anymore. We have thus replaced
their names with those of today’s states, e.g. Second Polish Republic with its
successor state Poland or the Weimar Republic with Germany. When such a
replacement is not possible, in particular for states that have disintegrated over the
course of time such as Kingdom of Yugoslavia, Czechoslovak Socialist Republic
or Austria-Hungary, we have inspected the demographics of the corresponding
speakers to assign the closest state existing today.

Furthermore, for speakers listed with more than one country of citizenship we
have weighted each of them by inverse frequency, e.g. for a speaker with citizenships
of Germany and the United States, each would be counted as one half.8 This

8The Wikidata entry of some speakers shows quite a few different citizenships, e.g. Ðuro Kurepa, a
plenary speaker in 1954 and 1958, has had 5 different citizenships according to his Wikidata entry:
Socialist Federal Republic of Yugoslavia; Kingdom of Yugoslavia; Kingdom of Serbs, Croatians
and Slovenes; Austria-Hungary; Federal Republic of Yugoslavia.



120 H. Mihaljević and M.-F. Roy

Fig. 4 Geographical distribution of all women speakers according to their country of residence

procedure was necessary since we do not have information on the time period in
which a citizenship was valid. This aggregation thus presumably shows a certain
bias for countries which are known to have attracted mathematicians, in particular
the United States [1].

The map in Fig. 4 shows the proportion of countries as countries of citizenship
among all women speakers. The overall distribution of geographical origins is,
as expected, quite skewed: The six most frequent countries of citizenship among
all speakers—United States (24.6%), France (13.2%), Germany (9.5%), Russia
(8.5%), United Kingdom (7.4%) and Italy (7.2%)—comprise more than 70% of
all. The evaluation for women yields a picture similar to the overall trend: almost
the same countries appear under the top six, comprising more than 72% of all
talks by women: United States (28%) and France (18.3%) are the most frequent
countries, followed by Germany (8.3%) and United Kingdom (6.9%). Russia and
Italy are less strong than in the distribution of all ICM speakers, with 5.5% and
4.6%, respectively. Italy, in fact, is not among the top six countries for women
speakers, ranking at position seven, slightly behind Israel with a share of 5% among
female speakers. Israel clearly marks the most notable difference in the comparison
of origins, with an overall share of less than 2% compared to 5% among women
speakers.

Almost all congresses show a certain regional focus, manifested in the compo-
sition of the organizing committees as well as the origin of the invited speakers
(see Table 1 in Appendix). For instance, more than 32% of all speakers at the ICM-
1900 in Paris were French; 45% of all speakers at the congress in Heidelberg in
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1904 were German; United Kingdom was the country of citizenship for more than
26% of all speakers in 1912 in Cambridge (UK). The focus on ‘local’ speakers,
evident in subsequent congresses as well, is especially pronounced for congresses
that took place in countries with overall strong representation such as Russia at
ICM-1966 in Moscow or the United States at ICM-1986 in Berkeley. Nevertheless,
many other countries managed to foster the representation of their scientists. Brasil,
for instance, accounts for 6% of all speakers at the latest congress in Rio de Janeiro.
A look at the origins of women shows a rather inconclusive picture. A similar trend
is expressed in a more drastic way: when a congress took place in a country with
an overall strong representation, often all invited women originated from the host
country. At most of these congresses, however, this corresponded to only one or
two invited women. Nevertheless, at some congresses with a stronger representation
of women such as the ICM in 1928 in Bologna or in 1986 in Berkeley, the host
country reached a share of 40 to 50% among the invited women. On the other hand,
there are 12 ICMs to which women were invited but none originated from the host
country.

5.2 Topics Not Balanced

The individual character of the congresses is reflected by the diversity of names
chosen for the themed sections, summing up to more than 180 different titles.
While some section names such as Numerical Methods, Numerical Mathematics
or Numerical Methods and Computing obviously belong together, this is much less
the case with topics such as History of Mathematics, Logic and Foundations and
Mathematics Education: at various ICMs, two or even all three of them had been
combined together into one section, making it impossible to study these topics
individually without intensive manual work. The division into few, rather broad
sections was typical for the early ICMs. The ICM-1928 in Bologna, for instance,
combined in the first section talks on Algebra, Arithmetics and Analysis, and had
only one additional section on pure mathematics, mainly for talks in Geometry.
Elementary Mathematics, Didactical Questions, and Mathematical Logic were
grouped into one section, and Philosophy and History of Mathematics into another
one. On the contrary, recent ICMs feature more than 20 themed sections, providing a
better granularity to analyze the share of women speakers by their field of research.

The data by the IMU [7] shows certain inconsistencies, in particular for some
early ICMs. For instance, Section 1 at ICM-1928 was named Analysis instead of
Arithmetics, Algebra, Analysis. Furthermore, 15 talks from 1966 were assigned to
the section 1/2 hr. report. The distinction between 1 hour and 1/2 hour is basically
the distinction between plenary talks and section talks, and while most of the 1/2
hour talks were assigned to a themed section, these 15 remained for unknown
reasons.
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The partially unclean data for ICMs before 1970, and the fact that except for
the congresses in 1928 and 1932 the presence of women before the 1980s is highly
scattered, have prompted us to restrict our description of women’s participation by
sections to the period 1970–2018.

We have grouped the section names manually into the following eight groups
(number of talks per section since ICM-1970 in parentheses): Logic, Foundations,
Philosophy, History and Education (155); Applied Mathematics, Applications of
Mathematics, Mathematical Physics (327); Probability, Mathematical Statistics,
Economics (129); Analysis, ODEs, PDEs, Dynamical Systems (519); Algebra and
Number Theory (271); Theoretical Computer Science (78); Geometry and Topology
(515); Combinatorics (80). In addition, there were a total of 237 Plenary talks since
1970. There are two further categories of talks: the ICM Abel Lecture given to the
winner of the Abel Prize (2 talks, both by men) and the ICM Emmy Noether Lecture9

(6 talks by women). We have omitted both of them from the plot in Fig. 5.
As shown in Fig. 5, sections concerning Algebra and Number Theory have the

least proportion of talks by women (<5%), closely followed by sections dealing
with Probability, Mathematical Statistics and Economics (<6%). The two largest
groups of sections, Analysis, ODEs, PDEs, Dynamical Systems, and Geometry and
Topology, which together comprise more than 1,000 talks since 1970, have both
less than 7% of women speakers on average. On the positive end we see two rather
small section groups, Logic, Foundations, Philosophy, History, Education (>16%)
and Theoretical Computer Science (>14%). The Plenary section, which is supposed
to contain the most prominent congress talks, contains 8.2% talks by women and is
hence slightly above the average of 7.3% since 1970.

Further investigation needs to be carried out to understand the unequal dis-
tribution among topics. In any case, there is no conclusive correlation between
this distribution and the representation of women authors in the respective fields.
The distribution of authorships and authors across classes of the Mathematics
Subject Classification (MSC) 2010 has been carried out in [13] based on data
from zbmath.org, one of the two main services for bibliographic information in
Mathematics. Fig. 10 in [13] shows the amount of women authors as a heatmap
across MSC classes. It shows, for instance, that an aboveaverage number of women
publish in the field of Statistics and their share in Probability theory is close to the
overall average. At the same time, the group of ICM sections related to Statistics,
Probability and Economics is, with less than 6%, almost at the very bottom of the
scale. Likewise, women authors are very well represented in most MSC classes
related to Analysis, PDEs, ODEs and Dynamical Systems, in particular in relatively
large fields like PDEs and ODEs. However, the respective group of ICM sections,
while being the largest in terms of the total number of talks, has very few talks by
women.

9The Emmy Noether Lecture honors women who have made fundamental and sustained contri-
butions to the mathematical sciences. Since 2006, this lecture is a permanent ICM feature, since
2014, a special commemorative plaquette is conferred to every ICM Emmy Noether Lecturer.
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Fig. 5 Percentage of talks by women per group of sections since 1970. The numbers inside the
bars correspond to the total number of talks by women

In [16], Cora Sadosky notes that the distribution of women across non-plenary
sections suggests an “invisible quota system”, leading to at most one woman per
congress and section. She continues saying that “it seemed as if the selection panels,
although aware enough to consider women candidates, felt that they had fulfilled
their duty when the first one accepted.” The first exceptions to this pattern occur
in the section Mathematical Aspects of Computer Science featuring two talks by
women in 1990 (Lenore Blum and Shafi Goldwasser) and in 1998 (Joan Feigenbaum
and Toniann Pitassi). Also, the section related to Teaching and Popularization of
Mathematics often contained more than one talk by a woman. In fact, most topics
featured two talks by a woman at some congresses. In some rather exceptional
cases, even more than two women were invited, such as in 2014 in Combinatorics
or Mathematics in Science and Technology, or in 2018 in the Geometry section.
Sections with an approximately equal distribution of women and men are extremely
rare; the small section Mathematics Education and Popularization of Mathematics
at the last ICM in Rio de Janeiro with two talks by women and one talk by a man
seems to be the only example so far. Nevertheless, the presence of at most a single
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woman among the section speakers as criticized by Sadosky remains by far the usual
practice.

6 Discussion

In our study we have used the complete list of plenary and section speakers invited to
ICMs from its beginning in 1897 through the most recent congress in 2018 in Rio de
Janeiro. We have combined this list with demographic information from Wikidata
and section names of the talks. We have further enriched our data, in particular
by inferring the gender. Our data is provided at [12] and can be used for further
research.

The participation of women in the International Congresses of Mathematicians
has increased over the course of the past 121 years. However, as shown in Fig. 3,
their share does not show a clear trend over time. Instead, the inclusion of women
among ICM speakers shows a clear peak in the late 1920s and early 1930s of the last
century, followed by a long period of almost complete absence, until the start of a
continuous positive development in the late 1980s that persists until today. As noted
by Izabella Laba with respect to the equitable representation of women speakers at
ICM-2014, “Compared to the proportion of women among tenured and tenure-track
faculty at research universities, the group from which ICM invited speakers usually
hail and therefore a more appropriate benchmark, it does not look far off” [10].

We have analyzed the relation of the speakers’ gender with their countries of
citizenships and the topics of the sections in which they presented their talks. As
expected, most speakers came from a rather small set of countries, while many
countries and even entire continents were barely represented at all. The distribution
of citizenships with respect to gender, however, does not show significant difference.
More than 70% of all women and men speakers are or were citizens of countries
whose territory today corresponds to the United States, France, Russia, Germany,
United Kingdom and Italy. We have further shown that the selection of speakers
reflects a certain regional focus, yielding, in most cases, a noticeably higher share
of speakers originating from the congress’s host country. This effect is particularly
pronounced for countries that are overall well represented among ICM speakers.
For women, however, this tendency is not so clear and would require further
investigation. Cost and ease of travel as well as the language are likely to have
played a role in the decisions to invite a speaker, in particular in the early congresses.
Nevertheless, it would be interesting to explore the possible relations between the
nationalities of the members of the Programme Committee and of the sectional
committees with the nationalities of the invited women (and men).

The individual congresses show high variance in the arrangements of talks into
sections, making a grouping of sections inevitable. We have arranged the non-
plenary talks since ICM-1970 into eight large groups and studied the distribution
of women across these. We have found that the share of women ranges between
less than 5% in sections related to Algebra and Number Theory to more than 16%
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in sections on Logic, Foundations, Philosophy, History and Education. Talks by
women sum up to 6% of all talks in the section group Analysis, ODEs, PDEs,
Dynamical Systems which is by far the largest one. These effects are not consistent
with the representation of women as authors in the respective fields. However, a
correlation on this level might not be very likely anyway since ICM invitations are
very rare and, in some sense, singular (for women). An analysis of gender and topics
among authors in highly prestigious journals or among tenured and tenure-track
faculty at research universities would hence presumably constitute a more suitable
set in order to understand whether the fluctuations between ICM sections might
partially be explained by a lack of ‘suitable’ women in the respective fields. It
should, however, be noted that the breakdown by sections leads to a rather small
number of individuals per group, which is more prone to variation.

It would be interesting to consider the longitudinal development of women’s
participation in other conferences in mathematics (and other fields) as well. Smaller
conferences might constitute a much bigger issue in terms of inclusion since, as
claimed in [10], there are no large committees overseeing them. In recent years,
(women) scientists in STEM fields have proposed the formulation of a Bechdel
Test, a measure of women’s representation in fiction (movies, comics, video games
etc.), for scientific workshops. A movie would pass the Bechdel test if (1) it
features at least two named women, (2) who talk to each other, (3) about something
besides a man. An analogous test for scientific conferences could require (1) at
least two female invited speakers, (2) who are asked questions by female audience
members, (3) about their research.10 As noted by various scientists in social media
channels, this form of test is rarely passed by conferences in STEM fields; even
among the recent ICMs, many sections would not pass this test either. Such a test,
while measuring only a basic level of inclusion of women and despite being far
from creating a ‘critical mass’ in the respective conferences, would yield a first
understanding of women’s participation in mathematical conferences across fields
and over time.

Manifold factors have played a role in the longitudinal evolution of the number of
ICM lecturers at ICM. Of particular importance for the sustained positive evolution
in the last decades was and is the establishment of various associations of women
in mathematics and their efforts to increase the visibility of their female colleagues
in the field. As suggested by Elena Resmerita and Carola-Bibiane Schönlieb, the
current convenors of the European Women in Mathematics (EWM), it is crucial
to keep highlighting contributions of women mathematicians by continuing to
showcase contributions of women in mathematics, “raise the profile of women
mathematicians, volunteer to serve on committees of international mathematical
associations and mathematical award committees, nominate female colleagues or

10http://openscience.org/a-bechdel-test-for-scientific-workshops/.

http://openscience.org/a-bechdel-test-for-scientific-workshops/
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encourage others to nominate them, and overall help to build a scientific atmosphere
without boundaries.”11
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Appendix

Table 1 Percentage of all speakers and all women speakers, respectively, whose country of
citizenship equals the host country of the respective congress

Year Host country
Speakers from host
country (%)

Women speakers from
host country (%)

1897 Switzerland 3.1 0

1900 France 32.4 0

1904 Germany 45.2 0

1908 Italy 32.7 100

1912 United Kingdom 26.5 100

1920 France 31.4 0

1924 Canada 2.3 0

1928 Italy 25 50

1932 Switzerland 7.4 8.3

1936 Norway 6.1 0

1950 United States of America 36.6 0

1954 Netherlands 2.5 0

1958 United Kingdom 6.9 0

1962 Sweden 2.9 0

1966 Russia 30.4 100

1970 France 8.1 0

1974 Canada 2.3 0

1978 Finland 0.5 0

1983 Poland 3 0

(continued)

11Statement by the EWM convenors Elena Resmerita and Carola-Bibiane Schönlieb in reaction to
the absence of women among the Fields medalists in 2018. https://www.europeanwomeninmaths.
org/ewm-statement-about-icm-2018.

https://www.europeanwomeninmaths.org/ewm-statement-about-icm-2018
https://www.europeanwomeninmaths.org/ewm-statement-about-icm-2018
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Table 1 (continued)

Year Host country
Speakers from host
country (%)

Women speakers from
host country (%)

1986 United States of America 39.0 40

1990 Japan 10.1 0

1994 Switzerland 1.7 0

1998 Germany 7.6 0

2002 China 3.3 5.3

2006 Spain 3.8 0

2010 India 7.7 3.6

2014 South Korea 0 0

2018 Brazil 5.9 12.5
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The Historical Context of the Gender
Gap in Mathematics

June Barrow-Green

Abstract This chapter is based on the talk that I gave in August 2018 at the ICM
in Rio de Janeiro at the panel on The Gender Gap in Mathematical and Natural
Sciences from a Historical Perspective. It provides some examples of the challenges
and prejudices faced by women mathematicians during last two hundred and fifty
years. I make no claim for completeness but hope that the examples will help to
shed light on some of the problems many women mathematicians still face today.

1 Introduction

In 1971 the Association for Women in Mathematics (AWM), the first organisation
for supporting women in mathematics, was established in the United States.1 There
are now many organisations worldwide supporting women in mathematics, and the
number continues to grow, with the IMU’s Committee for Women in Mathematics
(CWM) providing a focal point.2 Nevertheless, despite the extensive work that has
been done since 1971 to address the particular challenges which confront women
in mathematics, women still face particular difficulties within their professional
careers. Many of these difficulties have a long history stemming from deeply
embedded cultural attitudes, some of which have proven difficult to shift. The fact
that these attitudes have a long history does not excuse why change has been slow
but it does perhaps help to explain it.

In what follows I describe some examples of the challenges faced by women
mathematicians during the last two hundred and fifty years, looking first at some
individuals from the eighteenth and nineteenth centuries, then taking a slightly

1For a history of the AWM, see [1].
2See https://www.mathunion.org/cwm/organizations/country.
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broader view and considering women within particular national contexts.3 I make
no claim for completeness but through these historical examples I hope to shed light
on some of the problems still encountered today.

2 The Eighteenth and Nineteenth Centuries

The first woman in the modern period to make a substantial contribution to
mathematics was the Italian Maria Agnesi (1718–1799) who in 1748 published
one of the earliest textbooks on the differential and integral calculus, Instituzioni
Analitiche, which she originally wrote in order to instruct her younger brothers.
Written in the vernacular (which was unusual in the period), the book was accessible
to a broad audience and an important contribution to the spread of the calculus
in Italy. Two years after the book’s publication, she was appointed to the chair of
mathematics in Bologna on the recommendation of the Pope, Benedict XIV, but she
never took up the position. Agnesi did not even go to Bologna although her name
remained on the rolls of the university. Instead she devoted her life to works of
charity.4

Much has been written on the content and reception of Agnesi’s text but I want to
draw attention only to some remarks made by the French historian of mathematics,
Jean-Etienne Montucla, as they are illustrative of contemporary views about women
mathematicians. Montucla, who was writing at the end of the eighteenth century,
was complimentary about the book but nevertheless rued the fact that there was no
translation of it by one of the French women mathematicians—he didn’t say who he
had in mind—thereby implying that he believed there to be a difference between the
way men and women approach and study mathematics.5 At the same time, he was
also astonished that a woman—or as he put it “a person of a sex that seems so unfit
to tread the thorny paths of abstract sciences” [3]—could penetrate so deeply into
the calculus, thereby reinforcing the notion of the general unsuitability of women
for mathematics.

Agnesi, along with a number of other women in the eighteenth and early
nineteenth century, such as Émilie du Châtelet (1706–1749), Ada Lovelace (1815–
1852) and Mary Somerville (1780–1872), all of whom made lasting and significant

3By women mathematicians I mean women who were producing or developing original mathe-
matics. That is not to diminish the contribution of the many women who simply used mathematics,
as for example in accounting practices, or who were employed as human computers, but simply to
note that they are not the subject of my discussion.
4For a discussion of Agnesi’s life, see Paula Findlen’s excellent essay review [2].
5There was a French translation by a man, Pierre Thomas d’Antelmy, which appeared in 1775.
An English translation by John Colson appeared in 1801. It was a mistranslation by Colson,
who confused a versiera (the rope that turns a sail) with l’aversiera (she-devil), that led to the
cubic curve studied by Agnesi being named the ‘witch of Agnesi’ (an early example perhaps of
unconscious bias?).
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Fig. 1 “Mlle Ferrand
méditant sur Newton” by
Maurice-Quentin de La Tour

contributions to mathematics, were not prevented from doing mathematics, in fact
sometimes rather the opposite. For example, Lovelace, today renowned for her
remarkable paper which explained the principles of Charles Babbage’s analytical
engine [4], was encouraged by her mother to study mathematics with Augustus De
Morgan.6 Something these women all had in common was that they came from a
social class which gave them the time and the opportunity to discuss mathematics
(and natural philosophy) with men on equal terms. Both Somerville and Lovelace
attended Babbage’s scientific soirées and together they frequently called on him in
order to see and to discuss his analytical engine.

That Élisabeth Ferrand (1700–1752), an important influence on Abbé de Condil-
lac and a friend of Alexis Claude Clairaut, chose a page from Voltaire’s influential
Éléments de la philosophie de Newton (1738)—the book which introduced New-
tonian physics to France—as the backdrop to her portrait is indicative of such
learning among women in Enlightenment circles (Fig. 1).7 But there may be another
reason Ferrand chose Voltaire’s book; for Voltaire was not its sole author although
his is the only name to appear on the cover and title page. Voltaire’s long-time
companion, Émilie du Châtelet, played a major role in the book’s production and in
fact Voltaire did not shy from acknowledging it. Du Châtelet’s name appears twice in
the introductory matter where Voltaire gives an indication of their collaboration, and

6The teaching was done mostly by correspondence, see [5].
7For biographical information about Ferrand and a discussion of Maurice-Quentin de La Tour’s
pastel portrait, see http://www.pastellists.com/Essays/LaTour_Ferrand.pdf.

http://www.pastellists.com/Essays/LaTour_Ferrand.pdf
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Fig. 2 The frontispiece to
Voltaire’s Éléments de la
Philosophie de Newton

she is also depicted in the frontispiece where he has imagined her as a muse floating
above him while holding a mirror reflecting Newton’s wisdom down onto his hand,
thus implicitly admitting her scientific superiority (Fig. 2). Although co-authoring
was not common practice at the time, by keeping du Châtelet’s name from the front
cover, Voltaire was nevertheless diminishing the visibility of women as genuine
contributors to serious scientific work. Some ten years later du Châtelet completed
her own much more ambitious work: Principes Mathématiques de la Philosophie
Naturelle, a translation from the Latin of Isaac Newton’s fiercely difficult Principia.
But it was much more than a translation: Newton’s geometry was rendered into
algebra and she provided an extensive commentary including recent research. She
completed it while pregnant and died shortly after giving birth. It was not published
until 1759, ten years after her death, the publication timed to coincide with the year
of the return of Halley’s Comet. Today it is still the only complete translation into
French of the Principia, a testimony to du Châtelet’s ability as a mathematician.
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Although it was acceptable for these women to mix socially in mathematical and
scientific circles, they could not hold any sort of academic or institutional position.
Somerville was able to make money from the sales of her books—her Mechanism
of the Heavens (1831), an acclaimed translation and commentary on the celestial
mechanics of Pierre-Simon Laplace, became a recommended text for men studying
for the Mathematical Tripos at Cambridge8—and she could have a paper published
by the Royal Society of London,9 but there was no question of her being admitted
as a Fellow of the Society. She could not present her paper to the Society: that had
to be done by her husband, William, who was a Fellow. Although that is not to say
that the Society did not recognise her scientific excellence. In 1842 HRH The Duke
of Sussex (then the most recent past President of the Society) together with other
subscribers presented the Society with a marble bust of Somerville to be placed in
the Great Hall.

More than a century would elapse before women would be admitted as Fellows
of the Royal Society. In 1902 when the physicist Hertha Ayrton (1854–1923) was
formally proposed as a candidate for Fellowship for her pioneering work on the
electric arc, one reason for not admitting her was the fact that she was married, and
married women had no status in law! Although the Royal Society would not admit
Ayrton as a Fellow, in 1904 they did allow her to read a paper before the Society—
the first woman to do so—and in 1906 they awarded her the Hughes Medal.10 Thus,
the Fellows of the Society were prepared to acknowledge that women could do
science, and indeed do it very well, but they were not prepared to accept that women
should or could be considered as their scientific equals. It would be another forty
years before they would change their minds. The first women to be admitted to
the Royal Society were admitted in 1945; the first woman mathematician, Mary
Cartwright (1900–1998), was admitted in 1947 [8].

The first woman to be a professional academic mathematician in the modern
sense was the Russian Sofia Kovalevskaya (1850–1891). Championed by the
Swedish mathematician Gösta Mittag-Leffler, who overcame strong opposition to
secure her appointment at the Stockholm Högskola (the forerunner of Stockholm
University), she became a full professor in 1889. But despite Kovalevskaya’s

8On 14 February 1832, George Peacock, who in 1837 would become the Lowndean Professor
of Geometry and Astronomy at Cambridge, wrote to Somerville to say that he considered The
Mechanism of the Heavens “to be a work of the greatest value and importance,” and told her that
“Dr Whewell and I have already taken steps to introduce it into our course of studies at Cambridge
and I have little doubt that it will immediately become an essential work to those of our students
who aspire to the highest places in our examinations.” [6].
9The paper [7] was Somerville’s first publication and although the conclusions in it were later
disproved, it established her as a practitioner of science rather than as a student or an onlooker.
10Ayrton was the fifth recipient of the Hughes Medal—awarded “in recognition of an original
discovery in the physical sciences, particularly electricity or magnetism or their applications”—
and the first woman to be awarded it. To date it has been awarded to only one other woman:
Michele Dougherty in 2008.
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internationally recognised mathematical talent—she was awarded the Prix Bordin11

of the Académie des Sciences in Paris in 1888 for her work on the spinning
top, with the prize money being increased from 3000 to 5000 francs due to the
originality of her results—there was no chance for her to gain a position in one of
the mathematical centres of Europe, such as Paris or Berlin [9]. As a foreigner it
would have been struggle enough but being a woman made it impossible.

Kovalevskaya herself reported examples of the prejudice that she encountered.
In 1869, early in her career, when she was making one of her visits to the London
salon of the novelist George Eliot (Mary Anne Evans) she found Eliot, who had
an interest in mathematics,12 very keen to introduce her to the philosopher Herbert
Spencer because, as Eliot said openly on the occasion, Spencer denied “the very
existence of a woman mathematician” [10]. Then, later, in December 1884, shortly
after her appointment as an assistant professor in Stockholm, she would write to
Mittag-Leffler [11]:

I have received from your sister, as a Christmas present, an article by Strindberg, in which
he proves as decidedly as two and two make four, what a monstrosity is a woman who is a
professor of mathematics, and how unnecessary, injurious, and out of place she is.

These episodes provide a stark reminder of the fact that this was a period when it
was widely believed that if women used their brains in order to do mathematics (or
science), the effort involved would put a strain on their physical well-being, sapping
their strength to such an extent that it would interfere with their ability to have
children.

As a gifted female mathematician, Kovalevskaya inevitably attracted attention,
but not only because of her mathematics. In 1886, Charles Hammond, the assistant
of the English mathematician, James Joseph Sylvester, on seeing a photograph of
Kovalevskaya, declared that she was “the first handsome mathematical lady” he
had ever seen [12]. (Of course one can wonder how many mathematical ladies he
had ever seen!) Clearly beauty was not expected in a female mathematician. After
Kovalevskaya’s untimely death—she died unexpectedly aged only 41—interest in
her appearance intensified. But no longer was there a consensus—for some she was
beautiful for others she was not and there was no general agreement. The differing
nature of these opinions provides an insight into the disparate views about female
mathematicians [13].

Although Kovalevskaya’s standing as a mathematician was high at the time of
her death, it later suffered setbacks. It is true that some errors were found in her
work but nothing that would have harmed her reputation had she been a man. One
of the most egregious examples came from the pen of the Italian mathematician

11The Prix Bordin, which was second in prestige to the Grands Prix of the Académie, was awarded
for scientific subjects as well as mathematics.
12Eliot attended geometry lectures in London and frequently incorporated mathematics into her
novels, notably The Mill on the Floss.
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Gino Loria, professor of mathematics in Genoa, who in 1903 was putting forward
the case for keeping mathematical faculties closed to women [14]:

As for Sophie Germain and Sonja Kowalevksy, the collaboration they obtained from
first-rate mathematicians prevents us from fixing with precision their mathematical role.
Nevertheless, what we know allows us to put the finishing touches on a character portrait of
any woman mathematician: She is always a child prodigy, who, because of her unusual
aptitudes, is admired, encouraged, and strongly aided by her friends and teachers; in
childhood she manages to surpass her male fellow-students; in her youth she succeeds only
in equalling them; while at the end of her studies, when her comrades of the other sex
are progressing, fresh and courageous, she always seeks the support of a teacher, friend
or relative; and after a few years, exhausted by the efforts beyond her strength, she finally
abandons a work which is bringing her no joy . . .

As Roger Cooke has observed, the most malign element of Loria’s judgement
is his implication of the necessity of “fixing with precision” the originality in a
woman’s work before admitting it is good [15]. The clear insinuation here being
that Weierstrass, Kovalevskaya’s teacher, had more to do with Kovalevskaya’s work
than was apparent, despite the fact that Kovalevskaya was meticulous about citing
him. Happily, more recent scholarly work has restored Kovalevskaya to her rightful
place in the mathematical pantheon.13

Loria’s reference to Sophie Germain (1776–1831) prompts some further remarks.
Germain, who initially taught herself mathematics from books in her father’s library,
at the age of eighteen began to read the lesson-books of the professors at the École
Polytechnique. As the École did not admit women and she wanted to take her
mathematics further, she struck up a correspondence with one of the professors,
Joseph-Louis Lagrange. But she used the name of a real male student, fearing, as
she later said, “the ridicule attached to a female scientist.” She subsequently used
the same pseudonym when corresponding with Gauss. However, on discovering her
true identity, neither Lagrange nor Gauss responded adversely. Indeed in both cases
they were complimentary. She had impressed them with her mathematics and to
them that was what mattered. In 1807 Gauss wrote to Germain [17]:

But when a woman, because of her sex, our customs and prejudices, encounters infinitely
more obstacles than men in familiarizing herself with their knotty problems, yet overcomes
these fetters and penetrates that which is most hidden, she doubtless has the most noble
courage, extraordinary talent, and superior genius.

Notwithstanding the fact that both Lagrange and Gauss were impressed by
Germain, and that her work on elasticity gained a prize from the Paris Académie des
Sciences,14 after her death, like Kovalevskya, Germain’s star lost much of its lustre.
The view that women were not suited to, and therefore not capable of, doing work in
higher mathematics, dominated. In Germain’s case, this is particularly apparent in
connection with her work on Fermat’s Last Theorem where her contribution steadily
became conflated with that of Adrien-Marie Legendre who credited her with only a
small part of a much larger and more substantial piece of work. It was not until the

13See, for example [9, 16].
14Germain was the first woman to gain such a prize.
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1990s when David Pengelly and Reinhard Laubenbacher worked on her manuscripts
and letters that the true scale of her contribution to the problem was recognised. At
the end of their research, Pengelly and Laubenbacher concluded [18]:

Sophie Germain was a much more impressive number theorist than anyone has ever known.

3 Cambridge University

During the nineteenth century, Cambridge was the beating heart of British math-
ematics and the Mathematical Tripos the most prestigious and demanding exam-
ination in Britain. It was punishingly hard, both physically and mentally, but the
rewards were great. Students who came high up in the list of wranglers (students in
the first class) had a passport to the career of their choice, be it the law, medicine, the
church or mathematics. It is hard to over-estimate the kudos attached to being senior
wrangler, the top mathematics student of the year. Kudos that went far beyond the
bounds of Cambridge.

From the second half of the century, women could study mathematics at
Cambridge—the women’s colleges Girton and Newnham were founded in 1869 and
1872 respectively—but they had to obtain permission to sit the Tripos examination,
they could not do so by right, and they could not be awarded a degree (with its
privileges and voting rights). For over three-quarters of a century the two colleges
were not even officially part of the University (that had to wait until 1948).

In 1880 Charlotte Scott (1858–1931) created a sensation by being judged equal
to the 8th wrangler.15 The newspapers and periodicals were full of her success—she
had done better than 93 of the 102 men taking the examination—and the reports
are revealing about contemporary views of women mathematicians. The Spectator
is typical [19]:

Miss Scott has answered papers set for the mathematical tripos in a manner which would
have brought her high on the list of Wranglers, an achievement of no common kind. . . . We
hope that the ability which the new system brings out and fosters in women, will not be
of a kind to give to those who possess it a character for deficiency in feminine gentleness.
We do not believe that it will be so. But even in the rare cases where it is so, the world
should remember that there have always been women of the masculine type—only that they
have hitherto lacked the means of proving what they could do, though possessing amply the
means of proving what they could not be.

Once again mathematics is portrayed as an essentially male pursuit. Nevertheless,
Scott’s achievement generated a growth in support for female students, and from
1881 women were given the right to take the examinations and to have their results
published, albeit separate from the men. But they still could not be awarded degrees.

An even greater sensation was created when, in 1890, Philippa Fawcett (1868–
1948) was judged to be above the senior wrangler. Reports were published far

151880 was a strong year with Joseph Larmor, future Lucasian professor, being senior wrangler,
and J. J. Thomson, future Nobel laureate, being second wrangler.
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Fig. 3 Philippa Fawcett
celebrated in Punch, 21 June
1890

and wide, including in the New York Times [20]. The satirical magazine Punch
even produced a cartoon (Fig. 3). Fawcett had scored 13% more marks than the
highest ranked man, G.T. Bennett, and achieved what many had believed impossible.
Nevertheless, when the Tripos list was published, her name (together with that
of the other women) still appeared below that of all the men, her position in the
examination “above the Senior Wrangler” written in brackets beside it.

After Fawcett’s success, the clamour for women to be awarded degrees grew
louder but it was still not loud enough. Cambridge did not fully open its doors to
women until December 1947. Those who wanted degrees had to go to London or,
from 1920, Oxford.

Grace Chisholm (1868–1944), who was placed between the 23rd and 24th wran-
glers in the Mathematical Tripos of 1892 (and also unofficially achieved a first class
in the Final Honours School of Mathematics in Oxford the same year), completed
her studies with Felix Klein in Göttingen (see section on Germany below).16 As a

16For a description of Chisholm’s experience in Göttingen, see [21].
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woman, there was nowhere in Britain she could engage in post-graduate research.17

In 1895 she became not only the first British women to gain a PhD in mathematics
but also the first woman anywhere to gain one following a standard period of
study and oral examination.18 Shortly afterwards she married the mathematician
William Henry Young who had been her tutor for a term at Girton [22]. Young was
content for her to continue with mathematical research but, as he told her, publishing
mathematical papers was a man’s game [23]:

The fact is that our papers ought to be published under our joint names, but if this were done
neither of us get the benefit of it. No. Mine the laurels now and the knowledge. Yours the
knowledge only. . . . Everything under my name now, and later when the loaves and fishes
are no more procurable in that way, everything or much under your name.

In the end, the Youngs published 214 papers between them [24]. They were
mostly published in William’s name with only 18 in Grace’s name and 13 co-
authored. In 1906 they published their book The Theory of Sets of Points together.
Although happily such a situation no longer pertains, that is not to say that
publishing for women today is without problems. Recent analysis of mathematical
publications dating from 1970 has shown that “gender-related publication patterns
exist and are one of the factors that lead to an underrepresentation of women in
mathematics” [25].

Returning to the situation at Cambridge, aside from Young there were men there
who were prepared to provide at least some support for women mathematicians.
Charlotte Scott studied algebraic geometry with Arthur Cayley, the Sadleirian
Professor, and it was Cayley who recommended her for the position of head of
mathematics at the newly opening Bryn Mawr College in the United States, a
position which she took up in 1895, no equivalent opportunity being available to her
in Britain. Cayley was an active supporter of women’s education—for several years
he was president of the Council of Newnham College—but realizing that change
would be achieved only slowly his work was chiefly behind the scenes. For a long
time men like Young and Cayley were part of a small minority in Cambridge—the
belief that women were not capable of doing serious mathematics proved extremely
hard to shift.

After 1947, women may have been able to get degrees at Cambridge but little
changed in other respects, and progress towards gender equality in mathematics has
been glacially slow. Mary Cartwright, despite being a Fellow of the Royal Society,
was never deemed worthy of a professorship.

The first woman to be elected to a professorship in Cambridge was the applied
mathematician Anne Davis in 2002, and as at 2018 a female professor in pure

17Men in Britain could engage in post-graduate research but if they wanted a PhD they had to go
abroad. The PhD did not come to Britain until after the First World War.
18Kovalevskaya, who had studied privately with Weierstrass in Berlin, was awarded a PhD in
absentia from Göttingen in 1874 based on the contents of three separate research papers. She took
no oral examination.
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mathematics has yet to be appointed there. Furthermore, there is still a greater
gender imbalance among mathematics students at Cambridge than at other univer-
sities.19

4 Germany

In 1764 Immanuel Kant had pronounced that women who succeeded in mathematics
“might as well have a beard” [26]. His point being that if women did succeed in
mathematics then they would not be women they would be men! The first concrete
sign of progress was in 1874 when Kovalevskaya, having studied privately with
Karl Weierstrass in Berlin, was awarded a PhD by the University of Göttingen. But
it remained an isolated incident until the 1890s when Felix Klein, and subsequently
David Hilbert, in Göttingen were allowed to let women to audit lectures. Initially
only foreign women were permitted as their special status meant they could be used
as a test case.20 As Klein observed in 1895, “The opinion still prevailing in Germany
is that the study of mathematics must be as good as inaccessible to women” [27].
At that time he himself had had six foreign women—American, English (including
Grace Chisholm) and Russian—successfully participating in his higher mathematics
lectures which prompted him to remark [27]:

No one would wish to assert, however, that these foreign nations possess some inherent and
specific talent that evades us, and thus that, with suitable preparation, our German women
should not be able to accomplish the same thing.

Klein encouraged his women students to publish in Mathematische Annalen, the
journal of which he was the chief editor. The American Mary Winston (1869–1859),
whom Klein had originally met in 1893 when she attended both the Mathematics
Congress in Chicago and his Evanston Lectures that followed it, was the first, in
1895, with a short note on the hypergeometric function.

The most prolific female author in Mathematische Annalen under Klein’s
editorship was unsurprisingly Emmy Noether (1882–1935), one of the twentieth
century’s most gifted mathematicians. Noether’s life and extraordinary talent for
mathematics have been well documented but recently more information has come
to light with regard to her unsuccessful application in 1928 for a professorship
at Kiel, information which underlines the tremendous difficulty and prejudice she
faced in trying to get a position in Germany. When Noether’s name was suggested

19For a discussion about the current situation with respect to mathematics students in Cambridge,
see the Varsity interview of 2 November 2017 with Julia Gog https://www.varsity.co.uk/news/
13945. In 2014 the Faculty of Mathematics at Cambridge achieved an Athena SWAN bronze
award. See https://www.maths.cam.ac.uk/womeninmaths/athenaswan.html.
20In 1891 the American Ruth Gentry was permitted to audit the lectures of Lazarus Fuchs and
Ludwig Schlesinger in Berlin for one term before permission was revoked.

https://www.varsity.co.uk/news/13945
https://www.varsity.co.uk/news/13945
https://www.maths.cam.ac.uk/womeninmaths/athenaswan.html
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as a possible contender for the professorship by Adolf Fraenkel, a professor at Kiel,
Helmut Hasse, then a professor in Halle, was moved to say [28]:

I am astonished you even seriously consider this possibility. Although I regard her highly in
scientific matters, I deem her totally unfit to fill a regular teaching position, even less so in
a small university like Kiel. . . . I am of the opinion that one should not make the experiment
to appoint a woman as full professor at such a place as Kiel. The experiment should be tried
first on a bigger scale where an unsuccessful outcome would not do so much harm.

The applied mathematician Theodor Kaluza was appointed to the position. In
1933 Noether, as a Jew, was dismissed from her “extraordinary” professorship in
Göttingen (basically a Privatdozent with an additional small stipend), and emigrated
to the United States where she had a temporary position at Bryn Mawr until her
premature death in 1935.

5 United States of America

Thanks to the detailed work of Judy Green and Jeanne LaDuke there is now a
wealth of information available about the 228 American women mathematicians
who earned PhDs in the United States before 1940 [29].21 Added to that is the
research by Sarah Greenwald, Anne Leggett and Jill Thomley on the AWM which
brings the picture in the United States almost up to date [30]. What is striking about
the latters’ findings is how the percentage of women mathematics PhDs rose fairly
steadily decade on decade from the end of the nineteenth century up to the beginning
of the Second World War only then to drop off significantly. As can be seen from
the graph which Greenwald et al produced (Fig. 4), the 1930s percentage was only
really surpassed in the 1990s.

In the pre-WW2 period, certain institutions in the United States stand out with
respect to their support for women mathematicians. Bryn Mawr, the women’s
college founded in 1895, benefited from having Charlotte Scott at its mathematical
helm. Scott supervised seven PhD students and her colleague, and successor as head
of mathematics, Anna Johnson Pell Wheeler (1883–1966) supervised six. Both of
them, together with Olive Hazlett (1890–1974) who spent a short time as a lecturer
at Bryn Mawr, are distinguished for being the only starred women mathematicians
in (the inaccurately named) American Men of Science between 1903 and 1943. At
the University of Chicago, Leonard E. Dickson supervised 18 women PhDs (27%
of his output), and Gilbert A. Bliss supervised 12 women PhDs (23% of his output).
Meanwhile at Cornell, Virgil Snyder supervised 14 women PhDs (37%) of his out-
put. In addition, as mentioned above, Klein in Göttingen also supported American
women mathematicians.

21For additional material by the same authors, see http://www.ams.org/publications/authors/books/
postpub/hmath-34.

http://www.ams.org/publications/authors/books/postpub/hmath-34
http://www.ams.org/publications/authors/books/postpub/hmath-34
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Fig. 4 Percentage of Math PhDs Awarded to Women by Decade (1880–2009)

The lowering of numbers in the immediate post-WW2 period can be largely
attributed to the prevailing social conditions which conspired against women
mathematicians as it did against women in other fields. It was not until the 1970s,
with the advent of organisations supporting women mathematicians, that significant
improvements were made.

6 The Growth of Institutional Support for Women
in Mathematics

In general, national mathematical societies have been welcoming to women mem-
bers. However, the same cannot be said of their governing bodies. The American
Mathematical Society was exceptional in appointing Charlotte Scott as a Vice-
President in 1906, but it took the Society until 1983 before it appointed its first
woman president, Julia Robinson. The first Society to appoint a woman president
was the Société Mathématique de France when they elected Marie-Louise Dubreil-
Jacotin in 1952. Even in recent times, the number of women in senior roles within
societies has not accurately reflected the contribution of women to mathematics as
a whole.

After the formation of the AWM in 1971, a number of other organisations
supporting women in mathematics were established in North America and Europe:
The Joint Committee on Women in the Mathematical Sciences (1971), European
Women in Mathematics (1986), The Women in Mathematics Committee of the
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European Mathematical Society (1991), Femmes et Mathématiques (1987), The
Canadian Society Committee for Women in Mathematics (1992) and the London
Mathematical Society Women in Mathematics Committee (1999).

At the First European Congress of Mathematics in 1992, there was a Round Table
on Women in Mathematics organised by the Women in Mathematics committee
(WiM) of the European Mathematical Society. The aim of the Round Table was
to look at the proportion of women involved in mathematics in various countries.
Its report contains a wealth of information and data providing a detailed picture
of the situation [31]. Among the examples demonstrating the ingrained bias that
still existed at that time was one provided by Eva Bayer-Fluckiger concerning the
pre-printed postcards supplied by mathematical departments to be used for reprint
requests. These cards contained a text that ran roughly as follows:

Dear Sir,
Please send me a reprint of your article . . . that appeared in. . . .
Many thanks in advance.
Yours sincerely.

Bayer-Fluckiger had recently received such a card that had the text in three
languages: “Lieber Herr Professor; Monsieur le Professor; Dear Sir”İ. The idea that
the author of a mathematical article could be a woman simply wasn’t entertained.
In commenting on the “deplorable” German situation in comparison with other
European countries, Christine Bessenrodt, in her talk at the Round Table, noted
that although about one third of students in mathematics were women, “only 9%
of dissertations and 7% of habilitations are written by women, and only 2% of
the professors in mathematics are female.” And she found it a very depressing
task “investigating the status quo and compiling a list of obstacles that women in
mathematics have to face in Germany.” So much so that she found “it surprising
that there are women mathematicians at all in [Germany]”İ. Such examples paint a
vivid picture of the poor situation for women mathematicians in Europe at that time
as well as highlighting the extent of the gender gap.

The WiM committee, helped by funding from the UK Royal Society Athena
Awards, gathered data about women mathematicians across Europe in 1993 and
again in 2005 (Fig. 5).22 Although the data shows a substantial increase in the
percentage of women mathematicians during the intervening 12 years, it also reveals
a significant difference between north and south, highlighting the countries in which
the greatest efforts need to be made.

Since 2000 the number of organisations set up to support women in mathematics
has grown worldwide. In addition to those organisations named above, there are
now organisations in countries across the globe, as well as umbrella organisations
for African Women in Mathematics and Central Asian Women in Mathematics.23

22For details of the data, see C. Hobbs, E. Koomen ‘Statistics on Women in Mathematics’ (2006),
https://womenandmath.files.wordpress.com/2007/09/statisticswomen.pdf.
23For information about the different national organisations, see https://www.mathunion.org/cwm/
organizations/country.

https://womenandmath.files.wordpress.com/2007/09/statisticswomen.pdf
https://www.mathunion.org/cwm/organizations/country
https://www.mathunion.org/cwm/organizations/country
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Fig. 5 Percentage of women mathematicians in Europe in 1993 and 2005

In 2015, with a remit to promote international contacts among all of these organ-
isations, the IMU Committee for Women in Mathematics (CWM) was founded.
The CWM website provides information about all the national organisations and
much more besides, including links to articles about the recent history of women in
mathematics.24

7 The Last Word Goes to Ingrid Daubechies

In 2010, Ingrid Daubechies was elected as the first woman president of the
International Mathematical Union, her term of office running from 2011–2014. On
29 July 2014, just prior to the ICM in Seoul, Daubechies was interviewed for The
World Academy of Sciences. Among the questions she was asked was25:

There’s a common assumption that women are less good than men at mathematics. What
could be the reason for this, assuming it is true?

Here is Daubechies’ response (her emphasis):

I disagree with this view—completely. There is a highly variable percentage of women in
academia and in departments of mathematics across Europe. Differences are so enormous
that it becomes obvious that it has something to do with cultural habits, which differ from
one nation to another, and not with intelligence. I have a very cynical colleague who says

24https://www.mathunion.org/cwm.
25https://twas.org/article/maths-also-women.

https://www.mathunion.org/cwm
https://twas.org/article/maths-also-women
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that the number of women mathematicians who are in academia is inversely proportional to
some average of the amount of money and prestige that the job can grant: If there is little
money and no prestige, there you’ll find more women. I agree: These aspects seem to play
a much larger role than being smart.

Daubechies draws attention to an important issue. She points out, and the
historical examples support it, that even in a highly theoretical field such as
mathematics, with often flexible working environments and relatively clear criteria
for quality of work, social and political conditions impede the equality of women.
But this very fact gives cause for hope too: these are conditions that can be changed
and are being so, albeit not as fast as they might be.

We are not condemned to the repetition and perpetuation of past mistakes.

Acknowledgements I thank Deborah Kent, Caroline Series, and Reinhard Siegmund-Schultze for
their valuable comments and suggestions which helped me produce an improved final version of
this article.
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Initiatives of the International Union
of Pure and Applied Physics to Reduce
the Gender Gap in Physics

Silvina Ponce Dawson

Abstract The International Union of Pure and Applied Physics (IUPAP) was
established in 1922 with 13 member countries. Nowadays, the physics communities
of 54 countries are represented at the union. The IUPAP is governed by its General
Assembly (GA) which meets triennially. Its top executive body is the Council which
supervises the activities of commissions that are organized around physics sub-fields
and of temporary working groups that are meant to solve specific problems. The
1999 IUPAP GA approved the creation of the Working Group on Women in Physics
to survey the situation of women physicist and to suggest measures to improve it.
The Working Group has performed a variety of actions to fulfill its mandate. Based
on its recommendations, the IUPAP has taken a series of actions to reduce the gender
gap and increase diversity and inclusion in physics. In this paper I briefly describe
some of these actions.

1 Introduction

The International Union of Pure and Applied Physics (IUPAP) was established
in 1922 with 13 member countries. Nowadays, the physics communities of 54
countries are represented at the union. The aims of the IUPAP are: to stimulate
and promote international cooperation in physics; to sponsor suitable international
meetings and to assist organizing committees; to foster the preparation and the
publication of abstracts of papers and tables of physical constants; to promote inter-
national agreements on other use of symbols, units, nomenclature and standards; to
foster free circulation of scientists; to encourage research and education. The Union
is governed by its General Assembly (GA) that meets triennially. Its executive body
is the Council which supervises the activities of twenty specialized International
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Commissions and four Affiliated Commissions, each of which are organized around
physics sub-fields. Besides the commissions, there are (temporary) working groups
that focus on developing new research fields and activities that would be difficult to
resource through traditional funding programs.

In 1999, the IUPAP GA approved the creation of the Working Group on Women
in Physics with the following mandate: to survey the situation for women in physics
in IUPAP member countries; to analyze and report the data collected along with
suggestions on how to improve the situation; to suggest ways that women can
become more involved in IUPAP; to report all findings at the General Assembly in
2002. Since then, the Working Group has engaged in a variety of actions to fullfill
its mandate. In spite of this, the gender gap in physics still exists in most countries.
For this reason, all IUPAP GAs since 1999 have approved the continuing existence
of the Working Group on Women in Physics and the last one extended its mandate
for six years, until 2023.

One of the first actions of the Working Group was to organize the constitution
of working groups in as many countries as possible, with the task of collecting
local information on the situation of women physicists. It also subcontracted the
American Institute of Physics to perform a survey on the situation of women
physicists. The questionnaire for this survey, in English, was disseminated via e-
mail and was responded by about 1000 women physicists from 55 countries. All
this information was presented at the First International Conference on Women in
Physics (ICWIP) that took place at the UNESCO premises in Paris, France, in 2002
with over 300 participants from 65 countries. As we describe in what follows, this
was the first in a series of International Conferences and of other activities organized
by the Working Group to make more visible the contributions of women physicists,
to help the professional development of female physicists in the early stages of their
careers and to attract more girls to the discipline.

Besides the specific actions that the Working Group carried on to analyze and
reduce the gender gap in the discipline, its most important contribution has been
to put the issue of women in physics on the agenda of physics communities across
the world and to help the creation of an international network of women physicists
that extends over many more countries than IUPAP members. We describe in what
follows some of the activities of the Working Group and of the decisions that,
based on the recommendations of the Group, the IUPAP has taken over the years
to increase diversity and inclusion in the practice of physics.

2 Activities of the IUPAP Working Group on Women
in Physics

We describe in this Section the main activities that the Working Group (WG)
on Women in Physics (WiP) has recently been engaged in, namely, to organize
an International Conference on Women in Physics, ICWIP, every other three
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years; to elaborate resolutions and recommendations to be presented at the IUPAP
GA; to give out travel grants to women physicists in the early stages of their
careers and physics graduate students from developing countries; to provide useful
information and to take the necessary actions to continually survey the situation
of women physicists across the globe. The latter led the group to liaise with
representatives from other international scientific unions and elaborate the project
entitled “A Global Approach to the Gender Gap in Science: How to Measure
It? How to Reduce It?” that received one of the 3 grants of the International
Science Council (ICS, former ICSU) in 2016. This on-going project had a Global
Survey of Scientists open through the end of 2018 which collected over 35,000
responses.

2.1 International Conferences on Women in Physics

The International Conferences on Women in Physics, ICWIP, constitute the main
forum for discussing ways to improve the situation and increase the number
of women physicists, for exchanging ideas on science and gender-related issues
and for learning from regional differences. They provide the ideal platform to
establish mentoring schemes and disciplinary and regional networks. Attendance
is by country teams, with limits to the number of participants per country so that
all countries are more or less equally represented. Travel grants are awarded to
representatives from developing countries to guarantee ample participation. The
attendance of graduate students and of at least one man per country team is
encouraged.

Organizing each ICWIP poses a great challenge with respect to funding.
Although the IUPAP sponsors the conference, the sponsorship is not enough to
fully run it. The local organizers need to raise local funds to cover the costs of
the organization. The WG, which acts as the International Organizing Committee,
raises the money to cover the travel expenses of representatives from countries in
need. Typically, about 70 grants are awarded. Grants cover both travel and lodging
expenses of the participants.

Each ICWIP is organized every other three years in different parts of the
world. The 1st ICWIP that took place in Paris, France, in 2002 was followed by
conferences in Rio de Janeiro, Brazil, in 2005; Seoul, Republic of Korea, in 2008;
Stellenbosch, South Africa, in 2011; Waterloo, Canada, in 2014 and Birmingham,
UK, in 2017. The forthcoming ICWIP will be held in Melbourne, Australia, in
2020.

Lately, an ICWIP lasts for about 3.5 days and includes six main types of
activities. Plenary talks have the purpose of making visible the contributions of
women physicists. In almost all cases they are given by women physicists who
describe their research intermixed with their personal life history. Country poster
sessions are the event at which each country team must present the description
of their local situation including a comparison with what had been presented in
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previous years. The scientific poster session is meant to facilitate the scientific
exchange among attendants of the conference. Participation in this session is
voluntary. In recent years, both poster sessions have been complemented with
advertisement sessions composed of 3 min presentations of all posters. Five
workshops or break-out sessions are run in parallel to address gender-related topics.
Some of them are intended to provide tools for the professional development
of physicists in the early stages of their careers. Each workshop typically has
3 sessions of 1.5 h each with a few short talks and ample time for discussion.
The last session is devoted to elaborate recommendations to be discussed at the
final Conference Assembly. During this final assembly, all participants discuss and
draft the recommendations and resolutions to be presented at the IUPAP GA.
Each ICWIP has at least one outreach activity for the general public or for school
kids.

The themes discussed at the parallel workhops have changed a little since the
first ICWIP. Among others, we have had sessions on: Attracting Girls into Physics;
Launching a Successful Physics Career; Getting Women into the Physics Leadership
Structure Nationally and Internationally; Improving the Institutional Climate for
Women in Physics; Learning from Regional Differences; Balancing Family and
Career; Professional Development and Leadership; Leaving and entering a career in
physics; Gender studies and Intersectionality; Scientific networking in disciplines
Physics and Science Education; Cultural perception and bias; Science Practice and
Ethics.

All ICWIPs have had proceedings containing country papers (a brief written
account of the country posters), papers associated to the workhops and other related
material such as recommendations and resolutions. All the proceedings have been
published as an issue in the AIP Conference Proceedings series.

To give a feeling of what the conferences are like, we give here a brief
account of the last ICWIP. It was held in 2017 in Birmingham, UK, and had
212 participants representing 48 countries. 57 participants were awarded travel
grants, although only 49 were able to attend (most of them had difficulties
with visas). Nobel Peace Laureate Malala Yousafzai spoke as a guest at the
conference and interacted with delegates. There was a special art exhibit, “Finding
Space”, that featured photos of the delegates in a soundscape created from sounds
recorded at the research labs of female physicists. Immediately after the closing
of the conference, attendants could choose to participate in continual professional
development workshops on how to engage girls with science qualifications and
careers, on unconscious bias or on how to get gublished. Travel grant holders
had the chance to spend an extra day visiting labs and theoretical groups of
the University of Birmingham to foster collaborations with the researchers. Also
for ICWIP17 we faced a recurrent problem of international conferences: the
denial of visas. Seven visas were denied or delayed preventing participation in
ICWIP17.
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2.2 Travel Grants for Young Female Physicists and Physics
Students

The years with no ICWIPs, the funds that the WG receives are mostly spent on travel
grants for female physics students and physicists in early stages of their careers.
The grants are given to women from developing countries that are willing to attend
a conference, school or workshop outside their home institution. The WG makes
the selection of the awardees. In 2012, 83 applications were received and 22 grants
were awarded to women from Argentina, Brazil, China, Ghana, Hungary, India,
Iran, Kazakhstan, Kenya, Peru, Poland, Romania and Ukraine. In 2013, the number
of applications was 64 and the number of grants 15; they were, respectively, 100
and 26 in 2015; 30 and 23 in 2016.

2.3 Other Activities of the Working Group

The WG has a webpage, currently hosted at wgwip.df.uba.ar, with useful informa-
tion for the women in physics community. The page contains information on the
WG (current and past); the list of country team members and team leaders with
contact information; the resolutions and recommendations elaborated at the the
various ICWIPs; the resolutions suggested by the WG that were approved by the
IUPAP GAs; information on all ICWIPs and the Travel Grants awarded by the WG;
links to useful resources; some news such as the calls for travel grant applications.
Currently, there is not a communication group fully devoted to maintain the website.

The WG decided to establish an International Women in Physics Day. This
resolution was approved by the IUPAP GA in 2014. Some discussion was then
started about the date. The WG finally chose February 11th as the International
Women in Physics Day coinciding with the International Day of Women and Girls
in Science as established by the United Nations. In 2018, the WG encouraged
the participation in the campaign launched by the Organization for Women in
Science for the Developing World (OWSD) portraying stories of female physicists
and physics students on social networks. The WG is planning to fully launch
the International Women in Physics Day in 2019, the year that marks the 20th
anniversary of the IUPAP General Assembly that decided on the group’s creation.
In preparation for this, the group is planning to open a competition for the design
of a logo to identify the Day. A redesign of its web page adding new capabilities is
also being planned.

During the 5th ICWIP that took place in Waterloo, Canada, in 2014, the decision
was made to write a declaration of principles drawing inspiration from the Baltimore
Charter of the American Astronomical Society. This gave birth to the Waterloo
Charter on Women in Physics which is a declaration of principles endowed with
a long list of recommendations to advance towards a more inclusive and diverse
practice of physics. It is based on the rubrics of the Baltimore Charter and the
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Pasadena Recommendations formulated by the American Astronomical Society in
1993 and 2003 respectively. It is also shaped and guided by the principles dictated
by the JUNO project of the Institute of Physics in the UK. It embraces, as well,
the statements on gender equity and inclusiveness in physics that have been issued
previously by the IUPAP. The final draft is currently under the consideration of the
IUPAP Executive Council to be presented at the next GA that will be held in 2020.
This latest draft is available at the WG webpage.

2.4 Resolutions and Recommendations Presented
by the Working Group on Women in Physics

Several resolutions and recommendations were generated, between 2002 and
2017, at the 6 ICWIPs. Recommendations were intended for individuals, physical
societies, the WG, the IUPAP and other players of the scientific endeavor. In this
section we quote some of them.

Scientific and Professional Societies should foster gender equity having a group
examining policies, making available statistics on the participation of women,
identifying leading women physicists and promoting them as role models

Funding Agencies should ensure that there is no gender bias in the broad
based general grant funding process, and that women are included on review
and decision making committees. Limits on age of eligibility or grant duration
that seriously disadvantage applicants taking family leave should be reconsidered.
Statistics should be made available giving by gender the proportion of successful
applicants.

All institutions should note that family oriented practices such as flexible work
schedules, opportunities for dual career families, and child care facilities increase
the opportunities for women in science and technology.

The IUPAP should require the organizers of the conferences it sponsors to
improve the inclusion and encouragement of women, and request its member
societies and other scientific unions to do the same.

The IUPAP should actively encourage the organizers of the conferences it
sponsors to provide, associated with the program: (a) professional development
workshops for attendees and (b) outreach activities aimed at the public and to engage
both girls and boys from an early age in the excitement of physics.

The IUPAP should encourage its commissions and member countries to have a
clear and transparent list of criteria for awards ensuring that women are nominated
for prizes and that there are women on the selection committees for prizes and
awards.
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2.5 The Global Survey of Physicists

The Global Survey of Physicists was open for responses between 2009 and 2010.
It was available in 8 languages. The survey was implemented and analyzed by the
Statistical Research Center of the American Institute of Physics who had done the
previous (smaller and women only) surveys in 2001–2002. The questionnaire was
developed by the AIP in close collaboration with the WG and some country team
leaders.

The survey collected almost 15,000 responses from about 130 countries, 75% of
them, highly developed. 21% of the responses coming from developed countries
were from female respondents, this percentage was 27% in the case of less
developed countries. Less than 30% of the responses came from (mostly graduate)
students.

The survey confirmed some of the results that had been obtained in 2001–2002.
For example, it showed that early educational experiences had been important for
both men and women in choosing physics, especially in highly developed countries.
It also showed differences between genders and between more or less developed
countries. Regarding their personal lives, male physicists were more likely than
women to have spouses that earn less than they do, who don’t work or who do
most of the housekeeping. The difference was most noticeable in the case of highly
developed countries. For example, while only 7% of the female respondents from
developed countries and 5% from developing ones said that their spouses were not
employed, the ratio was 33% of male respondents from developed countries and
23% from developing ones. There were also noticeable differences with respect to
having kids. While about 40% of the female respondents from developing countries
had had their children after university and before their doctorate only 25% of the
men from developing countries and 15% of the women and 10% of the men from
developed ones had had their kids at that stage in their careers. Sixty percent of the
female and 65% of the male respondents from developed countries had their kids
after their doctorate. These data highlighted differences in family organization and
family related decisions that were likely to interfere more with the advancement of
women’s than of men’s careers.

Some of the responses also reflected differences in attitudes. While about 50% of
the female respondents from developing countries said they felt mostly comfortable
raising concerns with their boss 59% of male respondents from developing countries
and 61% and 70%, respectively, of female and male respondents from developed
ones gave the same answer.

Finally, the information that the respondents provided about their careers as
scientists showed that women had a harder time than men finding opportunities to
advise graduate students, to serve as journal editors or on influential committees, to
have an international work experience and to receive invitations to speak.
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2.6 Measures Approved by the IUPAP to Increase
Inclusiveness and Diversity in Physics

Besides the creation and continuous renewal of the WG on WiP, the IUPAP has taken
other measures to advance the agenda of women in physics. In 2011, it created the
position of Gender Champion and decided that one Vice-President at Large would
be assigned to occupy this position. The person occupying this position is elected at
the GA. The position was proposed to strengthen connections between the IUPAP
commissions and the Working Group on Women in Physics. Since that time, every
three years a Vice President at Large has been appointed to serve in that position
mainly to assist in tracking the representation of women in all IUPAP activities.
Based on the collected data, a set of rules has been established to guarantee that
women are represented as organizers, speakers and attendees of IUPAP sponsored
and supported conferences and that conference participants receive information on
inclusiveness in physics. An anti-harassment policy has also been established for
such conferences.

The 29th GA established, as a recommendation for all affiliated national
institutions, that a 20% target (of female participation in conferences) be achieved.
It has also been defined that meetings with female participation of less than 10% are
not accepted. Conference organizers will have a deadline of a few weeks to make
the necessary corrections if this 10% is not fulfilled. An analysis of the conferences
sponsored by the IUPAP in 2017 and 2018 showed an average of 19% female
participants and 17% of female invited speakers, not too far away from the desired
(minimum) target of 20%.

The 29th GA also passed a resolution that addressed the “need to encourage
IUPAP-sponsored conferences to have a session for all participants on Diversity and
Inclusion in Physics”. The Executive Council has discussed examples of possible
activities. They include: a plenary session or talk, a brief presentation followed by
an exhibition that remains open a significant amount of time during the conference,
a survey on the issue to be responded by conference participants, etc.

IUPAP requires that supported conferences publish on their websites and in all
publications related to the Conference a specific statement on harassment. Among
other things, the statement says: “The conference organisers will name an advisor
who will consult with those who have suffered from harassment and who will
suggest ways of redressing their problems, and an advisor who will counsel those
accused of harassment.”

2.7 Partnering Up with Other Scientific Unions

The problems that women physicists face are shared by women in most other
careers in STEM. The need to have consistent data on the situation of gender in
physics and other disciplines and to elaborate policy proposals supported by data
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was the initial seed for the project entitled “A Global Approach to the Gender
Gap in Mathematical and Natural Sciences: how to measure it, how to reduce
it?”. This collaborative project among 8 scientific unions with the leadership of the
International Mathematical Union and the International Union of Pure and Applied
Chemistry has three tasks. Task 1 involves performing the global survey of scientists
that we referred to before. Task 2 consists of performing a study on publication
patterns in the disciplines of the project. Task 3 consists of creating an online
database with lists of good practices for girls, women, parents and organizations
at various levels, including those involved in guiding young women into careers.
IUPAP representatives are in the coordination group of Task 1. The IUPAP in
general and its WG and Gender Champion, in particular, are fully committed to
work on this project and contribute to achieve its goals of providing evidence on
which to orient future actions to help reduce the gender gap in science, collaborate
with social scientists to determine differences and commonalities across regions,
cultures and disciplines cross-referencing the data with other available indicators
about the countries, to provide easy access to materials to encourage young women
to work in the fields of STEM and to recommend practical policies and actions to
reduce the gender gap in science.

3 Final Words

Women have made significant and creative contributions in physics. These contri-
butions, however, most often have gone unnoticed. This is reflected, for example, in
that 2018 has seen the first female Nobel Prize winner in 55 years. The percentage
of female physicists, on the other hand, remains low in many countries. It is
increasingly clear that scientific careers are strongly affected by social and cultural
factors, and are not determined solely by merit. The search for excellence that
unites all scientists can be maintained and enhanced by increasing the diversity of
its practitioners. The attainment of such diversity requires that criteria for judging
excellence be free of cultural perceptions and bias.

Creating its Working Group on Women in Physics the IUPAP recognized that
something had to be done to improve the situation and increase the number of
female physicists. The existence of the Working Group brought the issue upfront
and made the physics community aware that there was a problem that called for
specific actions The actions of the WG led to the creation of a large network of
women physicists and inspired the organization of several activities all over the
world. In spite of all of this, much more still needs to be done. The IUPAP has
recognized it through its deep involvement with the Gender Gap in Science Project
and by having approved the WG existence for 2 more periods (six years).

The activities of the IUPAP WG on WiP are not only aimed at improving
the situation of women physicists. On one hand, special attention is paid to the
situation of developing countries and measures are considered to help them have
a thriving physics community. On the other hand, improvements in the workplace
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environment, as those suggested by the WG, are beneficial for everbody, not only
women. Increasing the number of people of all genders that study or work in physics
has been a permanent concern of the group. That is why the WG has continually
recommended the organization of outreach activities and has been directly engaged
in their organization at ICWIPs.

Reducing the gender gap and increasing diversity and inclusiveness in science
requires a cultural change. We all have to be part of a worldwide concerted effort
for the necessary changes to enter into effect.
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