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Abstract This chapter addresses the problem of recovering the mixing distribution
in finite kernel mixture models, when the number of components is unknown, yet
bounded above by a fixed number. Taking a step back to the historical development
of the analysis of this problem within the Bayesian paradigm and making use of the
current methodology for the study of the posterior concentration phenomenon, we
show that, for general prior laws supported over the space ofmixing distributionswith
at most a fixed number of components, under replicated observations from the mixed
density, the mixing distribution is estimable in the Kantorovich or L1-Wasserstein
metric at the optimal pointwise rate n−1/4 (up to a logarithmic factor), n being the
sample size.

Keywords Dirichlet distribution · Kantorovich metric · Kolmogorov metric ·
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1 Introduction

The Bayesian analysis of the problem of recovering the unknownmixing distribution
in mixture models has recently attracted much attention and stimulated an active
discussion encouraging new ideas. Several papers–including [Efron [4], Gao and van
der Vaart [5], Heinrich and Kahn [9], Ishwaran et al. [11], Nguyen [14], Scricciolo
[18]]–have been devoted to the investigation of this topic, with extensive comparisons
with the frequentist solutions. In order to introduce the problem, suppose that x �→
k(x | y) is a probability density for every y ∈ Y ⊆ R, where (Y , B) is ameasurable
space. If the mapping (x, y) �→ k(x | y) is jointly measurable, then
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pG(x) :=
∫
Y

k(x | y) dG(y), x ∈ R, (1)

defines a probability density on R for every probability measure G on (Y ,B),
whose collection is indicated by G . The cumulative distribution function of the
mixed density in (1) is denoted by

FG(x) =
∫ x

−∞
pG(u) du, x ∈ R.

Suppose we observe n independent random variables X1, . . . , Xn identically dis-
tributed according to the mixed density

p0(x) ≡ pG0(x) =
∫
Y

k(x | y) dG0(y), x ∈ R.

We denote by F0 the cumulative distribution function of the density p0, namely,

F0(x) ≡ FG0(x) =
∫ x

−∞
p0(u) du, x ∈ R.

The interest is in recovering the unknown mixing distribution G0 ∈ G from observa-
tions of the random sample X (n) := (X1, . . . , Xn). The formulation of the problem
applies to both finite and infinite mixtures, but the focus of this chapter is primarily
on the case when the sampling density is a mixture with an unknown, but bounded
above number of components.

The problem has been initially studied from the frequenstist perspective by Chen
[1], who established that, when p0 has an unknown number of components d0 such
that 1 ≤ d0 ≤ N , for some fixed integer N , then the optimal rate for estimating the
mixing distribution G0 is only n−1/4 and this rate is achievable, under identifiability
conditions, by some minimum distance estimator. Even if Theorem 2 in Chen [1], p.
226, is not correct because of Lemma 2 it relies on, an emended version of Lemma 2
has been recently given by Heinrich and Kahn [9] in assertion (21) of their Theorem
6.3, p. 2857, by comparing a fixedmixture with all the mixtures havingmixing distri-
butions in an L1-Wasserstein ball, instead of comparing all possible pairs of mixtures
in a ball. As a consequence, Theorem 2 of Chen [1] remains valid by dropping uni-
formity over an L1-Wasserstein ball and the statement is weakened to an assertion on
the optimal pointwise rate of estimation: for any fixed mixing distribution, say G0,
the minimum distance estimator converges at n−1/4-rate, but with a multiplicative
constant that may depend on G0. The first Bayesian analysis of the problem we are
aware of traces back to Ishwaran et al. [11], who define a prior law over the space
of all mixing distributions with at most N components, the mixture weights being
assigned an N -dimensional Dirichlet distribution with a non-informative choice for
the shape parameters that are all set equal to α/N for a positive constant α. Under
conditions similar to those postulated by Chen [1], which, in particular, employ the
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notion of strong identifiability inmixturemodels, they prove that Bayesian estimation
of the mixing distribution in the Kantorovich metric is possible at the optimal rate
n−1/4, up to a log n-factor. More recently, posterior convergence rates for estimating
the mixing distribution in the L2-Wasserstein metric for finite mixtures of multivari-
ate distributions have been discussed by Nguyen [14] following a different line of
reasoning. In this chapter, we show that, by combining the approach of Ishwaran et
al. [11], which instrumentally uses posterior contraction rates in the sup-norm for the
distribution function and strong identifiability to shift to the Kantorovich distance
betweenmixing distributions, with the currentmethodology for the study of posterior
contraction rates, which can by now count upon many refined results for small ball
prior probability estimates, the mixing distribution is estimable in the Kantorovich
or L1-Wasserstein metric at the optimal rate n−1/4 (up to a logarithmic factor) for
a large class of prior laws over the space of mixing distributions with at most N
components, under less stringent conditions than those used in Ishwaran et al. [11]
or in Nguyen [14]. Many aspects of this fundamental statistical problem still remain
unclear and we hope to contribute to a better understanding of it in a follow-up study.

Before introducing the notation, a remark on the use of the term “Bayesian de-
convolution” is in order. This phrase has been recently introduced by Efron [4] to
describe a maximum likelihood procedure for estimating the mixing distribution in
general mixture models of the form in (1). Even if the mixtures herein considered
are not necessarily convolution kernel mixtures, we liked the evocative power of the
expression to recall the general inverse problem of recovering the unknown mixing
distribution.

Notation. In this paragraph, we set out the notation and recall some definitions used
throughout the chapter.

– The symbols “�” and “�” indicate inequalities valid up to a constant multiple that
is universal or fixed within the context, but anyway inessential for our purposes.

– All probability density functions aremeant to be with respect to Lebesguemeasure
λ on R or on some subset thereof.

– The same symbol, say G, is used to denote a probability measure on (Y , B) as
well as the corresponding cumulative distribution function.

– Thedegenerate probability distributionputtingmass one at a point y ∈ R is denoted
by δy .

– The notation P f stands for the expected value
∫

f dP , where the integral is un-
derstood to extend over the entire natural domain when, here and elsewhere, the
domain of integration is omitted. With this convention, for the empirical measure
Pn := n−1 ∑n

i=1 δXi associated with the random sample X1, . . . , Xn , namely, the
discrete uniform distribution on the sample values that puts mass 1/n on each one
of the observations, the notation Pn f abbreviates the formula n−1 ∑n

i=1 f (Xi ).
– For every pair xN , yN ∈ R

N , ‖xN − yN‖�1 stands for the �1-distance
∑N

j=1 |x j −
y j |.

– For a probability measure Q on (R, B(R)), let q denote its density. For any ε > 0,
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BKL(P0; ε2) :=
{
Q : P0

(
log

p0
q

)
≤ ε2, P0

(
log

p0
q

)2

≤ ε2

}

denotes a Kullback-Leibler type neighborhood of P0 of radius ε2. Defined, for
every α ∈ (0, 1], the divergence ρα(P0‖Q) := (1/α)[P0(p0/q)α − 1], see Wong
and Shen [21], pp. 351–352,

Bρα
(P0; ε2) := {

Q : ρα(P0‖Q) ≤ ε2
}

is the ρα-neighborhood of P0 of radius ε2. The definition of ρα extends to
negatives values of α ∈ (−1, 0). In particular, for α = −1/2, the divergence
ρ−1/2(P0‖Q) = −2

∫
p0[(q/p0)1/2 − 1] dλ = ∫

(p1/20 − q1/2)2 dλ is the squared
Hellinger distance. We can thus define the followingHellinger type neighborhood
of P0 of radius ε2:

Bρ−1/2‖·‖∞(P0; ε2) :=
{
Q : ρ−1/2(P0‖Q)

∥∥∥∥ p0
q

∥∥∥∥∞
≤ ε2

}
.

– For any real number p ≥ 1 and any pair of probability measuresG1, G2 ∈ G with
finite pth absolute moments, the L p-Wasserstein distance between G1 and G2 is
defined as

Wp(G1, G2) :=
(

inf
γ∈	(G1,G2)

∫
Y ×Y

|y1 − y2|p γ (dy1, dy2)

)1/p

,

where 	(G1, G2) is the set of all joint probability measures on (Y × Y ) ⊆ R
2,

with marginal distributions G1 and G2 on the first and second arguments, respec-
tively.

2 Main Results

This section is devoted to expose the main results of the chapter and is split into
two parts. In the first one, preliminary results on Bayesian estimation of distribution
functions in the Kolmogorov metric, which are valid for a large class of prior laws,
are presented and some issues highlighted. In the second part, arguably the most
relevant, attention is restricted to finite mixtures with an unknown, but bounded
above number of components and Bayesian estimation of the mixing distribution
in the Kantorovich metric at the optimal rate n−1/4 (up to a logarithmic factor) is
discussed.

Posterior Concentration of Kernel Mixtures in the Kolmogorov Metric

The following assumption will be hereafter in force.
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Assumption A. Let

εn :=
(
log n

n

)1/2

Ln, n ∈ N, (2)

where, depending on the prior concentration rate on small balls around P0, the se-
quence of positive real numbers (Ln) can be either slowly varying at +∞ or degen-
erate at an appropriate constant L0.

Comments on the two possible specifications of (Ln) in connection with the prior
concentration rate are postponed to Lemma 1, which provides sufficient conditions
on the distribution function F0 and the prior concentration rate εn for the posterior
to contract at a nearly

√
n-rate on Kolmogorov neighborhoods of F0. We warn the

reader that, unless otherwise specified, in all stochastic order symbols used hereafter,
the probabilitymeasureP is understood to be Pn

0 , the joint law of the first n coordinate
projections of the infinite product probabilitymeasure P∞

0 .Also,Πn stands for a prior
law, possibly depending on the sample size, over the space of probability measures
{PG, G ∈ G }, with density pG as defined in (1).

Lemma 1 Let F0 be a continuous distribution function. If, for a constant C > 0 and
a sequence εn as defined in (2), we have

Πn(BKL(P0; ε2n)) � exp (−Cnε2n), (3)

then, for Mn �
√

(C + 1/2)Ln,

Πn

(√
n sup

x
|(FG − F0)(x)| > Mn(log n)1/2 | X (n)

)
= oP(1). (4)

Proof The posterior probability of the event

Ac
n :=

{
G : √

n sup
x

|(FG − F0)(x)| > Mn(log n)1/2
}

is given by

Πn(A
c
n | X (n)) =

∫
Ac
n

∏n
i=1 pG(Xi )Πn(dG)∫

G

∏n
i=1 pG(Xi )Πn(dG)

.

We construct (a sequence of) tests (φn) for testing the hypothesis

H0 : P = P0 versus H1 : P = PG, G ∈ Ac
n,

where φn : ≡ φn(X (n); P0) : X n → {0, 1} is the indicator function of the rejection
region of H0, such that
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Pn
0 φn → 0 as n → +∞

and sup
G∈Ac

n

Pn
G(1 − φn) ≤ 2 exp (−2(Mn − K )2 log n) for sufficiently large n,

with a finite constant K > 0 and a sequence Mn > K for every n large enough.
Define the test

φn := 1Rn , with Rn :=
{
x (n) : √

n sup
x

|(Fn − F0)(x)| > K (log n)1/2
}
,

where Fn is the empirical distribution function, that is, the distribution function
associated with the empirical probability measure Pn of the sample X (n). Since x �→
F0(x) is continuous by assumption, in virtue of the Dvoretzky–Kiefer–Wolfowitz
[3] (DKW for short) inequality, with the tight universal constant in Massart [13], the
type I error probability Pn

0 φn can be bounded above as follows

Pn
0 φn = Pn

0 (Rn) ≤ 2 exp (−2K 2 log n).

Then,
En
0 [Πn(A

c
n | X (n))φn] ≤ Pn

0 φn ≤ 2 exp (−2K 2 log n), (5)

where En
0 denotes expectation with respect to Pn

0 , and

En
0 [Πn(A

c
n | X (n))] = En

0 [Πn(A
c
n | X (n))φn] + En

0 [Πn(A
c
n | X (n))(1 − φn)]

≤ 2 exp (−2K 2 log n) + En
0 [Πn(A

c
n | X (n))(1 − φn)].

It remains to control the term En
0 [Πn(Ac

n | X (n))(1 − φn)]. Defined the set

Dn :=
{
x (n) :

∫
G

n∏
i=1

pG
p0

(xi )Πn(dG) ≤ Πn(BKL(P0; ε2n)) exp (−(C + 1)nε2n)

}
,

consider the following decomposition

En
0 [Πn(A

c
n | X (n))(1 − φn)] = En

0 [Πn(A
c
n | X (n))(1 − φn)(1Dn + 1Dc

n
)].

It is known from Lemma 8.1 of Ghosal et al. [7], p. 524, that Pn
0 (Dn) ≤ (C2nε2n)

−1.
It follows that

En
0 [Πn(A

c
n | X (n))(1 − φn)1Dn ] ≤ Pn

0 (Dn) ≤ (C2nε2n)
−1. (6)

By the assumption in (3) and Fubini’s theorem,
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En
0 [Πn(A

c
n | X (n))(1 − φn)1Dc

n
] � exp ((2C + 1)nε2n)

∫
Ac
n

Pn
G(1 − φn)Πn(dG).

(7)
The following arguments are aimed at finding an exponential upper bound on
supG∈Ac

n
Pn
G(1 − φn). By the triangular inequality, over the set Rc

n , for every G ∈ Ac
n ,

Mn(log n)1/2 <
√
n sup

x
|(FG − F0)(x)|

≤ √
n sup

x
|(FG − Fn)(x)| + √

n sup
x

|(Fn − F0)(x)|
≤ √

n sup
x

|(FG − Fn)(x)| + K (log n)1/2,

which implies that

√
n sup

x
|(FG − Fn)(x)| > (Mn − K )(log n)1/2.

Since x �→ FG(x) := ∫ x
−∞ pG(u) du is continuous, by applying again the DKW’s

inequality, we obtain that

sup
G∈Ac

n

Pn
G(1 − φn) ≤ sup

G∈Ac
n

Pn
G

(√
n sup

x
|(FG − Fn)(x)| > (Mn − K )(log n)1/2

)

≤ 2 exp (−2(Mn − K )2 log n).

Combining the above assertion with (7), we see that

En
0 [Πn(A

c
n | X (n))(1 − φn)1Dc

n
] � 2 exp (−[2(Mn − K )2 − (2C + 1)L2

n] log n),

(8)
where the right-hand side of the above inequality tends to zero provided that (Mn −
K ) >

√
(C + 1/2)Ln for every sufficiently large n. The in-probability convergence

in (4) follows from (5), (6) and (8). This concludes the proof. �

Some remarks and comments on Lemma 1 are in order.

• The first one aims at spelling out the assumptions used in the proof, some of which
could otherwise erroneously seem to be confined to the context of finite mixture
models, as well as at clarifying their role. Given the prior concentration rate εn as
defined in (3), which depends on the prior distribution Πn and the “point” P0, the
only further assumption used is the continuity of the distribution functions F0 and
FG , which is satisfied for Lebesgue dominated probability measures P0 and PG .
This condition is used to control the type I and type II error probabilities of the
(sequence of) tests (φn) by the DKW’s inequality. It is, instead, in no way used
the assumption that the density pG is modeled as a mixture, so that, even if the
result has its origin in the context of finite mixtures, it applies to general dominated
models and a nearly parametric (up to a logarithmic factor) prior concentration
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rate is the only driver and determinant of posterior contraction.

• Lemma 1 has its roots in Theorem 2 of Ishwaran et al. [11], p. 1324 (see pp. 1330–
1331 for the proof), which deals with finitemixtures having an unknown number of
components d0, yet bounded above by an integer N , namely, 1 ≤ d0 ≤ N < +∞,
while the prior is supported over the space of all mixing distributions with at most
N components, the mixture weights being assigned an N -dimensional Dirichlet
distribution with a non-informative choice for the shape parameters that are all
set equal to α/N for a positive constant α. Nonetheless, as previously remarked,
Lemma 1 has a broader scope of validity and applies also to infinite kernel mixtures
with other prior laws for the mixing distribution than the Dirichlet process, which
“locally” attain an almost parametric prior concentration rate. This is the case
for Dirichlet location or location-scale mixtures of normal densities and, more in
general, for location-scale mixtures of exponential power densities with an even
integer shape parameter, when the sampling density is of the same form as the as-
sumedmodel, withmixing distribution being either compactly supported or having
sub-exponential tails, see Ghosal and van der Vaart [8], Scricciolo [16], Theorems
4.1, 4.2 and Corollary 4.1, pp. 285–290. In all these cases, the prior concentration
rate is (at worst) εn = n−1/2 log n, where Ln = (log n)1/2. An extension of the pre-
vious results to convolution mixtures of super-smooth kernels, with Pitman-Yor or
normalized inverse-Gaussian processes as priors for the mixing distribution, for
which Lemma 1 also holds, is considered in Scricciolo [17], see Theorem 1, pp.
486–487. Another class of priors on kernel mixtures to which Lemma 1 applies
is that of sieve priors. For a given kernel, a sieve prior is defined by combining
single priors on classes of kernel mixtures, each one indexed by the number of
mixture components, with a prior on such random number. A probability measure
with kernel mixture density is then generated in two steps: first the model index,
i.e., the number of mixture components, is selected; then a probability measure
is generated from the chosen model according to a prior on it. When the true
density p0 is itself a kernel mixture, the prior concentration rate can be assessed
by bounding below the probability of Kullback-Leibler type neighborhoods of P0
by the probability of �1-balls of appropriate dimension. In fact, approximation
properties of mixtures under consideration can be exploited to find a good fitting
distribution of the sampling density in a proper subclass. More precisely, any finite
kernel mixture can be approximated arbitrarily well (in the distance induced by
the L1-norm) by mixtures having the same number of components, the mixture
components and weights taking values in �1-neighborhoods of the corresponding
true elements. The number of mixture components is then constant, this leading
to the prior concentration rate εn ∝ (n/ log n)−1/2, where Ln ≡ L0. Examples of
sieve priors in which, for every choice of the model index, the mixture weights are
jointly distributed according to a Dirichlet distribution, are provided by the Bern-
stein polynomials, see Theorem 2.2 of Ghosal [6], pp. 1268–1269, by histograms
and polygons, see Theorem 1 of Scricciolo [15], pp. 629–630 (see pp. 636–637 for
the proof). If, as a special case, a single prior distribution on kernel mixtures with
a sample size-dependent number N ≡ Ln of mixture components is considered,
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then the prior concentration rate is εn = (n/ log n)−1/2Ln for any arbitrary slowly
varying sequence Ln → +∞.

We now state sufficient conditions on the kernel density and the prior distributions
for the mixture atoms and weights so that the overall prior on kernel mixtures with
(at most) N components verifies condition (3) for εn ∝ (n/ log n)−1/2, when the
sampling density is itself a kernel mixture with 1 ≤ d0 ≤ N components. The aim
of this analysis is twofold: first, to provide less stringent requirements on the kernel
density than those postulated in condition (b) employed in Theorem 2 of Ishwaran et
al. [11], p. 1324, which relies on Lemma 4 of Ishwaran [10], pp. 2170–2171; second,
to generalize the aforementioned result to a class of prior distributions on the mixture
weights that comprises the Dirichlet distribution as a special case. The density pG is
modeled as

pG(·) =
N∑
j=1

wjk(· | y j ),

with a discrete mixing distribution G = ∑N
j=1 wjδy j . The vector wN := (w1, . . . ,

wN ) of mixing weights has a prior distribution π̃N on the (N − 1)-dimensional
simplex ΔN := {wN ∈ R

N : 0 ≤ wj ≤ 1, j = 1, . . . , N ,
∑N

j=1 wj = 1} and the
atoms y1, . . . , yN are independently and identically distributed according to a prior
distribution π . We shall also use the notation yN for (y1, . . . , yN ). The model can
be thus described:

• the random vectors yN and wN are independent;
• given (yN , wN ), the random variables X1, . . . , Xn are conditionally independent
and identically distributed according to pG .

The overall prior is then Π = π̃N × π⊗N . Let the sampling density p0 be itself a
finite kernel mixture, with 1 ≤ d0 ≤ N components,

p0(·) ≡ pG0(·) =
d0∑
j=1

w0
j k(· | y0j ),

where the mixing distribution is G0 = ∑d0
j=1 w

0
jδy0j for weights w0

d0
:= (w0

1, . . . ,

w0
d0

) ∈ Δd0 and support points y
0
d0

:= (y01 , . . . , y0d0) ∈ R
d0 . A caveat applies: if d0 is

strictly smaller than N , that is, 1 ≤ d0 < N , then the vectors w0
d0
and y0d0 are viewed

as degenerate elements ofΔN andRN , respectively, with coordinateswd0+1 = · · · =
wN = 0 and yd0+1 = · · · = yN = 0.

We assume that

(i) there exists a constant ck > 0 such that

‖k(· | y1) − k(· | y2)‖1 ≤ ck |y1 − y2| for all y1, y2 ∈ Y ;
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(ii) for every ε > 0 small enough and a constant c0 > 0,

π̃N ({wN ∈ ΔN : ‖wN − w0
N‖�1 ≤ ε}) � εc0N ;

(iii) the prior distribution π for the atoms has a continuous and positive Lebesgue
density (also denoted by π ) on an interval containing the support of G0.

Some remarks and comments on the previously listed assumptions are in order. Con-
dition (i) requires the kernel density k(· | y) to be globallyLipschitz continuous onY .
Condition (ii) is satisfied for a Dirichlet prior distribution π̃N = Dir(α1, . . . , αN ),
with parameters α1, . . . , αN such that, for constants a, A > 0, D ≥ 1 and, for
0 < ε ≤ 1/(DN ),

Aεa ≤ α j ≤ D, j = 1, . . . , N .

Using Lemma A.1 of Ghosal [6], pp. 1278–1279, we find that π̃N (N (w0
N ; ε)) �

exp (−c0N log(1/ε)) for a constant c0 > 0 depending only on a, A, D and
∑N

j=1 α j .

Proposition 1 Under assumptions (i)–(i i i), condition (3) is verified for

εn ∝ (n/ log n)−1/2.

Proof For every density pG , with mixing distribution G = ∑N
j=1 wjδy j having sup-

port points yN ∈ R
N and mixture weights wN ∈ ΔN , by assumption (i) we have

‖pG − p0‖1 �
N∑
j=1

w0
j‖k(· | y j ) − k(· | y0j )‖1 +

N∑
j=1

|wj − w0
j |‖k(· | y j )‖1

� ‖yN − y0N‖�1 + ‖wN − w0
N‖�1 .

Let 0 < ε ≤ [(1/2) ∧ (1 − e−1)/
√
2] be fixed. For yN ∈ R

N andwN ∈ ΔN such that
‖yN − y0N‖�1 ≤ ε and ‖wN − w0

N‖�1 ≤ ε, by LeCam [12] inequalities, p. 40, relating
the L1-norm and the Hellinger metric, the squared Hellinger distance between p0
and pG can be bounded above by a multiple of ε:

ρ−1/2(P0‖PG) =
∫

(p1/2G − p1/20 )2 dλ ≤ ‖pG − p0‖1 � ε.

Then, by Lemma A.10 in Scricciolo [16], p. 305, for a suitable constant c1 > 0,

⎧⎨
⎩pG : G =

N∑
j=1

w j δy j , ‖wN − w0
N ‖�1 ≤ ε, ‖yN − y0N ‖�1 ≤ ε

⎫⎬
⎭

⊆ BKL

(
P0; c1ε

(
log 1

ε

)2)
.
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Next, define the set N (w0
N ; ε) := {wN ∈ ΔN : ‖wN − w0

N‖�1 ≤ ε}. For ε > 0 small
enough, by assumption (i i),

π̃N (N (w0
N ; ε)) � exp (−c0N log(1/ε))

with an appropriate constant c0 > 0. Denoted by B(y0N ; ε) the y0N -centered �1-ball
of radius ε > 0,

B(y0N ; ε) := {yN ∈ R
N : ‖yN − y0N‖�1 ≤ ε},

by condition (iii) the prior probability of B(y0N ; ε) under the N -fold product measure
π⊗N can be bounded below as follows:

π⊗N (B(y0N ; ε)) ≥
N∏
j=1

π([y0j − (ε/N ), y0j + (ε/N )])

=
N∏
j=1

∫ y0j +(ε/N )

y0j −(ε/N )

π(y) dy � exp (−d1N log(1/ε))

for a positive constant d1. Therefore, for appropriate constants c1, d2 > 0,

Π(BKL(P0; c1ε| log ε|2)) � π̃N (N (w0
N ; ε)) π⊗N (B(y0N ; ε)) � exp (−d2N log(1/ε)).

Set ξ := (c1ε)1/2 log(1/ε), since log(1/ε) � log(1/ξ), we have Π(BKL(P0; ξ 2)) �
exp (−c2 log(1/ξ)) for a real constant c2 > 0 (possibly depending on p0). Replacing
ξ with εn , we get Π(BKL(P0; ε2n)) � exp (−c2nε2n) for sufficiently large n, and the
proof is complete. �

Inspection of the proof of Lemma 1 reveals that, under the small ball prior prob-
ability estimate in (3), we have

En
0 [Πn(A

c
n | X (n))] = O((nε2n)

−1).

The assertion of Lemma 1 can be enhanced to have

En
0 [Πn(A

c
n | X (n))] = O(exp (−B1nε2n))

by employing a small ball prior probability estimate involving stronger divergences.
The convergence in (4) then becomes almost-sure. Besides, due to the fact that the
posterior probability vanishes exponentially fast, namely, along almost all sample
sequences, for a finite constant B > 0, we have

Πn(A
c
n | X (n)) � exp (−Bnε2n) for all but finitely many n,
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the stochastic order of themaximumabsolute difference between F0 and the posterior
expected distribution function can be assessed, see Corollary 1 below.

Lemma 2 Under the conditions of Lemma 1, if the small ball prior probability
estimate in (3) is replaced by

Πn(Bρα
(P0; ε2n)) � exp (−Cnε2n), for α ∈ (0, 1], (9)

then, for Mn �
√

(C + 1/2)Ln,

Πn

(√
n sup

x
|(FG − F0)(x)| > Mn(log n)1/2 | X (n)

)
→ 0 P∞

0 -almost surely.

Proof The proof is an adaptation of that of Lemma 1. We therefore highlight only
the main changes. Taking a sequence Kn = θMn for any θ ∈ (0, 1), we have

En
0 [Πn(A

c
n | X (n))φn] ≤ Pn

0 φn ≤ 2 exp (−2θ2M2
n log n)

and

En
0 [Πn(A

c
n | X (n))(1 − φn)1Dc

n
] � 2 exp (−[2(1 − θ)2M2

n − (2C + 1)L2
n] log n),

with
Mn > (1 − θ)−1

√
(C + 1/2)Ln (10)

for every sufficiently large n. A straightforward extension of Lemma 2 in Shen
and Wasserman [19], p. 691 (and pp. 709–710 for the proof), yields that, for every
ξ ∈ (0, 1),

Pn
0

(
Dn ≤ ξΠn(Bρα

(P0; ε2n)) exp (−(C + 1)nε2n)
) ≤ (1 − ξ)−1 exp (−αCnε2n).

(11)
Considering Mn = I Ln for a finite constant I > (1 − θ)−1√(C + 1/2) so that con-
dition (10) is satisfied, by combining partial bounds we obtain that

En
0 [Πn(A

c
n | X (n))] � exp (−B1nε2n)

for an appropriate finite constant B1 > 0. For a constant B > 0,

Pn
0

(
Πn(A

c
n | X (n)) ≥ exp (−Bnε2n)

)
� exp

( − (B1 − B)nε2n
)
.

Choose 0 < B < B1. Since
∑∞

n=1 exp (−(B1 − B)nε2n) < +∞, almost sure conver-
gence follows from the first Borel-Cantelli lemma. �

Remark 1 The assertion of Lemma 2 still holds if the small ball prior probability
estimate in (9) is replaced by the requirement
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Πn(Bρ−1/2‖·‖∞(P0; ε2n)) � exp (−Cnε2n), (12)

which involves a Hellinger type neighborhood of P0. Then, a bound similar to that
in (11) is given in Lemma 8.4 of Ghosal et al. [7], pp. 526–527.

As previously mentioned, Lemma 2 allows to derive the stochastic order of the
maximum absolute difference between F0 and its Bayes’ estimator

FB
n (·) :=

∫
G
FG(·)Π(dG | X (n)),

namely, the posterior expected distribution function.

Corollary 1 Under the conditions of Lemma 2, we have

√
n sup

x
|(FB

n − F0)(x)| = OP(Mn(log n)1/2).

Proof By standard arguments,

√
n sup

x
|(FB

n − F0)(x)| = √
n sup

x

∣∣∣∣
∫
G
FG(x)Πn(dG | X (n)) − F0(x)

∣∣∣∣
≤

∫
G

√
n sup

x
|(FG − F0)(x)| Πn(dG | X (n))

=
(∫

An

+
∫
Ac
n

)√
n sup

x
|(FG − F0)(x)| Πn(dG | X (n))

≤ Mn(log n)1/2 + 2
√
nΠn(A

c
n | X (n))

� Mn(log n)1/2 for sufficiently large n

because condition (9) yields that, with probability one, for a finite constant B > 0,
the posterior probability

√
nΠn(Ac

n | X (n)) � √
n exp (−Bnε2n) for all but finitely

many n. The assertion follows. �

Posterior Concentration of the Mixing Distribution in the Kantorovich Metric

In this section, we deal with the case where the prior distributionΠ is supported over
the collection of finite kernel mixtures with at most N components. Sufficient condi-
tions are stated in Theorem 1 below so that the posterior rate of convergence, relative
to the Kantorovich or L1-Wasserstein metric, for the mixing distribution of over-
fitted mixtures is, up to a slowly varying sequence, (at worst) equal to (n/ log n)−1/4,
the optimal pointwise rate being n−1/4, cf. Chen [1], Sect. 2, pp. 222–224.

In order to state the result, we need to introduce some more notation. For every
y ∈ Y , we denote by K (x | y) the cumulative distribution function at x of the kernel
density k(· | y),
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K (x | y) :=
∫ x

−∞
k(u | y) du.

For clarity of exposition, we recall that F0 is the distribution function of the mixture
density p0 ≡ pG0 corresponding to the mixing distribution G0 having an unknown
number of components d0 bounded above by a fixed integer N .

Theorem 1 Under the conditions of Lemma 1, if, in addition,

(a) Y is compact,

(b) for all x ∈ R, K (x | y) is 2-differentiable with respect to y,

(c) {K (· | y) : y ∈ Y } is strongly identifiable in the sense of Definition 2 in Chen
[1], p. 225, equivalently, 2-strongly identifiable in the sense of Definition 2.2 in
Heinrich and Kahn [9], p. 2848,

(d) there exists a uniform modulus of continuity ω(·) such that

sup
x

|K (2)(x | y) − K (2)(x | y′)| ≤ ω(|y − y′|) with limh→0 ω(h) = 0,

then, for Mn �
√

(C + 1/2)Ln,

Π
(
n1/4W1(G, G0) >

√
Mn(log n)1/4 | X (n)

) = oP(1).

Proof Since Lemma 1 holds, we have

Π

(√
n sup

x
|(FG − F0)(x)| > Mn(log n)1/2 | X (n)

)
= oP(1). (13)

Consistently with the notation introduced in Lemma 1, we set

An :=
{
G : √

n sup
x

|(FG − F0)(x)| ≤ Mn(log n)1/2
}
.

Under assumptions (a)–(d), assertion (21) of Theorem 6.3 of Heinrich and Kahn [9],
p. 2857, holds true, this implying that, for every G ∈ An , the Kolmogorov distance
between the distribution functions FG and F0 is bounded below (up to a constant) by
the squared L1-distance between the mixing distributions G and G0, respectively:
there exists a constant C0 > 0 (possibly depending on G0) such that, for every G ∈
An ,

C0‖G − G0‖21 < sup
x

|(FG − F0)(x)| ≤ Mnn
−1/2(log n)1/2. (14)

Taking into account the following representation of the L1-Wasserstein distance

W1(G, G0) = ‖G − G0‖1,



Bayesian Kantorovich Deconvolution in Finite Mixture Models 133

see, e.g., Shorack and Wellner [20], pp. 64–66, which was obtained by Dall’Aglio
[2], the assertion follows by combining (13) with (14). This concludes the proof. �

Some comments on the applicability and consequences of Theorem 1 are in order.

• Theorem 1, like Lemma 1, has its roots in Theorem 2 of Ishwaran et al. [11], p.
1324,which is tailored for finiteDirichletmixtures.However, thanks toProposition
1, which implies the conclusion of Lemma 1, meanwhile ensuring applicability to
a larger family of prior distributions, under conditions (a)–(d), the assertion that,
for sufficiently large constant M > 0, the convergence

Π
(
n1/4W1(G, G0) > M(log n)1/4 | X (n)

) → 0 in Pn
0 -probability

takes place, still holds. The present result differs from that of Theorem 5 inNguyen
[14], pp. 383–384, under various respects: the latter gives an assessment of poste-
rior contraction in the L2-Wasserstein, as opposed to the L1-Wasserstein metric,
for finite mixtures of multivariate distributions, under more stringent conditions
and following a completely different line of reasoning.

• As previously observed on the occasion of the transition from Lemma 1 to Lemma
2, if the small ball prior probability estimate in (3) is replaced with either that in
(9) or in (12), then the almost-sure version of Theorem 1

Π
(
n1/4W1(G, G0) >

√
Mn(log n)1/4 | X (n)

) → 0 P∞
0 -almost surely

holds and the rate of convergence for theBayes’ estimator of themixingdistribution
can be assessed as follows.

Corollary 2 Under the conditions of Theorem1,with the small ball prior probability
estimate in (9), we have

W1(G
B
n , G0) = OP(

√
Mn(n/ log n)−1/4),

where GB
n (·) := ∫

G G(·)Π(dG | X (n)) is the Bayes’ estimator of the mixing distri-
bution.
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