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Preface: Statistics and Data Science Today

Nowadays, it seems almost impossible to find a shared definition of Data Science.
Some believe that Data Science is still a buzzword, and that it is not really a new
domain of science or a new scientific discipline. The truth of such a claim is only
partial, however, since Data Science is developing rapidly in response to the need to
gain knowledge from huge amounts of data of various types and deriving from
different sources. Data are often updating in real time; they are usually complex and
can be structured or unstructured—here, we are referring to social network data,
textual data, micro array, sensor data stream, and so on.

The debate has centered on the framework of reference for data management and
processing and has involved specialists and scientists in various ways. Statistics,
rather than being considered a science, has been defined as a discipline since it does
not have a single field of application but rather contributes across fields, as and
when required. Statistics has its own paradigms, namely synthesis of information
and research into the new. Beyond the capture of data and their management,
storage, cleaning, and processing, Statistics provides descriptive tools to represent,
in a synthetic way, phenomena, causal relationships among variables, models for
the analysis of temporal data in order to monitor evolving phenomena, dimen-
sionality reduction techniques to synthesize data, forecasting models, and so on.

Since the end of the 1970s, when the spread of computing systems began, the
application of Data Analysis within Statistics has resulted in a new field of research,
Computational Statistics, which in turn has laid the foundations for Data Analytics.
Possibly, John W. Tuckey predicted this development as long ago as 1962, when he
wrote “The Future of Data Analysis”.1

It is undeniable that Statistics covers many of the skills essential in Data Science
—hence the important role played by Statistics, as well as other disciplines within
the field of Computer Science, such as Machine Learning and Artificial
Intelligence, that address data processing and learning from data.

1John W. Tuckey “The Future of Data Analysis” Ann. Math. Statist., 33, 1 (1962), 1–67.
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Data Science aims to transform data into useful knowledge that enables pre-
diction and supports and validates decisions. Statistics may be regarded as one
of the two “parents” of Data Science, representing its logic, while the other,
Computer Science, is its language.

In this great revolution brought about by data production and dissemination, the
boundaries of the skills in different fields have become ill-defined. The skills
required by Data Science are strongly interdisciplinary: they bring together
Computer Science, Statistics, and Machine Learning, with the purpose of giving
meaning to the data. Moreover, within this framework the expertise domain con-
stitutes the connector which allows the transformation of data into knowledge.

The tradition of Statistics, through its different areas, offers a potential role to
Data Science in exploiting and interpreting data results and improving links
between Statistics and Information Technology. Statistical thinking is fundamental
for the provision of detailed descriptions of data structures and interpretation of
complex phenomena, for explanation of causal relations, and for forecasting trends
and monitoring data evolution.

There is a common belief that Data Science is merely a fashionable topic among
scholars, rather than a scientific mentality or way of scientific thinking. But its
potential is high and its “toolbox” is broad, with specific methods and techniques
related to the specific application areas where data processing is required. So, it
seems more appropriate to refer to several Data Sciences, one for each domain
(Financial Data Science, Economics Data Science, Environmental Data Science,
Social Data Science, etc.) where expert knowledge plays the main role.

This reference to the domains of data surely offers an interpretative key to Data
Science(s). The contribution of Statistics is not compromised by the multidomain
nature of Data Science: our discipline addresses collective phenomena, and these
collective phenomena are specific within the different knowledge domains and
fields of application.

In recent years, especially through the Italian Statistical Society (SIS), our sci-
entific community has been asked to define its role and involvement in Data
Science. This led to the constitution of an Italian SIS Group for Statistics and Data
Science and to the SIS Conference on “Statistics and Data Science: new challenges,
new generations,” held in Florence on June 28–30, 2017.2 This volume contains a
selection of papers that are extended versions of some of the contributions pre-
sented at this conference. They provide some examples of recent developments in
statistical methods that are of relevance for the challenges posed by Data Science.

The volume is organized into six parts, which to some extent reflect the tran-
sition from Data Science to Data Sciences referred to above. These parts cover
topics including strong statistical methodologies, Bayesian approaches, applications
in population and social studies, studies in economics and finance, and techniques

2At the conference, a round table entitled “Let’s talk about Data Science,” chaired by Carlo Lauro
with four panelists and several planned interventions from the floor, covered many considerations
referred to in this Preface.
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of the sample design. The volume concludes with several contributions in mathe-
matical statistics.

The authors approach all of these topics strictly in terms of Data Science. For
example, in the first part, “Complex data analytics,” the eight contributions
underline the development of new techniques for dimensional reduction of big
and/or high-frequency data. As is widely recognized, the high data dimension and
the complexity of the new data increasingly require a suitable setting of traditional
techniques of data analysis for classical individuals � variables matrices.

The second part, “Knowledge based methods,” containing five contributions,
explores Bayesian approaches for the estimation of causal effects, mixture models,
and count models able to analyze high-dimensional data or structured data, such as
the ERG models for networks affected by missing data. The third part, “Sampling
design for Big Data exploration,” also comprising five contributions, highlights
novelties in sampling schemes and modeling of big data, empirical approaches for
small area predictors, large survey strategies, and data quality monitoring.

The fourth and fifth parts, “Data Science methods for social and population
studies” and “Applying Data Science in economics and labour market,” include
seven and five contributions, respectively. The focus here is, for example, on
applications in the broad field of socio-demographic studies, including tweets
analysis in the context of teacher evaluation; applications in population studies,
including with respect to the behavior of young people; and applications in eco-
nomic studies, such as studies offering insights into the labor market, e.g., on wage
distribution inequality, or involving the development of a scoring system for
lending platforms. The sixth part, “Mathematical statistics for Data Science,”
comprises four contributions that stress mathematical approaches in Data Science.
Specific topics to be addressed are the application of a hidden Markov model for the
suitable transformation of time series, representation methods for extreme value
distributions, an algorithm for clustered equations, and dimensional reduction of
arrays of a factorial design in an experimental framework.

This volume is addressed primarily at scholars and researchers interested in new
frontiers in Statistics and Data Analysis, but it also provides useful supportive
supplementary material for students in the disciplines covered.

We trust that the volume will be appreciated by both statisticians and data
scientists and that they will recognize each other’s fundamental role.

Florence, Italy Alessandra Petrucci
Rome, Italy Filomena Racioppi
Caserta, Italy Rosanna Verde
March 2019
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Monitoring the Spatial Correlation
Among Functional Data Streams
Through Moran’s Index

Antonio Balzanella, Elvira Romano, Rosanna Verde, Francesca Fortuna,
Fabrizio Maturo, Stefano Antonio Gattone and Tonio Di Battista

Abstract This paper focuses on measuring the spatial correlation among functional
data streams recorded by sensor networks. In many real world applications, spatially
located sensors are used for performing at a very high frequency, repeated measure-
ments of some variable. Due to the spatial correlation, sensed data are more likely to
be similar whenmeasured at nearby locations rather than in distant places. In order to
monitor such correlation over time and to deal with huge amount of data, we propose
a strategy based on computing the well known Moran’s index and Geary’s index on
summaries of the data.

Keywords Data stream mining · Functional data analysis · Spatial correlation

1 Introduction

Functional Data Analysis (FDA) has become a topic of interest in Statistics due
to the increasing ability to measure and record over a continuous domain results
of natural phenomena [9]. In environmental sciences, monitoring a physical phe-
nomenon in different places of a geographic area is becoming very common due
to the availability of sensor networks which can perform, at a very high frequency,
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repeated measurements of some variable. We can think, for instance, at temperature
monitoring, seismic activity monitoring, pollution monitoring, over the locations of
a geographic space. In this context one works with data having complex characteris-
tics including spatial dependence structures. Often, the data acquisition is performed
by sensors having limited storage and processing resources. Moreover, the commu-
nication among sensors is constrained by their physical distribution or by limited
bandwidths. Finally, the recorded data relate, often, to highly evolving phenomena
for which it is necessary to use algorithms that adapt the knowledge with the arrival
of new observations. The data stream mining framework offers a wide range of spe-
cific tools for dealing with these potentially infinite and on-line arriving data. An
overview of recent contributions is available in [2].

An emerging challenge, in this context, is themonitoring of the spatial dependence
among sensor data. The First Law of Geography, also frequently known as Tobler
Law [8], states that “everything is related to everything else, but near things are more
related than distant things”. This law finds its major developments in Geostatistics
but is still valid in the framework of data stream mining, when the data is collected
by spatially located sensors. For instance, surface air temperatures streams, are more
likely to be similar when measured at nearby locations rather than in distant places.

Measuring the spatial dependence among fast and potentially infinite data streams
is a very challenging task. This is due to a set of stringent constraints: (i) the available
time for processing the incoming observations is small and constant; (ii) the allowed
memory resources are orders of magnitude smaller than the total size of input data;
(iii) only one scan of the data is feasible; (iv) the communication between the sensors
should be very limited.

This paper introduces a new strategy for monitoring the spatial dependence over
timewhich adapts the classicMoran’s index [7] andGeary’s index [4] to the challenge
of functional data stream processing.

We assume that sensors do not communicate with each other but only with a
central node. Thus, a first part of the processing is performed at the sensors while
a second part is performed at the central computation node using the output of the
sensors. In particular, each data stream recorded by a sensor is processed individually
through two summarization steps. The first one, splits the incoming data stream into
non overlapping windows and provides a compact representation of the observation
in each window. The second step, performs on each data stream a CluStream [1]
algorithm adapted for working on functional data subsequence. CluStream groups
the incoming data into homogeneous micro-clusters and represent these through
prototypes.

With the flowing of data, each sensor performs two kinds of data transmission to
the central computation node. The first one is a snapshot of themicro-cluster centroid
at predefined time stamps. The second one, which is performed at each windows,
consists in sending the identifier of the micro-cluster to which the subsequences have
been allocated. In this way, the communication between the sensors and the central
node requires a low bandwidth as well as low memory resources. Only few micro-
cluster prototypes are stored for each data stream at the central node and the sensor
data are replaced by the micro-cluster centroid to which they have been allocated by
the CluStream.
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The central processing node is, thus, used for measuring the spatial dependence
among the streams through the Moran’s and the Geary’s index on the micro-cluster
centroids.

The next sections provide the details of the processing setup.

2 Sensor Data Summarization Through On-Line
Clustering

Let Y = {Y1(t), . . . ,Yi (t), . . . , Yn(t)} be a set of n functional data streams. Yi (t),
t ∈ T , denotes a function defined on an interval with T ⊆ �. Each functional data
stream Yi (t) is made by observations recorded by a sensor located at si ∈ S, with
S ⊂ �2 be the geographic space.

We assume that the potentially infinite data is recorded on-line so that we can keep
into memory only subsets of the streams. Thus, the analysis is performed using the
observations in the most recent batch and some synopsis of the old data, no longer
available.

In reality, we observe the data at a grid of N points, t1, . . . , tN . The functional
data analysis viewpoint may be described by the following non-parametric model:

Yi j = Yi (t j ) + εi j (1)

where Yi (t) is the underlying signal curve, εi j is an observation noise with mean
zero and null covariance and Yi j denote the observed noisy data, i = 1, . . . n and
j = 1, . . . , N .

We split the incoming data streams into non overlapping windows so that each
window is an ordered subset of T , having size b which frames, for each Yi (t), a data
batch Yw

i (t) = {Yi (t)}bt=0 (where w = 1, . . . ,∞ allow to index each window).
The CluStream [1] algorithm, suitably adapted for working with the functional

subsequences Yw
i (t) of the data stream Yi (t) is used for providing a fast to compute

summarization of the stream. This allows to collect information about past datawhich
are discarded after the processing.

The intuition that underlies the method, is to represent the incoming data through
the center of low variability (micro-clusters). In order to have a high representativity
of the input data, the number of clusters to keep updated is not specified apriori
but only a threshold on their maximum number is fixed, to manage the memory
resources.

Once the sensors have reached their storage limit, each stream of data is sum-
marized by a set of microclusters

{
μC1, . . . , μCK

}
. The generic micro-cluster μCk

records the following information:

• Y
k
(t), t ∈ w: the cluster centroid;

• nk : number of allocated functions;
• σ k(t), t ∈ w: the within micro-cluster standard deviation;
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• Swk : Sum of window indexes;
• SSwk : Sum of squared window indexes.

Whenever a new window w of data is available, CluStream allocates the subse-
quence Yw(t) to an existingmicro-cluster or generates a new one. The first preference
is to assign the data stream to a currently existing micro-cluster.

With the squared L2 distance, the dissimilarity metric between two functions is
defined as

d2(Yi ,Yr ) =
∫ T

0
[Yi (t) − Yr (t)]2dt. (2)

The algorithm is based on the following rule:

Yw
i (t) is allocated to the micro-cluster μCk if

d2
[
Yw
i (t),Y

k
(t)

]
< d2

[
Yw
i (t),Y

k ′
(t)

]
(3)

and

d2
[
Yw
i (t),Y

k
(t)

]
< u

∑
j∈μCk

∫
t∈w

[
Yw
j (t) − Y

k
(t)

]2
dt

nk
(4)

with k �= k ′ and k = 1, . . . , K .
The threshold value u allows to control if Yw

i (t) falls within the maximum bound-
ary of the micro-cluster, which is defined as a factor of within cluster variance of
μCk

i . In order to take into account the functional nature of the data, a pre-smoothing
step may be applied before clustering [3, 6].

The allocation of a subsequence to a micro-cluster involves the update of all its
information: the micro-cluster size, centroid and standard deviation. Furthermore, it
is necessary to update the sum and the sum of squares of the time window w.

If Yw
i (t) is outside the maximum boundary of any micro-cluster because of the

evolution of the data stream, the a newmicro-cluster, sayμCl is initialized by setting
its centroid equal to Yw

i (t) and the micro-cluster size to nli = 1. The functional
standard deviation σ l

i (t) is defined in a heuristic way by setting it to the pointwise
squared Euclidean distance to the closest cluster.

With the creation of a new micro-cluster, it is necessary to evaluate if the number
of micro-clusters for the stream Yi (t) is higher than the available memory resources.
In such a case, one of the old micro-clusters has to be removed in order to release
memory space. This can be achieved by either deleting an oldmicro-cluster or joining
twoof the old clusters. The choice between these two alternatives, involves to evaluate
if some current micro-cluster collects information about data behaviours no longer
active in the recent history of the stream. Only in this case, there is a deletion. To
verify this, it is possible to look at the value stored in the fields Swk and SSwk of
each micro-cluster and compute the averagewk and the variance σ 2

wk of the allocation
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times. Behaviours no longer active will be summarized by micro-clusters having low
values of wk and σ 2

wk , since they have not been updated recently.
If there is no old micro-cluster to delete, there is the merging of two nearest

micro-clusters into one.
The proposed procedure, performed in a parallel way on all the streams, permits

to keep, at each time instant, a snapshot of the data behavior. This is due to the
availability of the set of subsequences used as representatives.

3 Monitoring Spatial Dependence on Data Stream
Summaries

In this section we introduce the approach we propose for monitoring the spatial
dependence among data streams summarized by functional micro-clusters.

Our idea is to measure the spatial dependence on the data of temporally consecu-
tive time windows rather than providing a measure at each time instant. For instance,
we aim at providing a measure of spatial dependence at each hour of data rather than
at each second.

Since the measurement of the spatial dependence is performed at the central
computation node where only the micro-clusters summarizing each data stream are
available, we propose to adapt the classic Moran’s I [7] and Geary’s C [4] spatial
autocorrelation measures, to functional data summarized by micro-cluster centroids.

We recall that the Moran’s index is a widely used measure for testing the global
spatial autocorrelation in spatial data. It is based on cross-products of the deviations
from the mean and is calculated for the n observations of a variable Y at locations
i, j , as:

I = n
∑

i

∑
j ai, j

∑
i

∑
j ai, j (Yi − Y )(Y j − Y )
∑

i (Yi − Y )2
(5)

where the weights ai, j define the relationships between locations in the geographic
area.

Morans index is similar, but not equivalent, to a correlation coefficient. It varies
from −1 to +1. In the absence of autocorrelation and regardless of the specified
weight matrix, the expectation of Morans I statistic is −1/(n − 1), which tends to
zero as the sample size increases.

According to the processing setup introduced above, at the central computation
node it is kept a snapshot of micro-cluster centroids of each stream. Every time a new
window becomes available, it is possible to measure the spatial autocorrelation by
receiving at the central node, from each data stream, the identifier of themicro-cluster
to which the subsequence of the window has been allocated. This approach, allows
to measure the spatial dependence of the data in a window by using the micro-cluster
centroids rather than the raw sensor data.

The functional Moran’s index in each window w can be computed as follows:
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I wμC = n
∑

i

∑
j ai, j

∑
i

∑
j ai, j

∫
t∈w[Y ki

(t) − Y (t)][Y k j
(t) − Y (t)]dt

∑
i

∫
t∈w[Y ki

(t) − Y (t)]2dt
(6)

where Y
ki
(t) and Y

k j
(t) are the micro-cluster centroids to which, respectively, the

subsequencesYw
i (t),Yw

j (t), have been allocated andY (t) is the average subsequence.
The proposed Moran’s index can be used for obtaining a different measure of

spatial dependence at every timewindoww, starting from themicro-cluster identifiers
sent by the sensors to the central communication node.

Similarly, we can compute theGeary’sC autocorrelationmeasure at eachwindow.
We recall that the Geary’s C measure is based on comparing measurements on

spatial adjacent units and is calculated, for the n observations of a variable Y at the
locations i, j , as:

C = n

2
∑

i

∑
j ai, j

∑
i

∑
j ai, j (Yi − Y j )

2

∑
i (Yi − Y )2

(7)

where the weights ai, j define the relationships between locations in the geographic
area as before.

It ranges between 1 and 2 however, values can be greater than 2 on occasion
[5]. Positive spatial autocorrelation is found with values ranging from 0 to 1 and
negative spatial autocorrelation is found between 1 and 2. Geary’s C is inversely
related to Moran’s I , but it is not identical. Moran’s I is a measure of global spatial
autocorrelation, while Geary’s C is more sensitive to local spatial autocorrelation.

As before for the Moran’s index, we can measure the spatial dependence among
data streams through the Geary’s C measure on the micro-cluster centroids by:

Cw
μC = n

2
∑

i

∑
j ai, j

∑
i

∑
j ai, j

∫
t∈w[Y ki

(t) − Y
k j

(t)]2dt
∑

i

∫
t∈w[Y ki

(t) − Y (t)]2dt
. (8)

4 An Application

The test dataset collects the records of 54 sensors placed at the Intel Berkeley
Research lab between 28th and April 5th, 2004. Mica2Dot sensors with weather
boards collected time stamped topology information, along with humidity, tempera-
ture, light and voltage values once every 31 s. Data was collected using TinyDB in-
network query processing system, built on the TinyOS platform. The dataset includes
the x and y coordinates of sensors expressed in meters relative to the upper right
corner of the lab. We have analyzed the light records of each sensor so that we have
a set of 54 time series each one made by 65000 observations.

The main focus of the experiment is to evaluate the performance of the proposed
method in recovering the functional spatial autocorrelation of the data. In particular,
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we will compare the estimated functional Moran’s index I wμC of Eq. (6) with the
Moran’s index I computed on the real data as in Eq. (5). Similarly, we compare the
estimated functional Geary’s measure C on real data, as in Eq. (8), and that on real
data, as in Eq. (7). The goodness of fit of both the indexes is measured by the mean
absolute relative error. For the Moran’s index, it is given by:

RMAEM = 1

W

W∑

w=1

∣∣∣∣
I w − I wμC

I w

∣∣∣∣ . (9)

where I w is the Moran’s index computed on the real data of the window w.

For the Geary’s measure, it is given by:

RMAEG = 1

W

W∑

w=1

∣∣∣∣
Cw − Cw

μC

Cw

∣∣∣∣ . (10)

where Cw is the Geary’s measure computed on the real data of the window w.
The temporal window w has size b = 464 such to cover approximately 4 h.

An example of the dataset is provided in Fig. 1, where the light values (Lux) recorded
in one temporal window in each of the 52 sensors are displayed together with their
smoothed version. The smoothing has been obtained by using natural cubic splines
with a number of knots equal to b

20 . In order to initialize the micro-clusters of the
Clustream algorithm, an initial clustering has been performed on the first 25 temporal
windows of each sensor. The results we show have been obtained setting, for each
sensor, the number of maximum clusters equal to 20 and the threshold value equal to
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Fig. 1 Light data: raw data (left panel) and natural cubic splines smoothing (right panel)
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Fig. 2 Moran’s index computed on real data (solid line) and on cluster prototypes (dotted line)

25 30 35 40 45 50 55
w

0.5

0.6

0.7

0.8

0.9

1

C
w

55 60 65 70 75 80 85
w

0.5
0.6
0.7
0.8
0.9

1
1.1

C
w

85 90 95 100 105 110 115
w

0.6

0.7

0.8

0.9

1

C
w

115 120 125 130 135 140
w

0.7
0.75
0.8

0.85
0.9

0.95
1

C
w

Fig. 3 Geary’sC measure computed on real data (solid line) and on cluster prototypes (dotted line)

u = 2. We have made tests using different values of u in the range 0.5 − 10 which
show that with the growing of u there is a reduction of the the number of generated
micro-clusters. The choice u = 2 has beenmade evaluating the compromise between
accuracy and storage requirements. In Fig. 2, we display the functionalMoran’s index
computed by using only the micro-cluster prototypes and the index computed using
all the data available. Figure 3, replicates the plot of Fig. 2, using the Geary’s C
measure.
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Fig. 4 Average cardinality of the micro-clusters sets across the temporal windows w (left panel)
and the sensors si (right panel)

The relative absolute error is equal to RMAEI = 0.1571 for the Moran’s index,
and RMAEG = 0.1722, for the Geary’s measure. Results show how the proposed
methodology provide a good recovery of the spatial autocorrelation between the
sensors. In Fig. 4, the average cardinality of the micro-cluster sets μC is displayed
both across the temporal windows and the sensors.

5 Conclusions and Perspectives

In this paper we have introduced an approach for measuring the spatial autocorre-
lation among functional data streams recorded by sensors. Since the main spatial
dependence measures require a high computational effort, we have proposed to per-
form a data summarization and to compute the spatial autocorrelation on the sum-
maries rather than on the original data. Unlike to original data streams, summaries
can be easily stored, thus, our method supports the possibility to recover information
about the spatial correlation on past time periods for which sensor records have been
deleted. Preliminary tests on a real data set confirm the effectiveness of the proposed
summarization strategy in keeping track of the spatial correlation structure. Future
work will focus on performing further tests on the sensitivity of the method to input
parameters.
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User Profile Construction Method
for Personalized Access to Data Sources
Using Multivariate Conjoint Analysis
and Collaborating Filtering

Oumayma Banouar and Said Raghay

Abstract Current information systems provide access to multiple, distributed,
autonomous and potentially redundant data sources. Their users may not know
the sources they questioned, nor their description and content. Consequently, their
queries reflect no more a need that must be satisfied but an intention that must be
refined. The purpose of personalization is to facilitate the expression of users’ needs.
It allows them to obtain relevant information by maximizing the exploitation of their
preferences grouped in their respective profile. In this work, we present a collabo-
rative filtering method based on a Multivariate Conjoint Analysis approach to get
these profiles. The proposed strategy provides a representation of the users and of the
items, according to their characteristics, on factorial plans; whereas, the collaborative
approach predicts the missing preferences.

Keywords Personalization · User profile · Preferences’ predicates

1 Introduction

A user accessing an information system, for satisfying an information need, has to
reformulate the query issued several times and sift many results until to obtain a
suitable answer. This is a very common experience. The multiplicity of data sources,
their scalability and the increasing difficulty to control their descriptions and their
contents are the reasons behind the emergence of the need of users’ requests per-
sonalization. A major limitation of information systems is their inability to classify
and discriminate users based on their interests, their preferences and their query con-
text. They cannot deliver relevant results according to their respective profiles [1].
Consequently, the execution of the same request, expressed by different users, over
a data source will necessarily not provide the same results. We talk here about a per-
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sonalized access to data sources. A critical observation is that: different users may
find different things relevant when searching an information, because of different
preferences, goals etc. Thus, they may expect different answers to the same query
[2].

A special instance of this problem is the now famous problem known as Netflix
problem. Users submit ratings on a subset of entries in a database, and the vendor
provides recommendations based on users’ preferences. Consider a simple case of
two users, Al and Julie, access a web-based movies database both searching for
comedies. Al is a fan of director W. Allen, while Julie is not. Most systems would
consider only the request issued and return to both users the same, exhaustive list
of comedies. However, storing user’s preferences in his profile gives a system the
opportunity to return more focused personalized (and hopefully smaller) answers.

The objective of the query personalization process is to enhance the user query
with his related preferences stored in his profile. This process focuses on the system
user, enables the exploitation of what is called personal relevancy [3] instead of
consensus relevancy.

To construct the users’ profiles, observations are stored in a matrix. It contains
the scores that reflect the interest of users to items. The main characteristic of this
matrix is its sparsity.

This work presents a collaborative filtering-based approach to predict the prefer-
ences of users to items. It is based on aMultivariate Conjoint Analysis approach [27]
to represent users and items according to their characteristics, on factorial plans.

This approach focuses on the correspondence between the users preferences and
the characteristics of the items.

On the factorial coordinates of the users and of the items is performed a bi-
clustering by a double K-means, to identify clusters of users and items. Then, the
prediction process exploits these clusters to predict the missing scores. To compute
the score of a given user u to an item i, the process minimizes the nuclear norm of
users-preferences matrix that contains the scores provided by the users that belong
to the cluster of the selected user to the items of the cluster that contains the selected
item.

The proposed algorithm is compared to existing matrix completion methods and
multiplex network-based methods according to the following standard measures:
Mean Absolute Error (MAE), Root Mean Square Error (MSE).

These methods are compared on the MovieLens dataset (https://grouplens.org/
datasets/movielens/), that is a standard dataset used in collaborating filtering frame-
works.

The remaining of this article is organized as follows: Sect. 2 refers to related
works; Sect. 4 presents the problem statement and the nuclear norm minimization in
the optimization of sparse and low-rank matrices; it also introduces the multivariate
conjoint analysis and the proposed approach; Sect. 5 discusses application results on
real data; the Conclusion section close the paper.

https://grouplens.org/datasets/movielens/
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2 Related Work

Different works exist in literature that have proposedmethods for user queries enrich-
ment in documents retrieval context and especially in the educational domain. Each
research work adopted a user profile model to personalize his query. The AHAM
(Adaptive Hypermedia Application Model) is based on generic Dexter Model [4]. It
splits up the storage layer of the Dexter Model into an adaptation model, a domain
model, and a user model. The user model is an overlay of the domain model. Like
in AHAM, authors in [5] have described the Munich reference model for adaptive
hypermedia applications, where the adaptation engine can implement not only the
educational-oriented rules but also other rules. An expert can define these rules for
a particular domain. With the same concept, AHA! System [6] is defined for adap-
tive Web application. AHAM, Munich reference model and AHA! perform rule-
based adaptation. Consequently, the adaptation engine implements only domain-
based rules. Some works tried to reduce this restriction by defining non-persistent
properties and post and pre-concepts access rules execution. Authors in [7] defined
GAM that is a generic theoretical model for describing the user adaptive behaviour
in a system in order to adapt interactive systems. This problem has been dealt with
authors in [8] when blind users interact with information systems. These different
architectures for adaptive hypermedia systemare oriented towards particular domains
or interactive systems [9–11]. Therefore, it is essential to change the domain model
by a model relative to any domain. In this case, the user profile can include different
interests. It is built from the analysis of user’s queries. Another approach consists in
the exploitation of observations about users.

The authors in [12] presented a solution that predict the missing ratings in users-
preferences matrix. It starts by creating the multiplex network related to users and
the one related to items. A community detection algorithm is then applied on the
multiplex networks in order to find items partitions and users partitions. Once clusters
are found for users and items, the predicting system finds, for a user u and for an item
i, the predicted rate. It is the result of aggregating rates found by intersection between
the clusters to which the user belongs and the cluster to which the item belongs to.

Clustering approaches for community detection in multiplex networks are the
following:

– Methods based on monoplex approaches: [13–18].
It consists on transforming the problem of clustering in multiplex network to a
problem of clustering in simple graphs.

– Extending existing algorithms to deal directly with multiplex networks [19–24].

These solutions correspond to collaborating filtering through multiplex network
clustering. They overcome the drawback of the presented solutions at first. Indeed,
these solutions are independent of the application domain. However, they are appli-
cable on data that can be represented as a graph.

Authors in [25] present an adaptation process of users’ queries based on a profile
construction method that is independent to the domain of application and to data rep-
resentation. They exploited a matrix completion method by minimizing the nuclear
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norm of users-preferences matrix. Matrix completion methods are very popular in
image processing. They are mostly used for image recovery. Authors in this work,
proposed two steps solution. It starts by applying a bi-clustering step to identify users,
respectively, items’ clusters. Then, it predicts the missing rating by computing the
Singular Value Thresholding algorithm (SVT) on sub matrices of user-preferences
matrix. For a user u and an item i, when a rate is unknown, a sub matrix is created.
It contains the ratings that users belonging to the u cluster gave to items belonging
to i cluster. It minimizes the nuclear norm of these sub matrices until the rates are
totally predicted. Amain drawback of this solution is it runs on the strong assumption
that the users-preferences matrix contains at least on observation in each column.
Therefore, before starting the computation of the proposed steps, a data-filtering step
is mandatory. It eliminates the items that are not rated by any user. Consequently, it
is impossible to predict the ratings corresponding to these items. They are already
inexistent during the computation of the proposed solution. In this paper, we aim to
propose a solution that is more complete.

3 Methods of User Profile Construction

3.1 Problem Statement

In many practical problems of interest, one would like to guess the missing entries
of an n1 × n2 matrix from a sampling � of its entries. This problem is known as the
matrix completion problem. It comes up in a great number of applications including
those of collaborating filtering. The collaborating filtering is the task of making
automatic predictions about the interests of a user by collecting taste information
from many users. In each instance, the objective is to predict the preferences of
a user for all items from a partial list of his preferences for a few rated items or
information gleaned from other users.

In mathematical terms, this problem is posed as follows:
A data matrix M ∈ R

n1×n2 is the matrix to be known as much as possible. The
only information available about it is a sampling set of entries Mij, (i, j) ∈ �, where
� is a subset of the complete set of entries {1, …, n1} × {1, …, n2}.

Very few factors contribute to an individual’s taste. Then, the problem of matrix
completion is a problem of a low-rank r matrix from a sample of its entries. The
matrix rank satisfies r ≤ min (n1, n2).

Such a matrix is represented by counting n1 × n2 numbers but has only r × (n1 +
n2 − r) degrees of freedom.When the matrix rank is small and its dimension is large,
then the data matrix carries much less information than its dimension suggests.

At users, along of the rows of the matrix, are given the opportunity to rate items,
columns of the datamatrix. However, they usually rate very few ones so there are very
few scattered observed entries of this data matrix. In this case, the users-preferences
matrix is approximately low rank because as mentioned, it is commonly believed
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Fig. 1 Users-preferences
matrix

that only very few factors contribute to an individual’s tastes or preferences. These
preferences are stored in a user profile.

The following figure illustrates an example of users-preferences matrix concern-
ing five users denoted as u1 to u5 and seven films denoted as f1 to f7. Each user
rates some preferences as to express the interest in each one. The ratings are usually
numerical five-star scale. One and two stars represent negative ratings, three stars
represent ambivalence while four and five stars represent positive ratings. The objec-
tive of our work is to predict the missing ratings in the matrix and then construct a
complete user profile (Fig. 1).

3.2 Preliminaries

– Matrix completion using nuclear norm minimisation

Let P� : Rn1×n2 → R
n1×n2 be the orthogonal projection onto the subspace ofmatrices

that vanish outside of �. We note that (i, j) ∈ � if and only if Mij is observed.
Let Y = P�(X) be defined as follows:

Yij =
{
Xij, (i, j) ∈ �

0, otherwise,

The data known in is given by P�(M). The matrix is recovered, then from P�(X)

if it is the unique matrix of rank less or equal to r and consistent with the data, which
means that, is the unique solution to:

minimize rank(X)

subject to P�(X) = P�(M)

In practical point of view, the rank minimization problem is an NP-hard problem.
Algorithms are not capable to resolve it in time once the matrices have an important
dimension. They require time doubly exponential in the dimension of the matrix to
find the exact solution.
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Authors in [26] proposed the resolution of matrix completion problem by solving
the nuclear norm minimization problem:

minimize‖X‖∗
subject to P�(X) = P�(M)

where the nuclear norm ‖X‖∗ is defined as the sum of its singular values: ‖X‖∗ :∑
i σi(X).
Matrix completion problem is not as ill posed as thought. It is possible to resolve

it by convex programming. The rank function counts the number of nonvanishing
singular values when the nuclear norm sums their amplitude. The nuclear norm is
a convex function. It can be optimized efficiently via semidefinite programming.
Therefore, the first-order methods are used to complete large low rank matrices by
solving the convex problem.

In the specialmatrix completion setting presented, P�(X) is the orthogonal projec-
tor onto the span ofmatrices vanishing outside of�. Therefore the (i, j) component of
P�(X) is equal toXij if (i, j)∈ � and 0 otherwise.X ∈ R

n1×n2 is then the optimization
variable. Fix τ > 0 and a sequence {δk}k≥1 of scalar step sizes.

Denoted shrink(Yk−1, τ) a nonlinear function that applies a soft-thresholding rule
at level τ to the singular values of the input matrix, and initialising Y0 = 0 ∈ R

n1×n2,
the algorithm computes:

{
Xk = shrink(Yk−1, τ)

Yk = Yk−1 + δkP�(M − Xk),

until a stopping criterion is reached.
The key property here is that for large values of τ, the sequence {Xk} converges

to a solution which very nearly minimizes the nuclear norm. Hence, at each step,
one only needs to compute at most one singular value decomposition and perform
a few elementary matrix additions. The singular value shrinkage operator is the key
building block of the matrix completion matrix SVT (Singular Value Thresholding)
algorithm.

Consider the singular value decomposition SVD of a matrix ∈ R
n1×n2 of rank r,

X = U�V∗, � = diag({σi}1≤ i ≤ r), where U and V are respectively n1 × r and n2
× r matrices with orthonormal columns, and the singular values σi are positive.

For each τ ≥ 0, the soft-thresholding operator Dτ is defined as follows:

Dτ(X) := UDτ(�)V∗,Dτ(�) = diag
({σi − τ}+

)
,

where t+ is the positive part of t, namely, t+ = max (0, t).
This operator applies a shrinking operation to the singular values of X. Effectively,

it shrinks them towards 0. Even though the SVD may not be unique, it is easy to
see that the singular value shrinkage operators are well defined. In some sense,
this shrinkage operator is a straightforward extension of the soft-thresholding rule
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for scalars and vectors. In particular, note that if many of the singular values of
X are below the threshold τ, the rank of Dτ(X) may be considerably lower than
that of X, just like the soft-thresholding rule applied to vectors leads to sparser
outputs whenever some entries of the input are below threshold. The singular value
thresholding operator is the proximity operator associated with the nuclear norm.

The singular value thresholding SVT algorithm approximates the minimization
by:

min τ‖X‖∗ + 1

2
‖X‖2F

X

subject toXij = Mij,(i, j) ∈ �

with a large parameter τ. The matrix Frobenius norm or the square root of the sum-
mation of squares of all entries is denoted as ‖ . ‖F denotes.

Then, it applies a gradient ascent algorithm to its dual problem. The iteration is:

{
Xk = Dτ(Yk−1),

Yk = Yk−1 + δkP�(M − Xk),

where Dτ is the SVT operator defined as:

Dτ(Y) := argmin
X ∈ Rn1×n2

1

2
‖Y − X‖F + τ‖X‖∗

– Multivariate Conjoint Analysis using Principal Component Analysis onto a Ref-
erence Subspace PCAR

Conjoint Analysis (CA) [2] deals with preference judgments expressed by users
about a set of items, described by several attributes. Levels are the values assumed
by each attribute. An experimental design regroups the level combinations for every
item. CA aims to evaluate the importance of the attribute-levels in the determination
of global preference for an item.

CA provides individual estimates according to each user.
The Metric Conjoint Analysis approach uses the multiple regression model in

order to estimate the path-worth coefficient of each level. We talk here about items
enrichment by their characteristics.

A factorial approach of Conjoint Analysis, hereafter denoted FCA, was proposed
by [27]. Defined as:

– The design matrix X of dimension Q × K, where the rows refer to Q items and
the columns to the levels of p attributes.

– The preference matrix Y of dimension Q × G, where the rows refer to Q items
and the columns represent the score given by G users.
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The Metric Conjoint Analysis approach estimates the part-worth or utility coeffi-
cients by minimizing the following expression: min

B

∥∥Y − XB2
∥∥ where B, of dimen-

sion K × G, is the matrix of the individual part-worth coefficients associated to the
attribute-levels in X. It leads to the classical Ordinary Least Squares OLS results:
B̂ = �−1

X X′Y where �X = Diag
(
X′X

)
.

The decomposition of the part-worth coefficients on a factorial plan is carried out
by a SVD of the matrix A = B̂′�X B̂, assuming a system of weights elements of the
diagonal matrix �X to take into account the different number of levels of the items,
given by:

SVD(A) = U�V′under the constraints: U′U = V�XV′ = I and � = diag
(
σ1, . . . , σQ

)
.

The projection of the users and of the item-levels on the factorial plans, allows
to analyse in a reduced space the relationship among users and attribute-levels with
respect to the characteristics of the items defined by the design matrix [27].

– The coordinates of the users on the first m principal axes are computed according
to the following expression: ϕα = Vα

√
λα, α = 1, . . . . . . ,m.

– The coordinates of the levels are obtained by the following expressions: ψα =
�

−1/2
X B

∧

Vα�−1
X X′YVα, α = 1, . . . . . . ,m.

– The projections of items on the factorial plan are computed by means of the
following formula: σα = X�−1

X X′YVα

√
λα, α = 1, . . . . . . ,m.

3.3 Proposed Approach for User Profile Construction

The proposed process of user profile construction relies on the following steps:

1. Enriching the users-preferences matrix by users and items characteristics by
using FCA.

2. Identifying users and items’ clusters by applying a learning process using a bi-
clustering based K-means.

3. Deleting items that are not rates by any user through a data.
4. Imputing ratings by predictive method based on SVT algorithm according to the

clusters achieved in step 2.
5. Estimating the ratings of eliminated items in step 3 through an assignment func-

tion.

– Multivariate Conjoint Analysis for users and preferences clusters identification

We adopt the FCA to obtain the correspondences between the users and items char-
acteristics, by considering the design matrix XU. It contains in its columns the char-
acteristics of users and the preference matrix YI has in its rows the items and its
columns the users.
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Consequently, the users and items’ partitions in our approach are obtained by
applying the K-means based bi-clustering step on respectively users and item-levels
coordinates matrix σVα and �

−1/2
X BUα.

The number of classes K are obtained by applying hierarchical clustering accord-
ing to classical criterion of cutting of the dendrogram.

YUσuα andYIσiα. The users’ coordinates matrix σuα is obtained by applying the
FCA by considering the design matrix XU. It contains in its columns the character-
istics of users. The matrix of items coordinates σiα is obtained by performing FCA
on the design matrix XI. It contains in its columns the items’ characteristics. The
preference matrix YI has in its rows the items and its columns the users. The matrix
YU is defined as the following YU = YI′. The number of classes k corresponds to
the one obtained by applying hierarchical clustering.

– Matrix completion SVT algorithm for ratings prediction

The SVT algorithm works under the strong assumption that the preferences matrix
contains at least one observation in each column. Therefore, before starting the
computation of the proposed steps, a data-filtering step is mandatory. It eliminates
the items that are not rated from the preferences matrix YI. The SVT algorithm then
is applied on the sub matrices extracted from YI.

For a given user, respectively an item, we identify clusters in which the selected
user, respectively the item, belongs. The predicted rate is the result of SVT algorithm
applied on the matrix containing rates that users in the selected user cluster gave to
items in the selected item cluster [25].

In some cases, the application of the SVT algorithm in blocks provides certain
results that are out of range (The rates to be predicted has in most application a
determined scale). In this case, we use an aggregation process to predict the following
rates. It is equal to the mode of all rates found by intersection between the cluster to
which the user belongs and the cluster that contains the selected item.

– Assignment function to estimate the ratings of eliminated

To provide a relevant solution, the proposed process uses an assignment function.
This function has as an objective to find the users class that are interested by the
selected item. It exploits the characteristics of the items to enrich the data matrix. It
provides as a result thematrix of itemsweighted according to users’ classes. Then for
a certain item, it is possible to know the class of users that will be the most interested
by it. The exact rate will be then equal to the aggregation of rates provided by the
users of this class.

4 Experimental Results

To evaluate the proposed approach for users’ profiles construction, we applied it
on the MovieLens dataset. It is the standard dataset used for collaborative filtering
testing. It consists of:
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– 100 000 ratings from 943 users on 1682 films from 1 to 5.
– Each user has rated at least 20 movies.
– The dataset is 80, 20% splits into training and test data. It procures data through 5
bases (u1.base, u2.base…) with their test files (u1.test, u2.test …).

– It characterizes users by their: age, gender, occupation and zip code, where it
characterizes the movies by 19 genres.

In the objective to demonstrate the efficiencyof combining the aggregationmethod
and the SVT algorithm per blocks, we applied several methods of Low-Rank Matrix
Recovery andCompletion over the same experimental data. Thesemethodsminimize
also the nuclear norm of their users-preferences matrix in the aim to recover the
missing data with precise rank. We cited Augmented Lagrange multiplier method
ALM [28], Accelerated Proximal Gradient method APG [29], Dual Method DM
[29] and Fixed-Point Continuation method FPC [30]. Only SVT, FPC and ALM
algorithms recovered the matrix with the desired rank 943.

The proposed approach used the predictive process using the clusters obtained
by the bi-clustering over the users and items coordinates in the factorial plan using
PCAR. We compared the results of the same predictive process using the clusters
obtained by performing the bi-clustering on the principle component scores and
the correlation matrix to identify respectively users and items partitions [25] and
applying the bi-clustering on the result of the SVD.

In addition, our approach is compared to the collaborating filtering approach
using multiplex network. This approach used different community detection meth-
ods: Muxlicod algorithm [24], Layer aggregation LA [13] using Louvain [16] and
Walktrap [17], Partition aggregation PA [18] using Louvain and Walktrap and Gen-
erative Topographic Mapping GTM [31].

Asmentioned, TheMoviesLens 100 K dataset is composed of 5 bases. The results
then are the average of ones obtained by applying each approach on these bases. The
following table presents the results obtained by the cited works and the proposed
approach PA (Table 1).

The fact that our approach enriches the data matrix with users and items charac-
teristics using PCAR augmented the precision of our clustering step. This also had
a direct impact on reducing the MAE and RMSE. Indeed, finding precise clusters
augment the precision of our predictive process. Our approach is based on the strong
assumption that if users rate certain items similarly, or have similar behaviours or
share similar characteristics, then they will rate or act on other items similarly.



User Profile Construction Method for Personalized Access … 23

Table 1 Comparaison results Method MAE RMSE

PA 0.8044 1.1088

SVT in blocks + PCA 0.8062 1.1089

SVT in blocks + SVD 0.8204 1.1869

SVT 0.8956 1.3003

FPC 0.9759 1.3108

ALM 0.9781 1.3194

GTM 0.9441 1.2549

Muxlicod 0.9635 1.2773

LALouvain 0.8352 1.1509

LAwalktrap 0.8216 1.1155

PALouvain 0.8713 1.1917

PAwalktrap 0.8801 1.2023

5 Conclusion

The used prediction process in [25] runs on the assumption that the initial matrix
contains at least one observation per row and one observation per column. That is
why during its application on the MovieLens dataset, it provided rates out of scale.
Therefore, to provide a relevant solution, we proposed to eliminate the items unrated
by any user then applying the prediction process. In addition, we used an assignment
function to estimate the rates of items eliminated. We also demonstrated that the
enrichment of users-preferences matrix with users and items characteristics plays
an important role in the prediction process. The exploitation of these characteristics
allowedus to decrease theMAEandRMSEerrors.Weadopted amultivariate conjoint
analytics based on the PCAR method to get the projections of users and items over
a factorial plan. The bi-clustering step was then applied on these projections values.
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Clustering Communities Using Interval
K-Means

Carlo Drago

Abstract With regard to large networks there is a specific need to consider partic-
ular patterns relatable to structured groups of nodes which could be also defined as
communities. In this work we will propose an approach to cluster the different com-
munities using interval data. This approach is relevant in the context of the analysis
of large networks and, in particular, in order to discover the different functionali-
ties of the communities inside a network. The approach is shown in this paper by
considering different examples of networks by means of synthetic data. The appli-
cation is specifically related to a large network, that of the co-authorship network in
Astrophysics.

Keywords Network analysis · Community detection · Interval data · Symbolic
data analysis · Clustering · Symbolic clustering

1 Introduction

In recent years,1 the amount of collected data possible to observe has increased expo-
nentially (Manyika et al. [25]). At the same time there has been a data collection
growth on an exceptional scale; this has been made possible by the great advances in
databases and computer technology. In particular the lower costs of digital storage
was a relevant determinant of this growth (Vjgen [34]). Due to this it is possible to
consider the relevant intersections and of that on big data analysis and the research on
the network analysis (Sellis and Horadam [33]). Networks are nowadays ubiquitous
and they typically produce many data which can be explored and analyzed. These
analyses can represent a clear added value (see Atzmueller et al. [2]). Network anal-
yses can be conducted in a variety of ways: analyze the different network features
present on data, but at the same time it is possible to mine into the different opera-
tions and events occurring on the network (Aggarwal [1]). A community is a set of
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nodes densely connected to each other but weakly connected when considering each
different group of nodes (Fortunato [15]). There are important cases in which it could
be very important to cluster the communities of a network. For example an important
case is explained by the same author [15]: different communities are associated to
different behaviors on the network. The different nodes on the community can be
associated with a specific function or behavior inside the network. In order to predict
the future behavior of the different nodes it could be crucial to determine the differ-
ent communities and to understand the different patterns of observed similarity. In
this sense, understanding the concept of a community on a network leads to a better
understanding of the network behavior as a whole (see Coscia et al. [9]). For this, it
is necessary to understand the entire network. The problem of the adequate repre-
sentation is particularly relevant on big data, in this sense we have to decide the best
representation to use community clustering means so as to take into account on the
clustering process all the structural features of the communities and the attributes of
the different nodes considered as awhole. In this sense, we can consider the structural
characteristics and the attributes of the nodes (which characterize the communities).
In order to cluster communities it is necessary to adequately represent the problem of
representing the community structure of a network (Drago [12]). Thus it is important
to consider where it is possible to find a relevant property on networks in which the
nodes on the community show characteristics which are loosely connected to each
other as well as with other nodes belonging to other communities (see in particular
Girvan and Newman [20]). At the same time it is particularly important to propose
an approach which could be based on interval data because we wish to take into
consideration the entire community. In fact interval data can be relevant in represent-
ing adequately the different communities considered: this allows the retention of the
relevant information of the communities considered. It is for this reason that commu-
nities are a very relevant object to consider. In fact, on a specific network the different
vertices tend to react as a whole and so it could be relevant to cluster them as a whole.
In this sense symbolic data (Billard and Diday [4]) are a natural way to represent the
data we are considering. Networks can be considered and represented as symbolic
data and this specific representation allows the handling of huge quantities of data
(see in this sense the works of Giordano and Brito [18], Giordano et al. [19]). In this
context following Chavent et al. [7] the observations can be collected on special data
matrices. These data are characterized by multivalued descriptors, by which each
specific community can be represented on the rows of the data matrix. These special
data tables are called symbolic data tables. It is possible to observe that each value
on the data matrix is characterized by an interval data. See in this sense Chavent
et al. [7]. In our case the data matrix is represented by different intervals, for each
community we have an interval data for each different variable considered (structural
characteristic or attribute). For instance considering a structural characteristic like
betweenness we can compute the interval of betweenness for each considered node
of the community. At the same time we can build an interval for the measurement of
attributes like the age (the interval of the age of the different members of the com-
munity considered). Here, the interval represents the range of variation between the
betweenness or an attribute (for instance the age) considered inside the community.
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In Sect. 2 we define the problem of community identification in the network whereas
in Sect. 3 we present the interval representation of the network communities and the
K-means clustering. In the Sects. 4 and 5 we consider some relevant examples from
synthetic data (Sect. 4) and on real data (Sect. 5).

2 Community Identification

The first step of the analysis is based on the need to determine the different com-
munities inside the network. In order to do this is needed an appropriate community
detection algorithm (Zhao et al. [35] and Blondel et al. [5]). We start from a network
G defined as:

G = (V, E) (1)

where E are the edges and V the vertices of the network. First of all it is possible to
characterize the single nodes or vertices V by their structural characteristics like the
centrality which can be measured as the Freeman degree for the generic node w:

FDegcentrali t y(w) = deg(w) (2)

The degree is the number of connections for each considered node (see Wasser-
mann and Faust [36]). So it could be defined as a local measure of centrality. A global
measure of centrality can be considered the betweenness:

Betwcentrali t y(w) =
∑

s �=w �=k∈V

σs,z(w)

σs,z
(3)

where s and z are two generic nodes distinct fromw. The numerator of the expression
is related to the paths which pass through the node w considering the path between s
and z. The denominator is related to the total number of paths between s and z. See
Wassermann and Faust [36]. Finally another relevant local centrality measure is the
eigenvector centrality. This measure computes the centrality of a node, considering
the centrality of the neighbors. So we can have the Eigvcentrali t y :

Av = λv (4)

where A is the adjacency matrix, and an eigenvalue λ. The adjacency matrix A is a
square matrix representing the adjacency of two nodes on a graph (Wasserman and
Faust [36]). The greatest eigenvalues it is possible to obtain on the expression are
the considered centrality (see Newman [28]). There are many ways to identify the
communities on a network; for a review and a comparison of the different method-
ologies which can be used for community detection on large networks see Harenberg
[21]. It is important to note that there does not exist a single specific definition of
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community (Fortunato [15]). The lack of a unique definition is also due to the fact
that there can be many different configurations of nodes (different partitions) (see
Reichardt and Bornholdt [31]). The author [15] in particular defines a very simple
way to identify a community: when there are more vertices inside the relevant set
of node than there outside of it. In this sense it is possible to say that the part of
the network belonging to the different communities is more strongly connected than
the zones relating to different connections, which are weakly connected. Fortunato
[15] defines some indices which can be useful in identifying communities: giving
the definition of density as the number of the connections in each node divided by
the theoretical connections for each node (see Wassermann and Faust [36]). We can
define as intra-cluster density:

dinternal(C) (5)

where d is the density for each communityC and at the same the inter-cluster density:

dexternal(C) (6)

In this sense we can have:

D = dinternal(C) − dexternal(C) (7)

and the value obtained as D is higher when it is possible to identify a community
on the network (see Mancoridis et al. [24]). Typically the community detection
methods tend to focus on the connections between the different nodes which are
part of the same community. There are cases in which the different nodes tend not
to be a unique part of an identified single community. The general assumption of
these methodologies is that there is a direct emphasis on considering the connections
inside the communities more than the connections between members of different
communities (Zhao et al. [35]). The relevant requirement for detecting a community
is connectedness. In particular we can expect a strong connection between the nodes
which are part of the community. Each community can be also seen as a module
of the entire network; in order to detect communities we need to take into account
the modularity which can measure explicitly the capacity of a network to be divided
into different modules (Blondel et al. [5]). The higher the modularity means that it
is possible to divide a network into different communities. Where the modularity is
lower it is not possible to detect relevant communities. So in this way the modularity
allows to identify the different communities. The modularity (see Newman [26])
needs to be computed by considering a null model. In this sense the structure seems
to be non existent (i.e. a random graph). So following Fortunato [15] we can define
the modularity in this way:

Q = 1

2m

∑

i, j

(Ai, j − Ki, j )γ (Ci ,C j ) (8)
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where m is the number of the edges on the network, A is the adjacency matrix
considered and Ki, j is the number of edges which can be considered between the
vertices i and j on the null model. Finally it is possible to consider the γ function
which returns two possible values: 1 where the two vertices i and j belong to the
same community and 0 if they are part of different communities. However in order
to take into account also the degree of the vertices i and j (it is important to consider
the degree distributions) we can write the modularity as follows (Fortunato [15] and
Newman [26]):

Q = 1

2m

∑

i, j

(
Ai, j − ki k j

2m

)
γ (Ci ,C j ) (9)

where ki and k j are degree values for different vertices. In thiswaywe obtain the com-
munities inside the network. An alternative approach is that followed by Reichardt
and Bornholdt [31] which introduces a different methodology based on the compar-
ison between null models and a general one (see Newman [27]). These communities
are important because they are a stylized way to represent the different structure of
the network. In this sense we need to take into account the entire groups of nodes
as a whole in order to cluster the communities considered entirely. Thus we con-
sider all the nodes singularly by considering their statistical characteristics (also the
structural characteristics related to the network structure see Wasserman and Faust
[36]). We can start to measure the different communities as an interval data based on
the different structural characteristics (for instance degree, betweenness ecc.). Then
we can obtain a data matrix based on the different interval data. In particular we
must consider for each community the measurements of the structural indicators (for
instance betweenness) by taking into account the different intervals of each indicator
by considering all the nodes belonging to the community. Finally we can proceed
through the cluster analysis of the different intervals representing the communities.

3 K-Means Clustering of the Communities

The different communities (denoted as X ) are characterized by a vector related to
the different n observations considering the single node for the same variable b. So
we can have:

Xb = (x1, x2, . . . , xn) (10)

We can write the interval data (the measurement for the network community) in
this way:

X I,b = [x, x] (11)
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Table 1 The data matrix considered (the interval data relating to each community representation)

Node degr betw att1 …

Community 1 [1:2] [5:7] [3:5] …

Community 2 [2:3] [1:4] [1:8] …

… … … … …

Each interval of the considered variable represents a measurement for the single
community. By doing this we obtain for each different community X an interval
I . Each interval is characterized by their upper bound x and lower bound x . It is
important to note that the intervals can at the same time be characterized by their
radii and the midpoints. In this case each community can be also represented by a
midpoint value. In particular it is possible to obtain a value of the interval midpoint
for the generic variable b:

X I,b
center = 1

2
(x + x) (12)

and the radius of the interval:

X I,b
radius = 1

2
(x − x) (13)

The different intervals can be compared and can be considered in the descriptive
analysis of a network. It is possible, for example, to consider themean of the intervals
when we want to obtain a mean for the different l communities which are part of a
network; for the basic statistical methods for interval data see Gioia and Lauro [17]:

MI,b =
[
1

N

N∑

l=1

xl ,
1

N

N∑

l=1

xl

]
(14)

In order to cluster the different communities we depart from the measurement of
the community characteristics by using interval data (so we consider the data matrix
in Table 1). Many different clustering algorithms have been proposed in order to
cluster interval data. In particular, interval clustering was considered first of all. One
of the authors proposing clustering algorithms is Bock [6]. Our starting point is the
data matrix shown by Chavent et al. [7]. In this sense following the authors we have:

At this point we need to consider the K-Means clustering algorithm in order
to classify adequately the different communities and obtain the meta-communities.
Following De Carvalho et al. [11] and Pen and Li [30] from the initial data matrix
representing the different communities we can perform the K-means interval clus-
tering by adequately considering the number of the clusters. The method considered
generalizes the classical k-means to interval data. In particular we start from the data
representation given by considering the intervals of the different communities, then
we consider the method of Hartigan Wong in order to allocate the different intervals
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on the k considered clusters (see Pen and Li [30]). In particular the number of the
initial clusters can be derived from the a-priori information of the clustering process
and then it is possible to repeat the procedure in order to measure the robustness of
the clusters obtained (see Lauro and Gherghi [16]). In this sense we consider a sensi-
tivity analysis of the results obtained by the first cluster analysis. At the same time in
order to explore the different partitions which can be obtained we consider different
matrices simultaneously with different variables to determine if the partition could
be specifically related to a different matrix configuration.

4 Simulation Study

We can start by considering different networks simulating variant characteristics. In
this study we consider different networks obtained by applying the R package igraph
(see Csardi and Nepusz [10]). In order to perform the data analysis at community
level we have also used the package RSDA (Rodriguez [32]). Thus we consider these
different groups of networks:

• Barabasi Albert graph models (Barabasi and Albert [3])
• Erdos-Renyi graph models (Erdos and Renyi [13])
• Random Dot Product graph models (Nickel [29])
• Forest Fire network models (Leskovec et al. [22])

and other types of networks. We have considered many different networks in order
to test the approach on different structures. Here we present some examples we
have obtained from the simulation study. The results obtained from examples are
important in order to derive some interpretation rules which can be considered on
the results of the proposed approach. In the first case we consider an example from
the network based on the Barabasi game. In Fig. 1 a network with 100 nodes based
on the Barabasi model is shown. We obtain 9 communities as part of the community
structure obtained by using the greedy optimization of the modularity (Clauset et al.
[8]). In particular in Fig. 1 we are able to identify the different communities and the
nodes to which they belong.

From the clustering analysis of the interval data relating to the communities we
observe that there is a group or cluster of communities on the center with similar
structural characteristics. This could be also observed by considering the different
interval scatterplot diagrams (see Fig. 1). That means we are able to identify some
groups of communities which tend to show similar characteristics (Freeman degree
and eigenvector centrality, see Fig. 1).

Then we consider the 9 different communities obtained on the clustering process
using the K-Means. In this case we look at the different data matrices using different
specifications and structural measures in order to evaluate the different results. Two
interpretative results need to be noted on the simulations: it is possible to observe that
the lower bound appears not to be relevant; in particular the upper bound is relevant in
discriminating the different communities. On the other hand, the differences which
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Fig. 1 Barabasi model
simulation using 100 nodes:
community structure

Fig. 2 Barabasi model
simulation using 100 nodes:
community structure
visualized. On the x-axis the
degree, on the y-axis the
eigenvector centrality scores

can be observed by the different intervals can be determined specifically by the
differences on the upper bounds. In fact it is possible to observe a higher heterogeneity
between upper bounds rather than lower bounds. The visualization in Fig. 2 shows
an overlapped structure because there is a centralized structure of the network. This
structure tends to cluster specifically the communities in a central position. In this
case the betweenness is related to the higher degree. It is also possible to note that
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the different nodes can be characterized by different groups of similar nodes when
they are considered specifically on the communities. We consider here as another
example the case of the Erdos Renyi Model, using at the same time 100 nodes (see
the interval scatterplot diagram in Fig. 2). We observe that the communities tend to
be part of densely connected networks.

In these cases we can see that the different meta-communities can be influenced
by the characteristics of the communities as well. In the next section we consider an
experiment which has been carried out on real data.

5 Application on Real Data

The data used on the application are specifically related to the network of the
researchers in t Theoretical Physics. The dataset is also present on the SNAP web-
page (Leskovec and Krevl [23]). In particular we have used the dataset related to the
‘General Relativity and QuantumCosmology collaboration network’ (Arxiv Gr-Qc).
Here we have used the approach seen above and thus community detection based
on the greedy optimization of the modularity (see Clauset et al. [8]) and the cluster
analysis of the considered representations as intervals (see the interval scatterplot
diagram obtained in Fig. 3). The network observed reveals a significant community
structure which can be detected using the algorithms of community detection (the
greedy optimization of the modularity). At the same time it is possible to visualize
the community structure in such a way as to detect the general structure of the data.
The results obtained from the analysis are coherent with Fay and Gautias [14]. The

Fig. 3 Erdos Renyi model
simulation using 100 nodes:
community structure
visualized. On the x-axis the
degree, on the y-axis the
eigenvector centrality scores
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Fig. 4 Gr-Qc network. On
the x-axis the degree, on the
y-axis the eigenvector
centrality scores

advantage of using this approach is the possibility to detect the different communities
and the different meta-communities (the clusters of the different communities) which
tend to show similar characteristics. In particular the approach based on the interval
K-means offers the possibility to understand the different prototypes of the different
communities it is possible to find. The final conclusion indicates a centralized struc-
ture of the network. By observing the meta-communities we can observe that there
is an interesting difference on the prototypes of the most central communities with
similar different levels of betweenness and degree centrality. This can be interpreted
as indicating cooperative behavior between the vertices on the network (Fig. 4).

6 Conclusions

The resultswehave obtained confirm the usefulness of the approach considered in this
work on large networks. The result is particularly useful to determine specifically the
community structure and some different meta-communities which can be identified
on a specific network. By starting from the meta communities it is possible to obtain
the different prototypes. In particular a relevant observation relating to the results
is that in the case of the clustering communities as groups of nodes we can obtain
different results from those when considering only the clustering of the single node.
In this sense the analysis can be enriched by the fact that in some cases the nodes have
on their communities relevant dissimilarities which need not be taken into account
when the analysis is performed by considering the communities as a whole. At the
same time clusters of communities (or meta-communities) obtained by the clustering
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of the interval data can be characterized as behavior by nodes which participate in the
community on different levels. As in the case of scientific cooperation networks in
Astrophysics it could indicate complex behaviors inside the same communities. The
approach considered in this work allows the exploration of these levels of interaction
between the different nodes.
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Text Mining and Big Textual Data:
Relevant Statistical Models

Fionn Murtagh

Abstract A general overview is provided through examples and case studies,
retrieved from research experiences, to foster description and debate on effective-
ness in Big Data environments. At issue are early stage case studies relating to:
research publishing and research impact; literature, narrative and foundational emo-
tional tracking; and social media, here Twitter, with a social science orientation.
Central relevance and importance will be associated with the following aspects of
analytical methodology: context, leading to availing of semantics; focus, motivat-
ing homology between fields of analytical orientation; resolution scale, which can
incorporate a concept hierarchy and aggregation in general; and acknowledging all
that is implied by this expression: correlation is not causation. Application areas
are: quantitative and also qualitative assessment, narrative analysis and assessing
impact, and baselining and contextualizing, statistically and in related aspects such
as visualization.

Keywords Correspondence analysis · Chronological hierarchical clustering ·
Mapping narrative · Emotion tracking · Significance of style

1 Introduction

1.1 Statistical Analytical Challenges in Data Science

A seminal paper in statistics is [6], describing current challenges and new develop-
ments in statistics. It can be emphasized that Hand [6] is addressing the increasingly
major and contemporary domains of Data Science and Big Data analytics. The title
refers to “administrative and transaction data”, coming from the statistical work of
companies and of government and authority agencies. The section headings in [6] are
mostly relating to data quality and implying also, data encoding, and data curation.
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For how comprehensive or insightful one’s data sources are, there is the need (Sect. 3
title in [6], “ ‘Data=all’?”) to interact with our data sources, to have visualization
and verbalization of our data.

Following this is our focus of analysis, in [6], Sect. 4 title, “Answering the right
question”. In the Sect. 5, “Causality and intervention”, observational data is now our
main engagement and, of course, there are limitations in how we can interact and
engage with the domains that are at issue. For establishing causality, “The most com-
monway to do this is via a properly controlled experiment involving randomization.”

The Sect. 6 title in [6], is “Combining data from different sources”. This can
lead to the importance of triangulation, which is so very important in understanding
the narrative of behavioural patterns, of analytical processes, and many other such
themes and issues. The Sect. 7 title is “Confidentiality, privacy and anonymization”.
For security and also for the ethical issue of the individual not being thoroughly
replaced by the cluster or group, there can and there should be full and complete
account taken of both security and such ethical issues.

Having noted in [6] that “administrative data are ... typically not random samples”,
in this paper here, we just consider such viewpoints and perspectives for the text data
source context. It is clearly described how an issue of importance is that population
rather than sampling is at issue. (Hence, here, the corpus of retained terms from our
text sources.) Other than summarization, in practice another consideration can be
that the data is aggregated, leading to different resolution scales of the analysis.

There is a very interesting presentation of the term “survey” in [6], p. 3, and then
how administrative data is purely factual as opposed to having what may be implicit
explanatory or contextual or causal properties. For sampled data, very often the
context of the population can have known or presupposed distributional properties,
possibly from the law of large numbers, or long tailed (exponential) distributions.

When starting with the distinction between data that are collected for statistical
and administrative purposes directly and very clearly leads for any reader to the
current epoch of Big Data, which “we might define as the result of some automatic
data collection system” [6], and that so much and such data are “nowadays largely
collected automatically”.

It is just interesting to note how data collected for statistical purposes can be
subject to bias but, if so, the Big Data context can be useful for calibration purposes:
[8]. At issue is self-selection from social media, and hence the need to calibrate (i.e.,
benchmark) such data. Such calibration may also be considered as, or linked to, the
context of the data sources, or the objectives of the analysis.

For the context [6], “data describing different kinds of entitiesmight have different
characteristics”, so therefore data encoding can be important. The entire data quality
discussion can be related to the context of the data sourcing. If “administrative data
quality is a multidimensional issue, with a hierarchy of dimensions” [6], then it may
follow that the real-number system is less relevant compared to other number systems
(p-adic number systems; this of course includes binary numbers that are essential
to computers, even if earlier and some current viewpoints are that computers could
and should be based on ternary, 3-adic, numbers, [16]. Measurement, e.g. having
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quantitative or qualitative (possibly also termed, categorical) variables, is central to
such an issue. Data encoding is ultimately very crucial.

This may well lead, not just to nearest neighbour and clusterwise regression, but
also to ultrametric regression. From the hierarchically structured semantics under-
pinning the past terrible social violence in Colombia, regression of that data with the
dependent regression variable being from the drugs market in the United States is at
issue in [20].

In a sense, this may be alternatively expressed as follows [6]: “quality is not a
property of the data set itself, but of the interaction between the data set and the use to
which it is put”. So much current analytical work, and related research, suffers from
the note made that machine learning “places more emphasis on the final modelling
stage of data analysis. This can be unfortunate: feed data into an algorithm and
a number will emerge, whether or not it makes sense.” Perfect data is not to be
assumed. Relevance is crucial. Data aggregation may also be relevant here. That
can be expressed thus: resolution scale of our data is another contextual, including
relevance, aspect. Continuing this summarization of [6], data storage and rebranding
of data is, in effect, the issue of data curation. There is the pointing to howmuch of an
issue, the dynamics, of what we are dealing with, can be in our analytics. Given how
we are dealing with data population rather than sampling of data in the discussion
here, this points to the need to have informative and revealing ways to associate our
data point clouds in our multidimensional spaces. This can be data calibration, and
certainly it should also be, for interpretative objectives, but also innovative pattern
recognition and trend finding, in the discovery of, and determining of, homologies
in our data clouds and subclouds ([16], Preface, and Sect. 2.6).

The Sect. 4 title in [6] is “Answering the right question”, and here there is this
necessary association of the analysis with the data: “it can be useful ... to have
statisticians involved in the data collection process.” So fundamental in Data Science
is that there be integration of all the data and all of the analytics. This leads to
the Data Scientist’s perspective that analytics is all about the visualization and the
verbalization of data, (an edited book title, [3]). Referring to how “Statistical analysis
methods are often divided into descriptive and inferential.” is nicely describing the
analytical narrative.

Calibrating survey data, cf. [8], the way that Big Data now supports and backs
up, and can even contextualize, survey data, and such classically and statistically
oriented data sourcing. From [6] p. 16: “A particular merit of administrative data,
and especially of transaction data, is that it is recorded as time progresses.” It is
therefore continuous, over time. “This means that administrative data can be very
useful for early detection of changes in populations.”

Reference [6], “As is well known, observational data present challenges in estab-
lishing causality.” The issue here is that the data is all that we have, while we must
have further, where necessary, interaction with the contextual framework, or basis,
of our data. “To establish causality, we need to intervene to break all possible causal
links except the link that we wish to test ... The most common way to do this is via
a properly controlled experiment involving randomization.” All in all here, we are
involved with the visualization and verbalization of data. Section6: “Combining data
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from different sources”. This involves: data integration, information fusion, and, in
the analytics, complement, supplement, add to accuracy. This is so very relevant,
for all aspects of validation and verification of the methodology at issue. This is so
very important, among the statistical challenges: “Challenge 14. Develop improved
methods for data triangulation, combining different sources and types of data to yield
improved estimates.” From our data analysis andmathematical perspective, we know
so very clearly, that triangulation expresses anomaly and innovation, and the strong
triangular inequality is a natural expression of what is inherently hierarchically struc-
tured, and that means, to be structured as an ultrametric topology.

In [16], it is noted how important hierarchical clustering is, and therefore ultra-
metric topology embedding, for continuity and anomaly detection. Such work, on
the inherent ultrametricity, i.e., the inherent hierarchical structure in complex data
has been carried out for medical and environmental data, for psychoanalysis, for
literature and for other textual data.

1.2 Contexts and Frameworks for Statistical Analytics

Clearly, through integration of analytical methodology and domain of application,
the choice of methodology or even its development is dependent on the specific
requirements. However the following general aspects of contemporary analytics,
including textual data analytics, are useful to be noted.

Ethical consequences of Big Data mining and analysis may be associated with the
following, from [11]: “Rehabilitation of individuals. The contextmodel is always for-
mulated at the individual level, being opposed therefore to modelling at an aggregate
level for which the individuals are only an ‘error term’ of the model.”

In [8], “There is the potential for big data to evaluate or calibrate survey findings
... to help to validate cohort studies”. Examples are discussed of “how data ... tracks
well with the official”, far larger, repository or holdings. It is well pointed out how
one case study discussed “shows the value of using ‘big data to conduct research on
surveys (as distinct from survey research)”. Limitations though are clear: “Although
randomization in some form is very beneficial, it is by no means a panacea. Trial
participants are commonly very different from the external pool, in part because of
self-selection, ...”. This is due to, “One type of selection bias is self-selection (which is
our focus)”. Important points towards addressing these contemporary issues include
the following. “When informing policy, inference to identified reference populations
is key”: This is part of the bridge which is needed, between data analytics technology
and deployment of outcomes.

Furthermore there is this: “In all situations, modelling is needed to accommodate
non-response, dropouts and other forms of missing data. While “Representativity
should be avoided”, here is an essential way to address in a fundamental way, what we
need to address: “Assessment of external validity, i.e. generalization to the population
from which the study subjects originated or to other populations, will in principle
proceed via formulation of abstract laws of nature similar to physical laws”.
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Hence our motivation for the following framework for analytical processes:
Euclidean geometry for semantics of information; hierarchical topology for other
aspects of semantics, and in particular how a hierarchy expresses anomaly or change.
A further useful case is when the hierarchy respects chronological or other sequence
information.

2 Towards: Qualitative as well as Quantitative Research
Effectiveness and Impact

In the previous section, at issue has been advanced challenges, relating to data encod-
ing. Relating also to this is qualitative and quantitative data.

For analysis of research funding, of publishing, and of commercial outcomes,
account needs to be taken of measures of esteem. Also account is taken of research
impact, through impact of research products: (1) research results, (2) organisation of
science (journal editing, running conferences), (3) knowledge transfer, supervision,
(4) technology innovations.

Correspondence Analysis when based on part of an ontology or concept hierarchy
(i.e., when having qualitative data from such sources) can be considered as “infor-
mation focusing”. Correspondence Analysis provides simultaneous representation
of observations and attributes. We project other observations or attributes into the
factor space: these are supplementary or contextual observations or attributes. A 2-
dimensional or planar view is an approximation of the full cloud of observations or
of attributes. Therefore there can be benefit in the following: define a small number
of aggregates of either observations or attributes, and carry out the analysis on them.
Then project the full set of observations and attributes into the factor space.

In support of “The LeidenManifesto for researchmetrics”, DORA (San Francisco
Declaration on Research Assessment), Metrics Tide Report (HEFCE, Higher Edu-
cation Funding Council England, 2015), qualitative judgement is primary. Research
results may be assessed through first determining a taxonomic rank by mapping
to a taxonomy of the domain (a manual action). There then will be unsupervised
aggregation of criteria for stratification.

Research impact should be evaluated, first of all, based on qualitative considera-
tions. Evaluation of research, especially at the level of teams or individuals can be
organized by, firstly, developing and maintaining a taxonomy of the relevant sub-
domains and, secondly, a system for mapping research results to those subdomains
that have been created or significantly transformed because of these research results.
Of course, developing and/or incorporating systems for other elements of research
impact, viz., knowledge transfer, industrial applications, social interactions, etc., are
to be taken into account also.

In [22], there is such an implementation, by having features of published research
work that are defined and valued “manually” from an ontology, i.e. a taxonomy, or
a conceptual hierarchy, of the relevant subdomains, i.e. themes at issue for research.
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From such qualitative characterizing of researchwork, in [22], there is the deriving of
quantitative values and that is used for ranking and for stratification. The envisaged
application domain there is for editorial work in research publishing, and also for
managing research funding proposals.

This other work, [7], has a very interesting theme: by mapping out text content,
and its vocabulary, as it changes or evolves over time, over the years, and associating
this with influential published articles, this workwas studying the historical evolution
of statistics, from the content of publications.

3 Qualitative Style in Narrative for Analysis and Synthesis
of Narrative

For [13], the composition of the movie, Casablanca, is “virtually perfect”. Text is the
“sensory surface” of the underlying semantics.

Here there is consideration as to how permutation testing and evaluation can be
very relevant for qualitative appraisal. Considering the Casablanca movie, shot by
Warner Brothers between May and August 1942, and also some early episodes of
the CSI Las Vegas, Crime Scene Investigation, television drama series, from the year
2000, the attributes used were as follows, [19].

All is based on the following: Euclidean geometry for semantics of information;
hierarchical topology for other aspects of semantics, and in particular how a hier-
archy expresses anomaly or change. The hierarchy respects chronological or other
sequence information. Chronological hierarchical clustering, also termed contigu-
ity constrained hierarchical clustering, is based on the complete link agglomerative
clustering criterion [1, 9, 14].

1. Attributes 1 and 2: The relative movement, given by the mean squared distance
from one scene to the next. We take the mean and the variance of these relative
movements. Attributes 1 and 2 are based on the (full-dimensionality) factor space
embedding of the scenes.

2. Attributes 3 and 4: The changes in direction, given by the squared difference in
correlation from one scene to the next. We take the mean and variance of these
changes in direction. Attributes 3 and 4 are based on the (full-dimensionality)
correlations with factors.

3. Attribute 5 is mean absolute tempo. Tempo is given by difference in scene length
from one scene to the next. Attribute 6 is the mean of the ups and downs of tempo.

4. Attributes 7 and 8 are, respectively, the mean and variance of rhythm given by
the sums of squared deviations from one scene length to the next.

5. Finally, attribute 9 is the mean of the rhythm taking up or down into account.

For permutation testing, assessment was carried out relative to uniformly random-
ized sequences of scenes or sub-scenes.

This allows this concluding outcome: this is how we statistically assess how the
movie, “Casablanca”, approximates artistic perfection.



Text Mining and Big Textual Data: Relevant Statistical Models 45

4 Statistical Significance of Impact

Underlying [21] is the testing of social media with the aim of designing interventions,
associated with statistical assessment of impact. The application here is to environ-
mental communication initiatives. Measuring impact of public engagement theory,
in the sense of the eminent political scientist, Jürgen Habermas, involves public
engagement centred on communicative theory; by implication therefore, discourse
as a possible route to social learning and environmental citizenship.

The case study here, was directed towards:

1. Qualitative data analysis of Twitter.
2. Nearly 1000 tweets in October, November 2012.
3. Evaluation of tweet interventions.
4. Eight separate twitter campaigns carried out.

Mediated by the latent semanticmapping of the discourse, semantic distancemea-
sures were developed between deliberative actions and the aggregate social effect.
We let the data speak in regard to influence, impact and reach.

Impact was algorithmically specified in this way: semantic distance between the
initiating action, and the net aggregate outcome. This can be statistically tested
through the modelling of semantic distances. It can be further visualized and evalu-
ated.

A fundamental aspect of the Twitter analysis was how a tweet, considered as
a “campaign initiating tweet”, differed from an aggregate set of tweets. The latter
was the mean tweet, where the tweets were first mapped into a semantic space. The
semantic space is provided by the factor space, which is endowed with a Euclidean
metric. For very high dimensions, we find “data piling” or concentration. See [16].
That is, the cloud of points becomes concentrated in a point. Now that could be of
benefit to us, when we are seeking a mean (hence, aggregate) point in a very high
dimensional space. A further aspect is when it is shown that the cloud piling or
concentration is very much related to the marginal distributions.

Here we show how we can test the statistical significance of effectiveness.
The campaign 7 case, with the distance between the tweet initiating campaign 7,

and the mean campaign 7 outcome, in the full, 338-dimensional factor space is equal
to 3.670904.

Compare that to all pairwise distances of non-initiating tweets. We verified that
these distances are normal distributed, with a small number of large distances. By the
central limit theorem, for very large numbers of such distances, they will be normal
distributed. Denote the mean by μ, and the standard deviation by σ . Mean and
standard deviation are defined from distances between all non-initiating tweets, in
the full dimensionality semantic (or factor) space. We find μ = 12.64907, μ − σ =
8.508712, and μ − 2σ = 4.368352.

We find the distance between initiating tweet and mean outcome, for campaign 7,
in terms of themean and standard deviation of tweet distances to be:μ − 2.168451σ .
Therefore for z = −2.16, the campaign 7 effectiveness is significant at the 1.5% level
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(i.e. z = −2.16, in the two-sided case, has 98.5% of the normal distribution greater
than it in value).

In the case of campaigns 1, 4, 5, 6, their distances between initiating tweet and
mean outcome are less than 90% of all tweet distances. Therefore the effectiveness
of these campaigns is in the top 10% which is not greatly effective (compared to
campaign 7).

In the case of campaigns 3 and 8, we find their distances to be less than 80% of
all tweet distances. So their effectiveness is in the top 20%.

Finally, campaign 2 is the least good fit, relative to initiating tweet and outcome.

5 Baselining or Contextualizing Analysis

The following is in regard to baselining, i.e. contextualizing, against healthy refer-
ence subjects, from a case study, in chapter “Bayesian analysis of ERG models for
multilevel, multiplex, and multilayered networks with sampled or missing data” of
this book, [12], a most important book, the content of which and its title relate, in
effect, all of the data mining analytical work at issue here, with statistical modelling
and hypothesis testing. This repeats some of the description in [17], in regard to
testing through statistically baselining or contextualizing in a multivariate manner.

In [2], there is an important methodological development, concerning statistical
inference in Geometric Data Analysis, i.e. based onMCA,Multiple Correspondence
Analysis. At issue is statistical “typicality of a subcloud with respect to the overall
cloud of individuals”. Following an excellent review of permutation tests, the data
is introduced: 6 numerical variables relating to gait, body movement, related to the
following; a reference group of 45 healthy subjects; and a group of 15 Parkinsons
illness patients, each before and after drug treatment. Reference [10] (Sect. 11.1)
relates to this analysis, of the, in total, 45+ 15+ 15 observation vectors, of subjects
between the ages of 60 and 92, of average age 74.

First there is correlation analysis carried out, so that when Principal Components
Analysis (PCA) of standardized variables is carried out, it is the case that the first
two axes explain 97% of the variance. Axis 1 is characterized as “performance”,
and axis 2 is characterized as “style”. Then the two sets of, before treatment, and
after treatment, 15 Parkinsons patients are input into the analysis as supplementary
individuals. Reference [2] is directly addressing statistically the question of effect of
treatment. Just as in [10], the healthy subjects are themain individuals, and the treated
patients, before and after treatment, are the supplementary individuals. This allows to
discuss the subclouds of the before, and of the after treatment individuals, relative to
the first, performance, axis, and the second, style, axis. The test statistic, that assesses
statistically the effect ofmedical treatment here, is a permutation-based distributional
evaluation of the following statistic. The subcloud’s deviations relative to samples
of the reference cloud are at issue. The Mahalanobis distance based on covariance
structure of the reference cloud is used. The test statistic is the Mahalanobis norm of
deviations between subcloud points and the mean point of the reference cloud.

http://dx.doi.org/10.1007/978-3-030-21158-5_9
http://dx.doi.org/10.1007/978-3-030-21158-5_9
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In summary, this exemplifies in a most important way, how supplementary ele-
ments and the principal elements are selected and used in practice. The medical
treatment context is so very clear in regard to such baselining, i.e. contextualizing,
against healthy reference subjects.

6 Tracking Emotion

This relates to determining and tracking emotion in an unsupervised way. This is as
opposed tomachine learning, like in sentiment analysis,which is supervised.Emotion
is understood as a manifestation of the unconscious. Social activity causes emotion
to be expressed or manifested. This can lead to later discussion of psychoanalyst,
Matte Blanco. See [16].

The foundation of this tracking of emotion, and determining the depth of emotion,
is using the methodology of metric space mapping and hierarchical topology. The
former here maps the textual data into a Euclidean metric endowed factor space, and
the latter may be chronologically constrained hierarchical clustering.

The examples to follow are based on: in the Casablanca movie, dialogue (and
dialogue only) between main characters Ilsa and Rick, having selected this dialogue
from the scenes with both of these protagonists (scenes 22, 26, 28, 30, 31, 43, 58,
59, 70, 75 and last scene, 77); and Chaps. 9, 10, 11, 12 of Gustave Flaubert’s 19th
century novel, Madame Bovary. This concerns the three-way relationship between
Emma Bovary, her husband Charles, and her lover Rodolphe Boulanger.

Following [18], in Fig. 1 in the full dimensionality factor space, based on all
interrelationships of scenes and words, the distance between the word “darling” in
this space, was determined with each of the 11 scenes in this space. The same was
done for the word “love”. The semantic locations of these two words, relative to the
semantic locations of scenes 30 and 70 are highlighted with boxes.

Then in Fig. 2, hierarchical clustering, that is sequence constrained, is carried
out on the scenes used, i.e. scenes 22, 26, 28, 30, 31, 43, 58, 59 70, 75, 77 (using
the dialogue, between Ilsa and Rick). See how the big changes, here, in regard to
emotion, in scenes 30 and 70 are indicated in the previous figure.

Now there is consideration of the novel Madame Bovary, by Gustave Flaubert,
with the 3-way interrelationships of Emma Bovary, her husband Charles, and her
lover, Rodolphe. Figure3 presents an interesting perspective that can be considered
relative to the original text. Rodolphe is emotionally scoring over Charles in text
segment 1, then again in 3, 4, 5, 6. In text segment 7, Emma is accosted by Captain
Binet, givingher qualmsof conscience.Charles regains emotional groundwithEmma
through Emma’s father’s letter in text segment 10, and Emma’s attachment to her
daughter, Berthe. Initially the surgery on Hippolyte in text segment 11 draws Emma
close to Charles. By text segment 14 Emma is walking out on Charles following
the botched surgery. Emma has total disdain for Charles in text segment 15. In
text segment 16 Emma is buying gifts for Rodolphe in spite of potentially making
Charles indebted. In text segments 17 and 18, Charles’mother is there, with a difficult
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Fig. 1 In the full dimensionality factor space, based on all interrelationships of scenes and words,
in the Casablanca movie filmscript. The distance was determined between the word “darling” in
this space, with each of the 11 scenes in this space. This was also done for the word “love”. The
semantic locations of these two words, relative to the semantic locations of scenes 30 and 70 are
highlighted with the boxes here

Fig. 2 Hierarchical
clustering, that is sequence
constrained, of the 11 scenes
used, i.e. scenes 22, 26, 28,
30, 31, 43, 58, 59, 70, 75, 77
(all with dialogue, and only
dialogue, between Ilsa and
Rick). Rather than
projections on factors, here
the correlations (or cosines
of angles with factors) are
used to directly capture
orientation

0.
0

0.
4

0.
8

1.
2

22 26 28 30 31 43 58 59 70 75 77

Sequence-constrained hierarchical
clustering

mother-in-law relationship for Emma. Plans for running away ensue, with pangs of
conscience for Emma, and in the final text segment there is Rodolphe refusing to
himself to leave with Emma.

There can be also display of the evolution of sentiment, pursued in [18], expressed
by (or proxied by) the terms “kiss”, “tenderness”, and “happiness”. That will permit
to be seen that some text segments are more expressive of emotion than are other
text segments.
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Fig. 3 Gustave Flaubert’s Madame Bovary: the relationship of Emma to Rodolphe (more black
lines/circles) and to Charles (full line, gray) aremapped out. The text segments encapsulate narrative
chronology, that maps approximately into a time axis. Low or small values can be viewed as
emotional attachment

7 Analyses of Mapping of Behavioural or Activity Patterns
or Trends

This concerns semantic mapping of Twitter data relating to music, film, theatre, etc.
festivals. 75 languages were found to be in use, including Japanese, Arabic and so
on, with the majority in Roman script. As indicative association to language, because
the labelled language may be partially used or not in fact used, we take the following:
English, Spanish, French, Japanese, Portuguese. Here, we consider the days 2015-
05-11 to 2016-08-02, with two days removed, due to lack of tweets. The numbers
of tweets for these languages were as follows (carried out on 11 August 2016): en,
37681771; es, 9984507; fr, 4503113; ja, 2977159; pt, 3270839.

The tweeters and the festivals are as follows. Tweets characterized as French,
4913781 tweets. (For user, date and tweet content, the file size was: 667 MB.) The
following were sought in the tweets: Cannes, cannes, CANNES, Avignon, avignon,
AVIGNON.Upper and lower casewere retained in order to verify semantic proximity
of these variants. These related to the Cannes Film Festival, and the Avignon Theatre
Festival. The following total numbers of occurrences of these words were found, and
the maximum number of occurrences by a user, i.e. by a tweeter: Cannes, 1230559
and 3388; cannes, 145939 and 4024; CANNES, 57763 and 829; Avignon, 272812
and 4238; avignon, 39323 and 2909; AVIGNON, 14647 and 900.
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Fig. 4 880664 Twitter tweets projected on the principal factor, i.e. principal axis plane. Attributes
here, in gray, are projected

The total number of tweeters, also called users here: 880664; total number of days
retained, from 11May 2015 to 11 Sept. 2016, 481. Cross-tabulated are: 880664 users
by 481 days. There are 1230559 retained and recorded tweets. The non-sparsity of
this matrix is just: 0.79%.

In Fig. 4, mapped are: C, c, CA (Cannes, cannes, CANNES) and A, a, AV (Avi-
gnon, avignon, AVIGNON). They are supplementary variables in the Correspon-
dence Analysis principal factor plane. Semantically they are clustered. They are
against the backgroundof theBigData, here the 880664 tweeters, representedbydots.
This demonstrates how semantic association and also disambiguation are achieved
in this Correspondence Analysis context, as the data clouds, endowed with the chi
squared distance are mapped into the factor space, endowed with the Euclidean
distance.

Current considerations, relating to approximately 55million tweets per year (from
May 2015), are as follows. Determine some other, related or otherwise, behavioural
patterns that are accessible in the latent semantic, factor space. Retain selected terms
from the tweets, and, as supplementary elements, see how they provide more infor-
mation on patterns and trends. Carry out year by year trend analysis.

For further analyses and description of the data, see [5, 15].
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8 Conclusion

Much that is at issue here is close to what is under discussion in [4]. The integral
association of methodology and application domain will, of course, have shared and
commonmethodological perspectives. However the application of statistical models,
and other analytical stages such as feature selection, data aggregationwith the various
implications of this, and what is often termed data cleaning or data cleansing, all of
these issues require analytical focus, and account to be taken of the analytical context.
The latter may well include baselining, or benchmarking in an operational manner.
In a sense, we might state that combinatorial inference is so paramount because of
its applicability.

A good deal of the case studies reported on here made use of preliminary func-
tionality, now in the R package, Xplortext. This package makes use of these R
packages, and add greatly to their functionality: tm, FactoMineR. The software
system, SPAD, is also extending greatly into support for text processing.

Finally, in finalizing the conclusions, we note again how challenges listed in [6]
are being addressed here. For convenience, the focus here is on textual data, so this
is being considered, just in this context here, as either administrative (cf. factual and
descriptive) and transaction (cf. communication) data. The following citations are
from [6].

“Challenge 10. Report changes and time series with appropriate measures of
uncertainty, so that both the statistical and the substantive significance of changes can
be evaluated. The measures of uncertainty should include all sources of uncertainty
which can be identified.”

“As iswell known, observational data present challenges in establishing causality.”
The issue here is that the data is all that we have, while we must have further,
where necessary, interaction with the contextual framework, or basis, of our data.
As expressed on page 16, “To establish causality, we need to intervene to break all
possible causal links except the link that we wish to test ... The most common way
to do this is via a properly controlled experiment involving randomization.” All in
all here, we are involved with the visualization and verbalization of data.

Section 6. “Combining data from different sources”. This involves: data inte-
gration, information fusion, and, in the analytics, complement, supplement, add to
accuracy. This is so very relevant, for all aspects of validation and verification of the
methodology at issue.
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A Three-Way Data Analysis Approach
for Analyzing Multiplex Networks

Giancarlo Ragozini, Maria Prosperina Vitale and Giuseppe Giordano

Abstract In the present contribution, the use of factorial methods for three-way
data is proposed to visually explore the structure of multiplex networks, that is, in
presence of more relationships measured for a common set of nodes. Specifically, the
DISTATIS technique, an extension of multidimensional scaling to three-way data, is
used to analyze multiplex one-mode networks. In this procedure different types of
relationships are represented in separate spaces and in a compromise space. A well-
known dataset in the related literature is considered to illustrate how this procedure
works in practice.

Keywords Social network analysis · Factorial methods · DISTATIS · Lazega
lawyers network data

1 Introduction

Multilayer networks [11, 17] arise when there exist two or more relationships for
a common set or different sets of nodes. A multiplex network is a special case of a
multilayer network that consists of a fixed set of nodes that interact through different
relationships. For instance, in social sciences the researcher can collect network data
on friendship, neighbors, kinship, trust, and advice relationships among the same set
of actors.

For this kind of network data structure, usually the proposed approaches consist of
dealingwithmultiple relationships separately or flattening the information embedded
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in all layers. This latter procedure reduces the complexity of multiplex data and
may lead to a loss of relevant information. To cope with this issue, it could be
useful to adapt multivariate factorial methods to multiplex network data. In this
regard, factorial methods have been proposed in the network analysis framework
to explore different network structures [12, 14, 21], including attributes of nodes
and events in two-mode networks [15], or to analyze network-derived measures
[19]. In the case of multiplex networks, several methods have been proposed. More
specifically, canonical correlation analysis was adopted to identify dimensions along
which two networks are related to each other [8], and analytical procedures were
recently introduced for dimension reduction using correspondence analysis [28] or
cluster analysis [26].

Within this framework, the present contribution aims at extending the use of the
DISTATIS approach [2] to visually explore the hidden structure of multiplex net-
works preserving the inherent complexity. The proposed method aims at analytically
and visually exploring (i) the network structure in terms of nodes’ similarity in each
single layer, (ii) the common structure of all layers, (iii) the nodes’ variation across
layers, and (iv) the similarity among the structure of the layers.

The contribution is organized as follows. In Sect. 2, a brief review of multiplex
networks is presented. Section 3 describes in detail the analytic procedure for han-
dling multiplex network data using the DISTATIS approach. Section 4 discusses
the main results of the proposed procedure for the analysis of a set of relationships
among lawyers described in Lazega [18]. Section 5 concludes with suggestions for
future lines of research.

2 Multiplex Networks: A Brief Review

Multilayer networks are based on multiple kinds of relationships among either a
different sets of nodes or among a unique set of nodes, as in multiplex networks.
More formally, a multilayer network M is a pair (G ,E ), with G = {Gk}k=1,...,K ,
the collection of K networks; E = {Ekk ′ }(k,k ′=1,...,K), the collections of intra-layer
(k = k ′) and inter-layer (k �= k ′) edges.

Note that in the case of pure multiplex networks, such as the case under analysis,
the set of nodes is fixed, that is, V1 = V2 = · · · = VK = V , and the inter-layer edges
are constant and indicate only that the nodes are present in the different layers [17]. In
each layer,Gk = (V,Ekk), with V = (v1, . . . , vn) the set of n nodes of each network,
andEkk ⊆ V × V the set of edges. For k = 1, . . . ,K , let us consider from the network
Gk ∈ G the corresponding adjacency matrix Ak = (aijk), with aijk = 1 if (vi, vj) ∈
Ekk , and aijk = 0 otherwise.

The methodological approaches developed to handle multiplex social networks
are mainly based on exponential random graph models [20], blockmodeling analysis
and relational algebras [27], and factorial methods [8, 26, 28]. In addition, empirical
studies on real-world multiplex network data have been proposed in several sci-
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entific fields [3, 7, 25], presenting sophisticated network visual analytics [23] and
developments in software tools [9].

Here, to handle these kinds of complex network systems the adaptation of factorial
methods designed for a three-way data structure is considered. The K adjacency
matrices give rise to a three-way matrix A = (A1, . . . ,AK ) that can be analyzed
using the DISTATIS technique [1, 2].

3 Using the DISTATIS Procedure for Multiplex Network
Data

Several statistical methods have been presented to deal with three-way data [16]. In
the present contribution, starting from the characteristics of the adjacency matrices
describing a binary one-mode multiplex network, the DISTATIS method is adopted.
It represents a generalization of multidimensional scaling (MDS) in the STATIS
approach [13] introduced to analyze a set of distance matrices. The method analyzes
the network structure embedded in each layer, aswell as the global structure derived as
a linear combination of the layers by considering data-driven weights. Therefore, this
method provides a rich set of analytical and graphical results in which the different
relationships can be considered as facets of a common underlying relational structure
(corresponding to the compromise space).

To illustrate how DISTATIS could be adapted and applied to the analysis of
multiplex networks, three points must be taken into account: (i) how to derive a
three-way distance matrix from amultiplex network, (ii) how to apply this procedure
to the derived three-way distance matrix, and (iii) how to interpret the results and the
factorial graphical representations in terms of network structures.

First, a three-way distancematrixD = (D1, . . . ,DK ) is derived from themultiplex
adjacencymatrixA, with dijk = geok(vi, vj) being the geodesic distance1 between the
nodes vi and vj in the layer k. If two nodes cannot reach each other, i.e. one, or both,
are isolated, or they belong to different unconnected subgraphs, the geodesic distance
is not defined. In such a case, the distance can be set as dijk = p ∗ max[geok(vi, vj)]
in the kth layer, where p is a suitable constant.

Second, from the matrix D = (D1, . . . ,DK ), the DISTATIS algorithm can be
synthesized through the following steps:

(1) Compute for each layer k = 1, . . . ,K the cross-product matrices S̃k accord-
ing to the so-called double-centering transformation of MDS, as follows: S̃k =
− 1

2CDkCT , where C is the centering operator; C = I − 1nT , where I is an

1The geodesic distance between pairs of nodes in a network is a graph-theoretic distance and consists
of the shortest path between the given nodes. To evaluate the geodesic distances, we use themodified
breadth-first search algorithm by Brandes [6] implemented in the R package sna [5]. An alternative
graph-theoretic distance measure can be find in Cohen [10], and alternative distance/dissimilarity
measures for binary data can be found in Batagelj [4].
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n-dimensional identity matrix, 1 is an n-dimensional unit vector, and n is an
n-dimensional vector with elements equal to 1/n, that is, the mass of each node;

(2) Compute the normalized cross-product matrix Sk dividing S̃k by its first eigen-
value;

(3) Evaluate the similarity matrix among layers H = {hk,k ′ } by using the RV
coefficient [22] computed on the normalized cross-product matrices Sk , i.e.,

hk,k ′ = sTk sk′
||sk ||||sk′ || , k, k ′ = 1, . . . ,K with sk the vectorization of Sk . This matrix

is indicated as the RV matrix;
(4) Compute the eigenvalues and the eigenvectors of the matrix H; that is, H =

PT�P. The first two columns of the matrix P�1/2 are the coordinates of a facto-
rial map representing the similarities among the different kinds of relationships
building the multiplex network, each one represented as a point in the factorial
plan. With this map, the similarity among the K layers can globally evaluated.
The first eigenvector p1 is used to determine a set of weights αk used in the
next step to compute the compromise: the α’s that reflect the similarities among
the normalized cross-product matrices and are defined as αk = pk1

||p1|| , and pk1 the
coordinate of the k layer on it. Finally, ameasure of the quality of the compromise
τ can be derived by the first eigenvalue λ1 over the trace of �; i.e., τ = λ1∑K

k=1 λk
;

(5) Compute the compromisematrix S as the weighted sum of the normalized cross-
product matrices, S = ∑K

k=1 αkSk ;
(6) Perform the eigenvalue decomposition of the compromisematrix S, S = V�VT ,

to obtain the factorial coordinates for plotting the nodes in the common space
F = V�

1
2 = SV�− 1

2 . Furthermore, the coordinates can be used to compute the

contribution of the i-th each node on l-th factorial axes, as follows: crtil = f 2il
λl
;

(7) Represent the cross-product matrices Sk in the space of the compromise by
projecting the matrices as supplementary points. The coordinates can be easily
computed as Fk = SkV�− 1

2 , and are called partial scores. They represent the
position of each node in each layer, and all the coordinates have a common
reference space.

The derived compromise matrix represents a weighted average of the distance
matrices using a double system of weights. The first eigenvalues of the cross-product
matrices express the relative importance of the layers in terms of their inertia;whereas
the αk coefficients measure such importance with reference to the similarity among
the layers.

Given the analytical results above, four factorial maps are defined to graphically
analyze different aspects of the multiplex data structure. In the first one, it is possible
to represent each layer as a point on a two-dimensional map obtained by the eigen-
vectors of the similarity matrix between the cross-product matrices (between-layers
map). Here, if two points are close, it implies that the global relational patterns of the
corresponding layers are similar. In the second one (compromise score map), each
node is represented as a point by using the first coordinates obtained decomposing
the compromise matrix. In this map, if two points are close, the corresponding nodes
have similar relational patterns in almost all layers. By considering the partial scores,
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all the nodes can be represented in separate factorial maps (one for each layer). Here,
the relative position of the points shows the similarities of the relational pattern of the
corresponding nodes, layer by layer (partial score maps). The compromise scores
and the partial scores can be also used to obtain a joint representation (joint map) in
which each node is represented by K + 1 points, one for each layer plus one for the
compromise. The points of the compromise are the barycenters of the points repre-
senting the layers, as the compromise is a weighted average of the layers. Connecting
the compromise point to the layer points, a star shape describes each actor. The size
and the shape of the stars provide information about the variability of the relational
patterns over the layers actor by actor. The joint map allows us to appreciate the
variability of the relational patterns, node by node, in the different layers.

4 The Lazega Lawyers Data

Manymultiplex networks are available in online archives2 and can be used to demon-
strate the advantages of the proposed method.

Some examples presented in the network literature [24] are based on relations
between lawyers in a corporate law firm in New England collected by Lazega [18].
Here, this data set is specifically used to illustrate the usefulness of the DISTATIS
approach for the treatment of multiplex networks. The information refers to advice,
coworkers, and friendship networks between 71 lawyers (partners and associates).
Various members’ attributes are also part of the dataset. Among others, the affiliation
with the office in which they work (Boston, Hartford, and Providence) is taken into
account in the following.

Spring-embedding graph representations of the three networks and the flattened
multiplex network are shown in Fig. 1. The picture displays networks enhanced by
using different symbols for each actor-lawyer according to the office in which the
lawyers work. The three networks are quite dense with few disconnected nodes (8,
44, 47) for the two relationships coworkers and friendship, respectively. For an in-
depth description of the networks’ characteristics, readers should refer to Lazega
[18]. The graphs in Fig. 1 appear a quite dense reproducing the so-called “hair ball
effect". When the office affiliation is considered, the presence of two groups in the
networks’ structure appears.

2For instance, see the Manlio De Domenico homepage with datasets released for reproducibility:
https://comunelab.fbk.eu/data.php.

https://comunelab.fbk.eu/data.php
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(b) Coworkers
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(c) Friendship
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(d) Flattened Multiplex

Fig. 1 Lazega lawyers data. Spring-embeddinggraph representations:aAdvicenetwork;bCowork-
ers network; c Friendship network; d Flattened multiplex network. Node symbols are set according
to the office inwhich the lawyerswork (Triangle=Boston; Square=Hartford;Circle=Providence)

4.1 The Lazega Data with DISTATIS: Analytical Results
and Interpretation

According to the underlying social processes described in Lazega [18], such as
bounded solidarity, lateral control, quality control, knowledge sharing, balancing
powers, and regulation among lawyers, the DISTATIS procedure is performed on
the three symmetrized adjacency matrices. Even if each singleton dimension of col-
laboration among the lawyers is observed, with the proposed approach a unifying
dimension of the underpinning concept as a whole is derived. At the same time, every
dimension (layer) gives information about local phenomena that can be analyzed and
described in terms of an actor’s position in the network.

Some derived measures of the procedure are summarized in Table 1. First, the
RV’s coefficient matrix is displayed, showing that the two layers advice and cowork-
ers present a higher degree of similarity, as well as the the two layers advice and
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Table 1 DISTATIS analytic results derived from the matrix H: RV’s coefficients matrix among
layers; factors’ scores, eigenvalues, relative (τ ), and cumulative percentage of explained inertia,
eigenvectors and α weights

RV matrix Advice Coworkers Friendship

Advice 1.00 0.54 0.41

Coworkers 0.54 1.00 0.29

Friendship 0.41 0.29 1.00

Factor scores dim 1 dim 2 dim 3

Advice 0.85 −0.15 0.51

Coworkers 0.79 −0.46 −0.41

Friendship 0.70 0.70 −0.16

Eigenvalues

λk 1.83 0.72 0.45

τk 61.00 24.00 15.00

Cum. 61.00 85.00 100.00

Eigenvectors

Advice 0.63 −0.18 0.76

Coworkers 0.59 −0.54 −0.61

Friendship 0.51 0.83 −0.23

Advice Coworkers Friendship

α weights 0.36 0.34 0.30

friendship show a certain degree of similarity. The friendship and coworkers layers
present a low degree of similarity. Then, we can conclude that the advice relation-
ship resembles both a formal relationship (coworkers) and an informal relationship
(friendship). These coefficients highlight the presence of “bounded solidarity" as
discussed in Lazega [18].

The factorial map in Fig. 2 graphically displays the factor scores in Table 1. The
plot shows the role played by each layer in determining the final compromise space.
Whereas every layer has an important role in weighting the final configuration (given
by the high coordinates on the first axis), the second axis reveals the real shape of the
configuration. On the top, the friendship layer is separated by the two formal contacts
of the advice and coworkers layers. The relative position of each layer determines
the different weight and role they play in building the compromise space.

Table 1 reports the eigenvalues and the corresponding percentage of relative inertia
(τ values) along with their cumulative percentages. The quality of compromise is
quite satisfactory: the first τ is 61%, while the first two dimensions account for 85%
of the dissimilarity of the inter-layers. The eigenvectors and the α weights indicate
the quite similar importance of the three layers in defining the compromise matrix.

Based on the representation of the lawyers in the DISTATIS compromise factorial
plan (Fig. 3), two groups are clearly separated. They are consistent with the office in
which they work: the lawyers from Boston and Providence mixed up compared to
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Fig. 2 Lazega lawyers data.
Between-layers map. Layer
size is proportional to its
contribution. Layers are
colored in grayscale
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Fig. 3 Lazega lawyers data.
Compromise score map:
points represent lawyers in
the compromise space. Node
symbols are set according to
the office in which the
lawyers work (Triangle =
Boston; Square = Hartford;
Circle = Providence); point
size is proportional to its
contribution

those affiliated with Hartford office. In addition, the two main groups can be divided
into subgroups.

Finally, the positions of the lawyers in the three layers in the common reference
space given by the compromise are reported in Fig. 4a–c. The structures of the first
two layers are very similar, while the friendship layer appears a little bit different. It
is also possible to analyze how a single lawyer changes his/her position in the joint
representation appreciating the variability of its relational patterns in the different
layers. In Fig. 4d, three lawyers (4, 44, and 47) are represented as an example. Each
actor is represented by four points, one for each layer plus one for the compromise.
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(a) Partial score map: advice (b) Partial score map: coworker

(c) Partial score map: friendship (d) Joint map for actors 4, 44, and 47

Fig. 4 Lazega lawyers data. a Partial score maps for the advice layer; b Partial score maps for the
coworker layer; c Partial score maps for the friendship layer; d Joint map of actors 4, 44, and 47.
Node symbols are set according to the office in which the lawyers work (Triangle=Boston; Square
= Hartford; Circle = Providence), points representing the partial scores are colored in grayscale
according to the three layers; and points representing the compromise scores—at centers of the
stars—are white colored

Looking at our example, 44 and 47 show high variability, while actor 4 presents very
low variability. Actor 47 is a young associate man in the Providence office who has
worked in litigation practice for three years, perfectly integrated in a subgroup of
coworkers in Boston. He plays a central bridging position in the advice network in
connecting the twogroups but is isolated in the friendship network (the corresponding
point is pulled out from the center of map). Actor 44 is an older female associate
in the Providence office who has worked in corporate practice for five years, with
high layers’ similarities for advice and friendship, being quite isolated. However
she is very well connected in the coworkers network (her point is in a more central
position). In contrast, Actor 4 (a 59-years-old man from the Boston office, who has
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31 years of work experience in litigation practice) has strong connections in all the
three layers. Thus, his star is quite small denoting a stable relational pattern in formal
and informal relationships with his colleagues.

5 Concluding Remarks

In the present contribution, the use of the DISTATIS approach to treat multiplex
network data is considered. As general findings, the procedure analyzed the network
structures embedded in one-mode multiplex networks, the similarities among actors
in the compromise space, and the global similarities among the layers. As DISTATIS
is an extension of MDS to three-way data matrix, the graphical and analytical results
are easily interpretable by social network analysts which are already used to MDS
spring-embedding visualizations.

The results of the illustrative example showed the high explicative power of the
proposed analytic procedure in capturing similarities among layers. The possibility
of measuring the inter-dissimilarity between layers allows the definition of a suitable
subspace where comparisons at the layer and node levels can be made.

These findings suggest new lines of research in performing a simulation study to
assess the stability of the procedure and in derivingmeasures for multiplex networks.
Moreover, as network data allows for several ways of computing distances, a com-
parison of how different distance measures affect the results and the visualization
of compromise space should also be addressed. The analyzed real-world example
considers binary one-mode networks, and the attribute data, such as the office affili-
ation. These latter has been here only exploited in the graphical representations. The
inclusion of attribute data in the analytical procedure will be considered as future
work, following the approach in Giordano and Vitale [15].
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Comparing FPCA Based on Conditional
Quantile Functions and FPCA Based
on Conditional Mean Function

Mariantonietta Ruggieri, Francesca Di Salvo and Antonella Plaia

Abstract In this work functional principal component analysis (FPCA) based on
quantile functions is proposed as an alternative to the classical approach, based on the
functional mean. Quantile regression characterizes the conditional distribution of a
response variable and, in particular, some features like the tails behavior; smoothing
splines have also been usefully applied to quantile regression to allow for a more
flexible modelling. This framework finds application in contexts involving multiple
high frequency time series, for which the functional data analysis (FDA) approach is
a natural choice. Quantile regression is then extended to the estimation of functional
quantiles and our proposal explores the performance of the three-mode FPCA as a
tool for summarizing information when functional quantiles of different order are
simultaneously considered. The methodology is illustrated and compared with the
functional mean based FPCA through an application to air pollution data.

Keywords FPCA · Conditional quantile functions · Conditional mean function

1 Introduction

In this paper wemodel data moving frommean functions towards quantile functions.
The idea underlying this proposal depends on the type of data we deal with, that is air
pollution data, presenting peaks and high variability, thereby our attention is focused
on particular features of their distribution, like the tails behavior.

The aim of this work is to provide an appropriate synthesis of the estimated
functional quantiles by means of a small number of principal components, exploiting
simultaneously the information given by functional quantiles of different order. This
idea is suggested by a previouswork [15], where a three-mode FPCAwas proposed in
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order to take into account thewhole variability, exploiting the functional covariances;
moreover, the increasing demand of statistical tools for FDA encourages us to extend
the idea to the quantile functions for infinite-dimensional data.

One of the earlier paper studying functional quantile regression is [11]; starting
with a linear quantile regression, in which the response is a scalar while the covariate
is a function, and expanding the covariate and the slope function in terms of their
principal components (PCs), the model is transformed into a quantile regression
model with an infinite number of regressors.

First results concerning the conditional quantile estimation, adapted to functional
data, were obtained by [1] by using a B-spline approach for the representation of the
response. A deep study of nonparametric kernel estimator of the conditional quantile
is in [7]; it has been adapted to the functional context in [5], where a prove of the
almost complete consistency of the estimator is presented. References [2, 6] address
asymptotic properties and asymptotic distribution of the functional kernel regression
estimate; [10] introduces the class of the L1 local linear estimator of the quantile
regression function as a generalization of the local constant (kernel) estimator.

Generalized quantile regression in [9] refers to a broad family, including condi-
tional quantiles as special cases, concerning the conditional distribution of a response,
given a set of explanatory variables. This family collects many contributions pro-
posed in literature, motivated by applications sharing high variability and extreme
fluctuations; in order to overcome the problem of insufficiency of data, despite their
high variability at the tails of the distributions, [9] proposed a functional data analysis
approach to obtain efficient estimation of regression quantiles with fixed order, using
multiple data set: conditional quantiles, given a probability level, are considered as
functions of time and are estimated non-parametrically on the basis of multiple data
set, assuming the Karhunen-Loéve expansion for each quantile, as the sum of an
overall mean function plus a linear combination of principal functions.

In this paper, the proposed method aims to the simultaneous estimation of a
collection of quantiles at different probability levels, using the method of penalized
splines [4, 17], and then reduces the dimensionality bymean of a functional principal
component analysis. In the following,wedescribe themain characteristics of theFDA
and the quantile regression approach in Sect. 2; in Sect. 3 we present the proposed
methodology. After introducing the data set in Sect. 4, in Sect. 5 we compare our
proposal with the traditional procedure. Finally, we show the obtained results and
draw some conclusions in Sects. 6 and 7.

2 The Functional Quantile Regression Approach

2.1 The FDA Approach: Smoothing in Time

FDA approach is suggested by the functional structure of our data: air pollution
data, even if recorded at discrete times, can be considered as realizations of random
curves. According to FDA, observed data are affected by errors and the functional
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data are estimated through a P-spline smoothing model, expressed in terms of a
linear combination of basis functions, spanning the time interval, and coefficients,
capturing the temporal dynamics [13, 14].

In this context, the minimization of the penalized residual sum of squares, with a
penalty matrix expressed in terms of second-order derivatives, corresponds to esti-
mate the mean of the conditional distributions at each time point. On the basis of this
estimated functions, the principal component analysis is the most used tool in order
to reduce the dimensionality and synthesize the variability.

An extensive literature reports that functional principal component analysis is
applied for different purposes [3, 13]. In the next paragraph, we generalize this basic
idea involving other features of the functional variability.

2.2 The Functional Quantile Approach

As an alternative to the classical approach, that models the mean of the conditional
distribution of the response variable, the quantile regression approach [12]models the
conditional quantiles, providing information on particular features of the conditional
distributions, for example the tail behavior. Moreover, it allows to deal with data in
presence of model mis-specification.

As known, given a real valued random variable X , the αth (0 < α < 1) quantile
function is essentially defined as the inverse of its cumulative distribution function
F [8, 9]:

QX (α) = F−1
X (α) = in f {x ∈ R : F(x) ≥ α}; (1)

one prominent quantile value is the median of X (α = 0.5).
When a vector of covariates is associated to X , the interest could be in studying

the conditional (or regression) quantile as a function of these covariates. In particular,
if the covariate is time, the αth quantile is function of t :

QX |T (α|t) = F−1
X |t (α) = lα(t). (2)

Here we are interested in a collection of regression quantiles, at different probabil-
ity levels, from a collection of multiple time series; Cross-validation and generalized
cross-validation are adapted to select a common smoothing parameter for all sample
curves with the roughness penalty approaches; in a FDA framework a representation
in terms of linear combination of smooth functions is considered for the functional
quantile at each unit i , with i = 1, . . . , N :

lα,i (t) =
K∑

k=1

θα
k,iφk(t) = Φ(t)T θα

i , (3)
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where:

• Φ(t) = [φ1(t), . . . , φK (t)]T is a K -vector of B-spline basis functions;
• θα

i = [
θα
i,1, . . . , θ

α
i,K

]T
is a K -vector of coefficients.

In order to estimate the coefficients of B-splines, separately for each probability
level α, an expected loss function is minimized:

L(Θα) = E
[
ρα (X − ΦΘα)

]
, (4)

whereρα (.) is an asymmetric loss function andΘα is the K × N matrix of parameters
to be estimated; in this paper, we focus our attention on the loss function defined as
the weighted sum of absolute residuals:

ρα (X − ΦΘα) = w(α)|X − ΦΘα|. (5)

The elements of the vector of weights,w(α) = [
w1(α)

, . . . ,wN(α)
)
]T
, are defined as

follows:

• wi(α)
= α, if Xi > αΦiΘ

α;
• wi(α)

= 1 − α, if Xi ≤ αΦiΘ
α .

Using the method of penalized splines, a penalized average empirical loss is also
considered in [9], where the introduced penalty term penalizes the roughness of the
fitted quantile function:

L(Θα) = E
[
ρα (X − ΦΘα)

] + λΘαHΘα. (6)

The estimation of quantile regression is well described in [9, 12].

3 The Proposed Procedure: Three-Mode FPCA

Assuming that quantiles, estimated at different values of probability, share some
common features, our purpose is identifying the principal directions along which
summarizing their temporal dynamics by a small number of functional PCs.

More precisely, we follow [9], representing the collection of quantile functions,
for a relevant set of probability values, α = [

α1, α2, . . . αQ
]
, as realizations of a

stochastic process lα(t) with mean function μα(t); then they can be represented in
terms of the Karhunen-Loéven expansion:

lα,i (t) = μα(t) +
∞∑

h=1

ψh,iξh(t), (7)
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where:

• E [lα(t)] = μα(t);
• ψh,i are the PC scores and ξh(t) are the eigenfunctions.

After estimating the quantile functions, they can be expanded by a reduced-rank
model:

lα,i (t) = μα(t) +
H∑

h=1

ψh,iξh(t), (8)

where
∑H

h=1 ψh,iξh(t) is the linear combination of the first H PC scores and eigen-
functions, for a suitable choice of H on the basis of the explained variability.

From the functional quantiles, estimated by (3) and (4), principal components can
be obtained by the three-mode eigen-analysis, that is well described in [3, 15], as
the functions are expressed in terms of a linear combination of the basis matrix Φ

and a three way array of coefficients, whose slices, one for each α, are the matrices
Θα . An interesting result is the decomposition of the functions into two sets: the set
of principal scores, one for each of the original curves, resuming variability along
time and accounting for all the quantiles, and the set of corresponding time varying
eigenfunctions, one for each probability level α, resuming variability among quantile
functions of the same order.

The proposed methodology is implemented in R, using splines, quantreg and fda
packages (http://cran.r-project.org), and it is applied to air pollution data.

4 The Air Pollution Data Set

Data concern concentrations of PM10 recorded during a year (2011) at different
monitoring stations dislocated along the California state. Raw data are available at:
http://www.epa.gov/airdata/ad_data_daily.

The whole network of monitoring stations contains 513 sites but, unfortunately,
do not monitor all the pollutants. In particular, PM10 is recorded at 141 sites, but
we retain only those 59 stations with at least 75% of data available per day.

The map of all the 141 sites, where PM10 is recorded (black dots), and of the 59
sites (red dots), is reported on the left of Fig. 1. In order to highlight the results of the
procedure, a subset of 7 sites is selected; the map of the 7 selected sites (colored dots)
for the 59 chosen sites (gray dots) is reported on the right of Fig. 1. A preliminary
analysis has been carried out, in order to obtain daily syntheses: data have been
aggregated by time, at each site, using daily average (24h average concentration),
according to EPA guidelines. Daily average is not computed with more than 25% of
missing values on a day.

Data have been also standardized by linear interpolation, taking into account long
term adverse health effects, as shown in a previous work [16]; EU instead of US EPA

http://cran.r-project.org
http://www.epa.gov/airdata/ad_data_daily


70 M. Ruggieri et al.

●●
●

●

●●

●

●
●

●
●

●

●

●●
●●●

●●●

●

●
●

●

●

●

●

●
●

●

●
●●

●●●
●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●● ●●

●
●

●●
●●

●

●
●●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●
●

●
●

●
●
●

●

●

●

●
●●

●

●●
●

●
●

●●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●●

●

●
●●● ●● ● ●● ●●●●● ●● ● ●● ●●●●● ●●

●●● ●●●●●● ●● ●● ●● ●●
●●●● ●

●
●

●
●

●

●●

●

● ●

all sites
chosen sites

●

●
●●● ●● ● ●● ●●●●● ●● ● ●● ●●●●● ●●

●●● ●●●●●● ●● ●● ●● ●●
●●●● ●

●
●

●
●

●

●●

●

● ●

chosen sites
selected sites (colored dots)

Fig. 1 Monitoring network for PM10

breakpoints are considered, allowing us to obtain values ranging in [0, 100], with
threshold value corresponding to 50.After preprocessing, standardized observed data
have been converted into functional.

5 Comparing FQ and FM Procedures

Functional quantiles and functionalmean are estimated; in particular, for each station:

• five quantile regression curves for different values of α (0.1, 0.25, 0.5, 0.75, 0.9)
(FQ procedure);

• the conditional mean function (FM procedure) is also estimated by minimizing
the penalized residual sum of squares.

For FQ and FM procedures, we consider the P-spline approach, choosing the
cubic B-spline basis system with equally spaced knots, a number of bases equal to
21 and a smoothing parameter equal to 20. The basis system (cubic B-splines) is
assumed to be unique for all the considered sites. The number of knots is selected by
means of generalized cross validation criterion (GCV). The use of the cubic B-spline
basis system with equally spaced knots allows us to capture seasonal, monthly and
weekly variations, but also events that occur irregularly and that cannot be expected
periodically repeated.

The chosen value for the smoothing parameter (λ = 20) appears to be a fair
compromise between what can be suggested by an automatic method, such as the
GCV, and a subjective choice, that aims at smoothing rough data without hiding
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their variability linked to possible peaks. In other words, our choices seem to be
a good trade-off in smoothing between the removal of measurement error and the
preservation of information.

Then, FPCA is performed on the curves obtained by both the procedures.

6 Results

Observed and functional data are reported, for each station, in Fig. 2; functional data
are estimated by quantile regression for each value of α. In particular, in Fig. 2a the
set of the N observed curves are represented; in Fig. 2b–f the estimated quantile
functions for different probability values, from 0.1 to 0.9, synthesize the specific
pattern of the respective curves. The gray lines represent all the stations; a subset of
7 curves, related to the selected sites reported in Fig. 1, are colored in order to point
out the results of the procedure. The same sites are highlighted with the same colors
in Figs. 4 and 7.

The explained variance resulting from Three-mode FPCA is reported in Table1.
Looking at the proportion of total variability explained by the PCs, the first three PCs
explain 90% of the total variability among stations; in particular, the first PC (PC1)
explains 79% of the variability, while the second mode of variation (PC2) explains
7% and the third (PC3) only 4%. A deeper understanding about the meaning of
the PCs is obtained by looking at the proportion of variability accounted for by
variations of each quantile, corresponding to each value of α; as it is highlighted
in bold in Table1, the most significant quantile for PC1 is the last (Q0.9), since it
explains 35% of variability, while the major contribution to PC2 and PC3 is given
by the first one (Q0.1). The curves obtained by the FQ procedure and by the FM
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Fig. 2 Observed data (a) and estimated quantile regression curves (b)–(f)
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Table 1 Main results from three-mode FPCA: explained variance

Q0.1 Q0.25 Q0.50 Q0.75 Q0.90

PC1 0.79 0.11 0.14 0.19 0.22 0.35 1.00

PC2 0.07 0.52 0.15 0.02 0.09 0.22 1.00

PC3 0.04 0.27 0.17 0.21 0.16 0.19 1.00
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Fig. 3 Plots of the first two harmonics by FQ

procedure are projected in the space of the first two PCs. The plots of the first two
harmonics are reported in Fig. 3. The eigenfunction, named harmonic in the FDA
context, can be split into Q sub-eigenfunctions, one for each value of α. For the
first harmonic, which is always positive, we can observe that weights are higher
during the summer, especially for the first two quantiles (first two values of α; this
means that low concentrations of PM10 aremore affected by this trend, that is by this
seasonal variation (see also Fig. 2b, c), with respect to high concentrations, presenting
less variability (see also Fig. 2f). The second harmonic explain a low percentage of
variance, so it is negligible.

Figure4f shows the projections of the quantile functions, representing the sites,
in the space of the first two PCs, together with the proportion of variance explained
(0.793 and 0.073, respectively); Fig. 4a–e are the partial scores, that is those ones
related to each value of α. We can observe that the two functional PCs retain the most
information, almost the 80% of the original curves, moreover, curves with similar
pattern have similar scores. In particular, we can distinguish three groups of sites. As
most of the variation is explained by the first PC, then the distribution of monitoring
stations along the PC1 axis is of greatest interest. According to what we say about the
first harmonic, as we expect, the stations colored red and black have scores higher
than other stations especially for low values of α, that is for the first quantiles. In
general, looking at Fig. 4f, we say that sites with high scores on PC1 show a greater
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Fig. 4 Projection of the curves in the space of the first two partial (a)–(e) and total (f) PCs by FQ
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Fig. 5 Observed (X) and functional data, estimated by FM and FQ

variability in pollution levels (PM10) over time (sites colored red, black, blue and
green; this can be observed also in Fig. 2a). Actually, as the last quantile (Q0.9)weighs
more than other quantiles on PC1, the first PC should represent the average level of
air pollution accounted for PM10; then, the most polluted stations have the highest
scores on PC1, while the least polluted stations have the lowest scores on PC1. The
remaining stations record a level of pollution near the mean of the town pollution
(origin of axes).

In Fig. 5, the five estimated quantile regression curves for different values of α

(0.1, 0.25, 0.5, 0.75, 0.9) and the least squares estimate of the conditionalmean func-
tion are shown for one selected station. The mean is colored red, while the median is
colored cyan, the first and the fourth quartile are colored blue and magenta, respec-
tively. In gray we report observed data. As we can observe, the quantile functions
capture better than the mean function the variability of data.

In Fig. 6 the same results obtained for some other selected stations are reported.
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Fig. 6 Observed (X) and functional data, estimated by FM and FQ
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Fig. 7 Projection of the curves in the space of the first two PCs by FQ (left) and by FM (right)

In Fig. 7 the projections of the quantile functions (on the left) and the projections
of the mean functions (on the right) are compared in the space of the first two PCs
(the projections of the sites in the space of the PCs). The proportion of variance
explained by the two PCs is also reported. As we can observe, the FQ procedure
outperforms the FM procedure. In fact, although curves with similar pattern have
similar scores for both cases, the functional PCs related to the quantile functions
retain more information than the functional PCs related to the mean functions: the
proportion of variance explained by the first PC in FQ increases up to 90% (80% in
FM) while the second PC becomes negligible.
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7 Conclusions and Further Development

In this work the simultaneous estimation of quantile functions is proposed in the FDA
framework; using the method of penalized splines, the functions are represented in
terms of linear combinations of bases and coefficients. Exploiting the covariance
functions of the coefficients matrix, a small number of functional PCs synthesize
common features of the estimated quantiles at different values of probability. Func-
tional PCs, based on quantile functions of different order, are also compared with the
functional PCs derived through the classical approach (FM procedure), that alter-
natively identify the directions of highest variability of the curves with respect to
their functional mean. We show that our proposal, called FQ procedure, outperforms
the FM procedure; in fact, the projection of the curves obtained with our estimation
procedure, in the space of the first two PCs, allows to catch not only the variability
of observed data, as in the traditional approach, but also the difference of the tails
behaviour. Obviously, the higher the data variability, the better our procedure with
respect to the FM one, especially if the average trend of the curves is very similar
but the variability is quite different.

The approach has the advantage of further generalization, such as the inclusion of
explanatory variables and distributional assumptions. The proposed approach copes
with just one dimension, that is only time is considered as covariate, but it may be
appealing to extend it to more than one dimension; for example, data can be modeled
as functions of space or space-time jointly. At this aim,while in the classical approach
a proper framework could be found inGAMs, allowing to deal with non gaussian data
as well, the generalization of the concept of quantile functions to a multidimensional
setting is not straightforward, since there is no natural order for Rn when n ≥ 2.

A huge literature has been devoted to this topic in the last years with different
methodological proposals; implication and appealing intuitions could be also bor-
rowed from approaches relied on depth measures, in order to construct basic tools
for functional data, as in [8].

Moreover, many consequent applications of the FPCA in quantile regression
are motivated by the Karhunen-Loéve theorem, by means of which the random
curves find convenient representations in terms of empirical orthogonal functions;
the Karhunen-Loéve decomposition could be also useful for reconstruction of data
in presence of missing and long gaps.
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Statistical Archetypal Analysis
for Cognitive Categorization

Francesco Santelli, Francesco Palumbo and Giancarlo Ragozini

Abstract Human knowledge develops through complex relationships between cat-
egories. In the era of Big Data, the concept of categorization implies data summa-
rization in a limited number of well-separated groups that must be maximally and
internally homogeneous at the same time. This proposal exploits archetypal anal-
ysis capabilities by finding a set of extreme points that can summarize entire data
sets in homogeneous groups. The archetypes are then used to identify the best proto-
types according to Rosch’s definition. Finally, in the geometric approach to cognitive
science, the Voronoi tessellation based on the prototypes is used to define catego-
rization. An example using a well-known wine dataset by Forina et al. illustrates the
procedure.

Keywords Archetypal analysis · Prototyping · Statistical learning

1 Introduction

“Knowledge consists basically of categorizations and corrections of categorizations
so that we can adapt ourselves to our environment” [31]. Humans can learn new
concepts quickly by building complex relationships between a set of complex items
or categories. Whilst the total number of objects considered should remain limited
to five or six, these objects can be described by several features that define a high
grade of complexity. Categories are stored in our long-term memory, and it has been
demonstrated that we recall these categories in our working memories, developing
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connections among them that improve our knowledge [7]. In other words, a few
examples of a new concept are often sufficient for us to grasp the concept’s meaning.
On the contrary, we are often overwhelmed by large amounts of data and information.

With the explosion of Big Data, statistical learning has become a very hot field
in many scientific areas as well as in marketing, finance, and other environmental
and behavioral disciplines. The huge amount of stored data represents an incredible
source of knowledge, provided that it can be summarized in a (small) number of
categories that are consistent with human cognitive capabilities.

In the present paper, we parallel the cognitive process of categorization through
statistical learning techniques, relying on the conceptual space framework [18] in
which conceptual spaces are geometric structures and the categorization mainly
consists in partitioning the conceptual spaces. The paper is structured in six sec-
tions following this introduction: Sect. 2 describes how developments in cognitive
science have evolved into conceptual space theory. Section 3 discusses the relation-
ship between statistical learning and the construction of categorizations in cognitive
science. Section 4 lists a consolidate formalization [1] of objects in the topological
conceptual space. Section 5 presents the prototype identification after the archetypal
analysis; through a real data-based example, Sect. 6 presents the Voronoi tessellation
[35] beginning with the prototypes as a tool for deriving a categorization in the con-
ceptual space, and the last section presents several concluding remarks and possible
directions for future research.

2 Conceptual Space Framework in Cognitive
Representation

The theoretical framework field in cognitive sciencemainly defines theways inwhich
learning is developed given a set of hypotheses about the fixed structures of the mind
and how the different components work together. This complex system and the way
it works is usually defined as cognitive architecture. It can be related to both the
human mind and artificial systems. Currently, the three most common approaches
to the model learning process are considered to be symbolism, connectivism and
conceptual space theory [19]. The first approach (symbolism) makes the assumption
that learning processes can be properly described by means of Turing’s machine,
which processes symbols according to a table of rules without taking into account
the semantic context. It mainly aims to model high-level abstract entities, performing
inference to figure out them using mostly first-order logical predicates. Starting with
the associationism theory (for Locke and Hume, learning consists of associations
among perceptions), the second theory revived in recent years developed into con-
nectivism. This theory began to have more space year by year thanks to its innate
relationships with the increase in the availability of a huge amount of data due to
technology development [34]. From a statistical point of view, the arising systemwas
called artificial neuron (or neural) network. Lastly, as introduced by Gärdenfors [18],
the third approach is the formalization of information structures made by a number
of quality dimensions embedded in a topological space called the conceptual space.
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In this space, it is possible to carry out an analysis considering its metric nature.
The concept of similarity between entities becomes, as a result, closely related to the
metric distance between them, given the quality dimensions under investigation. In
this framework, the natural property in a domain is a convex region [36]; therefore,
the focal points of each region are prototypes of the categories, and all entities close
enough to the prototype belong to the same category.

3 Statistical Learning and Cognitive Categorization

Statistical and machine learning can significantly speed up human knowledge devel-
opment, helping to determine the basic categories in a relatively short amount of
time. Exploratory data analysis (EDA) can be considered the forefather of statistical
learning; it relies on the mind’s ability to learn from data and, in particular, it aims
to summarize datasets through a limited number of interpretable latent features or
clusters offering cognitive geometric models to define categorizations. It can also be
understood as the implementation of the human cognitive process extended to huge
amounts of data: “Big Data” [20]. Factorial models belong to the former approach,
they permit the representation of the original data into a reduced space by replacing
the original variables with a reduced number of linear mixtures of independent com-
ponents. These methods include principal component analysis (PCA), independent
component analysis (ICA), and independent vector analysis (IVA), when dealing
with multiple datasets. On the other hand, fuzzy and crisp clustering methods allow
us to represent each statistical unit as a weighted sum of the means of the groups that
minimize overall model error.

However, EDA itself cannot answer to the questions: “Howmany, andwhat are the
categories to retain?” and “What are the observations that can represent a category
better than others. in human cognitive processes?”. In cognitive science, according
to Rosch [32, 33], the best observation is related to the concept of typicality; in other
words, we must look for those elements that can represent a category better than
others. From a general perspective, in a cognitive science domain, categorization is
assumed to be a set of processes of determining units that belong together according
to a criterion. A category is a group or class of stimuli or entities that bear a physical
similarity among them. Concepts are thought to be the knowledge that facilitates the
categorization process [3], and in the conceptual space, there are convex regions for
more than one domain (therefore, natural property, considered for only one domain,is
a special and simpler case of a concept).

We call prototypes those elements that are able to represent a category andmeasure
their representativeness degree using a distance function to a salient entity of the
category [15, 29]. These objects can be observed or unobserved (abstract), and they
can be represented by a single value or by interval-valued variables. In many cases, in
classification and clustering, andmore generally in cognitive sciences, the concept of
prototype has been unknowingly adopted to synthesize and represent categories [4,
6]. However, regarding Big Data, the role of prototypes has become more and more
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relevant, thus giving rise to a wide variety of studies in the literature on prototype-
based clustering methods (see [21, Chap. 13]).

Identifying groups that can be connected to a related prototype does not fulfill the
categorization process. Without proper description, prototypes cannot be advanta-
geous to learning. D’Esposito et al. (2012, 2013) [9, 10] and Ragozini et al. (2016)
[29] considered the archetypal analysis, as proposed by Cutler and Breiman [8], to
identify prototypes from a geometric perspective. According to the idea of symbolic
object [12], in [10], D’Esposito et al. (2013) proposed the prototype description in
terms of symbolic objects. The present proposal grounds on the conceptual space
framework and starting from the geometric properties of the proposed prototypes
exploits the Voronoi tessellation to obtain a data-driven categorization; i.e. a par-
tition of the conceptual space in convex regions centered on the prototypes. This
procedure can be summarized in a proposal to achieve a categorization in two steps:
(1) a data-drive prototype analysis and (2) the ensuing Voronoi tessellation based on
the identified prototypes.

4 Formalization of Objects in a Conceptual Space

In the conceptual space framework, some authors have proposed the integra-
tion/creation of a comprehensive algebra. Given that conceptual spaces are based
on the paradigm of cognitive semantics [23], they are dynamic systems under the
assumption that algebraic operations between concepts or entities are allowed. To
allow them, formal definitions of the objects embedded in this space are needed.
Going through the hierarchical classification proposed by Adams [1], the base ele-
ment is the quality dimension tool that measures and orders entities in the space
according to a specific feature/characteristic. The quality dimension is, in turn, made
of three factors: a measurement level or scale (ratio, interval, or ordinal, the range
of the dimension (in which the boundaries are minimum and maximum values), and
whether it is circular. A quality domain, on the other hand, is a finite set of quality
dimensions. Therefore, latitude and longitude, for example, are two distinct quality
dimensions; however, once brought together, they form a quality domain of coordi-
nates. Instances are a finite set of points in one or more domains; a specific point
is a vector of the values assumed by the quality dimensions. These values represent
an instrument for measuring and ordering different quality values of objects in the
space. A bounded intersection of half-spaces is a method (H-polytope representa-
tion) of building a convex region; in this layered structure, a concept is a finite set of
convex regions.

5 Prototype Identification

In statistical literature, numerical techniques to find prototypes in given multivariate
datasets have been proposed and are based on several different criteria. The most
widely used techniques are generally based on non-hierarchical clustering algorithms
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[11, 22]. However, in this proposal, we present some recent results on the prototypes
definition through an archetypal analysis (AA). AA was first introduced by Cutler
and Breiman [8]. It is mainly a matrix factorization method of a generic n × p data
matrixX such that minΓA {||X − ΓA||F }, where Γ andA represent the factorization
matrices of order n × k and k × p, respectively, with A = BX and || · ||F states for
the Frobenius norm. Matrices B and Γ have nonnegative entries and must satisfy
the following constraints: (i) B1n = 1k and (ii) Γ 1k = 1n , where 1 is a vector of
ones. The k × p matrix A = BX represents the k archetypes, where k is assumed
as a priori defined. It is worth noting that the matrix Γ defines a fuzzy allocation
rule of each data point to the k archetypes; let us indicate with γi j the general term
of Γ , with i = 1, . . . n and j = 1, . . . k. Additionally

∑
j γi j = 1, γi j represents the

membership degree of xi to the archetype a j . The quantity to be minimized by the
algorithm is the residual sum of squares (RSS), and it generally does not have a
closed form solution. It could be solved by means of general-purpose, non-linear
constrained least squares; however, a consolidate approach is to use an alternating
least square algorithm [5, 8]. It starts from the whole RSS, then it is divided into
two quantities (in the first one, it finds the best γi j given the set of archetypes, and
in the second one, it finds the best βi j given the recalculated archetypes) and solves
them using an iterative procedure, finding a local minimum for the criterion.

Setting up structural constraints makes learning more efficient. In other words,
one can constrain the learning process in a convex space. However, adding structural
constraints often means that some form of information about the relevant domains or
other dimension-generating structures is added. Consequently, this strategy presumes
a conceptual level in the construction of the prototypes. AA exploits redundancies
in input data; it finds the number of archetypes in the input data that can be used to
represent (approximate) all data points. It is worth noting that AA constraints ensure
symmetrical relationships between archetypes and data points; archetypes are convex
combinations of data points and data points are approximated in terms of the convex
combinations of archetypes. The first constraint ensures that the archetypes to be
found will lie on the convex hull of the data cloud, giving them the peculiar trait of
being extremal points.

In this view, we propose a geometric approach that allows prototype identification
to be the most typical object within a group or a category. A prototype is the member
within a group that best represents the other members (i.e.,in terms of internal resem-
blance) and that at the same time differs from the members of the other groups or
categories (i.e., an external dissimilarity). This double semantics related to centrality
and extremeness can been operationalized through a typicality index T (·, ·) [17, 24,
25, 30].

Formally, given a set of n objects Ω = {xi }i=1,...,n , xi ∈ �p and a partition C =
(C1, . . . ,Ck) of Ω in k groups, an internal resemblance measure R(xi ,Ch) of xi
w.r.t. xi ′ ∈ Ch , an external dissimilarity measure D(xi ,Ch) of xi w.r.t. xi ′ /∈ Ch , and
amixing functionΦ(·) that combines bothmeasures, and a typicality index T (xi ,Ch)

of xi with respect to the class Ch is given by:

T (xi ,Ch) = Φ(R(xi ,Ch); D(xi ,Ch)). (1)
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The set of prototypes P = (p1, . . . ,pk) is then defined as:

P = {ph ∈ �p|ph = argmax
xi

T (xi ,Ch), h = 1, . . . , k}. (2)

It is clear that in this framework and setting, the prototype identification depends
on the ways in which the dissimilarity and resemblance are measured and on the
partition assumed in advance. The main proposals in this direction for prototype
identification assume that both resemblance and dissimilarity measures are based
on the Euclidean distance. The semantic of prototypes is also strongly affected by
the choice of the mixing or aggregating function Φ(·, ·). If one considers only the
internal resemblance, the prototypes will be the central elements of the groups; on the
other hand, if one takes into account only the external dissimilarity, the prototypes
will be the most extreme points. The mixing function Φ(·, ·) yields a compromise
between these two instances. In this framework, the proposal to identify prototypes
through the archetypes is made in order to have well-separatedand informative points
that represent categories. The procedure can be described in three steps. Prototypes
in the beginning of the procedure are identified as the archetypes, maximizing the
criterion of external dissimilarity and seeking to a principle of pureness in the cate-
gories. Therefore, clusters around the archetypes are built in space spanned by these
archetypes, and the centers of these clusters are the new prototypes, achieving the
internal resemblance purpose. In the last step, the two previous solutions are com-
bined in the original space to determine the final prototypes; these are, in the end,
a compromised solution between the archetypes and the centers of clusters around
these archetypes.

Specifically, archetypes can be considered first-step prototypes. However, because
archetypes belong to the data convex hull, they lie on the boundary of data scatter;
as such, they are extreme points with respect to the other points, and they maximize
the external dissimilarity. To improve the internal resemblance of the archetypes,
we revert to the space where the archetypes are the vertices of a K -dimensional
simplex, i.e., S k , and each data point x′

i is represented as a point with barycentric
coordinates γ ′

i [28]. In this simplex, we obtain a partition C = (C1, . . . ,Ck) of the
data set by clusterizing the data around the archetypes, exploiting the properties of
the γ i coefficients. If γih is close to 1, the point xi is very close to the archetype ah .
If γih is close to 0, xi lies far from ah . As classifiers, we can adopt a crisp allocation
rule (or nearest neighbor rule) where

Ch = {xi : argmax
j

γi j = h}, h = 1, . . . , k, (3)

or a fuzzy allocation rule where

Cτ
h = {xi : γih > τ }, 0 < τ < 1, h = 1, . . . , k. (4)

Given the partition C = (C1, . . . ,Ck), we maximize the internal resemblance
within each group of the partition, or equivalently, we minimize the internal dissim-
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Find the prototypes

Maximize external dissimilarity: find archetypes

Clusterize data around the archetypes in space spanned by the archetypes

Maximize internal resemblance: find the centroids of the given clusters

Final prototypes: combine the two solutions in the original space

Categorize the conceptual space

Compute the Voronoi tessellation of the conceptual space based on the prototypes

Fig. 1 Flowchart of the entire procedure, from the prototype identification to the Voronoi tessella-
tion

ilarity within each cluster, determining the centroids (c1, . . . , ck) of the clusters by
solving the following minimization problem:

min
(c1,...,ck )

∑

x′
i∈Ch

d(γ i , ch)∀h (5)

where d(·, ·) is an appropriate dissimilarity measure in the space S k .
The centroids (c1, . . . , ck) can be assumed to be prototypes in the spaceS k . The

final prototypes (p1, . . . ,pk) in the space of the data points are then obtained by
reverting to the �p space:

ph = chA(h); (6)

that is, each ph is a convex combination of the archetypes A(h) withcoefficients ch .
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The last step of the categorization procedure consists of the partitioning of the
conceptual space, starting from prototypes. Given the triple Δ(P, d,C ) where P
is a set of given prototypes and d is a distance measure defined on a conceptual space
C , the tessellated region c(ph) is defined such that:

{x | d(ph, x) ≤ d(ph′ , x)} ,

∀h �= h′, where x is a generic data point belonging to C and c(ph) is the category
generated by ph .

When the conceptual space is assumed to be the Euclidean one, the categories
c(ph) obtained through this procedure correspond to the Voronoi cells derived by the
Voronoi tessellation [13] based on the prototypes. Thus, the categories are convex
regions of the conceptual space, covering it, and allowing for the easy classification of
all the other points belonging to the conceptual space, both observed and unobserved.

The entire proposed procedure, from AA to the categorization through to Voronoi
tessellation, is presented in the following flow chart (Fig. 1).

6 Categorization Using Voronoi Tessellation: The wine
Dataset

In the conceptual space framework, the categorization problem can be solved by
a partitioning of the space through the Voronoi tessellation, starting with a given
set of prototypes. In our approach, we provide a way to derive prototypes from data
[29].We note that the geometrical properties of our prototypes are congruent with the
conceptual space approach; then,we propose the use of our data-driven prototypes for
the Voronoi tessellation in order to obtain a categorization. In addition, in cognitive
science, it is often assumed that the number of prototypes and typologies in the data
is a priori known. However, in any real world cognitive study, things are completely
different and the true number of typologies must be inferred by studying the groups
in the data. However, to decide on the number of groups is one of the most widely
addressed problems in cluster analysis, and most likely has no satisfactory solution
that can be generalized in any category of problem. By dealing with extreme data
points, AA allows us to choose the number of archetypes according to the behavior
of the loss functions evaluated at different numbers of archetypes. The loss function
is plotted on a Cartesian coordinate system where the x-axis represents the number
of archetypes and the y-axis represents the value of the loss function (decreasing by
definition); the optimal number of archetypes should be revealed by an elbow of the
function (graphically: the loss function begins parallel to the x-axis). However, the
presence of multivariate outliers or highly correlated variables could mask the true
number in favor of redundant or unstable solutions. Deeper investigations based on
computationally intensive studies can reveal such situations.

In this section, we consider the wine dataset. First presented by Forina et al.
[16], it contains data pertaining to 178 wines produced from three different Italian
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Table 1 List of labels and variable names of the the wine dataset

Labels Variable name

Alc Alcohol

Mal Malic acid

Ash Ash

Alk Alkalinity of ash

Mag Magnesium

Phe Total phenols

Fla Flavanoids

NFla Non-flavanoid phenols

Pro Proanthocyanidins

Col Color intensity

Hue Hue

Dil OD280/OD315 of diluted wines

Prol Proline

Table 2 Wine data: archetypes as the first solution
Alc Mal Ash Alk Mag Phe Fla NFla Pro Col Hue Dil Prol

a1 14.19 1.97 2.51 16.45 114.63 3.24 3.40 0.26 2.21 6.68 1.05 3.28 1316.07

a2 13.22 3.78 2.48 22.12 97.47 1.56 0.65 0.49 1.05 7.69 0.63 1.51 621.94

a3 11.79 1.41 2.07 20.04 86.50 2.26 1.97 0.34 1.61 2.15 1.20 3.08 406.40

cultivars (barbera, barolo, and grignolino) and described by the 13 features that refer
to organoleptic and chemical categories (Table1).

As the three different varieties of wine are recognized as having their specific
properties, we assume that each of them represents a category and can be summarized
by a prototype.

The first step of the entire procedure consists of the archetype identification. The
archetypes package [14], available at the CRAN repository, permits the identifi-
cation of the optimal number of archetypes. Here, we set the number of archetypes
to three. We refer interested readers to [29] for a more detailed description of the
choice of the number of prototypes. Table 2 reports the three archetypes described
by their 13 original variables (expressed in their own original scales).

The second step consists of grouping the points around the archetypes in the space
defined by the matrix Γ . In this example, a crisp classification has been taken into
account. The fuzzy allocation rule can also be taken into account; it can ensure a
higher “purity” degree in the groups and (generally) produces an extra group with
respect to the number of archetypes. The three groups, corresponding to the three
archetypes, are visualized in the space spanned by the three columns of Γ in Fig. 2.

The group’s centroids are identified by the generalized compositional geomet-
ric mean of the group, computed from the γi j membership scores. Exploiting the
relationship between the geometric basis spanned by the archetypes and the original
space [2], prototypes can be represented in the original variable space.
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Fig. 2 Wine data set: groups around the archetypes obtained by the crisp allocation rule

(a) Archetypes, prototypes and Voronoi
convex regions

(b) Voronoi tesselation

Fig. 3 Wine data set: plots a and b represent the Voronoi tessellation and the convex geometric
region on the first two principal components. In figure a, the red triangle vertices represent the
archetypes, the blue points refer to the prototypes, and the dashed lines represent the edges of the
convex regions that correspond to the three categories

It has been shown that in a metric space, representations of properties are obtained
as convex regions. Let us consider the set of prototypes P = {p1, p2, . . . , pK }];
their representation in any conceptual space implies (according to the definition of
“prototype” itself) that they are the central points in the categories they represent. The
distance between any prototype point p and p′ represents their external dissimilarity.
If we assume that any generic point xi belongs to the same category as the closest
prototype, it has been shown that this rule will generate a partitioning of the space
into convex regions [19, 26]. This partition/categorization is given by the Voronoi
tessellation of the conceptual space based only on the prototypes. Note that this
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approach also has computational advantages. The tessellation is performed using
only a few points, i.e., the prototypes; thus, given the geometric properties of the
Voronoi tessellation, the allocation on new instances in a given category can be done
in a very easy and efficient way.

The two plots in Fig. 3a, b represent the Voronoi tessellation on the first two
principal components (29% of the total variance). Figure 3a summarizes the entire
categorization process: (i) the triangle vertices represent the three archetypes; (ii) the
blue points (larger than the other points) refer to the prototypes; and (iii) the dashed
lines converging in the center define the convex regions associated with the three
categories, i.e., theVoronoi cells associatedwith the threewine prototypes. It is worth
noting that the prototypes appear more internal with respect to the corresponding
archetypes.

Figure 3b, on the right hand side, shows the entire tessellation around the three
prototypes that developed with respect to the 178 observed points. It is easy to
notice that the categorization given by the tessellation reproduces the three wine
typologies well.

7 Conclusion

Several alternative cognitive approaches are grounded in the geometric representation
between properties and concepts in convex conceptual spaces. Based on the connec-
tion between statistical learning and cognitive categorization, our method allows the
partitioning of a convex conceptual space into convex regions corresponding to the
categories through the joint use of Voronoi tessellation and prototype identification.
Thus, assuming that a Euclidean metric is defined on the subspace that is subject to
categorization, a set of prototypes will generate a unique partition of the subspace
into convex regions using this method. In this way, the Voronoi tessellation and
archetypes provide a constructive geometric answer for how a similarity measure
and a set of prototypes determine a set of categories.

Finally, the proposedprocedure can alsowork in the case of conceptual spaceswith
different metrics. For example, in the case of interval-valued data, prototypes can be
derived using the Hausdorff distance [9], and a coherent Voronoi tessellation should
be adopted [27]. In this case, however, the convexity properties and the corresponding
cognitive interpretations should be carefully checked.
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Inferring Rater Agreement with Ordinal
Classification

Amalia Vanacore and Maria Sole Pellegrino

Abstract In several contexts ranging from medical to social sciences, rater reli-
ability is assessed in terms of intra (-inter) rater agreement. The extent of rater
agreement is commonly characterized by comparing the value of the adopted agree-
ment coefficient against a benchmark scale. This deterministic approach has been
widely criticized since it neglects the influence of experimental conditions on the
estimated agreement coefficient. In order to overcome this criticism, in this paper
an inferential procedure for benchmarking is presented. The proposed procedure is
based on non-parametric bootstrap confidence intervals. The statistical properties of
the proposed procedure have been studied for two bootstrap confidence intervals via
a Monte Carlo simulation. The simulated scenarios differ for sample sizes (i.e. n =
10, 30, 50, 100 items) and rating scale dimensions (i.e. k = 2, 3, 5, 7 categories).

Keywords Rater agreement · Weighted Uniform kappa coefficient · Statistical
benchmarking · Monte Carlo simulation

1 Introduction

In many contexts of research (e.g. cognitive and behavioural science, quality science,
clinical epidemiology, diagnostic imaging, content analysis), there is frequently a
need to assess the accuracy of human instruments (i.e. raters) providing subjective
measurements, expressed on a dichotomous, nominal or ordinal rating scale.

ISO 5725 (1994) [21] refers the term accuracy to both systematic bias (i.e. true-
ness) and random error (i.e. precision). Actually, by definition, subjective evalua-
tions lack a reference value for assessing their trueness and the common concept of
accuracy cannot be easily operationalized. In such circumstances, the accuracy of
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subjective evaluations can be related only to precision and assessed as the degree of
agreement (i.e. “closeness”) between repeated evaluations.

The easiest way ofmeasuring agreement between ratings is to calculate the overall
percentage of agreement; nevertheless, this measure does not take into account the
agreement that would be expected by chance. A reasonable alternative is to adopt
the widespread kappa-type coefficient that was introduced by Cohen in 1960 [9]
as a rescaled measure of the probability of observed agreement corrected with the
probability of agreement expected by chance.

The extent of a kappa-type coefficient is generally qualified by comparing its
estimate against some threshold values [2, 15, 25].

Although commonly adopted by practitioners, this straightforward benchmark-
ing procedure is criticized being based on a single summary measure of agreement
that provides limited information. In order to overcome this criticism, researchers
recommend to supplement the agreement coefficient with information on statistical
uncertainty [24] and suggest the use of the lower confidence bound for agreement
benchmarking purpose [26, 29].

The standardmethods for building confidence intervals for kappa-type coefficients
(e.g. [4, 14]) require large sample sizes [12]; when this condition is not satisfied, that
is when the number of items is small (about 30 or less) or moderate (approximately
50 or less), the standard methods perform poorly and the use of bootstrap to build
confidence intervals is recommended (e.g. [18, 23, 29]).

This paper focuses on two bootstrap confidence intervals (i.e. percentile and Bias-
Corrected and Accelerated) and aims at investigating whether their lower bound
can be effectively used to characterize the extent of agreement with small sample
sizes, which are not uncommon in agreement studies. An extensive Monte Carlo
simulation has been carried out under different scenarios taking into account both
null (i.e. chance agreement) and non-null (i.e. positive agreement) inference cases.
The performances of both bootstrap confidence intervals have been compared in
order to recommend the method that best fits each specific scenario.

The remainder of this paper is organized as follows: in Sect. 2 the weighted Uni-
form kappa coefficient is introduced; Sect. 3 is devoted to coefficient estimation and
inference; in Sect. 4 the simulation design is described and the main results are dis-
cussed; finally, conclusions are summarized in Sect. 5.

2 Weighted Uniform Kappa Coefficient

A main issue for the correct definition of a kappa-type coefficient regards the notion
of expected proportion of agreement: chance measurements are conceived as blind
(that is, uninformative about the rated items) and any distributional assumption for
them is likely to be arbitrary. A solution is to adopt the notion of uniform chance
measurement [3] that—given a certain rating scale—can be assumed as a reasonable
model for themaximally non-informativemeasurement system.This uniformversion
of kappa-type coefficient is often referred to as Brennan–Prediger coefficient [6],
although it was independently developed by several authors [16, 20, 22].
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Table 1 Notation for cell counts in a k × k contingency table

Let n be the number of items rated two or more times (i.e. replications) on an
ordinal rating scale with k > 2 classification categories. The data are denoted by
Ylh , with l = 1, . . . , n indexing items and h indexing replications. Of interest for the
evaluation of inter/intra-rater agreement is the joint distribution of Ylh .

In the simplest case of two replications (i.e. h = 1, 2), Ylh can be arranged in
a k × k contingency table (ni j )k×k where the generic (i, j) cell contains the joint
frequency ni j that counts the number of items classified into i th category in the first
replication and into j th category in the second replication (Table 1).

In order to consider that on an ordinal rating scale some disagreements are more
serious than others (i.e. disagreement on two distant categories are more relevant
than disagreement on neighbouring categories), it is necessary to assign a different
weight to each proportion of disagreement.

The weighted version of the Uniform kappa coefficient, KU
W , has been proposed

by Gwet [17] and it is formulated as follows:

KU
W = paW − pUa|cW

1 − pUa|cW
(1)

where paW is the probability of observed agreement and pUa|cW is the probability of
agreement expected by chance. Let πi j be the probability of classifying an item
as belonging to category i during the first replication and to category j during the
second replication and let wi j be the symmetric (i.e. wi j = wji ) agreeing weight
a priori assigned to each pair (i, j) of classification categories; paW and pUa|cW are
respectively formulated as:

paW =
k∑

i=1

k∑

j=1

wi jπi j (2)
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pUa|cW = 1

k2

k∑

i=1

k∑

j=1

wi j (3)

At sample level, Eq. 2 is estimated as follows:

p̂aW =
k∑

i=1

k∑

j=1

wi j
ni j
n

(4)

It is worthwhile to pinpoint that although the weights can be arbitrary defined, the
most commonly used weighting schemes for kappa-type coefficients are the linear
wL
i j [8] and quadratic wQ

i j [13] weights which are formulated as follows:

wL
i j = 1 − |i − j |

k − 1
; wQ

i j = 1 − (i − j)2

(k − 1)2
(5)

All kappa-type coefficients range from −1 to +1: when the observed proportion
of agreement equals chance agreement, the coefficient is null; when the observed
agreement is greater than chance agreement the coefficient returns positive values;
when the observed agreement is lower than chance agreement the coefficient takes
negative values and it can be interpreted as disagreement.

TheweightedUniform kappa coefficient can be assumed asymptotically normally
distributed with mean K̂ U

W and variance σ̂ 2
KU

W
estimated by [17, p. 143]:

K̂ U
W = p̂aW − pUa|cW

1 − pUa|cW
(6)

σ̂ 2
KU

W
= 1 − f

n(1 − pUa|cW )2

⎛

⎝
k∑

i=1

k∑

j=1

w2
i j

ni j
n

− p̂2aW

⎞

⎠ (7)

where f = n/N is the sampling fraction of items from a target population of size
N ; when N is unknown, f is set equal to 0.

In the special case of missing ratings (i.e. some items were rated only during one
replication) the variance is estimated as follows:

σ̂ 2
KU

W
= 1 − f

n(1 − pUa|cW )2

n∑

h=1

a2l (8)

where l refers to the generic rated itemandal = ∑k
i, j=1 wi j

(
δ

(l)
i j − ni j/n

)
with δ

(l)
i j =

1 if item l is classified into i th and j th category in the first and second replication,
respectively, and δ

(l)
i j = 0 otherwise.

Without missing ratings, Eqs. 7 and 8 are equivalent.
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Table 2 Landis and Koch benchmark scale for kappa-type coefficients

Coefficient Agreement

K̂U
W ≤ 0.00 Poor

0.00 < K̂U
W ≤ 0.20 Slight

0.20 < K̂U
W ≤ 0.40 Fair

0.40 < K̂U
W ≤ 0.60 Moderate

0.60 < K̂U
W ≤ 0.80 Substantial

0.80 < K̂U
W ≤ 1.00 Almost perfect

3 Characterization of the Extent of Rater Agreement

The approach currently adopted to characterize the extent of agreement is based upon
a straight comparison between the estimated coefficient and an adopted benchmark
scale. Themost widespread benchmark scale for interpreting themagnitude of agree-
ment coefficients was proposed by Landis and Koch [25]. According to this scale,
there are six categories of agreement (i.e. Poor, Slight, Fair, Moderate, Substantial
and Almost perfect) corresponding to as many ranges of coefficient values (Table 2).

Although benchmark scales are widely adopted for relating the magnitude of the
coefficient to the notion of extent of agreement (e.g. [1, 4, 5, 11, 19, 23, 28]), some
researchers question their validity and give advice that their uncritical applications
may lead to practically questionable decisions [27].

Actually, as argued in [17], the choice of the benchmark scale is less important
than the way it is used for characterizing the extent of agreement. As a matter of fact,
the straightforward benchmarking does not account for the influence of experimental
conditions on the estimated coefficient and, thus, it does not allow for a statistical
characterization of the extent of rater agreement. This criticism may be overcome by
benchmarking the lower bound of the confidence interval of the agreement coefficient
rather than its point estimate.

Assuming the asymptotic normal approximation, the lower KU
Wl

and upper KU
Wu

bounds of the two-sided (1 − 2α)% confidence interval for KU
W are given by:

KU
Wl

= K̂ U
W − zασ̂KU

W
; KU

Wu
= K̂ U

W + zασ̂KU
W

(9)

where zα is the α percentile of the standard normal distribution.
The accuracy of the above confidence interval depends on the asymptotic normal-

ity of KU
W and on the asymptotic solution for σ̂ 2

KU
W
which are both questionable for

small sample sizes.
Since resampling adjusts for non-normal distribution, it is generally considered

the approach of choice when the assumptions of classical statistical methods are not
met.
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Among the available resampling methods to build confidence intervals, the per-
centile bootstrap (hereafter, p) is the simplest and the most popular one. The lower
and upper bounds of the two-sided (1 − 2α)% p confidence interval are given by:

KU
Wl

= G−1 (α) ; KU
Wu

= G−1 (1 − α) (10)

where G is the bootstrap distribution function for of KU
W .

On the other hand the Bias-Corrected and Accelerated bootstrap (hereafter, BCa)
confidence interval is recommended for severely non normal data [7, 10]. Despite
the high computational complexity needed, BCa confidence intervals have generally
smaller coverage errors than the others. The lower and upper bounds of the two-sided
(1 − 2α)% BCa confidence interval are defined as follows:

KU
Wl

= G−1

(
�

(
b − zα − b

1 + a (zα − b)

))

KU
Wu

= G−1

(
�

(
b + zα + b

1 + a (−zα − b)

)) (11)

being � the standard Gaussian distribution function, a the acceleration parameter
and b the bias correction parameter. The parameters a is proportional to the skewness
of the bootstrap distribution and is estimated via the jackknife resampling method;
b is related to the proportion of bootstrap estimates that are less than the observed
coefficient value. All computational details about the algorithm for building the
bootstrap confidence intervals can be found in [7].

4 Simulation Study

In order to investigate the statistical properties of the proposed benchmarking proce-
dure aMonteCarlo simulation study has been developed considering two replications
(i.e. two different raters or the same rater in different occasions) of n items into one
of k possible ordinal rating categories.

The performances of the benchmarking procedure have been evaluated in terms
of statistical significance and power, computed for the cases of null and non null
inference on rater agreement (Table 3). The null inference case tests the hypothesis
that the rater agreement is positive against the null hypothesis of chance agreement;
the non-null inference cases test the hypothesis that the rater agreement is at least
Moderate against the null hypothesis of no more than Fair agreement as well as the
hypothesis that the rater agreement is at least Substantial against the null hypothesis
of no more than Moderate agreement. Specifically, for the null inference case, 5
alternative hypotheses of positive rater agreement (starting from KU

W = 0.50 with
step size 0.10) are tested against the hypothesis of chance agreement; for the first
case of non-null inference (i.e. at least Moderate agreement), the above 5 alternative
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Table 3 Null and non null inference cases

Inference case H0 H1

Null Chance agreement Positive agreement

KU
W = 0.00 KU

W > 0.00

Non Null No more than Fair Moderate

KU
W ≤ 0.40 KU

W > 0.40

No more than Moderate Substantial

KU
W ≤ 0.60 KU

W > 0.60

hypotheses are tested against the null hypothesis of no more than Fair agreement; for
the second case of non-null inference (i.e. at least Substantial agreement), 4 alterna-
tive hypotheses (starting from KU

W = 0.70 with step size 0.10) are tested against the
null hypothesis of no more than Moderate agreement.

The statistical properties of the benchmarking procedure have been studied for
four different rating scale dimensions (i.e. k = 2, 3, 5, 7) by sampling r = 2000
Monte Carlo data sets from a multinomial distribution with parameters n and πi j ; for
each scale dimension the πi j values (with i, j = 1, . . . , k) have been chosen so as to
obtain eight true population values of KU

W (viz. 0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.00),
assuming a linear weighting scheme [8]. Since the simulation has been conducted by
varying the sample size from n = 10 items to n = 30, n = 50 and n = 100 items (i.e.
the most affordable sample sizes in many experimental contexts and also the most
critical ones for statistical inference) a total number of 4 · 8 · 4 = 128 scenarios have
been analysed. For each scenario, both p and BCa confidence intervals have been
built on 1500 bootstrap replications. The simulation algorithm has been implemented
using Mathematica (Version 11.0, Wolfram Research, Inc., Champaign, IL, USA).

4.1 Simulation Results

Simulation results in terms of statistical significance and power are reported for 2,
3, 5 and 7-point scales in Tables 4, 5, 6 and 7, respectively. Specifically, each table
contains the results obtained for all the analysed sample sizes and both bootstrap
confidence intervals, organized in three distinct sections, corresponding to the three
null hypotheses of rater agreement.

The statistical properties of the benchmarking procedure improve as sample size
and rating scale dimension increase being satisfactory even for samples of n = 10
items and a few-point rating scale.

The statistical significance is generally comparable across p and BCa confidence
intervals although it is sometimes slightly closer to its nominal level (α = 0.025)
when benchmarking the lower bound of the BCa confidence interval. Specifically,
the statistical significance decreases with increasing sample size but it grows up for
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Table 4 Statistical significance (in bold; α = 0.025) and power for different true population values
of KU

W with k = 2 rating categories

n = 10 n = 30 n = 50 n = 100

p BCa p BCa p BCa p BCa

KU
W = 0.00 KU

W = 0.00 0.03 0.03 0.02 0.02 0.02 0.03 0.02 0.02
KU
W = 0.50 0.26 0.52 0.79 0.77 0.97 0.92 1.00 1.00

KU
W = 0.60 0.38 0.67 0.93 0.92 0.99 0.99 1.00 1.00

KU
W = 0.70 0.54 0.80 0.99 0.98 1.00 1.00 1.00 1.00

KU
W = 0.80 0.74 0.92 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.90 0.91 0.99 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.40 KU

W = 0.40 0.03 0.03 0.04 0.04 0.02 0.03 0.02 0.03
KU
W = 0.50 0.06 0.13 0.09 0.24 0.25 0.22 0.20 0.23

KU
W = 0.60 0.11 0.36 0.27 0.32 0.35 0.39 0.63 0.67

KU
W = 0.70 0.19 0.53 0.51 0.56 0.71 0.74 0.94 0.95

KU
W = 0.80 0.34 0.72 0.82 0.86 0.95 0.95 1.00 1.00

KU
W = 0.90 0.59 0.90 0.98 0.98 1.00 1.00 1.00 1.00

KU
W = 0.60 KU

W = 0.60 0.11 0.11 0.04 0.05 0.03 0.04 0.03 0.03
KU
W = 0.70 0.19 0.19 0.16 0.16 0.17 0.22 0.25 0.29

KU
W = 0.80 0.34 0.34 0.42 0.42 0.54 0.61 0.80 0.84

KU
W = 0.90 0.59 0.59 0.81 0.82 0.93 0.96 1.00 1.00

KU
W = 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Table 5 Statistical significance (in bold; α = 0.025) and power for different true population values
of KU

W with k = 3 rating categories

n = 10 n = 30 n = 50 n = 100

p BCa p BCa p BCa p BCa

KU
W = 0.00 KU

W = 0.00 0.05 0.07 0.04 0.04 0.03 0.03 0.03 0.03
KU
W = 0.50 0.50 0.56 0.91 0.91 0.99 0.99 1.00 1.00

KU
W = 0.60 0.75 0.81 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.70 0.92 0.95 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.80 0.97 0.98 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.90 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.40 KU

W = 0.40 0.09 0.10 0.05 0.04 0.04 0.04 0.03 0.03
KU
W = 0.50 0.16 0.26 0.13 0.13 0.18 0.19 0.25 0.26

KU
W = 0.60 0.27 0.45 0.38 0.40 0.57 0.61 0.83 0.84

KU
W = 0.70 0.48 0.69 0.79 0.80 0.94 0.96 1.00 1.00

KU
W = 0.80 0.69 0.84 0.96 0.96 1.00 1.00 1.00 1.00

KU
W = 0.90 0.77 0.84 0.99 0.99 1.00 1.00 1.00 1.00

KU
W = 0.60 KU

W = 0.60 0.10 0.10 0.04 0.05 0.03 0.03 0.04 0.03
KU
W = 0.70 0.22 0.22 0.20 0.26 0.28 0.27 0.48 0.48

KU
W = 0.80 0.44 0.44 0.59 0.63 0.76 0.74 0.96 0.96

KU
W = 0.90 0.71 0.71 0.85 0.82 0.96 0.96 1.00 1.00

KU
W = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 6 Statistical significance (in bold; α = 0.025) and power for different true population values
of KU

W with k = 5 rating categories

n = 10 n = 30 n = 50 n = 100

p BCa p BCa p BCa p BCa

KU
W = 0.00 KU

W = 0.00 0.07 0.07 0.03 0.03 0.03 0.03 0.03 0.03
KU
W = 0.50 0.65 0.62 0.97 0.95 1.00 1.00 1.00 1.00

KU
W = 0.60 0.83 0.79 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.70 0.87 0.84 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.80 0.94 0.92 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.90 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.40 KU

W = 0.40 0.11 0.12 0.04 0.03 0.04 0.04 0.03 0.03
KU
W = 0.50 0.20 0.21 0.17 0.15 0.21 0.19 0.35 0.34

KU
W = 0.60 0.39 0.40 0.50 0.44 0.65 0.62 0.90 0.89

KU
W = 0.70 0.51 0.51 0.74 0.70 0.90 0.87 1.00 1.00

KU
W = 0.80 0.64 0.65 0.93 0.91 0.99 0.99 1.00 1.00

KU
W = 0.90 0.88 0.88 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.60 KU

W = 0.60 0.13 0.13 0.07 0.06 0.04 0.04 0.04 0.03
KU
W = 0.70 0.30 0.30 0.26 0.22 0.28 0.27 0.42 0.40

KU
W = 0.80 0.48 0.51 0.58 0.52 0.71 0.67 0.93 0.92

KU
W = 0.90 0.75 0.81 0.93 0.90 0.99 0.98 1.00 1.00

KU
W = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 7 Statistical significance (in bold; α = 0.025) and power for different true population values
of KU

W with k = 7 rating categories

n = 10 n = 30 n = 50 n = 100

p BCa p BCa p BCa p BCa

KU
W = 0.00 KU

W = 0.00 0.06 0.05 0.06 0.03 0.04 0.03 0.04 0.02
KU
W = 0.50 0.60 0.55 0.94 0.92 1.00 1.00 1.00 1.00

KU
W = 0.60 0.81 0.75 1.00 0.99 1.00 1.00 1.00 1.00

KU
W = 0.70 0.93 0.91 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.80 0.99 0.97 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.40 KU

W = 0.40 0.09 0.08 0.06 0.05 0.04 0.03 0.04 0.03
KU
W = 0.50 0.17 0.15 0.19 0.16 0.22 0.19 0.32 0.29

KU
W = 0.60 0.34 0.31 0.52 0.45 0.64 0.57 0.89 0.86

KU
W = 0.70 0.58 0.55 0.88 0.83 0.97 0.95 1.00 1.00

KU
W = 0.80 0.86 0.84 1.00 0.99 1.00 1.00 1.00 1.00

KU
W = 0.90 0.96 0.95 1.00 1.00 1.00 1.00 1.00 1.00

KU
W = 0.60 KU

W = 0.60 0.16 0.16 0.07 0.05 0.06 0.05 0.05 0.04
KU
W = 0.70 0.34 0.33 0.30 0.25 0.37 0.32 0.58 0.52

KU
W = 0.80 0.71 0.70 0.81 0.75 0.93 0.90 1.00 1.00

KU
W = 0.90 0.91 0.92 0.99 0.97 1.00 1.00 1.00 1.00

KU
W = 1.00 0.99 0.99 0.99 1.00 0.99 1.00 1.00 1.00
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increasing true population value of KU
W ; it is always close to the nominal level in the

null inference case and only for n ≥ 50 in non-null inference cases.
The statistical power, instead, usually differs across p and BCa confidence inter-

vals being slightly higherwhen benchmarking the lower bound of theBCa confidence
interval; differences get smaller for increasing sample size and rating scale dimen-
sion, especially when testing high rater agreement level. For n ≤ 30, the statistical
power is less than 80% only when testing hypotheses referring to adjacent agreement
categories (e.g. Poor vs Slight, Moderate vs Substantial) with k > 3. For k = 2, 3 and
n ≤ 30, the statistical power reaches 80% only when testing an almost perfect rater
agreement level.

5 Conclusions

The proposed benchmarking procedure can be suitably applied for the characteriza-
tion of the extent of agreement over a small or moderate number of items evaluated
by one rater in two different occasions or simultaneously by more raters.

The procedure adopted for testing agreement shows satisfactory statistical prop-
erties also with small and moderate sample sizes and a few-point scale both in null
and non-null inference cases. The procedure is adequately powered in detecting dif-
ferences in the extent of rater agreement that are of practical interest for agreement
studies (i.e. differences more than 0.2). For small samples of n = 10 items, bench-
marking the lower bound of the BCa confidence interval is recommended; with
30 ≤ n ≤ 50 the statistical power slightly differs between p and BCa confidence
intervals, whereas for n = 100 the difference is about 1% even for a 2-point scale,
therefore testing agreement via p confidence interval could be suggested because of
the less computation burden.
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Bayesian Analysis of ERG Models for
Multilevel, Multiplex, and Multilayered
Networks with Sampled or Missing Data

Johan Koskinen, Chiara Broccatelli, Peng Wang and Garry Robins

Abstract Social network analysis has typically concerned analysis of one type of
tie connecting nodes of the same type. It has however been recognised that people are
connected throughmultiple types of ties and that people in addition are affiliatedwith
multiple types of non-people nodes. Exponential random graph models (ERGM) is
a family of statistical models for social networks that at this point allows for a
number of different types of network data, including one-mode networks, bipartite
networks, multiplex data, as well as multilevel network data. Multilevel networks
have been proposed as a joint representation of associations between multiple types
of entities or nodes, such as people and organization, where two types of nodes gives
rise to three distinct types of ties. The typical roster data collection method may be
impractical or infeasible when the node sets are hard to detect or define or because of
the cognitive demands on respondents. Multilevel multilayered networks allow us to
consider a multitude of different sources of data and to sample on different types of
nodes and relations. We consider modelling multilevel multilayered networks using
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exponential random graph models and extend a recently developed Bayesian data-
augmentation scheme to allow for partially missing data. We illustrate the proposed
inference procedures for the case of multilevel snowball sampling and sampling with
error based on the Noordin Top network.

Keywords ERGM · Exchange algorithm · Missing data · Multilevel networks ·
Snowball sampling · Social networks

1 Introduction

Graphs have proven a powerful conceptualisation for studying social interaction
among individuals. In social network analysis (SNA), graphs can be used to repre-
sent people as nodes, with edges connecting nodes that are deemed to be socially
connected [44]. The use of SNA has not been limited to the study of ties among the
same types of nodes, and there is a long tradition, e.g. [2], of studying how people are
affiliated to other types of nodes in so-called two-mode networks. Similarly, there
has been extensive analysis of networks of multiple relationships on the same types
of nodes (e.g. [22, 46]). Kivelä et al. [10] coined the term ‘multilayered networks’
as a general framework for jointly designating multiple types of network data, such
as one-mode, two-mode, and multiplex networks, where researchers had typically
dealt with each instance separately. Lazega et al. [21] defined a ‘multilevel network’
as a network on two disjoint node sets, comprising three distinct types of ties.

The number of statistical models for modelling different types of network struc-
tures is ever growing [38]. Amongst these, exponential random graph models
(ERGM) [24], are increasingly recognised as one of the most successful approaches
for modelling network structure. Making explicit assumptions about the dependen-
cies among tie-variables [29, 40], ERGM prescribes a log-linear, exponential family
distribution with counts of different graph-configurations as their statistics. ERGMs
have been defined for undirected [7, 39], and directed one-mode networks [7, 34];
two-mode networks [1, 40, 43]; multiplex networks [22, 28]; one-mode networks
with valued ties [20, 32]; as well as fully multilevel networks [42, 45] and network
panel data [16]. With increasing complexity of data, the risk of having missing or
partially observed data increases, either because the network design mirrors that
information has been pulled from many different sources (as in the example of
Noordin Top used here), or that data collection becomes increasingly more difficult
with many dimensions. ERGMs provide us not only with a principled framework for
modelling dependence among tie-variables but by the same token it provides us with
a coherent model for data that we may use to account for data imperfections like
missing or non-sampled data. In situations where you are likely to have imperfect
information on network ties, availing yourself of the full set of tools that may be
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derived from a wider framework for networks may prove beneficial. Here we con-
sider the extension of previous Bayesian data-augmentation techniques [17, 18] for
partial or patchy multilevel multilayered data.

2 Data Structure

We assume two distinct set of nodes: A = {1, . . . , n} and B = {1, . . . ,m} where
we might observe ties among all combinations of nodes type. A tie thus belong
to either of the sets

(A
2

)
, A × B, or

(B
2

)
. For a set A, we use

(A
k

)
to denote the

set {{i1, i2, . . . , ik} : i1, i2, . . . , ik ∈ A, i1 < i2 < · · · < ik} of un-ordered k-tuples.
In the sequel we will use AA, AB, and BB as a notational shorthand for these edge-
sets, with the corresponding incidence matrices XAA, XAB , and XBB , respectively.

The element (XE )v, or XE,v when it is unambiguous, of matrix XE is equal to 1
if the edge v ∈ E belongs to the graph and 0 otherwise. A multilevel network may
be represented as a one-mode network with a blocked, symmetric adjacency matrix

X =
(
XAA XAB

XBA XBB

)

When extending binary one-mode networks to multiple relations (say ‘friendship’
and ‘advice’) it is convention to represent this as a collection of graphs or adjacency
matrices, one for each relation. For multilevel networks we by definition have dif-
ferent relations for different combinations of node-sets. Let the number of relations
be denoted by RE , for E = AA, AB, BB, with incidence matrices being defined as
X(r)

E = (X (r)
E,v), where X (r)

E,v = 1 if there is a tie on relation r = 0, . . . , RE − 1 for
edge-set E = AA, AB, BB. When the number of relations for E = AA, AB, BB
differ, we are not able to unambiguously define the multilayered network as a col-
lection of one-mode network with blocked, symmetric adjacency matrices.

For AA, AB, and BB define the binary indicator matrices DAA, DAB , and
DBB , each of which having elements DE,v of DE equal to 1 or 0 depending on
whether the corresponding tie-variable v is observed or not, respectively. For each
E = AA, AB, BB the indicators extend straightforwardly to account for more than
one relation. Thus, for example, if X(0)

AA represent friendship ties and X(1)
AA represent

advice ties, the correspondingmatricesD(0)
AA andD

(1)
AA would indicate what friendship

and advice ties were observed and which ones were not observed.
We follow the convention [23] of partitioning data X into observed Xobs = {Xv :

Dv = 1} and unobserved Xmiss = {Xv : Dv = 0} data, conditional on an outcome D.
For a given D we take (Xobs,Xmiss) to denote X reconstructed.
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3 Model Formulation

Frank and Strauss [7] derived ERGMs for one-mode networks from the so called
Markov dependence assumption that posited that for any two pairs {i, j} and {k, �}
of vertices of a graph, the tie-variables Xi, j⊥Xk�|X−(i, j),(k,�) if {i, j} ∩ {k, �} = ∅.
They proved that the Markov dependence assumption implied a log-linear model for
the collection of tie-variables that has as its sufficient statistics counts of different
network ‘configurations’ (incidentally echoing the conclusions drawnbyMoreno and
Jennings [26]). Snijders et al. [39] elaborated on the Markov model by proposing
parameters derived from the so called social circuit dependence assumption. The
general form of ERGM is

p(X|θ) = exp{q(X; θ) − ψ(θ)}

where the normalising constantψ(θ) = ∑
Y∈X exp{q(Y; θ)} and q(X; θ) is a poten-

tial dependent on the structure of the network and a p × 1 vector θ ∈ � = {θ ∈ R
p :

ψ(θ) < ∞} of statistical parameters. This general form is agnostic to the specific
dependencies we may hypothesis for a particular type of network object. For undi-
rected one-mode network, themodel of Frank and Strauss [7] has the potential written
as a weighted sum of sufficient graph statistics

q(X; θ) =
ps∑

r

θSr

∑

I∈A

(
Xi+
r

)
+ θT

∑

(i, j,k)∈(A
3)

Xi j Xik X jk

where the statistics correspond to two distinct categories of statistics, namely stars
and triangles (in the expression Xi+ = ∑

j Xi j ). ERGmodels have been proposed for
two-mode networks [1, 37, 43] and multiplex networks [28]. The modelling family
has also been extended to the joint analysis of ties between different types of nodes
[45] and for fully defined multilevel networks by Wang et al. [42]. Wang et al. [42]
factor the function q(X; θ)

q(X; θ) = θ�
AAz(XAA) + θ�

BBz(XBB) + θ�
ABz(XAB)

+ θ�
AA,BBz(XAA,XBB) + θ�

AA,ABz(XAA,XAB) + θ�
BB,ABz(XBB,XAB)

+ θ�
AA,BB,ABz(XAA,XBB,XAB)

to explicitly allow for different dependencies depending on what edge-sets are
considered. For example, z(XAA) only involves statistics calculated on AA while
z(XAA,XBB) involves crossed statistics, calculated for ties in

(A
2

) × (B
2

)
. With mul-

tiple relations, statistics can be further partitioned, so that the linear predictors take
into account dependencies between different types of ties between different types
of nodes. Considering for example the interactions between ties in AA and AB, we
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have

θ�
AA,ABz(XAA,XAB) =

RAA−1∑

s=0

RAB−1∑

t=0

θ�
AA,AB,st z(X

(s)
AA,X

(t)
AB)

The interpretation is that a tie of type s among pairs in AAmay depend on affiliation
of nodes in Awith nodes in B of type t . For a recent treatment of properties of ERGM
see [15, 19, 35, 36].

3.1 Observation Process

Conditional on a realisation X, we assume an observation process

f (D|X, ζ )

where the parameter ζ is distinct [23] from θ . The observation processmay be thought
of equivalently as a missing data generating mechanism or a sampling design, such
as snowball sampling, for purposes of inference [9]. If we assume that tie-variables
are observed conditionally independently conditional on X, f (·) can be modelled
as a regular log-linear model with a standard link function. Given that D has the
same range-space X as X, the observation indicators can also be modelled using an
ERGM. Inference for an informative, missing not at random (MNAR) [23] process
will however be contingent on informative priors.

4 Estimation

The posterior distribution of θ given X is doubly intractable as ψ(θ) in the likeli-
hood as well as the normalising constant of the posterior are intractable. Markov
chain Monte Carlo (MCMC) methods do not require that the normalising constant
of the posterior is analytically tractable but need the likelihood to be available in
closed form. Numerically, the likelihood can be evaluated by estimating the ratios
of normalising constants [11] in each update of the parameters. Møller et al. [25]
demonstrated that such an algorithm can be a proper MCMC even in the case of the
importance sample being of size 1. It has been shown, however, that an improved
sampler is required for ERGs [12]. Caimo and Friel [5] proposed a modified, approx-
imate exchange algorithm [27] adopted to ERG models. This is an ‘exact’ MCMC
when samples from the ERGM can be sampled perfectly [30].

We build on a recently proposed Bayesian data-augmentation scheme for doing
inference for one-mode ERGM under the assumption of ‘missing at random’ (MAR)
[18] (for a definition of MAR see [23]). A Markov chain Monte Carlo (MCMC)
scheme is constructed by drawing from the joint posterior of (θ,Xmiss, ζ ) using
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updating steps that update from (θ (t−1),Xmiss,(t−1), ζ (t−1)) to (θ (t),Xmiss,(t), ζ (t)).
Conditional on D, θ is updated using the approximate exchange sampler [5]:

(a) Draw η from h(η|θ(t−1))

(b) Draw Y from p(Y|η) = exp{q(Y; η) − ψ(η)}
(c) With probability min{1, H}, set η(t) := θ(t−1) and θ(t) := η where

H = p(Xobs,Xmiss,(t−1)|η)π(η)h(θ(t−1)|η)p(Y|θ(t−1))

p(Xobs,Xmiss,(t−1)|θ(t−1))π(θ(t−1))h(η|θ(t−1))p(y|η)

= exp{q(Xobs,Xmiss,(t−1); η) + q(Y; θ(t−1))

−q(Xobs,Xmiss,(t−1); θ(t−1)) − q(Y; η)}π(η)/π(θ(t−1))

otherwise η(t) := η and θ(t) := θ(t−1)

In (a), h(·) is a symmetric proposal distribution, typically a multivariate Gaussian
distribution. In the exchange sampler [27], updating steps (a) and (b) are performed
by drawing directly from the conditional distributions in a Gibbs update. Generally
for ERGM (b) will have to be performed through MCMC, meaning that the algo-
rithm for drawing from the posterior is not a proper MCMC scheme. For a related
auxiliary variable MCMC, convergence was monitored through running multiple,
parallel, coupled chains [12], approximating a perfect sampler [30]. While Butts [4]
demonstrate that a proper perfect sampling scheme may be constructed for ERGMs,
mixing time may be considerably longer compared to common heuristics for deter-
mining burnin (see e.g. [14]). Here we chose the latter, in which case the MCMC
scheme is approximate in the sense that (b) is not guaranteed to be a proper draw.

Koskinen et al. [18] propose to update Xmiss under the assumption of missing at
random (MAR) for one-mode networks. Whereas MAR implies

f (D|Xobs,Xmiss, ζ ) = f (D|Xobs, ζ ),

we relax the assumption of MAR and allow for D to depend on all of X. The modi-
fication of the updating-step for missing data is to draw Xmiss given the rest from the
full conditional posterior

π(Xmiss|Xobs, θ) = exp{q(Xobs,Xmiss; θ) − ψ(θ)} f (D|Xobs,Xmiss, ζ )π(ζ )
∑

Ymiss exp{q(Xobs,Ymiss; θ) − ψ(θ)} f (D|Xobs,Ymiss, ζ )π(ζ )

The conditional distribution of ζ (t) simplifies to a distribution proportional to
f (D|Xobs,Xmiss, ζ )π(ζ ). If the distribution f (·) is not fully tractable, draws of ζ

cannot be made directly. Assuming that it is straightforward to draw D from f (·), ζ
can be updated using steps (a), (b) and (c), with f (·) playing the role of p(·).
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5 Empirical Illustration

We provide a brief empirical case-study using the ‘Noordin Top’ Terrorist Network
[6]. The node set A consists of n = 79 individuals where RAA = 5 for the relations
‘classmates’, ‘communication’, ‘kinship’, ‘friendship’, and ‘soulmates’. The affilia-
tion nodes B may be construed in a number of ways as a number of different types
of affiliations are reported. We can treat the RAB = 9 different types of affiliations as
multiplex ties, with the interpretation that an affiliation node may be identified by the
type of tie. For example, ifX(s)

AB represent people’s affiliations to meetings,X(t)
AB may

represent people’s religious affiliations and the number of columns for s and t do
not necessarily need to be the same. A multilevel multilayered configuration could
for example be the extent to which peoples’ religious and meeting affiliations align
with their friendships r ,

∑
i< j (X

(r)
AA)i j

∑
k

∑
�(X

(s)
AB)ik(X

(s)
AB) jk(X

(t)
AB)i�(X

(t)
AB) j�.

For the purposes of illustrationwe set RAA = 1 and use the friendship ties reported
in Everton for AA. We furthermore collapse the three relations meetings, training,
and operations [31], creating a single relation XAB with m = 50. To construct ties
BB among events, we have elaborated on the time-stamped version of Broccatelli,
Everett and Koskinen [3] and coded the explicitly mentioned connections between
different events and operations in the International Crisis Group Report [8]. For the
purposes of illustration, the event-by-event network is considered fixed and exoge-
nous. Furthermore, we condition on the overall activity of the network, fixing the
number of ties in both AA and BB. Consequently, all analyses have to be inter-
preted conditionally on the overall number of event participations and total number
of friendship ties. We denote by di,E = ∑

j �=i (XE )i j the degree of node i on the
relation E . The resulting network is graphed in Fig. 1.

We fit a model to the Noordin Top network that has as statistics z(·) counts of
the configurations in Fig. 2 (these are described in more detail in Wang et al. [41]).
These statistics have the form:

(a) ASA:
∑n−1

k=2(−1)k Sk/λk−2
s , Sk = ∑

1≤i≤n

(di,AA
k

)
.

(b) ATA: 3T1 − T2/λt + · · · + (−1)n−3Tn−2/λ
n−3
t , k = 2, . . . , n − 1, Tk = ∑

i< j

(XAA)i j
(L2i j

k

)
, L2i j = ∑

h �=i, j (XAA)ih(XAA)h j
(c) star2AX:

∑
1≤i≤n di,AAdi,AB

(d) star2BX:
∑

1≤ j≤m d j,ABd j,BB

(e) TriangleXBX:
∑

1≤i≤n

∑
1≤ j<h≤m(XAB)i j (XAB)ih(XBB) jh

(f) XACB:
∑

1≤i< j≤n

∑
1≤h<�≤m(XAB)ih(XAB) jh(XAB)i�(XAB) j�

For the completely observed network, summaries of the posteriors for the corre-
sponding parameters are provided in Table2. Typical for one-mode network we find
strong support for triadic closure (the 95% CI for ATA is (0.341, 1)) but also strong
support for people taking part in events that are functionally related to other events
that they take part in (the 95% CI for TriangleXBX is (0.786, 1.859)). For the affil-
iations, we note that being central in the one-mode friendship network is associated
with taking part in many events (Star2AX). In addition, individuals tend to cluster
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Fig. 1 The multilevel network of Noordin Top. Nodes are people and events. Node size is propor-
tional to degree

Fig. 2 Configurations of multilevel ERGM for Noordin Top (configurations a, b, and f are geo-
metrically weighted)



Bayesian Analysis of ERG Models for Multilevel, Multiplex, … 113

around events in four-cycles, something that might reflect recruitment processes [13,
33] or simply reflect team structure.

5.1 Multilevel Snowball Sampling

We now consider a hypothetical data collection scenario, where we aim to learn
the ties of the network through multilevel snowball sampling. We snowball using
Operation 3 as our seed (this is the 2004 Australian embassy bombing that took place
on 9 September 2004 in Jakarta, Indonesia, killing 9–11 people and injuring more
than 150 people). The tacit assumption in this hypothetical data collection scenario
is that the observer starts exploring the network by recording anyone involved in this
bombing. Anyone who participated in this operation is defined as being in wave 1,
and anyone who is not in wave 1 but is tied to anyone in wave 1, belongs to wave
2. Conditional on X, D is completely determined by the choice of seed node and
non-sampled tie-variables are MAR [9, 17, 18].

The snowball sample obtained from using Operation 3 as seed node is illustrated
in Fig. 3. Row 38 (from top) are the affiliations of Operation 3. We fit the model to
the snowball sample as in Sect. 4, treating non-sampled ties as MAR. The results in
Table2 are qualitatively the same as for the model with completely observed data.
Compared to the complete data posteriors, the sampling approach has increased
uncertainty somewhat. For example, the 95% credibility interval for TriangleXBX
is (0.786, 1.859) for the complete data and (0.769, 1.863) given the sampled data.

Fig. 3 Adjacency matrix
(events: rows 1 trough 50;
people: rows 51 through
129) for Noordin Top (filled
dot indicating (X)i j = 1).
For snowball sample
(D)i j = 1 indicated by ×.
Circles are ties predicted in
one iteration of the MCMC
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5.2 Sampling with Error

Another data collection scenario is that information gathering is focused on one or
several important individuals. Again, a focal individual can serve as the seed node
in a snowball sample, in which case the previous approach applies. Alternatively,
we may assume that the analysts is gathering intelligence is such a way that indi-
viduals that are close to the focal actor are more visible that individuals that are far
from the focal actor. For each tie-variable (i, j), we define independently Pr(Di j =
1|X, ζ ) = Pr(Di j = 1|hi j (X), ζ ), where hi j (X) = max{di (X), d j (X)}, where di (X)

is the distance in X between i ∈ A, B and Noordin Top (all ties in BB are assumed
fixed and known). We model the probabilities Pr(Di j = 1|hi j (X), ζ ) as in Table1,
with the interpretation that ties that are further from the leader Noordin Top are less
visible that ties close to him.

In contrast to howD is defined in snowball sampling, the missingness mechanism
now depends explicitly on unobserved data and is therefor MNAR. Consider for
example the case of j being connected to a cut point i . The distance hi j (X) clearly
depends on (X)i j and if (D)i j = 0, then data are MNAR. (To simplify the situation,
we do not remove ties between events B, as the event by event network is considered
exogenous and fixed).

We fit a model under the assumption that we know probabilities in Table1. The
results in Table2 indicate that effects corresponding to clustering is attenuated (the
CI for ATA is (0.341, 1) for complete data and (−0.108, 0.727) for the MNAR
case) but degree-related effects are amplified (with the exception of XASA). These
changes are a natural consequence of the observation process respecting distance but
not necessarily clustering.

Table 1 Detection bias in MNAR observation mechanism for Noordin Top

hi j (x) 1 2 3 4 >4

nh(x) 1122 6360 6090 1190 1750

Pr(Di j |x) 0.99 0.75 0.5 0.25 0.15

Table 2 Posterior summaries for ERGM fitted to Noordin Top

Effect No missing Snowball sample MNAR

Mean Std Mean Std Mean Std

ASA 0.162 0.215 0.160 0.229 0.662 0.264

ATA 0.673 0.169 0.637 0.177 0.29 0.201

Star2AX 0.106 0.020 0.106 0.020 0.129 0.021

Star2BX −0.014 0.046 0.000 0.049 0.022 0.06

TriangleXBX 1.322 0.273 1.299 0.278 1.191 0.293

XASA 0.185 0.205 0.337 0.213 0.037 0.212

XACB 0.106 0.029 0.091 0.035 0.069 0.046
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6 Conclusions and Future Directions

Wehave proposed a statistical approach for analysing the structure of multilevel mul-
tilayered networks that account for imperfections in data. We provide an illustrative
example of analysis of a multilevel network for three types of observation processes.
While the approach is consistent when the observation process is known, a MNAR
process requires making a number of untestable assumptions and is most likely of
use merely as a sensitivity analysis. Further work is needed in order to systematically
investigate the sensitivity of MNAR to different plausible MNAR mechanisms.
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Bayesian Kantorovich Deconvolution in
Finite Mixture Models

Catia Scricciolo

Abstract This chapter addresses the problem of recovering the mixing distribution
in finite kernel mixture models, when the number of components is unknown, yet
bounded above by a fixed number. Taking a step back to the historical development
of the analysis of this problem within the Bayesian paradigm and making use of the
current methodology for the study of the posterior concentration phenomenon, we
show that, for general prior laws supported over the space ofmixing distributionswith
at most a fixed number of components, under replicated observations from the mixed
density, the mixing distribution is estimable in the Kantorovich or L1-Wasserstein
metric at the optimal pointwise rate n−1/4 (up to a logarithmic factor), n being the
sample size.

Keywords Dirichlet distribution · Kantorovich metric · Kolmogorov metric ·
Mixing distribution · Mixture model · Posterior distribution · Rate of
convergence · Sieve prior · Wasserstein metric

1 Introduction

The Bayesian analysis of the problem of recovering the unknownmixing distribution
in mixture models has recently attracted much attention and stimulated an active
discussion encouraging new ideas. Several papers–including [Efron [4], Gao and van
der Vaart [5], Heinrich and Kahn [9], Ishwaran et al. [11], Nguyen [14], Scricciolo
[18]]–have been devoted to the investigation of this topic, with extensive comparisons
with the frequentist solutions. In order to introduce the problem, suppose that x �→
k(x | y) is a probability density for every y ∈ Y ⊆ R, where (Y , B) is ameasurable
space. If the mapping (x, y) �→ k(x | y) is jointly measurable, then
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pG(x) :=
∫
Y

k(x | y) dG(y), x ∈ R, (1)

defines a probability density on R for every probability measure G on (Y ,B),
whose collection is indicated by G . The cumulative distribution function of the
mixed density in (1) is denoted by

FG(x) =
∫ x

−∞
pG(u) du, x ∈ R.

Suppose we observe n independent random variables X1, . . . , Xn identically dis-
tributed according to the mixed density

p0(x) ≡ pG0(x) =
∫
Y

k(x | y) dG0(y), x ∈ R.

We denote by F0 the cumulative distribution function of the density p0, namely,

F0(x) ≡ FG0(x) =
∫ x

−∞
p0(u) du, x ∈ R.

The interest is in recovering the unknown mixing distribution G0 ∈ G from observa-
tions of the random sample X (n) := (X1, . . . , Xn). The formulation of the problem
applies to both finite and infinite mixtures, but the focus of this chapter is primarily
on the case when the sampling density is a mixture with an unknown, but bounded
above number of components.

The problem has been initially studied from the frequenstist perspective by Chen
[1], who established that, when p0 has an unknown number of components d0 such
that 1 ≤ d0 ≤ N , for some fixed integer N , then the optimal rate for estimating the
mixing distribution G0 is only n−1/4 and this rate is achievable, under identifiability
conditions, by some minimum distance estimator. Even if Theorem 2 in Chen [1], p.
226, is not correct because of Lemma 2 it relies on, an emended version of Lemma 2
has been recently given by Heinrich and Kahn [9] in assertion (21) of their Theorem
6.3, p. 2857, by comparing a fixedmixture with all the mixtures havingmixing distri-
butions in an L1-Wasserstein ball, instead of comparing all possible pairs of mixtures
in a ball. As a consequence, Theorem 2 of Chen [1] remains valid by dropping uni-
formity over an L1-Wasserstein ball and the statement is weakened to an assertion on
the optimal pointwise rate of estimation: for any fixed mixing distribution, say G0,
the minimum distance estimator converges at n−1/4-rate, but with a multiplicative
constant that may depend on G0. The first Bayesian analysis of the problem we are
aware of traces back to Ishwaran et al. [11], who define a prior law over the space
of all mixing distributions with at most N components, the mixture weights being
assigned an N -dimensional Dirichlet distribution with a non-informative choice for
the shape parameters that are all set equal to α/N for a positive constant α. Under
conditions similar to those postulated by Chen [1], which, in particular, employ the
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notion of strong identifiability inmixturemodels, they prove that Bayesian estimation
of the mixing distribution in the Kantorovich metric is possible at the optimal rate
n−1/4, up to a log n-factor. More recently, posterior convergence rates for estimating
the mixing distribution in the L2-Wasserstein metric for finite mixtures of multivari-
ate distributions have been discussed by Nguyen [14] following a different line of
reasoning. In this chapter, we show that, by combining the approach of Ishwaran et
al. [11], which instrumentally uses posterior contraction rates in the sup-norm for the
distribution function and strong identifiability to shift to the Kantorovich distance
betweenmixing distributions, with the currentmethodology for the study of posterior
contraction rates, which can by now count upon many refined results for small ball
prior probability estimates, the mixing distribution is estimable in the Kantorovich
or L1-Wasserstein metric at the optimal rate n−1/4 (up to a logarithmic factor) for
a large class of prior laws over the space of mixing distributions with at most N
components, under less stringent conditions than those used in Ishwaran et al. [11]
or in Nguyen [14]. Many aspects of this fundamental statistical problem still remain
unclear and we hope to contribute to a better understanding of it in a follow-up study.

Before introducing the notation, a remark on the use of the term “Bayesian de-
convolution” is in order. This phrase has been recently introduced by Efron [4] to
describe a maximum likelihood procedure for estimating the mixing distribution in
general mixture models of the form in (1). Even if the mixtures herein considered
are not necessarily convolution kernel mixtures, we liked the evocative power of the
expression to recall the general inverse problem of recovering the unknown mixing
distribution.

Notation. In this paragraph, we set out the notation and recall some definitions used
throughout the chapter.

– The symbols “�” and “�” indicate inequalities valid up to a constant multiple that
is universal or fixed within the context, but anyway inessential for our purposes.

– All probability density functions aremeant to be with respect to Lebesguemeasure
λ on R or on some subset thereof.

– The same symbol, say G, is used to denote a probability measure on (Y , B) as
well as the corresponding cumulative distribution function.

– Thedegenerate probability distributionputtingmass one at a point y ∈ R is denoted
by δy .

– The notation P f stands for the expected value
∫

f dP , where the integral is un-
derstood to extend over the entire natural domain when, here and elsewhere, the
domain of integration is omitted. With this convention, for the empirical measure
Pn := n−1 ∑n

i=1 δXi associated with the random sample X1, . . . , Xn , namely, the
discrete uniform distribution on the sample values that puts mass 1/n on each one
of the observations, the notation Pn f abbreviates the formula n−1 ∑n

i=1 f (Xi ).
– For every pair xN , yN ∈ R

N , ‖xN − yN‖�1 stands for the �1-distance
∑N

j=1 |x j −
y j |.

– For a probability measure Q on (R, B(R)), let q denote its density. For any ε > 0,
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BKL(P0; ε2) :=
{
Q : P0

(
log

p0
q

)
≤ ε2, P0

(
log

p0
q

)2

≤ ε2

}

denotes a Kullback-Leibler type neighborhood of P0 of radius ε2. Defined, for
every α ∈ (0, 1], the divergence ρα(P0‖Q) := (1/α)[P0(p0/q)α − 1], see Wong
and Shen [21], pp. 351–352,

Bρα
(P0; ε2) := {

Q : ρα(P0‖Q) ≤ ε2
}

is the ρα-neighborhood of P0 of radius ε2. The definition of ρα extends to
negatives values of α ∈ (−1, 0). In particular, for α = −1/2, the divergence
ρ−1/2(P0‖Q) = −2

∫
p0[(q/p0)1/2 − 1] dλ = ∫

(p1/20 − q1/2)2 dλ is the squared
Hellinger distance. We can thus define the followingHellinger type neighborhood
of P0 of radius ε2:

Bρ−1/2‖·‖∞(P0; ε2) :=
{
Q : ρ−1/2(P0‖Q)

∥∥∥∥ p0
q

∥∥∥∥∞
≤ ε2

}
.

– For any real number p ≥ 1 and any pair of probability measuresG1, G2 ∈ G with
finite pth absolute moments, the L p-Wasserstein distance between G1 and G2 is
defined as

Wp(G1, G2) :=
(

inf
γ∈	(G1,G2)

∫
Y ×Y

|y1 − y2|p γ (dy1, dy2)

)1/p

,

where 	(G1, G2) is the set of all joint probability measures on (Y × Y ) ⊆ R
2,

with marginal distributions G1 and G2 on the first and second arguments, respec-
tively.

2 Main Results

This section is devoted to expose the main results of the chapter and is split into
two parts. In the first one, preliminary results on Bayesian estimation of distribution
functions in the Kolmogorov metric, which are valid for a large class of prior laws,
are presented and some issues highlighted. In the second part, arguably the most
relevant, attention is restricted to finite mixtures with an unknown, but bounded
above number of components and Bayesian estimation of the mixing distribution
in the Kantorovich metric at the optimal rate n−1/4 (up to a logarithmic factor) is
discussed.

Posterior Concentration of Kernel Mixtures in the Kolmogorov Metric

The following assumption will be hereafter in force.
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Assumption A. Let

εn :=
(
log n

n

)1/2

Ln, n ∈ N, (2)

where, depending on the prior concentration rate on small balls around P0, the se-
quence of positive real numbers (Ln) can be either slowly varying at +∞ or degen-
erate at an appropriate constant L0.

Comments on the two possible specifications of (Ln) in connection with the prior
concentration rate are postponed to Lemma 1, which provides sufficient conditions
on the distribution function F0 and the prior concentration rate εn for the posterior
to contract at a nearly

√
n-rate on Kolmogorov neighborhoods of F0. We warn the

reader that, unless otherwise specified, in all stochastic order symbols used hereafter,
the probabilitymeasureP is understood to be Pn

0 , the joint law of the first n coordinate
projections of the infinite product probabilitymeasure P∞

0 .Also,Πn stands for a prior
law, possibly depending on the sample size, over the space of probability measures
{PG, G ∈ G }, with density pG as defined in (1).

Lemma 1 Let F0 be a continuous distribution function. If, for a constant C > 0 and
a sequence εn as defined in (2), we have

Πn(BKL(P0; ε2n)) � exp (−Cnε2n), (3)

then, for Mn �
√

(C + 1/2)Ln,

Πn

(√
n sup

x
|(FG − F0)(x)| > Mn(log n)1/2 | X (n)

)
= oP(1). (4)

Proof The posterior probability of the event

Ac
n :=

{
G : √

n sup
x

|(FG − F0)(x)| > Mn(log n)1/2
}

is given by

Πn(A
c
n | X (n)) =

∫
Ac
n

∏n
i=1 pG(Xi )Πn(dG)∫

G

∏n
i=1 pG(Xi )Πn(dG)

.

We construct (a sequence of) tests (φn) for testing the hypothesis

H0 : P = P0 versus H1 : P = PG, G ∈ Ac
n,

where φn : ≡ φn(X (n); P0) : X n → {0, 1} is the indicator function of the rejection
region of H0, such that
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Pn
0 φn → 0 as n → +∞

and sup
G∈Ac

n

Pn
G(1 − φn) ≤ 2 exp (−2(Mn − K )2 log n) for sufficiently large n,

with a finite constant K > 0 and a sequence Mn > K for every n large enough.
Define the test

φn := 1Rn , with Rn :=
{
x (n) : √

n sup
x

|(Fn − F0)(x)| > K (log n)1/2
}
,

where Fn is the empirical distribution function, that is, the distribution function
associated with the empirical probability measure Pn of the sample X (n). Since x �→
F0(x) is continuous by assumption, in virtue of the Dvoretzky–Kiefer–Wolfowitz
[3] (DKW for short) inequality, with the tight universal constant in Massart [13], the
type I error probability Pn

0 φn can be bounded above as follows

Pn
0 φn = Pn

0 (Rn) ≤ 2 exp (−2K 2 log n).

Then,
En
0 [Πn(A

c
n | X (n))φn] ≤ Pn

0 φn ≤ 2 exp (−2K 2 log n), (5)

where En
0 denotes expectation with respect to Pn

0 , and

En
0 [Πn(A

c
n | X (n))] = En

0 [Πn(A
c
n | X (n))φn] + En

0 [Πn(A
c
n | X (n))(1 − φn)]

≤ 2 exp (−2K 2 log n) + En
0 [Πn(A

c
n | X (n))(1 − φn)].

It remains to control the term En
0 [Πn(Ac

n | X (n))(1 − φn)]. Defined the set

Dn :=
{
x (n) :

∫
G

n∏
i=1

pG
p0

(xi )Πn(dG) ≤ Πn(BKL(P0; ε2n)) exp (−(C + 1)nε2n)

}
,

consider the following decomposition

En
0 [Πn(A

c
n | X (n))(1 − φn)] = En

0 [Πn(A
c
n | X (n))(1 − φn)(1Dn + 1Dc

n
)].

It is known from Lemma 8.1 of Ghosal et al. [7], p. 524, that Pn
0 (Dn) ≤ (C2nε2n)

−1.
It follows that

En
0 [Πn(A

c
n | X (n))(1 − φn)1Dn ] ≤ Pn

0 (Dn) ≤ (C2nε2n)
−1. (6)

By the assumption in (3) and Fubini’s theorem,
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En
0 [Πn(A

c
n | X (n))(1 − φn)1Dc

n
] � exp ((2C + 1)nε2n)

∫
Ac
n

Pn
G(1 − φn)Πn(dG).

(7)
The following arguments are aimed at finding an exponential upper bound on
supG∈Ac

n
Pn
G(1 − φn). By the triangular inequality, over the set Rc

n , for every G ∈ Ac
n ,

Mn(log n)1/2 <
√
n sup

x
|(FG − F0)(x)|

≤ √
n sup

x
|(FG − Fn)(x)| + √

n sup
x

|(Fn − F0)(x)|
≤ √

n sup
x

|(FG − Fn)(x)| + K (log n)1/2,

which implies that

√
n sup

x
|(FG − Fn)(x)| > (Mn − K )(log n)1/2.

Since x �→ FG(x) := ∫ x
−∞ pG(u) du is continuous, by applying again the DKW’s

inequality, we obtain that

sup
G∈Ac

n

Pn
G(1 − φn) ≤ sup

G∈Ac
n

Pn
G

(√
n sup

x
|(FG − Fn)(x)| > (Mn − K )(log n)1/2

)

≤ 2 exp (−2(Mn − K )2 log n).

Combining the above assertion with (7), we see that

En
0 [Πn(A

c
n | X (n))(1 − φn)1Dc

n
] � 2 exp (−[2(Mn − K )2 − (2C + 1)L2

n] log n),

(8)
where the right-hand side of the above inequality tends to zero provided that (Mn −
K ) >

√
(C + 1/2)Ln for every sufficiently large n. The in-probability convergence

in (4) follows from (5), (6) and (8). This concludes the proof. �

Some remarks and comments on Lemma 1 are in order.

• The first one aims at spelling out the assumptions used in the proof, some of which
could otherwise erroneously seem to be confined to the context of finite mixture
models, as well as at clarifying their role. Given the prior concentration rate εn as
defined in (3), which depends on the prior distribution Πn and the “point” P0, the
only further assumption used is the continuity of the distribution functions F0 and
FG , which is satisfied for Lebesgue dominated probability measures P0 and PG .
This condition is used to control the type I and type II error probabilities of the
(sequence of) tests (φn) by the DKW’s inequality. It is, instead, in no way used
the assumption that the density pG is modeled as a mixture, so that, even if the
result has its origin in the context of finite mixtures, it applies to general dominated
models and a nearly parametric (up to a logarithmic factor) prior concentration
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rate is the only driver and determinant of posterior contraction.

• Lemma 1 has its roots in Theorem 2 of Ishwaran et al. [11], p. 1324 (see pp. 1330–
1331 for the proof), which deals with finitemixtures having an unknown number of
components d0, yet bounded above by an integer N , namely, 1 ≤ d0 ≤ N < +∞,
while the prior is supported over the space of all mixing distributions with at most
N components, the mixture weights being assigned an N -dimensional Dirichlet
distribution with a non-informative choice for the shape parameters that are all
set equal to α/N for a positive constant α. Nonetheless, as previously remarked,
Lemma 1 has a broader scope of validity and applies also to infinite kernel mixtures
with other prior laws for the mixing distribution than the Dirichlet process, which
“locally” attain an almost parametric prior concentration rate. This is the case
for Dirichlet location or location-scale mixtures of normal densities and, more in
general, for location-scale mixtures of exponential power densities with an even
integer shape parameter, when the sampling density is of the same form as the as-
sumedmodel, withmixing distribution being either compactly supported or having
sub-exponential tails, see Ghosal and van der Vaart [8], Scricciolo [16], Theorems
4.1, 4.2 and Corollary 4.1, pp. 285–290. In all these cases, the prior concentration
rate is (at worst) εn = n−1/2 log n, where Ln = (log n)1/2. An extension of the pre-
vious results to convolution mixtures of super-smooth kernels, with Pitman-Yor or
normalized inverse-Gaussian processes as priors for the mixing distribution, for
which Lemma 1 also holds, is considered in Scricciolo [17], see Theorem 1, pp.
486–487. Another class of priors on kernel mixtures to which Lemma 1 applies
is that of sieve priors. For a given kernel, a sieve prior is defined by combining
single priors on classes of kernel mixtures, each one indexed by the number of
mixture components, with a prior on such random number. A probability measure
with kernel mixture density is then generated in two steps: first the model index,
i.e., the number of mixture components, is selected; then a probability measure
is generated from the chosen model according to a prior on it. When the true
density p0 is itself a kernel mixture, the prior concentration rate can be assessed
by bounding below the probability of Kullback-Leibler type neighborhoods of P0
by the probability of �1-balls of appropriate dimension. In fact, approximation
properties of mixtures under consideration can be exploited to find a good fitting
distribution of the sampling density in a proper subclass. More precisely, any finite
kernel mixture can be approximated arbitrarily well (in the distance induced by
the L1-norm) by mixtures having the same number of components, the mixture
components and weights taking values in �1-neighborhoods of the corresponding
true elements. The number of mixture components is then constant, this leading
to the prior concentration rate εn ∝ (n/ log n)−1/2, where Ln ≡ L0. Examples of
sieve priors in which, for every choice of the model index, the mixture weights are
jointly distributed according to a Dirichlet distribution, are provided by the Bern-
stein polynomials, see Theorem 2.2 of Ghosal [6], pp. 1268–1269, by histograms
and polygons, see Theorem 1 of Scricciolo [15], pp. 629–630 (see pp. 636–637 for
the proof). If, as a special case, a single prior distribution on kernel mixtures with
a sample size-dependent number N ≡ Ln of mixture components is considered,
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then the prior concentration rate is εn = (n/ log n)−1/2Ln for any arbitrary slowly
varying sequence Ln → +∞.

We now state sufficient conditions on the kernel density and the prior distributions
for the mixture atoms and weights so that the overall prior on kernel mixtures with
(at most) N components verifies condition (3) for εn ∝ (n/ log n)−1/2, when the
sampling density is itself a kernel mixture with 1 ≤ d0 ≤ N components. The aim
of this analysis is twofold: first, to provide less stringent requirements on the kernel
density than those postulated in condition (b) employed in Theorem 2 of Ishwaran et
al. [11], p. 1324, which relies on Lemma 4 of Ishwaran [10], pp. 2170–2171; second,
to generalize the aforementioned result to a class of prior distributions on the mixture
weights that comprises the Dirichlet distribution as a special case. The density pG is
modeled as

pG(·) =
N∑
j=1

wjk(· | y j ),

with a discrete mixing distribution G = ∑N
j=1 wjδy j . The vector wN := (w1, . . . ,

wN ) of mixing weights has a prior distribution π̃N on the (N − 1)-dimensional
simplex ΔN := {wN ∈ R

N : 0 ≤ wj ≤ 1, j = 1, . . . , N ,
∑N

j=1 wj = 1} and the
atoms y1, . . . , yN are independently and identically distributed according to a prior
distribution π . We shall also use the notation yN for (y1, . . . , yN ). The model can
be thus described:

• the random vectors yN and wN are independent;
• given (yN , wN ), the random variables X1, . . . , Xn are conditionally independent
and identically distributed according to pG .

The overall prior is then Π = π̃N × π⊗N . Let the sampling density p0 be itself a
finite kernel mixture, with 1 ≤ d0 ≤ N components,

p0(·) ≡ pG0(·) =
d0∑
j=1

w0
j k(· | y0j ),

where the mixing distribution is G0 = ∑d0
j=1 w

0
jδy0j for weights w0

d0
:= (w0

1, . . . ,

w0
d0

) ∈ Δd0 and support points y
0
d0

:= (y01 , . . . , y0d0) ∈ R
d0 . A caveat applies: if d0 is

strictly smaller than N , that is, 1 ≤ d0 < N , then the vectors w0
d0
and y0d0 are viewed

as degenerate elements ofΔN andRN , respectively, with coordinateswd0+1 = · · · =
wN = 0 and yd0+1 = · · · = yN = 0.

We assume that

(i) there exists a constant ck > 0 such that

‖k(· | y1) − k(· | y2)‖1 ≤ ck |y1 − y2| for all y1, y2 ∈ Y ;
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(ii) for every ε > 0 small enough and a constant c0 > 0,

π̃N ({wN ∈ ΔN : ‖wN − w0
N‖�1 ≤ ε}) � εc0N ;

(iii) the prior distribution π for the atoms has a continuous and positive Lebesgue
density (also denoted by π ) on an interval containing the support of G0.

Some remarks and comments on the previously listed assumptions are in order. Con-
dition (i) requires the kernel density k(· | y) to be globallyLipschitz continuous onY .
Condition (ii) is satisfied for a Dirichlet prior distribution π̃N = Dir(α1, . . . , αN ),
with parameters α1, . . . , αN such that, for constants a, A > 0, D ≥ 1 and, for
0 < ε ≤ 1/(DN ),

Aεa ≤ α j ≤ D, j = 1, . . . , N .

Using Lemma A.1 of Ghosal [6], pp. 1278–1279, we find that π̃N (N (w0
N ; ε)) �

exp (−c0N log(1/ε)) for a constant c0 > 0 depending only on a, A, D and
∑N

j=1 α j .

Proposition 1 Under assumptions (i)–(i i i), condition (3) is verified for

εn ∝ (n/ log n)−1/2.

Proof For every density pG , with mixing distribution G = ∑N
j=1 wjδy j having sup-

port points yN ∈ R
N and mixture weights wN ∈ ΔN , by assumption (i) we have

‖pG − p0‖1 �
N∑
j=1

w0
j‖k(· | y j ) − k(· | y0j )‖1 +

N∑
j=1

|wj − w0
j |‖k(· | y j )‖1

� ‖yN − y0N‖�1 + ‖wN − w0
N‖�1 .

Let 0 < ε ≤ [(1/2) ∧ (1 − e−1)/
√
2] be fixed. For yN ∈ R

N andwN ∈ ΔN such that
‖yN − y0N‖�1 ≤ ε and ‖wN − w0

N‖�1 ≤ ε, by LeCam [12] inequalities, p. 40, relating
the L1-norm and the Hellinger metric, the squared Hellinger distance between p0
and pG can be bounded above by a multiple of ε:

ρ−1/2(P0‖PG) =
∫

(p1/2G − p1/20 )2 dλ ≤ ‖pG − p0‖1 � ε.

Then, by Lemma A.10 in Scricciolo [16], p. 305, for a suitable constant c1 > 0,

⎧⎨
⎩pG : G =

N∑
j=1

w j δy j , ‖wN − w0
N ‖�1 ≤ ε, ‖yN − y0N ‖�1 ≤ ε

⎫⎬
⎭

⊆ BKL

(
P0; c1ε

(
log 1

ε

)2)
.
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Next, define the set N (w0
N ; ε) := {wN ∈ ΔN : ‖wN − w0

N‖�1 ≤ ε}. For ε > 0 small
enough, by assumption (i i),

π̃N (N (w0
N ; ε)) � exp (−c0N log(1/ε))

with an appropriate constant c0 > 0. Denoted by B(y0N ; ε) the y0N -centered �1-ball
of radius ε > 0,

B(y0N ; ε) := {yN ∈ R
N : ‖yN − y0N‖�1 ≤ ε},

by condition (iii) the prior probability of B(y0N ; ε) under the N -fold product measure
π⊗N can be bounded below as follows:

π⊗N (B(y0N ; ε)) ≥
N∏
j=1

π([y0j − (ε/N ), y0j + (ε/N )])

=
N∏
j=1

∫ y0j +(ε/N )

y0j −(ε/N )

π(y) dy � exp (−d1N log(1/ε))

for a positive constant d1. Therefore, for appropriate constants c1, d2 > 0,

Π(BKL(P0; c1ε| log ε|2)) � π̃N (N (w0
N ; ε)) π⊗N (B(y0N ; ε)) � exp (−d2N log(1/ε)).

Set ξ := (c1ε)1/2 log(1/ε), since log(1/ε) � log(1/ξ), we have Π(BKL(P0; ξ 2)) �
exp (−c2 log(1/ξ)) for a real constant c2 > 0 (possibly depending on p0). Replacing
ξ with εn , we get Π(BKL(P0; ε2n)) � exp (−c2nε2n) for sufficiently large n, and the
proof is complete. �

Inspection of the proof of Lemma 1 reveals that, under the small ball prior prob-
ability estimate in (3), we have

En
0 [Πn(A

c
n | X (n))] = O((nε2n)

−1).

The assertion of Lemma 1 can be enhanced to have

En
0 [Πn(A

c
n | X (n))] = O(exp (−B1nε2n))

by employing a small ball prior probability estimate involving stronger divergences.
The convergence in (4) then becomes almost-sure. Besides, due to the fact that the
posterior probability vanishes exponentially fast, namely, along almost all sample
sequences, for a finite constant B > 0, we have

Πn(A
c
n | X (n)) � exp (−Bnε2n) for all but finitely many n,
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the stochastic order of themaximumabsolute difference between F0 and the posterior
expected distribution function can be assessed, see Corollary 1 below.

Lemma 2 Under the conditions of Lemma 1, if the small ball prior probability
estimate in (3) is replaced by

Πn(Bρα
(P0; ε2n)) � exp (−Cnε2n), for α ∈ (0, 1], (9)

then, for Mn �
√

(C + 1/2)Ln,

Πn

(√
n sup

x
|(FG − F0)(x)| > Mn(log n)1/2 | X (n)

)
→ 0 P∞

0 -almost surely.

Proof The proof is an adaptation of that of Lemma 1. We therefore highlight only
the main changes. Taking a sequence Kn = θMn for any θ ∈ (0, 1), we have

En
0 [Πn(A

c
n | X (n))φn] ≤ Pn

0 φn ≤ 2 exp (−2θ2M2
n log n)

and

En
0 [Πn(A

c
n | X (n))(1 − φn)1Dc

n
] � 2 exp (−[2(1 − θ)2M2

n − (2C + 1)L2
n] log n),

with
Mn > (1 − θ)−1

√
(C + 1/2)Ln (10)

for every sufficiently large n. A straightforward extension of Lemma 2 in Shen
and Wasserman [19], p. 691 (and pp. 709–710 for the proof), yields that, for every
ξ ∈ (0, 1),

Pn
0

(
Dn ≤ ξΠn(Bρα

(P0; ε2n)) exp (−(C + 1)nε2n)
) ≤ (1 − ξ)−1 exp (−αCnε2n).

(11)
Considering Mn = I Ln for a finite constant I > (1 − θ)−1√(C + 1/2) so that con-
dition (10) is satisfied, by combining partial bounds we obtain that

En
0 [Πn(A

c
n | X (n))] � exp (−B1nε2n)

for an appropriate finite constant B1 > 0. For a constant B > 0,

Pn
0

(
Πn(A

c
n | X (n)) ≥ exp (−Bnε2n)

)
� exp

( − (B1 − B)nε2n
)
.

Choose 0 < B < B1. Since
∑∞

n=1 exp (−(B1 − B)nε2n) < +∞, almost sure conver-
gence follows from the first Borel-Cantelli lemma. �

Remark 1 The assertion of Lemma 2 still holds if the small ball prior probability
estimate in (9) is replaced by the requirement
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Πn(Bρ−1/2‖·‖∞(P0; ε2n)) � exp (−Cnε2n), (12)

which involves a Hellinger type neighborhood of P0. Then, a bound similar to that
in (11) is given in Lemma 8.4 of Ghosal et al. [7], pp. 526–527.

As previously mentioned, Lemma 2 allows to derive the stochastic order of the
maximum absolute difference between F0 and its Bayes’ estimator

FB
n (·) :=

∫
G
FG(·)Π(dG | X (n)),

namely, the posterior expected distribution function.

Corollary 1 Under the conditions of Lemma 2, we have

√
n sup

x
|(FB

n − F0)(x)| = OP(Mn(log n)1/2).

Proof By standard arguments,

√
n sup

x
|(FB

n − F0)(x)| = √
n sup

x

∣∣∣∣
∫
G
FG(x)Πn(dG | X (n)) − F0(x)

∣∣∣∣
≤

∫
G

√
n sup

x
|(FG − F0)(x)| Πn(dG | X (n))

=
(∫

An

+
∫
Ac
n

)√
n sup

x
|(FG − F0)(x)| Πn(dG | X (n))

≤ Mn(log n)1/2 + 2
√
nΠn(A

c
n | X (n))

� Mn(log n)1/2 for sufficiently large n

because condition (9) yields that, with probability one, for a finite constant B > 0,
the posterior probability

√
nΠn(Ac

n | X (n)) � √
n exp (−Bnε2n) for all but finitely

many n. The assertion follows. �

Posterior Concentration of the Mixing Distribution in the Kantorovich Metric

In this section, we deal with the case where the prior distributionΠ is supported over
the collection of finite kernel mixtures with at most N components. Sufficient condi-
tions are stated in Theorem 1 below so that the posterior rate of convergence, relative
to the Kantorovich or L1-Wasserstein metric, for the mixing distribution of over-
fitted mixtures is, up to a slowly varying sequence, (at worst) equal to (n/ log n)−1/4,
the optimal pointwise rate being n−1/4, cf. Chen [1], Sect. 2, pp. 222–224.

In order to state the result, we need to introduce some more notation. For every
y ∈ Y , we denote by K (x | y) the cumulative distribution function at x of the kernel
density k(· | y),
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K (x | y) :=
∫ x

−∞
k(u | y) du.

For clarity of exposition, we recall that F0 is the distribution function of the mixture
density p0 ≡ pG0 corresponding to the mixing distribution G0 having an unknown
number of components d0 bounded above by a fixed integer N .

Theorem 1 Under the conditions of Lemma 1, if, in addition,

(a) Y is compact,

(b) for all x ∈ R, K (x | y) is 2-differentiable with respect to y,

(c) {K (· | y) : y ∈ Y } is strongly identifiable in the sense of Definition 2 in Chen
[1], p. 225, equivalently, 2-strongly identifiable in the sense of Definition 2.2 in
Heinrich and Kahn [9], p. 2848,

(d) there exists a uniform modulus of continuity ω(·) such that

sup
x

|K (2)(x | y) − K (2)(x | y′)| ≤ ω(|y − y′|) with limh→0 ω(h) = 0,

then, for Mn �
√

(C + 1/2)Ln,

Π
(
n1/4W1(G, G0) >

√
Mn(log n)1/4 | X (n)

) = oP(1).

Proof Since Lemma 1 holds, we have

Π

(√
n sup

x
|(FG − F0)(x)| > Mn(log n)1/2 | X (n)

)
= oP(1). (13)

Consistently with the notation introduced in Lemma 1, we set

An :=
{
G : √

n sup
x

|(FG − F0)(x)| ≤ Mn(log n)1/2
}
.

Under assumptions (a)–(d), assertion (21) of Theorem 6.3 of Heinrich and Kahn [9],
p. 2857, holds true, this implying that, for every G ∈ An , the Kolmogorov distance
between the distribution functions FG and F0 is bounded below (up to a constant) by
the squared L1-distance between the mixing distributions G and G0, respectively:
there exists a constant C0 > 0 (possibly depending on G0) such that, for every G ∈
An ,

C0‖G − G0‖21 < sup
x

|(FG − F0)(x)| ≤ Mnn
−1/2(log n)1/2. (14)

Taking into account the following representation of the L1-Wasserstein distance

W1(G, G0) = ‖G − G0‖1,
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see, e.g., Shorack and Wellner [20], pp. 64–66, which was obtained by Dall’Aglio
[2], the assertion follows by combining (13) with (14). This concludes the proof. �

Some comments on the applicability and consequences of Theorem 1 are in order.

• Theorem 1, like Lemma 1, has its roots in Theorem 2 of Ishwaran et al. [11], p.
1324,which is tailored for finiteDirichletmixtures.However, thanks toProposition
1, which implies the conclusion of Lemma 1, meanwhile ensuring applicability to
a larger family of prior distributions, under conditions (a)–(d), the assertion that,
for sufficiently large constant M > 0, the convergence

Π
(
n1/4W1(G, G0) > M(log n)1/4 | X (n)

) → 0 in Pn
0 -probability

takes place, still holds. The present result differs from that of Theorem 5 inNguyen
[14], pp. 383–384, under various respects: the latter gives an assessment of poste-
rior contraction in the L2-Wasserstein, as opposed to the L1-Wasserstein metric,
for finite mixtures of multivariate distributions, under more stringent conditions
and following a completely different line of reasoning.

• As previously observed on the occasion of the transition from Lemma 1 to Lemma
2, if the small ball prior probability estimate in (3) is replaced with either that in
(9) or in (12), then the almost-sure version of Theorem 1

Π
(
n1/4W1(G, G0) >

√
Mn(log n)1/4 | X (n)

) → 0 P∞
0 -almost surely

holds and the rate of convergence for theBayes’ estimator of themixingdistribution
can be assessed as follows.

Corollary 2 Under the conditions of Theorem1,with the small ball prior probability
estimate in (9), we have

W1(G
B
n , G0) = OP(

√
Mn(n/ log n)−1/4),

where GB
n (·) := ∫

G G(·)Π(dG | X (n)) is the Bayes’ estimator of the mixing distri-
bution.
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Discovering and Locating High-Energy
Extra-galactic Sources by Bayesian
Mixture Modelling

Andrea Sottosanti, Denise Costantin, Denis Bastieri
and Alessandra Rosalba Brazzale

Abstract Discovering and locating gamma-ray sources in the whole sky map is
a declared target of the Fermi Gamma-ray Space Telescope collaboration. In this
paper, we carry out an unsupervised analysis of the collection of high-energy photons
accumulated by the Large Area Telescope, the principal instrument on board the
Fermi spacecraft, over a period of around 7.5 years using a Bayesian mixture model.
A fixed, though unknown, number of parametric components identify the extra-
galactic emitting sources we are searching for, while a further component represents
parametrically the diffuse gamma-ray background due to both, extra-galactic and
galactic high-energy photon emission. We determine the number of sources, their
coordinates on the map and their intensities. The model parameters are estimated
using a reversible jump MCMC algorithm which implements four different types of
moves. These allow us to explore the dimension of the parameter space. The possible
transitions remove from or add a source to the model, while leaving the background
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component unchanged. We furthermore present an heuristic procedure, based on the
posterior distribution of the mixture weights, to qualify the nature of each detected
source.

Keywords Astrostatistics · Bayesian clustering · Reversible jump MCMC ·
Signal extraction

1 Motivation and Background

Resolving the γ -ray sky by detecting as yet unidentified sources and accurately
measuring the diffuse background emission is a declared key scientific objective
of the Fermi Gamma-ray Space Telescope collaboration, whose broader aim is to
identify and study the nature of high-energy phenomena in the Universe.1 The target
of this contribution is the collection of photon count maps for varying energy bins
provided by the Large Area Telescope (LAT), the principal scientific instrument on
board the Fermi spacecraft, during its almost ten years of operation. In particular, we
aim at formulating and fitting a model which allows us to: (i) determine the number
of extra-galactic high-energy sources, (ii) measure their intensities, and (iii) pool the
individual photon counts into the corresponding clusters.

The discovery of celestial objects is an intrinsically interdisciplinary field which
combines both, statistical and astronomical methodology. Amain challenge of trying
and detecting high-energy phenomena fromastronomical data is to separate the signal
of the putative emitting source from the diffuse γ -ray background which spreads
over the entire area observed by the telescope. Different phenomena contribute to
this residual radiation [3]. Broadly speaking, its origins can be brought under two
headings: galactic interstellar emission (GIE), that is, the interaction of galactic
cosmic rays with gas and radiation fields, and a residual all-sky emission. The latter is
commonly called the isotropic diffuse gamma-ray background (IGRB), and includes
the γ -ray emission from faint unresolved sources and any residual galactic emission
which is approximately isotropic.

Traditionally, the analysis is based on so-called single-sourcemodels, as described
in Sect. 7.4 of [7]. Generally speaking, the application of these models requires
the whole sky map to be split into small regions. The presence of a possible new
source is assessed on a pixel-by-pixel basis using significance tests. An illustrative
example is given in [11], who employ Poisson regression to model the number of
photons at each pixel. Further treatments from both, the frequentist and the Bayesian
viewpoints, can be found in [6, 10, 13, 14]. Variable-source-number models address
the problem from a more global perspective, as they simultaneously estimate the
number of sources in the whole map without the need to separate the latter into
smaller cells and to work on single pixels [7, Sect. 7.3]. A recent proposal, which
analyses X-ray count maps according to this approach, is made in [8].

1https://fermi.gsfc.nasa.gov/.

https://fermi.gsfc.nasa.gov/
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Here we propose a Bayesian mixture model with a finite, but unknown, number of
components for the known and as yet unidentified extra-galactic high-energy sources
plus an additional parametric component to represent the diffuse γ -ray background.
The directions of the high-energy photons collected by the Fermi LAT over a period
of approximately 7.5 years is then used to estimate simultaneously the number of
sources in the map, their coordinates and their intensities. As in [8], our algorithm
iteratively identifies the sources and pulls the individual photons into the correspond-
ing clusters. It furthermore automatically selects the number of components of the
mixture. However, [8] consider only the isotropic diffuse X-ray background, which
they model assuming a uniform distribution over the entire map. This assumption
is too restrictive if the targets are γ -ray sources, as we cannot neglect the huge
contamination due to galactic interstellar emission, but have to suitably model it.

The remainder of the paper is organised as follows. Section 2 presents the Fermi
LATdatawhichmotivated this contribution.Our proposal of aBayesianfinitemixture
model is presented in Sect. 3 and is fit to the Fermi LAT data in Sect. 4. In this latter
section we furthermore discuss the capability of our model to skim off the signal
of the sources from the background radiation. The paper closes with the concluding
remarks of Sect. 5.

2 The Fermi LAT Data

The data collected by the Fermi Large Area Telescope (LAT) contribute uniquely
to the study of the most extreme phenomena in our Universe such as active galactic

Fig. 1 Whole sky map at γ -ray wavelengths and energies larger than 1GeV based on data accu-
mulated by the LAT over a period of five years of operation (Image Credit: NASA/DOE/Fermi LAT
Collaboration). The region framed in white represents the area analyzed in this paper
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Fig. 2 Nonparametric
kernel estimate of the photon
density distribution based on
the γ -ray count maps
accumulated by the Fermi
LAT over a 7.5 years period.
The map is expressed in
galactic coordinates and
refers to the sky region
[180◦, 10◦] × [10◦, 90◦],
that is, to the area framed in
white in Fig. 1. The spikes
represent potential
high-energy extra-galactic
emitting sources. Both
components of the γ -ray
background, the GIE and the
IGRB, are visible
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nuclei, supernova remnants and pulsar wind nebula. Figure1 represents the Moll-
weide projection in galactic coordinates of the entire γ -ray sky at energies larger than
1GeV and is based on the data collected by NASA’s Fermi LAT over a five years
period.2 The brighter the grey tone, the larger is the intensity of the γ -ray source.
The brilliant horizontal stripe which crosses the middle part of the figure to a huge
extent conveys the high-energy photon emission of our Milky Way, at whose center
we assume a supermassive black hole. The isotropic diffuse γ -ray background is
much less evident, while we can clearly identify extra-galactic point and small-area
γ -ray emitting sources.

The dataset used in this paper is the collection of photons, generated by different
astrophysical events and collected by the LAT over a period of around 7.5 years of
observation, whose energy exceeds 10GeV. The aim of our analysis is to discriminate
the signal of extra-galactic γ -ray emitting sources from the various background
phenomena, and to reconstruct their direction in the sky map. In particular, for the
reasons we will shortly give below, we restrict our attention to a subregion of the sky
whose galactic longitude and latitude lie in the intervals [180◦, 10◦] and [10◦, 90◦],
respectively.3 This region is framed in white in Fig. 1 and covers broadly the fourth
quadrant of the map. In all, 51,000 observations fall in this area. Figure2 plots the
smoothed nonparametric estimate of the photon density distribution. The various
spikes identify known and as yet unrevealed high-energy emitting sources.

2http://fermi.gsfc.nasa.gov/ssc/.
3Here we follow the convention adopted in astronomical whole sky maps to define the longitude
on the left at 180◦ and at −180◦ on the right.

http://fermi.gsfc.nasa.gov/ssc/
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We decided to test and fine tune our algorithm in a region of the skymapwhere the
diffuse γ -ray background is less prevalent, and possibly dominated by the isotropic
diffuse gamma-ray background (IGRB) component. Hence, we restricted our anal-
ysis to latitudes above 10◦ to limit the influence of the galactic interstellar emission
(GIE). To further reduce and, at least partially remove, the background component
radiating from the Galaxy center and from the so-called Fermi Bubbles [2], that is,
from the two extended regions of excess γ -ray emission located near the galactic cen-
ter, we only consider longitudes that vary from 180◦ to 10◦. As is evident from Fig. 2,
the IGRB is still present though less pronounced as compared to Fig. 1. In Sect. 3.1
we will discuss how to suitably model the diffuse background component. The third
catalogue of hard Fermi LAT sources (3FHL, for short) reports 288 high-energy
γ -ray emitting sources for the outlined region [4].

3 Bayesian Source Detection

We adopted a flexible Bayesian modelling approach which allowed us to detect
catalogued and acknowledged γ -ray sources plus possible new candidates in the sky
region of Fig. 2. As in [8] we assembled a finite mixture model whose components
were automatically identified using the available data and Bayesian computation.
That is, in one go we determined both, the number of sources and their directions in
space. The main difference to [8] is the presence of the rather intense background
radiation which spreads over the entire map and represents a relevant component
of our model. Section3.1 describes the statistical model for the Fermi LAT data;
Sect. 3.2 outlines the fitting procedure.

3.1 Statistical Model

Let xi ∈ [180, 10] and yi ∈ [10, 90] represent the galactic longitude and latitude,
respectively, of the n photons detected in the area of the extra-galactic space con-
sidered by our analysis. We start off by reconstructing the directions of the γ -ray
sources by modelling how the photons they emit scatter around their source.

Assume that photon i was generated by source j whose galactic coordinates are
μj = (μjx, μjy), j = 1, . . . ,K . Here K represents the number of sources present in
the map. The direction of photon i can then be modeled as

(Xi,Yi) | μj ∼ PSF(μj), i = 1, . . . , n, (1)

wherePSF(·) represents King’s established Point Spread Function [9]. This function
suitably describes how photons cluster around their emitting source. The correspond-
ing density is

f (xi, yi | μ) = C

[1 + {d(xi, yi | μ)/d0}2]η0 , (2)
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where
d(xi, yi | μ) =

√
(xi − μjx)2 + (yi − μjy)2/(1 − ε0)2.

Here d0 = 0.6 is the core radius measured in arcsec, η0 = 1.5 is the power-law slope
and ε0 = 0.00574 represents the ellipticity; the normalizing constant C is usually
determined numerically. The resulting density essentially characterizes a bivariate
Student t distribution. The values of the parameters d0, η0 and ε0 are chosen as in [8].
Actually, the Fermi LAT collaboration uses an extended version of King’s density
[1]. In particular, they assume that photons generated from the same source are not
identically distributed, but each is characterized by its own dispersion which, in turn,
depends on the energy level of the photon. However, for the energy range considered
in this paper (>10GeV), this variation is negligible and model (1) represents a valid
approximation.

A different model needs be specified in case the observed photon was not emitted
from a specific source but is part of the background radiation. The authors of [8]
assume a uniform distribution over the entire map to model the uniquely present
isotropic component. We already discussed in Sect. 2 that this assumption is too
restrictive for γ -ray counts. Model (1) is hence extended by considering a further
bi-dimensional component

(Xi,Yi) | σb ∼ Unif (180, 10) × tExp(σb). (3)

The longitude of a photon stemming from the background is heremodelled according
to a uniform distribution, while its latitude follows a translated exponential distri-
bution with scale parameter σb, that is, an exponential distribution whose support
was translated to the interval [10,+∞). This model well represents the marginal
distributions of longitude and latitude for the photons detected by the Fermi LAT
shown in Fig. 3. Suitable values will be chosen for σb so as to guarantee that the
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Fig. 3 Distribution of longitudes (left) and of latitudes (right) of the high-energy (>10GeV) pho-
tons detected by the Fermi LAT during a 7.5 years period of observation
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fitting procedure outlined in the following section generates admissible values for
Yi.

In practice, we have no information whether the photon was emitted from a source
or belongs to the background, nor do we know the number of emitting sources and
their directions in space. This situation is well represented by a finite mixture model
which assumes a fixed, though unknown, number of components to represent the
different sources plus an additional component to model the background radiation.
This translates into the following marginal model

f (xi, yi | μ, σb, ω) = ω0 gb(xi, yi | σb) +
K∑
j=1

ωj f (xi, yi | μj), (4)

where gb(· | ·) represents the distribution of photons from the background as given in
(3), while f (· | ·) models the signal of a specific source according to (1). The vector
ω = (ω0, ω1, . . . , ωK ) contains the mixing proportions ωj which can be viewed as
the intensity ω0 of the background and of each source, that is, ωi, i = 1, . . . ,K .
Our model is hence characterised by a set θK = {μ, σb, ω} of 3K + 2 parameters.
Recall, furthermore, that the number K of undetected sources is itself supposed to
be unknown and needs be estimated. So, inference will be made on (θK ,K).

To write down the likelihood function of the statistical model defined at (4), we
augment our data as originally proposed in [12] and also advocated in [8]. That is,
for each observation i = 1, . . . , n, we introduce the latent group variable Zi which
assumes values in the discrete set {0, 1, . . . ,K} with probabilities given by the com-
ponents of ω. Though actually never observed, this variable conveys useful infor-
mation as it indicates the source number for photon i. The full data likelihood is
then

L(θK ,K | x, y, z) = p(x, y | z; θK ,K)p(z | θK ,K)

=
⎡
⎣ ∏

i:zi=0

gb(xi, yi | σb)

K∏
j=1

⎧
⎨
⎩

∏
i:zi=j

f (xi, yi | μj)

⎫
⎬
⎭

⎤
⎦

K∏
j=0

ω
nj
j ,

(5)

where x = (x1, . . . , xn), y = (y1, . . . , ym) and z = (z1, . . . , zn) are the vectors of
observed and latent data, and nj = ∑n

i=1 I(zi = j). As required byBayeswe complete
our model definition by eliciting the a priori distributions for the unknown model
parameters θK and K . Since there is no prior belief on the direction of the sources, a
bivariate uniform distribution is used,

μjx ∼ Unif (180, 10) and μjy ∼ Unif (10, 90),

while the conjugate gamma distribution

π(σb | ν, β) = βν

Γ (ν)
σ ν−1
b e−βσb ,
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Algorithm 1 Reversible jump MCMC – split move
1: procedure split j into j1, j2 with probability bk (from k to k + 1 sources)
2: bk ← 0.25, dk+1 ← 0.25
3: if k = κmin then bk ← 0.5
4: u1, u2, u3 ∼ Beta(2, 2), v ∼ Unif (0, 1)
5: ωj1 ← u1ωj and ωj2 ← (1 − u1)ωj
6: μj1x ← μjx − u2

√
ωj2/ωj1 and μj1y ← μjy − u3

√
ωj2/ωj1

7: μj2x ← μjx + u2
√

ωj1/ωj2 and μj2y ← μjy + u3
√

ωj1/ωj2
8: generate a new vector of labels z∗ using k + 1 sources
9: pk+1 ← π(θk+1, k + 1 | x, y, z∗) and pk ← π(θk , k | x, y, z)
10: g ← b2,2(u1)b2,2(u2)b2,2(u3), where b2,2(.) is the Beta(2, 2) density function
11: J ← ωj/[u1(1 − u1)]
12: qk ← bk/k and qk+1 ← dk+1/(k + 1)
13: if arg minj || μj1 , μj ||= j2 and arg minj || μj2 , μj ||= j1 then
14: qk+1 ← 2qk+1

15: A ← (pk+1qk+1J )/(pkqk g)
16: if v ≤ min(1,A) then accept split

with ν = 0.02 and β = 1, is chosen for the scale parameter σb. We, furthermore,
assume that the unknown number of componentsK distributes as a truncated Poisson

K ∼ tPoi(κ | κmin, κmax), (6)

where κ = 288 equals the number of catalogued sources and [κmin, κmax] = [250,
400]. This way the number of detected sources is bound to lay between 254 and 321,
that is, ±2 standard deviations from κ = 288 wasn’t the Poisson truncated. This
particular choice allows us to simultaneously detect an 11% of new sources and to
reduce the number of false positives. Indeed, because of the rather high background
contamination and the limited capability of our parametric formulation to fully cap-
ture its rather irregular shapes, we need a prior which limits the upper bound of the
support of K . Lastly, conditionally on K , we let ω follow a Dirichlet distribution
of size K + 1 where the K + 1 parameters are all set to α = 1. This corresponds to
assigning a priori equal probability to the K putative sources, or differently stated,
to assuming that they have the same intensity.

Applying Bayes’ theorem, the posterior joint distribution of the unknown model
parameters (θK ,K), conditionally on the latent group variables z, results in

π(θK ,K | x, y, z) ∝ L(θK ,K | x, y, z)π(θK ,K). (7)

This is the function we will use to estimate the parameters. Note that to obtain the
posterior distribution of θK andK given only the observed data (x, y), we would have
to sum up (7) over all possible combinations of the latent variables z = (z1, . . . , zn).
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3.2 Model Fitting

We by-passed numerical integration of the posterior kernel (7), as would have been
required to compute the normalising constant, using Monte Carlo simulation. How-
ever, a further aspect considerably challenges the derivation of the posterior distribu-
tion of the model parameters: the dimension of θK is itself unknown as it depends on
the number of sources K . We implemented a reversible jump Markov chain Monte
Carlo algorithm, as proposed in [5], thanks to which we were able to both, recon-
struct the posterior distributions of the unknown components of the model and to
determine how many there are.

Here we present our algorithm. It consists of a two-stage procedure which iterates
two steps: given K , we first update the latent group variables Z and generate values
from the posterior distribution of θK ; in the second step we redetermine the number
of components K . Having written z(t−1), θ

(t−1)
K and K (t−1) for the values generated

at iteration (t − 1), the two steps can be summarised as follows:

1. generate (zt, θ t
K ) from the full conditional π(z, θK | K (t−1); x, y);

2. redefine the dimension of the parameter space, that is, specify a new order of the
mixture by generating Kt from π(K | θ t

K , zt; x, y).
An alternative is to have the algorithm iterate Step 1 a given number of times, say
5–10, before proposing the trans-dimensional jump outlined at Step 2. Let us now
have a closer look at the two steps.

Step 1
This step implements a Gibbs sampling scheme to update the model parameters θK
and the latent variables Z for a fixed number K of components. Let, as above, the
superscripts (t − 1) and t identify the values generated at iterations (t − 1) and t,
respectively, and define as k the number of sources detected at iteration (t − 1), that
is, K (t−1) = k. Step 1 of the algorithm develops as follows.

1. For i = 1, . . . , n, generate zti from a multinomial distribution with probabilities

p(zti = 0 | θ
(t−1)
K ,K (t−1); x, y) ∝ ω

(t−1)
0 gb(xi, yi | σ

(t−1)
b )

p(zti = j | θ
(t−1)
K ,K (t−1); x, y) ∝ ω

(t−1)
j f (xi, yi | μ

(t−1)
j ), j 
= 0.

2. Generate a new vector of mixing probabilities ωt from the Dirichlet distribution
Dir(nt0 + α, . . . , ntk + α), where nj = ∑n

i=1 I(z
t
i = j), j = 1, . . . , k.

3. Generate μt
j , j = 1, . . . , k, using a Metropolis-Hastings step applied to the full

conditional distribution

π(μ | σ
(t−1)
b ,K (t−1); x, y, zt).

Use as proposal distribution the bivariate normal distribution centered at μ(t−1)
j

andwith covariancematrix the identitymatrix rescaled by 0.52 so as to guarantee
a satisfactory overlapping with King’s PSF defined in (1).
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Algorithm 2 Reversible Jump MCMC – birth move
1: procedure generate j∗ with probability bK (from k to k + 1 sources)
2: bk ← 0.25, dk+1 ← 0.25
3: if k = κmin then bk ← 0.5
4: μj∗x ∼ Unif (10, 180), μj∗y ∼ Unif (10, 90) and ωj∗ ∼ Beta(1, k + 1)
5: rescale the weights using ωj ← ωj(1 − ωj∗ )
6: generate a new vector of labels z∗ using k + 1 sources
7: pk+1 ← π(θk+1, k + 1 | x, y, z∗) and pk ← π(θk , k | x, y, z)
8: g ← π(μj∗x)π(μj∗y)b1,k+1(ωj∗ )
9: J ← (1 − ωj∗ )k+1

10: qk ← bk/k and qk+1 ← dk+1/(k + 1)
11: A ← (pk+1qk+1J )/(pkqk g)
12: if v ≤ min(1,A) then accept birth

4. Generate σ t
b from the gamma distribution with scale parameter β + nt0 and shape

parameter ν + ∑n
i=1 I(zi = 0)yi.

Further examples can be found in [12, 15].

Step 2
The second step implements the trans-dimensional jumpwhich increases the number
of components of the mixture or decreases it by one. The choice is made randomly
with equal probabilities. New components are added to the model through either a
split or a birth move; a component is removed from the model using a combining
or death move [12]. These four steps allow the algorithm to explore the entire map
and to search for new sources without affecting the distribution of the background
radiation (3). A main difference to [12] is that we allow the algorithm to remove a
component from the model using the death move also when it is not empty. This
step was introduced to assure interpretability not only of the model parameters, as
required by physicist, but also of the steps of the algorithm. Removing a non empty
cluster essentially amounts to classifying it as a false positive. This turns out to be
quite often the case when we get close to the Galactic equator whose influence is
still tangible despite we cut off most of it by limiting the latitudes and longitudes of
the explored sky region.

The code boxes of Algorithms 1 and 2 list the pseudo code for the split and the
birth moves. Note that they also provide the pseudo code for the combining and the
death moves we use to down size by one the number of components of the mixture.
So, for instance, to evaluate whether to reduce the number of sources from K to
K − 1 by combining two of them, we interchange K − 1 and K in the split move
outlined in Algorithm 1. The acceptance probability is then min{1, 1/A} instead of
min{1,A}.



Discovering High-Energy Extra-galactic Sources … 145

4 Modelling the Fermi LAT Data

We applied model (4) to the Fermi LAT data described in Sect. 2 and shown in Fig. 2.
The corresponding sky region is framed in white in Fig. 1 and covers broadly one
fourth of the area observed by the LAT. Recall, furthermore, that the third catalogue
of hard Fermi LAT sources lists 288 high-energy γ -ray emitting sources for this
sector [4]. The 3FHL catalogue will furthermore be used to benchmark the detection
capability of our model. We run our reversible jumpMCMC algorithm, as described
in the previous section, for a total of 20,000 iterations each.Thenumber anddirections
of the sources present in the 3FHL catalogue were used as starting points for K and
μ, respectively. This way, we acknowledge all the a priori available information.
The starting points for the mixture weights ω and of the scale parameter σb, which
characterises the distribution of the background radiation, were randomly drawn
from their a priori distributions.

The left panel of Fig. 4 shows the posterior distribution ofK , the supposed number
of high-energy γ -ray sources present in the analysed region. The posterior mode is
K = 331, a value which was visited 1,892 times, that is, by around 9.5% iterations.
We compared the posterior modes of (μjx, μjy), j = 1, . . . ,K , for these 331 puta-
tive sources with those present in the 3FHL catalogue: appreciably, our algorithm
confirmed 255 of the acknowledged ones. The nature of the 76 remaining detections
needed be investigated. We will come back to this point shortly. The right panel of
Fig. 4 traces the 1,892 values generated for σb, and shows a good mixing property
of the chain. The posterior mode is 0.0287, slightly higher than what expected on
average a priori, with 95%highest posterior density (HPD) interval [0.0284, 0.0289].
These values are also shown in Fig. 4 as solid and dashed horizontal lines, respec-
tively. Most interestingly, however, is the Bayesian estimate of ω0 = 0.9387 with
95% HPD interval [0.9364, 0.9407]. Remember that this value quantifies the inten-
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sity of the diffuse background radiation: it results that around 94% of the detected
photons originated from it. Differently stated, only 6% of the photons were emitted
from around 300 sources whose median intensity is 0.000137.

To further discriminate whether the 76 newly identified clusters correspond to real
γ -ray emitting sources,we heuristically used the a posteriori available information on
their intensities. Figure5 shows the asymmetric boxplots of the posterior distributions
of the 331 mixing proportions ωi, i = 1, . . . , 331. The white boxes correspond to
the 255 already known sources, while the new candidates are drawn in black. Our
ad hoc procedure defines the median of the posterior modes for the 255 catalogued
sources as the threshold intensity above which we may expect a γ -ray emitting
source. We hence qualified the 33 clusters whose posterior modes for ωi satisfy this
criterion as possible undetected sources. Their coordinates are currently being tested
as prescribed by the Fermi LAT collaboration [4].

5 Conclusions

The results obtained for our model when applied to the Fermi LAT data of the limited
sky region described in Sect. 2 are rather encouraging. We were able to detect 255
already known sources and to pinpoint possible new candidates. Of the 288 cata-
logued sources 33 were missed because their signal most likely isn’t strong enough
to be captured by our model but gets confounded with the prominent and irregu-
larly shaped background radiation which pervades the considered area even after the
initial skimming. The opposite holds for the 43 initially identified and successively
declassified sources which probably correspond to small areas of excess background
intensity. This aspect represents one of the improvements of our model we are cur-
rently working on. The proposed parametric formulation for the diffuse background
radiation is, in fact, only partially efficient. Using further data provided by the Fermi
LAT collaboration we are currently developing a more precise background model.

Further future developments focus on both, theoretical and computational aspects.
A first aspect regards the distribution used to describe how photons scatter around
their emitting source. King’s PSF used as approximation in (2) is currently being
replaced by the point spread function proposed in [1]. The truncated Poisson distri-
bution (6) could in principle be replaced by a negative binomial distribution, that is,
by adding a further level of hierarchy having the Poisson mean being distributed as
a gamma with suitable scale and shape parameters. We preferred to take a different
route and are currently working on two research strains which correspond to: (i)
incorporating into the parametric formulation of the background model all informa-
tion provided on it by the Fermi LAT project, and (ii) developing a nonparametric
formulation based on smoothing splines for the background model. On the computa-
tional side, we are replacing theMetropolis-Hastings step used to generate the values
of μ with a more efficient Gibbs sampler. Last but not least, the heuristic approach
adopted at the end of the previous section to qualify the newly detected sources needs



148 A. Sottosanti et al.

be replaced by a formal procedure which accounts also for the available, here not
used, information on the energy level of each detected photon.
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Bayesian Estimation of Causal Effects in
Carcinogenicity Tests Based upon CTA

Federico M. Stefanini and Giulia Callegaro

Abstract Despite more than 30,000 chemical substances are currently produced or
imported in the European Union in volumes of 1 ton or more per year, they remain
widely yet to be tested for carcinogenicity. Cell Transformation Assays (CTAs) are
cheap and fast in vitro methods developed to screen chemical substances without
resorting to animal-based testing. Here we propose two models for potential out-
comes to estimate causal effects of different concentrations of a candidate carcino-
gen on counts of Type III foci growing within Petri dishes. A comparison of our
proposals with simpler alternatives suggested in the literature for the BALB/c 3T3
CTA protocol is performed using the LOO information criterion. Here we overcome
data manipulations recently proposed in the literature by introducing a flexible class
of models based on experts’ belief that do not necessitate of: (i) adding fake obser-
vations to actual data; (ii) making cumbersome transformations to original counts;
(iii) constraining distributions at low concentrations to have a variance larger than
the mean. Open issues are discussed in relation to the current practice adopted to
perform multi-laboratory experiments on the same substance.
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1 Introduction

The attitude of a chemical substance to induce, or to foster the induction of, cancer
is called carcinogenicity [18]. European Regulations detail the duties of Member
States related to chemical testing, also for carcinogenicity testing. For example,
the aim of Registration, Evaluation and Authorisation of Chemicals (REACH) is to
systematically evaluate the risks, to human health and environment, of more than
30,000 chemical substances that are produced or imported in the EU in volumes of
1 ton or more per year [17], although they remain widely untested.

Chemical carcinogenicity is firstly assessed by a battery of in vitro and in vivo
genotoxicity tests followed by the life-time cancer rodent bioassay [13, 21, 22], the
method currently required at regulatory level. Rodent bioassays require more than
two years for execution and dozens of animals are involved: it is evident the need of
faster and cheaper techniques for screening purposes, like CTAs [5], to allow to cover
such a large (and increasing) number of chemicals with carcinogenicity testing. Cell
Transformation Assays (CTAs) are test methods increasingly used in the assessment
of the carcinogenic potential of compounds. A CTA is an in vitro method in which
several Petri dishes are seededwith immortalized cells and later treatedwith a solution
of the chemical substance to test. The endpoint of transformation is the number of
fully transformed foci grown within each Petri dish, also called Type III foci. The
type of cell systems and the adopted laboratory protocol jointly define features of
a CTA system: the BALB/c 3T3 CTA based on an immortalized cell line derived
from embryonal murine fibroblasts is considered in the following because it is able
to detect genotoxic carcinogens and some non-genotoxic carcinogens.

In the literature on CTAs, some efforts have been directed towards assessment
and improvement of frequentist data analysis. Bretz and colleagues [3] suggested an
approach to test possible down turns of expected values at higher doses. Ponti and
colleagues [26] emphasized that t-test is not suited to CTA data and they proposed
Fisher’s exact test instead. The need for statistical analysis tailored to the specific
features of CTA relying on BALB/c 3T3 system has been recently recognized by
an international expert group at the European Centre for the Validation of Alterna-
tive Methods (ECVAM), who formulated recommendations in the EURL ECVAM
Prevalidation Report [5, 7]. In a recent proposal [11], negative binomial models
were fit to the outcome made by foci counts, and in case of a bad fitting a general
linear model was considered after transforming raw counts. Unfortunately, it has
been empirically found [33] that both classes of models may be inappropriate in a
given CTA. As far as we know, a Bayesian analysis of CTAs from the standpoint of
the causal framework based on potential outcomes [28] has not been ever proposed
in the literature.

In the following sections, Bayesian estimates of causal effects on the number of
fully transformed foci after treatment with a (candidate) carcinogenic chemical are
provided in the potential outcomes framework [28, 29]. Here the number Type III
foci observed within each Petri dish is compared to counterfactual counts that would
have been observed, had the treatment being vehiculus or a different concentration, by
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means of Bayesian posterior predictive imputation [12, Sect. 8.4]. In Sect. 2.1 below,
we start describing the biological features that characterize a typical CTA protocol,
then in Sect. 2.2 a case study is introduced to illustrate the approach. In Sect. 2.3
beliefs and recent recommendations from the literature are listed to make clear the
context of the proposed models. In Sect. 2.4, the structure of the causal model is
detailed using notation close to [10], while in Sect. 2.5 smooth models are proposed
and compared (Sect. 3) to common poisson and negative binomial alternatives. The
discussion in Sect. 4 closes this work together with some considerations on future
work on CTAs.

2 Cell Transformation Assays: From Features to Statistical
Models

In this section we start with the description of typical CTA protocols, then recom-
mendations from the literature are introduced and, finally, smooth models for counts
are proposed.

2.1 CTAs: Main Features of Different Protocols

Neoplastic transformation in vitro is a progressive event analogous of in vivo car-
cinogenesis [1]. Following this principle, cell transformation has been defined as the
induction of certain phenotypic alterations in cultured cells that are characteristic of
tumorigenic cells [1]. The stepwise process of in vitro transformation leads to several
cellular alterations, including:

• the acquisition of infinite life-span (immortalization);
• changes in morphology (e.g. spindle-shape morphology);
• changes in growth pattern (e.g. criss-cross and multilayered growth of the cultured
cells);

• aneuploid and genetic instability;
• anchorage-independent growth (e.g. colony formation in soft agar);
• the ability to induce tumours in vivo [2].

Accordingly, the Cell Transformation Assay exploits these concepts as it was
developed to mimic the multistage nature of carcinogenesis [36].

The cultured cells suitable to study in vitro transformation must have a low inci-
dence of spontaneous transformation rate and be sensitive to the neoplastic transfor-
mation by exposure to a carcinogen. Typically adopted systems are based on rodent
cell lines: BALB/c 3T3 and C3H10T1/2 cells, immortalized fibroblasts of rodent ori-
gin, and Syrian Hamster Embryo (SHE), that are primary cells [6, 15, 16]. Recently,
Bhas 42 cells were established as a clone by the transfection with the v-Ha-ras gene
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into mouse BALB/c 3T3 A31-1-1 cells and their subsequent selection based on their
sensitivity to 12-O-tetradecanoylphorbol-13-acetate (TPA) [31].

Thanks to their promising properties, CTAs gained the attention of the regulatory
agencies: in 2007 the OECD published a Detailed Review Paper on Cell Transfor-
mation Assays for detection of chemical carcinogens [20], and in 2012 and 2013
the European Union Reference Laboratory for alternatives to animal testing (EURL
ECVAM) published two Recommendations for Cell Transformation Assays, using
BALB/c 3T3, SHE andBhas 42 systems [8, 9]. In addition, OECD recently published
two Guidance documents for SHE and Bhas 42 CTAs [23, 24].

All the system protocols share the same endpoint: the formation of colonies/foci
of transformed cells upon treatment in culture with a suspected carcinogen. The
transformed cells acquire phenotypic alterations typical of malignant cells and have
the ability to form invasive tumours in susceptible animals [1, 14, 27]. In this regard,
CTAs have a clear biological connection with cancer.

CTA based on BALB/c 3T3 cell line includes a preliminary cytotoxicity test or
dose-range finding phase, followed by the transformation assay. A cytotoxicity test is
carried out prior and/or in parallel to the transformation assays to select the optimal
range of test chemical concentrations for the transformation assays and to evaluate
cytotoxicity of each treatment. The transformation assays must test at least five doses
and positive and negative controlsmust be tested aswell. Positive controls are usually
3-methylcholanthrene (MCA) and TPA as tumour promoter, while negative controls
should comprise also the vehicle compound. Preferred vessels are 100mmPetri dish,
10 for each group tested.

The transformation assay starts with the seeding at low density (2 ∗ 104 cells/
100mm dish), followed after one day by the treatment with the suspected carcino-
gen. The treatment with the compound can last up to 4 days and it is followed by
a long recovery phase when medium is changed regularly. After 27–28 days dishes
are methanol-fixed and Giemsa-stained for final microscope observation. Trans-
formed colonies, called foci, are visually scored using a stereomicroscope following
coded morphological criteria. Three types of foci have been distinguished (I, II,
III), although it is likely that a continuum of focal phenotypes exists [15]. Type I
foci, which are more tightly packed than the normal monolayer of cells and only
slightly basophilic, are not scored since they do not give rise to neoplastic growths
upon injection into irradiated mice. Type II foci display massive piling up into vir-
tually opaque multilayers, the cells are moderately polar and criss-crossing is not
pronounced. Type III foci are highly polar, fibroblastic, multilayered, criss-crossed
arrays of densely stained cells. Invasive misoriented cellular projections radiating
into the surrounding density-inhibited confluent monolayer of nontransformed cells
are sometimes seen in Type III foci. Type III foci are scored as positive in BALB/c
3T3 CTA. The outcome in CTAs is the number of Type III foci per dish.
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Fig. 1 Scatterplot of raw data: the size of points increases with the absolute frequency of counts

2.2 A CTA on O-Toluidine: A Case Study

The o-toluidine (CAS chemical registry number # 636-21-5) case study is briefly
described below. Further toxicological details are available in published work [34].

A total of eight different doses plus the negative control are shown in Fig. 1,
where diameter of circles represents the absolute frequency of counts. Doses of
tested chemical are (μg/ml): 0 (negative control,W = 1), 20 (W = 2), 100 (W = 3),
200 (W = 4), 500 (W = 5), 800 (W = 6), 1000 (W = 7), 1200 (W = 8), 1750
(W = 9). A total of 90 Petri dishes containing BALB/c 3T3 cells sampled at the
same passage from the original cell culture were treated after random assignment of
each concentration to 10 dishes (replicates) for each concentration. All experimental
units received protocol components taken from the same batch, including medium
and serum. After 4 weeks from treatment, Petri dishes were visually scored under a
light microscope and the number of Type III foci within each dish counted.

2.3 CTAs: Assumptions, Beliefs, Recommendations

Several features common to almost all CTAsmake the quantitative analysis of counts
not trivial. First, there is a high variability in the dose-response relationship, which
is typically non-monotone and dependent on the considered chemical. Second, sub-
stantial differences of variance are often observed at different concentrations. Third,
sample size is not less than (but almost never greater than) 10 observations for each
concentration. Fourth, the variance may be null or smaller than the mean in samples
at low concentrations of chemical. Last, replications of the same experiment on the
same chemical in different laboratories quite oftenmay provide inconclusive findings
[7, p. 44].
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The document elaborated by ECVAM’s Expert Group [11, EEG] contains the
most recent recommendations for the analysis of BALB/c 3T3 CTA experiments.
For a detailed description of the BALB/c 3T3 CTA protocol see Sasaki et al. [30].
Here we maintain the experimental context and beliefs settled in Hoffmann et al.
[11]:

1. the outcome is ‘number of fully transformed foci’, called Type III foci, on a Petri
dish;

2. the number of Petri dishes at each concentration (dose) is typically 10 (never
below 9);

3. five to ten concentrations of a test chemical are randomly assigned to experi-
mental units (homogeneous Petri dishes);

4. focus-inducing chemicals are expected to show non-monotone dose-
concentration relationships;

5. positive controls serve for quality assurance purposes only;
6. at small concentrations the empirical distribution of counts may be degenerate,

typically at zero;
7. concentrations have to be considered as levels of a qualitative factor, although

originally on a quantitative scale (e.g.μg/ml), given that EEG’s recommendation
discourages the use of more elaborated quantitative dose-response relationships;

8. the probability mass function of Type III foci counts is smooth at every concen-
tration of a given chemical;

9. concentrations are chosen so that the lowest one is likely to behave like the
vehiculus, the highest is above the 50% lethal dose (LD50);

10. high concentrations of a focus-inducing chemical bear cytotoxicity, an event that
shrinks foci formation.

2.4 Potential Outcomes in a CTA

Let Y<i>
j , j = 1, 2, . . . , n be random variables representing potential outcomes for

the number of Type III foci within Petri dish j = 1, . . . , n under dose level (treat-
ment) i ∈ ΩD = {1, . . . , L}; the sample space of each count is ΩY = {0, 1, . . . ,C},
whatever the dose of chemical and whether observed or counterfactual. In a given
experiment the maximum value that can be observed is C and it may vary according
to the size of Petri dishes between 20 and 50. In the case study presented below, Petri
dishes are all of equal size and C = 30. The potential outcomes at dose level i define
the vector Y<i> = (Y<i>

1 , . . . ,Y<i>
n )T and the vector of indicators of treatment

assignment is W = (W1, . . . ,Wn)
T with the cartesian product ΩW = {1, . . . , L}n

as sample space. The probability mass function of potential outcome Y<i>
j at con-

centration i ∈ ΩD is:

pY<i>
j

(y | πi,0, πi,1, . . . , πi,C ] =
C∑

k=0

πi,k I{k}(y) (1)
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where (πi,0, πi,1, . . . , πi,C ) is the vector of probability values, thus
∑

k πi,k = 1;
IG(y) is the indicator function equal to 1 if y ∈ G and zero otherwise.

Given that CTAs belong to the class of randomized experiments, the assign-
ment mechanism is ignorable and characterized by unit-level probability of treat-
ment assignment in the interval (0, 1). The probability mass function of vector W
that represents the assignment mechanism [12, chap. 3] is based on the multinomial
coefficient:

p(w | y<1>, . . . , y<L>) =
(

n

n1, n2, . . . , nL

)−1

(2)

for all w satisfying
∑n

j=1 I{i}(wj ) = ni at each i , with ni the number of experimental
units treated with concentration level i . Under row (unit) exchangeability of matrix
(Y<1>, . . . ,Y<L>) the joint distribution of potential outcomes is:

p
(
y<1>, . . . , y<L>

) =
∫ n∏

j=1

p(y<1>
j , . . . , y<L>

j | θ) p(θ) dθ (3)

where θ is a vector of model parameters belonging to the parameter space �.
The elicitation of conditional distributions for potential outcomes given model

parameters (Eq.3), often called “the science”, should take into account the main
processes driving the emergence of foci. Even if it is not carcinogenic, a chemical
may exert a toxic effect on cultured cells, thus causing a reduction in the final number
of Type III foci. If a chemical is carcinogenic then it is expected to stimulate the
emergence of foci, but this driving force also depends on concentration: too low
doses are ineffective, too high doses are often cytotoxic. Despite that concentrations
are selected to be within a convenient range, it is quite difficult to anticipate any
correlation between potential outcomes. For these reasons, conditional independence
among potential outcomes is assumed:

p
(
y<1>
j , . . . , y<L>

j , θ
) =

L∏

i=1

p(y<i>
j | θi ) p(θi ) (4)

where the joint distribution of model parameters is factorized into marginally inde-
pendent subvectors, θ = (θ1, . . . , θi , . . . , θL).

At the end of an experiment, the n × 1 vector of observed potential outcomes
Y obs = (Y obs

1 , . . . ,Y obs
n )T has elementsY obs

j = ∑L
i=1 Y

<i>
j I{i}(Wj ),with j = 1, . . . ,

n. The set of unobserved potential outcomes for the experimental unit j gathers all

values of i out of the assigned Wj , that is Ymis
j =

{
Ymis,<i>
j : i ∈ {1, . . . , L} \ Wj

}
,

therefore the collection of counterfactuals is Ymis = {Ymis
1 , . . . ,Ymis

n }.
The causal estimand considered in this work is the average difference of pairs of

potential outcomes, where averaging is performed over a subset of the finite sample:
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τ f s(i, r) =
∑n

j=1(y
obs
j − Ymis,<r>

j )I{i}(wj ) + ∑n
j=1(Y

mis,<i>
j − yobsj )I{r}(wj )∑n

j=1 I{i}(wj ) + ∑n
j=1 I{r}(wj )

(5)
thus for i = 2, . . . , L the effect of a tested chemical with respect to the negative
control (water) is τ f s(i, 1), while values of τ f s(i, i − 1), i > 1, quantify changes
of causal effect due to the increase of concentration. In order to calculate tau using
Eq. (5), the conditional predictive distribution of Ymiss given yobs and w may be
exploited to impute counterfactuals in Ymis .

The likelihood function is built from the probability mass function in Eq. (1):

L(π1,0, π1,1, . . . , πi,k, . . . | yobs,w] =
n∏

j=1

(
C∑

k=0

πwj ,k I{k}
(
yobsj

)
)

(6)

where (yobs,w) are vectors of observed counts and treatment assignments.
Note that, in some models recommended in the literature [11], the value of C

is implicitly set to infinity, as it happens if the Poisson family of distributions is
preferred in the elicitation instead of Eq. (1).

2.5 Elicitation of Expert Beliefs

Carcinogenicity is a multistep process characterized by inherent high heterogeneity
of mechanisms and variability, thus no wonder that experts do not agree about how
to allocate the probability mass over counts, despite that some shared beliefs exist. A
plausible upper limit for size of counts is C = 30 in small Petri dishes, because the
available physical space is limited: probability mass functions should not allocate a
relevant portion of the distribution aboveC . Furthermore, small changes of probabil-
ity values should occur along subsequent foci counts, even when sampled counts are
all equal, for example, to 0; in this case Hoffmann et al. [11] suggested to artificially
increase the sample of one (fake) Petri dish whose number of Type III foci is artifi-
cially set equal to one. The proposed manipulation is intended to provide a smooth
estimate of probability values on foci counts, and in particular a point estimate of
variance strictly greater than zero. Here, we preferred to explicitly address beliefs
about smoothness by developing models based on the ratio of probability values in
subsequent counts.

Two classes of models for potential outcomes are proposed in this section: (i—
USMs) the class of unimodal smooth models for a strong degree of belief about the
presence of just onemode; (ii—SMOs) the class of smoothmodels if only smoothness
is highly plausible. Expert beliefs and numerical evidencemay drivemodel selection,
although model averaging is also an option (not considered here).

In the class of SMOs, the initial (prior) distribution on probability values for
counts was elicited by defining logits between pairs of subsequent counts:
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ψi,k = ln

(
πi,k

πi,k−1

)
∼ Normal(0, τi ); k = 1, . . . ,C; i = 1, . . . , L (7)

where the variance parameter τi regulates the amount of smoothness in the probability
mass function defined by Eq. (6). By exploiting the probability simplex, we have:

πi,0 = 1

1 + ∑30
r=1 exp

(∑r
s=1 ψi,s

) (8)

πi,k =
exp

(∑k
s=1 ψi,s

)

1 + ∑30
r=1 exp

(∑r
s=1 ψi,s

) . (9)

Initial distributions of τi , i = 1, 2, . . . , 9 were elicited as marginally independent
members of the Exponential family of distributions τ−1

i ∼ Exponential(3.5). The
final expected value of each parameter πi,k , k = 0, 1, . . . , 30, was inspected after
conditioning to a degenerate sample of counts on 0 (Fig. 2, top right panel). At the
end of elicitation, the probability mass located outside the observed count was close
to 1/11 and concentrated on foci counts not greater than 3. A similar inspection
was performed for an empirical distribution fully concentrated on 1, and also in
this case smoothing is apparent (Fig. 2, bottom right panel). The distributions in
Fig. 2, right panels, are close to what proposed in [11], but the inherent uncertainty
here is not neglected. Note that negative controls, as well as dishes treated with low
concentrations of tested compound, may also result in a sample where counts are
all concentrated on 1 (one focus per dish), thus the artificial increase of sample size
after adopting the suggestion in [11] could reach 20% of the original sample in this
case.

Fig. 2 Expected value of the probability of each count given three virtual samples of 10 observations
each: on the left, a multimodal sample; top-right a sample with all counts equal to 0; bottom-right
a sample with all counts equal to 1
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In Fig. 2 (left panel), the expected value of the probability at each count is shown
given a virtual sample with two local modes quite far apart. Expected values at each
count smoothly changes along counts, in close accordance with prior beliefs.

In the class ofUSMs, the initial (prior) distribution on probability values for counts
at dose i was elicited by selecting a value Mi for the mode and then by assigning
a distribution to logits calculated between pairs of subsequent counts, given the
location of Mi :

ψi,k = ln

(
πi,k

πi,k−1

)
∼ Beta(2, 2), k ≤ Mi (10)

ψ−1
i,k ∼ Beta(2, 2), k > Mi (11)

where Beta stands for the Beta probability density function: hyper-parameters values
were elicited plotting the expected value of parameters {πi,k} given a virtual sample
concentrated on one count value.

The predictive performance of our models was compared against the Bayesian
counterpart of typical models with a limited number of parameters. In the Poisson
model (POI), parameters take value according to the probability mass function:

πi,k = Poisson(k | λi ), k = 0, 1, . . . ,∞.

with i = 1, . . . , L the considered dose levels. Canonical parameters were considered
marginally independent in the initial distribution, with λi ∼ Gamma(0.2, 0.2), after
considering beliefs about the expected value of lambdas and about intervals of highly
plausible values. The Negative Binomial model (NBM) was recommended in [11]:
the probability of a count equal to k at dose i is

πi,k = NegativeBin(yk | μi , φi ) =
(
yk + φi − 1

yk

) (
μi

μi + φi

)yk (
φi

μi + φi

)φi

with μi the expected value of Y<i>
j and φi the scale parameter at dose i . Marginally

independent components were elicited in the initial distribution of hyper-parameters:
μi ∼ Gamma(7, 1) and φi ∼ Exponential(1.5), thus they are also independent on
doses.

3 Results

Computations were performed in R1 using the R packages2 rstan, loo, ggmcmc. Sam-
ples from the posterior distributions of model parameters were obtained by Markov
Chain Monte Carlo (MCMC) simulation after implementing all models in the Stan

1https://www.r-project.org/.
2https://cran.r-project.org/web/packages/.

https://www.r-project.org/
https://cran.r-project.org/web/packages/
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programming language [4, 32]. After eachMCMC run, graphical and numerical out-
put diagnostics were calculated to check chain convergence (autocorrelations, cross-
correlations, running means, traceplots, potential scale reduction factors, Geweke
diagnostics) without finding relevant evidence of violations.

Model selection was performed using the LOO criterion [35] both to find the best
model in the class of USMs and to compare predictive performances across different
classes of models. As regards USMs, preliminary MCMC runs were devoted to
find the best model with respect to modes mi at each dose i . Within the unimodal
class of models, a successful attempt was also performed to reduce the number of
parameters by aggregating the first few doses, given that a CTA experiment is always
planned to include one or more doses known to be ineffective [30, p. 33]. Values
of LOO information criterion were (model, LOOIC): Negative Binomial (NBM,
317.7), Unimodal Smooth (USM, 287.6), Smooth (SMO, 256.6), Poisson (POI,
255.9), Restricted Unimodal (smallest four doses aggregated, RUSM, 254.0).

The Poisson model obtained the best LOO score in the o-toluidine case study.
Nevertheless, we decided to work with the Unimodal Smooth Model for several
reasons. First, standard errors of LOOIC values were all in the interval (14.7, 16.5),
thus a pure criterion-based selection should not be considered conclusive anyway,
with such small sample size. Second, the RUSM model performed better than POI
after aggregation of the lowest dose levels, thus there is the potential of a good fit
also in the RUSM class. Third, we judged model flexibility to be the most important
feature to preserve because we can’t assume that o-toluidine is representative of
dozens thousands chemicals yet to be tested. Fourth, in the literature on CTAs the
Poisson model has been criticized for the impossibility of describing CTAs in which
the parameter variance is smaller than the mean. Further investigations are required
with many other chemicals before considering the USMmodel as a reference model
in CTAs.

Conditional distributions of causal estimands τ f s(i, 1), i = 2, . . . , 9 obtained
from the Unimodal Smooth Model are shown in Fig. 3, left panel. The causal effect
is possibly null for the first four doses, given that each 95% highest posterior density
(HPD) credibility interval contains the null value (solid vertical line between the two
vertical dashes lines). At the sixth dose, the 95% HPD interval does not contain 0
thus we claim that a positive effect of the chemical on foci counts may be present. A
positive causal effect (increase) in the number of foci remains likely present for the
higher doses.

In Fig. 3, right panel, eight distributions for τ f s(i, i − 1), i = 2, . . . , 9 are shown.
Changes of causal effects across subsequent doses are small, if not null, for the first
four doses. The 95% highest posterior density (HPD) credibility intervals contain 0
thus no turning point is declared. At doses i = 6 and i = 7, upward turning points
are claimed because the null value is outside on the left of both the HPD intervals. At
i = 8 the increase of causal effect is likely to be null, while at i = 9 weak evidence
of a downward turning point (decrease of causal effect) is present, given that the null
value is close to the right boundary of the 95% HPD interval.

A remark is due about the choice of causal estimands. Finite sample quantities
were selected because the purpose of CTA tests is to provide evidences that transfor-
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Fig. 3 Distribution of causal estimand τ f s(i, 1) at dose i (i = 2, . . . , 9) given the vehicle i = 1
(left panel). Distribution of causal estimand τ f s(i, i − 1) at a dose i given dose i − 1 (right panel).
Vertical solid lines are located at zero. Vertical dashed lines define 95% credibility intervals obtained
by Normal approximation (continuous line on top of histograms)

mation events increase in number due to triggering induced by a chemical substance.
We foresee some difficulties in defining a reference population for the infinite col-
lection of CTA experiments on a given chemical under test (see next section).

4 Discussion and Conclusions

The multistep nature of the carcinogenic process mimicked by a CTA may explain
the need of flexible models in the analysis of CTA experiments. Large differences
in the distribution of the outcome have been observed for the same chemical tested
at different concentrations. Large variability is also present in the outcome of CTAs
when the same chemical is tested in different laboratories at equal or close concen-
trations. The small sample size of CTA experiments performed in production does
not typically suffice to definitely rule out competing classes of models.

Previous proposals discussed in the literature had the merit of clearly stating the
inadequacy of Student-t distribution and of remaining accessible to researchers with
basic training in statistics, even though several drawbacks were left unsolved. The
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first class of models proposed in [11] is based on the Nishiyama transform [19] of
original counts, xi, j = √

yi, j + √
yi, j + 1, followed by a general linear model with

diagonal matrix of variances-covariances. In a recent contribution [33], it has been
shown that such class of models may be unsuited for the study at hand, for example
because it provides plug-in estimates of the probability P[X < 1 | θ̂ ] above 0.19 for
several values of concentration, although this event is impossible like an original
negative count. In [11], a second proposal based on the Negative Binomial family
of models has been presented. Nevertheless, at low concentrations, it often happens
that the empirical distribution of counts has a variance smaller than the mean, and it
may be even degenerate into 0 or into 1. These features pose problems while fitting
Negative Binomial models by maximum likelihood, thus an artificial increase of
the sample size by one (virtual) unit has been recommended. Further alterations of
the collected sample were suggested in [11] because a balanced design simplifies
the statistical downturn test: the imputation of one missing values by the median
of collected observations (10% of sample size increase) was adopted to recover full
design balance. The statement “... bias expected is negligible ...”might be questioned,
given that the median is calculated on 9 observations and that missing values could
be generated not at random.

The “minor shortcomings” exploited in [11] have a Bayesian flavor, given that
the above described data manipulations are rooted in the expert belief about what
could have been found in larger, or complete, samples. We do not agree with the
conclusion of authors in [11, right column, p. 40], who stated that the above alter-
ations of collected data consist of “... negligible data manipulations”, given that, at
any rate, a relevant amount of uncertainty is neglected by considering actual data
and virtual observations on equal footing. The proposed smooth models based on
experts information offer a simple approach to estimate causal effects without intro-
ducing fake observations and without limiting the choice of families of distributions
to those where the variance is equal or larger than the mean. This last feature is par-
ticularly important because predictive distributions of counts are exploited to impute
counterfactuals, an essential ingredient in the estimate of causal effects. For these
achievements being possible, the researcher must be prepared to state substantive
beliefs by informative prior distributions, a practice requiring some training, if not
the help of a facilitator [25].

The causal perspective on CTAs adopted in this work might throw some light
on open issues, like the possibility of obtaining inconclusive evidence (IE) from
multilaboratory replicates of the same CTA experiment [7]. The event IE is realized
duringmultilaboratory replication if, at a given concentration of a chemical under test,
estimated averages from several laboratories showvery large differences, for example
3 or more times the standard error of the difference between means. Given that the
same chemical is tested using the same reagents, such large discrepancies might
surprise.Nevertheless, it iswidely recognized that the number of passages, performed
by sampled cells from the primary cell culture may exert a huge effect on the number
of fully transformed foci at the end of an experiment. Similarly, different batches of
serum may contain substantially different amounts of key substances, like growth
factors, which are known to enhance cell replication and, possibly, transformation.
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Thus, from amultilaboratory perspective, we provided the final distribution of causal
estimands that are conditional to a given homogeneous batch of cells and reagents
within an experiment.

A candidate approach to solve the occurrence of inconclusive evidence could be
based on stratification. Nevertheless, explicit conditioning to batches of cells and
reagents could be far from trivial. The toxicologist should not expect that sampled
cells at the same number of passages from the primary culture necessarily behave the
same way: the distribution over cells states should be considered in order to increase
homogeneity of response during a CTA. Second, dosage (quantification) of growth
factors and other important serum components is likely to be expensive and time
consuming, thus at the end not accepted in production. Thus, further work could
be directed towards the indirect assessment of growth factors, for example using
positive controls, and towards the definition of the actual state-step of a batch of cells
with respect to the response in a CTA.

Multilaboratory CTA experiments currently use different treatment versions with
the aim of compensating differences among batches of reagents and cells. The recom-
mended CTA protocol prescribes the selection of concentrations of a tested chemical
after performing a preliminary test in which the dose resulting lethal for 50% of cells
is discovered [7]. It follows that different laboratories may replicate the same exper-
iment with different concentrations of the considered chemical to test, for example
because cell survival differ in different laboratories. The current protocol runs in
contrast with the EEG’s recommendation to build models in which the concentration
is considered as a qualitative factor. Therefore, it is of primary interest to investigate
on model extensions that, besides exploiting prior information further, also consider
the variable concentration on the original quantitative scale.
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Performance Comparison of
Heterogeneity Measures for Count Data
Models in Bayesian Perspective

Meenakshi Sundaram Subbiah, Rajamani Renuka Devi, Michele Gallo and
Mamandur Rangaswamy Srinivasan

Abstract Random effects model is one of the widely used statistical techniques in
combining information from multiple independent studies and examine the hetero-
geneity. The present study has focussed on count data model which is comparatively
uncommon in such research studies. Also the interest is to exploit the advantage
of Bayesian modelling by incorporating plausible prior distributions on the param-
eter of interest. The study is illustrated with a data on rental bikes obtained from
UC Irvine Machine Learning Repository. Results have indicated the impact of prior
distributions and usage of heterogeneity estimators in count data models.

Keywords Meta analysis · Random effects model · Variance component ·
Poisson model

1 Introduction

The problem of understanding variability on subjects of interest and its association
with other variables is more interesting and challenging in statistical inference. The
problem continues to be the major objective even in the present era of massive data
sets. The present work deals with one such fundamental inferential problem under
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Bayesian perspective. The inherent advantage of handling Bayesian hierarchical
modelling is exploitedwith the underlying nature as aRandomEffectsModel (REM).
This model has been used extensively in many applications especially in medical,
epidemiological, ecological, and in social sciences. The areas in medical studies
can further be summarised as clinical trials, case-control studies, meta-analysis or
systematic reviews.

The model is basically a hierarchical structure, mostly based on normal distri-
bution in two stages. Though Non-normal models have been attempted in Bayesian
literature [5, 21]majority of studies even today [11] follownormally distributedmod-
els using appropriate transformation of underlying parameters. REM has received
active research attention for many decades and following is a partial list of sig-
nificantly recent studies that have dealt with the measure of heterogeneity. These
studies have included both frequentist and Bayesian procedures, but, most of them
do not make any formal comparisons. However, the present work has been confined
to Bayesian approaches and its implications.

Engels et al. [3] could be one of the earliest works in this millennium on meta-
analysis. Higgins and Thompson [6], Warn [31] and Leonard and Duffy [12] have
focussed on heterogeneity measure and Bayesian methods for REM. Subsequently,
[2, 19, 20, 27, 28] have discussed variance estimators in REM. The list also include
[17, 23, 25] for the impact on data sets with zero occurrences. Further, [9–11, 18, 24,
26] provide ample scope for comparison of heterogeneity measure and its persistent
research attention.

Viechtbauer [29] is among the widely used sources for REM computation in R
software [16]. Few notable applications include, [1, 13, 30] for transportation data
analyses, Hillebrand [7] for ecological data analysis and Subbiah and Rajeshwaran
[22] for sports data analysis. Further, the impact of a measure across different study
effects are well studied in literature; for example, Hunter et al. [8] and Zwetsloot
et al. [32] discussed the treatment of funnel plot (a graphical tool for publication bias)
in meta-analyses of proportion and standardized mean difference. Nazarzadeh and
Bidel [15] distinguished the choice between fixed and random effects model based
on funnel plots using relative risk as an effect size measure.

The extensive review of similar studies has shown that the study effects of interest
are basically odds ratio, relative risk or difference of proportions andmean difference.
However, very limited studies have considered a count variable as study effect of
interest in performing REM.On the other hand, count data which is quite pervasive in
many applications found limited research attempts in regression model building with
Poisson or Negative Binomial distributions or its variants. However, these studies
are less successful in explaining the variability across the predictors.

The present study has attempted Bayesian REM frame-work for count data with
four plausible prior models including a zero-inflated distribution to account the zero
counts.Also, the choice of hyper parameters involved in thesemodels is appropriately
discussed. The entire attempt is illustrated with a motivating study in transportation
data analysis.
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The paper is organized as follows: Sect. 2 describes the interesting aspects of the
motivating bike sharing data set; Sect. 3 outlines Bayesian REM. Details of data
analysis are discussed in Sects. 4 and 5 has the concluding remarks.

2 Motivation and Data Description

The main objective of this study is to understand the variability of response variable
across different categorical variables. One of the major advantages of Bayesian anal-
ysis is treating a parameter as random variable which has been used in formulating
a heterogeneity measure. This would be a pragmatic way of understanding the vari-
ability of a quantity of interest across different study characteristics. This aspect is
best illustrated by the research interest of Capital Bike Sharing (CBS) problem.

Bike sharing system is a new age practice of traditional bike rentals. The entire
process is automated to handle the membership and rental data [14]. The data set is
a 2-year (2011–2012) usage detail of Capital Bike Sharing (CBS) at Washington,
D.C., USA. This data set has additional information on weather conditions and
weekday/holiday details. Such a real-world application with its impact on traffic,
environment and health aspects provide a great interest andmotivation for the present
study.

The CBS data set has 17,379 instances of bike sharing details from January 1,
2011 to December 31, 2012. Seventeen variables and corresponding description can
be obtained from the data source [4]. There are eight categorical variables (number of
levels); season (4), year (2), month (12), hour (24), holiday (2), weekday (2), working
day (2), and weather situation (4). Temperature, feeling temperature (both measured
in Celsius), humidity, and wind speed are the four metric variables in normalized
form. There are three count variables namely casual, registered users per the recorded
index and the total count. Two variables are the index and date of each recording of
bike rentals.

This study has considered two response count variables cnt and casual; cnt has
no zeros but casual has a notable proportion of zeros. Beyond this characteristic
these two variables are found to be important in the context of CBS. Five categor-
ical variables have been identified (season, month, hr, weekday and weathersit) as
stratification variables. Number of categories (k) in each of these five classifying
variables is respectively 4, 12, 24, 7, and 4. An initial attempt to understand the two
response variables across the five classifying variables have shown few interesting
observations. A comparative summary is illustrated (Table1) for the two response
variables according to the four seasons; however, analysis includes all five classifi-
cation variables.

From Table1, it may be noted that there exists wide variation between upper
quartile and maximum in both cases. Moreover, such difference can be seen across
all the levels of the classification variables for both count response variables; for
example, in the case of casual variable, across twelve months upper quartile varies
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Table 1 Summary statistics of the two response count variables classified by the four seasons

Statistic Casual Cnt

1 2 3 4 1 2 3 4

Minimum 0 0 0 0 1 1 1 1

Lower quartile 1 7 10 4 23 46 68 46

Mid-quartile 5 27 36 14 76 165 199 156

Upper quartile 15 61 72 36 158 311 345 295

Maximum 367 361 350 362 801 957 977 967

Table 2 Cross-classification of quintile-based distribution of the two response count variables by
the four weather situations

Weather
situation

Casual Cnt

[0, 3] (3, 10] (10,
26]

(26,
59]

(59,
367]

[1, 27] (27,
98]

(98,
189]

(189,
321]

(321,
977]

1 2441 1821 2045 2454 2652 2183 2036 2220 2375 2599

2 1127 797 1023 917 680 929 935 990 931 759

3 588 346 242 145 98 425 462 261 158 113

4 2 1 0 0 0 1 1 1 0 0

p < 0.0001# p < 0.0001#

#P-value from Chi-square test of independence

from10 to 73whereasmaximumranges from156 to 367. This illustrate the variability
of two count variables across a stratifying variable.

Also, the two response variables are categorised according to their quintiles and
cross-classified with the five categorical variables. Chi-square test has been used
to test the independence hypothesis. Table2 illustrates this for both casual and cnt
variables classified by four weather situations; last row is the p-value associated with
Chi-square test of independence.

Table2 and similar cross-classification by other four categorical variables have
shown the variability of casual and cnt. Fourth season (Heavy Rain + Ice Pallets
+ Thunderstorm + Mist, Snow + Fog) has a very low bike-sharing which may
be apparent due to non-favourable weather conditions for bike-riding; nevertheless,
other seasons have shown a notable variability in the count of casual (also, cnt) bike
users. Similarly, it has been noted a larger variability of casual users in 24 levels of
hr, one of the classification variables. Also, lower p-value rejects the hypothesis of
independence in all the ten (5 categorical Vs 2 response variables) cases.

These characteristics encourage the research to quantify the heterogeneity of the
response variables (casual and cnt) across five variables of interest. The study has
fostered the random effects model for the count data applications. The underlying
Poisson distribution for the data model is used in the first stage of this work. Subse-
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quently, a normalmodel is used in the second stage to study the effect of heterogeneity
and a summary for the mean count.

3 Materials and Methods

In a Bayesian model if Yi ∼ Poisson(λ) where λ > 0 then in general, prior distribu-
tion for λ is a conjugate gamma distribution with shape parameter α > 0 and scale
parameter β > 0. Present study has included two more prior schemes using normal
distribution and truncated normal distribution. Three Bayesian two-stage models are
schematically presented.

Stage 1
Scheme I:

Yi ∼ Poisson(λ)
λ ∼ Gamma(α,β)

Scheme II:
Yi ∼ Poisson(λ1)

λ1 ∼ exp(λ)
λ ∼ Normal(d, v21)

Scheme III:
Yi ∼ Poisson(λ)
λ ∼ Truncated Normal(m, v22, a, b)

The next stage analysis is based on logλ and its variance (estimated from data in
Stage 1).

Stage 2
For each of k studies

log(λ) ∼ Normal(μ j ,σ
2
j )

μ j ∼ Normal(μ, τ 2); −∞ < μ < +∞, τ 2 > 0.
σ2
j is within the variance and its estimate will be used in the analysis, τ 2 is the

between variance, a measure of heterogeneity among the k studies. Appropriate
distributions are assumed for the subsequent level of parameters which are main
quantities of interest in the study. Further to model zero cases (casual), this study
includes Zero-inflated Poisson distribution. A Bayesian hierarchical model provides
a straight forward way to construct a ZIP-Bernoulli model.
That is, scheme IV for the first stage will be

Y ∼ Poisson(λZ) λ > 0
Z ∼ Bernoulli(p) 0 ≤ p ≤ 1
λ ∼ Gamma(α,β) α,β > 0
p ∼ Beta(a, b) a, b > 0
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This model is a direct representation of understanding a ZIP model (Y) as a
product of Poisson(X) and Bernoulli(Z) distributions; Precisely, Y = X Z where
X ∼ Poisson(λ); Z ∼ Bernoulli(p) with X and Z as independent variables.

All hyper parameters (α, β, d, v21 , m, v22 , a, b, γ, δ,a1 and a2) are appropriately
chosen and the choices are presented in Sect. 4. The entire procedure is implemented
in R using WinBugs for MCMC.

4 Data Analysis

The identified Bayesian REMwith prior schemes is carried out for two response vari-
ables (cnt and casual). Choices of hyper priors are based on non-informative priors
and three comparative choices are made in each set of analysis with cnt and casual.
Hyper priors for gamma distribution in Scheme I is based on Jeffreys non-informative
prior; 0.5 for scale parameter and larger positive value for shape parameter. For com-
parative purpose, the choice of shape parameter is chosen exactly 0.5 and a random
value closer to 0.5. Hence shape parameter is randomly drawn from a uniform distri-
bution in (0.49, 0.51). For scale parameter, the choice is from a uniform distribution
in three intervals (5, 50), (0, 1), and (0, 50).

For Scheme II, the choice for mean parameter is N(0, 105); N(0, 10) and N(0,
103) and for variance it is gamma distribution with shape and scale parameters (3,
1), (0.5, 0.5), and (5, 5). In the case truncated normal distribution (Scheme III),
the hyper parameters are listed as m = 10; t = 0.001; a = 0; b = 50000, m = 100;
t = 0.001; a = 0; b = 5000, and m is uniformly distributed in (0, 100); t = 0.001;
a = 0; b = 1000. Additional scheme for ZIP has the same set of values and for hyper
priors for ZIP models will be 0.5 and 1 for symmetry and 0.5, 5 for asymmetry priors
on beta parameters; whereas hyper priors in gamma distribution is retained with 3
and 1.

A measure of heterogeneity (H) is computed using MCMC simulated output as
the posterior probability that the parameter between-variance exceeds 0.5, i.e. H =
p(τ 2 > 0.5). The idea is to use the posterior probability and the exceedance of the
between variance from any specific cut-off value. The choice of 0.5 is based on the
notion that any value of τ 2 more than 0.5 is presumed to have a notable positive
between variance. However, the model allows to choose any reasonable positive
constant.

Tables3 and 5 are the posterior summaries of overall count of response variables
across five classification variables. Tables4 and 6 are the corresponding summaries
on heterogeneity measure. From Table3, it can be observed that a difference (though
less) prevails between the estimates of conjugate and other normal distributions;
especially in the case of hour and weather situations. Interval estimates also differ in
the case of weather situations, conjugate prior provide wider intervals than the other
two. This is apparent when the scale parameter of a gamma distribution is allowed
to vary while the choice is a non-informative (Jefferys) prior and the intervals differ
largely with non-conjugate priors.
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Table 3 Point and 95% interval estimates (LL Lower limit, UL Upper limit) for the response
variable cnt, across the five classification variables; k refers the number of levels. Summaries are
in the log-scale

Overall summary

Study
Variable

Posterior
Summary

Prior 1 Prior 2 Prior 3

G N TN G N TN G N T

Season
k = 4

Mean 5.149 5.157 5.157 5.157 5.157 5.157 5.157 5.157 5.157

LL 5.149 5.157 5.157 5.157 5.157 5.157 5.157 5.157 5.157

UL 5.149 5.157 5.157 5.157 5.157 5.157 5.157 5.157 5.157

Month
k = 12

Mean 5.177 5.193 5.193 5.192 5.193 5.193 5.178 5.193 5.193

LL 4.970 4.985 4.985 4.984 4.985 4.985 4.972 4.985 4.985

UL 5.375 5.391 5.391 5.391 5.391 5.391 5.374 5.392 5.391

Hour
k = 24

Mean 4.723 4.759 4.759 4.758 4.759 4.759 4.723 4.759 4.759

LL 4.198 4.235 4.235 4.234 4.235 4.235 4.202 4.235 4.235

UL 5.230 5.265 5.265 5.264 5.265 5.265 5.226 5.265 5.265

Weekday
k = 7

Mean 5.234 5.243 5.243 5.243 5.243 5.243 5.232 5.243 5.243

LL 5.170 5.181 5.181 5.181 5.181 5.181 5.170 5.181 5.181

UL 5.295 5.303 5.302 5.302 5.303 5.302 5.292 5.303 5.302

Weather
k = 4

Mean 3.699 4.809 4.803 4.775 4.808 4.813 3.620 4.808 4.806

LL 0.783 4.022 4.001 3.914 4.016 4.032 0.599 4.016 4.011

UL 5.640 5.467 5.469 5.485 5.467 5.465 5.624 5.467 5.468

G = Gamma distribution; N = Normal distribution; TN = Truncated normal distribution

A similar effect can be observed for the overall estimate of casual (Table5). Espe-
cially in the case of fifth classification (weather situation) difference between gamma
and normal priors are quite apparent. Prior II behaves differently compared to other
two choices of hyper parameter. Another interesting point is the difference between
ZIP and other three prior schemes as observed in all the point and interval estimates
of casual. However, ZIP is quite sensitive to the choice of its hyper parameters.

As far the between variance is considered for cnt (Table4) point and interval
estimates are quite similar whenever H is small as can be observed from all the
classification except third and fifth. In k = 24 for third variable, the sensitivity is not
so high but not in the case of fifth variable. Gamma priors (with hyper prior choices
1 and 3) show appreciable difference in the estimator of τ 2 (7.174 with H = 0.999)
with wider intervals. Surprisingly the case differs when hyper prior is changed to
U(0, 1) for the scale parameter. Similar observation can be made for casual from
Table6. Gamma prior in fifth classification is still very much distinctive. Also, it can
be noted that ZIP estimates of H are quite different to that of other priors. However,
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Table 4 Point and 95% interval estimates (LL Lower limit, UL Upper limit) for the between
variance of the response variable cnt, across the five classification variables; k refers the number of
levels

Between variance

Study
Variable

Posterior
Summary

Prior 1 Prior 2 Prior 3

G N TN G N TN G N T

Season
k = 4

Mean 0.461 0.456 0.456 0.456 0.456 0.456 0.455 0.456 0.456

LL 0.040 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039

UL 1.563 1.545 1.545 1.544 1.545 1.545 1.541 1.545 1.545

H = p(τ2 > 0.5) 0.122 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121

Month
k = 12

Mean 0.124 0.126 0.126 0.126 0.126 0.126 0.123 0.126 0.126

LL 0.052 0.052 0.052 0.052 0.052 0.052 0.051 0.052 0.052

UL 0.291 0.294 0.294 0.294 0.294 0.294 0.287 0.294 0.294

H = p(τ2 > 0.5) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Hour
k = 24

Mean 1.591 1.587 1.587 1.588 1.587 1.587 1.568 1.587 1.587

LL 0.866 0.864 0.864 0.864 0.864 0.864 0.854 0.864 0.864

UL 2.823 2.815 2.815 2.817 2.816 2.815 2.782 2.816 2.815

H = p(τ2 > 0.5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Weekday
k = 7

Mean 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

LL 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

UL 0.024 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023

H = p(τ2 > 0.5) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Weather
k = 4

Mean 7.174 0.773 0.796 0.888 0.779 0.762 7.802 0.779 0.785

LL 0.876 0.068 0.070 0.080 0.068 0.067 0.959 0.068 0.069

UL 35.962 2.842 2.968 3.378 2.884 2.785 38.871 2.884 2.921

H = p(τ2 > 0.5) 0.999 0.259 0.270 0.312 0.261 0.255 1.000 0.261 0.264

G = Gamma distribution; N = Normal distribution; TN = Truncated normal distribution

there is a direct relationship with lower the value of H lower is the difference in the
estimator. This is evident when H= 0.059 for fourth classification and when H varies
from 0.931 to 1 in fifth classification.

5 Conclusions

The abundant volume of data availability in various fields and computing power
has enhanced the application of count data models with more relevant statistical
techniques. This motivates to study the heterogeneity measure in REM using three
prior schemes for no zero case and an additional prior for zero case counts. The study
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has identified Poisson distributed variables and the behaviour of between variance
parameter when k (>1) studies are combined.

The results have shown the behaviour of Bayesian hierarchical model with respect
to priors on Poisson parameter. The sensitive nature of estimates for overall mean
is visible in non-zero cases under gamma and normal priors for transformed param-
eters. Number of strata is also observed as a possible factor for such behaviour in
the estimates. In a similar note, the effect of heterogeneity relatively depends on the
choice of priors under gamma or normal distributions. Under all the three priors the
estimates are notably different for ZIP with prior on proportion of zeros when com-
pared to other models. This study has involved only non-informative priors on hyper
parameters in the Bayesian model. Nevertheless, this may provide a methodology
for modelling count data with additional covariates and/or including more plausible
priors.

Acknowledgements Funding for this project was provided by 2017 funds of the University of
Naples - L’Orientale (I).

References

1. Caird, J.K., Johnston, K.A., Willness, C.R., Asbridge, M., Steel, P.: A meta-analysis of the
effects of texting on driving. Accid. Anal. Prev. 71, 311–318 (2014)

2. DerSimonian, R., Kacker, R.: Random-effects model for meta-analysis of clinical trials: an
update. Contemp. Clin. Trials 28(2), 105–114 (2007)

3. Engels, E.A., Schmid, C.H., Terrin, N., Olkin, I., Lau, J.: Heterogeneity and statistical signifi-
cance inmeta-analysis: an empirical study of 125meta-analyses. Stat.Med. 19(13), 1707–1728
(2000)

4. Fanaee-T, H., Gama, J.: Event labeling combining ensemble detectors and background
knowledge. Prog. Artif. Intell. 2(2–3), 113–127 (2014). https://archive.ics.uci.edu/ml/datasets/
bike+sharing+dataset

5. Higgins, J.P., Spiegelhalter, D.J.: Being sceptical about meta-analyses: a Bayesian perspective
on magnesium trials in myocardial infarction. Int. J. Epidemiol. 31(1), 96–104 (2002)

6. Higgins, J., Thompson, S.G.: Quantifying heterogeneity in a meta-analysis. Stat. Med. 21(11),
1539–1558 (2002)

7. Hillebrand, H.: Meta-analysis in ecology. Encyclopedia of Life Sciences (ELS). Wiley, Chich-
ester (2008)

8. Hunter, J.P., Saratzis, A., Sutton, A.J., Boucher, R.H., Sayers, R.D., Bown, M.J.: In meta-
analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing
publication bias. J. Clin. Epidemiol. 67(8), 897–903 (2014)

9. Jackson, D.: Confidence intervals for the between-study variance in random effects meta-
analysis using generalisedCochran heterogeneity statistics. Res. Synth.Methods 4(3), 220–229
(2013)

10. Langan, D., Higgins, J., Simmonds, M.: An empirical comparison of heterogeneity variance
estimators in 12 894 meta-analyses. Res. Synth. Methods 6(2), 195–205 (2015)

11. Langan, D., Higgins, J., Simmonds, M.: Comparative performance of heterogeneity variance
estimators in meta-analysis: a review of simulation studies. Res. Synth. Methods 8(2), 181–198
(2017)

12. Leonard, T., Duffy, J.C.: A Bayesian fixed effects analysis of the Mantel-Haenszel model
applied to meta-analysis. Stat. Med. 21(16), 2295–2312 (2002)

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset


176 M. Subbiah et al.

13. Mannering, F.L., Shankar, V., Bhat, C.R.: Unobserved heterogeneity and the statistical analysis
of highway accident data. Anal. Methods Acc. Res. 11, 1–16 (2016)

14. Mátrai, T., Tóth, J.: Comparative assessment of public bike sharing systems. Transp. Res.
Procedia 14, 2344–2351 (2016)

15. Nazarzadeh, M., Bidel, Z.: Meta-analysis of sleep duration and obesity in children: fixed effect
model or random effect model? J. Paediatr. Child Health 53(9), 923–924 (2017)

16. R Development CORETEAM:A language and environment for statistical computing. R Foun-
dation for Statistical Computing. http://www.R-project.org (2010)

17. Rücker, G., Schwarzer, G., Carpenter, J., Olkin, I.: Why add anything to nothing? The arcsine
difference as a measure of treatment effect in meta-analysis with zero cells. Stat. Med. 28(5),
721–738 (2009)

18. Rukhin, A.L.: Estimating heterogeneity variance in meta-analysis. J. R. Stat. Soc. Ser. B (Sta-
tistical Methodology) 75(3), 451–469 (2013)

19. Sidik, K., Jonkman, J.N.: Simple heterogeneity variance estimation for meta-analysis. J. R.
Stat. Soc. Ser. C (Applied Statistics) 54(2), 367–384 (2005)

20. Sidik, K., Jonkman, J.N.: A comparison of heterogeneity variance estimators in combining
results of studies. Stat. Med. 26(9), 1964–1981 (2007)

21. Smith, T.C., Spiegelhalter, D.J., Thomas, A.: Bayesian approaches to random-effects meta-
analysis: a comparative study. Stat. Med. 14(24), 2685–2699 (1995)

22. Subbiah, M., Rajeswaran, V.: A random effect model for the evolution of international cricket
test matches evidenced from 1870 to 2016. Stat. Appl. 14(2) (2016)

23. Subbiah,M., Srinivasan,M.R.: Classification of 22 sparse data setswith zero cells. Stat. Probab.
Lett. 78(18), 3212–3215 (2008)

24. Thorlund, K., Wetterslev, J., Awad, T., Thabane, L., Gluud, C.: Comparison of statistical infer-
ences from the DerSimonian-Laird and alternative random-effects model meta-analyses-an
empirical assessment of 920 Cochrane primary outcome meta-analyses. Res. Synth. Methods
2(4), 238–253 (2011)

25. Tian, L., Cai, T., Pfeffer, M.A., Piankov, N., Cremieux, P.Y., Wei, L.J.: Exact and efficient
inference procedure for meta-analysis and its application to the analysis of independent 2 × 2
tables with all available data but without artificial continuity correction. Biostatistics 10(2),
275–281 (2008)

26. Veroniki, A.A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., Salanti, G.:
Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res.
Synth. Methods 7(1), 55–79 (2016)

27. Viechtbauer,W.: Bias and efficiency of meta-analytic variance estimators in the random-effects
model. J. Educ. Behav. Stat. 30(3), 261–293 (2005)

28. Viechtbauer, W.: Confidence intervals for the amount of heterogeneity in meta-analysis. Stat.
Med. 26(1), 37–52 (2007)

29. Viechtbauer, W.: Conducting meta-analyses in R with the meta for package. J. Stat. Softw.
36(3), 1–48 (2010)

30. Vienneau, D., Schindler, C., Perez, L., Probst-Hensch, N., Röösli,M.: The relationship between
transportation noise exposure and ischemic heart disease: a meta-analysis. Environ. Res. 138,
372–380 (2015)

31. Warn, D.E., Thompson, S.G., Spiegelhalter, D.J.: Bayesian random effects meta-analysis of
trials with binary outcomes: methods for the absolute risk difference and relative risk scales.
Stat. Med. 21(11), 1601–1623 (2002)

32. Zwetsloot, P.P., Van Der Naald, M., Sena, E.S., Howells, D.W., IntHout, J., De Groot, J.A.,
Wever, K.E.: Standardized mean differences cause funnel plot distortion in publication bias
assessments. ELife 6 (2017)

http://www.R-project.org


Sampling Techniques for Big Data
Exploration



Sampling and Modelling Issues Using Big
Data in Now-Casting

Maria Simona Andreano, Roberto Benedetti, Federica Piersimoni,
Paolo Postiglione and Giovanni Savio

Abstract The use of Big Data and, more specifically, Google Trends data in now-
and forecasting, has become common practice nowadays, even by Institutes and
Organizations producing official statistics worldwide. However, the use of Big Data
has many neglected implications in terms of model estimation, testing and fore-
casting, with a significant impact on final results and their interpretation. Using a
MIDASmodel with Google Trends covariates, we analyse sampling error issues and
time-domain effects triggered by these digital economy new data sources.
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1 Introduction

The emergence of Big Data, and their capacity to help in now-casting, forecasting,
disaggregating, and filling in gaps of conventional and official statistics data sources,
is now history [28]. Nowadays, data are automatically and continuously generated
in digital form in many different respects, and from different data sources.

Although Big Data represent a data source of great potential interest for official
statistics, extracting relevant and reliable information from them for now-casting and
forecasting is not an easy task, and many challenges and open questions still remain,
including:

• the representativeness and selectivity of Internet data sources;
• the synthesis of the information contained in the data;
• the identification of sampling errors in Internet data;
• the estimation methods and modelling for disaggregated (in space and/or time)
data;

• the now- or forecasting model evaluation.

While there is no an agreed–upon definition of Big Data, literature often refers to
the characteristics that data-sets should have, namely the three Vs: volume, velocity,
and variety [20]. Volume denotes that Big Data are massive datasets, with a large
number of records stored. Velocity refers to the speed between the occurrence of an
event and the time it is stored. Variety denotes the high heterogeneity of data sources
and formats, which is closely related to an increase in complexity structure.

A great part of literature on Big Data largely addresses IT implications from their
use, focusing on software, format, and dimensionality challenges. Purely statistics
implications from their use have often been undervalued, and important statistics
questions such as representativeness, coverage and sampling errors, have not been
addressed by literature. As clearly noticed by [6], unlike traditional data collection
mechanisms, such as those used for regular business surveys and business regis-
ters, Big Data are generated by processes not primarily aimed at data collection.
This implies significant differences in the statistics characteristics of the data, as
underlined in Table1 [6].

Table 1 Characteristics of data sources

Data source Sample survey Register Big Data

Volume Small Large Big

Velocity Slow Slow Fast

Variety Low Low High

Records Units Units Units/events

Unit selection Probabilistic Administrative Non probabilistic

Reference population Total Total Partial
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Table1, which includes different coverage of the data source with respect to the
population of interest, shows that one of the main differences between registers and
Big Data is that the former often has nearly complete coverage of the population,
while the latter generally does not.

Another important distinction highlighted in the previous table, relates to the
errors, as for Big Data there is not yet a framework to assess errors and quality
aspects.

This paper will try to fill in this gap, by dealing with some of these issues. The
paper mainly focuses on Google Trends data and their use in now- and forecasting.
Buono et al. [7] present a detailed review of the various types of Big Data that can
be useful in macroeconomic now-casting, providing many real applications.

In the next sectionwe introduceGoogle Trends data and highlight themain sample
and modelling problems from their use in empirical applications. Section3 focuses
on the representativeness and selectivity problems of internet data, and suggests also
a procedure in the time domain. Final remarks conclude the paper.

2 Google Trends Data as Covariates in Now-Casting

The use of Google Trends data started with the papers of [10, 11], who showed
their relevance in predicting consumer behaviour and initial unemployment claims
for the US. From then on, forecasters have been looking at Google search data as
an information source that could improve their predictions. Apart from being free,
the speed at which these data are available makes them very attractive for studying
economic dynamics. The volume of queries made by users about products via the
search engine provided by Google could reflect the potential volume of sales of
these products. These data could therefore be considered as indicators or proxies of
consumer’s purchase intentions.

Most of the applications on Google Trends data concern unemployment rate pre-
dictions [2, 12, 15, 26]. Schmidt and Vosen [24] used Google Trends data to predict
US private consumption and estimate a monthly indicator for private consumption in
Germany. Bangwayo-Skeete and Skeete [3] introduced a new indicator for tourism
demand forecasting from Google Trends search query time series data. Bontempi et
al. [5] proposed a new uncertainty indicator based on internet search to anticipate
changes in economic cycle. For a more extended review see [7].

The Google Trends website provides access to a weekly average query index:

Sωi r = 1

7

∑

d∈ωi

Vd,r

Td,r
, (1)

which indicates how often in day d a specific keyword is searched (V ) relative to the
total search volume (T ), over a certain week ωi in a given geographical region (r ).
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The index is then normalized with respect to the maximum observed over the whole
analyzed period [0, t]:

GI = 100

max
ωi∈[0,t]

(
Sωi r

) Sωi r , (2)

Google time series only go back to 2004.
The Google Trends data are instantaneous and released as soon as possible, there-

fore can be helpful not only in predicting future, but also in actual official statistics,
which are usually defined at amonthly (or lower frequency) time intervals. Predicting
the present, in the sense described above, is a formof contemporaneous forecasting or
now-casting. However, typical time series regression models use data sampled at the
same frequency. The idea to build regression models that combine data with differ-
ent sampling frequencies is relatively new. Indeed, Mixed Data Sampling (MIDAS)
models specify conditional expectations as a distributed lag of regressors at some
higher sampling frequencies, and the lowest frequency series is regressed on the
higher frequency one [17].

The basic MIDAS model with a single explanatory variable and h-step ahead
forecasting, with h = hm/m, is given by:

yt+mh = ytm+hm = β0 + β1B
(
L

1
m ; θ

)
x (m)
tm−γ + ε

(m)
tm+hm

, (3)

where B
(
L

1
m ; θ

)
= ∑K

k=0 B (k; θ) Lk
m denotes a weighting function of the L frac-

tional lag operator, t indexes the basic time unit, m is the frequency mixture and γ

is the number of values of the indicators that are available earlier than the lower-
frequency variable to be estimated. There are several possible finite and infinite
polynomials B (k; θ) specification. Between t and t − 1, the higher-frequency vari-
able is observed m times and after one week it is possible to forecast yt one month
ahead.

In recent literature we can find many attempts to use Google Trends data to now-
cast, i.e. [8, 9, 14, 23].

In a recent paper [1] used weekly Google Trends search in car sales to forecast
through a MIDAS model, 6-month ahead, car registrations in Italy. However, before
using Google Trends data for now-casting, some previous check of the data should
be made. In fact, Google currently calculates the GI index based on a random
sample whose design is completely unknown and this will result in a sampling error.
Moreover, [13] point out that the indices can vary depending on the IP address and
it is unknown how Google applies its algorithm to millions of queries to form the
indices in Google Trends. Therefore, before including a Google Trends variable as
a covariate in the model, it is necessary to evaluate the magnitude of the sampling
error.

In the present paper, we take up the Google Trends series of car sales used in [1],
and perform some in-depth analysis in order to measure the magnitude of the sam-
pling error and assess its effect on forecasting performance. We downloaded 30
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Fig. 1 Car sales Google Trends series: standard deviation

series from different IP address, with different Gmail accounts, but over the same
time interval, geographical area and search query. Although the correlation between
these series is high, ranging from 0.75 to 0.99, the series are different. In Fig. 1 we
show the standard deviation of the 30 series.

Looking at the graph, we see that the standard deviation does not remain constant
over the analyzed time interval, confirming the idea that the between-day variations
is caused by the dynamic algorithm applied by Google [19].

The data downloaded over a shorter time vary much less than those downloaded
over a longer period. Therefore, if the sampling error is large, one should use the
samplemean of themultiple downloads into the forecastingmodel, instead of a single
download.

A second, and maybe more relevant, problem with Google Trends data, refers to
the updating of the series. In Fig. 2 we report the same Google Trends search series,
downloaded over an iterated time interval, augmented one week each time.

The graph clearly shows that the iterated downloaded series changes each time.
The difference can be very high, especially if a new maximum is reached in the
updated interval. The correlation between two consecutive updated series can even
go down at 0.3.

If the MIDAS model is estimated on a given Google Trends data and new inter-
net downloaded observations are used to now- and forecasting, particular attention
should be paid to the coherence of the model over the new data. If the revision of the
new series is high, the estimated model cannot be applied for now-casting using the
new data, because the model is not robust to different vintages. This problem will be
more and more evident with increasing h–ahead time forecast intervals.
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Fig. 2 Iterated car sales Google Trends data: weekly updates

From the previous two exercises, it is clear that the sampling error may vary, and
the forecast performance may be affected by sampling error. Given the sampling
approach of Google, downloading the series from multiple IP addresses over a short
time period, and getting the average, seems a preferable solution.

3 Representativeness and Selectivity

One of the main open questions regarding the use of Big Data in official statistics
is representativeness and selectivity of the reference population. Standard inference
techniques are based on sample surveys, with estimation theory able to quantify
the error of unknown population parameters. However, Big Data are not created by
statisticians or for statistical purposes. They represent a self-selected (non proba-
bilistic) sample, with generating mechanisms often unknown. Therefore, there is no
guarantee that the data are representative, unless they cover the full population of
interest, as it is the case for satellite sensing [18].

Big Data can be used in several ways to improve the information of standard
statistics and, depending on the nature of application, different issues arise. In this
paper, we focus on the use of Big Data (more specifically Google Trends data) as
auxiliary variable X in a time series model (MIDAS) to obtain more timely and better
forecasts of a target variable Y. Therefore, our reference scheme is that reported in
Fig. 3, where the target variable YU is observed over a populationU , and the covariate
XB comes from a Big Data population UB , UB ⊂ U . However, standard inference
could be applied, providing unbiased estimations only if representativeness of the
sub-population is satisfied. A subset of a finite population is said to be represen-
tative of that population with respect to a target variable, if the distribution of that
variable within the subset is the same as in the population [6]. Unfortunately, there
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Fig. 3 Representativeness of internet data

are few references on this topic, analysing the issue from a theoretical and empirical
perspective [4, 6, 22].

Following [27], we denote with I the sampling process, explaining the selection
of UB from U . In most situations with Big Data cases, I is unknown. Moreover,
R denotes the censoring (missing data) process, which makes the observation of
the covariate X incomplete and limited only to XB , on the sub-population UB . The
problem is to calculate the posterior distribution:

f
(
YU | XB, I, R

) ≡ [
YU | XB, I, R

]
, (4)

If ignorability conditions for sampling and censoring are satisfied (see [21], p. 13),
then: [

YU | XB, I, R
] ≡ [

YU | XB
]
, (5)

If we assume that the probability density function of YU is known with parameter ϕ,
the estimation of YU through the covariate XB can then be performed by disregarding
the sampling and censoring processes:

[
ϕ | XB, I, R

] ≡ [
ϕ | XB

]
, (6)

Unfortunately, when dealing with Google Trends data, the ignorability condition is
not ensured. Google Trends data are a self-selected sample, where some population
subgroups may be under-represented, causing biased estimates [25].

In literature, we can find different solutions to overcome this problem. A weaker
condition of ignorability can be obtained, if Big Data can be matched to other vari-
ables ZB , for which ignorability holds. This is the case when Big Data contain
records at unit level that can be identified through, for example, registers or sample
surveys [4].

Marchetti et al. [21] overcome the problem of unit level matching by applying
area-level models with area-level auxiliary variables, and aggregate Big Data in the
domains/areas of interest.

These solutions are not appropriate in our MIDAS model with Google Trends
covariate for different reasons. First, Google Trends data are not observed and
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Fig. 4 Google trends search and car registration, Italy (2004–2016)

measured at unit level, essentially for privacy and confidentiality reasons. Second,
the aim of the mixed frequency models is to explain a target variable with respect
to covariates observed at a finer time frequency level, avoiding aggregating data,
contrary to the case of area-level models. Finally, Google Trends data are classi-
cal examples of Big Data without coverage of all population, and therefore, with
self-selection problem. Therefore, a different solution is needed.

A solution is to derive background characteristics from within the Big Data vari-
able XB that match those of the target variable YU . In the time domain, as in our
case, one should apply the cointegration analysis on the observed series. This avoids
the risk of discovering spurious or false correlations between two—or more—time
series and allows verifying if the time series share common trends.

Figure4 shows the two time series used in our MIDAS model: monthly cars
registrations (ACI) and weekly Google Trends search in car sales.

Although theMIDASmodel is estimated on stationary time series, a preliminarily
long-run analysis between the variables is needed to solve the representativeness
issue of Google Trends data. However, the application of cointegration analysis in
a mixed frequency context is not immediate. The effects of aggregation on the size
of standard cointegration tests may be severe. Different procedures are proposed by
literature to perform a cointegration analysis on time series observed at different
frequencies [16].

The presence of common trends between target and explanatory variables is a
necessary condition for representativeness, however more analysis should be made
to verify its sufficiency.

Finally, fewwords should be spent regarding the use of remote sensing and satellite
data as additional data source. Digital technologies provide more and more potential
new sources of data, offering more information to official statistician. Satellite sens-
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ing data are available once every fortnight, with a clearly advantage over annual or
sub-annual official data. These data are perfectly identifiable (through pixel longi-
tudes and latitudes), with Big Data population UB overlapping the target population
U . Therefore, the following holds:

[
XB

] ≡ [
XU

]
, (7)

The requirements of ignorability condition (6) are fully satisfied. Attention should
only be paid when there are missing data, and the process R needs to be carefully
checked. Satellite images and geographic information systems (GIS) are widely
used in agriculture, urbanization and population studies [22]. Henderson et al. [18]
applied satellite National Oceanic and Atmospheric Administration night-lights data
to improve on official income growth measures and to obtain small area estimation
of GDP growth.

4 Concluding Remarks

The use of Big Data as additional source in now-casting is a great opportunity for
official statisticians to obtain more efficient, effective and timely information, but it
also defines a new paradigm for data and models. We overview in the paper several
unique features brought by Big Data, and more in detail by online search data as
Google Trends. We focused, more specifically, on their use in nowcasting as covari-
ates in mixed frequency models, highlighting a set of key challenges that, at present,
hinder and restrict the accuracy and effectiveness of forecasting with Big Data. Our
empirical results showed that a preliminary evaluation of the sampling errors and
magnitude of the standard deviation is needed, before using such data for forecast-
ing, because these can significantly affect the estimation model output. Moreover,
the online downloaded series should be carefully updated because revisions may be
high, compromising the robustness of the estimated model.

Moreover, representativeness and selectivity of Big Data remain important issues
that are worth considering in future research if one wants to reduce the risk of mis-
leading forecasting results. In the present paper, we suggest to apply the cointegration
analysis between target and explanatory variables of mixed frequency model, as a
tool to verify representativeness.

Although Big Data represents a data source of great potential interest for official
statistics, many challenges still remain, and more in-depth analysis is needed to
explore their statistical quality and characteristics.
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Sample Design for the Integration of
Population Census and Social Surveys Il
Disegno Campionario per L’integrazione
Del Censimento Della Popolazione e delle
Indagini Sociali

D’Alò Michele, Falorsi Stefano, Fasulo Andrea and Solari Fabrizio

Abstract Starting from 2018, the Italian National Statistical Institute launched a
new census system, named Permanent Census, which, integrating administrative
data and data coming surveys, will be carried out every year. This put an end to the
era of traditional decennial censuses. The census survey sample is aimed at updating
the data contained in the integrated system of registers. Furthermore, the new census
will be integrated with the main social surveys. The aim of this work is to compare
two sampling strategies for the census survey sample. The first comprises pooling
together the samples of the main social surveys, while the second consists of an ad
hoc sampling design. Different estimation procedures are taken into account in order
to compare the two sampling strategies.

Keywords Population census · Social surveys · Projection estimator

1 Introduction

In 2012, the so-called Permanent Census of Population and Housing was intro-
duced in Italian legislation (Article 3 of Legislative Decree 179/2012, converted with
amendments into Law 221/2012). The goal of the Permanent Census is to produce
annual data, replacing the previous decennial cycle, using information from admin-
istrative sources integrated with an ad hoc sample survey, called Master Sample.
The Permanent Census is embedded within the Italian National Institute of Statistics

D. Michele · F. Stefano · F. Andrea (B) · S. Fabrizio
ISTAT, Rome, Italy
e-mail: fasulo@istat.it

D. Michele
e-mail: dalo@istat.it

F. Stefano
e-mail: stfalors@istat.it

S. Fabrizio
e-mail: solari@istat.it

© Springer Nature Switzerland AG 2019
A. Petrucci et al. (eds.), New Statistical Developments in Data Science,
Springer Proceedings in Mathematics & Statistics 288,
https://doi.org/10.1007/978-3-030-21158-5_15

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21158-5_15&domain=pdf
mailto:fasulo@istat.it
mailto:dalo@istat.it
mailto:stfalors@istat.it
mailto:solari@istat.it
https://doi.org/10.1007/978-3-030-21158-5_15


192 D. Michele et al.

(Istat) modernization program, whose focus is to boost the use of administrative data
within the statistical production process.

The census information will be assured by integrating survey data with adminis-
trative data stored in the integrated statistical system of registers, which is a set of
interlinked base and thematic registers. The new census strategy will allow a sig-
nificant reduction of census costs, of respondents burden, and of the organizational
impact on municipalities (traditionally responsible for the census field work).

This document presents two alternative sampling strategies for the Permanent
Census sample: an ad hoc sampling design and the sampling strategy deriving from
pooling together the samples of the main social surveys. Section2 describes the two
scenarios. The sampling designs and the estimation methods are presented in Sect. 3.
Section4 reports the results of the simulation study. Finally, last is devoted to the
conclusions.

2 Pooled Sample and Census and Social Survey Integrated
System Scenarios

Two different sampling strategies have been taken into account for the Permanent
Census.

The first scenario consists of pooling together the samples of the main social
surveys carried out by Istat, namely Labour Force Survey (LFS), Living Conditions
Survey (LCS), Aspects of Daily Life Survey (ADLS), Consumer Expenditure Survey
(CES). From now on, we will refer to these pooling samples as Pooled Sample (PS).

The second scenario aims at fully integrating socio-economic information from
administrative data and sample surveys. It is based on the Master Sample (MS),
which is selected to run the new Permanent Census. The MS sampling design is
composed by two components: a list and an areal component. The first is selected
from a population frame and it is based on a two stage sampling design. Municipal-
ities and households are the primary and the secondary sampling units respectively.
Municipalities are divided into self-representative and non self-representative units.
The former are included in the sample every year, while the latter are surveyed only
once in 2018–2021 according to rotation scheme. The list component allows the
estimation of the census tables that cannot be computed using only the information
already available from registers. Furthermore, the Master Sample can be considered
as a first phase sample for the main social surveys samples, which can then be viewed
as a second phase sample. Indeed, from the Master Sample a set of negatively coor-
dinated samples of households can be selected for the second phase surveys. This
strategy is named Census and Social Survey Integrated System (CSSIS). It aims at
the harmonization of social surveys and at ensuring a maximum integration with the
system of registers. The second component is based on an areal sampling design
in which enumeration areas and addresses are the sampling units. It is aimed at
estimating under and over coverage rates of the population register.
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For an optimal CSSIS design the classification of the survey variables as fully or
partially substitutable and not substitutable isworthwhile. Thefirst set of variables are
those for which the administrative sources provide the corresponding information.
These variables are considered complete since they are available for all population
units, and accurate because of their good level of coverage and quality.Administrative
sources may provide just a proxy information for a set of target variables. In this case,
the variables are classified as partially replaceable, since they are considered complete
and accurate only for a subset of the target population, while for the remaining
subset of the population they are unknown or are not considered so reliable. Finally,
for not replaceable variables no information coming from administrative registers is
available. Therefore, the target parameters can be estimated only bymeans of sample
survey data. In this case, the administrative data stored in the population register can
be used only as auxiliary information.

In short, the CSSIS is designed to fill up the information gap of the population
register by efficiently estimating social and economic parameters of interest that are
partially replaceable or not replaceable. This strategy should be able to produce more
effective direct estimates than those computed by means of separate survey strate-
gies, even when pooling samples are involved in estimating harmonized common
variables.

The Master Sample is a two phase sample. The first phase survey aims to:

• to collect information on partially replaceable and on not replaceable core variables
useful for integrating the structural information stored in the population register;

• to set a first contactwith the sample households, fromwhich a subsamplewill be re-
interviewed in the second phase module the following year. The first contact could
reduce potential second phase non-response obtaining updated contact information
on telephone numbers and email addresses. This contact information, which is not
available on the sampling frame, may allow to carry out less expensive interview
techniques (CAWI or CATI) in the second phase.

The second phase sample is a negatively coordinated sample of households drawn
from the MS for the main social surveys and it is aimed at the following:

• to provide information on harmonized and specific socio-economic variables cur-
rently observed by LFS, LCS, ADLS, and CES;

• to confirm the common structural variables already surveyed in first phase inter-
view.

The first phase sample is based on a yearly sample size of about 2800 municipalities
out of 8,000 and around 1,400,000 households. The first phase sample size should
be at least large enough to cover the 140,000 households sample size needed for the
second phase. For an overview of CSSIS, based on the two phase MS design, see
Fig. 1.

Referring to similar international experiences, analogous modular approaches
have been proposed by Eurostat for the design of integrated social surveys. Further-
more, the ABS is designing an integrated system of investigations very similar to
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Fig. 1 An overview of the CSSIS

what described here and called Australian Population Survey, does not replace the
census. The design with two components supporting the register census is similar
to what ONS has been studying for the register-based census supposed to start in
2023 after the 2021 census run [7]. In particular, in 2021 the ONS will conduct a
traditional census and, at the same time, will carry on a parallel census run based
on the construction of an integrated population register using several administrative
sources and a survey sample, similarly to the Italian MS. It is worthwhile to men-
tion that every year since 2015 and until 2023 the ONS will produce an assessment
to evaluate how much they are away from the model to be. Another international
experience showing similarities with what is planned in Italy is the Israelian rolling
integrated census. They use an integrated register which is adjusted by means of
weights computed by means of an EDSE [8].

3 Estimation Methods

This section is devoted to the description of the estimation methods used to compare
the properties of the two alternative sampling design strategies: the Pooled Sample
strategy (scenario 1) and the Master Sample strategy (scenario 2). Both design and
model based estimation methods are considered.

The estimators taken into consideration are:

• ratio estimator, which is applicable only for in-sample domains;
• design-based projection estimator from Master/Pooled Sample to register;
• model-based projection estimator from Master/Pooled Sample to register.

The projection estimator, proposed by [5], is an asymptotically unbiased model-
assisted estimator that combines information from different sources, using common
unit-level auxiliary information. A working model is fitted to the units of a smaller
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sample, and synthetic values are then obtained for the units of a larger sample or, if
available, for the units of the register. Denoting with k and d the generic sampling
unit and the generic domain respectively, the following linear model is considered:

ykd = xkdβ + εkd , k = 1, . . . , nd , d = 1, . . . , D,

E (εkd) = 0,Var (εkd) = σ 2, k = 1, . . . , nd , d = 1, . . . , D, .

The sampling weights wk are used for the estimation of the model parameters:

β̂ =
(∑

kd

x′
kdxkdwkd

)−1 (∑
kd

x′
kd ykdwkd

)
.

Fitting the model using MS or PS data, it is possible to project synthetic values
ŷkd = xkd β̂ of the variable of interest on the register. This method requires a high
level of quality of the auxiliary variables and a high goodness of fit of working
models.

The model based estimator considered in the experimental study is the model
based counterpart of the projection estimator. In this case a linear mixed model is
considered as in [1]. D’Alò and Solari [2] showed that the model-based projection
estimator is equivalent to the EBLUP related to the unit level linear mixed model.
Denoting with k the generic sampling unit and with d the generic domain, the linear
mixed model is specified as:

ykd = xkdβ + vd + εkd , k = 1, . . . , nd , d = 1, . . . , D,

E (εkd) = 0,Var (εkd) = σ 2, k = 1, . . . , nd , d = 1, . . . , D,

E (vd) = 0,Var (vd) = σ 2
v , d = 1, . . . , D,

where vd is an area random effect included in the model to take into account the
between area variability. Estimation of β and of the variance components σ 2 and
σ 2

v can be obtained using Maximum Likelihood or Restricted Maximum Likelihood
iterative procedures (see [6]). Analogously to the design based case, synthetic values,
defined as ŷkd = xkd β̂ + v̂d , can be projected from the sample to the register.

4 Simulation Study

In this section a case study to compare the MS and PS designs using the set of
estimation methods illustrated in the previous section is described. To this aim four
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sub-regional domains are considered: provinces, aggregation ofLabourMarketAreas
(macro-LMAs), Labour Market Areas (LMAs), municipalities. In order to evaluate
the empirical properties of the estimates in terms of bias and mean square error, a
Monte Carlo simulation study has been carried out using the 2011 Population Census
data. Two hundreds samples have been drawn from the 2011 Italian Population
Census, for two Italian regions, Trentino-Alto-Adige and Marche, using both MS
and PS sampling designs. The sample size of each simulated sample is equal to
140,000 households, that is the sampling size needed for the second phase, that is
selecting the samples for the four social surveys.

The target variables taken into account are the employed and unemployed counts
in the two regions.

The linear model adopted for the design-based projection estimator uses an inter-
cept at province level. The auxiliary information considered in the model specifica-
tion is: marital status, citizenship, 28 age-gender classes, and an additional variable
taken from an administrative register built in Istat (see [4]). The last variable is an
individual indicator of the presence of signals in at least one administrative source
related to the employment market. The same covariates are used in the fixed part of
linear mixed model, while the area random effects are defined at provincial level.

All the estimators are compared by means of standard indicators of accuracy of
prediction: the Average Absolute Relative Bias (AARB) and Average Relative Root
Mean Squared Error (ARRMSE). Expression of the evaluation indicators are given
by:

AARB = 1

D

D∑
d=1

1

200

200∑
r=1

∣∣∣Ŷrd − Yd
∣∣∣,

ARRMSE = 1

D

D∑
d=1

√√√√ 1

200

200∑
r=1

(
Ŷrd − Yd

)2
,

where Ŷ rd and Y d are, respectively, the predicted value in the r -th simulated sample
and the correspondent true value of the target variable y in the domain d.

Tables1 and 2 report the results for the variable employment status for MS and
PS, respectively. Tables3 and 4 display the analogous outputs for the unemployed
counts. AARB and ARRMSE indicators are computed for the four types of domain
considered in the case study.

As can be seen from the tables, it results that the design-based projection estimator
often outperforms the other two types of estimator. When the target variables is the
employment status, the ratio estimator and the design-based projection estimator
show good performances in terms of AARB. However, the ratio estimator is always
worse than the design based projection estimator in terms of ARRMSE. Slightly
worse performances are displayed for all type of estimators when moving from
the largest domains (provinces) to the smallest ones (municipalities). Furthermore,
the Master Sample strategy leads to better results than the Pooled Sample strategy,
especially in terms of ARRMSE.
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Table 1 Pooled sample—AARMB and ARRMSE for the variable employed

Average relative root mean squared error

Ratio estimator Design-based projection Model-based projection

Provinces (7) 0.3 0.5 –

Macro LMA (20) 0.4 0.1 2.4

LMA (54) 0.8 1.1 2.7

100% in-sample LMA
(26)

0.6 0.4 2.5

90% in-sample LMA
(41)

0.7 0.6 2.4

50% in-sample LMA
(50)

0.7 0.8 2.6

Municipalities (572) 1.8 2.0 3.5

100 % in-sample
municipalities (27)

1.1 0.6 2.1

90% in-sample
municipalities (32)

1.4 0.7 2.1

50% in-sample
municipalities (113)

1.5 0.9 2.8

Average relative root mean squared error

Ratio estimator Design-based projection Model-based projection

Provinces (7) 4.1 2.3 –

Macro LMA (14) 2.7 1.3 3.7

LMA (54) 7.0 1.9 4.0

100% in-sample LMA
(26)

5.0 1.3 3.8

90% in-sample LMA
(41)

5.3 1.4 3.8

50% in-sample LMA
(50)

6.1 1.6 3.9

Municipalities (572) 11.1 1.3 4.2

100% in-sample
municipalities (27)

9.2 1.5 3.7

90% in-sample
municipalities (32)

9.5 1.5 3.6

50% in-sample
municipalities (113)

10.5 1.6 4.0

In regard to the estimation of unemployment counts, the values reported inTables3
and 4 displays that the ratio estimator outperforms the other two estimators in terms
of AARB. The design based projection estimator is, instead, the best choice in terms
of ARRMSE. The bad performance in terms of bias of the design based projection
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Table 2 Master sample—AARMB and ARRMSE for the variable employed

Average absolute relative bias

Ratio estimator Design-based projection Model-based projection

Provinces (7) 0.3 0.1 –

Macro LMA (20) 0.5 0.5 2.3

LMA (54) 0.7 1.2 2.9

100% in-sample LMA
(30)

0.5 0.6 2.6

90% in-sample LMA
(38)

0.6 0.6 2.5

50% in-sample LMA
(50)

0.6 0.9 2.7

Municipalities (572) 1.6 2.0 3.6

100 % in-sample
municipalities (49)

1.0 0.9 3.0

90% in-sample
municipalities (50)

1.3 0.9 3.0

50% in-sample
municipalities (99)

1.4 1.0 3.1

Average relative root mean squared error

Ratio estimator Design-based projection Model-based Projection

Provinces (7) 2.6 1.0 –

Macro LMA (20) 3.7 1.1 3.5

LMA (54) 6.6 1.7 4.0

100% in-sample LMA
(30)

4.0 1.1 3.8

90% in-sample LMA
(38)

5.5 1.1 3.7

50% in-sample LMA
(50)

5.7 1.4 3.9

Municipalities (572) 8.9 2.3 4.6

100% in-sample
municipalities (49)

4.7 1.3 4.2

90% in-sample
municipalities (50)

4.8 1.3 4.1

50% in-sample
municipalities (99)

5.5 1.4 4.2

estimator for the unemployment status is likely due to the fact that the model is
significantly less predictive than employment status case.

TheMS strategy seems to outperform the PS strategy for LMA andmunicipalities
and to be less efficient for the largest domains, that is provinces and Macro-LMAs.
The ARRMSE values related to the 100, 90 and 50% in-sample municipalities for the
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Table 3 Pooled sample—AARMB and ARRMSE for the variable unemployed

Average relative root mean squared error

Ratio estimator Design-based projection Model-based projection

Provinces (7) 0.4 0.5 –

Macro LMA (20) 1.0 1.1 34.4

LMA (54) 3.2 12.3 48.8

100% in-sample LMA
(26)

1.5 5.2 35.8

90% in-sample LMA
(41)

1.7 9.7 40.0

50% in-sample LMA
(50)

1.8 11.3 48.0

Municipalities (572) 10.9 33.4 73.2

100 % in-sample
municipalities (27)

2.0 9.9 30.2

90% in-sample
municipalities (32)

2.2 8.8 31.1

50% in-sample
municipalities (113)

4.1 17.1 48.3

Average relative root mean squared error

Ratio estimator Design-based projection Model-based projection

Provinces (7) 10.4 9.4 –

Macro LMA (14) 15.2 14.3 42.2

LMA (54) 42.6 21.7 57.3

100% in-sample LMA
(26)

24.1 15.2 44.5

90% in-sample LMA
(41)

27.1 19.2 54.6

50% in-sample LMA
(50)

29.2 20.9 56.7

Municipalities (572) 75.4 40.9 83.0

100% in-sample
municipalities (27)

29.3 17.7 39.4

90% in-sample
municipalities (32)

34.1 16.9 39.8

50% in-sample
municipalities (113)

45.7 25.2 58.0

projection estimators in the Pooled Sample case are smaller than the corresponding
values for the Master Sample case. This is simply due to the fact that the number
of in-sample LMAs or municipalities in PS is smaller than the analogous size in
MS. For instance, in the Pooled Sample 27 municipalities are always included in
the samples, while for the Master Sample the corresponding value is 49. This means
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Table 4 Master sample—AARMB and ARRMSE for the variable unemployed

Average absolute relative bias

Ratio estimator Design-based projection Model-based projection

Provinces (7) 0.3 0.5 –

Macro LMA (20) 1.1 1.3 37.0

LMA (54) 2.9 15.9 45.7

100% in-sample LMA
(30)

1.3 10.3 36.3

90% in-sample LMA
(38)

1.5 13.7 42.5

50% in-sample LMA
(50)

1.9 15.1 44.9

Municipalities (572) 8.8 34.8 69.5

100 % in-sample
municipalities (49)

2.2 16.1 38.7

90% in-sample
municipalities (50)

2.6 15.8 38.7

50% in-sample
municipalities (99)

4.2 22.1 49.1

Average relative root mean squared error

Ratio estimator Design-based projection Model-based projection

Provinces (7) 11.2 10.1 –

Macro LMA (20) 20.6 16.0 44.9

LMA (54) 39.5 20.3 53.8

100% in-sample LMA
(30)

22.5 15.9 44.7

90% in-sample LMA
(38)

24.9 18.3 50.7

50% in-sample LMA
(50)

27.4 19.7 53.0

Municipalities (572) 61.0 38.8 78.7

100% in-sample
municipalities (49)

28.5 20.4 48.7

90% in-sample
municipalities (50)

29.6 20.3 48.4

50% in-sample
municipalities (99)

32.4 26.3 58.9

that the sampling units of the Pooled Sample are spread over a smaller number of
municipalities than the sampling units of the Master Sample. This implies that, in
case of pooling strategy, the in-sample municipalities usually have larger sample
sizes than the corresponding in-samples municipalities drawn with the MS sampling
strategy. Only the results for the 50% in-sample LMAare directly comparable forMS
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and PS. In this case, the MS strategy outperforms the PS strategy for the estimation
of both employment and unemployment counts.

5 Conclusions

In this work two different sampling strategies for carrying out the new Italian cen-
sus are compared: a strategy involving the pooling of social surveys sample, named
Pooled Sample strategy, and an ad hoc census strategy, named Master Sample strat-
egy.

The Master Sample strategy results to outperform the Pooled Sample strategy in
many combinations of domain and estimator taken into account. Furthermore, in the
Master Sample case the sampling units are spread over a larger number of domains
than what happen in the Pooled Sample case. This could result particularly useful
when adopting, for instance, small area estimation methods.

Besides, the areal component of the Master Sample design allows to estimate the
coverage of the population registers, which is not possible to estimate when adopting
the pooling strategy.

The second phase of the Master Sample permits a complete integration and har-
monization between the statistical system of register and the main social surveys
carried out by Istat. This aspect is extremely important since it follows the frame-
work proposed by [3] on the harmonization of social surveys.

Appendix

See Tables1, 2, 3 and 4
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Sampling Schemes Using Scanner Data
for the Consumer Price Index

Claudia De Vitiis, Alessio Guandalini, Francesca Inglese
and Marco Dionisio Terribili

Abstract The Italian National Institute of Statistics (ISTAT) is carrying out a
redesign of Consumer Price Survey (CPS). The availability of Scanner Data (SD)
from retail modern distribution, provided to ISTAT by Nielsen for a large number of
stores selling food and grocery, is the starting point of this innovation. Indeed, SD
represent a big opportunity for improving the computation of Consumer Price Index
(CPI). This work aims to study the properties of alternative aggregation formulas
of the elementary price index in different sampling schemes implemented on SD.
Bias and efficiency of the estimated indices are evaluated through a Monte Carlo
simulation.

Keywords Consumer price index · Scanner data · Sampling · Fixed and dynamic
approach

1 Introduction

The Italian National Institute of Statistics (ISTAT) is carrying out a redesign of the
Consumer Price Survey (CPS). Themain aimof the project is tomodernise the survey,
improving and unburdening the data collection phase, together with the progressive
introduction of more rigorous sampling procedures, probabilistic where possible, for
the selection of outlets and products (items) [1, 6].
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The current strategy of the CPS, carried out at territorial level, is based on three
purposive sampling stages. The sampling units are respectively themunicipalities, the
outlets and the elementary items for which the prices are collected. At each stage the
selection criterion is based on the concept of most representative units: the first stage
units are the chief town of provinces; the outlet sample is chosen to be representative
of the consumer behavior in the municipality; for each product of the basket the most
sold item is selected and the prices of these items are collected throughout the year. At
municipality level the elementary price indices are currently obtained by unweighted
geometric mean. The general price index is calculated using a Laspeyres type index,
through subsequent aggregation of elementary indices: at different levels weights
are used based on population proportions and national account data on consumer
expenditure.

The availability of Scanner Data (SD) from the retail modern distribution (food
and grocery) are the starting point for the implementation of the innovation in the
survey (CPS). At present food and grocery sector cover 11% of the total and modern
distribution the 55% of the total. Another aspect involved in the review of the survey
is the use of web-scraping for collecting prices referred to online market (tourism,
mobile phone, etc.).

Scanner data files contain elementary information (turnover and quantities)
referred to the items which are sold weekly in a specific outlet: each item is uniquely
identified by its barcode (GTIN—Global Trade Item Number, or EAN—European
Article Number). Information available on turnover and quantities sold in a week do
not provide the “shelf price” of the references (or series individuated by EAN and
outlet codes) but allows to define a unit value or average weekly price. Due to opera-
tional constraints of the productive process, a restriction is introduced regarding the
observable weeks: only the relevant weeks are considered, defined as the first three
full weeks (composed of seven days) in each month.

SD introduce important advantages compared to data collected through traditional
survey. In particular, the availability of turnover and quantity data at item level offer a
real possibility of calculatingmore accurate indices: it is possible, in fact, to include in
the calculus the expenditure share of each product sold. SD also contain descriptive
information about items characteristics useful to treat quality change, to identify
relaunches of existing products or new products, etc. [2, 7].

On the other hand, the use of SD in the compilation of Consumer Price Index
(CPI) must take into account some important drawbacks, as attrition of products,
temporary missing products, entry of new products and volatility of the prices and
quantities due mainly to sales. These are aspects that need to be addressed from both
a theoretical and a practical point of view [5].

Tomaximize the potential offered by SD it would be necessary to go beyond those
methods of price index compilation which do not exploit all the information provided
by the data and do not take into account the population dynamics [2]. Weighted and
chained indices should be considered to incorporate the overall price trend over a
given time, including the prices of new products. Furthermore, the problem of shrink-
age over time due to the attrition of a fixed basket of products is solved automatically
using chain indices. However, even though in a dynamic approach it is necessary
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to construct series of chained indices, high-frequency chaining of weighted indices
(also superlative Fisher and Törnqvist indices) are affected by chain drift, due to
non-symmetric effects on quantities sold and expenditure share of goods before and
after sale (Ivancic et al. 2011; [4]).

In recent years, an important debate has taken place among the researchers dealing
with the estimate of the consumer price index starting from SD. The focus, above
all, has been on the transition from a static population approach (fixed basket) to
a dynamic population approach (flexible basket) and it is based on the study of
alternative price index formulas based on matched-model methods (matching of
products sold during two months in a row) or other methods that are transitive and,
therefore, free from chain drift [5].

Other aspects discussed are the quality of SD (completeness and correctness) and
the definition of methods to treat appearing and disappearing products, temporary
missing products, relaunches, quality change, etc. [15, 16].

The aim of this paper is to present the ISTAT SD experimental framework in
which, firstly, probability and nonprobability selection schemes of series (references
individuated by EAN and outlet codes) are compared and then different probability
sampling designs are examined.

As the main objective of this experimental phase has been to study the robustness
of several price index estimators under different selection schemes, the sampling
frame has been defined by considering a panel data set that contains permanent
series.

Moreover, through a further experiment, the differences between a fixed and a
dynamic population approach in the construction of the elementary price indices are
highlighted. In this case the purpose is trying to measure the magnitude of sampling
error and non-sampling error for different price index formulas in both approaches.
When a static population is assumed, non-sampling errors are generated by disap-
pearing products, ignoring entries of new products and temporary missing products.
In a dynamic population context, non-sampling errors are generated by the variability
in the number of matched-items between the months and the use of weighted index
formulas (chain drift).

An important issue, which is out of the purpose of this paper but is crucial for the
ISTAT CPI, is the need for combining estimates derived from SDwith those that will
be still produced through current on field survey for the traditional retail distribution.

Currently ISTAT is performing a transition phase in which SD are used for the
production of CPI but following a static approach not far from the traditional survey.
However, the dynamic approach is tested, too. The indices derived from SD, both
following fixed or dynamic approach, are combined with indices deriving from the
traditional survey using weights of modern distribution and traditional distribution
estimated by the consumer expenditure survey.

The paper is organized as follows: Sect. 2 provide a brief overview of the use of
SD for the CPI compilation in some countries; Sect. 3 presents the context and the
methodological approach of experiments used to compare different sampling designs
from SD—analysis on available SD, description of different selection schemes of
series; Sect. 4 shows the main results regarding the accuracy of price indices esti-
mates. Finally, in Sect. 5 some conclusions and future developments are exposed.
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2 Use of Scanner Data for CPI

At the end of 2014 the Italian National Institute of Statistics (ISTAT), through a
contract with Nielsen and an agreement with the six main retail chains operating
in Italy, started receiving SD referred to food and grocery markets and processing
them for experimenting the calculus of CPI. This data acquisition places Italy among
countries using or testing the use of this source of data for compiling CPI.

Moreover, Nielsen provide the dictionary for the classification of EAN codes to
GS1-ECR-Indicod product classification. ISTAT ensures internally the translation
from ECR to COICOP, the classification of products used for the CPI. Consumption
segments, which are not coded in the EU-COICOP, are the most detailed domain of
estimate for the Italian CPI and are constituted by groups of homogeneous products;
those defined for the food and grocery are 126 out of a total of 324.

As noted some years ago in the ILO CPI Manual [9], “Scanner data constitute
a rapidly expanding source of data with considerable potential for CPI purposes”
(p. 54); “Scanner data obtained from electronic points of sale include quantities sold
and the corresponding value aggregates on a very detailed level” (p. 92); “Scanner
data are up to date and comprehensive” (p. 478).

Scanner data have been used in the compilation of the CPI for some years in four
countries, i.e., Switzerland, Norway, Netherlands and Sweden, while Belgium and
Denmark started only from 2016. SD can be exploited in different ways. The simplest
way is using SD as an alternative source for price collection, replacing collection
within the stores, without changing the traditional principles of computing the price
indices. This method is currently applied by the Swiss Federal Statistical Office [16].
Alternatively, as in Norway and Sweden, SD can be used as universe from which
samples of references can be selected following different methods [11, 12]. Finally,
all (or almost all) SD can be used to compile price indices, without a strict sample
selection, but with consequences on the theoretical definition of the index. In the
Netherlands, the computation methods is different and the data are used in a more
extensive way to calculate price indices [15]. The method used assumes a dynamic
population approach: elementary price indices of homogeneous items are calculated
by monthly chained unweighted geometric index (Jevons); no explicit weighting is
applied and expenditure information is used just to select a cut-off sample ofmatched
items during two months in a row.

In a study perspective, moreover, SD from retail stores allow researchers to evalu-
ate howdifferent price index formulas perform at the elementary level. In fact, official
CPI are usually constructed in two broad steps. First, elementary price indices are
calculated for narrowly defined and relatively homogeneous products, known as ele-
mentary aggregates. In a second step, these elementary indices are aggregated into a
single consumer price index using expenditure weights. Elementary indices, named
also higher level elementary indices, are therefore the building blocks of price index
numbers.

While the aggregation at higher level is carried out using generally Laspeyres type
formulas with weights deriving from national account or expenditure survey data,
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official practices in elementary price index construction are still not uniform across
countries, deserving further investigation in the consequences of different choices
[8].

3 Context and Methods for Sampling Scanner Data Series

3.1 Outline

The experiments carried out so far in ISTAT on the SD aimed to evaluate the proper-
ties of the weighted and unweighted elementary price indices in different selection
schemes of series, under a fixed population approach. In this experiments the impli-
cations of life-cycle of series, seasonality issues and missing data are not taken into
account and a simplification is used: only panel series are considered as universe for
sampling and price index evaluation.

In this context the definition of panel data is based on the permanent series concept
which refers to those series with not-null turnover for at least one relevant week
(the first three full weeks) in each month of the considered year, starting from the
December of previous year. A sample of series is selected at the beginning of the
reference period and it is followed during the whole year, without considering either
new entries nor discontinuities. For each selection scheme, starting from the monthly
price ratios with fixed base (December 2013) available for 2014, the elementary price
indices is calculated using three classic aggregation formulas: Jevons (unweighted),
Fisher (ideal) and Lowe (weights from quantities of previous year). The choice of
these indices is made on the basis of theoretical and empirical considerations: Fisher
ideal index is thus preferred by economic theory, as it uses quantities in different
times and allows for substitution effects.

The experimental study is developed in two phases: firstly, probability and non-
probability selection schemes of series are compared; then, several sampling designs
are considered, each of them characterized by the use of different criteria of sample
allocation, both for outlets and elementary items (EANs), and by different selec-
tion methods of the sampling units. The comparison among the alternative selec-
tion schemes is made, for each price index formula, taking the corresponding true
value of the index computed on the whole universe as a benchmark. Indices per-
formance is evaluated in terms of bias for all selection schemes. For probability
selection schemes, accuracy (bias and sampling variance) of the price indices are
studied through a Monte Carlo simulation: 500 samples are selected, for each dif-
ferent sampling design. Variability and bias are computed on the estimated indices
in the replicated samples. The sample selection and the weighting of price indices is
based on the total annual turnover of 2013.

Explorative analyses have been conducted beforehand on SD relative to the six
retail chains (Conad, Coop, Esselunga, Auchan, Carrefour, Selex) available in 2014
for five Italian provinces. The Turin province and some consumption segments
(Coicop 6 digits) has been chosen for the experiments.
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3.2 Analysis of Scanner Data

Scanner data acquired by ISTAT in the first phase and analyzed herein, cover five
Italian provinces (Ancona, Cagliari, Palermo, Piacenza, Torino) and six chains of
modern distribution (Conad, Coop, Esselunga, Auchan, Carrefour, Selex) for years
2013 and 2014, for hypermarkets and supermarkets.Afterward data fromother chains
have been acquired up to now, from sixteen chains. The Italian modern distribution
sector is, in fact very complex and heterogeneous, especially with respect to the
territory: different chains cover different regions in a very jeopardized way and with
high variability.

In the following tables some aspects of the chains and outlet type distributions in
the five provinces are highlighted. The analysis has been carried out on the whole
of the 289 outlets of the 5 provinces for the 52 weeks of the year 2014. Table 1
contains the whole turnover and the number of outlets by chain and province and
the percent coverage of the six chains with respect to the total turnover of modern
distribution for food and grocery at province level. The table shows a heterogeneous
situation both among the chains and the provinces: Turin province represent more
than 50% of turnover involved; this fact could be influenced by the high number of
outlets observed in this province, 130 on a whole set of 289. In the other provinces

Table 1 Total turnover (in EUR’000) and number of outlets by chain and province (2014)

Chain Province

Ancona Cagliari Palermo Piacenza Turin Total

A Turnover 14’287 63’553 56’233 38’883 47’924 220’882

Outlet 3 10 15 7 13 48

B Turnover 79’793 – 35’976 32’823 272’443 421’035

Outlet 10 – 2 4 26 42

C Turnover – – – 58’936 108’144 167’080

Outlet – – – 2 3 5

D Turnover 106’364 54’248 64’424 4’891 157’247 387’174

Outlet 11 2 7 1 8 29

E Turnover 11’094 38’062 64’896 2’659 424’278 540’990

Outlet 1 2 21 1 40 65

F Turnover 74’711 77’909 – 28’197 140’879 321’696

Outlet 34 21 – 4 39 98

Total Turnover 286’249 233’773 222’098 166’390 1’152’109 2’058’857

Outlet 59 35 46 19 130 289

Coverage
turnover

87.00 74.28 69.95 73.68 72.65 73.96
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Table 2 Total turnover (in EUR’000), number of outlets and number of items by province and
outlet type (2014)

Province Outlet type Total

Hypermarket Supermarket

Ancona Turnover 136’000 150’249 286’249

Outlet 10 49 59

Item 63’112 43’000 106’112

Cagliari Turnover 126’002 107’771 233’773

Outlet 7 28 35

Item 53’053 26’418 79’471

Palermo Turnover 81’250 140’129 222’097

Outlet 4 41 46

Item 40’532 33’349 73’881

Piacenza Turnover 83’803 82’586 166’390

Outlet 4 15 19

Item 44’341 50’466 94’807

Turin Turnover 738’419 412’833 1’152’109

Outlet 28 101 130

Item 83’342 54’420 137’762

the number of outlets varies from 19 (Piacenza) to 59 (Ancona), with a turnover
between 166 and 286 million euro. The last row shows the high level of coverage of
the six chains, althoughwith a certain heterogeneity among provinces: the coverage is
generally close to 72%, with a maximum level of 87% assessed in Ancona province.

In the table above, turnover and number of outlets are reported considering the
six chains and two outlet types. This variable is particularly important because it is
connected both with the chain (which can have a higher/lower propensity to set up
a hypermarket/supermarket) and with the number of elementary items sold, much
higher in the hypermarkets than in the supermarkets. Table 2 shows that a hyper-
markets have turnover higher than supermarkets, although the number of outlets is
reasonably lower (53 hypermarkets and 234 supermarkets, for a total of 289 outlets).
Moreover, hypermarkets are more in the Turin province (28 outlets) than in Palermo
and Piacenza provinces (4 outlets). This evidence has to be linked to the local chains
distribution policies, in fact some chains have a greater number of hypermarkets than
the other chains.

Information on the observed series (EAN+ outlet code) belonging to the relevant
weeks of each month and on permanent series (panel series SD), as defined above,
is reported in Table 3. It shows the whole turnover observed for the five provinces,
respectively on the whole set of series (A), on the relevant week series (B) and on
the panel series (C).
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Table 3 Total turnover (in EUR’000) for all series, relevant week series and panel series, and
number of panel series (in thousands) by province (2014)

Province Turnover % Coverage No. of panel
seriesAll weeks all

series (A)
Relevant
weeks all
series (B)

Relevant
weeks panel
series (C)

B/A C/B

Ancona 286’249 199’337 134’533 69.94 67.49 2’331

Cagliari 233’773 162’008 109’160 69.30 67.38 1’583

Palermo 222’097 153’925 91’513 69.31 59.45 1’389

Piacenza 166’390 115’388 82’736 69.35 71.70 1’123

Turin 1’152’109 793’434 562’758 68.87 70.93 7’185

Observing only relevant weeks allows to take into account about 70% of turnover
of all weeks (52 weeks of the year 2014), without important local differences. Then,
looking at the coverage turnover of the panel series with respect to relevant weeks
series, it ranges from 59.45% (Palermo) to 71.70% (Piacenza).

3.3 Selection Schemes

In the first phase of the experiment, a nonprobability sampling scheme is defined
by selecting series on the basis of cut-off thresholds of covered turnover in previous
year, 2013: two samples of series covering respectively 60 and 80 percent of the
total turnover in each of the considered consumption segment (coffee, pasta, mineral
water) are considered. Moreover, considering the fixed basket approach currently
used, a reference selection scheme is defined selecting the most sold EANs for each
representative product in each outlet.

These nonprobability selection schemes are compared with a two-stage proba-
bility sampling design, where primary units (PSU) and secondary units (SSU) are
respectively outlets and EANs. The size of the sample of outlets has been fixed at
a number of 30 out of 121 outlets available for the Turin province. The sample size
for SSU is fixed by a sampling rate of 5 percent of the number of EANs in each
consumption segment in the sampled outlets. This choice has been made for compu-
tational reasons, linked to the processing capacities. Outlets are stratified by chain
and outlet type (hypermarket and supermarket). In each stratum, the sample has been
allocated proportionally to the turnover. The selection of outlets is carried out in each
stratum by simple random sampling (SRS), while EANs are selected with probabil-
ity proportional to size (PPS), on the basis of the total turnover of previous year, by
adopting Sampford sampling [13, 14].

In the second phase of the experiments the following sampling designs are com-
pared: (1) one stage stratified sample of EANs; (2) cluster sample of outlets (all
EANs); (3) two-stage sampling with stratification of PSU (outlet) and SSU (EAN).
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For each sampling design the size of the final sample of EANs is fixed in average
at 7’400 to compare the different sampling strategies on equal computational effort.
Moreover, different criteria of sample allocation, both for outlets and EANs, and
different selection methods of the units are considered.

The first sampling design is carried out stratifying the EANs by market (ECR
group) in each consumption segment (considering coffee, pasta, mineral water, olive
oil, spumante and ice cream). Sample size is allocated among the strata through a
Neyman formula, taking into account the variability of prices relatives in the markets
observed in the reference year 2013. Two selection schemes are considered, SRS and
PPS.

In the second design, cluster sampling, a sample of outlets (14 out of 121 outlets)
is selected. Outlets are stratified by chain and type. In each stratum, two different
allocation of outlets are tested: proportional to the strata turnover and optimal alloca-
tion (Neyman). Outlets are selected with both SRS and PPS methods. All the EANs
in the selected outlets are included in the sample.

Finally, two-stage sampling design is characterized by a stratification of both PSU
and SSU. The stratifications adopted for the PSU and the SSU are the same of the
two schemes described above. The size of the sample of outlets is fixed at a number
of 30 out of 121 outlets. For both outlets and EANs, sample allocation in the strata is
proportional to the strata turnover. PSU are selected with a PPS method, while SSU
are selected both with SRS and PPS methods.

3.4 Parameters and Unbiased Estimators

The parameters of interest aremonthly Jevons, Fisher andLowe indices. Jevons index
is an unweighted CPI that uses price information only (it assumes that expenditure
shares remain constant), while Fisher and Lowe use also quantity information. Fisher
and Lowe indices consider turnover shares at different time periods as weights [8].
Indicating by the subscript t the current month (12 months in year 2014), t0 the refer-
ence month (December 2013), l the previous year (2013), c (c = 1,…,C) the generic
homogeneous products group and m (m = 1,…,Mc) the series, unbiased sampling
estimators [3] of population parameters (elementary price indices aggregation) can
be expressed as follows.
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The measure qz
cml

refers to the mth quantity series in the previous year l (2013),
while the weight wcm is obtained as the inverse of the inclusion probability of the
sampling unit deriving from the sampling design.

3.5 Accuracy of Price Index

The accuracy of the estimated price indices (Lowe, Fisher and Jevons) is evaluated,
for the probability sampling designs, on the replicated samples obtained through a
Monte Carlo simulation.

Bias and relative sampling error formulas shown below are expressed for a generic
parameter (price index) and with reference to the simulation context.

For a generic estimated index in the cth generic homogeneous products group, θ̂c,
bias and absolute relative bias (ARB) can be expressed as

B
(
θ̂c

)
= E

[
θ̂c

]
− θc, ARB = B

(
θ̂c

)
/θc

In the formulas, E
[
θ̂c

]
is the expected value of the estimated index θ̂c in the cth

generic homogeneous products group, obtained from replicated samples, and θc is
the corresponding index value computed on the reference universe (panel series SD).
The Monte Carlo simulation regards the probabilistic sample schemes, while for the
non-probabilistic design only one estimate is provided.

The relative sampling error of a generic estimated index θ̂c in the cth generic
homogeneous products group can be expressed by

RE
(
θ̂c

)
=

√
Var

(
θ̂c

)

ˆ̄θc
,

in which mean and variance of θ̂c are calculated on the estimates generated from the
selection of the simulated samples in the cth generic homogeneous products group.
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4 Main Results

The most meaningful results of the two experimental phases are shown in the fol-
lowing tables and figures. In the tables the accuracy of the estimated price indices is
shown for the probability samples evaluated through the Monte Carlo simulations.
In the figures the analysis focuses on the comparison of the levels of the estimates
obtained through the considered sampling schemes for the first experiment and on
the comparison of precisions for the second experiment.

For each estimated price index, in the tables below, the values assumed by the
absolute relative bias (ARB) and relative sampling error (RSE) distributions of the 12
monthly indices are exposed for each consumption segment. The generally low levels
of ARB confirm empirically the unbiasedness of the estimators; moreover itmakes
the chosen number of 500 replicates of the Monte Carlo simulation sufficient.

Tables 4 and 5 show that in the probability sample of the first experiment, Lowe
and Fisher indices present the lowest levels of bias in each consumption segment,
while opposite behavior can be seen for the Jevons index; besides, slightly higher
relative sampling errors are found for Fischer index and lower for Lowe and Jevons
indices in all consumption segments.

Table 4 First experimental phase:AbsoluteRelativeBias andRelativeSamplingError distributions
of monthly Lowe, Fisher and Jevons indices for coffee consumption segment (Sampford sampling)

Index Coffee consumption segment

Min Q1 Me Q3 Max

Lowe ARB – 0.0005 – 0.0014 – 0.0013 – 0.0008 – 0.0017

RSE 1.32 1.38 1.41 1.43 1.52

Fisher ARB 0.0005 0.0015 0.0021 0.0030 0.0039

RSE 1.14 1.36 1.53 1.73 1.98

Jevons ARB – 0.0199 – 0.0485 – 0.0400 – 0.0353 – 0.0609

RSE 1.05 1.09 1.14 1.20 1.24

Table 5 First experimental phase:AbsoluteRelativeBias andRelativeSamplingError distributions
of monthly Lowe, Fisher and Jevons indices for pasta consumption segment (Sampford sampling)

Index Pasta consumption segment

Min Q1 Me Q3 Max

Lowe ARB 0.0008 – 0.0003 – 0.0001 0.0005 – 0.0007

RSE 1.13 1.20 1.28 1.32 1.38

Fisher ARB – 0.0009 – 0.0043 – 0.0034 – 0.0025 – 0.0051

RSE 1.21 1.61 1.67 1.83 2.06

Jevons ARB – 0.0017 0.0031 0.0105 0.0209 0.0314

RSE 0.85 0.92 1.04 1.10 1.22
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Table 6 Second experimental phase: Absolute Relative Bias distribution of monthly Lowe, Fisher
and Jevons indices for coffee consumption segment (two stage sampling and one stage-cluster
sampling design)

Index Sampling Coffee consumption segment

Min Q1 Me Q3 Max

Lowe 1stage – 0.0015 – 0.0005 0.0002 0.0011 0.0029

2stage – 0.0010 – 0.0007 – 0.0001 0.0000 0.0007

Fisher 1stage – 0.0011 – 0.0004 0.0004 0.0014 0.0034

2stage 0.0004 – 0.0010 – 0.0006 – 0.0001 – 0.0014

Jevons 1stage – 0.0002 – 0.0000 0.0001 0.0002 0.0010

2stage 0.0003 – 0.0004 – 0.0002 – 0.0000 – 0.0010

Table 7 Second experimental phase:Relative SamplingError distribution ofmonthlyLowe, Fisher
and Jevons indices for coffee consumption segment (two stage sampling and one stage-cluster
sampling design)

Index Sampling Coffee consumption segment

Min Q1 Me Q3 Max

Lowe 1stage 0.94 1.17 1.46 1.61 2.03

2stage 1.16 1.28 1.40 1.58 1.69

Fisher 1stage 0.76 1.00 1.09 1.23 1.59

2stage 1.15 1.33 1.42 1.55 1.71

Jevons 1stage 0.47 0.54 0.57 0.61 1.04

2stage 0.50 0.58 0.61 0.67 0.79

Tables 6 and 7, referred to the second phase, show that all indices present low levels
of bias, but higher relative sampling errors for Fischer and Lowe indices respect to
Jevons index under both sampling designs.However, the performance of price indices
is different in the two sampling designs both in terms of bias and relative sampling
error.

Figure 1, from the first experimental phase, shows the level estimates of the
monthly Jevons, Lowe and Fisher indices computed on probability and nonprobabil-
ity samples and the true value (universe panel series SD) of the corresponding index
for two consumption segments (coffee and pasta in Turin province). The number of
panel series considered are 23’636 for pasta segment and 9’608 for coffee segment,
with a coverage turnover respectively equal to 76.2 and 79.8 percent.

The comparison between probability and nonprobability selection schemes shows
a common evidence for both products: pps sample estimates of weighted index,
Fisher and Lowe, results quite overlapped to the “true” value U; cut-off estimates
over-estimate, but follow the trend for coffee, while for pasta are quite overlapped
to true value U. Most sold item estimates under-estimate and alter trend for coffee
with weighted indices but not for Jevons, while for pasta they show different trends
for the three indices. The mean of sample estimates of Jevons index strongly over-
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COFFEE PASTA
Jevons

Lowe

Fisher

Fig. 1 Jevons, Lowe and Fisher indices computed with different selection schemes of series for
coffee and pasta segments, Turin province, year 2014

estimates the “true” value U for coffee but not for pasta. These opposite performance
for the two products can be explained by the different number of items and turnover
distributions. In general, also from other evidences not shown for sake of brevity, (i)
probability sampling always produces more accurate estimates than nonprobability
selection scheme; (ii) sampling scheme is not neutral with respect to the choice of
aggregation formulas; (iii) sampling error varies among consumption segments.

Figure 2, from the second experimental phase, illustrates the difference among
the three indices estimated under two different sampling designs: cluster sample
of outlets (with proportional allocation and PPS selection) versus two stage sample
(proportional allocation and PPS selection of outlets and Neyman allocation and PPS
selection of EANs).

The comparison between two probability selection schemes highlights that all the
estimates seems to catch properly the level and the trend of the related true index. The
estimator of Lowe and Fisher indices have in both cases wider confidence intervals



216 C. De Vitiis et al.

Fig. 2 Jevons, Lowe and Fisher indices for coffee segment estimated on one sample, confidence
interval (CI) of estimates at 95% and true value (computed on the universe of SD). Turin, year 2014

(CI) with respect to the Jevons index, due to the variability if quantities involved in
the weights. In general the width of CIs are greater under the two stage sampling
than under cluster sampling design (one stage), even if the difference does not seem
so large.

5 Concluding Remarks and Future Developments

The two experimental phases produced interesting results regarding the performance
of sampling schemes and index formulas in a closed population context and fixed
approach. They lead to the conclusion that probability sampling is the better choice
in this context.

The successive phase, currently in progress, regards the comparison between a
fixed and a dynamic approach, the latter consisting in considering all series of an
open population [10]. The elementary price indices are computed considering both
closed and open population. When assuming a closed population, direct indices are
built on a fixed basket of products defined at reference time, ignoring new products
(fixed approach). In this context the indices are affected by shrinkage over time due
to the attrition of products during the year. However, in reality many products dis-
appear and new products enter continuously. On the other hand, using chain indices
the life cycle of products is taken into account as the basket of products changes
months by months: the flexible basket is constituted by the matching products sold
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during two months in a row (dynamic approach). In order to evaluate the impact of
the life cycle of products, direct and chain price indices are compared. For this pur-
pose, an artificial population is generated, with appearing and disappearing products
(momentarily and permanently). Starting from a panel of products, new products are
introduced considering the monthly birth rates and old products have been removed
in accordance to a survival function (both monthly birth and survival rates have been
estimated on the real open population).

The outlined new experimental phase will provide evidences on the pros and cons
of the two approaches, highlighting in particular empirical and theoretical drawbacks
of the dynamic approach which is the one that ISTAT is oriented to choose for the
future.
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An Investigation of Hierarchical and
Empirical Bayesian Small Area
Predictors Under Measurement Error

Silvia Polettini and Serena Arima

Abstract In this paper we focus on small area models with measurement error in
covariates. Based on data from the Measuring Morality study, a nationally represen-
tative survey ofUnited States residents, that contains a validated behaviouralmeasure
of generosity (the dictator game) along with the household income of respondents,
we define a measurement error model suitable to obtain area-level estimates of gen-
erosity at the district level. We investigate the effect of introducing the measurement
error in this model, focusing on fully Bayesian as well as Empirical Bayesian (EB)
estimation proposed in the recent literature. We discuss the characteristics of each of
the two approaches and analyze the impact of the measurement error on the resulting
estimates based on real data and a simulation study.

Keywords Small area estimation · Measurement error · Misclassification ·
Empirical Bayesian estimators · Hierarchial Bayesian estimators

1 Introduction

Small area estimation has emerged in recent years as an important area of statistics
as private and public agencies try to extract the maximum information from sample
survey data. Sample surveys are generally designed to provide estimates of totals
and means of variables of interest for large subpopulations or domains. However,
governments are more and more interested in obtaining statistical summaries for
smaller domains such as states, provinces, or different racial and/or ethnic subgroups.
These domains are called small areas. In recent years, demand for reliable estimates
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for small area means has greatly increased due to their growing use in formulating
policies and programmes, allocating government funds, regional planning and other
uses.

Small area estimation tackles the problem of providing reliable estimates of one
or several variables of interest in areas where the information available on those
variables is, on its own, not sufficient to provide accurate direct estimates using the
domain-specific sample data [10, 11].

Indirect estimators are often employed in order to increase the effective domain
sample size by borrowing strength from the related areas using linking models, cen-
sus, administrative data and other auxiliary variables associated with the small areas.
Estimates for all areas are produced using the sample and the auxiliary information
which should be available for all small areas. A comprehensive account of model-
based small area estimation is given in [11].

Area level models relate the small area means to area-specific auxiliary variables
and become essential if unit level data are not available. When unit-level auxiliary
information is available, nested error linear regressionmodels are often used to obtain
efficient model-based estimators of small area means. However, it is often the case
that the auxiliary information is subject to measurement error. In such circumstances,
it is natural to consider the small area estimation problem under a measurement error
approach. This topic has been widely documented in the literature: see among the
others [3, 9, 10, 12, 14] and references therein. In particular, [3, 9, 10, 12] consider
the unit level regressionmodel for small area estimationwhen the area level covariate
is subject to functional measurement error. We consider the same problem, focusing
on both Empirical Bayesian (EB) and fully Bayesian (Hierarchical Bayesian, HB)
small area estimators that have been recently proposed. After briefly reviewing the
literature in Sect. 2, we propose a small area model accounting for measurement
error in both continuous and discrete covariates (Sect. 3), testing it on a real data
application, namely the generosity data. Such dataset has been obtained in [6] by
couplingGini inequality indices derived from theAmerican Community Surveywith
data from the Measuring Morality study. The latter is a nationally representative
survey of United States residents, that contains a validated behavioural measure of
generosity (the dictator game) along with the household income of respondents.
The data were collected under the supervision of Stephen Vaisey, Duke University
and can be downloaded from the Association of Religion Data Archives, www.
TheARDA.com. Based on these data, as well as a follow-up experiment, [6] test
the relationship between economic inequality, income, and generosity. The authors
identify a previously undocumented effect of economic inequality, namely that higher
income individuals in the US tend to be less generous than poorer individuals, but
only in contexts where macro-level economic inequality is high, or is perceived as
high. Noticing that both income and the Gini index are subject to measurement error
(indeed income is self reported and the Gini index is estimated from another survey),
we allow for measurement error in the covariates, fitting a model that generalizes
the one used by the previously mentioned Authors. We do not perform a point-by-
point comparison with [6] since the models differ in several respects: besides the
inferential approach, the income variable, treated in [6] as continuous covariate, is

www.TheARDA.com
www.TheARDA.com
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coherently modelled as categorical since in the survey it has been recorded as a 19
classes variable. As stressed in the literature, ignoring the measurement error in the
covariates may lead to inconsistent estimates and can severely invalidate inferences,
see e.g. [5].Our aim is to investigate the latter aspect in the same application described
in [6].

In Sect. 4 we focus on estimation of the regression model parameters; we assess
the performance of the proposed measurement error model in our application and
compare the estimates obtained accounting for measurement error and ignoring it.

In Sect. 5 we focus on different small area mean estimators proposed in literature,
namely the direct estimator, the empirical Bayes estimator and the posterior means.
We compute such estimators for the generosity data and notice that, although the
resulting estimates are very similar, some theoretical considerations lead us to inves-
tigate their performance in a controlled setting. In Sect. 6 we perform a simulation
study and discuss potentialities and limitations of the aforementioned small area
estimators in different scenarios. Simulation results show that the posterior means
are flexible and efficient tools for small area estimators. We conclude with a brief
discussion in Sect. 7.

2 Measurement Error in Small Area Model

We consider a Bayesian formulation of the unit-level nested error linear regression
model where the measurement error in auxiliary variables is explicitly modelled.
Our approach is analogous to [9, 10], who were the first to consider the problem of
measurement error in small area models for unit-level data. We rely on a superpop-
ulation approach and specify a Bayesian hierarchical model, that is assumed to hold
for the whole population as well as for the sample data, e.g. under the hypothesis
of no selection bias. In the above mentioned papers, a single continuous area-level
covariate, subject to measurement error, is introduced.

Suppose there are m areas and let Ni be the known population size of area i .
We denote by Y P

i j the response in the population of the j th unit in the i th area
(i = 1, . . . ,m; j = 1, . . . , Ni ). A random sample of size ni is drawn from the i th
area. The goal is to predict the small area means Γi = 1

Ni

∑Ni
j=1 Y

P
i j , i = 1, . . . ,m,

based on the available data. Adopting a superpopulation approach to finite population
sampling, [9, 10] model the response variable Y as

Y P
i j = α + βxi + ui + εi j i = 1, . . . ,m; j = 1, . . . , Ni (1)

where xi is an auxiliary variable observed for each area. εi j and ui are assumed inde-

pendent, εi j
i id∼ N (0,σ2

e ) and ui
iid∼ N (0,σ2

u). Tomeasure the true area-level covariate
it is assumed that there are Ni units in the i th small area and that a random sample of
size ni is taken from the i th area, resulting in data Xil (l = 1, . . . , ri ; i = 1, . . . ,m).
For the sample, the measurement error model
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Xil = xi + ηil, ηi j
i id∼ N (0,σ2

η) i = 1, . . . ,m; l = 1, . . . , ni (2)

is assumed. Furthermore, εi j , ui and ηi j are taken mutually independent. Reference

[10] also assumed that xi
iid∼ N (μx ,σ

2
x ), defining the structural measurement error

model.
The aforementioned literature considers the case in which the measurement error

only affects continuous variables, according to the measurement error model of
Eq. (1). For discrete covariates, measurement error means misclassification. To allow
for auxiliary discrete covariates measured with error, as in [2] we model the misclas-
sification mechanism through an unknown transition matrix P and estimate all the
unknown parameters in a fully Bayesian framework. The details of the model are
described in the next section.

3 A Measurement Error Small Area Model for Both
Continuous and Discrete Covariates

Following [2], for each unit in each area, we consider the following covariates:
Ti j—the vector of p continuous or discrete covariates measured without error, wi

and xi j—respectively, a vector of q continuous covariates and h discrete variables
(with a total of K categories), both measured with error. Denote by Si j and Zi j the
observed values of the latent wi and xi j , respectively. Without loss of generality, in
what follows we assume h = 1.

Following the notation in [10], the proposed measurement error model can be
written in the usual multi-stage way: for j = 1, . . . , ni , i = 1, . . . ,m and for k, k ′ =
1, . . . , K

Stage 1. Yi j = θi j + ei j ei j
i id∼N (0,σ2

e )

Stage 2. θi j = T
′
i jδ + w

′
iγ + ∑K

k=1 I (xi j = k)βk + ui ui
iid∼N (0,σ2

u)

Stage 3. Si j |wi
i id∼N (wi ,Σs = diag(σ2

s1 , . . . ,σ
2
sq ))

wi
i id∼N (μw,Σw = diag(σ2

w1
, . . . ,σ2

wq
))

Pr(Zi j = k|xi j = k ′) = pk ′k
pk ′. = (pk ′1, . . . , pk ′K ) ∼ Dir(αk ′,1, . . . ,αk ′,K )

Pr(xi j = k ′) = 1
K

Stage 4. β, δ, γ,σ2
e ,σ

2
u,σ

2
s1 , . . . ,σ

2
sq ,μw,σ2

w1
, . . . ,σ2

wq
are, loosely speaking, a-

priori mutually independent.

Stage 3 defines the measurement error model for both continuous and discrete
covariates. For the discrete covariates, the misclassification mechanism is speci-
fied according to the K × K matrix P , whose (k ′, k) element, pk ′k , denotes the
probability that the observable variable Zi j takes the kth category when the true
unobservable variable xi j takes the k ′th category. We also assume that the misclas-
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sification probabilities are the same across subjects and that all the categories have
the same prior probability 1

K to occur. Over each row of P , we place a Dirich-
let Dir(αk ′,1, . . . ,αk ′,K ) prior distribution, with known αk ′,1, . . . ,αk ′,K . In Stage 4
we assume Normal priors for β, δ, γ and μw and inverse gamma distributions for all
variances. Depending on the specific application and on the availability of prior infor-
mation, onemay fix some of these parameters (see the application). Hyperparameters
have been chosen to have flat priors whose sensitivity has been widely investigated
in [10]. For the Dirichlet distribution we specified a Perks’ prior discussed in [1] as
a default noninformative prior; robustness of model estimates with respect to such
specification has been investigated in [2].

According to the above assumptions,we can estimate allmodel parameters includ-
ing the transition matrix P . As the posterior distribution cannot be derived analyti-
cally in closed form, we obtain samples from the posterior distribution using Gibbs
sampling.

4 Inference on Regression Coefficients Under
Measurement Error: Application to the Generosity Data

In this section we fit the unit level small area model with measurement error in
covariates defined in the previous section to the generosity data. First we consider
the performance of the proposed model in estimating the regression parameters;
indeed the mixed effects model also allows us to evaluate the relationship between
economic inequality, income and generosity. In the next section we also consider
estimation of the mean generosity score at the area level.

There is an increasing interest in understanding the implications of income for
behaviour, in particular generosity toward others. Well grounded literature on this
topic has portrayed a picture of higher-income individuals as consistentlymore selfish
than poorer individuals [13]. A different perspective is reported in a recent paper
[6], where the relationship between economic inequality, income, and generosity
is tested on the generosity data. Fitting a linear mixed effects model, the authors
identify a previously undocumented effect of economic inequality, namely that higher
income individuals in the US tend to be less generous than poorer individuals, but
only in contexts where macro-level economic inequality is high, or is perceived as
high. The Authors comment that the results obtained challenge the prevailing view
in the literature that higher income individuals are necessarily less generous and
conclude that “inequitable resource distributions undermine collective welfare” and
that redistributive policies may “attenuate, or even reverse, the negative relationship
between income and generosity, in turn increasing the generosity of those individuals
who have the most to give”.

Data from theMeasuringMorality study comprise of 1498 respondents in the US.
For each respondent, income and some personal and demographic variables (such as
age, gender, education, …) have been collected. Respondents completed a validated
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behavioural measure of generosity: the dictator game [8]. Respondents learned that
they had been randomly assigned the role of decider and had received 10 tickets,
each worth one entry in a raffle to win a monetary prize of either 10 or 500. They
could transfer any number of tickets to the next participant, a receiver who did not
have any tickets. By giving tickets, respondents could benefit another person at a cost
to themselves in a zero-sum opportunity to win money. This measure of generosity
was administered to individuals with different incomes residing in areas (US states
plus the District of Columbia) that vary in levels of inequality, measured according
to the Gini’s coefficient. The number of respondents in each area (m = 9 divisions)
ranges from 72 to 286. In the proposed model we take generosity as the response
variable and income, standardized Gini coefficients and their interaction as auxiliary
variables. According to the survey design, household income was collected as a
19-classes variable; for ease of interpretation in the application we recoded it into
five classes (C1 : less than 12500; C2 : [12500, 30000), C3 : (30000, 60000], C4 :
(60000, 125000],C5 : over 125000). Since income is self reported and the Gini index
is estimated using data from the 2012 American Community survey, we can suspect
that both auxiliary variables are subject to measurement error. In order to evaluate
the impact of accounting for this source of error, we fit both the standard model that
ignores the measurement error and the model proposed in Sect. 3. Figure1 shows
the posterior distribution of the model parameters. Since the American Community
Survey (ACS) provides reliable estimates of the sampling error of the Gini index, we
fix σ2

s equal to 0.01.
The left panel reports the posterior distribution of the regression parameters

under the proposed measurement error model: income is the only factor that sig-
nificantly impacts on the response variable, since for all the other parameters the
95% credible intervals contain the zero value (C IGini : [−0.207, 0.349], C IC1∗Gini :
[−0.632, 0.241], C IC2∗Gini : [−0.542, 0.217], C IC3∗Gini : [−0.533, 0.189]), with
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Fig. 1 Posterior distribution of the model parameters. Left panel: posterior distributions obtained
from the proposed model. Right panel: posterior distributions from the model that ignores the
measurement error. Stars denote the bounds of the corresponding 95% credible intervals
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the exception of the negative interaction between the Gini index and the fourth
income class (C IC4∗Gini : [−0.827,−0.028]). However, it is worth nothing that the
size of the effect for this last interaction is very small. At the same time the compari-
son with the no measurement error model shows a different situation: all interactions
are significant and comparable in size, implying a shrinkage effect of the predicted
generosity towards the mean level (see Fig. 1).

With respect to the income, it is apparent that generosity increases with income,
with the exception of the last class, in which the effect on generosity is comparable
to that of the second one. This actually means that the richest are less generous with
respect to the others, which is line with findings in the mainstream literature on the
subject. On the other hand,when one ignores themeasurement error, all the covariates
and their interactions seem to be significant (Fig. 1, right panel). In particular, income
exhibits a positive effect on generosity, with no distinctions between income classes,
which contradicts the economic theories; moreover, an unexpectedly positive effect
of inequality is found. With respect to the measurement error for income, the poste-
rior distribution of the original covariate given the data, P(x = k|Z = 1, data), k =
1, . . . , K is about 0.5 for k = 1 and almost uniformly distributed over the remain-
ing categories. This is an empirical evidence that income is often underreported by
the respondents. Focusing on the other categories of Z , the posterior distributions
P(x = k|Z = j, data), k = 1, . . . , K , j = 2, . . . , K are concentrated at the cor-
responding categories of X , with P(x = j |Z = j, data) ≈ 0.9 for j = 2, . . . , K ,
the corresponding credibile intervals not containing 1. This is an indication that
measurement error has a significant impact on income.

5 Small Area Means Estimators

In small area problems, the ultimate goal of the analysis is to predict the small area
means

Γi = 1

Ni

Ni∑

j=1

Yi j (3)

given the available information. Under the model described in Sect. 3,

Y P
i j =

K∑

k=1

βk I (xi j = k) + γwi + δTi j + ui + εi j ,

so that the expected values of the variable of interest given Φ = (β, γ, δ, ui ) and the
variables (xi j , wi , Ti j ) for j = 1, . . . , ni and i = 1, . . . ,m can be written as

θi j =
K∑

k=1

βk I (xi j = k) + γwi + δTi j + ui .
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Under the hypothesis of no selection bias and assuming that the auxiliary information
is available for each area, prediction of the small area means Γi can be based on
prediction of the mixed effects. Indeed

μi = 1

Ni

Ni∑

j=1

θi j =
K∑

k=1

βk Fik + γwi + δT̄i + ui (4)

where Fik = Ni
−1 ∑Ni

j=1 I (xi j = k) are the relative frequencies of the kth category

of the variable x for the i th area in the population, and T̄i = Ni
−1 ∑Ni

j=1 Ti j are the
means of the auxiliary variable T for the i th area in the population.

As underlined e.g. in [11] (Sect. 7.1.1, p. 174) and [7], (4) can be used to pre-
dict the small area means Γi given the available information. Although prediction
of Γi does not exactly correspond to predicting μi , as in fact Γi = μi + ēi with
ēi = Ni

−1 ∑Ni
j=1 ei j , when Ni is large, the predictor of the mixed effects μi can be

considered an appropriate predictor of Γi in (3).
Reference [10] consideredboth anEmpiricalBayesian and aHierarchicalBayesian

approach to derive predictors of small area means, assuming the small area measure-
ment error model encompasses a single covariate, measured with error as detailed in
(1) and (2). Under their empirical Bayes approach, they first derived a predictor for
the vector of Ni − ni units, conditional on the unknown parameters and the observed
sample, denoted as Y . In particular, adopting the notation in [10], for any unsampled
YUS
i j , j = ni + 1, . . . , Ni , they obtained

E[YUS
i j |Y,β,α,σ2

e ,σ
2
u,μx ,σ

2
x ,σ

2
η] = (1 − fi Bi )Ȳi + fi Bi (α + βμx ) (5)

where Bi = σ2
e/[σ2

e + ni (σ2
u + β2σ2

x )] and fi = (Ni − ni )/Ni is the finite popula-
tion correction fraction. The empirical Bayes predictor is obtained by replacing the
unknown model parameters with their estimators.

Reference [12] extended the approach in [10] including sample information on the
covariate values and derive an empirical Bayes predictor, showing its asymptotical
optimality.

Reference [10] also proposed a fully Bayesian approach; they define a hierarchical
model based on Eqs. (1) and (2), specify vague prior distributions for all the model
parameters, and estimate posterior distributions via Gibbs sampling. References [3,
4] extended the above approach, proposing to use the Jeffreys’ prior on the model
parameters.

Expression (5), upon which the EB estimator proposed in [10] is based, shows the
usual structure of a convex combination between the direct estimator (sample mean)
and a synthetic estimator based on the regression model. To account for the measure-
ment error, the weights in this combination also depend on the measurement error

variance.More specifically, Bi is inversely related to ni (
σ2
u

σ2
e

+ β2 σ2
x

σ2
e
), whichmakes Bi

very sensitive to the area size, to β and to the measurement error. As a consequence,
unless the latter quantities are all very small, the estimator proposed by Ghosh et al.
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[10] quickly goes to the direct estimator, which in practice makes the measurement
error approach not worthwhile under EB prediction (or vice-versa). Although the
measurement error model has been proven to provide a better fit to the data and
improved model parameter estimates, when considering the small area predictions,
a severe measurement error leads the EB predictor to abandon the (corrected) model
in favour of the sample mean.

In our application, we consider a model with both continuous and discrete covari-
ates measured with error. We extend the EB predictor proposed in [10] by including
the categorical missclassified covariates in the expression (5). Also, we obtain fully
Bayesian, HB, small area predictors by integrating the distribution of μi with respect
to the posterior predictive distribution of Φ = (β, γ, δ, ui , x, w) given the sample
data, the other model parameters and the population means of the auxiliary vari-
ables measured without error. This is easily accomplished under MCMC simulation
schemes. In fact, we use the measurement error model to predict the distribution of
the covariates x and w.

Table 1 reports the small area estimates produced under the model with and
withoutmeasurement error for the generosity data, alongwith the direct estimator. As
mentioned above,we consider both the extension of theEBestimator proposed in [10]
and the HB estimator obtained under a fully Bayesian analysis of our measurement
error model. From the table we can see that allowing for measurement error in both
continuous and categorical covariates impacts on estimation of the small area means
more in terms of uncertainty than in point estimates However, due to the large area
sizes in this applications, it is an expected result that there is little difference between
the fully Bayesian HB estimator, the EB estimator just mentioned, and the area
means.

In our application we have therefore found a strong impact of measurement error
on regression coefficients, but not such a large impact on small area predictions;
this can be ascribed to the large area sizes in the real data problem, which prevents
us from making a fair comparison between estimators. To be able to test the effect

Table 1 Small area estimates: posterior means of the small area means obtained with the model
that does not account for the measurement error (θ̂HB

NoErr ) and the model that accounts for it (θ̂HB
Err ,

second row). Direct estimator θ̂D and the empirical Bayes estimator in [10] (θ̂EB ) are reported in
the third and last row. Standard deviations in brackets

Division 1 2 3 4 5 6 7 8 9

θ̂HB
NoErr 4.17

(0.27)
4.11
(0.33)

4.25
(0.18)

4.44
(0.20)

4.19
(0.24)

4.28
(0.10)

4.25
(0.14)

4.37
(0.16)

4.22
(0.23)

θ̂HB
Err 4.27

(0.36)
4.09
(0.41)

4.26
(0.38)

4.43
(0.37)

4.17
(0.40)

4.30
(0.33)

4.25
(0.34)

4.38
(0.32)

4.23
(0.40)

θ̂D 4.23
(2.29)

4.05
(2.41)

4.08
(2.37)

4.52
(2.63)

4.10
(2.69)

4.61
(2.54)

4.40
(2.38)

4.40
(2.28)

4.28
(2.54)

θ̂EB 4.23
(1.32)

4.05
(0.81)

4.08
(0.94)

4.52
(0.68)

4.11
(0.45)

4.61
(0.79)

4.40
(0.84)

4.40
(0.35)

4.28
(0.76)



228 S. Polettini and S. Arima

of the measurement error in small area prediction in a controlled setting, we next
consider a simulation study in which the area sizes are smaller, as typical in small
area problems. We compare the EB and HB predictors in this framework to better
understand their behaviour and each other’s merits.

6 Simulation Study

In order to compare the performance of different small area mean estimators we
perform a simulation study. We compare the direct estimator with the empirical
Bayes estimator in [10] and the posterior means obtained under the measurement
error model. To this end, we create a finite population of size 140000 spread across
12 strata of sizes 5000 25000 5000 10000 20000 15000 5000 15000 10000 15000
10000 and 5000. The responses Yi j are generated under a superpopulation model
with two continuous covariates measured with error. In particular, we set δ = 100,
γ1 = 2, γ2 = 5, σ2

e = 100, σ2
u = 16, σ2

w1
= σ2

w2
= 25, μw1 = 194, μw2 = 120 and

σ2
s1 = σ2

s2 = 2.7. The settings are similar to the ones adopted in [10]. In order to
investigate the behaviour of the aforementioned estimators with respect to the small
area sample size, we select 0.5 and 0.05% simple random samples from each stra-
tum. Accordingly, the sample size of the first random sample ranges from 25 to 125,
while the sample size of the second sample ranges from 2 to 12. We draw 100 inde-
pendent samples for each simulation scenario. To obtain the Hierarchical Bayesian
estimators, we ran a Gibbs chain of size 15000 with a burn-in of the first 5000. The
hyperparameters have been specified as discussed in Sect. 3. We then compute the
direct estimators of the small area means, the empirical Bayesian estimators in [10]
and the small area posterior means. As in the real data application, the estimator in
[10] has been obtained by filling the posterior means of the model parameters in
formula (5).

Table 2 shows the root mean squared errors (RMSEs) of the estimators we aim to
compare in the two simulation scenarios. Notice that, when the sample size is quite
large, although it is a small percentage with respect to the real population size, the
three estimators performvery similarly. This simulation scenario somehow resembles
the real data application in which, although the area sizes are very small compared
to the population size, they are large enough to produce very similar estimators with
all methods. Moreover, a different behaviour can be grasped when the sample size
for each area decreases with a significant reduction of the RMSE of the posterior
means.

Figure2 shows the distribution of the empirical Bayes estimator and of the pos-
terior means in the simulated datasets in the two scenarios: in the upper panel, we
show the estimates when the small area size is about 0.5% of the population while
in the lower one we show the estimates when the small area sample size is about
0.05% of the population size. Stars in the graphs denote the true small area means: as
expected, the estimators are in agreement with themselves and with the true values
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Table 2 Root mean squared errors (RMSE) of the direct estimator, the estimator in Ghosh et al.
[10] and the posterior mean estimator for different sample sizes. Results are averaged over 100
simulated datasets

Area n Sample fraction: 0.5% n Sample fraction: 0.05%

θ̂D θ̂EB θ̂HB θ̂D θ̂EB θ̂HB

1 25 1.76 1.72 1.72 2 7.98 7.41 7.34

2 125 0.86 0.85 0.85 12 2.93 2.95 2.86

3 25 2.02 2.00 2.00 2 7.13 6.35 6.96

4 50 1.42 1.40 1.41 5 4.90 4.62 4.64

5 100 0.97 0.96 0.96 10 3.14 2.98 2.98

6 75 1.24 1.24 1.23 8 3.41 3.29 3.14

7 25 1.85 1.82 1.84 2 7.29 6.49 6.49

8 75 1.08 1.08 1.07 8 3.36 3.23 3.22

9 50 1.46 1.45 1.45 5 4.01 3.83 3.75

10 75 1.26 1.25 1.25 8 3.69 3.57 3.47

11 50 1.31 1.31 1.30 5 3.73 3.60 3.46

12 25 1.93 1.89 1.89 2 5.96 5.05 5.26

when the sample size is large. When it decreases, the EB predictors perform worse
than the posterior means, that are almost always centered around the true value.

As expected the variability of both estimators increases when the sample size
decreases but the increase of variability of the empirical Bayes estimator does
not always assure the coverage of the true value. Moreover, when the sample size
decreases the estimator in [10] tends to be much closer to the direct estimator than
the posterior means, as shown in Fig. 3.

7 Conclusions

Small area models are widely used in order to obtain estimates of unplanned domains
from sample survey data. Model based small area estimation relies on the use of aux-
iliary variables: these variables are involved as covariates in regression models and
allow to borrow strength from the related areas. The availability of such auxiliary
variables is a key point of small area models. In this paper, we focus on small area
models when auxiliary variables, both continuous and discrete, are measured with
error. We show that the regression parameter estimates are biased if one does not
account for measurement error and, indeed, inferences can be misleading. More-
over, we focus on small area mean predictors: an empirical Bayes small area mean
estimator has been proposed in [10] and we compare it with the posterior means.
Simulation studies and examples reported in the literature illustrate the performance
of these estimators when just one covariate is affected by measurement error. In our
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Fig. 2 Distribution of the Ghosh et al. [10] estimator and the posterior mean estimator of 100
datasets. Upper panel: estimates obtained when the small area sample sizes is 0.5% of the popula-
tion.Lower panel: estimates obtained when the small area sample sizes is 0.05% of the population.
Stars denote the true small area mean
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Fig. 3 Ghosh et al. [10] estimators and posterior mean estimators versus direct estimators of 100
datasets.Left panel: estimates obtained when the small area sample sizes is 0.5% of the population.
Right panel: estimates obtained when the small area sample sizes is 0.05% of the population. Stars
denote the true small area means

application, we consider two auxiliary variables, one of which is discrete. While the
parameter estimates dramatically change when ignoring the measurement error, the
small area predictions seem to be more robust. We argue that this can be ascribed
to the large area sizes. Driven by analytical considerations, we empirically show
through a simulation study that the EB and the HB predictors perform very similarly
and also very similarly to the direct estimates, when the number of observations is
large enough. However, the situation changes when the sample size decreases: the
EB predictor is more similar to the direct one with a consequent increase in its vari-
ability. On the other hand, the posterior mean estimator seems to be more robust and
in agreement with the true values.
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Indicators for Monitoring the Survey
Data Quality When Non-response
or a Convenience Sample Occurs

Emilia Rocco

Abstract Non-response bias has long been a concern for surveys, evenmore so over
the past decades with the increasing decline of the response rates. A similar problem
concerns the surveys based on non-representative samples, the convenience and cost-
effectiveness of which has increased with the recent technological innovations that
allow for collecting large numbers of highly non-representative samples via online
surveys. In both cases it must be assumed that the bias is the result of a self-selection
process and, for both, quality indicators are needed to measure the impact of this
process. The goal of this research is to show the opportunity in each survey of
monitoring the risk of self-selection bias at two different level: at the level of the
whole survey and at the level of each statistic of interest. The combined use of two
indicators is suggested and empirically evaluated under various scenarios.

Keywords Auxiliary variables · Non-probability sampling · Non-response
adjustment · Representativeness · Self-selection bias

1 Introduction

As response rates have declined over the past decades, the statistical benefits of
probabilistic sampling have diminished. Assuming that a representative sample is
initially selected, low response rates mean that those who ultimately supply the target
data might not be representative. Moreover, with recent technological innovations,
it is increasingly convenient and cost-effective to collect large numbers of highly
non-representative samples via online surveys.

In the literature, there are many different interpretation of the ‘representativeness’
concept. See [6] for a thorough investigation of the statistical literature. Here we
relate the concept of ‘representativeness’ to the possibility of obtaining, from the
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sample, results that tell us more or less what we would have found by measuring the
whole population fromwhich the sample has been selected. Of course this possibility
implies the absence in the sampling process of unknown selective forces for whose
some groups in the population are over or under represented, and these groups behave
differently with respect to the survey variables. Although this definition is appealing,
the validity of it can never be tested in practice since results for the whole population
are unknown. Moreover as stated by [3] (on p. 286), there are various ways of
selecting a sample, but only with random (probability) sampling it is possible to
know how representative the sample results are likely to be. A weaker definition of
the representativeness concept that can be tested in practise, whatever is the selection
process of those who ultimately supply the target data, is that of ‘representativeness
with respect to a set of auxiliary variables’. A representative sample with respect to
one ormore auxiliary variables is a sample inwhich the distribution of these variables
is the same as in the population from which the sample is selected. In this paper,
when we refer to this last concept of representativeness, we explicitly declare it.

The main problem caused by non-representative survey data is that estimators of
population characteristics must be assumed to be biased unless convincing evidence
to the contrary is provided. This problem influences the data coming from a probabil-
ity sample affected by non-response and the data obtainedwith a convenience sample
in the same way. Hence, in both the cases, the same quality indicators may be used
in order to evaluate the impact of non-representativeness and the same post-survey
adjustment methods may be used to deal with it.

In the remainder of this paper we just consider non-response but the points made
for it also apply in general to all generation processes of non-representative survey
data.

It is well known that non-response bias is the product of non-response rates and
differences between respondents and non respondents on the statistic of interest. Of
course previous to the survey the statistic of interest is unknown and when non-
response occurs its value can be estimated only for respondents. Therefore the non-
response bias cannot be assessed except through indirect measures based on more or
less reasonable assumptions and on the use of data external to the survey.

Despite its incomplete nature, the response rate has long been used as a key
measure of the risk of non response bias. But, nowadays, it is well-known finding
in survey methodology that it is a poor indicator of non-response bias, see, among
others, [2, 4, 11].

Consequently, in recent literature, various alternative indicators for monitoring
the risk of non-response bias in surveys have been proposed. Wagner [13] provides
a taxonomy of such measures based on the types of data used to estimate each one.
More in detail, in order to explicitly differentiate the response rate from the other
indicators, Wagner [13] describes the following three types of alternative indicators:

1. indicators involving only the response indicator that is a binary variable that
indicates if a sampled unit responds or not;
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2. indicators involving the response indicator and auxiliary data that are known for
all sample units and may stem from sampling frame data, administrative data and
data about the data collection process;

3. indicators involving the response indicator, auxiliary data and survey data (i.e.
the data for respondents).

It is evident that the only indicator of the first type is the response rate.
Indicators of the second type use auxiliary data for predicting the response indi-

cator and provide a single measure of the risk of non-response bias for the whole
survey, relying on the implicit assumption that the auxiliary variables used to cre-
ate them are correlated with all the survey estimates. The fact of providing a single
measure for the whole survey is a strength of such indicators since it allows them
to be used as tools for comparing different surveys and surveys over time, and for a
comparison of different data collection strategies and modes. However, it is also a
weakness, because, a single measure of the risk of non-response bias for the whole
survey could lead to incorrect conclusions for the survey statistics for which the
implicit assumption of correlation with the auxiliary data used to create such risk
measure is not likely to be true.

Indicators of the third type, which, in addition to the response indicator and the
auxiliary variables, use the observed survey data are defined at a statistic level. Since
non-response bias depend on the difference between the statistic of interest and
its estimate based on the observed (respondents) data, an indicator that uses these
data, if the model assumption on which it relies is good, allows for directly achieving
information about the bias. However the definition of such indicators at statistic level
is also a weakness of them. Given that most surveys have multiple objectives, there
would bemore indicators that makes the computation process more complex than for
the other two types of indicators and could lead to potentially different conclusion
about data-collection strategy.

In this paper we suggest the combined use of two indicators. The first, is a promi-
nent indicator of the second type, the ‘R-Indicator’ suggested by [11]. It assumes
the availability of auxiliary variables at the sample level and employs them for esti-
mating the response probability. Then, it judges the level of representativeness of
the respondents with respect to these auxiliary variables, by measuring the extent to
which the estimated response probabilities vary. In fact, according to the concept of
representativeness with respect to a set of auxiliary variables, if the set of respon-
dents is representative then the estimated response probabilities are the same for all
units in the population. The R-Indicator, by judging the composition of respondents
by a pre-defined set of variables that are observed outside of the survey, provides
a single measure of the response quality for the survey as whole. It does not give
any direct information about the bias of a single survey statistic. Assuming that the
model adopted for estimating the response probabilities is valid, in order to have
direct information about the bias of a single survey statistic we may investigate the
relation between the specific survey variable and the estimated response probabilities.
It is obvious that when the estimated response probabilities are the same for all the
population units, the respondents are representative with respect to any variable and
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therefore the risk of non-response bias is negligible for all the statistics of interest.
When response probabilities vary the risk of bias is not the same for all the possi-
ble statistics of interest since it depends not only on the variability of the response
probabilities but also on the relation between them and the specific survey variable:
if the survey variable is on average the same for different values of the response
probabilities the risk of bias is low, the more it varies as the response probabilities
vary, the greater is the risk of bias. The R-Indicator measures only the variability
of the response probabilities, it does not provide us any information on the effects
that this variability has on the risk of bias for a single statistic of interest. For this
reason we suggest to use, in addition to it, a new indicator of the third type. This new
indicator, referred to hereafter as R-Statistic-level-Indicator, assesses the risk of bias
of a single survey statistic by measuring for the specific survey variable the variation
of the respondents average across the percentiles of the response probabilities pre-
dicted in order to estimate the R-Indicator itself. When for a specific survey variable
the respondents averages associated with the different percentiles of the response
probabilities are different, the risk of bias increases both with the increase in the
difference between these averages and with the increase in the difference between
the percentiles of the response probabilities. The R-Statistic-level-Indicator allows to
judge only the first increment, whereas the R-Indicator allows to judge only the latter
one. Therefore, in order to judge the bias that the non-response or the non-probability
sampling may cause on a single statistic of interest, it is advisable to use them both
together.

In order to evaluate the performance of this combined use of the R-Indicator
and the R-Statistic-level-Indicator, a simulation study is carried out under various
scenarios.

The remainder of the paper is arranged as follows. In Sect. 2 the theoretical frame-
work is introduced. In Sect. 3 the R-indicator and the R-Statistic-level-indicator are
defined.A simulation study and results of that study are described in Sect. 4. Section5
concludes and discusses future work.

2 Theoretical Framework and Notation

Weassume that a sample survey is undertaken,where a probability sample s of n units
is selected, from a population Uof N units labelled i(i = 1, . . . N ). The sample is
drawn by employing a sampling design p(s) and the first order inclusion probability
for unit i is denoted πi . The survey is subject to unit non-response, therefore only a
subset r ⊂ s of nr ≤ n responding units is observed. We shall suppose that the target
of inference is a population parameter (like the mean or the total) of a survey variable
taking value yi for unit i and that the data available for estimation purposes consist of
the values {yi ; i ∈ r} of the survey variable and the values {xi = (x1,i , . . . xK ,i ); i ∈
s} of a vector of auxiliary variables that may influence the non-response mechanism
and/or the survey variable.
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Unlike the sampling selection the survey sampler has no control over the response
mechanism. Therefore, to account for it in the estimation of the parameters of interest,
it becomes necessary tomodel it. To this end, a response indicator δi is defined so that
δi = 1 if unit i responds and δi = 0 otherwise. The response mechanism corresponds
to the distribution of the vector {δi : i ∈ s}. We consider only the case where units
respond independently from each other and from s. Moreover, taking advantage of
the fact that a vector of auxiliary variables xi , which may influence the response, is
know for both respondents and non-respondents, we define the response probability
as the conditional expectation of δi given xi i.e. we set ρi ≡ ρ(xi ) = E(δi |xi ), where
ρ(.) is an unspecified function of xi , with ρ(.) ∈ (0, 1].

Since yi is only observed for respondents, the response probability conditional on
yi is generally inestimable without further assumption. However, the response prob-
abilities defined as conditional on xi capture the feature of non response mechanism
relevant for the target of inference only if δi is conditional independent of yi given
xi , that is only if the non-response is ‘Missing at Random’ (MAR) given the vector
of auxiliary variables ([7], p. 12). Making this further assumption we finally have

pr(δi = 1|i ∈ s, y, x) = ρ(xi ) ≡ ρi (1)

for all i ∈ U .

3 Risk Indicators of Non-response Bias

When non-response occurs, quality indicators are needed to measure its impact. To
this end, in this section, firstwe review the definition of two indicators: theR-indicator
and the R-Statistic-level-Indicator. Next we suggest and discuss the opportunity in
each survey of monitoring the risk of non-response bias though a combined use of
them.

3.1 The R-Indicator

The basic idea of the R-indicator (‘R’ for representativeness) suggested by Schouten
et al. [11] is that a response subset is representative with respect to a vector of
auxiliary variables x when response propensities are constant for x. Relying on this
idea, it measures the extent to which the response probabilities ρi = ρ(xi ) vary as a
function of their population standard deviation:

Sρ =
√
√
√
√

1

N − 1

N
∑

i=1

(ρi − ρ̄)2 (2)
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where ρ̄ = ∑N
i=1 ρi/N . The R-indicator is modelled in terms of Sρ as follows:

Rρ = 1 − 2Sρ, (3)

therefore, it will be higher when the variability among the response probabilities is
lower.

Since it may shown that Sρ ≤ √
ρ̄(1 − ρ̄) ≤ 0.5, then Rρ takes values on the

interval [0, 1]. The value Rρ = 1 indicates the most representativeness and the value
Rρ = 0 indicates the least representativeness.

In practice, the response propensities are unknown. However, when auxiliary data
are available at a sample level, it is possible to estimate them for all sampled units
and to replace Rρ with the estimator:

R̂ρ = 1 − 2

√
√
√
√

1

N − 1

∑

i∈s

(ρ̂i − ˆ̄ρ)2

πi
(4)

where ˆ̄ρ = ∑

i∈s(ρ̂i/πi )/N [12].
The response propensities, ρ̂i , are commonly estimated with explicit or implicit

models linking the response occurrences to the auxiliary variables, for instance, by
using a logistic or a probit regression model, or the weighting within cell method.

Assuming that the implicit or explicit model used for estimating the response
propensities is correct, R̂ρ may be viewed as a lack of association measure between
the response mechanism and the auxiliary variables used for estimating the response
propensities. A value of R̂ρ close to 1 which corresponds to a low variation of the
estimated response propensities, ρ̂i , denotes a weak association. The weaker the
association the better, as this implies there is no evidence that non-response has
affected the composition of the observed data and, therefore, it implies that the risk
of non-response bias is low whatever is the target statistic as long as it satisfies the
‘MAR assumption’.

Unfortunately, however, a value of R̂ρ not close to 1, which denotes an higher
association between the response mechanism and the auxiliary variables used for
estimating the response propensities, it is not equally able to detect the risk of bias
for a survey estimate. Shlomo et al. [12] show that the variance of the response
probabilities conditional on the vector of auxiliary variables may be split into two
(unmeasurable) components. One represents the variation of the probabilities condi-
tional on the survey variable, that is the probabilities which we should ideally like to
use. The other one represents additional variation of the estimated response proba-
bilities which is unrelated to the survey variable, that is a sort of noise due to the use
for the estimation of the response probabilities of auxiliary variables predictive of
the response probabilities but weakly associated to the survey variable. A low value
of the R-Indicator indicates an high variability of the response probabilities, but if
this variability depends on an high value of the first described component, the risk
of bias for the statistic of interest is high; on the contrary, if it depends on an high
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value of the second described component, the risk of bias for the statistic of interest
is low. Moreover, since the second component increases as the association between
the auxiliary variables and the variable of interest decreases we can state that, when
the R-indicator denotes a level of association not negligible between the auxiliary
variables and the response indicator, in order to judge the risk of bias for a specific
statistics of interest it is necessary to evaluate the association between the auxiliary
variables and the variable of interest. The R-Statistic-level-Indicator suggested in
Sect. 3.2 allows to evaluate this association.

3.2 The R-Statistic-Level-Indicator

In order to judge the risk of bias for a single survey estimate when the estimated value
of the R-Indicator is not close to 1, that is in order to evaluate the level of association
between the variable of interest and the auxiliary variables when the association
between these latter variables and the response indicator is not negligible, we suggest,
to compare respondents averages of the specific variable across the percentiles of
the response propensities predicted in order to estimate the R-Indicator itself. You
could simply plot these means [9] or you can synthesize their difference through an
indicator. We define such an indicator by considering the following steps:

1. respondents are ordered with respect to the estimated response propensities, ρ̂i ,
i ∈ r ;

2. the ordered respondents set is then partitioned into H classes, rh(h = 1, . . . H),
of size nrh = roughly nr/H on the basis of H − 1 percentiles of the estimated
response propensities;

3. the respondents mean, yrh = ∑

i∈rh yi/nrh , of the target variable for each class is
calculated;

4. finally, the indicator, named R-Statistic-level-Indicator, is defined as:

Rypρ
= 1 −

∑H
h=1(yrh − yr )

2nrh
∑

i∈r (yi − yr )2
(5)

where yr = ∑

i∈r yi/nr = ∑H
h=1

∑

i∈rh yi/nr is the total respondents mean.

Since, for the well known deviance decomposition formula

H
∑

h=1

(yrh − yr )
2nrh ≤

∑

i∈r
(yi − yr )

2, (6)

then Rypρ
takes values on the interval [0, 1]. The value Rypρ

= 1 indicates a risk of
non-response bias negligible whatever is the value of the R-Indicator and is obtained
when there is no association between the variable of interest and the auxiliary vari-
ables used for predicting the response probabilities. Moreover, the value of Rypρ
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decreases when the homogeneity of the values of response variable within each class
increases and this may happen either because the response probabilities are alto-
gether less variable or because there is a significant association between the variable
of interest and the auxiliary variables. Only a low value of Rypρ

, due to this latter
cause implies a high risk of non response bias for the statistic of interest. We can
exclude to be in this situation if we calculate the R-Indicator too, and its value is
close to 1. On the contrary, when the R-Indicator and the R-Statistic-level-Indicator
are both low, this indicates that the association of the auxiliary variables is high both
with the response indicator and with the study variable and consequently that the
risk of non response bias for the statistic of interest is high.

3.3 The Combined Use of R-Indicator and
R-Statistic-Level-Indicator

The R-indicator as well as all indicators of the second type in the ‘Wagner classi-
fication’ [13], provides an overall measure on the risk of non-response bias for the
whole survey and does not give any direct information about the real bias of a single
survey statistic. Therefore, in a multi-purpose survey R̂ρ could be a better indicator
for some survey statistics and a less effective one for others. In fact, in a survey with
several survey variables it would be unlikely to identify a set of auxiliary variables
correlated together with the response probability and with any survey variable. On
the other hand in amultiple objective survey the estimation of a different indicator for
each variable of interest could be unfeasible during the data collection phase. There-
fore, according to us, the process for analyzing the survey data quality in presence
of non-response must be organized in two stages:

1. the first, prior to the data processing, in which it is monitored the risk of self-
selection bias for the survey as a whole;

2. the second, during the data processing, which aim is to evaluate the risk of bias
for each survey estimate and the opportunity or not to adopt for it a non-response
adjustment method.

The estimation of an indicator that allows to monitor the survey data collection
process as a whole, like R̂ρ , may be useful for the following two reasons.

First,when someauxiliary variables, relevant for describing the surveypopulation,
are available, it is reasonable to ask whether the subset of respondents is represen-
tative, at least, with respect to these, and R̂ρ can provide the answer. For example,
for the official statistics produced by the national institutes of statistics, the compli-
ance with some external coherence constraints regarding some socio-demographic
variables, available from the frame is very important.

Moreover, if the model assumption on which R̂ρ relies is good, and this indicator
is used for adapting the data-collection process in order to achieve a highly represen-
tative response set and, this result is achieved, that is on the final set of respondents a
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value of R̂ρ close to 1 is estimated, this allows to predict a low risk of non-response
bias for all the statistics of interest.

Assuming that themodel adopted for predicting the response propensities is good,
the second stage for evaluating the risk of bias needs only in the case in which R̂ρ

is not close to 1. For these cases we suggest to estimate separately for each target
variable the indicator Rypρ

. It allows for each survey variable to confirm or to deny

the risk of non response bias detected by a value of R̂ρ not close to 1. The risk is
confirmed for all the target statistics corresponding to an estimated value of Rypρ

not
close to 1.

The two indicators, Rρ and Rypρ
may be seen as mutually complementary, neither,

used alone allows to detect the risk of non-response bias for all the situations. On the
contrary if they are used jointly they achieve this aim. The risk of non response bias
is high when they are both not close to 1. Obviously, their efficacy is subordinated
to the validity of the assumptions on the response process that have been specified
in Sect. 2 and on which they both stem.

4 Simulation Study

In this section, we describe a simulation study which aims to empirically explore
the ability of the combined use of R̂ρ and Rypρ

to detect non-response bias under
various scenarios. To this end we have reproduced the simulation setting that Little
and Vartivarian [8] have used in order to provide an empirical proof of the fact that
the non-response weighting adjustments based on adjustment cells are effective in
reducing bias of an unweighted respondents mean only if the auxiliary information
used for defining the adjustment cells is related to both the non-response mechanism
and the outcome of interest.

Simulation setting:

1. to keep things simple it is assumed that: (a) the sample is selected by simple
random sampling, (b) only the population mean of a target variable y is of interest
and, (c) only one auxiliary variable x is available;

2. x is a categorical variable with 10 categories that identify 10 cells of adjustment;
3. conditional on the sample size, the sampled cases have a multinomial distribution

over the (10 × 2) contingency table based on the classification of the response
indicator, δ, and x , with cell probabilities

pr(δ = 1, x = c) = pr(δ = 1)pr(x = c|δ = 1)

pr(δ = 0, x = c) = (1 − pr(δ = 1))pr(x = c|δ = 0) c = 1, . . . , 10

given in Table1 for two marginal response rates, 70% and 52%, and three condi-
tional distributions of δ given x corresponding to high, medium and low associ-
ation between the two variables;

4. the simulated distribution of y given δ = h, (h = 0, 1), and x = c have the form:
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Table 1 Percent of samples in cell x × δ

Response rate = 52%

Association x 1 2 3 4 5 6 7 8 9 10

x and δ

High δ = 1 0.55 1.00 4.01 4.52 5.04 5.55 6.06 6.58 9.14 9.96

δ = 0 8.69 9.00 6.01 5.53 5.04 4.54 4.04 3.54 1.02 0.20

Medium δ = 1 2.77 3.50 4.01 4.52 5.04 5.55 6.06 6.58 7.11 7.62

δ = 0 6.47 6.50 6.01 5.53 5.04 4.54 4.04 3.54 3.05 2.54

Low δ = 1 4.62 5.15 5.21 5.28 5.34 5.40 5.45 5.52 5.58 5.64

δ = 0 4.62 4.85 4.81 4.77 4.73 4.69 4.65 4.60 4.57 4.52

Response Rate = 70%

Association x 1 2 3 4 5 6 7 8 9 10

x and δ

High δ = 1 0.55 3.00 6.51 7.04 7.55 8.07 8.59 9.11 9.64 9.96

δ = 0 8.69 7.00 3.51 3.02 2.52 2.02 1.52 1.01 0.51 0.20

Medium δ = 1 4.44 5.30 5.81 6.33 6.85 7.37 7.88 8.40 8.93 9.45

δ = 0 4.80 4.70 4.21 3.72 3.22 2.72 2.22 1.72 1.22 0.71

Low δ = 1 6.19 6.85 6.91 6.98 7.05 7.11 7.17 7.24 7.31 7.37

δ = 0 3.05 3.15 3.11 3.07 3.02 2.98 2.93 2.88 2.84 2.79

[y|δ = h, x = c] ∼ N (β0 + β1x, σ
2), (7)

and three sets of values of (β1, σ
2) corresponding to high, medium and low

association between y and x are considered and shown in Table2. The intercept
β0 is chosen so that the overall mean of y is 26.3625 for each scenario;

5. 10,000 replicate samples of size 400 were simulated for each combination of
parameters in Tables1 and 2;

6. for each replica the following estimates have been produced: (a) the unweighed
mean of the respondents; (b) the response probability, for each unit in the sample,
by using the ‘weighting within cell’ method and identifying the cells with the 10
categories of x ; (c) R̂ρ ; (d) Rypρ

, for which the respondents have been partitioned
into the quintiles of the response probabilities (there is no rule for choosing the

Table 2 Parameters β1 and σ 2 for outcome model (7)

Association β1 σ 2

between x and y

High 4.75 46

Medium 3.70 122

Low 0.00 234



Indicators for Monitoring the Survey Data Quality When Non-response … 243

Table 3 Summaries of results based on 10,000 replicate samples. Response rate = 52%

Association
between x and δ

Association
between x and y

Emp. bias of
unweighted mean
(%)

R̂ρ Rypρ

High High 27.24 0.43 0.37

Medium 21.23 0.43 0.65

low 0.02 0.43 0.98

Medium High 14.76 0.68 0.36

Medium 11.48 0.68 0.62

Low 0.05 0.68 0.98

Low High 2.16 0.85 0.69

Medium 1.68 0.85 0.81

Low 0.00 0.85 0.99

Table 4 Summaries of results based on 10,000 replicate samples. Response rate = 70%

Association
between x and δ

Association
between x and y

Emp. bias of
unweighted mean
(%)

R̂ρ Rypρ

High High 19.10 0.44 0.36

Medium 14.91 0.44 0.75

low 0.08 0.44 0.99

Medium High 11.32 0.70 0.33

Medium 8.86 0.70 0.60

Low 0.04 0.70 0.99

Low High 2.16 0.86 0.69

Medium 1.68 0.86 0.81

Low 0.00 0.86 0.99

number of classes, in this choice we have taken into account the following two
points: first, Cocran [1] shows that stratification into five subclasses removes
approximately 90% of bias due to the stratifying variable; second, the use of
five classes of response propensities is an accepted practice in the context of
non-response weighting adjustments).

The empirical relative bias of the unweighted mean of the target variable, the
median across the replications of R̂ρ and the median across the replications of R̂y

are reported in Table3 for simulation with a response rate of 52% and in Table4 for
simulation with a response rate of 70%.

The pattern of results is very similar in the two tables. From both tables we note
that:
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1. When the association between δ and x is low, the R̂ρ value is high and the bias of
the unweightedmean, even thought it decreaseswith the decreasing of association
between y and x , is always very low.

2. On the contrary, a low value of R̂ρ does not necessarily mean a high bias of the
unweighted mean since when the association between y and x is low, the bias of
the unweighted mean is negligible irrespective of the value of R̂ρ .

3. A value of Rypρ
close to 1 allows for identifying the situations in which, given a

low association between y and x , the bias of the unweighted mean is negligible.
4. Finally, the two indicators, considered jointly, allow for discriminating between

the statistics for which the risk of non-response bias is higher (R̂ρ and Rypρ
are

both close to 0) from those for which it is lower (R̂ρ or Rypρ
is close to 1).

5 Final Remarks

Any analysis that deals with missing data must make some model assumption, either
implicitly or explicitly. The quite general assumption that is made when R̂ρ and/or
Rypρ

are used, as indirect measure of the risk of non-response bias, is that the response
process isMAR. The results highlight that, under theMAR assumption, for detecting
the risk of non-response bias is important to consider the relation of the auxiliary
variables, that makeMAR the response process, with both the probability of response
and the survey variable. R̂ρ and Rypρ

measure one only of these relations, R̂ρ the

former and Rypρ
the latter. The joint use of R̂ρ and Rypρ

allows to measure both.
The evidence for the importance of monitoring the risk of non-response bias by

examining the relation of the auxiliary variables with both the probability of response
and the survey variable is in agreement with known finding in the literature on the
non-response weighting adjustment methods: [5, 7, 10], among others, show that
an auxiliary variable used for a weighting adjustment must have two characteristics
to reduce non-response bias: it needs to be related to the probability of response and
it needs to be related to the survey variable.

We are all aware that non-response bias has long been a concern for surveys
and, even more so over the past decades with the increasing decline of the response
rates. Anyway, over the past decades it is also increased the availability of auxiliary
information that may be used for indirectly evaluating the non-response bias and/or
for exploring possible weighting or imputation adjustment methods. Unfortunately,
however, when there are several survey variables and several auxiliary variables, may
be very difficult to select a single set of auxiliary information for monitoring the risk
of bias of all survey variables and/or for identifying a single method of adjustment
for all of them. The possibility to investigate the quality of survey data in two stages
(suggested in this paper), or in more stages, may be an opportunity. The results are
encouraging, but more investigations need. The investigation of how this approach
works in more complicated scenarios is a first area of research. A second area of
research is to consider the possibility to extend this approach to cases in which non-
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response is Not-Missing-at-Random (NMAR). An other area of research concern
the relation between the indicators for monitoring the risk of non-response bias and
the weighting or imputation methods used to deal with it, the two themes are both
largely studied in literature, however, according to our research, their joint study is
an option that is untouched for the most part.
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The Propensity to Leave the Country
of Origin of Young Europeans

Paolo Balduzzi, Alessandro Rosina and Emiliano Sironi

Abstract Using data from the “Youth Project”, a survey carried out by the Toniolo
Institute for Advanced Studies, we provide evidence of the determinants of the
propensity to leave the native country by young Europeans and show how this phe-
nomenon depends on the economic opportunities offered by the countries of origin.
In addition, we underline the effect of individuals’ trust in the economic development
of the country of residence as a main predictor of the intention of moving away.

Keywords Mobility patterns · Brain drain ·Migration

1 Introduction

The propensity to leave for young people around theworld has always been very high.
On one (sunny) side, going abroad means gaining new experiences; but on the other
(dark) side, going abroad also means escaping from a country without opportunities.

This phenomenon is currently assuming great importance, because of the increas-
ing involvement of highly skilled workers in Europe: an increasing flow of high
skilled workers, who decide to migrate, enriches destination countries and is a drain
on the home countries [4]. Media reports and political debate tend to confirm, or even
to empower, this view. Nonetheless, the scientific literature has been much less pes-
simistic and tried to highlight also the positive effects for the home countries. Among
the others, one of these effects is that highly skilled migrants may come back after
some years and bring additional human—and possibly even monetary—capital with
them [14]. Traditionally, migrant workers tend to transfer part of their earnings to
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their country of origin (or rather, to their families in the country of origin). In poorer
counties, remittances may repay or even more than compensate for the educational
cost. Some recent literature (see, for instance, [6–8, 10–12, 15]) also highlights how
the prospects of migration are positively correlated with the increase in human capi-
tal in the country of origin: anticipating higher earnings abroad, a greater number of
citizens in the country of origin will be willing to invest in education compared to the
case in which this perspective does not exist (the so-called “brain effect”). Hence,
given that the “effective” migratory behavior is lower than the “desired” migratory
behavior, this brain effect is positive.

However, especially in the Italian case, the chronical lack of opportunities in
the labor market [2, 3] undermines the chances to favor the return of high skilled
workers after a positive experience spent abroad. Hence, what seems like a temporary
experience becomes more and more a permanent choice that does not allow the
migrants to come back in their country of birth [5].

Unfortunately, there is no useful, relevant, comparable and consistent database
on this phenomenon. At first sight, the most important data sources are certainly
AIRE and ISTAT. On the one hand, AIRE (Register of Italian Residents Abroad)
provides a photograph of Italian residents abroad. However, these data only cover
Italians who voluntarily signed up and provided information. The incompleteness
and inconsistency of these data, due to the not mandatory nature of the registration to
the source, are likely to provide only a partial—if not misleading—view. In addition,
publicly accessible data are very limited and do not contain any information about
the degree of education of Italian residents abroad or about the reason for their
migration, nor about the work done or the income received. It is clear, in light of
the above, that these data are necessary to evaluate any costs and benefits of our
country’s (possible) brain drain. On the other hand, ISTAT (Italian National Institute
of Statistics) provides data on residence transfers, that is data on the annual variations
in migration from Italy. An additional source of information is the Italian Minister
for University and Research (MIUR), which provides interesting information on the
number and origin of foreign students in Italy, as well as on the number of graduates.

In this paper, we use data from the “Youth Project”, a survey carried out by the
Toniolo Institute for Advanced Studies, the founding institution and promoter of the
Catholic University of the Sacred Heart. Using that source of data, which provides a
representative sample of young Europeans aged between 18 and 32, we implement
an ordered logistic regression, in order to identify the determinants of the propensity
to leave their native country in the five biggest European countries: Germany, France,
UK, Italy and Spain.

Results should suggest helpful indications on themain drivers of the “brain drain”,
which are useful to prevent or reduce a phenomenon that is supposed to weaken the
quality of the local labour force.

This paper is organized as follows: after a brief review of the literature in the
introduction, we present our datasets and some descriptive statistics regarding the
population under analysis (Sect. 2). InSect. 3we analyze anddiscuss the determinants
of the propensity to leave and finally present our methodology and the empirical
results about the propensity to return. Finally, Sect. 4 concludes.
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2 A Descriptive Analysis of the Mobility of Young
Europeans

This analysis is based on data describing young Europeans’ propensity to leave
their country of origin. Information were collected among 5,000 young people from
Italy, France, Germany, Spain and the UK (1.000 individuals from each country)
within the survey “Youth Project” carried out in July 2015 by the “Toniolo Institute
for Advanced Studies” and jointly realized with the scientific cooperation of Ipsos.
The survey was realized using quotas that are designed to reflect the population
and are representative of the country’s population after having corrected frequencies
through a weighting procedure. The sampling variables are gender, age, employment
status (employed/not employed), respondents’ education (as classified in Table 1),
geographical area (at the level NUTS 1) and size of the municipality of residence.1

Descriptive statistics about that sample are reported in Table 1 and no missing data
have been registered for the variables of interest.

The first striking difference among countries come from education: on average,
35.7% of the sample has a university degree; nonetheless, in Italy this share is below
18%; on the contrary, more than 45% of the UK sample has a degree. Relevant differ-
ences emerge from the employment status as well: on average, 45.8% of respondents
are not employed: but young unemployed in Germany and the UK are only 37.5%
and 36% of the population, respectively; whereas almost 60% of young Italians are
unemployed. Finally, in UK 15.4% of the sample has at least one foreign parent and
7.0% of the entire sample is foreign. On average, 85% of the sample lives in the
country of citizenship, with peaks in Italy (89.8%) and Spain (88.9%). Individuals
with at least a foreign parent are above the average (9.7%) in France (12.7%) and
Germany (10.7%).

Considering the high attitude to mobility that characterizes young Europeans in
comparisonwith the older cohortswe are interested on the evaluation of their attitudes
towards migration in a comparative perspective.

Table 2 presents answers of young Europeans to the question: “Is migrating the
only opportunity to fully realize yourself?”. Results shed light on this question and
the results are quite dramatic for countries such as Italy and Spain. In almost all
countries (see Table 2), more than 50% of the sample agrees “Very” or “Quite”
with the statement that migrating is necessary to realize themselves, though with
relevant differences: from 91% in Spain to 88.3% in Italy and to 53.9% in the United
Kingdom. The only exception is Germany, where the percentage is 47.6% (almost
half of Italy and Spain).

As regards real or desired willingness to move of young Europeans, it is interest-
ing what emerges from another set of questions investigating the choices of possible
destinations. Table 3 presents data regarding the opinion on the general attractive-
ness of other countries (first choice). Italians confirm their traditional destinations
(Germany and the United States, along with the United Kingdom).

1For further details on the surveys from the “Youth Project”, please see themethodological appendix
of Istituto Toniolo (2016) [13].
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Table 1 Frequencies in the sample population

Italy (%) France (%) Germany (%) UK (%) Spain (%)

Gender

Male 50.8 50.0 51.2 50.4 50.5

Female 49.2 50.0 48.8 49.6 49.5

Age

18–20 years 18.3 20.0 17.3 19.0 16.6

21–23 years 19.4 20.0 19.5 20.3 18.0

24–26 years 20.1 19.6 21.2 20.4 19.3

27–29 years 20.5 20.1 20.6 20.1 21.4

30–32 years 21.8 20.3 21.3 20.1 24.7

Education

High 17.9 44.7 28.5 45.8 41.5

Medium/Low 82.1 55.3 71.5 54.2 58.5

Employment

Employed 40.5 56.1 62.5 64.0 47.9

Not employed 59.5 43.9 37.5 36.0 52.1

Nationality

Same country 89.8 84.9 83.8 77.7 88.9

At least one foreign
parent

5.0 12.7 10.7 15.4 4.9

Foreigner 5.1 2.4 5.5 6.9 6.2

Source Balduzzi and Rosina [4]

Table 2 Is migrating the only opportunity to fully realize yourself?

Italy (%) France (%) Germany (%) UK (%) Spain (%)

Very much 43.0 19.4 10.7 11.1 35.5

Quite 45.3 51.2 36.9 42.8 55.5

Little 10.1 25.5 40.9 38.0 7.2

Not at all 1.6 3.9 11.5 8.1 1.8

Source Balduzzi and Rosina [4]

For the Germans, only the US can offer better opportunities. Italy is the last in the
ranking of the favorite destinations of all young Europeans.

This element contributes to worsen the opinion of Italy as a possible destination
for foreign European young adults.
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Table 3 Country attractiveness (first choice)

Origin Destination country

Italy France Germany UK Spain US Rest of the world

Italy NA 3.5% 12.2% 14.0% 1.5% 17.5% 51.3%

France 0.2% NA 3.6% 10.0% 0.9% 20.2% 65.1%

Germany 0.2% 1.2% NA 4.8% 1.7% 21.4% 70.7%

UK 1.1% 1.3% 6.3% NA 2.5% 22.9% 65.9%

Spain 2.3% 4.6% 14.8% 16.2% NA 17.5% 44.6%

Note NA: Not Appliable. Source Balduzzi and Rosina [4]

3 A Multivariate Analysis of Young Europeans’ Propensity
to Leave

After the descriptive analysis presented in the previous section, we now focus with
more detail on the propensity to move to increase employment opportunities. More
precisely, we address the pattern of answers investigating the intentions of moving
abroad within one year from the time of the interview. This item is worded as follows
“Do you intend to move to another country next year to improve your job opportuni-
ties, for study or to reach other people?”. The answer included four options: “Surely
not” (coded as 1), “Probably not” (2), “Probably yes” (3) and “Surely Yes” (4).

The pattern of answers for each of five countries included in the survey are listed
below in Table 4.

As we can see from the table Italy shows the highest proportion of young adults
intentioned tomove to another country in the next twelvemonths from the time of the
interview. In more detail, more than 40% of the interviewed people do not exclude
to move away against percentages below the threshold of 20% in France, Germany
and UK. Spain generally performs worse than these last three countries but better
than Italy: only 29% of individuals declare to be probably or surely intentioned to
move away.

Table 4 Intentions to move
to another country within the
next year from the time of the
interview

Italy France Germany UK Spain

1—Surely
not (%)

17.3 37.7 52.0 42.4 27.8

2—Probably
not (%)

41.4 43.7 37.1 43.3 43.2

3—Probably
yes (%)

34.4 14.2 7.9 12.1 24.5

4—Surely
yes (%)

6.9 4.4 3.0 2.2 4.5

Source Original elaborations from Youth Project (2015)
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Through an ordered logistic regression, it is possible to relate these answers with
some important explanatory factors that can match both demo-social characteristics
and the respondents’ perception of their condition (current and future) in the country
where they live. Unfortunately, the parallel lines assumption, which an ordered logit
is based on, has been violated as described by the results of the Brant test. This means
that the size of the coefficients of some explanatory variables depends on the cut-off
points of the dependent variable when we collapse the four available answers in a
binary outcome.

Hence, as suggested by Williams [16], estimates from an ordered logistic regres-
sion have been replaced by those from a generalized ordered logit (results are dis-
played in Tables 5 and 6).

This model allows to perform different strategies to treat variables that fail the
parallel line assumptions and those not violating that condition.

More specifically, if the parallel line assumption holds, the coefficient estimates
are the same as from an ordered logistic model. If the parallel line assumption fails,
a series of cumulative logit models has been run: the original ordinal variable is
collapsed into two categories and a series of binary logistic regressions are estimated.
First, it is category 1 (Surely not) versus categories 2, 3, 4 (Probably not/Probably
yes/Surely yes); then it is category 1, 2 (Surely not/Probably not) versus categories
3, 4 (Probably yes/Surely yes); then, finally categories 1, 2, 3 (Surely not/Probably
not/Probably yes) versus category 4. In each dichotomization the lower values are
recoded to zero, while the higher ones are recoded to one.

The explanatory variables for the propensity to labor mobility are the following:
gender (male or female), age (in five-year classes), educational level (graduates,
secondary school diploma in four or five years, other lower levels), employment
status (student, employed, students that are currently working or Neet2), having
already had experiences abroad (for training or work), the perceived attractiveness
of a country for work and/or study experiences, the combination of the perception of
opportunities in their own country with respect to other counties and the prospects
for future improvement.

These last two factors are specifically derived from the following two questions:
“Do you think the opportunities for young people in your country of origin are better
orworse than the average of other developed countries?”, and “Howmuch confidence
do you have in the possibility that in three years the opportunities for young people in
your country of origin will be better than today?”. The answers to each of these two
items have been summarized in two ways: for the former “Very or somewhat lower”
versus “Similar or better”; for the latter “Very or quite” versus “Little or nothing”.
The variable included in the model is formed by four categories derived from the
combination of such response modes.

Hence, we obtained the following combinations: (1) people believing that in their
country of origin there are actually “Few opportunities” (“Very or somewhat low-
er” in the first question) and that have “Little confidence in improvements” in the
economic condition (“Little or nothing” in the second question); (2) people believ-

2Not in Employment, Education, or Training.
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Table 5 Estimates from a Generalized Ordered Logit: partial parallel model for describing the
intentions of moving abroad in the next year—Five biggest European countries. Categories of the
dependent variable: 4 = “Surely yes”, 3 = “Probably yes”, 2 = “Probably not”, 1 = “Surely not”

Explanatory variables Ordered logit 4, 3, 2 versus 1 4, 3 versus 1, 2 4 versus 1, 2, 3

Gender

Females −0.31*** −0.16* 0.09

Males Ref. Ref. Ref.

Age

18–20 Ref.

21–23 −0.04

24–26 0.03

27–29 −0.17

30–32 −0.48***

Education

< High School Diploma
(4–5 years)

0.05 0.05 0.05

High School Diploma
(4–5 years)

0.03 −0.15* −0.34*

Bachelor/Master Degree Ref. Ref. Ref.

Employment

Neither student nor
employed (Neet)

Ref. Ref. Ref.

Student 0.30** 0.06 −0.37

Employed −0.80 −0.43*** −0.69***

Student and employed 0.36** 0.13 −0.49*

Country of residence

Italy Ref. Ref. Ref.

France −0.84*** −0.72*** −0.18

Germany −1.33*** −1.32*** −0.71*

United Kingdom −1.00*** −1.00*** −1.00***

Spain −0.58*** −0.58*** −0.58***

Abroad experience

No Ref.

Yes, to study 0.93***

Yes, to work 1.10***

Perceived country
conditions (with respect
to the other countries)

(continued)
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Table 5 (continued)

Explanatory variables Ordered logit 4, 3, 2 versus 1 4, 3 versus 1, 2 4 versus 1, 2, 3

Few opportunities and
little confidence in
improvements

0.35*** 0.22* −0.28

Not few opportunities
and little confidence in
improvements

−0.15* −0.27** −0.63**

Few opportunities and
confidence in
improvements

−0.04 −0.04 −0.04

Not few opportunities
and confidence in
improvements

Ref. Ref. Ref.

Perceived country
attractiveness for work
and/or study experiences

Very or sufficiently
attractive

Ref.

Little or nowise
attractive

0.05

Brant test 90.94***

Observations 5000 5000 5000 5000

Notes: Standard errors in parentheses: *** p < 0.001, ** p < 0.01, * p < 0.05
Source original elaborations from Youth Project (2015)

ing to actually have “Not few opportunities” but who have “little confidence in
improvements”; (3) people feeling to have “Few opportunities” but some degree of
“confidence in improvements” in the future; (4) finally, a residual group represented
by all the individuals that declared to have “Not few opportunities” and a “confidence
in improvements” (chosen as reference category).

The main interest of our analysis relates to this last variable. We wish to evaluate
not only the burden of the gap between present-day in the own context and the one
in other countries, but also the importance of the persistence of this gap in the future.
The idea is that leaving does not necessarily regard those who are worse off today, but
actually thosewho seemore room for future chances in the future abroad. In addition,
future opportunities are just as important as today’s. Hence, the choice of leaving
has both a spatial and a temporal dimension; in other words, the choice depends both
on the comparison with other countries and on expectations for improvement. Our
results tend to confirm this reading. All other factors fixed, the effect of the variable
that combines the current conditions with the prospects of development appears to
have an important and significant effect.

We consider the following categories: worse opportunities for young people in
own country than the average in other developed countries and little confidence that
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Table 6 Estimates from a Generalized Ordered Logit: partial parallel model for describing the
intentions of moving abroad in the next year—Italy. Categories of the dependent variable: 4 =
“Surely yes”, 3 = “Probably yes”, 2 = “Probably not”, 1 = “Surely not”

Explanatory variables Ordered logit 4, 3, 2 versus 1 4, 3 versus 1, 2 4 versus 1, 2, 3

Gender

Females −0.20

Males Ref.

Age

18–20 Ref. Ref. Ref.

21–23 0.76* 0.05 −0.67

24–26 −0.08 −0.08 −0.08

27–29 −0.50 0.03 −0.04

30–32 −0.23 −0.23 −0.23

Education

< High School Diploma
(4-5 years)

−0.56 0.01 0.39

High School Diploma
(4-5 years)

−0.12 −0.12 −0.12

Bachelor/Master Degree Ref. Ref Ref.

Employment

Neither student nor
employed (Neet)

Ref.

Student 0.28

Employed −0.17

Student and employed 0.09

Region of residence

North West Ref. Ref. Ref.

North East 0.02 0.02 0.02

Centre 0.11 0.48* −0.40

South + Islands 0.56* 0.81*** 0.13

Abroad experience

No Ref.

Yes, to study 0.80***

Yes, to work 1.06***

Perceived country
conditions (with respect
to the other countries)

Few opportunities and
little confidence in
improvements

0.27*

(continued)
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Table 6 (continued)

Explanatory variables Ordered logit 4, 3, 2 versus 1 4, 3 versus 1, 2 4 versus 1, 2, 3

Not few opportunities
and little confidence in
improvements

−0.26

Few opportunities and
confidence in
improvements

−0.16

Not few opportunities
and confidence in
improvements

Ref.

Perceived country
attractiveness for work
and/or study experiences

Very or sufficiently
attractive

Ref.

Little or nowise
attractive

−0.04

Brant test 56.41*

Observations 1000 1000 1000 1000

Notes Standard errors in parentheses: *** p < 0.001, ** p < 0.01, * p < 0.05
Source original elaborations from Youth Project (2015)

in the next three years theywill improve; worse opportunities in own country but with
reasonable confidence for improvement; no worse opportunities than in other coun-
tries but little expectation of improvement; no worse opportunities and confidence
in further improvement. Specifically, the first category (worse than other countries
and low future prospects) significantly differs from the others, with a significant and
positive effect on the propensity to move for work. This provides empirical support
to the idea that the current status of the country of departure is relevant, along with
the low confidence for future improvement.

Conversely, a non-negative perception of the current situation is associated with
a lower propensity to mobility.

However, these results require some caution in their interpretation: the expecta-
tions regarding the evolution of the economic scenario (the main explanatory vari-
able) and the intentions towards individual future behaviors (the dependent variable)
derive from same source of data, so they may be codetermined by the presence of
unobservable confounders. Hence, endogeneity may affect the coefficient estimates
for the variable describing perceived country conditions.

Anyway, this effect is captured after deducting all other variables included in the
regression model and is consistent with the expectations. Nonetheless, it could be
useful, as control factors, a reading of the effects of other variables. The intention to
move is higher for males than for females in almost all the models (significance dis-
appears in the last model, probably due to the decline in the sample size of responses
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equal to one). The level of education shows a U-shaped effect in the models contrast-
ing the answers “Probably/Surely yes” versus “Probably/Surely not” and “Surely
yes” versus all the other options. This denotes a greater propensity to move for those
with a lower and those with a higher level of education. The former would probably
move out of necessity whereas the latter to obtain the most out of their human capital
[1, 9].

The gender and the age of respondents also play a significant role in determining
the intentions of moving abroad: females are less likely than males to show positive
moderate intentions to move abroad, even if gender specificity does not mark a
difference in determining who is surely intentioned to move (see model 4 vs. 1,2, 3
in Table 5). With respect to the effect of the respondents’ age, people belonging to
the older cohorts are less likely to move. Probably in this case we refer to individuals
who have already completed the main steps of their transition to adulthood and that
are therefore less inclined to start over in another country.

Other relevant variables in determining the intentions of moving abroad are the
country of origin and past experiences in other countries.

Previous studying orworking experiences abroad is positively related to a renewed
mobility in the short run. It is also relevant the stage of training or professional where
someone is. In particular, those who study tend to give greater consideration to the
foreign option than those who already have a job. Finally, keeping all these factors
fixed, it emerges how significant the country of residence actually is. Among the
countries considered, Italians give greater importance to mobility to find a job, both
within and outside the national borders.

Limiting the analysis to the Italian sample (Table 6) broadly confirms the results
of the general model, even if the small sample size (1000 units vs. 5000 units of the
pooled model) reduces the significance of some variables.

Nevertheless, the perception of Italy as a country characterized by few opportuni-
ties with little confidence in improvements is positively associatedwith the intentions
of leaving.

The inclusion of a territorial breakdown (displayed in the output of Table 6) shows
a propensity for higher mobility in the South in almost all the models. Nonetheless,
actual behaviors may in fact deviate from intentions and plans. And, as data from
other researches confirm, it is easier to turn intentions into actual behavior for those
individuals with greater cultural and economic resources. This dramatically leads to
an accentuation of human capital loss.

Finally, our results show that there is a higher propensity to move abroad for
those who live in contexts which are perceived as less dynamic, more lacking in
opportunities, and with less prospects for improvement. And Italy is the country
where this phenomenon is more relevant.
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4 Concluding Remarks

Exploiting an original dataset, we provide additional evidence on the propensity to
leave the native country by young Europeans and show how this depends on the
economic opportunities offered by the countries of origin. In more detail, Italy is the
country showing, net of the effect of all individual predictors included in the analysis,
the highest propensity of young adults desiring to leave. This is particularly true for
younger cohorts, who seem to be more vulnerable in the early stages of working
careers and that are also the most dynamic social category, with less obstacles in
programming their future. However, the most valuable predictors for the choices of
younger European generations are the expectations on the future development of the
country of origin: people that show little confidence in future developments of the
country of residence are more likely to show a positive intention of moving away.
On the contrary, a positive view is associated to a lower risk of migrating.
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New Insights on Student Evaluation
of Teaching in Italy

Francesca Bassi, Leonardo Grilli, Omar Paccagnella, Carla Rampichini
and Roberta Varriale

Abstract This work focuses on the relationship between student evaluation of
teaching and student, teacher and course specific characteristics, exploiting the rich-
ness of information collected by a new survey carried out among professors of the
University of Padua. Data collected in this survey are able to highlight teacher needs,
beliefs and practices of teaching and learning. This allows to introduce in the study
some subjective traits of the teachers. The role of these new variables in explaining
student evaluations is deeply investigated.

Keywords Multilevel modelling · Multi-source data · Student ratings · Teacher
opinions

1 Introduction

Students’ opinions and judgements of teaching performance play a substantial role in
higher education, particularly as instruments for gathering information on the quality
of education and evaluating university courses [5, 25]. The relationship between
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student-, teacher-, course-specific characteristics and Student Evaluation of Teaching
(SET) is the topic of a huge amount of works in the literature (see an extensive
review provided by Spooren et al. [21]). It is also generally accepted that a multilevel
analysis of the students’ ratings is a satisfactory approach for investigating teaching
evaluations, because of the hierarchical nature of the data, such as university students
nested into classes [16, 17, 20].

However, findings concerning the relationship between SET and the character-
istics of courses, students and teachers are sometimes contradictory [24]. Indeed,
these characteristics usually explain only a small portion of the total variance in SET
scores [1, 20].

On the one hand, there is a branch of the literature that has investigated the
psychometric properties of the evaluation questionnaires, concluding that SET is
reasonably good in terms of reliability and validity of measurement; these researches
also highlight a positive correlation between SET measures and other indicators of
teaching quality, such as student achievement, alumni ratings, and so on [21]. On
the other hand, a growing amount of works criticises the use of course evaluations
as a measure of teaching quality. First, there is no or minimal significant correlation
between SET ratings and student learning [23]; second, SET causes grade inflation
and lowering of academic standards [6, 11]; third, SET may be biased, because of
the presence of some factors—not necessarily related to the teaching quality—that
affects the student evaluation [3, 9]; in the end, SET has some intrinsic limitations,
because students “can only evaluate what they can observe, and what they observe
is mainly what occurs inside the classroom. But as stated previously, there are other
very important components of teaching, such as course quality, instructor knowledge,
quality of assignments, and curriculum development that cannot be measured by
student ratings, and need to be assessed in some other way” [15].

Despite this discussion, the general consensus on the quality of teaching issue
is the influential role played by the teachers, even if their most common observ-
able characteristics often reveal weak effects [10]; furthermore, teacher quality may
differ in many ways, this is not captured by observable qualifications or experi-
ence [18]. How to measure teacher quality is nevertheless a complicated task. By
means of a comprehensive review, Goe et al. [8] stress the advantages of collecting
teacher self-report methods: such data “can tap into a teacher’s intentions, thought
processes, knowledge, and beliefs better than other methods” (p. 38); then, teachers
have the full knowledge of their abilities, classroom context, and so on; moreover,
self-reported measures exhibit a positive trade-off between amount of retrieving
information and cost of collecting them. But, collected teacher self-reported data
substantially describe instructional practices [2, 12, 14], while they usually lack
information on the teacher’s beliefs and needs.

This work aims at filling in this gap, enriching the multilevel literature on the
student evaluation of teaching proposing some original analyses based on a wider
set of teacher-specific characteristics, including particularly teachers’ opinions on
their teaching activities. Indeed, this work exploits an innovative and original dataset
available at the University of Padua, obtained through the linkage of survey and
administrative data coming from three different sources: first, the conventional survey
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on the student evaluation of teaching carried out among university students; second,
administrative data related to the main features of the teachers and the Didactic
Activities (DAs) they are involved in; third, a newCAWI survey carried out bymeans
of the research project PRODID (Teacher professional development and academic
educational innovation). This new survey started at the University of Padua in 2013,
with the aim of developing strategies to support academic teachers and enhance their
teaching competences. A specific questionnaire was then developed and addressed
to all professors involved in almost all didactic activities of the University. This new
survey collected opinions, beliefs and needs of the professors, with regard to their
teaching activities developed in their classes.

This work is organised as follows. Section2 introduces the data of this analysis,
while Sect. 3 describes the empirical application (model specification and results).
Section4 ends the paper, highlighting the main conclusions and some suggestions
for future works.

2 The Dataset

Thiswork investigates data obtained bymerging three different datasets coming from
the University of Padua. The reference is the 2012–2013 academic year.

The first one is the standard online survey carried out by the University to measure
students’ opinions on the didactic activities. It involves all students who have been
attending lessons of any degree courses of the Athenaeum. Students were asked to
express their level of satisfaction on a scale from one to ten (being one the lowest
level) to a set of 18 items (seven if the student attended less than 30% of the lessons).

The second one is the administrative dataset that collects information on the
teachers and the didactic activities of all Padua academic institutions (the educational
offer).

The third one is an innovative dataset, collected by means of a new online survey
aiming at providing a picture of the teaching experiences developed in the university
classrooms. Indeed, the University of Padua in 2013 promoted the PRODID project
(Teacher professional development and academic educational innovation—in Italian
“Preparazione alla professionalità docente e innovazione didattica”) with the purpose
of developing an integrated system to improve teaching competences and academic
innovation. The PRODID project promoted a research-based approach to creating
training programs, faculty learning communities, pilot experimental contexts where
teaching innovation could be tested and monitored [7]. Following an evidence-based
approach, the project aimed at highlighting teachers’ needs, beliefs and practices of
teaching and learning, whichmay constitute a privileged context for the development
of innovative teaching activities within the institution.

The final questionnaire was developed according to the Framework of Teaching
of Tigelaar et al. [22] and is composed by three sections. The first section focuses on
practices developed by the Padua professors in their teaching activities. The teacher
is thought as a facilitator of the learning processes and for this reason the section asks
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for eachDA (at most three, having aminimum of four University Educational Credits
each) about the application (or not) of some specific practices in his/her activities.
Eight items are collected. Six indicators are then constructed and five of them are
obtained considering separately as dummy variables the first five items:

1. implementation of practices for actively getting involved students;
2. proposal of external contributions (i.e. stakeholders);
3. monitoring students learning during the course by means of specific tests/other

ways;
4. assessment of students learning using various types of exams;
5. modification of teaching practices according to SET.

The sixth indicator is calculated summarising in a single dummy variable the last
three items of the section (6. reporting at least one activity involving technology
practices), since these three questions collect similar information on these practices.

The second section deepens teachers’ beliefs about teaching in higher educa-
tion. Differently from the first section, here the focus is on the person, with his/her
way of thinking; therefore, regardless of the number of the DAs, only one set of
answers is collected. By means of 20 questions, in a scale from one (fully dis-
agree) to seven (fully agree), some general dimensions are investigated: the Person
as Teacher, the Expert on Content Knowledge, the Facilitator of Learning Processes
and the Scholar/Lifelong Learner. Considering also some questionnaire validation
analyses (a factor analysis in particular), six factors are defined (they substantially
replicate the aforementioned dimensions), computed as the average values of the
answers within each factor. These measures may be summarised as a second group
of subjective characteristics of the teachers:

1. passion for teaching;
2. passion for research;
3. feeling the need of support for improving teaching activities;
4. will to change teaching activities according to students needs;
5. features of teaching and learning methods (e-learning, English language and so

on);
6. features of teaching and evaluation activities.

The third section focuses on teachers’ needs, that are collected through some
open-ended questions (however, they are not exploited in this analysis).

The PRODID questionnaire was addressed to all teaching staff of the University
of Padua involved in any DA during the academic year 2012–2013; the response rate
of this survey was slightly lower than 50%.

Further information on the questionnaire administration and item contents is avail-
able in [4].
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3 The Empirical Application

3.1 The Model

The analysis of the dataset described in Sect. 2 is based on the estimation of a mul-
tilevel random intercept model [19]:

yi j = α + β ′xi j + γ ′wj + u j + εi j (1)

where j = 1, . . . , J indexes the level-2 units and i = 1, . . . , n j the level-1 units, α
is the intercept, β and γ are vectors of parameters to be estimated, while εi j and u j

are i.i.d. errors terms, distributed as:

εi j ∼ N (0, σ 2
ε )

u j ∼ N (0, σ 2
u )

εi j ⊥ u j ∀i, j

The proportion of residual variance due to unobserved between-group factors is
given by the Intraclass Correlation Coefficient (ICC):

ICC = σ 2
u

σ 2
u + σ 2

ε

(2)

The dependent variable yi j is the overall level of satisfaction,measured on a scale 1
to 10 (1 for completely unsatisfied students and 10 for completely satisfied students).
The student ratings are level-1 units, while the didactic activities (DAs) associated to
the teachers are the level-2 units. For each course, the student is asked to evaluate the
activities of each professor having a minimum number of hours taught in the course.
The student degree programme is not considered as a further hierarchical level, but
it is modelled as fixed effects.

In general, the rating of a student to a given item for a certain course may depend
on course-related factors (class size and heterogeneity, course difficulty and so on),
student-related factors (gender, age and so on) and teacher-related factors (age, gen-
der, personal traits and so on) [21]. According to the aims of this work and the original
features of our dataset, the set of considered explanatory variables may be divided
in three groups:

1. Student (level-1 covariates)

• Demographics: gender, age.
• University career: year of enrolment, average (per year) number of passed
exams in thewhole career, average grade of the passed exams in the considered
academic year.
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2. Didactic Activity (level-2 covariates)

• Course characteristics: compulsory course, total number of hours, more than
one teacher involved in the DA, location (in Padua or outside), shared course
(i.e. students belonging to different degree programs).

3. Teacher (level-2 covariates)

• Demographics (objective characteristics): gender, age.
• University career (objective characteristics): academic position (full professor,
associate professor and so on).

• Practices (subjective characteristics): according to Sect. 2, the six indicators
of teaching practices.

• Beliefs (subjective characteristics): according to Sect. 2, the six factors of
teacher beliefs.

This model specification allows to investigate the role of both objective and sub-
jective teacher characteristics.

3.2 Some Descriptive Statistics

In this analysis we consider only ratings expressed by students attending at least 50%
of lessons. The consideredDidacticActivities belong to bachelor degree programmes
(3-years undergraduate degrees), except those of the Medical school. We excluded
Didactic Activities with a number of student ratings smaller than five, in order to
avoid comparisons based on too few ratings.

According to these criteria, the linkage of the different sources led to a final dataset
composed by 29175 complete records, corresponding to student ratings. The total
number of level-2 units is equal to 548, with an average number of observations per
group of about 53 (ranging from 5 to 371); this value of level-2 units results from
450 DAs (nested in 69 degree programmes) and 472 teachers.

The students in the dataset are 52.3% females, 20.5 years old on average. Half of
them are enrolled to the first year of their degree programme, while less than 4% are
not regularly enrolled. In the considered academic year, on average these students
passed about six exams, with an average grade a bit larger than 25 out of 30.

Figure1 shows the distribution of the dependent variable (the overall student
satisfaction) in the analysed sample. This variable is characterised by a left-skewed
distribution, about one fourth of respondents reports an evaluation equals to eight;
the positive ratings (i.e. from six to ten) are nearly 90% of all evaluations. However,
there is a large heterogeneity across degree programmes.

The sample of professors is mainly composed by males (63.6%) and are 49.8
years old on average. The majority of them are assistant professors (about 39%),
while the role of full professors refers to exactly a quarter of the teacher sample.

Figure2 reports the proportion of teachers who claim to have experienced the
specific practice in his/her activities. It is interesting to note that teachers did some
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Fig. 1 Distribution of the SET ratings in the analysed sample

Fig. 2 Distribution of the indicators obtained from the Practices section of the PRODID question-
naire

modifications of their teaching practices according to the SET evaluations collected
in the previous academic years in more than 80% of the DAs. It is also quite large
the number of DAs where some technology practices are exploited by the professors.
On the other hand, the use of external contributions for improving teaching activities
is still rather low.

Table1 summarises the main features of the teacher beliefs and needs, according
to their self-evaluations collected in the second part of the PRODID questionnaire.
Not surprisingly, teachers highlight a high level of passion for research (more than
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Table 1 Descriptive statistics of the subjective teacher factors obtained from the Beliefs section of
the PRODID questionnaire

Subjective teacher covariate Median Mean ± s.d.

Passion for teaching 6 5.71 ± 1.19

Passion for research 7 6.31 ± 1.07

Feeling the need of support for improving teaching activities 4.25 4.16 ± 1.74

Will to change teaching activities according to students needs 5 4.70 ± 1.27

Features of teaching and learning methods 4.67 4.63 ± 1.17

Features of teaching and evaluation activities 4.50 4.55 ± 0.80

Note Each distribution ranges from 1 (fully disagree) to 7 (fully agree)

half of them indicate a fully agreement with these statements), but also the passion of
teaching appears very important in this sample of professors. The other four factors
are characterised by much more symmetric distributions and show the presence of
relevant proportions of disagreed answers (particularly strong for the beliefs that
summarised the need of a support to improve the teaching activities).

3.3 Main Results

Results from the estimation of model (1) are reported in Table2. Several model
specifications have been used, gradually adding some sets of covariates to the null
model (i.e. themodel where only the intercept is specified, which shows an ICC equal
to 24.3%), in order to investigate and highlight the role of level-2 information. As
specified in Sect. 2, fixed effects for the student degree programmes are introduced
in all estimated models.

In column A we control for student characteristics only: all estimated parameters
are significant, but gender. It is worth noting the positive relationship between SET
and grade, as well documented in the literature [6]. However, the ICC value is close
to 25%, which indicates the presence of a very large between-group heterogeneity.

From model B to E, sets of level-2 covariates are introduced in the model one by
one and the role of course and teacher characteristics for explaining such heterogene-
ity is therefore investigated. However, in all of these models, parameter estimates of
the student variables do not change, both in magnitude and in significance, as well
as the estimation of the level-1 variance.

Course characteristics reveal very low effects in explaining level-2 variability
(from model C to E): only one parameter is weakly (and negatively) significant, that
is the presence of more than one teacher involved in the DA. Similar conclusionsmay
be reached when objective traits of the teachers are added to the model specification:
the age of the professors is the only variable reporting a statistically significant
estimate (the older the teacher, the worse he/she is evaluated, ceteris paribus). No
difference appears according to the academic position. Overall, the introduction
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Table 2 Estimates of the random intercept models on the students’ overall satisfaction

Variable Model

A B C D E

Student characteristics

Female −0.036 −0.036 −0.036 −0.036 −0.037

Age 0.297*** 0.296*** 0.297*** 0.297*** 0.297***

First year of enrolment 0.098* 0.127** 0.122** 0.132** 0.131**

Being regularly enrolled −0.160** −0.149** −0.152** −0.148** −0.147**

Average number of passed exams 0.107*** 0.106*** 0.106*** 0.105*** 0.105***

Average grade of passed exams 0.397*** 0.398*** 0.398*** 0.398*** 0.397***

Course characteristics

Compulsory course −0.044 −0.040 −0.026 −0.035

Number of hours 0.052 0.098 0.172 0.233

More than one teacher −0.164** −0.182** −0.182** −0.171**

Location of courses in Padua −0.389 −0.379 −0.365 −0.409

Shared course −0.103 −0.102 −0.112 −0.093

Teacher characteristics

Female −0.112 −0.134 −0.089

Age −0.219*** −0.216*** −0.179***

Full professor 0.079 0.090 −0.025

Associate professor 0.083 0.066 0.017

Teacher practices

Actively getting involved students −0.003 0.019

Proposal of external contributions 0.206** 0.185**

Monitoring students learning ongoing −0.014 −0.039

Assessing learning using different exams −0.214** −0.257***

Modification of practices according to SET −0.047 0.007

Reporting at least 1 activity on technology 0.118 0.046

Teacher beliefs

Passion for teaching 0.134***

Passion for research −0.045

Need support to improve teaching activities −0.120***

Changing activities with student needs 0.074*

Features of teaching and learning methods 0.166***

Features of teaching and evaluation activi-
ties

−0.032

constant 6.196*** 6.638*** 7.737*** 7.614*** 6.507***

Level-2 variance (σ 2
u ) 0.876 0.859 0.823 0.806 0.731

Level-1 variance (σ 2
ε ) 2.701 2.701 2.702 2.702 2.702

ICC 24.5% 24.1% 23.4% 23.0% 21.3%

Note *** = 1% of level; ** = 5% of level; * = 10% of level
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of several level-2 variables capturing course and objective teacher characteristics
enables to reduce the ICC by about 1% only.

Findings are different when subjective teacher features are taken into account: two
indicators of practices and even four factors of beliefs are statistically significant.
According to practices, it is worth noting that, ceteris paribus, students positively
evaluate the DA when external contributions are proposed, while they judge less
favourably the use of many types of exams to assess their learning. However, these
two indicators are also characterised by the least diffusions among teachers.

The set of teacher beliefs comprises the most important level-2 covariates, par-
ticularly those related to the sensitivity and the aptitude of teaching. For instance,
according to the PRODID questionnaire the factor “Feeling the need of support for
improving teaching activities” may highlight those teachers who feel some diffi-
culties or inadequacies in their teaching activities/performances and for this reason
they need help from experts. Students are able to perceive such difficulties and then
reporting a lower evaluation of the course (other things being equal). On the other
hand, students recognise those teachers with a high passion for teaching or the will to
propose suitable and helpful instruments in their DAs to improve the student learning:
such traits may be able to enhance the transmission of knowledge from the teacher
to the student. Therefore, their evaluations are higher, ceteris paribus. Even if weak,
it is important to underline the positive relationship between SET and the teachers’
willingness at changing their teaching activities according to the needs of the stu-
dents. It is worth noting two other interesting findings: i) the different role that comes
to light between the passion for teaching and the passion for research dimensions
in explaining SET evaluations; ii) the introduction of the beliefs covariates seems to
lead to some non trivial changes in the estimation of some objective and subjective
(practices) teacher characteristics.

Summing up, student characteristics are strongly associated with the overall sat-
isfaction rating of the DA, particularly those related to the academic experience of
these students. On the other hand, the main features of the courses play no or a weak
role. Instead, there are some interesting results on the relationship between SET and
teacher characteristics: objective teacher’ traits are not related to SET ratings, while
subjective features of the teachers disclose a stronger role in explaining SET ratings.

After controlling for a large number of level-2 covariates, there is still evidence
of a high between-group variance (the ICC is always larger than 20%). Overall,
this finding may support the claim that the SET is a biased measure of the DA
quality, as highlighted in the Introduction: the psychological literature has widely
documented the phenomenon of over-reporting individual self-assessments, because
of the tendency of presenting themselves in a more favourable light [13]. However,
in the educational literature the extent of this potential bias is still to determine.
Moreover, on the basis of the fixed effect estimates, there are significant differences
among some degree programmes.
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4 Conclusions

Exploiting the richness of information provided by an innovative survey on teaching
experiences and beliefs of professors working at the University of Padua, the role
of the teacher perceptions and needs on their DA evaluations is deeply investigated.
Findings clearly show that subjective characteristics of the teachers play an important
role in explaining SET ratings.

Thisworkmaybe seen as afirst step for enhancing the relationship betweenquality
of a course (or university) and students’ opinions. Indeed, teaching is a complex and
multidimensional concept, so a future research strand could be the analysis of a
multidimensional indicator of course quality, based on a battery of items.

Moreover, results should be improved taking into account the missing data prob-
lem affecting the sample of professors: because of the unit non-response phenomenon
in the data collection of the PRODID project, about half of the students’ ratings can-
not be used in the current analysis. This reduction in sample size severely reduces the
power of statistical tests. Future research will investigate how to impute the missing
values originated by teacher non-responses.
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Eurostat Methodological Network: Skills
Mapping for a Collaborative Statistical
Office
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Abstract Collaboration, interaction and exchange of knowledge among staff are
important components for development and enriching of the scientific intelligence
within a statistical office. Eurostat methodological network has been built as a skills
mapping tool aiming identify in-house competencies for innovation and affordability
of diffusion of knowledge, promotion of collaboration onmethodological issues, and
processeswithin statistical office. In this exercisewemainly focus on staff knowledge
and working and academic experience on statistics and econometrics. Quantitative
network analysis metrics are used to measure the strengths of methodological com-
petencies within Eurostat, to identify groups of people for collaboration in providing
results on specific tasks, or characterise areas that are not fully integrated intomethod-
ological network. By combining network visualisation and quantitative analysis, we
able easily assess competency level for each dimension of interest. Network analysis
helps us in making decisions related to improvement of staff communication and
collaboration, by building mechanisms for information flows, filling competency
gaps. Data represented as mathematical graph makes readily visible general view,
absorbs its structure, permits us to focus on persons, competencies and relations
between them. Modernisation of ways of working leads to a more cost effective use
of resources.
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1 Introduction

Collaboration, interaction and exchange of knowledge among staff are important
components for development and enriching of scientific intelligence within a statis-
tical office, especially when this exchange happens across areas of interest by both
interacting sides. Methodological network has been built as a skills mapping tool
aiming identify in-house competencies for innovation and affordability of diffusion
of knowledge and information, and promotion of collaboration on methodological
issues and processes within organisation. We mainly focus on staff knowledge and
working and academic experience in methodological areas, domains and tools on
statistics and econometrics. This paper gives a set of mathematical network analysis
measures used for the analysis, frombasic ones as size and degree tomore complex as
clustering coefficient and their correlation with degree that evaluates and makes bet-
ter understandable the methodological knowledge network structure. Those metrics
help us to:

• detect specific network communities,
• identify the facility in knowledge sharing and contribution in providing support on
emerging and changing needs ofmethodological tasks that to fulfilmethodological
objectives,

• characterise critical methodological areas and dimensions that are not fully inte-
grated into network,

• build tools for accessibility, efficient exchange, innovation of existing skills and
performance of methodological tasks promotion,

• bring people competent in the same area into contact,
• map experts on statistical competencies and establish a methodology for easy
distribution of information across the organisation and knowledge network devel-
opment.

Each individual accumulates new knowledge in two ways: through a process
of individual learning; and/or through a process of interactive learning. Studying
the structure of the networks formed may be a way to know more in depth the
availability of competencies and possible knowledge diffusion processes. Network
analysis calculations and visualisations obtained using the R packages igraph,
tnet, bipartite, shiny, and some additional functions developed specially
for this particular exercise.

2 Survey Methodology

Aiming tomap existingmethodological skillswithinEurostat that to increase produc-
tivity and to set up to functionMethodological network the “Eurostat methodological
skills—staff survey” has been conducted. The survey was open to all Eurostat staff
on a voluntary basis. The questionnaire focused on staffs’ knowledge in statistics
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and econometrics. The respondents were inquired to indicate up to five methodolog-
ical areas, three statistical domains and three tools in which they could contribute
fulfilling specific tasks or while sharing information with others.

The findings presented in this paper are derived from input of 67 respondents,
identified as population of Eurostat methodological network. Data presented in this
paper has been anonymised to each respondent giving ID from 1 to 67 seeking to
assure confidentiality.

3 Network Analysis Methods

The purpose of the conducted survey is to build Eurostat methodological network and
to highlight important dimensions through the network analysis techniques. Quanti-
tative network metrics are used to measure the strengths of Eurostat methodological
network members’ competencies, to identify groups of people for collaboration in
providing results on specific tasks, and characterise areas that are not fully integrated
into methodological network.

3.1 Bipartite Graphs

Network data consists of a set of elements with relations on those elements and it
may be represented as a graph. Our research subjects, individuals, form links that
characterise their competencies in statistics and econometrics. Formally we have
graph G = (V, E), where G is a relational structure consisting of set of vertices
V and set of edges E [2]. We say that a graph is bipartite when the vertex set V
is divided into two finite, disjoint V1 ∩ V2 = ∅ sets [4]. When V1 composed of the
first mode vertices and V2 of the second mode vertices, we have the bipartite graph
G = (V1, V2, E) where ties map the elements of different modes only.

3.2 Incidence Matrix

The two basic parameters of graph are the number of vertices and the number of
edges [1]. nV1 = |V1| and nV2 = |V2| are the numbers of vertices in the first and in
the second sets respectively, where n = nV1 + nV2 is a number of full set of vertices
in the graph G and is defined as size of the network. m = |E | gives the number of
edges (links).

A bipartite graph data is represented in the form of incidence matrix, which
allows mathematical calculations that to summarise the information of the graph.
In our particular case data are arranged as person by skill matrix, where the rows
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correspond to methodological network members and the columns to the dimensions
of statistical competencies. We obtain binary matrix A of size nV1 × nV2 :

Ai j =
{1, if person i has methodological skill j
0, otherwise

. (1)

Simply by looking at the columns, we can see who is similar to whom in terms
of having common knowledge and scientific interest.

3.3 Mathematical Measures

In order to understand network and its structure, network analysis statistical models
have been employed in this study. Centrality is a family of concepts characterising the
structural importance of a vertex position in a graph (see Table1). Themost important
descriptive statistics of centrality is degree. This measure shows how central node
i is in the network and is defined as the number of edges formed to it. This metric
helps to identify the most known competencies, and to diagnose the knowledge gaps
within themethodological network.Also helps coordinating thework, perform raised
methodological issues by available internal resource and in the end notify the tasks
for which external support would be required.

Competencies degree ranges from 0 to 39, with a mean of 10.2 for Eurostat
methodological network, what indicates, that a certain competence is chosen by 10
respondents in average. Theminimumdegree 0 indicates isolated vertices, that do not
have any links within the network. We found out that in the Eurostat methodological
network exists one isolated vertex, which belongs to methodological areaMicro-data
access, what means that within Eurostat methodological network significant lack of
experts in Micro-data access have been observed.

Degree sequence of statistical competencies points that Eurostat methodologi-
cal network members are mostly familiar to Data Analysis, very well competent in
Social Statistics domain and experienced in R statistical software. While the gap
exists of people knowledgeable on Micro-data access and Statistical confidentiality,
experienced in Transport and Energy statistics, and capable on Hadoop tool. Other
competencies are more or less covered and known by Eurostat methodological net-
work members. The degree sequence of statistical competencies is depicted in the
Fig. 1.

The average degree of vertex sets V1 and V2 is commonly used summary of how
well connected the network is and defined as proportion of number of links and
number of nodes kVb = m

nVb
, where b = 1, 2.

While the average degree of overall network is obtained from the total numbers
of nodes and edges by k = 2m

nV1+nV2
.
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Fig. 1 The degree sequence of statistical competencies

The density δ of the bipartite graph G measures average ratio of the actual degree
of the nodes in the network and the maximum possible degree, which corresponds
to the number of nodes in the set of different mode nodes δ(G) = m

nV1nV2
.

This index is equal to 1 in the fully connected case (i.e. G has one component)
and takes value of 0 when G is fully disconnected (i.e. G is composed entirely of
isolates). Density can be interpreted as the marginal probability of an edge from any
given vertex of individuals to any vertex of competencies.

For Eurostat methodological network data the standard density measure gives a
value 0.17, which shows a fairly sparse network with presence of 17% of the possible
links for average node. However in this particular case the standard denominator is
clearly not appropriate defining methodological network members’ competencies.
Due to restriction of choice of maximum 11 dimensions out of 50 possible, it cannot
be interpreted as actual possible density. Using modified denominator, our network
has density 0.79, which tells us that respondents’ competences level is high.

One of the most important properties of the network is the clustering coeffi-
cient which concerns link correlation. The clustering coefficient of a node i is the
proportion of links between the nodes within its neighborhood divided by the num-
ber of edges that could be possibly exist between the nodes. The equation of it is
cci jl = qi jl

(k j−ηi jl )+(kl−ηi jl )+qi jl
where j and l are a pair of neighbors of node i , qi jl is the
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number of squares which include these three nodes, and ηi jl = 1 + qi jl + θ jl with
θ jl = 1 if neighbors j and l are connected with each other and 0 otherwise.

The clustering coefficient gives an idea of howcompact is the network.Correlation
of links allows us to sustain cooperation between Eurostat methodological network
members, that otherwise would not be able to function. If respondents i and h forms
a links to common competencies j and l, then efficient collaboration between them
is very possible. In the methodological network studied, the clustering coefficient of
competencies vertices set is not so high, above 20%. There is detected a moderate
correlation between clustering coefficient and degree.

Another important mathematical measure of the graph is structural equivalence.
A pair of nodes are structurally equivalent if they are connected to exactly the same
others. Structurally equivalent nodes are identical with respect to all structural prop-
erties. As a result one approach to identify structurally equivalent nodes is to compute
a similarity measure among rows and columns of the adjacency matrix defining the
graph. The minimum value of similarity for nodes i and h is 0, it captured when none
of the node’s neighbors are neighbors with each other, while the maximum is 1, and
it means that all of two nodes’ neighbors are overlapped. The value is in between
when partial overlap is captured, closer to 1 when the overlap is large compares
to their degrees. In Eurostat methodological network overlapping is not significant,
the similarity equivalence of competencies vertices set is very low, above 10%, for
persons’ nodes slightly higher, up to 20%.

Isolated nodes in the sub-network of Methodological areas belongs to set of com-
petencies, while in the sub-networks of Statistical domains and tools it refers to the
set of members of Eurostat methodological network.

The highest proportion of the amount of existing edges to the maximum possi-
ble amount of links belongs to sub-network of Statistical tools, what informs, that
respondents are highly competent in statistical software. The lowest density detected
in sub-network of methodological areas, but the reason of it could be that the variety
of choices was almost three times bigger, what makes network less connective.

Results in the Table1 provide quantitative evidence that respondents are qual-
ified in different fields and there are no any overlapping nodes, similarity of the
respondent’s competencies is low. Generally given measures ensure possibility of
well performance of Eurostat methodological network. Network is connected, and
gap of competencies is detected only in one methodological area from the defined
list.

Finally, there is a group of factors not related to knowledge itself, that also influ-
ence knowledge diffusion within the network and functionality of itself. To obtain
successfully working network, we are not enough to have a list of existing knowl-
edge, in addition is important to know if person is interested in knowledge sharing
and taking of active or consultative role within the work organised by network.
Two respondents having the same knowledge may have different wills spreading it.
Nodes in this network may present different preference for being active members of
the network while other passive.
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Table 1 Statistics for the whole Eurostat methodological network and for sub-networks

Whole network Methodological
areas

Statistics domains Statistics tools

nV1 67 67 67 67

nV2 50 28 12 10

m 595 299 144 152

kV1 8.9 4.5 2.1 2.3

kV2 11.9 10.7 12.0 15.2

k 10.2 6.3 3.8 4.4

δ 0.18 0.16 0.18 0.23

ccV1 0.18 0.25 0.36 0.37

ccV2 0.13 0.40 0.11 0.17

rkV1 ,ccV1
0.38 −0.21 −0.79 −0.60

rkV2 ,ccV2
0.50 −0.77 −0.15 −0.35

Isolated nodes
(%)

1 1 4 10

SEV1 0.14 0.14 0.14 0.17

SEV2 0.08 0.06 0.06 0.09

3.4 Network Visualisation and Evaluation

Representing data as mathematical graph makes readily see general view, absorb its
structure, and permits us to focus on Eurostat methodological network members,
competencies and relations between it. This network established constructing per-
son by methodological area, statistical domain and tool expertise graphs. Our built
interactive graphs (see Fig. 2) has two-mode nature, it consist two disjoint sets of
vertices.

The different mode and qualitative differences among variables we represent by
different colours. The vertices of Eurostat staff who has participated in the survey
are coloured in green, blue, and red depending on the interest in involvement, while
the second set corresponds to 28 methodological areas, 12 statistical domains and 10
tools, which are coloured in yellow (see Fig. 3). In twomode network edges exist only
between the vertices belonging to different sets. If person i has certain competence
j undirected link between those two components exist, otherwise does not.

Network data gives a complete picture of relations within the network. Figure3
displays a graphical representation of bipartite graph of statistical competencies by
Eurostat methodological network members. In order to highlight some characteris-
tics, of the network structure, visual effects are added to the graph.We distinguish the
two node sets by colors, so that nodes of the same type have the same color. The size
of the label and vertex is proportional to its degree (number of links), meaning that
the more links the node has the larger it appears in the graph. Lines in the network
represent links, meaning that person i is competent in skill j .
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Fig. 2 Interactive navigation tool build for Eurostat methodological network

Nodes are distributed according to degree as well. The nodes of the competencies
with high degree are located in the center of the graph, while the nodes with low
degree are spread more on the sides.

Figure3 depicts the network among Eurostat methodological network members
and list of statistical methodological skills. This network consists of 117 vertices and
595 edges, the average degree is equal to 10.2 with the density of 0.2. The lowest
average degree belongs to set of staff vertices and is equal to 8.9. The set of com-
petencies obtain slightly higher average degree. The reason of this difference is size
of the set of vertices. The higher size of sets itself ensure lower average degree. The
highest in-degree values within the network detected at the vertices of Data Analysis
(degree 39), software R (degree 30), and Social statistics (degree 29) which are the
largest and particularly central in the graph with most of connections to respondents.
It means that 58% of respondents are competent in Data Analysis, 45 in statisti-
cal software R, and 43% are specialised in Social Statistics. The lowest in-degree
belongs to methodological areas Statistical Confidentiality, Data Warehousing, Data
Integration, and EnterpriseArchitecture, to Transport and Energy statistical domains,
and tool Hadoop. The minimum and maximum out-degree of respondents is 3 and
11 respectively. The measure of density is quite low, however considering that some
restrictions have been introduced allows us to state that network is well connected.
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Fig. 3 Eurostat methodological network

Atfirst sight the graphof the full network appears quite heavy andnotwell readable
because of too much information. Some of the visual information is inevitably lost as
the nodes and links overlap and obscure each other. Theway tomake it clearer was by
splitting the network in several sub-networks by competencies, dividing the vertex
set of competencies into three subsets: of methodological areas; statistical domains;
and statistical tools. For VMA ⊆ V2, we say GMA = (V1, VMA, EMA) is the sub-
network ofG in VMA if EMA ⊆ E contains the links inG that connects individual and
competence from the list of methodological areas (see Fig. 4). While for VSD ⊆ V2

graph GSD = (V1, VSD, ESD) is the sub-network of G in VSD if ESD ⊆ E contains
links inG that connects individual and competence from the list of statistical domains
(see Fig. 5). By the same approach we obtain the sub-graph for statistical tools (see
Fig. 6).

However, for the presentation purpose it makes clearer picture of how wide con-
nected graph is and nodes are not located in the same part of space what lets us to
avoid chaos in the graph. In the Methodological areas sub-network the number of
staff remains the same, only number of competencies decreases to 28 and it con-
tains 299 ties. Sub-network based on methodological areas has one isolated vertex
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Fig. 4 Competency sub-network on methodological areas by methodological network members

which represents the competence of Micro-data access (with degree 0). The corre-
lation between clustering coefficient and degree is negative, that means clustering
coefficient of low degree nodes is quite large, but the one of high degree nodes is
small. The staff competencies vary differently, as overlap of the skills do not overlap
significantly.

By using one of the force based algorithms (for instance Fruchterman and Rein-
gold) for data visualisation we get more informative graphs. In the Fig. 5, graph’s two
nodes are near each other roughly to the extent that the geodesic distance between
them is short. Simply saying positions of vertices from the some or different sets are
sets are near each other if they have link to each other or to the same dimensions. For
instance vertices of people are near each other if they are connected by the choos-
ing common statistical domains. In this example the representation makes clear that
there is a set of people shown in the lower part of the graph who have experience in
Business statistics, National accounts and Prices, while the other cluster of people
(represented on the top) are related by domains like Science and Technologies, Envi-
ronmental and Agricultural statistics. The vertex of Social statistics is in between of
both clusters, as it shares the list of methodological network members from the one
and another cluster. We can see that this domain is principle and has direct links to
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Fig. 5 Competency sub-network of statistical domains by methodological network members

all other statistical domains, except Science and technologies. Sub-network based on
statistical domains has three isolates nodes, which belong to the set of staff vertices.
It means that there are three people who have not indicated any statistical domain
from the list as being competent in. The average degree of domain sub-network is
equal to 3.8. The lowest degree value is 0 by frequency of three and belongs to
the set of vertices of staff. While the highest degree is equal to 29 which lets us
assume Social Statistics as best known domain. The least known domains between
our respondents are Transport and Energy statistics (with degree of 2). The density
of this sub-network is 0.18, which means that 18% of all the potential ties between
respondents and competencies are actually present.

By the same algorithmwe visualise the sub-network of competencies in Statistical
tools (see Fig. 6). Here we have eight isolates nodes, which belong to the vertices
set of staff. It means that there are eight people who haven’t indicated any statistical
tool as being experienced in. The average degree of statistical tool sub-network is
4.4. The lowest degree value is 0 by frequency of the aforementioned eight people.

While the highest degree is equal to 30, which belongs to software R as the most
used tool between respondents. The large the vertex is, the more central the compe-
tence in the network is. The least known tool is Hadoop. Even though the density
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Fig. 6 Competency sub-network of statistical tools by methodological network members

of this sub-network is low 0.23, it is still higher than of the whole methodological
network.

4 Projections

Thus far we had discussed two mode graphs, putting people and competencies into
a network itself. But in fact it is important to view competencies as existing “out-
side” the network, by making two mode network’s projection into two one mode
networks. From the Eurostat methodological network we generate two relevant net-
work projections. In the staff network nodes represent people who replied to Eurostat
methodological network—staff survey, and two persons form link to each other if
they have at least one common field of competencies. In this section only active
members of the Eurostat methodological network are considered and analysed.

4.1 Projection to Person by Person Methodological Network

Given matrix A, is reconstructed by the multiplication of matrix A and its transpose
A�, that produce a person by person matrix whose i j th cell indicates the number of
methodological fields both persons i and k are competent in. This value is interpreted
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Fig. 7 Eurostat
methodological network
active member by member
network

as weight or an index of the strength of knowledge proximity of the two persons. The
fact that people who are competent in the same statistical methodological skill have a
link to each other, is a statement about the structure of methodological collaboration
network. This matrix can be interpreted as an index of possible staff interactions. The
higher the number of the common competencies is, the more significant overlapping
of existing competencies is and more likely those two people could collaborate
together efficiently. The visualisation of person by person network is given in Fig. 7.

The size of each node is proportional to the number of people with whom person
has common field of knowledge. Mathematical measures of the network notes that
active members of Eurostat methodological network are well connected by existence
of common skills. The network is a composition of 29 nodes and 359weighted edges.
The degree ranges from 8 up to 28 with a mean of 24.8. The density is equal to 0.88
what is considered as very high, meaning that 88% of possible links appear in the
network.

4.2 Projection to Competency by Competency
Methodological Network

In the same way as defined in the Sect. 4.1, just multiplying the transpose A� of
matrixA by the original matrix, we obtain competence by competence matrix, where
each cell gives the number of people who is experienced in both, the row and the
column competences. The cells in the principle diagonal indicate the degree of that
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Fig. 8 Competence by competence network of active methodological network members

competence. The visualisation of competency by competency network is given in
Fig. 8.

Strongly connected components are centralised in the graph. Components with
weaker connections are put in the boundaries. The size of the node increases depend-
ing on the number of linked competencies.

The competencies network consists of four components: one connected and three
of isolates. From the graph we can see that the most central nodes are Data analy-
sis, SAS, R, etc. While the isolates are the nodes of Data warehousing, Micro-data
access, and Statistical Confidentiality, what means, that active Eurostat methodolog-
ical network members have not declared is as their main experience in.

This visual observation is confirmed by mathematical measures of the network.
It is a one mode undirected sub-network consisting of 50 nodes and 301 weighted
edge. The average degree ranges from 5 up to 30 with a mean of 17.2. The density
is equal to 0.43 what is considered as relatively high.
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5 Ego-Network

The methodology and visualisation tolls analysed and developed under this specific
project, was adapted and reused for other initiatives within the Eurostat. In response
to the request from Eurostat R users group that is a network of staff interested in R
programing and innovations, the two mode competency’s R ego-network has been
modelled. Ego-network is composition only of those nodes which are related to one
specific node, all other nodes have been eliminated [3]. In ego-network based on
competence of statistical software R, only members of the Eurostat methodological
network and information on competencies in methodological areas chosen by them,
who are competent in this particular tool (Fig. 9).

R ego-network consists of 30 Eurostat methodological network members, of
which 14 are active, 15 informative and 1 inactive, and 26 methodological areas.
The degree of R ego-network ranges from 1 to 21 with a mean of 4.9. The most
central nodes are of Data analysis and Time series. The density is equal to 0.17,
which is slightly lower than the one of the whole network of methodological areas.

The active members of Eurostat methodological network provide support and
share knowledge with the in-house R users and statistics producers. This saves costs
of the organisation allowing reuse existing resources, instead of purchasing consul-
tations.

Fig. 9 R software ego network competencies by methodological network members
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6 Conclusions and Discussion

In this paper, we evaluated Eurostat methodological network applying network anal-
ysis techniques. Networks as analytical and visualisation tools provided a number
of useful outcomes. Our research object is respondents to the ‘Eurostat method-
ological network—staff survey’. 10% response rate have been considered as quite
high and as a good starting point for evaluation and development of newly made
up methodological network, assessing the fact that the survey is based on voluntary
basis.

Applying network analysis and visualisation techniques we were able to study
the structure of Eurostat methodological network. The distribution diagrams, tables
of mathematical measures and plotted graphs have displayed important information
about the methodological network components. Similar network diagrams are being
produced regularly for any breakdown under request.

Eurostat methodological network consists of 67 respondents that constructed 595
links to 50 statistical methodological areas, domains, and tools. We noticed that in
the network exist only one isolated node, meaning that gap of skills in that particular
area exist within the network members. Almost half of respondents expressed an
interest in taking an active role on upcoming in-house methodological initiatives and
projects.

Results show high competence staff with density 0.18 of the Eurostat method-
ological network, what is quite high considering that some restrictions has been
introduced for filling in the survey. We have learned that almost all methodological
areas, statistical domain and tools would be covered by people interested in col-
laboration and contribution on upcoming processes and projects with interest rate
from 2 up to 39. The competencies known by majority of respondents are in Data
Analysis, Time Series, National Accounts, Social Statistics, R, SAS, and SPSS. The
lack of knowledge within Eurostat methodological network members noticed in area
of Micro-data access. Going deeper and looking at the indicators of sub-networks
we notice the tendency on increase of the density when average degree decreases.
Overlapping of the structure of the nodes is very small, what points that there is large
variety of the respondents with different knowledge.

One of the key methods for addressing skills gaps is the provision of appropriate
training courses. Monitoring of skills gaps and already existing knowledge lets us
organise training in efficient way for better staff knowledge development, leading to
productive performance of daily duties and methodological network functions.

We can outline the importance of monitoring existing in-house knowledge. Two
employees could affect each other if they are aware about each other common compe-
tencies. Or while looking for specific information an efficient communication within
the organisation is possible only when we know with whom we could potentially
contact. Network is a key source in helping and supporting of knowledge diffusion
and expanding, enriching professional and personal skills and filling in the gaps.

Moreover by obtained high response rate and statistics produced in the described
study we were able to confirm the possibility of efficient network functionality and
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stress out the importance of the methodological network further development and
implication for diffusion of knowledge.

As actual andmost visible results at Eurostat theMethodological strategy has been
adopted. The methodological network launched and already finalised seven specific
methodology related projects, some of them are now developed for production and
dissemination as part of Eurostat experimental statistics. The regular in-house R
users support is being performed as well.
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The Evaluation of the Inequality Between
Population Subgroups

Michele Costa

Abstract This paper illustrates the advantages to evaluate inequality between popu-
lation subgroups with respect to a maximum compatible with the observed data, thus
going beyond the traditional approach to the analysis of inequality between, where
the maximum corresponds to total inequality. The new proposal improves both the
measurement and the interpretation of the contribution of inequality between to total
inequality.

Keywords Inequality evaluation · Inequality decomposition · Inequality between
subgroups

1 Introduction

Inequality decomposition can be extremely helpful into evaluating and understanding
the individual distribution of economic and social variables. Moreover it provides
powerful insights on the comparisons across time and space.

Inequality between population subgroups represents perhaps the most important
component of total inequality. By means of inequality between, different sources
of inequality are evaluated and compared, with the twofold goal to detect the main
determinants of inequality and to implement socio-economic policies able to reduce
or alleviate its consequences. Inequality-reduction policies will address poverty and
social exclusion, but also gender or race gaps as well as many other themes of
economics. Policy interpretations of inequality decompositions are a challenging
topic and rise many questions, some of which still unanswered [12].

The measurement of inequality between can be achieved following different
approaches, since inequality literature presents a wide collection of contributions on
inequality decomposition. However, the size of inequality between is usually evalu-
ated with respect to its theoretical maximum, which corresponds to total inequality,
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when the inequality within subgroups is equal to 0. The case of null inequality within
is a quite unrealistic situation, which can be essentially considered as a theoretical
reference, without a proper phenomenal correspondence. That is, we really do not
expect to achieve a situationwhere each unit of each subgroup possesses the subgroup
mean.

Furthermore, by comparing inequality between to total inequality, we can observe
two unfortunate effects. First, the size of inequality between is frequently unreason-
ably small, thus suggesting a too low influence of the underlying inequality factor.
Second, the measure of inequality between is strongly influenced by the number of
subgroups used into the partition of the total population, thus preventing a direct
comparison between different inequality factors when the number of subgroups is
not the same.

In order to overcome these drawbacks, we propose a new framework for the eval-
uation of the inequality between, where the basis for comparison is not represented
by total inequality, but by the maximum which can be obtained given the observed
data. More specifically, we do not allow to the inequality within to be 0, but we refer
to the minimum inequality within compatible with the data.

We build on [7] and develop new indicators for the evaluation of the inequality
between. The new indexes allow to assess the importance of the different inequality
factors into the observed data, thus improving our knowledge of inequality.

We illustrate the effects of the number of subgroups on inequality between and
on its evaluation by means of a Monte Carlo study, which also allows to compare the
new indexes to the traditional approach. We also propose a case study on real data
with a typical income inequality decomposition based on two different inequality
factors.

2 Methodology

In the following we will adopt as our inequality measure one of the most used and
widespread inequality measure, the Gini index [8]:

G = 1

2n2 ȳ

n∑

i=1

n∑

r=1

|yi − yr | (1)

where ȳ is the arithmetic mean of Y in the overall population, yi is the value of Y in
the i th unit and, accordingly, yr is the value of Y in the r th unit.

Introducedwith the purpose tomeasure the inequality in the individual distribution
of income andwealth, theGini index has experienced and extraordinary success, with
awide variety of different formulations and extensions (see e.g. [15]) proposed during
more than a century. From the original area of economic inequality, the use of the
Gini index has expanded to poverty, well-being and many other fields of economics.
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In the following we will refer to the expression of the Gini index for the case of
a population disaggregated into k subgroups

G = 1

2n2 ȳ

k∑

j=1

k∑

h=1

n j∑

i=1

nh∑

r=1

|y ji − yhr | (2)

where y ji is the value of Y in the i th unit of the j th subgroup and, accordingly, yhr
is the value of Y in the r th unit of the hth subgroup, while n j and nh , are the size of
the j th subgroup and of the hth subgroup, respectively.

For a detailed discussion of the Gini index see, e.g., [4, 9, 10, 15].
Notwithstanding the great importance of the Gini index, here it represents an

example of a measure of inequality, and for any other inequality indicator the same
observations regarding the evaluation of the inequality between would apply.

2.1 The Dagum’s Gini Index Decomposition

The literature on the Gini index decomposition is extremely wide, but as for the
choice of the inequality indicator, also the choice of the method of decomposition
is not a crucial aspect, since the same development proposed for a method can be
extended to all the others. Among the many contributions which allow to decompose
theGini index (see [5, 11, 14] among the others), we use the decomposition proposed
by Dagum [6], who builds on a previous work of Mehran [13].

The Dagum’s contribution is developed on the basis of three components: the
inequality within the k subgroups Gw, the inequality between the k subgroups Gb

and the overlapping between the k subgroups Gt .
The inequality within can be easily derived as a weighted average of the Gini

indexes of each subgroup:

Gw =
k∑

j=1

G j j p j s j (3)

where
p j = n j/n

and
s j = (n j ȳ j )/(n ȳ)

are the population share and the character share of the j th subgroup, respectively.
The contribution to total inequality related to the differences between the sub-

groups is evaluated on the basis of Gini index between subgroups j and h, G jh ,
as
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G − Gw = Gb + Gt =
k∑

j=1

k∑

h=1, j �=h

G jh p j sh

where

G jh = 1

n jnh(ȳ j + ȳh)

n j∑

i=1

nh∑

r=1

|y ji − yhr |.

Since the original version of both Gb and Gt require an heavy computational
effort, a simplified version of the Dagum’s decomposition is available by Costa [2]
as

Gb = G∗
b + 0.5(G − Gw − G∗

b) (4)

Gt = 0.5(G − Gw − G∗
b) (5)

where

G∗
b =

k−1∑

j=1

k∑

h= j+1,k

p∗
h j − s∗

h j

p∗
h j s

∗
jh + p∗

jhs
∗
h j

(p j sh + phs j )

p∗
h j = ph/(ph + p j )

s∗
h j = sh/(sh + s j ).

The Dagum’s decomposition has an immediate link to the Gini index expression
for the case of k subgroups since it assigns the differences |y ji − yhr | in (2) to Gw

when j = h, toGb when j �= h, ȳ j ≥ ȳh , y ji ≥ yhr , and toGt when j �= h, ȳ j ≥ ȳh ,
y ji < yhr . Globally we have G = Gw + Gb + Gt .

For a detailed description of the Dagum’s decomposition see [2, 6].

2.2 The Traditional Evaluation of the Inequality Between

Themeasurement of the contribution to total inequality attributable to the differences
between the subgroups represents the main argument into the debate on inequality
decomposition. Since the pioneeringwork ofBhattacharia andMahalanobis [1]many
Authors proposed different proposal for themeasurement ofGb: even if an exhaustive
list would be a challenging task [10], we cite, besides the Dagum’s papers previously
illustrated, the contribution by Yitzhaky and Lerman [14].

However of great interest, the debate on the measurement of Gb is not relevant
here, since our focus is not on the measurement but on the evaluation of Gb.

In the framework of the Dagum’s decomposition, as well as following any other
approach to the Gini index decomposition, or to the decomposition of any other
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inequality indicator, inequality between is usually evaluated with respect to its max-
imum, which is achieved when two conditions are verified.

First, the k subgroups should not overlap, that is, in our case, the component Gt

is equal to 0.
Second, the variability within the k subgroups should be equal to 0, that is the

component Gw is equal to 0 and each subgroup unit possesses the subgroup mean:
y ji = ȳ j , j = 1, . . . , k; i = 1, . . . , n j .

On the basis of these two conditions, we have Gw = 0, Gt = 0 and then

Gbmax = G − Gw − Gt = G.

By referring to the case Gbmax = G, the evaluation of Gb is generally obtained
by means of the ratio

IGb = Gb/Gbmax = Gb/G (6)

which is used to measure the weight of inequality between on total inequality and to
determine the importance of different inequality factors.

2.3 A New Proposal for the Evaluation of the Inequality
Between

With the aim to provide new insights on the evaluation of the inequality between, in
this paper we propose to modify Gbmax = G, that is the traditional reference for the
analysis of Gb. More specifically, we propose to relax the condition Gw = 0 and to
compareGb not to its theoretical maximumG, but to the maximumGbmax which can
be achieved conditionally to the observed data. That is, we propose to compare Gb

not to the unrealistic case of equidistributed subgroups, but to a case more coherent
and compatible with the data.

We preserve the condition Gt = 0 since it is less unrealistic than Gw = 0. For
example, if we divide total population in 2 subgroups by gender, the hypothesis of
no overlapping, that is the richest female unit is poorer than the poorest male unit,
however extreme, seems less unrealistic than the hypothesis of null inequality within,
that is all the female units have the same income ȳ f and all the male units have the
same income ȳm .

Moreover, the presence of overlapping influences [2, 3] the role of the inequality
factors and, therefore, in order to achieve a better understanding of their importance,
it is more opportune to setGt = 0, thus removing this source of potential differences.

By maintaining the condition of no overlapping, we haveGt = 0, but, by relaxing
the hypothesis of null inequality within, the minimum of Gw is no longer 0, but
Gwmin , that is the minimum inequality within, which can be obtained partitioning
the observed data into k non overlapping subgroups. In this way we get
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Gbmax = G − Gw − Gt = G − Gwmin.

We have many ways to divide n units into k non overlapping subgroups: with the
aim of preserving the structure of the original partition, we propose two possible
solutions. First, we obtain the k subgroups by using the original pi = ni/n values,
thus keeping the same population shares of the original partition. Second, we obtain
the k subgroups by using the original si = (ni ȳi )/(n ȳ) values, thus keeping the
original income shares.

The next step of our method refers to the calculus ofGwmin , theminimum inequal-
ity within compatible with the new k subgroups.We propose to permute the sequence
of the pi (or si for the second solution), to get a set of k subgroups for each permuta-
tion, to calculate the related Gw and to chose the minimum value among all dispos-
able Gw. Let be Gwmin(p) the minimum inequality within, which can be obtained by
permutating the values pi and, correspondingly, Gwmin(s) the minimum inequality
within, which can be obtained by permutating the values si .

In the last step we derive the new indexes for the evaluation of Gb, obtained as

IGb(p) = Gb/(G − Gwmin(p)) = Gb/Gbmax(p) (7)

IGb(s) = Gb/(G − Gwmin(s)) = Gb/Gbmax(s) (8)

The new indexes depend on the minimum inequality within compatible with the
observed data and, therefore, are not strongly affected by k as for IGb .

3 The Simulation Study

In this section we present a Monte Carlo study aimed at analysing the effects of
inequality betweenmeasurement related to thenumber of subgroups k and thenumber
of observations n. Furthermore, theMonteCarlo study also allows to assess how these
effects influence the evaluation of inequality between and to compare the traditional
framework based on IGb to the new proposals IGp and IGs presented in (7) and (8).

The simulated samples are randomly extracted from a beta or a gamma distribu-
tion: in order to achieve a wide coverage, for each subgroup beta distribution param-
eters B(a, b) are randomly selected with 0.5 < a < 2 and 0.5 < b < 4 or gamma
distributions parameters G(c, d) are chosen within the intervals 0.5 < c < 10 and
0.5 < d < 10.

We consider the cases of k = 2, 3, 4, 5 for the number of subgroups and n =
500, 1000, 5000 for the number of observations.

For each combination of k and n, 10,000 samples are generated, 50% from a beta
distribution and 50% from a gamma distribution. For each sample has been calculated
the overall Gini index, the three terms decomposition proposed by Dagum and the
index IGb for the traditional evaluation of the inequality between subgroups.
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Table 1 Inequality decomposition characteristics for the simulated samples, average ratiosGw/G,
Gb/G and Gt/G by k and n

k n 500 1000 5000 500 1000 5000 500 1000 5000

Gw/G Gb/G Gt/G

2 0.48 0.50 0.55 0.47 0.45 0.40 0.05 0.05 0.05

3 0.28 0.34 0.35 0.65 0.62 0.60 0.07 0.05 0.05

4 0.19 0.22 0.26 0.74 0.72 0.67 0.07 0.07 0.07

5 0.13 0.15 0.21 0.80 0.78 0.71 0.07 0.07 0.08

Furthermore, from the sequences of pi and si of each simulated sample have been
obtained all possible permutations and with respect the new non overlapping sub-
groups obtained by means of each permutation has been calculated the inequality
withinGw. Theminimumof allGw is used to obtain the index IGb(p) when the permuta-
tion refers to the pi and IGb(s) when the permutation refers to the si . The condition of no
overlapping is introduced when calculating Gbmax = G − Gw − Gt = G − Gwmin ,
while simulated samples allow overlapping to achieve more realistic situations.

Table1 illustrates the Dagum’s Gini index decomposition by means of the ratios
Gw/G,Gb/G andGt/G by number of observations n and by number of subgroups k.
Each value onTable1 refers to the average of the 10,000 ratios obtained for the 10,000
samples generated for each k and n. For example, for the 10,000 samples calculated
for k = 2 and n = 500 we have that, on average, the 48% of total inequality is given
by Gw, the 47% by Gb and the 5% by Gt .

The ratio Gw/G illustrates the weight of inequality within in total inequality:
while the number of observations n seems to have only a slightly influence, the
number of subgroups k strongly affects the importance of inequality within on overall
inequality, with an inverse relation between Gw/G and k.

The analysis of the role of the inequality between by means of the ratio Gb/G
follows the traditional way to evaluate the relevance of inequality between. It is
possible to observe how Gb/G strongly depends on the number of subgroups k, thus
confirming one of the main criticism to its use to evaluate the inequality between.

The weight of the overlapping component, evaluated by means of the ratioGt/G,
is quite small, as in many samples it is only marginal and the average has the effect
to water down its overall importance. However, as expected, we can observe a direct
relation between overlapping and the number of subgroups.

The traditional evaluation of the inequality between, obtained by means of IGb =
Gb/G, is complemented by the new indices IGb(p) and IGb(p) reported in Table2. Each
value of Table2 is obtained as the average of the 10,000 samples calculated for each
case: for example, when k = 2 and n = 500, 0.71 is the average of the 10,000 IGb(p)

obtained in the 10,000 simulated samples extracted for this combination of k and n.
From Table2 it is possible to observe how the number of observations n still

does not affect the evaluation of Gb. However, unlike what happens for IGb , the new
indexes IGb(p) and IGb(p) are quite robust with respect to the number of subgroups k:
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Table 2 Inequality between evaluation by means of IGb , IGb(p) and IGb(s) , average values in sim-
ulated samples by k and n

k n 500 1000 5000 500 1000 5000 500 1000 5000

IGb IGb(p) IGb(s)

2 0.47 0.45 0.40 0.71 0.70 0.67 0.69 0.67 0.64

3 0.65 0.62 0.60 0.77 0.76 0.74 0.77 0.75 0.74

4 0.74 0.72 0.67 0.81 0.81 0.78 0.81 0.80 0.77

5 0.80 0.78 0.71 0.84 0.84 0.80 0.82 0.84 0.77

Table 3 Inequality decomposition characteristics for the simulated samples, mean of IGb, IGp,
IGs by k and by deciles of Gw/G (Gb/G, Gt/G)

k deciles of Gw I II III IV V VI VII VIII IX X

IGb

2 0.73 0.63 0.57 0.51 0.48 0.43 0.40 0.36 0.33 0.25

3 0.85 0.77 0.74 0.71 0.68 0.64 0.6 0.56 0.53 0.45

4 0.89 0.84 0.81 0.78 0.77 0.74 0.71 0.68 0.64 0.58

5 0.91 0.87 0.85 0.84 0.82 0.80 0.77 0.73 0.72 0.66

IGb(p)

2 0.91 0.85 0.83 0.77 0.76 0.71 0.62 0.59 0.56 0.46

3 0.94 0.88 0.85 0.83 0.80 0.76 0.74 0.69 0.66 0.58

4 0.94 0.90 0.87 0.85 0.84 0.80 0.78 0.75 0.72 0.64

5 0.95 0.92 0.89 0.87 0.86 0.85 0.80 0.78 0.77 0.70

IGb(s)

2 0.93 0.87 0.81 0.78 0.76 0.67 0.64 0.55 0.52 0.39

3 0.94 0.89 0.86 0.84 0.82 0.77 0.72 0.68 0.65 0.57

4 0.96 0.92 0.89 0.87 0.86 0.84 0.81 0.78 0.72 0.71

5 0.98 0.96 0.95 0.95 0.94 0.92 0.91 0.87 0.87 0.86

from Table2 we still can note a direct relation with k, but the increasing rate is really
lower than for IGb .

The results of the simulation study offer many possibilities to investigate the
behaviour of IGb , IGb(p) and IGb(s) . Given the importance of size of inequality within
into the simulation study and its possible effects on the evaluation of inequality
between in Table3 we analyse the traditional and the new indices with respect toGw.
The results are sorted by increasing value of Gw, 10 groups are constituted on the
basis of the deciles of Gw and Table3 reports the average of IGb , IGb(p) and IGb(s) in
each group.

From Table3 it is possible to determine the influence of inequality within on the
evaluation of inequality between: by increasing k all indices converge to similar
values, but the new proposal show clearly an higher degree of robustness particularly
when Gw is lower.
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A further goal which could be achieved by means of a simulation study refers
to the correspondence of the inequality factors classification between the traditional
framework and the newproposal: since it is possible to obtain different classifications,
a future extension of this study could check the extent of these differences and propose
an analysis with respect to the components of the decomposed Gini and the number
of subgroups.

4 Case Study

In order to illustrate the advantages of our proposal, we present a case study related
to the Italian households for the 2014. The data are from the Survey on Households
Income and Wealth, a multidimensional survey on Italian households performed
every two years by the Bank of Italy. The study analyses the income inequality
among the Italian households, divided into subgroups by means of two of the main
determinants of inequality: the area of residence of the household and the educational
level of the head of household. In order to evaluate the effect of the number of
subgroups on inequality between, we consider the cases k = 2, 3, 5.

Table4 illustrates the incomemean, the population share and the income share for
the two partitions. From Table4 it is possible to observe some well known stylized
facts of income inequality in Italy, clearly evident from the values ȳi and from the
differences (pi − si ). In the case of equidistributionwehave pi = si ,while increasing
differences (pi − si ) suggest increasing levels of inequality, with pi > si (pi < si )
indicating that the i th subgroup is a poor (rich) subgroup.

Our focus is on the effects of the differences between the subgroups on total
inequality. Table5 illustrates the Dagum’s Gini index decomposition by area of res-
idence. For the case of k = 2 subgroups, North and Center form one subgroup, and
South and Island the other. When k = 3 we divide the North from the Center and
for k = 5 we divide the North into North West and North East and we separate the
South from the Islands.

Table 4 Mean income, population share and income share for Italian households divided by area
of residence and by educational level of the head of household, 2014

Area Mean p s Education Mean p s

North West 33750 0.254 0.279 None 14676 0.03 0.02

North East 35150 0.221 0.229 Elementary 22329 0.20 0.16

Center 32636 0.202 0.226 Middle school 26753 0.37 0.31

South 23365 0.244 0.173 High school 35893 0.26 0.31

Islands 24095 0.081 0.093 University 46641 0.13 0.20
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Table 5 Income inequality decomposition by area of residencea , Italian households 2014

k Gw Gb Gt

NC, SI 2 0.194 0.107 0.049

N, C, SI 3 0.125 0.139 0.086

NW, NE, C, S, I 5 0.073 0.168 0.109
aN north, NW north-west, NE north-east, C center, S south, I islands

Table 6 Inequality between evaluation; area of residencea , Italian households 2014

k IGb IGb(p) IGb(s)

NC, SI 2 0.306 0.355 0.359

N, C, SI 3 0.397 0.562 0.574

NW, NE, C, S, I 5 0.479 0.568 0.566
aN north, NW north-west, NE north-east, C center, S south, I islands

By increasing k, we can observe the usual pattern in inequality decomposition: the
decrease of inequality withinGw and the consequent greater importance of inequality
between Gb and of overlapping component Gt .

The evaluation of Gb, for the area of residence, is reported on Table6. When
we refer to IGb it is possible to observe how the evaluation of Gb strictly depends
on k: for k = 2 we have that the area of residence contributes for the 31% to total
inequality, while for k = 5 its importance rises to the 48%.

FromTable6we can also observe how IGb(p) and IGb(s) are not amonotone function
of k, since they depend on the minimum inequality within. The new indexes show
quite similar results, with the contribution of the geographical dimension ranging
from the 36% for k = 2 to the 50–57% for k = 5.

Bymeans of IGb(p) and IGb(s) , that is by using an empiricalmaximum,we are able to
obtain an evaluation less influenced byk,more robust to the number of subgroups, and
therefore more able to highlight the contribution to the overall inequality attributable
to the area of residence.

Furthermore, by using an empirical maximum we are able to assess the relevance
of the inequality factor, in this case the area of residence, on real data which we
are analysing, not with respect to a theoretical situation, where the risk is to have a
relevant underestimation of the inequality between.

The results related to the decomposition by educational level of the head of house-
hold are reported on Table7. For the case of k = 2 we distinguish between without
or with high school diploma, when k = 3 we split high school and university degree,
while for k = 5 we add two further subgroups, one for elementary school and one for
the absence of an educational level.We can observe how the componentsGw,Gb,Gt

show a behaviour similar to the previous case, however we can note how Gb has a
greater importance, while Gt is smaller: two signals of a stronger relevance of the
educational dimension.

Moving to Table8 for the evaluation of the inequality between, IGb confirms the
importance of the educational level, showing higher levels with respect to Table2.
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Table 7 Income inequality decomposition by educational levela of the head of household, Italian
households 2014

k Gw Gb Gt

NEM, HU 2 0.162 0.149 0.038

NEM, H, U 3 0.130 0.171 0.049

N, E, M, H, U 5 0.081 0.200 0.069
aN none, E elementary, M middle school, H high school, U university

Table 8 Inequality between evaluation: educational levela of the head of household, Italian house-
holds 2014

k IGb IGb(p) IGb(s)

NEM, HU 2 0.426 0.590 0.626

NEM, H, U 3 0.487 0.613 0.568

N, E, M, H, U 5 0.570 0.615 0.613
aN none, E elementary, M middle school, H high school, U university

Also the new indexes are higher, but their increase with respect to the results of
Table6 is less accentuated.

By comparing IGb to IGb(p) and IGb(s) , it is clearly possible to observe one of the
advantages of our proposal: the number of subgroups k only slightly affects IGb(p)

and IGb(s) , while it more strongly influences the traditonal evaluation IGb .
By comparing the results related to the two decompositions, we get that the edu-

cational dimension is considered an inequality factor more important than the geo-
graphical dimension by all indexes. It is however important to observe how, within
the new proposals, the difference between the two factors is not so high as on the
basis of IGb .

Finally, it is relevant to stress how, in both cases the new indexes attribute to the
inequality factors a stronger role, overcoming the usual underestimation and truly
reflecting the effective importance of these determinants of total inequality.

5 Conclusions

We propose to modify the traditional evaluation of the inequality between popula-
tion subgroups by introducing a maximum compatible with the observed data. Our
purpose is to assess the determinants of inequality with respect to the observed data,
and not by referring to the unrealistic case of equidistributed subgroups.

Two new indexes are illustrated and their behaviour is analysed by means of a
simulation study and also with respect observed data from the income distribution
of the Italian households. Our proposal allows to strongly reduce the effect of the
number of subgroups on the evaluation of inequality between and to overcome the
usual underestimation of the importance of the inequality factors.
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We believe that the foundation of the new indexes on the observed data repre-
sents an improvement for our knowledge of the inequality structure and a relevant
complement to the traditional evaluation of the inequality between subgroups.
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Basketball Analytics Using Spatial
Tracking Data

Marica Manisera, Rodolfo Metulini and Paola Zuccolotto

Abstract Spatial tracking data are used in sport analytics to study the players’ posi-
tion during the game in order to evaluate game strategies, players’ roles, performance,
also in prospect. From the broad fields of statistics, mathematics, information science
and computer science it is possible to draw theories and methods useful to produce
innovative results based on speed, distance, players’ separation trajectories. In bas-
ketball, spatial tracking data can be combined with play-by-play data, joining results
on spatial movements to team performance. In this paper, using tracking data from
basketball, we study the spatial pattern of players on the court in order to contribute
to the literature of data mining methods for tracking data analysis in sports, with the
final objective of suggesting new game strategies to improve team performance.

Keywords Sport science · Performance analysis · Players’ position · Players’
trajectories · Convex hulls · Cluster analysis

1 Introduction

The study of the players’ position during the game is gaining relevance in the dis-
cipline of sport science [13, 39] due to the availability of spatial tracking data, that
are used to investigate game strategies, players’ roles and performance. Informa-
tion Technology Systems (ITS) permit to collect a large amount of different types
of spatio-temporal data from a game: play-by-play data, which report a sequence of
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relevant events occurring during a game, and tracking data, capturing the movements
and trajectories of players on the court (or the ball).

On one hand, play-by-play data report events that can be broadly categorized as
player events, such as passes and shots as well as technical events, for example fouls
and time-outs. These can be used, adopting a data-driven approach, to identify the
drivers that affect the probability towin a game, study the interactions among players,
identify central players in a team or investigate the impact of specific situations on
the performance [40]. Carpita et al. [4, 5] used machine learning tools and principal
component analysis in order to identify the drivers that affect the probability to win
a football game. Social network analysis has been used to capture the interactions
between players [38]. Passos et al. [24] used centrality measures with the aim to
identify central (or key) players, and to estimate the interaction and the cooperation
between team members in water polo. In soccer, Cintia et al. [8] observed players’
behaviour on the pitch. They predict the outcome of a long-running tournament such
as the Italianmajor league using simple networkmeasures.Moreover, Cintia et al. [7]
proposed and computed a pass-based performance indicator that strongly correlates
with the success of the team.

On the other hand, tracking data are collected using optical- or device-tracking
and processing systems. Once tracking data are available, the analysis of players’
movements should consider several aspects, for example the interdependency of one
player’s trajectory with the other players’ movements. A branch of literature focuses
on the analysis of synchronized movements. The trajectory of a single player, in fact,
depends on a large amount of factors and on the trajectories of all the other players on
the court, both team-mates and opponents. These interactions among players have
been studied from the perspective of physical psychology [37], where players in
court represent agents that face with external factors [25, 36]. In addition, typically,
players’ movements are determined by their role in the game. Predefined plays are
used in many team sports to achieve some specific objectives. Moreover, team-mates
who are familiar with each other’s playing style may develop ad-hoc productive
interactions that are used repeatedly and experts want to explain why, when and how
specific movement behaviour is expressed because of tactical behaviour. Brillinger
[3] addressed the question of how to analytically describe the spatio-temporal move-
ment of particular sequences of passes.

Another complex task is to translate results into suggestions for sports experts, on
how to improve game strategies in order to win a game. Analysts want to explain and
observe cooperative movement patterns in reaction to a variety of factors, such as
coach strategies and specific play-books. A useful approach in this regard consists in
segmenting a game into phases, as it facilitates the retrieval of relevant moments of
the game. Perin et al. [26] visually segmented a football game into different phases
while Metulini et al. [20] segmented a basketball game into phases using a cluster
analysis. A key factor in relation to teams’ performance is how players control space.
Many works are devoted to analyse how the space is occupied by players—when
attacking and when defending—or in crucial moments of the game. Examples can
be found in football [9, 23] or in futsal [10, 35].



Basketball Analytics Using Spatial Tracking Data 307

In order to communicate the information extracted from the spatio-temporal data,
visualization tools are required. Perin et al. [26] developed a system for visual explo-
ration of phases in football, Sacha et al. [29] present a visual analysis system for
interactive recognition of football patterns and situations. Notable works include
data visualization in ice hockey [27] and tennis [28]. The most common approach to
give a graphical description of spatio-temporal data is to use heatmaps. Typical exam-
ples in the literature show the spread and range of a shooter [12] or count how many
times a player lies in specific court zones. More recently, dynamic approaches have
been proposed to visualize aggregated information displaying the time dimension:
for example, Theron and Casares [33] employed tools for the analysis of players’
movements and Metulini [18] investigated the use of motion charts for visualizing
movements of basketball players’ on the court.

The aim of this paper is to study the players’ position on the court and contribute,
with our results, to the literature of data mining methods for tracking data analysis in
team sports, with the final objective of suggesting new useful strategies to improve
team performance. Using a basketball case study, and having the availability of
the players’ spatio-temporal trajectories extracted from Geographical Positioning
Systems (GPS), we (1) visualize the synchronized movements of players around the
court and (2) identify different game phases using a cluster analysis, in which each
cluster defines a game phase (because it groups all the moments being homogeneous
in terms of spacings among players). We then characterize each cluster in terms of
players’ position on the court, define whether each cluster corresponds to defensive
or offensive actions, and compute the transition matrices in order to examine the
probability of switching from one cluster to another one from time t to time t + 1.

The paper is organized as follows. Section2 presents a description of our data
(Sect. 2.1) andoutlines our researchquestions (Sect. 2.2). Theproposedmethodology,
data analysis and results are in Sect. 3 while conclusions and future developments
are in Sect. 4.

2 Data, Methods and Research Questions

In this section, we describe the data used in this paper (Sect. 2.1) and present our
research questions (Sect. 2.2).

2.1 Tracking Data and Play-by-Play Data

Object trajectories capture themovement of players and the ball. Players’ trajectories
are retrieved using optical- or device-tracking and processing systems. Optical track-
ing systems use fixed cameras to collect the players’ movements, and the images are
then processed to compute the trajectories [1]. There are several commercial ven-
dors who supply tracking services to professional sport teams and leagues [17, 34].
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Device-tracking systems rely on devices that infer their location, and are attached to
the players’ clothing or embedded in the ball or puck. These systems are based on
GPS [6]. The resulting dataset is dense, because GPS collect data at high temporal
resolution. The adoption of this technology and the availability to researchers of the
resulting data depend on various factors, particularly commercial and technical, such
as the costs of installation and maintenance and the legislation adopted by the sport
associations. This data acquisition may be partially restricted in some diffused team
sports (as it was for example in soccer until 2015) while allowed for others.

Play-by-play is a sequence of significant events that occur during a game. Events
can be broadly categorized as player events such as passes and shots; and technical
events, for example fouls, time-outs, and start/end of period. Event logs are qualita-
tively different from the player trajectories in that they are not dense since samples
are only captured when an event occurs. However, they can be semantically richer
as they include details like the type of event and the players involved. Typically, in
basketball, play-by-play data consist of a collection of about five hundreds events per
game. The collection includes events such as made shots, missed shots, rebounds,
fouls, start/end of the period, etc... Play-by-play data can be obtained, for example
by means of webscraping procedures run on specific sport league websites.

Basketball is a sport generally played by two teams of five players each on a
rectangular court (28m × 15m). The game, according to International Basketball
Federation (FIBA) rules, lasts 40min, and is divided in four periods of 10min each.
The objective is to shoot a ball through a hoop 46cm in diameter and mounted at a
height of 3.05m to backboards at each end of the court.

The data we used in the analysis refer to a friendly game played on March 22th,
2016 by two Italian teams in the C-gold league, the fourth league in Italy. Data
are referred to the home team. MYagonism (https://www.myagonism.com/) was in
charge to set up a system to record the players’ position on the court during the
game. Each player worn a microchip that, having been connected with machines
built around the court, collected his position (in pixels of 1 m2) in both the x-axis
(court length) and the y-axis (court width), as well as in the z-axis (i.e. how high
the player jumps). The position of the players has been detected with an average
frequency of about 37Hz (i.e. 37 times every second). During the match, a total
of six players rotated on the court. The system recorded a series of 133,662 mea-
surements, each one referring to one among positioning, velocity or acceleration in
one among x-, y- or z-axis, for a specific player in a specific time instant. Tracking
systems retrieve data with a potential margin of error. In order to clean data in the
(possible) presence of outliers and noise, we refer to the approach of the Kalman
filter. The Kalman filter is an algorithm that predicts, using a set of measurements
observed over time and containing statistical noise, values of a variable that tend
to be more accurate than the single measurements. It is traditionally used in sport
applications [16]. In our data, x-, y- and z-axes measurements have been smoothed
with a Kalman filter. Measurements are detected with a non-constant frequency; in
addition, measurements of different players are recorded at different time instants.
As a consequence, the data matrix contains every millisecond of the game (a row
of the data matrix identifies a millisecond), and we attributed the last measurement

https://www.myagonism.com/
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available to players not detected in that millisecond. Moreover, the players’ positions
are detected also during the moments when the game is off: these rows have to be
removed from the data matrix. However, there is no variable labelling milliseconds
when the game is off, so we needed rules to identify moments to be filtered out. We
filtered the rows of the data matrix by dropping the pre-game, the half-time break
and the post-game periods, using the procedure described in Metulini [19].

The final data matrix X counts for 3, 485, 147 total rows, where each row corre-
spond to an active millisecond. The data matrix X, furthermore, is made by several
variables (in column), each variable reporting the values of one among positioning,
velocity or acceleration in one among x-, y- or z-axis, for one among the six players.

2.2 Research Questions

The overall objective of our research is to visualize and characterize the movement
of basketball players around the court by finding relevant types of movement patterns
that could affect the team performance.

Going into detail, the first specific objective is to find and demonstrate the useful-
ness of a visual tool approach in order to extract preliminary insights from trajectories.
In this respect, we aim to visualize the synchronized movement of players and to
characterize their position around the court in order to supply experts and analysts
with a useful tool in addition to traditional statistics, and to confirm the interpreta-
tion of evidence from other methods of analysis. Some preliminary results, obtained
using motion charts to visualize the movements of players around the court, allowed
to identify differences in spacing structure among offensive and defensive plays [18,
21]. Such interesting results must be further developed, by analysing both team-mate
and opponents trajectories and adding in the tracking data the ball’s position.

Another research aim is to segment the game into phases. Specifically, our idea is to
find, through a cluster analysis, a number of groups each identifying a specific spatial
pattern, in order to find any regularities and synchronizations in players’ trajectories,
by decomposing the game into homogeneous phases in terms of spatial relations. In
this paper, wewill show results from an exploratory analysis using tracking data from
one basketball game. We plan to extend the analysis to multiple games. Moreover,
we aim to match play-by-play data and trajectories, in order to extract insights on the
relations between particular spatial pattern and the team performance, and to include
the effect of the ball’s position on the players’ movements.

3 Basketball Data Analysis and Results

We first use motion charts to visualize the synchronized spatio-temporal movements
of players around the court. There are several softwares providing the possibility to
reproduce motion charts, more or less intuitive, open source or requiring a license
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(Gapminder world, Google docs gadget, Trend compass, and JMP from SAS insti-
tute). In addition, motion charts can be created through web programming languages
using Google application programming interface, Google API, Flash or HTML5.
We decided to opt for gvisMotionChart in R [11], because it outperforms alter-
natives in terms of open source and friendliness and allows to easily import data.
A video tutorial showing players’ trajectories using motion charts can be found at:
http://bodai.unibs.it/bdsports/Ricerca3.htm.Motion charts have been applied in sev-
eral fields, as students’ learning processes [32] and linguistic changes [15], insurance
[14] and development economics [30], medicine [31] and hydrology [2]; to the best
of our knowledge, they have never been applied to basketball within a scientific study.
In this paper, the evidence drawn from motion charts, that cannot be shown here for
obvious reasons, is summarized by average distances among players and statistics
computed on convex hulls areas, distinguishing defensive from offensive plays. To
compute average distances and convex hulls areas, we add new variables to the data
matrix X. The average distance (in meters) is defined, for player i and player j , and
for a specific millisecond, as:

disti j =
√
(pos_xi − pos_x j )2 + (pos_yi − pos_y j )2

where pos stays for position, x and y stay for the the axes. The convex hulls areas,
for a specific millisecond, is defined as the area computed on the following set of
values:

(pos_x1, pos_x1), (pos_x2, pos_x2), (pos_x3, pos_x3), (pos_x4, pos_x4), (pos_x5, pos_x5)

where 1,2, …,5 denote the players on the court in that millisecond. Motion charts
applied to our data show differences in the spacing structure of players among offen-
sive and defensive plays. We defined whether each time instant corresponds to an
offensive or a defensive play looking to the average coordinate of the five players on
the court. More in detail, we separate the court in two sides along the half court line
(x − axis = 0); In the first half of the game, rows of the data matrix are assigned
to defense if the average x − axis of the five players on the court has negative sign,
to offense if the average y − axis of the five players on the court has positive sign.
In the second half of the game, teams change court side, so we invert the rule to
assign rows to game phases. The evidence is summarized in Table1, which reports
the statistics describing the convex hulls areas and the average distances.

Results clearly highlight that average distances among players and convex hulls
areas are larger in offensive plays than in defensive plays.

To confirm previous evidence, Figs. 1 and 2 report the convex hulls for selected
snapshots from, respectively, the first offensive play and the first defensive play of
the game. Once again, players are more spread around the court in offensive plays.

Then, we applied a k-means Cluster Analysis in order to segment the game into
phases. Cluster analysis is a method of grouping a set of objects in such a way the
objects in the same group (cluster) are more similar to each other than to those in
other groups. In our case, the objects are represented by the rows of the data matrix

http://bodai.unibs.it/bdsports/Ricerca3.htm
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Table 1 Average distances among players and convex hulls areas for the full game, for defensive
and offensive plays

Average distances Convex hull area

Attack Defense Attack Defense

Min 2.296 0.400 1.000 1.000

1st Qu. 6.372 4.309 30.000 14.000

Median 7.235 5.086 41.000 20.500

Mean 7.250 5.680 42.590 28.550

3rd Qu. 8.132 6.523 53.000 33.500

Max 13.947 14.260 138.500 180.000

Fig. 1 Convex hull for selected snapshots related to the first offensive play of the game

Fig. 2 Convex hull for selected snapshots related to the first defensive play of the game
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X, expressing time instants (milliseconds), while the similarity among time instants
is computed using, as variables, the ten distances between the two players of each
pair of players. In details, we start with a subset of the data matrix X containing all
the rows corresponding to time instants where players 1, 2, 3, 4 and 5 were on the
court, and the ten variables reporting the distances between the two players of each
pair:

dist12, dist13, dist14, dist15, dist23, dist24, dist25, dist34, dist35, dist45,

where subscripts denote the players’ pair. Clusters centroids are k randomly chosen
time instants. The criteria to assign a time instant to a centroid is based on their
similarity in terms of the ten variables defined above.

Our aim is to characterize the spatial pattern of the players on the court. We
define different game phases, each considering moments being homogeneous in
terms of spacings among players. We choose k = 8 clusters, based on the value
of the between deviance (BD) / total deviance (T D) ratio for different number of
clusters (BD/T D = 50% and relatively low increments for increasing k, for k ≥ 8).
The first cluster (C1) embeds 13.56% of the observations (i.e. 13.56% of the total
game time). The other clusters, named C2, …, C8, have size of 4.59, 14.96, 3.52,
5.63, 35.33, 5.00 and 17.41% of the total sample size, respectively.

First, we characterize each cluster in terms of players’ position on the court. We
used Multidimensional Scaling (MDS) in order to plot the differences between the
groups in terms of their position on the court. Using the MDS algorithm we aim
to place each player in N -dimensional space such that the between-player average
distances are preserved as well as possible. Each player is then assigned coordinates
in each of the N dimensions. Since the basketball court have two dimensions (width
and length), we choose N = 2 in order to guarantees the best visual interpretability.
In detail, for each cluster, we apply aMDS on a 5 × 5matrixM reporting the average
distance computed averaging over the distances between two players of each of the
52 pairs. We obtained a scatterplot showing each player in a 2-dimensional space
such that the average distances between players are preserved (Fig. 3). We observe
remarkable differences among different game phases (clusters) in the players’ posi-
tion on the court. In C1 and C5 players are equally spaced along the court. C6 also
highlights an equally spaced structure, but the five players are more closed by. In
other clusters we can see a spatial concentration: for example in C2 players 1, 5 and
6 are closed by while in C8 this is the case of players 1, 2 and 6.

Figure4 reports cluster profile plots and helps us to better interpret the spacing
structure in Fig. 3, characterizing groups in terms of average distances among players.
Profile plot for C6 confirms that players are more close by, in fact, all the distances
are smaller than the average distance. At the same way, C2 presents distances among
players 1, 5 and 6 smaller than the average.

After having defined whether each moment corresponds to an offensive or a
defensive action looking to the average coordinate of the five players on the court,
we also found that some clusters represent offensive actions rather than defensive.
More precisely, we found that clusters C1, C2, C3 and C4 mainly correspond to
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Fig. 5 Transition matrix
reporting the relative
frequency subsequent
moments (t , t + 1) report a
switch from a group to a
different one

offensive actions (respectively, for the 85.88, 85.91, 73.93 and 84.62% of the times
in each cluster) andC6 strongly corresponds to defensive actions (85.07%).Offensive
clusters show larger players’ spacings than in the defensive cluster. A motivation for
this behaviour could be that players in defense have the objective to narrow the
opponents’ spacings in order to limit their play, while the aim of the offensive team
is to maintain large distances among team-mates, to increase the propensity to shot
with good scoring percentages. Anyhow, these findings go on the same direction of
those of the convex hulls.

Figure5 shows the transitionmatrix, which reports the relative frequency inwhich
subsequent milliseconds report a switch from a cluster to a different one. It emerges
that for the 31.54% of the times C1 switches to a new cluster, it switches to C3,
another offensive cluster. C2 switches to C3 for the 42.85% of the times. When the
defensive cluster (C6) switches to a new cluster, it switches to C8 for the 56.25% of
times.

4 Conclusions and Future Developments

In recent years, spatial tracking data have been used in sport analytics to study the
players’ position during the game in order to investigate game strategies, players’
roles, players’ and teams’ performance. In particular, coaches, sports experts and
analysts have received benefits from the availability of large amounts of data to
use in team sports analysis. This has increased the possibility to extract important
information on team performance from every single game. The advent of information
technology systems permits to match play-by-play data and players’ trajectories and
to analyse teams’ performance with a variety of approaches. Having the trajectories
of the players and the play-by-play available, and inspired by the literature based on
the data-driven methods as well as by the increasing interest in visualizing data, we
analysed the movement and the players’ position using visual tools and data-mining
techniques, with the aim of finding regularities and patterns.

First, we summarized results from the use of motion charts and, after having sepa-
rated offensive plays from defensive plays, we computed average distances between
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players and convex hulls areas. The most promising result relates to convex hulls’
analysis. We found that players are more spread around the court in offensive plays
rather than in defensive plays. At the moment, we are carrying out further analysis
in order to better understand the logic underpinning this regularity, by examining
the time series of the convex hulls areas of both teams together. This will answer
the question whether the defensive team has success in limiting the spacing of the
offensive team. Results of such analysis, aiming to assess whether and how the two
teams pursue their strategies, and how the achievement of their strategy affects their
performance, may be of interest for coaches and experts.

Second, we used a cluster analysis approach to group spatial tracking data in order
to identify specific patterns of movement. We segmented the game into phases of
play and we characterized each phase in terms of spacing structure among players,
relative distances and whether they represent an offensive or a defensive action,
finding substantial differences among different phases. These results shed light on
the potentiality of data-mining methods for tracking analysis in team sports.

Results are promising. Future research will aim at finding regularities between
trajectories and players’ and team performance [22] by analysing tracking data of
both team-mates, opponents, and the ball, for multiple games. This is essential to
enhance the understanding of the multivariate and complex structure of trajectories
in association with team performance but requires the availability of a big amount
of high quality tracking data.
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New Fuzzy Composite Indicators
for Dyslexia

Isabella Morlini and Maristella Scorza

Abstract Composite indicators should ideally identify multidimensional concepts
that cannot be captured by a single variable. In this paper, we suggest a method based
on fuzzy set theory for the construction of fuzzy synthetic indexes of dyslexia, using
the set of manifest variables measured by means of reading tests. A few criteria
for assigning values to the membership function are discussed, as well as criteria
for defining the weights of the variables. An application regarding the diagnosis
of dyslexia in primary and middle school in Italy is presented. In this application,
the fuzzy approach is compared with the crisp approach actually used in Italy for
detecting dyslexic children in compulsory school.

Keywords Fuzzy composite indicators · Learning disabilities · Membership
function · Reading performances · Threshold values

1 Introduction

Dyslexia is a functional deficit that affects the ability to decode a text. In academic
learning, the normal acquisition of the process of writing of dyslexic children is
affected by an underlying neurobiological disfunction. Thus, dyslexia is typically
diagnosed from the end of the second grade, when the process of reading and writing
acquisition has been given enough time to be completed. Since this learning disorder
has a great impact on the individual’s academic achievement and on his/her social
life, it is important to detect dyslexic students especially in primary and secondary
schools.
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Decoding ability in primary school in Italy and in countries with transparent
orthography is currently assessed with the aid of standardized tests requiring the
students to read aloud a selected list of words and non-words or a text. The most
widely used standardized tests in Italy have been introduced in [15]. Recently, a new
screening procedure for identifying impaired decoders in elementary grades has been
proposed in [12, 13]. What is important in the use of tests and screening procedures
is the way the results are interpreted. One of the defining characteristic of a skilled
decoder is that he or she not only is able to spell written words (or non-words)
accurately, but also does so rapidly and automatically. An individual who spells
accurately but very slowly cannot be considered a skilled decoder. Slow rate of word
reading is then characteristic of impaired decoding aswell as low accuracy, especially
in transparent languages [17]. In Italy, decoding ability is assessed without taking
into account both aspects and an individual can be classified as impaired because
he or she is able to read words (or non-words) very rapidly, even though he or she
misspells a fairly large number of words (or non-words). Individuals with weak
decoding skills who are able to read a large number of words, provided they are
given ample time, can be erroneously classified as adequate decoders. Many authors
have outlined the necessity of considering both speed or fluency and accuracy for
a valid assessment of decoding skills and a new challenge in learning disability
research is to develop composite indicators that incorporate measures of speed as
well as of accuracy [13]. An other challenge is to estimate the dyslexia prevalence in
school-age children in Italy. Although disorder in reading is one of the most common
neurodevelopmental disorders affecting children, there is still high variability in
dyslexia prevalence estimates due to the lack of univocal diagnostic criteria [11].

Since dyslexia is a vague concept and the rigid partition between impaired and
not impaired readers does not always reflect reality, in this paper we use the fuzzy
set theory for defining new composite indicators that can be used in clinical practice
for diagnostic issues and for estimating the disorder prevalence.

The paper is organized as follows. In Sect. 2, we deal with the general problem of
obtaining a synthetic fuzzy measure of a latent phenomenon like dyslexia from a set
of metric variables. We present two criteria for transforming the values of a variable
into fuzzy values. In Sect. 3, we discuss the problem of weighting the variables and
aggregating them into a composite indicator. Clearly, the weights should reflect the
contribution of each variable to the latent phenomenon. In Sect. 4, we focus on the
specific application ofmeasuring dyslexia in compulsory schools in Italy. The gradual
transition from skilled to impaired readers can be captured by the fuzzy indexes, as
well as the level of risk of being dyslexic. We apply the method to a sample of 3932
students attending elementary and middle schools in Italy. The fuzzy indicators of
dyslexia allow us to obtain membership functions that can be compared with the
results of one of the currently used diagnostic procedure, which, of course, strictly
identifies a student as being dyslexic or not dyslexic. In Sect. 5 we give concluding
remarks and outline necessary future work.
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2 The Fuzzy Approach

The fuzzy approach was originally proposed by Zadeh [18] in order to model the
degree of membership to a certain set. Some applications of this original theory in
the social sciences are shown in [16]

Let X be a set of elements x ∈ X . A fuzzy subset A of X is a set of ordered pairs

[x, µA(x)] ∀x ∈ X (1)

where µA(x) is the membership function (m.f.) of x to A in the closed interval
[0, 1]. If µA(x) = 0, then x does not belong to A, if µA(x) = 1, then x completely
belongs to A. If 0 < µA(x) < 1, then x partially belongs to A and its membership
to A increases according to the values of µA(x). Let us assume that the subset
A defines the position of each element with reference to the achievement of the
latent concept, e.g. dyslexia. In this case, µA(x) = 1 identifies a situation of full
achievement of the disease, whereas µA(x) = 0 denotes the absence of the disease
(a very skilled decoder). A value of µA(x) in the interval (0, 1) represents the degree
of uncertainty of being dyslexic. Consider a set of n individuals i = 1, . . . , n and
p metric variables Xs (s = 1, 2, . . . , p) reflecting the latent phenomenon. In case
of dyslexia, these variables are measures of reading performances in standardized
tests like the time of reading in seconds, the number of misspelled words or the
number of syllables read in a second. Without loss of generality, let us assume that
each variable is positively related with that phenomenon, i.e. it satisfies the property
the larger the more impaired. If a variable Xs shows a negative correlation (like the
number of syllables read in a second) we substitute it with the simple decreasing
function transformation

f (xsi ) = max(xsi ) − xsi . (2)

In order to define the m.f. for each variable, it is necessary to identify the extreme
situations such thatµA(x) = 0 (non membership) andµA(x) = 1 (full membership)
and to define a criterion for assigning them.f. to the intermediate values.Many criteria
have been proposed in literature, in the field of social sciences, for measuring latent
concepts like, for example, well-being, satisfaction and poverty [5–7, 10, 19–21]. For
the specific purpose of measuring dyslexia, we will consider two specifications. The
first one is characterized by the simplicity and for this reason can be straightforward
used by all professionals involved in the diagnosis and in the management of specific
learning disorders, like neuropsychiatrists, psychologists and education specialists.
The second specification is drawn by making an hypothesis about the shape of the
function relating the empirical reading performances and the amount of underlying
dyslexic deficit. It is a more flexible function requiring the choice of two parameters
influencing its shape.

Let us assume that Xs is a metric variable. In the following, for simplicity of
notation, we will omit index s. For that variable X , we choose a lower threshold l
and an upper threshold u and we define the first m.f. as follows:
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⎧
⎨

⎩

µA(xi ) = 0 xi ≤ l
µA(xi ) = xi−l

u−l l < xi < u
µA(xi ) = 1 xi ≥ u

(3)

In (3) the m.f. is a linear function between the values of the two thresholds. The
upper threshold u can be set equal to the normative cut-off used to identify poor
performances on academic tests for asymmetric variables. This value is x95%, that is
the 95th percentile. The lower threshold l can be set equal to xmin, that is theminimum
value, or to x5% (the 5th percentile). The choice of these thresholds will be discussed
in the next section, analysing the empirical distribution of the variables.

Alternatively,wemay consider the distanced(x)between the value x anddyslexia.
If d(x) = 0, there is full membership to A, then µA(x) = 1. If d(x) > 0 then
µA(x) < 1. Hence, we can write:

µA(x) = 1

1 + d(x)
, (4)

If we assume that the relationship between empirical reading performances and
learning disorder takes an exponential form, then the distance d(x) can be expressed
as

d(x) = e−a(x−b), (5)

and the m.f. can be defined as follows:

µA(x) = 1

1 + e−a(x−b)
. (6)

Zimmerman [22] highlights that, in general, the relationship between physical mea-
sures and perception takes an exponential form. Baliamoune-Lutz [1, 2] uses m.f.
(6) to measure human well-being with a fuzzy approach. It is worth noting that in
(6) the parameter a (a ∈ �+) represents the extent of uncertainty and the parameter
b (with xmin < b < xmax ) may be viewed as the point in which the tendency of the
subject’s attitude changes from rather positive to rather negative. The choice of the
parameters in m.f. (6) is somehow more subjective than the choice of u and l in m.f.
(3). Moreover, in the application of Sect. 4, different specifications for the param-
eters a and b have been shown to lead to different results, while slightly chances
in u and l (for example, u = x90% or u = x99% instead of u = x95% and l = xmin or
l = x10% instead of l = x5%) have been shown to lead to similar results. Then, the
choice of a and b should be made with caution and will be discussed in Sect. 4, also
considering that in the literature there are no proposals of estimation procedures for
these parameters.
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3 The Fuzzy Composite Indicator

The most simple aggregation function is the weighted arithmetic mean [8]:

µA(i) =
p∑

s=1

[µA(xsi )] · ws (7)

where ws > 0 is the normalized weight that expresses the relative importance of the
variables Xs and

∑p
s=1 ws = 1. In general, the weighting criteria in (7) are:

• equal weights, that imply a careful selection of the variables in order to assure a
balance of the different aspects of the latent phenomenon;

• factor loadings, obtained by principal components analysis (PCA) when the first
component accounts for a high percentage of the total variance;

• weights obtained from expert judgements;
• weights determined by an Analytic Hierarchy Process [9].

Since the relative importance of each variable measuring the empirical performance
in a reading test is still an open question and among professionals involved in the
diagnosis of dyslexia there is not consensus about the relevance of these variables
(and, in particular, about the relevance of variables measuring accuracy and variables
measuring fluency), for fuzzy composite indicators of dyslexia we choose as weights
the normalized factor loadings. This weighting method is appropriate since reading
tests and, in general, psychometric tests, are designed in order to have an high internal
validity. With high internal validity, the first principal component accounts for a
high percentage of the total variance. We also suggest an other criterion for the
determination of the weights, considering for each variable Xs the fuzzy proportion
g(Xs) of the achievement of the target:

g(Xs) = 1

n

n∑

i=1

µA(xsi ). (8)

Formula (8) may be viewed as an index of the proportion of the units having (totally
or partially) the latent phenomenon [4]. The normalized weights may be determined
as an inverse function of g(Xs), in order to give higher importance to rare features
in the n units. To avoid excessive weights to the variables with low value of g(Xs)

we propose the following weights [3]:

ws = ln
[ 1

g(Xs)

]
/

p∑

s=1

ln
[ 1

g(Xs)

]
(9)

Using (9), each variable has a weight sensitive to the fuzzy membership.
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Table 1 Frequency distributions of students in each grade

Elementary school Middle school

Grade II III IV V VI VII VIII

N. 715 472 621 519 922 311 372

4 Fuzzy Indicators of Dyslexia: An Application

We administer the standardized tests Batteries for the Diagnosis of Reading and
Spelling Disabilities [15] to 3932 students attending elementary (from grade II) and
middle school. We randomly choose schools in Lombardia and Emilia Romagna
regions (Northern Italy) and administer the batteries to all students attending these
schools (except for the first grade). Table1 reports the frequency distribution of the
students in each grade. In the Batteries for the Diagnosis of Reading and Spelling
Disabilities, the metric variables measuring decoding performances are:

• X1: time (in seconds) in reading the list of words
• X2: number of words mispronounced in reading the list of words
• X3: time (in seconds) in reading the list of non-words
• X4: number of incorrect pronunciations in reading the list of non-words

Figure1 shows the empirical distribution of the variables. We perform a PCA on the
correlation matrix. The first component accounts for 66.5% of the total variance. It
is highly correlated with all variables and it is the only component with eigenvalue
greater than one. We construct the following fuzzy indicators:

• F11: using m.f. (3) with l = x5% (the fifth percentile) and u = x95% (the 95th
percentile) in each grade and weights proportional to the factor loadings of the
first PCA.

• F12: using m.f. (3) with l = x5% and u = x95% in each grade and weights (9).
• F21: using m.f. (6) with a = 0.5 and b = x90% (the 90th percentile) in each grade
and weights proportional to the factor loadings of the first PCA.

• F21: using m.f. (6) with a = 0.5 and b = x90% in each grade and weights (9).

In m.f. (3) we use x5% as the lower threshold instead of xmin, since Fig. 1 reveals some
outliers also in the left hand side of two empirical distributions. However, further
analyses conducted with slightly different choices of u and l show that results are not
affected by little changes in these two parameters. In m.f. (6), we choose a = 0.5 and
b = x90%. As an example, Fig. 2 reports graphical representations of the membership
function (for variables X2 in the third grade) with different sets of parameters. With
a = 0.5, the m.f. in maximally diversified for values of the variables close to b. We
choose a = 0.5 in order to have the membership function values more spread out
for values of X close to the point in which the performances start changing from
positive to rather negative. Analysing the empirical distribution of the variables, we
identify this last point as the 90th percentile. However, as Fig. 2 shows, little changes
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Fig. 1 Boxplots of variables X1 (upper left), X2 (lower left), X3 (upper right) and X4 (lower right)

in this parameter cause little changes in the shape of themembership function. Table2
reports the frequency distribution of the values of the fuzzy indices. We may note
that the differences in F11 and F12 and in F21 and F21 are negligible and thus the
choice of the weighting system do not substantially change the values of the fuzzy
indicator. On the other hand, the choice of the membership function does influence
the results. The indicator is robust to weighs but not to the membership functions.

Applying the diagnostic criterion actually used in Italy for which a student is clas-
sified as impaired if he or she shows a value above normative cut-off in two or more
variables, 4.8% of the students is classified as dyslexic. The fuzzy indicators give
more insight into this percentage. According to F11 and F12, about 2% is definitely
dyslexic, while should be considered at high risk of impairment the 2.9%. Another
approximately 4% may be viewed as being at medium risk. According to F21 and
F21, about 1% of the students are definitely dyslexic, while 1% is at high risk and
approximately 1.6% at medium risk of impairment. We may also identify the preva-
lence of very skilled readers (64% according to F11 and F12 and 89% according to
F21 and F22) and the percentages of normal readers (given by the frequencies of the
values ranging from 0.4 to 0.7).
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Fig. 2 Graphical representations of membership function (6) with different sets of parameters

5 Concluding Remarks

This paper presents a methodology to build fuzzy composite indicators with the
aim of considering both speed and accuracy of reading in the early diagnosis of
dyslexia and with the aim of going beyond the rigid unrealistic partition between
dyslexic and not dyslexic students. Indeed, the limit between a bad and a pathological
performance in psychometric reading tests is somehow fuzzy. The application shows
that the proposed indices work well in identify the level of impairment of the students
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Table 2 Frequency distributions of the values of the fuzzy composite indicators

Classes F11 F12 F21 F22

0.0–0.4 0.648 0.643 0.895 0.894

0.4–0.6 0.208 0.206 0.041 0.047

0.6–0.7 0.059 0.062 0.028 0.024

0.7–0.8 0.038 0.039 0.018 0.016

0.8–0.9 0.029 0.029 0.009 0.009

0.9–1.0 0.019 0.021 0.009 0.010

Total 1 1 1 1

and the results are in agreement with the percentages of dyslexic students identified
with the traditional diagnostic criterion but give more insights. As a matter of fact,
the fuzzy approach also allows us to model the degree of membership to the set of
dyslexic students and the related degree of uncertainty of a student to be impaired.

The methodology proposed can be applied to build fuzzy composite indicators for
the diagnosis of different learning disabilities in academic learning like, for example,
dyscalculia and dysgraphia, and can be used in any area of psychometrics. In [14]
a more general approach to build fuzzy composite indicators in psychometrics is
presented, with particular attention to themembership function for discrete variables.
In this paper we have discussed the use of two well-knownmembership functions for
the specific application of dyslexia and we have proposed a new weighting system.
The application has shown that the composite indicator is sensitive to the choice of
the membership functions but is robust to the choice of the two weighting systems
carefully selected for a fuzzy index for dyslexia. Future works are needed in order to
further analyse the robustness of the index to the proposed m.f. and to weights, with
different data sets or with simulations studies. Future works are also needed in order
to estimate the dyslexia prevalence rate in school age population in Italy, which is
still an open question. The indexes proposed in the paper can be more suitably used
to estimate this rate than the traditional approach, that does not consider all variables
measured by means of reading tests.
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Who Tweets in Italian? Demographic
Characteristics of Twitter Users

Righi Alessandra, Mauro M. Gentile and Domenico M. Bianco

Abstract In this paper we try for the first time to shed light on the use of Twitter by
the Italian speaking users quantifying the total audience and some relevant character-
istics: in particular, gender and location. The attempt is based on publicly available
APIs data referring both to profile documents and tweets. Through real-time calcu-
lation is possible to infer the gender mainly using the name field of the users’ profile,
while the geo-location is deduced using the location field and the geotagged tweets.

Keywords Twitter · Italian users · Social media · Big data · Machine learning

1 Introduction and Motivation

In recent years socialmedia have become an important data source about the opinions
and the sentiment of their users because they allow to capture in real-time and in a
spontaneous what the users think about a certain topic. In Italy, Facebook, Twitter
and more recently Instagram appear to be the most used media; Twitter has a greater
accessibility and allows a more readily text analysis [10].

Twitter is a microblogging service which lets users post 280 characters long
messages or tweets. Created in 2006, it has today 328 million monthly active users,
according to StatistaWebsite, and, according to AlexaWebsite, Twitter is the twelfth
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most visited site in the world1 and the 15th in Italy. Some estimates at the national
level, e.g. [13], quantify in more than 6.9 million the Italian Twitter users on a
population of 61 million.2 Other estimates calculate that the users represent around
11% of the total population and 24% of 14–29 year olds [4].

Nevertheless, the use of any social media as a data source entails some challenges
concerning the representativeness and the time stability of the source and the need
to infer or define the socio-economic characteristics of the users. The latter, in fact,
would allow to correct the strong selectivity of the social media users [4, 9]. Unfortu-
nately, official information about who Twitter users are is not available. Twitter does
not require users to self-report demographic data in the profiles information (meta-
data), and this scarcity of information influences researchers attempt to explore how
social phenomena manifest online according to gender, age, location, occupation,
and social class. Nevertheless, some demographics on the users can be inferred from
publicly available information. The main purpose of this article is to take a snapshot
of the Twitter Italian network and in particular to study some demographic char-
acteristics associated to the Italian twitterers making use only of publicly available
information. The presented data were collected in May 2017.

The first original contribution of the paper is to quantify the total Italian speaking
Twitter audience, since, as far as we know, no other authors have previously studied
this matter. Other findings refer to the quantification of some relevant demographic
characteristics: we have tried to derive from the information supplied by the user both
the place of residence (or presence) and the gender, considering that the latter does
not figure in the users’ profiles. This paper is structured as follows. Section 2 presents
a brief review on related works. The Twitter data description and the technological
and statistical approaches used are described in Sect. 3. Main results are discussed
in Sect. 4. Section 5 discusses some open questions and concludes.

2 Related Works

Obtaining information on Twitter users attributes is challenging but it is becoming
crucial because the number of researchers using Twitter information to predict fi-
nancial tangibles as well as intangible assets (such as reputation and demographics
for marketing scope) is rapidly increasing [2].

Thus, there have already been attempts to profile the demographic characteristics
of Twitter users, especially in the U.S. Ito et al. [16] found in the extant literature
different ways to estimate Twitter user attributes: according the first authors estimate
the demographics of users through the contents of the texts (tweets and/or metadata)
using a text-based method; in the second authors analyse the followers/followees
whose tweets contain plentiful text features through a community-based method;
thus exploiting the attributes of neighbors on social graph. There is also a third,
hybrid, method including both tweets as text information and followers/followees

1According to Alexa.
2National demographic estimate, January 2016.

http://www.alexa.com/topsites/countries/IT
http://demo.istat.it/pop2016/index.html
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as community information [15]. These induced demographic proxies (on location,
gender, language use, occupation and even social class) have in turn been used to
understand differences in behaviour, such as the tendency to enable location services
and geotag tweets [30, 31].

More specifically, Ikeda et al. [14] estimated user attributes (gender, age, and
location) using Support Vector Machines (SVM). Their experiments tackled three
attributes, and the results showed 88% accuracy with regard to gender.

Ikeda et al. [15] proposed demographic estimation algorithms for profiling Twitter
users, based on their tweet and community relationships. The method is applicable to
various user demographics and is suitable even for users who only tweet infrequently.

Burger et al. [3] estimated the gender of users by using a supervised learning
method that employs both words and character n-grams as features, achieving 92%
accuracy using the feature set of tweets, profile documents, screen name, and name.

Pennacchiotti et al. [23] estimated three users attributes (political orientation, race,
and affinity for Starbucks Coffee) using the profile documents, tweeting tendency,
and characteristic words in tweets as features. They update attribute-class label infor-
mation by using the social graph and estimate user attributes by the Gradient Boosted
Decision Trees. Chu et al. [7] used the tweeting tendency, the content of tweets, and
the profile as features to distinguish human from bots by Linear Discriminant Anal-
ysis.

In the second stream is the work of Zamal et al. [33] where latent attributes
of Twitter users are inferred from neighbors, but many more studies followed an
hybrid method. Rao et al. [25] used n-grams or sociolinguistic features and estimated
four user attributes (gender, age, location, and political orientation) by SVM. Their
proposed method achieved 70-80% accuracy in estimating the attributes, and they
reported that the Twitter-specific features (number of followers, number of friends,
friends/followers ratio, reply ratio, number of tweets, and number of retweets) are
not useful. Cheng et al. [6] working on the idea that there exists a strong correlation
between aword and a particular region proposed twomethods for estimating the city-
level locationof users: a probabilitymodel basedon the correlationbetween a location
and eachword in the tweets and agrid-basedneighborhood smoothingmodel to adjust
the estimation of the user location. Moreover, Culotta et al. [8] created a distantly
labeled dataset by collecting audience measurement data for 1500 websites and fit a
regression model to predict the demographics using information about the followers
of each website on Twitter. Huang et al. [12] built a classification model (Gradient
Boosted Trees) to identify nationalities of Twitter users and trained a classifier to
detect the nationality of Twitter users based on a number of features. Sakaki et al.
[27] proposed a method for combining text processing and image processing to infer
user’s gender.

Coming to the specific characteristics investigated, some authors focused on age
[21], others on gender [3, 18, 25], or on race/ethnicity [20, 23, 26], or on well-being
[28] and on income [24]. The majority of these approaches rely on hand-annotated
training data, require explicit self-identification by the user, or are limited to very
coarse attribute values. A related lightly supervised approach includes Chang et al.
[5], who infer user-level ethnicity using name/ethnicity distributions provided by the
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Census; Mohammady and Culotta [20] trained an ethnicity model for Twitter using
county-level supervision.

Comparisons between the demographics derived from Twitter and those coming
from traditional sources (Census, surveys or others) are also attempted: Mislove et
al. [19] compared the Twitter user distribution (by gender, race, and location) with
the actual population distribution showing that the Twitter distribution is biased.
Sloan [29] compared the UK Twitter population as estimated by recent work on
demographic proxies [31] with data from the British Social Attitudes Survey 2015,
then studying the relationship between demographic characteristics and the use of
geoservices and geotagging [30]. Daas et al. [9] shows ways of profiling the gender
of the users and the results of the combining the sample of Twitter users with their
accompanying publicly available LinkedIn profiles.

Despite the increasing interest of the topic, there are still few attempts to perform
large-scale demographic studies on Twitter users, due to difficulties in improving the
effectiveness of methods and, consequently, the accuracy of the estimates.

A final remark should mention the problem of the possible presence of fake ac-
counts and bots. Fake accounts are used for different purposes, such as to manipulate
real users, to distort the actual statistics and to steal social network information. Bots’
profiles are usually realistic and have names that seem true or that are taken from
other accounts. They are identified only through their social behaviour and the con-
tents of their tweets.3 Gurajala et al. [11] used a combination of a pattern-matching
algorithm on screen names and the analysis of update times; Lee et al. [17] relied
on some behavioural statistics (posting patterns, friend information and user demo-
graphics) to train a classifier distinguishing real accounts from fake ones. A precise
estimation of this phenomenon still does not exist; Varol et al. [32] estimated that
9–15%of the Twitter accounts are bots. They built different indicators and performed
an exhaustive study analyzing 14 million active English speaking users (with at least
200 tweets).

3 Methodology and Data

3.1 Users’ Base

EveryTwitter account, besides other information (such as date of creation, description
made by the user, location, name, screen name, id, whether the account has the
geotagging feature enabled, number of tweets posted, followers and followings),
has a field named lang which is “the user’s self-declared user interface language”
according to the official documentation.4 It usually corresponds to the user interface
language detectedwhen the user created the Twitter account. This information cannot
obviously be considered an evidence of the user’s nationality. However, an user

3For further information see [22] and the references therein.
4https://dev.twitter.com/overview/api/users

https://dev.twitter.com/overview/api/users


Who Tweets in Italian? Demographic Characteristics of Twitter Users 333

interacting with Twitter using the Italian interface is most likely to be an Italian
(resident, native or mother-tongue). The Italian language, in fact, is less widespread
and used as a second language in respect of other languages, i.e. English or Spanish.5

In the following analysis we will consider only the Twitter users whose language
is set to Italian. Even though in this way we will not consider all the Italians tweeting
in other languages.

Thus, by means of Twitter APIs we searched for users with lang set to ‘it’, we
obtained their user profile information, we analyse them and then we discard them
(due to Twitter policy6). Consequently, the analysis process has been performed in
real time and this raises several technical and methodological issues.

As a field allowing to distinguish between the accounts belonging to individuals
and these referring to (public and private) enterprises or associations is absent from
the user profile, before proceeding in the calculation of the demographics of the users
we have to separate the accounts referring to enterprises from those of individuals. In
order to search for the small enterprises and the artwork activities, we first detected
all the accounts presenting in the name field one of more than 420 terms related
to subcategories of economic activities according to NACE rev. 2 classification or
other terms related to economic activities as they are currently presented on social
media (terms such as restaurant, hotel and association; the complete list is available
on request). Furthermore, we build a whitelist of terms and expressions in order not
to remove legitimate user accounts (e.g. “fond of”, “lover” and “interested of”).

In addition to this, the denominations of approximately 43.5 thousand Italian
enterprises (with 10 employees and over) having a website that according to a pre-
vious study present links to social media (including Twitter) [1]7 were searched in
our database. After a cleansing phase (non-significant parts such as “srl”, “spa” or
“industry” were removed from the company names), these names were searched in
the accounts’ names. Enterprises are expected to write their names without mistakes
into the username field, hence we searched for nearly exact matches between the
cleaned names and the usernames. Company names and usernames were compared
using the Levensthein distance between strings choosing a sufficiently high similarity
threshold (indeed, 5 thresholds depending on usernames’ length) in order to reduce
the number of false positives. This second approach is prone to errors since many
companies are named with the founder’s surname; in order to reduce the misclassifi-
cation errors we excluded enterprises with short names (less than 5 letters) and used
a white and a blacklist to further filter the matched usernames.8 As we were quite

5According to wikipedia, there are 64 million native Italian speakers in the EU and 85 million in the
world when in Italy there are 61 million inhabitants. Regarding English, there are 360–400 million
native speakers and 600–700 million people that speaks English as a second language.
6https://dev.twitter.com/overview/terms/policy.html
7The enterprises whose websites were scraped in the cited study, were the majority (64%) of the
enterprises (with 10 employees and over) having a website, but only the half of these enterprises
presented links to social media.
8For example, consider a company named “rossi” and the username “alexRossi”. The username
contains the company name but the remaining letters can be interpreted as a male proper name and
hence the username is not labelled as a company.

https://en.wikipedia.org/wiki/Italian_language
https://en.wikipedia.org/wiki/English_language
https://dev.twitter.com/overview/terms/policy.html
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restrictive in our procedure in order to avoid false positives, using this approach we
identified only 7 thousand accounts.

At the end,we identified 209,830 accounts belonging to enterprises or associations
(97% of themwere identified using the first approach). The list of economic activities
was eliminated from our database, and the following analysis will focus on the
individuals’ accounts since themain purpose of this work is to study the demographic
characteristics of the users.

3.2 Gender

In order to determine the gender of the Italian speaking users we followed two
approaches. In the first one, based on the gender-specific nature of names, we inferred
the gender comparing their names with a gendered list of first names. In the second
one, we trained a machine learning classifier to make the choice.

The procedure is applied only to the name field of each account and not to the
screen name field because empirical results demonstrate that, for the gender determi-
nation, the screen names are quite useless since they contain most likely nicknames
rather than the real names of the users.

This gender determination process (GDP from now on) consists in an iterative
inclusion search: we looked for inclusion of each gendered name from the gendered
list within the name field of each user account. Once a match is found, the gender of
the matched name is associated to the user.

We collected a list of themost common Italian and European female andmale first
names using the statistics on the national most frequent ones (by gender) available
on the National Statistics Institutes web pages of the largest European countries
(Italy, Germany, UK, France, Spain, Portugal). Then we studied possible ambiguities
determined by different gendered use of the same names in languages other than
Italian (i.e. Andrea), and we decided to consider these names only in the gendered
meaning used in Italian.

In order to reduce possible errors, the gendered list of names was divided into
separated trunks: double names, short names (at most 4 characters long), long names
(at least 5 characters long).

Both the users names (deriving from Twitter name field) and the names in the
gendered lists are processed: they were transformed into lower case, the accents
were removed, and punctuation and numbers were substituted with blank spaces.
Ambiguous account names and those containing “&” or “e” (meaning “and” in
Italian) were filtered out.

Only names from the double name list are initially processed. This expedient al-
lowed to prevent potential classification errors due to compounded names containing
both a masculine name and a feminine name (possible cases in Italian), even if our
double names list was quite limited.

Then, we looked for all the exact matches between the tokenized account names
and the gendered list of long and short names. When the match returned two or more
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possibilities, we classified the account according to the gender of the first match
found. This expedient helped to prevent errors due to surnames with a possible
match in the gendered lists.

We also treated names written using camel case convention by splitting them on
capital letters and then searching for an exact match for the first name which we have
separated from the capitalized surname.

All the accounts not yet classified in previous matching steps are looked for
through an inclusion match. The procedure verifies if a name in the gendered lists is
included in the account name of which we want to infer the gender. This is the most
prone to errors phase of the whole procedure since is the least restrictive. In order
to limit the number of introduced errors, the inclusion is checked only for names
of at least 5 characters. Nevertheless, as the Italian names are quite long (in our
gendered list there are (20% of names with more than 4 letters), this threshold does
not significantly reduce the risk of misclassifications.

In order to label the gender of around 20% of total counted users names not
gendered by the iterative search described above, we used other profile’s information.
Thus, we trained a machine learning classifier on the non-empty bio fields. We
thought, in fact, that the Italian languagewould help to this task since, differently from
the English language, words and verbs are not gender-neutral. As train set we used
all accounts with a non-empty bio and whose gender had been previously determined
with a high level of confidence. Through a GridSearch we have fine-tuned both a
Logistic Regression and a Support vector machine (SVM). Consequently, we infer
the gender applying to the accounts the best classier found through the GridSearch.

3.3 Geographic Location

In order to determining the geographical distribution of accounts, we mainly relied
on the profile field location after opportune cleansing and normalisation. Twitter
provides a specific field, at user profile level, to store where the user is located. This
is a non-mandatory open field that each user is requested to fill during the registration
(but it can be also changed later).

We applied an inclusive match algorithm similar to what we did for the gender
identification, while for those users not geolocalizated in this way, we analysed the
geo-tagged tweets.

Even if the specific field to set the location is considered, the difficulties faced
in treating this information relate to the issue that only 21.5% of the users filled
their location field and that the concept of location in many cases it is expressed
in playful terms or the same places can be referred to in a variety of ways. The
location can be expressed in terms of state, region, province, city or city fraction,
with a specific address, and even with longitudes and latitudes. Furthermore, typos
and abbreviations are frequent.
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We limited the search to the Italian speaking twitter users living in Italy, in order
to get a sub-group of resident/present people in some way comparable with the
population official statistics.

Similarly to what already done for gender determination, the location of users
has been determined searching for the inclusion match between a list of localities9

and the content of the location field of each account after some initial text cleansing
(lowering cases, removals of numbers or punctuations or accents). Once matched,
the location reported in the profile was enriched with the correct municipality de-
nomination (if needed) and with the geographical area, the region, the province the
matched municipality belongs to. All these information enabled us to represent users
geographical distribution at different granularity.

We iterated this process in order to search for the names of the province, of the
region, of the geographical area for the matching. Nevertheless, to limit typos and
ambiguities due to abbreviations, we should manually amend the content of the loca-
tion field. This has been done for the most frequent 10 thousand occurrences. After
having recognised an occurrence as a location, we associated the correct province,
region and geographical area to all users with that location. Although this step was
quite time consuming, it allowed to increase the number of geolocalizated users by
only 2%.

For users whose location could not be defined through the location field, we
analyzed the timeline of her tweets.More in details, we built an occurrence table with
the locations from which her recent tweets originated. The most frequent location
was elected as the place of residence/presence of the user.

Unfortunately, this approach was not always feasible, since not every user au-
thorized Twitter to track the geographical origin of the tweets: only 12% of Italian
speaking users satisfied this condition.

4 Results

Ourmethod allowed to identify 14,232,154distinct users having set thefield language
to ‘it’ (Italian) in their accounts.

The search for the economic activities among the identified accounts allowed
to find around 210 thousand accounts not referred to individuals, mainly by using
the keywords related to economic activities. Consequently, these accounts were not
considered in further analysis.

The total number of accounts is 23% of total resident population at January 2016
according Official statistics. This share is higher than the 11% calculated according
a recent traditional survey by Censis [4], but our figure refers to the Italian speaking
users that could be a wider aggregate than the resident users (normally considered
in surveys).

9i.e. the Italian National Institute of Statistics list of municipalities, containing 7978 Italian munic-
ipalities.
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Considering the degree of activity on the social network of the counted users, our
findings showed that 38% of the users have never written a tweet, 13% have written
only one tweet since the registration and 202 thousands do not even follow any user.
It emerges a rather passive use of the social media and this finding seems confirmed
by the fact that only 28% of the twitterers have tweeted in one-year period.Moreover,
if we define active an account having posted just one tweet in a 4-month period, we
found that only 10% of total users and 16% of those having ever tweeted can be
defined active user.

In order to check our results, we followed the tweets related to the actual Italian
trending topics during a month. In this way we could count how many of these
twitterers have not been identified with our search method and the result is that only
0.7% of these users were not included in our previous set.

As this new subset consisted of usually active users (i.e., one out of three users
tweeting about trending topics has written more than 30 tweets during the listening
period) having a higher probability to be catch in our search, in order to have a
correct estimate of the missing cases in the total audience we should weight the
observed share keeping in account the different tweet behaviour. In this way, around
170 thousand resulted as missing cases.

4.1 Main Characteristics

We determined the gender of more than 11 million users (11,170,875), that is 78%
of the total users. We consider this an important result considering the simplicity of
the method. In Table 1, we report the gender distribution of accounts by phase of the
process: 86% of the accounts were identified simply thanks to a single match and
this means that most of users writes correctly the name and it is well separated from
the surname (if existing).

In the gender distribution of the Italian Twitter users males resulted to be over-
represented: 56% vs. 48% observed in the total resident population, whereas con-
sidering only the male share in the resident population aged 16–79 years (a target
closer to the social media users), namely 52%, the two quotas are closer.

As no biases seems to be in the list of names, there should be an effective overrep-
resentation of males in the users even if we cannot completely reject the hypothesis
that females are more reluctant to write explicitly their names.

Upon completion of gender determination procedure, a validation phase and ac-
curacy estimation phase has been applied. We calculated the number of misclassifi-
cations in a randomly selected sample by GDP phase and in Table 1 the error rates
are reported.

As easily expected, double names phase was the least prone to error, given the
large length of names belonging to this category and the fact that we looked for
an exact match. Thanks to these, gender inference can be done with a nearly 100%
confidence in this phase. The Exact match seems to be a very reliable method also:
only 3 errors on 1000 names were checked. Multiple matches has still a very good
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Table 1 Gender determination accuracy by phase of the search

Phase Classified names Error rate (%)

Double names 70,801 0.0

One match 9,648,036 0.3

Multiple matches 714,672 2.5

Camel case names 216,722 7.0

Simple search 520,644 18.7

Total 11,170,875 4.2

scoring (2.5%), whereas the split method on capital letters yields to a 7% error rate
and the simple search phase to a nearly 19% error rate.

Moreover, an attempt to train a Machine Learning classifier on the bio field to
infer the gender for the 20% of the users not covered by the list of names approach
reached only 75% accuracy, that is, a lower level than the overall accuracy obtained
through the described GDP.

Through the methods described in Sect. 3.3, we managed to geolocate at least
the region for 2,330,881 users, that is, 16.6% of the identified users and 4.1% of
the resident population. In particular, 1,997,114 locations were found through the
location field, whereas the remaining 333,767 cases were inferred from the text of
the tweets. In order to validate these results, we sampled 1500 users and we found a
2.4% error rate.

Moreover, the finer the geographical granularity the lower the geolocated users’
number; this is due to the fact that some users indicated only the name of the region
or of the area of the region in the locationfield: consequently, the localized users
by region summed up to 2,330,881, while the users by province were 2,225,641.
It is worthwhile to remember that in our processing people indicating (in the field
location) a place situated in a certain province have been summed up to create the
total accounts of that province.

The highest share of geolocated users (28.6%) was in the North-West, followed
by the Centre (24.3%) which instead presented the highest incidence of Twitter users
on resident population (8.6%).

Despite the limited number of localized cases, the territorial distribution of the
twitterers was similar to the resident population distribution, both at regional and at
province level (at this level the dissimilarity index was 0.03).

However, the share of twitterers on total geolocated users was much higher than
the share of local residents compared to the total population in the provinces of Rome
(11.7% vs. 7.2%) and Milan (9.5% vs. 5.3%). This also happened in the provinces
of other major cities (Florence, Naples Venice, Turin, Bologna and Genoa), but to a
lesser extent (see Fig. 1). Conversely, in some medium-sized provinces of the South
(Caserta and Salerno), of Lombardy (Bergamo, Monza, Varese) and of Trentino Alto
Adige (Bolzano) the incidence of twitterers was far below the share of the local
population on the total resident population.
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% Geo Located Users
0.0 - 13.1 

13.1 - 28.6 

28.6 - 37.2 

37.2 - 46.9 

46.9 - 70.2 

Fig. 1 Distribution of Twitter users in Italy by province

This higher penetration rate of Twitter in larger cities compared to other areas
could be due to the tourist nature of these cities, where Italian-speaking tourists
often join local twitterers sending messages through the platform.

Tables 2 and 3 report the most general results regarding gender and localization.
We succeeded in determining both gender and residence of approximately 1.8million
users.Conversely,we could not determine any informationof nearly 2.4millionusers,
that is the 17% of the users.

Gender was quite easier characteristic to determine than location, firstly, because
users tend not to disguise their name and, secondly, because the location is an optional
field. No appreciable differences between sexes in their attitude to share the location
in the social media were detected. Results by geographical area (Table 4) show that
the share of males, varying from 55.2% in Lazio to around 60% in Molise and
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Table 2 Gendered users with determined location. Percentages are calculated with respect to the
total number of users, i.e. 14,232,154

Gendered Geolocalized

Y N Total Y (%) N (%) Total (%)

Y 1,825,091 9,345,784 11,170,875 13 66 78

N 505,790 2,555,489 3,061,279 4 18 22

Total 2,330,881 11,901,273 14,232,154 17 83 100

Table 3 Geolocalized users with gender specification. Percentages are calculated with respect to
the total number of males, females and users with unknown gender

Geolocalized Gender

M F Unknown M (%) F (%) Unknown
(%)

Y 1,040,855 784,236 505,790 17 16 17

N 5,218,975 4,126,809 2,555,489 83 84 83

Total 6,259,830 4,911,045 3,061,279 100 100 100

Campania, is higher than the female one in every region. The Southern area of the
country shows the wider differences between the share of males among Twitter users
and in the resident population. In the provinces where the larger cities are located,
the rate of masculinity slightly diminishes, while in the other provinces it grows up
to 65% and over.

The category unknown by gender seems to be higher in the most inhabited
provinces and is not uniformly territorially distributed: it varies from 13% for Olbia-
Tempio to over 30% for Cuneo and Bolzano.

Furthermore, the problem of incompleteness of a list of themost popular gendered
names is amplified in bilingual regions (Valle d’Aosta and Trentino Alto Adige),
where in fact the shares of the category unknown by gender reached 26%.

5 Discussion and Conclusion

This study is the first attempt to verify the demographics of Italian speaking Twitter
users with the goal of understanding of the differences between the twitterers and
the resident population in order to better value the possible distortion of the results
of analysis made using Twitter data.

We tested the feasibility of this kind of analysis by downloadable public API data
and, after having eliminated from the analysis around 210 thousand accounts referred
to economic activities, the results showed that is possible to obtain the total number
of the over 14 million users with only a small degree of uncertainty.
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Table 4 Geolocalized users and total resident population by region (absolute and percentage values)

Geolocalized users Total resident population

Area Region Absolute % %
Males

%
Unk.

Absolute % %
Males

Nord-
West

Piedmont 163,748 7.0 57.4 23.4 4,404,246 7.3 48.4

Aosta Valley 3793 0.2 59.3 25.7 127,329 0.2 48.8

Lombardy 420,438 18.0 56.4 24.3 10,008,349 16.5 48.8

Liguria 67,397 2.9 55.8 22.9 1,571,053 2.6 47.6

Total 655,376 28.1 56.6 24.0 16,110,977 26.6 48.6

Nord-
East

Trentino-Alto
Adige

24,010 1.0 59.6 26.7 1,059,114 1.7 49.1

Veneto 178,216 7.6 57.0 22.7 4,915,123 8.1 48.8

Friuli-
Venezia
Giulia

36,507 1.6 57.1 23.5 1,221,218 2.0 48.4

Emilia-
Romagna

149,175 6.4 55.8 22.1 4,448,146 7.3 48.5

Total 387,908 16.6 56.7 22.8 11,643,601 19.2 48.6

Centre Tuscany 164,392 7.1 55.5 21.6 3,744,398 6.2 48.1

Marches 51,938 2.2 58.9 21.4 1,543,752 2.5 48.4

Umbria 32,259 1.4 56.6 21.8 891,181 1.5 48.0

Lazio 307,428 13.2 55.2 23.0 5,888,472 9.7 48.2

Total 556,017 23.9 55.8 22.4 12,067,803 19.9 48.2

South Abruzzo 47154 2.0 58.0 19.8 1,326,513 2.2 48.7

Molise 7977 0.3 60.3 18.3 312,027 0.5 49.1

Campania 207,309 8.9 59.8 18.1 5,850,850 9.6 48.7

Apulia 145,840 6.3 58.5 18.3 4,077,166 6.7 48.5

Basilicata 18,210 0.8 63.5 18.5 573,694 0.9 49.1

Calabria 60,693 2.6 58.9 18.3 1,970,521 3.2 48.9

Total 487,183 20.9 59.3 18.4 14,110,771 23.3 48.7

Islands Sicily 178,328 7.7 57.6 18.2 5,074,261 8.4 48.6

Sardinia 66,069 2.8 54.9 21.1 1,658,138 2.7 49.0

Total 244,397 10.5 56.9 19.0 6,732,399 11.1 48.7

Total 2,330,881 100.0 57.0 21.7 60,665,551 100.0 48.6

Unfortunately, the classification by genderwasmore difficult to obtain, aswewere
able to determine the gender of 11million users.Whereas, referring to the geographic
location of users, we identified only 17% of users, although the imputation error for
this subgroup is very low. This is due to the fact that the location field is an open
field which can be filled (or not) with abbreviations or fancy names, containing
many mistakes, too difficult to correct. The limited number of localized cases is a
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particularly negative aspect because the real value of Twitter data is related to their
granularity allowing researcher and analysts to develop data analysis at local level.

Themain findings of this study are thatmales are overrepresented among the Twit-
ter users and in larger cities areas the share of males is shrinking whereas the number
of people whose gender is unknown is increasing. The territorial distribution seems
to be quite similar to that of the total population, with only few over-representations
for provinces as Rome and Milan.

Following our approach, based on public API data, it was difficult to localize a
significant share of users. The determination may improve by purchasing data from
the Provider, as in this case the share of accounts with available indications could be
broader (at least according to similar studies on other national contexts).

Thus, our results are not completely encouraging10 but limitations could be at least
partially overcome supplementing our approach with a text-based, image-based or
community-based approach.

The text analysis of the terms used by the users or the processing of the user
profiles’ images (even if the latest requires a lot of commitment in terms of compu-
tational time) could complement the results of gender classification made only using
a name list.

Furthermore, we inferred information for every single account without exploiting
the Twitter social network structure, whereas a community-based approach would
allow to infer individual characteristics of a user from her followers/followings
(since there are accounts that are most likely to be followed by males instead of
females). Nevertheless, as the Italian speaking users have a small number of follow-
ers/followings, the adoption of this technique could be applied only to a subset of
the Twitter users.

As a final remark, we should point out that our findings could be inaccurate due to
the presence of fake accounts and bots used for distort the actual Twitter statistics and
manipulate the public opinion. Their presence can partly affect both the total number
of real users and the share of gendered and geolocalized users. As shown in Sect. 2
by the cited literature on this topic, fake accounts can be identified only studying
their social behaviour and the text of the tweets, namely, through techniques we did
not use in this study. Consequently, further specific studies are needed to evaluate
the real impact of bots on the Italian speaking Twitter network.
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Abstract The paper reviews the possibilities of using survival analysis tools to con-
figure scoring systems for p2p lending platform. Along with the Cox model, the
models of log-logistic regression, accelerated failure time (AFT) model and Weibull
regressionwere considered in this study. To test the stability of the factor influence the
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2007–2016. The study examined loans issued for the period of 36 months. Propor-
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default was chosen. As a result of the analysis the factors affecting the probability
of the borrower default during the considered period of time were revealed. It was
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1 Introduction

Over the last 2–3 years the number of services that allows using peer-to-peer (p2p)
lending system has grown in Russia. According to the report of the Central Bank
of Russia by means of crowdinvesting platforms, 52,2 million rubles [7] or slightly
less than 1 million U.S. dollars have been for 2015 and it is significantly less than
the volumes of p2p lending in such countries as, for example, Great Britain and the
USA. Moreover, the dynamics of similar service development has explosive nature.
According to publicly available sources [23] about 2 billion dollars in the form of p2p
loans have been issued for 2012 in the USA, andmore than 25 billion in 2015. One of
the reasons for poor development of the institution of peer-to-peer lending in Russia,
besides the lack of legal clarity [12], is the impossibility of providing creditors with
high quality services of the potential borrower scoring assessment that allows estab-
lishing a floating interest rate depending on the probability of the certain borrower
default. The majority of successful western platforms of p2p-lending, in particular
the world’s largest Lending Club [13] platform, have the built-in recommendatory
online services of the loan interest rate based on the estimated level of the potential
borrower reliability. However these services have some shortcomings:

• the lack of possibility to vary the borrower’s rate during the whole term of the
loan, i.e. if the borrower passes the time fence of a possible default, then a lower
interest rate may be established for him/her;

• the interest rate is not personalized for each specific borrower, but it is segmented
by certain groups of borrowers.

This is largely due to the fact that currently credit scoring systems are created
only for a simple classification of borrowers according to the principle of classifying
it as “bad” or “good.” Not the most popular, but used method of teaching the scoring
model is a method based on a survival analysis that allows not only classifying
borrowers, but also assessing the factors that affect the duration of a state before the
borrower defaults, i.e. determining the possible time of default.

The survival analysismethodology to credit scoringwas first introduced byNarain
[16]. Narain showed the advantages of using survival analysis tools over standard
approaches when training the scoring models. A period of 24 months was used as
the state duration for borrower default. Subsequently, there were numerous studies
showing the comparative advantages of survival analysis over standard methods of
credit scoring.

Stepanova and Thomas [20] identified the advantages of survival analysis com-
pared to logistic regression, and also showed that one of the significant factors influ-
encing the state duration before the borrower default was the purpose of the personal
loan. These authors proposed using ROC-analysis as a measure of assessing the
quality of the model.

Sarlija et al. [19] also used ROC-analysis to assess the quality of scoring models
identifying the significant factors built with the use of logistic regression, survival
analysis, and neural networks. The authors showed the superiority of neural networks
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in solving this problem; however the study considered the standard Cox model with
no set of distribution, methods of coefficient assessment ratios were not varied, the
selection between models estimated by various methods was not carried out.

Bellotti and Crook [2–4] suggested to add macroeconomic influence factors to
the scoring model trained with the use of the survival model. Okumu et al. [17] paid
particular attention to the gender perspective when estimating the Cox model.

The comparison of results from the application of the Cox proportional hazard
model and the AFT model in credit scoring can be seen in the publication of Pazdera
et al. [18].

The comprehensive work of Man [14] is devoted to the practical application of
survival analysis tools and logistic regression with a change in the period of the
state duration before the default. He pointed out that both models showed similar
results, but survival models required less data cleaning. The same results from the
comparison of the two models were adduced by Marimo [15]. He notes that survival
models provide more important information the survival function, and not just the
probability of the default.

Watkins et al. [22] as well as Man [14] recorded various periods of the state
duration before the default in assessing the Cox model in order to show the stability
of influence factors.

Dirick et al. [8] in their work varied not only a type of risk function and the periods
of the state duration before the default at the same time, but also the sample size.

Authors of previous research considered questions of the scoring system creation
earlier usingHekman’smodels [6]. Present research attempts to build scoringmodels
using tools of the survival analysis.

2 Methodology

In order to assess the state duration before the default the following components
required to build survival models: object (borrower); event (default occurrence);
and duration variable (period from the loan granting up to the default occurrence in
months) were used in the present study. Themain objective of the analysis is to reveal
the factors affecting the probability of occurrence or nonoccurrence of the borrower
default during the considered period of time P(T ≤ t).

At the first stage of themodel training it is necessary to build graphs of the survival
function estimated by the Kaplan–Meier method when grouping research objects
according to the attributes of any alternatives [11]. This approach allows making a
conclusion about the difference in survival functions for the different categories of
objects. Therefore, the approach forms an inference aboutwhat factors canpotentially
be predictors for the probability of the borrower default. Furthermore, analysis of
the survival function graphs allows making an assumption about the distribution
functions.

At the second stage for the accurate assessment of differences in the survival
functions when grouped according to the attributes of any alternatives the log-rank
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criterion of Mantel–Haenszel and the criterion of Gehan–Wilcoxon are used [10]. In
all tests the null hypothesis is the assumption that there are no differences in survival
functions for various attributes of any alternatives.

At the third stage the nonparametric Cox proportional hazards model [6] is con-
structed where the factors defined at the previous two stages are regressors:

λi (t |xi ) = λ0(t) ∗ expβ1x1+β2x2+···+βk xk (1)

Here λi (t |xi ) is the default risk in the period t under the condition of different
values of the influence factors xi , λ0(t) is the basic (average) ruin risk in the period
t , the exponent plays the role of the multiplicative risk effect.

The assessments of coefficient β j of the Cox model (1) are determined using
the partial likelihood method according to Efron or Breslow techniques [5, 9]. The
choice of the best evaluation methodology is based on a minimum of information
criteria of Akaike and Schwartz.

Along with the Cox model, the models of log-logistic regression, accelerated
failure time (AFT) model, and Weibull regression will also be considered in this
study. To test the stability of the factor influence the models will be built when
discretizing the observation period (12, 24 and 36 months).

Thus, in total, 15 models will be built and the choice of the best one will be based
on the analysis of ROC-curves as well as on the calculation of the derived AUC
indicator (area under the curve). As a result an adequate model for building scoring
systems with the highest AUC value will be recommended.

In order to build all the models the software R was used [21].

3 Data

The study uses loan data of the Californian company Lending Club [13], focusing on
peer-to-peer lending. The sample consisted of 887,379 observations for the period
of 2007–2016. The study examines loans issued for a period of 36 months. After
the required credit period remained and all missing data deleted, there were 602,871
observations.

As stated earlier the object (observation) is a borrower. The risk of an event
(default) occurrence in a certain period is predicted for the borrower. This object was
under observation and therefore was at risk: at any period of time an event may occur
when he is eliminated from the risk group. The following periods of observation
were considered:

• up to 12 months the number of recorded defaults is 20,721;
• up to 24 months the number of recorded defaults is 34,342;
• up to 36 months the number of recorded defaults is 38,277.

In survival analysis some of the observations are always censored. In the present
study, borrowers who continued to service the loan during the observation period, as



An Approach to Developing a Scoring System for Peer-to-Peer (p2p) Lending Platform 351

well as borrowerswho repaid the loan aheadof timewere considered as censoreddata.
Defaults occurred during the observation periodwere considered as full observations.
Predictors of the default in the study were the interest rate on the loan, the length
of employment, the annual income and the region of the borrower’s residence, the
housing ownership, the credit history, the size of the loan and its purpose and financial
reliability of the borrower calculated by Lending Club on the scale fromA toDwhere
A is the best possible grade and D the worst.

The period from the moment when the object (the customer) borrowed money
up to the date when the object defaulted was considered as a duration variable. The
paper examines borrowers with a loan repayment period of 36 months.

4 Experimental Results

The analysis of the survival functions graphs obtained with the help of the Kaplan–
Meier estimates showed that the majority of the default predictor had significant
differences in survival functions between the alternatives. For example, Fig. 1 shows
a graph of theKaplan–Meier function for the FundedAmount predictorwhich clearly
demonstrates the difference in survival functions for the various alternative attributes.

Table1 shows the results of Mantel–Haenszel log-rank test and Gehan–Wilcoxon
test for each borrower determinant. The test results showed a statistically significant
difference in the groups for each variable. It was concluded that in order to build
models for determining the probability of the default occurrence in the considered
period of time all the borrower predictors should be used.

Coefficient assessments of the Cox proportional hazards models with discrete
observation time were obtained by the partial likelihood method using Efron and
Breslow techniques. The least values of Akaike (AIC) and Schwartz (BIC) infor-
mation criteria (Table2) are found for the Cox models assessed according to Efron
method, hence such assessments are more reliable.

Fig. 1 A graph of the Kaplan–Meier function for the Funded Amount predictor
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Table 1 Survival analysis: tests

Variable Log-rank test Gehan’s generalized Wilcoxon

χ2 statistic Degrees of
freedom

χ2 statistic Degrees of
freedom

Home ownership 968∗∗∗ 2 987∗∗∗ 2

Earliest credit
line

742∗∗∗ 2 749∗∗∗ 2

Interest rate 10887∗∗∗ 3 11036∗∗∗ 3

Annual income 209∗∗∗ 6 2121∗∗∗ 6

Funded amount 183∗∗∗ 4 196∗∗∗ 4

Employment
length

499∗∗∗ 5 512∗∗∗ 5

Region of the US 130∗∗∗ 8 131∗∗∗ 8

Credit purpose 1439∗∗∗ 8 1395∗∗∗ 8
∗∗∗ indicate the χ2 statistic is significant at the 1% level

Table 2 Survival analysis: values of AIC and BIC

Method of assessment Period of observation AIC BIC

Efron 12 months 1140 1144

24 months 1178 1181

36 months 1196 1199

Breslow 12 months 1148 1149

24 months 1180 1181

36 months 1199 1201

Along with nonparametric models for estimating the state duration before the
borrower default, parametric models such as accelerated failure time (AFT) models
were also evaluated. Themodelswere built on the assumption of the correlation of the
state duration function to the log-logistic distribution and the Weibull distribution.
After carrying out the ROC-analysis and determining the area under the ROC curve
obtained for each of the built models it was revealed that there was the highest AUC
value for the Cox proportional hazards models.

Table 3 presents the results of the assessment of the Cox proportional hazard
model (exponents of the model coefficient assessments) performed by Efron partial
likelihood methods with the time discretization (12, 24, 36 months).

The proportional hazard model was also evaluated taking into account the bank’s
customer groups of “reliable” and “unreliable” clients received by Lending Club.
Table 4 shows the results of calculations by multipliers compared to the basis risk
calculated using the Cox model for “reliable” and “unreliable” clients respectively
[1].

As a result of the analysis the following conclusions can be made:
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Table 3 Survival analysis: Cox models

Variable Level 12 months 24 months 36 months

Home
ownership

Mortgage 0.861∗∗∗ 0.885∗∗∗ 0.895∗∗∗

Own 0.941∗∗∗ 0.932∗∗∗ 0.936∗∗∗

Earliest credit
line

After 2000 1.113∗∗∗ 1.099∗∗∗ 1.094∗∗∗

Interest rate >10% 2.864∗∗∗ 2.302∗∗∗ 2.250∗∗∗

From 15% to 20% 4.440∗∗∗ 4.016∗∗∗ 3.873∗∗∗

>20% 6.567∗∗∗ 5.509∗∗∗ 5.324∗∗∗

Annual income From 15 to 30 0.912 0.940 0.948

From 30 to 50 0.837∗ 0.856∗∗ 0.869∗

From 50 to 75 0.741∗∗∗ 0.742∗∗∗ 0.751∗∗∗

From 75 to 100 0.652∗∗∗ 0.633∗∗∗ 0.642∗∗∗

From 100 to 150 0.586∗∗∗ 0.574∗∗∗ 0.578∗∗∗

>150 0.559∗∗∗ 0.538∗∗∗ 0.545∗∗∗

Funded
amount

From 5000 to 10,000 1.168∗∗∗ 1.165∗∗∗ 1.174∗∗∗

From 10,000 to 15,000 1.176∗∗∗ 1.222∗∗∗ 1.241∗∗∗

From 15,000 to 25,000 1.251∗∗∗ 1.305∗∗∗ 1.321∗∗∗

>25,000 1.409∗∗∗ 1.430∗∗∗ 1.446∗∗∗

Employment
length

Less than 1 year 0.937 0.902∗∗∗ 0.888∗∗∗

1 year 0.841∗∗∗ 0.821∗∗∗ 0.810∗∗∗

From 2 to 5 years 0.785∗∗∗ 0.803∗∗∗ 0.800∗∗∗

From 6 to 9 years 0.786∗∗∗ 0.816∗∗∗ 0.817∗∗∗

10 and more 0.738∗∗∗ 0.768∗∗∗ 0.770∗∗∗

Region of the
US

Mountain 1.009 1.022 1.022

West North Central 0.966 0.964 0.964

East North Central 0.911∗∗∗ 0.931∗∗∗ 0.930∗∗∗

West South Central 0.929∗∗ 0.945∗ 0.941∗

East South Central 1.099∗ 1.107∗∗∗ 1.101∗∗∗

South Atlantic 0.968 1.008 1.009

Mid-Atlantic 0.999 0.999 0.994

New England 0.884∗∗∗ 0.904∗∗∗ 0.899∗∗∗

Purpose Credit card 0.727∗∗∗ 0.807∗∗∗ 0.809∗∗∗

Major purchase 0.948 0.893∗ 0.868∗

Other 0.912∗ 0.978 0.976

Car 0.857∗ 0.841∗ 0.843∗

Medical 1.233∗∗∗ 1.209∗∗∗ 1.181∗∗∗

Small business 1.473∗∗∗ 1.496∗∗∗ 1.462∗∗∗

House 1.005 1.108 1.106

Home improvement 0.949 0.984 0.985
∗∗∗, ∗∗ and ∗ indicate the parameter estimates are significant at the 1%, 5% and 10% levels, respec-
tively
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Table 4 Survival analysis: Cox models

Variable Level Good Bad

Home ownership Mortgage 0.899∗∗∗ 0.905∗∗∗

Own 0.922∗∗∗ 0.946

Earliest credit line From 1990 to 2000 1.115∗∗∗ 1.041∗∗∗

After 2000 1.150∗∗∗ 1.145∗∗∗

Interest rate >10% 1.864∗∗∗ —

From 15% to 20% — 1.416∗∗∗

>20% — 2.009∗∗∗

Annual income From 15 to 30 — 0.998∗∗∗

From 30 to 50 0.868∗∗ 0.934∗∗∗

From 50 to 75 0.706∗∗∗ 0.845∗∗∗

From 75 to 100 0.597∗∗∗ 0.741∗∗∗

From 100 to 150 0.548∗∗∗ 0.665∗∗

>150 0.514∗∗∗ 0.636∗∗∗

Funded Amount From 5000 to 10,000 1.049∗∗∗ 1.228∗∗∗

From 10,000 to 15,000 1.084∗∗∗ 1.332∗∗∗

From 15,000 to 25,000 1.160∗∗∗ 1.431∗∗∗

>25,000 1.204∗∗∗ 1.487∗∗∗

Employment length Less than 1 year 0.766∗ 0.943∗∗

1 year 0.690∗∗∗ 0.868∗∗

From 2 to 5 years 0.691∗∗∗ 0.852∗∗∗

From 6 to 9 years 0.717∗∗∗ 0.864∗∗∗

10 and more 0.699 0.798

Region of the US Mountain 1.063 1.000

West North Central 0.992 0.946

East North Central 0.940∗∗∗ 0.924∗∗∗

West South Central 0.966∗∗∗ 0.926∗∗∗

East South Central 1.128∗∗∗ 1.076∗∗∗

South Atlantic 1.050 0.983

Mid-Atlantic 1.062∗ 0.957

New England 0.946∗∗∗ 0.870∗∗∗

Purpose Credit card 0.867∗∗∗ 0.843∗∗∗

Major purchase 0.888 0.874

Other 1.216 0.955

Car 0.807∗∗∗ 0.899∗∗∗

Medical 1.369∗ 1.136

Small business 1.980∗∗∗ 1.322∗∗∗

House 1.044∗∗ 1.134∗

Home improvement 1.043 0.978
∗∗∗, ∗∗ and ∗ indicate the parameter estimates are significant at the 1%, 5% and 10% levels, respec-
tively
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1. The availability of own housing, or housing purchased in a mortgage helps reduce
the risk of the borrower default during the considered periods (12, 24 and 36
months) approximately 0.87 and 0.94 times respectively. It should be noted that
in contrast to the standard assumption, the availability of a borrowers mortgage
is a factor that significantly reduces the risk of reaching a loan delinquency in the
considered periods. For “unreliable” borrowers, the following risks were identi-
fied. Borrowers who live in owner-occupied dwelling bear the risk by 10% greater
compared to borrowers living in rented accommodation.

2. The most significant impact on the default risk by a certain period in comparison
with other factors is provided by the interest rate factor. So if the annual loan rate
is from 10% to 15%, the default risk at any period of the borrower observation
increases by an average of 2.4 times. If the interest rate is between 15% and 20%,
the risk of the borrower default in the first year of the crediting period increases
4.4 times compared to the base risk. In the case when a loan was issued to a
borrower at a rate of more than 20%, it is expected that the loan will be defaulted
in the first year of the crediting period 6.5 times more often, in the second and
third years 5.4 times more often than the average for all borrowers.

3. The increase in the annual income of an equal partnership bank customer signifi-
cantly reduces the default risk. For example, for customers with incomes of more
than $150,000 U.S., the risk is reduced almost 2 times compared to the basis risk.
Moreover, such a customer determinant equally reduces the default risk in the
first, second and third years of the observation from the date of the loan receipt.

4. The risk multipliers of the loan default increase with a higher loan amount More-
over, these indicators practically do not depend on the duration periods of the
borrower observation.

5. There is a decrease in the default risk during the observation period to 36 months
for borrowers living in the areas of East North Central, East South Central and
New England, and conversely, an increase in the probability of default is 1.1
times compared with the basis risk for borrowers living in East South Central.
“Unreliable” borrowers living on the East Coast of the USA, on average, carry
lower risk of debt compared to the inhabitants of the West Coast and mountain
states.

6. As it was shown in the work of Stepanova and Thomas [20] the purpose of credit
has a significant impact on the probability of default by a certain date. The debt
risk of a borrower who has a loan for a small business is 1.5 times higher for
the whole observation period than for customers with a basic risk. The risk is
also increased 1.2 times for borrowers with a loan for medical services. It is an
interesting fact that the purpose of a loan related to the purchase or repair of
a house does not change the probability of the basis default risk at any of the
observation periods (12, 24 and 36 months). The purpose of a loan related to the
purchase of a car or the use of a credit card on the contrary reduces the default
risk at any period of the considered crediting time.

7. “Reliable” clients have a lower risk of debt with high socio-economic indicators
compared to the conventional model. At the same time, borrowers who took credit
for small business have much higher risks.
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Thus, the developedmodel describeswell not only the risk of the borrower default,
but also its dynamics. The obtained estimates can form the basis for the development
of comprehensive recommendations on the establishment of a floating interest rate
for each particular borrower.

5 Conclusion

The studyusing the example ofLendingClubdata showed that survival analysis tools,
in particular the Cox proportional hazard model with a partial likelihood function
estimated by the Efron approximation, can be used to configure scoring systems for
p2p lending.

The scientific novelty of the approach proposed by authors is the possibility to
determine and quote a personalized floating rate on the credit depending on the
risks and time elapsed from the date of the credit granting. In contrast, the standard
methods involve differentiation of rates only by customers and the total period of
lending.

The practical significance of the research results is the implementation of this
scoring model for assessing the borrowing capacity of a customer for the peer-to-
peer lending platform will increase the attractiveness of appropriate technology for
customers.

The proposed approach is planned to be implemented in one of the Russian banks
specializing in working with small businesses and developing a platform for p2p-
lending.
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What Do Employers Look for When
Hiring New Graduates? Answers from
the Electus Survey

Paolo Mariani, Andrea Marletta and Mariangela Zenga

Abstract This paper presents the main results obtained from Electus survey tar-
geting 471 Lombardy companies with at least 15 employees. The project wants to
acquire the knowledge about criteria for entrepreneurs in the choice for graduates de-
manding a job vacancy. This study, also, aims to evaluate the features of a graduate’s
profile employers for potential candidates in five job positions (Administration clerk;
Human Resource assistant; ICT professional; Marketing assistant; CRM assistant).
In order to estimate the entrepreneurs’ preferences about skills and competencies for
the new hirings, Conjoint Analysis is adopted. Finally, using a new definition of the
relative importance of attributes, the analysis finds out the monetary value for skills
owned by the candidates.

Keywords Labour market · Conjoint analysis · Monetary evaluation

1 Introduction

The relationship between the requested competencies by entrepreneurs and the skills
owned by the new hirings has to be considered an essential step to understand the
labour market dynamics. This knowledge represents a crucial point to make policy
in general on employability, but in particular for youth employability. In a context
of high unemployment, the productive world is averse in investing in the human
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capital. In such tendency, the competition searching for a job, push the individuals
to spend resources and time in education. Specially during the financial crisis pe-
riod, the reduction of the mismatch between the demand and the offer in the labour
market could refrain the unemployment youth rate and optimize the efficiency of
educational resources. In relation to the labour market, it seems to be important the
analysis of the companies and their expectations about a new hiring. It appears useful
to understand the dynamic of the recruitment, in particular in this work the focus
is on the importance of the competencies requested by the entrepreneurs to a new
graduates. For this reason, the aim of this paper is to carry out an analysis of the
employers’ preferences for graduates’ profiles evaluated as candidates in a job posi-
tion by using a Conjoint Analysis [8]. Specifically, the analysis intends to detect how
some characteristics of the new graduates can affect a possible future recruitment and
retribution. Moreover, the paper would like to define toward some across the-board
skills, universally recognized as “best practices” for a graduate. Finally, the anal-
ysis allows to achieve differences and valuations between wage and competencies
for new graduates. From a methodological point of view, in the context of Conjoint
Analysis, it is introduced the use of an index of relative importance of the attributes.
The study is based on the multi-centre research, ELECTUS (Education-for-Labour
Elicitation from Companies’ Attitudes towards University Studies [5]) a research
project involving several Italian universities.

The paper is organized as follows. Section2 presents the ELECTUS research,
Sect. 3 introduces theConjoint analysismethodology and the new indexof the relative
importance for the Attributes, the results of the analysis are reported in Sect. 4.
Section5 is reserved to discussion and final remarks.

2 The Electus Project

The Electus project wants to acquire structured knowledge about criteria for en-
trepreneurs in the choice for graduates demanding a job vacancy. This aim is coherent
with the European Commission criteria useful to define a contact point between the
world of formation and the job market.

The results of the research aim to give a concrete help to the stakeholders operating
in the job market, in particular:

• for graduates, they could knowingly address their ambitions in a professional field
in relationship to the business market, searching for a correspondence between
thier skills and what the companies are looking for;

• for universities, they could adopt educational methodologies and instructional ac-
tivities for the definition of professional figures reducing the mismatch between
the demand and the supply of the job market;

• for entrepreneurs, they have the opportunity to think about impartial criteria for
the recruitment processes so that the candidates for a job vacancy have already all
the requirements to be hired;
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• for the policies of youth labour market, the market should become more fluid and
recover more quickly from the economical crisis coming back to a high youth
employment rate.

Data were collected using a software program called Sawtooth [12]. To make
easier the participation of the entrepreneurs to the survey, the survey was conducted
using CAWI technique. The survey consists in a brief questionnaire contained two
sections: the conjoint experiment and general information about the company (demo-
graphic questions). In the conjoint experiment respondents have to mark 4 profiles
for 5 different job positions from 1 over to 10. These profiles were built as a com-
bination of 6 attributes. The combinations for all the alternatives provided by a full
factorial fashion were numerous that it was necessary to reduce the possibilities us-
ing an ad-hoc fractional factorial design. At the end, the experiment design was both
orthogonal and balanced. The experimental design was realized by the Sawtooth
program itself.

The 5 job positions under observation are:

• Administration clerk;
• Human Resource assistant;
• ICT professional;
• Marketing assistant;
• CRM assistant.

To specify the candidates’ profile, 6 attributes were used:

• Field of Study with 10 levels (Philosophy and literature, Educational sciences,
Political science/ Sociology, Economics, Law, Statistics, Industrial engineering,
Mathematics/ Computer sciences, Psychology, Foreign languages);

• Degree Mark with 3 levels (Low, Medium, High);
• Degree Level with 2 levels (Bachelor, Master);
• English Knowledge with 2 levels (Suitable for communication with foreigners,
Inadequate for communication with foreigners);

• Relevant work experience with 4 levels (No experience at all, Internship during or
after completion of university studies, Discontinuous or occasional work during
university studies, One year or more of regular work);

• Willigness to Travel on Business with 3 levels (Unwilling to travel on business,
Willing to travel on business only for short periods, Willing to travel on business
even for long periods).

After having rated the selected profile and chosen the best one, the entrepreneurs
had to propose a Gross Annual Salary for the chosen profile in order to measure the
so-called ‘willingness to pay’ [2].
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3 Methodology

In order to estimate the entrepreneurs’ preferences about skills and competencies for
the new hirings, in this work, Conjoint Analysis was adopted.

To define the aims and the ways of a business strategy, a company have to evaluate
features, needs and the expected behaviors of the potential competitors. This implies a
market segmentation of consumers in homogeneous groups, usually this information
is used to address marketing policies taking into account their necessities. For our
purposes, the object of the analysis is represented by graduates, so they will be
grouped on the basis of some competencies.

Conjoint Analysis is a flexible segmentation technique starting from the ex-
pression of the preferences of the statistical units. Our statistical units are the en-
trepreneurs and the product that they are going to evaluate are the graduates.

It was introduced in 1964 by Luce and Tukey [9] and revised by Green and
Srinivasan [7] in 1978. In a first step they defined the utility as the value related to a
level of satisfaction obtained by a consumer using a product with some features. The
Utility function assigns a level of satisfaction to each product. Conjoint Analysis has
3 peculiar features:

• decompositive nature: starting from a preference judgement about a product, it is
possible to obtain values about single attributes of the good;

• individual estimates: Conjoint Analysis allows to derive a predictive model for
each respondents;

• flexibility in the functional form: the relationship between dependent and inde-
pendent variables is not established a-priori.

Working with Conjoint Analysis implies the definition of attributes, levels and
profiles. The attributes or factors are the product’s features, in this case the compe-
tencies of the graduates. The levels of the attributes represents all possible ways of
expressing the attributes. The profiles are possible combinations of the levels of the
attributes.

Conjoint Analysis creates a direct correspondence between the definition of utility
and preference: if a product is preferred, its utility function will be higher. Starting
from the preference, partial utilities are computed as the associated importance for
each level of the attributes. Total utility is defined as the sum of partial utilities given
by a combination of level of attributes.

The utility function Uk is defined as follows:

Uk =
n∑

i=0

βi xik (1)

where x0 is equal to 1 and n is the number of all levels of the attributes which define
the combination of a given good. Each variable xi j is a dichotomous variable that
refers to a specific attribute level; it equals 1 if the corresponding attribute level is
present in the combination of attributes that describes the alternative k; otherwise,
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that variable is 0. As a result, the utility associated with alternative k (Uk) is obtained
by summing the terms βi xik over all attribute levels, where βi is the partial change
in Uk for the presence of attribute level i , holding all other variables constant. In
this paper, it refers to this piece-wise linear function as a part-worth function model
that gives a specific utility value for each level of the considered attributes, usually
referred to as part-worth utility.

Conjoint Analysis also allows to evaluate the relative importance of the single
attributes in the consumers’ choice. For any attribute j , the relative importance can
be computed by dividing its utility range by the sum of all utility ranges as follows:

I j = max
(
Wj

) − min
(
Wj

)
∑J

j=1

[
max

(
Wj

) − min
(
Wj

)] , (2)

where J is the number of attributes and Wj is the set of part-worth utilities referred
to the various levels of attribute j . Usually, importance values are represented as
percentages and have the property of summing to one hundred.

Part-worth utilities and importance indexes represent the starting point to obtain
an economic valuation of the attributes [10]. This monetary valuation is obtained
comparing all possible profiles with a baseline profile b and the related utility Ub.

The way to obtain this economic coefficient can be synthesized in 3 steps:

• computation of the variation in terms of utilities Mi ;
• derivation of economic coefficient MI(p),i j using the importance indexes I j ;
• valorization of the coefficient Vi j using a the total revenue π associated to the
baseline profile.

Step 1
The utility variation Mi is computed by replacing one attribute level of the baseline
profile b with attribute level i using this formula:

Mi = Ui −Ub

Ub
(3)

where Ui denotes the sum of the utility scores associated with alternative profile i
and Ub (assumed to be different from 0) denotes the sum of the part-worth utilities
associated with the baseline profile b of the job. Equation (3) indicates whether the
baseline profile b modification gives a loss or a gain. If Mi = 0, there is any loss or
gain in terms of total utility.However, the utility change arising froman attribute-level
modification can be considered more or less important by respondents. Hence, this
change can have a more important economic impact respect to a utility modification,
which has a similar intensity but involves a less relevant attribute. As a solution, it is
used as weight the relative importance of the modified attribute [6].

Step 2
Not all variations in terms of utilities are equal, for this reason it is necessary to
weigh Mi with the importance indexes I j obtained using part-worth utilities. The
coefficient formulation becomes the following:
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MIi j = Mi ∗ I j . (4)

When the number of the levels varies widely among the attributes, it seems to be
useful to take into account this variability directly in the computation of the Relative
Importance of the Attribute.

The proposed approach could be intended as an extension of the coefficient of
economic valuation already defined (see [10]). The extension consist in the use of
the number of levels as possible factor to reduce this bias.

As the best of our knowledge, only few authors (see, for example [3, 11]) proposed
a solution for this problematic issue. The philosophy of this indicator is based on
the set of the part-worth utilities referred to the various levels of attribute j for each
respondents t . For the t th units, the importance of the j th attribute with J levels
could be defined in terms of the average range of the part-worths across the levels of
that attribute:

Impt j = max
(
Wt j

) − min
(
Wt j

)

J
, (5)

In the Eq.5, the effect of the number of the levels for the attribute ismitigated dividing
the importance of the attribute by the number of the levels. At the end, for the t th
respondent, the relative importance the j th attribute is given by:

It j = Impt j∑J
j=1 Impt j

. (6)

From Eq.6, it is possible to give the sample distribution of the relative importance of
the j th attribute and sample quantile of order p, I(p), j . The use of the order statistics
can increase the robustness of the analysis [4].

Otherwise, it is possible to express these importance values entering the sample
quantile of order p for importance of the modified attribute:

MI(p),i j = Mi ∗ I(p), j . (7)

Step 3
Assuming a change in the baseline profile, the formula (7) is used to estimate the
variation of the total revenue generated. Given the Gross Annual Salary (GAS)
associatedwith the baseline profile, the coefficient of economic valuation is expressed
as follows:

V(p),i j = MI(p),i j ∗ GAS (8)

where V(p),i j denotes the amount of the salary variation. The variation V(p),i j is ob-
tained by supposing that themonetary attribute referred to the job varies in proportion
to the change in total utility. This assumption may seem restrictive. However, it is
possible to argue that the monetary amount asked for an employer concerning a job
reflects how that user values the combination of attributes of the job in terms of utility.
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Under this hypothesis, it is credible to assess the economic value of a change in the
combination of attributes as a function of the utility and importance of the modified
attribute. In addition, CA serves the scope of approximating the real structure of pref-
erences, given that only a partial knowledge of preferences can be known. Therefore
it is possible to use this coefficient as a monetary indicator that approximates the
impact of a given utility change in monetary terms.

4 Application and Results

Conjoint Analysis is achieved in order to measure entrepreneurs’ preferences. Data
manipulation and Conjoint Analysis were obtained using R software and Conjoint
package [1].

As far as the Milano-Bicocca research unit is concerned, interviewees were rep-
resentatives of companies registered on the Portal of Almalaurea for recruitment and
linkage, limited to the university site. The population of companies targeted was
composed by 4.183 potential recruiters. Companies received a first e-mail inviting
to complete the survey. If they did not answer after the first attempt, they were so-
licited to fill in the questionnaire for three times, once a week. After these attempts,
final respondents were 471. Companies profile shows that they were in prevalence
sizedwith 15–49 employers (52%), followed by sized, 50–249 employees enterprises
(25.6%) and (22.4%) by sized at least 250 companies. The most represented activity
sectors were services to the industry (62.1%), services to the person or the family
(16.2%) and manufacturing (14.9%). The majority of companies (89.4%) operated
fully or partially within the domestic market. Moreover, they were mainly under the
management of the entrepreneur (64.2%). About the attitude towards a new hiring,
55.2% of the firms kept the same number of employees during last 3 years, while
33.3% increased their workforce, about the future more than 70% of the companies
predict to hire a new resource.

As it is possible to note from Table 1, the Major preferred by respondents is Eco-
nomics for Administrative Clerk, Marketing Assistant and Customer Relationship
Management. A degree in Psychology is desirable for an Human Resource assistant,
while for ICT professional the field of study with the biggest part-worth utility is
Computer Sciences/Mathematics.

It is important to remember that, since for definition the sum of utilities for all
levels of an attribute equals to 0, less desirable attributes could have negative utilities.

In this paper the definition of cross or specialized competencies is introduced.
A competence is defined as a cross competence if part-worth utilities are higher
independently from the chosen vacancy. On the other hand, if the level of the attribute
changes over the job position, that competence is defined as specialized.

In the application, part-worth utilities seem to be similar for all the attributes, ex-
cept for the attribute Field of Study. For this reason, according the previous definition
Field of study is a specialized competence. This means that other competencies have
some levels that are universally identified as ‘best practice’ for a graduate.
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Table 1 Competencies part-worth utilities for job positions

Competencies AC HR ICT MKT CRM

Field of study

Philosophy and liter-
ature

−0.8312 0.1561 −0.6792 −0.1247 −0.5629

Educational sciences −0.5959 0.8598 −0.0759 −0.2299 −0.2086

Political sciences 0.3031 0.1876 −0.7714 0.0313 0.1996

Economics 1.8811 0.3210 0.2981 1.3350 1.0165

Law 0.0737 0.5498 4.8612 −0.5211 −0.0909

Statistics 0.4506 −0.6956 0.3956 −0.0129 −0.1686

Engineering −0.5488 −1.5581 0.8889 −0.4019 0.0469

Computer sciences 0.4444 2.9842 2.9842 −0.4163 0.0252

Psychology −1.0678 1.5375 −1.0325 0.0974 −0.1557

Foreign languages −0.1091 −0.2371 −1.1121 0.2431 −0.1015

Degree level

Bachelor 0.0485 0.0251 −0.0483 −0.0092 −0.0586

Master −0.0485 −0.0251 0.0483 0.0092 0.0586

Degree mark

Low −0.3960 −0.2497 −0.1047 −0.1407 −0.2299

Medium 0.2169 0.0950 −0.0431 0.0203 0.1401

High 0.1790 0.1547 0.1478 0.1204 0.0898

English knowledge

Suitable 0.4608 0.2699 0.0969 0.3145 0.2998

Inadequate −0.4608 −0.2699 −0.0969 −0.3145 −0.2998

Relevant work experience

No experience −0.3169 −0.1666 0.0303 −0.3177 −0.1619

Internship −0.0045 −0.0019 −0.0182 −0.0464 −0.1313

Occasional −0.1219 −0.1383 −0.1300 0.1736 0.1014

Regular 0.4433 0.3068 0.1179 0.1905 0.1918

Willigness to travel on business

Unwilling to travel −0.0793 −0.3530 −0.0768 −0.0862 −0.4198

Short period −0.0279 0.0698 −0.0295 0.0610 0.2353

Long period 0.1072 0.2832 0.1063 0.0252 0.1845

Source Electus data (2015)
AC = Administration Clerk
HR = Human Resource assistant
ICT = Information Communication Technology professionals
MKT = Marketing assistant
CRM = Customer Relationship Management
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Table 2 Competencies attributes and ideal levels for job vacancies

Competencies AC HR ICT MKT CRM

Field of study Economic Psychology Comp.Sci Economic Economic

Degree level Bachelor Bachelor Master Master Master

Degree mark Medium High High High Medium

English
knowledge

Suitable Suitable Suitable Suitable Suitable

Relevant work
experience

Regular Regular Regular Regular Regular

Willingness to
travel

Long Long Long Short Short

Source Electus data (2015)

Utility scores for variable Degree level are very close to 0 for each position. This
means that there is no significant difference between a bachelor and a master degree
for the respondents. This is due to the fact that all analyzed position are very basic and
they do not require specialized skills.DegreeMark is a skill where best two levels are
preferred, so a medium-high marked degree is preferable among candidates. English
Knowledge shows the highest utility for candidates with capability to develop a fluent
communication with foreigners. The attributes named Relevant work experience
shows a positive score only for graduates with one or more years of regular work.
Finally, theWillingness to Travel on Business to short or long period leads is a very
appreciated quality for candidates.

In Table2, ideal profiles for each job vacancy are shown. As it is possible to note,
ideal profiles are similar each other except forField of Study. This confirms the theory
of the existence of some cross or specialized competencies.

The attributes for Relevant work experience and English Knowledge shows that
a best level does not depend from the task they are going to face, so they could be
considered as cross competencies. After all, it is easy to imagine that companies
prefer to employ a candidate with one year or more of regular work and suitable for
communication with foreigners.

Since for attributes Degree Mark andWillingness to travel on business two levels
are recognized as ‘best practices’, they could be defined as quasi-cross competencies.

Finally, since part-worth utilities for variable Degree level are very close to 0
and there is no difference between the levels, this could be defined as a not-binding
attribute.

The use of a weighted matrix for individual scores allowed to obtain individual
contribution for the index of importance. Since it is well-known and empirically
proved by this research a entrenched relationship between Field of study and the
entrepreneurs’ choice for a job vacancy, it seems plausible the application of the
modified version of the index presented in Eq.6. The distribution of the individual
contribution has been used to build a non-parametric confidence interval for index
of importance. In Table3, it is shown the comparison between two methods for the
computation of the index of importance. Before using the average range Impi j , the
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Table 3 Competencies attributes and ideal levels for job vacancies
Job position AC HR ICT MKT CRM

Competencies I j I0.5, j I j I0.5, j I j I0.5, j I j I0.5, j I j I0.5, j

Field of study 53%(1) 14%(3) 59%(1) 20%(3) 81%(1) 37%(1) 54%(1) 11%(4) 43%(1) 8%(5)

Degree level 2%(6) 4%(6) 1%(6) 3%(6) 2%(6) 9%(6) 1%(6) 1%(6) 3%(6) 7%(6)

Degree mark 11%(5) 14%(4) 8%(5) 14%(4) 5%(3) 14%(3) 8%(4) 13%(3) 10%(4) 14%(3)

English knowledge 17%(2) 41%(1) 11%(3) 29%(1) 4%(4) 18%(2) 18%(2) 48%(1) 16%(3) 35%(1)

Relevant work
experience

14%(3) 16%(2) 9%(4) 12%(4) 5%(2) 9%(5) 15%(3) 18%(2) 10%(5) 11%(4)

Willingness to travel 13%(4) 5%(5) 12%(5) 22%(2) 4%(5) 10%(4) 4%(5) 7%(5) 18%(2) 25%(2)

Source Electus data (2015)

influence of Field of Study was prevalent for all job positions. For each vacancy, in
the second column, it is reported the median I0.5, j of the distribution of individual
indexes of importance. According to this method, the predominant attribute is now
the English Knowledge. This is because of the fact that this competence has only
two levels.

In relation to the other skills, there is not a so big difference between the two
methods, so Degree Mark, Relevant work experience and Willingness to travel are
in intermediate position with values a little bit over the 10% and finally the Degree
level is still the least relevant competence.

Here, the considered GAS is assigned to the best profile, for this reason all mon-
etary variation will be negative. This amount is the result of a specific question in
the survey in which the respondents should assign a Gross Annual Salary for the
new hired profile. This is an average value corresponding only to respondents that
selected a best candidate for each position.

New monetary variations are still proportional to part-worth utilities, therefore
attributes with low utility scores correspond lower monetary variations (Tables4, 5,
6, 7, 8 and 9).

About Field of Study, new monetary variations are reduced in comparison with
the first approach due to the dramatic decrease of the index of importance due to
the new indicator taking into account the number of levels for an attribute. For
this reason, Field of Study appears as the most penalized attribute and the biggest
monetary decreasing amounts to 4.791,65e for a graduate in Foreign Languages for
Information and Communication Technologies professional when compared with a
degree inComputer Sciences. This figure is the one needsmore specialization and this
is confirmed but the highest importance indexes for Field of Study (see Table3). Since
it was defined Field of Study as a specialized competence, the economic variations
change over the job position.

As said before, Degree Level is the least relevant quality for the respondents, so
monetary variations are very low varying over the job vacancies from no difference
between a Bachelor and a Master degree for Marketing assistant over to 31.20e for
a Bachelor graduate looking for a job as Customer Relationship Management.
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Table 4 Monetary varations V(p),i j for Field of Study

Job position AC HR ICT MKT CRM

Field of study V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j

Philosophy
and literature

−1.152,00 −959,40 −4.284,05 −650,00 −422,40

Educational
sciences

−1.051,20 −457,60 −3.579,05 −696,80 −328,80

Political
sciences

−669,60 −941,20 −4.392,15 −582,40 −218,40

Economics 0,00 −837,20 −3.141,95 0,00 0,00

Law −768,00 −686,40 −4.537,85 −826,80 −297,60

Statistics −607,20 −1.557,40 −3.026,80 −600,60 −316,80

Engineering −1.032,00 −2.152,80 −2.451,05 −774,80 −259,20

Computer
sciences

−609,60 −1.856,40 0,00 −780,00 −266,40

Psychology −1.252,80 0,00 −4.697,65 −551,20 −314,40

Foreign
languages

−844,80 −1.237,60 −4.791,65 −486,20 −300,00

Source Electus data (2015)

Table 5 Monetary variations V(p),i j for degree level

Job position AC HR ICT MKT CRM

Degree level V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j

Bachelor 0,00 0,00 −28,20 0,00 −31,20

Master −14,00 −5,20 0,00 0,00 0,00

Source Electus data (2015)

Table 6 Monetary varation for degree mark

Job position AC HR ICT MKT CRM

Degree Mark V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j

Low −389,20 −195,00 −112,80 −137,80 −199,20

Medium 0,00 −31,20 −84,60 −52,00 0,00

High −25,20 0,00 0,00 0,00 −26,40

Source Electus data (2015)

Table 6 shows the difference for levels ofDegreeMark, to have aMedium or High
Mark appears to be not significantly different from 0. The variation is relevant when
the comparison is with a low mark graduate and its value lies in the interval from
112,80e for an ICT Professional over to 389,20e for an Administration Clerk.
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Table 7 Monetary varations V(p),i j for english knowledge

Job position AC HR ICT MKT CRM

English
knowledge

V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j

Suitable 0,00 0,00 0,00 0,00 0,00

Inadequate −1.355,60 −553,80 −110,45 −1.224,60 −804,00

Source Electus data (2015)

Table 8 Monetary variations V(p),i j for work experience

Job position AC HR ICT MKT CRM

Work
experience

V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j

No experience −431,20 −197,60 −25,85 −371,80 −134,40

Internship −254,80 −124,80 −37,60 −171,60 −124,80

Occasional −319,20 −184,60 −70,50 −13,00 −33,60

Regular 0,00 0,00 0,00 0,00 0,00

Source Electus data (2015)

Table 9 Monetary varations V(p),i j for willingness to travel

Job Position AC HR ICT MKT CRM

Willingness to
travel

V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j V(0.5),i j

Unwilling to
travel

−33,60 −488,80 −58,75 −41,60 −626,40

Short period −25,20 −166,40 −42,30 0,00 0,00

Long period 0,00 0,00 0,00 −10,40 −48,00

Source Electus data (2015)

An interesting value is assumed by variations about English Knowledge, so since
the new method was introduced, it became the more requested skill and its interval
varies from 110,45e for an ICT Professional over to 1.355,60e for an Adminis-
tration Clerk for a graduate with no capability to communicate with foreign people.

AboutWork experience, the V(p),i j coefficients varies in the interval from 13.00e
for a graduate with occasional experience for a job as Marketing Assistant over to
431,20e for a graduate with no regular work experience in Administration Clerk.

As already occurred for the Degree Mark, even for Willingness to Travel on
Business, there is only a level significantly different from the baseline level, so the
V(p),i j coefficients are significant differently from 0 only for graduates unwilling to
travel, varying from 33,60e for an Administration Clerk over to 626,40e for the
CRM assistant. This means that respondents required the willingness to travel, it
does not matter if for short or long periods.
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5 Conclusions

The analysis of the importance of the competencies requested by the entrepreneurs to
a newgraduates could be considered a crucial point to understand and try to reduce the
mismatch between the Higher Education and the Labour Market. This work presents
an analysis of the preferences for new graduates’ profiles five positions, reporting
differences and valuations between wage and competencies. The focus is on the
Labour market for new graduates. The study is based on the multi-centre research
ELECTUS. From a methodological point of view, the paper uses a new index of
relative importance of the attributes in the context of Conjoint Analysis. This index
is based on the average range between the levels of the attributes and results very
useful in all those cases in which the range takes values in a spread interval.

The results lead to define the best profile of a graduate. The analysis underlines
the presence of some cross competencies common for the five positions, in fact com-
panies seem to prefer a candidate with one year or more of regular work and suitable
for communication with foreigners. In general a medium-high marked degree and
the willingness to travel on Business to short or long period leads are appreciated
quality for candidates. These could be defined as quasi-cross competencies. Ob-
viously, the field of study competence is typical of the job position and it can be
considered a specialized competence. If Economics is recognized as the preferred
attribute for position of Administration clerk, Marketing assistant and Customer Re-
lationship Management, Psychology results the best for Human Resource assistant
and Computer Sciences is the most suitable for Information Communication Tech-
nology professionals.

The study shows also the differences, in terms of wage, among the several profiles
of new graduates considering the levels of attributes less eligible for the job positions.

Future research will focus the attention on the results coming from a stratifi-
cation based on socio-demographic features of companies, using also the relative
importance of the attributes for the five job positions proposed in the survey.
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Modeling Household Income with
Contaminated Unimodal Distributions

Angelo Mazza and Antonio Punzo

Abstract In many countries, income inequality has reached its highest level over
the past half century. In the labor market, the technological progress has widened
the earnings gap between high- and low-skilled workers. Changes in the structure of
households, with a growing percentage of single-headed households, and in family
formation, with an increased earnings correlation among partners in couples, is con-
tributing in increasing inequality. A key step in measuring income inequality is the
estimation of the income distribution, due to the sensitivity of usual inequality mea-
sures to extreme values. To deal with this issue, we propose the use of contaminated
lognormal and gamma models and we derive the formulations for computing the
Gini index based on the model parameters. An application to 101 empirical income
distributions that include countries at different development stages is presented.

Keywords Heavy-tailed distributions · Income distribution · Gini index

1 Introduction

The distribution of households across income categories is a significant demo-
graphic and economic characteristic. Income distributions provide information on
the inequality of an area’s economic well-being that is not reported by summary
measures, such as the mean and median [17]. Income distributions are used to assess
changes in inequality and poverty over time, to compare measures across countries,
over time and before and after specific policy changes, designed, for example, to
alleviate poverty [10].

Income inequality has been increasing, almost without interruption, after the late
1960s in most OECD countries, and it is at its highest level for the past half century
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[18]. One reason for the increasing inequality is in the difference between the demand
for and supply of skills in the job market, with a consistent growth of the earnings
gap between high- and low-skilled workers. Technological progress has been more
beneficial for workers with higher skills, who have enjoyed significant income gains,
while workers with lower skills have been left behind [18].

Income inequality is also closely related to the changes in household structures
and family formation. A growing percentage of individuals live in families with only
a single adult head; in OECD countries, single-headed households have risen from
an average of 15% in the late 1980s to 20% in the mid-2000s [9]. Whereas some of
them (e.g., single parents) are more likely to be poorer than they would be in families
containing two adult heads [21], others may belong among high earners (prime-age
singles). Therefore, an increase in the proportion of single-headed households may
contribute to widening the household income inequality [9].

The rise in female labor income would reduce household inequality if growth
in female earnings were concentrated among families that otherwise would have
received low incomes. However, when assortative mating patterns are in place (i.e.,
tendency to choose one’s spouse in groups of similar earnings and/or educational
levels), earnings gains concentrate among families thatwould have beenwell off even
without a woman’s earnings [21]. In OECD countries, as reported by [18], in 40%
of couples both partners belonged to the same or close earnings deciles, compared
with 33% about 20 years before. Similarly, in [9] is reported that the correlation
coefficients between husbands and wives earnings have increased notably over time
in 20 out of 23 OECD countries, suggesting that there is a general trend toward
stronger marital sorting by earnings.

The estimation of the income distribution plays a major role in measuring income
inequality, and both parametric and nonparametric approaches have been proposed
[10]. Within this context, parametric estimation has the advantage of facilitating
subsequent inferences about inequality and povertymeasures, based on the estimated
distribution parameters.

A large number of alternative parametric models have been suggested in the
literature (for a survey, see [22]).Aswell documented in [14], a convenient parametric
model should be: defined on a strictly positive support, unimodal, and positively
skewed; moreover, all the parameters of the specified model should have a well-
defined economicmeaning and, following a principle of parsimony, themodel should
make use of the smallest possible number of parameters for adequate andmeaningful
representation.Under these conditions, two of themodelsmost frequently applied are
the 2-parameter lognormal distribution [19] and the 2-parameter gamma distribution
[3], with empirical evidence in favor of the gamma over the lognormal distribution,
judging by goodness of fit criteria, as shown by [39] for the USA and [5] for the
Netherlands.

Unfortunately, as emphasized by [13, 16, 45], real income data are often “contam-
inated” by outliers (referred to as outlying incomes herein, in analogy with [1])—at
one or both ends of the distribution—that affect the estimation of the parameters for
the chosen model. This in turn will affect the inequality measure computed from
the estimated parameters. Thus, the detection of outlying incomes, and the develop-
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ment of robust methods of parameter estimation insensitive to their presence, is an
important problem. As suggested by [15], outlying incomes should be defined with
respect to a reference distribution; that is, the shape of the “normal” incomes has to
be assumed to define what a outlying income is, and the region of outlying incomes
can be defined, e.g., as a region where the density of the reference distribution is low.
By choosing, for parsimony sake, a 2-parameter unimodal model as reference distri-
bution, and parameterizing it with respect to the mode λ and to another parameter ν

that is closely related to the distribution variability, we consider the simple family of
4-parameter contaminated unimodal models, introduced by [44], in order to accom-
modate all the available incomes (see also [30]). Themodel is a 2-componentmixture
in which one of the components, with a large prior probability, represents the normal
incomes (reference distribution), and the other, with a small prior probability, the
same mode, and an inflated ν-parameter, represents the outlying incomes. It repre-
sents a simple theoretical model for the occurrence of outlying incomes and the two
additional parameters, with respect to the parameters of the reference distribution,
have a direct interpretation in terms of proportion of normal incomes and degree of
contamination (a sort of measure of how different outlying incomes are from the bulk
of the normal incomes). Advantageously, these contaminated models also allow for
automatic detection of outlying incomes via a simple and natural procedure based on
maximum a posteriori probabilities. As examples of mode-parameterized unimodal
reference distributions wewill consider the gamma and the lognormal densities. This
choice is also justified by the fact that gamma and lognormal densities are known to
be nice for modelling mid range incomes [12]; thus, their contamination allows to
fit better the tails, which is a fundamental aspect that typically yields the definition
of more complicated (less parsimonious) distributions for the whole income range.

2 A General Framework for Contaminated Unimodal
Densities Definite on a Positive Support

Let X be the positive random variable denoting the income. Requiring, as usual, that
the density p (x) of X should be unimodal and positively skewed (cf. [14], p. 10), we
can use for p (x) the general (4-parameter) contaminated unimodal model of [44];
see also [29]. According to this model, the density function is written as

p (x;ϑ) = α f (x; λ, ν) + (1 − α) f (x; λ, ην) , x > 0, (1)

where ϑ = (α, λ, ν, η)′ and

• f (x; λ, ν) is the unimodal density chosen as reference distribution for the income,
with λ > 0 denoting the mode and ν > 0 governing the concentration of f around
the mode.
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• α ∈ (0.5, 1) can be seen as the proportion of normal incomes. Note that α is
constrained to be greater than 0.5 because, in robust statistics, it is usually assumed
that at least half of the observations are normal.

• η > 1 denotes the degree of contamination and, because of the assumption η > 1,
it can be interpreted as the increase in variability due to the outlying incomes with
respect to the reference distribution f (x; λ, ν); hence, it is an inflation parameter.

Of course, because both the reference distribution f (x; λ, ν) and the inflated distri-
bution f (x; λ, ην) have their maximum in λ, this also guarantees that pwill produce
a unimodal density with mode λ. As a limiting case, when α → 1− and η → 1+, the
reference distribution f (x; λ, ν) is obtained.

More specifically, among the existing 2-parameter distributions that can be
used for f , we have chosen to adopt unimodal gamma and lognormal densities
parametrized with respect to the mode. In the case of unimodal gamma distribu-
tions, the adjective “unimodal” is useful to highlight the subclass of gamma den-
sities on which attention is focused on. However, other distributions defined on a
positive support may be used if they can be mode-parametrized; an example could
be represented by the Weibull distribution [5]. Examples of contaminated skewed
distributions, applied for mixture modelling, are given in [27, 32].

An advantage of model (1) is that, once ϑ is estimated, say ̂ϑ , we can establish
whether a generic income, say x∗, is either normal or outlying via the empirical
posterior probability

P
(

x∗ is normal
∣

∣̂ϑ
) = α̂ f

(

x∗;̂λ, ν̂
)

p
(

x∗;̂ϑ) . (2)

Based on (2), x∗ will be considered normal if P(x∗ is normal|̂ϑ) > 1/2, while it
will be considered outlier otherwise. The resulting information, if desired, can be
used to eliminate the outlying incomes [6]; however, we do not pursue this trimming
approach because outliers are automatically down-weighted in the maximum likeli-
hood estimation of the parameters (see [24, 25, 31, 33–35] for a discussion about
down-weighting with respect to the contaminated normal distribution).

In the following, formulation and properties of the adopted mode-parametrized
unimodal gamma and lognormal densities are outlined.

2.1 Mode-Parametrized Unimodal Gamma Distribution

In order to define a reference distribution for the income, to be inserted in (1),
the following subclass of mode-parametrized unimodal gamma distributions is here
considered:

f (x; λ, ν) = x
λ
ν e− x

ν

ν
λ
ν
+1�

(

λ
ν

+ 1
) , x > 0, (3)
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Fig. 1 Mode-parameterized unimodal gamma densities (3) with ν = 2

with λ > 0 and ν > 0.
Although the standard parameterization, given by

f (x;α, β) = xα−1e− x
β

βα� (α)
, x > 0, (4)

with α, β > 0, differs from (3), these parameterizations are related by

{

α = λ

ν
+ 1

β = ν
⇒

{

λ = β (α − 1)
ν = β

. (5)

Because λ > 0 and ν > 0, (3) coincides with (4) under the constraints β > 0 and
α > 1. From the standard theory on (4), we know that if α ≥ 1, f (x) has a single
mode at β (α − 1), while if α ∈ (0, 1), f (x) tends to infinity as x → 0+ (see [20],
p. 168). To summarize, we are focusing only on the subclass of unimodal gamma
densities, omitting all the (unlimited) reverse J-shaped cases that have a vertical
asymptote in x = 0.

The shape of the unimodal gamma densities in (3) changes according to the value
of λ; this is shown by a set of gamma densities displayed in Fig. 1. The variance of
a random variable with density function (3) is

ν2 + λν. (6)

The last expression, analyzed as a function of λ, is a straight line with a positive
slope ν; consequently, for fixed ν, the variability increases in line with the value
of λ. Conversely, fixing λ in (6), the variance increases if ν increases, confirming
that ν governs the spread of the distribution. The effect of varying ν, for fixed λ, is
illustrated in Fig. 2. Further details about the parameterization of the gamma density
given in (3) can be found in [4, 8].
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Fig. 2 Mode-parameterized unimodal gamma densities (3) with λ = 1.5
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Fig. 3 Mode-parameterized lognormal densities (8) with ν = 0.5

2.2 Mode-Parametrized Lognormal Distribution

The lognormal distribution given by

f (x;μ, σ) = e− (ln x−μ)2

2σ2√
2πσ x

, x > 0, (7)

whereμ ∈ IR and σ > 0, is (already) unimodal withmode at eμ−σ 2
(see [20], p. 117).

In order to consider model (7) in (1), as a reference distribution for the income, we
consider the following mode-parametrized lognormal distribution

f (x; λ, ν) = e− (ln x−ln λ−ν)2

2ν√
2πνx

, x > 0, (8)

with λ > 0 and ν > 0. The parameterizations (7) and (8) are directly related by
(Figs. 3 and 4)

{

μ = ln λ + ν

σ 2 = ν
⇒

{

λ = eμ−σ 2

ν = σ 2 . (9)
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Fig. 4 Mode-parameterized lognormal densities (8) with λ = 1.5

3 MaximumWeighted Likelihood Estimation

Household income data often come from surveys; in such a case, denoting with n
the sample size, a sample weight, say wi , is assigned to each household income, say
xi , i = 1, . . . , n, to correct for imperfections in the sample that might lead to bias
and other departures between the sample and the reference population. Such imper-
fections include the selection of units with unequal probabilities, non-coverage of
the population, and non-response. Therefore, the vector of parameters ϑ of the con-
taminated density p (·;ϑ) in (1) needs to be estimated by maximizing the weighted
log-likelihood function (see e.g. [41], Sect. 3.4.4)

l (ϑ) =
n

∑

i=1

wi ln [p (xi ;ϑ)] . (10)

Operationally, maximization of (10) with respect to ϑ is obtained by the general-
purpose optimizer optim() for R, included in the stats package. The BFGS algo-
rithm, passed to optim() via the argument method, is used for maximization.

Naturally, the choice of the starting values for the BFGS algorithm constitutes an
important issue. The standard initialization consists of selecting a value forϑ (1), value
of ϑ at the first iteration of the algorithm. Instead of selecting ϑ (1) randomly, we use
the following technique. As already said in Sect. 2, when α → 1− and η → 1+, the
contaminated density p (x;ϑ) in (1) tends to the reference distribution f (x; λ, ν).
Then, the maximum weighted likelihood estimates of the parameters λ and ν for the
reference distribution, along with the constraints α = α̃ (with α̃ → 1−) and η = η̃

(with η̃ → 1+), can be used to initialize the contaminated model; in the analyses of
Sect. 6, we use α̃ = 0.999 and η̃ = 1.001. From an operational point of view, thanks
to the monotonicity property of the BFGS algorithm, this also guarantees that the
pseudo log-likelihood of the contaminated model will be always greater than, or
equal to, the pseudo log-likelihood of the reference model. This is a fundamental
consideration for the use of likelihood-based model selection criteria for choosing
between the reference model and its corresponding contaminated version.
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4 The Gini Coefficient

As mentioned in Sect. 1, one of the most important uses of the estimated income
distribution is the evaluation of income inequality. Among all the inequality mea-
sures, the Gini coefficient is perhaps the most useful—and certainly the most widely
used—measure of changes in inequality [7].

With respect to the contaminated density p (x;ϑ) in (1), the Gini coefficient,
simply denoted as G, can be computed as

G (ϑ) = 1 − 1

E (X;ϑ)

∫ ∞

0
[1 − F (x;ϑ)]2 dx, (11)

where
F (x;ϑ) = αH (x; λ, ν) + (1 − α) H (x; λ, ην) , x > 0, (12)

denotes the contaminated cumulative distribution function (c.d.f.), being H (x; λ, ν)

the c.d.f. related to the reference distribution f (x; λ, ν), while

E (X;ϑ) = αE (X; λ, ν) + (1 − α) E (X; λ, ην) , (13)

denotes the expectation of the contaminated density, being E (X; λ, ν) the expec-
tation of f (x; λ, ν). Details about F (x;ϑ) and E (X;ϑ) are given in Appendix 7
for the contaminated gamma and lognormal densities. However, regardless from the
considered distribution, the integral in (11) has to be calculated numerically, as often
happens in the literature for several parametric models for the income distribution
[26]. For the calculation of this integral we use the R function integrate().

5 Model Selection

In comparing nested/non-nested models which can/cannot differ in the number of
parameters, the need arises to find an automatic way to select the best one. One
way (the usual way) to perform model selection is via computation of a convenient
(likelihood-based) model selection criterion across all competing models, and then
choosing the model associated with the best value of the adopted criterion [38].
In the standard inferential context, famous examples are: the Akaike information
criterion (AIC; [2]), the Takeuchi information criterion (TIC; [43]), and the Bayesian
information criterion (BIC; [40]). However, they are not valid under the complex
survey scenario described in Sect. 3.

The dAIC has been recently introduced by [23] as a model selection criterion to
be used under complex sampling schemes. According to the notation introduced in
Sect. 3, the dAIC can be written as
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dAIC = −2l
(

̂ϑ
) + 2 tr

(

̂V−1
̂U

)

, (14)

where

̂V = −
n

∑

i=1

wi
n

∑

j=1

wj

v
(

xi ;̂ϑ
)

and

̂U =
n

∑

i=1

wi
n

∑

j=1

wj

[

u
(

xi ;̂ϑ
)

u
(

xi ;̂ϑ
)′]

.

The dAIC in (14) coincides with the TIC when there are not sample weights [23].

6 Applications to Real Income Data

6.1 Description of the Income Data

In this section we fit the lognormal and gamma distributions and their contaminated
counterparts to a diverse set of countries and over several years. This allows to test the
strength of the competing models over countries with very different income distri-
butions, notably formerly Communist or in earlier stages of economic development.

Household income data are from the Luxembourg Income Study (LIS) database
(http://www.lisdatacenter.org/) for 31 upper- and middle-income countries; see
Table1. Data are grouped into 5-year waves and, for some countries, go back as
far as the 1978; in total, we employed 101 different datasets. Additional informa-
tion on each dataset can be accessed at http://www.lisdatacenter.org/our-data/lis-
database/documentation/list-of-datasets/.

All computations were performed using custom programs for the R computing
environment [37]. The R code was executed on LISSY, a remote-execution system
that allows researchers to access from remote location the LIS microdata while
respecting privacy restrictions required by the countries providing the data (see http://
www.lisdatacenter.org/data-access/lissy/).

6.2 Results

Table1 shows, for each empirical income distribution considered, values of the dAIC
obtained fitting the four competing models and the corresponding estimated Gini

http://www.lisdatacenter.org/
http://www.lisdatacenter.org/our-data/lis-database/documentation/list-of-datasets/
http://www.lisdatacenter.org/our-data/lis-database/documentation/list-of-datasets/
http://www.lisdatacenter.org/data-access/lissy/
http://www.lisdatacenter.org/data-access/lissy/
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coefficient. The last two columns show the usual Gini index computed with and
without winsorizing 1% of upper and lower extreme values.

Among uncontaminated models, the gamma provides the best fit in 87% of the
cases. However, the log-normal model provides better fits for the South-American
countries considered, which are Colombia, Dominican Republic, Mexico and Uru-
guay. Note that, within a given country, the ordering of the models according to the
dAIC usually holds over all, or most part of, the years considered.

The contaminated gamma model outperforms all the other models in 78% of the
cases. In the remaining cases, which include countries that were part of the former
Eastern Bloc (Czech Republic, Poland, Russia, Serbia, Slovenia) plus Iceland and
SouthKorea, the gammaand the contaminated gammamodels always obtain the same
or very similar likelihoods, with slightly better dAIC values for the uncontaminated
gamma because of its lower number of parameters.

The estimated level of inequality is strongly affected by the model chosen, due
to differences in goodness of fit, particularly in the tails of the distribution. In this
study, the Gini coefficients estimated by the lognormal model are always higher than
those estimated by the gamma model. However, contaminated distributions provide
estimates that are often slightly higher than their uncontaminated counterparts.

It is also worth noting that in most countries the Gini coefficients has increased
over time, confirming the general tendency towards greater inequality described in
the introduction. However, we must mention that we are dealing with gross income,
and before public transfers. Inequality would have been lower if net incomes were
analyzed, especially for countries with higher progressive tax structures and larger
social programs.

7 Conclusions

The rising disparities in household earnings and their effects on economic growth
[42], social cohesion [36], health and life expectancy [28] are a main concern, “the
most important problem that we are facing now today” according to noted economist
Robert Shiller [11].

One problem with measuring variations in income distribution inequality, over
time and among different countries, is the sensitivity of usual inequality measures
to extreme values. To deal with this issue, we proposed the use of contaminated
lognormal and gamma models and we derived the formulations for computing the
Gini index based on the model parameters.

An application to 101 different empirical income distributions, which encom-
passed 31 upper- and middle-income countries at different years, has been presented.
According to the dAIC selection criterion, the contaminated gamma model outper-
formed all the other models in 78% of the cases. In the remaining 22%, mostly
countries that were part of the former Eastern Bloc, the uncontaminated gamma
distribution obtained slightly better dAIC values because of its lower number of
parameters. The Gini coefficients, computed using the estimated distribution param-
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eters resulted strongly affected by the model chosen, due to differences in goodness
of fit, particularly in the tails of the distribution. The Gini coefficients estimated con-
firmed the general tendency towards greater inequality for almost all the countries
considered.

Appendix

Expectation and Cumulative Distribution Function

Here, we explicit the expectation and the c.d.f. for the contaminated gamma and
lognormal densities.

Contaminated Gamma Distribution

According to (5), as well as based on the standard results for the gamma distribution
given in (4), the expectation for the unimodal gamma distribution in (3) is given by

E (X; λ, ν) = λ + ν,

while the corresponding c.d.f. is

H (x; λ, ν) = γ
(

1 + λ
ν
, x

ν

)

Γ
(

1 + λ
ν

) , x > 0,

where γ (·, ·) is the lower incomplete gamma function. Therefore, based on (13), the
expectation for the contaminated gamma density is

E (X;ϑ) = λ + ν [α + (1 − α) η] ,

while, based on (12), the c.d.f. is

F (x;ϑ) = α
γ

(

1 + λ
ν
, x

ν

)

Γ
(

1 + λ
ν

) + (1 − α)
γ

(

1 + λ
ην

, x
ην

)

Γ
(

1 + λ
ην

) , x > 0.
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Contaminated Lognormal Distribution

According to (9), as well as based on the standard results for the lognormal distri-
bution given in (8), the expectation for the unimodal lognormal distribution in (7) is
given by

E (X; λ, ν) = λe
3
2 ν,

while the corresponding c.d.f. is

H (x; λ, ν) = 1

2
+ 1

2
erf

(

ln x − ln λ − ν√
2ν

)

, x > 0,

where erf (·) is the error function. Therefore, based on (13), the expectation for the
contaminated lognormal density is

E (X;ϑ) = λ
(

αe
3
2 ν + (1 − α) e

3
2 ην

)

,

while, based on (12), the c.d.f. is

F (x;ϑ) = 1

2
+ 1

2

[

αerf

(

ln x − ln λ − ν√
2ν

)

+ (1 − α) erf

(

ln x − ln λ − ην√
2ην

)]

, x > 0.
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Endowments and Rewards in the Labour
Market: Their Role in Changing Wage
Inequality in Europe

Gennaro Punzo, Mariateresa Ciommi, Gaetano Musella
and Rosalia Castellano

Abstract This paper proposes a comparative analysis on how the recent structural
changes in the workforce composition affect wage inequality in a set of European
countries. By performing RIF regression on the EU-SILC data, we assess how much
of the overall Gini gap between 2005 and 2013 is due to employees’ characteristics
rather than the capability of each country’s labour market to capitalise skills. The
outright deterioration of all jobs, irrespective of skill levels required, and the lack of
a well-defined structure of labour market may jeopardise wage distribution, and the
wage structure plays a leading role in this process.

Keywords Wage inequality · Employment structure · Job polarisation ·
Upgrading of occupations · RIF regression · Europe

1 Introduction

A basic prerequisite of the Kuznets theory holds that inequality tends to decline with
the economic progress [22]. Substantial changes in global macroeconomic environ-
ment might create a general inequality climate for both developed and developing
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countries [14]. For instance, the US income distribution suffered a hard shock during
the Great Depression of the 1930s and the Second World War (1939−1945) with
permanent fallouts in the years ahead. The US income inequality was still compara-
tively high in the 1970s and continued to grow until the USA reached the top of the
rich country inequality pyramid [21].

The ongoing global crisis—the worst since 1930—has produced painful effects
for most Europe, especially for countries with weaker economies. As detailed by
Eurostat (on-line database), the Eurozone unemployment increased from 7.5% to
11.3% in 2007−2013, and Mediterranean and Central/Eastern European countries
were affected by unemployment more severely [25].

To address these emergencies, at least three of the five general goals of the Europe
2020 strategy for smart, sustainable and inclusive growth directly relate to employ-
ment, productivity, and inequality.With the purpose of reaching the employment rate
of 75% for 20−64-year-olds, increasing at least 40% of 30−34-year-olds completing
tertiary education and lifting 20 million people out of poverty by 2020, the strategy
focuses on the target of new skills for new jobs, taking the headline idea of more and
better jobs from the earlier Lisbon agenda.

However, within the same country, workers with varying levels of skills suffered
at different extent and intensity. As argued by Eurofound [8], the relatively recent
trends identified major declines in the demand for jobs in the middle of the skills
hierarchy. This resulted in structural shifts in the composition of labour force that
give rise to varying labour market outcomes and income inequality trajectories [4].
Therefore, changes in income inequality might be contextualised in the structure
of the countries’ labour markets in terms of job polarisation, upgrading, and more
rarely, downgrading of occupations [4, 16].

Specifically, job polarisation consists of a relative expansion in the demand of
jobs occupying the top and bottom of the skills hierarchy and shrinking in jobs in the
middle. The upgrading of occupations favours high-qualified activities with respect
to low- and middle-skill jobs [1, 17], whereas the downgrading occurs if low-skill
jobs grow faster than the rest [18].

On this ground, this work aims at identifying regularities in the structural shifts
in the labour market comparatively for ten European countries and their potential
relationships with the changes in wage distribution. Borrowing the geographical
classification by Nolan et al. [25], which approximately corresponds to the standard
welfare regimes typology [7], the following countries are selected:

1. The Big Three of Europe: France, Germany, and the United Kingdom.
2. The four Mediterranean countries: Italy, Greece, Portugal, and Spain.
3. Three Central/Eastern countries: the Czech Republic, Hungary, and Poland.

Using the favours Influence Function (RIF) regression [10, 11] we: (i) explore
the gaps in wage inequality between 2005 and 2013 for each country covered and
decompose them into the composition and wage structure effects (aggregate decom-
position); (ii) evaluate the contribution that each primary force of wage inequality
gives to both components (detailed decomposition). The choice of 2005 and 2013
as the reference years allows us to obtain clues about the socio-economic scenarios



Endowments and Rewards in the Labour Market … 395

that foreshadowed the global crisis and their role in affecting the structure of labour
markets and patterns of wage inequality.

The paper is structured as follows. Section 2 addresses the methodology of RIF
regression and the data used to perform the analysis. In Sect. 3, the two components of
Gini gaps are discussed in light of the main country’s labour market transformations.
Concluding remarks are presented in Sect. 4.

2 Methodology and Data

RIF regression of Gini on (log of) gross individual wage replaces the log-wage as
the dependent variable with the recentered influence function of the Gini coefficient
v(F) and directly estimates the impact of covariates on Gini [10, 11]. Therefore,
the RIF method includes a preliminary step in which a set of covariates are tested
as potential determinants of the observed wage inequality by country. Explanatory
variables are grouped in individual characteristics (gender, couple, health), human
capital (experience, education), job background (type of contract, economic status),
and occupation type variables. In doing so, RIF regression allows the evaluation of
those factors that are quantitatively more significant to make inequality gaps over
time as well as their contribution in shaping the two components (composition vs.
wage structure effects) in which the overall Gini change in 2005−2013 of each
country is decomposed.

Data are from the European Union-Survey on Income and Living Conditions
(EU-SILC), which is the primary reference source for comparable socio-economic
statistics in Europe. Moving from the assumption that inequality starts in the labour
market, changes in wage distributions become the key factors behind inequality
trends. For this reason, our analysis focuses on employees, aged 16−64, irrespective
of their activity sector, excluding those employed in military occupations. They are
classified in the three distinct groups of high-, middle- and low-skilled employees
based on the level of expertise required to perform their specific job. Given the
strong correlation between the current average education level and skills required to
perform that job [9], the average level of education is selected as a measure of the
skills needed.

RIF regression is well suited to the objective of this paper because it can obtain
the decomposition of Gini (or also for median, quantile, and variance), whereas
the Oaxaca-Blinder (OB) method enables the decomposition to be applied only to
the mean [11]. RIF regression overcomes other two limitations of the OB method
[3, 26]: (i) the estimations of composition and wage structure effects can be mis-
leading if the linear model is unspecified [2], (ii) the contribution of each covariate
to wage structure is highly sensitive to the choice of the base group [15, 27]. The
Juhn, Murphy and Pierce method [19, 20] and the quantile-based decomposition by
Machado and Mata [23] already removed these disadvantages, but they are unable
to trace the contribution provided by each covariate to the composition effect when
they are used to decompose various distributional statistics [10].
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The observed wage (Yi ) can be written without imposing a specific functional
form considering the wage determination function of observed components Xi and
some unobserved components εi :

Ygi = fg(Xi , εi ) for g = 0, 1 (1)

g = 1 for workers observed in group 1 and g = 0 for those in group 0. In this work,
the two groups are composed of employees at time 2005 and 2013.

Let v(Fy) be the generic distributional statistic to study (in this work, Gini), the
first-order directional derivative is known as its influence function F(y, v(Fy)) so
that it measures the relative effect of a small change in the underlying outcome
distribution on the statistic of interest. The RIF is:

RI F(y; v(Fy)) = I F(y; v(Fy)) + v(Fy) (2)

As regards the Gini coefficient, the distributional statistic v(Fy) is defined as:

vGC(FY ) = 1 − 2μ−1R(FY ) (3)

where R(FY ) = ∫ 1
0 GL(p(y); FY )dpwith p(y) = FY (y) and theGeneralisedLorenz

ordinate of FY is given by GL(p(y); FY ) = ∫ F−1(p)
−∞ zdFY (z).

Following Firpo et al. [10], the recentered influence function of Gini becomes:

RI F(y; vGC ) = 1 + 2μ−2R(Fy) − 2μ−1
[
y [1 − p(y)] + GL(p(y); Fy)

]
(4)

The key term for decomposing vGC is the counterfactual distributional statistic
vGC
c , which is the distributional statistic thatwould have prevailed ifworkers observed
in group 1 had the wage structure of period 0. Using the counterfactual distribution,
the decomposition of Gini gap between the periods 0 and 1 is:

�̂vGC

0 = �̂vGC

S + �̂vGC

X = X1

(
γ̂1,vGC − γ̂ C

0,vGC

)
+

(
X

C
0 − X0

)
γ̂0,vGC (5)

Therefore, the overall inequality gap
(
�̂vGC

0

)
is decomposed into the wage struc-

ture
(
�̂vGC

S

)
and the composition effects

(
�̂vGC

X

)
. The first term corresponds to the

effect on vGC of a change from f1(·, ·) to f0(·, ·) while keeping the distribution of
(X, ε) |G = 1 constant. Conversely, the composition effect keeps the wage structure
effect f0(·, ·) constant and measures the effect of changes from (X, ε) |G = 1 to
(X, ε) |G = 0 . The estimation of the coefficients of each group

(
γ̂g,vGC , g = 0, 1

)

and those of the counterfactual distributions
(
γ̂ C
0,vGC

)
requires first estimating the

weighting functions ω1(G), ω0(G) and ωC(G, X). Further methodological details
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on the estimation of γ parameters, on the weighting procedure and on the contribu-
tion of a single covariate to the decomposition can be found in DiNardo et al. [5],
Firpo et al. [10], and Fortin et al. [11].

3 Discussing Wage Inequality in Light of the Structural
Changes

This section discusses our empirical results focusing on the evolution of wage
inequality in 2005−2013—i.e., the magnitude of the Gini gaps, the components
in which it can be decomposed, and the factors that mostly contribute in shaping
these components—in light of the varying patterns that foreshadowed in each coun-
try’s labour market. Figure 1 shows the percentage changes in employment shares
between 2005 and 2013 for each of the three groups of employees by skill level. The
results allow the countries to be classified according to the patterns of the labour
market in terms of job polarisation, upgrading of occupations or neither of the two.

Once the RIF regression of Gini on log-wage have been estimated on the above set
of covariates by country, the overall Gini differences in 2005−2013 are decomposed
into the composition effect andwage structure (Tables 1, 3 and5). The former assesses
the share of Gini changes attributable to personal characteristics. The latter explores
the capability of the country’s labour market to transform personal skills into job
opportunities and earnings and explains why employees are rewarded differently
for the same personal endowments. Standard errors of components are computed
according to the method detailed in Fortin et al. [11].

Fig. 1 Percentage changes in employment shares by skill levels and by country. 2005−2013 Source
Authors’ elaboration on EU-SILC data
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3.1 The Big Three of Europe: France, Germany, and the UK

As shown in Fig. 1, the recent structural changes in the employment composition
allow the French and British labour markets to be configured as upgrading of occu-
pations. They both share the growth in professions that demand high skills and the
simultaneous contraction in the demand of low- and middle-skill activities. In par-
ticular, in France, low- and middle-skill jobs have decreased by 32%, whereas the
share of high-skill employees has increased by 27%. The United Kingdom follows
similar trends albeit with less intensity with respect to France. Instead, in Germany,
middle-skill jobs have declined as a share of employment by about 40%with slightly
increasing levels of high-skill occupations. Accordingly, the pattern of the German
labour market may be classified as relatively polarised.

Based on our results (Table 1), the overall Gini has declined between 2005 and
2013 in France and Germany in line with the literature [6, 13] that argues how
the overall inequality was rather stable in Germany during the 1980s, increased
after reunification, especially in 2000−2005, and slightly decreased afterwards [4].
Similarly, Frémeaux and Piketty [12] stress how in France inequality among full-
time employees decreased during the 1980s and 1990s and has been stable since then.
The high minimum wage, which has continued to increase from 1980 to 2010, has
surely helped reduce income inequality in France. Conversely, the United Kingdom
shows a rise in the overall inequality in 2005−2013, and a more detailed analysis by
Machin [24] demonstrates how the growth inequality has been concentrated in the
upper part of the distribution since the 2000s.

In both France and Germany, a great deal of total changes in Gini index is due
to the composition effect: up to more than 90% for Germany, where the wage struc-
ture is even not significant, and more than one-half for France. In particular, inside
the composition effect, being a more skilled employee (e.g., teaching professional,
technicians, and small enterprise managers) with a permanent/full time contract con-
tributes in reducing wage inequality over time in both countries (Table 2). Instead,
the wage structure plays an exclusive role in the United Kingdom in increasing wage
inequality, stressing the low capacity of the country’s labour market to transform
inputs into less unequal job-related careers and earnings.

Table 1 Aggregate RIF decomposition of Gini on log-wage. The Big Three

Gap 2005−2013 France Germany The UK

Total gap −0.0041∗∗∗ − −0.0043∗∗∗ − 0.0011∗ −
Composition −0.0021∗∗∗ 51.2% −0.0039∗∗∗ 90.7% −0.0004 −36.4%

Wage structure −0.0020∗∗∗ 48.8% −0.0004 9.3% 0.0015∗∗ 136.4%
∗Significant at 10%; ∗∗Significant at 5%; ∗∗∗Significant at 1%.

Source Authors’ elaboration on EU-SILC data
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Table 2 Detailed RIF decomposition of Gini. Gap 2005–2013. The Big Three
Variables France Germany The UK

CE WS CE WS CE WS

Personal characteristics

Gender (1 if
male)

−0.00001 0.00028 −0.00017∗∗∗ −0.00408∗∗∗ 0.00008∗∗ −0.00069

Couple (ref.
married)

−0.00024∗∗∗ 0.00034 0.00006 −0.00283∗∗∗ 0.00004 −0.00151∗∗

Health (1 if
no suffer)

0.00008 0.00029 0.00001∗∗∗ −0.00221∗ 0.00010 −0.0040∗∗∗

Human capital

Experience
(years)

−0.00067∗∗∗ −0.01045∗∗∗ −0.00075 0.0116∗∗∗ −0.00018 0.00167

Education (ref. high)

–Medium −0.0000 0.00038 −0.00023∗∗ −0.00109 0.00039∗∗∗ −0.0023∗∗∗

–Low 0.0000 0.00057∗ 0.00046∗∗∗ −0.00057∗ −0.00018 −0.00003

Job background

Contract (1
permanent)

−0.00119∗∗∗ 0.00178 −0.00091∗∗∗ 0.00181 −0.00005 0.01468∗∗∗

Status (1 if
full)

−0.00116∗∗∗ 0.00363∗∗ −0.00151∗∗∗ −0.00106 0.00065∗∗∗ 0.00173

Occupation (elementary)

High-skill

Corporate
managers

0.00009∗∗ −0.00062∗∗ 0.00015∗∗∗ 0.0003∗∗∗ −0.00018 −0.00045

Professionals 0.00005 −0.00075∗∗∗ 0.00129∗∗∗ 0.00085∗∗ −0.00061∗∗∗ −0.00054∗∗

Teaching
professionals

−0.00022∗∗∗ −0.00072∗∗ −0.00083∗∗∗ −0.00035 −0.00016∗∗ −0.00034∗

Technicians −0.00137∗∗∗ −0.00135∗∗ −0.00436∗∗∗ 0.00168∗∗ −0.00060∗∗∗ −0.00003

Middle-skill

Small
enterprise
managers

−0.00010∗∗ 0.00015 −0.00078∗∗∗ 0.00055∗∗ 0.00007 0.00018∗∗

Clerks 0.00207∗∗∗ −0.00122∗∗ 0.00587∗∗∗ 0.00122∗ 0.00161∗∗∗ −0.00091

Service
workers

−0.00013∗∗ −0.00067 −0.00072∗∗∗ 0.0001 0.0000 −0.00089∗∗

Low-skill

Agricultural
workers

0.00004 −0.00003 0.00020∗∗∗ −0.0000 −0.0000 0.00004

Machine
operators

0.00065∗∗∗ −0.00042∗ −0.00164∗∗∗ 0.0016∗∗∗ −0.00004 −0.0001

Constant − −0.01406∗∗ − −0.00793∗ − −0.00504

CE = Composition Effect; WS = Wage Structure
∗Significant at 10%; ∗∗Significant at 5%; ∗∗∗Significant at 1%
Source Authors’ elaboration on EU-SILC data
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3.2 Mediterranean Countries: Italy, Greece, Portugal, and
Spain

Based on our results (Fig. 1), the Portuguese labour market is mostly characterised
by the upgrading of occupations. To forehead of a reduction in low- and middle-
skill jobs of about one-quarter, Portugal shows the largest proliferation in high-skill
activities. Greece has seen a large increase in the share of low- and high-skill jobs
(+40% and 57%, respectively) and the shrinkage in middle-skill occupations by 6%.
Accordingly, if the pattern of the German labour market is relatively polarised, the
Greek labour market may be considered as purely polarised.

As regards Italy and Spain, the structural changes in employment composition
between 2005 and 2013 do not enable us to define whether one pattern prevails over
the other. In fact, the joint contraction in low-, middle- and high-skill jobs cannot be
related to polarisation or to upgrading of occupations. The strong deterioration in the
employment structures of both countries—which is evenmore severe for Italy—gives
rise to hybrid patterns of their labour markets. However, Italian and Spanish high-
skilled employees suffer relatively smaller declines than their low- and middle-skill
counterparts.

Italy (that together with Germany and France forms the Big Four of Europe)
shows a rise in the overall inequality (Table 3), which is far larger than those of
the United Kingdom. This is consistent with the literature [25] that classifies Italy
as unequal country more than any other European nations with similar economic
growth, but relatively less unequal than any other Mediterranean countries. In fact,
Greece still keeps harsher levels of inequality despite the Gini index has increased
in 2005−2013 less than in Italy. Gini has also largely increased in Spain while its
change is not significant for Portugal in line with the literature [25] that shows a
reversal of the previous increase in income inequality since 2005, which has not
been large enough to compensate for the strong inequality growth in 1989−1994.

Similarly to what was happening in the United Kingdom, a great deal of the
increase in wage inequality in Italy and Spain is due to the wage structure: up to
more than 90% for Italy (the composition effect is even not significant). In Spain, the
wage structure completely captures the increase in Gini index while the composition
effect does not help mitigate this growth (Table 3). As shown in Table 4, the role
of wage structure in increasing wage inequality in these countries is explained by

Table 3 Aggregate RIF decomposition of Gini on log-wage. Mediterranean countries
Gap
2005−2013

Italy Greece Portugal Spain

Total gap 0.0064∗∗∗ 0.0037∗∗∗ −0.0001 0.0101∗∗∗

Composition 0.0004 6.3% 0.0019∗∗∗ 52.6% 0.0041 −0.0021∗∗∗ −20.8%

Wage
structure

0.0060∗∗∗ 93.7% 0.0017∗∗∗ 47.4% −0.0042 0.0122∗∗∗ 120.8%

∗Significant at 10%; ∗∗Significant at 5%; ∗∗∗Significant at 1%
Source Authors’ elaboration on EU-SILC data
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Table 4 Detailed RIF decomposition of Gini. Gap 2005−2013. Mediterranean countries
Variables Italy Greece Spain

CE WS CE WS CE WS

Personal characteristics

Gender (1 if
male)

−0.00009∗∗∗ 0.00084∗ −0.00015∗∗ 0.00350∗∗∗ −0.00015∗ 0.00294∗∗∗

Couple (ref.
married)

0.00005∗∗ 0.00003 0.00012 −0.0027∗∗∗ 0.00022∗∗∗ −0.00147∗∗

Health (1 if
no suffer)

0.00004 −0.00026 0.00000∗∗∗ 0.00029 −0.00014∗ −0.00149

Human capital

Experience
(years)

−0.00064∗∗∗ −0.0090∗∗∗ −0.00181 −0.0198∗∗∗ −0.00120∗∗∗ −0.0088∗∗∗

Education (ref. high)

–Medium −0.00015∗∗∗ 0.00199∗∗∗ −0.00004 −0.00048 −0.00000 −0.00019

–Low 0.00027∗∗ 0.00177∗∗∗ 0.00109∗∗∗ −0.00098 0.00004 0.0008

Job background

Contract (1
permanent)

−0.00023∗∗ −0.0098∗∗∗ 0.00087∗∗∗ −0.0063∗∗∗ −0.00234∗∗∗ −0.0178∗∗∗

Status (1 if
full)

0.00108∗∗∗ 0.00279∗∗∗ 0.00191∗∗∗ −0.00056 0.00165∗∗∗ 0.00842∗∗∗

Occupation (elementary)

High-skill

Corporate
managers

−0.00031∗∗∗ −0.00009 −0.00000 −0.00024 −0.00005 −0.0004∗∗∗

Professionals −0.00010∗∗ −0.0004∗∗∗ −0.00017 −0.00021 −0.00014∗∗ −0.0013∗∗∗

Teaching
professionals

−0.00072∗∗∗ 0.00002 −0.00033∗∗ 0.00014 −0.00042∗∗∗ −0.0006∗∗∗

Technicians −0.00057∗∗∗ −0.00007 −0.00034∗∗ 0.00031 −0.00098∗∗∗ −0.00026∗∗

Middle-skill

Small
enterprise
managers

−0.00007∗ 0.00035∗∗∗ −0.00025 0.00047∗∗∗ 0.00005∗ 0.00005∗

Clerks 0.00144∗∗∗ −0.0020∗∗∗ 0.00114∗∗∗ 0.00025 0.00135∗∗∗ −0.0032∗∗∗

Service
workers

−0.00047∗∗∗ −0.0005∗∗∗ −0.00033∗∗ −0.00014 −0.00045∗∗∗ −0.0019∗∗∗

Low-skill

Agricultural
workers

0.00000 0.00003 −0.00002 0.00001 −0.00010∗∗ −0.00009

Machine
operators

0.00086∗∗∗ −0.0007∗∗∗ 0.00022∗∗ 0.00022 0.00056∗∗∗ −0.0012∗∗∗

Constant − 0.02100∗∗∗ − 0.02803∗∗∗ − 0.03862∗∗∗

CE = Composition Effect; WS = Wage Structure
∗Significant at 10%; ∗∗Significant at 5%; ∗∗∗Significant at 1%
Source Authors’ elaboration on EU-SILC data
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Table 5 Aggregate RIF decomposition of Gini on log-wage. Central/Eastern countries

Gap
2005−2013

Czech Republic Hungary Poland

Total gap −0.0060∗∗∗ − −0.0119∗∗∗ − −0.0176∗∗∗ −
Composition −0.0043∗∗∗ 71.47% −0.0077∗∗∗ 64.71% −0.0040∗∗∗ 22.73%

Wage
structure

−0.0017∗∗∗ 28.73% −0.0042∗∗∗ 35.29% −0.0136∗∗∗ 77.27%

∗Significant at 10%; ∗∗Significant at 5%; ∗∗∗Significant at 1%
Source Authors’ elaboration on EU-SILC data

personal characteristics and contract type (i.e., being man and working part-time),
while having a high education is crucial to reducing wage inequality in Italy.

3.3 Central/Eastern Countries: Czech Republic, Hungary,
Poland

Figure 1 shows that in Poland the drastic reduction in the demand for low- (−71%)

and middle-skill (−48%) jobs is opposed only a slow-growing in highly specialised
jobs (+2%). One specific point deserves the Czech Republic where there has been
the growth in all jobs regardless of the level of skills required, and surprisingly, the
demand for high-skill jobs has practically doubled (+98%). These structural changes
in the Polish and Czech labour markets provide evidence of two patterns that can
potentially evolve in the future but, at present, are relatively upgraded.

While the strong decline in middle-skill jobs in Germany is associated to a slight
increase in high-skill activities, in Hungary the small decrease in middle-skill jobs
goes together with an important expansion in jobs at the high (+47%) and low
(+23%) end of the skill spectrum. Accordingly, the Hungarian labour market is
purely polarised in the same manner as the Greek labour market.

The overall Gini has declined over time in each Central/Eastern country covered
(Table 5) and the magnitude of the fall has been more pronounced than that of
Germany and France. These countries experienced difficult times (began in 1989
with the transition from the command economy to a more market-based system),
which also generated great divergences in their inequality levels. In fact, while the
Gini growth was even higher than 10 points for Hungary, it was less severe for Czech
Republic and Poland [25].

The composition effect mostly explains the overall decrease in wage inequality
between 2005 and 2013 (just under the three-quarters for Czech Republic and two-
thirds forHungary). Focusing on the contribution of each covariate to the composition
effect (Table 6), human capital (work experience), job background (permanent and/or
full time contracts) and high-skill jobs are the main driving forces for the reduction
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Table 6 Detailed RIF decomposition of Gini. Gap 2005−2013. Central/Eastern countries
Variables Czech Republic Hungary Poland

CE WS CE WS CE WS

Personal characteristics

Gender (1 if
male)

0.00000 0.00025 0.00009∗ −0.00024 0.00000 0.0021∗∗∗

Couple (ref.
married)

−0.00021∗∗ −0.00005 −0.00002 −0.00069 −0.00001 −0.00139∗∗∗

Health (1 if
no suffer)

0.00004 −0.00069 −0.00019 0.00047 −0.00007 0.00129

Human capital

Experience
(years)

−0.00024∗∗ −0.00252 −0.00088∗∗∗ −0.0031 −0.00028∗∗ 0.0101∗∗∗

Education (ref. high)

–Medium 0.00039∗∗∗ 0.00439∗∗ −0.00006 0.0072∗∗∗ 0.00033∗∗∗ 0.00003

–Low 0.00011 0.00001 0.00092∗∗∗ 0.00088∗∗ −0.00024∗∗∗ −0.00052∗∗∗

Job background

Contract (1
permanent)

−0.00035∗∗∗ −0.00519∗∗∗ −0.00193∗∗∗ 0.00056 0.00030∗∗ 0.0064∗∗∗

Status (1 if
full)

−0.00365∗∗∗ 0.0140∗∗∗ −0.00370∗∗∗ 0.00606∗∗ −0.00426∗∗∗ 0.0085∗∗∗

Occupation (elementary)

High-skill

Corporate
managers

−0.00004 −0.00017 −0.00060∗∗ −0.00004 −0.00009∗∗∗ −0.00022

Professionals −0.00021∗∗ 0.0001 −0.00002 0.00003 0.00002 −0.00063∗

Teaching
professionals

−0.00068∗∗∗ −0.00014 −0.00121∗∗∗ 0.00103∗∗ −0.00003 −0.00042

Technicians −0.00064∗∗∗ −0.00091 −0.00069∗∗∗ −0.00056 −0.00004 −0.00069∗

Middle-skill

Small
enterprise
managers

0.00001 −0.0002 −0.00004 −0.00002 0.00025 −0.00030∗∗

Clerks 0.00118∗∗∗ −0.00158∗ 0.00093∗∗∗ −0.00176∗∗ −0.00000 −0.00258∗∗∗

Service
workers

−0.00015∗ −0.00075 −0.00005 −0.00135∗∗∗ 0.00002 −0.00033

Low-skill

Agricultural
workers

0.00005 −0.00009 0.00000 0.00000 −0.00000 −0.00006

Machine
operators

0.00012 −0.00100∗ −0.00019∗∗ −0.00174∗∗∗ 0.00007 −0.00106∗∗∗

Constant − −0.00715 − −0.01092∗∗ − −0.03390∗∗∗

CE = Composition Effect; WS = Wage Structure
∗Significant at 10%; ∗∗Significant at 5%; ∗∗∗Significant at 1%
Source Authors’ elaboration on EU-SILC data
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in wage inequality. One exception is Poland where the composition effect captures
just one-quarter of the overall decrease, and inside the wage structure, a great deal
of wage inequality reduction is associated to the occupation type (each profession
reduces wage inequality compared to elementary jobs).

4 Concluding Remarks

In countries that experienced a decline in wage inequality, a great deal of the total
changes in Gini index is due to the composition effect. In fact, up to more than 90%
for Germany (where the wage structure is even not significant), three-quarters for
the Czech Republic and two-third for Hungary of the reduction in wage inequality
depends on the changes in workers’ characteristics. In other words, endowments and
potentialities of employees contributed more effectively to decrease (or at least not
to increase) wage inequality in these countries.

Instead, the wage structure plays a leading role (Spain)—if not exclusive (the
United Kingdom, Italy)—in increasing wage inequality, stressing the low capacity
of the countries’ labour markets to transform inputs into better job-related careers
and higher earnings. Therefore, not only the skill endowments but also the ways in
which they are rewarded in the countries’ labour markets are crucial in explaining
differentials in wage inequality over time. A detailed analysis identified the human
capital endowments and the job-related characteristics as the individual resources
that mostly contribute in shaping, in one direction or another, wage inequality gaps
within the two components of composition and wage structure effects.

Those countries that experienced a decrease (or at least a not increase) in wage
inequality—France, Portugal, Poland, the Czech Republic, Hungary andGermany—
share shifts in the employment composition between 2005 and 2013 that led to more
explicit and clearly defined structures of their labour markets (upgrading or rela-
tively upgrading, polarisation or relatively polarisation). Probably, the employment
changes, which led the labour markets towards more upgraded or polarised struc-
tures, usually less unequal, discontinued the inequality growth within the country
with an equalising effect on the wage distribution.

In Greece, the employment changes towards a more polarised pattern only slowed
the growth in inequality within the country, mainly due to the recent crisis that has
hit Greece so even harder. Conversely, in Italy and Spain, where the distribution of
occupations by skill levels appears to bemore ambiguous, the increasing differentials
in wage inequality are mostly attributable to the lower efficiency of their labour
markets to offer better job opportunities and careers, and thus, better salaries for
employees. In other words, the outright deterioration of all jobs, irrespective of skill
levels required, and the lack of a clear structure of the Italian and Spanish labour
markets have exacerbated disparities among the three sub-groups of employees,
increasing the overall wage inequality within countries.
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An Analysis of Wage Distribution
Equality Dynamics in Poland Based
on Linear Dependencies

Viktoriya Voytsekhovska and Olivier Karl Butzbach

Abstract This work investigates the gross wage distribution dynamics in Poland in
different time periods. The study includes several stages and components. We first
estimate the linear relationships between wages in adjacent time periods, along with
the content analysis of the obtained constant dependency coefficients. We observe
differences in the dynamics of wage growth across classes of wage-earners. We also
calculate the value of Gini coefficients, as well as the characteristics of wage equal-
ity distribution. We then analyze the obtained linear dependencies with the use of
dispersion elements analysis. Our findings show that the dynamics of wages distri-
bution in Poland are in line with the government’s goals with regard to a fairer wage
distribution consistent with the current stage of the country’s socio-economic devel-
opment.We then analyze these findings in light of the dynamics of wage distribution.
In particular, we focus on differences in wage growth across classes of wage earners.
A logarithmic function of the cost effect is used for quantitative analysis. Overall,
this study contributes to the literature on the patterns of wage distribution dynamics,
which have important policy implications for Poland and other countries at similar
stages of socio-economic development.
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1 Introduction

Increased attention has been paid to income inequality over the past decade. Gov-
ernment bodies and international organizations alike have warned against the social
and economic consequences of increasing income inequality. As Thomas Piketty,
Anthony Atkinson and colleagues have shown in various studies, income inequality
in most advanced economies have been increasing for about forty years, after a long
decline that started in the 1920s and ended in the 1960s [1, 2]. In its recent update on
international income inequality statistics, the OECD notes that while in the 1980s,
the top 10% income earners earned 7.1 times the income accrued to the bottom 10%,
this ratio has reached 9.5 in recent years [3].

Multiple factors can help explain such trend in the long-term: for instance,
increased income inequality may result from higher investment in human capital
combined with increasing demand for highly skilled employees [1]; see also [4];
and, for an early presentation of a similar argument [5]. Thomas Piketty, in his book
on “Capital in the XXIst century”, identifies more structural factors that explain pat-
terns of income inequality since the late XIXth century. Other factors have also been
emphasized, such as taxation, educational policies and decision-making structures
[6–8].

However, most of the existing approaches to income inequality are empirically
rooted in analyses of advanced economies’ patterns. Much remains to be known
about income and wage inequality patterns in emerging or developing economies.
The aim of the present paper is precisely to shed light on such patterns in the case of
Poland—a “transition” economy that transformed from a post-socialist economy to
a European Union member in the past two decades.

2 A Review of the Literature on Income Inequality
and Economic Growth

The renewed interest in understanding the causes of income inequality should not
make us forget earlier economic research, such as the seminal works by Domar [9],
Kuznets [10]. In theseworks,Domar andKuznetswere seeking to correlate economic
growthwith incomedistribution andunemployment.Champernowne [11] considered
income distribution from the point of view of Pareto’s law for occupational groups,
which were approximated by a linear model.

A more general relationship between income inequality and economic growth
was proposed by Kuznets in his 1955 work, which showed that the Gini index, a
well-known indicator of inequality, changes along rates of economic growth. In the
samework, Kuznets suggested that to fully understand income inequality economists
should use findings of other scientific disciplines, especially as they relate to tech-
nological and other socio-economic changes.
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Wage (in)equal distribution has been specifically analyzed by Sattinger [12], who
found that the latter was decisively affected by the nature and cost of unemployment,
on the one hand, and broader income inequality, on the other hand. In particular, Sat-
tinger raised a number of important questions concerning wage distribution inequal-
ities in the US labour market. In a study echoing Kuznets’ works [13] analyzes the
relationship between income inequalities and economic growth and proposes to fur-
ther identify the different channels through which inequality in different parts of the
distribution may influence the growth process.

One such channel may be the minimal wage, which may affect the entire wage
distribution. Such was the focus of a study by Neumark et al. [8], which considered,
in particular, wage levels, working hours, employment rates. Neumark et al. find that
countries where workers earn the minimum wage when hired are more profoundly
affected by minimum wage increases, while higher wage earners in these states are
less affected, thus reducing wage inequalities.

The other side of the relationship between economic growth and income inequality
has also been the object of a sizeable literature. One may mention, in particular, a
recent work by Molero-Simarro [14], which analyzes the relationship through the
Bhaduri-Marglin Model, explaining growth in terms of the effect that factor shares
have on aggregate demand.

The aim of the present paper is to draw on this literature on the relationship
between income inequality, economic growth and wage distribution, using statistical
dependencies in the case of Poland.

3 Data and Findings

As mentioned above, income inequality is on an upward trend globally—as can be
seen by the average increase in the Gini index1 across countries. This trend may
seem paradoxical in countries with a positive growth in value-added, given the fact
that the latter is usually associated with new job creations and lower unemployment,
which in turn shall decrease unemployment and income inequality. Figure 1 shows
the latest (as of 2017) value of the Gini index for OECD countries, along with the
value of the index in the mid-1980s for the same countries.

As can be observed from Fig. 1, the Gini coefficient has not increased in all OECD
countries; in some countries it is lower than in the mid-1980s, or than a more recent
benchmark year (2007; see OECD [3]).

In fact, as shown in a recent country report on Poland for the OECD [6] economic
growth does not affect all countries equally; and periods are not homogenous in the
past three decades. Poland, in particular, experienced a sharp increase in itsGini index
since the mid-1980s—mostly the impact of postsocialist transition [15]. However,
since 2007 the Gini index has stagnated—registering a slight decrease over the past

1The Gini index, an indicator of household income inequality, may have values comprised between
0 and 1, where 0 is complete equality and 1 is complete inequality.
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Fig. 1 Gini coefficient of disposable income inequalities. Source OECD [3]

decade (from 0.32 to 0.30). These two trends can be observed against the backdrop
of constant, positive economic growth since 1990. Poland is the only EU country
that did not experience global recession due to its preventive timely implemented
fiscal central bank policies. In any case, according to several studies, the impact of the
Great Recession on income inequalities was modest [16, 17]. In particular, according
to Jenkins and colleagues, household incomes in many advanced economies were
protected from the impact of the crisis by automatic stabilizers and welfare states
[17].

As mentioned in the previous section, income inequality may be caused by a
multiplicity of factors. Among such factors are the dynamics of wage growth and
their differences across categories of wage earners.

Thus the remaining part of this paper analyzes the dynamics of gross wage growth
in Poland over the period 2002–2016 with two different purposes: to calculate Gini
coefficient and to identify wage inequalities in different time intervals. Gross wagees
were chosen because of greater availability of statistical data, on the one hand, and the
possibility of comparison with other countries, on the other hand. Polish statistics
allow for 15 intervals [18–23]. The corresponding wage distribution is shown on
Fig. 2.

Figure 2 illustrates the asymmetrical distribution of wages in Poland in 2012—the
curve has a dome-shaped form; higher wages are associated with lower frequencies.

By using the appropriate accumulated values it is possible to determine, for
Poland, the Lorenz curve and the Gini coefficient (see Fig. 3).

To simplify the determination of Gini coefficient, the Lorenz curve is approxi-
mated by the following polynomial function: y = 0.008 x2 + 0.017 x + 4.397.

This enables to simplify the determination of the area under the Lorenz curve by
integration ∫100

0 y(x)dx ∫100
0 y(x)dx , which equals 3191,367 for the chosen dimen-

sion (for Gini coefficient from 0 to 5000).
Then the Gini coefficient’s values were calculated for other time intervals: G2002

= 33.9%, G2010 = 31.1%, G92012 = 36.2%, G2014 = 36.8%, G2016 = 34.6%.
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Fig. 2 Wage distribution in Poland, 2012. Source GUS [21]

Fig. 3 Lorenz curve for the Polish data on gross wages GUS. Source Authors’ own elaboration on
GUS [21] data

Longitudinal fluctuations of Gini coefficient values (for wages) indicate a dis-
proportionate increase in employees’ wages. This finding led us to analyze wage
dynamics across classes of wage-earners.2

With this aim, the primary array of data was divided in five groups according
to relative wage size. The feature was a stable number of employees in time. In
each of these groups, average wage levels were determined and thus, each year, five
average salaries were obtained with the corresponding frequency distribution. Next,
we wished to find the interdependence between the mean in adjacent periods of time.
Such dependencies, based on the use of correlation methods in the form of linear
dependencies, proved to be rather tight. Here are two examples of the following
dependencies: X(2014) = 1.039 × 2012 + 0.174; R2 = 0.999; X(2010)= 1.613 ×

2Wages in this study mean gross wages (before tax).
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Fig. 4 Relationships of wages 2012 and 2014. Source Authors’ own elaboration

Fig. 5 Relationships of wages 2002 and 2010. Source Authors’ own elaboration

2002 – 0.088; R2 = 0.999. The high degree of correlation between wages in adjacent
time periods suggests that wage growth is linearly determined by their basic value.

Below is a graphical representation of these dependencies (see Figs. 4 and 5).
Using the obtained equations, knowing the average wage in a category of employ-

ees in the base period, one can determine the averagewage in the same category in the
next period. We thus find that the dynamics of wage growth varies across categories
of employees. For the five selected groups (representing different quintiles of wage
earners, this dynamic is shown on Fig. 6.

According to our calculations based on GUS data, average wages of the lowest
income earners (group 1) increased from 1.564 to 2.148 thousand PLN between
2010 and 2014—a 37% increase. During the same period, average wages in the
higher earners’ group (group 5) increased from 9.283 to 10.806 thousand PLN a 16%
increase. Overall, average wages across the five groups (or categories) of employees
increased from 3.373 thousand PLN in 2010 to 3.981 thousand PLN in 2014—a 18%
increase. We observe, therefore, different wage growth dynamics across the different
groups of income earners.

The largest difference in wage growth can be observed between the lowest and
highest income earners.

The growth rates of wages can also be determined from the equations obtained as
follows: x2010

x2002
= 1.613 − 0.091

x2002
; x2014
x2012

= 1.039 + 0.174
x2012

.



An Analysis of Wage Distribution Equality Dynamics … 413

Fig. 6 The dynamics of wages in 5 major groups of employees. Source Authors’ own elaboration
on GUS (2004–2016) data

From these relations we can draw conclusions regarding the dynamic structure
of wage growth in Poland. Where the constant coefficient of linear dependency is
negative, lower wages are growing at a lower pace than higher ones. At the same
time, interpretationwith a positive constant coefficient depending on the trendwill be
reversed—lower wages will increase with greater intensity. Therefore, in a country
such as Poland (with some degree of fluctuations in economic growth) there may
be different (opposite) trends in the structural dynamics of wages. Obviously, there
may be times when these dynamics are similar across wage levels.

Let us now consider the analytical aspects of wage distribution concerning the
linear growth of wages for two adjacent periods of time, t and t + 1: xt + 1 = a + bxt ,
where a and b are constant coefficients. The property of such a relationship is that
under condition that α �= 0 the growth rates of different wages are different. For a > 0,
b > 0 lower wages growmore intensively than higher wages. For a < 0 and b > 0 there
will be a reverse trend—lower wages increase at a lower pace. In the variation where
a= 0, the growth of all wages is proportional to the same degree. This implies that in
order to reach wage equality, or to reduce wage inequalities, it is necessary, ceteris
paribus, that lower wages grow at a more rapid pace than higher wages. We have
already showed the linear dependencies determined by statistical correlation above.
But let us note that other approaches and analytical relations can be used to find
stable coefficients of linear dependencies, especially for variants of close correlation
between variables. For a linear dependency, the coefficient b is defined as follows:

b = σ x2t+1

σ x2t
, where standard deviations for xt and xt+1 are used. Using also average

values, the coefficient a is defined as follows: a = 1
x2t+1

V x2t+1

(1−V x2t )
, where Vxt+1 is the

coefficient of variation for xt+1, and Vxt is the coefficient of variation for xt.
The expression for a implies that the sign of this coefficient depends on the ratio

of the variation coefficients. In particular, this sign is positive when the coefficient of
variation for xt+1 is smaller than the coefficient of variation for xt. This is a condition
for wages dynamics consistent with higher equity levels.
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Table 1 Wage growth
dynamics in Poland,
2002–2016

t X̄ σX Vx a b

2002 2.156 1.2696 0.5888 – –

2010 3.373 2.0147 0.5973 −0.0485 1.5869

2012 3.734 2.2639 0.6063 −0.0562 1.1237

2014 3.981 2.3583 0.5924 0.0913 1.0417

2016 4.197 2.4429 0.5820 0.0732 1.0359

Source Authors’ own elaboration on GUS (2002–2017) data

By contrast, when Vxt + 1 > Vxt, wage growth is not consistent with achieving
equity in the distribution of wages. In other words, the growth of lower wages is
slower than the growth of higher wages. The proposed formulas, elaborated on the
Polish data, result in the values shown in Table 1.3

The analysis of the Polish data shows that in the period from 2002 to 2012, the
coefficient of variation achieves it maximum and then begins to decrease. At the
same time, the constant a changes sign, from negative to positive. Thus, in recent
years, wage growth in Poland has shifted in a way that is now consistent to higher
equality in wage distribution. What may explain such a shift? Further analysis is
required to unveil the relevant causal factors here. One decisive factor, we assume,
consists in Poland’s accession to the EU, with the subsequent, gradual process of
economic integration it entailed, accompanied by sustained economic growth and,
consequently, greater social protection of workers.

Accordingly, we perform the relevant calculations for 2012 and 2014, using
aggregated data. The conditional total effect is calculated with the formula:E =
a

∑ 5
i=1 pi ln xi , where xi is the wage of one employee in i-group and Pi—is the share

of employees in i-group. It is assumed that the effect is proportional to some constant
value of a. In addition to the actual data on wage growth in 2014, we also calculated
the theoretical version of their proportional growth with the same pace. The latter is
defined as the ratio of the total salary in 2014 to its value in 2012. The results of such
calculation are shown in Table 2.

Comparison of 2012 data with 2014 data shows that the average salary increased
in 2014 by 6.6%. Thus Table 3 incorporates an increase of average wages, for each
group, of 6.6%.

The empirical analysis shows that the total effect is greater in the actual growth
of wages than in the theoretical proportional version (127,1203 > 125,3472). This
is due to the difference in the distribution structure. The actual distribution is more
consistent with wage distribution equity. In the group of lower wage earners (group
1), average wages grew in 2014 to a greater extent than in the proportional increase.
At the same time, in the group of higher wage earners, the trend is reversed. This
result is consistent with theoretical considerations, as well as with the concepts of
wage growth in line with linear laws. Thus, the deviation from the proportional

3Note that the arrays of primary data were used directly without their aggregation into groups.
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Table 2 The calculation of the effect of the actual wage distribution on wage earners’ utility
function

Wage amount, ths. PLN,
Xi

Wage share (%) Pi PiXi lnXi PilnXi

2.1482 29.6 63.58672 0.76463 22.63306

3.0567 29.4 89.86698 1.117336 32.84968

4.5727 25.3 115.6893 1.520104 38.45863

6.8195 9.1 62.05745 1.919786 17.47005

10.8063 6.6 71.32158 2.380129 15.70885

– �: 100 �: 402.522 – �: 127.1203

Source: Author’s elaboration on grouped actual data for Poland (2014), GUS

Table 3 The effect calculation under condition of proportional wages growth

Wage amount,
ths. PLN, Xi

Wage share,
(%) Pi

PiXi lnXi PilnXi

1.930908 29.6 57.21976 0.65799 19.4765

3.156025 29.4 92.78712 1.149313 33.7898

4.590196 25.3 116.132 1.523923 38.55525

6.957568 9.1 63.31387 1.93983 17.65245

11.07883 6.6 73.12027 2.405036 15.87324

– 100 402.5730 – 125.3472

Source: Author’s elaboration on grouped actual data for Poland (2014), GUS

increase in salaries is an appropriate way towards a more equal distribution of wages
at particular stages of economic growth after the transition period.

4 Conclusions

The study of dynamics of gross wages growth in Poland gives us important insights in
the understanding of wage inequalities in dynamic terms. In particular, our analysis
has showed that, in addition to changes in total earnings over time, different dynamics
characterize the various groups of wage earners. Specifically, these changes have two
variants. The first of these consists in the fact that lower wages grow at a lower pace
than higher ones.

The second variant is characterized by a reverse trend—higher wages grow more
intensively than lower wages. At certain periods of time there may also be a pro-
portional increase in all wages (an indexation option). This is where the method
chosen here, that of linear dependency, may be used proficuously with regard to the
relationship between wage levels and growth rates in successive periods of time. In
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accordance with the format of GUS Poland statistical data, this period was generally
taken to be equal to two years.

The use of correlation methods revealed a close linear relationship of wages in
successive time periods. At the same time, it is essential to describe this relationship
by means of linear dependency with two stable coefficients, typical versions of the
growth dynamics of the continuous set of wages. The variants are identified with
a free constant coefficient sign in linear dependency. The presence of a positive
sign means a more intense growth of lower earnings (wages). And the negative sign
shows a more intense growth of higher wages. Under the condition of close linear
relationships to assess the options for increasing wages, the variation rates for wages
in the adjoining periods of time can be used. The advantage of this approach is that
the primary array of statistics is used directly without aggregating and comparing
the group average over time.

The distribution of wages can be considered from the standpoint of equality.
The development of the G index for gross wages showed the existence of small
fluctuations during the investigated time period. It should be noted that the principle
of proportional payment for labour may prevail in the production sphere, which to
some extent does not comply with the criterion of social justice. Also the political
variables were not taken into account. Because of this, the Gini index can only
be reduced to a certain limit. In general, we considered only particular earnings set
transformation in the relation to the basic timemoment. In the aspect of optimization,
there is a problem regarding the distribution of the wage’s fund growth in a narrow
time interval. In turn, the incremental efficiency is associated with derivatives that are
used to linearly approximate the efficiency function. The development of variants of
possible active influence on the structure of wages and the dynamics of their growth
requires further analysis.
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Unions of Orthogonal Arrays and Their
Aberrations via Hilbert Bases

Roberto Fontana and Fabio Rapallo

Abstract Wegenerate all theOrthogonalArrays (OAs) of a given size n and strength
t as the union of a collection of OAs which belong to an inclusion-minimal set of
OAs. We derive a formula for computing the (Generalized) Word Length Pattern of
a union of OAs that makes use of their polynomial counting functions. The best OAs
according to the Generalized Minimum Aberration criterion can thereby be found
simply by exploring a relatively small set of counting functions. The classes of OAs
with 5 binary factors, strength 2, and sizes 16 and 20 are fully described.

Keywords Algebraic statistics · Counting function · Fractional factorial designs ·
Generalized word length pattern

1 Introduction

The design of factorial experiments plays a central role in several fields of Applied
Statistics, from Biology to Engineering, from Computer Science to Economics. A
comprehensive introduction to factorial experiments can be found in, e.g., [14]. In
its simplest form, a designed experiment based on a factorial design consists in the
measurement of a response variable at different levels of several explanatory variables
(or factors), in order to decide what factors and interactions are actually significant
and to estimate the coefficients of the resulting linearmodel. If all possible treatments
(i.e., combinations of the factor levels) are considered in the design, it can be said that
a full factorial design is used. But even in the simplest case of two-level factors, the
full factorial design rapidly becomes very large when the number of factors included
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in the experiment increases. Thus, we need to choose a fraction (i.e., a subset of
the full factorial design). The need for efficient experimental designs has led to the
definition of several criteria for the choice of the design points to be included in
the fraction. All such criteria aim at producing the best estimates of the relevant
parameters for a given sample size. When the effects to be estimated are known, the
usual approach is a model-based one, leading to the definition of various optimality
criteria (D-optimality, A-optimality, etc.). For screening designs the standard choice
is to follow a model-free approach, which aims to minimize the aliasing between the
effects. In this context, regular fractions defined by appropriate contrasts are popular
but they have limitations on the choice of the sample size. To generalize the analysis
to multilevel designs and to allow a wide range of possible sample sizes, non-regular
designs and Orthogonal Arrays (OAs) have been introduced together with several
criteria to define the best design in a given setting. Here we limit our attention
to fractional factorial designs together with the Generalized Minimum Aberration
(GMA) criterion.

Generalized Word-Length Pattern (GWLP) is an important tool for comparing
fractional factorial designs in the framework of factorial experiments. Its origin goes
back to Fries and Hunter [10] who proposed the concept of design aberration as
a natural extension of the concept of design resolution. They considered two-level
regular designs anddefined theminimumaberration design as the design ofmaximum
resolution which minimizes the number of words of minimum length in the defining
relation. Non-regular multilevel designs were considered by Xu and Wu [16] which
defined the concept of GWLP. Since the GWLP does not depend on the coding of
the factor levels, Pistone and Rogantin [15] used the complex coding of the factor
levels to express the basis of the polynomial complex functions over a design, and
in particular of the counting function. When this coding is used, the coefficients of
the counting function are closely related to aberrations and GWLP. Moreover, the
coefficients of the counting function can be expressed in terms of the counts of the
levels appearing in each simple or interaction term. General references for GWLP
and its properties include [4, 12, 14].

In practice, GWLP is used to discriminate among different designs through the
GMA criterion: given two designs F1 and F2 with m factors, the corresponding
GWLPs are two vectors

AF i = (A0(Fi ) = 1, A1(Fi ), . . . , Am(Fi )) i = 1, 2 .

The GMA criterion consists in the sequential minimization of the GWLPs: F1 is
better thanF2 if there exists j such that A0(F1) = A0(F2), . . . , A j (F1) = A j (F2)

and A j+1(F1) < A j+1(F2). The GMA criterion is usually applied to OAs, see [12].
In this work we use results from Combinatorics and Algebraic Geometry to ease

the computation of GWLP. The connection between GWLP and the geometric struc-
ture of the design points is studied in [9], but here we adopt a different point of
view. In particular, we show that the set of all OAs with given strength are the points
with integer entries of a cone defined through linear constraints. This allows us to
express each OA as the union of elements of the Hilbert basis of the cone. Moreover,
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we show that the GWLP of the union of two or more fractions can be computed
from their counting functions. The computation of the Hilbert basis is done through
combinatorial algorithms and its complexity increases quickly with the number of
factors and the number of factor levels. Thus, we illustrate explicit computations for
relatively small designs. Nevertheless, the theory presented here may have also a
theoretical interest and may be the basis of further developments.

2 Fractions, Counting Functions and Aberration

In this section, for ease in reference, we present some relevant results of the algebraic
theory of Orthogonal Fractional Factorial Designs and we express the aberration of
fractional designs using the coefficients of the polynomial counting function. This
presentation is based on [7]. The interested reader can find further information,
including the proofs of the propositions, in [8, 15].

2.1 Fractions of a Full Factorial Design

Let us consider an experiment which includes m factors D j , j = 1, . . . ,m. Let us
code the s j levels of the factor D j by the s j th roots of the unity

D j = {ω(s j )
0 , . . . , ω

(s j )
s j−1} ,

where ω
(s j )
k = exp

(√−1 2π
s j

k
)
, k = 0, . . . , s j − 1, j = 1, . . . ,m.

The full factorial design with complex coding isD = D1 × · · ·D j · · · × Dm . We
denote its cardinality by #D , #D = ∏m

j=1 s j .

Definition 1 A fractionF is a multiset (F∗, f∗) whose underlying set of elements
F∗ is contained in D and f∗ is the multiplicity function f∗ : F∗ → N that for each
element inF∗ gives the number of times it belongs to the multiset F .

The underlying set of elements F∗ is the subset of D that contains all the elements
ofD that appear inF at least once. We denote the number of elements of a fraction
F by #F , with #F = ∑

ζ∈F∗ f∗(ζ ).
In order to use polynomials to represent all the functions defined overD , including

multiplicity functions, we define

• X j , the j th component function, which maps a point ζ = (ζ1, . . . , ζm) of D to its
j th component,

X j : D � (ζ1, . . . , ζm) �−→ ζ j ∈ D j .

The function X j is a simple term or, by abuse of terminology, a factor.
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• Xα = Xα1
1 · . . . · Xαm

m , α ∈ L = Zs1 × · · · × Zsm i.e., the monomial function

Xα : D � (ζ1, . . . , ζm) �→ ζ
α1
1 · . . . · ζ αm

m .

The function Xα is an interaction term.

We observe that {Xα : α ∈ L = Zs1 × · · · × Zsm } is a basis of all the complex
functions defined over D . We use this basis to represent the counting function of a
fraction according to the following definition.

Definition 2 The counting function R of a fraction F is a complex polynomial
defined over D so that for each ζ ∈ D , R(ζ ) equals the number of appearances of ζ

in the fraction. A 0 − 1 valued counting function is called an indicator function of
a single-replicate fractionF . We denote by cα the coefficients of the representation
of R on D using the monomial basis {Xα, α ∈ L}:

R(ζ ) =
∑
α∈L

cαX
α(ζ ), ζ ∈ D, cα ∈ C .

With Proposition 1 taken from [15], we link the orthogonality of two interaction
terms with the coefficients of the polynomial representation of the counting function.
We denote by z the complex conjugate of the complex number z.

Proposition 1 IfF is a fraction of a full factorial designD , R = ∑
α∈L cαXα is its

counting function and [α − β] is the m-tuple made by the componentwise difference
in the rings Zs j , [α − β] = (

[α1 − β1]s1 , . . . , [αm − βm]sm
)
, then

1. the coefficients cα are given by cα = 1
#D

∑
ζ∈F Xα(ζ );

2. the term Xα is centered on F i.e., 1
#F

∑
ζ∈F Xα(ζ ) = 0 if, and only if, cα =

c[−α] = 0;
3. the terms Xα and Xβ are orthogonal on F if and only if c[α−β] = 0.

We now define projectivity and, in particular, its relationship with OAs. Given
I = {i1, . . . , ik} ⊂ {1, . . . ,m}, i1 < . . . < ik and ζ = (ζ1, . . . , ζm) ∈ D we define
the projection πI (ζ ) as

πI (ζ ) = ζI = (ζi1 , . . . , ζik ) ∈ Di1 × . . . × Dik .

Definition 3 A fractionF factorially projects onto the I -factors, I = {i1, . . . , ik} ⊂
{1, . . . ,m}, i1 < . . . < ik , if the projection πI (F ) is a multiple of a full factorial
design, i.e., the multiset (Di1 × . . . × Dik , f∗) where the multiplicity function f∗ is
constant over Di1 × . . . × Dik .

Definition 4 A fraction F is a (mixed) Orthogonal Array (OA) of strength t if it
factorially projects onto any I -factors with #I = t .
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Proposition 2 A fraction factorially projects onto the I -factors, I = {i1, . . . , ik} ⊂
{1, . . . ,m}, i1 < . . . < ik , if and only if all the coefficients of the counting function
involving the I -factors only are 0.

Proposition 2 can be immediately stated for mixed orthogonal arrays.

Proposition 3 A fraction is an OA of strength t if and only if all the coefficients
cα, α 	= 0 ≡ (0, . . . , 0) of the counting function up to the order t are 0.

2.2 GWLP and Aberrations

Using the polynomial counting function, [3] provides the following definition of the
GWLP AF = (A0(F ), . . . , Am(F )) of a fractionF of the full factorial designD .

Definition 5 The Generalized Word-Length Pattern (GWLP) of a fractionF of the
full factorial design D is a the vector AF = (A0(F ), A1(F ), . . . , Am(F )), where

A j (F ) =
∑

|α|0= j

aα j = 0, . . . ,m ,

aα =
(‖cα‖2

c0

)2

, (1)

|α|0 is the number of non-null elements of α, ‖z‖2 is the norm of the complex number
z, and c0 = c(0,...,0) = #F/#D .

We refer to aα as the aberration of the interaction Xα . In Proposition 4 we provide
a formula to computeaα , and consequently A j (F ), j = 1, . . . ,m, given a fractionF
ofD . Notice that A0(F ) = 1 for allF . Moreover, in the case of binary designs, the
coefficients of the counting function are real numbers and therefore the aberrations
in Eq. (1) are simply

aα =
(
cα

c0

)2

.

Given a fraction F of the full factorial design D , let us consider its counting
function R = ∑

α∈L cαXα . From item 1 of Proposition 1 the coefficients cα are given
by

cα = 1

#D

∑
ζ∈F

Xα(ζ )

or equivalently

cα = 1

#D

∑
ζ∈D

R(ζ )Xα(ζ ) .
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To make the notation easier we use vectors and matrices and we make the non-
restrictive hypothesis that both the runs ζ of the full factorial design D and the
multi-indexes of L = Zs1 × · · · × Zsm are considered in lexicographic order. We
obtain

cα = 1

#D
X

T
αY = 1

#D
Y T Xα ,

where Xα is the column vector [ζ α : ζ ∈ D], Xα is the column vector
[
ζ

α : ζ ∈ D
]

Y is the column vector [R(ζ ) : ζ ∈ D] and the exponent T denotes the transpose of
a matrix. The square of the norm of a complex number z can be computed as zz. It
follows that

‖cα‖22 = cαcα

and therefore we get

(#D)2‖cα‖22 = (Y T Xα)(X
T
αY ) = Y T XαXα

T Y .

As in [5], we refer to Y as the counting vector of a fraction.

2.3 Counting Vector and Aberrations

Here we present some properties of the aberrations and some results about the rela-
tionships between the aberrations and the counting vector of a fraction. The results
are adapted to the complex coding for multilevel factors.

Proposition 4 Given a fraction F it holds:

1. aα = (Y T XαXα
T Y )/(#F )2;

2. Su(XαXα
T ) = 0, α 	= 0 where Su(A) is the sum of all the elements of the matrix

A;
3.

∑m
j=0 A j (F ) = ∑

α∈L aα = (#D
∑

ζ∈D Y [ζ ]2)/(#F )2;

4. if Y [ζ ] ∈ {0, 1}, ζ ∈ D then
∑m

i=0 Ai (F ) = #D/#F = c−1
0 .

Proof 1. From the definition of aα we get

aα =
(‖cα‖2

c0

)2

= (1/#D)2Y T XαXα
T Y

(#F/#D)2
= Y T XαXα

T Y

(#F )2
.

2. Let us consider the full factorial designD . Its counting vector is 1, i.e., the column
vectorwith all the components equal to 1. The coefficients of its counting function
are c0 = 1 and cα = 0 for all α 	= 0. We get aα = 0 for all α 	= 0. It follows that
the sum of all the elements of the matrix XαXα

T is

Su(XαXα
T ) = 1T XαXα

T 1 = (#D)2aα = 0, α 	= 0 .
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3. The sum of all the terms of the GWLP is

m∑
j=0

A j (F ) =
∑
α∈L

aα =
∑
α∈L

Y T XαXα
T Y

(#F )2
=

= Y T
∑

α∈L(XαXα
T )Y

(#F )2
= Y T X XT Y

(#F )2
=

= #DY T Y

(#F )2
= #D

∑
ζ∈D Y (ζ )2

(
∑

ζ∈D Y (ζ ))2
,

where X is the orthogonal matrix whose columns are Xα, α ∈ L .
4. It follows from item 3. by observing that Y [ζ ] ∈ {0, 1}, ζ ∈ D ⇒ Y [ζ ]2 = Y [ζ ]

and then
∑

ζ∈D Y [ζ ]2 = #F .
�

From items 3. and 4. of Proposition 4 we obtain that, for a given size n, the
total aberration of a single-replicate fraction F1 (with counting vector Y1) will be
less than the total aberration of a fraction F2 (with counting vector Y2) that admits
replications. In fact, we get

m∑
j=0

A j (F1) = #D

n
,

m∑
j=0

A j (F2) = #D
∑

ζ∈D Y2[ζ ]2
n2

and
#D

n
≤ #D

n

∑
ζ∈D Y2[ζ ]2

n

because, given n,
∑

ζ∈D Y2[ζ ]2 ≥ n.
Now, as in [11], let us consider the special case of OAs of size n and strength t

(or equivalently with resolution t + 1), with m = t + 1 factors. Using the standard
notation, we denote this class of OAs by OA(n, s1 . . . sm,m − 1). We can state the
following proposition.

Proposition 5 Let F ∈ OA(n, s1 . . . sm,m − 1). Then

Am(F ) = #D
∑

ζ∈D Y [ζ ]2 − n2

n2
.

IfF is a single-replicate OA (i.e. Y [ζ ] ∈ {0, 1}, ζ ∈ D) then

Am(F ) = #D − n

n
.

Proof Let us consider F ∈ OA(n, s1 . . . sm,m − 1). Then
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A0(F ) = 1, A1(F ) = · · · = Am−1(F ) = 0 .

From item 3. of Proposition 4 we get

Am(F ) =
m∑
j=0

A j (F )−
m−1∑
j=0

A j (F ) =

= #D
∑

ζ∈D Y [ζ ]2
(#F )2

− 1 = #D
∑

ζ∈D Y [ζ ]2 − (#F )2

(#F )2
.

In the special case Y [ζ ] ∈ {0, 1}, ζ ∈ D we get

Am(F ) = #D − #F

#F
.

�
We obtain a lower bound for Am(F ) as in Theorem 5 of [11].

Proposition 6 Let F ∈ OA(n, s1 . . . sm,m − 1). Then

Am(F ) ≥ r(#D − r)

n2
,

where q and r are the quotient and the remainder when n is divided by #D , n =
q#D + r (and q = 0 when n < #D).

Proof From Proposition 5 we know that

Am(F ) = #D
∑

ζ∈D Y [ζ ]2 − n2

n2
.

If we divide n by #D we can write n = q#D + r . The counting vector Ỹ that mini-
mizes

∑
ζ∈D Y [ζ ]2 must be defined as

Ỹ [ζ ] =
{
q + 1 if ζ ∈ Br

q if ζ ∈ D − Br

where Br is any subset of D with r points. We obtain

∑
ζ∈D

Ỹ [ζ ]2 = #Dq2 + 2rq + r .

It follows that

Am(F ) ≥ #D(#Dq2 + 2rq + r) − (q#D + r)2

(q#D + r)2
.
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By simple algebra we obtain

Am(F ) ≥ r(#D − r)

(#F )2
.

�

When we consider m > t + 1 factors a lower bound for At+1(F ) can be obtained
by summing up all the lower bounds that are obtained using Proposition 6 for all the( m
t+1

)
subsets of t + 1 factors of D1, . . . ,Dm .

3 The GWLP of the Union of Fractions

In this section we analyze the behavior of the aberrations (and thus of the GWLP)
of a fraction obtained by merging two or more fractions. In particular we focus on
OAs which can be expressed as the union of other OAs.

First, it is worth noting that given a fraction F with counting function R(ζ ), we
can consider a fraction νF obtained by replicating ν times each design point ofF .
In such a case, it is immediate to check that the counting function of νF is simply
νR(ζ ), and therefore all aberrations remain unchanged:

a(vR)
α = a(R)

α , for all α ∈ L .

In the following proposition we consider the union of k fractions, k ≥ 2.

Proposition 7 Let us consider fractionsF1, . . . ,Fk with n1, . . . , nk design points,
respectively. Let us denote by Ri = ∑

α∈L c(i)
α Xα the counting function of Fi , i =

1, . . . , k, by F the union F = F1 ∪ · · · ∪ Fk , by R = ∑k
i=1 Ri = ∑

α∈L c(R)
α Xα

the counting function of F and by n the size of F , n = n1 + . . . + nk.
The j th element of the GWLP of F is

A j (F ) =
k∑

i=1

n2i
n2

A j (Fi ) + 2
(#D)2

n2
∑
i1<i2

∑
|α|0= j

Re
(
c(i1)
α c(i2)

α

)
, j = 0, . . . ,m .

(2)

Proof Let us consider k = 2, i.e.F = F1 ∪ F2. The aberration a(R)
α is

a(R)
α =

(‖c(1)
α + c(2)

α ‖2
)2

(
c(1)
0 + c(2)

0

)2 .
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We obtain

(∥∥c(1)
α + c(2)

α

∥∥
2

)2 = (∥∥c(1)
α

∥∥
2

)2 + (∥∥c(2)
α

∥∥
2

)2 + 2Re
(
c(1)
α c(2)

α

) =
=

( n1
#D

)2
a(1)

α +
( n2
#D

)2
a(2)

α + 2Re
(
c(1)
α c(2)

α

) =

= 1

(#D)2

(
n21a

(1)
α + n22a

(2)
α + 2(#D)2 Re

(
c(1)
α c(2)

α

))

where a(i)
α refers toFi , i = 1,2. We also obtain

(
c(1)
0 + c(2)

0

)2 =
( n1
#D

+ n2
#D

)2 = n2

(#D)2
.

It follows

a(R)
α = 1

n2
(
n21a

(1)
α + n22a

(2)
α + 2(#D)2 Re

(
c(1)
α c(2)

α

))

and

A j (F ) =
∑

|α|0= j

a(R)
α =

=
(n1
n

)2
A j (F1) +

(n2
n

)2
A j (F2) + 2

(
#D

n

)2 ∑
|α|0= j

Re
(
c(1)
α c(2)

α

)

for j = 0, 1, . . . ,m.
The generalization of this formula to the case k > 2 is straightforward. �

In case of two-level designs, cα ∈ R and thus Eq. (2) becomes

A j (F ) =
k∑

i=1

n2i
n2

A j (Fi ) + 2
(#D)2

n2
∑
i1<i2

∑
|α|0= j

c(i1)
α c(i2)

α , j = 0, . . . ,m .

The term
∑

|α|0= j c
(i1)
α c(i2)

α can be viewed as a kind of covariance between the coef-
ficients of order j of the two counting functions Ri1 and Ri2 .

To illustrate the use of Proposition 7 on a very small example, let us consider the
two regular fractions of the 23 design, whose union is the full-factorial:

F1 = X1X2X3 = −1 R1 = 1

2
(1 − X1X2X3) ;

F2 = X1X2X3 = +1 R2 = 1

2
(1 + X1X2X3) .
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In this case we have

A0(F1) = 1, A1(F1) = A2(F1) = 0, A3(F1) = 1 ;
A0(F2) = 1, A1(F2) = A2(F2) = 0, A3(F2) = 1 .

As expected we obtain A0(F ) = 1, A1(F ) = A2(F ) = 0 and

A3(F ) =
(
4

8

)2

A3(F1) +
(
4

8

)2

A3(F2) + 2

(
8

4

)2

c(1)
111c

(2)
111 = 0

because c(1)
111 = −1/2 and c(2)

111 = 1/2.

4 The Hilbert Basis for Orthogonal Arrays

In this section we define the set OA(•,D, t) of all the OAs with strength t of the
full designD and we study its combinatorial and geometric properties. With respect
to the standard notation, we allow the cardinality to vary, because our study will
concern the union of two or more OAs, and thus we use the symbol • in place of
the cardinality of the fraction. In the case of binary designs, this set has already
been considered in [2], where the reader can find also a simple and comprehensive
summary of the basic definitions from Combinatorics used here. The generalization
to mixed-level designs can be found in [6].

As a preliminary remark, notice that to the set OA(•,D, t) can be associated in
a natural way the set of the corresponding counting functions. With as slight abuse
of notation, we use the same notation for both these sets.

Lemma 1 The set O A(•,D, t) can be written in the form

OA(•,D, t) = C ∩ N
#D (3)

where C is a polyhedral cone in R#D .

Proof Recall that a subset of Rk is a cone if for all x, y ∈ C and for all λ,μ ∈ R we
have λx + μy ∈ C , and it is a polyhedral cone if in addition it can be written in the
form

C = {
x ∈ R

k : Ax ≥ 0
}

. (4)

In this setting it is enough to define the matrix A in such a way all the t-marginals
of x are constant (i.e., the difference of any two elements in a t-marginal is equal to
0). �

InCombinatorics, objects likeOA(•,D, t) expressed as the lattice points of a cone
as in Eq. (3) are widely studied. See, e.g., Chap. 6 in [13] for a general introduction
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to semigroups, lattice ideals, and Hilbert bases. In this paper, we focus on the notion
of Hilbert basis of a lattice, and we specialize its definition.

Definition 6 A Hilbert basis of OA(•,D, t) is an inclusion-minimal finite set of
OAs B1, . . . ,Br such that each OA F ∈ OA(•,D, t) is

F = c1B1 + · · · + crBr

with coefficients c1, . . . , cr ∈ N.

Undermild conditions, which are satisfied by OA(•,D, t), theHilbert basis exists
and is unique.

The Hilbert basis of OA(•,D, t) depends on the matrix A in Eq. (4), which
in turn depends on the t-marginals of the OAs. Thus, we have a different Hilbert
basis for different D and t . From the computational point of view, there are specific
algorithms to efficiently compute Hilbert bases. Such algorithms are available by
means of specialized software. Currently, two choices are available: 4ti2, see [17],
and the more recent package normaliz, see [1]. For our purpose, the use of one or
the other software is equivalent. In our examples, we have used 4ti2, but the use
of both these software is very easy. It is enough to input the matrix A defining the
polyhedral cone and the software returns the corresponding Hilbert basis.

Using the elements of the Hilbert basis, we can build all OAs of any given sample
size. As noticed in the Introduction, the limitation of our approach is due to the fact
the computation of Hilbert bases is very intensive and the computational cost grows
very fast when the full design becomes large. Therefore, the computations are limited
to relatively small cases, which are to be considered as illustrative examples.

5 Computations

We consider OAs of strength 2 for 5 factors, each with 2 levels, OA(•, 25, t). The
Hilbert Basis for this problem contains 26, 142 different elements which can be
classified according to their size as reported in Table 1.

First, we focus on the OAs of size 16. There are 162 OAs of size 16 in the Hilbert
Basis. The remaining 16-run OAs can be generated considering all possible unions of
two OAs of size 8.We denote these OAs as (8 + 8)-run OAs. There are 60 8-run OAs
and therefore 60 + (60

2

) = 1,830 possible different (8 + 8)-run OAs. We find 1,770
different (8 + 8)-run OAs. The classification of the 162 + 1,770 = 1,932 OAs of
size 16 according to the values of A3(F ) is reported in Table 2.

From Table 2 we immediately see that there are 12 designs with A3(F ) = 0. We
can choose the best design(s) among these 12 fractions. We find two OAs of the
16-run type for which A1(F ) = A2(F ) = A3(F ) = A4(F ) = 0 and A5(F ) = 1.

As a second example, we consider OAs with 20 runs. There are 960 OAs of size
20 in the Hilbert Basis. The remaining 20-run OAs can be generated by considering



Unions of Orthogonal Arrays … 433

Table 1 The elements of the Hilbert basis for OA(•, 25, 2) classified with respect to their sample
size

Size N

8 60

12 224

16 162

20 960

24 7680

28 8384

32 5760

36 2912

Table 2 Distribution of OA(16, 25, 2) with respect to A3(F )

A3(F )

Type 0 0.25 0.5 0.75 1 1.5 2 Total

16-run 2 80 0 80 0 0 0 162

(8 + 8)-
run

10 0 240 0 1,220 240 60 1,770

Table 3 Distribution of OA(20, 25, 2) with respect to A3(F )

A3(F )

Type 0.4 0.72 1.04 Total

20-run 480 0 480 960

(8 + 12)-run 1,632 4,800 3,360 9,792

all possible unions of two OAs, one of size 8 and one of size 12. We denote these
OAs as (8 + 12)-run OAs. There are 60 8-run OAs and 224 12-run OAs and there-
fore 60 · 224 = 13,440 possibly different (8 + 12)-run OAs.We find 9,792 different
(8 + 12)-run OAs. The classification of the 960 + 9,792 = 10,752 OAs of size 20
according to the values of A3(F ) is reported in Table 3.

If we proceed as we did for OAs of size 16, focusing on the 2,112 OAs with
A3 = 0.4, we find 192 GMA-optimal OAs. These are of the (8 + 12)-run type and
their Word Length Pattern is A1(F ) = A2(F ) = 0, A3(F ) = 0.4, A4(F ) = 0.2
and A5(F ) = 0.
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A Copula-Based Hidden Markov Model
for Toroidal Time Series

Francesco Lagona

Abstract Toroidal time series are temporal sequences of bivariate angular observa-
tions that often arise in environmental and ecological studies.AhiddenMarkovmodel
is proposed for segmenting these data according to a finite number of latent classes,
associated with copula-based toroidal densities. The model conveniently integrates
circular correlation, multimodality and temporal auto-correlation. A computation-
ally efficient EM algorithm is proposed for parameter estimation. The proposal is
illustrated on a time series of wind and sea wave directions.

Keywords Copula · Hidden Markov model · Segmentation · Toroidal data

1 Introduction

Bivariate sequences of angles are often referred to as toroidal time series, because
the pair of two angles can be represented as a point on a torus. These data often
arise in environmental and ecological studies. Examples include time series of wind
and wave directions [9], time series of wind mean directions and directions of the
maximum gust observed each day [2] and time series of turning angles in studies of
animal movement [12].

The analysis of toroidal time series is complicated by the difficulties in mod-
eling the dependence between angular measurements over time [8]. An additional
complication is given by the multimodality of the marginal distribution of the data,
because environmental toroidal data are observed under time-varying heterogeneous
conditions.

This paper introduces a hidden Markov model (HMM) that simultaneously
accounts for dependence across circular measurements, temporal auto-correlation,
multimodality and latent time-varying heterogeneity. Under this model, the distri-
bution of toroidal data is approximated by a mixture of copula-based toroidal den-
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sities, whose parameters depend on the evolution of a latent Markov chain. While
the copula-based toroidal density accommodates dependence between two circular
variables, a mixture of copula-based densities allows for multimodality and, finally,
a latent Markov chain accounts for temporal correlation and, simultaneously, for
time-varying heterogeneity.

Following an approach that has been recently suggested to model time series of
cylindrical data [7], this model extends previous proposals that are either based on
mixtures of conditionally independent circular densities [11] or based on mixtures of
bivariate von Mises densities [1, 10] It provides an intuitively appealing framework
where the data are modeled by integrating conventional tools of statistical analysis:
a copula, a mixture and a Markov chain. It is furthermore numerically tractable,
by exploiting a suitable Expectation Maximization (EM) algorithm for parameter
estimation.

The rest of the paper is organized as follows. Section2 introduces the proposed
model. Section3 is devoted to maximum likelihood parameter estimation and Sect. 4
illustrates the proposal on a case study of wave and wind directions. Relevant points
of discussion are finally summarized in Sect. 5.

2 A Copula-Based Toroidal Hidden Markov Model

Let z = (x, y) be a pair of angles, x, y ∈ [0, 2π). Moreover, let f (x;α) and f (y;β)

be two circular densities, respectively knownup to the parametersα andβ. Further, let
F(x;α) and F(y;β) be the two cumulative distribution functions of x and y, defined
with respect to a fixed, although arbitrary, origin. Finally, let g(u; γ ), u ∈ [0, 2π) be
a parametric circular density, known up to a parameter γ . Then,

fq(z; θ) = 2πg (2π (F(x;α) − qF(y;β))) f (x;α)) f (y;β)) q = ±1 (1)

is a parametric toroidal density with support [0, 2π)2, known up to the parameter
vector θ = (α, β, γ ), having the marginal densities f (x;α) and f (y;β) [3]. Equa-
tion (1) is a typical example of a copula-based construction of a bivariate density,
obtained by decoupling the margins from the joint distribution. When the binding
density g is the uniform circular distribution, say g(x) = (2π)−1, thenEq. (1) reduces
to the product of the marginal densities. Otherwise, the dependence between x and y
is captured by the concentration of g: when g is highly concentrated, the dependence
is high; when g is more diffuse, dependence is low. Finally, the constant q = ±1
determines whether the dependence between x and y is positive (q = 1) or negative
(q = −1). Additional details on copula-based methods that use a circular binding
density to specify bivariate and multivariate densities can be found in [4].

The proposed hidden Markov model can be described as a dynamic mixture
of copula-based toroidal densities. To illustrate, let z = (zt , t = 1, . . . , T ), zt =
(xt , yt ), xt , yt ∈ [0, 2π), be a toroidal time series. We assume that the distribution
of the data is driven by the evolution of an unobserved Markov chain with K states,
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which represents (time-varying) latent classes and can be specified as a sequence
u = (ut , t = 1, . . . , T ) of multinomial variables ut = (ut1 . . . utK ) with one trial
and K classes, whose binary components represent class membership at time t . The
joint distribution p(u;π) of the chain is fully known up to a parameterπ that includes
K initial probabilities πk = P(u1k = 1), k = 1, . . . , K ,

∑
k πk = 1, and K 2 transi-

tion probabilities πhk = P(utk = 1|ut−1,h = 1), h, k = 1, . . . , K ,
∑

k πhk = 1. For-
mally, we assume that

p(u;π) =
K∏

k=1

π
u1k
k

T∏

t=2

K∏

h=1

K∏

k=1

π
ut−1,hutk
hk . (2)

The specification of the HMM is completed by assuming that the observations are
conditionally independent, given a realization of the Markov chain. As a result, the
conditional distribution of the observed process, given the latent process, takes the
form of a product density, say

f (z|u; θ1, . . . , θK ) =
T∏

t=1

K∏

k=1

f (zt ; θk)
utk , (3)

where f (z; θk), k = 1, . . . , K are the K cylindrical densities defined by (1) and
known up to a vector of parameters θk .

The likelihood function of the model is therefore obtained by integrating the joint
density of the observed data and the unobserved class memberships with respect to
the segmentation u, namely

L(π, θ; z) =
∑

u

p(u;π) f (z|u; θ1, . . . , θK ). (4)

By computing the maximum likelihood estimate θ̂ , the cylindrical time series can be
then segmented according to the posterior probabilities of class membership

π̂tk = P(utk = 1 | z; θ̂ ), (5)

based on θ̂ . More precisely, the observation at time t can be allocated to class k� if
π̂tk� ≥ π̂th , for each h = 1 . . . K (maximum a posterior, MAP, allocation).

When the transition probability matrix has equal rows, the model reduces to a
mixture model where observations are clustered by ignoring the information redun-
dancy that is due to temporal correlation. In general, the proposed HMM segments
the series by accounting not only for similarities in the variable space but also in a
temporal neighborhood.
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3 Parameter Estimation

An EM algorithm can be exploited to maximize the likelihood function (4). It is
based on the following complete-data log-likelihood function

log Lcomp(θ,u, z) =
K∑

k=1

u1k logπk +
T∑

t=2

K∑

h=1

K∑

k=1

ut−1,hut,k logπhk

+
T∑

t=1

K∑

k=1

utk log f (zt ; θk). (6)

The algorithm is iterated by alternating an expectation (E) and a maximization (M)
step. Given the estimates π̂s and θ̂s , obtained at the end of the sth iteration, the
(s + 1)th iteration is initialized by the E-step, which evaluates the expected value of
the complete data log-likelihood (6) with respect to the conditional distribution of
the missing values utk given the observed data.

The E step reduces to the computation of the univariate posterior probabilities
of each latent state at time t , π̂tk = P(utk = 1 | z, π̂s, θ̂s) k = 1 . . . K , t = 1 . . . T ,
and the computation of the bivariate posterior probabilities of each pair of states
in two adjacent times, say π̂t−1,t,hk = P(ut−1,h = 1, utk = 1 | z, π̂s, θ̂s) h, k =
1 . . . K , t = 2 . . . T . The task of computing these posterior probabilities from an esti-
mate (π̂s, θ̂s) is generally referred to as theHMM-smoothing numerical issue and it is
typically solved by specifying the posterior probabilities in terms of suitably normal-
ized functions, which can be computed recursively, avoiding unpractical summations
over the state space of latent Markov chain and numerical under- and over-flows. In
this paper, we exploited the HMM-smoothing algorithm that is described by [1].

The M-step of the algorithm updates the estimate (π̂s, θ̂s) with a new estimate
(π̂s+1, θ̂s+1), by maximizing the expected value of the complete data log-likelihood
(6), obtained from the previous E step. This expected value is the sum of functions
that depend on independent sets of parameters and can therefore be maximized
separately. Maximization with respect to the transition probabilities πhk , under the
constraints

∑K
k=1 πhk = 1, h = 1 . . . K , provides the closed-form updating formula

π̂hk(s+1) =
∑T

t=1 π̂t−1,t,hk(π̂s, θ̂s)
∑T

t=1 π̂t−1,h(π̂s, θ̂s)
, h, k = 1, . . . , K .

Maximization with respect to the parameters θk of the kth copula-based cylindrical
components reduces to maximize

T∑

t=1

π̂tk f (zt ; θk). (7)
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We can maximize (7) with respect to all the parameters or, more efficiently, we can
take a IFM (inference function formargins [6]) approach. Precisely, (7) can bewritten
as the sum of three components, namely

T∑

t=1

π̂tk f (zt ; θk) = ∑T
t=1 π̂tk log g(2π(F(xt ;α) − qF(yt ;β)); γ ) (8)

+
T∑

t=1

π̂tk f (xt ;αk) (9)

+
T∑

t=1

π̂tk f (yt ;βk) (10)

Accordingly, IFM proceeds by finding the parameter values α̂ and β̂ that respectively
maximize (9) and (10) and then maximizing function (8), evaluated at α = α̂ and
β = β̂, to obtain an estimate of γ .

The procedure outlined above does not produce confidence intervals of the esti-
mates, which however can be computed by taking a parametric bootstrap approach,
by re-fitting the model from a number R of bootstrap samples, simulated from the
estimated model parameters, and computing, for example, the 2.5% and the 97.5%
quantiles of the empirical distribution of each bootstrap estimate.

Simulation of the model is straightforward. First, a sequence of states is simulated
from aMarkov chain with the desired transition probabilities, by repeatedly drawing
samples from a multinomial distribution with K states. Given a sequence of states, a
toroidal observation at time t is obtained by exploiting one of the algorithm suggested
by [4].

4 Application

The proposed methods have been implemented to segment a time series of T =
1326 semi-hourly wind and wave directions, taken in wintertime by the buoy of
Ancona, which is located in the Adriatic Sea at about 30km from the coast. Figure1
displays the scatter plot of the data. Point coordinates indicate the direction (in
radians) from which winds blow and waves travel. For simplicity, these bivariate
observations are plotted on the plane, although data points are actually on a torus.
The interpretation of these data is not easy. While in the ocean wind and wave
directions are strongly correlated, this is not necessarily true in the Adriatic Sea,
due to the complex orography of the basin. The Adriatic Sea is a semienclosed,
long narrow basin, extending for about 800km along the major axis from SE to
NW, with a width of about 200km. In winter, relevant wind events in the Adriatic
Sea are typically generated by the Bora wind, which in the Ancona area blows north
northwesterly along themajor axis of the basin, and by the Siroccowind,which blows
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Fig. 1 Wave directions and heights, as observed by the buoy of Ancona in wintertime (0, π/2, π
and 3π/4 respectively indicate North, East, South and West). For simplicity, the data are plotted on
the plane, although they are points on the torus [0, 2π)2

southeasterly. Waves generated by these winds travel in the same direction of the
winds or slightly rotate along the major axis of the basin. In addition, there are winds
that blow northwesterly, westerly and southwesterly from the Italian coast, along the
minor axis of the basin. Coastal winds generate synchronized waves only when the
waves travel unobstructed, that is, either northwesterly or southeasterly, along the
major axis of the basin. In the case of western winds, waves travel southwesterly.
When, however, coastal winds rotate clockwise, waves tend to travel from north.
This explains the clusters shown in Fig. 1 and suggests the occurrence of a number of
latent wind wave regimes. Estimation of an HMM from these data can be helpful in
clustering the data into a number of toroidal clusters, each associated with a specific
wind-wave distribution.

The proposedHMM requires a parametric specification of the toroidal density (1),
which reduces to the choice of the binding density g and the choice of the marginal
densities f (x;α) and f (y;β) that respectively model the marginal distribution of
the wind and wave direction.

However, depending on the choice of the binding density, the density (1) can
be multimodal [4]. Using multimodal densities in segmentation and classification
problems, such as the one motivating this paper, may unnecessarily complicate the
interpretation of the results. Unimodal densities can however be obtained by using
the wrapped Cauchy as a binding density g [4].

Accordingly, for this study, the binding density has been specified as a centered
wrapped Cauchy

g(u; γ ) = 1

2π

1 − γ 2

1 + γ 2 − 2γ cos(u)
u ∈ [0, 2π).

This circular density depends on a single concentration parameter γ ∈ [0, 1) and
reduces to the uniform circular density when γ = 0.
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Wrapped Cauchy densities that include additional location parameters α1 and β1

have been instead exploited to model the marginal distributions of wind and wave
direction, say

f (x;α) = 1
2π

1−α2
2

1+α2
2−2α2 cos(y−α1)

x ∈ [0, 2π) (11)

f (y;β) = 1
2π

1−β2
2

1+β2
2−2β2 cos(y−β1)

y ∈ [0, 2π) (12)

The proposed toroidal density is therefore obtained by taking a wrapped Cauchy den-
sity that binds wrapped Cauchy marginals, a model known as the bivariate wrapped
Cauchy model [5].

A number of models have been estimated from these data, by varying the number
K of components from2 to 5, and associating each componentwithq = ±1. TheBIC
statistic suggested to segment the data according to 4 regimes that are respectively
associatedwith q = 1, 1,−1, 1. Table1 displays the estimates under these four latent
states, along with bootstrap percentiles, computed by simulating 400 samples.

Table1 displays the estimates of the parameters of the 4 toroidal densities and
Fig. 2 shows the shapes of the related distributions and the segmented observations.
We can observe that the estimated transition probabilitymatrix (Table1) is essentially
diagonal, suggesting that the assumption of independent samples (i.e. a transition
probabilitymatrixwith equal rows) is, in this example, unrealistic. Themodel clusters
the data into well-separated groups, which can be interpreted as latent wind wave
regimes. Components 1 and 4 are, respectively, associated with Bora and Sirocco
events. In the Ancona area, Bora blows north northeasterly along the major axis
of the basin, while Sirocco blows southeasterly. Waves generated by these winds
travel in the same direction of the winds or slightly rotate along the major axis of
the basin. Components 2 and 3 are instead associated with coastal winds, which
generate waves that tend to travel along the major axis of the basin. As a result,
waves travel in a direction that is weakly correlated with the wind direction. Overall,
the model describes the plasticity of the wind wave interaction in the Adriatic Sea,
indicating that the joint distribution of wind and wave data changes under different
environmental regimes. Regime switching changes not only themodal directions and
concentrations around these modes but also, and more interestingly, the correlation
structure of the data. As a result, on the one side, the (marginal) weak correlation
between wind and wave directions is explained by the presence of coastal winds
(component 1). On the other side, the model indicates that the wind direction is an
accurate predictor of the wave direction during Bora and Sirocco episodes, but that
the level of accuracy decreases in the presence of coastal winds. In summary, wind
directions should not be used to predict wave directions, without accounting for the
latent, environmental heterogeneity of the data under study.

The rows at the bottom of Table1 include the estimated transition probabilities
of the latent Markov chain. The transition probability matrix is essentially diagonal,
reflecting the temporal persistence of the classes. Such a persistence is shown by
Fig. 3, which displays the posterior probabilities π̂tk that have been obtained at the
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Table 1 Parameter estimates and bootstrap quantiles of a 4-state toroidal hidden Markov model

State 1 Parameter Estimate 2.5% Quantile 97.5% Quantile

Wind location 0.796 0.654 0.863

concentration 0.693 0.682 0.718

Wave location 0.821 0.654 0.946

concentration 0.780 0.682 0.788

Copula dependence 0.283 0.115 0.354

q 1

State 2 Parameter Estimate 2.5% Quantile 97.5% Quantile

Wind location 5.367 4.981 6.091

concentration 0.764 0.755 0.899

Wave location 5.681 4.654 6.263

concentration 0.653 0.622 0.718

Copula dependence 0.203 0.090 0.210

q 1

State 3 Parameter Estimate 2.5% Quantile 97.5% Quantile

Wind location 5.255 3.112 6.006

concentration 0.520 0.210 0.656

Wave location 1.975 1.254 2.063

concentration 0.863 0.782 0.901

Copula dependence 0.368 0.217 0.375

q –1

State 4 Parameter Estimate 2.5% Quantile 97.5% Quantile

Wind location 2.546 2.112 2.916

concentration 0.732 0.110 0.956

Wave location 2.129 1.954 2.763

concentration 0.763 0.682 0.798

Copula dependence 0.079 0.017 0.125

q 1

Destination

Origin State 1 State 2 State 3 State 4

State 1 0.972 0.007 0.000 0.021

State 2 0.015 0.962 0.012 0.010

State 3 0.015 0.029 0.943 0.013

State 4 0.000 0.000 0.031 0.969

convergence of the EM algorithm. The adopted segmentation model hence confirms
that the sea surface in the study area tends to alternate relevant marine events with
periods of good sea conditions.

Figure2 displays the contour plots of the 4 toroidal densities (right side) and the
scatterplot of the points (left side), colored with grey levels that are proportional
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Fig. 2 Segmentation of a time series of wind and wave directions. Left: observations colored with
grey levels according to the estimated membership probabilities of each class (black indicates a
probability equal to 1). Right: contour plot of state-specific copula-based densities

to the estimated posterior probabilities (5) of class membership (black indicates
1). Remarkably, most points are black, indicating that the model segments the data
according to well separated latent classes.

By computing the proportion pk of the data that have been MAP-allocated to
each class k, we obtain the estimated marginal distributions

∑
k pk f (y, β̂k) and

∑
k pk f (y, β̂k) of the data, overlapped on the observed histograms in Fig. 4. These
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Fig. 3 The estimated posterior probabilities of the four latent states for each half hour in the study
period

Fig. 4 Marginal
distributions of the data:
observed (histogram) and
estimated by the model
(continuous bold line) for
wind (top) and wave
(bottom) directions
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pictures indicate a reasonable goodness of fit of the estimated marginal distributions,
which can be improved by choosing a larger number K of components, if desired.
Figure5 indicates the estimated marginal densities under each state.
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Fig. 5 The estimated
marginal density (continuous
bold line) and the estimated
marginal densities under
each state for wind (top) and
wave (bottom) directions
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5 Discussion

A novel HMM is introduced for segmenting toroidal times series according to a
finite number of latent classes, associated with toroidal densities that describe the
distribution of the data under each class. The model parsimoniously accommodates
temporal auto-correlation, multimodality and circular correlation. It flexibly allows
for any marginal distributions that is required by a specific case study. Parametric
inference is relatively inexpensive from a computational viewpoint. In a case study
of wind-wave data, the model segmented a time series of wave and wind directions
according to intuitively appealing latent classes, providing a parsimonious descrip-
tion of wave dynamics in terms of interpretable environmental regimes.

Acknowledgements Francesco Lagona was supported by the 2015 PRIN supported project ‘Envi-
ronmental processes and human activities: capturing their interactions via statistical methods’,
funded by the Italian Ministry of Education, University and Scientific Research.



446 F. Lagona

References

1. Bulla, J., Lagona, F., Maruotti, A., Picone, M.: A multivariate hidden Markov model for the
identification of sea regimes from incomplete skewed and circular time series. J. Agric., Biol.
Environ. Stat. 17, 544–567 (2012)

2. Coles, S.: Inference for circular distributions and processes. Stat. Comput. 8, 105–113 (1998)
3. Johnson, R.A., Wehrly, T.E.: Some angular-linear distributions and related regression models.

J. Am. Stat. Assoc. 73, 602–606 (1978)
4. Jones, M.C., Pewsey, A., Kato, S.: On a class of circulas: copulas for circular distributions.

Ann. Inst. Stat. Math. 67, 843–862 (2015)
5. Kato, S., Pewsey, A.: A Möbius transformation-induced distribution on the torus. Biometrika

102, 359–370 (2015)
6. Kim, G., Silvapulle, M., Silvapulle, P.: Comparison of semiparametric and parametric methods

for estimating copulas. Comput. Stat. Data Anal. 51, 2836–2850 (2007)
7. Lagona, F.: Copula-based segmentation of cylindrical time series. Stat. Probab. Lett. 144, 16–22

(2019)
8. Lagona, F.: Correlated cylindrical data. In: Ley, C., Verdebout, T. (eds.) Applied Directional

Statistics: Modern Methods and Case Studies, Chapman and Hall/CRC, New York, pp. 45–59
(2018)

9. Lagona, F., Picone, M., Maruotti, A., Cosoli, S.: A hidden Markov approach to the analysis of
space-time environmental data with linear and circular components. Stoch. Environ. Res. Risk
Assess. 29, 397–409 (2014)

10. Lagona, F., Picone, M.: Maximum likelihood estimation of bivariate circular hidden Markov
models from incomplete data. J. Stat. Comput. Simul. 83, 1223–1237 (2013)

11. Lagona, F., Picone, M.: A gaussian-von mises hidden markov model for clustering multivariate
linear-circular data. In: Giudici, P., Ingrassia, S., Vichi, M. (eds.) Statistical Models for Data
Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer,
Heidelberg, pp. 171–179 (2013a)

12. Mastrantonio, G.: The joint projected normal and skew-normal: a distribution for poly-
cylindrical data. J. Multivar. Anal. 165, 14–26 (2018)



A Biased Kaczmarz Algorithm for
Clustered Equations

Alessandro Lanteri, Mauro Maggioni and Stefano Vigogna

Abstract The Kaczmarz method is an iterative algorithm for solving overdeter-
mined linear systems by consecutive projections onto the hyperplanes defined by the
system equations. The method has a wide range of applications in signal processing,
notably for biomedical imaging in X-ray tomography. It has been shown that select-
ing the hyperplane randomly at each iteration guarantees exponential convergence
to the solution. We propose here a new implementation of the Kaczmarz method
for clustered equations. When the hyperplanes are grouped into directional clusters,
we draw the projection promoting sparse high-variance clusters. This leads to an
improvement in performance, as we show in several numerical experiments. Some
applications to image reconstruction are presented.

Keywords Image reconstruction · Kaczmarz method · Randomized algorithm ·
Overdetermined linear systems

1 Introduction

In many applications, one aims to recover a signal x ∈ C
n from m linear measure-

ments
br = a∗

r x ar ∈ C
n r = 1, . . . ,m. (1)

A. Lanteri (B)
University of Torino, Turin, Italy
e-mail: alessandro.lanteri@unito.it

M. Maggioni
Johns Hopkins University, Baltimore, USA
e-mail: mauro.maggioni@jhu.edu

S. Vigogna
University of Genova, Genoa, Italy
e-mail: vigogna@dibris.unige.it

© Springer Nature Switzerland AG 2019
A. Petrucci et al. (eds.), New Statistical Developments in Data Science,
Springer Proceedings in Mathematics & Statistics 288,
https://doi.org/10.1007/978-3-030-21158-5_33

447

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21158-5_33&domain=pdf
mailto:alessandro.lanteri@unito.it
mailto:mauro.maggioni@jhu.edu
mailto:vigogna@dibris.unige.it
https://doi.org/10.1007/978-3-030-21158-5_33


448 A. Lanteri et al.

For example, br may be cross-sectional scans of some object x . When the number
of observations is large comparing to the dimension, i.e.m � n, the implementation
of standard linear solvers such as Gaussian elimination and singular-value decom-
position may be prohibitive, requiring O(mn2) operations.

The Kaczmarz method, introduced in [3] and rediscovered later in [2], is an
iterative method which approximates the solution of a linear system without loading
the whole matrix and within a number of iterations possibly independent of the
number of rows. This feature makes it very appealing when dealing with large-scale
overdetermined systems

Ax = b, (2)

where A = [a1 · · · am]∗ is a full rankm × nmatrix and b = [b1, . . . , bm]T . The basic
idea is beautifully simple: since x is the intersection of the hyperplanes defined by
the Eqs. (1), one will get close to x starting from an initial guess and projecting
successively onto such hyperplanes in iterative fashion. In formulas, the (i + 1)th
iteration of the Kaczmarz method is

xi+1 := xi + (bri − a∗
ri x

i )
ari

‖ari ‖22
. (3)

Note that the solver takes one projection per iteration, picking one row ari at a time.
In its classical version, the algorithm runs cyclically through the equations in the

given order:
ri := i mod m + 1. (4)

It turns out, however, that shuffling the sequence can have a dramatic impact on how
fast (3) will approximate the solution (Fig. 1). For example, drawing the hyperplane
randomly at each iteration (with or without replacement) may speed up the conver-

Fig. 1 Intuitive representation of theKaczmarzmethod. The number of iterations needed to achieve
a desired accuracy strongly depends on the order in which the hyperplanes are picked
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gence. In this direction, Strohmer and Vershynin proposed a randomized Kaczmarz
algorithm (RKA) [4], where at each iteration the hyperplane is selected with proba-
bility proportional to its directional energy, namely

P{ri = r} := ‖ar‖22/‖A‖2F . (5)

By means of such randomization, they prove that the mean squared error (MSE) of
the N th iterand obeys

E‖xN − x‖22 ≤ ‖x0 − x‖22 (1 − κ(A)−2)N , (6)

where κ(A) := ‖A‖F‖A−1‖2 ≥ √
n is the scaled condition number of A. This esti-

mate shows that the Kaczmarz approximation converges exponentially to the true
solution.Vieweddifferently, this estimates says that the expected number of iterations
Nε needed to achieve a desired accuracy ε is

Nε ≤ O

(
κ(A)2 log

1

ε

)
.

Thus, if the matrix A is well conditioned, say κ(A)2 = O(n), RKA will converge in
O(n) iterations, independently of the number of equations m. Since each iteration
(3) takes O(n) time and the computation of the density (5) costs O(mn), RKA will
compute a solution in O(mn + n2) operations, as opposed to the usual O(mn2) of
Gaussian elimination. Furthermore, RKA works on one n-dimensional array at a
time, drawn from an m-dimensional array of probabilities, reducing the auxiliary
space complexity from O(mn) to O(m + n).

While RKA as proposed by [4] picks the rows according to (5), other densities are
of course possible, and may be better depending on specific properties of the matrix
A. As it has been observed in [1], the solution to (2) is invariant to independent
scalings of the rows of A, hence (6) can be generalized for arbitrary row-selection
laws. Indeed, for a generic distribution

pr := P{ri = r} r = 1, . . . ,m , (7)

one has
E‖xN − x‖22 ≤ ‖x0 − x‖22 (1 − κ(A, p)−2)N (8)

with κ(A, p) := ‖ (diag(‖a1‖2, . . . , ‖am‖2)A)−1 diag(p1, . . . , pm)−1/2‖2. This begs
the question of finding a density (7) maximizing the convergence of (8) for a given
matrix A. In fact, the MSE can be computed exactly, and the research of the best
probabilities can be formulated as a convex optimization problem (see [1]). However,
solving such problem might be impractical, and a principled, more direct strategy to
choose a good performing distribution may be preferable in dealing with a class of



450 A. Lanteri et al.

coefficient matrices, rather than computing the optimal solution for each matrix in
the class.

We propose a choice of row-selection law under the assumption that the matrix
A features a particular clustered structure. We think of A as a measurement set-
ting. Whether such setting has been given or designed, some of its measurements
might be more alike, and some groups of similar measurements might have larger
or smaller cardinality than others. For instance, the rows of A may represent mea-
surements taken from several groups of sensors, each of which spanning more or
less directions. Or again, different subsets of equations may correspond to different
frequency bands sampled at various rates. In such configurations, the solver could
favor blocks of equations with higher linear independence, and counterbalance the
effect of oversampled redundant information.

To this end, we need to choose a notion of distance defining the clusters, and
work out quantifiable properties of sparsity and linear independence. Consisting of
consecutive projections, the Kaczmarz procedure is directional by nature, hence it is
reasonable to group together hyperplanes having similar orientation. The rows of A
define such orientations up to an arbitrary scaling factor, therefore we seek clusters
C1, . . . ,CK of normalized rows as clusters of points on the (n − 1)-dimensional unit
sphere. The statistical variance σ 2

k of a cluster is a measure of the linear indepen-
dence of the corresponding block of rows, while the cardinality mk is indicative of
its redundancy. In light of these considerations, we will define the extraction prob-
ability of a row to be directly proportional to the standard deviation and inversely
proportional to the cardinality of the cluster containing that row:

P{ri = r} := σk(r)/mk(r)∑m
r=1 σk(r)/mk(r)

, (9)

where k(r) is the index of the cluster of the r -th row, i.e. ar ∈ Ck(r), and σ 2
k(r), mk(r)

denote the variance and the cardinality, respectively, of Ck(r). The distribution (9)
will encourage directional variability and compensate for unbalanced sampling. We
call our method a Biased Kaczmarz Algorithm (BKA). Note that, unlike RKA, the
implementation of BKA is completely invariant under arbitrary scalings.

The paper is organized as follows. In Sect. 2we illustrate the algorithm and discuss
its time and space complexity. In Sect. 3 we show the empirical convergence of our
algorithm and compare its performance with the Random Kaczmarz Algorithm.
We use synthetic data in Sect. 3.1, and apply the method to Lenna’s picture and a
snapshot of the moon in Sect. 3.2. We finally collect some considerations and draw
our conclusions in Sect. 4.
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2 Biased Kaczmarz Algorithm

We describe here our Biased Kaczmarz Algorithm (BKA, Algorithm 1). BKA
requires as input the linear system to be solved, that is, a coefficient matrix A ∈ C

m×n

and constant terms b ∈ C
m , and the number of iterations N to be performed, the

default value being 10n. If available, it can be provided with the clustering struc-
ture of A, encoded in the clusters labels k ∈ {1, . . . , K }m . Given these inputs, the
first step of the algorithm consists in normalizing each equation a∗

r x = br by ‖ar‖2.
If the cluster labels k are not assigned, BKA will perform a K -means step (cross-
validating if the number of clusters K is also unknown). Once k is determined, the
algorithm will compute the total variance σ̂ 2

k and the cardinality m̂k of each cluster.
The extraction probabilities p̂r will then be computed according to Eq. (9). After a
random initialization, BKAwill iteratively performEq. (3), drawing the rows accord-
ing to the density computed in the previous step. The output of the algorithm is the
approximate solution x̂ ∈ C

n of the system Ax = b obtained at the N th iteration.

Algorithm 1: Biased Kaczmarz Algorithm
Input : A ∈ C

m×n : coefficient matrix
b ∈ C

m : constant terms
N ≥ 1: number of iterations (default value is 10n)
K ≥ 1: number of clusters (optional)
k ∈ {1, . . . , K }m : cluster labels (optional)

Output: x̂ ∈ C
n : approximate solution of Ax = b

1 normalize each row: [a∗
r , br ] ← [a∗

r , br ]/‖ar‖2, r = 1, . . . ,m;
2 if K is provided and k is not provided then
3 compute k using the K -means algorithm;
4 end
5 if K and k are not provided then
6 compute K and k using a cross-validated K -means algorithm;
7 end
8 compute each cluster total variance σ̂ 2

k and cardinality m̂k , k = 1, . . . , K ;
9 compute density weights: p̂r ← σ̂k(r)/m̂k(r), r = 1, . . . ,m;

10 initialize x0 arbitrarily;
11 for i = 1 to N do
12 r0 ← r with probability p̂r/

∑m
r=1 p̂r ;

13 xi+1 ← xi + (br0 − a∗
r0 x

i )ar0 ;
14 end
15 return x̂ ← xN .

Computational Complexity

The time complexity of BKA for a well conditioned matrix is O(mn + n2), of which
O(mn) to compute row norms, clusters and variances, and O(n2) to iterate (3).
When the clustering structure is known a priori, the auxiliary space complexity is
O(m + n) as forRKA. If necessary, the K -means step increases the space complexity
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from O(m + n) to O(mn + m + n). Nevertheless, the clusters need to be learned
only once for a fixed setting A, and can then be used to resolve several signals x .
Therefore, after a one-off step demanding O(mn)memory, each resolution will only
need to store O(m + n) numbers.

3 Numerical Results

In this sectionwepresent some experiments to show the performance of our algorithm
in comparison with the Randomized Kaczmarz Algorithm [4], both on synthetically
generated data (Sect. 3.1) and on real images (Sect. 3.2).

3.1 Empirical Rates

In our numerical simulations we generate A with n = 100, m = 5,000 and K = 2.
Each row a∗

r is generated from a distribution

w1N (μ1, Inσ 2
1 ) + w2N (μ2, Inσ 2

2 )

w1 + w2
,

and then normalized by its �2-norm. We draw x from the standard n-dimensional
normal distribution and takeb asb = Ax .We apply K -means to the rowsof A in order
to obtain two clusters, and compute their respective empirical standard errors σ̂1, σ̂2

and cardinalities m̂1, m̂2. We apply both the Randomized and the Biased Kaczmarz
Algorithm. In RKA, the rows are selected at random with uniform probability, while
BKA picks a row with probability proportional to σ̂1/m̂1 if it belongs to the first
cluster, or σ̂2/m̂2 if it belongs to the second.

In Fig. 2wedisplay the results of our numerical simulations for different choices of
ratios σ1/σ2 and w1/w2. We fixedμ1 andμ2 as the versors of the first two coordinate
axes. For each setting, the experiment is repeated 50 times. Each plot in Fig. 2 shows,
for both RKA and BKA, all 50 “error trajectories”, the “average error trajectory”
and the standard deviation bands. One “error trajectory” is the natural logarithm of
the error ‖x − xi‖2 against the iteration i . As expected, when one cluster has higher
variability and a lower number of points than the other cluster (Fig. 2a, b), BKA
significantly outperforms RKA. When w1 = w2, but there is a consistent difference
between the variability of the two clusters (Fig. 2c, d), BKA still significantly outper-
forms RKA. In the case where the cluster with more variability also have more points
(Fig. 2e) BKA performs slightly better than RKA. As expected, when σ1 = σ2 and
w1 = w2 (Fig. 2f) the two algorithms perform in the same way, being the extraction
density of BKA nearly uniform. Overall, the simulations shown in Fig. 2 confirm
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Fig. 2 Comparison of the rates of convergence of BKA and RKA applied to a matrix with m =
5,000 rows and n = 100 columns. These figures show, in different experiment settings, the “error
trajectories” of 50 randomly-selected trials ofBKAandRKA(light blue and light gray, respectively),
the average trajectories (solid blue for BKA and solid black for RKA) and the standard deviation
bands (dotted blue for BKA and dotted black for RKA)

that a biased approach promoting the extraction of rows from clusters with higher
variability can improve considerably the performance of the Kaczmarz method.

3.2 Applications to Image Reconstruction

We now apply our method for the reconstruction of images from irregular redundant
equations clustering in separate regions of the frequency (Sect. 3.2.1) or space domain
(Sect. 3.2.2).

3.2.1 Clusters in Frequency

Our goal is to reconstruct a picture from a sequence of integrals of its Fourier trans-
form. If such integrals are supported on different frequency bands, the reconstruction
procedure should first seek to recover the lowest frequencies, wheremost of the infor-
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(a) Image (b) Fourier transform (c) Box and annulus

Fig. 3 Lenna’s picture (a), the logarithmic magnitude of its Fourier transform (b), and the decom-
position of the frequency plane into a low frequency box and a high frequency annulus (c)

(a) True image (b) RKA approximation (c) BKA approximation
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Fig. 4 True image (a) at a resolution of 100 by 100 pixels, and approximations obtained after
2,000,000 iterations of RKA (b) and BKA (c). BKA reconstructs the image with very few imper-
fections, while the RKA approximation is still very poor. d shows the “error trajectories” of RKA
and BKA (black and blue line, respectively)

mation is stored. When using a randomized Kaczmarz method, an unbalanced set of
measurements may adversely affect the selection of low frequency integrals, forcing
the solver to persist in exploring uninformative directions. An excess of high fre-
quency observations may in fact bias the extraction density, taking up the computing
resources with the retrieval of small coefficients. In the following we show how our
algorithm can prevent this issue, and compare the result with what is obtained by
drawing uniformly.

For our experiment we picked x as the Fourier transform of a reduced grayscale
version of Lenna’s picture (Fig. 3a). The image is 100 by 100 pixels, hence n =
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10,000. The magnitude of x , in logarithmic scale, is shown in Fig. 3b.We divided the
frequency plane in two regions of approximately even area: a central low frequency
box of side length 70, and the complimentary high frequency annulus (Fig. 3c). Each
equation in the system is a weighted sum of pixels intensities supported in one of the
two regions. We took m = 5n equations, drawing the non-zero coefficients from a
Gaussian distributionN (1, 0.5), and then normalizing.Wegenerated 0.2mequations
on the low frequency box, and 0.8m equations on the high frequency annulus. In
Fig. 4 we compare the approximations of the image obtained using RKA (Fig. 4b)
and BKA (Fig. 4c). After 2,000,000 iterations, BKA has recovered the image almost
perfectly, while RKA is still far. Figure4d displays the “error trajectories” of RKA
and BKA.

3.2.2 Clusters in Space

In this example we simulate a situation where a geospatial analysis has collected
uneven information, capturing unequal amounts of data on equally important regions
of space. Our method removes the statistical bias leading to a better uniform recon-
struction.

(a) True image (b) RKA approximation (c) BKA approximation
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Fig. 5 True image (a) at a resolution of 100 by 100 pixels, and approximations obtained after
100,000 iterations of RKA (b) and BKA (c). BKA reconstructs the image with very few imperfec-
tions, while the RKA approximation is poor in the upper region and less accurate in the lower one.
d shows the “error trajectories” of RKA and BKA (black and blue line, respectively)
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In this test x is as a grayscale 100 by 100 picture of lunar craters (Fig. 5a). Each of
them = 5n (n = 10,000) equations is a weighted sum of pixels intensities supported
either in the upper or lower half of the image. The non-zero coefficients are generated
from a Gaussian distribution N (1, 5), and then normalized. The upper and lower
regions have been sampled with 0.2m and 0.8m equations, respectively. Figure5
shows the results obtained from the application of RKA (Fig. 5b) and BKA (Fig. 5c).
After 100,000 iterations, BKA recovers the picture pretty well. On the other hand,
RKA does a poor job on the upper half and is still less accurate in the lower half. We
plot the “error trajectories” in Fig. 5d.

4 Conclusions

We presented a new scale-invariant randomized implementation of the Kaczmarz
method with the aim of improving its performance on sets of equations featuring
a clustered directional structure. Our row-selection law is designed to favor blocks
of equations with higher linear independence and level out the bias coming from
redundant or poor local sampling. If the clustering structure of the system is known,
our algorithm has the same computational complexity as the Randomized Kaczmarz
Algorithm [4], otherwise it requires in addition a preliminary K -means step, to be
performedonce for afixed set of coefficients and all desired unknowns.Our numerical
experiments show that our algorithm achieves faster convergence rates than [4] in
several configurations of the aforementioned setting.
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17-1-0280 and NSF ATD 1737984.
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Nearly Unbiased Probability Plots
for Extreme Value Distributions

Antonio Lepore

Abstract Probability plots allow for a straightforward analysis of the data and inter-
pretation of results also by non-statisticians and still play a central role in today’s
software. In this chapter, probability plots for extreme value (EV) distributions are
developed based on the generalized least-squares distribution fitting method and on
convenient approximations of the first two moments of order statistics from the stan-
dard EV distributions. The proposed probability plots lead to graphical estimators of
parameters that are shown to be nearly unbiased through the use of pivotal indices that
avoid the massive numerical investigations usually presented for similar purposes in
the recent literature. Although more efficient biased solutions can be theoretically
found, the obtained parameter estimators achieve also adequate performances in
terms of mean square deviation with respect to those derived through probability
plots that have been presented separately in the literature as the most effective for
EV distributions. Lastly, a real-case study is presented concerning wind speed data
collected at a candidate wind farm site in Southern Italy. The results demonstrate
how the proposed probability plot can effectively support EV analysis and assist
practitioners in the selection of the turbine class to be installed.

Keywords Graphics and data visualization · Linear unbiased estimators ·
Location-scale distributions · Extreme value distribution · Gumbel distribution

1 Introduction

Practitioners still use software tools that adopt probability plots to check the fit
provided by the selected model graphically and, in general, to have deeper insight
and visual understanding of statistical information (e.g., outliers and leverage points).
Classical probability plots are essentially obtained by reporting ordered observations
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of a random variable (i.e., empirical data) against the corresponding estimates F̂i
of the parent cumulative distribution function (cdf) (i.e., the plotting position) on
axes that are properly scaled to achieve linearity. Then, as the parent distribution
is required to belong to the location-scale family, the distribution parameters are
estimated through the slope and the intercept of the line of best fit [12].

However, the choice of the distribution fittingmethod, of the response variable and
the corresponding relative accuracy are not always clear [11]. This has given rise to
recent controversial contributions on probability plot and plotting position definitions
[2, 3, 5–8, 12, 17–21]. Relevant and comprehensive overview of probability plots
and plotting positions can be found in [11, 15]. This work, instead, is focused on
the most recent and relevant contributions in the special case of extreme value (EV)
distributions.

Pirouzi Fard andHolmquist [21] define plotting positions based on simple approx-
imations of variances and covariances for order statistics from the standard EV dis-
tribution for maxima. Pirouzi Fard [20] provides a comparison between the ordi-
nary least-squares (OLS) and the generalized least-squares (GLS) distribution fitting
methods for probability plots when the data set arises from the standard EV distri-
bution for minima. Cook and Harris [3] find out in the case of the EV distribution
for maxima that the classical Gringorten estimator [9] of the order statistic mean
gives satisfactory results only asymptotically, even if it is commonly used for small
sample sizes. Fuglem et al. [8] support previous work by Cunnane [4] and state that
plotting position should be only defined according to the selected parent distribution.
On the opposite side, Makkonen et al. [18, 19] support the classical distribution-free
approach [10]. In this work, the rationale behind the graphical best linear unbiased
estimators (BLUEs) [7], which have recently appeared in the literature, is exploited
and elaborated for the particular case of EV distributions.

The remainder of the chapter is as follows. In Sect. 2 the problem ismathematically
stated and the newprobability plots are proposedbasedon convenient approximations
of the first two moments of order statistics for the EV distributions. In Sect. 3 the
estimators of the distribution parameters obtained by the proposed probability plot are
shown to be nearly unbiased and are compared through proper pivotal (parameter-
free) indices that avoid the massive numerical investigation usually presented for
similar purposes even in the recent literature. In Sect. 4, a real-case study is presented
concerning wind speed data collected at a candidate wind farm site in Southern
Italy. The results show how the proposed probability plot can effectively support EV
analysis and assist practitioners in the selection of the turbine class to be installed.
Section5 draws conclusions and practical directions.
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2 Approximation of the BLUEs of Extreme Value
Distribution Parameters via Probability Plots

The EV cdf for minima (referred to as extreme value distribution in [20, 21]) and for
maxima (referred to Gumbel as in [3, 11, 12]) are, respectively, as follows

Fm (x; a, b) = 1 − e−e
x−a
b

, FM (x; a, b) = e−e− x−a
b ; b > 0. (1)

As is known, EV standard cdf’s can be obtained by setting a = 0 and b = 1 and
have inverse functions that are infinitely differentiable. Performances of graphi-
cal approaches for EV distributions are influenced by the choice of the plotting
position formula, the distribution fitting method, as well as the covariance matrix
(or its approximation) especially if the sample size is small [11]. In general, the
best results are achieved by using the ordered observations of a sample of size N ,
x(1), . . . , x(i), . . . , x(N ), as response variable and themean of the standard order statis-
tics, μ(1), . . . , μ(i), . . . , μ(N ), as explanatory variables. This choice is mandatory for
the GLS distribution fitting method, which explicitly requires the specification of the
covariance σ(i, j) between the i-th and j-th standard order statistics (1 ≤ i ≤ j ≤ N )
in order to obtain BLUEs of distribution parameters [7].

In this chapter the approximations suggested in [7] for μ(i) and σ(i, j) truncated to
the fourth order term and given by

μ̃(i) =G−1 (pi ) + 1
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(3)

are conveniently elaborated for the EVdistribution forminima (resp.maxima), where
G (x) = Fm (x; 0, 1) (resp. G (x) = FM (x; 0, 1)), pi = i/ (N + 1), and G−1(k) (x)
is the k-th derivative of the inverse function G−1 (x). In order to do that, it is worth
noting that simple closed forms are available for μ(1) and σ(1,1) in the case of the EV
distribution for minima

μ(1) = −γ − ln N , σ(1,1) = π2/6 (4)

and for μ(N ) and σ(N ,N ), in the case of the EV distribution for maxima



460 A. Lepore

μ(N ) = γ + ln N , σ(N ,N ) = π2/6 (5)

where γ is the Euler’s constant. Therefore, expressions (4) and (5) can be more
opportunely used in place of (2) and (3). Note that the GLS regression of μ̃(i) on the
sample observations, through the covariance approximation σ̃(i, j), lead to graphical
estimators for a and b that are not unbiased because of the approximations. Hence,
based on the results drawn in [11], it can be of interest to compare the latter approach
with the most effective ones among those mentioned in the introduction and summa-
rized in the first two rows of Table1, namely Pirouzi Fard (PF) [20] and Hong and Li
(HL) [12]. In general, each approximation μ̃(i) is associated with a plotting position
F̂i = G−1

(
μ̃(i)

)
and vice versa.

The last two rows of Table1 report the Cook and Harris (CH) [3] and the classical
Gumbel (GU) [10] plotting position approach that rely instead on the use of the OLS
method. Note that PF only applies to the EV distribution for minima, whereas HL
and CH only apply to that for maxima.

3 Simulation Study and Results

A simulation study is carried out by drawing M = 105 pseudo-random samples from
the EV distributions for minima and maxima at sample sizes N = 5 and N = 30 to
compare

(i) the goodness of the approximations used for μ(i)

(ii) (when applicable) the goodness of the approximations used for σ(i, j)

(iii) the bias and the efficiency of graphical estimators for a and b

of the proposed approach and its competitors listed in Table1.

Table 1 Summary of the plotting positions F̂i = G−1
(
μ̃(i)

)
used by the competing probability

plots (1 ≤ i ≤ j ≤ N ). Covariance approximations σ̂(i, j) indicate the use of GLS distribution fitting
method instead of OLS. The correction factors γNk (k = 1, . . . , 5) are defined as in [12]

F̂i σ̂(i, j)

PF

⎧
⎨

⎩
1−e

−e−γ

N i = 1

i−0.4866
N+0.1840 elsewhere

⎧
⎪⎨

⎪⎩

π26 i = j = 1

(i−0.469)(N+0.831−i)−1(N+0.073)−1

ln N+0.779− j
N+0.356 ln N+0.8314−i

N+0.356

elsewhere

HL

⎧
⎨

⎩
e− e−γ

N i = N

i−0.37+0.232/
√
N

N+0.144+0.232/
√
N

elsewhere

⎧
⎪⎨

⎪⎩

π26 i = j = N

N+1− j−γN1

(N+2−γN2)( j−γN3) ln
i−γN5

N+1−γN4
ln

i−γN3
N+1−γN4

elsewhere

CH i−0.439+0.466/ ln(N )
N+0.113+0.466/ ln(N )

–

GU i
N+1 –
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Table 2 RMSE and MAD achieved at different sample sizes by the proposed approach and the
four alternatives listed in Table1 (bold text highlights the smallest value of each column)

EV distribution for minima EV distribution for maxima

RMSE MAD RMSE MAD

N = 5 N = 30 N = 5 N = 30 N = 5 N = 30 N = 5 N = 30

Proposed 0.00355 0.00057 0.01453 0.00193 0.00355 0.00057 0.01453 0.00193

PF – – – – 0.01564 0.00288 0.02531 0.00324

HL 0.00756 0.00282 0.24872 0.32144 – – – –

CH 0.04349 0.00743 – – – – – –

GU 0.23592 0.12330 – – 0.23592 0.12332 – –

Slightly differently from [11, 12, 21], the following root mean square error
(RMSE) index is used to compare (i)

RMSE =
√

∑N

i=1
(μ(i) − μ̃(i))2/N , (6)

whereas the maximum absolute deviation (MAD) is used to compare (ii)

MAD = max
1≤i≤ j≤N

|σ(i, j) − σ̃(i, j)|. (7)

Note that RMSE defined by (6) can be determined for any μ(i), differently to that
used in [11]. Then, to perform comparison, the actual distribution parameters are
chosen equal to standard values. This is necessary as the indices in (6) and (7) are
still not pivotal (parameter-free), they may vary according to the actual distribution
parameters. The exact evaluation of μ(i) and σ(i, j) in (6) is obtained through numer-
ical integration [16]. The lower the RMSE and the MAD, the better the proposed
approximation of μ(i) and σ(i) are, respectively. The values of RMSE and MAD
achieved by μ̃(i)and σ̃(i, j) calculated through the proposed approach are compared
in Table2 with those calculated through the probability plots listed in Table1.

The proposed approximations for the means and the covariances of the order
statistics from the EV distributions achieve the best performances at each considered
sample size (N = 5, 30) both in terms of RMSE and MAD.

Finally, the deviations

e(i,N ) = μ(i) − μ̂(i), i = 1, . . . , N , (8)

which are used byHong andLi [12] and contribute to Eq. (6), are further considered in
order to compare (i) resulting from the proposed probability plots and its competitors
reported in Table1 for every rank i and at different sample sizes N . Usually (i) is
referred to as the descriptive ability of the plotting position.
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Fig. 1 Deviation e(i,N ) achieved by PF (dot-dashed line) and the proposed (solid line) approxima-
tion of μ(i) at sample size N = 5 for the EV distribution for maxima
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Fig. 2 Deviation e(i,N ) achieved by PF (dot-dashed line) and the proposed (solid line) approxima-
tion of μ(i) at sample size N = 30 for the EV distribution for maxima

In Figs. 1 and 2, the deviations e(i,N ) defined in Eq. (8) achieved by the proposed
approximation andPF are plotted versus i at sample sizes N = 5 and N = 30, respec-
tively, in the case of EV distribution for maxima. From these figures, it is clear that
the proposed approximations outperform the PF ones, which drastically overestimate
μ(i) as i increases, whereas the proposed one tends to zero. In particular, Fig. 2 shows
that, when N = 30, the proposed approximation is very close to the exact value at
each i (unless i = 30); whereas the one corresponding to the PF probability plot
underestimates μ(i) at i = 2 and i = 30 and considerably overestimates μ(i) else-
where. Trivially note that when i = 1 both the PF approximations and the proposed
ones achieve the same and exact value (Eq. (5)).
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Similarly, in the case of EV distribution for minima, Figs. 3 and 4 display the
deviations e(i,N ) achieved by the proposed approximation and the competitor HL
and CH versus i at sample sizes N = 5 and N = 30, respectively. In particular,
at sample size N = 5 (Fig. 3) the proposed plotting positions are clearly shown to
provide the more accurate approximation of the first moment of the EV distribution
for minima with respect to the competing ones. Whereas, the deviations achieved
by the CH approximation are always the larger. At sample size N = 30 (Fig. 4),
the better performance of the proposed approximation is generally confirmed unless
i = 1, 3, 4 where the HL approximation performs slightly better.

Moreover, the following indices, namely the pivotal root deviation (PRD) and
the pivotal absolute bias (PAB) of estimators â and b̂, are introduced in order to
compare (iii)

PRD
(
â
) =

√
E{(â − a

)2}/b2, PRD
(
b̂
)

=
√

E{
(
b̂ − b

)2}/b2 (9)

PAB
(
â
) = |E{â} − a|/ b, PAB

(
b̂
)

= |E{b̂} − b|/b. (10)

It is trivial to show that (9) and (10) are pivotals (see, e.g., [7, 14]) and therefore, the
obtained results hold for any parameter. The indices PRD and PAB of the estima-
tors â and b̂ resulting from the proposed approach are reported in Table3 with those
resulting from the competitors listed in Table1, as well as those of the classical maxi-
mum likelihood estimators (MLEs). As anticipated, note that CH andGU approaches
do not involve the approximation of σ(i, j), thus do not apply for MAD (see Eq. (7)).

Table 3 PRD and PAB of â and b̂ at different sample sizes by the proposed approach and the
four alternatives listed in Table1 (bold text highlights the smallest value of each column; MLEs are
highlighted in italic text and are excluded from the comparison)

EV distribution for minima EV distribution for maxima

PRD
(
â
)

PAB
(
â
)

PRD
(
b̂
)
PAB

(
b̂
)

PRD
(
â
)

PAB
(
â
)

PRD
(
b̂
)
PAB

(
b̂
)

N = 5 Proposed 0.480 0.002 0.408 0.001 0.480 0.002 0.408 0.001

PF – – – – 0.482 0.019 0.404 0.010

HL 0.480 0.008 0.415 0.004 – – – –

CH 0.481 0.046 0.462 0.006 – – – –

GU 0.484 0.004 0.614 0.249 0.484 0.004 0.614 0.249

MLE 0.493 0.008 0.377 0.158 0.493 0.008 0.377 0.158

N = 30 Proposed 0.193 0.001 0.147 0.000 0.193 0.001 0.147 0.000

PF – – – – 0.193 0.002 0.147 0.002

HL 0.194 0.002 0.149 0.002 – – – –

CH 0.197 0.005 0.185 0.001 – – – –

GU 0.195 0.006 0.216 0.090 0.194 0.006 0.216 0.090

MLE 0.194 0.013 0.145 0.025 0.194 0.013 0.145 0.025
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Table3 confirms that the graphical estimators of distribution parameters resulting
from the proposed approach achieve the smallest bias (PAB) and the highest effi-
ciency (i.e., the smallest PRD) even when plugging in the proposed approximations
for large sample sizes (N = 30). However, as expected, some rather biased estima-
tors can be slightly more efficient at small sample sizes (N = 5), namely PF and HL.
According to [11], note that graphical estimators of distribution parameters that rely
on the OLS instead of the GLS distribution fitting method, namely CH and GU, are
always the least efficient.

4 Real-Case Study: Wind Speed Data and Wind Turbine
Classification

Many structural design criteria and engineering applications are based on the statis-
tical analysis of EVs. In particular, the selection of the optimal class of turbines to be
installed in a wind farm is based on the analysis of the wind speed maxima, and thus
can be supported by the proposed probability plot. In particular, in this case study,
wind speed data are collected from March 2013 to April 2017 at a Southern Italian
site that is a candidate for the construction of a wind farm. The 4 years’ worth of
data consist of monthly maxima of 10min average wind speeds.

The regulation IEC 61400-1 [13] of the International Electrotechnical Commis-
sion (IEC) specifies the design classes with respect to wind speed site-specific con-
ditions. The practical goal is to identify the optimal wind turbine class that has both
adequate robustness with respect to the site-specific wind loads and the higher energy
production. In fact, the higher the class, the higher the energy production, but the
lower the robustness of the wind turbine. Table4 reports the wind turbine classifi-
cation that appears in [13] based on the maximum acceptable reference wind speed,
Vref , which is defined as the wind speed percentile with a return period RP = 50
years. To carry out the analysis, the R software environment [22] is employed to
extract the monthly maxima and obtain the probability plot in Fig. 5, as well as the
95% generalized prediction intervals constructed as in [7]. This figure shows the
data are satisfactorily explained by the EV distribution for maxima. Accordingly,
location and scale parameters â and b̂ are calculated as well as the coefficient of
determination R2, in the special case of tied values and the GLS distribution fitting
method [1]. The attained population line then allows practitioners to calculate, for
the candidate site, the aforementioned reference wind speed Vref = 37.2m/s, which
has return period RP = 50 years (600months) (i.e., the wind speed with percentile
rank at 1 − 1/600 = 0.9983). From Table4, we see that the obtained reference wind

Table 4 Vref parameter for wind turbine class determination [13]. The higher the class, the higher
the energy production, the lower the robustness of the wind turbine

Wind turbine
class

I II III IV

Vref (m/s) 50 42.5 37.5 30
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Fig. 5 Monthly maximum wind speeds from March 2013 to April 2017 reported on by Nearly
unbiased EV probability plot with corresponding 95% confidence bands and generalized coefficient
of determination R2

speed value is located under the threshold 37.5 m/s and thus turbines of class III
must be selected for the candidate site. This is indeed perfectly consistent with the
experts’ usual choice of turbines adopted in similar neighboring wind areas.

5 Conclusions

By conveniently approximating the first two moments of the standard extreme value
distributions for minima and maxima, a new probability plot has been proposed. A
simulation study has shown that the location and scale parameter estimators derived
from this probability plot (i.e., graphical estimators) outperform the usual estima-
tors obtained through the most popular competing probability plots appearing in
the literature at all the considered sample sizes (N = 5, 30) and their efficiency is
(comparatively) satisfactory. Moreover, the proposed probability plots are shown to
have higher descriptive ability than competitors that have been presented separately
in the literature as the most effective for extreme value distributions for minima and
maxima. In other words, the resulting population line drawn by the proposed proba-
bility plot does not suffer from the typical bias related to classical probability plots,
which is relevant especially for small sample sizes. In view of these results, the pro-
posed probability plots can be regarded as straightforward tools for the analysis of
the data and transfer of the results also to non-statisticians. In this way, practitioners
do not necessarily need to abandon graphical methods, which are easy to compute
and interpret, and opt for analytical solutions, irrespective of the purpose of the anal-
ysis. Nevertheless, in all the simulation scenarios, the worst results have been mostly
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achieved by the classical Gumbel plotting positions. Therefore, this conclusion inci-
dentally disproves the claim for the exclusive use of distribution-free approaches in
the plotting position controversy raised in the last decade.
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Estimating High-Dimensional Regression
Models with Bootstrap Group Penalties

Valentina Mameli, Debora Slanzi and Irene Poli

Abstract Currently many research problems are addressed by analysing datasets
characterized by a huge number of variables, with a relatively limited number of
observations, especially when data are generated by experimentation. Most of the
classical statistical procedures for regression analysis are often inadequate to deal
with such datasets as they have been developed assuming that the number of obser-
vations is larger than the number of the variables. In this work, we propose a new
penalization procedure for variable selection in regression models based on Boot-
strap group Penalties (BgP). This new family of penalization methods extends the
bootstrap version of the LASSO approach by taking into account the grouping struc-
ture that may be present or introduced in the model.We develop a simulation study to
compare the performance of this new approach with respect several existing group
penalization methods in terms of both prediction accuracy and variable selection
quality. The results achieved in this study show that the new procedure outperforms
the other penalties procedures considered.
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1 Introduction

New powerful technologies can produce datasets characterized by a huge number of
variables, for example in fields such as genomics and micro-array experimentation.
Such datasets motivate the recent development of efficient new statistical tools for
modelling and inference. Recent research focuses on variable selection procedures
based on different families of penalizations for regression models, and these proce-
dures seem to provide estimated models with good predictive performances (see [8]
and [14] for reviews of this research). We can identify three main classes of methods
in this research. The first class is related to individual variable selection; among the
procedures of this class, the Least Absolute Shrinkage Selection Operator (LASSO)
proposed in [20] is surely the most used and well-known. In LASSO the number of
selected variables is limited by the sample size and it presents a penalty that tends to
select only one or a few from a set of highly correlated relevant variables. The second
class is related to group variable selection and the third class to bi-level selection
procedures. When a grouping structure is introduced into a model, interest may rely
entirely on selecting relevant groups and not individual variables, but when both
individual variables and groups are relevant, bi-level selection procedures can be
adopted to select both the relevant groups and variables within these groups. Exam-
ples of procedures in these two classes include the group LASSO method [22], the
Smoothly Clipped Absolute Deviation penalty [7], the Minimax Concave Penalty
method [23], the composite MCP [4], the group Bridge penalty [12] and the group
exponential LASSO [3]. These selection procedures have been introduced with the
aim of overcoming some limitations of the original LASSO approach and present
a number of appealing properties in terms of both estimation accuracy and variable
selection properties.

Addressing the problem of estimating regression models with high dimension-
ality and a small number of observations, as in problems where data are generated
by laboratory experimentation, it can be useful to adopt bootstrap re-sampling tech-
niques [6, 9]. These techniques are in fact able to change the initial dataset and gain
information from the multiple pseudo-datasets resulting from the bootstrap proce-
dure. This approach was suggested in a LASSO framework by [2]. In this paper
we make a further development to this approach by introducing a new family of
penalization procedures obtained by combining the properties of penalized group
procedures with bootstrap re-sampling methods. We call this approach Bootstrap
group Penalties (BgP). BgP is based on the idea that group sparsity can be a very
useful informative element in inferring statistical model with high dimensionality.
In fact, this approach combines and extends the concepts of the individual and group
variables penalties with re-sampling techniques. We evaluated the performance of
BgP conducting some simulation studies and we noticed that this new approach is
able to capture the benefits of sparsity in high-dimensional settings both at individual
and group level.
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The paper is organized as follows. In Sect. 2 we present the model and shortly
review the most relevant penalized regression procedures. In Sect. 3 we introduce the
novel BgP family of penalized procedures and in Sect. 4 we evaluate the performance
of the approach in simulation studies. Section5 presents some concluding remarks.

2 The Regression Model and Variable Selection Penalties

We consider a multiple linear regression model

y = Xβ + ε, (1)

where y ∈ R
n is the response vector, X is the n × p design matrix, n denotes the

sample size and β = (β1, . . . , βp)
′ represents the vector of regression coefficients

where the number of covariates p is large and exceeds the number of observations n
(p > n). Moreover, ε = (ε1, . . . , εn) ∈ R

n is the error vector, and we assume εi , for
i = 1, . . . , n have 0mean, constant varianceσ 2 and they are independentwith normal
distribution, ε ∼ N (0, σ 2 I ). Themodel is generally referred as the high-dimensional
regression model.

To address the estimation problem of this model, the assumption that is commonly
adopted is that the parameter β is sparse in the sense that many of its elements are
zero, i.e. most of the covariates have small or no effect on the response variable.

Several penalized regression procedures, also known as regularized regression
methods, have been proposed in the statistical literature to address the inferential
problem of regression models with the number of covariates much larger than the
number of observations. In these procedures, the vector of regression coefficients β

is estimated by minimizing the penalized least squares criterion Q(·) composed of
two elements: the least square loss function, 1

2n (y − Xβ)T (y − Xβ), and a penalty
function P(·):

Q(β) = 1

2n
(y − Xβ)T (y − Xβ) + P(β|λ). (2)

The penalty function P(·) controls the complexity of the model. There are several
possible choices for the penalty function tailored to the scientific problem under
consideration. The parameter λ is a tuning parameter which can be assessed by using
cross validation technique or information criteria such as the Akaike or the Bayesian
information criteria [1, 21]. Depending on the type of variable selection, penalized
regression approaches can be classified into three wide classes: individual, group and
bi-level variable selection procedures.

In the following we shortly describe the main variable selection procedures based
on penalizations.
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2.1 Individual Variable Selection

Among the most prominent penalized procedures for individual variable selection,
we mention the Least Absolute Shrinkage Selection Operator (LASSO) proposed by
[20] which is based on the L1 penalty, i.e. P(β|λ) = λ

∑p
j=1 |β j |. One characteristic

of the LASSO penalty is the ability to allow both continuous shrinkage and auto-
matic variable selection; it is able to exclude irrelevant variables and produce sparse
estimators. Despite its good properties, the LASSO procedure has some drawbacks
as described by [7]. LASSO tends in fact to select as informative variables also those
variables not actual relevant for the model. Moreover, it is well known that LASSO
does not achieve selection consistency properties when the parameter λ is chosen
by minimizing the prediction error [16]. It also presents some difficulties in case of
correlated covariates.

Adifferent penalty for individual variable selection is the SmoothlyClippedAbso-
lute Deviation (SCAD) penalty function [7], defined as:

P(β|λ, γ ) = λ

p∑

j=1

∫ |β j |
0

I{t≤λ} + ((γ λ − t)+/(γ − 1)λ)I{t>λ}dt, with λ ≥ 0 and γ > 2,

(3)
where IA denotes the indicator function of a set A and a+ represents the non-negative
part of a, and λ e γ are two tuning parameters.

Finally, we mention the Minimax Concave Penalty (MCP) described by [23]

P(β|λ, γ ) = λ

p∑

j=1

∫ |β j |

0
(1 − (t/γ λ))+dt, with λ ≥ 0 and γ > 1. (4)

The parameter γ controls the concavity in both SCAD and MCP penalties: small
values of γ indicate that the penalty tends to be concave. It is interesting to note also
that when γ → ∞ both SCAD and MCP reduce to the LASSO penalty.

2.2 Group Variable Selection

In high dimensional regression settings, approaches based on the identification of
groups of covariates has been proposed in the literature to reduce the dimensionality
of the model [4, 17]. The information contained in the identified grouping structures
can be exploited in the regression model in order to enhance its prediction capacities.
Considering p covariates grouped into K non-overlapping clusters, the multivariate
linear regression model is described in the following form:

y =
K∑

k=1

X̃k β̃k + ε, (5)
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where X̃k is the n × dk design matrix formed by the dk covariates belonging to the
k-th cluster, β̃k = (βk1, . . . , βkdk ) ∈ R

dk is the vector of regression coefficients of the
k-th cluster and ε is the error vector.

One of the earliest group penalizations was proposed by [22] as an extension
of the LASSO. This procedure, called group LASSO (gLASSO), penalizes the L1

norms of the groups variables coefficients as follows

P(β|λ) = λ

K∑

k=1

ck ||β̃k ||Rk . (6)

Here, the coefficients ck are introduced to adjust the procedure for the group
size. In addition, Rk are dk × dk positive definite matrices ([22]), which satisfies
||β̃k ||Rk = β̃T

k Rk β̃k . A common choice for Rk is the Gram matrix based on X̃k , i.e.
Rk = X̃ T

k X̃k/n. The group LASSO shows excellent properties in terms of both pre-
diction and estimation errors, and its selection consistency relies on the assumption
that the design matrix satisfies a particular condition (the irrepresentable condition
as defined in [24]) which becomes infeasible in the high-dimensional setting. More-
over, the group LASSO shows superior performance with respect to the standard
LASSO when the strong group sparsity condition is fulfilled; see [13].

Following the group LASSO, other group penalizations have been introduced in
the literature. We mention the group Bridge penalty (gBridge) proposed by [12]
and defined as follows:

P(β|λ, γ ) = λ

K∑

k=1

(|βk1| + · · · + |βkdk |
)γ

, (7)

where 0 < γ < 1 is a tuning parameter.
A class of penalties with group variable selection properties, which encompasses

the group LASSO, could be obtained by considering the family of the following
penalties proposed by [14] and defined as follows:

P(β|λ, γ ) =
K∑

k=1

ρλ̃,γ (||β̃k ||Rk ), (8)

where ρλ̃,γ (·) is a concave function with λ̃ = ckλ. Some possible choices for ρ

include the MCP and the SCAD penalties, which applied to (8) lead to the group
MCP (gMCP) and group SCAD, respectively, as derived in [14].
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2.3 Bi-level Variable Selection

Bi-level variable selection penalties can be obtained by combining individual and
group variable penalties [4], and they are defined as

P(β|λ, γO , γI ) =
K∑

k=1

ρλ,γO

⎛

⎝
dk∑

j=1

ρλ,γI

(|βk j |
)
⎞

⎠ (9)

where the penalty ρλ,γO (·), called the outer penalty, incorporates the information
present in the group structure, while the penalty ρλ,γI (·), called inner penalty, incor-
porates information on the individual covariates. The twopenalties are able to identify
relevant variables by exploiting the information contained in the cluster structure both
at individual and at group levels. The parameters γO and γI are tuning parameters
with γO = dkγIλ/2. Simulation studies on the tuning parameters γO and γI could be
found in [4] and references therein. Possible choices for the outer and inner penalties
include theMCP and the SCAD penalties. In particular, an interesting special case of
this class of penalties is the composite Minimax Concave Penalty (cMCP), defined
by [4], which can be obtained from equation (9) by using as inner and outer penalties
the MCP penalty given in equation (4). It should be also noted that the group Bridge
and the group LASSO can be embedded into the framework of penalties as in equa-
tion (9). In fact, the group Bridge can be represented in this framework by assuming
as outer penalty the Bridge penalty and as inner penalty the LASSO penalty, the
group LASSO can be constructed by assuming the Bridge penalty and the ridge
penalty as ρO and ρI , respectively. An alternative approach for constructing bi-level
selection penalties has been developed in [18] by considering convex combination of
individual- and group-level variable selection methods. Another penalty belonging
to this third class of penalties is the group exponential LASSO (gel) proposed by
[3]; this penalty belongs to the class of concave 1-norm group penalties [14], and is
defined as

P(β|λ, τ) =
K∑

k=1

ρλ,τ

(
||β̃k ||1

)
, (10)

where ρ is the exponential penalty, i.e. ρλ,τ (θ) = λ2

τ

{
1 − exp

(− τθ
λ

)}
, λ and τ are

two tuning parameters; τ represents the rate of exponential decay. If τ < 1 the objec-
tive function in equation (2) is strictly convex with a unique global minimum; see
[3].

These selection procedures have been introduced in literaturewith themain objec-
tive to overcome some limitations of the LASSO estimator. Aim of this contribution
is in fact to improve the performances of these procedures in a high-dimensional
regression setting, when the number of observations is small.
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3 The Family of Bootstrap Group Penalties (BgP)

In order to address the estimation problem of the multiple linear regression model
characterized by a large number of covariates and a small number of observations, we
introduced a novel family of regression penalties. This family is based on bootstrap
re-sampling technique in combination with group and bi-level variable selection
penalties. We call this new family Bootstrap group Penalties (BgP).

Under the general structure of the multiple regression model defined in equation
(1), we consider n observations (Xi , yi ) ∈ R

p × R, i = 1, . . . , n, and B bootstrap
pseudo-replications of the n pairs (Xi , yi ) and we build the novel procedure accord-
ing to the following steps:

1. We derive B bootstrap replications of the n pairs (Xi , yi ), that is for b = 1, . . . , B,
the subset (Xbi , ybi ) ∈ R

p × R is sampled at random with replacement from the
original training set (Xi , yi ), i = 1, . . . , n. Then at each bootstrap iteration, we
estimate the regression parameters β j , for j = 1, . . . , p, by using a penalized
group (or bi-level) selection procedure.

2. We identify the set Jb of the indices of the covariates selected by the penalized
group (or bi-level) selection procedure at each bootstrap iteration b, namely the
sets

Jb = { j |β̂b
j , j = 1, . . . , p}, b = 1, . . . , B,

where β̂b
j for j = 1, . . . , p are the non-zero coefficients of the covariates selected

at each bootstrap iteration b.
Among all the B sets Jb, only the covariateswith a frequency higher than a defined
threshold π in the B bootstrap replications were identified as the covariates to
include into the model.

3. We estimate the regressionmodel through a penalized group (or bi-level) selection
procedure using only the previously selected covariates.

4 Simulation Studies

We evaluate the performances of the Bootstrap group Penalties family approach by
conducting simulation studies. In particular, we develop two comparative studies to
evaluate the group penalization procedures and the novel corresponding bootstrap
procedures. Among the penalties described in Sect. 2, we consider: the group Bridge
(gBridge), the composite MCP (cMCP), the group Maximum Concave Penalty
(gMCP), the group exponential LASSO (gel) and the group LASSO (gLASSO).
The novel penalties belonging to the BgP family are identified as follows: the Boot-
strap groupBridge (BgBridge), theBootstrap composite cMCP(BcMCP), theBoot-
strap group MCP (BgMCP), the Bootstrap group exponential lasso (Bgel) and the
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Bootstrap group LASSO (BgLASSO). We select B = 500 bootstrap samples, and
to evaluate the robustness of the approach we run 1000 replications for the first
simulation and 500 replications for the second simulation. In the second simula-
tion study the number of replications is fixed to 500 due to higher computational
burden. The performance of the approaches is then evaluated with measures of pre-
diction accuracy and variable selection efficiency: the Predictive Mean Square Error
(PMSE), the Sensitivity measure (the ratio between the number of selected relevant
variables and the number of defined relevant variables), and the Specificity measure
(the ratio between the number of removed non relevant variables and the number of
non relevant defined variables) as defined in [11].

4.1 First Simulation Study: Uncorrelated Covariates

In this simulation we assume a multivariate linear regression model as described
in equation (1) where εi ∼ N (0, σ 2) and σ takes the value 3. We also assume that
covariates were generated from the normal distribution as in the study proposed by
[3]. For the grouping structure, we consider the following setup: 10 groups with 20
variables in each group (p = 200), n = 100, the number of non zero coefficients
is 4 and all the non zero coefficients belong to the same group. To evaluate the
prediction accuracy we split the data into training and testing datasets. The results
of this comparison are presented in Table 1.

Comparing the differentmodel penaltieswe cannotice thatBootstrap groupPenal-
ties family (BgBridge,BcMCP,BgMCP,Bgel,BgLasso) is able to achievemuch
better performances in almost all the comparisons proposed. We can also highlight
the very good results in prediction of Bgel with respect to all the other approaches.

Table 1 Comparison of the performance of penalties procedures based on Predictive Mean Square
Error (PMSE), Sensitivity and Specificity (1000 replications). In bold we present the best perfor-
mance of the models based on the selected penalties

Model penalties PMSE Sensitivity Specificity

gBridge 0.885 (0.176) 0.934 (0.122) 0.843 (0.025)

BgBridge 0.835 (0.293) 1.000 (0.000) 0.907 (0.031)

cMCP 0.936 (0.207) 0.797 (0.190) 0.849 (0.014)

BcMCP 0.839 (0.150) 0.910 (0.136) 0.913 (0.014)

gMCP 1.281 (0.257) 1.000 (0.000) 0.489 (0.077)

BgMCP 1.038 (0.911) 1.000 (0.000) 0.899 (0.040)

gel 0.949 (0.185) 1.000 (0.000) 0.462 (0.083)

Bgel 0.755 (0.608) 0.9998(0.008) 0.937(0.044)

gLASSO 0.924 (0.221) 0.554 (0.497) 0.916 (0.158)

BgLASSO 1.293 (0.544) 1.000 (0.000) 0.652 (0.104)
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This penalization is able to select the actually relevant variables of the model as
suggested by its sensitivity and specificity.

4.2 Second Simulation Study: Correlated Covariates

This simulation, based on the same structure of the multiple linear regression model
as described in the previous simulation study, has been conducted to evaluate the per-
formance of the approach when a correlation structure between covariates is present.
This is motivated by the fact that there are many scientific domains where structures
of grouped predictors arise. Examples include genetic association studies, where
genetic markers from the same gene can be considered a group as in fMRI data anal-
ysis; see [19]. It is obvious that variables belonging to the same group have similar
characteristics, therefore, an higher within-group correlation among the members of
a group is expected. In this simulation study we consider the following setup: 10
groups with 50 variables in each group (p = 500), n = 350. We assume covariates
are generated from a multivariate normal distribution with zero mean and covariance
matrix �p×p = �base + blockdiagonal(�1, . . . , �10). According to [15], we also
assume a correlation structure between covariates: the �base is a p × p symmetric
matrixwith correlation among covariates ρ = 0.1,�k is a 50 × 50 symmetric covari-
ance matrix with within-group correlation ρ = 0.6, for k = 1, . . . , 10. The vector of
regression coefficients is defined as follows (β1, . . . , β60) = (a,−a, a,−a, a,−a)

and (β61, . . . , β500) = (0, . . . , 0)with a = (0, 0, 0.2, 0.25, 0.5, 0, 0, 0.2, 0.25, 0.5),
and with a total number of non zero coefficients equals to 36. We pointed out that in
this simulation the relevant covariates belongs to two different groups. The number
of predictors and the number of non-zero coefficients is the same as proposed in the
paper [15]. To evaluate the prediction accuracy we split the data into training and
testing datasets. The results of this simulation are presented in Table 2.

Table 2 Comparison of the performance of penalties procedures based on Predictive Mean Square
Error (PMSE), Sensitivity andSpecificity (500 replications). In boldwepresent the best performance
of the models based on the selected penalties

Model penalties PMSE Sensitivity Specificity

gBridge 1.39 (0.17) 0.99 (0.01) 0.98 (0.01)

BgBridge 1.31 (0.15) 0.96 (0.03) 1.00 (0.00)

cMCP 1.56 (0.23) 0.94 (0.04) 0.98 (0.01)

BcMCP 1.43 (0.18) 0.95 (0.03) 0.99 (0.00)

gMCP 3.52 (5.05) 1.00 (0.00) 0.82 (0.10)

BgMCP 1.79 (0.23) 1.00 (0.00) 0.86 (0.01)

gel 3.43 (4.08) 1.00 (0.01) 0.77 (0.38)

Bgel 1.52 (0.26) 0.93 (0.02) 0.96 (0.00)

gLASSO 2.45 (0.63) 1.00 (0.01) 0.86 (0.02)

BgLASSO 3.41 (1.55) 0.91 (0.08) 0.91 (0.05)
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From this simulation we can notice that the Bootstrap group Penalties family is
able to improve the PMSE and the Specificity measures in almost all the compared
model penalties as highlighted in bold in Table 2. The exception is just related to
gLASSO as in the previous simulation study. Moreover, the complex structure setup
assumed for this simulation shows the difficulties of gMCP and gel in prediction
and the advantages of the corresponding bootstrap procedures. At last, we would like
to highlight the very good performance of the proposed approach for the BgBridge
in particular achieving the best values in prediction and Specificity.

5 Conclusion

In several fields of research where group structure can be identified in the collected
dataset and the number of observations is too small with respect to the number of
covariates, the combination of different methodologies can help in deriving effective
regressionmodels. The classical statistical procedures for regression can be enhanced
for the analysis andmodelling of such dataset. In thisworkwe propose to combine the
penalized group and bi-level variable selection approaches with bootstrap methods
to handle high-dimensional datasets and small number of observations. The results
of the simulation studies that we conducted suggest that this approach is promising
in estimating reliable and efficient regression models when the number of covariates
exceeds the number of the observations and group structures are detected in the data.
This method could be easily adapted to handle other penalization procedures and
other re-sampling techniques allowing the construction of regression models also in
difficult contexts.

Moreover, the approach can be extended to overlapping groups as they are fre-
quently observed in several research fields.

Appendix

Computational tools: the statistical analyses were performed using the R-project free
software environment for statistical computing. In particular, we use the R-package
grpreg to fit the group-penalized regressionmodels, such as thegel,cMCP,gMCP,
gBridge, gLASSO ([3–5]). LASSO was fitted by using functions of the R-package
glmnet ([10]).
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