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Chapter 12
Yeasts for Bioconversion of Crude Glycerol 
to High-Value Chemicals

Marta Semkiv and Andriy Sibirny

Abstract Biodiesel production is a fast-growing industry. Biodiesel is obtained 
through transesterification of different kinds of oils with methanol. This process 
results in a formation of substantial amounts (up to 10% of a total product mass) of 
the by-product fraction that mainly contains glycerol but also some toxic contami-
nations (spent catalyst, salts after neutralization, residual methanol, methyl esters, 
and free fatty acids), and that is therefore called crude glycerol. Efficient utilization 
of this fraction is imperative to the sustainability of the biodiesel industry. This 
review describes different methods of valorization of the crude glycerol fraction 
with the focus on biotechnological processes conducted by yeasts. In particular, 
production of organic acids, polyols, ethanol, microbial oil, carotenoids, 
γ-decalactone, sophorolipids, heterologous proteins, and biomass is discussed.

Keywords Biodiesel · Crude glycerol · Yarrowia lipolytica · Pichia pastoris · 
Oleaginous yeasts · Citric acid · Erythritol · SCO · Ethanol · Carotenoids

12.1  Biodiesel as an Emerging Sustainable Biofuel

Global warming (caused by increased carbon dioxide emissions), environmental 
pollution, and the threat of exhaustion of world resources of fossil fuels are some of 
the many concerns that had arisen in twentieth century and followed humanity into 
the new millennium. The 2030 Agenda for Sustainable Development, adopted by all 
United Nations Member States in 2015, is a call for action to fight major global 
issues. At its heart are the 17 Sustainable Development Goals, among them goal #7 
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(ensure access to affordable, reliable, sustainable and modern energy for all) and 
goal #13 (take urgent action to combat climate change and its impacts) (https://
sustainabledevelopment.un.org/?menu=1300).

Search for “green”, renewable energy resources that can be used instead of fos-
sil fuels brought to humankind attention among others such options as biogas, bio-
ethanol, and biodiesel. These biofuels are produced from renewable biological 
material and after combustion generate an acceptable level of emissions gases 
(Quispe et al. 2013).

Biodiesel is a liquid biofuel obtained by transesterification (Fig. 12.1) of triglyc-
erides from vegetable oils or animal fats with an alcohol (Fukuda et  al. 2001). 
Biodiesel can be used in diesel engines alone or blended with diesel oil.

First vegetable oil-powered engine was produced by the French company Otto 
and presented at the Paris Exhibition in 1900. Rudolph Diesel also experimented 
with castor oil and animal oils as a possible fuel for locomotive engines (Radley 
2016). But due to the success of petroleum and diesel oil as the cheap fuels, these 
studies did not gain further attention until early 1980 when the study with the sun-
flower oil was conducted in South Africa prompted by diesel oil embargo (Ma and 
Hanna 1999) and the National Program of Vegetable Oils for Energy Purposes 
(PRO-OIL) started to gain momentum in Brazil. But vegetable oils contain, besides 
triacylglycerols, some additional compounds (free fatty acids, phospholipids, ste-
rols, etc.) that complicate its direct usage as a fuel for engines (Kegl 2008). These 
problems can be overcome with the chemical modifications of vegetable oil, such as 
cracking, esterification, and transesterification. The process of fatty acids transester-

Fig. 12.1 Biodiesel production by transesterification of triglycerides from vegetable oils with 
methanol. (Adapted from Smirnov et al. 2018)
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ification was developed to obtain a mixture of long-chain monoalkylic esters 
 (biodiesel). In Europe, biodiesel is produced on an industrial scale since 1992 
(Quispe et al. 2013). Stimulated by tax exemptions and other governmental incen-
tives, world’s biodiesel production increases every year and is expected to reach 
110,000 ML in 2020 (Rodrigues et al. 2017).

Such drastic increase in production was supported by the fact that biodiesel fuel 
has a lot of advantages over the petroleum and diesel oil: it has a higher flash point 
and flammability point which ensures safer storage, loading/unloading, and han-
dling of this material by the drivers and operators (Knothe et al. 2005); it degrades 
more rapidly than diesel fuel, minimizing the environmental consequences in case 
of accidental spills; after combustion, it produces less emissions of contaminants 
(carbon monoxide, particulate matter, polycyclic aromatic hydrocarbons, alde-
hydes, carcinogenic substances) and has no jeopardy due to emissions of sulfur 
dioxide (SO2); and it has good lubricating properties (Romano and Sorichetti 2011). 
Unfortunately, there are several aspects in which biodiesel is inferior to petroleum 
diesel: it has the lower calorific value, which causes slightly higher fuel consump-
tion; it has slightly higher emissions of nitrous oxide; it is less stable than diesel fuel 
and therefore it has short shelf life (up to 6  months); and in pure form, it may 
degrade equipment made from plastic or natural rubber; it may dissolve the deposits 
of sediments from diesel fuel in storage tanks and fuel lines and flushed them into 
the car engine (Romano and Sorichetti 2011). Also, biodiesel has a high freezing 
point – at low temperatures, it tends to quickly lose fluidity that may lead to clog-
ging of filters and damage to the starting system of the engine (Munoz et al. 2012). 
Biodiesel exhibits more corrosive behavior than diesel oil due to the following fac-
tors: it is more hygroscopic and captured water can itself act on the corrosion or 
cause the hydrolysis of biodiesel or promote microbial growth; the presence of 
impurities like methanol, free glycerol, free fatty acid, and catalyst residues (Na and 
K) also promotes metallic corrosion; and biodiesel dissolves more metallic parts 
than diesel due to its good lubricity, and these trace metals in solution enhance bio-
diesel degradation and therefore corrosion (Haseeb et al. 2011; Singh et al. 2012). 
The intensity of biodiesel self-oxidation and its corrosive behavior depends on the 
amount of the double bonds in unsaturated fatty acids, so the oils with high concen-
trations of polyunsaturated fatty acids are undesirable for biodiesel production 
(Borsato et al. 2012). All mentioned disadvantages are significantly reduced when 
biodiesel is used in blends with diesel fuel (Romano and Sorichetti 2011). Blends 
with diesel fuel are designated as “B∗,” where “∗” is the number reflecting the per-
centage of biodiesel in the blend. For example, “B2” indicates a blend with 2% 
biodiesel and 98% petroleum diesel (Romano and Sorichetti 2011). In Brazil, gov-
ernment initiates increase in biodiesel percentage in the blends almost every year. 
For example, in 2008, all diesel blends sold had to be at least B3; in 2009, B4; and 
in 2010, B5 (Mota et al. 2009). B20, a mixture of 20% biodiesel and 80% diesel, is 
scheduled for introduction in 2020 (Pousa et al. 2007).

Theoretically, biodiesel can be produced from any source containing oil, but not 
all sources produce biodiesel that complies with strict international standards for the 
quality fuel. The most commonly used vegetable oils are rapeseed (in European 
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Union), soybean (in United States of America, Brazil, Argentina), palm (in Asian 
and Central American countries), and sunflower oils (Romano and Sorichetti 2011) 
(Fig. 12.2). Latest advantages in bioengineering even allowed the obtaining of oil-
seed crops with high content of specific fatty acids (e.g., high omega-7 monounsatu-
rated fatty acid), which improved ignition quality and oxidative stability of produced 
biodiesel (Beaudoin et al. 2014). But there are some issues in using oilseed plants: 
for their cultivation, productive agricultural lands are used that can be otherwise 
exploited to obtain more food. That’s why attempts have been made to produce 
biodiesel from nonedible feedstock (second-generation biodiesel). Nonedible, 
drought-tolerant oil plants (e.g., jojoba, Jatropha) that were grown on nonused land 
can be considered as such feedstock. Another good example can be waste cooking 
oil – a residue from cooking process of industries, restaurants, and bars. Although it 
was shown to be somewhat inferior in comparison with virgin vegetable oils due to 
the high content of free fatty acids that can be converted to soaps during transesteri-
fication process (Thompson and He 2006), after some adjustments (e.g., changing 
the catalysis from basic to acidic), it can be used for biodiesel production. Finally, 

Fig. 12.2 Feedstock for production of the first-, second-, and third-generation biodiesel
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very promising source of oils is microalgae which were included in the so-called 
third-generation biofuels group (Rodrigues et al. 2017). Being fast-growing, auto-
trophic microorganisms (Yang et al. 2011), they produce 200 more oil per unit of 
area than the best-performing oil plants (Demirbas 2009).

The most common process of biodiesel production is the transesterification (also 
called alcoholysis) of vegetable oil (or animal fat) with short-chain alcohols, includ-
ing methanol, ethanol, butanol, and amylic alcohol. This reaction results in the for-
mation of a mixture of esters of the fatty acids and glycerol (Meher et al. 2006). The 
glycerol layer is denser than the ester one; therefore, it deposits at the bottom of the 
reactor and can be removed by simple decantation. Methanol (CH3OH) and ethanol 
(C2H5OH) are the most widely used alcohols for biodiesel production. Most of the 
production facilities prefer methanol as it offers easier ester phase separation from 
glycerol, better alcohol recovery, and higher reaction speed (Munoz et al. 2012). 
Some enterprises consider ethanol route as more ecologically friendly, though in 
ethanolysis the mixture of esters and glycerol is more stable, complicating the sepa-
ration and purification of biodiesel fraction (Meher et al. 2006). Important parame-
ter of transesterification reaction is alcohol/oil ration. The stoichiometry of the 
reaction requires three molecules of alcohol for each molecule of triacylglycerides; 
however, as the reaction is reversible, excess amount of one of the reagents is 
required to drive the process to completion. So the most biodiesel facilities use at 
least 6 to 1 M ratio of methanol to oil. In case of ethanol, molar ratio between 9:1 
and 12:1 gave the best results (Sinha et al. 2008). The majority of the excess alcohol 
(up to 80%) ends up in the crude glycerol fraction after the reaction, so producers 
tend to recover the alcohol by distillation and reuse it (Miesiac 2003).

Different catalysts can be used for transesterification reaction: basic or acidic, 
homogeneous or heterogeneous, and chemical or biological. The most commonly 
used process of biodiesel production driven by basic catalysis is faster than in case 
of acidic catalysis, and the end product has less corrosive properties (Ma and Hanna 
1999). Substances used for basic catalysis are the alkoxides (Schwab et al. 1987) 
and hydroxides (Aksoy et al. 1990) of sodium or potassium. The alkoxides of alkali 
cations such as potassium methoxide (CH3ONa) are the most reactive catalysts, but 
the hydroxides (KOH and NaOH) are more accessible in price, so they are being 
used more (Munoz et al. 2012). KOH is more expensive than NaOH; however, there 
is less soap formation using KOH (Fukuda et al. 2001). The excessive amounts of 
basic catalyst can decrease the acidity index of biodiesel, but it can also cause the 
formation of soaps, hampering the separation of glycerol from esters. That’s why 
the base catalysis is preferable when the oils do not contain a lot of water and free 
fatty acids. In case of high free fatty acids content, a pretreatment by saponification 
or the acid catalysis for previous esterification of these acids is recommended 
(Marchetti et al. 2007). Heterogeneous acid catalysts have many advantages: they 
simultaneously promote alcoholysis of triglycerides and esterification of free fatty 
acids, reduce the number of needed purification steps, and, as it forms the insoluble 
phase, give the possibility to recover and reuse the catalyst in a continuous process 
(Munoz et al. 2012). The biological or enzymatic catalysis is also a very perspective 
option as it is more specific, does not promote side reactions, and allows the simple 

12 Yeasts for Bioconversion of Crude Glycerol to High-Value Chemicals



394

recovery of glycerol, the total esterification of free fatty acids, and the use of mild 
conditions in the process. The main drawbacks of this technology are the high cost 
of enzyme production, extraction, and purification as well as their instability in 
solution (Singh and Singh 2010). These problems can be partially resolved by the 
immobilization of enzymes, which allows their reuse. Many processes of biodiesel 
production using immobilized lipases have been developed (Shieh et al. 2003).

Although transesterification is the most important step in biodiesel production, 
additional steps are required to obtain a quality product (Meher et al. 2006). As was 
already mentioned, the mix of two components (esters and glycerol) should be sepa-
rated after the completion of the transesterification reaction, and esters fraction 
should be purified from the excess of catalyst, water, and alcohol.

There are some other technological processes that can be used for biodiesel pro-
duction, for example, the esterification catalyzed by the sulfonic or sulfuric acids. 
This reaction is quite slow and requires temperatures above 100 °C for over 3 hours 
and a large alcohol excess, but the obtained esters yield is very high (99%) 
(Al-Widyan and Al-Shyoukh 2002; Fukuda et al. 2001).

12.2  Crude Glycerol as a by-Product of Biodiesel Industry

The by-products of biodiesel production are glycerol, biodiesel washing wastewa-
ters, methanol, and solid residues (Varanda et al. 2011). As was already mentioned, 
glycerol is a major by-product of transesterification reaction that can and has to be 
removed from biodiesel as it can promote the formation of deposits and sediments, 
reducing the engine life (Munoz et al. 2012). The fraction which is being removed 
after the transesterification reaction contains not only glycerol but many other com-
pounds. It is most commonly referred to as crude glycerol. Crude glycerol makes up 
to 10% of a total product mass, so 1 kg of crude glycerol is produced per 12.6 L of 
biodiesel (Dobroth et al. 2011). Due to rapid increase in biodiesel production, by 
2020, global annual crude glycerol production is expected to reach of 4200 ML 
(Okoye and Hameed 2016). In fact, the global market is flooded with excessive 
crude glycerol, which led to a drastic decrease in its price from $400 per ton in 2001 
to less than $100 per ton in 2011 (Quispe et al. 2013). Large-scale biodiesel produc-
ers refine obtained crude glycerol to a chemically pure substance and sell it to the 
food, pharmaceutical, or cosmetics industries. However, the process of crude glyc-
erol purification is quite expensive and inaccessible for small- to moderate-scale 
biodiesel producers (Thompson and He 2006). As more and more crude glycerol is 
generated, its disposal starts to be a problem. Biodiesel producers together with 
researchers must seek alternative applications for crude glycerol. Some of them 
have already been developed – e.g., using crude glycerol as a cheap organic solvent, 
as a raw feedstock for the production of value-added compound, as building block 
to biomaterial synthesis, etc. (Yang et al. 2012).

Utilization of unpurified crude glycerol as a feedstock in industrial processes is 
hampered by the inconsistent nature of this fraction: its content varies strongly, 
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depending on the kind of oil and the process employed for biodiesel synthesis. It can 
be in liquid or solid (Nanda et al. 2014) state and generally has high pH (above 10) 
and low density. The main contaminants in crude glycerol are water, ash (mainly 
originated from the KOH catalyst), calcium, magnesium, phosphorous, sulfur, 
methanol (or other alcohol that was used for biodiesel production), soaps (products 
of reaction between free fatty acids from oil and basic catalyst), free fatty acids 
(FFA), methyl esters of fatty acids (FAME), and glycerides. Glycerides, soaps, FFA, 
and FAME are sometimes generally named nonglycerol organic matter (NGOM). 
Methanol can be partially eliminated from crude glycerol fraction by biodiesel pro-
ducers; that’s why its content varies from 0.5% up to 20–30% when such process 
did not take place. Glycerol content in crude glycerol samples also differs signifi-
cantly, ranging from 20 to 80 wt% (Hu et al. 2012a). Thompson and He analyzed 7 
types of crude glycerol produced from different feedstock and found out that all of 
them have more or less similar chemical composition except of the crude glycerol 
produced from waste cooking oil which had much more soaps and dissolved unre-
acted glycerides and esters (Thompson and He 2006). In contrast to these findings, 
when Hansen et  al. analyzed 11 crude glycerol samples from different biodiesel 
plants in Australia, the substantial differences between these samples were demon-
strated (Hansen et al. 2009).

The impurities in crude glycerol may significantly affect its implementation in 
industrial processes. It was shown that soap and methanol inhibit the production of 
docosahexaenoic acid from crude glycerol by algae (Pyle et al. 2008) and the high 
content of Na or K can substantially suppress the microbial activity during the 
anaerobic digestion of crude glycerol for production of biogas (Santibanez et al. 
2011). Interestingly, some studies showed that certain impurities in crude glycerol 
can actually benefit the production of certain compounds such as bio-oil (Xiu et al. 
2010) and polyurethane foams (Hu et al. 2012b). It is necessary to analyze the com-
position of crude glycerol to develop the right way of its application.

12.3  Potential Applications of Crude Glycerol

12.3.1  Crude Glycerol Purification

As was already mentioned, successful utilization of crude glycerol adds to biodiesel 
industry profitability. The most obvious application of crude glycerol is to refine it 
to high-purity glycerol which can be used by food, cosmetic, and pharmaceutical 
industries. Three types of refined glycerol can be distinguished based on their 
purity: (1) “technical grade” glycerol that can be used as a reagent for chemical 
synthesis but not in food or pharmacy; (2) United States Pharmacopeia (USP), glyc-
erol appropriate for food and pharmaceutical products; and (3) Food Chemicals 
Codex (FCC), glycerol appropriate for use in food (Quispe et al. 2013).
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The choice of the refining process for crude glycerol should be based on its 
chemical composition and the desired level of purity of the final product. The  typical 
refining process includes three stages: acidification/neutralization, a vacuum evapo-
ration to remove methanol (or ethanol) and water, and the final refining to achieve 
high purity. On the first stage, a strong acid (e.g., phosphoric acid, hydrochloric 
acid, or sulfuric acid) is added followed by neutralization of solution with, for 
example, NaOH. Several reiterations of these two steps can be performed (Javani 
et al. 2012). Acid reacts with soaps and convert them into free fatty acids, which 
results in a formation of a cloudy solution. After settling for some time, this solution 
separates into three phases: top fatty acid phase, middle phase with glycerol and 
methanol (or ethanol), and bottom phase with the inorganic salts (Rodrigues et al. 
2017). Nanda et al. compared the performance of hydrochloric acid, sulfuric acid, 
and phosphoric acid in the purification process and found out that phosphoric acid 
was superior to the others as it provided reduction of the time period required for 
phases separation, the formed precipitates were found to be easily separated by fil-
tration, and the obtained phosphates could be directly used as a fertilizer and as 
buffer solution (Nanda et al. 2014).

On the second stage, residual alcohol (methanol or ethanol) is removed by a 
vacuum distillation that prevents glycerol decomposition caused by higher tempera-
tures. Alcohol is removed in order to be used again in transesterification reaction. 
But sometimes biodiesel producers even do not perform the recovery of methanol as 
using new methanol is more cost-effective (Bohon et al. 2011). Obtained after the 
second stage of purification, glycerol can be used as “technical grade” raw material, 
whereas the attainment of a “food grade” glycerol requires the third stage of purifi-
cation. Final purification can be achieved, for example, through ion exchange, acti-
vated carbon absorption, or membrane separation technology (MST) (Rodrigues 
et al. 2017).

The overall process of crude glycerol purification is cumbersome, energy- 
consuming, and expensive, thus prohibitive for small- and average-scale producers 
who must develop other feasible uses for this feedstock.

12.3.2  Production of Heat and Energy from Crude Glycerol

At present, more than 2000 uses for glycerol are known, but most of them require 
purified glycerol (Quispe et al. 2013). Potential applications for nonpurified crude 
glycerol are heat and energy production (e.g., by combustion, production of H2 or 
syngas through steam reforming, production of electricity with microbial fuel cells, 
production of biomethane by anaerobic digestion), implementation as an addition to 
a compost or an animal feed, and thermochemical or biological conversions for 
value-added products (Claude 1999).

Renewable energy can be produced from crude glycerol by means of thermo-
chemical (e.g., pyrolysis and gasification) or biological processes (e.g., biological 
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fuel cells, hydrogen generation, and anaerobic digestion) (Plácido and Capareda 
2016).

Johnson and Taconi reported that the combustion of crude glycerol is a viable 
strategy for its disposal, though not for the large producers of biodiesel (Johnson 
and Taconi 2007). The heat of combustion of the crude glycerol obtained after trans-
esterification of first-use vegetable oils is higher than that of pure glycerol (Lide 
1999), and for crude glycerol obtained from waste cooking oil, this value is even 
higher (Thompson and He 2006). Co-combustion of the crude glycerol with other 
biomass may proffer good results (Thompson and He 2006). But still crude glycerol 
is considered to be cheap, low-quality fuel due to its drawbacks: relatively low heat-
ing value, high self-ignition temperature, and high emissions and salt content. Also, 
crude glycerol combustion causes the formation of highly toxic acrolein, though its 
emission can be brought to the acceptable levels (Rodrigues et al. 2017). Therefore, 
it is better to process crude glycerol in order to obtain more valued fuels – e.g., 
hydrogen or biomethane.

Hydrogen can be produced from glycerol through thermochemical or biological 
reactions. Examples of thermochemical reactions are pyrolysis and gasification, 
steam reforming (Sánchez et al. 2010), supercritical water reforming (Byrd et al. 
2008), or aqueous phase reforming (Tuza et al. 2014).

Pyrolysis is a process of chemically decomposing organic materials at elevated 
temperatures (>300  °C) in the absence of oxygen and, typically, under pressure. 
This process results in a formation of a gas phase (syngas, the mixture of hydrogen 
and carbon monoxide), liquid phase (bio-oil), and a solid phase (biochar). In several 
studies, crude glycerol was used as an auxiliary compound to pyrolyze different 
types of feedstocks (swine manure, lignite, olive kernel, corn straw, etc.), and the 
addition of crude glycerol has been found to increase hydrogen and light hydrocar-
bons concentrations in syngas and the quality of bio-oil (Cheng et al. 2014; Delgado 
et al. 2013; Manara and Zabaniotou 2013; Skoulou et al. 2012). These observations 
reveal the possibility to use crude glycerol as a co-substrate for pyrolysis at the 
thermal conversion plant which can use other agricultural residues of biodiesel pro-
duction (plants’ stems, leafs, pressed seeds, etc.) as main substrate (Plácido and 
Capareda 2016).

Glycerol steam reforming (GSR) provides a possibility to produce high amounts 
of hydrogen using existing steam reforming units. But direct application of crude 
glycerol as a feedstock for steam reforming arises some issues connected with dif-
ficulties in purification of the formed hydrogen and the high deposition of carbon 
and coke during the process which eventually leads to catalyst inactivation 
(Rodrigues et al. 2017).

Biological processes that can be employed for hydrogen production from glyc-
erol are dark fermentation and photofermentation (Ghosh et al. 2012b; Rossi et al. 
2011). Dark fermentation is performed by anaerobic or facultative anaerobic micro-
organisms such as Enterobacter aerogenes (Sarma et  al. 2013), Escherichia coli 
(Gonzalez et al. 2008), Klebsiella sp. (Chookaew et al. 2014), and Clostridium pas-
teurianum (Lo et al. 2013). The efficiency of this process can be improved by modi-
fying the microorganisms using selection (Varrone et al. 2013) or genetic engineering 
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(Gonzalez et al. 2008), by determining the optimal composition of the culture media 
and the optimal reactor conditions (Ngo et al. 2011), and by reducing the inhibitor 
(e.g., methanol and saponified free fatty acids) concentrations (Sarma et al. 2014).

Photofermentation is the process of hydrogen production from organic feedstock 
(usually, organic acids) in the presence of light. Certain purple non-sulfur photosyn-
thetic bacteria can directly transform glycerol into bio-hydrogen (Ghosh et  al. 
2012a; Sabourin-Provost and Hallenbeck 2009). For example, this process can be 
efficiently carried out by bacterium Rhodopseudomonas palustris (Ghosh et  al. 
2012a), which can use also crude glycerol although its growth is inhibited by sapon-
ified free fatty acids from this feedstock (Pott et al. 2013). Alleviation of this inhibi-
tion can be achieved by the pH adjustment and the precipitation of saponified free 
fatty acids with calcium salts (Pott et al. 2014).

Biogas (mixture of methane, carbon dioxide, and other gases) can be generated 
in the process called anaerobic digestion, during which microorganisms break down 
biodegradable material in the absence of oxygen. Crude glycerol could be employed 
as the main (Hutnan et al. 2013) or an additional carbon source (Siles Lopez et al. 
2009) during anaerobic digestion. Crude glycerol has been co-digested with waste 
compounds such as sewage sludge, manure, and food wastes, which has improved 
the methane yield from these raw materials (Alvarez et  al. 2010; Nartker et  al. 
2014). This implies that crude glycerol can be sold to anaerobic digestion plants or 
the biodiesel producers can equip their facilities with anaerobic digestion reactors to 
process crude glycerol together with the other organic wastes left from their main 
activity (Plácido and Capareda 2016).

Also, it was shown that crude glycerol can be used as substrate for microbial fuel 
cells, which produce electricity (Feng et al. 2011).

12.3.3  Using Crude Glycerol in Agriculture

It has been suggested that crude glycerol can be composted (Brown 2007) and used 
in fertilizers or as an animal feed supplement (Chung et al. 2007).

It was attempted to add crude glycerol to the ration of dairy cows (Chung et al. 
2007; DeFrain et al. 2004), pigs (Kijora et al. 1995), broiler chickens (Cerrate et al. 
2006), and laying hens (Lammers et al. 2008). Thompson and He showed that crude 
glycerol obtained from the first-use oil samples can be used as a source of carbohy-
drates whereas the crude glycerol from waste cooking oil can be used as a fat sup-
plement in animal feed (Thompson and He 2006). At the same time, scientists 
express concerns about crude glycerol implementation as an animal food additive as 
there is no information about long-term impact of impurities present in crude glyc-
erol (e.g., methanol).

M. Semkiv and A. Sibirny



399

12.3.4  Production of Chemical Compounds from Crude 
Glycerol

Glycerol can be used as a building block for production of chemical compounds 
through thermochemical or biological processes. Some of this processes can employ 
crude glycerol as well, although impurities in crude glycerol often cause undesir-
able side reactions, products of which as well as impurities themselves contaminate 
end product. Here, we will recount a few compounds that can be obtained from 
glycerol and then concentrate our attention on the possible implementation of crude 
glycerol as a feedstock for bioconversion using yeasts.

Crude glycerol can be thermochemically converted into propylene glycol (Chiu 
et al. 2006; Dasari et al. 2005), acetol (Chiu et al. 2006), biopolyols and polyure-
thane foams (Hu et al. 2012b; Luo et al. 2013), acrolein (Cheng et al. 2013), etc. 
Hydrothermal electrolysis of crude glycerol in alkaline biodiesel wastewater at high 
temperatures and pressures produces lactic acid (Yuksel et al. 2011). Crude glycerol 
can be used for glycerolysis of castor oil methyl esters to achieve monoglycerides 
and diglycerides which can be used in the plastic industries (Echeverri et al. 2013). 
Glycerol carbonate can be produced from crude glycerol through transesterification 
with dimethyl carbonate (Plácido and Capareda 2016). It is a valuable compound 
that can be used for production of polyesters, polycarbonates, polyurethanes, poly-
amides, surfactants, lubricating oils, cosmetics, and electrolytic carriers in lithium 
ion batteries (Ochoa-Gómez et al. 2009; Okoye and Hameed 2016) and as a substi-
tute for ethylene or propylene carbonate. Also crude glycerol can be converted to 
mono-, di-, and triacetylesthers in the process of acetylation via esterification 
(Dosuna-Rodríguez and Gaigneaux 2012; Gonçalves et al. 2008). Triacetin (triac-
etylated glycerol esther) can be used in the cosmetic, pharmaceutical, tobacco, and 
food industries or as a fuel additive. Mono- and diacetin have uses as cryogenics and 
as feedstocks for the production of biodegradable polyesters (Rodrigues et al. 2017).

But not all processes that use glycerol as a building block can successfully 
employ crude glycerol. For example, when succinic acid-based polyesters were 
synthesized using crude glycerol, they didn’t show rubbery behavior at room condi-
tions due to incorporation of impurities from the glycerol source to the polymer 
backbone, whereas polymers synthesized from pure or “technical grade” glycerol 
possessed desired properties (Valerio et al. 2015).

Biological crude glycerol transformation has several advantages compared to 
chemical conversion. It is more specific in terms of produced products, has higher 
tolerance to impurity, and is more environmentally friendly (Clomburg and Gonzalez 
2013). There are a number of microorganisms which can metabolize glycerol, such 
as representatives of the genera Escherichia, Klebsiella, Enterobacter, 
Gluconobacter, Clostridium, Candida, Aspergillus, etc. (Solomon et  al. 1995). 
Though when impurities in crude glycerol reach high concentrations, they can 
inhibit growth of the microorganisms. For example, the salts, methanol, and fatty 
acids present in crude glycerol were reported to inhibit C. pasteurianum growth 
(Venkataramanan et al. 2012), and the fermentation behavior of the bacteria was 
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only restored when fatty acids were removed by acid precipitation. Similarly, crude 
glycerol was found to significantly inhibit growth and production of 1,3- propanediol 
by Citrobacter freundii due to the high concentrations of free fatty acids and free 
methyl esters (Anand and Saxena 2012).

Conversion of crude glycerol by microorganisms can be used for the production 
of the wide range of chemicals: oxalic and docosahexaenoic acid (Ethier et  al. 
2011), polyhydroxyalkanoate (PHA) and polyhydroxybutyrate (PHB) (Dobroth 
et al. 2011), 1,3-propanediol (Casali et al. 2012), 2,3-butanediol (Biebl et al. 1998), 
dihydroxyacetone (Liu et al. 2013b), surfactants (Sousa et al. 2012), eicosahexanoic 
acid (Athalye et  al. 2009), ethanol (Oh et  al. 2011), glyceric acid (De Ley and 
Frateur 1970), n-butanol (Jensen et al. 2012), propanoic acid (Bertleff et al. 2005), 
trehalose (Ohtake and Wang 2011), single-cell oil (Chatzifragkou et  al. 2011; 
Garlapati et al. 2016), amino acids (Meiswinkel et al. 2013), organic solvent- tolerant 
lipase (Volpato et al. 2008), lignoceric acid (Habe et al. 2008), and many others. 
Despite such impressive list of compounds that can be produced from crude glyc-
erol, at present, an industrial process using crude glycerol does not exist, mainly due 
to the high cost of product recovery (Plácido and Capareda 2016). We can almost 
apply for this situation a paraphrased old industry proverb about lignin: “You can 
make anything out of crude glycerol, except money.” Hopefully, with the improve-
ment of technologies of crude glycerol conversion, they would be finally 
industrialized.

12.4  Crude Glycerol as a Feedstock for Biotechnological 
Processes Using Yeasts

12.4.1  Glycerol Intake and Conversion by Yeasts

12.4.1.1  Transport of Glycerol Through the Plasma Membrane

Since glycerol is fairly common in the environment, it is not surprising that many 
yeasts can use it as a source of carbon and energy. For that glycerol should be first 
transported inside the yeast cell. The molecular mechanisms of glycerol movement 
through the plasma membrane were best investigated in the yeast Saccharomyces 
cerevisiae, for other yeasts information on this subject is fragmentary. Previously, it 
was deemed that glycerol is able to penetrate S. cerevisiae membrane by diffusion 
(Gancedo et al. 1968; Heredia et al. 1968), passive transport through the channel 
formed by protein Fps1 (Luyten et  al. 1995; Sutherland et  al. 1997), and active 
transport through the channels formed by proteins Gup1 and Gup2 (Holst et  al. 
2000). It all turned out to be not the case as it was discovered that glycerol is 
imported through the glycerol/H+-symporter Stl1 (Ferreira et al. 2005). The deletion 
of the STL1 gene completely abolished the active transport of glycerol, and the cor-
responding deletion strain of S. cerevisiae was incapable of growing on glycerol as 
the sole source of carbon nutrition. Similar H+ and Na+-glycerol symporters have 
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been described for the halotolerant yeast Debaryomyces hansenii (Lucas et  al. 
1990), Pichia sorbitophila (Lages and Lucas 1995), and Zygosaccharomyces rouxii 
(van Zyl et al. 1990).

In many non-Saccharomyces yeasts, glycerol import into the cells may actually 
be performed by facilitated diffusion through the membrane facilitator proteins – 
homologues of Fps1 protein. For example, it has been established (Liu et al. 2013a) 
that expression of the FPS2 gene from yeast Pachysolen tannophilus in S. cerevisiae 
complements the deletion of the STL1 gene, whereas the expression of its own FPS1 
gene does not provide growth restoration on glycerol. The same effect was achieved 
by expression of the homologues of the FPS1 gene from different types of noncon-
ventional yeasts (Candida jadinii, Pichia pastoris[sometimes referred to 
as Komagataella pastoris or Komagataella phaffii], and Yarrowia lipolytica) in S. 
cerevisiae stl1Δ mutant (Klein et al. 2016). This high level of growth persists even 
after deletion of the STL1 gene (Klein et al., 2016). However, in order to finally 
confirm the role of these transporters in the glycerol import, scientists should per-
form their deletion and overexpression in the yeast species from which they 
originate.

12.4.1.2  Ways of Catabolism of Glycerol in Yeast

Catabolism of glycerol in the yeast cells is carried out through glycerol-3-phosphate 
(phosphorylation pathway) or dihydroxyacetone (oxidative pathway of glycerol uti-
lization) (Fig.  12.3). Obtained in this process, dihydroxyacetone phosphate can 
either be included into the central metabolism through conversion to glyceraldehyde- 
3- phosphate under the action of a triose phosphate isomerase or may be a substrate 
for the synthesis of lipids. The conversion of glycerol through glycerol-3-phosphate 
is catalyzed by the enzymes glycerol kinase and FAD-dependent glycerol-3- 
phosphate dehydrogenase. In S. cerevisiae, glycerol kinase is encoded by the gene 
GUT1 (GlycerolUpTake) (Pavlik et  al. 1993; Sprague and Cronan 1977), and 
glycerol- 3-phosphate dehydrogenase is encoded by the gene GUT2 (Ronnow and 
Kielland- Brandt 1993). This pathway seems to be the only way of glycerol conver-
sion in S. cerevisiae as gut1Δ and gut2Δ mutants are incapable to utilize glycerol 
(Sprague and Cronan 1977). This pathway also has been identified in many other 
yeasts, such as D. hansenii (Adler et al. 1985), Z. rouxii (Pribylova et al. 2007), and 
Candida glycerinogenes (Wang et al. 2000).

But many other yeast species convert glycerol through dihydroxyacetone. The 
first step in this pathway is the oxidation of glycerol to dihydroxyacetone with glyc-
erol dehydrogenase, which is encoded by the gene GCY1. The second step is the 
phosphorylation of dihydroxyacetone to dihydroxyacetone phosphate with dihy-
droxyacetone kinase, which is encoded by genes DAK1 and DAK2. The mentioned 
genes are present in the S. cerevisiae genome (Jung et  al. 2012; Norbeck and 
Blomberg 1997), but the corresponding enzymes are rather involved in regulation of 
the concentration of glycerol during hyperosmotic stress (Blomberg 2000), than in 
glycerol utilization as a carbon source. At the same time, in other yeasts, this path-
way is more important.
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There is not much information available about the role of one or another pathway 
of glycerol utilization in particular yeast species. Tani and Yamada divided the stud-
ied yeast species into three groups: (1) yeast that converts glycerol through glycerol- 
3- phosphate (e.g., Candida boidinii), (2) yeast that converts glycerol through 
dihydroxyacetone (e.g., Hansenula ofunaensis), and (3) yeast that can use both 
pathways (e.g., Candida valida) (Tani and Yamada 1987). However, these observa-
tions were based on the presence of certain enzymes activities, and not on the analy-
sis of the deletion mutants, and therefore cannot be considered as a final proof. 
Convincing evidence of the predominant function of the dihydroxyacetone pathway 
of glycerol utilization was obtained after analysis of Schizosaccharomyces pombe 
mutant with the deletion of the gene GLD1 which encodes glycerol dehydrogenase 
(Matsuzawa et al. 2010).

It must be mentioned that most strains of the conventional yeast S. cerevisiae 
exhibit rather poor growth on the medium containing glycerol as a sole carbon 
source (Swinnen et al. 2013). Some other yeasts grow on glycerol much better. For 
example, when the ability of 42 different types of yeast to grow on glycerol was 

Fig. 12.3 Glycerol metabolism and ethanol production in S. cerevisiae. Abbreviations: G-6-P 
glucose-6-phosphate, F-6-P fructose-6-phosphate, F-1,6-P fructose-1,6-biphosphate, DHAP dihy-
droxyacetone phosphate, DHA dihydroxyacetone, GAP glyceraldehyde-3-phosphate, Gly-3-P 
glycerol-3-phosphate, 1,3-P-glyc 1,3-phosphoglycerate, PEP phosphoenolpyruvate, Ac-CoA ace-
tyl coenzyme A, TCA tricarboxylic acid cycle, Tpi1 triose phosphate isomerase, Adh1-5 alcohol 
dehydrogenases, Pdc1,5,6 pyruvate decarboxylases, Ald3 aldehyde dehydrogenase, Gpd1, Gpd2 
cytosolic glycerol-3-phosphate dehydrogenases, Gpp1, Gpp2 glycerol-3-phosphate phosphatases, 
Gut1 glycerol kinase, Gut2 glycerol-3-phosphate dehydrogenase, Gcy1 glycerol dehydrogenase, 
Dak1, Dak2 dihydroxyacetone kinase, Hxt, Stl1, Fps1 membrane transporters (Semkiv et al. 2017)
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tested, Pichia jadinii and Pichia anomala revealed the highest growth rate – about 
three-fold higher than in S. cerevisiae (Lages et  al. 1999). Also nonconventional 
yeasts Y. lipolytica, P. pastoris, and P. tannophilus have good ability to grow on 
glycerol, so pure and crude glycerol can be used as a feedstock for biotechnological 
processes which employ these yeasts (Klein et al. 2017).

12.4.2  Bioconversion of Crude Glycerol to Value-Added 
Compounds by Yeasts

12.4.2.1  Production of Organic Acids

Citric (CA) and Isocitric (ICA) Acids Crude glycerol can be used as a feedstock 
for the production of organic acids, in particular, citric acid (CA) and isocitric acid 
(ICA). Being tricarboxylic acid (TCA) cycle intermediates, both these acids play a 
central role in metabolism of aerobic organisms and can be produced in excessive 
amounts and excreted by certain fungi, bacteria, and yeasts in specific growth con-
ditions (Fig.  12.4). CA is of interest for many industrial applications due to its 
nontoxic, acidulant, buffering, and chelating properties (Rzechonek et al. 2019). 
For example, CA is used as an acidity regulator, preservative, and flavor enhancer 
in the food and beverage industry, as an antioxidant or a buffering system for 
improving stability of pharmaceuticals, as a detergent component in dishwasher 
cleaners, and as a cross-linker in the production of biodegradable polymers in cos-
metic, metallurgy, textile, and other industries (Karaffa and Kubicek 2003). Annual 
world CA production exceeded two million tons in 2015, growing at 3–5% per year 
(Ciriminna et al. 2017).

For the first time, CA was isolated from citrus fruits. Currently, it is commercially 
produced by fermentation of beet or cane molasses as well as glucose syrup by the 
mycelial fungus Aspergillus niger (Karaffa and Kubicek 2003). This method offers 
high product yield but has several disadvantages: molasses need to be treated with 
toxic ferrocyanides to remove the excess of trace elements which are harmful to A. 
niger, production is associated with the accumulation of significant amounts of 
heavy metal-contaminated wastewater and solid waste gypsum (about 16 tons 
waste/ton CA), possible substrate spectrum for A. niger is quite narrow, etc. 
(Kamzolova et al. 2015). That is why during the last decades, some yeast species 
have been considered as a substitute of A. niger for CA production. These yeasts 
have broader substrate range, lower sensitivity to heavy metals and oxygen limita-
tions, and CA yield comparable to A. niger (Kamzolova et al. 2011). In particular, 
some yeast species can use pure and crude glycerol as a carbon substrate for CA 
production.

When forty yeast species were tested concerning their growth in crude and com-
mercial glycerol, four yeast strains (Lindnera saturnus UFLA CES-Y677, Y. 
 lipolytica UFLA CM-Y9.4, Rhodotorula glutinis NCYC 2439, and Cryptococcus 
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Fig. 12.4 CA, ICA, PA, KGA, and SA production in Y. lipolytica. Modified from (Gao et  al. 
2016a). PDH pyruvate dehydrogenase, CS citrate synthase, ACO aconitase, IDH isocitrate dehy-
drogenase, α-KGDH α-ketoglutarate dehydrogenase, SCS succinyl-CoA synthetase, SDH succinic 
dehydrogenase, FUM fumarase, MDH malate dehydrogenase, PYC pyruvate carboxylase, ICL iso-
citrate lyase, MS malate synthase
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curvatus NCYC 476) were found to be able to grow in these conditions, and among 
them, Y. lipolytica had shown the highest level of glycerol intake (Souza et al. 2014).

When organic acids formation was tested for 66 yeast strains of different genera 
(Candida, Pichia, Saccharomyces, Torulopsis, and Yarrowia) in the medium con-
taining pure glycerol as a carbon source, 41 strains belonging mainly to species Y. 
lipolytica produced acids in contrast to 25 strains of the genera Debaryomyces, 
Candida, Pichia, Saccharomyces, and Torulopsis (Kamzolova et al. 2011). All in 
all, Y. lipolytica seems to be one of the best candidates for crude or pure glycerol 
conversion to CA (and other valuable compounds; see next paragraphs).

Y. lipolytica is widely known for its ability to produce lipids (Groenewald et al. 
2014), polyols, and organic acids (Kamzolova et al. 2015; Rymowicz et al. 2010) 
from the wide range of substrates, including unspecific carbon sources such as fatty 
acids, alkanes, plant oils, fats, waste cooking oil, or crude glycerol (Mironczuk et al. 
2016). In particular, crude glycerol is easily utilized by the yeast Y. lipolytica despite 
its highly contaminated nature (Papanikolaou et al. 2002a).

Y. lipolytica is able to secrete high amounts of intermediate organic acids, such 
as pyruvic, citric, isocitric, or 2-oxoglutaric acids, into the medium under the condi-
tions of excessive amounts of carbon source and limited amounts of some of the 
other growth factors (e.g., N-source, thiamine, or by the mineral salt components P, 
S, or Mg). Nitrogen limitation causes the secretion of CA and ICA mixture (Holz 
et  al. 2009). Secretion of ICA was previously considered to be undesirable side 
process of CA production with Y. lipolytica due to the fact that ICA has an inferior 
buffer capacity and chelating ability compared to CA, and the crystallization of CA 
during the purification process is disturbed by ICA contaminations >5% (Forster 
et al. 2007). Therefore, previously, researchers mainly aimed to decrease ICA pro-
duction (Finogenova et al. 2002; Forster et al. 2007). But recently, the development 
of the reliable method of CA/ICA separation via methyl esterification has risen the 
interest in ICA production (Heretsch et  al. 2008). ICA is much more expensive 
compared to CA and can be used as a chiral building block for chemical synthesis 
of complex natural products; as a useful pharmaceutical, food, and beverage addi-
tive; and in cosmetics and detergents (Heretsch et al. 2008). Also, monopotassium 
salt of ICA has been used in several biochemical analyses (assays of aconitate 
hydratase, NAD-isocitrate dehydrogenase, NADP-isocitrate dehydrogenase, isoci-
trate lyase) (Kamzolova et al. 2011). Due to this emerging areas of ICA application, 
researchers started to consider the switch of the CA/ICA ratio toward the ICA pro-
duction to be a favorable outcome (Holz et al. 2009; Rzechonek et al. 2019).

The CA/ICA ratio formed by Y. lipolytica mainly depends on the substrate, 
cultivation conditions (air saturation, intracellular iron and zinc content, etc.), and 
the strain used (Forster et  al. 2007). Wild-type strains secrete mainly CA and 
about 8–16% ICA on carbohydrates or glycerol as sole carbon source and approx-
imately 50–65% CA and 35–50% ICA on the gluconeogenetic substrates alkanes 
and the renewable triglycerides, ethanol or acetate (Finogenova et  al. 2005). 
Interestingly, when crude glycerol was used for Y. lipolytica fermentation, CA/
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ICA pattern was shifted more toward ICA in comparison with the fermentation on 
the medium with pure glycerol as carbon source (Kamzolova et  al. 2011; 
Rzechonek et al. 2019). This may be caused by the contaminants present in crude 
glycerol, e.g., free fatty acids.

Y. lipolytica utilizes glycerol through glycerol-3-phosphate (phosphorylation 
pathway) (Makri et al. 2010), and activities of enzymes connected with oxidative 
pathway of glycerol utilization were not detected (Morgunov et al. 2013). Therefore, 
during assimilation of glycerol from the cultivation medium, Y. lipolytica cells pos-
sess high activities of glycerol kinase, NAD-dependent glycerol-3-phosphate dehy-
drogenase, and (in some Y. lipolytica strains) FAD-dependent glycerol-3-phosphate 
dehydrogenase (Morgunov et al. 2004). During assimilation of the crude glycerol, 
induction of glyoxylate cycle enzymes isocitrate lyase and malate synthase was also 
observed. This induction was probably associated with the active assimilation of 
fatty acids from glycerol-containing wastes (Morgunov et al. 2013). Glycerol kinase 
activity in Y. lipolytica cells was found to be affected by pH and salt presence – low 
pH or high amounts of salts in the cultivation medium inhibit glycerol kinase and 
decrease overall velocity of glycerol assimilation (Tomaszewska et al. 2014a).

As was already mentioned, CA production by Y. lipolytica requires specific cul-
tivation conditions. Acid formation does not occur in the exponential growth phase 
but is very active in the stationary growth phase (Kamzolova et  al. 2015). Yeast 
growth limitation has to be achieved through the restriction of mineral components 
in the medium, such as nitrogen, phosphorus, sulfur, or magnesium (Imandi et al. 
2008). It was shown that when yeast growth was limited with phosphorus or sulfur, 
a significant amount of ICA was produced; therefore, nitrogen limitation is more 
preferable for CA production (Kamzolova et al. 2011). Optimal pH for CA produc-
tion in Y. lipolytica is 4.5–6.5. Lower pH triggers polyols synthesis (Egermeier et al. 
2017) although recombinant Y. lipolytica with overexpression of the genes GUT1 
(encoding glycerol kinase) and GUT2 (encoding glycerol-3-phosphate dehydroge-
nase) were shown to be able to produce CA at pH 3 (Rzechonek et al. 2019). The 
optimal temperature for CA production is about 28 °C, and the optimal dissolved 
oxygen concentration (pO2) 50% (of air saturation) (Morgunov et al. 2013). Less 
active aeration during the process causes an undesirable decrease in the activity of 
some mitochondrial enzymes (citrate synthase, aconitase, malate dehydrogenase, 
and NADP-dependent isocitrate dehydrogenase) involved in the synthesis of CA 
(Kamzolova et al. 2011). Addition of exogenous CA in a moderate amount at early 
stage of CA production stimulates the biosynthesis of endogenous CA by the yeast 
cells (Kamzolova et al. 2015). Different studies report either increase (Morgunov 
et al. 2013) or decrease (Kamzolova et al. 2011) in CA production when crude glyc-
erol was used as carbon source instead of a pure glycerol. Also, crude glycerol may 
enable either increase in yeast growth due to the presence of contaminants that can 
be used as nutritional elements by yeasts or (in higher concentrations) growth inhi-
bition due to high concentration of toxic compounds (Souza et al. 2014). Besides 
optimization of the culture conditions, over the years, Y. lipolytica mutants with 
improved CA production or modified CA/ICA ratio were obtained by UV  irradiation 
combined with negative selection on acetate-containing medium, selection on fluo-
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roacetate, genetic engineering, etc. (Forster et al. 2007; Holz et al. 2009; Morgunov 
et al. 2013; Tomaszewska et al. 2014a).

Also, ability to produce high amounts of CA from crude glycerol under nitrogen- 
limiting conditions has been shown for some Candida species, such as strains 
Candida parapsilosis ATCC 7330 and Candida guilliermondii ATCC 9058 (West 
2013). Unfortunately, despite all these developments, there is no large industrial 
process of CA production with yeasts at present, although there are indications for 
recent process developments using Y. lipolytica (Fickers et al. 2005).

Pyruvic Acid Besides CA and ICA, Y. lipolytica can excrete pyruvic acid (PA) and 
α-ketoglutaric acid (KGA) under the conditions of excessive amounts of carbon 
source and limited amounts of thiamine in the cultivation medium. Y. lipolytica is a 
thiamine-auxotrophic yeast due to the inability to synthesize the pyrimidine struc-
ture of the thiamine molecule (Yin et al. 2012). When thiamine in the cultivation 
medium is depleted, activities of thiamine-dependent enzymes (pyruvate dehydro-
genase, transketolase, α-ketoglutarate dehydrogenase) start to decrease, blocking 
the conversion of the corresponding substrates (Fig. 12.4). Big disadvantage of this 
process is the simultaneous production of PA and KGA because these acids are 
similar in physical and chemical properties which make the procedure of their sepa-
ration quite tricky. That is why if production is directed toward PA, researches try to 
decrease the accumulation of KGA by Y. lipolytica and vice versa.

PA is used as a diet supplementary (Stanko et al. 1992) for the production of 
L-tryptophan (Nakazawa et al. 1972), L-tyrosine, and 3,4-dihydroxyphenyl alanine 
(Yamada et al. 1972) and as a substrate for enzyme activities assays in biochemistry 
and medicine. PA can be produced by chemical process or with the help of certain 
bacteria, basidiomycetes, or yeasts (Morgunov et  al. 2004). For example, exten-
sively studied PA producer is yeast Candida glabrata (former Torulopsis glabrata), 
selected strain of which is able to produce 67.8 g/L of PA from glucose (Yonehara 
and Miyata 1994). Y. lipolytica was found to produce PA not only from glucose but 
also from glycerol. When 18 strains of the genera Candida and Yarrowia were tested 
for their ability to produce PA using glucose or glycerol as carbon sources, seven 
efficient PA producers were identified, and Y. lipolytica strain 374/4 was the best 
among them (Morgunov et al. 2004). It produced 1.6-fold higher amount of PA in 
glycerol-containing medium than in case of the medium with glucose. Also, amount 
of accumulated KGA was 4 times lower than that of PA.  In glycerol-containing 
medium with 2 μg/L of thiamine strain Y. lipolytica 374/4 accumulated 61.3 g/L of 
PA by the 78th hour of cultivation. It was confirmed that activities of thiamine- 
dependent enzymes, such as transketolase, pyruvate dehydrogenase, and 
α-ketoglutarate dehydrogenase, decreased substantially after the transition of yeast 
cells from the exponential growth phase to growth retardation phase caused by the 
exhaustion of thiamine in the medium.

The overexpression of the genes encoding α-ketoglutarate dehydrogenase com-
plex is another possible approach to further increase the production of PA and 
restrict the accumulation of KGA in Y. lipolytica (Holz et al. 2011).
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However, mentioned experiments with PA production by Y. lipolytica were per-
formed in the defined medium with the addition of pure glycerol. When yeast was 
grown in complex polypeptone-containing medium, no PA production was observed, 
probably due to high thiamine content in this medium (Yonehara and Miyata 1994). 
To our knowledge, no attempts have been made to produce PA from crude glycerol, 
but it was successfully used for the production of KGA (Otto et al. 2012).

α-Ketoglutaric Acid The α-ketoglutaric acid (KGA) is used as a dietary supple-
ment, in the agrochemical and pharmaceutical industries, as a building block for the 
synthesis of heterocycles and elastomers, etc. (Sauer et al. 2008). Currently, KGA is 
synthesized chemically from diethyl succinate and diethyl oxalate or by transamina-
tion of glyoxylic acid with sodium glutamate and a copper catalyst (Otto et  al. 
2011), but these methods are ecologically harmful. KGA production via microbial 
fermentation has a potential to be more profitable and environmentally friendly. 
KGA can be produced by bacteria Pseudomonas fluorescens, Serratia marcescens, 
Bacillus ssp., Corynebacterium glutamicum, and Arthrobacter paraffineus or by 
yeasts Candida ssp., Pichia ssp., C. glabrata, and Y. lipolytica (Otto et al. 2011). 
Most studies on KGA production by yeasts concentrate on the last two species.

KGA production by these yeasts is triggered by the thiamine limitation and 
excess of carbon source and accompanied by the production of PA as a major by- 
product and fumarate, malate, and succinate as minor by-products (Otto et al. 2012). 
However, when n-alkanes, plant oils, fatty acids, or their derivatives are used as 
substrates for KGA production, PA is not accumulating due to the fact that substrate 
is degraded via acetyl-CoA omitting pyruvate (Finogenova et al. 2005).

KGA production from pure and crude glycerol is accompanied by PA accumula-
tion, which needs to be minimized. In an attempt to decrease the by-product yield 
during KGA production from crude glycerol by Y. lipolytica, Otto et al. constructed 
recombinant Y. lipolytica strains with the overexpression of gene FUM1 (encoding 
fumarase), PYC1 (encoding pyruvate carboxylase), or both mentioned genes (Otto 
et  al. 2012). Multicopy integration of the gene FUM1 into Y. lipolytica genome 
caused a significant reduction of the production of PA, fumarate, and malate during 
crude glycerol conversion to KGA. In contrast, the overexpression of PYC1 gene or 
both genes FUM1 and PYC1 caused an increased accumulation of the mentioned 
by-products (Otto et al. 2012). Besides that, the production of KGA decreased in the 
strain with the PYC1 gene overexpression in comparison to the initial Y. lipolytica 
strain. Interestingly, in other study, overexpression of the heterologous pyruvate 
carboxylase genes ScPYC1 from S. cerevisiae and RoPYC2 from Rhizopus oryzae 
in Y. lipolytica strain WSH-Z06 caused the increase of KGA yields by 24.5 and 
35.3% and the decrease of PA yields by 51.9 and 69.8%, respectively (Yin et al. 
2012). In a 3-L fermenter, the recombinant strain with RoPYC2 gene overexpression 
produced the highest amount of KGA – 62.5 g/L with a decrease in PA yield from 
35.2 to 13.5 g/L (Yin et al. 2012).

The optimal pH for KGA production is around 3.5; therefore, a two-stage pH 
control strategy was developed for KGA synthesis from crude glycerol in the biore-
actor. For the beginning of cultivation, pH was set on 5.0 and aeration rate at 50% 
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(growth phase). Then for the KGA production phase, pH was reduced to 3.8 and 
pO2 to 10% (Otto et al. 2012). At the beginning of production phase, large amounts 
of by-product PA were synthesized, but as the glycerol in the medium was exhausted, 
cells started to reuptake PA and converted it to KGA. PA reduction in the engineered 
yeasts with overexpression of heterologous gene-encoding pyruvate carboxylase 
(ScPYC1or RoPYC2) was much faster than those in the initial Y. lipolytica strain 
WSH-Z06 (Yin et al. 2012).

Similar effect – decreased PA and increased KGA concentrations – was achieved 
for KGA and PA producing yeast C. glabrata by stimulation of pyruvate carboxyl-
ase activity by the increased supply of its cofactor biotin (Zhang et al. 2009).

Also KGA/PA ratio was increased in the recombinant C. glabrata strain with the 
overexpression of heterologous gene PDC1 (encoding pyruvate decarboxylase) 
from S. cerevisiae (Zhang et al. 2009). Further improvement in KGA production is 
possible by modifying the activities of NAD- and NADP-dependent isocitrate dehy-
drogenases (catalyzes the oxidation of isocitrate to KGA) and the mitochondrial 
α-ketoglutarate dehydrogenase complex (catalyzes the oxidative decarboxylation of 
KGA to succinyl-CoA) (Otto et al. 2012).

Succinic Acid Succinic acid (SA) can be used as a precursor of many important 
chemicals in surfactant, food, and pharmaceutical industries (Yan et al. 2014). The 
US Department of Energy has listed SA among the top twelve potential bio- 
generated chemical building blocks for the future (White et al. 2004).

Currently, SA is mainly produced by petroleum-based chemical process, but 
efforts are made to implement bio-based methods of SA production from sustain-
able feedstock (Mazière et al. 2017). Many SA producers were found among bacte-
ria (Sanchez et al. 2005), e.g., Actinobacillus succinogenes and A. succiniciproducens. 
Basfia succiniciproducens has been shown to convert crude glycerol to SA (Scholten 
et al. 2009). Yeasts are also considered as SA producers owing to their tolerance to 
high acidity. Glycerol is considered as one of the most promising feedstock for 
commercially feasible SA production (Tan et al. 2014).

It comes as no surprise that Y. lipolytica was proposed as a potential SA producer 
from crude glycerol. But wild-type strains of Y. lipolytica almost did not accumulate 
SA during cultivation. Previously, production of KGA by Y. lipolytica was com-
bined with subsequent decarboxylation of KGA by hydrogen peroxide to obtain SA 
(Kamzolova et al. 2009).

To obtain Y. lipolytica strain directly producing SA, Gao et al. decided to block 
(Fig. 12.4) further SA metabolism in TCA cycle (Gao et al. 2016a). The succinate 
dehydrogenase complex oxidizes SA to fumaric acid with the simultaneous reduc-
tion of the ubiquinone to ubiquinol (Cecchini 2003). This complex consists of five 
subunits (SDH1–5), among them SDH1 and SDH2 are catalytic subunits, SDH3 
and SDH4 perform a role of molecular anchors, and SDH5 is required for SDH 
complex stability and activity (Oyedotun and Lemire 2004). In the study of Gao 
et al., the gene-encoding SDH5 subunit (Ylsdh5) was deleted in Y. lipolytica strain 
Po1f to obtain recombinant strain PGC01003. This strain demonstrated a weak 
growth in glucose-containing medium in contrast to the sdh1 or sdh2 deletion strains 
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which have been shown to lose their ability to grow in glucose (Yuzbashev et al. 
2010). PGC01003 indeed accumulated and secreted enhanced amounts of SA.  It 
also accumulated substantial amounts of acetic acid (approximately 6 g/L) due to 
the emerged imbalance between glycolysis and TCA cycle. When the cultivation 
media and conditions were optimized, strain PGC01003 produced 43 g/of SA from 
crude glycerol during batch cultivation and 160 g/L of SA during fed-batch cultiva-
tion (Gao et al. 2016a).

Using in situ fibrous bed bioreactor (isFBB) under the optimal conditions (20 g 
sugarcane bagasse as immobilization material, 120 g/L crude glycerol as carbon 
source, and 4 L min−1 of aeration rate), SA production by PGC01003 was increased 
to 53.6  g/L during batch cultivation and 209.7  g/L during fed-batch cultivation. 
Methanol was shown to inhibit the cell growth and SA production under described 
conditions when its initial concentration was more than 5  g/L (Li et  al. 2018a). 
Obtained Y. lipolytica strain and developed isFBB have a great potential for indus-
trial implementation.

Lactic Acid Due to its chemical properties, lactic acid (LA) is of interest for many 
industrial applications, e.g., food, pharmaceutical, leather, textile, and chemical 
industries (Datta and Henry 2006). Also, L- and D-optical isomers of LA are the 
components used for the production of biodegradable polylactic acid that can be 
used in automobile, packaging, and cosmetic industries (Abdel-Rahman et  al. 
2013).

LA can be produced by homo- and heterofermentative lactic acid bacteria, fungi 
(e.g., genus Rhizopus), yeasts (Saccharomyces and Kluyveromyces genera), and 
microalgae (e.g., Scenedesmus obliquus) (Abdel-Rahman et al. 2013). Developed 
industrial processes use carbohydrates as a substrate for LA production. There have 
been reported bacteria and fungi with the efficient LA production from glycerol as 
a sole carbon source (Mazumdar et al. 2013; Vodnar et al. 2013). For example, the 
fungus R. oryzae was able to produce about 48 g/L of LA from 75 g/L of crude 
glycerol supplemented with lucerne green juice (Vodnar et al. 2013).

Yeasts are perspective microorganisms for LA production as they are robust, 
resistant to low pHs, and widely used for industrial bioprocesses (Sauer et al. 2010). 
The methylotrophic yeast P. pastoris can be used for crude glycerol conversion, as 
it efficiently utilizes glycerol and methanol as carbon sources and it is resistant to 
enhanced methanol concentrations (Looser et al. 2015). P. pastoris even accumu-
lates more biomass when crude glycerol is used as a carbon source in comparison to 
the growth on the medium with pure glycerol (Anastacio et al. 2014).

When de Lima et al. had expressed the gene LDH encoding lactate dehydroge-
nase from Bos taurus under the control of the strong constitutive promoter GAP1 in 
P. pastoris, obtained recombinant strains produced only 10% of the theoretically 
possible LA amount (de Lima et  al. 2016). Therefore, they additionally overex-
pressed in this strain heterologous gene-encoding LA transporter Jen1p from S. 
cerevisiae or homologous gene-encoding putative LA transporter PAS which was 
identified by amino acid sequence similarity with Jen1p. Performance of the 
obtained recombinant strains was evaluated in fed-batch fermentation which was 
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composed of two phases. First phase of cellular growth was carried out under suf-
ficient oxygen supply followed by LA production stage accompanied with a single- 
pulse addition of 4% crude glycerol and hypoxia conditions. Under such conditions, 
the strain containing homologous PAS transporter showed the highest LA yield of 
approximately 0.7 g/g of glycerol. Simultaneously, acetic acid formation by this 
strain was reduced by half. In conclusion, recombinant P. pastoris strain with LDH 
and PAS overexpression can be used for efficient LA production from crude glyc-
erol in two-phase fed-batch fermentation (de Lima et al. 2016).

12.4.2.2  Production of Erythritol and Other Polyols

Erythritol Polyols are noncyclic hydrogenated carbohydrates which can be used as 
low caloric sweeteners in food and beverages industry (Park et al. 2016). Such com-
pounds as erythritol, glycerol, ribitol, arabitol, mannitol, xylitol, and sorbitol belong 
to this group. Chemical method of polyols production (catalytic hydrogenation of 
sugars under high temperature and pressure) is not very efficient, so production of 
polyols is chiefly carried out by microbial conversion of carbohydrates (Park et al. 
2016). For the first time, production of polyols was observed by Röhr during citric 
acid fermentation by A. niger (Röhr et al. 1983). In yeasts, polyols chiefly play role 
of osmolytes, which protect yeast cells against osmotic stress, but they are also 
produced during yeasts growth under normal conditions (Kayingo et al. 2001).

Erythritol is one of the most important polyols, whose production by microor-
ganisms is being extensively studied. Erythritol is a four-carbon polyol with no 
optical activity. It occurs naturally in alcoholic beverages, in mushrooms, and as a 
component of fruits such as pears, melons, and grapes (Bernt et al. 1996). Erythritol 
exhibits about 70% of the relative sweetness of sucrose, but its caloric value is very 
low and the majority of consumed compound is quickly excreted, so it is considered 
to be “zero-calorie sweetener” (Rzechonek et al. 2018). Also, erythritol is safe for 
diabetic patients, has no carcinogenic or teratogenic potential (Bernt et al. 1996), 
and does not contribute to tooth decay (Rzechonek et al. 2018). In fact, it was even 
suggested to prevent dental caries (Hashino et al. 2013) and improve endothelial 
function in patients with type II diabetes (Flint et al. 2014). However, as in the case 
of other polyols, the excessive consumption of erythritol may cause a laxative effect 
(Oku and Nakamura 2007). Due to its positive properties, erythritol ought to be 
widely used in food and pharmaceutics, but its application is somewhat restricted by 
its relatively high retail price.

Among the microorganisms capable of overproducing erythritol, there are osmo-
philic yeasts from the genera Pichia, Zygopichia, Candida, Debaryomyces, 
Moniliella, Torula, Torulopsis, Trigonopsis, Trichosporon, Trichosporonoides, 
Pseudozyma, and Ustilago (Jeya et al. 2009; Moon et al. 2010), some fungi and 
lactic acid bacteria (Veiga-Da-Cunha et al. 1992), etc. The mechanism of erythritol 
formation in osmophilic yeasts is not completely identified. It possibly proceeds 
through transketolase (TK) reaction between fructose-6-phosphate and 
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glyceraldehyde- 3-phosphate. Obtained in this reaction, erythrose-4-phosphate and 
xylulose-5-phosphate could be dephosphorylated and reduced to erythritol and 
arabitol as verified in C. magnoliae (Park et al. 2005). The gene-encoding enzyme 
responsible for erythrose-4 phosphate dephosphorylation has not yet been identified 
(Rzechonek et al. 2018). Erythrose is reduced to erythritol by NADPH-dependent 
enzyme erythrose reductase (ER) (Lee et  al. 2010). ER has been identified and 
described in a few yeasts, such as Moniliella megachiliensis (Kobayashi et al. 2013), 
Candida magnoliae (Lee et al. 2010), and Y. lipolytica (Janek et al. 2017). TK and 
ER activities in some yeasts are strongly influenced by the presence of NaCl (Park 
et al. 2011; Sawada et al. 2009). On the whole, changes in osmotic pressure (caused 
by high-sugar concentration or salt addition) induce erythritol accumulation in yeast 
cells. Other factors that influence erythritol biosynthesis are pH and temperature of 
medium, type of substrate and its concentration, sources of nitrogen and phospho-
rus, and additional factors such as chloride, copper, and manganese ions (Jeya et al. 
2009; Tomaszewska et al. 2014a).

Aureobasidium sp., Pseudozyma tsukubaensis (Tomaszewska et  al. 2014a), 
Moniliella pollinis, M. megachiliensis, and recently also Y. lipolytica (Rzechonek 
et al. 2018) were implemented for industrial erythritol production. On the industrial 
scale, erythritol is predominantly obtained from glucose derived from wheat or 
cornstarch hydrolysates (Moon et al. 2010). Glycerol has been previously reported 
as not suitable for erythritol biosynthesis (Jeya et al. 2009), but soon it was found 
that yeast Y. lipolytica produced erythritol in the cultivation medium with glycerol 
as the sole carbon source at pH 3.0 even better than in the medium with glucose 
(Rymowicz et al. 2009). Even in the medium containing both glucose and glycerol, 
Y. lipolytica first utilizes glycerol (Papanikolaou et al. 2002b). As was already men-
tioned, Y. lipolytica produces mainly CA during glycerol fermentation at pH 4.5–
6.5; however, at pH  3.0, CA concentration is very low as polyols production 
(Fig. 12.5) starts to prevail (Tomaszewska et al. 2014a). Low pH value during eryth-
ritol biosynthesis is an advantage, because it protects the culture against bacterial 
contamination and thereby supports the development of continuous fermentation 
procedures (Tomaszewska et  al. 2012). Erythritol production from glycerol in Y. 
lipolytica is also stimulated by salt addition as it increases activities of TK and 
ER. Moreover, the presence of salt in the medium improved not only erythritol yield 
but also the selectivity of biosynthesis, decreasing the amount of by-product poly-
ols. Crude glycerol contains salt contamination, which can additionally induce 
erythritol production. For example, notable increase in erythritol yield was observed 
for the Y. lipolytica strain Wratislavia K1 when crude glycerol was used instead of 
pure glycerol as carbon source for erythritol production (Tomaszewska et al. 2014a). 
Glycerol itself generates higher osmotic stress than glucose which is beneficial to 
erythritol production (Yang et al. 2016). Another advantage of glycerol as a sub-
strate for erythritol production is the composition of by-products after fermentation. 
When sugars are used as a substrate, glycerol occurs as one of the main by-products 
of erythritol production, which is quite difficult to separate from erythritol 
(Rzechonek et al. 2018). When glycerol is used as carbon source, it can be com-
pletely depleted from the cultivation medium and the presence of other by-products 
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may be reduced as well (Mironczuk et al. 2014; Mironczuk et al. 2015; Rymowicz 
et al. 2009). Therefore, using glycerol and especially cheap crude glycerol as a sub-
strate could ensure cost-effective erythritol production by Y. lipolytica.

Erythritol synthesis from glycerol could be improved in several directions: (a) 
optimization of the cultural medium composition, (b) optimization of fermentation 
setup, and (c) modification of the Y. lipolytica strains used in the biosynthesis by 
mutagenesis or genetic engineering.

When artificial neural network model and genetic algorithm were used to predict 
the optimal medium composition to maximize erythritol production from crude 
glycerol, it was found out that medium with 232.39 g/L crude glycerol, 1.57 g/L 
urea, and 31.03 g/L NaCl led to predictive maximum erythritol concentration of 
110.7 g/L (Yang et al. 2016). In real experiment in such conditions, Y. lipolytica 
strain A16 produced 109.2 g/L of erythritol, which is approximately 2 times higher 
than the usual values obtained in batch fermentations (40 to 60  g/L) (Rywinska 
et al. 2015; Yang et al. 2016). Also it was found out that erythritol production can be 
improved by medium supplementation with Mn2+ (25  mg/L), Cu2+ (2.5  mg/L) 
(Tomaszewska et al. 2014b), thiamine, yeast extract (Rywinska et al. 2015), and 
surfactant Span 20 (Rakicka et al. 2016b).

In respect of the fermentation setup, improved productivity is obtained in fed- 
batch systems where the amount of substrate is renewed at least once or, sometimes, 
a few times (Rymowicz et  al. 2009; Rywinska et  al. 2015; Tomaszewska et  al. 
2014b; Yang et al. 2014a).

Another modification is repeated fed-batch cultures (RBC). In this system, after 
consumption of the substrate, fermentation medium is separated into a concentrated 
fraction of microorganisms and another fraction enriched with the fermentation 

Fig. 12.5 Hypothetical pathways of glycerol conversion into polyols in Y. lipolytica (Tomaszewska 
et al. 2014a). 1 glycerol kinase, 2 glycerol-3-P dehydrogenase, 3 mannitol dehydrogenase, 4 hexo-
kinase, 5 mannitol-1-P dehydrogenase, 6 mannitol-1-phosphatase, 7 transketolase, 8 transaldolase, 
9 arabitol dehydrogenase, 10 erythrose reductase
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product. Later, fresh substrate is added to the microorganism fraction and another 
cycle of the production begins. This may be repeated one or several times (Mironczuk 
et al. 2014). In such system, after replacing 30% of the working volume several 
times, researchers were able to obtain 224 g/L of erythritol with a 0.78 g/g product 
yield from pure glycerol (Rzechonek et al. 2018). In the RBC with crude glycerol, 
the average erythritol concentration oscillated from 81.3 to 180.8 g/L during the 
course of fermentation (Mironczuk et al. 2014). In the continuous fermentation per-
formed in a chemostat, erythritol production from pure glycerol was 103.4 g/L with 
a productivity of 1.12 g/L h and a yield of 0.52 g/g. When crude glycerol was used 
as a substrate, these values were lower – 81.9 g/L of erythritol with productivity of 
0.9 g/L h and yield of 0.4 g/g (Rakicka et al. 2016a).

Several modified Y. lipolytica strains with improved erythritol production were 
obtained. For example, Y. lipolytica strain Wratislavia K1 was isolated by two-stage 
selection: first, acetate-negative mutant incapable of growth on acetate as the sole 
carbon and energy source was isolated after exposure to UV irradiation, and then 
the most productive strain was isolated in the course of continuous citric acid pro-
duction from glucose in nitrogen-limited chemostat at a dilution rate of 0.016 h−1 
(Tomaszewska et al. 2014a). Strain Wratislavia K1 produced the highest amounts of 
erythritol among other acetate-negative mutants, probably due to its inability to 
reutilize this polyol. Rymowicz et al. reported that using crude glycerol (300 g/L) in 
a fed-batch system with Y. lipolytica Wratislavia K1 resulted in a production of 
170 g/L of erythritol with a yield of 0.56 g/g and productivity of 1.0 g/L/h (Rymowicz 
et al. 2009).

Later, the strain Wratislavia K1 was genetically modified by overexpression of 
the native gene GUT1 and S. cerevisiae gene SUC2 gene (encoding sucrose hydro-
lyzing enzyme invertase). The obtained recombinant strain possessed ability to uti-
lize sucrose and to assimilate glycerol faster than the initial strain (Rakicka et al. 
2017). This strain was tested in two-stage fermentation: first, abundant biomass was 
accumulated during growth in the medium containing industrial raw molasses as a 
sole carbon source; then, stage of polyols production started after the addition of 4% 
NaCl and 150 g/L of crude glycerol. In such conditions, recombinant strain pro-
duced 100.65 g/L of polyols, with productivity of 1.09 g/L/h and yield of 0.67 g/g. 
This way, efficient polyol production from inexpensive raw materials was achieved 
(Rakicka et al. 2017).

Genes encoding the two first enzymes of glycerol assimilation (GUT1 and 
GUT2) have been overexpressed in Y. lipolytica strain A101. Overexpression of 
GUT2 gene did not improve erythritol production, and overexpression of GUT1 
gene or co-overexpression of both genes caused a 24% or 35% increase in erythritol 
productivity, respectively (Mironczuk et al. 2016).

Also attempt has been made to hinder erythritol reutilization by Y. lipolytica. For 
that, the gene EYK1 encoding erythrulose kinase was identified and deleted in Y. 
lipolytica. Obtained recombinant strain was unable to use erythritol as a carbon 
source and revealed 26% improvement in erythritol productivity (Carly et al. 2017).

Another osmotolerant yeast, M. megachiliensis, has been found to be able to 
utilize nonrefined glycerol waste derived from palm oil or beef tallow and convert it 
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to erythritol. When 200 g/L of crude glycerol was used as a carbon source for M. 
megachiliensis fermentation, the yield of erythritol was approximately 60% 
(Kobayashi et al. 2015).

Mannitol Mannitol is a six-carbon polyol that can be used in the food, pharmaceu-
tical, and medical industries. It has similar characteristics to other polyols: sweet 
taste; low caloric value; naturally found in fruits, vegetables, and mushrooms; etc. 
(Khan et al. 2009). Mannitol is industrially produced by catalytic hydrogenation of 
fructose and glucose mixture at high temperature and pressure, which requires a 
high purity of substrates. Microbial production of mannitol (Fig. 12.5) is an appeal-
ing alternative (Saha and Racine 2011). Mannitol can be produced by yeasts C. 
magnoliae, C. zeylanoides, the fungi Aspergillus, and bacteria, especially lactic acid 
bacteria (Saha and Racine 2011). Fructose- and glucose-containing media have 
been found to be the most suitable for the production of mannitol. Osmophilic yeast 
C. magnoliae has been shown to produce 209 g/L of mannitol from fructose/glucose 
mixture with an impressive yield of 83% (Song et  al. 2002). C. magnoliae was 
reported to produce 213 g/L of mannitol from similar substrate in fed-batch fermen-
tation (Lee et al. 2003). Fructose/glucose medium supplementation with Ca2+ and 
Cu2+ further increased the production of mannitol with C. magnoliae strain HH-01 
reaching 223 g/L (Lee et al. 2007b).

There is not much information about mannitol production from glycerol. 
Mannitol is a major by-product during glycerol conversion to erythritol by Y. lipo-
lytica. Some strains of Y. lipolytica produce mannitol as the only polyol in nitrogen- 
limited conditions. For example, Y. lipolytica LFMB strain 19 produced 19.4 g/L of 
mannitol from 90 g/L of glycerol (Chatzifragkou et al. 2011). When several Y. lipo-
lytica were analyzed, strains A UV’1 and A-15 were found to be able to produce 
significant amounts (up to 27.6 g/L) of mannitol (Tomaszewska et al. 2012). NaCl 
salt addition to the medium improves erythritol biosynthesis and simultaneously 
inhibits mannitol formation by these strains. In the fed-batch process, the A UV’1 
strain produced 91.6 g/L erythritol and 38.1 g/L mannitol from pure glycerol as a 
carbon source (Tomaszewska et al. 2012).

The resting cells of yeast C. magnoliae were found to be able to produce exclu-
sively mannitol (up to 51 g/L) from pure glycerol. Mannitol yield in this process 
was as high as 50% (Khan et al. 2009).

Arabitol Arabitol is a five-carbon polyol that can be used in similar manner as 
erythritol and mannitol, that is, as a natural sweetener, a dental caries reducer, and a 
sugar substitute for diabetic patients (Gare 2002). Besides usual polyols’ properties, 
arabitol can be transformed into several groups of chemicals like its enantiomer 
xylitol, arabonic/arabinoic acid, etc. (White et al. 2004).

Arabitol can be produced by osmophilic yeast species such as Debaryomyces, 
Candida, Pichia, Wickerhamomyces (Hansenula), and Saccharomycopsis 
(Endomycopsis) (Fig. 12.5) (Koganti et al. 2011). When 214 yeast strains, many 
osmotolerant, were analyzed in regard to their ability to produce arabitol from glyc-
erol, the genera Debaryomyces and Geotrichum had the largest numbers of strains 
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that produced noticeable amounts (≥5 g/L) of polyols from glycerol. Debaryomyces 
strains tended to produce predominantly arabitol, whereas Geotrichum strains pro-
duced arabitol and mannitol. Strain D. hansenii SBP-1 was chosen for further stud-
ies as it produced high amounts of arabitol and the minimum of non-arabitol polyols. 
The best conditions for arabitol production from glycerol with this strain were tem-
perature 30  °C, initial glycerol concentration 150 g/L, high content of dissolved 
oxygen, and presence of glucose or xylose. Addition of sorbitol or NaCl salt, on the 
other hand, inhibited arabitol production (Koganti et al. 2011).

Another important natural sweetener, xylitol, can be produced by bioconversion 
of xylose. Glycerol was successfully used as a co-substrate during xylitol produc-
tion from xylose or sugarcane bagasse hemicellulosic hydrolysate by yeasts S. cere-
visiae (Kogje and Ghosalkar 2017), C. guilliermondii (Arruda et  al. 2015), or 
Candida tropicalis (Ko et al. 2006).

12.4.2.3  Production of Ethanol

Bioethanol produced from sustainable carbohydrate feedstock can be used as a pet-
rol’s substitute or additive in order to alleviate environmental pollution. So-called 
“first-generation” bioethanol is produced from sugarcane, corn, or sugar beets. 
Considerable efforts have been made toward the development of profitable technol-
ogy for “second-generation” ethanol production from lignocellulosic feedstock 
(Kurylenko et al. 2016). However, application of raw cellulosic material requires its 
complicated and costly physicochemical pretreatment and enzymatic hydrolysis (Li 
et  al. 2018b). That is why crude glycerol is being considered as an inexpensive 
feedstock that may not need any pretreatment prior to the start of alcoholic fermen-
tation. The cost of ethanol production from glycerol was estimated to be almost 
40% lower compared with production from corn-derived sugars (Yazdani and 
Gonzalez 2007).

But, as in the most microorganisms glycerol utilization occurs through respira-
tory metabolism, there have been few reports on microbial conversion of glycerol to 
ethanol by use of wild-type strains (Yazdani and Gonzalez 2007). In particular, 
Paenibacillus macerans (Gupta et al. 2009) and E. aerogenes (Ito et al. 2005) were 
reported to produce ethanol under anaerobic conditions from pure or crude glycerol, 
respectively. An engineered E. coli strain with overexpression of genes involved in 
the fermentative pathway of glycerol utilization produced 21 g/L of ethanol from 
60  g/L of pure glycerol under microaerobic conditions (Durnin et  al. 2009). An 
engineered Klebsiella pneumoniae strain has been shown to achieve 25 g/L ethanol 
on crude glycerol (Oh et al. 2011).

As ethanol production is the redox-neutral process and biomass accumulation is 
accompanied with NAD+ reduction to NADH(H+), in anaerobic conditions, cells 
need some way to consume excessive NADH(H+). That is why bacteria during glyc-
erol fermentation under anaerobic conditions usually produce also by-products 
(mainly 1,2-propanediol) that can serve as an electron sink. But the newly isolated 
bacteria, identified as nonpathogenic Kluyvera cryocrescens, was able to convert 
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biodiesel-derived crude glycerol to ethanol without 1,2-propanediol production 
(Choi et al. 2011). It was assumed that some impurities from crude glycerol played 
the role of external electron acceptor for K. cryocrescens in this process. When 
glycerol fermentation was performed in the presence of limited oxygen, K. cryocre-
scens revealed even higher ethanol productivity and yield than under strict anaero-
bic condition. It produced up to 27  g/L ethanol from crude glycerol under 
microaerobic batch fermentation (Choi et al. 2011).

However, ethanol-producing bacteria possess drawbacks: they are susceptible to 
phagolysis, to high ethanol concentrations, and to toxic compounds in crude glyc-
erol; they may be pathogenic. Yeasts are more robust in terms of ethanol production 
in industrial setup.

As was already mentioned, catabolism of glycerol in the yeast cells is carried out 
through glycerol-3-phosphate or dihydroxyacetone. Some researchers considered 
these pathways to be respiratory and fermentative route of glycerol metabolism, 
respectively (though without solid justification) (Hong et al. 2010; Yu et al. 2010). 
That is why mainly genes coding for glycerol dehydrogenase (Gcy) and dihydroxy-
acetone kinase (Dak) were overexpressed with the aim to improve glycerol conver-
sion to ethanol in yeasts.

Ethanol is produced from pyruvate via pyruvate decarboxylation to acetalde-
hyde, followed by the reduction of acetaldehyde to form ethanol (Fig. 12.3). These 
two reactions are catalyzed by the enzymes pyruvate decarboxylase (Pdc) and alco-
hol dehydrogenase (Adh), respectively. The PDC and ADH genes expression levels 
strongly affect ethanol yield during alcoholic fermentation (Nikel et  al. 2010). 
Distinctive traits of Pdc and Adh enzymes in baker’s yeast S. cerevisiae render them 
to be one of the best ethanol producer. S. cerevisiae prefers fermentative metabolism 
of glucose over respiratory metabolism almost in all conditions except when the 
yeast cultures grow under high oxygen supply and very low glucose concentration 
in the cultivation medium (van Hoek et al. 1998).

Unfortunately, S. cerevisiae poorly grows on glycerol if no growth-supporting 
supplements (such as amino acids and nucleic bases) are added (Swinnen et  al. 
2013). The growth of S. cerevisiae on glycerol may be improved by evolutionary 
adaptation (Ochoa-Estopier et al. 2011), expression of heterologous glycerol trans-
porters (Klein et al. 2016), etc.

Several rounds of metabolic engineering were performed in order to improve 
ethanol production from glycerol by S. cerevisiae (Yu et al. 2012; Yu et al. 2010). 
First, by overexpression of the genes encoding glycerol dehydrogenase, dihydroxy-
acetone kinase, and presumable glycerol uptake protein Gup1 (whose role in glyc-
erol transport was later disproved), the overall ethanol production was enhanced by 
3.4-fold and reached 2.4 g/L (Yu et al. 2010). Later, genes GPD2 (coding glycerol- 
3- phosphate dehydrogenase involved in glycerol synthesis de novo) and FPS1 (cod-
ing for glycerol facilitator involved in glycerol export from S. cerevisiae cells) were 
deleted causing further increase of ethanol production to 4.4 g/L. Finally, overex-
pression of pyruvate decarboxylase and alcohol dehydrogenase genes allowed to 
obtain recombinant S. cerevisiae strain which accumulated 5.4 g/L of ethanol from 
glycerol (Yu et al. 2012).
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Methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha was 
suggested to be a better choice for crude glycerol conversion to ethanol as it is less 
susceptible to the toxic effects of methanol and heavy metals which may be present 
in crude glycerol. To improve production of ethanol from glycerol, O. polymorpha 
strain DL1 (currently reclassified as Ogataea parapolymorpha (Suh and Zhou 
2010)) was engineered to express genes encoding pyruvate decarboxylase (pdc) and 
alcohol dehydrogenase II (adhB) from Zymomonas mobilis under the control of the 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. Corresponding 
strain produced 2.74  g/L of ethanol from glycerol which was 3.3-fold higher in 
comparison with the parental strain DL1. Further, genes encoding glycerol dehy-
drogenase (dhaD) and dihydroxyacetone kinase (dhaKLM) from K. pneumoniae 
were expressed in this strain, which resulted in production of 3.1 g/L ethanol in 
obtained recombinant strain (Hong et al. 2010).

Overexpression of homologous gene ADH1 on the base of DL1 adh1Δ strain did 
not result in increase of ethanol production from glycerol (Suwannarangsee et al. 
2010). However, simultaneous overexpression of the genes PDC1 and ADH1 in O. 
polymorpha strain NCYC495 led to the increase in ethanol production from glyc-
erol. Obtained recombinant strain produced up to 5.0 g/L of ethanol from glycerol 
under the increased to 45 °C fermentation temperature (Kata et al. 2016). Further 
improvement of this strain was achieved by overexpression of genes involved either 
in oxidative or phosphorylative pathway of glycerol catabolism, as well as heterolo-
gous gene coding for glycerol transporter FPS1 from P. pastoris. The resultant 
strains produced up to 10.7 g/L of ethanol from pure glycerol; however, during the 
fermentation of crude glycerol, ethanol production reached only up to 3.6 g/L of 
ethanol, probably due to inhibitory influence of impurities in crude glycerol (Semkiv 
et al., accepted).

Recently, the new species P. tannophilus has been isolated as a yeast organism 
capable of effective fermenting xylose to ethanol (Kurtzman 1983). It was 
reported that P. tannophilus could accumulate 4 g/L ethanol on glycerol under 
aerobic growth (Maleszka et al. 1982). P. tannophilus strain CBS4044 produced 
17.5 g/L of ethanol from 5% (v/v) crude glycerol in bioreactor set to 450 rpm and 
0.05  L/min airflow. During fed-batch fermentation, ethanol accumulation had 
reached 28.1 g/L (Liu et al. 2012). Also high fermentation efficiency (up to 90% 
yield of ethanol relative to the theoretical limit) has been shown for poly(vinyl 
alcohol) cryogel- immobilized cells of P. tannophilus strain Y-475 (Stepanov and 
Efremenko 2017).

The impurities (ash, methanol, salts, etc.) and variability of crude glycerol were 
not found to have negative effect on the viability and ethanol production of P. tan-
nophilus (Liu et al. 2012). But it was shown that P. tannophilus ceased to grow 
when ethanol was added to the cultivation medium in concentration 40 g/L (Zhao 
et al. 2010). The ethanol tolerance of P. tannophilus needs to be improved, e.g., 
through adaptive evolution or UV mutagenesis and selection for more ethanol-tol-
erant strains (Watanabe et al. 2011). But overall, P. tannophilus is a robust microor-
ganism which can be easily adapted for ethanol production from nonrefined crude 
glycerol feedstock.
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To conclude, several attempts have been made to produce ethanol from glycerol 
using microbial fermentation, and in most cases, pure glycerol was used as substrate 
(Durnin et  al. 2009; Gupta et  al. 2009; Hong et  al. 2010; Kata et  al. 2016; 
Suwannarangsee et al. 2010; Yu et al. 2012; Yu et al. 2010).

12.4.2.4  Microbial Oil (Lipids or Triacylglycerol) and Lipase Production

Perhaps the most interesting and well-studied sphere of potential crude glycerol 
implementation is the production of microbial oil, which can be used as an alternative 
to vegetable oil in biodiesel industry. As was already mentioned, vegetable oils are 
the main raw materials for biodiesel production (Fig.  12.2). The cost of the oils 
accounts for 70–85% of the total biodiesel production cost (Miao and Wu 2006). 
Traditional oil-rich crops are cultivated using arable lands which triggers “food ver-
sus fuel” debate. Attempts are constantly being made to find new cheap, renewable, 
and nonedible feedstock for biodiesel production. A very promising potential alterna-
tive is represented by microbial lipids, also referred to as single-cell oils (SCO) (Khot 
et al. 2012). SCO can be used for the production of “third-generation” biodiesel and 
other oleochemicals (e.g., surfactants, lubricants) or as a source of valuable polyun-
saturated fatty acids, which cannot be synthesized by mammals (Biermann et  al. 
2011; Fakas et al. 2006). SCO can be obtained from oleaginous microorganisms that 
accumulate substantial quantities of lipids in their cells (20–70% of dry cell weight) 
(Saenge et al. 2011). Oleaginous species were found among bacteria, yeast, filamen-
tous fungi, and microalgae. Microalgae are the most intensively studied among them. 
Huge advantage of these organisms is the autotrophic nutrition type: They are able to 
utilize and sequester carbon dioxide from the atmosphere; therefore, they do not need 
any additional carbon source (Miao and Wu 2006). Lipid content in oleaginous 
marine algae cells varies from 20 to 50% (w/w) with fatty acids (FA) composition 
similar to vegetable oils, and they present higher yields per square meter of used 
lands than palm oil (Chisti 2007). However, in comparison to bacteria and yeasts, 
algae require larger acreages to cultivation and a continuous source of light to pro-
mote photosynthesis. Besides, they have longer cultivation period and lower biomass 
and lipids yield than, for example, oleaginous yeasts.

Of the known yeasts species, 3–10% belong to the oleaginous yeasts, including 
representatives of the genera Yarrowia, Candida, Rhodotorula, Rhodosporidium, 
Cryptococcus, Sporidiobolus, Kodamaea, Pseudozyma, Trichosporon, and 
Lipomyces (Ageitos et al. 2011). Many oleaginous yeast species were isolated from 
soil (Saenge et al. 2011) and plant surfaces (Clément-Mathieu et al. 2008). Yeasts 
accumulate lipids not only as constituents of the membrane but also in the form of 
triacylglycerols within intracellular lipid bodies (Fig. 12.6). They have similar FA 
content to that of many plant oils and exhibit shorter life cycle and higher growth 
rate and lipids production than microalgae (Li et  al. 2008). Yeasts can be easily 
grown in bioreactor independently of location, climate, and season and harvested 
within a few days. Type and quantity of produced lipids can be customized by 
adjustment of cultivation medium composition or by metabolic engineering of yeast 
strains (Blazeck et al. 2014).
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Despite all these advantages, yeast oil production is still limited to the lab scale 
due to its high cost (Koutinas et al. 2014). As heterotrophic organisms, yeasts need 
a carbon source for biomass and lipids production. The use of a low-cost carbon 
feedstock is an important step toward the feasible SCO production with yeasts. 
Many possible options of raw material were suggested over the years, such as cane 
molasses, fish meal wastewater, rice straw hydrolysate (Liu et al. 2016), spent yeast 
from brewery industry wastewater, sludge (Zhang et al. 2017), whey, wastewaters of 

Fig. 12.6 Hypothetical pathway of glycerol conversion into lipids in oleaginous yeasts. Modified 
from (McNeil and Stuart 2018). Components of the TCA cycle designated as in Fig. 12.4. Key 
enzymes shown in red: MAE malic enzyme, MDH malate dehydrogenase, ACL ATP citrate lyase, 
ACC acetyl-CoA carboxylase, FAS fatty acid synthetase. Metabolites: LPA lysophosphatidic acid, 
PA phosphatidic acid, DAG diacylglycerol, TAG triacylglycerol, Ma-CoA malonyl-CoA
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animal fat treatment (Papanikolaou et al. 2002a), etc. Some of these applications not 
only provide a raw material with almost zero cost but also help to solve the problem 
of wastes disposal.

Many oleaginous yeasts are able to use glycerol as carbon source; hence, crude 
glycerol could also be used as a cheap feedstock for SCO production. Zhang et al. 
found that crude glycerol conversion to biodiesel is a process with a positive energy 
balance (Zhang et al. 2016). The maximum theoretical lipid yield is 0.3 g lipids/g 
glycerol since 32 moles of glycerol are used to produce 1 mole of triglyceride (Yang 
et al. 2014b); real yield is, of course, much lower and depends on many factors.

One of the most important factors is C/N ratio. Lipid accumulation in oleagi-
nous yeasts is mainly triggered when carbon excess in the environment is associ-
ated with nitrogen limitation (André et al. 2009). A high C/N ratio enhances lipid 
accumulation, whereas biomass production is favored by a low C/N ratio (Saenge 
et al. 2011). For example, when Lipomyces starkeyi strain DSM 70295 was culti-
vated in the medium with C/N ratio of 150, obtained lipid content was 68% of dry 
cell weight (DCW), whereas with a C/N ratio of 60, a lipid content was only 40% 
(Angerbauer et al. 2008). This phenomenon is explained by the fact that nitrogen 
limitation activates the enzyme AMP-deaminase, which starts to degrade the mito-
chondrial AMP in order to release NH4+ ions. The decrease of AMP inhibits the 
enzyme isocitrate dehydrogenase, blocking the TCA cycle and promoting the accu-
mulation of acetyl- CoA which is subsequently used for the synthesis of fatty acids 
(Beopoulos et al. 2011).

It is also important to consider the type of used nitrogen source. Organic nitrogen 
sources, such as peptone or yeast extract, were shown to be more beneficial for cell 
growth and lipid accumulation by some yeast (Trichosporon cutaneum, Trichosporon 
fermentans, Trichosporonoides spathulata, R. glutinis), whereas for other yeast 
strains (Cryptococcus albidus var. albidus and Y. lipolytica QU21) inorganic nitro-
gen sources, such as NH4Cl and (NH4)2SO4, were preferable (Cheirsilp et al. 2011; 
Liu et al. 2016; Poli et al. 2014).

Other factors that can positively influence lipid accumulation were a controlled 
pH regime (Chen et al. 2018a; Manowattana et al. 2018; Saenge et al. 2011), lower 
dissolved oxygen level (Manowattana et al. 2018; Yen and Zhang 2011), and addi-
tion of inorganic salts such as sodium, calcium, potassium, or magnesium salt 
(Saenge et  al. 2011) or organic acids such as acetic, succinic, or citric acid 
(Manowattana et al. 2018).

There are varied observations considering influence of impurities from crude 
glycerol on growth and lipids accumulation in oleaginous yeasts. Some studies 
reported that not all batches of crude glycerol are appropriate substrates for SCO 
production (Dobrowolski et al. 2016; Qiao et al. 2015). Others had found that impu-
rities can positively affect cells growth and certain metabolite production 
(Chatzifragkou and Papanikolaou 2012; Signori et al. 2016). Gao et al. had found 
that addition of methyl oleate, sodium oleate, and NaCl impurities increased lipid 
production by oleaginous yeast Rhodosporidium toruloides 32489, whereas 
 methanol had a negative effect on lipids accumulation, and the net effect of all stud-
ied compounds was positive (Gao et al. 2016b). The negative effect of methanol on 
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the cell growth was also reported on T. fermentans, T. cutaneum (Liu et al. 2016), L. 
starkeyi (Liu et al. 2017), etc. However, Chen et al. used methanol in concentration 
1.4% (w/v) to assist the lipid production with oleaginous yeast Trichosporon oleagi-
nosus cultivated under non-sterilize conditions (Chen et al. 2018b). Overall, impuri-
ties from crude glycerol start to have a negative impact on yeast growth and lipids 
accumulation if their level exceeds certain threshold which is strain-specific. Yeast 
strain adaptation to stressful conditions can be one of the possible strategies for 
dealing with inhibitor problems (Shen et  al. 2011). Other strategy is to develop 
proper cultivation methodology to avoid the growth inhibition by substrate (Signori 
et al. 2016). In this respect, fed-batch fermentation (when substrate is fed to the 
reactor through multiple steps) is proved to be superior to the batch fermentation. 
Fed-batch strategy allowed Koutinas et al. to obtain and achieve very high lipids 
accumulation: biomass concentration of 185 g/L with the 76% lipid content and 
lipid productivity of 1 g/L/h (Koutinas et al. 2014).

Yeast cells start to accumulate lipids in the growth phase, and this process inten-
sifies after nitrogen depletion, so lipid content reaches its maximum value in the 
early stationary phase (Beopoulos et al. 2008). But later, lipids can be degraded into 
free FA, so well-timed biomass harvest is essential to maximize lipids content. It 
was suggested that lipid turnover can be repressed in double limited media 
(Papanikolaou et al. 2004), for example, in media with a very low concentration of 
nitrogen and magnesium (Bellou et al. 2016). Dynamics of lipids accumulation can 
also be modified by changing the initial yeast inoculum age (Kuttiraja et al. 2016).

FA content is the important characteristic of the SCO as a potential biodiesel 
feedstock. FA composition (i.e., the chain length and degree of unsaturation) of 
lipids influences the quality of biodiesel (Pinzi et al. 2009). Higher saturated fatty 
acid content promotes increase in viscosity, density, and melting point of the pro-
duced biodiesel. On the other hand, polyunsaturated fatty esters have low cetane 
number and reduced oxidative stability, which is also undesirable for a diesel fuel 
(Knothe 2008). Therefore, the best raw materials for biodiesel production are rich 
in monounsaturated fatty acids such as oleic acid. It was reported that yeast oil simi-
larly to palm oil and Jatropha oil have the highest percentages of monounsaturated 
FA, which makes it perspective source for biodiesel production (Liang et al. 2010). 
The difference in fatty acid content among samples of yeast oils may occur due to 
the type of substrate that was used, culture conditions, and the age of the cells 
(Fakas et al. 2009).

The most common FA in oleaginous yeast are palmitic (C16:0), palmitoleic 
(C16:1), stearic (C18:0), oleic (C18:1), and linoleic acid (C18:2) that account for 
over 90% of the total FA content (Signori et  al. 2016). Some studies report that 
using crude glycerol as a substrate for lipids production increases the content of the 
oleic acid (Ramirez-Castrillon et al. 2017; Signori et al. 2016) or linoleic acid (Spier 
et al. 2015). In particular, R. glutinis produces high amounts of linoleic acid when 
glycerol or, especially, crude glycerol is used as a carbon source (Easterling et al. 
2009; Yen et al. 2012). As a polyunsaturated FA, linoleic acid is not very desirable 
for biodiesel production, but it is considered as a nutritionally essential fatty acid 
ω6. Other cultivation conditions can also influence the FA content: treatment of the 
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oleaginous red yeast Sporidiobolus pararoseus KM281507 with intense light or 
supplementation of the medium with 1.5% olive oil increases the unsaturated FA 
content in this yeast (Chaiyaso and Manowattana 2018), Y. lipolytica goes through 
significant alteration of FA composition during the transition to the citric acid for-
mation phase (Kamzolova et al. 2011), etc. Moreover, FA content is species- and 
even strain-dependent. The high monounsaturated FA content of crude lipids in 
oleaginous yeasts provides the possibility of the yeast oil use as a biodiesel feed-
stock in cold-climate countries.

The most extensively studied oleaginous yeasts are Y. lipolytica (Papanikolaou 
and Aggelis 2002), R. toruloides (Shen et al. 2013), and R. glutinis (Chi et al. 2011). 
Of these, Y. lipolytica is able to grow on various substrates, and it is regarded as the 
model organism to understand the lipid synthesis (Beopoulos et al. 2009). Initially, 
Y. lipolytica was considered to be able to accumulate significant lipid amounts only 
when fatty materials were employed as substrate (Papanikolaou et al. 2007). But 
later, it turned out that Y. lipolytica can use virtually any substrate for lipids produc-
tion, including pure and crude glycerol. For example, Y. lipolytica strain UFLA 
CM-Y9.4 that was selected for its ability to grow in 30% crude glycerol accumu-
lated 63.4% of lipids (w/w) in this conditions (Souza et al. 2014). Other Y. lipolytica 
strain, SKY7, under optimal cultivation conditions (initial glycerol concentration 
112.5 g/L, C/N molar ratio of 100, and with 5% v/v inoculum supplementation) 
accumulated lipids to the concentration of 43.8% w/w with a biomass yield of 
14.8 g/L (Kuttiraja et al. 2016). In some processes, employing Y. lipolytica crude 
glycerol was used as co-substrate: strain JMY4086 accumulated 31% lipids of 
CDW (cell dry weight) using molasses and crude glycerol (Rakicka et al. 2015), and 
strain TISTR 5151 accumulated 68% lipids of CDW on decanter effluent from palm 
oil mill supplemented with crude glycerol (Louhasakul and Cheirsilp 2013).

The major fatty acid in the lipids produced with Y lipolytica is oleic acid (C18:1); 
palmitic (C16:0) and linoleic (C18:2) acids are also detected in high quantities 
(Makri et al. 2010; Poli et al. 2014). However, the level of SCO production in Y. 
lipolytica is moderate: wild-type strain usually accumulates no more than 30% 
CDW as neutral lipids (Munch et al. 2015). As was already mentioned, in stationary 
phase, Y. lipolytica starts to produce other important compounds (citric acid, acetic 
acid, mannitol) and, at the same time, partially degrades accumulated lipids 
(Papanikolaou et al. 2013). Therefore, it could be advantageous to use alternate ole-
aginous yeast species for the SCO production without side products.

Several studies aimed to find the strain with the best ability to convert crude or 
pure glycerol into SCO. When 12 different yeast strains were analyzed using crude 
glycerol as the main carbon source, Lipomyces lipofer NRRL Y-1155 stood out 
above the other strains, achieving 9.48  g/l biomass, 57.64% lipid content, and 
5.46 g/l lipid production (Spier et al. 2015). When 33 yeasts strains belonging to 19 
species were screened for the ability to grow and produce intracellular lipids in a 
pure glycerol-based medium, Candida freyschussii ATCC 18737 was selected. 
During cultivation with continuous feeding of crude glycerol at the rate of 5.5 g/L/h, 
it produced 28 g/L of lipids with volumetric productivity of 0.28 g/L/h (Raimondi 
et  al. 2014). Two-step selection revealed 23 oleaginous yeasts among 387 yeast 
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strains. These strains belonged to the species Candida silvae, Kodamaea ohmeri, 
Meyerozyma caribbica, Pichia manshurica, Cryptococcus cf. podzolicus, 
Cryptococcus laurentii, Rhodosporidium fluviale, Rhodotorula taiwanensis and 
Sporidiobolus ruineniae. R. fluviale DMKU-RK253 accumulated the highest quan-
tity of lipids  – 65.2% of CDW by shaking flask cultivation in crude glycerol 
(Polburee et al. 2015). When Nile red (a red phenoxazine dye, which selectively 
stains lipophilic substances) was used for a high-throughput screening, yeast 
Meyerozyma (Pichia) guilliermondii BI281A was selected. It was able to produce 
lipids with 74% monounsaturated FA content in the medium with crude glycerol 
from a biodiesel refinery (Ramirez-Castrillon et al. 2017). Strain TYC-2187 was 
isolated from wild grapes and identified as Pseudozyma sp. After 48 h of growth in 
the medium with 80 g/L crude glycerol and 10 g/L yeast extract as nitrogen source, 
it produced 15.7 g/L of lipids (Takakuwa et al. 2013). Probably the highest lipids 
content (up to 74% of CDW) was obtained for R. toruloides AS2.1389  in the 
medium with 50 g/L of crude glycerol (Xu et al. 2012). Other oleaginous yeast spe-
cies with good ability to convert glycerol into SCO are R. toruloides DSM 4444, L. 
starkeyi DSM 70295 and T. oleaginosus (previously C. curvatus) DSM 70022 
(Signori et al. 2016), T. fermentans CICC 1368 and T. cutaneum AS 2.0571 (Liu 
et al. 2016), Wickerhamomyces anomalus CCMA 0358 and Cryptococcus humicola 
CCMA 0346 (Souza et al. 2017), and Rhodosporidium babjevae and Rhodosporidium 
diobovatum (Munch et al. 2015). Yu et al. even made the attempt to produce triacyl-
glycerol from glycerol with genetically modified non-oleaginous yeast S. cerevisiae 
with overexpression of genes encoding glycerol kinase (GUT1), diacylglycerol 
acyltransferase (DGA1), and phospholipid diacylglycerol acyltransferase (LRO1). 
Although lipids production in engineered strain increased in comparison with the 
WT strain, it still produced very low amounts of lipids – only 23.0 mg/L (Yu et al. 
2013).

Crude glycerol was also used as co-substrate together with other substances that 
play role of the nitrogen source. For example, it was used in lipid production with 
such oleaginous yeasts and additional substrates: R. glutinis and waste solution col-
lected from the brewing company (called thin stillage) (Yen et al. 2012), T. oleagi-
nosus and corn steep liquor with recycled de-oiled yeast autolysate (Thiru et  al. 
2011), R. glutinis and rapeseed meal (Uckun Kiran et al. 2013), or sunflower meal 
(Leiva-Candia et al. 2015). The last process allows for simultaneous utilization of 
different waste materials obtained over the course of biodiesel production.

Glycerol could be used both as carbon source for the production of microbiologi-
cal lipase or as a substrate for mono-, di-, and triacylglycerol production with this 
enzyme. For example, crude glycerol was used as a starting material for production 
of valuable mono-, di-, and triacylglycerol using commercial lipase from Candida 
sp. The optimum conditions for acylglycerol production were a glycerol to fatty 
acid molar ratio of 6:1, 100 mg of lipase with the reaction temperature and time of 
40 °C and 24 h, respectively (Binhayeeding et al. 2017).

Lipases are now scarcely used as feed enzymes. Their wider use as feed additives 
could be beneficial for animal nutrition as hydrolysis of lipids increases their energy 
value and improves nutrient use efficiency (Magdouli et al. 2017). Wild-type strain 
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of Y. lipolytica produces lipase, and its secretion is known to be induced by the pres-
ence of triacylglycerols and fatty acids in the cultivation medium (Benjamin and 
Pandey 1996). Lee et al. reported that Y. lipolytica strain NRRL Y-2178 is capable 
of alkaline lipase synthesis when glycerol is used as a carbon source (Lee et  al. 
2007a). Researchers had shown that microbiological lipase production from glyc-
erol is only possible when one or more inducers of lipase synthesis (such as olive 
oil, waste cooking oil) are added to the medium (Fabiszewska et al. 2014; Goncalves 
et al. 2013).

When crude glycerol and crustacean waste and olive oil were used for the lipase 
production with Y. lipolytica, the obtained lipase activity was 38 U/mL (Magdouli 
et al. 2017).

To conclude, crude glycerol could be used together with other waste materials 
for the production of SCO and lipase with oleaginous yeasts.

12.4.2.5  Production of Other Compounds

Carotenoids Carotenoids are the naturally occurring pigments responsible for the 
bright red, yellow, or orange hues in many vegetables and fruits, some microorgan-
isms, and animals. Carotenoids are precursor of vitamin A (Johnson and Schroeder 
1996) and hormones (Vershinin 1999) and have photoprotective, antioxidant, and 
immunostimulating properties (Johnson and Schroeder 1996; Moline et al. 2009; 
Vershinin 1999). Carotenoids are widely used in medicine and in cosmetic, food, 
and feed industries. They can be synthesized chemically or by carotenoids accumu-
lating microorganisms. Few of such microorganisms are already used for carot-
enoids production at the industrial scale, e.g., Phaffia rhodozyma (new designation 
Xanthophyllomyces dendrorhous) and Haematococcus pluvialis are used for astax-
anthin production and Blakeslea trispora for β-carotene production (Dufosse 2006).

Already mentioned red oleaginous yeasts are one of the high potential natural 
carotenoids sources. In particular, carotenoids are produced by yeasts of the genera 
Rhodosporidium, Rhodotorula, Sporobolomyces, Sporidiobolus, and 
Xanthophyllomyces (Frengova and Beshkova 2009). Crude glycerol is appealing 
cheap substrate for carotenoids production with these yeasts.

When eighteen yeasts belonging to the species Rhodotorula cresolica, R. gluti-
nis, Rhodotorula mucilaginosa, Rhodosporidium paludigenum, R. toruloides, 
Sporobolomyces coprosmae, Sporobolomyces ruberrimus, Sporidiobolus salmo-
nicolor, and Sporobolomyces oryzicola were analyzed regarding their ability to 
grow in glycerol-containing medium, strains R. glutinis C2.5t1, R. mucilaginosa 
DBVPG 6094, R. mucilaginosa C71t0, S. oryzicola CBS 7228, and R. paludigenum 
CBS 6566 fully utilized glycerol within the first 48 h of fermentation (Cutzu et al. 
2013). Surprisingly, carotenoids yields were higher in the medium with glycerol 
than in the medium with glucose as a sole carbon source, although glucose is a pre-
ferred carbon source for red yeasts (Cutzu et al. 2013; Taccari et al. 2012). Among 
selected strains, R. glutinis C2.5t1 showed the highest level of β-carotene produc-
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tion from glycerol; therefore, it was subjected to UV mutagenesis to further improve 
its production efficiency. Among the obtained mutants, one yellow-colored strain 
400A15 produced 280% higher amounts of β-carotene at the expense of torulene 
and torularhodin production. After optimization of the medium composition, total 
carotenoids accumulation by the mutant 400A15 has reached 14.07 ± 1.45 mg/L 
(Cutzu et al. 2013).

Other research reports carotenoids production of 135.25  mg/L by R. glutinis 
strain TISTR 5159 in fed-batch fermentation in a stirred tank bioreactor under opti-
mized conditions (pH controlled at 6.0, aeration rate at 2 vvm, glycerol concentra-
tion of 9.5%, and C/N ratio of 85) (Saenge et al. 2011). Also, glycerol was exploited 
as a carbon source for astaxanthin production with P. rhodozyma (Kusdiyantini 
et al. 1998) and torularhodin and β-carotene production by S. ruberrimus (Razani 
et al. 2007).

One of the highest carotenoids yields was reported for the strain S. pararoseus 
KM281507, which produced 109.75  ±  0.21  mg/L of β-carotene and 
151.00 ± 2.71 mg/L of total carotenoids under optimized conditions in the airlift 
bioreactor (Manowattana et al. 2018). Researchers have found that β-carotene and 
total carotenoids production by this strain increased during cultivation under the 
uncontrolled pH regime (with pH gradually decreasing from 5.63 to 2.72) in con-
trast to controlled pH cultivation which augmented biomass and lipids production. 
Light can also improve carotenogenesis by oleaginous red yeast, as carotenoids 
protect yeast cells from light-induced cell damage (Mata-Gomez et al. 2014). Other 
factors that can positively influence carotenoids production were the high aeration 
rate and dissolved oxygen level (Manowattana et al. 2018), addition of the organic 
acids (e.g., acetic, succinic, and citric acid, which are the source of acetyl-CoA that 
is the precursor of carotenoids biosynthesis), and addition of olive oil or Tween 60 
(Chaiyaso and Manowattana 2018). Impurities in crude glycerol, such as salts and 
methanol, can inhibit biomass accumulation and carotenoids production by red ole-
aginous yeasts. That’s why very high initial concentration of crude glycerol in the 
medium should be avoided (Chaiyaso and Manowattana 2018).

γ-Decalactone The flavor compounds are commonly used in the food, cosmetic, 
and pharmaceutical industries. They can be produced by chemical synthesis or 
extracted from plants. Both these processes have disadvantages: chemical produc-
tion is a complicated multistep process that can result in generation of undesirable 
racemic mixtures of compounds (Longo and Sanromán 2006), whereas plant extrac-
tion does not provide acceptable product yield and cost-efficiency. These factors 
increase the appeal of microbial fermentation as a cheap and ecological way of the 
flavor compounds’ production (Romero-Guido et al. 2011). Among the important 
aroma producers are yeasts Sporobolomyces, Pichia, Candida, Rhodotorula, and 
Yarrowia (Braga and Belo 2016).

Lactones are the flavor chemicals with a characteristic “fruity” aroma. Among 
these compounds, γ-decalactone (with an aroma of peach) is the most widely pro-
duced (Pereira de Andrade et  al. 2017). The microbial γ-decalactone production 
occurs mostly through peroxisomal β-oxidation of ricinoleic acid, which is the 
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major constituent (80%) of castor oil. Crude glycerol is being considered as an 
alternative source for γ-decalactone production. Widely studied yeast Y. lipolytica 
as well as not so extensively studied yeast L. saturnus were tested regarding their 
ability to produce γ-decalactone from castor oil or crude glycerol (Pereira de 
Andrade et al. 2017; Soares et al. 2017). The yeast L. saturnus has been recently 
shown to produce isoamyl acetate (banana flavor) by isoamyl alcohol biotransfor-
mation in beet molasses (Yilmaztekin and Tay 2013). Although Y. lipolytica strain 
CCMA 0242 efficiently produced γ-decalactone from castor oil, it produced negli-
gible amounts of γ-decalactone (2.5 mg/L) from crude glycerol. Therefore, crude 
glycerol showed no potential as a substrate for the production of aroma by Y. lipo-
lytica CCMA 0242 (Pereira de Andrade et al. 2017). On the contrary, L. saturnus 
strain CCMA 0243 produced 5.8 g/L of γ-decalactone after 120 hr. of cultivation in 
the medium with 10% of crude glycerol, which was 2.7 times more γ-decalactone 
than it produced from 10% castor oil. Therefore, crude glycerol is a prospective 
substrate for γ-decalactone production by L. saturnus CCMA 0243 (Soares et al. 
2017).

Sophorolipids Biosurfactants (BS) are surface-active compounds produced by 
microorganisms from sustainable feedstock, which are used as emulsifiers and 
detergents (Kitamoto et al. 2002). Sophorolipids (SL) are the glycolipid BSs which 
consist of a hydrophobic fatty acid tail and a hydrophilic carbohydrate head, sopho-
rose. SL are produced from glucose and/or hydrophobic materials including vegeta-
ble oils, fatty acids, FAMEs, and alkanes by yeasts Starmerella bombicola (Ashby 
et al. 2006), Candida apicola (Hommel et al. 1994), Wickerhamiella domercqiae 
(Chen et al. 2006), Candida batistae (Konishi et al. 2008), etc. S. (Candida) bom-
bicola is considered to be the conventional SL-producing yeast. It was shown that S. 
bombicola produces insignificant amounts of SL during fermentation on pure glyc-
erol, but the use of the biodiesel coproduct steam (which comprised 40% glycerol, 
34% hexane-soluble substrates, and 26% water) as feedstock increased the SL yield 
to 60 g/L (Ashby and Solaiman 2010).

New strain ZM1502 was isolated from withered leaves by its ability to produce 
BS from glycerol, and it was identified as Candida floricola. It produced only acid- 
form SLs, whereas S. bombicola produces mainly lactone-form SLs with small 
amounts of acid-form SLs (Konishi et al. 2017). The absence of the lactone forms 
in the metabolites of C. floricola is likely due to lack of a specific lactone esterase. 
C. floricola strains ZM1502 and CBS 7290 produced more than 3.5 g/L acid-form 
SLs from 20% glycerol. These results suggest that C. floricola could be used for 
selective production of acid-form SLs (which are in some aspects superior to 
lactone- form SLs) from crude glycerol (Konishi et al. 2017).

Heterologous Proteins The methylotrophic yeast P. pastoris  has many traits which 
make it a remarkable host for heterologous protein production, among them being the 
following: (1) similarly to bacteria, P. pastoris grows fast and can be easily subjected 
to genetic manipulations; (2) it has the subcellular machinery that provides character-
istic eukaryotic posttranslational modifications, such as proteolytic processing, glyco-
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sylation, folding, and disulfide bond formation; (3) it is more inclined to respiratory 
rather than fermentative metabolism, even at high-biomass level, which allows its 
growth to high cellular concentration on defined minimal medium and prevents the 
accumulation of unfavorable secondary metabolites as acetic acid and ethanol; (4) P. 
pastoris secretes very low levels of native proteins; therefore, secreted recombinant 
protein usually comprises the majority of the total protein in the medium, which 
greatly facilitates its purification; (5) P. pastoris is a GRAS (generally recognized as 
safe) organism; and (6) it has strong constitutive or inducible promoters which provide 
efficient expression of heterologous genes (Cereghino et  al. 2002; Cereghino and 
Cregg 2000; Cregg et al. 2000). In particular, there are two efficient promoters which 
are commonly used for foreign gene expression in P. pastoris: strong constitutive pro-
moter of glyceraldehyde-3-phosphate dehydrogenase gene (GAP1) (Jiang et al. 2012) 
and methanol-inducible promoter from the alcohol oxidase I gene (AOX1) that is 
strongly repressed in the presence of glucose and glycerol but induced over 1000-fold 
with methanol as the sole carbon source (Macauley-Patrick et al. 2005).

P. pastoris consumes glycerol very efficiently due to the presence of four genes 
coding for glycerol transporters which provide high, specific glycerol uptake rates 
(Mattanovich et al. 2009). That is why glycerol is often used as a carbon source in 
P. pastoris fermentations. Untreated crude glycerol can substitute analytical glyc-
erol in this process as P. pastoris is able to tolerate and use methanol and its growth 
is not inhibited by free fatty acids (Anastacio et al. 2014).

Heterologous protein production with crude glycerol as a carbon source can con-
sist of one or two stages. When pGAP1 promoter is used for heterologous gene 
expression, protein is synthesized in a single step at the same time with biomass 
accumulation, in crude glycerol-containing medium. This is the faster way; how-
ever, some studies have indicated that constitutive expression of recombinant pro-
teins could generate cytotoxic effects in P. pastoris (Cereghino and Cregg 2000; 
Macauley-Patrick et al. 2005). If the recombinant yeast strains had the heterologous 
gene under the control of the inducible pAOX1 promoter, a two-stage process is 
employed: first, biomass is produced in the complex medium with crude glycerol, 
and then heterologous gene production is carried out in minimal medium with 
methanol addition (Anastacio et  al. 2014). While the former medium containing 
rich nutritional supplements supported high growth of yeast before induction, the 
latter medium ensured easier purification of the secreted protein (Aoki et al. 2003).

Crude glycerol was used as a carbon source for one- or two-stage production of 
the following heterologous proteins: phytase (Tang et al. 2009), recombinant human 
erythropoietin (Çelik et  al. 2008), bovine chymosin (Noseda et  al. 2014; Noseda 
et al. 2016), cysteine proteinase (NsCys) of northern shrimp Pandalus borealis (Aoki 
et  al. 2003), highly thermostable β-mannanase (ReTMan26) from a thermophilic 
Bacillus subtilis (TBS2) (Luo et al. 2018), α-amylase (Anastacio et al. 2014), etc.

In some of these cases, impurities from crude glycerol, such as 0.2% and 0.3% 
(w/v) soap (Luo et al. 2018) or NaCl, KCl, and K2SO4 salts (Anastacio et al. 2014), 
were found to inhibit P. pastoris growth and heterologous protein production, neces-
sitating the corresponding adjustments of crude glycerol concentration in the 

M. Semkiv and A. Sibirny



429

medium. But overall, it can be concluded that crude glycerol without any purifica-
tion steps may be directly used as carbon source for protein production in P. pastoris 
(Anastacio et al. 2014).

Amino Acids-Rich Biomass Yeast biomass itself is a valuable product as it can be 
used as a nutrient-rich additive for animal feeding. Important parameters that influ-
ence nutritional value of fodder yeasts are protein content (with recommended level 
of 40–52%), the content of essential amino acids (EAA), the amount of polyunsatu-
rated fatty acids (PUFA), and the content of calcium, magnesium, copper, iron, zinc, 
etc. (Boze et al. 2008).

It has been shown that crude glycerol can be used for fodder yeast production by 
Y. lipolytica with good yield and productivity (Juszczyk and Rymowicz 2009). The 
European Feed Manufacturers’ Federation authorized the sale of Y. lipolytica fodder 
yeast produced from crude glycerol.

Juszczyk et  al. among 21 Y. lipolytica strains isolated from different environ-
ments selected strain S6 with the highest level of biomass accumulation on glycerol 
(Juszczyk et al. 2013). This strain was used for production of yeast biomass in bio-
reactor (pH 3.5) with pure glycerol or crude glycerol (in concentration 25 g/L) as a 
carbon source. Volumetric biomass production was 11.7 g/L from pure glycerol and 
12.3 g/L from crude glycerol. Yeast biomass obtained on crude glycerol was char-
acterized by higher content of proteins (42–45%), essential amino acids (45.4 g/100 g 
of protein), and ash (i.e., K, Na, Mg, Ca, Cu, Zn) in comparison with the biomass 
obtained on pure glycerol. All biomass samples were characterized by high content 
of unsaturated fatty acids. Sample from crude glycerol contained higher amounts of 
lysine, threonine, and phenylalanine/tyrosine than the FAO/WHO standard of whole 
egg. However, the amount of sulfuric amino acids (methionine and cysteine) in 
strain S6 biomass was much lower than in the whole egg, which decreased its nutri-
tional value. Therefore, biomass of strain S6 might be suitable for fodder production 
when compiled with cereals, which are known to contain high levels of sulfuric 
amino acids but low amounts of lysine, isoleucine, and threonine. In conclusion, 
crude glycerol is superior to pure glycerol as a carbon source in respect of produced 
Y. lipolytica biomass amount and content (Juszczyk et al. 2013).

12.5  Conclusions

Biodiesel industry produces huge amounts of contaminated crude glycerol as a by- 
product. Nowadays, in some countries, crude glycerol is treated as industrial waste-
water or simply incinerated, undermining the right of biodiesel to be called “green 
fuel.” This review describes different possible applications of crude glycerol in 
yeast biotechnology (some of them are summarized in Table 12.1), among which 
crude glycerol conversion to the new portions of biodiesel is, perhaps, the most 
inventive and feasible. But none of these methods has been implemented at large 
scale yet, so this sphere needs further development.
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